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Objective: The aim of this study was to investigate tissue specific effects of dapagliflozin on 

insulin sensitivity and liver and body fat in patients with type 2 diabetes. 

Research Design and Methods: 32 patients with type 2 diabetes were recruited for this 

randomized, double-blind, parallel group, placebo controlled study. Enrolled patients were to 

have HbA1c 6.5-10.5 % (48-91 mmol/mol), and ≥3 months of stable treatment with metformin, 

DPP-IV-inhibitor or their combination. Patients were randomized 1:1 to receive either 10 mg 

dapagliflozin or placebo daily for 8 weeks. Before and after the intervention, tissue insulin 

sensitivity was measured using [18F]-fluorodeoxyglucose and positron emission tomography 

(PET) during hyperinsulinemic euglycemic clamp. Liver proton density fat fraction (PDFF) 

and adipose tissue volumes were assessed using MRI, and blood biomarkers were analyzed. 

Results: After 8 weeks, glycemic control was improved by dapagliflozin (placebo-corrected 

change in HbA1c -0.39 % [p<0.01]), but whole-body glucose uptake was not increased 

(p=0.90). Tissue-specific insulin-stimulated glucose uptake did not change in skeletal muscle, 

liver, myocardium, or white and brown adipose tissue and endogenous glucose production 

remained unaffected. However, there were significant placebo-corrected decreases in liver 

PDFF (-3.74 %, p<0.01), liver volume (-0.10 L, p<0.05), visceral adipose tissue volume (-0.35 

L, p<0.01), interleukin-6 (-1.87 pg/ml, p<0.05) and NT-proBNP (-96 ng/L, p=0.03).  

Conclusions: In this study, 8 weeks of treatment with dapagliflozin reduced liver PDFF and 

the volume of visceral adipose tissue in obese patients with type 2 diabetes. Although glycemic 

control was improved, no effect on tissue-level insulin sensitivity was observed.  

 

KEY WORDS: dapagliflozin, insulin resistance, liver proton density fat fraction, glucose 

uptake, positron emission tomography 
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Dapagliflozin is a highly selective inhibitor of renal sodium-glucose transporter 2 (SGLT2) 

approved for the treatment of patients with type 2 diabetes (T2D). The effect of this class of 

drugs is based on suppressing renal glucose reabsorption and increasing excretion of glucose 

to urine, resulting in improved glycemic control independent of insulin actions, as well as 

reduced body weight (1, 2). 

Although SGLT2 is expressed almost exclusively in the kidney (3) and its inhibition is not 

expected to have a direct effect on tissue glucose metabolism elsewhere, previous studies have 

shown increased whole-body glucose consumption during hyperinsulinemia both after acute 

dosing, and after two weeks up to 3 months of treatment with dapagliflozin (4, 5, 6). In these 

reports, the amelioration of insulin resistance was assumed to reflect an increase in insulin-

stimulated glucose uptake in skeletal muscle (4, 5) possibly explained by increased non-

oxidative glucose disposal (6). Furthermore, the urinary glucose excretion is associated with 

increase in endogenous glucose production, which show differential mechanisms of action of 

SGLT2 inhibitors on glucose control in different tissues (7). Previous studies are lacking the 

ability to measure tissue-specific changes in metabolic rates, including the possible role of 

white and brown adipose tissue for SGLT2 inhibitor mediated increase in insulin-stimulated 

glucose uptake. Furthermore, with the recent interest in the effects of SGLT2 inhibitors on 

myocardial metabolism, it is notable that studies focusing on changes in myocardial substrate 

metabolism are limited. 

The reduction in body weight associated with dapagliflozin treatment in obese T2D patients 

seems to mainly result from a reduction in both visceral and subcutaneous adipose tissue 

volumes (8), in addition to decreased fluid volume due to mild osmotic diuresis. 
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More recently, results from two open-label studies and one randomized, placebo-controlled 

study have suggested a decline in liver fat following treatment with SGLT2 inhibitors in obese 

T2D patients with non-alcoholic fatty liver disease (9, 10, 11). 

The primary aim of this study was to investigate the effect of 8 weeks of dapagliflozin treatment 

on insulin-stimulated glucose uptake (GU) in insulin sensitive tissues, as measured by positron 

emission tomography (PET) and [18F]-fluorodeoxyglucose ([18F]-FDG) in patients with T2D 

to determine which tissues contribute to the reported increase in whole-body insulin sensitivity. 

Based on earlier results (4, 5, 6), we hypothesized that the intervention should have a 

measurable effect on skeletal muscle insulin mediated glucose uptake. The second aim was to 

assess changes in liver proton density fat fraction (PDFF) and volume, and in visceral and 

abdominal subcutaneous adipose tissue volumes, using magnetic resonance imaging (MRI). 

 

RESEARCH DESIGN AND METHODS  

Study subjects 

Patients with previously diagnosed T2D and HbA1c 6.5-10.5 % (48-91 mmol/mol) were 

recruited for the study. Other main inclusion criteria were age 35 to 70 years, body mass index 

less than 40 kg/m2, and at least 3 months of stable medication with either metformin, DPP-IV-

inhibitor or their combination. Patients with any other concomitant diabetes medication, 

decreased renal function (creatinine clearance <60 mL/min using the Cockcroft-Gault equation 

[12]), significantly elevated liver enzymes (alanine aminotransferase [ALT] or aspartate 

aminotransferase [AST] >3 times above the upper limit of normal, total bilirubin >2.0 mg/dL), 

blood pressure over 160/100 mmHg at screening, unstable coronary syndrome, symptomatic 

heart failure, or alcohol abuse were excluded. The sample size was determined to detect a 25 
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% change in skeletal muscle glucose uptake, with about 90 % power at significance level 

α=5%.  

Study design 

The study design is illustrated in Figure 1. The study comprised five visits: a screening visit 

(Visit 1) 4 to 1 weeks before the second visit, a randomization visit (Visit 2), followed by a 

treatment follow-up visit after 4 weeks (Visit 3), and an end of treatment visit after 8 weeks of 

treatment (Visit 4) and a final visit (Visit 5) as a telephone follow-up 2 weeks after the end of 

treatment. PET/CT- and MRI-scans were performed at the Turku PET Centre on visits 2 and 

4, whereas the other visits were organized by the recruiting site either at the Turku PET Centre 

or at a satellite site in Jyväskylä. A total of 55 volunteers were recruited from outpatient clinics, 

patient databases and by ads in local newspapers. After their eligibility was assessed on the 

first visit, 32 subjects were included in the study. On visit 2, the subjects were randomly 

assigned 1:1 to two parallel groups stratified by sex, to receive either 10 mg dapagliflozin 

(Forxiga®, AstraZeneca) or placebo (produced by AstraZeneca) daily, starting from the 

following day as add-on to their previous medication. Randomization was performed in 

balanced blocks in each stratum. Compliance was evaluated based on the amount of returned 

study medicine. 

The study medication was administered in double-blinded fashion and all PET image, MRI, 

laboratory analyses and statistical analyses were performed by investigators blinded to the 

treatment. The study protocol was approved by Finnish Medicines Agency Fimea and the 

Independent Ethics Committee in Southwest Finland Hospital District. The study was 

conducted according to the principles of the Declaration of Helsinki. All subjects gave written 

informed consent prior to any study procedures. 
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Measuring insulin-stimulated whole-body and tissue glucose uptake using PET/CT 

The PET/CT studies were conducted after an overnight fast of 10-12 hours and withholding of 

any medications on the day of the visit. Two catheters were inserted in opposite forearms of 

the subject; one to obtain venous blood, arterialized by using hot water bottles distally in the 

arm, samples and the other for injection of the PET radiotracer, and for insulin and glucose 

infusions. After collection of fasting laboratory samples, a hyperinsulinemic euglycemic clamp 

was performed as previously described (13, 14). The rate of insulin infusion was 40 mU m-2 

body surface area min-1 (Actrapid, Novo Nordisk, Copenhagen, Denmark) and the rate of 20 % 

glucose infusion was adjusted based on plasma glucose levels, as determined every 5-10 

minutes to maintain euglycemia (plasma glucose level of 5.0 ± 0.5 mmol/L). Whole body 

glucose uptake (M-value) was calculated by subtracting estimated urinary glucose excretion 

and space correction (change in glucose level in the glucose pool) from the glucose infusion 

rate (GIR). M-value is presented as the average of three to four 20-minute periods during steady 

euglycemia. Urinary [18F]-FDG was measured at the end-of-study visit in all subjects, but 

glucose in urine only in eight subjects on dapagliflozin. Because the excretion rates of glucose 

and [18F]-FDG correlated linearly (r=0.74, p=0.04, Supplemental Figure S1) in the subjects 

with both measurements, urine radioactivity was used to estimate urinary glucose excretion for 

the remaining subjects (see Supplementary info). In the dapagliflozin group, the mean 

excretion rate was 0.8 (SD 0.4) μmol/kg/min (range 0.2-1.3 μmol/kg/min), whereas urinary 

glucose concentrations were diminutive in the placebo group and were therefore not used for 

correction of M-values. 

75 minutes (SD 15 min) after the start of the insulin infusion, subjects were injected with 155 

MBq (SD 8 MBq) of [18F]-FDG, produced as described earlier (15) and the PET scanning 

(Discovery 690, General Electric (GE) Medical systems, Milwaukee, WI, USA) was started 
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right after with the clamp ongoing. All tissues were scanned in one session sequentially, 

starting from the thoracic area (40 min) and followed by the upper abdomen (15 min), thighs 

(15 min) and neck (10 min). Radioactivity from arterialized plasma samples collected at 5-15 

min intervals during the scanning and from an urine sample obtained at the end of scan was 

measured in an automatic gamma counter (Wizard 1480 3, Wallac, Turku, Finland).  

PET data analysis 

PET data was corrected for dead time, decay and photon attenuation before analysis. Tracer 

uptake into tissues was measured by determining volumes of interest (VOIs) with Carimas 

software version 2.9 (Turku PET Centre, downloadable at www.turkupetcentre.fi/carimas). 

Tissue time activity curves were obtained by a segmenting tool for the left ventricle, and free-

hand drawing for other tissues, including both quadriceps femoris muscles, and a portion of the 

right liver lobe avoiding large vessels. For adipose tissue (AT), several VOIs were drawn in 

waistline subcutaneous AT, intraperitoneal visceral AT and bilateral supraclavicular depots of 

brown AT, and respective averages were reported.  

Tissue time activity curves and an input function combined from PET image data and plasma 

samples, were used to estimate the fractional uptake (Ki) of tracer in each tissue by graphical 

analysis (16). Tissue glucose uptake (µmol kg-1 min-1) was calculated by multiplying Ki by 

steady-state plasma glucose levels divided by tissue density and a previously established 

lumped constant (1.2 for skeletal muscle, 1.0 for liver and myocardium, 1.14 for adipose tissue 

[17-20]). Endogenous glucose production (EGP) was assessed by subtracting glucose infusion 

rate from rate of glucose disposal derived from [18F]-FDG consumption and estimated urinary 

glucose loss (21). 

MRI assessment of liver fat, liver volume and abdominal adipose tissue volumes 

http://www.turkupetcentre.fi/carimas
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MRI was performed at 3T using the MRI part of a clinical PET-MR system (Philips Ingenuity 

TF, Philips Healthcare, OH, USA). Subjects were positioned in supine position with the arms 

extended above the head. Imaging was performed using the integrated body coil. Liver and 

abdominal adipose tissue (AT) volumes were assessed using multi-echo water-fat MRI and 

liver volume using a T1-weighted fat suppressed single echo sequence. Liver fat was measured 

by use of a proton density fat fraction (PDFF) measurement.  All imaging was performed 

during breath holds in exhaled position. Details on scan parameters and image reconstruction 

are given in supplementary materials. To optimize precision, liver fat was assessed by manual 

delineation of a large volume of interest including as much liver tissue as possible, while 

avoiding the tissue borders to limit partial volume effects. The median liver fat content was 

reported. Liver volume was determined using semi-automated segmentation and the software 

Smartpaint (version 1.0) (22). Volumes of abdominal subcutaneous and visceral AT were 

determined from whole-body scans by using an automated algorithm (23). Coefficients of 

variations (CVs) from repeated imaging and analysis have been previously determined to be 

5.4% and 2.1% for liver PDFF and liver volume, respectively (n=10, unpublished data) and 

2.3% and 1.9% for subcutaneous and visceral AT, respectively (23). 

Laboratory measurements 

A detailed description of biochemical and immunological analyses is provided in 

supplementary materials. 

Statistical analyses 

All statistical analyses were performed using SAS® version 9.4 (SAS Institute Inc., Cary, NC, 

USA). Changes in parameters measured at baseline, week 4 and week 8 including body weight, 

systolic and diastolic blood pressure, blood HbA1c, serum FFAs, and plasma levels of fasting 

glucose, HbA1c, insulin, glucagon were analyzed using mixed model for repeated 
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measurements (MMRM), with the fixed categorical effects of treatment, week, treatment-by-

week interaction, the randomization strata of sex and the sex-by-week interaction, as well as 

fixed covariates of baseline measurement and baseline measurement-by-week interaction. For 

other variables measured at baseline and week 8, a two-way analysis of covariance (ANCOVA) 

was used to detect a two-sided change at the 5 % level of significance. Fixed effects of 

treatment, sex and baseline value were included in the model. M-values are reported either as 

original values or as corrected values divided by the average of plasma insulin levels during 

steady state in clamp. Difference in baseline NT-proBNP in subjects with or without previous 

hypertension or cardiovascular disease was analyzed using Wilcoxon Rank-sum test. Baseline 

values are reported as mean ± SD, and end-of-treatment results as placebo-corrected adjusted 

least square means changes in the dapagliflozin arm from baseline with 95 % confidence 

intervals. Correlations were tested using Spearman rank correlation. The one discontinued 

patient was not included in the analyses. 

 

RESULTS 

Subject characteristics 

Baseline characteristics of both treatment arms can be seen in Table 1. There were no 

significant differences between groups concerning sex distribution (with the majority being 

male in both groups, 87 % in dapagliflozin vs. 75 % in placebo group), age, BMI, glycemic 

control or time since diagnosis. All subjects were on metformin and 9 (60 %) in the 

dapagliflozin and 7 (44 %) in the placebo group were also on sitagliptin. Groups were similar 

in the prevalence of hypertension (53 % in dapagliflozin vs. 52 % in placebo group). One 

subject in the dapagliflozin group was discontinued on the day after randomization due to 

elevated liver enzymes on Visit 2. Compliance was high within both groups (≥95 %). 
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Dapagliflozin was well tolerated, with no difference in the occurrence of infections between 

groups (2 subjects in the dapagliflozin group, 3 subjects in the placebo group). 

Improved glycemic control and weight loss with dapagliflozin 

There was a significant reduction in HbA1c, fasting plasma glucose and BMI already after 4 

weeks, and also after 8 weeks of treatment with dapagliflozin (Table 1). Fasting insulin, free 

fatty acids, glucagon and GLP-1 levels did not change significantly, although in the 

dapagliflozin-group plasma insulin levels decreased numerically, and glucagon and GLP-1 

levels increased numerically after 4 weeks of treatment but returned close to baseline after 8 

weeks of treatment. (Supplemental Figure S2). Moreover, glucagon/insulin ratio was not 

significantly altered (p=0.42). 

Unchanged insulin sensitivity 

Baseline whole-body insulin-stimulated glucose uptake (M-value) was low in both groups: 6.2 

µmol/kg/min in the dapagliflozin group and 7.8 µmol/kg/min in the placebo group (Table 1), 

and the placebo-corrected changes in the M-values were not significant (-0.12 µmol/kg/min, 

95 % CI -2.1, 1.9, p=0.90) (Figure 2C), also when correcting for steady state insulin levels 

(0.01, 95 % CI -0.01, 0.04, p=0.40). Change in rate of endogenous glucose production was not 

different from placebo (-0.02 µmol/kg/min, 95% CI -3.2, 3.2, p=1.0) (Table 1, Figure 2C).  

There was no effect of dapagliflozin on skeletal muscle glucose uptake (-0.003 µmol/kg/min, 

95 % CI -3.1, 3.1, p=1.0) (Figure 2C, Supplemental table S2), but the changes in M-value and 

skeletal muscle glucose uptake were correlated (r=0.64, p<0.01).  Levels of plasma glucose or 

insulin levels during the steady state did not change in either group (Supplemental figure S3). 

Decrease in liver fat and volume 
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Baseline PDFF was similar between groups, 22 ± 11 % in the dapagliflozin group and 21 ± 9.3 

% in the placebo group. At the end of treatment, there was a significant reduction of both liver 

PDFF (-3.7 %, 95 % CI -6.18, -1.30, p<0.01) and volume (-0.10 L, 95 % CI -0.19, -0.003, 

p=0.04) (Figure 2A). Post-hoc analyses showed that introducing changes in BMI or visceral 

AT volume in the model had a significant effect on reduction of liver fat (p=0.02 and p=0.01, 

respectively). In the dapagliflozin group, hepatic glucose uptake did not change significantly 

(-1.3 µmol/kg/min, 95 % CI -5.6, 3.0, p=0.53) (Figure 2C, Supplemental table S2), and the 

levels of ALT and AST remained at baseline level (Table 1). In addition, fibroblast growth 

factor 21 (FGF21) tended to lower (-111 pg/mL, 95 % CI -232, 9.4, p=0.07). Including the 

change in liver PDFF in the model, showed a statistically significant effect on the decrease in 

FGF21 (p=0.01).  

Reduction of adipose tissue volume 

Dapagliflozin treatment resulted in significant changes in adipose tissue measured by MRI: 

volume of visceral adipose tissue was reduced by -0.35 L (95 % CI -0.59, -0.12, p<0.01) and 

the volume of abdominal subcutaneous adipose tissue was reduced by -0.28 L (95 % CI -0.52, 

-0.05, p=0.02) (Figure 2B). There was no significant change in lean body mass (-1.2 L, 95 % 

CI -2.8, 0.41, p=0.14). Insulin-stimulated glucose uptake was not altered in visceral, 

subcutaneous or brown adipose tissue (-0.02 µmol/kg/min, 95 % CI -0.13, 0.09, p=0.71; 1.14 

µmol/kg/min, 95 % CI -0.6, 2.9, p=0.19; -0.38 µmol/kg/min, 95 % CI -2.1, 1.3, p=0.65) (Figure 

2C, Supplemental table S2). 

Effects on inflammatory biomarkers 

Dapagliflozin-intervention decreased the level of interleukin-6 (IL-6) by 1.9 pg/mL (95 % CI 

-3.6, -0.14, p=0.04). There was no change in levels of tumor necrosis factor α (TNF- α) (0.103 

pg/mL, 95 % CI -0.136, 0.343, p=0.40), or monocyte chemotactic protein 1 (MCP-1) (-0.60, 
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95 % CI -76, 75, p=1.0). In post hoc analysis, changes in IL-6 and subcutaneous AT volume 

correlated significantly in the dapagliflozin group (r=-0.62, p=0.02), but including change in 

subcutaneous AT volume in the model did not significantly influence the treatment effect on 

IL-6 (p=0.07). 

Lowering of NT-proBNP by dapagliflozin 

In this study, dapagliflozin did not have a significant effect on systolic or diastolic blood 

pressure (Table 1), or myocardial left ventricular glucose uptake (-19.0 µmol/kg/min, 95 % CI 

-70, 32, p=0.46). However, the level of NT-proBNP decreased significantly by -0.96 ng/L in 

the dapagliflozin group (Table 1). Although subjects with pre-existing hypertension or other 

cardiovascular diagnosis (N=8 in dapagliflozin and N=9 in placebo group, including 1 subject 

with atrial fibrillation in both groups and 3 subjects with coronary artery disease in the 

dapagliflozin group) had higher baseline NT-proBNP (p=0.04), this did not significantly 

predict the treatment response.  

 

CONCLUSIONS 

This randomized, parallel-group, double-blind, placebo-controlled study showed that in obese 

T2D patients, 8 weeks of treatment with dapagliflozin did not change skeletal muscle insulin 

sensitivity, as measured directly with PET. Also, in contrast to previous studies (5, 6, 7), we 

did not find an effect on whole-body insulin sensitivity. However, comparing results with 

previous studies is not completely straightforward due to different methodologies, including 

how the clamp was performed. As compared to previous studies, the two (4, 6, 7) to three times 

(5) lower insulin infusion rate in this study likely did not inhibit endogenous glucose production 

completely. The duration of the clamp was also shorter compared to earlier reports (4-7). 

Moreover, in this study the drug was not administered on the day of visits, and the participants 
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were characterized by more severe insulin resistance associated obesity and liver steatosis, and 

not only hyperglycemia. These differences plausibly explain why the rate of endogenous 

glucose production remained slightly higher during hyperinsulinemia in our study compared to 

what has been reported by Merovci et al (4), and possibly explain why we did not see an effect 

by dapagliflozin treatment. It might also be that the change in EGP would have been 

measurable at fasting rather than euglycemia, as reported by Daniele et al (6). In addition, the 

patients had low M-values indicating that the insulin infusion rate could have been too low to 

detect small changes in insulin sensitivity. 

Previous studies have assumed that changes in whole body glucose disposal (M-value) reflect 

an improvement in skeletal muscle insulin sensitivity by dapagliflozin, considering that muscle 

is the predominant glucose user during insulin stimulation. The method used in this study, PET 

imaging during clamp, enables direct quantitation of insulin sensitivity in multiple tissues 

simultaneously (14). In line with unchanged M-value, we found no change in skeletal muscle 

insulin sensitivity by dapagliflozin, and no difference compared to placebo. Also, in other 

tissues, including liver, myocardium, subcutaneous, visceral and brown adipose tissue no 

changes in glucose uptake could be detected. Thus, the tissue uptake of glucose measured with 

PET during the clamp was not able to reveal which tissues could have been responsible of the 

increase in M-value shown in other studies (4, 5, 6).  

One important finding of the study was the significant reduction in whole-liver fat content after 

8 weeks of treatment with dapagliflozin in obese T2D patients; results similar to a recent report 

(11). This decrease is consistent with the associated reduction in body weight and visceral 

adipose tissue as shown in other studies (24, 25). Except from reduced body weight, an 

alternative hypothesis explaining loss of liver fat is the metabolic substrate shift from glucose 

to fatty acids (5, 6, 26) and possibly increased fatty acid oxidation in the liver presumed to be 
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associated with reduced night-time hepatic glycogen depots and increased gluconeogenesis 

(27).  

The numerical lowering of FGF-21 by dapagliflozin treatment, also reported by Eriksson et al 

(11), can be attributed to the changes in liver fat in this study, supported by the previously 

recognized association between higher concentrations of FGF21 and NAFLD (28). Reduced 

FGF21 can also be attributed to improved mitochondrial function as exemplified by the very 

high FGF21 levels in patients with inherited mitochondrial dysfunction (29) or alleviated 

endoplasmic reticulum stress. Interestingly, both higher circulating NT-proBNP and FGF-21 

levels are associated with myocardial diastolic dysfunction (30). 

We did not observe changes in myocardial glucose utilization after 8 weeks of treatment, which 

is supported by the evidence that glucose is not the primary substrate for myocardium at rest. 

Neither did we see significant changes in fasting plasma beta-hydroxybutyrate nor serum free 

fatty acid levels (Table 1). As insulin-stimulated glucose metabolism did not change, our 

findings do not contradict the hypothesis that it is the substrate shift in favor of fatty acids and 

ketones which results in improved cardiac energy usage, efficacy and contractility resulting in 

the rapidly decreased risk of heart failure and cardiovascular mortality in the EMPA-REG 

OUTCOME study (31, 32). We observed a significant decrease in NT-proBNP, despite none 

of the subjects in this study had a history of heart failure. Even a moderately increased level of 

NT-proBNP has been shown to predict cardiovascular mortality independent of traditional risk 

factors in T2D patients (33). Therefore, the decline in NT-proBNP may indicate a reduced risk 

to develop heart failure in T2D patients. We also saw an increase in hematocrit by 3.7 ± 3.2 % 

in the dapagliflozin group at the end of treatment, similar to previous reports (34).  

Several previous studies have reported an increase in the levels of glucagon and 

glucagon/insulin ratio during SGLT2i treatment, and inhibition of SGLT2 has also been shown 



15 

 

to directly stimulate secretion of glucagon from pancreatic alpha cells (35). It could be 

speculated that we were not able to see these changes in this study because of the time elapsing 

between study drug administration and sampling. Another possibility is the use of DPP-4 

inhibitors in about half of the study population. However, a post hoc analysis showed that 

patients on sitagliptin had a similar change in glucagon/insulin ratio as compared to those on 

no sitagliptin treatment.  

Changes in different inflammatory biomarkers were inconsistent in this study. Even though up 

to 35 % of the circulating IL-6 is excreted by adipose tissue (36), the decrease was not affected 

by loss of subcutaneous AT mass in our small study sample and, surprisingly, the association 

between these reductions was negative, so some other factor might contribute to the lowering 

of IL-6 during dapagliflozin treatment. Interestingly an association between higher circulating 

concentrations of IL-6 and increased risk of myocardial infarction has been observed (37). 

Therefore, reduced IL-6 levels may contribute to the cardioprotective effects of SGLT2 

inhibitors (34, 38).  

The strengths of this study are its well-established methods in measuring insulin-stimulated 

glucose uptake comprehensively from several different tissues, adipose tissue volumes and 

liver proton density fat fraction, as well as the double-blinded, randomized design. The PET 

method used for quantifying tissue glucose uptake takes into account potential changes in 

biodistribution and urinary loss of [18F]-FDG. Limitations of the study include a small number 

of patients, which could help to explain why no significant effects were observed on well-

known effects of SGLT2 inhibition such as blood pressure and plasma levels of beta-

hydroxybutyrate. Another limitation is that glucose loss in urine was not quantified in all 

subjects which lead to the need to use [18F]-FDG to estimate urinary glucose. This might have 

caused reduced precision concerning M-values and EGP.  
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To conclude, eight weeks of treatment with dapagliflozin did not significantly change tissue 

insulin-stimulated glucose uptake directly measured with PET. However, the treatment reduced 

liver fat content, as well as subcutaneous and visceral adipose tissue, when measured using 

MRI data from the whole liver and adipose tissue depots from the abdominal region. 

Dapagliflozin also seems to have a positive effect on plasma NT-proBNP and IL-6 levels, 

which could help to understand the positive effects on cardiovascular deaths and hospitalization 

due to heart failure. 
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TABLES 

Table 1 
Variable Placebo Dapagliflozin 10 mg p-value  

Baseline At 8 weeks Baseline At 8 weeks  
Group size N= 16 N=16 N= 15 N=15  
Sex (m/f) 12/4  13/2   
Age (yr) 60 ± 7.4  62 ± 8.4   
Diabetes duration (yr) 7.3 ± 3.7  7.8 ± 3.8   
MET / MET+SITA 9/7  6/9   
Hypertension yes/no 9/7  8/7   
BMI (kg/m2) 31.7 ± 5.0 31.8 ± 4.8 32.1 ± 3.9 31.3 ± 3.7 <0.0001 
FPG (mmol/L) 8.7 ± 1.7 9.0 ± 1.5 9.5 ± 1.9 7.8 ± 0.9 <0.01 
HbA1c (%) 6.8 ± 0.5 6.8 ± 0.4 7.0 ± 0.6 6.6 ± 0.6 <0.01 
HbA1c (mmol/mol) 51 ± 6 51 ± 5 53 ± 7 49 ± 7  
Systolic BP (mmHg) 147 ± 14 139 ± 15 151 ± 13 144 ± 15 0.79 
Diastolic BP (mmHg) 86 ± 9.6 81 ± 7.6 84 ± 6.8 82 ± 9.0 0.48 
M-value (µmol/kg/min) 7.8 ± 5.2 8.3 ± 5.1 6.2 ± 3.3 6.9 ± 3.5 0.90 
EGP (µmol/kg/min) 9.4 ± 3.9 7.8 ± 4.0 7.6 ± 4.4 7.0 ± 4.2 1.0 
Fasting insulin (mU/L) 19 ± 12 17 ± 8 20 ± 11 17 ± 8 0.52 
FFA (mmol/L) 0.69 ± 0.18 0.66 ± 0.21 0.64 ± 0.15 0.67 ± 0.14 0.62 
OHBut (mmol/L) 0.12 ± 0.11 0.12 ± 0.09 0.09 ± 0.05 0.17 ± 0.18 0.33 
      
ALT (U/L) 38 ± 14 39 ± 15 50 ± 21 45 ± 16 0.47 
AST (U/L) 32 ± 12 31 ± 10 30 ± 10 30 ± 10 0.92 
NT-proBNP (ng/L) 75 ± 146 120 ± 193 99 ± 140 44 ± 48 0.03 
IL-6 (pg/mL) 3.5 ± 2.4 4.0 ± 4.4 6.6 ± 8.2 5.8 ± 8.9 0.04 
FGF-21 (pg/mL) 293 ± 194 362 ± 272 388 ± 315 334 ± 198 0.07 

Table 1. Baseline and after treatment values are reported as mean ± SD. P-values placebo-

corrected adjusted mean changes from baseline for the dapagliflozin group. MET/MET+SITA, 

subjects on metformin monotherapy or metformin + sitagliptin, FPG fasting plasma glucose, 

BP blood pressure, EGP endogenous glucose production, FFA fasting free fatty acids, OHBut 

hydroxybutyrate, ALT alanine aminotransferase, AST aspartate aminotransferase, NT-proBNP 

N-terminal pro-brain natriuretic peptide, IL-6 interleukin-6, FGF-21 fibroblast growth factor 

21.  
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FIGURE LEGENDS 

Figure 1. General study outline. 
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Figure 2. A. Adjusted mean change from baseline for liver PDFF% and volume in 

dapagliflozin and placebo treatment groups. B. Adjusted mean change from baseline in visceral 

adipose tissue (AT) and abdominal subcutaneous AT volumes in dapagliflozin and placebo 

treatment groups. C. Placebo-corrected mean changes and 95 % confidence intervals of M-

value, endogenous glucose production and of glucose uptake in different tissues. EGP 

endogenous glucose production, AT adipose tissue, Subcut subcutaneous. *Unit for myocardial 

glucose uptake is µmol/100 g/min. 

 

 

 



1 

 

The SGLT2 inhibitor dapagliflozin reduces liver fat, but does not affect tissue insulin 

sensitivity: a randomized, double-blind, placebo controlled study with 8-week treatment 

in type 2 diabetes patients 

 

SUPPLEMENTARY MATERIALS 

Estimation urinary glucose loss 

FDG clearance (ml/min) was calculated as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 =  𝐹𝐹𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝐴𝐴𝐴𝐴𝐴𝐴0→𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠 𝑡𝑡𝑢𝑢𝑠𝑠𝑢𝑢

, where 

FDGurine was urine [18F]-FDG decay corrected activity in the sample (kBq) and AUC0->sampling 

time decay corrected area under the curve for FDG in plasma from the injection until the urine 

sample (min×kBq
ml

). Eight subjects in the dapagliflozin group had measurement of amount of 

glucose lost to urine during the study. Glucose flux to urine (µmol/min) was calculated as 

𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝑔𝑔𝑔𝑔𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑢𝑢 = 𝐹𝐹𝑔𝑔𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑇𝑇𝑢𝑢𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑢𝑢𝑐𝑐𝑡𝑡𝑢𝑢𝑐𝑐𝑢𝑢

, where glucose in urine was expressed as (µmol) and 

time for urine collection (min) was determined as interval from voiding the bladder before the 

study and urine sampling at the end of the study. There was a significant correlation between 

FDG clearance and glucose flux to urine during the study, r=0.74, p=0.038 (Supplementary 

figure S1). This allowed us to create a linear regression model to estimate glucose flux to urine 

from [18F]-FDG clearance in subjects whose actual urine glucose loss had not been measured: 

𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝑔𝑔𝑔𝑔𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑢𝑢  =  −13.47 +  1.92 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 , unit (µmol/min). Measured 

glucose in the urine in five subjects of the placebo group was negligible, thus glucose flux to 

urine is assumed as 0 for the placebo group. 

 

Figure S1 

 
Figure S1. Association between measured [18F]-FDG clearance to urine and glucose flux to 

urine among eight subjects with dapagliflozin treatment. 
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MRI parameters 

Detailed MRI parameters are given in table 1. The water-fat reconstruction of the liver fat scans 

was performed using a Matlab implementation of the algorithm described in (1). The method 

was applied without application of the final ICM-step and minor parameter adjustments were 

made to improve the performance on the current data. The water-fat reconstructions of the 

whole-body scans was performed using station wise reconstructions using the method 

described previously (2). 

 

Supplemental table S1: Detailed MRI parameters. 

Scan name FOV (mm) 
Resolution 

(mm) 
Num 

echoes 
TR / TE1 / dTE 

(ms) 
Flip angle 
(degrees) 

Liver fat 384x288x150 3x3x10 6 unipolar 9.1 / 0.88 / 1.41 4 

Liver volume 450x356x275 2.34x2.34x5 1 2.80 / 0.89 / - 10 

Whole-body 502x340x152 1.96x1.96x8 3 unipolar 5.37 / 0.99 / 1.61 6 

Dimension are given in the directions SAG x COR x AX. 

 

Laboratory analyses 

Plasma glucose during clamp was analyzed on site in duplicates using glucose oxidase method 

(Analox GM9 Analox Instruments, London, UK). Plasma insulin was measured with 

automated automated electrochemiluminescence immunoassay, ECLIA, fasting plasma 

glucose amd urinary glucose with enzymatic hexokinase method (all Cobas 8000, Roche 

Diagnostics, Mannheim, Germany), and HbA1c with immunoturbidimetry (Cobas 6000, 

Roche Diagnostics, Mannheim, Germany). Plasma ALT, AST, ALP, and total bilirubin were 

defined with photometric methods (Cobas 8000, Roche Diagnostics, Mannheim, Germany). 

Rest of the samples were separated and stored at -70 ⁰C until all the enrolled subjects had 

completed the study. Serum free fatty acid level was quantified in fasting and at 60 min 

intervals during the clamp, and the analysis was performed by enzymatic colorimetric method 

assay (NEFA-HR2, ACS-ACOD, Wako Chemicals, Neuss, Germany; Cobas 8000 c502 

Analyzer, Roche Diagnostics GmbH, Mannheim, Germany). Plasma NT-proBNP and TnT 

were assessed by ECLIA (Cobas 8000, Roche Diagnostics, Mannheim, Germany). Chilled 

EDTA tubes added with final concentrations of 500 KIE/ml of trypsin inhibitor aprotinin 

(Bayer AG, Leverkusen, Germany) and 0.1 mmol/l of DPP-IV-inhibitor Diprotin A (Sigma 

Aldrich, St Louis, MO, USA) were used for glucagon and active GLP-1 samples. Glucagon 

was analyzed with radioimmunoassay, RIA (GL-32K, EMD Millipore, Billerica, MA, USA) 
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and active GLP-1 with enzyme-linked immunosorbent assay, ELISA (EGLP-35K, EMD 

Millipore, Billerica, MA, USA) which has been shown to be one of the most sensitive and 

specific commercial kits, although some cross reaction is possible (3). Serum IL-6, MCP-1 and 

TNF-alpha were measured using immunoassay (Milliplex® MAP Human Cytokine/ 

Chemokine Magnetic Bead Panel, cat.no. HCYTOMAG-60K, EMD Millipore, Billerica, MA, 

USA) and FGF-21 using ELISA (Quantikine® Human FGF-21 Immunoassay, R&D Systems, 

Inc., MN, USA). 
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Table S2 
Variable 
 

Placebo Dapagliflozin 10 mg p-value  
Baseline At 8 weeks Baseline At 8 weeks  

Skeletal muscle 13.6 ± 6.2 13.2 ± 5.0 10.7 ± 3.5 11.6 ± 4.7 1.0 
Liver 14.3 ± 4.9 15.4 ± 5.5 11.9 ± 3.6 14.0 ± 5.4 0.53 
Myocardium 143 ± 95 142 ± 94  139 ± 154 116 ± 102 0.46 
Visceral AT 13.4 ± 3.5 13.2 ± 4.3 10.1 ± 3.9 10.6 ± 4.6 0.82 
Subcutaneous AT 7.9 ± 2.6 7.1 ± 2.8 6.7 ± 2.0 7.3 ± 2.9 0.19 
Brown AT 8.9 ± 3.3 8.6 ± 3.0 6.7 ± 1.7 6.8 ± 2.2 0.65 

Table S2. Tissue glucose uptake (µmol/kg/min) in analyzed tissues without corrections 

reported as mean ± SD. P-values are placebo-corrected adjusted mean changes from baseline 

for the dapagliflozin group. AT adipose tissue. 
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Figure S2 

 
Figure S2. Levels of fasting plasma insulin (A), fasting plasma glucagon (B) and fasting active 

plasma glucagon-like peptide-1 (GLP-1) (C) in dapagliflozin and placebo treatment groups at 

baseline (left), after 4 weeks of treatment (middle) and after 8 weeks of treatment (right). All 

the changes and differences between groups remained not significant. 
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Figure S3 

 

 

 
Figure S3. Plasma glucose (A and B) and insulin (C and D) levels, and glucose infusion rates 

(GIR) (E and F) during hyperinsulinemic euglycemic clamp and PET/CT scanning at baseline 

and after 8 weeks of treatment in dapagliflozin group (A, C and E) and in placebo group (B, D 

and F). 
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