Tampereen teknillinen yliopisto. Tietoliikennetekniikan laitos.

Tutkimusraportti 2010:2

Tampere University of Technology. Department of Communications Engineering.
Research Report 2010:2

Bilhanan Silverajan & Alexander Pyattaev

Future Services and Overlay Architectures: State of the
Art Report 1

UBISERVE Project Deliverable D4.1

TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Tampereen teknillinen yliopisto. Tietoliikennetekniikan laitos.

Tutkimusraportti 2010:2

Tampere University of Technology. Department of Communications Engineering.
Research Report 2010:2

Bilhanan Silverajan & Alexander Pyattaev

Future Services and Overlay Architectures: State of the Art
Report 1
UBISERVE Project Deliverable D4.1

Tampereen teknillinen yliopisto. Tietoliikennetekniikan laitos
Tampere 2010

ISBN 978-952-15-2476-9 (PDF)
ISSN 1459-4617

- W IN =

Ubiserve Project WP4: Service Overlay Design, Architecture and Testing

Deliverable D4.1

Future Services and Overlay Architectures: State of the Art Report 1

Bilhanan Silverajan and Alexander Pyattaev
Tampere University of Technology

October 2010

Table of Contents

. Introduction

. Service Overlay Networks

. Services Today

. Web Application Platforms and Example Services

4.1 Facebook and Facebook Places
4.2 Google APIs and Google Latitude
4.3 Nokia Ovi Service, SDK and Messaging

. Communication Technologies and Protocol Stacks

5.1 Web Technologies
5.2 Emerging Technologies for Proximal Services
5.3 New Communication Technologies for Low Power Devices

. Software and Device Technology Platforms

6.1 Android
6.2 i0S and Xcode
6.3 Symbian

6.4 Maemo and Meego
6.5 Qt

. Ongoing and Related Research

7.1 Ontology Models and Semantic Web
7.1.1 DynamiCos
7.1.2 NoTA
7.1.3 Smart-M3
7.2 Platform Composition
7.2.1 Composition Framework
7.2.2 Context Card
7.2.3 CompUTE
7.3 Reflection and Overlay Adaptation
7.3.1 Overlay Adaptation in Juno

. Conclusion
. References

oINS UGN DN

1. Introduction

The UBISERVE-project (Research on Future Ubiquitous Services and Applications) is
a joint research effort dedicated to advance research in the field of ubiquitous
services. The project focuses on future services building on mobile communication
systems and services.

Within this Project, our aim in Work Package 4 is to develop an overall overlay
architecture providing a rich set of service facilitators for mobile users of wireless
convergence devices that contain hardware capabilities to accurately pinpoint their
locations, possess multiple wireless interfaces and have large storage capacities. The
architecture will also support contextually aware self-organising devices creating an
on-demand, dynamic overlay, capable of supporting multipath, transport-
independent communication among users and devices. Thus useful information
needs to be gleaned from service providers, network operators, infrastructure,
sensors and devices in the immediate operating environment.

We are already witnessing an era, where cheap powerful hardware and competitive
pricing and availability of wireless broadband networks have propelled their
adoption by the mass market. This presents tremendous business opportunities for
device manufacturers and network operators. However, the greatest single factor
today defining the popularity or dissatisfaction of specific combinations of devices
and technologies appears to be the availability, deployment and ease of use of a
multitude of services.

This State of the Art document is the first project document which analyses the key
enabling technologies for service overlays, platforms, frameworks and
communication mechanisms for creating such architectures that would prove
indispensable in the creation of future services. In short, the following questions are
examined:

* What kinds of service overlays exist today?

* How are service overlays relevant towards services in wireless devices?

* What communication technologies can we expect future services to use?

* What are the dominant development platforms for smartphone applications?

2. Service Overlay Networks

As the number of users, services and combined processing power of networked
computers multiply, increasingly new ways of efficient and optimized
interconnections amongst these nodes are being developed to better serve user and
application needs. Service Overlay Networks have become a popular way to
facilitate the deployment of various kinds of applications and services. A Service
Overlay Network can be perceived as a virtual network built atop existing physical
networks, whose nodes form logical point-to-point links with each other. These
overlay nodes can be customized and their logical links re-arranged to change the

topology of the Service Overlay, independently and irrespective of how the actual
routing and physical links are positioned.

Although Service Overlay Networks are not bound to any one type of network or
transport technology, today a Service Overlay Network is typically built using IP
technology. Additionally, the overlay links can be overlapped at the physical layer
even though they are completely separated at the overlay layer. Non-overlay traffic
or other overlay links may pass through a part of a whole group of IP-layer links. To
obtain satisfactory performance, the overlay nodes need to continuously probe the
network, so as to obtain updated information on the status and performance of the
overlay links [Adami et. al 2009].

Overlay networks can be created by end-hosts as an application or service
requirement in order to fulfill its actions, or it can be built by intermediate network
nodes residing in the backbone network as a means to optimize or regulate network
traffic. The former is usually a critical requirement by some VolIP, file sharing,
gaming and collaborative user applications: These construct the overlay without any
support from the backbone or any intermediate node, forming an application level
transport layer over which packets are exchanged. The latter is often undertaken
by network operators, content providers and third parties primarily to provide a
better quality of service and experience to end users, keeping the peering structure
largely hidden to end hosts. The discussion of overlay networks in this report is
focused on end-user overlay networks, although it does not completely exclude
backbone overlays.

Peer-to-peer networks form the largest and most common class of end-user overlay
networks today. The term “"peer-to-peer” has come to be applied to networks that
expect end users to contribute their own files, computing time, or other resources to
some shared project [Oram 2001]. While the history of peer-to-peer networking is
almost as old as the Internet itself, the phrase “P2P” came into popular existence
when it was colloquially used to describe socially disruptive application overlay
networks that performed filesharing by end-users. The resulting legal and technical
repercussions are still ongoing at the time of this writing. A large portion of active
P2P filesharing users engage in exchanging copyright infringing media and software
piracy, while many ISPs around the world throttle bandwidth pertaining to certain
kinds of P2P traffic in an effort to stem network load.

However, P2P networking technology has also been legitimately promoted and
deployed for various uses such as VolP-based communication, video-on-demand,
distribution of non-copyrighted or royalty-free media, supplying various kinds of
software updates and engaging in online multiplayer gaming.

Unstructured P2P networks lack any precise control over the network topology or
file placement. The network is formed by nodes joining the network following some
loose rules [Lv et. al 2002]. Flooding is the predominant search technique in
unstructured peer-to-peer (P2P) networks. If performance is measured as the

number of exchanged messages per distinct response, flooding with small time-to-
live performs well in regular networks [Gkantsidis et. al 2005]. However, its
performance deteriorates as the time-to-live increases, or if the topology of the
underlying network is not regular [Gkantsidis et. al 2004]. In addition, flooding has
poor granularity [Ritter 2001], and generates large loads on the network
participants [Lv et. al 2002].

Structured P2P networks possess a network topology is tightly controlled and files
are placed at specified locations that makes subsequent queries easier to satisfy. In
highly structured systems, both the structure of the P2P network and the placement
of files are precisely determined [Lv et. al 2002]. Structured overlays conform to a
specific graph structure that allows them to locate objects by exchanging O(Ig N)
messages where N is the number of nodes in the overlay. Structured overlays can be
used to construct services such as distributed hash tables, scalable group
multicast/anycast, and decentralized object location [Dabek et. al 1999]. These
overlays are highly resilient; they can route messages correctly even when a large
fraction of the nodes crash or the network partitions [Castro et. al 2002].

With the advent of social networks and instant messaging, a new variation of the
P2P network, called the Friend-to-Friend (F2F) network, has emerged. F2F is a
completely decentralized architecture in which two computers can communicate
only if their owners know one another. Constraining the connections to friends-only
solves many of the security problems of the peer-to-peer architectures. Groups can
easily build their own ad-hoc networks and collaborate without the need for any
servers or third-party services [Galuba 2009]. However F2F networks are
predicated on the fact that friends and contacts need to be authenticated, and as
such, an external authentication service is usually involved if the network itself does
not provide any such service.

Apart from P2P networks, overlays are often used as a means to introduce a new
technology or as a means of access control into a restricted network. Overlay
technology is relied upon as a transitionary technology to introduce IPv6 into IPv4
networks. 6to4 [Carpenter and Moore 2001] and 6rd [Townsley and Troan 2010]
are good examples of how islands of IPv6 access networks can be interconnected
using relay routers over an IPv4 backbone network. The end-user and device
communicate via IPv6, with the mechanism overlaying the IPv6 packet routing and
end-to-end architecture directly over the IPv4 transport network. In effect, the
entire IPv4 network serves as a link-layer for the IPv6 network. DualStack-lite
Internet Draft [Durand et. al. 2010] describes how, using IPv6 as the default
network, IPv4 networks and packets can be supported via a tunneling architecture.
Teredo [Huitema 2006] as well as [Pv6 Tunnel Brokers [Durand et. al 2001] support
provisioning IPv6 addresses to end-devices independently of their IPv4 network

topology.

3. Services Today

Many popular ubiquitous services today can be scoped into one of the two following
categories:

» Traditional custom service implementations. Such services have comprised
of "fat clients", where applications run directly on the device. The
implementation of the application relies exclusively on software technology
supported by the hardware and operating system provided by the vendor.
Such service implementations tend to be monolithic by design and exist both
at compile as well as runtime as a single executable. This is a common
approach for many services and applications that run in desktop computers
as well as mobile laptops. Network interactions also tend to be
straightforward, with the applications opening connections and exchanging
information with servers using well-known communication protocols. Many
examples of such services abound, such as Skype for VoIP-based telephony,
or a multitude of messaging clients. Many of these provide the ability to
query the device, operating system or 3rd party software extensions to
update a user’s mood or status with their current location based on GPS
information, or providing URLs of current pages the user is browsing as well
as updating in real-time what music the user is listening to.

» Services that comprise "thin clients" and widgets that leave the bulk of the
complexity and functionality of the actual services themselves on the
infrastructure external to the device. The client residing in the device is often
a web browser or a derivative which provides a remote access interface. In
many cases, the infrastructure is accessed via the web, run by a third party
content or service provider. Many such websites use cookies stored in the
local cache to save stateful information for the convenience of returning
users, such as user authentication and last observed activity. Online email
services such as Google Mail, photo sharing sites such as Flickr and online
music streaming services such as Grooveshark and Last.FM are examples of
such services.

Increasingly, many services today blur the distinction between the above two
categories owing to user mobility, network connectivity, richness of device
capabilities as well as social communication platforms become more widespread
and powerful. Consequently, this report looks at how collaborative service
platforms, as well as technological factors such as communication stacks and
technology platforms are helping to drive future services.

4. Web Application Platforms and Example Services

While computing power and storage capacities have increased, especially in mobile
devices, we are still witnessing a proliferation in the consumption and demand in
the uptake of online content and service provision. This could be attributed to
factors such as inexpensive cellular data connections, widespread availability of
wireless broadband as well as the richness of social and content-sharing platforms.
Many of these platforms are continually evolving, particularly with the increased
consumer interest in social networks, and many offer web-based APIs, allowing the
possibility of combining orthogonal services into a sort of “meta service” or mashup.
Some of these have been rather simple, accessed simply via a web browser, such as

* Flickr users having the capability of sharing video from other websites such
as Vimeo and YouTube directly from their Flickr photostream,

* Collaborative and news websites allowing readers to participate in leaving
comments on stories, after being authenticated using Facebook Connect

* Real-estate agencies using Google Maps APIs to outline the location of
available houses on sale.

As cloud computing technologies gain commercial importance, social networks
become more mature and the notion of an always-connected device or user
becomes a fact in the future, services are anticipated to further push the boundaries
into how such service platforms are employed. The devices themselves seamlessly
weave into the fabric of what is offered, with little or no complexity to the end user,
while customizing themselves to the need at hand. The notion of exactly where
applications launched from the device actually reside will be invisible /unimportant
to the user: these could range from simple collaborations of thin applications which
harness web-based APIs and browsers to fully realise the service mashup, or they
could be full fledged applications, parts of which execute on the device while other
parts are distributed into the service provider’s platform, or to other devices that
belong to the realm of control.

Some examples abound today that can give an insight into future developments for
using service provider platforms as a basis for service development such as
Facebook, Google and Nokia’s Ovi.

4.1 Facebook and Facebook Places

Facebook remains the dominant platform for social networking today, boasting
more than 500 million users as of July 2010 of which 150 million active users access
their pages using mobile devices [Facebook 2010]. In addition to deploying
Facebook Connect, that allows third-party websites to authenticate users based on
their Facebook credentials, the platform hosts hundreds of applications which
exploit the social nature of the website to share content, play games and perform
various kinds of collaboration. The recently announced Facebook Places [Sharon
2010] brings this one step closer with location based services, by interacting with

the mobile device’s GPS receiver, with a web browser that supports both
geolocation and HTML5. Facebook Places allows a Facebook user to share their
locations with friends whilst similarly being able to see where other Facebook
friends using Places are. Facebook Places allow friends to be tagged together, to
perform group activities such as making hotel or restaurant reservations directly
from the application itself.

4.2 Google APIs and Google Latitude

Google has heavily invested in browser-based technologies to lure user away from
desktop applications towards cloud-based solutions that can be accessed by users
irrespective of terminal or location. Google Docs, Mail, Wave and Buzz are just a few
of the collaborative and social communication tools that are provided. Google
Latitude was launched in 2009 which provides functionality similar to Facebook
Places. Using the Google Latitude app, a user is able to update his location in
realtime, allowing selected contacts and friends to view his current co-ordinates.
Google Latitude uses GPS as well as IP-based geolocation and maps the resulting
location onto Google Maps. Conversely, it also allows the user to view the location of
his contacts who use Google Latitude. A location alert can be triggered when friends
are nearby. An additional feature of Google Latitude is that upon the user’s explicit
consent, a history of visited locations can be stored. The location data can be
subsequently retrieved via the Google Latitude API [Gasson 2009].

4.3 Nokia Ovi Service, SDK and Messaging

In addition to having a repository through which applications can be downloaded or
bought for smartphones, Nokia’s Ovi can be perceived as a collaborative service,
providing many services to mobile devices and PCs such as media sharing,
geolocation, synchronization and backup, an application store and until recently, a
file upload/download/mirror service. A music player service allows unlimited
music downloads for subscribers and enforces DRM by allowing playback from
registered devices. Transfers to other media or devices is disallowed for
unpurchased songs.

The web-based Ovi SDK is a toolkit that allows creating mobile apps quickly and
easily and provides access to Ovi APIs, such as the Ovi Maps Player API and the Ovi
Navigation Player API [Nokia 2010a]. Ovi also provides a messaging service. While
many smartphones from various vendors today allow multiple standalone VoIP and
IM applications, newer Nokia smartphones attempt to merge traditional phone
contacts with those from VoIP and IM services, thereby creating a single view of all
contacts reachable from the smartphone, be it via a cellular voice service or via the
Internet through Wi-Fi or a cellular data service. The Contacts shortcut in Maemo5-
based Nokia N900 launches an application through which users can be reached via
phone, Skype Video and Google Video services, while a Conversations shortcut
merges SMS, email and IM chats into a single view. Newer Symbian3-based
smartphones such as the N8 do this differently since social networking and IM-

based chat are managed via the Ovi platform: The phone owner signs in to Ovi,
provides the necessary credentials for particular social or IM networks to allow the
Ovi server to manage these connections on behalf of the device [N8 2010].

The recently announced Ovi App Wizard also provides an easy way for non-
technical users to rapidly create and publish apps for the Ovi Store [Ovi 2010]. The
Wizard facilitates the creation of content-based apps with RSS and Atom feeds for
video, audio, text and images for blogs, YouTube and Twitter.

5. Communication Technologies and Protocol Stacks

The ready availability of processing power and networking capabilities in the
immediate environment of a user or group of users also serves as a motivation to
approach the notion of a future service as a dynamic and component-oriented
application instead of the previously monolithic design. Such an option would
provide extremely flexible opportunities for an application to reconfigure or re-
adapt its communication, storage and processing abilities to automatically take
advantage of any available infrastructure.

Future Services additionally are expected to be able to employ a range of
communication methods for connectivity and reachability. These include various
kinds of overlay networks as well as directly accessing a device’s existing
communication stack. In this section we discuss the kinds of transport mechanisms
atop which different kinds of services and applications communicate and interact.

5.1 Web Technologies

Active development of AJAX (Asynchronous Javascript and XML) technologies has
led to a stable development platform for the implementation of web applications.
AJAX was initially developed as a means of overcoming limitations in allowing
flexible page rendering by a web browser from a web server. Today, AJAX refers to a
group of enabling technologies, such as HTML, CSS, XML, Javascript and JSON
(Javascript Object Notation) to collectively provide an interactive experience for a
user to use an application through a web browser. AJAX-based web applications
have the ability to present themselves as belonging to the device they are accessed
from, while in reality remain server-side services.

Historically, AJAX technologies started taking root during the browser wars of the
1990s with ActiveX, Java and the Javascript development activities finally
converging to produce a means by which any web browser can perform
asynchronous requests on a web server with the exchange of XML -based objects.
AJAX received widespread attention when it was chosen as the technology of choice
for web-based APIs and services from Google.

In essence, AJAX hides the underlying HTTP based communication between a client
and server as a series of object calls in Javascript to invoke operations at the server

using a well-known URI. Such calls tend to be asynchronous using the HTTP GET
and HTTP POST operations. An XMLHttpRequest object [van Kesteren 2010a] is
required at the client end to open connections to the server, construct well-formed
requests, keep track of state changes, and handle responses received using a
callback function. While AJAX traditionally relied on code written in Javascript,
many alternatives exist today in Java, C, C++ and many others. In effect, this creates
opportunities for many clients to interact with web servers without being web
browsers themselves. These applications also render the boundaries about what a
web application really is, indistinct: An application, could in effect, remain
standalone and native to a specific platform for functionality such as video and
audio while using AJAX to communicate with a webserver. A good example of this
would be the Google Talk plugin for web browsers (available only for specific
platforms such as Intel-based Mac OS X machines and Windows PCs) that allow
voice and video chat, while the text chat client remains embedded in the browser
and is AJAX-based.

Another communication technology that is rapidly gaining momentum for web-
based application is HTMLS5 [Hickson 2010a]. As of this writing, HTMLS5 is still work-
in-progress by the World Wide Web Consortium, its aim being an evolution of the
current HTML4 by extending some of its current features while introducing new
additions.

For web-based application development, HTML5 proposes to introduce scripting
mechanisms and APIs in addition to web browsing and page rendering [van
Kesteren 2010b]. Currently, Javascript is widely described as the scripting language
of choice. The APIs allow the ability for clients to perform messaging, for embedding
machine readable data into HTML documents, for allowing a server to access the
audio, video and image capturing devices located at the client and for web storage.
With HTMLS5, the work is also set for the introduction of WebSocket, a technology
that specifies both an API as well as a protocol. WebSockets allow the ability to
bootstrap an existing HTTP connection into a birectional, TCP-based communication
channel between the client and the server [Hickson 2010b].

5.2 Emerging Technologies for Proximal Services

From a technological perspective, the interaction between end users and their
immediate hardware platforms for the consumption of services has radically shifted
away from the multi-user, single-host, workstation-like computing paradigm
towards the single-user, multi-device embedded computing approach.

It is highly conceivable that in future, a single user would employ multiple devices
residing within proximity (such as a Body Area Network or a Personal Area
Network) to interact with another user or a computing server residing elsewhere in
the Internet. The service itself could be constituted of several independent
distributed software components executing in tandem within these disparate
devices to take advantage of specialised embedded hardware functionality unique to

10

each device. Towards this end, several wireless communications solutions can be
proposed.

WiGig is an industry initiative launched in mid 2009 by a consortium of companies
called the Wireless Gigabit Alliance. The WiGig effort promises wireless streaming
speeds of up to 7 Gbps using the 60GHz frequency band [WiGig 2010]. The first
specification was completed in Q4 2009, and WiGig Alliance opened its adopter
program in Q2 2010. Designed from the ground up to address requirements varying
from high performance to low power, WiGig aims at covering a borad range of
devices ranging from desktop and laptop computers to low power handheld devices
and battery operated consumer electronic equipment. The specification includes
support for both IP data as well as streaming HD video and audio. In May 2010, a
press release was issued stating that the WiGig Alliance and the Wi-Fi alliance will
share technology specifications aimed at creating and fostering the next generation
of Wi-Fi networking based on WiGig.

Bluetooth version 3.0 [Bluetooth 2009a] was standardised in early 2009 as a means
to overcome the low data rates seen in earlier versions, and to exploit the
availability of high-speed WiFi radios found in the majority of devices which need
high-speed data transfer. In effect, Bluetooth 3.0 offers a new higher speed short-
range data transfer mechanism, atop an ad-hoc 802.11 WiFi medium. This catapults
Bluetooth 3.0 into a viable alternative transport mechanism for TCP/IP, as RFCOMM
and L2CAP provide both connection-oriented and connectionless modes, while SDP
offers a highly effective discovery mechanism for Bluetooth-enabled peripherals. As
of this writing, Bluetooth 3.0 has begun seeing uptake among several tablets and
laptops.

5.3 New Communication Technologies for Low Power Devices

While Bluetooth 3.0 was squarely aimed at penetrating the high-speed data transfer
market, the recently announced Bluetooth 4.0 encompasses the Bluetooth Low
Energy technology [Bluetooth 2009b]. Bluetooth Low Energy is aimed at
communication requiring minimal power consumption and preserving the
longetivity of small battery powered equipment. The standard stipulates data rates
up to 1Mbps while keeping latency under 3s. Although most uses of Bluetooth Low
Energy are expected to be short range, the specification nevertheless supports a
range of up to 100 meters. Bluetooth 4.0 supports both single mode (meaning low
energy mode only) or dual mode (meaning the device will support high speed data
transfer using Bluetooth 2.1 or 3.0 in addition to low energy). The advent of
Bluetooth technology into the low power arena puts it in square competition with
both near field technology based on RFID, as well as low power technology being
touted for sensor networks, notably ZigBee [ZigBee Alliance 2007] and 6LowPAN
[Montenegro et. al 2007].

ZigBee has currently seen widespread deployment, particularly with healthcare,
smart metering and home automation. Traditionally ZigBee has been touted as a

11

low-cost and low-powered solution for sensors. ZigBee standards are issued by the
ZigBee Alliance, and while IEEE 802.15.4 mesh is used as the underlying technology,
the specified protocol stack comprising an application layer sitting directly atop the
network layer has been criticized as being proprietary and non-interoperable with
[P-based technology. In a bid to address this concern, the ZigBee Alliance in July
2009 announced the development of an IP based stack specification called ZigBee IP,
which was aimed at the Smart Energy market, that will connect ZigBee-based smart
energy sensors directly to the IP world.

6LowPAN is an IETF initiative to bring native IPv6 support to low power sensor
networks. Just like ZigBee, 6LowPAN uses IEEE 802.15.4 as the underlying
technology. The IETF 6LowPAN working group was formed as early as 2005, and
has already resulted in the publications of two RFCs. As opposed to ZigBee,
6LowPAN does not define an application layer protocol. As an alternative, work is
ongoing in the IETF to define the Constrained Application Protocol (CoAP) [Shelby
et. al 2010]. CoAP is being developed within the IETF CoRE working group, to
provide a framework for resource-oriented applications intended to run on
constrained IP networks.

6. Software and Device Technology Platforms

In this section, some of the major operating systems, development platforms and
software frameworks which aid in the creation of platform-specific and device-
centric services are examined.

6.1 Android

Android is a mobile device platform distributed by the Open Handset Alliance. Since
its debut, it has been positioned as a fully integrated mobile "software stack" that
consists of an operating system, middleware, user-friendly interface and
applications [Open Handset Alliance 2007]. Android has been built atop the Linux
2.6-series kernel. Language- wise, the system provides C and C++ libraries that can
be used by other parts of Android’s system components. Developers use the tools
and APIs provided by the Android SDK for platform-specific application
development. Athough Android applications are Java-based, facilities exist that
allow applications developed in other languages such as C and Python to run in
Android [Android 2010a], [Kohler 2009].

The approach undertaken for the design and deployment of end-user applications
provides much better stability compared to the traditional Unix way of installing
packages. All code in a single Android package is bundled into an archive file and
considered to be one application. By default, each application is assigned a unique
Linux user ID and runs in its own Linux process. Android starts the process when
any of the application's code needs to be executed, and shuts down the process
when it's no longer needed and system resources are required by other applications.

12

Each process has its own virtual machine (VM), so application code runs in isolation
from the code of all other applications [Android 2010b].

Android Java applications use a clean-room Java Virtual Machine, named Dalvik.
Dalvik was designed so as to use less CPU cycles and allow less power consumption
compared to using regular JVM bytecodes. At the time of writing, the latest Android
version, codenamed “Froyo”, just-in-time compilation was introduced in Dalvik that
boosted the performance of executing Java applications by a factor of 2-5. At the
same time, Froyo introduced the V8 engine for its web browser, allowing for better
response times with Javascript-intensive web pages [Android 2010c]. Currently, the
Android development environment includes a device emulator, tools for debugging,
memory and performance profiling, and a plugin for the Eclipse IDE. Additionally,
the newly introduced App Inventor for Android, a web-based visual programming
tool, allows novice users without programming experience to create Android
applications. App Inventor provides rich access to GPS, accelerometer, and
orientation data, telephony services like phone calls and texting, speech-to-text
services, contact data, persistent storage, and Web services such as those provided
by Amazon and Twitter [Claburn 2010].

6.2 i0S and Xcode

The i0OS is the operating system powering all Apple’s mobile devices which include
the iPhone, the iPod as well as the iPad. i0S was originally introduced for the
iPhone, the latest version being iOS 4.1. i0OS shares a common heritage and many
underlying technologies with the Mac OS X operating system that powers Apple’s
laptop and desktop computers. The kernel in iOS is based on a variant of the same
basic Mach kernel that is found in Mac OS X. On top of this kernel are the layers of
services that are used to implement applications on the platform. the Core OS and
Core Services layers contain the fundamental interfaces for iOS, including those
used for accessing files, low-level data types, Bonjour services, network sockets, and
so on. The Media layer contains the fundamental technologies used to support 2D
and 3D drawing, animation, audio, and video. The uppermost Cocoa Touch layer is
comprised of several kinds of application-level frameworks providing the
fundamental infrastructure used by an application. For example, the Foundation
framework provides object-oriented support for collections, file management,
network operations, and more. The UIKit framework provides the visual
infrastructure for an application, including classes for windows, views, controls, and
the controllers that manage those objects. Other frameworks at this level provide
access to the user’s contact and photo information and to the accelerometers and
other hardware features of the device [Apple 2010].

Application development for the iOS platform is predominantly in the Objective-C
language. The i0S SDK facilitates this process by providing tools and development
environments. Apple’s Xcode Integrated Development Environment, the
recommended way for developing applications for Mac OS X, also remain the
development platform for creating iOS apps. The current iOS SDK 4.1 release

13

includes the Xcode IDE, iOS Simulator, and a suite of additional tools for developing
apps for iPhone, iPad, and iPod touch. Early versions of iOS did not perform
multitasking which severely limited the iPhone’s capabilities for running more
advanced applications. However, this limitation was lifted in iOS 4, allowing true
multitasking.

6.3 Symbian

The Symbian platform is a complete operating system, aimed at the smartphone
market, and is maintained by the Symbian Foundation. The operating system is
written in C++, and presents a modular, microkernel-like architecture with its EKA2
kernel. Symbian provides separate kernel and userspace facilities, with its EKA2
kernel being designed towards single-user, multitasking, pre-emption and priority-
based execution model [Sales and Tasker 2009]. While the device drivers may sit in
either the kernel or user-space, the filesystem and communications stacks reside in
the user-space [Morris 2007]. The entire Symbian platform code was released as
open source in February 2010 [Symbian 2010], while the first phones utilizing the
fully open Symbian”3 platform debuted later the same year.

Application development for Symbian platforms employ the Symbian SDK.
Currently, the Symbian SDK for Symbian *3 supports C++ and Java programming
languages. A plugin is required for Python-based development. Additionally, the
SDK supports development with the Web Runtime (WRT) towards AJAX
applications as well as with the Qt framework for cross-platform applications. An
emulator is provided as part of the SDK, together with debugging and diagnostics
tools. [Nokia 2010b].

6.4 Maemo and MeeGo

The Maemo platform has been derived from the Debian Linux platform, and was
developed by Nokia as a Linux-based platform for mobile touchscreen tablets and
smartphones. Many parts of Maemo are consequently based on open source code,
with early versions of the platform leveraging GNOME software and libraries. At the
time of writing, the latest version of Maemo is Maemo5, designed to run on the
Nokia N900 smartphone. Because Maemo has its roots in the Linux world, it inherits
many of its virtues, such as native multitasking, commandline and system level
access to much of its hardware, the support of multiple programming languages
such as C, C++, Java and Python, and the interest of many Linux developers
worldwide who wish to port their open-source applications to the Maemo platform.

The development environment for Maemo is currently restricted to the installation
of a scratchbox environment which mandates the need for a (preferably Debian- or
Ubuntu-based) Linux desktop system. This scratchbox is commonly referred to as
the Maemo SDK, and features a sandboxed command-line or X11 environment that
can be customized to the needs of the developer using shell scripts. The compilation
target can be swapped at the developer’s discretion, from an emulation platform

14

that mimics the behavior of the target environment and some hardware on the x86
platform, to a full fledged cross-compilation process which creates an ARM-
processor based executable designed to run natively on the device itself. While the
former approach is sufficiently adequate for the creation of simple graphical or
stand-alone applications, the latter is necessary for applications needing hardware
accelerated graphics support, wireless networking with Wi-Fi or Bluetooth and
camera and sensor-based applications.

Such an approach to development on Maemo is mitigated by the fact that it is
usually relatively trivial to port many existing Linux and Unix applications to the
Maemo platform, and by the fact that Maemo distinguishes itself from many of the
major smartphone platforms with the wide range of functional multimedia codecs,
working Flash, CSS and Javascript web browser support, and uninhibited access to
popular VoIP and videoconferencing applications like Skype and Google Talk (with
video supported for both).

The recently announced MeeGo platform is a joint activity by Nokia and Intel that
combines the evolution of the Maemo platform with that of Intel’s Moblin project
[MeeGo 2010]. MeeGo is aimed at becoming the core enabling platform, not just for
Nokia’s future smartphones, but also for netbooks, vehicular entertainment and
control systems as well as consumer electronic products such as a television. While
the two platforms that MeeGo is rooted upon are based on the Debian and Fedora
Linux distributions respectively, MeeGo itself is being promoted as a Linux
distribution independent of others, as an open source project hosted by the Linux
Foundation [MeeGo 2010]. The architecture of the MeeGo platform reveals a layered
approach, with three layers. The MeeGo OS Base layer contains the Linux kernel and
core services along with the Hardware Adaptation Software required to adapt
MeeGo to support various hardware architectures. The MeeGo OS Middleware layer
provides a hardware and usage model independent API for building both native
applications and web run time applications. The MeeGo User Experience layer
provides reference user experiences for multiple platform segments [Van De Ven
2010].

6.5 Qt

The Qt object-oriented framework is written in C++ and was initially a cross-
platform widget toolkit for creating graphical user interfaces. Qt’s role has expanded
since then to encompass various other features, such as networking and protocol
functionality, database modules, a webkit that interacts with XML and web content,
a scripting library based on Javascript as well as communication via the D-Bus IPC
mechanism. In effect, Qt today is regarded as a full-fledged application framework
that could be used to develop applications for a variety of operating systems. At the
time of writing, the latest Qt version is Qt 4.7. Qt comes equipped with the Qt
Creator, which is a complete environment for creating applications with Qt that
comes equipped with both development as well as debugging support.

15

The Qt framework plays a very central role to smartphone platforms developed by
Nokia. Because it is a full-featured cross-platform framework, application
developers are encouraged to use Qt for maximum portability between Nokia’s
Symbian and Maemo/Meego platforms. Additionally, Qt has been announced as the
foundation of Meego’s Ul and is the API for developing applications in all upcoming
Meego-based Nokia devices [Nokia 2010c]. Qt Creator is recommended as the
integrated development environment (IDE) to use for creating MeeGo applications
[Spencer 2010].

7. 0ngoing Related Research

This final section of the report looks at some ongoing projects and research, the
areas of which are of interest to the work that should be done in WP4. These
research areas cover the following areas:

* How devices, their services and capabilities can be discovered
* How various transport technologies can be exploited
* How overlay networks can be constructed

7.1 Ontology models and Semantic Web

An ontology model can be expressed as a formal representation of domain-specific
knowledge, capturing entities, events, services, properties and ideas in a well-
organized manner. According to one well-cited source, an ontology is a formal
explicit description of concepts in a domain of discourse (classes, sometimes called
concepts), properties of each concept describing various features and attributes of
the concept (slots, sometimes called roles or properties), and restrictions on slots
(facets, sometimes called role restrictions). An ontology together with a set of
individual instances of classes constitutes a knowledge base [Noy and McGuinness
2001]. Ontology models are often used to describe real world environments and
situations. Often they are flexible in incorporating new information or properties.
Consequently they are often used in conjunction with web services and semantic
web technologies for a wide range of research activities.

Relevant research in this area shows successfully how user requirements are
captured and stored for eventual service composition, how service registration and
discovery for embedded components and services can be accomplished, and how
service and device collaboration can occur in a smart space .

7.1.1 DynamiCos

The DynamiCos project [Silva et. al 2009] aims at providing a framework that can
provide automated runtime service composition mechanisms that can deliver a
personalized service delivery. To achieve this automated support, DynamiCoS
defines ontologies (domain conceptualisations). The framework allows different

16

service developers to publish their semantically annotated services in the
framework. These semantic descriptions have to refer to the framework’s
ontologies. End-users may have different domain or technical knowledge, which
implies that their service request interfaces have to be defined accordingly.
DynamiCoS tackles this problem by defining a service request that supports
different user interfaces. A service request consists of a specification of goals the
user wants the service to achieve. A goal is likewise used to describe services,
specifying the activities (or operations) the services can perform. Goals of users and
services are specified according to the framework ontologies (representation of the
domain of knowledge), this allows matchings to be found, whenever a service
realises the user goals.

7.1.2 NoTA

NoTA (Network on Terminal Architecture) has been an ongoing research activity in
Nokia Research Center for several years, but it was officially unveiled for public
release in 2007, with Release 3.0 [Nokia 2010d]. The main idea behind NoTA was to
find new ways in which an embedded design architecture could be designed in a
modular way, with each individual module functionally comprising both hardware
and software resources loosely decoupled from other modules. These modules can
reside within the same chip or could reside off-chip elsewhere within the device.
This allows independent development as well as testing of NoTA modules by
separate vendors prior to integration.

The architecture introduces 2 kinds of nodes: A Service Node (SN) which both
publishes and consumes events (and services), and an Application Node (AN) which
only consumes events (and services). Nodes communicate using a
publish/subscribe scheme for events. Nodes can also communicate using a
streaming interface. Messaging and streaming among nodes is facilitated by a logical
Interconnect. Communication among NoTA nodes is communication agnostic, with
the transport network stack mechanism being abstracted away from the actual
high-level communication constructs. This allows the NoTA subsystem to easily
adapt to any transport or physical interconnect. Presently, apart from the MIPI
Alliance’s UniPro high-speed interface for interconnecting integrated circuits, SNs
and ANs possess the ability to communicate using TCP, FIFOs, Bluetooth and USB as
transports [NoTA 2008]. In effect, this allows inter-node communication between
ad-hoc devices. Service Interface Specifications in NoTA use an ontology model, with
WSDL used to describe the service interface of an SN. When TCP is used as a
transport, link-local multicast is used for the device discovery.

NoTA has been ported to major embedded and desktop platforms such as Symbian,
Maemo, Android, i0S, Linux, BSD and Windows. Future research aims at focusing on
inter-device solutions to seamlessly access services among devices and NoTA
networks, in addition to exploiting the architecture’s transport agnostism
[Leppdnen 2009].

17

7.1.3 Smart-M3

The Smart-M3 project explores the representation of smart spaces comprising
devices and software, as distinct entities that can interact with each other using
semantic web technology. A Smart Space is an environment that has an associated
digital representation in which relevant real-world information is stored and kept
up to date. The project aims at intelligent service and device collaboration within a
defined area, such as a Smart Home or a meeting room, by taking into account
environmental and contextual data using a tuple space mechanism.

Each participating device or service in Smart M3 uses an M3-agent, also known as a
knowledge processer (KP) to interact with a semantic information broker (SIB). A
smart space in Smart-M3 is defined as a named search extent of information, where
the information is stored in one or more SIBs. In the simplest case, one SIB will store
all information in a smart space, but there is a possibility of connecting multiple SIBs
to make up a smart space. The information in the smart space is stored as an RDF
graph according to some defined topology [Luukkala and Honkola 2010]. Queries in
this sense are ontology driven, but are not strictly bound to any one ontology model.

The communication between KPs and SIB is transport independent with multiple
transport mechanisms being supported by the SIB. Such mechanisms include
TCP/IP, HTTP, XMPP, Bluetooth as well as NoTA. Additionally, Smart M3 allows the
notion of an application in a smart space to differ from the concept of a traditional
application. Instead of a monolithic application running on a single screen, the smart
space applications are better seen as scenarios that can be executed to meet the
goals of the user [Luukkala and Honkola 2010]. Consequently the composite smart
application may be visualized as multiple interacting smart spaces that enable
cross-domain service mashups.

7.2 Platform Composition

When two or more wireless mobile devices converge into a physical space, many
opportunities for building ad-hoc collaborative services and applications for the
benefit of their users, abound. This is particularly so given the amount of
computational and storage power modern wireless mobile devices possess.
Platform composition research aims at doing just that: To be able to compose these
devices into a unified platform that can deliver collocated services. Effective
composition of such platforms aim at exploiting the individual strengths of each
device as well as overcoming any individual limitations.

7.2.1 Composition Framework

The Composition Framework research conducted at Intel Research [Pering et. al
2009] integrates standard computing components to support effective collaborative
work by wirelessly combining the most suitable set of resources available on nearby
devices. The developed prototype provides a specific implementation of Platform

18

Composition along with the user interface necessary to invoke standard platform
services. By design, it is orchestrated around utilizing existing standards to support
familiar applications on ad-hoc sets of devices. Although the underlying services and
protocols used to share data among devices are not themselves new, the system
instead focuses on the centralization and coordination of the sharing process.

The research delves into how ad-hoc collaborations could be undertaken by looking
at a design space composed of three axes: The composition granularity for the
collaboration (either event, object, or service-based), the sharing model of the
resources that users interact with (independent, coordinated or mirrored) and the
resource referencing that specifies how devices and services discover, address and
reference each other (ad-hoc, familiar or well-known). The Composition Framework
architecture consists of four major components: framework core, user interface,
network discovery, and service modules. D-Bus is used to facilitate communication
between the modules. The core components are implemented in Java. Each
individual service for sharing a resource is specified by an XML service descriptor
file, which encodes basic properties of the service (name, icon, etc.), and provides
details on how to probe, invoke, monitor, and disconnect the service. Some services,
such as storage sharing, are implemented using asynchronous operating system
calls, while others, such as display sharing, are implemented by invoking a
standalone client process. Services are handled using an explicit client/server model
based on commonly available standard systems.

7.2.2 Context Card

Context Card is a sensor platform that is able to use context-aware composition to
overcome the wireless discovery process, selection and connection establishment
process through sensing [Lyons et. al 2009]. Context information is supplied by
sensors on a mobile device, and the project examines how these sensors can also be
used to facilitate discovery through spatial sensing, and by representing unique
aspects of their state. This allows for better characteristics with which users can
distinguish each device.

The Context Card platform also communicates with the aforementioned Composition
Framework through the D-Bus IPC mechanism. The Framework subscribes to sensor
events originating from the Context Card platform to perform wireless discovery.
The combined architecture uses layer-2 networking to distribute device names as
well as service and context information to reduce overheads imposed by traditional
methods that share information over layer 3. In addition to using context as a
mechanism for the user to manage the discovery process and control compositions,
the context was also used for the services involved in a composition. For example,
relative spatial positions reported by the Context Card and subsequently advertised
by the Composition Framework may be used to automatically configure the
positioning of devices in the construction of an extended desktop, as opposed to
manual configuration.

19

7.2.3 CompUTE

The CompUTE project [Bardram et. al. 2010] aims at creating a runtime
infrastructure for device composition. The project uses the idea of a composite
device, which is one device made up of a composition of several separate devices
working together in concert. The platform supports three types of interaction
scenarios among users and devices: One user to several proximal devices, several
users to several shared devices, and lastly device composition within a smart space.
The CompUTE architecture is optimized towards supporting the use of shared and
extended desktops and displays for users. A central Gateway is relied upon for
service registration, discovery and publication. A CompUTE client resides on each
participating device.

CompUTE is restricted to Windows XP, and uses UPnP for discovery and SOAP for
remote invocations. Microsoft’s .net is used as an implementation platform. The
current prototype mimics an extended shared desktop across the participating
devices. The user has the ability to navigate mouse events and supply keyboard
interaction across all the desktops, access a shared clipboard, move objects and files
between displays and so on. Usability trials conducted on test groups reveal the
viability of this project for collaborative work.

7.3 Reflection and Overlay Adaptation

It has become very commonplace for wireless and mobile devices to form overlays
over which services are executed. Particularly for purely wireless networks, the
likelihood that the overlay’s architecture and link quality will deteriorate because of
evolving network conditions, effects of battery performance, variations in physical
topology and overlay arrangement, increases. Additionally, while early overlay
networks, such as peer-to-peer networks were tightly bound to one specific type of
usage and application, overlays are beginning to be used as generic transports to
various types of applications today. This implies that overlay architectures need to
have very extensible adaptation mechanisms. In addition to parametric and
algorithmic adaptation to cope with changing network and environmental
conditions, overlays also have to contend with application, service and user
requirements.

Two highly effective techniques to cope with adaptation are using component-based
engineering and reflection. Component-based engineering promotes the ability to
reconfigure and readapt specific parts (or components) of an overlay at run-time.
Reflection is a technique that allows software to introspectively inspect its own
behaviour and properties at runtime, and manipulate portions of itself when certain
criteria are met.

20

7.3.1 Overlay Adaptation in Juno

Juno is a configurable middleware designed to address the heterogeneity of next-
generation content distribution [Tyson et. al 2008]. Within the Juno project, a sub-
project is studied in which a middleware-based approach is investigated that
furthers this idea towards an extensible architectural adaptation for overlays
[Tyson et. al. 2009].

The implementation of this idea resulted in a Java-based framework. The work looks
not only at how, using a context engine, an overlay can adapt to perform optimally
for the application using it, but also how the entire overlay can be treated as a
pluggable component that can be replaced, if necessary by a new overlay network.
Abstractions are introduced at multiple levels that allow aspects of the overlay’s
functionality to be represented from a very coarse sense (such as the overlay as one
unit) towards a very fine-grained sense (such as placing every method or algorithm
behind an independent abstraction). Consequently, these abstractions allow
implementations of components as well as constructions of composites of
components which can be controlled and adapted based on decisions being fed to
the middleware at run-time from a context engine. A number of overlays were
implemented using this component-based approach which include CHORD, SCAMP,
BitTorrent, TBCP and Pastry, and case studies verified the feasibility of the
architectureal reconfiguration.

8. Conclusion

In this document, some of the key enabling technologies, architectural design
choices, and the end-user perspectives were presented. There exists a wealth of
technologies for use, and each is applicable to ubiquitious services and service
overlay with certain limitations. This is most evident in the areas of wireless, power
and energy constrained devices and their connectivity.

The future work will concentrate on making a selection on what technologies and
techniques to follow, and what are most feasible design models for the project. The
current situation in the field of supporting future services with dynamic overlay
architectures, substantial related work exists, but work on this specific area has only
just started, and has to proceed based on drawing parallels from the results of work
in similar areas.

21

9, References

[Adami et. al 2009] Adami, D., Callegari, C., Giordano, S., Nencioni, G., and Pagano, M.
2009. Design and performance evaluation of service overlay networks
topologies. In Proceedings of the 12th international Conference on Symposium on
Performance Evaluation of Computer & Telecommunication Systems (Istanbul,
Turkey, July 13 - 16, 2009).

[Android 2010a] Android NDK. Android Developers Website June 2010.
http://developer.android.com/sdk/ndk/index.html#overview

[Android 2010b] Application Fundamentals. Android Developers Website October
2010. http://developer.android.com/guide/topics/fundamentals.html

[Android 2010c] Android 2.2 Platform Highlights. Android Developers Website 2010.
http://developer.android.com/sdk/android-2.2-highlights.html#Platform
Technologies

[Apple 2010] iOS Overview. Apple Developers Website July 2010.
http://developer.apple.com/library/ios/#referencelibrary/GettingStarted /URL
_iPhone_0OS_Overview/index.html#//apple_ref/doc/uid/TP40007592

[Bardram et. al. 2010] Bardram, J. E., Fuglsang, C., and Pedersen, S. C. 2010.
CompUTE: a runtime infrastructure for device composition. In Proceedings of the

international Conference on Advanced Visual interfaces (Roma, Italy, May 26 - 28,
2010)

[Bluetooth 2009a] Bluetooth SIG. Core Specification v3.0 + HS, April 2009.
http://www.bluetooth.com/SiteCollectionDocuments/Core_V30__HS.zip

[Bluetooth 2009b] Bluetooth SIG. Core Specification v4.0, Dec 2009.
http://www.bluetooth.com/SiteCollectionDocuments/Core_V40.zip

[Carpenter and Moore 2001] Carpenter, B., Moore, K. 2001. Connection of IPv6
Domains via IPv4 Clouds. IETF RFC 3056, February 2001,
http://tools.ietf.org/rfc/rfc3056.txt

[Castro et. al 2002] Castro, M., Druschel, P, Ganesh, A., Rowstron, A., and Wallach, D.
S. 2002. Secure routing for structured peer-to-peer overlay networks. SIGOPS
Oper. Syst. Rev. 36, SI (Dec. 2002), 299-314.

[Claburn 2010] Claburn, T. 2010. Google App Inventor Simplifies Android
Programming. InformationWeek July 2010. http://www.informationweek.com/
news/smb/mobile/showArticle.jhtml?articleID=225702880&subSection=News

22

[Dabek et. al 2003] Dabek, F. Zhao, B. Druschel, P. Kubiatowicz, J. Stoica, 1. 2003.
Towards a Common API for Structured Peer-to-Peer Overlays. In Proceedings of
2nd Int’l. Wksp. Peer-to-Peer Systems (IPTPS 2003), Berkeley, California, USA, Feb.
20-21,2003.

[Durand et. al 2001] Durand, A., Fasano, P., Guardini, I., Lento, D. 2001. IPv6 Tunnel
Broker. IETF RFC 3053, January 2001, http://www.rfc-editor.org/rfc/rfc3053.txt

[Durand et. al 2010] Durand, A., Droms, R., Woodyatt, |., Lee, Y. 2010. Dual-Stack Lite
Broadband Deployments Following [Pv4 Exhaustion. IETF Internet-Draft August
2010, http://www.ietf.org/id /draft-ietf-softwire-dual-stack-lite-06.txt

[Facebook 2010] Facebook Statistics. Facebook Website, July 2010.
http://www.facebook.com/press/info.php?statistics

[Gasson 2009] Gasson, M. 2009. Normality Mining: Results from a Tracking Study.
FIDIS (Future of Identity in the Information Society) Technical Report D12.10, June
2000.

[Galuba 2009] Galuba, W. 2009. Friend-to-Friend Computing: Building the Social
Web at the Internet Edges. LSIR-REPORT-2009-003,
http://Isirpeople.epfl.ch/galuba/papers/f2f.pdf

[Gkantsidis et. al 2004] Gkantsidis, C. Mihail, M. Saberi, A. 2004. Random Walks in
Peer-to-Peer Networks. In Proceedings of IEEE Infocom 2004.

[Gkantsidis et. al 2005] Gkantsidis, C. Mihail, M. Saberi, A. 2005. Hybrid Search
Schemes for Unstructured Peer-to-Peer Networks. In Proceedings of IEEE
Infocom 2005.

[Hickson 2010a] Hickson, I. 2010. HTMLS5, A vocabulary and associated APIs for
HTML and XHTML. W3C Working Draft 24 June 2010.
http://www.w3.org/TR/html5/

[Hickson 2010b] Hickson, I. 2010. The WebSocket protocol. IETF Internet-Draft

September 2010. http://tools.ietf.org/id/draft-ietf-hybi-thewebsocketprotocol-
02.txt

[Huitema 2006] Huitema, C. 2006. Teredo: Tunneling IPv6 over UDP through
Network Address Translations (NATSs). IETF RFC 4380, February 2006.
http://tools.ietf.org/rfc/rfc4380.txt

[Kohler 2009] Kohler, D. 2009. Introducing Android Scripting Environment. Google
Open Source Blog, June 2009. http://google-
opensource.blogspot.com/2009/06/introducing-android-scripting.html

23

[Leppdnen 2009] Leppanen, T. 2009. NoTA ecosystem - past, present and future. In
Presentations of 2" International NoTA Conference. San Jose, California USA Sept
30th- Oct. 15t 2009.

[Luukkala and Honkola 2010] Luukkala, V., Honkala, J. 2010. Integration of an
Answer Set Engine to Smart-M3. In Proceedings of 3" Conference on Smart
Spaces, ruSMART 2010 and 10t International Conference on NEW2AN 2010, St.
Petersburg, Russia, August 2010.

[Lv et.al 2002] Lv, Q,, Cao, P., Cohen, E,, Li, K., and Shenker, S. 2002. Search and
replication in unstructured peer-to-peer networks. In Proceedings of the 16th

international Conference on Supercomputing (New York, New York, USA, June 22
-26,2002).1CS'02. ACM, New York, NY, 84-95.

[Lyons et. al 2009] Lyons, K., Want, R., Munday, D., He, |., Sud, S., Rosario, B., and
Pering, T. 2009. Context-aware composition. In Proceedings of the 10th Workshop
on Mobile Computing Systems and Applications (Santa Cruz, California, February
23 -24,2009). HotMobile '09.

[MeeGo 2010] FAQ. MeeGo Website 2010. http://meego.com/about/faq

[Montenegro et. al 2007] Montenegro, G., Kushalnagar, N., Hui,], Culler, D. 2007.
Tramsmission of IPv6 Packets over IEEE 802.15.4 Networks. IETF RFC 4944,
September 2007. http:/ /tools.ietf.org/rfc/rfc4944.txt

[Morris 2007] Morris, B. 2007. The Kernel Services and Hardware Interface Layer.
The Symbian OS Architecture Sourcebook: Design and Evolution of a Mobile Phone
0S, ISBN: 978-0-470-01846-0. Wiley, Inc.

[N8 2010] Nokia N8-00 English User Guide, August 2010.

[Nokia 2010a] Ovi for developers. Nokia Developers Website, 2010.
http://developer.nokia.com/Develop/Web/Tools/Ovi_developers.xhtml

[Nokia 2010b] Symbian SDKs. Forum.Nokia Website 2010, http://www.forum.nokia.
com/Library/Tools_and_downloads/Other/Symbian_SDKs/

[Nokia 2010c] Meego and Qt. Qt.Nokia Website 2010. http://qt.nokia.com/
products/platform/meego/

[Nokia 2010d] NoTA project. Forum.Nokia Website 2010,
https://projects.forum.nokia.com/NoTA/wiki

[Nota 2008] NoTA World website. Getting started, user guide to NoTA. 2008,
http://www.notaworld.org/documentation/tutorials

24

[Noy and McGuinness 2001] Noy, N. F., McGuinness, D. 2001. Ontology Development
101: A Guide to creating your first Ontology. Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics
Technical Report SMI-2001-0880, March 2001

[Oram 2001] A. Oram, Ed. 2001 Peer-To-Peer: Harnessing the Power of Disruptive
Technologies. O'Reilly & Associates, Inc.

[Ovi 2010] Ovi Blog May 2010. Try out the new Ovi App Wizard!.
http://blog.ovi.com/2010/05/03/try-out-the-new-ovi-app-wizard

[Pering et. al. 2009] Pering, T., Want, R,, Rosario, B., Sud, S., and Lyons, K. 2009.
Enabling Pervasive Collaboration with Platform Composition. In Proceedings of

the 7th international Conference on Pervasive Computing (Nara, Japan, May 11 -
14, 2009).

[Ritter 2001] Ritter, J. 2001. Why gnutella can’t scale. No, really.
http://www.darkridge.com/~jpr5/doc/gnutella.html

[Sales and Tasker 2009] Sales,]., Tasker, M. 2009. Symbian OS Internals/1.
Introducing EKA2. Symbian Developer Wiki, 26 May 2009. http://developer.
symbian.org/wiki/index.php/Symbian_OS_Internals/1._Introducing EKA2

[Sharon 2010] Sharon, M. E. 2010. Who, What, When, and Now...Where. The
Facebook Blog, August 2010.
http://blog.facebook.com/blog.php?post=418175202130

[Shelby et. al 2010] Shelby, Z., Frank, B., Sturek, D. 2010. Constrained Application
Protocol (CoAP). IETF Internet-Draft September 2010.
http://www.ietf.org/id/draft-ietf-core-coap-02.txt

[Silva et. al 2009] Silva, E., Pires, L.F., van Sinderen, M. 2009. Supporting Dynamic
Service Composition at Runtime based on End-user Requirements. In
Proceedings of 1st International Workshop on User-generated Services
(Stockholm, Sweden, November 24, 2009)

[Spencer 2010] Spencer, B. 2010. Qt Creator. Meego Developers Website, February
2010, http://meego.com/developers/getting-started/qt-creator

[Symbian 2010] Symbian Completes Biggest Open Source Migration Project Ever.
Symbian Website, February 2010. http://www.symbian.org/news-and-
media/2010/02/04 /symbian-completes-biggest-open-source-migration-
project-ever

25

[Townsley and Troan 2010] Townsley, W., Troan, O. 2010. IPv6 Rapid Deployment
on [Pv4 Infrastructures (6rd) -- Protocol Specification. IETF RFC 5969 August
2010, http://www.rfc-editor.org/rfc/rfc5969.txt

[Tyson et. al 2008] Tyson, G., Mauthe, A., Plagemann, T., El-khatib, Y. 2008. Juno:
Reconfigurable Middleware for Heterogeneous Content Networking. In

Proceedings of the 5th International Workshop on Next Generation Networking
Middleware (NGNM) (Samos Islands, Greece 2008)

[Tyson et. al 2009] Tyson, G., Grace, P., Mauthe, A., Blair, G., and Kaune, S. 2009. A
Reflective Middleware to Support Peer-to-Peer Overlay Adaptation. In
Proceedings of the 9th IFIP WG 6.1 international Conference on Distributed
Applications and interoperable Systems (Lisbon, Portugal, June 09 - 11, 2009).

[Van De Ven 2010] Van De Ven, A. 2010. MeeGo Architecture. MeeGo Website
February 2010. http://meego.com/developers/meego-architecture

[van Kesteren 2010a] van Kesteren, A. 2010. XMLHttpRequest. W3C Candidate
Recommendation 3 August 2010. http:/ /www.w3.org/TR/XMLHttpRequest/

[van Kesteren 2010b] van Kesteren, A. HTML 5 differences from HTML 4. W3C
Working Draft 24 June 2010. http://www.w3.org/TR/html5-diff/

[WiGig 2010] Wireless Gigabit Alliance Website, Oct 2010.
http://www.wigig.org/faqs/

[ZigBee Alliance 2007] ZigBee Alliance, ZigBee Specification 2007.
http://www.zigbee.org/Products/DownloadZigBeeTechnicalDocuments.aspx

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

