
Wouter Legiest

DESIGN OF A BACK-END FOR A CAMERA
BASED PERSON DETECTION SYSTEM

Faculty of Information Technology and Communication Sciences
Master of Science Thesis

August 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250168409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Wouter Legiest: Design of a back-end for a camera based person detection system
Master of Science Thesis
Tampere University
Master of Electronics and ICT Engineering Technology (KU Leuven)
August 2019

In this thesis, a back-end web server is developed for the CityTrack project. The project uses
modern Deep Learning techniques to provide object and people detection on embedded devices.
By using multiple of these devices, detection nodes, statistical data can be collected about a
certain venue or event. To expand this project, a web application is needed to visualise the data
with the possibility to watch in real time. In addition to the web application, a central database
should be established to provide long-time structured storage for the detection data.

To make well-considered choices, different technologies are discussed and weighed against
each other. For instance, for the communication between the detection nodes and the web appli-
cation, the HTTP-based REST architectural style and SOAP protocol are compared to the MQTT
protocol. Furthermore, the real time capable communication technologies WebSocket, Sever-
Sent Event and HTTP Long Polling is reviewed. The system uses the REST architectural style
due to practical implementation reasons and WebSocket due to the limitations of the other alterna-
tives. The layered architecture is then discussed to arrive at a proposal for a more modern version
of the web architecture. The theoretical background and implementations of all components are
then discussed. The advantages and disadvantages of each implementation are reviewed and a
thoughtful choice was made.

To make a sustained choice, the performance of different WSGI server implementations are
tested. A WSGI server is an interface between a web server and a Python-based framework.
The ApacheBench stress testing tool examines different aspects of the performance. The result
is that the uWSGI server performs the best on both latency and throughput aspect compared to
the other candidates tested.

Also, the performance of the various implementations of ASGI server has been tested analo-
gously. An ASGI interface is a superset of WSGI with additional support for asynchronous com-
munication technologies. Implementations of the ASGI interface are tested on the WSGI func-
tionalities. In this way, it is investigated whether the current implementation of ASGI could replace
the WSGI server. The results show that the current implementations of various ASGI servers
underperform to replace a WSGI server.

Keywords: web application, WSGI server, Deep Learning, web server, containerisation, CityTrack

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

This thesis is a product of my Erasmus exchange between the KU Leuven and the Tam-
pere University and would not have been possible without the support of various people
and institutions. During my time in Tampere, this thesis was established.

First, I would like to thank the KU Leuven, Ghent Technology Campus for allowing me
to study at their university and more specifically my local supervisor Assistant Professor
Tony Wauters.

Secondly, I would like to express my deep gratitude to my first supervisor Associate Pro-
fessor Heikki Huttunen for the confidence that I received as a foreign student and for
giving me the unique opportunity to join the Machine Learning Group during my Eras-
mus. This academic period would never have been possible without him. I also would
like to thank my second supervisor Associate Professor Kari Systä, for the support of the
technical aspect of this thesis.

Finally, I would like to thank the members of the Machine Learning Group for creating
an educational and pleasant work environment. I also would like to acknowledge all my
family and friends who supported me during this period in Finland and the writing of this
thesis.

Tampere, 8th August 2019

Wouter Legiest

iii

CONTENTS

1 Introduction . 1

2 Background of the project . 3

2.1 Goal of this thesis . 3

2.2 The requirements of the server . 4

2.3 Practical realisation . 5
2.3.1 Deep learning . 5
2.3.2 Hardware . 6

2.4 Related work: comparing to existing IoT frameworks 6

3 Background of the general web server . 8

3.1 Fundamentals of a web server . 8
3.1.1 Evolution of web pages . 8
3.1.2 Software stack . 10
3.1.3 Deployment . 10

3.2 Communication protocols . 12
3.2.1 Hypertext Transfer Protocol . 12
3.2.2 Message Queuing Telemetry Transport 14

3.3 Real time websites . 14
3.3.1 HTTP Long Polling . 15
3.3.2 WebSocket . 16
3.3.3 Server-Sent Events . 16

4 Principles of designing a server platform . 17

4.1 Layered architectures . 17

4.2 Modern web server model . 19
4.2.1 Web server . 19
4.2.2 Application server . 20
4.2.3 Database . 21
4.2.4 Caching service . 22
4.2.5 Task queue . 22
4.2.6 Third party services . 23
4.2.7 Cloud services . 23
4.2.8 Content Delivery Network . 24

4.3 Virtualisation . 24

5 Cloud implementation of the server platform . 26

5.1 Used technologies . 26

5.2 The implemented stack . 26
5.2.1 Selection procedure . 27

iv

5.2.2 Overview . 27
5.2.3 Web server . 28
5.2.4 Web framework . 30
5.2.5 Web Server Gateway Interface . 31
5.2.6 Asynchronous Server Gateway Interface 32
5.2.7 Distributed workers . 32
5.2.8 Time series database . 33
5.2.9 Specific library and packages . 33
5.2.10 Overview of the web application . 33

5.3 Implementation details . 34

5.4 Deployment . 35
5.4.1 Containerisation . 35
5.4.2 Container stack . 36
5.4.3 Cloud platform . 37

6 Performance evaluation . 38

6.1 Performance of different WSGI servers . 38
6.1.1 Situation of the research . 38
6.1.2 Test setup . 39
6.1.3 Results . 40

6.2 ASGI as a replacement for WSGI . 43

7 Conclusion & Future . 48

7.1 Development process and choices . 48

7.2 Discussion of the testing results . 48

7.3 Future challenges . 49

References . 51

v

LIST OF FIGURES

2.1 High-level description of the project . 4
2.2 Artificial neural network with three layers . 5

3.1 Providing of web pages, adapted from [86] 9
3.2 Visualisation of cloud services, adapted from [109] 12
3.3 Publish-subscribe-based messaging protocol 14
3.4 Example of the HTTP Polling and HTTP Long Polling technique 16

4.1 2-layer architecture for Web application, by Anastopoulos et al. [5, p. 40] . . 18
4.2 n-layer architecture for Web application, by Anastopoulos et al. [5, p. 42] . . 19
4.3 Modern web server architecture, based on [46] 20
4.4 Example of a star schema . 22
4.5 Advantage of using CDN [111] . 24
4.6 Visualisation using virtual machine and container 25

5.1 Current implementation of the project . 34
5.2 Visualisation of the Docker Compose stack 37

6.1 Latency of multi workers WSGI servers . 40
6.2 Throughput of multi workers WSGI servers 41
6.3 Error Rate of multi workers WSGI servers 41
6.4 CPU Usage of multi workers WSGI servers 42
6.5 Memory Usage of multi workers WSGI servers 42
6.6 Latency of single workers ASGI and WSGI servers 44
6.7 Latency of single workers ASGI and WSGI servers - magnified 44
6.8 Throughput of single workers ASGI and WSGI servers 45
6.9 Error rate of single workers ASGI and WSGI servers 45
6.10 CPU Usage of single workers ASGI and WSGI servers 46
6.11 Memory usage of single workers ASGI and WSGI servers 46

vi

LIST OF TABLES

3.1 Overview of different software stacks . 11
3.2 Different levels of quality of Service . 15

4.1 Extra functionalities of a web server [15] . 20
4.2 Several third party services . 23

5.1 Questions used to choose a package . 27
5.2 Overview of considered implementations . 28
5.3 Extra implemented Python packages . 33
5.4 List of the implemented containers . 36

6.1 Summary of all the tested connections . 39
6.2 Settings of each WSGI server . 40

vii

LIST OF SYMBOLS AND ABBREVIATIONS

ANN Artifical Neural Network

API Application Programming Interface

ASGI Asynchronous Server Gateway Interface

CDN Content Delivery Network

CRUD Create, Read, Update, and Delete

CSS Cascading Style Sheets

DBMS Database Management System

DNS Domain Name System

DRY Don’t repeat yourself

FIFO First-in-first-out

HTML HyperText Markup Language

HTTP(S) Hypertext Transfer Protocol (Secure)

IaaS Infrastructure-as-a-Service

IP Internet Protocol

JSON JavaScript Object Notation

MPM Multi-Processing Module

MQTT Message Queuing Telemetry Transport

MVT Model-Template-View

ORM Object-Relational Mapping

OS Operating System

PaaS Platform-as-a-Service

RDBMS Relational Database Management System

REST Representational State Transfer

RPI Raspberry Pi

RTT Round-Trip Time

Saas Software-as-a-Service

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSE Server-sent events

viii

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

TSDB Time Series Databases

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

WSGI Web Server Gateway Interface

WWW World Wide Web

XML Extensible Markup Language

1

1 INTRODUCTION

The Internet is one of the most important inventions of the past 50 years. This intercon-
nected computer network is used to provide applications of the World Wide Web (WWW),
electronic mail, telephony, and file sharing. It all began in 1965 at the National Physical
Laboratory in England with the NPL Network. This was the first local area computer
network that uses packet switching.

At the same time, the development of the similar Advanced Research Projects Agency
Network (ARPANET) was done in the United States of America [95]. The reason for the
creation of the ARPANET was an economic one, computers were expensive and through
this network, devices could be shared [19]. With the usage of packet switching, different
networks could be linked together to create a network of networks. During a redefinition
of ARPANET, in 1982, the Internet protocol suite (TCP/IP) was standardised. This made
it possible to connect other networks anywhere in the world. The ARPANET itself was
deactivated in 1990. [95]

With the standardisation of the Internet protocol suite, the widespread global Internet as
we know it was born. In essence, the Internet is still nothing more than a network of
networks, making it possible for computers to communicate with other computers and
providing the infrastructure to design the World Wide Web with the first web server in
1994.

On the other hand, during the same period, research on neural networks won a lot of
interest. Back in 1943, Walter Pitts and Warren McCulloch realised the first development
of the artificial neuron, a mathematical model of the biological neurons. They tried to
mimic the thought process of the brain. This was the first step toward the research of the
artificial neural network. [49, 72]

In 2006, the reputation of neural network rose again with Hinton et al. proposing a new
more efficient method to training a deep belief network, a specific neural network [55].
Due to the limited computing resource at the beginning of the 70s and after that the
creating of too high expectations about the field, the popularity dropped again in the
past [76]. These days the computing power of GPUs has increased significantly and by
using GPU for the training of a network, the training time of a network reduces noticeably.
Furthermore, the term Deep Learning was used to indicate that it was possible to train
deeper neural networks than had been possible before. [49]

Today, the World Wide Web and Deep Learning are two of the most favoured topics in

2

computer science. The merging of the two fields is inevitable.

The purpose of this study is to design the first iteration of a back-end server. This server
will provide a stable web application with a database for the project. The project uses low-
cost cameras to track and detect people, the back-end server should then be capable of
receiving, storing and processing the data that is coming from the cameras. To design
this application, existing research was combined and additional research was conducted
on the Web Server Gateway Interface (WSGI), an interface to provide communication
between a web server and a Python-based web framework.

In the second chapter, more explanation is given about the CityTrack project. The require-
ments of the server are declared and the practical realisation of the project is discussed.
Chapter 3 provides a brief overview of the history of web servers and describes the avail-
able protocols for communication and real time capabilities. A modern version of the web
server architecture is proposed in Chapter 4, while Chapter 5 discusses the implemented
stack. In Chapter 6 experiments around the performance of various WSGIs are con-
ducted. This thesis ends with Chapter 7 which proposes a conclusion of all the previous
parts.

3

2 BACKGROUND OF THE PROJECT

CityTrack is one of the research projects at the Faculty of Information Technology and
Communication Sciences of the Tampere University. In this project, the research of the
machine learning (ML) group is used to detect objects and people from a camera view
in an indoor environment. On an embedded device with an attached camera a neural
network is running. The camera images are entered in the network to detect different
objects and persons. The multiple detections are then sent to a collection point. One of
the assets of the project is that the camera footage is never leaving the embedded device,
only the results of the neural network are sent to a collection point.

The goal of the project is to develop a sensor network with an associated server to collect
statistical data about an indoor venue, while the challenge with the hardware is that the
computational resources are limited.

One of the advantages of this project is that in the case of people detection, a person
does not need to interact with any kind of device. As an illustration, to measure the num-
ber of attendees at an event, multiple different pointed lasers could be used to discover
people at the entrance. If someone with a smaller figure walks in front of a larger person,
it is possible that the small person not will be detected. This project uses different angle
cameras directed at the entrance of the event hall. The same person can be recognised
by various cameras and the coordinates of the persons could be gathered. To prevent
double-counting, re-identification is used to deduce it. This algorithm is capable of con-
necting two different person detections to each other. This way the same person can be
detected in multiple cameras and a much more accurate counting can be done. A disad-
vantage of using cameras is that the room must be sufficiently illuminated, the contrast
between the person and the background should be large enough.

Another use case is the discovery of trajectories on conferences. When a camera de-
tects a person it is possible to track that person inside the camera area. Then using
re-identification is possible to build the walked paths. With the complete set of data,
popular parts of the conferences can be recognised.

2.1 Goal of this thesis

This thesis is about the research and design of the build-up of the back-end server for the
CityTrack project. (Fig 2.1 on the following page) The back-end server should provide a

4

modern web application to visualise the data, whether or not in real time. Also, the server
should provide a database for long-time structured storage to calculate easily and fast the
statistical data and a possibility to run a resource-intensive ML-related algorithm on the
server because the computational resources of the embedded devices are rather limited.
The system should only use quick and stable component, this way a reliable back-end
server can be built.

Server

Detection nodeWeb browser

Figure 2.1. High-level description of the project

This thesis focuses more on the development and implementation of the back-end side of
the web application for providing a foundation to the other parts of the project. With back-
end is meant everything with which the visitor does not come into contact. Everything
that the visitor can interact with through the browser also called the front-end, is not part
of the scope of this thesis.

2.2 The requirements of the server

The purpose of this research project is to develop a useful end product which can be
implemented in different areas. This gives the project functional properties that determine
the appearance of the project. To achieve this, a few general goals as listed below.

1. Easy to use website, the user-base could include non-experts

2. No camera images leave the embedded device, to avoid privacy issues, only the
detection data is sent out of the devices.

3. Scalable: The system should be capable of handling 200 detection nodes

4. The data is secured using contemporary standards

Besides these general project needs, the server-side has are also some more non-
functional system specifications. These specifications are used a basis for this thesis.

1. Making use of containerisation, for easy mobility and deployment

2. Making use of Python, the standard programming language inside the ML Group

3. Real time possibilities to view the currently occurring detection

4. Try to use as much open-source software as possible

5. A robust and high-performing system

5

6. Designed to run for a long time, it is possible that the server will run on a server of
the university in the future

7. For this initial setup, make use of the cloud services of the university

2.3 Practical realisation

To realise this project, low-priced detection nodes are used. These nodes include a
computing unit and an attached camera. By keeping the cost of a single node low, it is
possible to install more nodes inside an indoor venue. Hereby, more data from different
points can be gathered, resulting in a more detailed overview of the venue.

The upper limit of this project would be system consisting out of 200 detection nodes.
Every node is possible to process ten frames per second and in one single frame the
neural network could detect up to 50 people or objects. The top culmination point of one
device can be estimated at 10 ·50 = 500 detections per seconds per device. The total web
server should be capable of handling 100 000 detections per second. This requirement
will be taken into account.

2.3.1 Deep learning

Input layer Hidden layer Output layer

Figure 2.2. Artificial neural network with three layers

The detection nodes use deep learning technologies to detect objects and person on the
camera images. Deep learning is based on the usage of artificial neural network (ANN).

6

The structure of an ANN is inspired by the biological neural networks found in animal
brains. This is realised by building a collection of artificial neurons. Each connection can
transmit a signal from one neuron to another, analogous to the synapses of the biological
brain. The artificial neuron can process the incoming signals and send an outgoing single
to all the connected neurons (Fig. 2.2 on the previous page). [49]

In common ANN implementations, the output of each neuron is calculated by some non-
linear function of the sum of its inputs, generating a real number to transfer to the other
neurons. The connections between the neurons are called edges. Each edge typically
has a weight that adjusts as the learning proceeds. By adjusting the weight, the strength
of the signal adapted. A neuron itself can have a threshold, an outgoing signal is only
sent if the aggregate signal is higher than the threshold. Multiple neurons all typically
aggregated into layers. [49]

The ANN learns a specific task through a training process. During this process the net-
work will be shown correct inputs and outputs, hereby learning this mapping by adjusting
the weights. Due to the training-based approached of the ANN, the network can output
erroneous data. For example, a false positive error could occur. In this situation, the
result indicates that a given condition exists, when it does not. Another example is the
occurrence of a false negative error. Here, the results indicate that the condition does not
exist, while it does. [49]

At first, ANN was developed to solve a problem in the same way that the human brain
would. Later, there was more interest to use this technology for specific tasks. This
tasks, such as among others, computer vision, speech recognition, machine translation
and social network filtering can use a neural network. In this project, the SSD algorithm is
used, this is an object detection method that uses deep learning-based approaches [68].

2.3.2 Hardware

Every detection node consists of an embedded device, a camera and a neural compute
stick. As an embedded device the Raspberry Pi (RPI) 3 Model B+ is chosen [91]. This
device has a built-in WiFi chip and a 1.4 GHz 64-bit quad-core processor. The WiFi chip
provides an easier installation and due to the form factor of the board, the detection node
can be as big as a hand. Attached is the Raspberry Pi Camera Module v2 [17]. The
Intel Movidius Neural Compute Stick is used to run the neural network [58]. The stick has
optimised low-power hardware to generate better performance for deep learning tasks.

2.4 Related work: comparing to existing IoT frameworks

In this project, a web application is build using a web framework. An alternative would
be using an IoT framework. This already provides communication interfaces for the em-

7

bedded devices, database handles and visualisation and plotting tools. In the coming
section, the choice to design our own web site is motivated.

Alternatives for designing a complete own web application would be using one of the
IoT frameworks ThingsBoard or FIWARE. In 2016, López-Riquelme et al. proposed a
software architecture based on the FIWARE platform. They have developed a cloud-
based Internet of Things (IoT) platform of Precision Agriculture applications. The paper
both describes the development of the IoT sensor nodes and the FIWARE server. Their
server consists of combining FIWARE components, MySQL Database and Tomcat Server
to provide complete web services. [69] On the other hand, De Paolis et al. have been
using ThingsBoard to build a real time IoT platform. While ThingsBoard handles the
MQTT connection of the sensor nodes, the added Spark Streaming framework provides
a cluster computing platform for data analysis. [23]

FIWARE is a collection of components to build an IoT-enabled server. Each provides a
distinct service, like a central context broker or a connection tool for communication with
a database. [25] Further, ThingsBoard is a complete IoT platform providing an all-in-one
environment. [47]

Both platforms offer tools for displaying an interactive map. The project would also be
applied to an indoor environment, hereby needing the support of indoor mapping tools.
Both platforms do not support this feature. Because of this, full control over the design of
the web page is needed, both frameworks do not provide this. Moreover, the collaboration
between ThingsBoard with and another framework or platform is only supported by the
Professional Edition of ThingsBoard.

In this first iteration of building and designing the server, a regular web framework will
be used to construct the server and website. Both frameworks do support a range of
communication technologies like Message Queuing Telemetry Transport (MQTT), Hyper-
text Transfer Protocol (HTTP) and Constrained Application Protocol (CoAP). Integrating
one of the IoT frameworks would only be beneficial if a different communication technol-
ogy than HTTP was used. In this phase, HTTP is used to communicate with embedded
devices. This is discussed more in Section 5.1 on page 26. [25, 47]

8

3 BACKGROUND OF THE GENERAL WEB SERVER

The first version of the World Wide Web (WWW) was designed by Sir Tim Berners-Lee in
the early 1990s. Then, he was working at the research facility CERN as a software engi-
neer. Berners-Lee wanted to develop a system to share the big amount of data through
hyperlinked plain-text documents. These documents could then contain a hypertext, a
text with references to another document that can be accessed directly. [48]

At the end of 1990, Berners-Lee had built and designed the following components to build
a first version of the Web:

• HyperText Transfer Protocol (HTTP)

• Hypertext Markup Language (HTML)

• Web browser

• Web server, with accompanying HTTP server software

• the Web pages that described the WWW project itself [12]

Later on in 1994, when the Web began to expand, Berners-Lee also constructs the Uni-
form Resource Locator (URL), regularly referred to as a web address. A method to spec-
ify the location of a resource. [48]

Both HTTP, HTML and URL are standards that are used today in contributing the Web.
This chapter discusses the general overview of a web server and associated technolo-
gies.

3.1 Fundamentals of a web server

The WWW has since its origin undergone many advances. Also, the web browser and
web server have been technologically improved. In the following paragraphs, the progress
of the web server is discussed in more detail.

3.1.1 Evolution of web pages

The first web pages were defined in HTML and were built out of plain-text and hypertext
to link specific pages to each other. These web pages were hosted by a web server in

9

CERN. A browser sends a request to a web server to obtain the web pages. The server
handles the request by getting the HTML file from the persistent storage and returning
the requested page to the browser. It will send to every browser the exact same file, this
kind of web pages are static web pages. In Figure 3.1a the basis client-server request-
response sequence is illustrated. [86]

User enters
http:example/comWeb browser

Web server
at example.com

Persistent storage
at example.com

1

Receive request
for html page

2

Fetch html page

3

Return
html page

4

Receive and
display page

5

(a) Static web pages

Enter URLWeb browser

Web server

Scripting interpreter

1

Receive
request

2 3 4 5 6

Fetch
web page

Contains
scripting

Process
scripting

Fetch data
from database

Receive data

Return
web page

Display
web page

Persistent storage

7 8 9

Database

(b) Server-side dynamic web pages

Figure 3.1. Providing of web pages, adapted from [86]

Since the first web pages, a lot of web pages were made more interactive and better
looking. This has been achieved by the addition of Cascading Style Sheets (CSS). CSS
is a style sheet language for specifying the presentation of an HTML file. Furthermore,
JavaScript support was added to the browsers in 1995. JavaScript is a scripting language
specially developed to make web pages more dynamic [92, Ch. 4]. In this way, the client-
side scripting could be provided.

Meanwhile, also in 1995, the first web framework ColdFusion, was born [21]. A web
framework is a software framework that provides a standardised way of building web-
sites and access to various libraries. Server-side scripting was therefore made possible.
Through the framework, it is also possible to link a database, to provide long-term struc-
tured storage.

These developments made it possible to display pages with variable content. There are
two kinds of dynamic web pages, server-side dynamic web page and client-side dynamic
web page.

A server-side dynamic web page is a web page that is constructed by the web frame-
work, whose building the page by server processing server-side scripts.

10

Figure 3.1b on the preceding page illustrates this process. The server retrieves the web
page from his persistent storage and checks what elements should be added. The script-
ing interpreter collects the desired data from the database and builds the requested web
page. The newly formed web page is then sent to the web browser. [86]

A client-side dynamic web page, on the other hand, is a web page using HTML scripting
to modify the web page. JavaScript or other scripting languages determine then the look
of the web page.

The last couple of years, the World Wide Web is changing from static, resource-based
web sites, to dynamic web application. An example of this is the single-page application.
A website where the user dynamically rewrites the current page rather than fetching a
new page [43, p. 497]. Illustrations are Google’s Gmail Web App and the online LaTeX
editor Overleaf. [7, 9]

3.1.2 Software stack

The evolution to collaborate web framework, database and web server led to the definition
of the software stack. A software stack, or solution stack, is a set of segments to achieve
a common goal or a result. For a web application, the solution stack typically consists of
an operating system (OS), web server, database, and scripting language. Examples are
giving in Table 3.1, all with the common goal to host a website. Subtables 3.1a to 3.1c
on the next page are the strictly bounded to one OS and one relational database. While
on the other hand, Subtable 3.1d is purely a JavaScript-driven stack for building dynamic
websites. [44]

3.1.3 Deployment

Besides the selection of the software stack, choosing the place of deployment is also an
important aspect of hosting a website. Here there are two possible options: providing a
server yourself or using a remote location, a cloud platform.

Bare metal server

The first option is the usage of a bare metal server. This refers to purchasing the actual
hardware and connecting it to a business-class internet service provider. In addition to
the maintenance of the physical server, the network infrastructure must also be taken into
account. This solution has the highest degree of freedom. [62]

11

Table 3.1. Overview of different software stacks

(a) The LAMP stack [44, p. 7]

L Linux operating system

A Apache web server

M MySQL or MariaDB database management systems

P Perl, PHP, or Python scripting languages

(b) The WIMP stack [104]

W Windows Server operating system

I Internet Information Services web server

M MySQL or MariaDB database management systems

P Perl, PHP, or Python scripting languages

(c) The LEPP stack [56]

L Linux operating system

E Nginx web server

P PostgreSQL database management
systems

P Perl, PHP, or
Python

scripting languages

(d) The MEAN stack [44, p. 7]

M MongoDB document-oriented
database

E Express app controller layer

A Angular front-end framework

N Node.js web server

Cloud platform

The cloud platform is divided into different services. To begin with, Infrastructure-as-
a-Service (IaaS) the platform provides processing, storage, networks, and other funda-
mental computing resources. The consumer can run arbitrary software. Illustrated on
Figure 3.2 on the following page. IaaS is the most elementary service of the cloud plat-
form. [74]

Secondly, Platform-as-a-Service (PaaS) is an extension of IaaS. It also provides certain
libraries, services, and tools to the consumer. PaaS is designed to support the complete
web application life cycle. For example, it is possible for a web developer to build a
website using a web framework and then place this website on a PaaS, without worrying
about the complexity of the practical implementation. [74]

Last, with Software-as-a-Service (SaaS) the consumer does not need to design the soft-
ware themselves. For instance, the Microsoft Office 365 applications and communication
tool Slack are SaaS services.

12

IaaS

PaaS

SaaS

Hosted
applications/apps

Developent tools,
databse
managment,
business analytics

Operating
systems

Server and
storage

Networking
firewalls/security

Data center
physical
facility/building

Figure 3.2. Visualisation of cloud services, adapted from [109]

3.2 Communication protocols

The purpose of the very first web server was to host a static website. When the software
stack came in, there was a need for an interface to receive and manage data on the web
server. To accomplish this, different communication protocols can be used. In this the-
sis only Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol
(HTTP) will be discussed. Both of the protocols are located in the application layer of the
OSI model.

3.2.1 Hypertext Transfer Protocol

The Hypertext Transfer Protocol is a protocol that is used, among other things, to deliver
web pages to a web browser (client). It is request-response-based, which implies that all
the server-sent message originates from a specific client request. The server-sent mes-
sage then consists of the requested HTTP resources. The addressing of the resources is
done by using Uniform Resource Locator. Inside the URL string, the resources are iden-
tified and located. A URL is defined by using the Uniform Resource Identifier (URI) http
scheme. Furthermore, HTTP uses the underlying Transmission Control Protocol (TCP)
and Internet Protocol (IP) for message delivery and TCP port 80 to communicate. [41]

To add secure communication between the client and server the Hypertext Transfer Pro-
tocol Secure (HTTPS) protocol was designed. HTTPS is an extension of the HTTP proto-
col. It uses Transport Layer Security (TLS) protocol for encrypting the HTTP messages.
However, HTTPS uses the https URI scheme and TCP port 443 for communication. [93]

Besides the serving of web pages, HTTP also can be used to compose a web service. A
web service is a service with the purpose to facilitate interaction between two machines
through the WWW [71]. In contrast, an Application Programming Interface (API) is de-
fined as a common component between different software. Therefore a web service is an
API that is restricted to communication between machines. [14, 96]

This thesis will be limited to describing two ways to realise a web service who is using

13

HTTP as a communication protocol. In the next paragraphs, the Representational State
Transfer (REST) architecture style and the Simple Object Access Protocol (SOAP) will be
explained.

Representational State Transfer

One way to implement a web service is by using the Representational State Transfer
architecture style. This way you become a RESTful web service [94]. REST was originally
proposed in the PhD dissertation of Roy Fielding in 2000. In this dissertation following
constraints are proposed to qualify as a RESTful system [42] :

1. Client-server architecture

2. Statelessness

3. Cacheability

4. Uniform interface

5. Layered System

6. Code-On-Demand.

In addition, when using an HTTP-based RESTful web service, the HTTP methods and
URL can be used. This way create, read, update, and delete (CRUD) functions are
provided to the web service [70].

The REST architecture is also not bounded to one specific media type. A media type
is used to identify a file format for transmitted data over the Internet [45]. For example,
the application/json format is used for the JavaScript Object Notation (JSON) or the
text/xml format for the Extensible Markup Language (XML). [42]

Simple Object Access Protocol

Unlike REST, SOAP is a messaging protocol. The protocol uses a remote procedure
call mechanism that occupies XML technologies to define the message format. HTTP
can be used for message agreement and transportation. A SOAP message is the basic
communication unit between different SOAP nodes. The message consists of a SOAP
envelope which includes a SOAP header, SOAP body and a SOAP fault. Only the SOAP
body is mandatory, the header and fault field are optional. The most recent media type
for a SOAP message is application/soap+xml, the original definition of 1999 was using
text/xml-SOAP. [53]

The big difference between REST and SOAP is that REST is an architectural style and
SOAP a protocol. Both support the usage of the encryption protocol Secure Sockets
Layer (SSL)1. In contrast, SOAP does support the Web Services Security to, hence

1The predecessor of TLS

14

SOAP can be made safer. A RESTful web service, however, produces significantly lower
network traffic, lower latency and smaller messages in size than a SOAP-based web
service [2, 81].

3.2.2 Message Queuing Telemetry Transport

MQTT is a publish-subscribe-based messaging protocol and uses the underlying TCP/IP
transport protocol. In a publish-subscribe pattern, the sender does not send a message
directly to specific receivers. An MQTT system communicates with the clients through a
server, which can be called a broker. This realises one-to-many message distribution. To
organise the message flow, MQTT has a topic-based system. A message is published
to a specific topic, the broker then sends the message to all the clients who are sub-
scribed to that topic. (fig. 3.3) A topic can be divided into different levels, for example,
example/topic is a two-level-topic. [8, 100]

Client 1 Broker

Ti
m

e

Client 2

Publish
temp/root
25.1 °C

Subscribe
temp/roof

Publish
temp/root
25.4 °C

Publish
temp/root
25.1 °C

Publish
temp/floor

19.3 °C

Publish
temp/root
25.4 °C

Ti
m

e

Ti
m

e

Figure 3.3. Publish-subscribe-based messaging protocol

The protocol has different implementations for guaranteeing the delivery of a message.
This Quality of Service is divided into three levels, which can be viewed in the Table 3.2
on the following page.

3.3 Real time websites

With a real time capable technology, a server can send the client new information a soon
as it is available. In other words, with this kind of technologies, a server is not depending
on a client request for providing new information. When the WWW was designed, the
real time capabilities were not considered, although it is possible to achieve with the

15

Table 3.2. Different levels of quality of Service

QoS level description

QoS 0 - at most
once

The sender sends the message only once and the
sender and receiver do not acknowledge the deliv-
ery. Also called fire and forget and preserves the
same guarantees as the TCP protocol.

QoS 1 - at least
once

Once the client receives the message it sends an
acknowledgement to the sender. The sender will
resend the message until an acknowledgement
has arrived.

QoS 2 - exactly
once

This level guarantees that at least two request/re-
sponse flows happen between the sender and re-
ceiver. The receiver sends the first acknowledge-
ment to the sender. The sender replies on this
message by sending another package to the re-
ceiver. As of last, the receiver sends a second
acknowledgement to the sender. This way the
sender is assured of the delivery of the message.

traditional HTTP. The HTTP Long Polling technique is an example of this. In the next
paragraphs HTTP Long Polling, the WebSocket protocol and the Server-Sent Events
(SSE) are discussed.

3.3.1 HTTP Long Polling

A naive solution is running client-side JavaScript code that periodically sends a request
to the server for updates. If the period between the HTTP request is small enough, the
website can be experienced as real time. An example of the HTTP Polling is shown in
Figure 3.4a on the next page. A drawback of this technique is that the server often has
no new data and therefore sends empty messages to the client. This creates a lot over
unnecessary overhead on the network and on the server. [65, 99]

The problem is resolved in the HTTP Long Polling technique. The server keeps the
connection open for a set period of time. If in this period new data arrives the server
sends the server it immediately. On the contrary, if the server did not receive new data it
will terminate the open connection. The client will then instantly open a new connection.
An example is given in Figure 3.4b on the following page. [65, 99]

The Long Polling technique provides a mechanism by which the server can notify the
client about new data without requiring any action of the client. The first problem with
Long Polling is that it does not support bidirectional communication. If the client already
has opened a connection, the only way to communicate with the server is by sending
another HTTP request. The second problem of HTTP Long Polling is it can happen that

16

Request

Client Server

Response

Request

Response

Request

Response

Request

Response

Ti
m
e

Ti
m
e

(a) HTTP Polling

Request

Client Server

Response
New	Data

Request

Response

Request

Response
New	Data

Request

O
pe

n
co

nn
ec

tio
n

O
pe

n
co

nn
ec

tio
n

Ti
m
e

Ti
m
e

(b) HTTP Long Polling

Figure 3.4. Example of the HTTP Polling and HTTP Long Polling technique

new data is available right after the moment the time span had ended. [65, 99]

3.3.2 WebSocket

Both of the problems of HTTP Long Polling are resolved in the WebSocket protocol.
WebSocket provides a bidirectional communication channel over a single TCP connec-
tion. The protocol is located in the application layer of the OSI model and depends on
TCP protocol. To handle the addressing, WebSocket uses the ws or wss scheme for the
secure version. [40, 51]

Despite the fact that HTTP and WebSocket are various protocols, they are intertwined.
WebSocket uses the TCP port 80 and 443 to respectively plain-text and TLS-encrypted
communication. To open a WebSocket connection, an HTTP request is sent to the server
to “upgrade” the connection to the WebSocket protocol. [51]

3.3.3 Server-Sent Events

Server-Sent Events is a technology that makes it possible for a server to send text-based
event data to a client. The client initiates the communication by sending a regular HTTP
request. The server will send all the data over a long-lived HTTP connection. If the
server determines that the connection has been open long enough, it will be terminated.
The data is from the text/event-stream media type. In other words, SSE creates a
unidirectional communication channel that only supports server-to-client messages. [51]

17

4 PRINCIPLES OF DESIGNING A SERVER
PLATFORM

As discussed in the previous chapter, web applications have undergone a major trans-
formation. A new architecture was defined to represent all the necessary components to
construct a web application. One of the definitions is given by Bass et al., an architecture
describes a structure. According to them, the architecture consists of a software system
of structures, decomposed into components, and their interfaces and relationships. [10]
To summarise, an architecture is a means to reproduce the composition of a web appli-
cation.

Note that the term web server is used ambiguously in practice to describe all the neces-
sary components of a web application or on the other hand the component. In this thesis,
the term web server is referred to as the component, the piece of software with the pur-
pose to handle the incoming network requests (Sec. 4.2.1). This chapter will handle the
former architecture of a web platform. From there, an updated version will be proposed.
In the rest of this chapter, the components of this model will be discussed. As a conclud-
ing paragraph, two practical implementation methods for isolation are discussed.

4.1 Layered architectures

In 2001, Anastopoulos and Romberg proposed an architecture for web applications based
on the layering aspect [5]. Layering means implementing server tiers for structuring the
software systems. This way the “separation of concerns” can be realised. The first imple-
mentation they proposed was the 2-layer architecture (Fig. 4.1 on the next page). It is also
called client/server architecture. This architecture is appropriate to deliver dynamic pages
which can contain data from the database and static HTML pages to the client. During
the generation of the dynamic pages, the application logic can use services to build the
pages. For instance, data encryption or user identification are valid services. [63]

In contrast, the multi-layered architecture is suitable for more complex web applications
and is possible to serve a large number of concurrent clients. Illustrated in Figure 4.2 on
page 19, an n-layer architecture is proposed. The more specific three-tier architecture
can be found in the figure. It consists of a presentation layer, business layer and data
layer. Each of these layers has its own task. Remark, the reusability is an important

18

Client

Web-Server and
Business Logic Services

Database Dynamic
HTML-page

Client

Server

Static
HTML-pages

Figure 4.1. 2-layer architecture for Web application, by Anastopoulos et al. [5, p. 40]

factor in the designing of a web application. The usage of a multilayered architecture can
provide this feature.

Presentation layer

The first and topmost layer is responsible for the presentation of the content. The pre-
sentation layer, also called view or UI layer, passes the information from the user to the
underlying business layer. It is the first point a client will connect to. In the model of
Anastopoulos and Romberg the graphical side of the layer is not taken into account.
Later this was also added to the presentation layer [90, 98]. Different client-side tech-
nologies as the style of the page (CSS) and client-side scripting (JavaScript), but as well
the browser, are included in the layer. [90]

Business layer

The second layer, also called application layer, is in charge of the functionality of the
web application. In this tier, the core functionalities are placed. Data is fetched from the
underlying layer and processed by logic inside this layer. Otherwise, it is also possible
that data arrives from the upper layer and is handled by this tier. Furthermore, the layer
has also services to expose the functionalities to applicants. [90]

Data layer

The third and last layer is mainly focused on the storage and retrieval of application data.
With the help of file server or database server, persistence storage is provided. The
layer also provides an API to the upper layer that exposes an endpoint for managing the
data. [90]

19

Client

Firewall

Proxy

Web-Server

Database-Server B2B

Data access Collaboration

Business Logic

Workflow

etc.

Personalisation

Connectors

Application-Server

Legacy-Application

Enterprise
Information

System

Backend

Business layer

Presenatation layer

Data layer

Figure 4.2. n-layer architecture for Web application, by Anastopoulos et al. [5, p. 42]

4.2 Modern web server model

Since the definitions by Anastopoulos and Romberg, a lot of progress and development
has been made. For example, cloud-services have become more popular, but also the
real time possibilities in web pages. An updated model of a server platform for web
applications is given in Figure 4.3 on the next page.

When a person asks a web browser to visit a web page, the browser first contacts a
Domain Name System (DNS) to translate the URL into an IP-address. The IP protocol
implements an addressing method by giving each device an IP-address. This address is
used to locate a host or network interface and location addressing. With this IP-address
of the website, the browser contacts the web server to retrieve the web page. In the
following paragraphs, the handling of this request will be discussed.

4.2.1 Web server

The web server is a piece of dedicated server software with the purpose to handle the
incoming network requests. If the request is invalid or a request for static content, the
web server will handle it itself. Otherwise, the component will pass the request to the
application server. [15] Besides, a web server can have extra functionalities, a few of the
possible ones are listed in table 4.1 on the following page.

20

Workers

web app server
web app server

Application server

Web server

CDN
Client - browser

Database

DNS

Task
queue

WorkersWorkers

Caching service

Workers
Workers

Third party services

Stream
processing

services

Cloud services

Data
warehouse

Cloud
storage

Client-side

Server-side

Figure 4.3. Modern web server architecture, based on [46]

Table 4.1. Extra functionalities of a web server [15]

functionality description

Load balancing Distributes the workload over multiple connected
application servers

TLS support Provides communications security by encrypting
the outgoing data.

Reverse proxy with
caching

Service that requests network resources on behalf
of a client from one or more destination server

Solving the C10k
problem

Being able to handle more than 10 000 simultane-
ous connections. Handling concurrent connection
requires efficient connection scheduling while han-
dling many requests requires a high throughput to
process them. Notice that handling a connection
is not the same as handling a request.

4.2.2 Application server

The application server is the core of the web application, it houses the business logic.
The server communicates with all the necessary surrounding components to easily build
dynamic web page. As an illustration, in Figure 3.1b on page 9, the interpreting of the
script happens in this layer. [52]

The functionalities of the application server can be defined by using a web framework. A

21

framework implements solutions for common activities in web development. For instance,
it provides libraries for database access, user authentication, session management and
templating frameworks. This way only the functionalities that are specific to the web
application should be designed. The working mechanism of the application server is
related to the programming language of the web framework. The discussion of this falls
outside the scope of this thesis. [52]

To increase throughput, reliability and availability and secure the performance, often mul-
tiple instances of the application server run simultaneously. The load balancer of the web
server then orchestrates the message flow to each application server. [15]

4.2.3 Database

A database is a systematic set of data, designed for flexible storage and management of
the data. By the use of a database management system (DBMS), a software package that
can construct, manipulate, fetch and manage data in a database. The logical structure of
a database is drafted by a database schema. All the related data is saved inside a table.
A schema consists of one or more table(s). [11]

To communicate with a DBMS the Structured Query Language (SQL) was created. Data
can be requested with a SQL statement, also called a query. SQL support the CRUD
mechanism for data and tables. [11]

One of the most used types of DBMS is the relational database management system
(RDBMS). This specific type makes it possible to define relationships between tables.
One of the downsides of RDBMS is that it cannot efficiently handle time series data. The
problem is the big amount of data where also the order of the elements matter. To store
time series in an RDBMS, a suitable solution would be to use the star schema. This
schema works by storing the core data in a fact table and all the details of the data inside
a dimension table. Illustrated in Figure 4.4 on the following page, sales is the fact and
employee, time and product are the dimensions. This approach is not optimal for inserting
and retrieving data at a high rate. To overcome this problem the data can be converted to
a compressed blob form. But in this data form, queries can not be executed and all the
benefits of a relational system are lost. [37, p. 28-37]

The RDBMS is not suited well enough to model recursive structures and handling het-
erogeneous sets. Furthermore, the approach towards time is not very sophisticated. To
overcome this problem time series databases (TSDB) can be used. [36] A time series
databases must be able to process and store a large number of data points. All these
points are time-related to each other, so the timestamp of each point is important. A
TSDB gives priority to the timestamp and is optimised to handle very large datasets [64].

22

sales_fact

product_idPK,FK

time_idPK,FK

employee_idPK,FK

price

quantity

employee_dim

employee_idPK

first_name

last_name

title

time_dim

time_idPK

action_hours

action_date

action_month

action_year

product_dim

product_idPK

product_name

product_type

product_size

Figure 4.4. Example of a star schema

4.2.4 Caching service

This component makes it possible to cache newly arrived information. It provides a simple
key/value data store to manage the data. By using this technology, it is possible to insert
and retrieve information close to O(1) time [83]. The result of expensive computations can
hereby be kept close. For example, search engines keep the result of common queries
like “cat videos” rather than recalculate them each time again. [16]

Notice, this component has not the same purpose as a reverse proxy of a web server. The
reverse proxy is meant to cache frequently visited web pages, while a caching service is
meant to cache the newly generated data of the application server.

4.2.5 Task queue

Besides the traditional requesting and retrieving of web pages, it can be necessary to do
work in the background of the web application. This means tasks that are done asyn-
chronously without being part of the HTTP request-response cycle. Long-running jobs
would otherwise affect the performance of the cycle. [18]

As an illustration, to spread out the inserts of a large data set into the database instead
of inserting everything at once asynchronous tasks can be used. Another use case is the
collections of data values on a fixed interval.

To provide asynchronous workers two components are used: a task queue to schedule
the tasks and an instance that is running the task, a worker. The tasks queue stores the
list of tasks that needs to run asynchronously. This can be accomplished by implementing
a simple first-in-first-out (FIFO) scheduler. A worker polls a task form the queue when he
is free to execute it. Workers can run concurrently to maintain the performance of the
web application. [18]

23

4.2.6 Third party services

Through the use of external services, the development of very specific functionalities can
be alleviated. Sometimes the cost is too large to build them yourself because some ser-
vices require very specific knowledge and infrastructure to develop. To illustrate, several
third party services are listed in table 4.2.

Table 4.2. Several third party services

Service description

Full-text search
service

This service provides a search feature on the web-
site. The full-text search technology is made pos-
sible by using an inverted index. Hereby, keywords
can be found quickly. The service also provides a
query interface.

SMS service Providing an interface for SMS communication.

Payment service Provides methods for payment by using a credit
card or mobile payment.

Web analytics
service

Implement a service to measure, collect, analyse
and report the user-generated web data. For pur-
poses of understanding and optimising web us-
age.

Legacy service An older component from the previous system that
should be integrated into the web application.

4.2.7 Cloud services

As discussed in Section 3.1.3 on page 11, a cloud platform provides remote resources for
doing computational work and storage. Besides the hardware facilities, cloud computing
also offers useful services. In the first place, it is possible to store the user-generated
data on object cloud storage. This way all the advantages of an IaaS and object storage
are ensured.

In object storage, the entire clumps of data are stored into objects which contain the data,
metadata, and the unique identifier. On the contrary, the traditional block storage splits
the files into blocks with their address. Because object storage uses the metadata and
unique identifier, the availability and durability of the data are increased. This makes it
more attractive to use in a distributed setting. [66]

Secondly, stream processing services are used to transfer the data from the application
server to the cloud services. Streaming data is a continuous stream of data that is usu-
ally sent simultaneously. [110] Furthermore, the streaming data services are capable of
transforming the data during the transmission and automatically scales the ingest capac-
ity according to the throughput of the data. By using these services real time analysing

24

capabilities can be achieved. [4]

In the third place, the data can be load into a data warehouse for analysis. A data
warehouse is a central system where data is brought together from one or more distinct
sources. It is a place separated from the other databases and stores both current and his-
torical data in one place. The main purposes of this system is to generate data analysis
and reports. This aggregate data can be used to make business discussions. [54]

Finally, it is possible to run all the other components of this chapter. There are cloud
services for running application servers, databases and caching services. This way all
the benefits of an IaaS is offered.

4.2.8 Content Delivery Network

A Content Delivery Network (CDN) is a cloud service that offers a geographically dis-
tributed network consisting of alternative server nodes for users to download resources.
As an illustration, in Figure 4.5, connecting to a node server closer to the physical loca-
tion can be more beneficial than connecting to the origin server. Using CDN can create
a faster response and reduced latency can be insured. Typical static content, like images
and CSS & JS files, is cached on a CDN node. By connecting the cloud storage to a
CDN, all the static files of a web site can be served.

Figure 4.5. Advantage of using CDN [111]

4.3 Virtualisation

While building a server platform, it is possible that different components need different
versions of the same library or programming language. Usually, only one version can be
installed on the OS. To isolate the applications and their dependencies from each other
virtualisation can be used. This also ensures that the applications can run on different
machines.

A virtual machine (VM) emulates a system that executes applications like a real computer.

25

A VM runs on top of a hypervisor. This is software, firmware or hardware that is used
to create and run virtual machines. A hypervisor itself is executed on a host machine,
which is either an OS or bare-metal. All VM requires a certain part of the resources of
the host machine. The hypervisor distributes the pre-made distribution across all VMs.
Figure 4.6a illustrates a hypervisor running on a host OS with three VMs. [79]

Hardware

Host Operation System

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Bin/Lib

App 1

Bin/Lib Bin/Lib

App 3App 1

(a) VM

Hardware

Host Operating System

Container engine

Bin/Lib Bin/Lib Bin/Lib

App 1 App 3App 1

(b) Container

Figure 4.6. Visualisation using virtual machine and container

Another option to isolate application is using containerisation, illustrated in Figure 4.6b.
In containerisation, the kernel of the host is shared between all the running containers.
For this reason, the container is limited to the kernel of the host system. Similar to a
hypervisor, the container engine is used to manage containers. Because a container
does not use a full OS and shared resources with the host system, containers are more
lightweight, efficient and faster in startup than VMs. [79]

There are two kinds of containers. An application container runs only one application
inside the container, which can consist of one or multiple processes. The system con-
tainer, on the other hand, can support the execution of multiple applications within the
same container. This kind of containers has an inside init system1 that makes process
management possible. They are primarily designed to run a full OS inside a container.
As an illustration, the Linux Containers (LXC) and its extension, the Linux container hy-
pervisor (LXD), both providing limited dedicated resources to host Linux systems con-
tainers. [50]

1System to manage the start and stop of services, examples: SysV, Upstart, and Systemd

26

5 CLOUD IMPLEMENTATION OF THE SERVER
PLATFORM

The two previous chapters give a high-level description of technologies and protocols
used for designing a back-end server platform. This chapter discusses the practical im-
plementation of the web platform of the project. All the architectural decisions, as well as
the chosen protocols, components and technologies, are discussed and substantiated.
Throughout this chapter, the discussed requirements of Sections 2.1 to 2.2 on pages 3–4
are used as a basis for the design choices.

5.1 Used technologies

The initial state of the project uses an HTTP-based web service for the communication
between the web application and the embedded devices. As stated by Yokotani et al.,
MQTT performs better than HTTP in message delivery. MQTT has a lower payload size
and uses less bandwidth than HTTP. [112] Although, the implementation of an HTTP-
based system is easier on both the server- and client-side. This was the main reason for
choosing an HTTP-based system in the first stage of the project. Accordingly, the REST
architecture style is chosen for designing the web service. As stated in Section 3.2.1,
REST is a better alternative than SOAP. The file format JSON is used to represent the
data. Even within the REST Web Service, JSON is better for transmitting over the network
than XML [2].

To fulfil the real time functionalities the WebSocket protocol is used. SSE is not im-
plemented in the latest versions of Microsoft Internet Explorer and Edge browsers [26].
Using this technology would mean that a portion of the browser cannot display the in-
tended web pages. The WebSocket protocol, on the other hand, has a big coverage on
web browsers field [27].

5.2 The implemented stack

Section 4.2 introduced a modern version of a server platform. In this initial stage of the
project, some of the components of Figure 4.3 on page 20 are not necessary. As stated
in Section 2.1 on page 3, cloud services, caching service and third party services are not

27

needed in the project for now. For each of the used component, serveral viable options
are discussed, advantages and disadvantages are reviewed and the final decision is
substantiated.

5.2.1 Selection procedure

A wide variety of options is available to implement in the server platform. To determine
with package or framework, general guidelines were stated. The guidelines state that the
same selection procedure has been followed throughout the construction of the whole
server platform. The questions in table 5.1 are a short survey of the novelty, popularity
and sustainability of the package. It is recommended to use a stable package with an
active community behind it. The questions are ordered on importance, this means that
the most influential questions are listed on top of the table. The questions are divided into
fields. Some questions are related to the possibility of long-time support and others are
related to support.

Production status is the most important field. One of the underlying goals of this project is
providing a stable web application. This cannot be achieved with an unstable or beta ver-
sion. To only list acceptable options, the production phase was the most important factor
to find suitable candidates. The second most important field is popularity. A more popu-
lar package is likely to have a bigger community. Hereby, the discovery and reportage of
faults in the software happen a lot faster. This results in an active community on the web
helping to solve the problem of other people.

Table 5.1. Questions used to choose a package

Field Question

Overall quality, future
perspective

What is the development status of the package?
(alpha, beta, production/stable, inactive)

Future perspective Has the package’s development been regular and
is it currently active?

Support, popularity Does the package have an active community?

Overall quality Is the package well documented and the
documentation gives relevant examples?

Future perspective,
support

Does the package have a list of known issues and
an issue tracker?
→ If yes, do the issues get solved?

5.2.2 Overview

Due to the wide variety of the implementation of all the necessary components, the most
suitable solutions are selected and compared. Table 5.2 on the following page provides

28

an overview of all implementations that meet the requirements of the previous section.
In each coming section, the compared solutions are discussed in more detail and finally,
the chosen packages are placed in bold.

Table 5.2. Overview of considered implementations

Component Compared solution

Web server Apache, NGINX

Web framework Django, Flask

Web Server Gateway Interface Gunicorn, uWSGI

Asynchronous Server Gateway Interface Daphne, Uvicorn

Distributed workers Celery, Dramatiq

5.2.3 Web server

Accordingly to the monthly survey of Netcraft, NGINX [84], Apache [35] and Internet
Information Services (IIS) [107] are the most used web servers by the top million busiest
sites1 [61]. IIS is not an option, because it is proprietary software from Microsoft. IIS runs
on Windows, who needs a commercial license to operate, while the two alternatives are
open-source and free to uses. Also, it is the least popular in the Netcraft survey. Due
to the mature state and regular development of Apache and NGINX, only they will be
discussed further.

Apache

Apache initiates in 1995 and can be found in the LAMP stack. To process the requests,
Apache uses one of the Multi-Processing Modules (MPMs). This is a group of modules
with the common goal to server requests. The three most important modules are: [80]

1. pre-fork model: This is the original process method. It implements a non-threaded,
pre-forking web server. This way at the start-up of Apache, a predefined number of
servers will be launched. Each server handles requests. This approach is suitable
for sites that work with non-thread-safe libraries and need to avoid the usage of
threads.

2. worker model: This module implements a hybrid multi-process multi-threaded
server. In other words, it creates a master process that is accountable for starting
up child processes. Each child process then generates a fixed number of threads
on its own, including a listener thread. This listener thread is responsible for detec-
tion connections and passing them through to a server thread for processing. By
using this method, this MPM is more capable of handling a larger group of requests.

1in June 2019

29

3. event model: This model is an adaptation of the worker model. It is possible to
pass along processing work to the listener threads. Hereby, redeem other worker
threads, to keep them unoccupied for new connections. This model is capable of
handling long-running connections more efficiently on a single thread.

Altogether, the event model needs a system that supports both threading and thread-safe
polling. The worker model only needs support for the threads and the prefork model does
not need support from either.

It is necessary to load one MPM module on the server at any time. Apache has a numer-
ous set of features, like a reverse proxy with caching, load balancing. Apache Modules
should be installed to implement this feature. Moreover, the modules can run at either
compile-time or at run-time to improve the performance of Apache. [6]

NGINX

NGINX was created in 2002 to solve the C10k problem2. It uses an asynchronous, event-
driven architecture to handle this prodigious load. Therefore, this architecture makes
the resource usage, in terms of RAM, CPU usage, and latency more predictable with
fluctuating and high loads. [67]

In terms of the event models, the main difference between the two web servers is that
Apache sets up extra worker processes per connection, NGINX does not. NGINX rec-
ommends to run one worker process per CPU, hereby maximising the hardware’s ef-
ficiency. [67] Furthermore, Schroeder and Mikalauskas proves, independently of each
other, that NGINX is better in serving static content than Apache. Mikalauskas also con-
cludes that for serving dynamic content, both web servers are equivalent. [75, 97].

Besides this architectural difference, NGINX also has an elaborate arsenal of functions.
For example, it features a reverse proxy server for the HTTP(S) and possibilities to sup-
port the email protocols IMAP, POP3 and SMTP. Besides, it also features a load balancer
and a front end proxy for Apache. Therefore, it is possible to combine the flexibility of
Apache with the static content providing of NGINX. [67]

Because of the asynchronous nature of NGINX, the project uses an NGINX web server.
This is beneficial to handle the incoming message from the detection devices. Besides,
the popularity of Apache has been declining for a few years, while that of NGINX has
been rising [61]. NGINX also supports a Python-based application server by default,
while Apache needs a specific module to provide the same feature.

2Capable of serving at least 10 000 simultaneous connections on a single server

30

5.2.4 Web framework

The web framework is the heart of the web application. Due to one of the requirements,
only Python-based frameworks are viewed. For this component, the popularity was the
most influential decision factor. Django [29] and Flask [108] are the most popular and
stable web frameworks at the moment. Both have two times more GitHub stars and forks
than the next competitor Tornado. [103] That is why Django and Flask are the two most
suitable candidates.

Django

Django is a full-stack web framework, which generally includes a lot of out-of-the-box
functionalities. Libraries, database management and templating engines are examples
of services that are provided by a full-stack web framework.

Django is based on the don’t repeat yourself (DRY) design philosophy and wants to focus
on automation. It uses a model-template-view (MVT) architecture pattern, a variant of the
model-view-controller pattern, to build dynamic web pages. Django provides by default
an MVT enabled templating engine. A custom object-relational mapping (ORM) is imple-
mented to interact with the database. Django support by default only SQL databases.
Furthermore, it has components for routing, forms, authentication. [29]

Flask

Flask nevertheless is a microframework. Generally, a microframework is focused on re-
ceiving HTTP requests and to handle them. Functionalities like templating engine and
ORM are often not supported.

By default, Flask does not support an ORM but does support the templating engine Jinja.
The philosophy of this framework is that does not force you to use a certain architecture
or model. There are extensions to implement a variety of functionalities, like ORM and
providing a REST web service. [108]

For the project, Django is used as the web application framework. The project needs
an informative home web page, a database to provide long-time storage and specific
environment to monitor all the embedded devices. By default, Django already provides
many of the needed functionalities.

31

5.2.5 Web Server Gateway Interface

The Web Server Gateway Interface (WSGI) provides an interface between a web server
and a Python-based web application or framework. The first definition of the interface
was proposed in the Python Enhancement Proposal (PEP), PEP 333 - WSGI in 2003 and
solved the problem of the negative interoperability [38]. WSGI wants to provide an API
that has analogue flexibility as the servlet API of Java. In other words, WSGI makes it
possible to freely choose a web server and a web application or framework. [38] In 2010
an updated version was published under PEP 3333, adding the support and improving the
usability of Python 3. [39]

The most popular WSGI servers, at the moment of writing, are Gunicorn [20], uWSGI [101],
Waitress [106] and mod_wsgi [77]. [30] All the other WSGI implementations were not con-
sidered because of the selection criteria of Table 5.1. For this component, it is important
to implement a stable production level product. Only Gunicorn and uWSGI are quali-
fied enough for the project. Because Waitress does not support the start-up of multiple
workers and mod_wsgi is only compatible with Apache [77, 106].

Gunicorn

Gunicorn “Green Unicorn” is the Python alternative of the Unicorn project for Ruby, which
is an HTTP server to serve Ruby web applications. Gunicorn is built on the pre-fork
worker model. At the core, there is a central master process that manages a collection
of worker processes. The master is only a conductor and all the requests are handled by
the workers. By default, Gunicorn uses synchronous workers that serve a single request
at the time. [20]

uWSGI

uWSGI, on the other hand, is developed to be more than just a WSGI server. There
are plug-ins available for logging, monitoring, load balancers, proxies.uWSGI also sup-
ports different interface, for instance, WSGI, PSGI3 and Rack4. It uses the same pre-fork
worker model for handling request as Gunicorn. During the start-up, it is possible to ac-
tivate the multithread mode in uWSGI, this enables support of running threads inside a
process. [101]

Different implementations of WSGI are tested in Section 6.1 on page 38. The experiments
show that uWSGI is the better option. The choice is more substantiated in Section 7.2 on
page 48.

3The Perl alternative of WSGI
4The Ruby alternative of WSGI

32

5.2.6 Asynchronous Server Gateway Interface

Due to the requirement concerning the real time possibilities of the web application, a real
time protocol should be implemented. The biggest limitation of WSGI is that it is bounded
to a single, synchronous callable that process a request and answers it. Long-lived
connections, like long-polling HTTP and WebSocket, are not supported. Asynchronous
Server Gateway Interface (ASGI) corrects this issue, it is structured as a single, asyn-
chronous callable. Providing hereby support for multiple incoming and outgoing events
for each application and possibilities for doing background coroutines. ASGI is designed
as a superset of WSGI, which makes it possible to run WSGI applications inside an ASGI
server. ASGI has, at the moment of writing, only two stable servers: Daphne [24] and
Uvicorn [105]. They are both HTTP/WebSocket server with support for HTTP/1.1. [57,
59]

The project uses the Daphne server. Because Daphne is maintained as part of the
Django Channels packages. The project uses this package to provide a WebSocket
connection.

5.2.7 Distributed workers

When observing a venue, multiple detection nodes will be used to get a general idea
of the venue. The same person may be detected by different nodes. To discover that
same person a re-identification algorithm can be used. Using distributed workers makes
it possible to run multiple instances of this algorithm at the same time. Each instance can
then process the data asynchronously from the application server.

The most popular stable options are Celery [60] and Dramatiq [78], with Celery being
eight times more popular5. [31]

Celery is based on distributed message passing to provide an asynchronous task queue.
It mainly focuses on real time processing, but also offers task scheduling. Celery requires
a message broker to receive and send messages. It supports, among other things, the
collaboration with RabbitMQ [88] and Redis [83]. Furthermore, it is possible to bound a
caching service to Celery to store the results. [60]

Dramatiq is developed to be an alternative to the approach of Celery. For instance, Dra-
matiq sends an acknowledgement when the task is done, while Celery, sends it when the
task is pulled out of the queue by default. Celery does not support task prioritisation, only
by organising multiple sets of workers priority can be included. Dramatiq offers this by
default. Dramatiq also provides a lock and rate limit, while Celery does not. [78]

Both of the packages are suited to work together with the Django framework. Because
the one-sided tasks and the simple use case, Celery is chosen to integrate with the

5Based on the number of GitHub stars

33

project. An advantage is also the popularity of the package. Redis is used as the sup-
porting message broker because it has a high performance and larger community than
RabbitMQ [89].

5.2.8 Time series database

Every detection that happens on the embedded devices has a timestamp and is a new
entry. As estimated in Section 2.3, the amount of detection would be 0.1 M/s. Hereby, the
detection stream can be classified as a time series.

By default Django only supports four SQL databases, namely MySQL, PostgreSQL,
SQLite and Oracle Database. None of those four is optimised for time series. Timescale-
DB [102], on the contrary, is an expansion of the PostgreSQL [87] database. Hereby
adapting PostgreSQL from a relational DBMS to a TSDB. TimescaleDB provides the
same entire SQL interface as PostgreSQL, making it suitable to work together with the
Django framework. [102]

5.2.9 Specific library and packages

External packages were required in the application server to fulfil all the required func-
tionalities. Django does not provide by default tools for all the features. An overview of all
the mentionable packages is given in Table 5.3.

Table 5.3. Extra implemented Python packages

Package Usage

Django REST
framework [33]

Used to build a REST web service. Hereby, an
entry point for the embedded devices is realised.

Django Channels
[28]

This package adds the support of SSE and
WebSocket to the synchronous web framework.
Through this package a WebSocket, connection
can be implemented to display real time informa-
tion.

Django
reCAPTCHA [32]

Enables the addition of a reCAPTCHA to the
forms. This way it is possible to add reCAPTCHA
to the login page and register page.

5.2.10 Overview of the web application

The complete overview of the back end platform is displayed in Figure 5.1 on the following
page. It can be concluded that the LEPP stack is used in this initial stage of the project.

34

The application server is utilising a Python-based framework and the database is an
extension of the PostgreSQL server. Further in the coming section, the practical aspects
of deployment are discussed.

uWSGI serveruWSGI serveruWSGI +
Django server

Workers

NGINX - Web Server

TimescaleDB

Redis WorkersCelery Worker

uWSGI serveruWSGI serverDaphne +
Django server

Web browser Detection node

Server-side
Client-side

Figure 5.1. Current implementation of the project

5.3 Implementation details

Inside a Django server, separate applications are used to increase the re-usability. The
back-end of the project uses three Django applications, namely web, rest and stat. The
web application is for providing a home page with all the information about the CityTrack
project. The second rest application is responsible for the RESTful web service. The last
stat application provides the statistical data and the possibility to view the incoming data
in real time. This implementation makes it possible to set up a separate Django server
that is only concerned with providing one application. For example, a Django server with
dedicated computational resources can be arranged to provide the RESTful web service.

The web application is a common Django application for providing a dynamic web site.
The rest application is also a basis Django REST Framework (DRF) application for pro-
viding a RESTful web service. For arranging the real time functionalities the following
implementation is used.

35

Real time application

To provide the application with real time functionalities, both WSGI and ASGI server need
to work together. The WSGI server is responsible for delivering the web page to the
browser, while the ASGI server is accountable for the start up of the WebSocket connec-
tion.

One of the functionalities is providing a real time view of the most recent detections. The
data from the detection nodes is sent to DRF. Due to performance reasons and easy
implementation, the DRF is placed on a WSGI server. The newly arrived data needs to
be sent immediately over the WebSocket connection, who placed at the ASGI server. To
transport the data from one server to another, the newly arrived data at the RESTful web
service is saved twice once in the database and once in a Redis queue. A Celery worker
will then be responsible for handling the remaining part.

Once a WebSocket connection is opened, the ASGI server adds the metadata of the con-
nection to a group. This group will contain the data of all the currently active connection.
After this, the ASGI server will start a container to run a dedicated Celery worker. The
purpose of the worker is to check the Redis queues if they are empty. If not, the worker
will pop the first element from the queue and sends it over the WebSocket connection
to the browser. Once a second WebSocket connection is opened, the ASGI server adds
the credentials to the same group as the first connection. This way the Celery worker
will send the data to all the active connection. If a browser closes the web page, the
associated connection will be removed from the group and the worker will not send any
message to that connection. Once all the last connection is closed, the Celery container
will also be terminated. On the browser, a JavaScript file is used to settle the incoming
messages.

5.4 Deployment

To provide this project to the WWW, the web platform should be continuously available. As
discussed before, this can be achieved by hosting the application on a cloud service. In
this section, the practical aspects of containerisation and cloud deployment are explained.

5.4.1 Containerisation

Due to the requirement to use containerisation in this project, application containers are
used to build the whole web server platform. All the previously discussed components
can fit in their own application container. Because these containers are lighter and faster,
a component can easily be replaced or duplicated to maintain system performance. The
Docker platform [34] is used to build and manage the container stack. It is the widest

36

used platform in 2019, with major support for a variety of cloud platforms [13]. Docker
utilises the Linux kernel to provide application containers. The platform Docker Hub pro-
vides multiple official images for all the chosen components of the web application. The
container version is defined through REPOSITORY:TAG. The repository container name de-
fined in the REPOSITORY part, the specific version is defined in the TAG part. For example,
the web server runs on version 1.15 of NGINX and uses a Linux distribution Alpine. To
always obtain the most recent version of the software, the tag latest can be used. [34]

Table 5.4 gives an overview of all the used containers and container versions. All the
containers are Alpine-based [3]. Using this Linux distribution results is a lighter container
than Debian-based containers. The application server and distributed worker are Python
programs, therefore the base of is a Python container. The TimescaleDB container is
only provided with an Alpine base. Finally, a conscious choice was made to choose a
specific version of the software containers. This to guarantee that the web application will
have the same composition in the future.

Table 5.4. List of the implemented containers

Component Technology Container version

Web server NGINX nginx:1.15-alpine

Application server Django python:3.6.9-alpine

Message broker Redis redis:5.0.5-alpine

Database TimescaleDB timescale/timescaledb:latest-pg11

Distributed worker Celery python:3.6.9-alpine

5.4.2 Container stack

To run these multi-container applications, the Docker Compose tool is used. Because
of this tool, all the containers and their connection to each other can be defined in one
single file. This has also simplified the start of the web application.

In Figure 5.2 on the following page, visualisation of the container stack is given. As
stated in Section TODO, is the Celery container only started if a WebSocket connection
is opened. The circles on the figure represented the TCP/IP ports that are accessible
for clients. The NGINX container has an open port 80 and 443, for HTTP and HTTPS
communication, respectively. Due to development reasons, the 5432 port of the database
is also opened.

The data that is stored inside the database and Redis container is brought outside by
linking a folder on the host system to a folder inside the container. This way, the data is
not lost when the containers are stopped. The same binding is set for the static content
of the Django servers and the configuration files of the NGINX server. In the figure, the
file path of the container is placed on the dotted line and the file path of the host system

37

is placed inside the folder icon.

The diamond-shaped quadrilaterals represent the networks. There are three networks
in this system, one network for all the database traffic, one for the Redis traffic and one
for Django servers to connect to the NGINX server. These networks provide an intercon-
necting for the containers.

Figure 5.2. Visualisation of the Docker Compose stack

5.4.3 Cloud platform

The web application is deployed on the cPouta IaaS cloud computing service, offered
by CSC [22]. CSC is an IT Center for Science providing ICT services to Finnish higher
education institutions. cPouta is an IaaS service that provides a virtual machine. Inside
one VM the whole container application is deployed. In this way, the settings, including
firewall and storage capacity, are provided by the provider.

38

6 PERFORMANCE EVALUATION

To design a high-performance server platform, the choice of each component is very
influential. The WSGI server has been investigated in this thesis. To make a substantiated
choice, several aspects of the performance of each WSGI are tested. Secondly, it is
tested if the current implementations of the ASGI server could be a worthy replacement
of the WSGI server. Finally, the boundaries of the system are exposed.

6.1 Performance of different WSGI servers

In this first test, the performance of different WSGI servers will be investigated. The
goal is to determine which implementation achieves the best total results. Therefore, five
different aspects are examined of each server.

6.1.1 Situation of the research

As declared by Meier et al., “Performance testing is a type of testing intended to determine
the responsiveness, throughput, reliability, and/or scalability of a system under a given
workload” [73]. There are two kinds of performance tests, namely load testing and stress
testing. Both tests are related to each other. Stress testing is an extreme case of load
testing.

Load testing A performance test designed to determine the performance quali-
ties of a server under normal workloads.

Stress testing A performance test designed to determine the performance qual-
ities of a server under unnatural high workloads. This can include using all the
available computational resources.

The two most important characteristics of the performance of a web server are throughput
and latency. Throughput is the number of the requests handled in a certain window of
time, generally expressed as request per second. While latency focuses on the time that
a request is served. In 1993, Nielsen stated three response time limits.

The first limit is the 0.1 second, this gives the user the feeling that everything is reacting
instantaneously. Special feedback is not necessary to display. The 1.0 second is the
second limit. The user will notice the delay, but the flow of thought of the user will not

39

be interrupted. No additional feedback is needed here either. Altogether, if the response
time is between 0.1 and 1.0 seconds, special feedback is not necessary. The last is the
10 seconds limit. This border is about keeping the attention of the user focused on the
dialogue. Extra feedback, about when the computer expects to be done, is necessary.
The user possibly wants to perform other tasks during the waiting.

Altogether, next to the latency and throughput, the error rate is calculated from results.
Together with the CPU and RAM usage, a complete overview of the performance of a
WSGI can be composed.

6.1.2 Test setup

As stated in Section 5.2.5, the most popular WSGI at this moment are Gunicorn, uWSGI,
and mod_wsgi [30].

To test the different servers, the ApacheBench tool (ab) - version 2.4 [1] is used. For
30 s the tool requests packets, using the HTTP/1.0 GET method, from the server with a
given amount of connections. All the 28 tested, arbitrarily chosen, connections can be
found in Table 6.1. Through this range, an overview of the performance under different
concurrency can be formed. With this tool, data is gathered about the Round-Trip Time
(RTT). This is the time between the departure and the arrival at the client of the same
package. Furthermore, the Request per second and Error Rate is also collected with the
ab tool.

From the output of the testing tool, the total connections time of one packet can be col-
lected. This total connection time consists of the connection and processing time. For
this experiment, the 90% border is used, 90% of all request will be handled under this
time. The remaining 10% consists of packets with total connection times greater than the
90% border. This border gives a good indication of the average RTT of the WSGI server.

Note that the request per second is not the same as the number of users the system can
handle. A regular user requests more than one packets if he wants to view a web page.

Table 6.1. Summary of all the tested connections

Connections: 1 to 5000

1 2 4 5 10 50 100 150 200 250

300 350 300 450 500 600 600 800 900 1000

1500 2000 2500 3000 3500 4000 4500 5000

The WSGI is set to use the project web application and not a dummy application. The
WSGI and Django server runs inside a container, with a limit of two CPUs and 1500 MB
of RAM. Using the docker command docker stats, data is collected about the CPU and

40

memory usages. The testing tool requests the homepage1 of the web application and
connects directly to the WSGI server, there is no web server placed in front of the web
framework. To test the full capacity of all WSGI servers, they are launched with one
worker for each CPU core and two threads inside. Except for the Gunicorn server, there
it is recommended to use the following rule of thumb: (2 x $num_cores) + 1 number of
workers to handle all the requests [20]. An overview of the configuration of the workers
and threads can be found in table 6.2.

All the tests are conducted using a Dell Optiplex 9020 with an Intel Core i7-4790 CPU
3.60 GHz and 24 GB of DDR3 RAM, running Linux Mint 19.1. Each server is tested four
times with all the different connections. From the four corresponding data points, the
average was taken to obtain the result. The results can be viewed in Figures 6.6 to 6.11
on pages 44–46.

Table 6.2. Settings of each WSGI server

WSGI server Version Workers Threads

Gunicorn 19.9.0 5 1

uWSGI 2.0.18 2 2

mod_wsgi 4.6.7 2 2

6.1.3 Results

10
0

10
1

10
2

10
3

10
4

0

50

100

150

200

250

300

Concurrency [−]

R
ou

nd
Tr

ip
Ti

m
e
[m

s]

Gunicorn
uWSGI

mod_wsgi

Figure 6.1. Latency of multi workers WSGI servers

1which is a static web page

41

10
0

1
01

1
02

1
03

1
04

300

400

500

600

700

Concurrency [−]

R
eq

ue
st

pe
rs

ec
on

d
[#

/
s]

Gunicorn
uWSGI

mod_wsgi

Figure 6.2. Throughput of multi workers WSGI servers

0
·1
00

1
·1
0
3

2
·1

03

3
·1
03

4
·1

03

5
·1
03

0

0.2

0.4

0.6

0.8

1

Concurrency [−]

E
rr

or
ra

te
[%

]

Gunicorn
uWSGI

mod_wsgi

Figure 6.3. Error Rate of multi workers WSGI servers

42

10
0

10
1

10
2

10
3

10
4

100

120

140

160

180

200

220

Concurrency [−]

C
P

U
us

ag
e
[%

]

Gunicorn
uWSGI

mod_wsgi

Figure 6.4. CPU Usage of multi workers WSGI servers

10
0

10
1

10
2

10
3

10
4

100

120

140

160

180

200

Concurrency [−]

M
em

or
y

us
ag

e
[M

B
]

Gunicorn
uWSGI

mod_wsgi

Figure 6.5. Memory Usage of multi workers WSGI servers

In Figure 6.1 the latency of every WSGI server is plotted in function of all the tested
connections. According to Nielsen, the smaller the latency, the better. [85] The graphs
show that all servers evolve to a stable value once there are more than 100 connections.
With Gunicorn and uWSGI located in the same region and uWSGI significantly smaller.

The throughput can be seen in Figure 6.2. On the plot of Gunicorn and mod_wsgi there
is a distinguishable peak with 2 connections. Thereafter, both plots stabilise. Both are

43

launched with two CPUs. The best circumstance for these both servers is clear when
there are only 2 connections and therefore the hardware can be used optimally. On the
uWSGI plot, on the other hand, an analogous peak at four connections can be detected.
The same high values return at higher concurrency. The best circumstance for the uWSGI
server in the low concurrency domain is with four connections. In this case, the hardware
is used optimally. The CPU plot of uWSGI, in Figure 6.4, supports this.

Remarkably, mod_wsgi manages to handle all requests given a certain load, resulting in
an overall 0% error rate. Gunicorn and uWSGI do not always succeed in responding to
all requests. Gunicorn has a slight fluctuating error rate, while uWSGI ultimately has a
stable error rate. The average of both error rate keeps under 1%, meaning that once a
request fails, the browser is capable to handle this.

In Figure 6.4 and 6.5 shows respectively the CPU and memory usage. The evolution
of all the three the graph is similar. With one connection all the servers use only 100%,
which is equivalent to the usage of one CPU. Once there is more than one connection,
the usage is more than 200%. As for memory usage, this is not affected by the number
of connections.

6.2 ASGI as a replacement for WSGI

As discussed in Section 5.2.6 on page 32, ASGI is an enlargement of WSGI. Meaning
that every WSGI application also can run on an ASGI server. This test is to research if a
current implementation of the ASGI server is suitable to replace the WSGI counterparts.
In this test, the three recently reviewed WSGI servers are tested against the only two
stable ASGI servers, Daphne and Uvicorn.

The test is conducted in the same circumstance as the first tests. All the connection of
Table 6.1 on page 39 are used, the test is done using the ab tool with a period of 30 s
and the ASGI server is running inside a container using two CPUs and 1500 MB. The
only difference is that all servers are start-up with only one worker. Daphne does not
provide the possibility to start-up multiple workers. To get a comparable result therefore,
all servers are tested with one worker.

The overview of the results is given in Figures 6.1 to 6.5 on pages 40–42.

44

10
0

1
01

1
02

1
03

1
04

0

0.5

1

1.5

2

2.5

·104

Concurrency [−]

R
ou

nd
Tr

ip
Ti

m
e
[m

s]

Gunicorn
uWSGI

mod_wsgi
Daphne
Uvicorn

Figure 6.6. Latency of single workers ASGI and WSGI servers

10
0

10
1

10
2

10
3

10
4

0

100

200

300

400

500

Concurrency [−]

R
ou

nd
Tr

ip
Ti

m
e
[m

s]

Gunicorn
uWSGI

mod_wsgi
Daphne
Uvicorn

Figure 6.7. Latency of single workers ASGI and WSGI servers - magnified

45

10
0

10
1

10
2

10
3

10
4

150

200

250

300

350

400

450

Concurrency [−]

R
eq

ue
st

pe
rs

ec
on

d
[#

/
s]

Gunicorn
uWSGI

mod_wsgi
Daphne
Uvicorn

Figure 6.8. Throughput of single workers ASGI and WSGI servers

0
·1
00

1
·1
0
3

2
·1

03

3
·1
03

4
·1

03

5
·1
03

0

0.2

0.4

0.6

0.8

1

Concurrency [−]

E
rr

or
ra

te
[%

]

Gunicorn
uWSGI

mod_wsgi
Daphne
Uvicorn

Figure 6.9. Error rate of single workers ASGI and WSGI servers

46

10
0

1
01

1
02

1
03

1
04

95

100

105

110

115

120

Concurrency [−]

C
P

U
us

ag
e
[%

]

Gunicorn
uWSGI

mod_wsgi
Daphne
Uvicorn

Figure 6.10. CPU Usage of single workers ASGI and WSGI servers

10
0

10
1

10
2

10
3

10
4

40

60

80

100

120

140

160

Concurrency [−]

M
em

or
y

us
ag

e
[M

B
]

Gunicorn
uWSGI

mod_wsgi
Daphne
Uvicorn

Figure 6.11. Memory usage of single workers ASGI and WSGI servers

The same behaviour of the WSGI server can be found in Figure 6.7. However, the Gu-
nicorn and uWSGI are much more unstable with large concurrency. Both ASGI servers
rise very instantaneously with additional concurrency, as seen in Figure 6.6.

The same unstable behaviour of the WSGI server with large concurrency can be found
in Figure 6.8. Both the ASGI servers clearly underperform in comparison with WSGI
versions.

47

The asynchronous servers answers on every request that it receives. Resulting in a per-
fect error rate, see Figure 6.9. Again, Gunicorn and uWSGI display unstable behaviour.

In comparison with the first tests, the consumption of the WSGI servers of CPU and
memory has changed. For example, in Figure 6.10 on the previous page, Gunicorn and
uWSGI consume less CPU and memory than the other three servers. The usage of the
CPU of Daphne, Uvicorn and mod_wsgi is in the same order of magnitude. Remarkable
is that no server uses the full 200% CPU. All the systems have designed a worker to
maximise the usage of one CPU core.

The memory usage (Fig. 6.11) of the WSGI servers are still constant, while the memory
usage of the ASGI only stabilises between the 10 and 500 connections. The memory
usage of Gunicorn in these tests are the lowest of all the competitors, while in the first
test, the usage was noticeable a lot higher than the other two servers.

48

7 CONCLUSION & FUTURE

This chapter recapitulates the building process of the thesis, the discussions of the test-
ings and to finalise, the prospects of the web platform.

7.1 Development process and choices

The choices to use certain technologies and packages in Chapter 5 are based on their
properties and functionalities. The usability can only be assessed after the implementa-
tion.

All selected packages and frameworks were very easy to use. There was documentation
and online support for each component. Only the implementation of the Django Channels
package was difficult. Because of a major update1, the official documentation is limited
and the online support found was mostly for the older versions. On the deployment side,
Docker is a useful container platform with a vast online community. It is an easy to use tool
with many functionalities. Altogether, all the chosen components were easy to implement
and available with sufficient documentation, except for the Django Channels packet.

7.2 Discussion of the testing results

In the first test, the performance of WSGI servers was tested with multiple workers. Fi-
nally, uWSGI is used in the web platform. A web browser will open multiple connections
to parallel the retrieval, it will happen very little that only one connection is opened. The
behaviour at high concurrency is, therefore, more important. uWSGI has the highest aver-
age throughput in the high concurrency domain. Together with the overall lowest latency,
uWSGI is the best choice. The error rate is less good than mod_wsgi, but still acceptable
under 0.4%. In terms of consumption, uWSGI scores the same as the other two in CPU
usage. The Apache implementation uses about as much as uWSGI, but much less than
Gunicorn. In general, it can be said that uWSGI performs best of all and is therefore used
in the web platform.

The second test investigates whether the ASGI implementation can perform equality well,
or better, than the WSGI counterparts. This test was focused on if an ASGI can replace an

1version 2.0, in February 2018

49

WSGI. A good ASGI server needs to perform WSGI tasks correctly. Both implementations
of the ASGI and WSGI server were tested with the same tool to handle a request for a web
page. However, the results are disappointing. Both the ASGI servers have overall higher
RTTs and an overall lower throughput than any WSGI server. Although the error rate is
very good, both asynchronous servers answer on every incoming request. Unfortunately,
the resource usage is then worse again. Both servers consume more CPU and memory
than the WSGI counterparts.

From this can be concluded that the current version of Daphne and Uvicorn are not suited
to taking over tasks from any WSGI server. This is also the reason that both a WSGI and
an ASGI server is implemented in the system, to use the asynchronous capabilities of the
ASGI server and the better performance of the WSGI server.

Remarkable from this test is also the unstable behaviour of the WSGI servers at high
concurrency. Both the throughput and latency are more fluctuating than in the first test.
The error rate of Gunicorn and uWSGI are also more erratic than in the first test. As a
result, it can be concluded that WSGI is more reliable with multiple workers to process
high concurrency.

7.3 Future challenges

This first thesis especially focuses on the design of the back-end server system of the
web application. The following listing shows where upcoming opportunities lie.

Front-end framework

During this stage, little attention was paid to the design of the web pages during the
construction. The addition of a JavaScript framework would be an added value. Together
with a CSS framework, professional-looking and easy to use web pages can be built.

Different communication technology

As stated by Yokotani et al., MQTT is a lighter protocol than REST [112]. One possibility
lies in changing the communication technology to MQTT or the newer Lightweight Ma-
chine to Machine (LWM2M) protocol. Thus, smaller and lighter message packets can be
created that are easier to process by the back-end server [82].

Cloud services

Making use of cloud storage, all the data can be saved in an extra facility. This way, the
data can be extra protected and if linked to a CDN, all the static files can be offered to the

50

website visitors faster.

Infrastructure automation

To provide maintenance options of the detection nodes, an infrastructure automation tool
can be used. This way, only one time the update statement can be defined and then be
implemented on all nodes. An automated start-up of new nodes can also be achieved
with these tools.

Expansion of the functionalities

Another opportunity lies in the implementation of an administrator portal. Through this
portal, the status of all the detection nodes could be displayed. Web pages of the initial-
isation of a new venue and the assigning of which venue which user can track, can be
placed here.

51

REFERENCES

[1] ab - Apache HTTP server benchmarking tool - Apache HTTP Server Version 2.4.
The Apache Software Foundation. Apr. 2019. URL: https://httpd.apache.org/
docs/2.4/programs/ab.html (visited on 07/30/2019).

[2] T. Aihkisalo and T. Paaso. Latencies of service invocation and processing of the
REST and SOAP web service interfaces. Proceedings - 2012 IEEE 8th World
Congress on Services, SERVICES 2012 (2012), 100–107. DOI: 10.1109/SERVICES.
2012.55.

[3] Alpine Linux. Alpine Linux Development Team. July 2019. URL: https://alpinelinux.
org/ (visited on 07/29/2019).

[4] Amazon Kinesis Data Firehose. Amazon Web Services. 2019. URL: https://aws.
amazon.com/kinesis/data-firehose/ (visited on 07/03/2019).

[5] M. Anastopoulos and T. Romberg. Referenzarchitekturen für Web-Applikationen.
(Dec. 2001). in German.

[6] Apache httpd Modules. The Apache Software Foundation. 2016. URL: http://
httpd.apache.org/modules/ (visited on 07/09/2019).

[7] A. Babu. Evolution from Web Sites to Web Apps — PWA. Medium. Mar. 2018.
URL: https://medium.com/beginners-guide-to-mobile-web-development/
evolution - from - web - sites - to - web - apps - pwa - 6aa25aeecd2b (visited on
06/16/2019).

[8] A. Banks, E. Briggs, K. Borgendale and R. Gupta. MQTT Version 5.0. Tech. rep.
March. OASIS, 2019.

[9] L. Baresi, F. Garzotto and P. Paolini. From Web Sites to Web Applications: New
Issues for Conceptual Modeling. (2001). Ed. by S. W. Liddle, H. C. Mayr and B.
Thalheim, 89–100.

[10] L. Bass, P. Clements and R. Kazman. Software Architecture in Practice. SEI series
in software engineering. Addison-Wesley, 2003. ISBN: 9780321154958.

[11] A. Beaulieu. Learning SQL. O’Reilly Media, Inc., 2005. ISBN: 0596007272.
[12] T. Berners-Lee. The World Wide Web project. CERN. Dec. 1990. URL: http :

//info.cern.ch/hypertext/WWW/TheProject.html (visited on 06/15/2019).
[13] Best Container Management Software. G2 Crowd, Inc. 2019. URL: https : / /

www . g2 . com / categories / container - management ? segment = all (visited on
07/14/2019).

[14] M. A. Boillo. Application programming interface (API) for sensory events. 12. 2007.
[15] T. Butler. NGINX Cookbook. Packt Publishing, 2017. ISBN: 9781786466174.
[16] Caching Overview. Amazon Web Services. 2019. URL: https://aws.amazon.

com/caching/ (visited on 06/30/2019).

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://doi.org/10.1109/SERVICES.2012.55
https://doi.org/10.1109/SERVICES.2012.55
https://alpinelinux.org/
https://alpinelinux.org/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-firehose/
http://httpd.apache.org/modules/
http://httpd.apache.org/modules/
https://medium.com/beginners-guide-to-mobile-web-development/evolution-from-web-sites-to-web-apps-pwa-6aa25aeecd2b
https://medium.com/beginners-guide-to-mobile-web-development/evolution-from-web-sites-to-web-apps-pwa-6aa25aeecd2b
http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/TheProject.html
https://www.g2.com/categories/container-management?segment=all
https://www.g2.com/categories/container-management?segment=all
https://aws.amazon.com/caching/
https://aws.amazon.com/caching/

52

[17] Camera Module V2. The Raspberry Pi Foundation. Apr. 2016. URL: https://
www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ (visited on
07/29/2019).

[18] Celery - Distributed Task Queue — Celery 4.3.0 documentation. Celery. Mar.
2019. URL: http://docs.celeryproject.org/en/latest/ (visited on 06/30/2019).

[19] P. E. Ceruzzi. A History of Modern Computing. 2nd ed. Cambridge, MA, USA: MIT
Press, 2003. ISBN: 0262532034.

[20] B. Chesneau. Settings — Gunicorn 19.9.0 documentation. July 2018. URL: http:
//docs.gunicorn.org/en/latest/settings.html (visited on 07/16/2019).

[21] ColdFusion Versions CFML Documentation. CFdocs. URL: https://cfdocs.org/
coldfusion-versions (visited on 06/18/2019).

[22] cPouta Community Cloud. CSC - IT CENTER FOR SCIENCE LTD. 2019. URL:
https://research.csc.fi/cpouta (visited on 07/29/2019).

[23] L. T. De Paolis, V. De Luca and R. Paiano. Sensor data collection and analytics
with thingsboard and spark streaming. (June 2018), 1–6. DOI: 10.1109/EESMS.
2018.8405822.

[24] Deploying — Channels 2.1.7 documentation. Django Software Foundation. Apr.
2019. URL: https://channels.readthedocs.io/en/latest/deploying.html
(visited on 07/29/2019).

[25] Developers Catalogue - FIWARE. FIWARE Foundation, e.V. 2019. URL: https:
//www.fiware.org/developers/catalogue/ (visited on 07/18/2019).

[26] A. Deveria. Can I use eventsource. Caniuse. June 2019. URL: https://caniuse.
com/#feat=eventsource (visited on 06/10/2019).

[27] A. Deveria. Can I use Web Sockets. Caniuse. June 2019. URL: https://caniuse.
com/#search=WebSocket (visited on 06/10/2019).

[28] Django Channels — Channels 2.1.7 documentation. Django Software Foundation.
Apr. 2019. URL: https://channels.readthedocs.io/en/latest/ (visited on
07/29/2019).

[29] Django documentation. Django Software Foundation. Apr. 2019. URL: https://
docs.djangoproject.com/en/2.2/ (visited on 07/11/2019).

[30] Django Packages : Webserver. Django Software Foundation. Apr. 2019. URL:
https://djangopackages.org/grids/g/webserver/ (visited on 07/10/2019).

[31] Django Packages : Workers, Queues, and Tasks. Django Software Foundation.
Apr. 2019. URL: https://djangopackages.org/grids/g/workers- queues-
tasks/ (visited on 07/12/2019).

[32] Django reCAPTCHA. Praekelt Consulting. Apr. 2019. URL: https://github.com/
praekelt/django-recaptcha (visited on 07/29/2019).

[33] Django REST framework. Encode OSS Ltd. July 2019. URL: https : / / www .

django-rest-framework.org/ (visited on 07/29/2019).
[34] Docker Documentation. Docker Inc. 2019. URL: https : / / docs . docker . com/

(visited on 07/14/2019).

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
http://docs.celeryproject.org/en/latest/
http://docs.gunicorn.org/en/latest/settings.html
http://docs.gunicorn.org/en/latest/settings.html
https://cfdocs.org/coldfusion-versions
https://cfdocs.org/coldfusion-versions
https://research.csc.fi/cpouta
https://doi.org/10.1109/EESMS.2018.8405822
https://doi.org/10.1109/EESMS.2018.8405822
https://channels.readthedocs.io/en/latest/deploying.html
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://caniuse.com/#feat=eventsource
https://caniuse.com/#feat=eventsource
https://caniuse.com/#search=WebSocket
https://caniuse.com/#search=WebSocket
https://channels.readthedocs.io/en/latest/
https://docs.djangoproject.com/en/2.2/
https://docs.djangoproject.com/en/2.2/
https://djangopackages.org/grids/g/webserver/
https://djangopackages.org/grids/g/workers-queues-tasks/
https://djangopackages.org/grids/g/workers-queues-tasks/
https://github.com/praekelt/django-recaptcha
https://github.com/praekelt/django-recaptcha
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/
https://docs.docker.com/

53

[35] Documentation: Apache HTTP Server. The Apache Software Foundation. Apr.
2019. URL: https://httpd.apache.org/docs/ (visited on 07/28/2019).

[36] W. Dreyer, A. K. Dittrich and D. Schmidt. Research perspectives for time se-
ries management systems. ACM SIGMOD Record 23.1 (1994), 10–15. ISSN:
01635808. DOI: 10.1145/181550.181553.

[37] T. Dunning and E. Friedman. Time series databases. Ed. by M. Loukides. First
Edition. Sebastopol, CA: O’Reilly Media, Inc, Dec. 2015, 73. ISBN: 9781491917022.

[38] P. J. Eby. PEP 333 – Python Web Server Gateway Interface v1.0. Python Software
Foundation. Dec. 2003. URL: https://www.python.org/dev/peps/pep-0333/
(visited on 07/10/2019).

[39] P. J. Eby. PEP 3333 – Python Web Server Gateway Interface v1.0.1. Python Soft-
ware Foundation. Sept. 2010. URL: https://www.python.org/dev/peps/pep-
3333/ (visited on 07/10/2019).

[40] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455. RFC Editor, Dec.
2011. URL: http://www.rfc-editor.org/rfc/rfc6455.txt.

[41] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J. Leach and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. RFC Editor,
May 1999. URL: http://www.rfc-editor.org/rfc/rfc2616.txt.

[42] R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis. University of California, Irvine, 2000, 162.

[43] D. Flanagan. JavaScript: The Definitive Guide Activate Your Web Pages. 5th.
O’Reilly Media, Inc., 2011. ISBN: 0596805527.

[44] M. Frampton. Complete Guide to Open Source Big Data Stack. Apress, 2018.
ISBN: 9781484221495. URL: https://books.google.fi/books?id=Y8FHDwAAQBAJ.

[45] N. Freed and N. S. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies. RFC 2045. RFC Editor, Nov. 1996. URL:
http://www.rfc-editor.org/rfc/rfc2045.txt.

[46] J. Fulton. Web Architecture 101. Medium. Nov. 2017. URL: https://engineering.
videoblocks.com/web-architecture-101-a3224e126947 (visited on 07/04/2019).

[47] Getting Started - ThingsBoard. The ThingsBoard Authors. 2019. URL: https :

//thingsboard.io/docs/getting- started- guides/helloworld/ (visited on
07/18/2019).

[48] J. Gillies and R. Cailliau. How the Web was Born: The Story of the World Wide
Web. Oxford paperback reference. Oxford University Press, 2000. ISBN: 9780192862075.

[49] I. Goodfellow, Y. Bengio and A. Courville. Deep Learning. MIT Press, 2016.
[50] A. Goodman. Application vs System Container. Excella. Oct. 2017. URL: https:

//www.excella.com/insights/application-vs-system-containers (visited on
07/13/2019).

[51] I. Grigorik. High-Performance Browser Networking. Vol. 1. O’Reilly Media, Inc.,
2013, 404. ISBN: 978-1-4493-4476-4. DOI: 10 . 1017 / CBO9781107415324 . 004.
eprint: arXiv:1011.1669v3.

https://httpd.apache.org/docs/
https://doi.org/10.1145/181550.181553
https://www.python.org/dev/peps/pep-0333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://books.google.fi/books?id=Y8FHDwAAQBAJ
http://www.rfc-editor.org/rfc/rfc2045.txt
https://engineering.videoblocks.com/web-architecture-101-a3224e126947
https://engineering.videoblocks.com/web-architecture-101-a3224e126947
https://thingsboard.io/docs/getting-started-guides/helloworld/
https://thingsboard.io/docs/getting-started-guides/helloworld/
https://www.excella.com/insights/application-vs-system-containers
https://www.excella.com/insights/application-vs-system-containers
https://doi.org/10.1017/CBO9781107415324.004
arXiv:1011.1669v3

54

[52] C. de la Guardia. Python Web Frameworks. O’Reilly Media, Inc., Feb. 2016. ISBN:
9781491938102.

[53] M. Hadley, H. F. Nielsen, A. Karmarkar, M. Gudgin, N. Mendelsohn, J.-J. Moreau
and Y. Lafon. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).
W3C Recommendation. W3C, Apr. 2007.

[54] J. Han, M. Kamber and J. Pei. Data Mining: Concepts and Techniques. 3rd. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011. ISBN: 9780123814791.

[55] G. E. Hinton, S. Osindero and Y.-W. Teh. A Fast Learning Algorithm for Deep
Belief Nets. Neural Comput. 18.7 (July 2006), 1527–1554. ISSN: 08997667. DOI:
10.1162/neco.2006.18.7.1527.

[56] S. Hussain. How To Set Up a Two Node LEPP Stack on CentOS 7. DigitalOcean,
LLC. Mar. 2015. URL: https://www.digitalocean.com/community/tutorials/
how-to-set-up-a-two-node-lepp-stack-on-centos-7 (visited on 06/17/2019).

[57] Implementations — ASGI 2.0 documentation. Django Software Foundation. Mar.
2019. URL: https://asgi.readthedocs.io/en/latest/implementations.html
(visited on 07/11/2019).

[58] Intel Movidius Neural Compute Stick. Intel Corp. Nov. 2017. URL: https://software.
intel.com/en-us/movidius-ncs (visited on 07/29/2019).

[59] Introduction — ASGI 2.0 documentation. Django Software Foundation. Mar. 2019.
URL: https://asgi.readthedocs.io/en/latest/introduction.html (visited on
07/11/2019).

[60] Introduction to Celery — Celery 4.3.0 documentation. Celery Project. July 2019.
URL: http://docs.celeryproject.org/en/latest/getting-started/introduction.
html (visited on 07/12/2019).

[61] June 2019 Web Server Survey. Netcraft Ltd. June 2019. URL: https://news.
netcraft.com/archives/2019/06/17/june-2019-web-server-survey.html

(visited on 07/09/2019).
[62] R. M. Junior. Bare metal vs. virtual servers: Which choice is right for you? IBM -

Cloud computing news. July 2014. URL: https://www.ibm.com/blogs/cloud-
computing/2014/07/25/bare- metal- vs- virtual- servers- choice- right/

(visited on 06/17/2019).
[63] G. Kappel, B. Pröll, S. Reich and W. Retschitzegger. Web Engineering: The Dis-

cipline of Systematic Development of Web Applications. Wiley, June 2006. ISBN:
9780470015544.

[64] A. Kulkarni. What the heck is time-series data (and why do I need a time-series
database)? Timescale, Inc. Nov. 2018. URL: https://blog.timescale.com/
what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-

database-dcf3b1b18563/ (visited on 05/23/2019).
[65] J. Lengstorf and P. Leggetter. Realtime Web Apps: With HTML5 WebSocket, PHP,

and jQuery. Apress Media, LLC, 2013, 312. ISBN: 978-1-4302-4620-6. DOI: 10.
1007/978-1-4302-4621-3.

https://doi.org/10.1162/neco.2006.18.7.1527
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-two-node-lepp-stack-on-centos-7
https://www.digitalocean.com/community/tutorials/how-to-set-up-a-two-node-lepp-stack-on-centos-7
https://asgi.readthedocs.io/en/latest/implementations.html
https://software.intel.com/en-us/movidius-ncs
https://software.intel.com/en-us/movidius-ncs
https://asgi.readthedocs.io/en/latest/introduction.html
http://docs.celeryproject.org/en/latest/getting-started/introduction.html
http://docs.celeryproject.org/en/latest/getting-started/introduction.html
https://news.netcraft.com/archives/2019/06/17/june-2019-web-server-survey.html
https://news.netcraft.com/archives/2019/06/17/june-2019-web-server-survey.html
https://www.ibm.com/blogs/cloud-computing/2014/07/25/bare-metal-vs-virtual-servers-choice-right/
https://www.ibm.com/blogs/cloud-computing/2014/07/25/bare-metal-vs-virtual-servers-choice-right/
https://blog.timescale.com/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/
https://blog.timescale.com/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/
https://blog.timescale.com/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-series-database-dcf3b1b18563/
https://doi.org/10.1007/978-1-4302-4621-3
https://doi.org/10.1007/978-1-4302-4621-3

55

[66] Y. P. de León and T. Piscopo. Druva Cloud Platform. Druva. Aug. 2014. URL:
https://www.druva.com/blog/object- storage- versus- block- storage-

understanding-technology-differences/ (visited on 07/02/2019).
[67] A. Leslie. NGINX vs. Apache (Pro/Con Review, Uses, & Hosting for Each). Hostin-

gAdvice.com. Jan. 2018. URL: https://www.hostingadvice.com/how-to/nginx-
vs-apache/ (visited on 07/09/2019).

[68] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg.
SSD: Single Shot MultiBox Detector. To appear. 2016. URL: http://arxiv.org/
abs/1512.02325.

[69] J. López-Riquelme, N. Pavón-Pulido, H. Navarro-Hellín, F. Soto-Valles and R.
Torres-Sánchez. A software architecture based on FIWARE cloud for Precision
Agriculture. Agricultural Water Management 183.C (2016), 123–135. DOI: 10 .

1016/j.agwat.2016.10.0.
[70] J. Martin. Managing the Data Base Environment. Pearson Education, Limited,

1983. ISBN: 9780135505823.
[71] F. McCabe, D. Booth, H. Haas, M. Champion, C. Ferris, D. Orchard and E. New-

comer. Web Services Architecture. W3C Note. W3C, Feb. 2004. URL: http://
www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

[72] W. Mcculloch and W. Pitts. A Logical Calculus of Ideas Immanent in Nervous
Activity. Bulletin of Mathematical Biophysics 5 (1943), 127–147.

[73] J. Meier, C. Farre, P. Bansode, S. Barber and D. Rea. Performance Testing Guid-
ance for Web Applications: Patterns & Practices. Redmond, WA, USA: Microsoft
Press, 2007. ISBN: 9780735625709.

[74] P. M. Mell and T. Grance. SP 800-145. The NIST Definition of Cloud Computing.
Tech. rep. Gaithersburg, MD, United States, 2011.

[75] A. Mikalauskas. What was wrong with Apache. speedemy. Apr. 2015. URL: http:
//www.speedemy.com/apache-vs-nginx-2015/ (visited on 07/09/2019).

[76] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geome-
try. MIT Press, 1969.

[77] mod_wsgi — mod_wsgi 4.6.7 documentation. Graham Dumpleton. 2019. URL:
https://modwsgi.readthedocs.io/en/develop/ (visited on 07/10/2019).

[78] Motivation — Dramatiq 1.6.0 documentation. Cleartype SRL. May 2019. URL:
https://dramatiq.io/motivation.html (visited on 07/12/2019).

[79] A. Mouat. Using Docker. O’Reilly Media, Inc., 2015. ISBN: 9781491915769.
[80] Multi-Processing Modules (MPMs) - Apache HTTP Server Version 2.4. The Apache

Software Foundation. 2019. URL: https://httpd.apache.org/docs/current/
mpm.html (visited on 07/09/2019).

[81] S. Mumbaikar and P. Padiya. Web Services Based On SOAP and REST Princi-
ples. International Journal of Scientific and Research Publications 3.5 (2013), 3–
6. URL: www.ijsrp.org.

[82] N. Naik. Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP. 2017 IEEE International Systems Engineering Symposium

https://www.druva.com/blog/object-storage-versus-block-storage-understanding-technology-differences/
https://www.druva.com/blog/object-storage-versus-block-storage-understanding-technology-differences/
https://www.hostingadvice.com/how-to/nginx-vs-apache/
https://www.hostingadvice.com/how-to/nginx-vs-apache/
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://doi.org/10.1016/j.agwat.2016.10.0
https://doi.org/10.1016/j.agwat.2016.10.0
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.speedemy.com/apache-vs-nginx-2015/
http://www.speedemy.com/apache-vs-nginx-2015/
https://modwsgi.readthedocs.io/en/develop/
https://dramatiq.io/motivation.html
https://httpd.apache.org/docs/current/mpm.html
https://httpd.apache.org/docs/current/mpm.html
www.ijsrp.org

56

(ISSE). IEEE, Oct. 2017, 12–18. ISBN: 9781538634042. DOI: 10.1109/SysEng.
2017.8088251.

[83] J. Nelson. Mastering Redis: take your knowledge of Redis to the next level to
build enthralling applications with ease. Birmingham: Packt Publ., 2016. ISBN:
9781783988181.

[84] NGINX Docs. NGINX Inc. Apr. 2019. URL: https://docs.nginx.com/nginx/
(visited on 07/28/2019).

[85] J. Nielsen. Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1993. ISBN: 0125184050.

[86] R. Nixon. Learning PHP, MySQL & JavaScript: With jQuery, CSS & HTML5. 4th.
O’Reilly Media, Inc., 2014. ISBN: 1491918667.

[87] PostgreSQL. The PostgreSQL Global Development Group. June 2019. URL: https:
//www.postgresql.org/ (visited on 07/29/2019).

[88] RabbitMQ - Homepage. Pivotal Software, Inc. July 2019. URL: https://www.
rabbitmq.com/ (visited on 07/29/2019).

[89] RabbitMQ vs Redis : What are the differences? StackShare, Inc. 2019. URL:
https://stackshare.io/stackups/rabbitmq-vs-redis (visited on 07/12/2019).

[90] P. Raj, A. Raman and H. Subramanian. Architectural Patterns: Uncover Essen-
tial Patterns in the Most Indispensable Realm of Enterprise Architecture. Packt
Publishing, 2017. ISBN: 9781787287495.

[91] Raspberry Pi 3 Model B+. The Raspberry Pi Foundation. Mar. 2018. URL: https:
//www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ (visited on
07/29/2019).

[92] A. Rauschmayer. Speaking JavaScript. 1st. O’Reilly Media, Inc., 2014. ISBN: 1449365035.
[93] E. Rescorla. HTTP Over TLS. RFC 2818. RFC Editor, May 2000. URL: http:

//www.rfc-editor.org/rfc/rfc2818.txt.
[94] L. and Richardson and S. Ruby. RESTful Web Services. Ed. by M. Loukides.

First Edit. Vol. 1. 1. Sebastopol, California: O’Reilly Media., 2007, 103. ISBN:
9780596529260.

[95] L. Roberts. The Evolution of Packet Switching. Proceedings of the IEEE 66 (Dec.
1978), 1307–1313. DOI: 10.1109/PROC.1978.11141.

[96] R. Romano and M. Kalin. Java Web Services: Up and Running. Second ed.
O’Reilly Media, Inc., 2009, 316. ISBN: 9780596521134.

[97] K. Schroeder. Performance of Apache 2.4 with the event MPM compared to Nginx.
ESchrade. 2014. URL: https://www.eschrade.com/page/performance- of-
apache-2-4-with-the-event-mpm-compared-to-nginx/ (visited on 07/09/2019).

[98] R. Singh Chowhan. Evolution and Paradigm Shift in Distributed System Architec-
ture. IntechOpen (2018). DOI: 10.5772/intechopen.80644.

[99] Ø. R. Tangen. Real-Time Web with WebSocket. Master’s Thesis. University of
Oslo, May 2015. URL: https://www.duo.uio.no/handle/10852/44808.

[100] T. H. Team. MQTT Essentials. HiveMQ. Jan. 2015. URL: https://www.hivemq.
com/tags/mqtt-essentials/ (visited on 06/05/2019).

https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1109/SysEng.2017.8088251
https://docs.nginx.com/nginx/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://stackshare.io/stackups/rabbitmq-vs-redis
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.rfc-editor.org/rfc/rfc2818.txt
https://doi.org/10.1109/PROC.1978.11141
https://www.eschrade.com/page/performance-of-apache-2-4-with-the-event-mpm-compared-to-nginx/
https://www.eschrade.com/page/performance-of-apache-2-4-with-the-event-mpm-compared-to-nginx/
https://doi.org/10.5772/intechopen.80644
https://www.duo.uio.no/handle/10852/44808
https://www.hivemq.com/tags/mqtt-essentials/
https://www.hivemq.com/tags/mqtt-essentials/

57

[101] The uWSGI project — uWSGI 2.0 documentation. unbit. Feb. 2019. URL: https:
//uwsgi-docs.readthedocs.io/en/latest/ (visited on 07/11/2019).

[102] TimescaleDB Docs | Overview. Timescale, Inc. May 2019. URL: https://docs.
timescale.com/v1.3/introduction (visited on 07/12/2019).

[103] D. Tomaszuk. Python’s Frameworks Comparison: Django, Pyramid, Flask, Sanic,
Tornado, BottlePy and More. Netguru S.A. Nov. 2018. URL: https://www.netguru.
com/blog/python-frameworks-comparison (visited on 07/11/2019).

[104] Tutorial: Installing a WIMP Server on an Amazon EC2 Instance Running Windows
Server. Amazon Web Services. 2019. URL: https://docs.aws.amazon.com/
AWSEC2/latest/WindowsGuide/install-WIMP.html (visited on 06/17/2019).

[105] Uvicorn. Encode OSS Ltd. June 2019. URL: https://www.uvicorn.org/ (visited
on 07/29/2019).

[106] Waitress — waitress 1.3.0 documentation. Pylons Project. Apr. 2019. URL: https:
/ / docs . pylonsproject . org / projects / waitress / en / latest / # (visited on
07/10/2019).

[107] Web Server (IIS) Overview | Microsoft Docs. Microsoft Corporation. Oct. 2018.
URL: https://docs.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-server-2012-r2-and-2012/hh831725(v%5C%3Dws.11) (visited on
07/28/2019).

[108] Welcome to Flask — Flask Documentation (1.1.x). the Pallets Projects. Sept.
2019. URL: https : / / flask . palletsprojects . com / en / 1 . 1 . x/ (visited on
07/11/2019).

[109] What is PaaS? Platform as a Service. Microsoft. 2019. URL: https://azure.
microsoft.com/en-ca/overview/what-is-paas/ (visited on 06/17/2019).

[110] What is Streaming Data? Amazon Web Services. 2019. URL: https : / / aws .

amazon.com/streaming-data/ (visited on 07/03/2019).
[111] Why use a Content Delivery Network (CDN)? GTmetrix. Feb. 2017. URL: https:

//gtmetrix.com/why-use-a-cdn.html (visited on 07/01/2019).
[112] T. Yokotani and Y. Sasaki. Comparison with HTTP and MQTT on required network

resources for IoT. 2016 International Conference on Control, Electronics, Renew-
able Energy and Communications (ICCEREC). Sept. 2016, 1–6. DOI: 10.1109/
ICCEREC.2016.7814989.

https://uwsgi-docs.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/
https://docs.timescale.com/v1.3/introduction
https://docs.timescale.com/v1.3/introduction
https://www.netguru.com/blog/python-frameworks-comparison
https://www.netguru.com/blog/python-frameworks-comparison
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/install-WIMP.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/install-WIMP.html
https://www.uvicorn.org/
https://docs.pylonsproject.org/projects/waitress/en/latest/#
https://docs.pylonsproject.org/projects/waitress/en/latest/#
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831725(v%5C%3Dws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh831725(v%5C%3Dws.11)
https://flask.palletsprojects.com/en/1.1.x/
https://azure.microsoft.com/en-ca/overview/what-is-paas/
https://azure.microsoft.com/en-ca/overview/what-is-paas/
https://aws.amazon.com/streaming-data/
https://aws.amazon.com/streaming-data/
https://gtmetrix.com/why-use-a-cdn.html
https://gtmetrix.com/why-use-a-cdn.html
https://doi.org/10.1109/ICCEREC.2016.7814989
https://doi.org/10.1109/ICCEREC.2016.7814989

	Introduction
	Background of the project
	Goal of this thesis
	The requirements of the server
	Practical realisation
	Deep learning
	Hardware

	Related work: comparing to existing IoT frameworks

	Background of the general web server
	Fundamentals of a web server
	Evolution of web pages
	Software stack
	Deployment

	Communication protocols
	Hypertext Transfer Protocol
	Message Queuing Telemetry Transport

	Real time websites
	HTTP Long Polling
	WebSocket
	Server-Sent Events

	Principles of designing a server platform
	Layered architectures
	Modern web server model
	Web server
	Application server
	Database
	Caching service
	Task queue
	Third party services
	Cloud services
	Content Delivery Network

	Virtualisation

	Cloud implementation of the server platform
	Used technologies
	The implemented stack
	Selection procedure
	Overview
	Web server
	Web framework
	Web Server Gateway Interface
	Asynchronous Server Gateway Interface
	Distributed workers
	Time series database
	Specific library and packages
	Overview of the web application

	Implementation details
	Deployment
	Containerisation
	Container stack
	Cloud platform

	Performance evaluation
	Performance of different WSGI servers
	Situation of the research
	Test setup
	Results

	ASGI as a replacement for WSGI

	Conclusion & Future
	Development process and choices
	Discussion of the testing results
	Future challenges

	References

