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ABSTRACT

Yi Zhou: Sentiment classification with deep neural networks
Master of Science thesis
Tampere University
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May 2019

Sentiment classification is an important task in Natural Language Processing (NLP) area.
Deep neural networks become the mainstream method to perform the text sentiment classifica-
tion nowadays. In this thesis two datasets are used. The first dataset is a hotel review dataset
(TripAdvisor dataset) that collects the hotel reviews from the TripAdvisor website using Python
Scrapy framework. The pre-processing steps are then applied to clean the dataset. A record in
the TripAdvisor dataset consists of the text review and corresponding sentiment score. There are
5 sentimental labels: very negative, negative, neutral, positive, and very positive. The second
dataset is the Stanford Sentiment Treebank (SST) dataset. It is a public and common dataset for
sentiment classification.

Text Convolutional Neural Network (Text-CNN), Very Deep Convolutional Neural Network (VD-
CNN), and Bidirectional Long Short Term Memory neural network (BiLSTM) were chosen as
different methods for the evaluation in the experiments. The Text-CNN was the first work to apply
convolutional neural network architecture for the text classification. The VD-CNN applied deep
convolutional layers, with up to 29 layers, to perform the text classification. The BiLSTM exploited
the bidirectional recurrent neural network with long short term memory cell mechanism. On the
other hand, word embedding techniques are also considered as an important factor in sentiment
classification. Thus, in this thesis, GloVe and FastText techniques were used to investigate the
effect of word embedding initialization on the dataset. GloVe is a unsupervised word embedding
learning algorithm. FastText uses shallow neural network to generate word vectors and it has fast
convergence speed for training and high speed for inference.

The experiment was implemented using PyTorch framework. It shows that the BiLSTM with
GloVe as the word vector initialization achieved the highest accuracy 73.73% while the VD-CNN
with FastText had the lowest accuracy 71.95% on the TripAdvisor dataset. The BiLSTM model
achieved 0.68 F1-score while the VD-CNN model obtained 0.67 F1-score on the TripAdvisor
dataset. On the SST dataset, BiLSTM with GloVe again achieved the highest accuracy 36.35%
and 0.35 F1-score. The VD-CNN model with GloVe had the worst evaluation result in terms of
accuracy and F1-score. The Text-CNN model performed better than the VD-CNN model even
thought the VD-CNN model has more layers in most cases.

By analyzing the misclassified reviews in the TripAdvisor dataset from the three deep neural
networks, it is shown that the hotel reviews with more contradictory sentimental words were more
prone to misclassification than other hotel reviews.

Keywords: deep neural networks, convolutional neural network, recurrent neural network, senti-
ment classification, hotel reviews, TripAdvisor

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1 INTRODUCTION

1.1 Motivation

The rise of online social media and other websites has led to an explosion of text data.
Users can express their opinions conveniently and an increasing number of users are
willing to share their opinions online. For example, users share product reviews on the
Amazon website after purchasing a product and leave their comments on IMDB 1 or other
similar websites after watching movies. Users also leave comments on friends’ posts on
social media websites, such as Facebook 2, and Twitter 3. One of the typical scenarios of
online reviews is hotel reviews. After staying in a hotel, people share their opinion about
accommodation on websites, such as Booking 4, Airbnb 5 and TripAdvisor 6. These
hotel reviews are important and useful for both customers and hotel owners. Through
analyzing these reviews, hotel owners can know where the hotel problems are and solve
these mentioned issues to improve their service quality. Companies can find the defect
of their products and address these problems in the next version of products. However,
review data has increased dramatically during these years and human-labor method is
not practical to handle and analyze the massive data. This situation produces an urgent
problem in industry. For example, in sociology, economics and other areas, sentiment
analysis has shown its significant meaning and the wide applied prospect. All of these
urgent needs have been a big challenge for researchers, how to effectively analyze and
utilize these review data.

A method to analyze these reviews is the text sentiment analysis (also named opinion
mining). Sentiment analysis requires machine learning related knowledge and natural
language processing technique. Many machine learning algorithms were researched
and developed to apply in the sentiment analysis task. Sentiment analysis has been
an important subtopic of natural language processing (NLP). There are many specific
small research directions in text sentiment analysis. One main sub research direction is
the text sentiment classification. In text sentiment classification, many different methods
have been researched to solve the task. For example, a method is publishing the new

1website link: https://www.imdb.com
2website link: https://www.facebook.com
3website link: https://twitter.com
4website link: https://www.booking.com
5website link: https://www.airbnb.com
6website link: https://www.TripAdvisor.com

https://www.imdb.com
https://www.facebook.com
https://twitter.com
https://www.booking.com
https://www.airbnb.com
https://www.TripAdvisor.com
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text review dataset as the common benchmark, thus, researchers can use the dataset
to compare the performance of algorithms. Another method is introducing a new classi-
fication algorithm to achieve more accurate prediction result. Regarding introducing new
classification algorithms, recent research attention is focusing on deep neural network
based methods since the huge success of deep learning technique in computer vision in
2012. Deep neural networks have achieved the state of the art performance for sentiment
classification.

1.2 Objective

The goal of this thesis is to illustrate the whole processing steps of applying deep neural
networks for sentiment classification. These steps include retrieving the new text data,
cleaning the data, constructing deep neural networks and comparing the performance
of the algorithms on the data. The topic area is identified as sentiment classification on
hotel reviews. The performance of three different deep neural networks is evaluated for
the sentiment classification task on text review. The research questions in this thesis can
be summarized as below.

The first research question is to compare the performance of three deep neural networks
on the TripAdvisor dataset and SST dataset for sentiment classification. The metrics
include accuracy and F1-score. After completing the experiments, the model with the
highest accuracy and F1-score and the model with the lowest accuracy and F1-score on
these two datasets are shown.

The second research question is to compare the effectiveness of the GloVe and FastText
word embedding techniques for word vector initialization on deep neural networks for the
text sentiment classification task. Through the experiments, the word embedding initial-
ization technique with the better performance on the text review sentiment classification
task is shown.

The third research question is to analyze the misclassified hotel reviews on the sentiment
predication task and find out the difference between misclassified reviews and correct
predicted reviews.

The structure of the thesis is described as follow. Chapter 2 introduces the background
knowledge of neural networks and natural language processing. Chapter 3 deals with the
experiments. Chapter 4 contains the classification results and evaluation. Finally, chapter
5 draws the conclusion of the thesis and the future work.
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2 THEORY

This chapter provides the comprehensive background knowledge about the sentiment
classification algorithms. The detailed concept and related theoretical background about
neural network are first introduced in the first section, including basic module of a neural
network, common regularization technique, and strategies for training DNN models. In
the second section, concepts in NLP are described including word embedding technique
and sentiment classification algorithms. In the third section, common assessment metrics
are introduced to evaluate different algorithms for sentiment classification.

2.1 Neural network theory

In this section, details of a single neuron and activation functions are first introduced.
Secondly, two types of deep neural networks (recurrent neural network and convolutional
neural network) are elaborated. Thirdly, we describe the optimization algorithms, back-
propagation and regularization technique.

2.1.1 Neural network

Single neuron cell

A single neuron is composed of layer in artificial neural networks. The structure of a
single neuron is shown in Figure 2.1. The inputs are the vector x = [x1, x2, x3 ... xn], n
denotes the number of inputs, the matching weight for the input is the vector W j = [W 1j ,
W 2j , W 3j ... W nj ], j is the jth neuron in the layer. The inputs are first multiplied by W j ,
the temporary result is generated and the bias value is added to the temporary result, b
is the bias. Then this result is inputted into the activation function f . The corresponding
mathematical form of the forward computation in a single neuron is given in Equation 2.1,
where i counters from 1 to n, yj is the output value of the jth neuron for the input x.

yj = f

(
b+

n∑
i=1

xiW ij

)
(2.1)

Activation functions
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Figure 2.1. The structure of a single neuron

(a) Sigmoid activation function (b) Tanh activation function

Figure 2.2. Sigmoid and Tanh activation function

Activation functions are a basic component of an artificial neuron. A numerical value is
accepted as the input in the activation function. The output is calculated after applying the
mathematical calculation. There are a few common activation functions such as sigmoid,
Rectified Linear Unit (ReLU)[55] etc.

The Sigmoid function is a common activation function for calculating probability. The
mathematical formula of the sigmoid function is Sigmoid(x) = 1/ (1 + e−x). The plotting
of this activation function is shown in Figure 2.2a. It is seen that the sigmoid function takes
a real-valued number and maps the input into a range between 0 and 1. In particular,
when a large negative value is inputted into the sigmoid function, the output value is
near 0. If a large positive value is inputted into the sigmoid function, one value near 1 is
generated.

The Tanh function is another non-linearity activation function. The formula of this function
is (x) = 2/

(
1 + e−2x

)
− 1. The plotting of this activation function is shown in Figure 2.2b.

The output range of the Tanh function is (−1, 1). The Tanh activation function is similar
with the sigmoid function, which it saturates. However, the output of the Tanh function is
zero-centered.
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(a) ReLU activation function (b) Leaky ReLU activation function

Figure 2.3. ReLU and leaky ReLU activation function

The ReLU [36] is a piece-wise linear activation function. The formula of the ReLU acti-
vation function is ReLU(x) = max(0, x) and it is plotted in Figure 2.3a. It shows that the
output value range of the ReLU is in the positive area or zero for any numerical input.
The ReLU activation function has two advantages. The first one is that the ReLU function
is simple to compute, this feature delivers the benefit on computing speed. The second
advantage is that ReLU does not saturate like the Sigmoid or Tanh activation function
since the gradient of ReLU is constant. These two advantages lead to fast converging
speed when a DNN model with ReLU activation function is trained. One variant of the
ReLU function is the leaky ReLU activation function [33]. The mathematical formula of
leaky ReLU is given in Equation 2.2. It is plotted in Figure 2.3b. The first improvement
of leaky ReLU is that it does not have zero-slope parts. The second improvement is that
leaky ReLU has faster training speed than ReLU. Thus, the leaky ReLU is considered as
an alternative for the ReLU function.

f(x) =

⎧⎨⎩ 0.01x for x < 0

x for x ≥ 0
(2.2)

Neural network

The typical architecture of a neural network consists of input layer, hidden layer and
output layer. A classic demonstration of a neural network is the multi-layer perceptron.
The architecture of multi-layer perception is shown in Figure 2.4. It shows this multi-layer
perception model consists of a input layer, a hidden layer and a output layer. Regarding
the architecture of deep neural networks [28], it consists of more that one hidden layers.

2.1.2 Convolutional neural network

Convolutional Neural Network (CNN) is an important category of neural networks. CNN
models usually consist of convolutional layers, hidden layers, pooling layers and fully
connected layers.
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𝐱𝐱𝟏𝟏 𝐱𝐱𝟐𝟐 𝐱𝐱𝟑𝟑 𝐱𝐱𝟒𝟒

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝟑𝟑 𝒉𝒉𝟒𝟒 𝒉𝒉𝟓𝟓

𝒐𝒐𝟏𝟏 𝒐𝒐𝟐𝟐 𝒐𝒐𝟑𝟑output layer

hidden layer

input layer

Figure 2.4. Typical architecture of the multi-layer perceptron

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

a b

c d

ax1 + bx2 + cx5+dx6 ax2+bx3+cx6+dx7 ax3 + bx4 + cx7 + dx8

ax5+bx6+cx9+dx10 ax6+bx7+cx10+dx11 ax7+bx8+cx11+dx12

input in the feature map kernel

Figure 2.5. Convolution operation illustration

Convolutional layer

Convolutional layer is the key element for building a CNN model. Through the convolu-
tion operation, features in the convolutional window are learned. In addition, parameter
sharing scheme is applied to reduce the number of parameters when operating the con-
volution. A demonstration of the convolution operation in CNN model is shown in Figure
2.5. It shows that the volume size of the feature map is 3×4, the convolution kernel size
is 2×2 and the stride step is 1. The dot product is applied to each element. The output
volume is generated after the convolution operation. The volume size of the output is
2×3.
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average pooling

max pooling
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Figure 2.6. Max pooling and average pooling operation comparison

Pooling layer

Pooling layer is another important component in CNN models. The pooling operation
in CNN is to aggregate the spatial feature. The max pooling and the average pooling
operation are the two main pooling operations. The max pooling operation extracts the
most obvious feature from the feature map. For example, the max pooling operation
can detect edges for the image data. The average pooling operation extracts features in
a smooth manner. It takes all values inside the convolutional window and computes the
average value out of the window, which indicates that the average pooling operation takes
into all values into account. The Figure 2.6 shows the difference between the average
pooling and the max pooling operation. In the figure, the size of the feature map is 4
× 4. The convolutional window size is 2 × 2. During the max pooling operation, the
largest value in each convolutional window is selected while the average value in each
convolutional window is calculated in the average pooling operation.

Common CNN models

During the development of convolutional neural networks, many significant variant CNN
models were proposed. AlexNet [26] won the champion in the ImageNet Large Scale Vi-
sual Recognition Competition (ILSVRC) [43] 2012 competition. The ImageNet dataset [7]
contains 1000 classes images, including dogs, cats, flowers, and planes etc. The task for
this competition is to classify images into correct classes. AlexNet model achieved 83.6%
the highest accuracy. It decreased 9.4% error rate from the champion model in the pre-
vious year. Regarding the architecture of AlexNet, it is a typical modern CNN model,
which consists of five convolutional layers, max-pooling layers, three fully connected lay-
ers. The VGG-16 model [6] won the ILSVRC champion in 2013. A key contribution of
the VGG-16 model was the model depth. The VGG-16 model increased the depth of 8
layers in AlexNet to 16 layers. It was the deepest CNN model in 2013 and the VGG-16
model decreased the error rate to 7.3% in the ImageNet dataset and showed the pow-
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erful learning ability of deep neural networks. Another contribution was the concept of
repeating module to construct deep neural networks. This idea of using repeating block
was inherited by many other models afterwards. Regarding the model architecture, the
VGG-16 model comprised of 13 convolutional layers and 3 fully connected layers. And
the size of reception filters for convolution operation was 3×3. Kaiming et al. proposed
the ResNet model [12] in 2015. The ResNet model with 50 convolutional layers won
the ILSVRC competition in the year. A innovation of ResNet model was that the short-
cut operation was introduced to mitigate the gradient vanishing problem in deep neural
networks. Deep neural networks become harder to train and suffer gradient vanishing
problem when the depth of the model increases. Through the shortcut operation, the
gradient in DNN models can be passed to the next layers easier. The shortcut operation
becomes the a useful technique for building CNN model later.

2.1.3 Recurrent neural network

Recurrent Neural Network (RNN) [34] is another important type of deep neural networks.
RNN model is good at processing sequence data and text data is an important type
of sequence data. RNN model can be categorized into four different types. There are
one-to-one RNN model, one-to-many RNN model, many-to-one RNN model, and many-
to-many RNN model. The detailed structure for these four models is illustrated in Figure
2.7. These four models are designed to deal with corresponding specific tasks. The tag
prediction task [10] for one sentence in NLP area is the typical scenario for the many-to-
many RNN model. Another typical application for the many-to-many RNN model is the
machine translation task. The sentiment classification task is a representative task for the
many-to-one RNN model. In the sentiment classification task, each word in the sentence
is considered as one input, the predicted result of the sentiment class for the sentence is
the only output.

When comparing to CNN models, a difference between RNN and CNN is the depth of
layers. The depth of layers in the CNN model can be deep, in some case, the depth of
CNN is over 100. However, the most common depth of layer in RNN model is shallow.
The main reason for shallow layers in RNN is that RNN model is unfolding and calculated
along with the time steps while CNN model calculate in the space instead.

RNN uses hidden states to store information which is generated in the previous time
steps. The typical structure of RNN model unfolding computational graphs along with
the time steps is shown in Figure 2.8. In this figure, the vector x is the input, the vector
o is the predicted result, the loss function is L, the true class is y, the h denotes the
hidden state, the weight matrix between the input and the hidden state is presented by
U . The weight matrix for the connection between the hidden state and the output is V .
W denotes the weight matrix between the hidden state in previous time step and the
hidden state at current time step. The vectors x(t−1), x(t), x(t+1) are three inputs at the
t − 1, t, t + 1 three different time steps respectively. x(t−1) connects the hidden state



9

one to one RNN model one to many RNN model many to one RNN model many to many RNN model

inputs

outputs

Figure 2.7. Four types of RNN models

h(t−1) in the t − 1 time step, o(t−1) denotes the output in the t − 1 time step. The vector
x(t) is the input in the t time step, b and c are bias vectors, ϕ is the activation function.
The mathematical form of calculating the predicted value o is given in Equation 2.3. The
total loss for the given sequence x with y as the targeted values is the sum of the losses
over all the time steps.

a(t) = Wh(t−1) +Ux(t) + b (2.3)

h(t) = ϕ
(
a(t)
)

o(t) = c+ V h(t)

Long short term memory neural network

LSTM [13] is a well-known type of recurrent neural network and was proposed in 1997.
One drawback of traditional RNN is that it is hard to capture the semantic and syntactic
relation between two words with long distance in the text sequence data . This problem is
known as the short memory issue. Long Short Term Memory neural network (LSTM) can
mitigate this problem by using gate control mechanism to learn long term dependency in
sentences. Besides, LSTM model can mitigate the gradient exploding problem. During
the training phase of RNN model, gradients are usually exploded when the propagation
of the gradients feeds forward. The design of the LSTM model overcomes the technical
challenges of RNN to deliver on the promise of sequence prediction with neural networks.

Regarding the structure of LSTM cell, it is shown in Figure 2.9. Three gates are designed
to control the information flow in neural networks, they are the input gate, the output gate
and the forget gate respectively. The matrix Xt ∈ Rn×d is the input of the LSTM cell in the
t time step, n is the number of samples, d is the number of dimensions. It is the value
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Figure 2.8. The unfolding recurrent neural network along with time steps [9]

matrix of the input gate in the t time step, Ht−1 is the parameter matrix of the hidden
states in the t − 1 time step, the matrix W hi represents the weight matrix between the
hidden state and the input gate, bi is the vector of bias parameter in the input gate. F t is
the value matrix of the forget gate in the t time step, W xf is the weight matrix between
the input gate and the forget gate, W hf is the weight matrix between the hidden state and
the forget gate, bf is the vector of bias parameter in the forget gate. Ot is the value matrix
of output gate in the t time step, W xo is the weight matrix between the input gate and the
output gate, W ho represents the weight matrix between the hidden state and the output
gate, bo is the vector of bias parameter in the forget gate, ϕ is the activation function. The
three gate and the hidden states variables use Equation 2.4 to update their values.

It = ϕ(XtW xi +Ht−1W hi + bi) (2.4)

F t = ϕ(XtW xf +Ht−1W hf + bf )

Ot = ϕ(XtW xo +Ht−1W ho + bo)

Bidirectional recurrent neural network

In feed-forward recurrent neural network, it is assumed that the syntactic and semantic
information of the current word is determined by the previous appearing words. This
indicates that the value of variables in the current time step is determined by the variables
in the earlier time steps when the computational graph of recurrent neural networks is
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Figure 2.9. LSTM cell structure [56]

unfolding along with the time steps. However, the syntactic and semantic information of
a word is determined by both the earlier appearing words and the later appearing words
in many situations. Context information is an important factor for deep neural networks in
the text classification task, especially in the long text case. For the semantic information,
the one-way recurrent neural network only considers the information from the previous
appearing texts, not using the information from the latter text. This results in the problem
of losing semantic information.

The bidirectional recurrent neural network [44] was proposed to tackle this type of prob-
lem. Figure 2.10 illustrates the structure of a bidirectional recurrent neural network. In
this figure, the hidden state for the forward direction in the t time step is

−→
Ht ∈ Rn×h, the

hidden state for the backward direction in the t time step is
←−
Ht ∈ Rn×h, n is the number

of samples which are inputted to the model, h is the number of hidden neurons, Xt is
the matrix of the input value in the t time step, (f) indicates the forward direction, (b)
indicates the backward direction in the bidirectional recurrent neural network, ϕ is the
activation function, W (f)

hh is the weight matrix between the hidden neurons in the forward
direction, W

(f)
xh is the weight matrix between the input and the hidden neurons in the

forward direction,
−→
Ht−1 is the parameter matrix of the hidden neurons in the t − 1 time

step in the forward direction, b(f)h is bias parameters in the hidden states in the forward
direction. Regarding the backward direction, W (b)

xh is the weight matrix between the input
and the hidden neurons in the backward direction,

←−
Ht+1 is the parameter matrix of the

hidden neurons in the t+1 time step in the backward direction, W (b)
hh is the weight matrix

between the hidden neurons in the backward direction, b(b)h is the bias parameters in the
hidden neurons in the backward direction. The forward and backward hidden states are
computed using Equation 2.5.

−→
Ht = ϕ(XtW

(f)
xh +

−→
Ht−1W

(f)
hh + b

(f)
h ) (2.5)
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Figure 2.10. The structure of the bidirectional recurrent neural network

←−
Ht = ϕ(XtW

(b)
xh +

←−
Ht+1W

(b)
hh + b

(b)
h )

The forward and backward hidden states,
−→
Ht,
←−
Ht, are concatenated to obtain the hidden

state Ht ∈ Rn×2h in the t time step. The hidden state Ht ∈ Rn×2h is inputted to the output
layer, W hq is the parameter matrix in the output layer, bq is the vector of bias parameter
in the output layer. The output layer computes the output Ot ∈ Rn×q with using Equation
2.6, q is the number of outputs.

Ot = HtW hq + bq (2.6)

2.1.4 Optimization algorithms

Objective function

The aim of training a DNN model is to reduce the value of loss function. The optimization
algorithms are used to update the value of model parameters to decrease the value of
the model objective function. When the training phase ends, the parameters of the model
at the time are the parameters that the model learned from the training phase. Objective
function is also named loss function in deep neural networks. The value of the objective
function is the average value of the calculated losses when the data from the training
data set is loaded to train a DNN model. The common form of objective function of a
neural network is defined in Equation 2.7, f(xi) is the loss function for the xi sample in
the training data set, n is the number of training samples, f(x) is the objective function
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Figure 2.11. Stochastic gradient descent optimization algorithm for the function f(x) =
x2
1 + 2x2

2 [56]

for all n samples. When the feed-forward process for training deep neural networks is
completed, the average value of the losses is calculated. Then the back-propagation
algorithm is applied to calculate the gradient value of x in layers of DNN models with
using Equation 2.8, where ∇f(x) is the gradient of x with function f .

f(x) =
1

n

n∑
i=1

f(xi) (2.7)

∇f(x) = 1

n

n∑
i=1

∇fi(x) (2.8)

Stochastic gradient descent

During training processing, the optimization algorithms are critical for training deep neural
networks since the training phase usually takes a few days or longer time to complete.
Therefore, the optimization algorithm has an obvious effect on the cost time for the train-
ing. There are many optimization algorithms such as Stochastic Gradient Descent (SGD)
[4], Adam [22]. In this thesis, SGD is used as the optimization algorithm.

A demonstration of applying SGD is shown in Figure 2.11. The input is a two-dimensional
vector, x = [x1,x2], the objective function is f(x) = x2

1+2x2
2. SGD optimization algorithm

is used to find the minimal value for this function. The initial position for x is (−5,−2), the
iteration for updating x is 20 times. After the 20 times iteration, the function f(x) finds
the minimum point (0, 0).



14

Figure 2.12. Overfitting in deep neural networks [9]

2.1.5 Back-propagation

Back-propagation [42] is used to compute the gradient in different layers in deep neural
networks from the cost function. The information from the loss function is flowed back-
wards through back-propagation. Back-propagation exploits the derivative chain rule to
compute derivatives. The data is inputted to feed forward propagation to update the
value through different layers in DNN model and the value of the loss function is calcu-
lated later. When back-propagation is applied in recurrent neural network, the normal
form of the back-propagation can not be applied directly since RNN is time sequence
model. Therefore, back-propagation through time (BPTT) [54] was introduced for solving
this problem. BPTT algorithm is the variant of back-propagation to compute the gradient.
The recurrent neural network is required to expand along with the time steps in BPTT to
obtain the dependencies in different time steps.

2.1.6 Regularization technique

Overfitting problem

Deep neural networks have strong representation learning ability. In the other hand,
the lack of control over the learning process in deep neural networks can lead to the
overfitting problem. The overfitting indicates that models have low generalization ability,
which results in the bad prediction ability for test data even though the model achieves
high performance in training data or validation data. Overfitting occurs when the gap
between the training error and testing error is large. The illustration of the overfitting
problem is shown in Figure 2.12. This situation indicates that the deep neural network
model is trained to have a good fitting ability on the train data instead of learning the data
patterns.

There are many regularization techniques to improve the generalization ability for deep
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Figure 2.13. The structure comparison of MLP with and without dropout technique

neural networks. The common regularization methods include dropout, batch normaliza-
tion, parameter norm penalties, early stopping mechanism, multitask learning technique
etc.

Dropout

Dropout is a regularization technique to deal with the overfitting problem for DNN mod-
els. Dropout [46] technique is considered as a way of approximately combining many
different neural networks together in an efficient way. Dropout is explained to drop out
neurons in a hidden layer in a neural network. Dropping neural neurons out indicates
temporarily removing the neurons and their corresponding incoming and outgoing con-
nections in the neural network. The concept of dropout is illustrated in Figure 2.13. When
the dropout technique is applied to the hidden layers in the multi-layer perceptron, there
is a probability for neurons in the hidden layer to be skipped.

In [46], the authors experimented that convolutional neural network with dropout tech-
nique in fully connected layers had 14.32 % error rate in the CIFAR-10 dataset [25] while
the original convolutional neural network without applying dropout contained 14.98 %
error rate in the CIFAR-10 dataset. The experiments also showed that the model with
applying dropout technique reduced the error rate from 43.48 % to 37.20 % in the CIFAR-
100 dataset. The authors tested the dropout technique in the ImageNet dataset as well.
The best method based on standard vision features achieved 26 % top-5 error rate in the
ImageNet dataset at the time. However, the convolutional neural network with applying
dropout achieved 16% top -5 test error. These experiments indicated that the dropout
technique can improve the generalization ability for deep neural networks.

Batch normalization

Batch normalization [16] is another wide applied technique to improve the generalization
ability of DNN. Batch normalization operation is usually inserted after fully connected lay-
ers or convolutional layers and before the activation functions. Through the batch normal-
ization operation, the weight values of different layers in neural networks are normalized
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with following 4 steps. The mini-batch inputs are C = [x1, ...xn], n is the number of inputs
which are applied to activation functions. The first step of applying batch normalization
is to calculate the mean value on the mini-batch inputs with using Equation 2.9, where
µC is the mean value on C. Secondly, the variance of the mini-batch inputs is computed
using Equation 2.10, where σ2

C is the variance value on C. The third step is to apply the
normalization with using Equation 2.11, ϵ is a constant for numerical stability, the x̂i is
the normalized value for the xi. The fourth step is using the Equation 2.12 to scale and
shift the variable x̂i, where yi is the final batch normalized value of xi. γ and β are two
learnable hyper-parameters.

µC ←
1

n

n∑
i=1

xi (2.9)

σ2
C ←

1

n

n∑
i=1

(xi − µC)
2 (2.10)

x̂i ←
xi − µC√
σ2
C + ϵ

(2.11)

yi ← γx̂i + β ≡ BatchNormalizationγ,β (xi) (2.12)

In [16], the authors experimented that the effect of batch normalization in the Inception
deep neural network [48]. Their experiments showed that the Inception variant with batch
normalization achieved 72.7% accuracy while the basic Inception model had 72.2% accu-
racy in the ImageNet dataset, which demonstrated that the performance of the Inception
V3 model [49] was improved by 0.5% accuracy through the batch normalization tech-
nique in the ImageNet dataset. Furthermore, the training time for the Inception model was
reduced when the batch normalization technique was applied according to their experi-
ments result. A explanation for consuming less training time was that batch normalization
can boost the speed of converging for training deep neural networks.

2.2 Natural language processing

2.2.1 Sentiment classification introduction

The objective of sentiment classification is to classify text into different categories ac-
curately according to the sentimental polarity expressed from the text. Normally, the
sentiment of text is labeled into 3 classes or 5 classes. For the type of 3 classes, the
sentiment of a review is classified as negative, neutral or positive. For the 5 classes type,
the sentiment for a text is labeled as one of the following class: very negative, negative,
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Table 2.1. Examples of text review for sentiment classification

examples sentiment
“The strange thing is that it works” positive
“Shattered image is not complex, it’s just boring and stupid” negative
“Far from bewitching, the patience can be tested by the crucible” neutral

neutral, positive or very positive. Table 2.1 shows examples of sentiment classification on
reviews.

Use cases for sentiment classification

Sentiment classification has been widely applied in many areas with several applications,
such as search engine, text information retrieval, machine reading and understanding
etc. Three use cases for applying text classification methods are briefly described.

One example is the news category classification task, which text news related to different
topics needs to be classified to their correct corresponding topics. There are many differ-
ent topics including sports, finance, technology, health etc. Each topic is considered as
one class. Sports news should be predicted as the sport category instead of finances.
With the help of the text classification technique, users can avoid wasting time on reading
unrelated articles. The second example is that sentiment analysis can be used to pre-
dict market trends through analyzing customers’ reviews about some specific products.
A real example of this application is about Samsung Note 7 battery crisis in 2017. The
number of negative sentimental tweets of Samsung in Twitter increased dramatically af-
ter the Samsung note 7 battery crisis happened. Through observing the change of the
number of positive and negative sentimental tweets, Samsung company can evaluate the
effect of this crisis ahead. Another common usage of sentiment analysis is collecting
and analyzing software application reviews [30] [29]. After each update of an applica-
tion in iOS or Android operating system, software developers want to know what users
think of the newly developed version. Through utilizing the sentiment analysis technique
on these application reviews, developers can conclude clear feedback from users’ com-
ments. In [32], authors introduced probability-based sentiment classification technique to
classify reviews which were collected from mobile phone applications in Apple app store
and Google play store. These reviews were classified to four different categories: feature
requests, text rating, user experiences and bug reports. Sentiment classification can be
applied in the politics area as well. When a new policy is proposed, the government can
gather people’s opinion and discussion content from multiple sources to obtain feedback
on the new policy. then the government can improve or adjust the policy in the next step.

2.2.2 Word embedding

Word embedding is a type of algorithms which map words or phrases from vocabulary to
vectors in numeric values form. Each word is represented by a vector with using word
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Figure 2.14. Overview of word embedding technique

embedding technique. The similarity of different words can be measured by the distance
metrics such as calculating cosine similarity. The overview of word embedding technique
is shown in the Figure 2.14, the bag of words method is a traditional word embedding
technique. The Term Frequency-Inverse Document Frequency (TF-IDF) algorithm and
Singular Value Decomposition (SVD) are another two typical statistical methods for gen-
erating word vectors. The language model based word embedding methods consider the
semantic context information and have many advantages When compared to statistical
word embedding technique. For example, the curse of high dimensionality and vector
sparsity problem can be mitigated by utilizing the distributed word embedding technique.
There are various algorithms to generate word embedding vectors for words in corpus.
One knowing work is the Neural Network Language Model (NNLM) [2]. Matthew et al.
[39] proposed the Embeddings from Language Models (ELMo) to represent word embed-
ding in 2018. In this thesis, three different algorithms are elaborated. The first one is the
Word2vec, the second one is the FastText and the third word algorithm is the GloVe.

Word2vec

The Word2vec [35] algorithm was first introduced in 2013. The Continuous Bag of Words
(CBOW) and the Skipgram are the two variant models for computing word vectors. The
Skipgram model predicts a target word with utilizing the nearby appearing words. In
contrast, the CBOW model predicts the target word according to the surrounding context.
The context is represented with using bag of words method which are contained in a
specified size window around the target word. An example for illustrating the difference
between the Skipgram and the CBOW model is shown in Figure 2.15. The sentence "I am
selling these fine leather jackets" is given and the target word is "fine". The CBOW model
predicts the target word with using the information of all the surrounding words, including
"selling", "these", "leather", and "jackets". The sum of these word vectors is applied to
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Figure 2.15. The continuous-bag-of-words versus the skipgram method [14]

predict the target word in the CBOW model. The Skipgram model takes a random near
word instead of all words to predict the target word. In addition, the Skipgram model
had better performance than the CBOW model in general according to the result of the
experiments.

A demonstration of the effectiveness of wording embedding is illustrated in Figure 2.16.
Two categories of English words are listed in this figure. The first words category is the
countries, including "France", "Germany", "Spain" etc. The second category is the corre-
sponding capital cities, including "Paris", "Berlin", "Madrid" etc. The word embedding for
these English words was trained using the Skipgram model. The 300 dimensional word
vectors for these English words were generated after finishing the training process. The
Principal Component Analysis (PCA) [18] technique was applied to reduce the dimension
size of word vectors from 300 to 2. These two values were treated as the coordinates for
words to perform visualization in the figure. It is seen that the English words of these two
concepts were clustered separately on each side. The relationship of matching words
(countries and capital cities) between these two categories was learned, which indicates
that the syntactic and semantic relationship of these words was kept in the word embed-
ding form.

GloVe

GloVe [38] is a popular deep neural network based word embedding algorithm. It is a
unsupervised learning algorithm for learning word vectors. GloVe was proposed after the
Word2vec and had a few changes compared to the Skipgram model. The first change
is that the GloVe algorithm adopted square loss instead of cross-entropy loss as the
objective function to train model for generating the word embedding. Secondly, the GloVe
algorithm considers the global statistics information of the English words based on the
whole dataset while Word2vec algorithm only considers the information inside the fix size
windows.
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Figure 2.16. Two-dimensional principal component analysis projection of the word vec-
tors of countries and corresponding capital cities [35]

Figure 2.17. FastText model architecture for generating the vector representation for a
sentence with ngram features x1, . . . , xN [19]

FastText

The FastText [19] is another common neural network model to generate accurate word
vectors. A feature of the FastText model is that the training speed is fast. In the author’s
experiments, FastText model only needed 4 seconds to complete one epoch to perform
sentiment classification on the Yelp Full review dataset. In contrast, other models needed
more than 30 minutes to finish one epoch. The architecture of the FastText model is
shown in Figure 2.17. It shows that the model architecture of the FastText was simple,
which contains one layer for the word embedding, one hidden layer and one layer for
output.

GloVe and FastText are two standard word embedding technique. The comparison for
these two algorithms is described in Table 2.2. The training corpus for GloVe are Wikipedia
and Gigaword, FastText used Wikipedia as the training corpus. In the aspect of tokens
size, GloVe has 6 billion tokens and FastText has 16 billion tokens. One hyper-parameter
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Table 2.2. The comparison between GloVe and FastText word embedding model

model dimensions vocabulary corpus tokens
GloVe 300 400k Wikipedia, Gigaword 6 Billion
FastText 300 2520k Wikipedia 16 Billion

for word vectors is the dimensional size. A factor of the syntactic and semantic informa-
tion of a word is the dimensional size. In [38], the experiment showed that the accuracy
on the word analogy task was higher when the dimensional size of a word is larger. Nor-
mally, the 50-dimensional, 100-dimensional and 300-dimensional word embedding size
are common. In this thesis, the 300 dimensional size for the word embedding was exper-
imented for sentiment classification.

2.2.3 Overview of algorithms for sentiment classification

Zhang et al. [57] proposed a survey on the evolution of the sentiment analysis research
area, including the introduction of fundamental algorithms from the perspective of linguis-
tics, statistics and computer science. The authors mentioned the challenge in sentiment
classification and analyzed why it is a difficult task. Many efforts have been devoted to ex-
ploring the sentiment classification from different perspectives. For example, the new text
review dataset are introduced and the sentiment classification algorithms are proposed.

A perspective of categorizing sentiment classification algorithms is considering the length
and form of reviews. Sentiment classification algorithms are divided into three small re-
search direction from this perspective: the sentence-level sentiment classification algo-
rithms, the paragraph-level sentiment classification algorithm, and the document-level
sentiment classification algorithm. In the sentence-level sentiment classification, a whole
sentence is treated as the input, the target is to predict the sentimental polarity of the
sentence. In the paragraph-level sentiment classification, the vector representation of a
paragraph is generated through integrating the sentence vectors, then the sentimental
class for the paragraph is predicted. In the document-level sentiment classification, its
aim is to classify the whole document text as expressing a positive, neutral or negative
opinion. A paragraph is first to do the feature extraction to obtain the vector representa-
tion. The paragraph vector is generated by integrating all paragraph vectors afterwards.
Moreover, the evolution of text classification algorithms is commonly divided into three
main approaches from the perspective of algorithms, linguistic rule-based approach, sta-
tistical machine learning approach, and deep neural network-based approach.

The linguistic rule-based algorithm is the earliest applied method to perform sentiment
classification task. The linguistic rule-based method utilizes lexicon dictionary to classify
the sentiment of text. In this approach, the sentimental words dictionary is first built.
The frequencies of different words are calculated. The different weights for words in the
sentence are dispatched. Then the final sentimental score for the text is computed. A
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representative algorithm of this method is the VADER [15].

The general process of applying statistical machine learning based algorithms for sen-
timent classification contains two steps. The first step is to extract handcrafted features
from the text. The second step is to use statistical machine learning classifiers to pre-
dict the sentimental class for the specific text. There are many representative works.
The common algorithms include Linear Regression (LR), support vector machine [37],
Naive Bayes (NB) [41], hidden markov models [40], conditional random fields [47], latent
dirichlet allocation [3] etc.

In [37], the authors applied SVM to classify the sentiment of text reviews instead of us-
ing topic based sentiment classification methods. The authors’ experimented the uni-
grams and bigrams features, and the results showed that the SVM with unigrams algo-
rithm achieved the state-of-art performance, 82.9% test accuracy on the internet movie
database. In [8], the authors proposed a method which classified a term as positive or
negative with utilizing the distribution of the frequency count and proportional presence
count. Moreover, Konstantinas et al. [23] introduced a new method, which combined
the prediction results of SVM and NB classifiers to improve classification performance for
sentiment classification.

Deep neural network based algorithms have achieved the state-of-the-art performance in
the sentiment classification nowadays. The DNN-based methods have improved the per-
formance of sentiment classification algorithm greatly when compared with the other two
type algorithms. Moreover, DNN-based methods also simplify the process of performing
the sentiment classification task, which integrate the feature extraction and classification
steps into a end-to-end processing.

There are many well-known deep neural networks for the text classification task. For
example, Kim et al. [21] proposed the Text-CNN model, which applied convolutional
neural network on the text. In 2013, Socher et al. [45] proposed a recursive deep neural
model for text classification. The recursive deep neural network obtained the highest
accuracy in the many text review datasets at the time and it achieved 80.7% accuracy
on the fine-grained movie sentiment classification. In 2015, Zhang [59] proposed the
character-level convolutional network to perform the text classification. The character-
level convolutional network was the first model to use character instead of word to classify
text. Previously, deep neural networks use word-level text input, the authors’ experiment
showed that the recurrent neural network had a strong learning representation ability for
both characters and words.

2.3 Assessment criteria

There are many metrics to evaluate algorithms for different tasks in NLP area. For ex-
ample, a common assessment criteria for the machine translation task is the perplexity
criteria [1], which is the value of probability for generating one sentence. The aim of train-
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ing models in the machine translation task is to reduce the value of perplexity. Another
example is the BERTScore [58]. The BERTScore was proposed to compute cosine sim-
ilarity score to match words between the candidate and references sentence, it can be
used to evaluate algorithms in the image captioning and machine translation tasks.

To access the performance of algorithms for text classification, four critical metrics are
calculated in this thesis, namely precision, recall, accuracy and F1-score. In addition,
the confusion matrix is needed to obtain better understanding of the prediction result
produced by three DNN models. The brief description of these metrics is described
below.

2.3.1 Accuracy and F1-score

Accuracy

The mathematical function for the accuracy metric is given in Equation 2.13.

accuracy =
TP + TN

TP + TN + FP + FN
(2.13)

• True Positive (TP), it indicates the classifier predicts 1 where the true class is 1.

• False Positive (FP), it indicates the classifier predicts 1 where the true class is 0.

• True Negative (TN), it indicates the classifier predicts 0 where the true class is 0.

• False Negative (FN), it indicates the classifier predicts 0 where the true class is 1.

F1-score

A common evaluation method to compare multi-class classification algorithms is to use
precision and recall metrics. The mathematical form of precision is given in Equation
2.14. The definition of recall is given in Equation 2.15.

precision =
TP

TP + FP
(2.14)

recall =
TP

TP + TN
(2.15)

Precision is also named positive predictive value. Recall is also named sensitivity. High
precision means that the classifier predicts almost no inputs as positive unless they are
positive. A high recall is explained as the classifier misses almost no positive values.

The F1-score is the harmonic mean of precision and recall. The equation of the F1-score
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Table 2.3. The confusion matrix

predicted class

positive negative

actual class
positive True Positive (TP) False Negative (FN)

negative False Positive (FP) True Negative (TN)

is formulated in Equation 2.16. The F1-score is described as a weighted average value
of the precision and recall. The best value of the F1-score is 1 and the worst value is
0. In the multi-class classification task, the average of F1-score for each category with
weighting depends on the average parameter. In the experiments, each data sample is
treated as the same weight when the F1-score is calculated.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(2.16)

2.3.2 Confusion matrix

The confusion matrix is used as a method to visualize the classification result. For the
binary classification case, true (positive) and false (negative) are the only two possible
outcomes. The Table 2.3 shows the confusion matrix for the binary classification. The
prediction result of the algorithm will calculate four outcomes (TP, FN, FP, TN) for each
class.
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3 EXPERIMENTS

The whole processes of the experiments were elaborated in this chapter. In the first sec-
tion, the TripAdvisor dataset is first introduced, including the main process for making this
dataset. The statistics overview of the TripAdvisor dataset and the Stanford Sentiment
Treebank dataset (SST) is presented as well. In the second section, the architecture of
the three deep neural networks is elaborated. The third section is describing the environ-
ment of the experiments.

3.1 Datasets

3.1.1 TripAdvisor dataset

Data collection

The TripAdvisor dataset 1, is made for this thesis. The first step for making the TripAdvisor
dataset is collecting the hotel reviews data. A Python web crawling framework, Scrapy
[24], was used to crawl hotel review data from the TripAdvisor website. There are two crit-
ical reasons for choosing the TripAdvisor website as the raw data source. The first reason
is that this website is popular and has a large number of user reviews, which indicates
that the reviews data is large enough and the hotel reviews are representative. The sec-
ond reason is this website does not have a strong anti-crawling mechanism. Therefore,
it has a high probability to crawl the hotel review with not encountering obstacles. The
second step is to clean the raw dataset including discarding incomplete hotel reviews. For
example, some hotel reviews miss the date of writing the review in the raw data format.
The third step for making the dataset is to select the "review" column and the "sentiment
class" column. 100000 hotel reviews were picked as the whole dataset in the experiment.
Then 70% of the whole dataset was considered as the training set, 10% of the dataset
was treated as the validation set, and the remaining 20% was the test set.

A original hotel review in the TripAdvisor website is shown in Figure 3.1. It demonstrates
that this hotel review was given a 5 score by a user named "000Glenn" in November 2012.
The review content of this data record has three separated paragraphs. The title of this
review is "Outstanding". The hotel is "Sofitel Legend The Grand Amsterdam". The text

1The TripAdvisor dataset can be accessed through this link: https://drive.google.com/open?id=19T
dLOrqjAQ11lpYRx1r2GcYo79fZXloE

https://drive.google.com/open?id=19TdLOrqjAQ11lpYRx1r2GcYo79fZXloE
https://drive.google.com/open?id=19TdLOrqjAQ11lpYRx1r2GcYo79fZXloE
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Figure 3.1. A original hotel review on the TripAdvisor website [50]

format of this hotel review was saved into the JavaScript Object Notation (JSON) format.
The stored JSON data is listed in Table 3.1. It shows that a JSON record of the raw hotel
review includes the title of the review, the quality level of the hotel, the id of the user, the
hotel location, the hotel name, the score rating of the review, reviewing date, the Uniform
Resource Locator (URL) of this review, the URL of the hotel, and the review content. To
make the text classification dataset, only text reviews and their corresponding classes are
needed to keep, other information is dropped. Thus, the "review" and the "score" columns
were extracted as the input and class in the experiments.

Overview of the TripAdvisor dataset

In order to classify the sentiment of hotel reviews, the label for each hotel review was set
with the reviewers’ score rating. In the experiments, the matching relation between the
sentimental scoring and the class is described in Table 3.2.

The distribution of the number of reviews for each class in the TripAdvisor dataset is
shown in Figure 3.2. The very positive class has the largest number of hotel reviews
among all other four classes, which contains more than 40000 data samples. The positive
class has over 30000 data samples and it is the second largest number of hotel reviews.
However, the very negative class contains less than 10000 data items. This indicates that
the data distribution of different sentimental classes hotel review is unbalanced. In this
thesis, the problem of unbalanced training data is not considered. The average number
of sentences in a hotel review for each class in the TripAdvisor dataset is shown in Figure
3.3. It shows that the a hotel review in the very negative class has the largest number of
the sentences on average, which consists of 8.65 sentences for a review. In contrast, a
review in the very positive class has the least number of the sentences, which has 6.63
sentences. The NLTK [31] library was used as the library for calculating the number of
sentences from the whole text review. The average number of words for each sentimental
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Table 3.1. A sample of the raw hotel review data in the TripAdvisor dataset

JSON data value

title Outstanding

hotelStars 5.0

userId 000Glenn

hotelLocation Oudezijds Voorburgwal 197, 1012 EX Amsterdam,
The Netherlands

hotelName Sofitel Legend The Grand Amsterdam

score 5

date 2012.11.10

URL https://www.TripAdvisor.com/ShowUserReview
s-g188590-d189389-r145091651-Sofitel_Legend_
The_Grand_Amsterdam-Amsterdam_North_Holland_P
rovince.html

hotelURL https://www.TripAdvisor.com/Hotel_Review-g
188590-d189389-Reviews-Sofitel_Legend_The_Gr
and_Amsterdam-Amsterdam_North_Holland_Provinc
e.html

review I rate this hotel as the best I’ve stayed in. It occupies
a beautiful, historic building sandwiched between two
canals in the heart of old ’Dam. It’s at the bottom of
the Red Light district, but don’t let that put you off -
this is the heart of the old centre, and the hotel’s lo-
cality south of the Damstraat bridge which traverses
O.Voorburgwal is actually quite peaceful at night. Our
room was large and well - appointed with a canal
view. The bed, oh the bed. The most comfortable
bed I’ve had the pleasure to sleep in. Hermes toi-
letries. Spotlessly clean. Service and food are out-
standing and what you expect of a hotel of this cali-
bre. Concierge was excellent. In summary, I cannot
recommend this hotel highly enough. A hotel which
richly deserves it’s 5-star rating.

Table 3.2. The matching relation between the sentimental score and class

score sentiment class
1 star very negative 0
2 star negative 1
3 star neutral 2
4 star positive 3
5 star very positive 4

https://www.TripAdvisor.com/ShowUserReviews-g188590-d189389-r145091651-Sofitel_Legend_The_Grand_Amsterdam-Amsterdam_North_Holland_Province.html
https://www.TripAdvisor.com/ShowUserReviews-g188590-d189389-r145091651-Sofitel_Legend_The_Grand_Amsterdam-Amsterdam_North_Holland_Province.html
https://www.TripAdvisor.com/ShowUserReviews-g188590-d189389-r145091651-Sofitel_Legend_The_Grand_Amsterdam-Amsterdam_North_Holland_Province.html
https://www.TripAdvisor.com/ShowUserReviews-g188590-d189389-r145091651-Sofitel_Legend_The_Grand_Amsterdam-Amsterdam_North_Holland_Province.html
https://www.TripAdvisor.com/Hotel_Review-g188590-d189389-Reviews-Sofitel_Legend_The_Grand_Amsterdam-Amsterdam_North_Holland_Province.html
https://www.TripAdvisor.com/Hotel_Review-g188590-d189389-Reviews-Sofitel_Legend_The_Grand_Amsterdam-Amsterdam_North_Holland_Province.html
https://www.TripAdvisor.com/Hotel_Review-g188590-d189389-Reviews-Sofitel_Legend_The_Grand_Amsterdam-Amsterdam_North_Holland_Province.html
https://www.TripAdvisor.com/Hotel_Review-g188590-d189389-Reviews-Sofitel_Legend_The_Grand_Amsterdam-Amsterdam_North_Holland_Province.html
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Table 3.3. The statistics of all sentimental classes in the TripAdvisor dataset

statistics very negative negative neutral positive very positive
number of reviews 5313 6012 15462 36902 46311
number of sentences 8.88 8.65 7.67 6.88 6.63
number of words 176.85 171.11 147.29 124.77 114.02

class in the TripAdvisor dataset is shown in the Figure 3.4. It is seen that the average
number of the words for a review in the very negative class is 176.85 while that in the
very positive class is 114.02.

Table 3.4. Overview of the TripAdvisor dataset, |V | is the vocabulary size, |C| is the
number of classes

data value

dataset TripAdvisor

|C| 5

|V | 99686

average number of sentences in a review 7.08

average number of words in a review 128.46

training set 70000

validation set 10000

testing set 20000

3.1.2 Stanford sentiment treebank dataset

The SST dataset [45] is a common dataset for text classification. All reviews in the SST
dataset are related to the movie content. There are two different classification tasks
for the SST dataset. The first type is the five-way fine-grained classification and the
second one is the binary classification task. For the first type, the five class labels are:
very positive, positive, neutral, negative, and very negative. For the second type, it only
contains positive and negative classes. In the experiments, the five-way fine-grained
classification type was selected. The overall statistics of the SST dataset is listed in Table
3.6. It is seen that the training set has 8544 data samples, the validation set has 1101
data records and the testing set contains 2210 data records. Five review samples in the
SST dataset are listed in Table 3.7. The first column is the movie review, the second
column is the sentimental score and the third column is the corresponding class for the
sentimental score.
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Table 3.5. Data sample from the TripAdvisor hotel review dataset

hotel reviews class
"just fantastic the staff are amazing every single one of them. The rooms are
spacious and very clean. I cant wait to go back!!If you go here book your room
on the 4th floor for the added extras. Oh and my 8 year old got free breakfasts
on both days bonus.Thankyou for a great stay."

5

"Have stayed at this hotel numerous times, modern hotel, good amenities and
rooms are to a good standard. A special mention must go to the staff in the
restaurant and bar area both for breakfast and evenings who are friendly and
make you feel very welcome. Hotel is positioned 2 minutes form tube station
which will take you to Oxford Circus in central London with no changes. Overall
I would recommend this hotel both for business or leisure."

4

"The Hotel seems a good distance out form the city centre but the Central
Line takes you into Oxford Street in 20 mins and the Hotel is literally 1 minute
from Hanger Lane Tube station. The hotel itself is fine. One disappointment
was the breakfast in the Club Lounge. Really seemed like minimum effort and
probably the poorest I’ve ever had at a Crowne Plaza.Would stay there again
because the location is very convenient"

3

"Just poor. I’ve not posted on TA for many years as I forgot my log in details,
however this place is so crap I decided to hunt out my details to warn others.
The building and facilities are as you’d expect but the staff are just not inter-
ested. The check in experience left me wanting to go and play with traffic.
They are incompetent and arrogant to the end. Sadly I stay here from time to
time with work and will be posting about every bad experience I have, I’m sure
there will be more."

2

"So after a very long day I arrived to check in for 4 nights and was informed
that although I had a requested a Double room there was only twins available.
Great! First time I have slept in a single bed in 20 years. So I head to the room
to find stained bedding, dirty curtains, dirty cups and hey that’s life they will
have someone look at it the next day.Next day 1 item resolved. And the cups I
cleaned and used had been left dirty and the coffee not even replenished (or
the chocolates). Glad I only have another 2 nights to endure."

1

Table 3.6. Overall statistics of the SST dataset

data value

dataset Stanford sentiment treebank dataset

number of classes 5

vocabulary size 19500

training set 8544

validation set 1101

testing set 2210
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Table 3.7. Data examples from the SST dataset

movie review example sentimental score class
"What really surprises about Wisegirls is its low-key quality
and genuine tenderness ."

0.931 5

"Not for everyone , but for those with whom it will connect ,
it ’s a nice departure from standard moviegoing fare ."

0.778 4

"The gorgeously elaborate continuation of “ The Lord of
the Rings ” trilogy is so huge that a column of words can
not adequately describe co-writerdirector Peter Jackson ’s
expanded vision of J.R.R. Tolkien ’s Middle-earth ."

0.500 3

"Emerges as something rare , an issue movie that ’s so
honest and keenly observed that it does n’t feel like one ."

0.375 2

"Though it is by no means his best work , Laissez-Passer is
a distinguished and distinctive effort by a bona-fide master
, a fascinating film replete with rewards to be had by all
willing to make the effort to reap them ."

0.181 1

3.2 Deep neural networks for sentiment classification

There are many well-designed deep neural networks [27] [11] [52] for text sentiment
classification. Three representative deep neural networks were evaluated for sentiment
classification in this thesis. The first model is the Text Convolutional Neural Network
(Text-CNN), the second model is the Very Deep Convolutional Neural Network (VD-CNN)
and the third model is the Bidirectional Long Short Term Memory model (BiLSTM). There
are three general steps for applying deep neural networks on sentiment classification.
The first step is word representation, the second step is feature extraction and the third
step is classification. In the first step, the pre-trained word embedding mechanism is
applied. The FastText and GloVe pre-trained word embedding technique are tested in
the experiments. In the second step, deep neural networks extract feature from the word
embedding, the vector representation is generated for the text review. In the third step,
fully connected layers are used to classify vectors to obtain the final prediction result.
One example of applying deep neural networks for sentiment classification is illustrated
in Figure 3.5. From the figure, the review, “I love my new iPhone”, was passed through
the three steps. The sentimental class expressed from the review is finally predicted.

3.2.1 Text convolutional neural network

The Text-CNN model was proposed in [21]. The authors demonstrated how to apply con-
volutional neural network on the sentiment classification task. The key contribution of this
model is that the Text-CNN model was the first work for using CNN for text classification.
The architecture of the model is shown in Figure 3.6. It illustrates how the Text-CNN
model predicts the sentiment of a text review into negative or positive sentimental class.
First of all, the review, “I like this movie very much!”, was mapped into the word vectors in
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I         love      my    iphone       :            )

DNN feature extraction

Fully connected layer

Embedding layer

Predicted sentiment class

Figure 3.5. The steps of applying DNN model on sentiment classification

the embedding layer. The dimension size of the word vector was 5. The whole sentence
was converted into a 7×5 matrix in the numeric form. Afterwards, the convolution opera-
tion was operated on the matrix, the three kernel sizes of the convolution were 2, 3 and 4.
There were 2 filters in each convolutional layer. Each filter was treated as one channel.
In the next step, 2 feature maps were generated from the previous two channels and the
max-pooling layer was followed. The 6 uni-variate vectors were concatenated together
to form a single feature vector. The softmax function was used as the activation func-
tion in the final fully connected layer. In the authors’ experiments, the Text-CNN model
achieved the highest accuracy with 88.1% in the SST-2 dataset at the time. In this thesis,
the Text-CNN model was used to test on the TripAdvisor dataset and the SST dataset.

3.2.2 Very deep convolutional neural network

The VD-CNN model was proposed in [6]. Firstly, the VD-CNN model operated the input
text at character-level instead of words. Secondly, small convolutions with different kernel
sizes and pooling operations were utilized in the VD-CNN model for text classification.
Convolution operation extracted n-gram features over the different size of tokens from text
through using different kernel sizes of convolution. Different n-gram lengths (2-gram or 3-
gram short phrases) were needed to model different length span relations among words
in one sentence. Max pooling operation extracted the obvious feature from the windows-
size length text while average pooling operation contained the average information from
the sentence. In the authors’ experiment, the max pooling layer had better performance
than the average pooling layer. Thirdly, neural networks were shallow in previous CNN
models for text classification, which were up to 6 convolutional layers. In contrast, the
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Figure 3.6. The Text-CNN model architecture [21]

VD-CNN model was deeper than previous deep neural networks in text classification
area at the time. Another contribution of the VD-CNN model was applying the optional
shortcut on the text classification task. The optional shortcut was added between each
convolutional block. The idea of the shortcut was from ResNet model [12]. Shortcut
operation was added to mitigate the gradient vanishing problem in the ResNet model.
In the VD-CNN model, the shortcut had the same functionality to mitigate the gradient
vanishing because of the depth of the model.

The architecture of the VD-CNN model with 29 convolutional layers is shown in Figure
3.7. It shows that the text review was first converted into the word vectors according to
the lookup table. A temporal convolution with kernel size as 3 was followed. Then 8 con-
volutional blocks were added after the temporal layer. Each convolutional block consisted
of two convolutional layers and one pooling layer. Then one max-pooling layer with the
size as 8 was added. The function of the pooling layer was to change the dimension of
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the output through the max pooling operation. Three fully connected layers with ReLU
activation function were applied in the VD-CNN model. The number of neurons in the
last fully connected layer was as the same as the number of outputs, which indicates that
the number of neurons depended on the number of classes on different text classification
tasks.

The VD-CNN model was tested on several classification tasks, including sentiment classi-
fication, topic classification, and news categorization. The authors’ experiments showed
that the VD-CNN model obtained the state of the art results when compared to other
models in the situation of not applying data augmentation technique at the time. Specifi-
cally, the VD-CNN model with 29 convolutional layers achieved 35.28% error rate and the
VD-CNN model with 9 convolutional layers had 37.63% test error in the Yelp full dataset
2. In the experiments of the Amazon full review dataset, the error rate of the VD-CNN
model was reduced by 1% when the depth of the model increased from 9 to 29.

3.2.3 Bidirectional long short term memory neural network

The BiLSTM model [53] combined bidirectional recurrent neural networks and convolu-
tional layers into one model for text classification. There were some work [51] [17] which
combined RNN and CNN for solving specific tasks in computer vision area in previous
studies. The BiLSTM model was the first work to apply the combination of RNN and CNN
for the text classification task.

The architecture of the BiLSTM model is shown in Figure 3.8. The sentence, "video
games are more involving than this mess", was demonstrated. First of all, the English
words were passed to the embedding layer and they were converted to the word vectors.
Two paddings were added on each side to increase the length. Two convolution opera-
tions and one max-pooling operation were applied after the embedding layer respectively.
The concatenation operation was followed afterwards to generate the sentence encod-
ing. The three fully connected layers were added after the sentence encoding. Then the
sentimental class of the sentence was calculated through the softmax activation function.
There were a few different variants of the BiLSTM model. For example, the CNN-LSTM-
GloVe is one variant which was a model with GloVe pre-trained word vectors, max pooling
layer and LSTM cell. Another variant is the CNN-GRU-FastText model. This model used
FastText pre-trained word vectors, max pooling layer, and Gate Recurrent Unit (GRU) [5]
together. The authors tested the BiLSTM model in the SST1 dataset. The experiments
showed that the CNN-LSTM-Word2vec model achieved the best performance with 51.50
% accuracy. The BiLSTM variant model contained 49.1% accuracy when it only utilized
recurrent neural network without a combination of the convolutional layer.

2The Yelp dataset can be accessed through this link: http://www.yelp.com/dataset_challenge

http://www.yelp.com/dataset_challenge
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Figure 3.7. The architecture of the VD-CNN model for text classification
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Figure 3.8. BiLSTM model architecture with using an example sentence

3.2.4 Loss function for sentiment classification

The loss function for sentiment classification adopts cross-entropy loss. The mathemati-
cal formula of the cross-entropy loss for sentiment classification is given in Equation 3.1.
The predicted result is denoted by ŷc, where C is the number of classes. In the experi-
ments, the C value is 5, namely very positive, positive, neutral, negative, very negative.
yc is the one hot vector of the true label. The predicted result is yielded after the softmax
activation function. The index of the largest value is selected as the final predicted result.
The mathematical form for calculating the probability is given in Equation 3.2, where z is
the output vector.

L(ŷ,y) = − 1

C

∑
c∈{1,...,C}

yc log ŷc (3.1)

ŷc = softmax(z) =
exp

(
z(c)

)∑
c∈{1,...,C}

exp
(
z(c)

) (3.2)

Distance ranking metric
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The formula of the distance ranking metric is given in Equation 3.3. Here, M is the collec-
tion of the three models, [Text-CNN, BiLSTM, VD-CNN]. i ∈ [Text−CNN,BiLSTM,V D−
CNN ]. ŷi is the predicted class, yi is the actual class. When a review has the high dis-
tance value, it indicates that the predicted sentiment result was misclassified by most
deep neural networks. When the distance value is 12, it is the worst prediction result,
which indicates that all three models predict the sentiment of a review into the opposite
value. For example, the true sentiment class of a review is 5, the very positive sentiment.
These three DNN models predicted the sentiment of the review as 1, the very negative
sentiment. The distance value in this situation is 12. If the distance value is 0, the result
indicates that the review was correctly classified by all three deep neural networks.

distance =
∑
i∈M

⏐⏐⏐ŷ(i) − y(i)
⏐⏐⏐ (3.3)

3.3 Experiments

3.3.1 Data preprocessing

For the data preprocessing, the word input length of a review is set as 1024. If the length
is less than 1024, the padding is added to the review to increase its length. If the length
is over 1024, the review is truncated into 1024 words. For the preprocessing of unknown
characters, the English word or character is deleted if it is not included in the following
dictionary. The dictionary is a total of 69 tokens and it is shown below. For example, if the
word in the review contains some characters which are not English but other languages
such as Russian or Finnish, the word is deleted.

abcdefghijklmnopqrstuvwxyz0123456789

-,;.!?:’’’/\|_@#$%^&*~‘+-=<>()[]{}

3.3.2 Experimental environment

The experimental environment includes many factors such as the operating system, deep
learning framework etc. The experiment results depend on the environment. For exam-
ple, the training and testing time for deep neural networks can have different values on
different computer machines. The detailed environment for the experiments is listed in Ta-
ble 3.8. The operating system is the Ubuntu 18.04, Python was selected as the program-
ming language. The code 3 implementation was completed on PyTorch [20] framework.
All experiments were performed on a single Nvidia TITAN Xp GPU.

3The source code of this thesis can be accessed through this link. https://github.com/yipersevere
/Deep-neural-network-based-algorithms-Performance-Comparison-for-Sentiment-Classification

https://github.com/yipersevere/Deep-neural-network-based-algorithms-Performance-Comparison-for-Sentiment-Classification
https://github.com/yipersevere/Deep-neural-network-based-algorithms-Performance-Comparison-for-Sentiment-Classification
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PyTorch is a universal open source deep neural network framework. It is developed and
maintained by Facebook. One advantage of PyTorch framework is that PyTorch provides
both eager mode and graph mode. In the eager mode, researchers can easily debug the
neural network source code to check the computational graph of a deep neural network.
In the graph mode, deep neural networks are optimized for deployment in the industry.
Through using PyTorch framework, the difficulty of implementing a neural network is de-
creased. PyTorch contains common deep learning modules. Many sub-libraries were
developed for different tasks. For the NLP application, there is the torchtext library. The
torchtext library provides pre-trained GloVe and FastText word vectors.

Table 3.8. Configuration of the experiments

experimental environment tools

programming language Python 3.5

operating system Ubuntu 18.04

PyTorch 1.0.0

torchtext 0.4.0

GPU Nvidia TITAN xp

Compute Unified Device Architecture (CUDA) library 9.0

memory 32 GB
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4 EVALUATIONS

4.1 Experimental results

Model training

The three deep neural networks were trained using SGD as the optimization algorithm.
The setting of the model training hyper-parameters is listed in Table 4.1. Regarding the
regularization technique applied in the three models, the dropout was adopted in the last
fully connected layer and the dropout rate was set to 0.5 to prevent the overfitting problem
when training models in the experiments. The initial learning rate for training models was
0.01 and the learning rate was divided by 10 after the decaying loss on the validation set
staying on a plateau for 10 epochs. The batch size for training three models was 32. The
momentum hyper-parameter was 0.9. The three models were trained to minimize the
cross-entropy loss. The three models were trained for 60 epochs. The early stop mecha-
nism was applied when training models. The training processing was terminated after the
loss was not improved for over 10 epochs. The forward and backward propagation were
executed in a loop during the training process. In the forward propagation step, the word
vectors were initialized with using GloVe and FastText pretrained 300-dimensional word
vectors. In the backward propagation, the loss was computed and the loss information
was feed backward to the different layers in the model to update the value of parameters.

Table 4.1. The setting of training hyper-parameters

model hyper-parameters value

batch size 32

word embedding dimension 300

dropout rate 0.5

initial learning rate 0.01

epochs 60

The number of parameters of the three models and the costing time for one epoch are
listed in Table 4.2. All values were calculated under the same experimental environment.
It shows that the VD-CNN model has 17 million parameters, which is the largest number
of parameters. The BiLSTM model has the least number of the parameters, 3.5 million.
The Text-CNN model has almost as the same amount of parameters as the BiLSTM.
Regarding the time of one epoch for training and validation, the VD-CNN model needed
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to take 619.5 seconds, the BiLSTM model cost 249.0 seconds the second longest time.
The Text-CNN model consumed only 69.6 seconds, which is the least time among the
three models. A reason for the longest costing time by the VD-CNN model is that the
VD-CNN model is a large model and contains the largest number of parameters. Thus,
the VD-CNN model cost a longer time than other models for training. In addition, the
BiLSTM model cost around 4 times longer time than the Text-CNN model to complete
one epoch. RNN can not utilize parallel computing because of the time dependency of
text sequence data. This feature results in that RNN has low efficiency on the usage of
GPU when compared to CNN.

Table 4.2. The three models in training phase

model number of parameters one epoch time(second)
BiLSTM 3,490,781 249.0
VD-CNN 17,318,629 616.5
Text-CNN 3,362,405 69.6

Experimental results

The experimental results for the three DNN models are described in Table 4.3. The per-
formance of these three DNN models was compared in the TripAdvisor dataset and the
SST dataset. The effect of word embedding technique (FastText and GloVe) for initializing
word vectors was investigated among the three models in these two datasets as well.

The Table 4.3 shows that the BiLSTM model outperformed the other two methods in the
TripAdvisor dataset in both FastText and GloVe word embedding method. The BiLSTM
model had 1.41% higher accuracy than the VD-CNN model and 1.54% higher accuracy
than the Text-CNN model when the GloVe pre-trained word vector was applied. The
BiLSTM also outperformed the VD-CNN model 1.3% higher accuracy and the Text-CNN
0.73% higher accuracy when FastText pre-trained word vectors were used. In addition,
the Text-CNN model and BiLSTM model had 0.68 F1-score in the TripAdvisor test dataset,
the VD-CNN model achieved 0.67 F1-score in the TripAdvisor dataset, which was the
lowest F1-score among all three models.

Regarding the comparison of the GloVe and FastText word embedding technique, the
experimental results confirmed that word vector initialization has an impact on the predic-
tion result for sentiment classification, which indicates the word embedding initialization
affects the learning ability of the three deep neural networks. GloVe method achieved
a better result than FastText in the BiLSTM and the VD-CNN models. The BiLSTM
with GloVe word embedding had 73.73% accuracy while the BiLSTM with FastText had
73.25% accuracy in the TripAdvisor dataset.

The three DNN models were tested in the SST dataset as well. The experiments showed
that the VD-CNN model had the worst performance when compared to the Text-CNN and
the BiLSTM model. The VD-CNN model had 26.97% accuracy with using FastText word
embedding and 25.58% accuracy with using GloVe word embedding. The BiLSTM model
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contained 36.35% the highest accuracy in the SST dataset.

Table 4.3. The performance of the three models evaluated in the TripAdvisor and SST
dataset

model embedding dimension
accuracy(%) F1-score

TripAdvisor SST TripAdvisor SST
BiLSTM GloVe 300 73.73 36.35 0.68 0.35
BiLSTM FastText 300 73.25 32.69 0.68 0.34
VD-CNN GloVe 300 72.31 25.58 0.67 0.25
VD-CNN FastText 300 71.95 26.97 0.67 0.26
Text-CNN GloVe 300 72.19 26.32 0.68 0.30
Text-CNN FastText 300 72.52 31.15 0.68 0.33

Result of the confusion matrices

The prediction result of the BiLSTM, Text-CNN and VD-CNN models were investigated
in the experiments as well. The confusion matrices of these three DNN models were
calculated. These confusion matrices were calculated with using GloVe instead of Fast-
Text word embedding, and these confusion matrices were calculated in the TripAdvisor
dataset instead of the SST dataset.

The visualization result of the confusion matrix for the Text-CNN model is shown in Figure
4.1. The confusion matrix of the VD-CNN model is shown in Figure 4.2. For the BiLSTM
model, the confusion matrix of the experimental result is shown in Figure 4.3. It is seen
that the negative class contained the largest number of misclassified hotel reviews in all
these three models. Specifically, 69% of the negative class reviews were wrongly pre-
dicted to other classes for the Text-CNN model, 61% of the negative class reviews were
misclassified for the VD-CNN mode and 59% of the negative class reviews were misclas-
sified for the BiLSTM model. In addition, for the neutral sentimental class reviews in the
TripAdvisor dataset, 35% of these reviews were wrongly classified as the positive class in
the Text-CNN model. Both the VD-CNN model and the BiLSTM model mislcssified 30%
out of the neutral sentimental reviews into the positive class in the TripAdvisor test set.
This indicated hotel reviews are more prompted to misclassify the hotel review toward the
positive polarity sentiment than the negative polarity sentiment. One possible explanation
is the unbalance of the sentimental classes in the TripAdvisor training dataset. Further-
more, the very positive sentiment class achieved the highest classification accuracy when
compared to the other four sentiment classes.

4.2 Discussion

The reasons for misclassifying hotel reviews in the TripAdvisor dataset by the three DNN
models were analyzed. Table 4.4 presents the top 5 misclassified reviews in the TripAd-
visor test dataset by the three models according to the descending order of the distance

metric. The analysis of the misclassified hotel reviews on Table 4.4 indicated that long



42

Figure 4.1. Confusion matrix of the Text-CNN model in the TripAdvisor test dataset

Figure 4.2. Confusion matrix of the VD-CNN model in the TripAdvisor test dataset

Figure 4.3. Confusion matrix of the BiLSTM model in the TripAdvisor test dataset
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hotel reviews with more contradictory sentimental words were more prompted to be clas-
sified wrongly. For example, a hotel review from the Table 4.4 is listed below.

"I stayed at the Putney Bridge Premier Inn hotel for one night on the 31.01.2012. After
Booking in, my wife and I went to London to watch a shoe and for some dinner. A great
night was enjoyed and we headed back to the hotel for a good nights sleep. After falling
asleep, we were both woken by a noisey couple of people going past our door. We fell
back to sleep and was again woken by the same female voices making as much noise
as before. Not happy.Then again fell back to sleep and woke for our breakfast at 6am.
We were about to be seated when asked about our nights sleep by Izabella Veres. I
explained about the loud voices that woke us. She appoligised on behalf of the company
and showed us to our table. After finishing our food Izablla approached us to say she had
reported the inccedent and a member of staff would be talking to us. Within 10 mins of
first asking us about the night, the stiuation had been resolved and a full refund given by
Mr Marcello. I also run a business with staff, and left so impressed with the way I was
handled that I have left this report as a way of saying THANK YOU. I stay with Premier
Inn hotels as much as I can allready as do my members of staff on business. With this
high standard of respect shown by the staff, we as a company will continue to do so for
many years to come."

The true sentiment of this review is the very positive class. The Text-CNN model and
the VD-CNN model wrongly predicted this review as the very negative sentiment. The
BiLSTM model misclassified this review as the negative sentiment. The value of the
distance metric of this review is 11. This review contains both negative and positive
words. The negative words include "noisey", "Not happy", and "appoligised". The positive
words in the review contains "great", "enjoyed", and "good". These positive sentimental
words expressed that the guest was satisfied with staying in the hotel while the negative
words expressed the negative feeling at the same time. This sentiment contradiction
increases the difficulty for correctly classifying the review for the three models. Even
though the overall sentiment of this long hotel review is positive, the three DNN models
failed to capture the semantic relationship of these words in this long text. As a result,
these three models completely misclassified the hotel reviews as the negative class. For
the other three hotel reviews listed in the table, they are long text review and contain
contradictory words as well.

Another example of failing sentiment classification is the last hotel review shown in the
Table 4.4. The true class for this review is the very negative class. However, this review
does not contain any sentimental words. It is more prompted to narrative one story than
expressing the reviewer’s opinion. The three DNN models wrongly predicted it as the
very positive class.
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Table 4.4. Top 5 misclassified hotel reviews in the TripAdvisor dataset

hotel review actual class distance
" I stayed at the Putney Bridge Premier Inn hotel for one
night on the 31.01.2012. After Booking in, my wife and
I went to London to watch a shoe and for some dinner.
A great night was enjoyed and we headed back to the
hotel for a good nights sleep. After falling asleep, we were
both woken by a noisey couple of people going past our
door. We fell back to sleep and was again woken by the
same female voices making as much noise as before. Not
happy. Then again fell back to sleep and woke for our
breakfast at 6am. We were about to be seated when asked
about our nights sleep by Izabella Veres [...]"

4 11

"I did not actually stay at this hotel as they were fully
booked but I’d like to give credit where credit is due. The
hotel I had booked turned out to be incredibly unprofes-
sional and seemed very dodgy and I decided that it was
not worth my time staying there. So at 1am I found my-
self wandering the streets of London trying to find another
hotel, which seemed impossible as everywhere was fully
booked. I explained my situation to the night managers
Jorge and Bogdan who very kindly let me sit in the hotel
bar area use the WIFI and to find a hotel nearby [...]"

4 11

“The hotel is located at the corner of Strand and Ald-
wych. It is in a very central location for Covent Garden,
the Thames, Trafalgar square etc. The staff is very profes-
sional and the room was very clean. One thing that really
bothered us is that they cleanign staff leaves the windows
wide open when they clean the room. This is good if you
want fresh air, but one time I came back to my room in the
middle of the day and the windows were wide open with no
person in the room. I did call and I said that I never want
this to happen again because birds, debris [...]"

4 9

"Booked to stay here for the opening weekend of Secret
Cinema (which was cancelled at the last minute).Despite
cancelling very late, the hotel was extremely understand-
ing and gracious about it and didn’t charge us at all.It’s a
shame we didn’t get to stay, but thought that their good
grace should be noted."

4 9

"Pop in to the bar for a couple of drinks, and a pint of Diet
Coke is £6! I have to go to the bar to order, yet you still
have the audacity to include a service charge. The service
was pretty substandard too."

1 6



45

5 CONCLUSION

In this thesis, three different deep neural networks (Text-CNN, VD-CNN, and BiLSTM)
were evaluated on their performance for sentiment classification on TripAdvisor and SST
datasets. Two word embedding initialization technique (FastText and GloVe) were com-
pared in the experiments. Moreover, the misclassified hotel reviews in the TripAdvisor
dataset were analyzed to understand the reason for misclassification by different net-
works.

Deep neural network models performance comparison

In the TripAdvisor dataset, the BiLSTM model with GloVe word embedding technique
achieved the best performance with reaching 73.73% test accuracy in the 5 classes task.
The VD-CNN model with FastText word embedding had 71.95% test accuracy on the Tri-
pAdvisor dataset, which was the worst prediction result. The BiLSTM model also main-
tained 0.68 F1 score in the TripAdvisor test dataset while the VD-CNN model had 0.67
F1 score with both GloVe and FastText word embedding in the experiment.

In the SST dataset, the BiLSTM model with GloVe word embedding reached the highest
test accuracy with 36.35%. The BiLSTM model had the best performance in terms of
accuracy and F1 score when compared to the VD-CNN and the Text-CNN models in both
TripAdvisor and SST dataset.

Word embedding initialization comparison

Through the experiments in this thesis, it becomes known that the word embedding initial-
ization methods have an effect on the prediction result. In the Text-CNN and the BiLSTM
model, the GloVe method outperformed the FastText method in both TripAdvisor and SST
dataset. In the VD-CNN model, the GloVe method had slightly higher accuracy than the
FastText in the TripAdvisor dataset but performed a little worse in the SST dataset.

Misclassified hotel reviews analysis

By analyzing the most misclassified hotel reviews from all three DNN-based methods
in the TripAdvisor dataset, it can be seen that the long length hotel reviews with more
contradictory sentimental words were more prompted to be misclassified. When words
with strong contradiction (expressing positive or negative sentiments) exist in one review,
it increases the complexity of the review and makes it more difficult for the DNN based
algorithms covered in this thesis to correctly detect the sentiment of that review.
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Future work

This thesis researched the sentiment classification with deep neural networks. There are
a few limitations in this research work. The first limitation is the unbalance distribution
of different sentimental reviews in the TripAdvisor dataset in the experiments. It is seen
that the "very positive" and "positive" classes contain most reviews while the "negative"
and "very negative" classes have small amount of reviews. One inspiration is to use sam-
pling technique to make the sentimental classes balanced. The second limiting factor is
the data size. The VD-CNN model achieved the worst performance in the experiments.
A possible reason is that the TripAdvisor dataset is small for the VD-CNN model. We
can test the VD-CNN model on a larger version of TripAdvisor dataset. Another possible
work is to apply other word embedding techniques such as ElMo word representation
to initialize word vectors. There are several other methods for generating vector repre-
sentation for one sentence or paragraph that can be experimented on. Another possible
future work is to use computational linguistics knowledge such as dependency parsing
to analyze the intrinsic structure of the misclassified reviews and propose new features
to improve the performance for the deep neural networks in the hotel review sentiment
classification task.
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