
Complexity Thresholds in Inclusion Logic

Miika Hannula1 and Lauri Hella2

1University of Helsinki, Finland
2Tampere University, Finland

March 27, 2019

Abstract

Logics with team semantics provide alternative means for logical characterization of complexity

classes. Both dependence and independence logic are known to capture non-deterministic polynomial

time, and the frontiers of tractability in these logics are relatively well understood. Inclusion logic is

similar to these team-based logical formalisms with the exception that it corresponds to determinis-

tic polynomial time in ordered models. In this article we examine connections between syntactical

fragments of inclusion logic and different complexity classes in terms of two computational problems:

maximal subteam membership and the model checking problem for a fixed inclusion logic formula. We

show that very simple quantifier-free formulae with one or two inclusion atoms generate instances of

these problems that are complete for (non-deterministic) logarithmic space and polynomial time. Fur-

thermore, we present a fragment of inclusion logic that captures non-deterministic logarithmic space

in ordered models.

1 Introduction

In this article we study the computational complexity of inclusion logic. Inclusion logic was introduced

by Galliani [9] as a variant of dependence logic, developed by Väänänen in 2007 [25]. Dependence logic

is a logical formalism that extends first-order logic with novel atomic formulae dep(x1, . . . , xn) express-

ing that a variable xn depends on variables x1, . . . , xn−1. One motivation behind dependence logic is

to find a unifying logical framework for analyzing dependency notions from different contexts. Since its

introduction, versions of dependence logic have been formulated and investigated in a variety of logical

environments, including propositional logic [15, 28, 30], modal logic [7, 26], probabilistic logics [5], and

two-variable logics [21]. Recent research has also pursued connections and applications of dependence

logic to fields such as database theory [13, 14], Bayesian networks [4], and social choice theory [23]. A

common notion underlying all these endeavours is that of team semantics. Team semantics, introduced

by Hodges in [16], is a semantical framework where formulae are evaluated over multitudes instead of

singletons of objects as in classical logics. Depending on the application domain these multitudes may

then refer to assignment sets, probability distributions, or database tables, each having their characteristic

versions of team semantics [25, 5, 14].

After the introduction of dependence logic Grädel and Väänänen observed that team semantics can

be also used to create logics for independence [11]. This was followed by [9] in which Galliani inves-

tigated logical languages built upon multiple different dependency notions. Inspired by the inclusion

dependencies of database theory, one of the logics introduced was inclusion logic that extends first-order

logic with inclusion atoms. Given two sequences of variables x and y having same length, an inclusion

atom x ⊆ y expresses that the set of values of x is included in the set of values of y. Inclusion logic

was shown to be equi-expressive to positive greatest-fixed point logic in [10]. In contrast to dependence

logic which is equivalent to existential second-order logic [25], and thus to non-deterministic polynomial

time (NP), this finding established inclusion logic as the first team-based based logic for polynomial

time (P). Our focus in this article is to pursue this connection further by investigating the complexity of

quantifier-free inclusion logic in terms of two computational problems: maximal subteam membership

and model checking problems. In particular, we identify complexity thresholds for these problems in

terms of first-order definability, (non-deterministic) logarithmic space, and polynomial time.

1

This is the accepted manuscript of the article, which has been published in Logic,
Language, Information, and Computation : 26th International Workshop, WoLLIC
2019, Utrecht, The Netherlands, July 2-5, 2019, Proceedings. 2019, 301-322.
https://doi.org/10.1007/978-3-662-59533-6_19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250168456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1903.10706v1

The maximal subteam membership problem MSM(φ) for a formula φ asks whether a given assign-

ment is in the maximal subteam of a given team that satisfies φ. This problem is closely related to the

notion of a repair of an inconsistent database [2]. A repair of a database instance I w.r.t. some set Σ of

constraints is an instance J obtained by deleting and/or adding tuples from/to I such that J satisfies Σ,

and the difference between I and J is minimal according to some measure. If only deletion of tuples is

allowed, J is called a subset repair. It was observed in [3] that if Σ consists of inclusion dependencies,

then for every I there exists a unique subset repair J of I; this was later generalized to arbitrary LAV

tgds (local-as-view tuple generating dependencies) in [24].

The research on database repair has been mainly focused on two problems: consistent query answer-

ing and repair checking. In the former, given a query Q and a database instance I the problem is to

compute the set of tuples that belong to Q(J) for every repair J of I . The latter is the decision problem:

is J a repair of I for two given database instances I and J . The complexity of these problems for various

classes of dependencies and different types of repairs has been extensively studied in the literature; see

e.g. [1, 3, 22, 24]. In this setting, the maximal subteam membership problem can be seen as a variant of

the repair checking problem: regarding a team as a (unirelational) database instance I and a formula φ
of inclusion logic as a constraint, an assignment is a positive instance of MSM(φ) just in case it is in the

unique subset repair of I . Note however, that in MSM(φ), the task is essentially to compute the maximal

subteam from a given database instance I , instead of just checking that a given J is the unique subset

repair of I . Note further, that using a single formula φ as a constraint is actually more general than using

a (finite) set Σ of inclusion dependencies. Indeed, as φ we can take the conjunction of all inclusions in

Σ. Furthermore, using disjunctions and quantifiers, we can form constraints not expressible in the usual

formalism with a set of dependencies.

The complexity of model checking in team semantics has been studied in [6, 20] for dependence

and independence logics. For these logics increase in complexity arises particularly from disjunctions.

For example, model checking for a disjunction of three (two, resp.) dependence atoms is complete

for NP (NL, resp.), while a single dependence atom is first-order definable [20]. The results of this

paper, in contrast, demonstrate that the complexity of inclusion logic formulae is particularly sensitive to

conjunctions. We show that MSM(φ) is complete for non-deterministic logarithmic space if φ is of the

form x ⊆ y or x ⊆ y ∧ y ⊆ x; for any other conjunction of (non-trivial) unary inclusion atoms MSM(φ)
is complete for polynomial time. This result gives a complete characterization of the maximal subteam

membership problem for conjunctions of unary inclusion atoms. Based on it we also prove complexity

results for model checking of quantifier-free inclusion logic formulae. For instance, for any non-trivial

quantifier-free φ in which x, y, z do not occur, model checking of φ ∨ x ⊆ y is NL-hard, while that of

φ ∨ (x ⊆ z ∧ y ⊆ z) is P-complete.

We also present a safety game for the maximal subteam membership problem. Using this game we

examine instances of the maximal subteam membership problem in which the inclusion atoms refer to a

key, that is, all inclusion atoms are of the form x ⊆ y where y is a variable which uniquely determines all

the remaining variables. We give example formulae for which the thresholds between NL and P drop

down to L and NL under these assumptions.

We conclude the paper by presenting a fragment of inclusion logic that capturesNL. Analogous frag-

ments have previously been established at least for dependence logic. By relating to the Horn fragment

of existential second-order logic, Ebbing et al. define a fragment of dependence logic that corresponds

to P [8]. The fragment presented in this paper is constructed by restricting occurrences of inclusion

atoms and universal quantifiers, and the correspondence with NL is shown by using the well-known

characterization of NL in terms of transitive closure logic [18, 19].

2 Preliminaries

We generally use x, y, z, . . . for variables and a, b, c, . . . for elements of models. If p and q are two tuples,

we write pq for the concatenation of p and q.

Throughout the paper we assume that the reader has a basic familiarity of computational complexity.

We use the notation L, NL, P and NP for the classes consisting of all problems computable in loga-

rithmic space, non-deterministic logarithmic space, polynomial time and non-deterministic polynomial

time, respectively.

2

2.1 Team Semantics

As is customary for logics in the team semantics setting, we assume that all formulae are in negation

normal form (NNF). Thus, we give the syntax of first-order logic (FO) as follows:

φ ::= t = t′ | ¬t = t′ | Rt | ¬Rt | φ ∧ φ | φ ∨ φ | ∃xφ | ∀xφ,

where t and t′ are terms andR is a relation symbol of the underlying vocabulary. For a first-order formula

φ, we denote by Fr(φ) the set of free variables of φ, defined in the usual way. The team semantics of FO
is given in terms of the notion of a team. Let A be a model with domain A. An assignment s of A is a

function from a finite set of variables into A. We write s(a/x) for the assignment that maps all variables

according to s, except that it maps x to a. For an assignment s = {(xi, ai) | 1 ≤ i ≤ n}, we may

use a shorthand s = (a1, . . . , an) if the underlying ordering (x1, . . . , xn) of the domain is clear from the

context. A teamX ofAwith domain dom(X) = {x1, . . . , xn} is a set of assignments from dom(X) into

A. For V ⊆ dom(X), the restriction X ↾ V of a team X is defined as {s ↾ V | s ∈ X}. If X is a team,

V ⊆ dom(X), and F : X → P(A) \ {∅}, then X [F/x] denotes the team {s(a/x) | s ∈ X, a ∈ F (s)}.

For a set B, X [B/x] is the team {s(b/x) | s ∈ X, b ∈ B}. Also, if s is an assignment, then by A |=s φ
we refer to Tarski semantics.

Definition 1. For a model A, a team X and a formula in FO, the satisfaction relation A |=X φ is defined

as follows:

• A |=X α if ∀s ∈ X : A |=s α, when α is a literal,

• A |=X φ ∧ ψ if A |=X φ and A |=X ψ,

• A |=X φ ∨ ψ if A |=Y φ and A |=Z ψ for some Y, Z ⊆ X such that Y ∪ Z = X ,

• A |=X ∃xφ if A |=X[F/x] φ for some F : X → P(A) \ {∅},

• A |=X ∀xφ if A |=X[A/x] φ.

If A |=X φ, then we say that A and X satisfy φ. If φ does not contain any symbols from the

underlying vocabulary, in which case satisfaction of a formula does not depend on the model A, we say

thatX satisfies φ, writtenX |= φ, if A |=X φ for all models A with a suitable domain (i.e., a domain that

includes all the elements appearing inX). If φ is a sentence, that is, a formula without any free variables,

then we say that A satisfies φ, and write A |= φ, if A |={∅} φ, where {∅} is the team that consists of the

empty assignment ∅.

We say that two sentences φ and ψ are equivalent, written φ ≡ ψ, if A |= φ ⇐⇒ A |= ψ for

all models A. For two logics L1 and L2, we write L1 ≤ L2 if every L1-sentence is equivalent to some

L2-sentence; the relations “≡” and “<” for L1 and L2 are defined in terms of “≤” in the standard way.

Satisfaction of a first-order formula reduces to Tarski semantics in the following way.

Proposition 2 (Flatness [25]). For all models A, teams X , and formulae φ ∈ FO,

A |=X φ iff A |=s φ for all s ∈ X.

A straightforward consequence is that first-order logic is downwards closed.

Corollary 3 (Downward Closure). For all models A, teams X , and formulae φ ∈ FO,

If A |=X φ and Y ⊆ X , then A |=Y φ.

2.2 Inclusion Logic

Inclusion logic (FO(⊆)) is defined as the extension of FO by inclusion atoms.

Inclusion atom. Let x and y be two tuples of variables of the same length. Then x ⊆ y is an inclusion

atom with the satisfaction relation:

A |=X x ⊆ y if ∀s ∈ X∃s′ ∈ X : s(x) = s′(y).

Inclusion logic is local, meaning that satisfaction of a formula depends only on its free variables.

Furthermore, the expressive power of inclusion logic is restricted by its union closure property which

states that satisfaction of a formula is preserved under taking arbitrary unions of teams.

3

Proposition 4 (Locality [9]). Let A be a model, X a team, φ ∈ FO(⊆) a formula, and V a set of

variables such that Fr(φ) ⊆ V ⊆ dom(X). Then

A |=X φ ⇐⇒ A |=X↾V φ.

Proposition 5 (Union Closure [9]). Let A be a model, X a set of teams, and φ ∈ FO(⊆) a formula.

Then

∀X ∈ X : A |=X φ =⇒ A |=⋃
X φ.

Note that union closure implies the empty team property, that is, A |=∅ φ for all inclusion logic

formulae φ.

The starting point for our investigations is the result by Galliani and Hella [10] characterizing the

expressivity of inclusion logic in terms of positive greatest fixed point logic. The latter logic is obtained

from greatest fixed-point logic (the dual of least fixed point logic) by restricting to formulae in which

fixed point operators occur only positively, that is, within a scope of an even number of negations. In

finite models this positive fragment captures the full fixed point logic (with both least and greatest fixed

points), and hence it follows from the famous result of Immerman [17] and Vardi [27] that inclusion logic

captures polynomial time in finite ordered models.

Theorem 6 ([10]). Every inclusion logic sentence is equivalent to some positive greatest fixed point logic

sentence, and vice versa.

Theorem 7 ([10]). A class C of finite ordered models is in P iff it can be defined in FO(⊆).

2.3 Transitive Closure Logic

In Section 6 we will explore connections between inclusion logic and transitive closure logic, and hence

we next give a short introduction to the latter. A 2k-ary relation R is said to be transitive if (a, b) ∈ R
and (b, c) ∈ R imply (a, c) ∈ R for k-tuples a, b, c. The transitive closure of a 2k-ary relationR, written

TC(R), is defined as the intersection of all 2k-ary relations S ⊇ R that are transitive. The transitive

closure of R can be alternatively defined as R∞ =
⋃∞
i=0 Ri for Ri defined recursively as follows:

R0 = R and Ri+1 = R ◦ Ri for i > 0; here A ◦ B denotes the composition of two relations A and B.

Note that (a, b) ∈ Ri iff there is an R-path of length i+ 1 from a to b.
An assignment s, a model A, and a formula ψ(x, y, z), where x and y are k-ary, give rise to a 2k-ary

relation defined as follows:

Rψ,A,s = {ab ∈M2k | A |= ψ(a, b, s(z))}.

We can now define transitive closure logic. Given a term t, a model A, and an assignment s, we write

tA,s for the interpretation of t under A, s, defined in the usual way.

Definition 8 (Transitive Closure Logic). Transitive closure logic (TC) is obtained by extending first-

order logic with transitive closure formulae [TCx,yψ(x, y, z)](t0, t1) where t0 and t1 are k-tuples of

terms, and ψ(x, y, z) is a formula where x and y are k-tuples of variables. The semantics of the transitive

closure formula is defined as follows:

A |=s [TCx,yψ(x, y, z)](t0, t1) iff (t
A,s
0 , t

A,s
1) ∈ TC(Rψ,A,s).

Thus, [TCx,yψ(x, y, z)](t0, t1) is true if and only if there is a ψ-path from t0 to t1. It is well known

that transitive closure logic captures non-deterministic logarithmic space in finite ordered models. In

particular, this can be achieved by using only one application of the TC operator. We use below the

notation min for the least element of the linear order, and min for the tuple (min, . . . ,min). Similarly,

max denotes the tuple (max, . . . ,max), where max is the greatest element.

Theorem 9 ([18, 19]). A class C of finite ordered models is in NL iff it can be defined in TC. Further-

more, every TC-sentence is equivalent in finite ordered models to a sentence of the form

[TCx,yα(x, y)](min,max)

where α is first-order.

4

3 Maximal Subteam Membership

In this section we define the maximal subteam membership problem and discuss some of its basic prop-

erties. We also define a safety game for quantifier-free inclusion logic formulae. This game will be used

later to facilitate some proofs regarding the complexity of the maximal subteam membership problem.

3.1 Introduction

For a model A, a team X , and an inclusion logic formula φ, we define ν(A, X, φ) as the unique subteam

Y ⊆ X such that A |=Y φ, and A 6|=Z φ if Y (Z ⊆ X . Due to the union closure property ν(A, X, φ)
always exists and it can be alternatively defined as the union of all subteams Y ⊆ X such that A |=Y φ.

If φ does not contain any symbols from the underlying vocabulary, then we may write ν(X,φ) instead of

ν(A, X, φ). The maximal subteam membership problem is now given as follows.

Definition 10. Let φ ∈ FO(⊆). Then MSM(φ) is the problem of determining whether s ∈ ν(A, X, φ)
for a given model A, a team X and an assignment s ∈ X .

Grädel proved that for any FO(⊆)-formula φ, there is a formula ψ of positive greatest fixed point

logic such that for any model A and assignment s, A |=s ψ if and only if s is in the maximal team of

A satisfying φ (see Theorem 24 in [12]). An easy adaptation of the proof shows that ν(A, X, φ) is also

definable in positive greatest fixed point logic. Thus, it follows that every maximal subteam membership

problem is polynomial time computable.

Lemma 11. For every formula φ ∈ FO(⊆), MSM(φ) is in P.

In this section we will restrict our attention to maximal subteam problems for quantifier free formulae.

Before proceeding to our findings we need to present some auxiliary concepts and results. The following

lemmata will be useful below.

Lemma 12. Let α, β ∈ FO(⊆), and let X be a team of a model A. Then ν(A, X, α∨β) = ν(A, X, α)∪
ν(A, X, β).

Proof. For “⊆”, note that by definition there are Y, Z ⊆ X such that Y ∪ Z = ν(A, X, α ∨ β), Y |= α
and Z |= β, and hence Y ⊆ ν(A, X, α) andZ ⊆ ν(A, X, β). For “⊇”, note that ν(A, X, α)∪ν(A, X, β)
satisifes α ∨ β so it must be contained by ν(A, X, α ∨ β).

As an easy corollary we obtain the following lemma.

Lemma 13. Let α, β ∈ FO(⊆), and assume that MSM(α) and MSM(β) both belong to a complexity

class C ∈ {L,NL}. Then MSM(α ∨ β) is in C.

The maximal subteam problem for a single inclusion atom x ⊆ y can be naturally represented using

directed graphs. In this representation each assignment forms a vertex, and an assignment s has an

outgoing edge to another assignment s′ if s(x) = s′(y). Over finite teams an assignment then belongs to

the maximal subteam for x ⊆ y if and only if it is connected to a cycle.1

Lemma 14. Let A be a model, X a finite team, x and y two tuples of the same length from dom(X), s
an assignment of X , and α a first-order formula. Let G = (X,E) be a directed graph where (s, s′) ∈ E
iff s(x) = s′(y) and A |={s,s′} α. Then

(a) s ∈ ν(A, X, x ⊆ y ∧ α) ⇐⇒ G contains a path from s to a cycle ,

(b) s ∈ ν(A, X, x ⊆ y ∧ y ⊆ x ∧ α) ⇐⇒ G contains a path from one cycle to another via s

Proof. Assume for the first statement that s ∈ ν(A, X, x ⊆ y ∧ α). Then there is a subteam Y ⊆ X
such that s ∈ Y and A |=Y x ⊆ y ∧ α. Thus for each s′ ∈ Y there exists s′′ ∈ Y such that s′′ = s′(x).
Moreover, A |={s′,s′′} α, whence (s′, s′′) ∈ E. In particular there is a non-ending path in G starting

from s. Since X is finite, this path necessarily ends in a cycle. Conversely, assume G contains a path

from s to a cycle. Then A |=Y x ⊆ y ∧ α where Y consists of all assignments in the path and cycle.

Hence, s ∈ ν(A, X, x ⊆ y ∧ α).
For second statement note that, by the argument above, s ∈ ν(A, X, y ⊆ x ∧ α) if and only if

G′ = (X,E−1) contains a path from s to a cycle. But clearly an E−1-path from s to an E−1-cycle is an

E-path from an E-cycle to s.
1We are grateful to Phokion Kolaitis, who pointed out this fact to the second author in a private discussion 2016.

5

3.2 Safety Game

In this section we present a version of a safety game for the maximal subteam problem of inclusion logic.

Our presentation is also related to the safety games for inclusion logic examined in [12]. We present a

safety game for a quadruple (A, X, s, φ), written safety(A, X, s, φ), where s is an assignment of a team

X , and φ is a quantifier-free formula. The main result of the section shows that the maximal subteam

problem MSM(φ) overX and s can be characterized in terms of this game.

We assume that the reader is familiar with basic terminology on trees. We associate each quantifier-

free φ ∈ FO(⊆) with a labeled rooted tree Tφ such that the root of the tree is labeled by φ and each node

labeled by ψ0 ∨ ψ1 or ψ0 ∧ ψ1 has two children labeled by ψ0 and ψ1. Notice that two different nodes

may have the same label. The safety game for (A, X, s, φ) can now be interpreted as a pebble game

where assignments of a team X form a stack of pebbles of which one at a time is placed on a node of

Tφ. Legal moves of the game then consist of moving the pebble up and down through the tree, removing

the pebble from a leaf, and placing a new pebble on a leaf. The starting position is to have s placed on

the root, and the winning condition for Player I is to arrive at a position where the game terminates. If no

such position is ever reached, Player II wins.

Definition 15 (Safety Game). Let φ ∈ FO(⊆) be quantifier-free, and let s0 be an assignment in a teamX
of a model A. The safety game safety(A, X, s0, φ) has two players I and II, and the game moves consist

of positions (s, n) and (n, s) where s ∈ X and n is a node of Tφ. The game starts with the position

(s0, r), where r is the root, and given a position (s, n), the game proceeds as follows:

(i) If n is labeled by a conjunction, then Player I selects a position (s, n′) where n′ is a child of n.

(ii) If n is labeled by a disjunction, then Player II selects a position (s, n′) where n′ is a child of n.

(iii) If n is labeled by a literal ψ, then the game ends if A 6|=s ψ. Otherwise, Player I selects a position

(s, n′) such that n is a descendant of n′.

(iv) If n is labeled by x ⊆ y, then the game ends if there is no s′ ∈ X such that s(x) = s′(y). Otherwise,

Player I either

• selects a position (s, n′) such that n is a descendant of n′, or

• selects the position (n, s).

Given a position (n, s), the game proceeds as follows:

(v) Player II selects a position (s′, n) such that s(x) = s′(y).

Player I wins if the game ends after a finite number of moves by the players. Otherwise, Player II wins.

A strategy for a Player is a mapping π on positions such that

• π((s, n)) ∈ {(s, n′) | n′ is a child of n}, for a non-leaf n,

• π((s, n)) ∈ {(s, n′) | n is a descendant of n′}, for a leaf n labeled by a literal,

• π((s, n)) ∈ {(s, n′) | n is a descendant of n′} ∪ {(n, s)}, for a leaf n labeled by x ⊆ y.

• π((n, s)) ∈ {(s′, n) | s′ ∈ X, s(x) = s′(y)}, for a leaf n labeled by x ⊆ y.

Player A ∈ {I,II} has a winning strategy for safety(A, X, s0, φ) if there is a strategy πA such that A
wins every game that she plays according to πA. That is, A wins any game where she selects the position

πA(p) on her moves on p.

Note that if φ does not contain any symbols from the underlying vocabulary, the outcome of safety(A, X, s, φ)
is independent of A, and thus we write safety(X, s, φ) instead.

Next we show that the safety game above gives rise to a characterization of the maximal subteam

problem.

Theorem 16. Let φ ∈ FO(⊆) be quantifier-free, and let s be an assignment in a team X of a model A.

Then s ∈ ν(A, X, φ) iff Player II has a winning strategy in safety(A, X, s, φ).

Proof. For the “only-if” direction, we define top-down recursively for each node n ∈ Tφ a teamXn such

that

6

• Xr := ν(A, X, φ) for the root r,

• Xn := ν(A, Xn′ , ψ), for a child n of a node n′ where n is labeled by ψ.

It follows that Xn |= ψ for n with label ψ; Xn = Xn0
= Xn1

for conjunction-labeled n with children

n0, n1; and Xn = Xn0
∪ Xn1

for disjunction-labeled n with children n0, n1. The strategy of Player II

is now the following. If n is labeled by disjunction, then (s, n) is mapped to some (s, ni) where ni is a

child of n such that s ∈ Xni
, and if n is labeled by x ⊆ y, then (n, s) is mapped to some (s′, n) such

that s(x) = s′(y) and s′ ∈ Xn. We leave it to the reader to check that this strategy is well-defined and

winning.

For the “if” direction, assume Player II has a winning strategy π. For a node n of Tφ, we let Xn

be the set of all assignments s ∈ X for which there exists a game where Player II plays according to

her winning strategy and position (s, n) is played at some point of the game. Consider any assignment

s from Xn for a node n labeled by x ⊆ y. This means there is a game where position (s, n) is played,

and thus also a game where (n, s), and furthermore π((n, s)) = (n, s′) is played. Consequently, an

assignment s′ ∈ Xn exists such that s(x) = s′(y). By analogous reasoning we obtain that Xn |= ψ for

all other types of nodes n with label ψ, too. Furthermore, Xn = Xn0
= Xn1

for conjunction-labeled n
with children n0, n1, and Xn = Xn0

∪Xn1
for disjunction-labeled n with children n0, n1. In particular,

Xr |= φ and s ∈ Xr, and hence s ∈ ν(X,φ).

Given that X is finite, it makes sense to consider bounded length restrictions of the safety game. We

let safetyk(A, X, s, φ) denote the version of safety(A, X, s, φ) in which, starting position (s, r) excluded,

positions of the form (s, n), i.e., pairs whose left element is an assignment and right element a node, are

played at most k times. Player I wins safetyk(A, X, s, φ) if the game terminates before such assignment-

node pairs have been played k times. Otherwise, if exactly k plays of such nodes appear, Player II wins.

The next lemma will be useful later.

Lemma 17. Let φ ∈ FO(⊆) be quantifier-free and such that Tφ has k nodes, and let s be an assignment

of a team X that is of size l. Then Player II has a winning strategy for safety(A, X, s, φ) iff she has a

winning strategy for safetyk·l(A, X, s, φ).

Proof. By the end of safetyk·l(A, X, s, φ), positions of the form (s, n), the root position included, have

occurred k · l+ 1 many times, i.e., some position (s, n) has occurred twice. Every time such a repetition

is encountered, we may assume that we continue the game from the first occurrence of (s, n). Since the

strategy of Player II is safe for k · l assignment-node moves, we conclude that safety(A, X, s, φ) never

terminates. Hence, Player II wins.

4 Complexity of Maximal Subteam Membership

Next we examine the computational complexity of maximal subteam membership. First in Section 4.1

we investigate this problem over arbitrary teams, and then in Section 4.1 we restrict attention to inputs

in which the inclusion atoms refer to a key. In Section 4.3 we discuss the implications of our results to

consistent query answering.

4.1 Arbitrary Teams

We give a complete characterization of the maximal subteam problem for arbitrary conjunctions of unary

inclusion atoms. A unary inclusion atom is an atom of the form x ⊆ y where x and y are single variables.

The characterization is given in terms of inclusion graphs.

Definition 18. Let Σ be a set of unary inclusion atoms over variables in V . Then the inclusion graph of

Σ is defined as GΣ = (V,E) such that (x, y) ∈ E iff x 6= y and x ⊆ y appears in Σ.

We will now prove the following theorem.

Theorem 19. Let Σ be a finite set of unary inclusion atoms, and let φ be the conjunction of all atoms in

Σ. Then MSM(φ) is

(a) trivially true if GΣ has no edges,

7

a

0

21 b

7→

x y

• a b
◦ 0 a

1 0
2 0

◦ b 0
2 1

φ =

{

x ⊆ y

x ⊆ y ∧ y ⊆ x

Figure 1: Reduction from REACH to MSM(φ). The black circle marks the input assignment and all the

circles together mark a subteam satisfying φ.

(b) NL-complete if GΣ has an edge (x, y) and no other edges except possibly for its inverse (y, x),

(c) P-complete otherwise.

The first statement above follows from the observation that MSM(φ) is true for all inputs if φ is

a conjunction of trivial inclusion atoms x ⊆ x. The second statement is shown by relating to graph

reachability. Given a directed graph G = (V,E) and two vertices a and b, the problem REACH is to

determine whether G contains a path from a to b. This problem is a well-known complete problem for

NL, and it will also be applied later in Section 4.2 where the complexity of MSM(x ⊆ y ∧ u ⊆ v) over

teams with keys y and v is examined.

Lemma 20. MSM(x ⊆ y) and MSM(x ⊆ y ∧ y ⊆ x) are NL-complete.

Proof. Hardness. We give a logarithmic space many-one reduction from REACH. Let G = (V,E) be a

graph, and let a, b ∈ V . W.l.o.g. we can assume G has no cycles. Define E′ as the extension of E with

an extra edge (b, a). Then b is reachable from a in G if and only if a belongs to a cycle in G′ = (V,E′).
We reduce from (G, a, b) to a team X = {sd,c | (c, d) ∈ E′} where su,v maps (x, y) to (u, v) (see

Fig. 1). By Lemma 14, b is reachable from a if and only if sa,b ∈ ν(X,φ), where φ is either x ⊆ y or

x ⊆ y ∧ y ⊆ x.

Membership. By Lemma 14 MSM(x ⊆ y) and MSM(x ⊆ y ∧ y ⊆ x) reduce to reachability variants

that are clearly in NL.

Next we turn to the third statement of Theorem 19. Recall that membership in P follows directly

from Lemma 11. For P-hardness we reduce from the monotone circuit value problem (see, e.g., [29]).

The proof essentially follows from the following lemma.

Lemma 21. MSM(x ⊆ z ∧ y ⊆ z), MSM(x ⊆ y ∧ y ⊆ z), and MSM(x ⊆ y ∧ x ⊆ z) are P-complete.

Proof. Let φ be either x ⊆ z ∧ y ⊆ z, x ⊆ y ∧ y ⊆ z, or x ⊆ y ∧ x ⊆ z. We give a logarithmic-space

many-one reduction to MSM(φ) from the monotone circuit value problem (MCVP). Given a Boolean

word w ∈ {⊤,⊥}n, and a Boolean circuit C with n inputs, one output, and gates with labels from

{AND,OR}, this problem is to determine whether C outputs ⊤. If C outputs ⊤ on w, we say that it

accepts w. W.l.o.g. we may assume that the in-degree of each AND and OR gate is 2. We annotate each

input node by its corresponding input ⊤ or ⊥, and each gate by some distinct number i ∈ N. Then each

gate has two child nodes iL, iR that are either natural numbers or input values from {⊤,⊥}. Next we

construct a teamX whose values consist of node annotations i,⊤,⊥ and distinct copies ci of AND gates

i. The team X is constructed by the following rules (see Fig. 2):

• add s0 : (x, y, z) 7→ (1,⊤,⊤) where 1 is the output gate,

• for AND gates i, add si,0 : (x, y, z) 7→ (iL, i, ci), si,1 : (x, y, z) 7→ (iR, ci, i), and si : (x, y, z) 7→
(ci,⊤,⊤),

• for OR gates i, add si,L : (x, y, z) 7→ (iL, i, i) and si,R : (x, y, z) 7→ (iR, i, i).

8

We will show that C accepts w iff s0 ∈ ν(X,φ). For the only-if direction we actually show a slightly

stronger claim. That is, we show that s0 ∈ ν(X,φ) is implied even if φ is the conjunction of all unary

inclusion atoms between x, y, z.

Assume first that C accepts w. We show how to build a subteam Y ⊆ X such that it includes s0
and satisfies all unary inclusion atoms between x, y, z. First construct a subcircuit C′ of C recursively

as follows: add the output gate ⊤ to C′; for each added AND gate i, add both child nodes of i; for each

added OR gate i, add a child node of i that is evaluated true under w. In other words, C′ is a set of

paths from the output gate to the input gates that witnesses the assumption that C accepts w. The team

Y will now list the auxiliary values ci and the gates of C′ in each column x, y, z. We construct Y by the

following rules:

• add s0,

• for AND gates i in C′, add si,0, si,1, and si,

• for OR gates i in C′, add si,P iff iP is in C′, for P = L,R.

It follows from the construction that Y satisfies all unary inclusion atoms between x, y, z.

Vice versa, consider the standard semantic game between Player I and Player II on the given circuit

C and input word w. This game starts from the output gate 1, and at each AND (OR, resp.) gate i Player

I (Player II, resp.) selects the next node from its two child nodes iL and iR. Player II wins iff the game

ends at an input node that is true. By the assumption that s0 ∈ ν(X,φ) we find a team Y that contains s0
and satisfies φ. Note that Y cannot contain any assignment that maps x to ⊥. For showing that C accepts

w it thus suffices to show that Player II has a strategy which imposes the following restriction: for each

visited node annotated by i, we have s(x) = i for some s ∈ Y . At start this holds by the assumption

that s0 ∈ Y . Assume that i is any gate with s ∈ Y such that s(x) = i. If φ is x ⊆ z ∧ y ⊆ z, we

have two cases. If i is an OR gate then we find s′ from Y with s′(y) = s′(z) = i. Then the strategy of

Player II is to select the gate s′(x) as her next step. If i is an AND gate, an application of x ⊆ z gives s′

from Y with s′(z) = i. Then s′(y) = ci, which means that further application of y ⊆ z yields s′′ from

Y with s′′(z) = ci and hence s′′(y) = i. Now {s′(x), s′′(x)} = {iL, iR}, and thus the claim holds for

either selection by Player I. The induction step is analogous for the cases where φ is x ⊆ y ∧ y ⊆ z or

x ⊆ y ∧ x ⊆ z. This concludes the proof.

∧

1

∨

2

⊤ ∧

∨

3

∧

4

⊥ ∨

6

∧

5

∨

⊥ ⊤

⊤

7→

x y z

• 1 ⊤ ⊤
◦ 2 1 c1
◦ 3 c1 1
◦ ⊤ 2 2

2 2 2
4 3 3

◦ 5 3 3
⊥ 4 c4
6 c4 4

◦ 6 5 c5
◦ ⊤ c5 5

⊥ 6 6
◦ ⊤ 6 6
◦ c1 ⊤ ⊤

c4 ⊤ ⊤
◦ c5 ⊤ ⊤

φ =

x ⊆ z ∧ y ⊆ z

x ⊆ y ∧ y ⊆ z

x ⊆ y ∧ x ⊆ z

Figure 2: MCVP and MSM(φ)

9

G1 G2 G3 G4

Figure 3: Subgraphs of GΣ

The third statement of Theorem 19 now follows. Any GΣ not covered by the previous lemma has a

subgraph of a form depicted in Fig. 3. Of these G1–G3 were considered above, and the reduction for

G4 is essentially identical to that for G1; take a new variable for the new target node and insert values

identical to those of z. Additionally, for each node in GΣ but not in Gi take a copy of any column in

the team. That this suffices follows from the arguments of the previous lemmata; in particular, from the

fact that any true MCVP instance generates a subteam that satisfies all possible unary inclusion atoms

between variables.

Considering disjunctions, observe that MSM over a disjunction of unary inclusion atoms is either

trivially true or NL-complete. For membership in NL, see Lemma 13. For NL-hardness one may use

the reduction of Lemma 20 for MSM(x ⊆ y ∨ y ⊆ x). Provided that another non-trivial inclusion atom

u ⊆ v appears in the disjunction, then {u, v} 6⊆ {x, y} and the values for u, v can be defined in such a

way that the maximal subteam for u ⊆ v is empty.

Corollary 22. Let Σ be a finite set of unary inclusion atoms, and let φ be the disjunction of all atoms in

Σ. Then MSM(φ) is

(a) trivially true if Σ contains a trivial inclusion atom,

(b) NL-complete otherwise.

Note that the results of this section generalize to inclusion atoms of higher arity, obtained by replacing

variables x with tuples x such that all pairs of distinct tuples have no common variables. More complex

cases arise if the tuples are allowed to overlap.

4.2 Teams with a Key

In relational database management inclusion atoms usually appear in form of a foreign key that has

the purpose of securing referential integrity upon databases. In this section we investigate the maximal

subteam problems in a framework where inclusion atoms correspond to uni-relational foreign keys. That

is, we consider inclusion atoms x ⊆ y over teams on which the variable y is a key. Given this additional

restriction, we observe that the maximal subteam and model checking problems both collapse to lower

computational levels. The complexity of the maximal subteam problem for x ⊆ y collapses from NL to

L, and for x ⊆ z ∧ y ⊆ z it collapses from P to NL.

Definition 23. Let X be a team over a set of variables V , and let U be a subset of V . Then U is a key on

X if for all s, s′ ∈ X : s(U) = s′(U) =⇒ s = s′.

First we show that maximal subteam for single inclusion atom is L-complete if the inclusion atom

refers to a key.

Theorem 24. MSM(x ⊆ y) over teams for which y is a key is L-complete.

Proof. Hardness. We show a first-order many-one reduction from a deterministic variant of the reach-

ability problem. Given a directed graph G and its two vertices a and b, this problem is to determine

whether there is a deterministic path from a to b. A deterministic path is such that for every edge (i, j)
in the path there is no other edge in G going out of i. Similarly to above, and with respect to first-order

reductions, w.l.o.g. we may assume that the out-degrees of a and b are 1 and G has no cycles except for

a self-loop on b. An instance of deterministic rechability is reduced to a team X over {x, y} by applying

the formation rule:

10

a

0 1

32 b

7→

x y z

0 1 a
2 b 0
3 3 1
2 2 2
3 3 3

Figure 4: Reachability and MSM(x ⊆ z ∧ y ⊆ z) over teams with a key z

• For each edge (u, v) that is the only edge going out from u, add the assignment (y, x) 7→ (u, v) to

X .

For instance, the instance illustrated in Fig. 1 reduces to the team that consists of the three assign-

ments (y, x) 7→ {(a, 0), (1, 2), (b, b)}. We show that the input instance admits positive answer iff

m ∈ ν(X, x ⊆ y), where m is the assignment that corresponds to the only edge going out from s.
By Lemma 14, s ∈ ν(X, x ⊆ y) iff s is connected to a cycle in the graph GX = (X,E), where

(s0, s1) ∈ E iff s0(y) = s1(x). Since the only cycle in G is the self-loop on b, accordingly the only

cycle in GX is the self-loop on the mapping that corresponds to the self-loop on b. Furthermore, the

team formation rule forX implies that any path inGX corresponds to a deterministic path inG, and vice

versa. Consequently, s ∈ ν(X, x ⊆ y) iff there is a deterministic path from a to b.
Lastly, we note that the reduction to X and s is clearly first-order, and that y is a key on X . This

concludes the hardness proof.

Membership. Since y is a key on X , all paths in the graph G given in Lemma 14 are deterministic. The

existence of a path from a given assignment of X to a cycle in G is then confirmed if the unique path

outgoing this assignment is of length at least |X |. This process can be clearly executed in L.

Next we consider maximal subteam membership for a conjunction of two inclusion atoms which both

refer to a key on the input team. Again, we utilize reachability for showing NL-hardness. In contrast

to our earlier reduction from the same problem, we now have both an extra restriction and an extra

allowance: teams must be of the sort where inclusion atoms point to some key, however instead of one

inclusion atom now two inclusion atoms are available.

Theorem 25. MSM(x ⊆ z ∧ y ⊆ z) over teams for which z is a key is NL-complete.

Proof. Hardness. As above, it suffices to give a logarithmic-space many-one reduction from reachability.

Recall that reachability is the problem to decide, given a directed graph G with two nodes a and b,
whether there is a path from a to b. W.l.o.g. we restrict attention to instances in which all vertices have

out-degree at most two. Since NL is closed under complement, we may reduce to the complement of

MSM(x ⊆ z ∧ y ⊆ z) over teams with a key z. W.l.o.g. we may assume that b has out-degree 0 and

that all the other nodes have out-degree at least 1. The team X over {x, y, z} is now constructed by the

following formation rule (see also Fig. 4). For all vertices i 6= b:

• if i has single outgoing edge (i, j), add the assignment si : (x, y, z) 7→ (j, j, i) to X ;

• if i has two outgoing edges (i, j) and (i, k), add the assignment si : (x, y, z) 7→ (j, k, i) to X .

Observe that z is a key on X . By Theorem 16 it suffices to show that Player II has no winning strategy

in safety(X, sa, x ⊆ z ∧ y ⊆ z) iff a is connected to b.
First note that since z is a key, Player II has a pre-determined strategy: either there is no assignment to

choose or else Player II has to always pick the only possible assignment which keeps the game running.

For instance, given an assignment-node position (s, n) where n is labeled by x ⊆ z, Player II can only

counter by selecting the position (n, s′) where s′ is the only assignment of X ′ such that s′(y) = s(x),
provided that such an assignment exists. Hence, a is connected to b iff Player I wins some instance of

safety(X, sa, x ⊆ z ∧ y ⊆ z). Furthermore, Player I wins iff the game reaches a position (s, n) where s
maps either x or u to b. A sequence of positions that is winning for Player I now generates a path from a
to b, formed by following the edges which correspond to Player I’s selections between x ⊆ z and y ⊆ z.

11

Conversely, a winning sequence for Player I can be found by moving to x ⊆ z (y ⊆ z, resp.) whenever

the values of (z, x) ((z, y), resp.) form the next edge on the path.

Membership. Since NL is closed under complement, it suffices to describe a NL procedure for deciding

the complement problem for MSM(x ⊆ z∧y ⊆ z) over teams with a key z. By Theorem 16 and Lemma

17, s /∈ ν(X, x ⊆ z ∧ y ⊆ z) iff Player II has no winning strategy in safety3·l(X, s, x ⊆ z ∧ y ⊆ z),
where l = |X |. Recall that z is a key on the given team X , and hence the strategy of Player II is pre-

determined. Hence, it suffices to guess the choices of Player I and accept iff the game terminates before

3 · l assignment-element pairs have been played in the game.

Adapting the reasoning behind Corollary 22 we obtain a corollary for disjunction, too.

Corollary 26. MSM(x ⊆ z ∨ y ⊆ z) over teams for which z is a key, is L-complete.

4.3 Consistent Query Answering

The maximal subteam problem has a close connection to database repairing which provides a framework

for managing inconsistency in databases. An inconsistent database is a database that does not satisfy all

the integrity constraints that it is supposed to satisfy. Inconsistency may arise, e.g., from data integration

where the task is to bring together data from different sources. Often in practise inconsistency is handled

through data cleaning which is the process of identifying and correcting inaccurate data records from

databases. An inherent limitation of this approach is its inability to avoid arbitrary choices as consistency

can usually be restored in a number of ways. The approach of database repair is to tolerate inconsistencies

in databases and investigate reliable answers to queries.

A database is an interpretation of a relational vocabulary σ = {R1, . . . , Rn} in which each Ri is

associated with an arity #Ri. Given a (finite) set Σ of integrity constraints, a database D is called

inconsistent (w.r.t. to Σ) if D 6|= Σ, and consistent otherwise. Given a partial order ≤ on databases over

a fixed σ, and a set Σ of integrity constraints, a repair of an inconsistent database I is a database D such

that it is consistent and all D′ < D are inconsistent. The database D is called a ⊕-repair if the partial

order is defined in terms of symmetric difference: D ≤ D′ ifD⊕I ⊆ D′⊕I . If additionallyD is a subset

(superset, resp.) of I , then D is called a subset-repair (superset-repair, resp.). An answer to a first-order

query q = ψ(x1, . . . , xn) on a database D is any (a1, . . . , an) such that D satisfies ψ(a1, . . . , an), and

a consistent answer on an inconsistent database I is any value (a1, . . . , an) such that each repair D of

I satisfies ψ(a1, . . . , an). Let ∗ ∈ {⊕, subset, superset} and let Σ be a set of integrity constraints. The

∗-repair checking problem w.r.t. Σ (∗-RC(Σ)) is to determine, given two databases D and I , whether D
is a ∗-repair of I . Let also q be a Boolean query. The ∗-consistent query answering problem w.r.t. Σ
and q (∗-CQA(Σ, q)) is to determine, given an inconsistent database I , whether q is true in every ∗-repair

of I . Inclusion dependencies are a special case of so-called LAV tgds that are first-order formulae of

the form ∀x(ψ(x → ∃yθ(x, y)) where ψ is a single relational atom and θ is a conjunction of relational

atoms. For LAV tgds these problems are solvable in polynomial time.

Theorem 27 ([24]). Let ∗ ∈ {⊕, subset, superset}, let Σ be a set of LAV tgds, and let q be a conjunctive

query. The ∗-repair checking problem w.r.t. Σ and the ∗-consistent query answering problem w.r.t. Σ and

q are both solvable in polynomial time.

Furthermore, it is known that weakly acyclic collections of LAV tgds enjoy subset-repair checking

in logarithmic space [1]. Nevertheless, it seems not much attention in general has been devoted to com-

plexity thresholds within polynomial time. Our results can thus be seen as steps toward this direction as

the trichotomy in Theorem 19 extends to repair checking and consistent query answering. Let IC be a

collection of finite sets of integrity constraints and let C be a complexity class. We say that the consistent

query answering problem is C-complete for IC if for all Σ ∈ IC, ∗-CQA(Σ, q) is in C for all Boolean

conjunctive queries q and C-complete for some such q.

Corollary 28. Let ∗ ∈ {⊕, subset}. The subset-repair checking problem and the ∗-consistent query

answering problem for finite sets Σ of unary unirelational inclusion dependencies are

(a) first-order definable if GΣ has no edges,

(b) NL-complete if GΣ has an edge (x, y) and no other edges except possibly for its inverse (y, x),

(c) P-complete otherwise.

12

Since NL and P are closed under complement, we may consider the complement of subset-repair

checking. For the upper bounds note that D is a repair of I if and only if D satisfies Σ (a first-order

property) and no tuple in I \D is in the unique subset repair of I; for the lower bounds note that in our

reductions s ∈ ν(X,φ) if and only if ν(X,φ) 6= ∅.2 Considering consistent query answering, for the

upper bounds we may apply the maximal subteam membership problem and for lower bounds we may

simply use atomic queries. That we may include also ⊕-repairs follows from the fact that each set of

inclusion dependencies Σ has a unique subset repair which is also the unique universal subset repair and

the unique universal ⊕-repair [24]. A database U is a universal ∗-repair of an inconsistent database I if

for each conjunctive query q, a tuple is a consistent answer to q on I if and only if it is an answer to q
on U and contains only values that appear in I . That is, it only suffices to consult the universal repair for

consistent answers.

5 Complexity of Model Checking

In this section we discuss the model checking problem for quantifier-free inclusion logic formulae. It

turns out that the results of the previous section are now easily adaptable. As above, we herein restrict

attention to quantifier-free formulae.

Definition 29. Let φ ∈ FO(⊆). Then MC(φ) is the problem of determining whether A |=X φ, given a

model A and a team X .

Hardness results for model checking can now be obtained by relating to maximal subteam.

Lemma 30. Let α, β ∈ FO(⊆) be such that

(i) Fr(α) ∩ Fr(β) = ∅,

(ii) MSM(α) is C-hard for C ∈ {L,NL,P}, and

(iii) There is a team Y of dom(A) with domain Fr(β) such that ∅ 6= ν(A, Y, β) (Y .

Then MC(α ∨ β) is C-hard.

Proof. Let (A, X, s) be an instance of MSM(α), that is, A is a model, X a team over Fr(α) and s ∈ X .

It suffices to define a first-order reduction from (A, X, s) to a team X ′ over Fr(α) ∪ Fr(β) such that

s ∈ ν(A, X, α) iff A |=X′ α ∨ β. Let Z0 := ν(A, Y, β) and Z1 := Y \ Z0. Note that by condition (i),

the union of any t ∈ X and t′ ∈ Y is an assignment over Fr(α) ∪ Fr(β). We define

X ′ := {s ∪ t′ | t′ ∈ Z1} ∪ {t ∪ t′ | t ∈ X \ {s}, t′ ∈ Z0}.

Since Z0 and Z1 are fixed, X ′ is first-order definable from (A, X, s). By Locality (Proposition 4), we

have ν(A, X ′, α) ↾ Fr(α) = ν(A, X ′ ↾ Fr(α), α) = ν(A, X, α), and similarly ν(A, X ′, β) ↾ Fr(β) =
ν(A, Y, β) = Z0. Hence, it follows from Lemma 12 that A |=X′ α ∨ β iff for all t ∪ t′ ∈ X ′ : t ∈
ν(A, X, α) ∨ t′ ∈ ν(A, Y, β) iff s ∈ ν(A, X, α).

Note that A |=X φ if and only if ν(A, X, φ) = X over inclusion logic formulae φ. Hence, model

checking can be reduced to maximal subteam membership tests over each individual assignment of a

team. In particular, this means that model checking is at most as hard as maximal subteam membership;

in some cases, as illustrated in Proposition 32(??), it is strictly less hard.

Lemma 31. Let α ∈ FO(⊆) be such that MSM(α) is in C ∈ {L,NL}. Then MC(α) is in C.

By Lemmata 13, 30, 31, Theorem 7, and the results of the previous section, the computational com-

plexity of model checking for various quantifier-free inclusion formulae directly follows. The following

proposition illustrates some examples. Note that the semantics of the inclusion atom is clearly first-order

expressible, and the same applies to any conjunction of inclusion atoms.

Proposition 32.

(a) MC(x ⊆ y) and MC(x ⊆ y ∧ u ⊆ v) are first-order definable.

(b) MC(x ⊆ y ∨ u ⊆ v) and MC(x ⊆ y ∨ u = v) are NL-complete.

(c) MC((x ⊆ z ∧ y ⊆ z) ∨ u ⊆ v) and MC((x ⊆ z ∧ y ⊆ z) ∨ u = v) are P-complete.

2In point of fact, the reduction of Lemma 21 requires slight modification: remove assignments (ci,⊤,⊤) and add assignments

(ci, j, k) for each assignment (i, j, k) ∈ X where i is an AND gate.

13

6 An NL Fragment of Inclusion Logic

Our aim in this section is to find a natural fragment of inclusion logic that captures the complexity

class NL over ordered finite models. Our approach is to consider preservation of NL-computability

under the standard logical operators of FO(⊆). By Lemma 13, we already know that NL-computability

of maximal subteam membership is preserved under disjunctions. However, Theorem 19 shows that

conjunction can increase the complexity of the maximal subteam membership problem from NL to

P-complete, and by Proposition 32, combining a conjunction with a disjunction leads to P-complete

model-checking problems. Thus conjunction cannot be used freely in the fragment we aim for.

The following proposition shows that a single universal quantifier can also increase complexity from

NL to P-complete. In the proof we show P-hardness by reduction from the P-complete problem

GAME. An input to GAME is a DAG (directed acyclic graph) G = (V,E) together with a node a ∈ V .

Given such input (V,E, a) we consider the following game Gm(V,E, a) between two players, I and II.

During the game the players move a pebble along the edges of G. In the initial position the pebble is on

the node a0 = a. If after 2i moves the pebble is on a node a2i, then player I chooses a node a2i+1 such

that (a2i, a2i+1) ∈ E, and player II responds by choosing a node a2i+2 such that (a2i+1, a2i+2) ∈ E.

The first player unable to move loses the game, and the other player wins it. SinceG is a DAG, every play

of the game is finite. In particular, the game is determined, i.e., one of the players has a winning strategy.

Now we define (V,E, a) to be a positive instance of GAME if and only if player II has a winning strategy

in Gm(V,E, a).
Note that GAME can be seen as a variation of the monotone circuit value problem MCVP. Indeed,

it is straighforward to define for a given monotone circuit C and input word w an input (V,E, a) for

GAME such that Gm(V,E, a) simulates the evaluation game of C on w. Thus MCVP is logarithmic-

space reducible to GAME. Conversely, it is also easy to give a logarithmic-space reduction from GAME

to MCVP.

Proposition 33. Let φ be the formula ∀z(¬Eyz ∨ z ⊆ x). Then MSM(φ) is P-complete. Consequently,

MC(φ ∨ Euv) is also P-complete.

Proof. We give now a reduction from GAME to MSM(φ). Let (V,E, a) be an input to GAME. Without

loss of generality we assume that there is b ∈ V such that (b, a) ∈ E. Now we simply let A = (V,E),
X = {s : {x, y} → V | (s(x), s(y)) ∈ E} and s0 = {(x, b), (y, a)}.

We will use below the notation I = {c ∈ V | ∀d ∈ V : (c, d) 6∈ E)}. Thus, I consists of those

elements c ∈ V for which player II wins Gm(V,E, c) immediately because I cannot move. Furthermore,

we denote by W the set of all elements c ∈ V such that player II has a winning strategy in Gm(V,E, c).
Let Y be the subteam of X consisting of those assignments s ∈ X for which s(y) ∈ W . We will

show that Y = ν(A, X, φ). Hence in particular s0 ∈ ν(A, X, φ) if and only if (V,E, a) is a positive

instance of GAME, as desired.

To prove that Y ⊆ ν(A, X, φ) it suffices to show that A |=Y φ. Thus let Z = Y [A/z], Z ′ = {s ∈
Z | (s(y), s(z)) 6∈ E} and Z ′′ = (Z \ Z ′) ∪ Z0, where Z0 = {s ∈ Z | s(z) = s(x) and s(y) ∈ I}.

Then clearly A |=Z′ ¬Eyz. To show that A |=Z′′ z ⊆ x assume that s ∈ Z ′′. If s ∈ Z \ Z ′, then

(s(y), s(z)) ∈ E, and since s ↾ {x, y} ∈ Y , player II has an answer c to the move s(z) of player I in

Gm(V,E, s(y)) such that c ∈ W . Thus, s∗ = {(x, s(z)), (y, c)} ∈ Y . If c ∈ I , then s∗(s∗(x)/z) ∈ Z0.

Otherwise there is some d ∈ V such that (c, d) ∈ E, whence s∗(d/z) ∈ Z \ Z ′. In both cases, there

is s′ ∈ Z ′′ such that s′(x) = s(z). Assume then that s ∈ Z0. Then by the definition of Z0 we have

s(x) = s(z). Thus we see that for every s ∈ Z ′′ there is s′ ∈ Z ′′ such that s′(x) = s(z). Now we can

conclude that A |=Z ¬Eyz ∨ z ⊆ x, and hence A |=Y φ.

To prove that ν(A, X, φ) ⊆ Y it suffices to show that if A |=Y ′ φ for a team Y ′ ⊆ X , then s(y) ∈ W
for every s ∈ Y ′. Thus assume that Y ′ satisfies φ and s ∈ Y ′. We describe a winning strategy for

player II in Gm(V,E, s(y)). If s(y) ∈ I she has a trivial winning strategy. Otherwise player I is

able to move; let c ∈ V be his first move. Since A |=Y ′ φ, there are Z ′, Z ′′ ⊆ Y ′[A/z] such that

Y ′[A/z] = Z ′∪Z ′′, A |=Z′ ¬Eyz and A |=Z′′ z ⊆ x. Consider the assignment s′ = s(c/z) ∈ Y ′[A/z].
Since (s′(y), s′(z)) = (s(y), c) ∈ E, it must be the case that s′ ∈ Z ′′. Thus there is s′′ ∈ Z ′′ such that

s′′(x) = s′(z) = c. Then the assignment s∗ = s′′ ↾ {x, y} is in Y ′ ⊆ X , whence (c, d) ∈ E, where

d = s∗(y). Let d be the answer of player II for the move c of player I. We observe now that using this

strategy player II can find a legal answer from the set {s∗(y) | s∗ ∈ Y ′} to any move of player I, as long

as player I is able to move. Since the game is determined, this is indeed a winning strategy.

14

0 a 1

2 3

b 4

7→

x y z

• 0 a 1, 2
a 1 2, 3
a 2 b
1 2 b

◦ 1 3 2, 4
◦ 2 b 2

3 2 b
3 4 2, b
4 2 b

◦ 4 b 4

Figure 5: GAME and MSM(∀z(¬Eyz ∨ z ⊆ x))

Using Lemma 30, we see that MC(∀z(¬Eyz ∨ z ⊆ x) ∨ β) is P-hard for any non-trivial formula β
such that x, y 6∈ Fr(β), in particular for β = Euv.

The example above shows that, similarly as conjunction, universal quantification cannot be freely

used if the goal is to construct a fragment of inclusion logic that captures NL. On the positive side, we

prove next that existential quantification preserves NL-computability. Furthermore, we show that the

same holds for conjunction, provided that one of the conjuncts is in FO.

Lemma 34. Let φ ∈ FO(⊆), ψ ∈ FO, and let X be a team of a model A. Then

(a) ν(A, X, ∃xφ) = {s ∈ X | s(a/x) ∈ X ′ for some a ∈ A}, where X ′ = ν(A, X [A/x], φ),
(b) ν(A, X, φ ∧ ψ) = ν(A, X ′, φ), where X ′ = ν(A, X, ψ).

Proof. (a) Let X ′ = ν(A, X [A/x], φ) and X ′′ = {s ∈ X | s(a/x) ∈ X ′ for some a ∈ A}. Assume

that Y ⊆ X is a team such that A |=Y ∃xφ. Then there is a function F : X → P(A) \ {∅} such that

A |=Y [F/x] φ, and since clearly Y [F/x] ⊆ X [A/x], we have Y [F/x] ⊆ X ′. Thus for every s ∈ Y there

is a ∈ A such that s(a/x) ∈ X ′, and hence we see that Y ⊆ X ′′. In particular ν(A, X, ∃xφ) ⊆ X ′′.

To prove the converse inclusion it suffices to show that A |=X′′ ∃xφ. Let G : X ′′ → P(A) \ {∅} be

the function defined by G(s) = {a ∈ A | s(a/x) ∈ X ′}. By the definition of X ′′, this function is

well-defined. It is now easy to see that X ′′[G/x] = X ′, whence A |=X′′[G/x] φ, as desired.

(b) Let X ′ = ν(A, X, ψ) and X ′′ = ν(A, X ′, ψ). Assume first that Y ⊆ X is a team such that

A |=Y φ ∧ ψ. Then A |=Y ψ, whence Y ⊆ X ′, and furthermore Y ⊆ X ′′, since A |=Y φ. In particular,

ν(A, X, φ ∧ ψ) ⊆ X ′′. On the other hand, by definition A |=X′′ φ. Similarly A |=X′ ψ, whence by

downward closure of FO (Corollary 3), A |=X′′ ψ. Thus we see that A |=X′′ φ ∧ ψ, which implies that

X ′′ ⊆ ν(A, X, φ ∧ ψ).

As a straightforward corollary to this lemma we obtain the following complexity preservation result.

Proposition 35. Let φ ∈ FO(⊆), ψ ∈ FO, and assume that MSM(φ) is in a complexity class C ∈
{L,NL}. Then

(a) MSM(∃xφ) is in C, and

(b) MSM(φ ∧ ψ) is in C.

Proof. (a) By Lemma 34(a), to check whether a given assignment s is in ν(A, X, ∃xφ) it suffices to check

whether s(a/x) is in ν(A, X [A/x], φ) for some a ∈ A. Clearly this task can be done in C assuming that

MSM(φ) is in C.

(b) By Lemma 34(b), it suffices to show that the problem whether an assignment s is in ν(A, X ′, φ),
where X ′ = ν(A, X, ψ), can be solved in C with respect to the input (s,A, X). Since ψ ∈ FO, the team

X ′ can be computed in C, whence the claim follows from the assumption that MSM(φ) is in C.

Summarising Lemma 13 and Proposition 35, NL-computability of maximal subteam membership

is preserved by disjunction, conjunction with first-order formulas, and existential quantification. Since

maximal subteam problem is in NL for all first-order formulas and, by Lemma 20, for all inclusion

atoms, we define our fragment FO(⊆)w of inclusion logic by the following grammar:

φ ::= α | x ⊆ y | φ ∨ φ | φ ∧ α | ∃xφ,

15

where α ∈ FO.

Theorem 36. MC(φ) is in NL for every φ ∈ FO(⊆)w.

Proof. By an easy induction we see that MSM(φ) is in NL for every φ ∈ FO(⊆)w. The claim follows

now from Lemma 31.

Vice versa, to show that each NL property of ordered models can be expressed in FO(⊆)w, it suffices

to show that TC translates to FO(⊆)w over ordered models.

Theorem 37. Over finite ordered models, TC ≤ FO(⊆)w.

Proof. By Theorem 9 we may assume without loss of generality that any TC sentence φ is of the form

[TCx,yα(x, y)](min,max) where x and y are n-ary sequences of variables. We define an equivalent

FO(⊆)w sentence φ′ as follows:

φ′ := ∃xytxty(ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4) (1)

where

• ψ1 := yty ⊆ xtx,

• ψ2 := (tx < max ∧ tx < ty ∧ α(x, y)) ∨ (tx = max ∧ ty = min),

• ψ3 := ¬tx = min ∨ x = min, and

• ψ4 := ¬tx = max ∨ x = max.

For two tuples of variables x and y of the same length, we write x < y as a shorthand for the formula

expressing that x is less than y in the induced lexicographic ordering, and x = y for the conjunction

expressing that x and y are pointwise identical. Observe that in (1) the tuple tx can be thought of as a

counter which indicates an upper bound for the α-path distance of x from min.

Assuming A |= φ′, we find a non-empty team X such that A |=X ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4. Now,

A |=X ψ1 ∧ ψ2 entails that there is an assignment s ∈ X mapping tx to min, and A |=X ψ3 implies

that s maps x to min, too. Then A |=X ψ1 ∧ ψ2 entails that there is an α-path from min to s′(x) for

some s′ ∈ X with s′(tx) = max. Lastly, by A |=X ψ4 it follows that s′(x) = max which shows that

[TCx,yα(x, y)](min,max).
Assume then that [TCx,yα(x, y)](min,max), that is, there is an α-path v1, . . . , vk where v1 = min

and vk = max. We may assume that there are no cycles in the path. Let ai denote the ith ele-

ment in the lexicographic ordering of An. We let X = {s1, . . . , sk} be such that (x, y, tx, ty) is

mapped to (vi, vi+1, ai, ai+1) by si, for i = 1, . . . , k − 2, to (vk−1, vk, ak−1,max) by sk−1, and to

(vk, v1,max,min) by sk. It is straightforward to verify that A |=X ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 from which it

follows that A |= φ′.

It now follows by the above two theorems and Theorem 9 that FO(⊆)w captures NL.

Theorem 38. A class C of finite ordered models is in NL iff it can be defined in FO(⊆)w.

7 Conclusion

We have studied the complexity of inclusion logic from the vantage point of two computational problems:

the maximal subteam membership and the model checking problems for fixed inclusion logic formulae.

We gave a complete characterization for the former in terms of arbitrary conjunctions/disjunctions of

unary inclusion atoms. In particular, we showed that maximal subteam membership is P-complete for

any conjunction of unary inclusion atoms, provided that the conjunction contains two non-trivial atoms

that are not inverses of each other. Using these results we characterized the complexity of model checking

for several quantifier-free inclusion logic formulae. We also presented a safety game for the maximal

subteam problem and used it to demonstrate that the problem is less complex if the range of inputs is

restricted to teams on which the inclusion atoms reference a key. We leave it for future research to

address the complexity of quantifier-free inclusion logic formulae that involve inclusion atoms of higher

arity and both disjunctions and conjunctions.

16

Assuming the presence of quantifiers we presented a simple universally quantified formula that has P-

complete maximal subteam membership problem. Finally, we defined a fragment of inclusion logic, ob-

tained by restricting the scope of conjunction and universal quantification, that captures non-deterministic

logarithmic space over finite ordered models.

References

[1] Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases:

algorithms and complexity. In Database Theory - ICDT 2009, 12th Interna-

tional Conference, St. Petersburg, Russia, March 23-25, 2009, Proceedings, pages

31–41, 2009. URL: http://doi.acm.org/10.1145/1514894.1514899,

doi:10.1145/1514894.1514899.

[2] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in in-

consistent databases. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, May 31 - June 2, 1999, Philadelphia, Pennsylva-

nia, USA, pages 68–79, 1999. URL: http://doi.acm.org/10.1145/303976.303983,

doi:10.1145/303976.303983.

[3] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity

maintenance using tuple deletions. Inf. Comput., 197(1-2):90–121,

2005. URL: https://doi.org/10.1016/j.ic.2004.04.007,

doi:10.1016/j.ic.2004.04.007.

[4] Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar, and Jouko Väänänen. A logical

approach to context-specific independence. In Logic, Language, Information, and Computation -

23rd International Workshop, WoLLIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings,

pages 165–182, 2016. URL: https://doi.org/10.1007/978-3-662-52921-8_11,

doi:10.1007/978-3-662-52921-8_11.

[5] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Ap-

proximation and dependence via multiteam semantics. Annals of Mathematics and Artifi-

cial Intelligence, Jan 2018. URL: https://doi.org/10.1007/s10472-017-9568-4,

doi:10.1007/s10472-017-9568-4.

[6] Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen. Tractability

frontier of data complexity in team semantics. In Proceedings Sixth International Symposium

on Games, Automata, Logics and Formal Verification, GandALF 2015, Genoa, Italy, 21-22nd

September 2015., pages 73–85, 2015. URL: https://doi.org/10.4204/EPTCS.193.6,

doi:10.4204/EPTCS.193.6.

[7] Johannes Ebbing, Lauri Hella, Arne Meier, Julian-Steffen Müller, Jonni Virtema,

and Heribert Vollmer. Extended modal dependence logic. In Logic, Lan-

guage, Information, and Computation - 20th International Workshop, WoLLIC

2013, Darmstadt, Germany, August 20-23, 2013. Proceedings, pages 126–137,

2013. URL: http://dx.doi.org/10.1007/978-3-642-39992-3_13,

doi:10.1007/978-3-642-39992-3_13.

[8] Johannes Ebbing, Juha Kontinen, Julian-Steffen Müller, and Heribert Vollmer. A frag-

ment of dependence logic capturing polynomial time. Logical Methods in Computer

Science, 10(3), 2014. URL: http://dx.doi.org/10.2168/LMCS-10(3:3)2014,

doi:10.2168/LMCS-10(3:3)2014.

[9] Pietro Galliani. Inclusion and exclusion dependencies in team semantics: On some logics of imper-

fect information. Annals of Pure and Applied Logic, 163(1):68 – 84, 2012.

[10] Pietro Galliani and Lauri Hella. Inclusion Logic and Fixed Point Logic. In Si-

mona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), vol-

ume 23 of Leibniz International Proceedings in Informatics (LIPIcs), pages 281–

17

http://doi.acm.org/10.1145/1514894.1514899
http://dx.doi.org/10.1145/1514894.1514899
http://doi.acm.org/10.1145/303976.303983
http://dx.doi.org/10.1145/303976.303983
https://doi.org/10.1016/j.ic.2004.04.007
http://dx.doi.org/10.1016/j.ic.2004.04.007
https://doi.org/10.1007/978-3-662-52921-8_11
http://dx.doi.org/10.1007/978-3-662-52921-8_11
https://doi.org/10.1007/s10472-017-9568-4
http://dx.doi.org/10.1007/s10472-017-9568-4
https://doi.org/10.4204/EPTCS.193.6
http://dx.doi.org/10.4204/EPTCS.193.6
http://dx.doi.org/10.1007/978-3-642-39992-3_13
http://dx.doi.org/10.1007/978-3-642-39992-3_13
http://dx.doi.org/10.2168/LMCS-10(3:3)2014
http://dx.doi.org/10.2168/LMCS-10(3:3)2014

295, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-

matik. URL: http://drops.dagstuhl.de/opus/volltexte/2013/4203,

doi:http://dx.doi.org/10.4230/LIPIcs.CSL.2013.281.

[11] Erich Grädel. Model-checking games for logics of imperfect infor-

mation. Theoretical Computer Science (to appear), 2012. URL:

http://www.sciencedirect.com/science/article/pii/S0304397512009541,

doi:10.1016/j.tcs.2012.10.033.

[12] Erich Grädel. Games for inclusion logic and fixed-point logic. In

Dependence Logic, Theory and Applications, pages 73–98. 2016.

URL: https://doi.org/10.1007/978-3-319-31803-5_5,

doi:10.1007/978-3-319-31803-5_5.

[13] Miika Hannula and Juha Kontinen. A finite axiomatization of condi-

tional independence and inclusion dependencies. Inf. Comput., 249:121–

137, 2016. URL: https://doi.org/10.1016/j.ic.2016.04.001,

doi:10.1016/j.ic.2016.04.001.

[14] Miika Hannula, Juha Kontinen, and Jonni Virtema. Polyteam semantics. In

Logical Foundations of Computer Science - International Symposium, LFCS

2018, Deerfield Beach, FL, USA, January 8-11, 2018, Proceedings, pages 190–

210, 2018. URL: https://doi.org/10.1007/978-3-319-72056-2_12,

doi:10.1007/978-3-319-72056-2_12.

[15] Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer. Complexity of propo-

sitional logics in team semantic. ACM Trans. Comput. Log., 19(1):2:1–2:14, 2018. URL:

http://doi.acm.org/10.1145/3157054, doi:10.1145/3157054.

[16] Wilfrid Hodges. Compositional Semantics for a Language of Imperfect Information. Journal of the

Interest Group in Pure and Applied Logics, 5 (4):539–563, 1997.

[17] Neil Immerman. Relational queries computable in polynomial time. Information and control,

68(1):86–104, 1986.

[18] Neil Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–778,

1987.

[19] Neil Immerman. Nondeterministic space is closed under complementation. SIAM

J. Comput., 17(5):935–938, 1988. URL: https://doi.org/10.1137/0217058,

doi:10.1137/0217058.

[20] Jarmo Kontinen. Coherence and computational complexity of quantifier-

free dependence logic formulas. Studia Logica, 101(2):267–291,

2013. URL: http://dx.doi.org/10.1007/s11225-013-9481-8,

doi:10.1007/s11225-013-9481-8.

[21] Juha Kontinen, Antti Kuusisto, Peter Lohmann, and Jonni Virtema. Com-

plexity of two-variable dependence logic and if-logic. Inf. Comput., 239:237–

253, 2014. URL: https://doi.org/10.1016/j.ic.2014.08.004,

doi:10.1016/j.ic.2014.08.004.

[22] Paraschos Koutris and Jef Wijsen. Consistent query answering for self-join-free conjunctive

queries under primary key constraints. ACM Trans. Database Syst., 42(2):9:1–9:45, 2017. URL:

http://doi.acm.org/10.1145/3068334, doi:10.1145/3068334.

[23] Eric Pacuit and Fan Yang. Dependence and Independence in Social Choice:

Arrow’s Theorem, pages 235–260. Springer International Publishing, Cham,

2016. URL: https://doi.org/10.1007/978-3-319-31803-5_11,

doi:10.1007/978-3-319-31803-5_11.

18

http://drops.dagstuhl.de/opus/volltexte/2013/4203
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CSL.2013.281
http://www.sciencedirect.com/science/article/pii/S0304397512009541
http://dx.doi.org/10.1016/j.tcs.2012.10.033
https://doi.org/10.1007/978-3-319-31803-5_5
http://dx.doi.org/10.1007/978-3-319-31803-5_5
https://doi.org/10.1016/j.ic.2016.04.001
http://dx.doi.org/10.1016/j.ic.2016.04.001
https://doi.org/10.1007/978-3-319-72056-2_12
http://dx.doi.org/10.1007/978-3-319-72056-2_12
http://doi.acm.org/10.1145/3157054
http://dx.doi.org/10.1145/3157054
https://doi.org/10.1137/0217058
http://dx.doi.org/10.1137/0217058
http://dx.doi.org/10.1007/s11225-013-9481-8
http://dx.doi.org/10.1007/s11225-013-9481-8
https://doi.org/10.1016/j.ic.2014.08.004
http://dx.doi.org/10.1016/j.ic.2014.08.004
http://doi.acm.org/10.1145/3068334
http://dx.doi.org/10.1145/3068334
https://doi.org/10.1007/978-3-319-31803-5_11
http://dx.doi.org/10.1007/978-3-319-31803-5_11

[24] Balder ten Cate, Gaëlle Fontaine, and Phokion G. Kolaitis. On the data

complexity of consistent query answering. Theory Comput. Syst., 57(4):843–

891, 2015. URL: https://doi.org/10.1007/s00224-014-9586-0,

doi:10.1007/s00224-014-9586-0.

[25] Jouko Väänänen. Dependence Logic. Cambridge University Press, 2007.

[26] Jouko Väänänen. Modal Dependence Logic. In Krzysztof R. Apt and Robert van Rooij, editors,

New Perspectives on Games and Interaction. Amsterdam University Press, Amsterdam, 2008.

[27] Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pages 137–146. ACM, 1982.

[28] Jonni Virtema. Complexity of validity for propositional dependence logics. Inf. Com-

put., 253:224–236, 2017. URL: https://doi.org/10.1016/j.ic.2016.07.008,

doi:10.1016/j.ic.2016.07.008.

[29] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Ap-

proach. Texts in Theoretical Computer Science. An EATCS Series. Springer,

1999. URL: https://doi.org/10.1007/978-3-662-03927-4,

doi:10.1007/978-3-662-03927-4.

[30] Fan Yang and Jouko Väänänen. Propositional logics of dependence. Ann. Pure Appl. Logic,

167(7):557–589, 2016. URL: https://doi.org/10.1016/j.apal.2016.03.003,

doi:10.1016/j.apal.2016.03.003.

19

https://doi.org/10.1007/s00224-014-9586-0
http://dx.doi.org/10.1007/s00224-014-9586-0
https://doi.org/10.1016/j.ic.2016.07.008
http://dx.doi.org/10.1016/j.ic.2016.07.008
https://doi.org/10.1007/978-3-662-03927-4
http://dx.doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1016/j.apal.2016.03.003
http://dx.doi.org/10.1016/j.apal.2016.03.003

	1 Introduction
	2 Preliminaries
	2.1 Team Semantics
	2.2 Inclusion Logic
	2.3 Transitive Closure Logic

	3 Maximal Subteam Membership
	3.1 Introduction
	3.2 Safety Game

	4 Complexity of Maximal Subteam Membership
	4.1 Arbitrary Teams
	4.2 Teams with a Key
	4.3 Consistent Query Answering

	5 Complexity of Model Checking
	6 An NL Fragment of Inclusion Logic
	7 Conclusion

