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ABSTRACT
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Cancer detection is one of the principal topics of research in medical science. May it be
breast, lung, brain or prostate cancer, advances are being made to improve detection precision
and time. Research is being carried out on broad range of procedures at different stages of
cancer to understand it better. Prostate cancer, in particular, has seen some novel approaches
of detection using both magnetic resonance imaging (MRI) and histopathology data. The
approaches include detection using deep neural networks, deep convolutional neural networks
in particular because of their human level precision in image recognition task.

In this thesis, we analysed a dataset containing multiparametric magnetic resonance
imaging (mpMRI) prostate scans. The objective of the research was Gleason grade group
classification, through mpMRI scans, which has not been attempted before on a small dataset.
We first trained several conventional machine learning algorithms on handcrafted features
from the dataset to predict the Gleason grade group of the cases. After that the dataset was
augmented using two different augmentation techniques for further experimentation with
deep convolutional neural networks. Convolutional neural network of varying depth were
used to understand the effects of network depth on classification accuracy. Furthermore, we
made an attempt to shed light on the pitfalls of using small dataset for solving problems of
such nature.

Keywords: Deep Neural Networks, multiparametric Magnetic Resonance Imaging (mpMRI),
Convolutional Neural Networks
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1. INTRODUCTION

Prostate cancer is the most common cancer in men after skin cancer in America. One man in
nine will develop clinically significant prostate cancer and one man in forty one will die of it.
A combination of invasive and noninvasive techniques, such as Transrectal ultrasound guided
(TRUS) biopsy and Multiparametric Magnetic Resonance Imaging (mpMRI) respectively,
have enabled us to accurately diagnose the aggressiveness of prostate cancer. The type and
course of treatment is then decided, based on the stage of the cancer, it could be any of the
following surgery, radiation therapy, cryotherapy, hormone therapy or chemotherapy. [“Key
Statistics for Prostate Cancer”, 2018].

Having said that, during the last two decades, a separate vertical, although not directly related
to medical science, has been analysing medical data and making strides, especially in
diagnosis. Computer scientists, with the help of image processing and machine learning
algorithms, have been fine tuning their systems to diagnose different types of cancerous
nodules, cysts and tumors. They call it Computer-aided Diagnosis (CaD). Some of the recent
endeavours have surpassed human accuracy. These CaD techniques are driven by Deep
Neural Networks which are discussed in the following chapters. At this stage the idea is to
not completely eliminate human involvement from the diagnosis process, rather to introduce
a hybrid system consisting of CaD as well as human diagnosis where both systems are
complementary to each other, resulting in significant improvement in cancer detection.

1.1 Prostate Cancer

The prostate is a gland responsible for making most of the sperm carrying semen in the male
reproductive system. It sits between the bladder and the upper part of urethra which carries
the urine from the bladder. [“The Basics of Prostate Cancer”, 2018].

Prostate cancer is quite common in Finland with more that 4700 cases of prostate cancer are
recorded each year in Finland [“Docrates is the first oncology center in Finland to offer new
radiation therapy for metastatic prostate cancer”, 2018]. Cancer at an early stage is curable, a
vast majority patients undergo treatments which completely cure them. Therefore, early
diagnosis of cancer is pivotal in curing cancer. However, prostate cancer at an advanced stage
can not be completely cured and requires perpetual treatment. In case of American men about
85% of cases diagnosed with prostate cancer are in early stage of the disease, where it has not
spread much [“The Basics of Prostate Cancer”, 2018].

If the cancer spreads beyond the prostate for example to bones, lungs or lymph nodes, then it
is no more curable, but advancement in medical science has enabled us to keep it under
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control and the life span of the patient can be extended to several years. In some cases it has
been observed that patients with advanced prostate cancer lived for many years and their
cause of death was entirely different from prostate cancer.

Prostate cancer is generally found in older men. Over 80% of men diagnosed with prostate
cancer are over 65 years of age and less than 1% are under 50. Susceptibility to prostate
cancer increases if a person has family history of it. There is not yet an established research
on the exact cause of cancer; however, prostate cancer is linked with certain types of diet
which include overconsumption of fats and red meat. Substance produced as a byproduct of
meat cooked on high temperature is dangerous for a prostate. The rate of prostate cancer
varies in countries, based on their food consumption. It is common in countries with high
consumption of dairy products and meat as compared to countries with vegetable and rice
based diet.

Hormones are another factor. Testosterone increases with higher consumption of fats which
works as a catalyst in the growth of prostate cancer. Lack of exercise also makes prostate
cancer more likely. A few occupational hazards have also been found to be contributing
factors to prostate cancer. For example, some jobs in rubber and battery manufacturing
require workers to be exposed to metal cadmium, which make them prone to getting prostate
cancer. Drugs such as aspirin, finasteride (Proscar) and dutasteride (Avodart) have proven to
reduce the risk of developing prostate cancer. Similarly, regular consumption of some
vegetables such as broccoli, cauliflower, and cabbage have also been a deterrent to prostate
cancer [“The Basics of Prostate Cancer”, 2018].

1.2 Machine Learning

The overlap of the fields of computer science and statistical methods gave birth to the field of
machine learning. Machine learning enables computer programs to progressively learn which
does not necessitate any explicit programming assistance. Arthur Samuel came up with the
term machine learning. [Samuel, 1988]. The field of machine learning evolved as the
amalgamation of pattern recognition and computational learning theory in artificial
intelligence [“Machine learning | artificial intelligence”, 2018]. The aim of machine learning
is the construction of such algorithms that can learn from data and make predictions on
unseen data, the outcome of such algorithms are not contingent on any strict programmatic
logic. Primarily there are two types of learning, supervised and unsupervised. [Mohri et al.,
2012; Trucker, 2004]

Supervised learning: In supervised learning learning the data is fed to the program along
with the corresponding labels, the theme is to learn a function that maps the data to its label.
However, there are special cases of
o Semi-Supervised learning: In semi-supervised learning the training data has
incomplete labels, in most cases the input data has missing labels.
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® Reinforcement learning: In reinforcement learning the data is fed to the
algorithm from a dynamic environment in form of rewards and punishments. It
could be playing a first person shooting game against multiple opponents or
flying a plane in a simulated environment.

Unsupervised learning: In unsupervised learning, no labels are provided to the learning
algorithm, the algorithm relies on hidden patterns and structure in the data for learning. An
auxiliary purpose of unsupervised learning could be to find out the intrinsic patterns or learn
features of the data.

Machine learning can also be categorized on the basis of the type of desired output of a
machine learning system.

Classification: In classification the input data is divided into two or more classes, the
learning algorithm learns a mapping function during training and assigns one or more of these
classes to an unseen data point either during testing or in an actual use case. This is typically
done is a supervised way. [Alpaydin, 2010]. Figure 1 visually illustrates support vector
machine (SVM) [Cortes & Vapnik, 1995], a classifier that separates its input space into two
regions using a linear boundary.

Regression: Unlike classification the output variable of regression is continuous. Regression
too is usually done in a supervised way [Freedman, 2009].

Clustering: Clustering is an unsupervised task in which the input is divided into k number of
groups using different clustering algorithms [Bailey, 1994].

Density Estimation: Density estimation finds the distribution of inputs in some space [“2.8.
Density Estimation”, 2018].

Dimensionality Reduction: It is a process of transforming high dimensional data to lower
dimension [Roweis et al., 2000]. One of the applications of dimensionality reduction is
visualisation of data in either two of three dimensional space.
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Figure 1: Classification using support vector machine (SVM).

In the present era it is difficult to find a field which is not disrupted by machine learning or to
say the least affected by it. May it be stock predictions, virtual personal assistance, video
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surveillance, social media, customer support, spam filtering, weather prediction or online
fraud detection; machine learning has affected each one of them. Among these, the field
which has seen very serious efforts and interest is medical science. Machine learning is now
solving as complicated problems as cancer/tumor detection which is a non-trivial problem by
any definition. Computer aided diagnosis solutions for cancer detection are at the crossroads
of computer vision and machine learning. Over time these solutions have gone through an
evolutionary process which tremendously improved their efficiency and effectiveness.

1.3 Artificial Neural Networks

The idea of artificial neural networks is roughly based on the working of a human brain, it is
inspired by the biological neural network. An artificial neural network (ANN) based system
learns progressively without task specific programming [“Artificial Neural Networks as
Models of Neural Information Processing”, 2018]. For instance, an ANN capable of image
recognition learns to identify objects that are manually labelled, e.g. it can tell apart images
that contain a car from images that do not contain a car. These networks can learn without
any prior information about the features of a car.

An artificial neural network consists of connected layers of nodes called neurons, much
similar to neurons in an animal brain. Connections between neurons simulate the function of
synapse by transmitting information from one neuron to another. After receiving a signal, an
artificial neuron can process it based on a certain function and can pass it to other artificial
neurons. ANNs are implemented in a way that a real number passes as a signal through
connections between artificial neurons. The output of each artificial neuron is calculated by a
nonlinear function of the sum of its inputs. Part of the nonlinear function is a weight which
modulates as the network learns during the training process. Weight is pivotal in determining
the strength of the signal over a connection. Artificial neural network generally consists of
layers stacked with artificial neurons, layers may differ from each other with respect to how
they transform the inputs. Usually, signals iterate from first layer to the last, several times
optimally adjusting the weights of artificial neurons in each iteration. [“Artificial Neural
Networks as Models of Neural Information Processing”, 2018].

Originally the idea of ANN was inspired by human brain; however, the focus deviated from
biological path over time in order to solve specific problems. Presently, ANNs are being used
in a wide range of fields such as natural language processing, computer vision, speech
recognition, video games, and medical science. Figure 2 is a visual representation of a basic
artificial neural network.
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Figure 2: Visualisation of a basic neural network.

1.4 Deep Learning and Deep Neural Networks

Deep learning is a sub-discipline of machine learning that is philosophically based on
in-depth learning from data, comprising of several layers of representations. The learning
takes place in a hierarchical fashion, where learning at higher layers is extracted from
learnings of lower layers. This process of concept learning in the domain of deep learning is
called feature learning or representation learning. Input (for instance image data) can be
represented in different ways (like a matrix containing pixel information), but some
representations are more efficient than other in terms of learning features from data, and rapid

advancements are being made in the area to make representation more efficient. [Deng & Yu,
2014]

Generally, artificial neural networks are the key component of deep learning models.
However, certain types can comprise of syntactic formula or latent (unobserved) variables
structured layer-wise in deep generative models, for instance the nodes in Deep Boltzmann
Machines.

Learning in deep networks varies from layer to layer, in terms of level of abstraction and
transformation of input data. In case of image processing, the data could be a 3 dimensional
array of pixels: the first representational layer captures the understanding of edges, the second
representational layer may capture the sequence or arrangement of edges, the third
representational layer may capture features of a car such as formation of tyres, windscreen,
headlights, wipers and the fourth layer may discern the presence of a car in the image. Deep
learning is capable of appropriately allocating the feature learning to specific layers and that
too is learned. This, however, does not eliminate the need of manual configuration of a
network, for instance, the number and size of layers have big impact on the performance and
output of a deep learning model. [Bengio et al., 2012; LeCun et al., 2015]
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Deep learning can be employed for both supervised and unsupervised learning. In supervised
learning it eliminates the process of feature engineering by learning terse transitional
representations similar to principal components. Unsupervised learning is a good use case for
deep learning because of the abundance of unlabeled data, it can be done using deep belief
networks [Hinton, 2009] and neural history compressors [Schmidhuber, 2015]. Figure 3 is a
visual representation of a fully connected deep neural network.

Hidden Hidden Hidden Hidden
Layer 1 Layer 2 Layer n-1 Layern

Output

)
A | N
NN
N7 Wearl — N\
soee N R e
WY
LAY
ecee 5 X
” W
ssee /}'; :

W

JIRN

AR
i\ P 22

2! /) \:,.
-';;’ﬂ‘{ﬁ‘r& A

S
/\\.,

Figure 3: Visualisation of a fully connected deep neural network with n hidden layers.

1.5 Thesis Problem Statement

In this thesis research, the analysis of the mp-MRI scans and metadata lead to the formulation
of the problem statement. The idea was to use the mp-MRI scans and train a machine learning
model which can later be employed to detect the prostate cancer aggressiveness based on
Gleason grade group of unseen cases. The 5 different Gleason grade groups make it a
multi-class classification problem. Multi-class classification is a more complex problem than
binary classification of clinical significance of cancer given the class imbalance and small
size of the dataset. Moreover, an auxiliary challenge was the small size of the dataset, which
was dealt with by engineering suitable techniques to augment the data.

1.6 Aim and Objective

The aim of this research was to use a small dataset and test how effectively deep learning can
be applied on it to get meaningful results. Furthermore, a smaller dataset compelled us to
experiment with different augmentation techniques as well.

13
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2. LITERATURE REVIEW

A considerable amount of work has been done, both, in the domain of prostate cancer and the
technology (computer vision and artificial intelligence). Research on cancer detection, in
general, has gained a lot of traction in recent past. Research is being conducted using
different types of artifacts such as mpMRI scans, CT scans and histopathological slides to
understand and detect cancer better. There has been an increase in online competitions for
cancer detection and its clinical significance. These competitions include breast, prostate,
lung and brain cancer detection. But medical science is a domain, riddled with scarcity of
data and it is one of the biggest challenges to overcome before we even begin to think about
ANN model building and classification. This section elucidates the cutting edge research
being done in the CAD area for cancer detection, prostate cancer detection in particular. It
also explains the inner workings of the most advanced image recognition artificial neural
networks being used in ImageNet Large Scale Visual Recognition Competition [Russakovsky
et al., 2014].

2.1 Computer-aided Diagnosis (CAD) for Prostate Cancer

Computer-aided diagnosis (CAD) are systems that help doctors and physicians interpret and
understand medical images better. Images captured through X-rays, MRI and microscopes
contain a tremendous amount of minute details which are supposed to be analysed and
interpreted by radiologist, histopathologists and other medical professionals in a relatively
short amount of time. Typically the idea behind CAD systems is to accentuate anomalous
information in the scans in order to make it discernable for medical professionals to aid their
decision.

Moore's law (roughly) states that the processing power doubles every 18 months [Moore,
2006], the paper was written in 1965 and the law still holds. With ever so fast processors and
advancement in the hardware field, another field has catched up and progressed quite a lot in
recent years, that is machine learning. In today’s age, every field is employing machine
learning driven solutions to bring about performance improvements, which were never
witnessed before. CAD systems also happen to be one of the areas where machine learning
has achieved human level results and there are instances where machine learning driven
solutions proved to have done better than humans.

2.1.1 Conventional Machine Learning based CAD

As mentioned earlier that one of the biggest challenges in the field of medical science, when
it comes to machine learning driven systems, is the dearth of data. Since a typical machine
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learning system requires a large and comprehensive dataset in order to have good
generalising power; therefore, researchers came up with a workaround to tackle this
challenge. They started using synthetic data to train machine learning models.

A solution proposed by [Fehr et al., 2015] solved the data size problem using Synthetic
Minority Oversampling Technique SMOTE [Chawla et al., 2002] and Gibbs sampling
[Geman & Geman, 1984]. The motivation behind the solution was to improve the efficacy of
the non-invasive MRI scan in detecting initial stage benign cancer without necessarily
subjecting patients to invasive procedures such as biopsy. The fundamental idea of the
research was to perform classification based on Gleason scores, distinguishing Gleason
scores 6 (3 + 3) from scores above or equal to 7 and Gleason score 7 (3 +4) from 7 (4 + 3).
The research used two different image modalities T2-weighted MR images and apparent
diffusion coefficient ADC to calculate image texture features.

T2-weighted and ADC MR images were preprocessed and two sets of texture based features
were engineered from these images. The first set of features included moments of the
intensity volume histogram (mean, SD, skewness, and kurtosis) computed from the region of
interest. The second set of features consisted of Haralick features [Haralick et al., 1973] was
computed using the gray level co-occurrence matrix (GLCM) with 128 bins and consisted of
energy, entropy, correlation, homogeneity, and contrast. Both sets of features were then used
to train SVM [Cortes & Vapnik, 1995], SVM with (t-test and RFE) and Adaboost models. It
was observed that even with a high imbalance in the classes, data augmentation helped
obtaining high specificity and sensitivity. Finally, SVM combined with recursive feature
elimination yielded best classification accuracy, distinguishing Gleason score 6 (3 + 3) from
scores above or equal to 7 with 93% accuracy and Gleason score 7 (3 +4) from 7 (4 + 3) with
92% accuracy.

Another solution took a similar approach of using conventional machine learning algorithms
such as SVM and decision trees with image features based on texture, morphological scale
invariant feature transform (SIFT) [Cortes & Vapnik, 1995; Lowe, 2004], and elliptic Fourier
descriptors (EFDs) [Soldea et al., 2010] to detect clinically significant prostate cancer
[Hussain et al., 2018]. The dataset used in this study is publicly available by Harvard
University (National Center for Image Guided Therapy Department of Radiology, Brigham
and Women's Hospital, Harvard Medical School). The database is publicly available for
research purposes. The study used a total of 682 MRI scans from 20 patients consisting of
482 images from prostate subjects and 200 images from brachytherapy subjects for the
purpose of feature extraction and to use those features to detect cancer.

Models were trained using single as well as combination of feature sets for the task of
classification. Jackknife [Efron, 1979] and k-fold were employed as cross validation
techniques to ensure performance evaluation validity. Receiver Operating Characteristic
(ROC), specificity, sensitivity, positive predictive value (PPV), negative predictive value
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(NPV), false positive rate (FPR) were used to evaluate the strength of model. For single
feature sets, SVM with Gaussian kernel gave the highest accuracy of 93.34% with an AUC
score of 0.999. Whereas, for a combination of different feature sets SVM Gaussian kernel
with texture morphological features gave the highest accuracy of 99.71% and AUC of 1.00.

A study conducted in 2015 took a rather unconventional approach of combining a CAD
system and prostate imaging reporting and data system (PI-RADS) score [“Global PI-RADS
Standardization of Prostate MRI”, 2018] to detect prostate cancer [Litjens et al., 2015]. The
approach used in the study is a three step approach. In the first step, the system extracted
quantitative voxel features from mpMRI scans, following PI-RADS guidelines in order to
capture characteristics described by the PI-RADS guidelines. These voxel features were used
as input to train a random forest classifier to determine a continuous likelihood score for each
voxel for cancer identification, resulting in a likelihood image. The second step predicted
cancer likelihood per lesion using a random forest classifier, trained by using a combination
of the symmetry, local contrast and statistical features. Probability based segmentation of the
prostate zones enabled the system to consider a lesion's zonal location. The third and final
step drew a contrast between CAD, PI-RADS and their combination using logistic regression
and evaluated them based on ROC AUC score. Figure 4 describes the workflow of a CAD
system.

Aggressive cancer?

é PIRADS E
: (radiologist) i
Detection (uDrslccl):ii? +
(radiologist) ; : radiologist)
i Likelihood
: (CAD)

Figure 4: Suggested workflow for the proposed CAD system [Litjens et al., 2015].

The final analysis of the study included a total of 107 patients with 141 lesions. The ROC
AUC score of the combination (CAD and PI-RADS) was significantly higher than the
PI-RADS only score of the radiologist. In case of benign vs cancer, the combination score
was (.88, whereas radiologist score was 0.81 and the p-value was 0.013. In case of indolent
vs. aggressive, the scores were 0.88 and 0.78 with p-value < 0.01 for combination and
radiologist respectively. The actual cancer grade and combination score had a higher
correlation (0.69, p-value=0.0014) as compared to the individual CAD system or radiologist
alone (0.54 and 0.58 respectively). It was concluded that the solution based on the
combination of CAD and PI-RADS had the potential to improve cancer detection accuracy.
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2.1.2 Deep Learning based CAD

Ever since deep learning started making strides in image recognition and outclassed other
conventional techniques, it has become synonymous with a panacea. Researchers with highly
efficient GPU powered compute resources and advanced deep learning libraries such as
TensorFlow at their disposal, are using these latest resources to come up with CAD systems
to solve primitive problems. Deep neural networks are being used not only to detect prostate
cancer but also segmentation of prostate in three-dimensional space. A special kind of neural
network called Generative Adversarial Network (GAN) [Goodfellow et al., 2014] is found to
be very effective in solving insufficient data problem. It generates very similar synthetic data
points based on features learned from the actual dataset.

A study in 2017 drew a comparison between traditional machine learning CAD and deep
learning based CAD [Tsehay et al., 2017]. The approach used in this study was based on an
edge detector network, which processes input images to generate their respective probability
maps. The performance of this deep learning based CAD was evaluated using receiver
operating characteristic (ROC) curve and free-response ROC (FROC). Then the performance
of deep learning based CAD was compared with an already existing CAD which used SVM
with handwrought features, such as local binary pattern (LBP) [He, et al., 1990] extracted
from the same dataset. The study included data of 52 patients in three different modalities,
namely, T2W, ADC, and B2000 MR images. Since these modalities captured information
about the same instance of the organ stored in different ways; therefore, it provided room to
employ a novel approach of superimposing these modalities to create a three-channel RGB
image as shown in Figure 5. The enriched three-channel input allowed the network to exploit
the contrast of the image to learn meaningful features. Furthermore, the contrast of the RGB
image was enhanced using histogram equalisation.

Figure 5: Generating a three-channel RGB image from three mp-MRIs [Tsehay et al., 2017].
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The performance of deep learning based CAD was compared with the SVM based CAD that
used the handwrought features. DL based CAD had an 86% true positive rate and 20% false
positive rate. Whereas, the SVM based CAD had 80% true positive rate and 20% false
positive rate, which when projected on the FROC came out to be 94% and 85% detection rate
at 10 false- positives per patient. The results were conclusive enough to establish that DL
based CAD had potential and further exploration could lead to even better results.

A study which emerged as a result of an online competition PROSTATEx challenge
[“PROSTATEx Grand Challenge”, 2018] used a novel deep learning architecture named
XmasNet to detect clinical significance of prostate cancer [Liu et al., 2017]. The deep
learning architecture (XmasNet) comprised of several convolutional layers. The dataset
comprised of 341 cases and there were 4 different multiparametric MRI modalities, namely,
diffusion weighted images (DWI), apparent diffusion coefficient (ADC), Ktrans and
T2-Weighted images. A unique way of data augmentation based on 3D rotation and slicing
was employed to incorporate the information of the lesion as shown in Figure 6 part c. The
study used a similar approach of superimposing modalities used in the aforementioned study
[Tsehay et al., 2017] to create a three-channel RGB image as shown in Figure 6 part a. The
training set comprised of 274 lesions and validation set had 43 lesions. Based on the
superimposition technique, four different types of inputs were generated using DWI (D),
ADC (A), Ktrans (K), and transverse T2WI (T) as the RGB channels: DAK, DAT, AKT,
DKT (shown in the figure before). Separate deep learning models were trained for each input
type. 207144 training samples were generated after augmentation using in-plane rotation,
random shearing and translation for every slice. Each sample was 32x32 region of interest
(ROI), surrounding the lesion.

DAK AKT

a DAT DKT b C

Figure 6: a. Examples of the four types of input images for XmasNet. b. Illustration of data
augmentation through 3D slicing. c. lllustration of data augmentation through in-plane rotation.
The dashed box is a 32%32 region of interest (ROI) centered at the lesion [Liu et al., 2017].

87 handcrafted features were used to train 140 decision trees using a gradient boosting

algorithm called Xgboost [Chen & Guestrin, 2016]. The features included mean, standard
deviation and intensities of each lesion along with texture features such as energy and
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contrast. Experiments on the validation set proved that XmasNet with a ROC AUC score of
0.95 with sensitivity of 0.89 and specificity of 0.89, outperformed the best XGBoost model
with ROC AUC score of 0.89 with sensitivity of 0.87 and specificity of 0.77. On the training
set XmasNet achieved a score of 0.83 to become the second best score in the competition.

As mentioned earlier, one of the biggest challenges in using medical science data, especially
visual data in deep learning, is its insufficient size. Enormity of data is one of the essentials
for most deep learning models. Researchers have been working on exploring new ways to
synthetically augment the data. Data augmentation can profoundly impact the learning of
deep neural networks. One such approach is called Generative Adversarial Networks (GAN)
[Goodfellow et al., 2014]. A study on the same ProstateX dataset uses Generative Adversarial
Networks to generate synthetic data samples [Kitchen & Seah, 2017]. Generative models can
be used to generate new data that looks very similar to the real data. A generative model's
ability to encompass the data distribution itself, as opposed to conditional probability of a
certain label given the data, makes it suitable for the task of data augmentation, unlike a
discriminative models:

P(X|Y) Discriminative Model
P(X) Generative Model

where P(X) is the data distribution and P(Y|X) is the conditional distribution of target
variable given the data distribution.

A generative adversarial network can be generalised by using an analogy of a game played
between two players with distinct competing objectives. The two players are the generator G
and a discriminator D. G is a content generator that tries to create realistic looking content. D
is a judge that tries to classify the authenticity of a content as fake or original. The principal
equilibrium strategy in this game is for G to draw from P(X) in which case D performs no
better than random guessing, i.e. the best way for G to fool D is to create content that are
indistinguishable from real content (according to D). Generative model do not really have a
global loss function for performance gain, instead these models are trained to an equilibrium
point where neither player can improve their performance given a small unilateral change to
their strategy; where their strategy is represented by continuous neural network weights. A
leap-frog gradient descent algorithm is used for training, where a gradient descent step is
taken for G with D held constant, then D with G held constant. With some luck and under
conditions, that are in general not well understood, this algorithm can move both players into
a suitable equilibrium strategy. This method is particularly powerful if the discriminative
models are large Deep Convolutional Neural Networks. If there are any recognizable
statistical aberrations in the data generated by G, then D can catch out the generator by
recognizing these aberrations. Unrealistic structures are thus suppressed when training has
reached equilibrium — G produces highly realistic samples. [Kitchen & Seah, 2017]. The
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study uses the same logic to develop generator and discriminator architectures and train them

to produce 200 synthetic samples. Samples of real and synthetic lesions are shown in Figure

7.
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Figure 7: Comparison of real and synthetic ROI patches [Kitchen & Seah, 2017].

Another study which emerged out of the ProstateX challenge, used 3D convolutional neural

networks to detect the clinical significance of the Prostate cancer [Mehrtash et al., 2017]. The
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network architecture had three different modalities as input: ADC maps, maximum b-value
from DWI, Ktrans from dynamic contrast enhanced DCE MRI along with that the zone
information was explicitly fed to the network. The network had 9 convolutional layers
followed by a dense layer which was connected to the input of zone information. The
network achieved an ROC AUC score of 0.80 on the test set.

Prostate segmentation could be an important step in separating the prostate region in an MRI
scan for the purpose of clarity. The varying shape and indistinguishable boundaries of the
prostate in 3D MRI scans poses a big challenge in automating prostate segmentation. A study
proposed 3D segmentation of prostate using a novel approach of volumetric convolutional
neural network with mixed residual connections [Yu et al., 2017]. Since the approach uses 3D
convolutional networks; therefore, it fully exploits the three dimensional spatial information.
Secondly, incorporating the residual connections proved to be very effective in enhancing
training efficiency and information propagation which eventually improved the overall
performance of the network. The dataset used to train the network was from MICCAI
PROMISE12 challenge. The solution stood first in the competition. The study used a
complex set of metrics to calculate the final score. The set included, the Dice coefficient
[Frakes & Baeza-Yates, 1992], the percentage of the absolute difference between the
volumes, the 95% Hausdorff distance [Rote, 1991] and the average over the shortest distance
between the boundary points of the volumes.

A study in 2017 used high-level feature representation, extracted through deep neural
network, to perform hierarchical classification [Zhu et al., 2017]. In essence, the study tried to
draw a comparison between a set of handcrafted features such as LBP and Haar-like features
and high-level features for detecting prostate cancer regions. The study is based on data from
21 real patient subjects. The study used stacked autoencoders (SAE) to learn latent high-level
feature representation from MRI scan. In SAE model, several single auto encoders (NN) were
stacked in a hierarchical way [Hinton & Salakhutdinov, 2006]. As opposed to processing the
whole image, the study used the segmentation approach, in which three dimensional image
data is disintegrated into smaller parts called voxels. The approach is referred to as
voxel-wise training in the study, in which the deep networks learn separately for each voxel
as opposed to relying on the whole image. High-level features learned from different
modalities were concatenated in the final step. Random forest was chosen for the task of
hierarchical classification. Since the study cohort was small, leave-one-subject-out was
chosen for cross validation and section-based evaluation (SBE) [Farsad et al., 2005],
sensitivity and specificity were used to evaluate the performance of the proposed solutions.
The high-level features achieved an averaged section-based evaluation (SBE) of 89.90%, an
averaged true positive rate of 91.51%, and an averaged true negative rate of 88.47%, whereas
the combination of both high and low-level features yielded an averaged SBE of 91.40%, an
averaged true positive rate of 92.32% and an averaged true negative rate of 89.38%. The
study concluded that the high-level features outperformed handwrought features and the
contextual features helped in improving the hierarchical classification even further.
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A study of the breast cancer detection used a novel approach of patch based classification
followed by heatmap based post-processing for generating tumor probability to detect
metastatic breast cancer [Wang et al., 2016]. The study emerged as one of the solutions from
Camelyonl6 - ISBI challenge on cancer metastasis detection in lymph nodes
(“CAMELYONI16”, 2018). The data was collected from two different institutes, Radboud
University Medical Center (Nijmegen, the Netherlands), and the University Medical Center
Utrecht (Utrecht, the Netherlands). Table 1. shows the data distribution.

Institutes Train (cancer) Train (benign) Test
Radboud UMC 90 (22.5%) 70 (17.5%) 80 (20%)
UMC Utrecht 70 (17.5%) 40 (10%) 50 (12.5%)
Total 160 (40%) 110 (27.5%) 130 (32.5%)

Table 1: Camelyonlé6 data distribution.

Two different evaluation metrics were used in this study: slide-based evaluation (SBE) and
lesion-based evaluation (LBE). SBE was measured using ROC-AUC score, based on the
probabilities of each test slide containing cancer. LBE was measured using probability of a
certain (Xx,y) pixel for each (predicted) cancer lesion for each whole slide image. The
performance was measured as the average true positive rate for detecting all true cancer
lesions in a whole-slide image (WSI) across 6 false positive rates: 0.25, 0.5, 1, 2, 4, and 8
false positives per WSI. As mentioned above the approach used in this study was two
pronged, classification based on patch and headmap (post-processing). Patch-based
classification used WSI as input with the label, indicating ROI of each WSI containing
metastatic cancer. Training was done using millions of small positive and negative patches,
randomly generated from the training data. Patches in the ROI containing tumors were
labeled positive otherwise negative. The post-processing stage included tumor probability
heatmap generation, the probability heatmap was further used to compute evaluation score
based on both slide as well as lesion for each WSI. As opposed to developing a custom deep
network from scratch, GoogleNet [Szegedy et al., 2015] was the architecture of choice for
training. The solution stood first in both competitions, with an impressive area under the
receiver operating curve (AUC) of 0.925 for WSI classification and for tumor localization it
achieved a score of 0.7051.

2.2 State of the Deep Neural Network Architectures

Since the problem area comes under the umbrella of image classification; therefore, it is of
paramount importance to review the state of the art in image classification. The most
prominent image classification solutions based on deep convolutional neural networks
emerged as winners of the yearly Large Scale Visual Recognition Challenge (ILSVRC)
[Russakovsky et al., 2014]. Three architectures from the competition were chosen for this
study.
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2.2.1 Inception V1

In 2014, a research team from Google won the ILSVRC14. The codename of their
architecture was inception [Szegedy et al., 2015]. One of the key features of the solution was
the improved utilization of computing resources. Conventionally, deep neural networks are
deep only depth-wise, this solution proposed a way to make the best use of depth as well as
width on a constant computational budget. This architecture was inspired by
network-in-network approach [Lin et al., 2013] to boost the representational power of the
network which is the very core of the inception module. One particular instance of this study
is called GoogleNet consisting of layers. GoogleNet is very efficient in terms of memory and
power use, for instance, a reflection of its efficiency is the fact that it takes 12 times lesser
parameters as compared to Alexnet winner of [“ILSVRC2012”, 2018].

At the heart of the GoogleNet is the inception module which is the core of the whole
architecture. The inner working of this module is non-trivial. The module applies a 1x1
convolutional layer to already existing convolutional layers followed by linear activation
[Krizhevsky et al., 2012]. However, in inception, 1x1 convolution is multipurpose, it is
mainly used for the purpose of dimensionality reduction and it allows not only to increase the
depth, but also the width of networks, without affecting the performance so much. The
inception architecture primarily focuses on dense components to efficiently map local sparse
structures in @ CNN. The architecture also takes inspiration from a layer by layer approach
[Arora et al., 2013] where it clusters units in groups with high correlation statistics in the last
layer. Based on already perceived information that image patches in lower layers are highly
correlated, these can be covered by 1x1 convolutions. Clusters that are spatially spread-out
can be covered by applying bigger convolutions of 3x3 and 5x5, and patches decrease with
the increase in region size. Also, it can be observed in the architecture that all the
convolutional filters 1x1, 3x3 and 5x5 are concatenated before they are passed to the next
layer, as illustrated in Figure 8.
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Figure 8: An inception module with dimensionality reduction.
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GoogleNet won the 2014 ILSVRC with a 6.67% top-5 error. The most successful version of
GoogleNet (an incarnation of inception architecture) is described in Table 2. The first column
contains the types of layers or modules used in the architectures. The ‘patch size/stride’
column describes the filter (patch) size along with stride size (height x width/stride), where
applicable. The column ‘output size’ describes the output shape and size of each layer. The
column ‘depth’ represents the depth of each layer/module. The column ‘# 1x1’ represents the
number of 1x1 filters used in a specific layer. Similarly, columns ‘# 3x3’ and ‘# 5x5’
represent the number of 3x3 and 5x5 filters respectively. Columns ‘# 3x3 reduce’ and ‘# 5x5
reduce’ represent 1x1 filters applied before 3x3 and 5x5 filters respectively. The column
‘Pool proj’ represents the number of 1x1 filter applied after max pooling. Params and ops
columns represent the number of parameters and operations per layer respectively.

type patch size/ output depth | # #3x3 | #3x3 | #5x5 | #5x5 | Pool | params | ops
stride size 1x1 | reduce reduce proj
convolution 7x712 |112x112x64 1 2.7K 34M
max pool 3x3/2 56 x 56 x 64 0
convolution 3x3/1 56 x 56 x 192 2 64 192 112K 360M
max pool 3x3/2 28 x 28 x 192 0
inception(3a) 28 x 28 x 256 2 64 96 128 16 32 32 159K 128M
inception(3b) 28 x 28 x 480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14 x 14 x 480 0
inception(4a) 14 x 14 x 512 2 192 96 208 16 48 64 364K 73M
inception(4b) 14 x 14 x 512 2 160 112 224 24 64 64 437K 88M
inception(4c) 14 x 14 x 512 2 128 128 256 24 64 64 463K 100M
inception(4d) 14 x 14 x 528 2 112 144 288 32 64 64 580K 119M
inception(4e) 14 x 14 x 832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 7x7x832 0
inception(5a) 7x7x832 2 256 160 320 32 128 128 | 1072K 54M
inception(5b) 7x7x1024 2 384 192 384 48 128 128 | 1388K 71M
avg. pool 7x71/1 1x1x1024 0
dropout(40%) 1x1x1024 0
linear 1x1x 1000 1 1000K ™
softmax 1x1x1000 0

Table 2: GoogleNet incarnation of Inception architecture [Szegedy et al., 2015].

2.2.3 InceptionV3

In 2016, researchers at Google published an improved version of inception architecture called
InceptionV2 [Szegedy et al., 2016]. The idea behind the improvement is to disintegrate the
convolutions in the inception module even further. The idea was further refined in revised
version InceptionV3. InceptionV3 first suggests 5x5 convolutions to be are replaced by
consecutive 3x3 convolutions and then it introduces the idea of factorising the 3x3
convolutions even further into asymmetric convolutions of nx1. Moreover, it introduces the
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concept of batch normalised auxiliary classifier of fully connected layers. Figure 3. illustrates
the architecture of InceptionV3 network. The study suggests four design principles based on
large scale experimentation on a wide variety of deep convolutional neural networks, the
principles are as follows:
> While designing an architecture, avoid too much data compression in the earlier
layers. In general the compression of data representation should take place uniformly
as we move towards the output.
> In order to increase the training efficiency of a network, high dimensional data can be
processed locally to retrieve segregated features by increasing activation per tile in a
convolutional network.
> Dimensionality reduction, before spatial aggregation, is more efficient. The reason for
that is believed to be the high correlation between adjacent units, which results in
much less loss of information during dimensionality reduction.
> Striking a balance between the dimensions of the network, in terms of width and
depth. A network can be optimized for performance by balancing the number of filters
per stage and its depth.
The improvements in the actual inception architecture were brought about using the same
design principles. Variants of InceptionV3 modules are illustrated in Figure 9.
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Figure 9: Inception modules [Szegedy et al., 2016].

Inception module A in Figure 9, shows a replacement of the one of the first inception
modules where 5x5 convolutions are replaced by two 3x3 convolutions. Inception module B
factorizes the nxn convolutions to 1xn and nx1 according to the third design principle.
Finally, Inception module C represents the second design principle, locally processing high
dimensional data by spatial aggregation (1x1 convolutions).

Table 3. provides an abstracted representation of the architecture of the proposed network. It
makes use of the inception modules in Figure 9.
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type patch size/stride Input size
or remarks
conv 3x3/2 299x299x3
conv 3x3/1 149x149x32
conv padded 3x3/1 147x147x32
pool 3x3/2 147x147x64
conv 3x3/1 73x73x64
conv 3x3/2 71x71x80
conv 3x3/1 35x35x192
3 x Inception Inception module A 35x35x288
5 x Inception Inception module B 17x17x768
2 x Inception Inception module C 8x8x1280
pool 8x8 8x8x2048
linear logits 1x1x2048
softmax classifier 1x1x1000

Table 3: InceptionV3 model [Szegedy et al., 2016].

The column ‘type’ contains all layers/modules used in the architecture. The column ‘patch
size/stride or remarks’ contains information regarding filter size, step size and if applicable
remarks about the corresponding layers. ‘Input size’ represents the input dimensions of the
layer/module: height x width x filter-count.

InceptionV3 was trained and tested on ILSVRC12 data and it achieved 21.2% top-1 and 5.6%
top-5 error for single crop evaluation.

2.2.4 Xception

In 2015, Francois Chollet, an artificial intelligence researcher at Google and the developer of
the famous neural network python API Keras, proposed yet another deep neural network
architecture called Xception. It was inspired by the inception modules. In his study he broke
down the interpretation of inception module as in intermediary between normal convolutions
and depthwise separable convolution operation, which eventually lead to the ideation of a
novel deep convolutional neural network architecture. The depth-wise separable convolutions
are at the heart of this architecture. [Chollet, 2016].

The advent of inception-like architecture was a paradigm shift from Visual Geometry Group
(VGG) style [Simonyan & Zisserman, 2014] architecture. VGG style networks were
primarily stacks of simple convolutional layers, whereas inception-like architectures used
inception modules as building blocks. Although, inception modules bear conceptual
similarity to convolution, they learn a far richer representation of data with less parameters.
The power of inception module lies in the decoupling of spatial and cross-channel
correlations. Xception architecture pushed the boundaries even further by introducing
depth-wise separable convolutions, which is similar to the idea of extreme inception: to
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separately map spatial correlations for each channel. However, they differ from each other in
two ways
> Inception performs 1x1 convolution first, whereas depth-wise separable
convolution performs channel-wise spatial convolution first.
> In inception, both operations are followed by piecewise linearity, rectified
linear unit (ReLu), whereas depth-wise convolutions do not strictly rely on
piecewise linearity.

An abstract representation of the Xception architecture is described in Figure 10.

Entry flow Middle flow Exit flow
299x299x3 images 19x19x728 feature maps 19x19x728 feature maps
|
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Figure 10: Xception architecture [Chollet, 2016].

Conceptually, Xception architecture is distributed into 3 main parts: entry flow, middle flow
and exit flow. The data is first passed through the entry flow, then iteratively processed 8
times through the middle flow, and finally passed through the exit flow. In this process flow,
batch normalization is performed on the data after every Convolution and
SeparableConvolution layer, which is explicitly shown in Figure 10. Each
SeparableConvolution employs a depth multiplier of 1.
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Xception architecture was compared with InceptionV3 architecture on a large image
classification dataset comprising of 350 million images and 17,000 classes. Since both
architectures have the same number of input parameters, the improved performance of
Xception is the result of model efficiency. Xception achieved a top-1 accuracy of 0.790 and
top-5 accuracy of 0.945.

2.2.5 Deep Residual Learning for Image Recognition

Residual networks brought back very deep convolutional networks back to limelight. In 2015,
researchers at Microsoft proposed the idea of deep residual learning for image recognition
[He et al., 2015]. The idea was to use residual blocks as the core concept of the network to
tackle vanishing and exploding gradients in order to improve the learning process of the
network. It became evident from experiments that this approach not only made it easier to
optimize the network, but yielded better accuracy with increased depth as well. These
networks were significantly deeper than their predecessors in deep networks such as VGG
nets [Simonyan & Zisserman, 2014]. One incarnation of residual networks has 152 layers
which is 8x the depth of VGG nets.

At the heart of residual network, there is the residual block. In a nutshell, the function of a
residual block is to perform an identity mapping through a skip connection. In this residual
learning framework, the idea is to explicitly let the layers fit a residual mapping instead of
relying on stacked layers to directly fit a desired mapping. Let the desired underlying
mapping of the residual be H(x). We set the residual block such that H(x) = F(x) + x where
F(x) is linear product of the residual block and x is the identity mapping, H(x) is the
combined output of these two. Figure 11 graphically represents a residual block.

identity

Figure 11: Residual Learning: a building block [He et al., 2015].

A combination of these residual networks achieved 3.57% error on the ImageNet test dataset,
securing first position in ILSVRC 2015 classification task. Due to the deep representation of
residual networks, the solution gained 28% improvement on the COCO dataset. A 34-layer
residual network is illustrated in Figure 12. The architecture starts with a layer containing 64
“7x7’ convolution filters and then it is further divided into 4 parts, the first uses layers with 64
‘3x3’ convolution filters, the second part uses layers with 128 ‘3x3’ convolution filters, the
third part uses layers 256 ‘3x3’ convolution filters and the fourth part uses layers with 512
‘3x3’ filters. The fourth part is followed by a fully connected dense layer with 1000 neurons.
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Altogether, the network consists of 34 layers. The residual block in Figure 11 is the building
of block of the network.

34-layer residual

image

Fx7 conv, 64, f2

pool, f2

3x3 conw, 64

3x3 conv, 128

i

3Ix3 conv, 128
3x3 conv, 128

3x3 conv, 128

3x3 conv, 512
3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
—
avg pool

Figure 12: 34-Layer Resnet [He et al., 2015].
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3. DATASET AND FRAMEWORKS

3.1 Dataset

The dataset used in this thesis work was made public in a 2017 online competition called
ProstateX2 [“SPIE-AAPM-NCI Prostate MR Gleason Grade Group Challenge”, 2018]. The
dataset comprised of mpMRI scans of 99 patients. The mpMRI scans had four different
modalities:

> T2-weighted transaxial images (DICOM format).

> T2-weighted sagittal images (DICOM format).

> Ktrans images (mhd format)

> Apparent diffusion coefficient (ADC) images (DICOM format).

These cases contained 112 lesions. Each lesion had a known pathology-defined Gleason
Grade Group [Epstein et al., 2016]. The total Gleason score (GS) was calculated based on the
appearance of the cells under the microscope, the first half of the score was the representation
of most common cell morphology, and the second half was the second most common cell
pattern. Both halves score ranged from 1 to 5. Gleason grade groups are illustrated in Figure
13 and are following:

Gleason Grade Group 1 (GS less than 6): Well-formed separable glands.

Gleason Grade Group 2 (GS 7[3+4]): Mainly well-formed glands with sporadic presence of
poorly-formed glands as the smaller component.

Gleason Grade Group 3 (GS 7[4+3]): Mainly poorly-formed or fused glands with sporadic
presence of well-formed glands as the smaller component.

Gleason Grade Group 4 (GS 8[4+4]; 8[3+5]; 8[5+3]): (1) Only poorly-formed glands or (2)
mainly well-formed glands and lacking glands as the smaller component or (3) mainly
lacking glands and the smaller component of well-formed glands.

Gleason Grade Group 5 (GS 9 or 10): There is dearth of gland formation in this group
including or excluding poorly-formed glands.

Gleason grade group 2 and 3 both had a total score of 7, however, they differed depending on

the scores of the most common and second most common cell morphology.
[“SPIE-AAPM-NCI Prostate MR Gleason Grade Group Challenge”, 2018].
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Well
Differentiated

Poorly
Differentiated

Moderately
Differentiated

Figure 13: Gleason grade groups [“How is Prostate Cancer Diagnosed?”, 2018].

3.1.1 Exploratory Analysis

Exploratory analysis of data included basic visualisation techniques to understand the scans
better. These visualisations included, region of interest detection, analysis of zone
information distribution and Gleason grade group distribution. Exploratory analysis helped in
detecting class imbalance, random order of prostate slices (which was fixed by reading the
metadata from DICOM headers), lack of standardization of image resolution across different
cases as well as modalities. Figure 14 shows region of interest highlighted with a red
bounding box in four different image artifacts.
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T2-weighted Transaxial Scan

T2-weighted Sagittal Scan

Apparent Diffusion Coefficient (ADC) Scan B-VALUE Scan

Figure 14: T2- weighted scan (sagittal and transaxial plane), apparent diffusion coefficient and
b-value scan with ROI highlighted with a red bounding box.

Figures 15 & 16 show the distribution of zone information and Gleason grade group,
respectively.
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Figure 15: Bar chart showing zone information distribution, AS: anterior fibromuscular stroma,
PZ: peripheral zone, TZ: transition zone.
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Figure 16: Pie chart showing Gleason grade groups distribution.
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3.2 Technology and Frameworks

Python 3.5.3 was the programming language chosen for running all the experiments. There is
a big collection of libraries in Python for different purposes. The experiments involved a
number of different libraries, however, the major ones are mentioned in this section:
> Numpy (version 1.14.0) is used for different mathematical, in particular
matrices operations.
> Scikit-Learn (version 0.19.1) implements a variety of different conventional
machine learning algorithms such as logistic regression, linear discriminant
analysis and k-nearest neighbors classification.
> Tensorflow (version 1.4.1) is a powerful artificial neural network library
developed by Google, it is primarily used for deep learning.
> Keras (version 2.1.3) is a wrapper library for implementing big neural network
models, it is easy to understand and manage. It uses Tensorflow as a low level
library for building neural networks.

A\

Pandas (version 0.22.0) is a very efficient data processing library.

A\

ImgAug (version (.2.5) is an image augmentation library which is used to

extend small image datasets using different image processing techniques, such

as rotation, inversion, and by adding Gaussian noise.

> PyDicom (version 0.0.9) is a library for reading DICOM files and their
metadata.

> OpenCV (version 3.4.0.12) is one of the most popular computer vision or
image processing library which is common across a number of different
programming languages.

> Matplotlib (version2.1.1) is visualisation library, generally used to draw plots.

3.3 Data Wrangling

3.3.1 Preprocessing

All four modalities required preprocessing, before they were used for any feature extraction
or training process. Preprocessing was required primarily because of lack of image resolution
standardization, modalities sharing multiple regions of interest with different Gleason grade
group and DICOM sequence irregularities.

Padding and ROI patch alignment: A 32x32 patch was extracted from every image and
was centered to the ROI. Experiments which utilized extended augmentation used bigger
patches of size 48x48 with additional padding to ensure data integrity while rotations.

DICOM sequencing: The naming convention used to name slices in DICOM sequences did
not match the original order of the images as per the metadata file. DICOM headers were read
to put slices in order.
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Normalization: DICOM images were grayscale images and were required to be normalized
to make them compliant with the image processing and machine learning algorithms. Each
image pixel was divided by 255 to normalize the value.

3.3.2 Image Augmentation

As mentioned in the previous chapters, one of the biggest problems with healthcare solutions
is the scarcity of data. ProstateX2 dataset was also riddled with similar problems, small size,
lack of standardization and lack of details in metadata. However, in order to tackle the small
sized dataset problem, standard image processing techniques were employed to augment the
dataset. Python library imgaug was used [“Github - Imgaug”, 2018] for two different types of
augmentation:

Standard Augmentation: Standard augmentation used 5 variants of the image using
standard image processing techniques: flip (left-right), flip (up-down), dropout , invert and
orthogonal rotation. Figure 17 illustrates different augmentation techniques including the
ones employed in this project.

Extended Augmentation: Extended augmentation generated 72 variants of the image by
rotating it 360° by increment of 5°. There was also an option of pre-augment which applies
standard augmentation before applying extended augmentation. There was definitely some
redundant augmentation; however, optimization was not a concern.

Flip (Up-Down)

Original

Flip (Left-Right) Sharpen

Figure 17: Image augmentation techniques.
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3.4 Evaluation Metrics

3.4.1 Accuracy Score

Accuracy score is a standard metric to compute the fraction of correctly predicted labels. If

¥ 1s the predicted label of the k-th sample and y, is the corresponding true label, then the
fraction of correct predictions over total number of samples is defined as:

nsample‘s_l
accuracy(y,y) = ”—'—pl > 10=y)
samples k:O

[“Model evaluation: quantifying the quality of predictions”, 2018].

3.4.2 Cohen’s Kappa

The evaluation metric Cohen’s Kappa is used to compute inter-rater agreement score, not
necessarily between a classifier and the ground truth. Cohen’s Kappa score varies on a
spectrum between -1 and 1, any score above 0.8 is generally considered a strong agreement,
anything below zero implies random labeling. Kappa score can be used for both binary as
well as multiclass classification problems, however, it cannot be used for multilabel
problems. [“Model evaluation: quantifying the quality of predictions”, 2018]. Cohen’s Kappa
can be mathematically expressed with the following equation :

%=, p)/ 1= p,)
where p, is the empirical probability of agreement on the label assigned to any sample (the

observed agreement ratio), and p, is the expected agreement when both annotators assign

labels randomly. p, is estimated using a per-annotator empirical prior over the class labels
[Cohen, 1960].
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4. PROPOSED METHODS

This thesis project was an effort to draw a comparison between classification prowess of
conventional machine learning models and deep learning models on a small dataset of 112
lesions. This chapter sheds light on image processing algorithms used for feature engineering,
conventional machine learning algorithms that used those features and deep convolutional
neural network models.

4.1 Feature engineering

Two sets of features were used in training classification models: histogram of oriented
gradients (HOG) [Dalal & Triggs, 2005] and local binary pattern (LBP) [Ojala et al., 1996].

4.1.1 Histogram of Oriented Gradient (HOG)

Histogram of Oriented Gradient descriptor uses the distribution of edge directions and
intensity gradients to highlight the appearance and shape of local object within an image.
The image is divided into smaller contiguous segments called cells, following that a
histogram of gradient direction is computed for the set of pixels in each cell. The descriptor is
generated by concatenating the previously computed histograms. In order to improve
accuracy, contrast normalisation is carried out of local histograms by computing intensity
measure across larger region of the image, called a block. Then all cells are normalized using
the calculated value within that block. The normalisation makes the image prone to changes
in brightness.

There are some benefits of using HOG descriptors as compared to other descriptors. Since it
operates on local level, it is not susceptible to geometric and photometric transformations,
excluding the object orientation. Changes like those only appear in large spatial regions.
[Dalal & Triggs, 2005].

4.1.2 Local Binary Pattern (LBP)

Local Binary Pattern is a visual descriptor primarily used in image processing. It is a very
efficient image feature used for texture classification. It performs pixel labeling by fixing
neighborhood radius of each pixel and considers the result as a binary output. LBP is
computationally inexpensive and has strong discriminative ability, which makes it a very
widely used technique in a broad range of applications.

The fundamental idea behind LBP operator was to introduce a way to describe the

two-dimensional surface by two additional measures: local spatial patterns and grayscale
contrast. The LBP operator forms labels for the image pixels by thresholding the 3 x 3
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neighborhood of each pixel with the center value and considering the result as a binary

outcome. [Ojala et al., 1996].

Figure 18a shows the visual output of histogram of oriented gradients, for a T2-weighted

transaxial scan. Figure 18b shows visual output of local binary pattern, for a T2-weighted

transaxial scan.
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Figure 18a: Histogram of oriented gradients calculated from T2-weighted transaxial scan.

T2-Weighted Transaxial Scan Local Binary Pattern

Figure 18b: Local binary pattern calculated from T2-Weighted transaxial scan.
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4.2 Conventional Machine Learning

The idea of this research was to organically start from simpler techniques to attain a
benchmark accuracy and then to move towards more complex techniques. Following the
same line of logic, eight conventional machine learning classifiers were used. The classifiers
are as follows.

4.2.1 Bernoulli Naive Bayes

Bernoulli Naive Bayes is type of supervised learning algorithm which uses Naive Bayes
[Zhang, 2004] training as the building block of the algorithm. Naive Bayes predicts the
likelihood of the occurrence of an event based on the prior information or evidence present in
the data. Bernoulli Naive Bayes is used for the classification of multivariate data and the
variables are interpreted as binary valued variables. Bernoulli Naive Bayes is based on the
following equation:

P(x;|y) = PG|y +(1 = PG|y — x)
[“Bernoulli Naive Bayes”, 2018]

It can be deduced from the equation above that the classifier penalizes the absence of a
feature that is highly correlated to a certain class. [“Bernoulli Naive Bayes”, 2018]. One of
the applications of Bernoulli Naive Bayes is text classification. The classifier can use vectors
representing word occurrences as opposed to word count for training. [McCallum & Nigam,
1998]

4.2.2 Passive Aggressive Algorithm

Passive Aggressive algorithm is a type of online learning algorithms [Smale & Yao, 2006].
The idea of the passive aggressive algorithms are quite simple and similar to perceptron
algorithm [Block, 1962]. Both algorithms don’t necessitate a learning rate. However, unlike

perceptron, passive aggressive algorithms use regularization parameter [“Passive Aggressive
Algorithms”, 2018].

The working of a Passive Aggressive algorithm can be explained with the help of an
example. Consider a dataset:

{X = {%y, %, .., Xy, ... Jwhere x; € R™

Y = {yo,¥1, -, ¥t .. | where y; € {—1,+1}
In the equation above, t signifies the temporal dimension. However, in this case, the data

points can be generated perpetually. In theory, if they are extracted from the same
distribution, the algorithm will continue to learn, if the distribution changes, the weights will
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slowly forget the previous one and be tuned according to new one. Let’s also assume a binary
classification process for the sake of simplicity.

Let the w be the weight vector, then the prediction will be:
y, = sign(w? - x,)
Hinge loss function is one of the foundational elements of this algorithm:
L) =max(0,1—y- f(x;6))

The loss L is between 0 (representing complete match) and K depending on the function
f(x(?),6) with K>0 (representing completely invalid prediction). A generic Passive-Aggressive
framework is based on the following update rule:

1
Weyq = argming EIIW — well?2 + c&2

Lw;x,y) < &

¢ represents the slack variable which is an important component of this framework. Let’s
assume that £=0 and L is fixed to be 0. Given a sample x(?), the sign is determined by current
weight vector. Loss function outputs 0 when the sign is correct and the argmin becomes w(z).
This shows that the algorithm is passive on the occurrence of a correct classification event.
In the case of misclassification, the update rule turns into an aggressive penalizing rule,
because it recalibrates w to be close to the previous one as possible (otherwise the existing
knowledge is immediately lost), but it must satisfy L=0 (in other words, the classification
must be correct).

The slack variable allows to have margins as areas and regularization controlled by the
parameter C. Aggressiveness of of the algorithm is controlled by the parameter C, higher
values of C result in more aggressiveness which makes the algorithm prone to inconsistency
in case of noisy data. And lower values of C help algorithm adapt better. Online algorithms
like Passive Aggressive should be robust enough to handle noisy data (wrongly annotated).
After solving both update conditions, we get a closed-form update rule:

max (0,1 — y,(wT - %)) _
1 ytx

Wipg = W+ t
Il 112 + C

[“ML Algorithms addendum: Passive Aggressive Algorithms”, 2018; Crammer et al., 2006]
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4.2.3 K-Nearest Neighbor Classification

K-nearest neighbors (KNN) classification is a type supervised learning method. In pattern
recognition, KNN algorithm is a method for classifying objects based on the closest training
examples in the feature space. It is a type of instance based learning or lazy learning where
the function is approximated locally and all computation is delayed until classification. KNN
is one of the most fundamental classification techniques when there is little or no prior
knowledge about the distribution of data.

The K in KNN is the number of nearest neighbors that the classifier will consider to make its
prediction. Standard Euclidean distance is typically used to measure the distance between
neighbors, however, KNN accepts a number of different distance measures. In order to
classify a sample, voting is done based on the classes of the k nearest neighbors of the sample
and the majority class is assigned to the sample. There are also some disadvantages of using
KNN, it is highly susceptible to bias learned from local structure of the dataset. Moreover,
majority voting doesn’t always yield the desired results, especially when the class distribution
is skewed. For instance, if the class distribution is skewed, the majority class will affect
predictions of new samples. [Coomans & Massart, 1982]

KNN has been successfully used in a number of different classification and regression
problems, despite is simplistic nature. KNN is very useful in scenarios where the decision
boundaries lack regularity.

4.2.4 Random Forest

Random forest algorithm is a type of supervised learning method. It is a powerful algorithm
which is used for both, classification as well as regression. The algorithm is loosely based on
the concept of generating a forest using a number of decision trees. In general, the more trees
in the forest, the more robust the prediction and higher the accuracy.

The algorithm was first designed by an IBM engineer, Tin Kam Ho. The idea was based on
decision trees because of their time efficient execution. However, lack of generalization
ability on unseen data due to high complexity and suboptimal accuracy on training data due
to lack of complexity was the biggest challenges of decision trees. The solution, therefore,
was based on a stochastic modeling principle, which proposed to build multitude of trees in
randomly selected subspaces of original feature space. The classification prowess of the
classifiers is strengthened when the features subspace coverage is increased. [Ho, 1995].
Random forest is sometimes referred to as ensemble method because the forest is an
ensemble of trees generated from samples drawn with replacement from the training data.
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4.2.5 Support Vector Machine

Support vector machine (SVM) is a type of supervised learning method, capable of
performing both classification as well as regression. The idea is based on the non-linear
mapping of vectorized input data to very high-dimensional feature space. Following that a
linear decision hyperplane is generated in the features space, nearest to the extreme samples
in the dataset. The decision hyperplane is also called the decision boundary. The decision
boundary is a frontier that segregates two classes. Then support vectors from both classes are
computed based on the maximum margin between the vectors and the decision boundary. The
math behind SVM classification can be generalised with the following equations:

min,, . twlw + C il g,
=
Subject to yi(chp(xl.) +b)=1-C,
C,20,i=1,..,n
Its dual can be shown as:
mina%aTQOL - ela
Subject to yT o =0

OsaisC, i=1,...,n

. . n « .
where x; € R” | i=1,..., n, in two classes, yE{1,~ 1}" represent training vectors, e represents

a vector consisting of ones, C>0 represents the upper bound, Q represents an nxn positive
semidefinite matrix, ;=Y Y; K(x,, X; ), where K(x;, xj)=¢(xl.)T¢(xj) represents the kernel.

In this case, using function ¢ the training vectors are mapped into a space with higher
dimensions. The decision function is represented by the following equation:

sgn( ;0K (x;,x) + 0)
i=1
[“Support Vector Machines”, 2018; Cortes & Vapnik, 1995]

Support vector machines are very effective for problems involving high dimensional spaces,
even if the number of features exceed the number of samples. It doesn’t use the whole
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training data for computing the decision boundary, only a subset of it. [“Support Vector
Machines”, 2018]

4.2.6 Logistic Regression

Logistic regression is a type of supervised learning method. It is another machine learning
algorithm borrowed from the field of statistics. It is one of the most commonly used method
for the task of classification, it is similar to linear regression in terms of estimating the values
of parameter coefficients yielding the function that best describes the relationship between
known input and output values. However, unlike linear regression the prediction of the output
is transformed using a nonlinear function called the logistic function, also known as the
sigmoid function. The logistic function was developed by a statistician to describe the
properties of the population growth in an ecology rising quickly and maxing out at the
carrying capacity of the environment [Cox, 2018]. The output of the sigmoid function looks
like an S-shaped curve, it can take any real valued number and map it at any value between 0
and 1, but never exactly at those limits. The mathematical equation of the logistic function is
as follows:

1) = N P

L+ Kx0)
where e represents the Euler's number, x,, is the x value of the sigmoid midpoint, L represents

the curve's maximum value and k represents the steepness of the curve [Cox, 2018].

4.2.7 Linear and Quadratic Discriminant Analysis

Linear and quadratic discriminant analysis are supervised learning methods. The methods
were proposed by Ronald A. Fisher in 1936. It is evident from the name that the classifiers
use linear and quadratic decision surfaces for the task of classification. Both LDA and QDA
are commonly found interesting because of their closed form solution and ability to perform
supervised dimensionality reduction.

Linear discriminant analysis works on the principle of projecting the dataset onto a lower
dimensional space with good class separability in order to avoid over-fitting, curse of
dimensionality and computational cost. The goals of projection in LDA is to increase
inter-class separability and decrease intra-class variance. [Welling, 2005]. Both LDA and
QDA can be derived using probabilistic models, Bayes’ rule can be followed to model the
conditional probability of data P(X|y=k), where k represents class.

Pxly=kPy=k)  PX=RPG=k)
PX) = 5P (X|y=).P(y=l)

P(y=k|X) =
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the class &k is chosen based on maximum conditional probability. And for quadratic
discriminant analysis the class conditional distribution is modeled as a multivariate normal
distribution with density:

-1 L vl
PX=k) = mis, |2 P (X =) 20 (X =)
where d represents the number of features.

The model can be used as a classifier by estimating the class priors P(y=k). The class means
and covariance matrices from the training dataset. For LDA, the Normals for each class share
the same covariance matrix, which results in linear decision surfaces best understood by
comparing the log-probability ratios:

log[P(y=k|X)/P(y=1|X)] = log[(P(X]y=k).P(y=k))/(P(Xly=0).P(y=1)] = 0 <

(b — ' X =S — WEW) - log[Py=k)/P(y=1)]

For QDA, there are no assumptions on the covariance matrices. [“Linear and Quadratic
Discriminant Analysis” 2018; Friedman et al., 2001].

4.2.8 Xgboost

Xgboost is a type of gradient boosting algorithm [Friedman, 2002], which falls under the
category of supervised learning. Xgboost is an extreme implementation of gradient boosting
machines, which parallelizes the traditional sequential tree generation process. The
underlying idea was to develop an algorithm which was both memory and processing
efficient. Xgboost can be best understood by it’s features:

1. Split finding algorithm: As the data size increases, it becomes more and more
difficult to manage the entire dataset in the memory. Xgboost uses an approximate
algorithm to find the best split over a continuous feature. It uses feature distribution
based percentiles to propose candidate split points. Then the candidate split points are
used to bin the continuous features. And finally using aggregated stats on the buckets,
the best solution is chosen for candidate split points.

2. Block structure: Data sorting is the most time intensive task of tree based learning.
Xgboost uses 'blocks', the in-memory units, for data storage. Data columns are stored
in their respective blocks, based on the corresponding feature value. This is a one-off
computation, required before training. Block sorting can be parallelised using CPU
threads. Similarly, split finding can also be parallelised.
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3. Weighted quantile sketch for approximate tree learning: Xgboost uses weighted
quantile sketch to propose candidate split points among weighted datasets. Quantile
summaries are then merged and pruned over the data.

4. Sparsity-aware algorithm: Xgboost is a sparsity-aware algorithm which is capable
of handling missing data.

5. Cache-aware access: It chooses 216 examples per block to ensure parallelization
and prevent cache miss during split finding.

6. Out of core computation: It divides the data into multiple blocks and stores it on the
secondary memory, if the data doesn't fit into the memory. Blocks are compressed
with respect to columns and while reading the data from secondary memory, it is
decompressed on the fly.

7. Regularised learning objective: Xgboost uses the following regularization term to
penalize the model complexity:

Obj(®)=L(6)+ Q(O)
where L is the loss function and Q represents the regularization term which most
algorithms tend to neglect in the formulation of objective function. Whereas, Xgboost
controls complexity and prevents overfitting by explicitly using regularization.

Xgboost uses all seven features mentioned above to provide scalability and efficient resource
utilization. [“XGBoost: A Concise Technical Overview”, 2018; Chen & Guestrin, 2016].

4.3 Convolutional Neural Networks

Convolutional neural networks are one of most efficient and widely used neural networks in
computer vision applications. The idea of convolutional neural network was inspired by the
processing of image in an actual brain. The part of brain responsible for processing images is
called the visual cortex. Neurons in this specific region of the brain respond to specific
stimuli in the receptive field. A complete visual field is cumulative overlap of different
neuron fields. This translates into activation of a specific set of neurons when a specific
feature is in the visual field like a curve. Together a set of features fire up a set of different
neurons (rest being inactive) which then shape complete object in our visual field. [Hubel &
Wiesel, 1962].

Humans accomplish the task of image recognition by breaking down image into smaller
components or features and recognise those features firsts, and human mind is incredibly fast
at this. For instance in order to recognise a car, we recognise it’s features first such as tyres,
windscreen, doors, lights, indicators. Since it happens instantaneously and at subconscious
level, therefore, the process is not always very noticable. Convolutional neural networks work
in a similar fashion, however, they start from learning very granular (or abstract) features
such as curves, edges, etc.
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Convolutional neural networks usually comprise of several different types of layers, the
layers are listed below:

> Convolutional Layer - Used to learn feature map.

> Non-Linearity Layer - Introduces non-linearity to the network.

> Pooling Layer - Reduces the input size and curbs over-fitting.

> Flattening Layer - Flattens the multi-dimensional intermediate data.

> Fully-connected Layer - Typical neural network .
[“CS231n Convolutional Neural Networks for Visual Recognition”, 2018]

4.3.1 Vanilla Model and Variations

Vanilla model is a convolutional neural network with several convolutional layers interleaved
with rectified linear unit (ReLU) activation, followed by a couple of dense layer, followed by
a softmax activation layer for classification. There are four different variations of vanilla
network to test the effect of dense layers and batch normalization on classification accuracy.
Following is a brief description of all four versions:
> Baseline version: contains a set of 4 convolutional layers followed by ReLU
activation and 2D maxpool.

\l

Version 0: extends baseline version with 2 dense layers.

\J

Version 0.1: extends baseline version with 2 dense layers followed by batch
normalization.
> Version 0.2: extends baseline version with 3 dense layers followed by batch
normalization.
Each variation ends with a softmax layer for classification. The reason it is called Vanilla
Network is that there is no specific reason behind the arrangement or order of these layers, it
is intuitive and experimental in nature. Version 0, 0.1 and 0.2 were built on top of the
Baseline version. Figure 19 shows the visual representation of the Vanilla model and its
variations.
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Figure 19: Vanilla model network diagram.

4.3.2 Xmasnet Model

Xmasnet model is the implementation of [Liu et al., 2017], mentioned earlier in Literature
Review chapter. Although the model was primarily used on a different dataset for binary
classification, due to the similarity of the datasets, it was decided to use the model for
multi-class classification. Xmasnet architecture is illustrated in Figure 20.
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Figure 20: The architecture of the XmasNet. Conv: convolutional layer; BN: batch normalization
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layer; ReL U: rectified linear unit; Pooling: max pooling layer; FC: fully connected layer.

4.4 Pre-trained State-of-the-Art Deep Networks

The next step was to use state-of-the-art pretrained networks from Imagenet Large Scale
Visual Recognition Challenge (ILSVRC) [Russakovsky et al., 2014]. One of the most
commonly used deep learning Python package Keras, provides implementation of popular
networks such as VGG19 [Simonyan & Zisserman, 2014] and ResNet50 [He et al., 2015].

InceptionV3 [Szegedy et al. 2016] and Xception [Chollet, 2017] were decided to be used to
understand distribution of data based on Gleason grade group. The classification layer from
these networks were removed in order to retrieve bottleneck features. The 2048 bottleneck
features were reduced to 50 features using principal components analysis [Tipping & Bishop,
1999] and further reduced to 5 features using t-distributed stochastic neighbor embedding.

The results of dimensionality reduction of pretrained networks, the bottleneck features, are
shown in Figure 21a & 21b. ggg in the labels represents Gleason grade group. It is evident
from the visualisation that everything is haywire in the original dataset features, whereas
some sort of cluster formation can be observed in case of augmented dataset. However, after
a quick inspection, it can be concluded that the cluster formation is not based on different
labels, instead the cause of cluster formation is the same augmentation technique.
Furthermore, digging deeper into the aforementioned networks was also not useful because
even intermediate layers output yielded similar confounding results. It can be deduced from
the results that transfer learning does not help much in segregating different Gleason grade
groups as none of the groups/classes formed any cluster.
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Figure 21a: Dimensionality reduction original dataset (T2-weighted transaxial scan).
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Figure 21b: Dimensionality reduction augmented dataset (T2-weighted transaxial scan).
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5. EXPERIMENTS AND RESULTS

5.1 Conventional Classifiers with Image features

In order to employ an organic approach to solve this problem, the initial idea was to apply
image processing algorithms to extract features from different image modalities and then use
these features as input to a set of conventional machine learning algorithms. When the
datasets are not big enough, conventional machine learning is still the method of choice with
handwrought features [Fehr et al., 2015; Hussain et al., 2018; Litjens et al., 2015].

Two different types of experiments were conducted to understand the efficacy of data size
and segmentation, namely single slice ROI and multi-slice ROI. Grid search with 5-fold cross
validation was used to determine the best combination of hyperparameters.

5.1.1 Single Slice ROI 5-Fold Cross Validation

Single slice experiment was the most basic of all experiments, since only one slide from the
whole set was used for feature extraction and classification. In this experiment a 48x48 region
of interest patch was extracted from a slice out of the series of 19 slices, the one which
contained the ROI information. Subsequently HOG and LBP features were calculated of the
region of interest. This was done for all four modalities. Three sets of features were
separately tested:

e HOG only features

e LBP only features

e HOG and LBP features concatenated

Table 4, 5 and 6 show the results of models training on the three aforementioned features. It
can be seen that HOG features of T2-weighted transaxial (tse tra) modality achieved the
highest accuracy 47.32%. And it can be observed in Figure 22 that accuracy and Kappa score
do not have a strong correlation.
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HOG Desc. tse_tra ADC BVAL tse_sag
KS Acc.% KS Acc.% KS Acc.% KS Acc.%
BernoulliNB| 0.1147 44.6429 0.0503 36.6071 0.0497 38.3929 0.0483 | 36.6071
PssAgg| 0.0146 34.8214 | -0.0282 | 30.3571 -0.0032 | 32.1429 | -0.0631 | 33.9286
KNeighbors| 0.0808 | 47.3214 0.0897 39.2857 0.1043 | 41.0714 0.0574 | 39.2857
RandomForest| 0.0234 41.0714 0.0294 33.9286 0.0545 31.2500 0.0233 38.3929
SVC| 0.1005 44.6429 0.0390 36.6071 0.1076 36.6071 0.0023 39.2857
LR| 0.0245 | 43.7500 0.0089 36.6071 0.0790 36.6071 0.0243 | 37.5000
LDA| 0.0550 23.2143 0.1523 25.8929 0.0323 25.8929 | -0.0570 | 30.3571
QDA| 0.1064 36.6071 0.0685 35.7143 0.0110 36.6071 0.0385 | 36.6071

Table 4: Conventional classifiers accuracy and Kappa score for HOG descriptors computed on
single slice ROL.

LBP Desc. tse_tra ADC BVAL tse_sag
KS Acc.% KS Acc.% KS Acc.% KS Acc.%
BernoulliNB| 0.0867 36.6071 0.1045 37.5000 0.2565 37.5000 0.0669 | 39.2857
PssAgg| 0.1250 33.0357 0.0827 33.0357 0.2167 32.1429 0.0036 | 32.1429
KNeighbors| 0.1016 39.2857 0.1991 40.1786 0.1328 42.8571 0.0225 37.5000
RandomForest| -0.0061 | 29.4643 0.0868 37.5000 0.0756 37.5000 | -0.0046 | 32.1429
SVC| 0.0227 | 40.1786 0.1552 40.1786 0.0761 43.7500 0.0880 | 37.5000
LR| 0.0205 36.6071 0.0000 38.3929 0.1141 36.6071 0.0823 | 36.6071
LDA| -0.1553 | 25.8929 0.0194 30.3571 0.0428 27.6786 | -0.0286 | 25.8929
QDA| 0.2156 32.1429 0.0473 33.9286 0.0089 35.7143 0.0263 36.6071

Table 5: Conventional classifiers accuracy and Kappa score for LBP descriptors computed on

single slice ROL.
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LBP+HOG tse_tra ADC BVAL tse_sag

KS Acc.% KS Acc.% KS Acc.% KS Acc.%

BernoulliNB| 0.1856 | 46.4286 0.0215 | 37.5000 0.0740 | 41.0714 0.0474 | 38.3929

PssAgg, -0.0097 | 34.8214 | -0.0468 | 26.7857 | -0.0199 | 32.1429 | -0.0539 | 34.8214

KNeighbors| 0.0498 | 42.8571 0.0763 | 42.8571 0.1080 | 41.0714 0.0773 | 38.3929

RandomForest| 0.0461 40.1786 0.0350 | 35.7143 0.0151 32.1429 0.0359 | 34.8214

SVC| 0.1176 | 41.9643 0.0000 | 40.1786 0.0957 | 36.6071 0.0047 | 38.3929

LR| 0.0371 41.0714 0.0348 | 36.6071 0.0891 36.6071 0.0000 | 36.6071

LDA| 0.0512 | 24.1071 0.0436 | 25.0000 0.1165 | 25.8929 | -0.1374 | 25.0000

QDA| 0.1278 | 32.1429 0.0229 | 32.1429 0.0125 | 32.1429 0.0364 | 32.1429

Table 6: Conventional classifiers accuracy and Kappa score for LBP+HOG descriptors computed
on single slice ROL

Kappa vs Accuracy | Modality: tse_tra | Features: LBP
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Figure 22: Kappa score vs. Accuracy scatter plot for T2-weighted transaxial scan.

5.1.2 Multi-Slice ROI 5-Fold Cross Validation

Similar to the previous experiment, in this experiment too 48x48 region of interest patches
were extracted from the slice which contained the ROI information and also from one slice
before and after the ROI annotated slice. Altogether, three consecutive patches were
processed. Subsequently HOG and LBP features were calculated of each patch and then the
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features were concatenated. The process was done for all four modalities. Three set of
features were separately tested:

e HOG only features

e [BP only features

e HOG and LBP features concatenated

It can be observed from table 7, 8 and 9 that multi-slice experiments did not perform as well
as single slice experiments accuracy wise. For instance, not even a single classifier for HOG
features could yield accuracy over 40%, Figure 23 draws a comparison between single slice
and multi-slice experiments for T2-weighted transaxial (tse tra) modality with HOG features.

HOG Desc. tse_tra ADC BVAL tse_sag

KS Acc.% KS Acc.% KS Acc.% KS Acc.%

BernoulliNB| 0.2053 33.0357 | 0.0502 | 36.6071 0.0423 | 35.7143 0.0236 | 37.5000

PssAgg| 0.0435 17.8571 | 0.0146 | 11.6071 -0.0161 15.1786 | -0.0471 | 24.1071

KNeighbors| 0.2106 34.8214 | 0.1859 | 38.3929 0.1876 | 32.1429 0.1250 | 37.5000

RandomForest| 0.0586 241071 | 0.1064 | 27.6786 0.0574 | 23.2143 0.0666 | 35.7143

SvC| 0.1022 36.6071 | 0.0803 | 36.6071 0.0502 | 37.5000 0.0373 | 36.6071

LR| 0.1879 36.6071 | 0.1556 | 36.6071 0.1578 | 36.6071 0.0709 | 36.6071

LDA| SVDerr. | SVDerr. | 0.0403 | 20.5357 | -0.0341 | 25.8929 | SVDerr. | SVDerr.

QDA| 0.0235 32.1429 | 0.0133 | 32.1429 0.0072 | 32.1429 0.0255 | 32.1429

Table 7: Conventional classifiers accuracy and Kappa score for HOG descriptors computed on
multi-slice ROI.

LBP Desc. tse_tra ADC BVAL tse_sag

KS Acc.% KS Acc.% KS Acc.% KS Acc.%

BernoulliNB| 0.2419 | 36.6071 0.1623 | 36.6071 0.2262 | 36.6071 0.1567 | 36.6071

PssAgg| 0.3173 | 29.4643 0.1065 | 29.4643 0.0436 | 28.5714 0.0688 | 27.6786

KNeighbors| 0.1961 | 29.4643 0.1085 | 39.2857 0.0191 42.8571 0.1783 | 37.5000

RandomForest| 0.1786 | 22.3214 0.1076 | 29.4643 0.0332 | 25.0000 0.0836 | 33.9286

SVvC| 0.2170 | 36.6071 0.1419 | 39.2857 0.0373 | 41.0714 0.1611 36.6071

LR| 0.1239 | 36.6071 0.0984 | 38.3929 0.0456 | 37.5000 0.2463 | 36.6071

LDA| 0.0810 | 21.4286 0.0198 | 26.7857 | -0.0633 | 23.2143 0.0282 | 26.7857

QDA| 0.0757 | 32.1429 0.1537 | 32.1429 0.0000 | 32.1429 0.0186 | 32.1429

Table 8: Conventional classifiers accuracy and Kappa score for LBP descriptors computed on
multi-slice ROI
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HOG+LBP tse_tra ADC BVAL tse_sag

KS Acc.% KS Acc.% KS Acc.% KS Acc.%

BernoulliNB| 0.2053 33.9286 | 0.0301 | 36.6071 0.0401 36.6071 0.0236 | 39.2857

PssAgg| 0.0435 16.9643 | -0.0026 | 15.1786 | -0.0048 | 17.8571 -0.0471 | 21.4286

KNeighbors| 0.2106 35.7143 | 0.1726 | 38.3929 0.1640 | 36.6071 0.1445 | 38.3929

RandomForest| 0.0417 25.0000 | 0.0550 | 29.4643 0.0827 | 20.5357 0.0664 | 33.9286

SvC| 0.1022 36.6071 | 0.0909 | 37.5000 0.0521 36.6071 0.0373 | 36.6071

LR| 0.1959 36.6071 | 0.1512 | 36.6071 0.1568 | 36.6071 0.1171 36.6071

LDA| SVDerr. | SVDerr. | -0.0012 | 24.1071 -0.0265 | 14.2857 | SVDerr. | SVDerr.

QDA| 0.0478 32.1429 | 0.0658 | 32.1429 0.0545 | 32.1429 0.0609 | 32.1429

Table 9: Conventional classifiers accuracy and Kappa score for LBP+HOG descriptors computed
on multi-slice ROL

Single vs Multi (roi slice) | Modality: tse_tra | Feature: HOG
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Figure 23: Single vs. Multi-slice bar chart for T2-weighted transaxial scan.

5.2 Partially Trained InceptionV3

The use of pre-trained and partially trained state-of-the-art convolution neural network is a
growing academic trend, observed in recent past. More and more studies are incorporating
transfer learning and fine tuning of the state-of-the-art algorithms in their approach and it has
been fairly successful [Wang et al., 2016; Campanella et al., 2018].
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In this experiment Google InceptionV3 was chosen for the partial training. The reason why it
was partially trained was because of the sheer size of the model and the memory it needed to
be fully trained. Therefore, it was decided to train only top two inception blocks. 140x140
patches of MRI scan centered to ROI were chosen as input to the model and extended
augmentation was used in order to yield maximum benefit of the enormity of the dataset. The
modality chosen for this experiment was T2-weighted sagittal (tse_sag), the experiment was
5-fold cross validated and the model was trained for 200 epochs.

The experiment was very resource and time exhaustive. As compared to the resources it
required and time it took to train the model, the outcome was rather disappointing. The
network achieved accuracy of 36.67% in a 5-fold cross validation experiment as shown in
Table 10. The performance of each fold can be visualised in Figure 24.

Folds
1st Fold
2nd Fold
3rd Fold
4th Fold
5th Fold

5-Fold CV

Acc.%
36.00
34.78
36.36
38.10
38.10

36.67 (+/- 1.28)

Table 10: InceptionV3 140x140 ROI from T2-weighted sagittal plane scan 5-fold CV.
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Figure 24: Partially trained InceptionV3, fold wise accuracy.
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5.3 Vanilla Models

Vanilla models were the basic incarnation of deep convolutional neural network, as
mentioned in the previous chapter. The underlying idea behind using Vanilla models was to
utilize the power and efficacy of deep neural network, with architectures that are not as dense
as the state-of-the-art architectures like Inception [Szegedy et al., 2015] or Xception [Chollet,
2016].

In this experiment ROI patches of resolution 48x48 were chosen as the input of Vanilla
models. The modality chosen for this experiment was T2-Weighted images in sagittal plane.
The model hyperparameter configuration are shown in Table 11.

Hyperparameters: Epochs Learning Rate Optimizer

Values: 200 1e-4 Adam

Table 11: Vanilla model configuration.

Table 12 shows the 5-fold cross validated results from four different versions of Vanilla
model varying primarily in depth with respect to the number of dense layers:

vbl (baseline = no dense) v0 (2 dense no BN) v0.1 (2 dense BN) v0.2 (3 dense BN)
Acc.% KS Acc.% KS Acc.% KS Acc.% KS
44.000 -0.047 36.000 -0.007 32.000 -0.182 40.000 -0.072
52.174 0.240 43.478 0.091 39.130 0.074 26.087 -0.072
50.000 -0.068 36.364 -0.006 27.273 -0.136 31.818 -0.174
42.857 0.191 52.381 0.041 28.571 -0.195 42.857 0.370
52.381 -0.092 47.619 -0.268 42.857 -0.150 47.619 0.141
48.282 43.168 33.966 37.676
(+/-4.066) 0.402 (+/-6.363) -0.0201 (+/-6.058) -0.142 (+/-7.742) 0.0052

Table 12: Vanilla model accuracy and Kappa score for T2-weighted sagittal plane scan.

Figure 19 shows that the baseline version (vbl) is the least dense Vanilla Model as compared
the rest of the versions; however, it outperforms all other versions both in terms of accuracy
as well as Kappa score as shown in Table 12. Other than that a decreasing trend in accuracy
can also be observed as the model depth increases. This implies that the amount of data to
train more dense networks, is not sufficient to yield better results.
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5.4 Xmasnet Model

Xmasnet is the implementation of the method in a paper written by one of the teams
participated in ProstateX competition [Liu et al., 2017]. The problem was to find if an MRI
scan has clinically significant cancer or not, although the problem was binary classification, it
was deemed appropriate to test the same model for multi-class classification because of the
similar nature of the data. 48x48 patches of MRI scan centered to ROI were chosen as input
to the model and extended augmentation was used in order to yield maximum benefit of the
enormity of the dataset. The modality chosen for this experiment was T2-weighted sagittal

(tse_sag), the experiment was 5-fold cross validated and the model was trained for 200
epochs.

Folds Acc.% KS
1st Fold 48.000 0.121
2nd Fold 34.783 0.000
3rd Fold 45.445 0.112
4th Fold 42.857 -0.051
5th Fold 52.381 0.310

5-Fold CV 44.695 (+/- 5.869) 0.105

Table 13: Xmasnet model accuracy and Kappa score for T2-weighted sagittal plane scan.

Despite being a smaller model in terms of depth, Xmasnet outperformed InceptionV3 both in
accuracy as well as Kappa score as shown in Figure 25.

Xmasnet vs. InceptionV3
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Figure 25: Xmasnet model vs. Inception accuracy bar chart for T2-weighted sagittal plane scan.
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5.5 Multi-Channel Experiments

All the mpMRI scan modalities in the dataset were grayscale or single channel images by
default. The purpose of multi-channel experiment was to enrich the contrast in the images, so
that convolutional networks could exploit the contrast depth and learn more as compared to
grayscale input. A couple of studies used the same approach of unifying modalities to create
multi-channel input to train convolutional neural networks for binary classification and
yielded very impressive results [Liu et al., 2017; Tsehay et al., 2017].

Unfortunately, only two modalities in ProstateX2 dataset contained same plane information,
because of which true RGB images could not be generated. The same Vanilla Model and its
variants were used to evaluate channel enriched inputs.

5.5.1 Slices to Channel

Three patches from ADC and tse_tra slices were chosen for this experiment, keeping the
patch with ROI in the centre. The slices placed adjacently in an array to simulate an RGB
image. 48x48x3 ROI patches were used as input to the models. And the models were trained
for 200 epoch.

Modality Fold Baseline Version 0 Version 0.1 Version 0.2
Acc.% KS Acc.% KS Acc.% KS Acc.% KS
1st 44.000 0.141 40.000 -0.033 36.000 -0.064 36.000 0.045
2nd 43.478 0.028 39.130 0.068 26.087 0.023 39.130 0.133
3rd 36.364 0.000 36.364 0.000 40.909 -0.013 22.727 0.135
4th 38.095 0.000 33.333 0.000 33.333 0.019 23.810 -0.082
5th 52.381 0.272 38.095 -0.154 9.524 -0.037 47.619 -0.008

42.864 37.385 29.171 33.857
5-Fold | (+- (+- (+- (+-
ADC cv 5608) | 0.0821 | 2.360) | 0.0087 | 10.929) | -0.0533 | 9.451) | 0.054

Acc.% KS Acc.% KS Acc.% KS Acc.% KS
1st 48.000 -0.028 36.000 -0.076 32.000 0.246 20.000 0.105
2nd 43.478 0.005 34.780 0.000 34.780 0.000 34.780 0.006
3rd 40.909 -0.041 31.820 0.000 31.820 -0.039 31.820 0.000
4th 38.095 0.000 38.100 0.208 28.570 -0.023 42.860 0.202
5th 42.857 0.012 47.620 -0.003 42.860 0.113 33.330 -0.152

42.668 37.663 34.006 32.558
5-Fold | (+- (+- (+- (+-
tse_tra cv 3.260) | -0.0184 | 5.377) | 0.0171 | 4.843) | 0.1018 | 7.347) | 0.0767

Table 14: Accuracy and Kappa score for slices to channel experiment.
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The multi-channel (slice to channel) didn’t perform better than single channel input using
Vanilla Models. However, the same trend of decreasing accuracy with increasing depth of the
model was observed in slice to channel experiments as shown in Table 14.

5.5.2 Modality to Channel

Only ADC and BVAL were the two modalities which captured prostate image in the same
plane (transaxial), therefore, these two modalities were merged to create a multi-channel
input, in order to visualise the output, one of the modalities were repeated in the third channel
to create a RGB image. 48x48x2 ROI patches were used as input for the models. And the
models were trained for 200 epoch.

Modality Fold Baseline Version 0 Version 0.1 Version 0.2
Acc.% KS Acc.% KS Acc.% KS Acc.% KS
1st 36.000 0.000 32.000 0.000 36.000 0.000 32.000 0.000
2nd 34.780 0.000 34.780 0.000 30.440 0.000 30.440 0.000
3rd 36.360 0.000 36.360 | -0.114 36.360 0.000 31.820 0.000
4th 38.100 0.000 38.100 | -0.113 38.100 0.000 38.100 0.000
5th 38.100 | -0.322 47.620 | -0.235 38.100 0.000 19.050 0.036

36.667 37.772 35.798 30.279
ADC + 5-Fold (+/- (+- (+- (+-
BVAL cv 1.278) | -0.086 | 5.316) | -0.076 | 2.817) | -0.029 | 6.206) | -0.033

Table 15: Accuracy and Kappa score for modality to channel experiment.

Modality to channel experiment performed even worse than slice to channel in terms of
accuracy. The former yielded 36.667% accuracy for baseline version of vanilla model and the
latter yielded 42.68% accuracy for the baseline version of Vanilla Models as shown in Table
15 and 14 respectively.

5.6 Feature Extraction with Shallow Network and training
with Conventional Machine Learning Algorithms

This was one of the last experiments conducted, keeping in mind the small size of the dataset
and inability of deep networks to learn despite extended augmentation. The experiment was
designed to exploit the representational power of neural networks and robustness of
classifiers like SVM [Cortes & Vapnik, 1995] and Xgboost [Chen & Guestrin, 2016]. Similar
approaches have been used in contemporary research where the dataset was small for deep
networks [Rakhlin et al., 2018].

The idea was to create a shallow network of 3 convolutional layers, the last layer sandwiched
between max-pooling layer and the output was flattened to get a set of features to be fed to
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conventional machine learning algorithms. The network was trained for 200 epochs. Two
machine learning algorithms were selected for this task: Support Vector Machine (SVM) and
Xgboost. Two different modalities were used to evaluate the experiment pipeline. 48x48 ROI
patches were used as input to the models. The results are shown in Table 16.

Classifiers tse_sag ADC
Acc.% KS Acc.% KS
SVM 36.600 0.121 36.600 0.242
Xgboost 33.920 0.067 33.920 0.277

Table 16: Xgboost and SVM results trained on shallow network bottleneck features.
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6. CONCLUSION

Medical data is difficult to obtain in any country. Finland, in particular, is one of those
countries because of patient information confidentiality and privacy laws. The project was
done in collaboration with Helsinki University Hospital, but unfortunately they were not able
to resolve the patient information confidentiality issue during the time period of the project
development. Nonetheless, their contribution in transferring domain knowledge is praise
worthy. Due to the unavailability of data from a trusted source, it was decided to choose an
open dataset as opposed to be bogged down by the problem. It was very difficult to find an
open dataset where quality and quantity coexisted. ProstateX2 dataset was not the best
dataset, however, it was a good starting point.

The dataset was plagued with many problems such as class imbalance which impeded
machine learning models to generalise well. Dataset contained MRI scans of patients with
multiple tumor findings of different Gleason grade groups, which rendered full-resolution
images useless. Therefore, 32x32 and 48x48 ROI patches were chosen as input to the models,
in order to differentiate tumors of different Gleason grade groups from a single patient. A
common practice in image processing is to superimpose multiple modalities (e.g. the same
plane sagittal, transaxial) to create 3-channel artifacts. Unfortunately ProstateX data only had
two modalities per plane which was not enough to create 3-channel artifacts. This is
particularly very useful when using convolutional networks because it helps networks to learn
meaningful information from sharp contrast, specifically in the tumorous regions.

In deep learning experiments accuracy started decreasing with the increase in the number of
dense layers. Batch-normalisation also did not seem to have any serious impact on accuracy.
These results make it evident that the dataset was too small to employ deep learning and yield
any meaningful results from it. Not only that the dataset lacked resolution and brightness
standardisation, some scans were abnormally large as compared to the rest of the dataset.
Standard image augmentation techniques were used to generate more data but that did not
help much. Extended augmentation which used 360° rotation with 5° shift was completely
fruitless. In future advanced data augmentation techniques can be used to generate synthetic
yet valid ROI patches, one of these techniques uses Generative Adversarial Networks (GAN)
[Goodfellow et al., 2014]. Synthetic ROI can help increase the generalising ability of deep
convolutional networks for the least abundant class.

In a nutshell the dataset was a tough one to solve a multi-class classification problem. Even
according to the competition organizers, out of 21 teams that participated in the competition,
none of them were able to disprove the null hypothesis that the agreement is merely by
chance. [“SPIE-AAPM-NCI Prostate MR Gleason Grade Group Challenge “PROSTATEx-2":
Performance Evaluation”, 2018]

61


https://paperpile.com/c/tnalaW/yQTC

7. REFERENCES

aleju/imgaug. Retrieved June 8, 2018, from https://github.com/aleju/imgaug

Alpaydin, E. (2010). Introduction to Machine Learning. [SI].

Arora, S., Bhaskara, A., Ge, R., & Ma, T. (2013, October 23). Provable Bounds for Learning
Some Deep Representations. Retrieved from http://arxiv.org/abs/1310.6343

Artificial Neural Networks as Models of Neural Information Processing | Frontiers Research
Topic. Retrieved May 8, 2018, from
https://www.frontiersin.org/research-topics/4817/artificial-neural-networks-as-models-of-neu
ral-information-processing

Bailey, K. (1994). Numerical taxonomy and cluster analysis. Typologies and Taxonomies, 34.
Bengio, Y., Courville, A., & Vincent, P. (2012, June 24). Representation Learning: A Review
and New Perspectives. Retrieved from http://arxiv.org/abs/1206.5538

Bernoulli Naive Bayes. Retrieved November 27, 2018, from
https://scikit-learn.org/stable/modules/naive bayes.html#bernoulli-naive-bayes

Block, H. D. (1962). The perceptron: A model for brain functioning. i. Reviews of Modern
Physics, 34(1), 123.

CAMELYON16 - Home. Retrieved May 22, 2018, from
https://camelyon16.grand-challenge.org/

Campanella, G., Silva, V. W. K., & Fuchs, T. J. (2018). Terabyte-scale Deep Multiple
Instance Learning for Classification and Localization in Pathology. arXiv preprint
arXiv:1805.06983.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic

Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357.

62


http://paperpile.com/b/tnalaW/ZU7V
https://github.com/aleju/imgaug
http://paperpile.com/b/tnalaW/VBoy
http://paperpile.com/b/tnalaW/VBoy
http://paperpile.com/b/tnalaW/VBoy
http://paperpile.com/b/tnalaW/VBoy
http://arxiv.org/abs/1310.6343
http://paperpile.com/b/tnalaW/tYpk
http://paperpile.com/b/tnalaW/tYpk
https://www.frontiersin.org/research-topics/4817/artificial-neural-networks-as-models-of-neural-information-processing
https://www.frontiersin.org/research-topics/4817/artificial-neural-networks-as-models-of-neural-information-processing
http://paperpile.com/b/tnalaW/Xilh
http://paperpile.com/b/tnalaW/Xilh
http://paperpile.com/b/tnalaW/Xilh
http://paperpile.com/b/tnalaW/Xilh
http://arxiv.org/abs/1206.5538
http://paperpile.com/b/tnalaW/xU2V
https://camelyon16.grand-challenge.org/
http://paperpile.com/b/tnalaW/MlS8
http://paperpile.com/b/tnalaW/MlS8
http://paperpile.com/b/tnalaW/MlS8
http://paperpile.com/b/tnalaW/MlS8
http://paperpile.com/b/tnalaW/MlS8
http://paperpile.com/b/tnalaW/MlS8

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining (pp. 785-794). ACM.

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and
Psychological Measurement, 20(1), 37-46.

Coomans, D., & Massart, D. L. (1982). Alternative k-nearest neighbour rules in supervised
pattern recognition: Part 1. k-Nearest neighbour classification by using alternative voting
rules. Analytica Chimica Acta, 136, 15-27.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
273-297.

Cox, D. R. (2018). Analysis of survival data. Routledge.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online
passive-aggressive algorithms. Journal of Machine Learning Research, 7(Mar), 551-585.
Dalal, N., & Triggs, B. Histograms of Oriented Gradients for Human Detection. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05).

Deng, L., & Yu, D. (2014). Deep Learning: Methods and Applications. Retrieved from
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/DeepLearning-NowP
ublishing-Vol7-SIG-039.pdf

Docrates is the first oncology center in Finland to offer new radiation therapy for metastatic
prostate cancer. Retrieved May 7, 2018, from

https://www.docrates.com/en/docrates-is-the-first-oncology-center-in-finland-to-offer-new-ra

63


http://paperpile.com/b/tnalaW/llSz
http://paperpile.com/b/tnalaW/llSz
http://paperpile.com/b/tnalaW/llSz
http://paperpile.com/b/tnalaW/RxrM
http://paperpile.com/b/tnalaW/RxrM
http://paperpile.com/b/tnalaW/RxrM
http://paperpile.com/b/tnalaW/RxrM
http://paperpile.com/b/tnalaW/RxrM
http://paperpile.com/b/tnalaW/RxrM
http://paperpile.com/b/tnalaW/lylB
http://paperpile.com/b/tnalaW/lylB
http://paperpile.com/b/tnalaW/lylB
http://paperpile.com/b/tnalaW/lylB
http://paperpile.com/b/tnalaW/lylB
http://paperpile.com/b/tnalaW/lylB
http://paperpile.com/b/tnalaW/esoj
http://paperpile.com/b/tnalaW/esoj
http://paperpile.com/b/tnalaW/esoj
http://paperpile.com/b/tnalaW/esoj
http://paperpile.com/b/tnalaW/esoj
http://paperpile.com/b/tnalaW/Jocj
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
http://paperpile.com/b/tnalaW/DH7V
http://paperpile.com/b/tnalaW/DH7V
https://www.docrates.com/en/docrates-is-the-first-oncology-center-in-finland-to-offer-new-radiation-therapy-for-metastatic-prostate-cancer/

diation-therapy-for-metastatic-prostate-cancer/

Dong-chen He, He, D.-C., & Wang, L. (1990). Texture Unit, Texture Spectrum, And Texture
Analysis. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE
Geoscience and Remote Sensing Society, 28(4), 509-512.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Annals of Statistics,
7(1), 1-26.

Epstein, J. I., Egevad, L., Amin, M. B., Delahunt, B., Srigley, J. R., Humphrey, P. A., &
Farsad, M., Schiavina, R., Castellucci, P., Nanni, C., Corti, B., Martorana, G., ... Fanti, S.
(2005). Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT
with histopathologic step-section analysis. Journal of Nuclear Medicine: Official Publication,
Society of Nuclear Medicine, 46(10), 1642—1649.

Fehr, D., Veeraraghavan, H., Wibmer, A., Gondo, T., Matsumoto, K., Vargas, H. A., ...
Deasy, J. O. (2015). Automatic classification of prostate cancer Gleason scores from
multiparametric magnetic resonance images. Proceedings of the National Academy of
Sciences of the United States of America, 112(46), E6265-E6273.

Frakes, W. B., & Baeza-Yates, R. (Eds.). (1992). Information retrieval: Data structures &
algorithms (Vol. 331). Englewood Cliffs, NJ: prentice Hall.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1,
No. 10). New York, NY, USA:: Springer series in statistics.

Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data
Analysis, 38(4), 367-378.

Freedman, D. A. (2009). Statistical models: theory and practice. cambridge university press.
Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the

Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine

64


https://www.docrates.com/en/docrates-is-the-first-oncology-center-in-finland-to-offer-new-radiation-therapy-for-metastatic-prostate-cancer/
http://paperpile.com/b/tnalaW/TNZ0
http://paperpile.com/b/tnalaW/TNZ0
http://paperpile.com/b/tnalaW/TNZ0
http://paperpile.com/b/tnalaW/TNZ0
http://paperpile.com/b/tnalaW/TNZ0
http://paperpile.com/b/tnalaW/TNZ0
http://paperpile.com/b/tnalaW/TNZ0
http://paperpile.com/b/tnalaW/GXNv
http://paperpile.com/b/tnalaW/GXNv
http://paperpile.com/b/tnalaW/GXNv
http://paperpile.com/b/tnalaW/GXNv
http://paperpile.com/b/tnalaW/GXNv
http://paperpile.com/b/tnalaW/wl3H
http://paperpile.com/b/tnalaW/lhRE
http://paperpile.com/b/tnalaW/lhRE
http://paperpile.com/b/tnalaW/lhRE
http://paperpile.com/b/tnalaW/lhRE
http://paperpile.com/b/tnalaW/lhRE
http://paperpile.com/b/tnalaW/lhRE
http://paperpile.com/b/tnalaW/lhRE
http://paperpile.com/b/tnalaW/lhRE
http://paperpile.com/b/tnalaW/3sPP
http://paperpile.com/b/tnalaW/3sPP
http://paperpile.com/b/tnalaW/3sPP
http://paperpile.com/b/tnalaW/3sPP
http://paperpile.com/b/tnalaW/3sPP
http://paperpile.com/b/tnalaW/3sPP
http://paperpile.com/b/tnalaW/3sPP
http://paperpile.com/b/tnalaW/3sPP
http://paperpile.com/b/tnalaW/JKqG
http://paperpile.com/b/tnalaW/JKqG
http://paperpile.com/b/tnalaW/JKqG

Intelligence, PAMI-6(6), 721-741.

Global PI-RADS Standardization of Prostate MRI. Retrieved May 17, 2018, from
http://www.admetech.org/global-pi-rads-standardization-of-prostate-mri/

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... Bengio,
Y. (2014). Generative Adversarial Nets. In Advances in Neural Information Processing
Systems (pp. 2672-2680).

Grading Committee. (2016). The 2014 International Society of Urological Pathology (ISUP)
Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading
Patterns and Proposal for a New Grading System. The American Journal of Surgical
Pathology, 40(2), 244-252.

Haralick, R. M., Shanmugam, K., & Dinstein, 1. hak. (1973). Textural Features for Image
Classification. I[EEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610-621.
He, K., Zhang, X., Ren, S., & Sun, J. (2015, December 10). Deep Residual Learning for
Image Recognition.

Hinton, G. E. (2009). Deep belief networks. Scholarpedia Journal, 4(5), 5947.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786), 504-507.

Ho, T. K. (1995, August). Random decision forests. In Document analysis and recognition,
1995., proceedings of the third international conference on (Vol. 1, pp. 278-282). IEEE.
How is Prostate Cancer Diagnosed? Retrieved June 5, 2018, from
https://prostatecancer.chesapeakeurology.com/about-prostate-cancer/how-is-prostate-cancer-d
iagnosed/

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106—154.

65


http://paperpile.com/b/tnalaW/JKqG
http://paperpile.com/b/tnalaW/JKqG
http://paperpile.com/b/tnalaW/JKqG
http://paperpile.com/b/tnalaW/JKqG
http://paperpile.com/b/tnalaW/VMzH
http://www.admetech.org/global-pi-rads-standardization-of-prostate-mri/
http://paperpile.com/b/tnalaW/yQTC
http://paperpile.com/b/tnalaW/yQTC
http://paperpile.com/b/tnalaW/yQTC
http://paperpile.com/b/tnalaW/yQTC
http://paperpile.com/b/tnalaW/yQTC
http://paperpile.com/b/tnalaW/wl3H
http://paperpile.com/b/tnalaW/wl3H
http://paperpile.com/b/tnalaW/wl3H
http://paperpile.com/b/tnalaW/wl3H
http://paperpile.com/b/tnalaW/wl3H
http://paperpile.com/b/tnalaW/wl3H
http://paperpile.com/b/tnalaW/wl3H
http://paperpile.com/b/tnalaW/wl3H
http://paperpile.com/b/tnalaW/YEVh
http://paperpile.com/b/tnalaW/YEVh
http://paperpile.com/b/tnalaW/YEVh
http://paperpile.com/b/tnalaW/YEVh
http://paperpile.com/b/tnalaW/YEVh
http://paperpile.com/b/tnalaW/YEVh
http://paperpile.com/b/tnalaW/gokI
http://paperpile.com/b/tnalaW/gokI
http://paperpile.com/b/tnalaW/gokI
http://paperpile.com/b/tnalaW/gokI
http://paperpile.com/b/tnalaW/CQkF
http://paperpile.com/b/tnalaW/CQkF
http://paperpile.com/b/tnalaW/CQkF
http://paperpile.com/b/tnalaW/CQkF
http://paperpile.com/b/tnalaW/CQkF
http://paperpile.com/b/tnalaW/0Qfb
http://paperpile.com/b/tnalaW/0Qfb
http://paperpile.com/b/tnalaW/0Qfb
http://paperpile.com/b/tnalaW/0Qfb
http://paperpile.com/b/tnalaW/0Qfb
http://paperpile.com/b/tnalaW/0Qfb
http://paperpile.com/b/tnalaW/d6OH
https://prostatecancer.chesapeakeurology.com/about-prostate-cancer/how-is-prostate-cancer-diagnosed/
https://prostatecancer.chesapeakeurology.com/about-prostate-cancer/how-is-prostate-cancer-diagnosed/
http://paperpile.com/b/tnalaW/sh2K
http://paperpile.com/b/tnalaW/sh2K
http://paperpile.com/b/tnalaW/sh2K
http://paperpile.com/b/tnalaW/sh2K
http://paperpile.com/b/tnalaW/sh2K
http://paperpile.com/b/tnalaW/sh2K

Hussain, L., Ahmed, A., Saeed, S., Rathore, S., Awan, I. A., Shah, S. A., ... Awan, A. A.
(2018). Prostate cancer detection using machine learning techniques by employing
combination of features extracting strategies. Cancer Biomarkers: Section A of Disease
Markers, 21(2), 393—413.

ImageNet Large Scale Visual Recognition Competition 2012 (ILSVRC2012). Retrieved May
23, 2018, from http://www.image-net.org/challenges/LSVRC/2012/results.html

Karpathy, A. CS231n Convolutional Neural Networks for Visual Recognition. Retrieved
November 27, 2018, from http://cs23 In.github.io/convolutional-networks/

Key Statistics for Prostate Cancer | Prostate Cancer Facts. Retrieved May 7, 2018, from
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html

Kitchen, A., & Seah, J. (2017, August 1). Deep Generative Adversarial Neural Networks for
Realistic Prostate Lesion MRI Synthesis. Retrieved from http://arxiv.org/abs/1708.00129
Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in Neural Information Processing Systems (pp.
1097-1105).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436—444.
Lin, M., Chen, Q., & Yan, S. (2013, December 16). Network In Network. Retrieved from
http://arxiv.org/abs/1312.4400

Litjens, G. J. S., Barentsz, J. O., Karssemeijer, N., & Huisman, H. J. (2015). Clinical
evaluation of a computer-aided diagnosis system for determining cancer aggressiveness in
prostate MRI. European Radiology, 25(11), 3187-3199.

Linear and Quadratic Discriminant Analysis. Retrieved November 27, 2018, from
https://scikit-learn.org/stable/modules/lda_qda.html

Liu, S., Zheng, H., Feng, Y., & Li, W. (2017). Prostate cancer diagnosis using deep learning

66


http://paperpile.com/b/tnalaW/YfgO
http://paperpile.com/b/tnalaW/YfgO
http://paperpile.com/b/tnalaW/YfgO
http://paperpile.com/b/tnalaW/YfgO
http://paperpile.com/b/tnalaW/YfgO
http://paperpile.com/b/tnalaW/YfgO
http://paperpile.com/b/tnalaW/YfgO
http://paperpile.com/b/tnalaW/YfgO
http://paperpile.com/b/tnalaW/vCLS
http://paperpile.com/b/tnalaW/vCLS
http://www.image-net.org/challenges/LSVRC/2012/results.html
http://paperpile.com/b/tnalaW/4i0O
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html
http://paperpile.com/b/tnalaW/Bf4C
http://paperpile.com/b/tnalaW/Bf4C
http://paperpile.com/b/tnalaW/Bf4C
http://paperpile.com/b/tnalaW/Bf4C
http://arxiv.org/abs/1708.00129
http://paperpile.com/b/tnalaW/AK18
http://paperpile.com/b/tnalaW/AK18
http://paperpile.com/b/tnalaW/AK18
http://paperpile.com/b/tnalaW/AK18
http://paperpile.com/b/tnalaW/AK18
http://paperpile.com/b/tnalaW/tMN1
http://paperpile.com/b/tnalaW/tMN1
http://paperpile.com/b/tnalaW/tMN1
http://paperpile.com/b/tnalaW/tMN1
http://paperpile.com/b/tnalaW/tMN1
http://paperpile.com/b/tnalaW/GE6w
http://paperpile.com/b/tnalaW/GE6w
http://paperpile.com/b/tnalaW/GE6w
http://arxiv.org/abs/1312.4400
http://paperpile.com/b/tnalaW/ukuX
http://paperpile.com/b/tnalaW/ukuX
http://paperpile.com/b/tnalaW/ukuX
http://paperpile.com/b/tnalaW/ukuX
http://paperpile.com/b/tnalaW/ukuX
http://paperpile.com/b/tnalaW/ukuX
http://paperpile.com/b/tnalaW/ukuX
http://paperpile.com/b/tnalaW/XPxL

with 3D multiparametric MRI. In Medical Imaging 2017: Computer-Aided Diagnosis.
Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60(2), 91-110.

Machine learning | artificial intelligence. Retrieved May 7, 2018, from
https://www.britannica.com/technology/machine-learning

Mehrtash, A., Sedghi, A., Ghafoorian, M., Taghipour, M., Tempany, C. M., Wells, W. M., ...
Fedorov, A. (2017). Classification of clinical significance of MRI prostate findings using 3D
convolutional neural networks. In Medical Imaging 2017: Computer-Aided Diagnosis.
McCallum, A., & Nigam, K. (1998, July). A comparison of event models for naive bayes text
classification. In A4A41-98 workshop on learning for text categorization (Vol. 752, No. 1, pp.
41-48).

ML Algorithms addendum: Passive Aggressive Algorithms. Retrieved November 27, 2018,
from
https://www.bonaccorso.eu/2017/10/06/ml-algorithms-addendum-passive-aggressive-algorith
ms/

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning.
MIT press.

Moore, G. E. (2006). Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits
Society Newsletter, 11(3), 33-35.

Ojala, T., Pietikdinen, M., & Harwood, D. (1996). A comparative study of texture measures
with classification based on featured distributions. Pattern Recognition, 29(1), 51-59.
Passive Aggressive Algorithms. Retrieved November 3, 2018, from

https://scikit-learn.org/stable/modules/linear model.html#passive-aggressive

67


http://paperpile.com/b/tnalaW/XPxL
http://paperpile.com/b/tnalaW/XPxL
http://paperpile.com/b/tnalaW/XPxL
http://paperpile.com/b/tnalaW/BTJ7
http://paperpile.com/b/tnalaW/BTJ7
http://paperpile.com/b/tnalaW/BTJ7
http://paperpile.com/b/tnalaW/BTJ7
http://paperpile.com/b/tnalaW/BTJ7
http://paperpile.com/b/tnalaW/qQ65
https://www.britannica.com/technology/machine-learning
http://paperpile.com/b/tnalaW/V2Iv
http://paperpile.com/b/tnalaW/V2Iv
http://paperpile.com/b/tnalaW/V2Iv
http://paperpile.com/b/tnalaW/V2Iv
http://paperpile.com/b/tnalaW/V2Iv
http://paperpile.com/b/tnalaW/QNpp
http://paperpile.com/b/tnalaW/QNpp
http://paperpile.com/b/tnalaW/QNpp
http://paperpile.com/b/tnalaW/QNpp
http://paperpile.com/b/tnalaW/QNpp
http://paperpile.com/b/tnalaW/QNpp
http://paperpile.com/b/tnalaW/QNpp
http://paperpile.com/b/tnalaW/5L9p
http://paperpile.com/b/tnalaW/5L9p
http://paperpile.com/b/tnalaW/5L9p
http://paperpile.com/b/tnalaW/5L9p
http://paperpile.com/b/tnalaW/5L9p
http://paperpile.com/b/tnalaW/5L9p

PROSTATEx Grand Challenge | SPIE Medical Imaging. Retrieved May 17, 2018, from
http://spie.org/PROSTATEx

Rakhlin, A., Shvets, A., Iglovikov, V., & Kalinin, A. A. (2018, June). Deep Convolutional
Neural Networks for Breast Cancer Histology Image Analysis. In International Conference
Image Analysis and Recognition (pp. 737-744). Springer, Cham.

Rote, G. (1991). Computing the minimum Hausdorff distance between two point sets on a
line under translation. Information Processing Letters, 38(3), 123-127.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500), 2323-2326.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... Fei-Fei, L. (2014,
September 1). ImageNet Large Scale Visual Recognition Challenge. Retrieved from
http://arxiv.org/abs/1409.0575

Samuel, A. L. (1988). Some Studies in Machine Learning Using the Game of Checkers. I. In
Computer Games I (pp. 335-365). Springer, New York, NY.

Schmidhuber, J. (2015). Deep Learning. Scholarpedia Journal, 10(11), 32832.

Simonyan, K., & Zisserman, A. (2014, September 4). Very Deep Convolutional Networks for
Large-Scale Image Recognition. Retrieved from http://arxiv.org/abs/1409.1556

Smale, S., & Yao, Y. (2006). Online learning algorithms. Foundations of computational
mathematics, 6(2), 145-170.

Soldea, O., Unel, M., & Ercil, A. (2010). Moments of Elliptic Fourier Descriptors. In 2010
20th International Conference on Pattern Recognition (pp. 3521-3524). Istanbul, Turkey:
IEEE.

SPIE-AAPM-NCI Prostate MR Gleason Grade Group Challenge “PROSTATEx-2":

Performance Evaluation. Retrieved September 16, 2018, from

68


http://paperpile.com/b/tnalaW/ljBy
http://spie.org/PROSTATEx
http://paperpile.com/b/tnalaW/kVgP
http://paperpile.com/b/tnalaW/kVgP
http://paperpile.com/b/tnalaW/kVgP
http://paperpile.com/b/tnalaW/kVgP
http://arxiv.org/abs/1409.0575
http://paperpile.com/b/tnalaW/ASC9
http://paperpile.com/b/tnalaW/ASC9
http://paperpile.com/b/tnalaW/ASC9
http://paperpile.com/b/tnalaW/wzxs
http://paperpile.com/b/tnalaW/wzxs
http://paperpile.com/b/tnalaW/wzxs
http://paperpile.com/b/tnalaW/wzxs
http://paperpile.com/b/tnalaW/wzxs
http://paperpile.com/b/tnalaW/nbfh
http://paperpile.com/b/tnalaW/nbfh
http://paperpile.com/b/tnalaW/nbfh
http://paperpile.com/b/tnalaW/nbfh
http://arxiv.org/abs/1409.1556
http://paperpile.com/b/tnalaW/3nFs
http://paperpile.com/b/tnalaW/3nFs
http://paperpile.com/b/tnalaW/3nFs
http://paperpile.com/b/tnalaW/3nFs
http://paperpile.com/b/tnalaW/3nFs

http://amos3.aapm.org/abstracts/pdf/127-38304-424554-126249.pdf

SPIE-AAPM-NCI Prostate MR Gleason Grade Group Challenge. Retrieved August 19, 2018,
from https://www.aapm.org/GrandChallenge/PROSTATEx-2/

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images - IEEE
Journals & Magazine. Retrieved May 15, 2018, from
https://ieeexplore.ieee.org/document/4767596/

Support Vector Machines. Retrieved November 27, 2018, from
https://scikit-learn.org/stable/modules/svm.html#svm-classification

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... Rabinovich, A. (2015).
Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). https://doi.org/10.1109/cvpr.2015.7298594

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the
Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.308

The Basics of Prostate Cancer. Retrieved May 5, 2018, from
https://www.webmd.com/prostate-cancer/guide/understanding-prostate-cancer-basics
Tipping, M. E., & Bishop, C. M. (1999). Probabilistic Principal Component Analysis.
Journal of the Royal Statistical Society. Series B, Statistical Methodology, 61(3), 611-622.
Tsehay, Y. K., Lay, N. S., Roth, H. R., Wang, X., Kwak, J. T., Turkbey, B. 1., ... Summers, R.
M. (2017). Convolutional neural network based deep-learning architecture for prostate cancer
detection on multiparametric magnetic resonance images. In S. G. Armato & N. A. Petrick
(Eds.), Medical Imaging 2017: Computer-Aided Diagnosis (Vol. 10134, p. 1013405).
Orlando, Florida, United States: SPIE.

Tucker, A. B. (Ed.). (2004). Computer science handbook. CRC press.

69


http://paperpile.com/b/tnalaW/mfm5
http://paperpile.com/b/tnalaW/mfm5
https://ieeexplore.ieee.org/document/4767596/
http://paperpile.com/b/tnalaW/83W6
http://paperpile.com/b/tnalaW/83W6
http://paperpile.com/b/tnalaW/83W6
http://paperpile.com/b/tnalaW/83W6
http://paperpile.com/b/tnalaW/83W6
http://dx.doi.org/10.1109/cvpr.2015.7298594
http://paperpile.com/b/tnalaW/PHp5
http://paperpile.com/b/tnalaW/PHp5
http://paperpile.com/b/tnalaW/PHp5
http://paperpile.com/b/tnalaW/PHp5
http://paperpile.com/b/tnalaW/PHp5
http://dx.doi.org/10.1109/cvpr.2016.308
http://paperpile.com/b/tnalaW/FXJG
https://www.webmd.com/prostate-cancer/guide/understanding-prostate-cancer-basics
http://paperpile.com/b/tnalaW/3Ob7
http://paperpile.com/b/tnalaW/3Ob7
http://paperpile.com/b/tnalaW/3Ob7
http://paperpile.com/b/tnalaW/3Ob7
http://paperpile.com/b/tnalaW/3Ob7
http://paperpile.com/b/tnalaW/XpOr
http://paperpile.com/b/tnalaW/XpOr
http://paperpile.com/b/tnalaW/XpOr
http://paperpile.com/b/tnalaW/XpOr
http://paperpile.com/b/tnalaW/XpOr
http://paperpile.com/b/tnalaW/XpOr
http://paperpile.com/b/tnalaW/XpOr

Wang, D., Khosla, A., Gargeya, R., Irshad, H., & Beck, A. H. (2016, June 18). Deep
Learning for Identifying Metastatic Breast Cancer. Retrieved from
http://arxiv.org/abs/1606.05718

Welling, M. (2005). Fisher linear discriminant analysis. Department of Computer Science,
University of Toronto, 3(1).

XGBoost: A Concise Technical Overview. Retrieved November 27, 2018, from
https://www.kdnuggets.com/2017/10/xgboost-concise-technical-overview.html

Yu, L., Yang, X., Chen, H., Qin, J., & Heng, P. (2017). Volumetric ConvNets with Mixed
Residual Connections for Automated Prostate Segmentation from 3D MR Images. 4441
Zhang, H. (2004). The optimality of naive Bayes. A4, 1(2), 3.

Zhu, Y., Wang, L., Liu, M., Qian, C., Yousuf, A., Oto, A., & Shen, D. (2017). MRI-based
prostate cancer detection with high-level representation and hierarchical classification.
Medical Physics, 44(3), 1028-1039.

2.8. Density Estimation. Retrieved September 15, 2018, from
http://scikit-learn.org/stable/modules/density.html

3.3. Model evaluation: quantifying the quality of predictions — scikit-learn 0.19.1
documentation. Retrieved June 8, 2018, from
http://scikit-learn.org/stable/modules/model evaluation.html#accuracy-score

3.3. Model evaluation: quantifying the quality of predictions — scikit-learn 0.19.1
documentation. Retrieved June 8, 2018, from

http://scikit-learn.org/stable/modules/model evaluation.html#cohen-kappa

70


http://paperpile.com/b/tnalaW/CuL4
http://paperpile.com/b/tnalaW/CuL4
http://paperpile.com/b/tnalaW/CuL4
http://paperpile.com/b/tnalaW/CuL4
http://arxiv.org/abs/1606.05718
http://paperpile.com/b/tnalaW/FBbR
http://paperpile.com/b/tnalaW/FBbR
http://paperpile.com/b/tnalaW/FBbR
http://paperpile.com/b/tnalaW/FBbR
http://paperpile.com/b/tnalaW/FBbR
http://paperpile.com/b/tnalaW/FBbR
http://paperpile.com/b/tnalaW/OLc4
http://paperpile.com/b/tnalaW/OLc4
http://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score
http://paperpile.com/b/tnalaW/cliT
http://paperpile.com/b/tnalaW/cliT
http://scikit-learn.org/stable/modules/model_evaluation.html#cohen-kappa

