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ABSTRACT 

Aleksi Ruhanen: Quantum Scarring in a Two-Dimensional Elliptical Harmonic Os-
cillator 
Tampere University 
Bachelor of Science Thesis, 14 pages 
August 2019 
Degree Programme in Science and Engineering 
Major: Advanced Engineering Physics 
Examiners: Joonas Keski-Rahkonen and Esa Räsänen 
 

Perturbation-induced quantum scarring is a recently discovered phenomenon in a quan-

tum well perturbed by local potential bumps. In this phenomenon, the probability density 

of an eigenstate in a perturbed system is enhanced along a periodic orbit of the unper-

turbed classical counterpart. In this Thesis, we examine perturbation-induced scarring in 

a two-dimensional anisotropic (elliptic) oscillator characterized by the anisotropy param-

eter, i.e., the frequency ratio of the confining potential. In particular, we show that some 

eigenstates of the perturbed oscillator are scarred by the so-called Lissajous orbits occur-

ring at specific anisotropy parameters. Furthermore, the stability of these Lissajous scars 

is preliminarily analyzed. 
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TIIVISTELMÄ 

Aleksi Ruhanen: Kvanttiarpeutuminen kaksiulotteisessa elliptisessä harmoni-
sessa oskillaattorissa 
Tampereen yliopisto 
Kandidaatintyö, 14 sivua 
Elokuu 2019 
Teknis-luonnontieteellinen koulutusohjelma 
Pääaine: Teknillinen fysiikka 
Tarkastajat: Joonas Keski-Rahkonen ja Esa Räsänen 

Häiriöillä tuotettu kvanttiarpeutuminen on ilmiö, jossa klassisen mekaniikan mukaiset 

jaksolliset liikeradat jättävät jäljen – kvanttiarven – vastaavan kvanttimekaanisen, häiri-

tyn järjestelmän ominaistiloihin. Tässä työssä tutkitaan häiriöillä tuotettua arpeutumista 

kaksiulotteisessa anisotrooppisessa (elliptisessä) harmonisessa oskillaattorissa. Erityi-

sesti osoitetaan, että osa paikallisesti häirityn elliptisen oskillaattorin ominaistiloista on 

arpeutunut muistuttamaan häiriöttömän systeemin mukaisia Lissajous’n ratoja. Systee-

miä häiritään ripottamalla satunnaisesti harmoniseen potentiaaliin paikallisia ”töyssyjä”, 

jotka mallintavat vastaavan nanorakenteen epäpuhtauksia. Nämä Lissajous’n arvet kyt-

keytyvät vastaaviin klassisiin ratoihin, joiden geometria ja olemassaolo taas kytkeytyvät 

oskillaattorin elliptisyyteen. Lisäksi alustava tutkimus osoittaa Lissajous’n arpien olevan 

stabiilimpia kuin vastaavat klassiset radat systeemin elliptisyyden muutoksille.  
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1. INTRODUCTION 

 

In classical mechanics, chaotic systems are characterized by their sensitivity to initial 

conditions. Two initially nearby trajectories will separate at an exponential rate described 

by a positive Lyapunov exponent, and the chaotic trajectories exhibit aperiodic behavior. 

These systems are still deterministic, and their complex motion arises from nonlinearities 

in the system than from truly random behavior [1]. 

Instead of tracing the precise trajectory of a particle, the state of a quantum system is 

determined by a wave function. In the physical interpretation, its absolute value squared 

describes the probability density of finding the particle at a given position [2]. The clas-

sical definition of chaos becomes ambiguous due to the probabilistic nature of quantum 

mechanics coupled with the uncertainty principle and the unitary time evolution of the 

quantum system. Hence the term “quantum chaos” refers to the study of quantum systems 

which are classically chaotic [3]. Nevertheless, classical-like behavior should start to 

emerge in the semiclassical limit according to the correspondence principle. 

Perturbation-induced (PI) quantum scars are enhancements of the probability density 

found in some high-energy eigenstates of a quantum system perturbed by local potential 

bumps [4]. These enhancements resemble the periodic orbits (PO) of the corresponding 

unperturbed classical system. In this Thesis, PI scarring in an anisotropic (elliptic) har-

monic oscillator (HO) is studied. This is an interesting subject of study because real po-

tential wells are seldom perfectly circularly symmetric. We demonstrate that some eigen-

states of the perturbed oscillator show strong scarring resembling the POs of the unper-

turbed classical system, which are known as Lissajous curves (see, e.g., Refs. [5,6]). We 

demonstrate that the strength, shape and abundance of the scars depend on the ratio of 

anisotropy of the oscillator. We identify that the optimal scarring condition is related to 

the existence of classical POs. 
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2. THEORETICAL BACKGROUND 

The eigenstates of a time-independent quantum system can be solved from the Schrö-

dinger equation 

𝐻𝜓 = 𝐸𝜓, (1) 

where 𝜓 is a wave function, E is the corresponding energy, and H is the Hamiltonian 

operator. The eigenstates of a classically chaotic quantum system were assumed to be 

formless and random, until certain tracks of enhanced probability density were discovered 

[7] in the quantum version of the Bunimovich stadium, a well-known example of a cha-

otic billiard [7]. These tracks, also known as scars, trace clear geometric shapes related to 

certain unstable periodic orbits of the corresponding chaotic classical system. The insta-

bility of the PO separates quantum scarring from being a direct consequence of the cor-

respondence principle, which predicts that probability density is enhanced in the vicinity 

of a stable PO. While being theoretically peculiar, scars have also been experimentally 

observed, see, e.g., Ref.  [3]. 

A new type of quantum scarring was recently reported in two-dimensional quantum wells 

perturbed by randomly scattered localized potential “bumps” [4]. In this PI scarring, some 

of the high-energy eigenstates of the perturbed system resemble the POs of the corre-

sponding unperturbed classical system. Thus, it is a phenomenon related to conventional 

scarring only by appearance. The existence of PI scarring can be understood within the 

perturbation theory, arising as a combined effect of the special near-degeneracies in the 

unperturbed system and the local nature of the perturbation  [4]. Interestingly, it has been 

shown [4] that PI scarring can be utilized to propagate a quantum wave packet with high 

occurrence. A later research in Ref. [8] demonstrates a high degree of controllability over 

the shape and orientation of the scars by employing a focused perturbation and an external 

magnetic field. 

On the classical side, the POs, which scars resemble, are associated with resonances in 

the oscillation frequencies of radial and angular motion [4] in an isotropic potential well. 

In an elliptic oscillator however, the POs are connected to the ratio of ellipticity of the 

potential. These POs are known as Lissajous orbits. 
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3. MODEL SYSTEM 

Harmonic oscillators (HOs) are systems where a displacement from the equilibrium re-

sults in a restoring force proportional to the displacement. Despite the simplicity of the 

system, HOs are found in many fields of physics. Furthermore, they can be used to ap-

proximate a potential function near the equilibrium [9]. Examples of HOs include 

Hooke’s law which applies to springs and the Lennard-Jones potential near its equilib-

rium, which describes interatomic interaction. Likewise, the harmonic oscillator acts as 

an important model in quantum mechanics. It also bears major historical significance, 

being studied by Born [10] and Schrödinger [11] in the early formulation of quantum 

mechanics. 

In this Thesis, we study a two-dimensional elliptical HO, meaning that the restoring force 

is dependent on both the direction and magnitude of the displacement. Atomic units with 

𝑚 = ℏ = 𝑒 = 1 are used for simplicity. 

3.1 Classical Elliptical Oscillator 

A classical elliptical harmonic oscillator is defined by the Hamilton function 

𝐻 =
1

2
(𝑝𝑥

2 + 𝑝𝑦
2) + 𝜔𝑥

2𝑥2 + 𝜔𝑦
2𝑦2, (2) 

where 𝜔𝑥 and 𝜔𝑦 are parameters defining the strength of the confining potential. The 

corresponding classical equations of motion are 

�̈� + 𝜔𝑥
2𝑥 = 0  and   �̈� + 𝜔𝑦

2𝑦 = 0.  

The equations above describe two uncoupled, one-dimensional simple harmonic oscilla-

tors, which have the general solutions 

𝑥(𝑡) = A sin(𝜔𝑥𝑡 + δ)  and  𝑦(𝑡) = B sin(𝜔𝑦𝑡) , (3) 

where δ presents a phase factor, and A and B are constants determined by the initial con-

ditions. The period of the individual sine functions is 
2𝜋

𝜔𝑥/𝑦
, where 𝜔𝑥/𝑦 is either 𝜔𝑥 or  𝜔𝑦 

depending on the axis. For an orbit to close, the two periods of the sine functions have to 

be commensurable. The period T of a closed orbit can thus be written as 

𝑇 = 𝑎
2𝜋

𝜔𝑥
= 𝑏

2𝜋

𝜔𝑦
, (4) 
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where 𝑎 and 𝑏 are relatively prime positive integers, i.e., their greatest common divisor 

is one. Consequently, if the greatest common divisor of 𝜔𝑥 and 𝜔𝑦 is one, the period of a 

closed orbit is 2𝜋, and 𝑎 and 𝑏 are equal to 𝜔𝑥 and 𝜔𝑦, respectively. Furthermore, each 

𝑎:𝑏 pair uniquely labels a set of Lissajous curves with 𝑎 horizontal oscillations and 𝑏 

vertical oscillations in a single period. The phase δ describes how the curve would seem 

to be rotated as interpreted as a three-dimensional object. 

For the periods of the sine functions to be commensurable, the integers 𝑎 and 𝑏 are re-

quired to be commensurable, i.e., their ratio is a rational number. This is true when neither 

𝜔𝑥 or 𝜔𝑦 are irrational. If the frequencies are incommensurate, a trajectory does not close 

in coordinate space. In phase space the trajectory is dense on a toroid, passing arbitrarily 

close to each point on the allowed surface without ever passing over the same point twice 

[12].   

3.2 Quantum Oscillator 

In quantum mechanics, the Hamiltonian of an elliptical HO is 

𝐻 = −
1

2
∇2 + 𝑉, (5) 

where the potential 𝑉 has the form  

𝑉 =  𝜔𝑥
2𝑥2 + 𝜔𝑦

2𝑦2. 

The stationary states of the HO can be solved analytically [13] from the Schrödinger 

equation (1), and the solution is given by 

𝜓𝑛𝑚(𝑥, 𝑦) =
(𝜔𝑥𝜔𝑦)

1
4

√2(𝑛+𝑚)𝑛! 𝑚! 𝜋
𝐻𝑛(𝑥√𝜔𝑥)𝐻𝑚(𝑦√𝜔𝑦)𝑒−

1
 2

(𝜔𝑥𝑥2+𝜔𝑦𝑦2), (6) 

where Hn is the Hermite polynomial of the nth order. The corresponding energies are 

given by  

𝐸𝑛𝑚 = 𝜔𝑥 (𝑛 +
1

2
) + 𝜔𝑦 (𝑚 +

1

2
), 

which shows degeneracies at commensurable frequency ratios. 
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Figure 1: Examples of eigenstates in an elliptical harmonic oscillator at commen-

surable frequency ratio 2 ∶ 3. Subplots (a)-(c) show the probability densities of the 

quantum states 𝜓00, 𝜓11 and 𝜓34 respectively. 

Figure 1 shows the probability densities of some eigenstates at the commensurable fre-

quency ratio 2:3. The solution (6) exhibits similar rectangular symmetry up to the semi-

classical limit where classical behavior should start to appear.  

3.3 Perturbed Classical and Quantum Systems 

In this Thesis, the perturbed elliptical harmonic oscillator is modeled by distributing ran-

domly located, Gaussian-like “bumps” into the system introduced in Eq. (2) and Eq. (5). 

The perturbation is described as a sum of individual bumps: 

𝑉𝑃(𝒓) = ∑ A𝑒
−|𝒓−𝒓𝒊|

2𝜎2

2

𝑖

, (7) 

where A is the bump amplitude and σ the bump width, which corresponds to the full width 

at half maximum (FWHM) by 

FWHM = 2√2 ln 2 𝜎. 

The quantum Hamiltonian of the perturbed system is 

𝐻 = −
1

2
∇2 + 𝑉 + 𝑉𝑝. (8) 

In general, numerical methods are required to solve the eigenstates of the perturbed Ham-

iltonian (8), as well as to study the classical trajectories in the corresponding classical 

system. 
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4. RESULTS 

4.1 Classical System 

The classical solution presented in Eq. (3) for the unperturbed system produces the Lis-

sajous curves, as illustrated in Fig. 2. 

 

Figure 2: Examples of Lissajous curves at commensurable frequency ratio 1 ∶ 2 

and 2 ∶ 3 as labelled in the subplots. The amplitudes A and B are set to unity. A 

string-like Lissajous curve is depicted in subplots (a) and (b), and subplots (c) and 

(d) show a loop-like curve. The different appearance of the curve with the same 

frequency ratio stems from the selection of the phase factor 𝛿 in Eq. (3). 

4.2 Quantum System 

We utilize the itp2d program [14] to numerically solve the 4000 lowest eigenstates of a 

perturbed anisotropic HO described by the Hamiltonian (8). The bumps [see Eq. (7)] are 

randomly scattered across the system with a uniform mean density of two bumps per unit 

square. In the studied energy range 𝐸 =  100– 230, the classical allowed region contains 

hundreds of bumps. The bump amplitude was set to A = 4, which causes strong scarring 
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in the studied energy range. The bump width is fixed to 𝜎 = 0.1, which corresponds to 

FWHM of 0.235, comparable to the local wavelength of the considered eigenstates. 

 

Figure 3: Examples of eigenstates in a perturbed anisotropic oscillator showing 

strong perturbation-induced scarring related to the Lissajous curves of the unper-

turbed classical oscillator. Subplots (a) and (c) are calculated with frequency ra-

tio 1 ∶ 2 and subplots (b) and (d) with ratio 2 ∶ 3. 

As expected based on the generalized PI scar theory [15], some of the high-energy eigen-

states of the perturbed oscillator are strongly scarred by the Lissajous curves of the clas-

sical, unperturbed counterpart [see Fig. 2]. Examples of these Lissajous scars are shown 

in Fig. 3. The scarring appears in the geometries reflecting the classical solution [see Eq. 

(3)] with different phases δ exhibiting two distinct geometries, named here as strings [see 

Figs. 3 (a) and (b)] and loops [see Figs. 3 (c) and (d)]. 
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4.3 Scar Stability 

 

Figure 4: (a) Examples of PI scarred eigenstates with increasing deviation 𝛿 at 

frequency ratio 𝜔𝑥 : 𝜔𝑦 = (2 + 𝛿) ∶ 3. (b) Classical, unperturbed (no bumps) tra-

jectory at frequency ratio 𝜔𝑥 : 𝜔𝑦= 2.01 ∶ 3. The top figure features an incomplete 

orbit, exhibiting similarity to the Lissajous curve seen in Fig. 2 (b). The bottom 

figure is a full orbit with the same frequency ratio. 

We carried out a preliminary, qualitative analysis on the stability of scars against a slight 

modulation out of the optimal confinement anisotropy. While a trajectory initially follows 

the Lissajous orbit seen in Fig. 2 (b) in a slightly deformed HO, as illustrated in the upper 

panel of Fig. 4 (b), it eventually loses its distinct geometry, and forms instead a rectangu-

lar, mesh-like structure such as in Fig. 4 (b). This is explained by Eq. (4), as the considered 

modulation to 𝜔𝑥 or 𝜔𝑦 changes the integers 𝑎 and 𝑏, leading to more vertical and hori-

zontal oscillations in a single period.  

Despite the classical unperturbed trajectory being sensitive to the anisotropy of the con-

finement, the PI scars seem to exhibit resistance against a slight modulation. With in-

creasing modulation however, the scars also appear to fade out and their abundance also 

diminishes. Furthermore, a rectangular structure appears, which is a reminiscent of the 

structure arising from the Hermite polynomials seen in Fig. 1. A more in-depth study into 

scarring under slight modulation can be found in Ref. [15]. 
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5. SUMMARY 

Anisotropic, or elliptic harmonic oscillators have most of their properties described by 

their ratio of anisotropy. The classical solutions to these systems are characterized by so-

called Lissajous curves, which bear very distinct geometries. As expressed in terms of the 

Hermite polynomials, the corresponding quantum systems, on the other hand, display a 

rectangularly symmetric structure which has no resemblance to the classical solution.  

In this Thesis, local, Gaussian-like perturbations were added to an elliptic HO in an effort 

to investigate perturbation-induced scarring in the system. We have demonstrated that 

some eigenstates are scarred by the Lissajous orbits of the classical unperturbed oscillator. 

These scars appear in two distinct geometries called “strings” and “loops”. While the 

primary focus was on the optimal commensurable ratios where scarring was most ex-

pected to appear, we also carried out a preliminary analysis on the scar stability against 

slight modulation out of the anisotropy ratio. The results indicate that Lissajous scars have 

resistance against minor deviations. Lissajous scarring extends the concept of perturba-

tion-induced scarring to anisotropic oscillators, in addition to the previously studied cir-

cularly symmetric potential wells in Refs. [4,8]. 

The future interest lies in the experimental detection of the phenomenon and in the anal-

ysis of quantum transport in the system. The use of an optical system to detect the Lissa-

jous scarring is suggested in Ref. [15]. In this approach, an optical fiber with certain re-

fractive properties is employed, so that the electromagnetic wave equation inside the fiber 

is analogous to the Schrödinger equation relevant to the system explored in this Thesis. 
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