
A Noise Tolerant and Schema-agnostic Blocking Technique for
Entity Resolution

Tiago Brasileiro Araújo
Federal University of Campina

Grande
Campina Grande, Brazil

tiagobrasileiro@copin.ufcg.edu.br

Carlos Eduardo Santos Pires
Federal University of Campina

Grande
Campina Grande, Brazil
cesp@dsc.ufcg.edu.br

Demetrio Gomes Mestre
State University of Paraíba
Campina Grande, Brazil
demetriogm@uepb.edu.br

Thiago Pereira da Nóbrega
State University of Paraíba
Campina Grande, Brazil

thiagonobrega@uepb.edu.br

Dimas Cassimiro do
Nascimento

Federal Rural University of
Pernambuco

Garanhuns, Brazil
dimascnf@uag.ufrpe.br

Kostas Stefanidis
University of Tampere

Tampere, Finland
kostas.stefanidis@uta.fi

ABSTRACT
The increasing use of Web systems has become a valuable source
of semi-structured data. In this context, the Entity Resolution (ER)
task emerges as a fundamental step to integrate multiple knowledge
bases or identify similarities between the data items (i.e., entities).
Usually, blocking techniques are widely applied as an initial step of
ER approaches in order to avoid computing similarities between
all pairs of entities (quadratic cost). In practice, heterogeneous and
noisy data increase the difficulties faced by blocking techniques,
since these issues directly interfere the block generation. To address
these challenges, we propose the NA-BLOCKER technique, which
is capable of tolerating noisy data to extract information regarding
the data schema and generate high-quality blocks. NA-BLOCKER
applies Locality Sensitive Hashing (LSH) to hash the attribute val-
ues of entities and enable the generation of high-quality blocks,
even with the presence of noise in the attribute values. In our exper-
imental evaluation, we use five real-world datasets, and highlight
that NA-BLOCKER presents better results regarding effectiveness
compared to the state-of-the-art technique. In terms of efficiency,
NA-BLOCKER produces, on average, 34% less comparisons. How-
ever, due to the cost introduced by LSH, it results in an increase of
the execution time at around 30%, on average.

CCS CONCEPTS
• Information systems → Entity resolution; Semi-structured
data;

KEYWORDS
Entity resolution, Heterogeneous data, Metablocking, Noisy data

ACM Reference Format:
Tiago Brasileiro Araújo, Carlos Eduardo Santos Pires, Demetrio Gomes
Mestre, Thiago Pereira daNóbrega, Dimas Cassimiro doNascimento, and Kostas
Stefanidis. 2019. A Noise Tolerant and Schema-agnostic Blocking Technique
for Entity Resolution. In Proceedings of ACM SAC Conference (SAC’19). ACM,
New York, NY, USA, Article 4, 9 pages. https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION
Currently, the increasing use of Web systems (e.g., digital libraries,
social networks and e-commerce) has become a valuable source of
semi-structured data [30]. This kind of data can be represented in
different formats (e.g., XML, RDF, JSON, or text) and be contained
in different knowledge bases or databases. A fundamental step to
integrate multiple knowledge bases or identify similarities between
entities is Entity Resolution (ER). ER is a task that matches records
(the entity profiles) from several data sources (the entity collections)
that refer to the same real-world entity [4]. The ER task is widely
used by the Web community because it is commonly necessary to
integrate multiple knowledge bases, which store semi-structured
data [20, 28].

In the context of Web Data [5, 27], the ER task deals with two
Vs: volume, as it handles a large amount of entities; and variety,
since different formats are used to represent the entity profiles
(heterogeneous data) [6–8]. Beyond the two Vs, we highlight here
another problem that is tackled by the ER task: noisy data, com-
monly characterized by pronunciation/spelling errors and typos
in the attribute values of the entities [14]. In practical scenarios,
people are less careful with the lexical accuracy of the content
written in informal virtual environments (e.g., social networks) or
when they are submitted to some kind of pressure (e.g., business
reports) [1]. For these reasons, real-world data often present noise
that can impair data interpretations, data manipulation tasks, and
decision-making [9]. In the ER context, noisy data directly impact
the identification of similar entities, since the spelling difference of
their attribute values may determine that two entities, truly similar
in the real world, are not regarded as similar by the ER task. In this
work, the two most common noise on data will be considered: typos
and misspelling errors [1]. To deal with problems related to the
large volume of data handled by the ER task, blocking techniques

This is the accepted manuscript of the article, which has been published in 34th Annual ACM
Symposium on Applied Computing, SAC 2019. 2019, 422-430.
http://dx.doi.org/10.1145/3297280.3299730

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250168463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/xx.xxx/xxx_x

can be applied [19]. Blocking techniques group similar entities into
blocks and perform comparisons between entities within the same
block, avoiding the comparisons guided by the Cartesian product.
Therefore, the block techniques aim to reduce the total number of
comparisons to be performed in the ER task.

The variety of data is related to the fact that entity profiles do
not share the same loose schema. In this sense, traditional blocking
techniques (e.g., Sorted Neighborhood and Adaptive Window) do
not present a satisfactory effectiveness (in the sense of grouping
truly similar entities in the same block), since the generation of
blocks is performed based on the entity profile schema [8]. In turn,
schema-agnostic blocking techniques (e.g., Token Blocking and
Attribute Clustering Blocking) have been proposed to address the
variety challenge, since these techniques disregard the schema
and consider only the values related to the entity attributes [6].
Among the schema-agnostic techniques, the Blocking with Loosely-
Aware Schema Technique (BLAST [26]) emerges as one of the most
promising techniques regarding effectiveness. Although BLAST is a
schema-agnostic technique, it exploits possible schema information
based on the data (i.e., statistics collected directly from the data)
to enhance the quality of the blocks in a loosely schema-aware
metablocking approach. However, the presence of noise in the
attribute values compromises the effectiveness of BLAST, since it
relies on the accuracy of the attribute values to exploit schema
information as well as generate and prune the blocks.

Overall, the main contribution of our work is proposing the
NA-BLOCKER (Noise-aware Schema-agnostic Blocking for Entity
Resolution): a novel schema-agnostic blocking technique capable of
tolerating noisy data to extract information regarding the schema
from the data (i.e., group similar attributes based on the data) and
enhance the quality of the generated blocks. To this end, the NA-
BLOCKER applies Locality Sensitive Hashing (LSH) in order to
hash the attribute values of the entities and enable the generation
of high-quality blocks (i.e., blocks that contain a significant number
of entities with high chances of being considered similar/matches),
even with the presence of noise in the attribute values.

The NA-BLOCKER technique is evaluated against the state-of-
the-art method, namely BLAST, regarding efficiency and effective-
ness, using five real datasets. Based on this experimental evaluation,
we highlight that NA-BLOCKER outperforms BLAST regarding ef-
fectiveness for all pairs of data sources, even with the presence of
noise in the attribute values. NA-BLOCKER achieves better results
due to the application of the LSH-based strategy, which generates
the entity blocks based on approximate similarity, instead of the
exact-match applied in BLAST. Moreover, the LSH-based strategy
provides the building of high-quality blocks capable of minimizing
the number of comparisons to be performed in the ER task, after
the blocking step. This reduction in the number of comparisons
denotes gains of efficiency in the process as a whole. However, the
application of LSH in NA-BLOCKER increases the computational
cost to generate the blocks. For this reason, our approach demands
more time to be executed when compared with BLAST.

2 NOISE-AWARE SCHEMA-AGNOSTIC
BLOCKING FOR ENTITY RESOLUTION

In this section, we introduce NA-BLOCKER, a noise-aware schema-
agnostic blocking technique for Entity Resolution. The main goals
of NA-BLOCKER are: i) extract efficiently the loose-schema in-
formation directly from the data, without user interference (e.g.,
clerical review); and ii) generate high-quality blocks even in the
presence of noisy data.

To extract loose-schema information, the attribute-match induc-
tion technique is applied [22, 26]. This technique aims to determine
the similarity between pairs of attributes based on the attribute
values associated with the attributes in question. In order to en-
hance the reliability of the blocks (i.e., prevent dissimilar entities
from being inserted into the same block), the attribute-match in-
duction extracts schema information from the attribute values [16].
Based on this information, groups of similar attributes belonging
to two data sources (i.e., two entity collections) are generated. It
is important to highlight that the attribute-match induction does
not exploit the semantics of the attribute names, but only the at-
tribute values. These groups of similar attributes are considered
by schema-agnostic blocking techniques to disambiguate blocking
tokens (keys), according to the attribute group from which they
are derived [26]. In this sense, the attribute-match induction can
be applied to avoid that tokens provided by completely distinct
attributes promote the grouping of entities sharing these tokens.

For example, assume the entities e1 : {name: Jon Snow; house:
Stark}, e2 : {full_name: Arya; family: Stark}, and e3 : {full_name:
Tywin Lannister; enemy: Stark}. If a token-based technique (which
considers the exact linguistic similarity) is applied, the three entities
will be grouped within the same block since all of them share the
token “Stark”. However, in the real world, the attributes “house” and
“enemy” have completely different semantic meanings. Therefore,
the entities e1 and e2 should not be inserted into the block that
contains e3. In this sense, the attribute-match induction can be
applied in order to avoid that tokens provided by completely distinct
attributes promote the grouping of entities sharing these tokens.

Regarding the noisy data, the development of noise-aware ap-
proaches is considered as an open research area by several works
[14, 26]. Noise-aware approaches are capable of tolerating noisy
data in order to avoid that the noise negatively interferes the effec-
tiveness of these approaches. Since real-world data sources typically
present noise in the data, blocking techniques need to deal with
noise, such as pronunciation errors, typos, misspellings, slang, and
abbreviations [10]. In the context of schema-agnostic blocking tech-
niques, the noisy data directly impacts block generation since the
blocks are generated based on the attribute values of the entities.
For instance, assume two entities e1 : {name : Jon Snow} and
e2 : { f ull_name : John Sn0w}. Notice that the token-based block-
ing techniques [3, 21, 23] extract tokens from the attribute values
and consider the exact linguistic similarity between the tokens.
Therefore, if a token-based technique is applied, due to the exis-
tence of typos and pronunciation errors in the attribute values,
entities e1 and e2 will not be grouped into the same block, even
though they can be considered truly similar entities.

To be able to work with noisy data, we apply Locality-Sensitive
Hashing (LSH) in order to avoid the issues generated by the noisy

data [14]. In general, LSH is used for approximating the near neigh-
bour search in high-dimensional spaces [2]. It can be applied to
reduce the dimensionality of a high-dimensional space, preserving
the similarity distances and reducing significantly the number of
the attribute values (or tokens) to be evaluated. For each attribute of
an entity, a hash function (e.g., MinHash [2]) converts the attribute
value into a probability vector, called signature (Minhash signature).
Since the hash function preserves the similarity of the attribute
values, it is possible to apply distance functions (e.g., Jaccard) to
determine the similarity between attribute values of two distinct
entities [2]. In the context of schema-agnostic blocking, the hash
function can generate similarity vectors that would guide the block
generation. Therefore, entities with similar vectors will be inserted
into the same block.

3 THE NA-BLOCKER FRAMEWORK
NA-BLOCKER is based on the Metablocking technique [23], which
exploits abstract blocking information to improve the efficiency
gains with a minimum impact on the effectiveness. In other words,
Metablocking aims to reduce the amount of comparisons generated
by each block without discarding comparisons with high chances of
resulting in correspondences (i.e., matches). To this end, Metablock-
ing restructures a given set of blocks into a new one that involves
significantly fewer comparisons, while maintaining the original
level of effectiveness [23]. This process is called pruning. Initially, a
schema-agnostic blocking technique, e.g., token blocking, is applied
to block the heterogeneous data. Token blocking extracts tokens
(e.g., keywords) from the attribute values of every entity and cre-
ates an individual block for every token that appears in at least
two entities. It is important to highlight that blocks generated by
token blocking result in a big number of redundant comparisons
between entities. For this reason, the blocks generated by token
blocking are transformed into a weighted graph, such that each
entity is represented by one node and each edge between a pair
of nodes infers that the pair of nodes shares at least one block in
common. Based on the number of blocks in common between the
pair of nodes (pair of entities) linked by the edge, the Metablocking
technique defines the weight of each edge (in the graph). Finally,
pruning criteria are applied to remove edges with weight below
a threshold, which aims to discard comparisons between entities
with few chances of being considered a correspondence.

Overall, NA-BLOCKER is divided into three steps: i) schema
information extraction, ii) block generation, and iii) pruning, as
depicted in Figure 1. The proposed technique receives as input two
data sources D1 and D2. Each data source is an entity collection
D = {e1, e2, e3, ..., en }, such that n is the number of entities in
D. The attributes contained in each data source are denoted by
A(D) = {a1,a2, · · · ,ak }, such that k is the number of attributes
in D (notice that the value of k may vary for each data source).
Since the entities can follow different loose schemas, each entity
e ∈ D has a specific attribute set and a value associated to each
attribute, denoted byAe = {⟨a1,v1⟩, ⟨a2,v2⟩, ⟨a3,v3⟩, ..., ⟨ak ,vk ⟩},
such that k is the amount of attributes associated with e .

In the schema information extraction step, all attributes asso-
ciated to the schemes of the entities belonging to D1 and D2 are
extracted. Moreover, all values associated to the same attribute

(ai) are grouped into a set Vai , i.e., Vai =
⋃
e ∈D (v | ⟨ai ,v⟩ ∈ Ae).

In turn, the pair ⟨ai ,Vai ⟩ represents the set of values associated
to a specific attribute ai . The attributes present in D1 and D2 are
grouped based on the similarity between their attribute values,
denoted by G(D1,D2) = {д1,д2,д3, ...,дm }∀д ∈ G(D1,D2) : д ⊆
(A(D1) ×A(D2)) and ∀д ∈ G(D1,D2)∀⟨ai ,aj ⟩ ∈ д : Vai ≃ Vaj . The
sets Vai and Vaj are considered similar if sim(Vai ,Vaj) ≥ Φ, where
sim(Vai ,Vaj) calculates the similarity between the sets Vai and Vaj
and Φ is a given threshold1.

In the block generation step, each set of attribute values V (as-
sociated with an attribute a) is converted into a hash-signature S
(provided by LSH), given by hash(⟨a,V ⟩) = ⟨a, S⟩. Notice that to
compute the similarity of all possible pairs of attributes, the process
takes an overall time complexity ofO(|UD1 | · |UD2 |), such thatUD1 =⋃
ai ∈A(D1)(Vai | Vai ∈ ⟨ai ,Vai ⟩) andUD2 =

⋃
aj ∈A(D2)(Vaj | Vaj ∈

⟨aj ,Vaj ⟩). However, this time complexity is impractical for semi-
structured data that appear on the Web, since data sources can
commonly have hundreds of attributes and millions of attribute
values [26]. For this reason, the LSH technique, which has a linear
cost in relation to the set size, is applied to reduce the dimensional-
ity of these sets, i.e.,UD1 andUD2 , targeting at minimizing the time
complexity to a linear cost [29].

The set of LSH-signatures S (from ⟨a, S⟩) guide the block gener-
ation, since entities with a similar LSH-signature are grouped into
the same block. The loose-schema information (i.e., G(D1,D2)) is
applied to the block generation step in order to avoid that similar
LSH-signatures originated from attributes with different semantics
(due to the fact that the attributes are not in the same д) being
inserted into the same block by the blocking technique. The output
of the block generation step is a collection of blocks B, as denoted
by Equation 1.

B = {b1,b2,b3, ...,bx } |

∀b ∈ B : (e1 ∈ b ∧ e2 ∈ b) ⇔
(∃⟨a1,a2⟩ ∈ (A(D1) ×A(D2)) :

⟨a1,a2⟩ ∈
⋃

д∈G(D1,D2)

д ∧ hash(⟨a1,v1⟩ ∈ Ae1) ∼

hash(⟨a2,v2⟩ ∈ Ae2))

(1)

Finally, in the pruning step, Metablocking is applied in order
to discard comparisons between entities with low-weight edge,
representing low similarity. In this sense, the collection B provided
by the block generation step is restructured relying on the intuition
that the more blocks two entities share, the more likely they result
in a correspondence. Then, the output of the pruning step is a
restructured collection of blocks B′. Next, we describe in details
each step of the NA-BLOCKER technique.

4 SCHEMA INFORMATION EXTRACTION
This step receives as input two data sourcesD1 andD2. As described
in Algorithm 1, for each entity, the attribute values are read in order
to extract the tokens (only the relevant words) associated with each
attribute (illustrated by the function extractSignatures, lines 13 to
29). In other words, punctuation, special characters (e.g.,@, $, *, and

1In this work, we apply a threshold value equal to 0.35 (Φ = 0.35), given the experi-
ments in [26], demonstrating this threshold value as the best one.

Figure 1: NA-BLOCKER workflow.

&) and stop words (e.g., the, for, to, at, which, and on) are removed
from the attribute values. Thus, a set of values (keywords) (V),
extracted from the attribute values, is associated to each attribute
(⟨a,V ⟩) of an entity (lines 15 to 24). This transformation of the
attribute values is important in order to remove characters or words
that can degrade the similarity between attributes. To perform the
attribute-match induction (i.e., group the similar attributes), the sets
of keywords are clustered (merged) according to the attributes (lines
19 and 21). For instance, in Figure 1, all keywords of the attribute
name are merged into the same set of values. The sets of values
are used to measure the similarity between the attributes. In this
sense, given two attributes and their respective sets of keywords,
the Jaccard2 function evaluates the similarity between the sets of
values and, consequently, determines the similarity values between
the attributes.

To enhance the efficiency of the attribute-match induction (i.e.,
avoid the quadratic complexity of comparing all possible attribute
values in this step), the LSH algorithm is applied [2]. As a result,
the hash function (MinHash, in our case) generates a signature
(MinHash signature) for each set of values ⟨a,V ⟩ → ⟨a, S⟩, where
S denotes the MinHash signature (lines 25 to 28). Since the hash
function preserves the similarity between the sets of values, it is
possible to apply a similarity function (e.g., Jaccard) to the signa-
tures in order to determine the similarity between the attributes
(line 6). It is important to highlight that computing the similarity
(e.g., applying Jaccard) between attributes based on the signatures
is faster than computing it based on the sets of keywords, since
the quadratic cost is avoided. This fact motivates the application of
LSH in the first two steps of NA-BLOCKER.

2 Jaccard(V1, V2) =
|V1∩V2 |

|V1 |+|V2 |−|V1∩V2 |
.

In order to perform the attribute-match induction, the similarities
between the attributes are evaluated. Therefore, attributes with
high similarity are inserted into the same group д (lines 4 to 11).
For example, based on the similarities of the sets of keywords, the
attribute groups д1 = {name, Full name},д2 = { f amily,house}
and д3 = {adversary, enemy} are built, as illustrated in Figure 1.

Moreover, this step calculates the entropy of each attribute (line
7). Intuitively, the entropy of an attribute indicates how significant
is the attribute, i.e., the higher the entropy of an attribute, the more
significant is the observation of a particular value for that attribute
[26]. We specifically apply here the Shannon entropy [15] to rep-
resent the information distribution of a random attribute. Thus,
assume a random attribute X with alphabet χ , and the probability
distribution function p(x) = Pr {X = x},x ∈ χ . Then, the Shannon
entropy is defined as: H (X) = −

∑
x ∈χ p(x) logp(x).

Thereafter, the aggregated entropy ε is generated from the en-
tropy of each attribute contained in a particular attribute group
(line 8). Thus, in Figure 1, the entropies ε associated with each
attribute group are: ⟨д1, 3.0⟩, ⟨д2, 1.5⟩, and ⟨д3, 1.5⟩. The entropy of
an attribute group influences the weighting of the blocking graph,
as will be discussed in the next steps.

Finally, since in this step we need to evaluate all possible at-
tributes contained in our data sources, namely, A(D1) and A(D2),
and the cost to compare the attributes (given by ⟨a, S⟩) is linear in
relation to the size of S , the time complexity of this step is expressed
as O(|A(D1)| · |A(D2)| · |S |).

5 BLOCK GENERATION
In this step, the inputs are the entities (provided by D1 and D2)
and the attribute groups generated by the previous step (with their
respective entropies), as illustrated in Algorithm 2. Initially, the
entities are read and, for each attribute of a particular entity, the

Algorithm 1: Schema Information Extraction step
Data: D1 , D2 and Φ: the input data sources and the similarity threshold
Result: G : attribute groups

1 attr ibSiдnaturesD1 ← extractSiдnatures(D1);
2 attr ibSiдnaturesD2 ← extractSiдnatures(D2);
3 attr ibGroup ← ∅;
4 foreach a1 in attr ibSiдnaturesD1 do
5 foreach a2 in attr ibSiдnaturesD2 do
6 if sim(a1 .S, a2 .S) > Φ then
7 ε ← shanonEntropy(a1, a2);
8 attr ibGroup .append (⟨a2, a1, ε ⟩);
9 end

10 end
11 end
12 return attribGroup
13 Function extractSignatures(D) : map⟨a, S⟩ do
14 attr ibSiдnatures ← ∅;
15 foreach e in D do
16 foreach a in Ae do
17 V ← keyWords(avalue);
18 if attr ibSiдnatures .contains(a) then
19 attr ibSiдnatures .дet (a).union(V);
20 else
21 attr ibSiдnatures .put (a, V);
22 end
23 end
24 end
25 foreach ⟨a, V⟩ in attr ibSiдnatures do
26 S ←minHash(V);
27 attr ibSiдnatures .r eplace(a, S);
28 end
29 return attribSignatures
30 end

LSH algorithm is applied to generate a signature for the attribute
value (lines 2 to 5 and 15 to 18). An entity e is denoted as follows: e =
{⟨a1, S1⟩, ⟨a2, S2⟩, ⟨a3, S3⟩, ..., ⟨ak , Sk ⟩}. For instance, to generate
the attribute signatures of entity e1, in Figure 1, the attribute values
⟨aname , Jon Snow⟩ and ⟨ahouse , Stark⟩ are converted into the
signatures ⟨aname , [4, 9, 4, 6]⟩ and ⟨ahouse , [1, 1, 6, 9]⟩, respectively.
Notice that the hash function always generates signatures with the
same size, in terms of elements.

After defining the signatures, the blocks are generated based on
each of the signatures. To this end, the signatures are split into α
equal parts, termed subsignatures s . The subsignatures are used
as the key for each block to be generated (lines 5 and 18). There-
after, the entities that share a particular subsignature originated
from attributes contained in the same attribute group (provided by
the previous step) are inserted into the same block (lines 6 to 12
and 19 to 26). Furthermore, since each group of attributes has an
associated entropy, the blocks generated from attributes contained
in a particular group will assume the same entropy value of the
attribute group.

Regarding the time complexity, in this step, it is necessary to
evaluate all ⟨a, S⟩ (derived from Ae , defined in Section 3) of each
entity e ∈ D to generate the blocking keys. Furthermore, to evalu-
ate each ⟨a, S⟩, it is necessary to take into account the number of
subsignatures s derived from S , denoted by α . Therefore, the time
complexity of this step is O((| |AD1 | | + | |AD2 | |) · α), where | |AD1 | |

is given by
∑
e ∈D1 |Ae | and | |AD2 | | is given by

∑
e ∈D2 |Ae |.

In Figure 1, the NA-BLOCKER technique generates two blocks
(b5 and b6) with key [5, 5] since one subsignature is provided by the

Algorithm 2: Block Generation step
Data: D1 , D2 , G : the input data sources and the attribute groups
Result: B : blocks of entities

1 mapOf Blocks ← ∅;
2 foreach e1 in D1 do
3 foreach a1 in Ae1 do
4 S ← LSH (a1 .value);
5 blockKeys ← splitSiдnature(S);
6 foreach blockKey in blockKeys do
7 if mapOf Blocks .contains(blockKey .a1) then
8 mapOf Blocks .дet (blockKey .a1).append (e1);
9 else

10 mapOf Blocks .put (⟨blockKey .a1, [e1]⟩);
11 end
12 end
13 end
14 end
15 foreach e2 in D2 do
16 foreach a2 in Ae2 do
17 S ← LSH (a2 .value);
18 blockKeys ← splitSiдnature(S);
19 attr ibOf D1InSameGroup ← attr ibGroup .дet (a2);
20 foreach blockKey in blockKeys do
21 foreach a1 in attr ibInSameGroup do
22 if mapOf Blocks .contains(blockKey .a1) then
23 mapOf Blocks .дet (blockKey .a1)

.append (e2);
24 end
25 end
26 end
27 end
28 end

29 return mapOfBlocks

attributes house/ f amily (∈ д2) and the other one by the attributes
adversary/enemy (∈ д3). In this sense, the entities e2 and e5 are
inserted into b5 since both entities contain the subsignature [5, 5]
and the attributes adversary (in e2) and enemy (in e5) are contained
in the same attribute group (д3). Similarly, the entities e3 and e6 are
inserted into b6 because both entities contain the subsignature [5, 5]
and the attributes house (in e3) and f amily (in e6) are contained in
д2. It is important to highlight that, even though there exists noisy
data in data source D2 (e.g., “John Sn0w”, “Stak”, “Aria”, “Lanister”,
and “Tiwin”) the entities with similar attributes have been inserted
into the same blocks. This occurs due to the fact that the NA-
BLOCKER technique benefits from the application of LSH, which
generates signatures of the attributes. The signatures maintain
the degree of similarity between attribute values even though the
set of keywords is transformed into an array of integers. Thereby,
entities whose attribute values are similar, even with the presence
of noisy data, present high chances to share several subsignatures
and, consequently, will be inserted into the same blocks. On the
other hand, if a token blocking technique is applied, entity pairs,
such as ⟨e2, e5⟩ and ⟨e3, e6⟩, will not be inserted into the same block
since they do not share the same tokens.

6 PRUNING
The goal of this step is to discard redundant comparisons between
entities, as well as comparisons with few chances of resulting
in correspondences, as illustrated in Algorithm 3. To this end,
Metablocking-based techniques [6, 23, 26] can be applied. These
techniques receive as input the blocks generated at the previous

Algorithm 3: Pruning step
Data: G , B : the attribute groups and the blocks of entities
Result: B′: pruned blocks

1 mapEntit ies ← ∅;
2 foreach block inmapOf Blocks do
3 entit ies ← block .values ;
4 while entities.size > 1 do
5 ecurrent ← entit ies .pop();
6 foreach e in entit ies do
7 ε ← attr ibGroup .дetEntropy(block .key);
8 if mapEntit ies .contains(ecurrent .e) then
9 mapEntit ies .дet (ecurrent .e).sumW eiдht (ε);

10 else
11 mapEntit ies .put (ecurrent .e, ε);
12 end
13 end
14 end
15 end
16 B′ ←WNP (mapEntit ies);
17 return B’

Algorithm 4: NA-BLOCKER
Data: D1 , D2 : input data sources
Result: B′: set of pruned blocks

1 G ← SchemaInf ormationExtraction(D1, D2);
2 B ← BlockGeneration(D1, D2, G);
3 B′ ← Pruninд(G, B);
4 return B’

step. In Figure 1, notice that the entities e1 and e4 are contained in
blocks b1, b2 and b3. Therefore, these entities should be compared
three times (i.e., redundant comparisons). To avoid the redundant
comparisons, the Metablocking technique restructures the input
blocks into new ones that involve significantly fewer comparisons,
while maintaining the original level of effectiveness [23]. Then, the
input blocks are converted into a blocking graph (lines 2 to 15),
such that each node represents an entity and each edge (between a
pair of nodes) denotes that the pair of nodes sharing at least one
block in common (lines 4 to 14). Every edge is associated with a
weight, based on the number of blocks in common between the
pair of nodes (entities) linked by the edge and the entropy value
associated with the blocks in common (line 7).

Regarding the influence of entropy in the weight of edges, the
entropy value determines the relevance of the blocks, since not all
the blocks have the same importance. Therefore, the edge weight
is given by the sum of entropies ε associated with each block in
common between the pair of nodes linked by the edge (lines 9
and 11). For instance, in Figure 1, the edge that links nodes e1 and
e4 assumes the weight of 6, since the pair of entities shares three
blocks: b1 (from group ⟨д1, 3.0⟩), b2 (from group ⟨д2, 1.5⟩), and b3
(from group ⟨д2, 1.5⟩). Thus, the edge weight, which links e1 and
e4, is given by 3.0 + 1.5 + 1.5 = 6.

Once the graph is built, it is pruned according to a pruning
criterion, which eliminates low-weighted edges to skip part of the
redundant comparisons. Regarding the pruning criteria, the works
[23, 26] propose different pruning algorithms that can be applied
in this step. Particularly, in this work, we apply the WNP-based
pruning algorithm [23] since it has achieved better results than
other competitors [6]. The WNP algorithm applies the node-centric

Table 1: Datasets characteristics.

Pairs of Datasets |D1 | |D2 | Duplicates |A1 | |A2 |
Abt-Buy 1,076 1,076 1,076 3 3
Amazon-GP 1,354 3,039 1,104 4 4
DBLP-ACM 2,616 2,294 2,224 4 4
DBLP-Scholar 2,516 61,353 2,308 4 4
IMDB-DBpedia 27,615 23,182 22,863 4 7

pruning algorithm with a local weight threshold that is given by
the average edge weight of each neighborhood.

Concerning the time complexity, in this step, the complexity is
given by the sum of the cost to evaluate the entity pairs in each
block b ∈ B (i.e., the cardinality of B) and the cost of the WNP
pruning algorithm. The time complexity of the WNP algorithm is
O(|NB | · |EB |) [23], where |NB | is the number of nodes and |EB | is
the number of edges in the graph generated from B. Therefore, the
time complexity of the pruning step is O(||B | |) + O(|NB | · |EB |).

In Figure 1, the pruning criteria evaluates locally the weight of
the edges and discards the low-weighted comparisons (i.e., com-
parisons with few chances to result in correspondences). Hence,
the resulting graph (pruned graph) infers only three comparisons:
⟨e1, e4⟩, ⟨e2, e5⟩, and ⟨e3, e6⟩. The significant decrease in the num-
ber of comparisons occurs due to the enhancing in the quality of
blocks built in the Block Generation step (Step 2), which includes in
each block only truly similar entities. Therefore, such step becomes
fundamental in order to provide high-quality blocks, in terms of ef-
fectiveness, especially in the presence of noisy data, since the blocks
built in the Block Generation step directly influence the edge weight
of the graph (in Pruning step). The overview of the NA-BLOCKER
technique, with the application of each step described previously,
is summarized in Algorithm 4.

7 EXPERIMENTS
In this section, we evaluate the NA-BLOCKER3 technique against
BLAST [26], the state-of-the-art method, in terms of effectiveness
and efficiency. We run our experiments on a Windows 7 computer
with 16GB of memory and Intel Core I7-4790 3.60 GHz. In our ex-
perimental evaluation, five real-world pairs of datasets4 (provided
by [26]) were used, as described in Table 1: i) Abt-Buy: product
profiles provided by abt.com and buy.com; ii) Amazon-GP: product
profiles provided by amazon.com and google.com; iii) DBLP-ACM:
scientific article profiles provided by dblp.org and dl.acm.org; iv)
DBLP-Scholar: scientific article profiles provided by dblp.org and
scholar.google.com; and v) IMDB-DBpedia: movie profiles provided
by imdb.com and dbpedia.org. Table 1 shows the amount of enti-
ties (D) and attributes (A) contained in each dataset as well as the
number of duplicates (i.e., matches) present in each pair of datasets.

To measure the effectiveness of the techniques, three quality
metrics have been applied: i) Pair Completeness (PC) - similar to re-
call - estimates the portion of correspondences that were identified,
denoted by PC = |D(B

′) |

|D(E) | , where |D(B
′)| is the amount of duplicate

entities in the set of pruned blocks B′ and |D(E)| is the amount of
duplicate entities in dataset E. PC takes values in the interval [0, 1],
with higher values indicating a better result; ii) Pair Quality (PQ) -
3https://bitbucket.org/tbrasileiro/na-blocker/
4Available in the project repository.

similar to precision - estimates the portion of executed comparisons
that result in correspondences, denoted by PQ = |D(B

′) |

| |B′ | | , where
| |B′ | | is the amount of comparisons to be performed in the pruned
blocks. PQ takes values in [0, 1], with higher values indicating a
better result; iii) F-Measure (FM) - defined as the harmonic mean
between PC and PQ - is defined by FM =

2 · PC · PQ
PC + PQ . Regarding

efficiency, we measure the whole execution time, including all steps,
of the techniques. Since the number of comparisons to be executed
in the ER task directly impacts on the efficiency of the task as a
whole, we also evaluate the aggregate cardinality measure of the
blocking techniques that computes the total number of comparisons
| |B′ | | for all generated (and pruned) blocks.

To evaluate the effectiveness results of the techniques in dif-
ferent scenarios of noisy data, we insert synthetically typos and
misspellings (i.e., noise) into the attribute values of the entities
contained in a dataset of each pair. In order to simulate the occur-
rence of typos/misspellings [14], for all attributes of an entity, one
character of each token (i.e., relevant words) present in the attribute
values is randomly exchanged by other characters, or additional
characters are inserted into the tokens5. In this sense, we vary the
level of noise in the dataset. The noise level varies between 0 (i.e.,
no noise is inserted into the attribute values of any entity) to 1
(i.e., noise is inserted into the attribute values of all entities). For
instance, the noise level of 0.4 indicates that 40% of the entities
(contained in the first dataset) had their attribute values modified
(i.e., noise was inserted). For these experiments, the execution time
results are given by the average of three executions (of the blocking
techniques) for each dataset pair.

Effectiveness. Figure 2 illustrates the results of the compara-
tive effectiveness analysis for each pair of datasets. Regarding the
effectiveness metrics (i.e., pair completeness, pair quality and F-
Measure), NA-BLOCKER outperforms BLAST for all variations of
noise level. It is important to highlight that as the noise level in-
creases, the effectiveness metrics decrease for both techniques. This
decrease occurs due to the fact that the noise on the data negatively
interferes the block generation, as discussed in Section 2. However,
the decrease in effectiveness metrics for BLAST occurs abruptly
when compared to NA-BLOCKER. Since the latter applies strategies
to tolerate noisy data (addressed in Section 3), the effectiveness de-
crease is amortized. Even for a high level of noise (i.e., a noise level
of 1.0), NA-BLOCKER has achieved a pair completeness greater
than 60% for the first three datasets.

Regarding F-Measure (FM), NA-BLOCKER reaches an average,
with respect to all pairs of datasets, of 48% in the proportional
decrease6, whereas BLAST reaches 90%. The most significant result
achieved by NA-BLOCKER was in terms of pair quality. In this case,
it achieved an average pair quality (considering all pairs of datasets)
two times better than the BLAST technique, in scenarios without
noisy data. The main reason for that is the generation of multiple
tokens per entity attribute (based on a particular attribute value)
as blocking keys, in the BLAST technique. Since non-matching
entities eventually share multiple tokens, they are included in the
same block erroneously. On the other hand, the proposed technique
generates a single hash value based on a particular attribute value.

5All data sources (with/without noise) are available at the project repository.
6Propor tional decrease = 1 − FM (noise=1.0)

FM (noise=0.0)

Thus, non-matching entities sharing the same hash value are harder
to occur than non-matching entities sharing tokens in common. For
this reason, NA-BLOCKER enhances the pair quality metric. Finally,
based on the experimental results and the pair-wise (considering the
level of noise) distribution T-Student test (with 95% of confidence),
we concluded that our technique has achieved a better effectiveness
than the BLAST technique.

Efficiency. Regarding efficiency, the execution time (in seconds)
of the NA-BLOCKER and BLAST techniques are evaluated for each
pair of datasets, as depicted in Figure 3. BLAST achieves better
results than NA-BLOCKER for all pairs of datasets. On average, the
NA-BLOCKER increased the execution time around 30% (or seven
seconds). These results are already expected, since the proposed
technique requires more time to block the entities. This is due to
the fact that our technique needs more time to generate the LSH-
signatures and determine the similarity of their attribute values
based on the approximate similarity.

On the other hand, it is important to highlight that NA-BLOCKER
achieved better results compared to BLAST regarding the aggre-
gate cardinality (i.e., | |B′ | |) for all dataset pairs, as depicted in Fig-
ure 4. In other words, NA-BLOCKER requires less comparisons
to be executed in the ER task. On average, the blocks generated
by NA-BLOCKER indicate a total number of comparisons 34% (or
more than seven thousand comparisons) less when compared to the
blocks generated by BLAST. Thus, the efficiency results achieved
by NA-BLOCKER may be compensated by efficiency gains gener-
ated by the execution of fewer comparisons between entities to be
performed in the following steps of the ER task, particularly the
Comparison step. For instance, considering that the comparison
of an entity pair in the ER task requires one unit of time, then
NA-BLOCKER will provide a reduction of 34% in the execution
time of the Comparison step. Therefore, NA-BLOCKER does not
significantly affect the efficiency of the ER task as a whole, since
the Comparison step is the most costly step (in terms of execution
time) of the ER task [4].

8 RELATEDWORK
Over the years, several works proposed matching approaches re-
lated to the Web context, such as entity resolution [11, 12], link
discovery [20, 25], instance matching [13], and knowledge graphs
[31]. However, these works cannot be directly compared against
blocking techniques since matching approaches determine cor-
respondent individuals (i.e., matches), while blocking techniques
group similar individuals. In this sense, since the blocking tech-
niques aim to reduce the number of comparisons to be performed in
matching tasks (i.e., efficiency gains), the NA-BLOCKER approach
can be applied as a preprocessing step for matching tasks.

Recently, several works, which address blocking techniques
for ER, have been published [3, 6, 17–19, 21, 23, 26]. However,
some blocking techniques [17–19] need a schema alignment to
block the entities. Therefore, in the context of heterogeneous data,
the schema-based blocking techniques are not suitable. This way,
schema-agnostic blocking techniques [3, 6, 21, 23, 26] were pro-
posed. In [5], schema-agnostic blocking techniques are described
and classified according to their features: Token Blocking, Attribute
Clustering Blocking, Frequent Itemsets, andMetablocking. Although

Figure 2: Effectiveness results of the datasets: (a) Abt vs. Buy, (b) Amazon vs. Google Product, (c) DBLP vs. ACM, (d) DBLP vs.
Google Scholar, and (e) IMDB vs. DBpedia.

Figure 3: Execution time of NA-BLOCKER and BLAST tech-
niques.

the Token Blocking technique presents satisfactory results regard-
ing effectiveness [21], it does not reduce satisfactorily the amount of
comparisons to be performed in the ER task. In this sense, the works
[3, 6, 23] propose the Metablocking technique (and its variations),
which aims to further reduce the comparisons between entities
determined by the Token Blocking technique. Metablocking builds

Figure 4: Aggregate Cardinality of NA-BLOCKER and
BLAST techniques.

a weighted graph based on the blocks generated by Token Blocking
and applies pruning algorithms to discard entity pairs that have
low chances to result in matching.

More recently, the BLAST technique [26] applies the loose schema
information strategy in order to collect statistical information about

the schema directly from the data. Based on the statistical infor-
mation, the attributes are partitioned (clustered) according to the
similarity of their values, following the strategy proposed in [16].
Thereafter, the BLAST technique employs Token Blocking [21] to
disambiguate some tokens by exploiting the attribute partitioning.
Thus, only entities whose tokens belong to attributes in the same
partition will be compared. This information is used by Metablock-
ing to enhance the quality of the blocks. Although NA-BLOCKER
follows a workflow similar to BLAST, there are differences related
to the execution of the steps. BLAST adopts LSH only to deter-
mine the linkages between attributes of two large data sources in
order to address efficiency issues. To determine the entity blocks,
BLAST applies the traditional Token Blocking technique. On the
other hand, NA-BLOCKER applies LSH (through the signatures)
to guide the whole process of block generation, achieving better
results regarding effectiveness and aggregate cardinality (discussed
in Section 4).

In contrast to the previously mentioned works, our work pro-
vides a novel schema-agnostic blocking technique that is able to
tolerate noise on data (particularly, in the attribute values). Further-
more, we also propose the application of LSH to guide the building
of high-quality blocks, minimizing the negative impact of noisy
data in the effectiveness of the blocking results. In particular, differ-
ently from Attribute Clustering Blocking [22] (which also benefits
from the attributes information), our work applies the attribute-
match induction strategy that induces groups of similar attributes
from the distribution of the attribute values, without exploiting
the semantics of the attribute names or external information (e.g.,
thesaurus or dictionaries).

9 CONCLUSIONS AND FUTUREWORK
Blocking techniques are largely applied as a preprocessing step
in ER approaches in order to avoid the quadratic cost of the ER
task. In this context, heterogeneous data and noisy data increase
the difficulties faced by blocking techniques. In this paper, we pro-
pose the NA-BLOCKER technique, which is capable of tolerating
noisy data, extracting information regarding the schema of the data
sources, generating groups of similar attributes, and pruning the
generated blocking results in order to enhance the quality of the
final blocks. Since Web approaches need to deal with data sources
that present noisy and heterogeneous data, the proposed technique
can be useful for these approaches, such as LIMES [20], LOV [28]
and JedAI [24]. Based on the experimental results, we can highlight
that NA-BLOCKER presents better results regarding effectiveness
and aggregate cardinality than the state-of-the-art technique.

ACKNOWLEDGMENTS
This work has been partially supported by the Virpa D project
funded by Business Finland.

REFERENCES
[1] Sumeet Agarwal, Shantanu Godbole, Diwakar Punjani, and Shourya Roy. 2007.

How much noise is too much: A study in automatic text classification. In ICDM.
[2] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. 2014. Be-

yond locality-sensitive hashing. InACM-SIAM Symposium on Discrete Algorithms.
[3] Tiago Brasileiro Araújo, Carlos Eduardo Santos Pires, and Thiago Pereira da

Nóbrega. 2017. Spark-based Streamlined Metablocking. In ISCC.

[4] Peter Christen. 2012. Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer Science & Business Media.

[5] Vassilis Christophides, Vasilis Efthymiou, and Kostas Stefanidis. 2015. Entity
Resolution in the Web of Data. Synthesis Lectures on the Semantic Web 5, 3 (2015).

[6] Vasilis Efthymiou, George Papadakis, George Papastefanatos, Kostas Stefanidis,
and Themis Palpanas. 2015. Parallel meta-blocking: Realizing scalable entity
resolution over large, heterogeneous data. In IEEE Big Data.

[7] Vasilis Efthymiou, George Papadakis Kostas Stefanidis, and Vassilis Christophides.
2019. MinoanER: Schema-Agnostic, Non-Iterative, Massively Parallel Resolution
of Web Entities. In EDBT.

[8] Vasilis Efthymiou, Kostas Stefanidis, and Vassilis Christophides. 2015. Big data
entity resolution: From highly to somehow similar entity descriptions in the Web.
In IEEE Big Data.

[9] Salvador García, Julián Luengo, and Francisco Herrera. 2015. Data preprocessing
in data mining.

[10] Raiza Hanada, Maria da Graça C Pimentel, Marco Cristo, and Fernando Anglada
Lores. 2016. Effective Spelling Correction for Eye-based Typing using domain-
specific Information about Error Distribution. In CIKM.

[11] Lars Kolb, Andreas Thor, and Erhard Rahm. 2012. Dedoop: efficient deduplication
with Hadoop. PVLDB 5, 12 (2012), 1878–1881.

[12] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,
Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al.
2016. Magellan: Toward building entity matching management systems. PVLDB
9, 12 (2016), 1197–1208.

[13] Juanzi Li, Zhichun Wang, Xiao Zhang, and Jie Tang. 2013. Large scale instance
matching via multiple indexes and candidate selection. Knowledge-Based Systems
50 (2013), 112–120.

[14] Huizhi Liang, YanzheWang, Peter Christen, and Ross Gayler. 2014. Noise-tolerant
approximate blocking for dynamic real-time entity resolution. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining.

[15] Jianhua Lin. 1991. Divergence measures based on the Shannon entropy. IEEE
Transactions on Information theory 37, 1 (1991), 145–151.

[16] Yongtao Ma and Thanh Tran. 2013. Typimatch: Type-specific unsupervised
learning of keys and key values for heterogeneous web data integration. In
WSDM.

[17] Andrew McCallum, Kamal Nigam, and Lyle H Ungar. 2000. Efficient clustering
of high-dimensional data sets with application to reference matching. In KDD.

[18] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
2016. Mllib: Machine learning in apache spark. The Journal of Machine Learning
Research 17, 1 (2016), 1235–1241.

[19] Demetrio Gomes Mestre, Carlos Eduardo Santos Pires, Dimas Cassimiro Nasci-
mento, Andreza Raquel Monteiro de Queiroz, Veruska Borges Santos, and
Tiago Brasileiro Araujo. 2017. An efficient spark-based adaptive windowing
for entity matching. Journal of Systems and Software 128 (2017), 1–10.

[20] Axel-Cyrille Ngonga Ngomo and Sören Auer. 2011. Limes-a time-efficient ap-
proach for large-scale link discovery on the web of data.. In IJCAI.

[21] George Papadakis, George Alexiou, George Papastefanatos, and Georgia Koutrika.
2015. Schema-agnostic vs schema-based configurations for blocking methods on
homogeneous data. PVLDB 9, 4 (2015), 312–323.

[22] George Papadakis, Ekaterini Ioannou, Themis Palpanas, Claudia Niederee, and
Wolfgang Nejdl. 2013. A blocking framework for entity resolution in highly
heterogeneous information spaces. IEEE TKDE 25, 12 (2013), 2665–2682.

[23] George Papadakis, Georgia Koutrika, Themis Palpanas, andWolfgang Nejdl. 2014.
Meta-blocking: Taking entity resolutionto the next level. IEEE TKDE 26, 8 (2014),
1946–1960.

[24] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George Gian-
nakopoulos, Themis Palpanas, and Manolis Koubarakis. 2017. JedAI: The Force
behind Entity Resolution. In ESWC.

[25] Minh C Phan, Aixin Sun, Yi Tay, Jialong Han, and Chenliang Li. 2017. NeuPL:
Attention-based Semantic Matching and Pair-Linking for Entity Disambiguation.
In CIKM.

[26] Giovanni Simonini, Sonia Bergamaschi, and HV Jagadish. 2016. BLAST: a loosely
schema-aware meta-blocking approach for entity resolution. PVLDB 9, 12 (2016),
1173–1184.

[27] Kostas Stefanidis, Vassilis Christophides, and Vasilis Efthymiou. 2017. Web-Scale
Blocking, Iterative and Progressive Entity Resolution. In ICDE.

[28] Pierre-Yves Vandenbussche, Ghislain A Atemezing, María Poveda-Villalón, and
Bernard Vatant. 2017. Linked Open Vocabularies (LOV): a gateway to reusable
semantic vocabularies on the Web. Semantic Web 8, 3 (2017), 437–452.

[29] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. 2016. Learning to hash
for indexing big data - a survey. Proc. IEEE 104, 1 (2016), 34–57.

[30] Yang Yang, Yizhou Sun, Jie Tang, Bo Ma, and Juanzi Li. 2015. Entity matching
across heterogeneous sources. In SIGKDD.

[31] Linhong Zhu, Majid Ghasemi-Gol, Pedro Szekely, Aram Galstyan, and Craig A
Knoblock. 2016. Unsupervised entity resolution on multi-type graphs. In ISWC.

	Abstract
	1 Introduction
	2 Noise-aware Schema-agnostic Blocking for Entity Resolution
	3 The NA-BLOCKER Framework
	4 Schema Information Extraction
	5 Block Generation
	6 Pruning
	7 Experiments
	8 Related Work
	9 Conclusions and Future Work
	Acknowledgments
	References

