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ABSTRACT

Tatu Mäkinen: Modeling environment using multi-view stereo
Master of Science Thesis
Tampere University
Master’s Degree Programme in Information Technology
May 2019

In this work, we study the potential of a two-camera system in building an understanding of
the environment. We investigate, if stereo camera as the sole sensor can be trusted in real time
environment analysis and modeling to enable movement and interaction in a general setting.

We propose a complete pipeline from the sensor setup to the final environment model, evaluate
currently available algorithms for each step, and make our own implementation of the pipeline. To
assess real world performance, we record our own stereo dataset in a laboratory environment in
good lighting conditions. The dataset contains stereo recordings using different camera angles
concerning the movement, and ground truth for the environment model and the camera trajectory
recorded with external sensors.

The steps of our proposed pipeline are as follows. 1) We calibrate two cameras using de facto
method to form the stereo camera system. 2) We calculate depth from the stereo images by finding
dense correspondences using semi global block matching and compare results to a recent data
driven convolutional neural network algorithm. 3) We estimate camera trajectory using temporal
feature tracking. 4) We form a global point cloud from the depth maps and the camera poses
and analyze drivability in indoors and outdoors environments by fitting a plane or a spline model,
respectively, to the global cloud. 5) We segment objects based on connectivity in the drivability
model and mesh rough object models on top of the segmented clouds. 6) We refine the object
models by picking keyframes containing the object, re-estimating camera poses using structure
from motion, and building an accurate dense cloud using multi-view stereo. We use a patch-based
algorithm that optimizes the photo consistency of the patches in the visible cameras.

We conclude that with current state of the art algorithms, a stereo camera system is capable of
reliably estimating drivability in real time and can be used as the sole sensor to enable autonomous
movement. Building accurate object models for interaction purposes is more challenging and
requires substantial view coverage and computation with the current multi-view algorithms.

Our pipeline has limitations in long-term modeling: drift accumulates, which can be dealt with by
implementing loop closure, and using external information such as GPS. Data wise, we inefficiently
conserve complete information, while storing compressed presentations such as octrees or the
built model can be considered. Finally, environments with insufficient texture and lighting are
problematic for camera-based systems and require complementary solutions.
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TIIVISTELMÄ

Tatu Mäkinen: Ympäristön mallinnus stereokameroilla
Diplomityö
Tampereen yliopisto
Tietotekniikan koulutusohjelma
Toukokuu 2019

Tässä työssä tutkimme kamerapohjaista ympäristön mallintamista. Tavoitteena on selvittää, so-
veltuuko stereokamera ainoana sensorina reaaliaikaiseen ympäristön analyysiin ja mallintamiseen,
joka mahdollistaisi liikkumisen ja vuorovaikutuksen ympäristön kanssa yleisesti.

Muodostamme mallinnusprosessista kokonaisuuden alkaen kameroista ja päätyen 3D-malliin,
vertailemme algoritmeja prosessin eri vaiheissa ja teemme oman implementaation. Vertaillaksem-
me ehdottamamme prosessin todellista toimivuutta, nauhoitamme stereovideoaineiston. Aineisto
sisältää stereovideonauhoituksia käyttäen eri kamerakulmaa liikkeeseen nähden, ja vertailuaineis-
ton ympäristömallista ja kameran liikkeestä, jotka on nauhoitettu eri sensorijärjestelmillä.

Ehdottamamme mallinnusprosessi koostuu seuraavista vaiheista. 1) Kalibroimme kamerat
muodostaen stereokameramallin. 2) Laskemme syvyysinformaation stereokuvista etsimällä kuvis-
ta tiheästi vastaavuuksia käyttäen puoliglobaalia lohkovertailualgoritmia, ja vertailemme tuloksia
viimeaikaisiin konvoluutioneuroverkkoalgoritmeihin. 3) Estimoimme kameran liikettä seuraamalla
kuvan piirteiden liikettä ajan suhteen. 4) Muodostamme globaalin pistepilvimallin yhdistämällä
syvyyskuvien ja kameran liikkeen informaation, ja analysoimme ajettavuutta sisätiloissa tasomallilla
ja ulkotiloissa spline-mallilla. 5) Segmentoimme ympäristön objektit ajettavuusmallin perusteella, ja
muodostamme karkeat objektimallit segmentoitujen objektipistepilvien ympärille. 6) Parannemme
objektimallien laatua etsimällä datasta objektin sisältävät kuvat, estimoimalla lokaalisti kameran
asennot objektin suhteen käyttäen rakenne liikkeestä -algoritmia ja rakentamalla uuden objekti-
mallin moninäkymästereoalgoritmilla. Käytämme tilkkupohjaista algoritmia, joka optimoi tilkkujen
projektioiden yhdenpitävyyden sen näkevissä kameroissa.

Työmme perusteella nykyisillä algoritmeilla stereokamerajärjestelmä soveltuu luotettavaan ajet-
tavuuden analysointiin, ja sitä voidaan käyttää ainoana sensorina mahdollistamaan autonominen
liikkuminen reaaliajassa. Tarkkojen objektimallien luonti interaktiota varten osoittautui haasteelli-
seksi: nykyiset algoritmit vaativat kattavasti näkymiä objektin ympäriltä ja merkittävästi laskentaa.

Mallinnusalgoritmi on vajavainen pidemmän aikavälin mallinnuksessa, kun virhe kasaantuu
kameran liikkeen estimoinnissa johtaen ajautumiseen. Ongelma voitaisiin ratkaista silmukansulke-
misalgoritmilla, ja käyttäen referenssi-informaatiota, kuten GPS:ää. Datanäkökulmasta tallennam-
me tehottomasti kaiken tiedon, kun informaatio voitaisiin pakata esimerkiksi octree-muotoon, tai
ainoastaan muodostettu ympäristömalli voitaisiin säilyttää. Lopuksi, kamerapohjainen mallinnus
vaatii toimiakseen riittävästi valoa ja tekstuuria, joiden puuttuessa vaaditaan täydentäviä ratkaisuja.

Avainsanat: konenäkö, 3D mallinnus, stereokamera
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1 INTRODUCTION

Human visual system is the pinnacle of billions of years of evolution. It is arguably our most
important sense, as it provides a substantial amount of information of our environment.

For decades, researchers have dreamed of replicating this capability by making machines
able to see. The research community and industry alike have put tremendous effort to
advance the field. Capable computer vision would lead way to a completely new era of
possibilities, as the machines could operate autonomously.

Though the analogy between human sight and cameras is often used, it should be noted
that the human visual system is vastly different from a camera sensor system. Human
vision is heavily based on assumptions ingrained in biology and individual life experiences.
Numerous visual illusions demonstrate how these assumptions often override the actual
incoming light [8].

Computer vision relies on mathematical or statistical analysis of the input sensor data.
Traditional engineering approaches try to model this relationship between the sensor data
and real world. Machine learning approaches on the other hand rely on sufficient data
to define the relationship. In our work, we focus on the more traditional model-based
approaches. Despite their fortes, current data driven algorithms lack explainability, and
generalization to real world situations is uncertain in the absence of big data.

The fundamental goal in computer vision is to understand the physical world based on
sensor data. In our work, this "understanding" is in the sense of building an accurate 3D
model of the environment. Using two cameras, i.e., stereo camera, as our sensor, we
aim to process and refine the incoming pixel information into a substantial and compact
presentation of the environment that can be used for navigation and interaction.

Besides cameras, there are other passive and active (energy emitting) sensors, which can
be used to gather information of the environment. Each sensor has its pros and cons, and
hence the most robust modeling can be achieved by combining multiple sensors, if the
complexity in data processing is disregarded. Here we shortly discuss the different sensor
alternatives.

Camera is inexpensive, efficient and able to acquire abundant information of the environ-
ment. This is largely due to the immense amount of research and industry effort that has
been put into the development of camera optics and sensors. The main disadvantage
of cameras for extracting 3D information is that they produce images in 2D. Thus, we
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have the inverse problem of modeling the original shape based on the 2D projections,
which requires a lot of computation. In our work, we use stereo camera, i.e., two cameras
for which we know their geometrical relationship, to constrain the problem to allow real
time processing. The versatility, the price, and the resemblance to our own vision make
cameras our sensor of choice.

Light Detection and Ranging (LIDAR) sensors emit light and model the environment by
measuring the reflections. LIDAR sensors produce accurate depth information directly,
and thus avoid the data processing hindrances. Generally, the method is based on Time
of Flight (ToF) and only depth information is computed from the reflections. Nevertheless,
more reflectance data can be captured, e.g., full waveform analysis can be performed to
identify material types. LIDAR technologies have recently progressed rapidly due to the
high industry demand. Temporal resolution of LIDAR is currently good enough for obstacle
avoidance and the accuracy of the model points is superior to other methods. However,
increasing the spatial resolution makes LIDAR slow and a camera is needed to combine
color information to the model. Reflective and non-reflective are problematic for LIDAR,
and most importantly, the price of the sensor is at present comparatively high. [39]

Sound Navigation and Ranging (SONAR) and Radio Detection and Ranging (RADAR)
use sound and radio waves respectively with a mindset similar to LIDAR to sense the
environment. Nevertheless, for accurate environment modeling purposes, the current
quality and deployability of these technologies is not on par with LIDAR and camera based
depth sensing methods.

Traditionally camera based (photogrammetric) methods rely on finding correspondences
between images to infer the underlying world in 3D. However, images contain many other
cues that can be used in depth estimation. 1) Shading is useful if lighting can be modeled.
2) Irregularities in texture patterns can be used if patterns can be assumed, e.g., hole in
a wall. 3) Contours of the objects can be taken advantage of assuming regular shape,
e.g., an ellipse in the image can be assumed to be a projection of a circle in the 3D
world. Moreover, combining contours with shading information, regular body of rotation
assumptions can be made. 4) Defocusing effects due to the limited camera depth of
field can be used as well to differentiate between near and far objects. Overall, generally
applicable models based on these properties are difficult to derive, and thus, they should
be considered as complementary methods to depth estimation at best. [43]

In this work we investigate the current State of the Art (SoA) in camera based modeling
as presented in Figure 1.1. Starting with two streams of images from the stereo camera
system, we aim to build an accurate model of the environment that would enable increased
autonomy for machines.

The algorithmic steps towards the desired 3D model start from stereo camera calibration
to build an accurate mathematical presentation of the camera system. Using the calibrated
stereo cameras, we approach the depth estimation as disparity estimation between the
stereo images, for which we compare the well-founded Semi Global Block Matching
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Figure 1.1. Via processing the information gathered by two cameras, we aim to create an
accurate 3D model of the environment.

(SGBM) method [27] and a current SoA data driven approach [6]. Simultaneously we
track the camera movement, for which we make our own adaptation based on Kanade
Lucas Tomasi feature tracking algorithm (KLT) feature tracking [55], which we compare
to the SoA trajectory estimation algorithm [44]. Combining the results to a global model,
we then investigate the use of splines in outdoors drivability analysis [4], and simple
ground plane model indoors. For refining object models, we examine the viability of multi-
view modeling by combining Structure from Motion (SfM) and a patch based multi-view
modeling approach [17].

The main contributions of this work are:

1. proposed complete stereo pipeline for environment modeling and its implementation;

2. real time drivability estimation using stereo vision;

3. analysis and evaluation of the currently available camera based modeling algorithms;

4. stereo dataset for assessing real world performance indoors.

The work is constructed as follows. In Chapter 2, we discuss the theory of camera
based modeling and unfold the principal ideas behind the algorithms. In Chapter 3, we
present the stereo dataset that we recorded to evaluate the real world performance of the
algorithms. We continue in Chapter 4 by presenting our proposed pipeline for environment
modeling, and discuss the details of our implementation. In Chapter 5, we compare our
implementation to the current SoA algorithms and discuss the limitations of our pipeline.
Finally, in Chapter 6 we present our conclusions.
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2 THEORETICAL BACKGROUND

In this chapter, we discuss the theory behind stereo vision and multiple view modeling.

2.1 Camera

2.1.1 Pinhole model

Simple camera system can be thought of as a pinhole model, where all the light goes
through a small hole to the sensor plane. Focal length l is the distance between the hole
and the sensor plane, and image plane refers to the projection of the sensor plane image
at the focal length distance in front of the pinhole. Pinhole camera model is presented in
Figure 2.1.

Sensor planeObject PinholeImage plane

Focal length

Figure 2.1. Pinhole camera model.

Real camera usually has multiple lenses in the place of the pinhole to increase the amount
of incoming light and properly direct it to the sensor plane. However, mathematically a
normal camera system can still be modeled as a pinhole camera. This model is generally
divided in extrinsic and intrinsic elements. Extrinsic parameters determine how light
from the world comes to the camera. Intrinsic parameters in turn model how the light is
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transferred inside the camera to the hypothetical image plane. The system is called a
perspective camera, as objects closer to the camera form bigger projections to the image
plane than distant objects.

Intrinsic parameters are conventionally presented by a 3x3 intrinsic matrix K containing
five parameters:

K =

⎡⎢⎢⎢⎣
lx s cx

0 ly cy

0 0 1

⎤⎥⎥⎥⎦ ,

where

• lx and ly are the horizontal and vertical focal lengths. They can also be expressed
with respect to the focal length l as lx = lαx and ly = lαy, where αx and αy are
horizontal and vertical pixel per length scale factors.

• s represents the skew of the sensor plane normal with regard to the camera’s optical
axis. Optical axis is defined by the camera lens system as the direction in which
light does not bend. Skew is usually close to zero, meaning that the optical axis is
perpendicular to the sensor plane.

• (cx, cy)
T is the principal point, which is the intersection point between the optical

axis and the image plane.

Extrinsic parameters are presented by a 3x4 matrix [R|t] containing 3x3 rotation matrix R

and 3x1 translation vector t:

[R|t] =

⎡⎢⎢⎢⎣
R11 R12 R13 tx

R21 R22 R23 ty

R31 R32 R33 tz

⎤⎥⎥⎥⎦ .

Translation vector t is equal to the position of the world coordinate system’s origin, and
the rotation matrix R corresponds to the rotation of the origin. Both are determined in the
camera’s coordinate system.

The intrinsic and extrinsic transformation matrices can be combined to form a 3x4 matrix
presentation for mapping world points to the camera’s image plane. This is called the
camera projection matrix defined as P = K[R|t]. Thus, a world point w = (wx,wy,wz)

T
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is mapped to the image pixel p = (px,py)
T by

P

⎡⎢⎢⎢⎢⎢⎢⎣
wx

wy

wz

1

⎤⎥⎥⎥⎥⎥⎥⎦ =

K  ⎡⎢⎢⎢⎣
lx s cx

0 ly cy

0 0 1

⎤⎥⎥⎥⎦

R|t  ⎡⎢⎢⎢⎣
R11 R12 R13 tx

R21 R22 R23 ty

R31 R32 R33 tz

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
wx

wy

wz

1

⎤⎥⎥⎥⎥⎥⎥⎦ = κ

⎡⎢⎢⎢⎣
px

py

1

⎤⎥⎥⎥⎦ , κ ̸= 0, (2.1)

where κ is the scale of the projection. World coordinates are presented in the homoge-
neous form, where fourth dimension equal to one is added to make projection by simple
matrix multiplication possible.

2.1.2 Distortion

To make the perspective camera model more general, nonlinear lens distortions have to
be taken into account.

In radial distortion, light bends differently with regard to the distance from the center of
distortion o. Radial distortion is symmetric and is caused by imperfections in the lens
shape. Tangential (decentering) distortion must also be considered if the lens is not
parallel to the image plane. The effects of distortion are presented in Figure 2.2.

(a) radial distortion (b) tangential distortion

Figure 2.2. Effects of radial and tangential distortion. The circles represent real points
and arrows point to their distorted locations.

Distortion can be modeled as
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pr = pd +

radial correction  ⎡⎣x̃(q1dc2 + q2dc
4 + q3dc

6 + . . . )

ỹ(q1dc
2 + q2dc

4 + q3dc
6 + . . . )

⎤⎦+

tangential correction  ⎡⎣(a1(dc2 + 2x̃2) + 2a2x̃ỹ
)
(1 + a3dc

3 + . . . )(
a2(dc

2 + 2ỹ2) + 2a1x̃ỹ
)
(1 + a3dc

3 + . . . )

⎤⎦, (2.2)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pr = (prx,pry)
T real pixel coordinates,

pd = (pdx,pdy)
T distorted pixel coordinates,

x̃ = ox − pdx horizontal distance from center of distortion,

ỹ = oy − pdy vertical distance from center of distortion,

dc =
√
x̃2 + ỹ2 distance from the center of distortion,

qi radial distortion coefficients, and

ai tangential distortion coefficients.

Center of distortion o is usually assumed equal to the principal point c. Moreover, in the
standard form only three parameters for radial and two parameters for tangential distortion
are used. Another common practice is to use only one instead of three radial distortion
parameters and compensate the error with modifications to the intrinsic matrix. [62]

After the distortion coefficients have been estimated in calibration, the polynomial undistor-
tion model presented above can be used to undistort the images. Undistortion is a crucial
step if the goal is to make associations between real world and the image.

2.1.3 Calibration

Calibration is done to calculate the parameters of the camera system. This includes the
intrinsic parameters, distortion parameters and in the case of stereo camera calibration,
the parameters describing the relationship between the two cameras, i.e., translation and
rotation between them.

There are two general approaches to calibration: self-calibration and photogrammetric
calibration. In self-calibration, the parameters are calculated from a sequence of images
with different camera poses. It is assumed that internal parameters and the environment
stay constant, and thus the camera parameters can be estimated using correspondences
between images. Photogrammetric calibration, on the other hand, uses a calibration object
with known geometry to make the connection between the images and the world.
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Zhang’s calibration method

Zhang’s calibration method [61] is the standard photogrammetric method used in practice,
as it provides accurate calibration with relatively little effort. The calibration object used is
a 2D plane with a repetitive pattern, for which the size of the pattern is known. An example
of the calibration object can be seen in Figure 3.7.

The method is based on two different definitions of the relationship between the camera
and calibration object. First, homography mapping is used to define the relationship
between the two planes, i.e., the calibration object and the image plane with eight pa-
rameters. Second, the geometric relationship between the camera’s coordinate system
and the object’s coordinate system is defined with three rotational and three translational
parameters. As there is a two-parameter difference between the definitions, we get two
constraints for the intrinsic parameters with each observation (where the calibration object
is in the image). Thus, as there are five parameters in the intrinsic matrix, unique solution
can be defined with three or more observations. To be more concise, the steps of the
algorithm are as follows.

1) The first step of the algorithm is to estimate the intrinsic parameters using a closed form
solution established by the aforementioned constraints. The constraints are stacked to
a matrix A, and an equation Ab = 0 is formed, where vector b is based on the intrinsic
parameters. From this equation, b can be solved as the eigenvector of the smallest
eigenvalue of ATA, and hence we get an estimate of the intrinsic parameters.

2) Based on the estimated intrinsic matrix and the homographies, the extrinsic parameters
are calculated. 3) Then, radial distortion is approximated by stacking equations based on
the previously estimated parameters and the radial distortion model, from which linear
least squares solution is calculated. 4) Finally, to refine the parameters received from the
closed solution, maximum likelihood estimation is used to solve the nonlinear equation,
initialized using the estimated parameters.

As the algorithm is based on the constraints received from the geometric and homographic
relations, the movement of the calibration object should include all the six geometric
degrees of freedom to provide enough restrictions on the camera parameters. In practice,
this means that the calibration objects should not be coplanar in the images. The calibration
accuracy can be increased by rising the amount of observations. However, this comes
with diminishing returns, and an empirical upper limit of 70 observations is presented in
the literature [45].
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2.2 Stereopsis

2.2.1 Backprojection to optical rays

After the images have been undistorted, relationship between the images and the world
can be geometrically modeled. In this model, image pixels correspond to 3D cones in world
space. Everything inside the cone is projected to the corresponding pixel in the image.
The diameter of the cone depends on the camera resolution. However, for moderate
distances the diameter can be assumed to be close to zero. This means that the 3D cone
becomes a 3D ray, i.e., an optical ray in the world space. The relationship between image
pixels and cones in the 3D world is illustrated in Figure 2.3

Figure 2.3. Image pixel measures incoming light inside a 3D cone. The diameter of the
cone depends directly on the resolution of the sensor plane, which is represented in the

picture as the yellow imaginary image plane (see Figure 2.1).

The optical ray can be calculated by picking two known points it passes through, e.g.,

• camera center in homogeneous world coordinates C̃ = [−RT t, 1]T

• intersection point with the plane at infinity D̃ = [RT p̃, 0]T

Optical ray is then defined as the join of these two points

X̃(dc) = dcD̃+ C̃ = [RT (dcp̃− t), 1]T (2.3)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X̃ the ray model defined in homogeneous world coordinates,

p̃ = [p̃x, p̃y, 1]
T homogeneous pixel coordinates, and

dc distance from the camera center.

2.2.2 Epipolarity and Fundamental matrix

Besides relating pixels to world geometry and vice versa, associations between different
camera sensors can also be made. This is essential in stereo vision and multi-view
imaging, where information from two or more cameras, respectively, is combined.

As explained in the previous section, pixels correspond to optical rays, which can then be
projected to other cameras. An optical ray defined by a pixel in one camera is represented
by a line in the image planes of the other cameras that have the ray in their Field of View
(FoV). The projections of an optical ray are referred to as epipolar lines. Leaving out
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the intermediate definition of optical rays, there is thus a direct correspondence between
pixels in one camera and the epipolar lines in other cameras if camera parameters are
known. Epipolar lines can be exploited, e.g., to limit the search space when finding
correspondences between images.

The epipolar relationship between two cameras is presented in mathematical form by the
fundamental matrix F. Given pixel p in one camera, epipolar line in the other camera is
defined as Fp̃. In general, fundamental matrix satisfies

∀(p̃1 ↔ p̃2) : p̃
T
1 Fp̃2 = 0,

where (p̃1 ↔ p̃2) are corresponding pixels in the homogeneous form.

Fundamental matrix can be calculated from at least seven point correspondences between
two images. Assuming Gaussian error in the point correspondences, maximum likelihood
estimate can be found via cost minimization in the method referred as "The Gold Standard
Method" [25]. Otherwise, if the camera parameters are known, fundamental matrix is
defined as

F = [P2C̃1]×P2P
+
1 , (2.4)

where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P1,P2 projection matrices,

C̃1 center of the first camera, where P1C̃1 = 0,

+ pseudo inverse, and

[]× skew symmetric matrix of the vector (see Appendix A.1).

2.2.3 Rectification

In the pinhole model, all the light coming to the camera goes through its optical center.
Thus, when the optical center of one camera is projected to the image plane of another
camera, all the epipolar lines go through the projected point. This common point between
the epipolar lines is referred to as the epipole.

In an ideal stereo camera system, both cameras are parallel and the cameras’ image
planes are aligned with the baseline, which is the line that goes through the optical centers.
This implies that both of the epipoles are at infinity, and the epipolar lines run horizontally
parallel through the images. Hence, corresponding pixels are found on the same horizontal
line in the images.

Rectification is the process of mathematically idealizing a stereo camera system, making
it equivalent to the model described above. This is done via rotating the camera models
around their optical centers so that 1) their image planes become coplanar and 2) the
horizontal axes of the image planes are aligned with the baseline. New common intrinsic



11

parameters are also calculated to make the vertical correspondences proportionate.

For rectification, individual intrinsic and extrinsic parameters of the cameras need to be
calculated first via calibration described in Section 2.1.3. If rectification is done in post
processing where camera projection matrices P1,P2 are known, they can be factorized to
the form Pi = Ki[Ri|ti] using, e.g., QR-decomposition. New shared rotation matrix R can
then be defined based on the individual camera parameters, e.g., as follows:

• x-axis is the baseline b = c1 − c2,

• y-axis is orthogonal to the defined x-axis and to either of the old z-axis (usually from
the left camera), and

• z-axis is orthogonal to the previous two.

Intrinsic matrix K is arbitrary and can be defined, e.g., as the average of the old intrinsic
matrices where skew is removed. New projection matrices P′

1,P
′
2 and the rectifying image

transformations T1,T2 are thus established as

P′
i = K[R| −Rci]

Ti = P′
i[1,2,3;1,2,3]P

−1
i[1,2,3;1,2,3].

Overall, rectification process produces camera models that differ only in their location on
the baseline. [18]

2.2.4 Disparity estimation

Disparity estimation from stereo images is done by first finding corresponding points in the
images, and then calculating disparities between the corresponding points. Disparity is
directly proportional to the distance of the object from the cameras, i.e., depth. Accordingly,
if we know the parameters of the camera system, and are able to find correspondences
between the images, we can calculate depth.

Occlusions due to the difference between the views are problematic, i.e., when an object
blocks the view of the world visible from the other camera’s view. There are no corre-
sponding points to be found and, hence, no disparity. Moreover, these areas of depth
discontinuities also affect their neighboring regions in that, if correspondence matching is
done using a local window, the neighboring pixels are vastly different depending on the
camera location. Finally, global search for correspondences between the images has the
complexity of O(N2). Thus, the search space is usually restricted based on the camera
models, and disparities are searched only up to a defined limit. If the stereo camera model
is accurate, the epipolar constraint reduces the search space to the corresponding 1D line.
Rectification makes applying the epipolar constraint straightforward, as the matches can
be searched from the same horizontal line in the common rectified image plane.

Dense disparity calculation generally includes the same four steps: 1) computing matching
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costs, 2) aggregating costs, 3) computing disparities and 4) refining disparity maps. De-
pending on the algorithm, disparities can be calculated locally, globally as an optimization
problem, or by combining both local and global aspects, e.g., via semi global matching.

Semi global matching

Disparity estimation can be presented as a global energy minimization problem, where
the goal is to find the disparity that minimizes the sum of pixel wise matching costs and
two added penalty terms. The penalty terms compensate for errors of ambiguous pixel
wise matching by penalizing changes in disparity. Global energy G for disparity map D is
defined as

G(D) =
∑
i,j

(
pixelwise
matching

costs  
C(Jij ,Dij)+

penalty for small
disparity changes  

ρ1
∑

k,l∈N i,j

T
(
|Dij −Dkl| ≤ θ

)
+

penalty for large
disparity changes  ∑

k,l∈N i,j

max(ρ1,
ρ2

|Jij − Jkl|
)T

(
|Dij −Dkl| > θ

) )
(2.5)

T (a) =

⎧⎨⎩1 if a == true,

0 else
k, l ∈ N i,j ⇐⇒

⎧⎨⎩k ∈
[
i− ws+1

2 , i+ ws+1
2

]
\ i

l ∈
[
j − ws+1

2 , j + ws+1
2

]
\ j

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J image,

C(p, d) pixelwise matching cost for pixel p at disparity d,

ρ1, ρ2 penalty coefficients,

θ threshold differentiating between small and large disparity changes, and

ws ∈ 2N + 1 neighborhood window size.

The distinction between the penalty terms ensure that smooth disparity changes occurring,
e.g., at slanted surfaces are not penalized as much as larger disparity changes caused
by depth discontinuities. The penalty for larger disparity changes ρ2 is scaled inversely
proportional to the intensity, down to ρ1. The inverse scaling is on the grounds that in
an accurate disparity map, there is generally a strong correlation between the intensity
changes and disparity changes.

As the minimization of the global energy presented in Equation 2.5 is a NP-complete
problem, it needs to be approximated. Semi global matching [27] estimates the minimum
of the energy by aggregating path wise minima along different directions across the image.
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Path wise matching cost is defined as

Cpath(r,p, d) = C(p, d)+

min

⎛⎜⎜⎜⎜⎜⎝
Cpath

(
r,p+ rs, d

)
,

Cpath

(
r,p+ rs, argmin

m∈|m−d|≤θ

(
Cpath(r,p+ rs,m)

) )
+ ρ1,

Cpath

(
r,p+ rs, argmin

n∈|n−d|>θ

(
Cpath(r,p+ rs, n)

) )
+ ρ2

⎞⎟⎟⎟⎟⎟⎠ , (2.6)

where

⎧⎨⎩r direction of the path, and

rs step in image coordinates in the direction r.

Consequently, path wise cost is calculated recursively starting from the image boundary
and summing up the minimum costs on the pathway to pixel p. Changes in the disparity
on the way are penalized to encourage smoothness. The pixel wise matching cost C
assesses local photo consistency, for which different measures are discussed in Section
2.4.

Finally, the semi global matching cost Csg is defined as the sum of the path wise matching
costs as

Csg(p, d) =
∑
r

Cpath(r,p, d) (2.7)

By increasing the amount of paths r, a better estimate of the global minimum can be
achieved. Already with diagonal, horizontal, and vertical paths, the aggregation gives a
decent estimate of the validity of the disparity.

Disparity map D is built by finding the semi global matching cost minima for all the pixels
p and combing the corresponding disparities d to form the map. To account for occlusions,
the disparity estimation is done two times, swapping around the matched image and the
base image. The two disparity maps are then compared in a consistency check, where
too large differences in disparities are invalidated.

2.3 Features

Features are distinguishable image properties, e.g., points, edges, or 3D objects in the
image. The choice of which features to use is highly dependent on the problem at hand.
Nevertheless, their robustness for rotation, scaling, occlusions, and lighting changes
should be considered.

In stereo and multiple view vision, features are used to find corresponding points in the
images taken temporally and/or spatially from different points, as visualized in Figure 2.4.
Assumptions of constrained camera parameters and locally static environment alleviate
the correspondence problem. However, it is not trivial to find features that stay consistent
without profound understanding of the scene. Moreover, depending on the application the
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trade-off between accuracy and performance has to be taken into account.

Figure 2.4. Two images taken with small temporal and spatial difference.

Generally, feature processing starts by detecting locations from images that contain
applicable information, e.g., gradients in multiple directions. Next, a feature vector is
extracted to make an invariant descriptor of the feature. In the end, features are matched,
often limiting the search space by exploiting available information of camera parameters
and the environment. The general feature-processing pipeline is illustrated in Figure 2.5.
[54]

. .
 .

. .
 .

Detection Extraction Matching1 2 3

Figure 2.5. General feature-processing pipeline includes detection, extraction and
matching.

2.3.1 Feature tracking

Instead of the individual matching and extraction process for each image, features can
also be tracked from image to image. Tracking becomes a viable option especially when
there is only a minor difference between the images, e.g., in video data where temporally
sequent frames have mostly similar content. After the initial detection and extraction of
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features, they can be searched in the next image with the assumption that their location
and content have stayed mostly the same.

Tracking can be done in a continuous manner, where the latest matched area is used
in the next matching procedure. Other approach is to use the original feature area and
apply a motion model to compensate for changes. The two approaches are illustrated in
Figure 2.6. Regardless of the chosen tracking method, the tracking will eventually fail in
a dynamic process. Consequently, the feature detection and extraction process have to
be repeated ever so often. Overall, the most noteworthy advantages of tracking are the
temporal smoothness it provides and its efficiency. [54]

Figure 2.6. Tracked feature can be continuously updated, or the original feature can be
used with a transformation model.

Kanade-Lucas-Tomasi feature tracking algorithm

KLT algorithm [55] tracks features between images based on the assumption that the
differences between the images are small. The algorithm suggests that these minor
changes can be approximated using a linear model, and this model is then used to guide
the search for the feature match in the second image. Moreover, the accuracy of the
calculated relationship model is estimated to assess the quality of the tracking.

The parameters for the relationship model are found via error minimization. The error term
is the Sum of Squared Differences (SSD)

SSD =
∑
p

(
Ji[p]− Ji−1[f(p)]

)2
ω(p), (2.8)

defined between the images transformed to the same space using the relationship model
f . The weight function ω can be used to emphasize parts of the tracked area, e.g., the
center using a Gaussian.

In the simplest case, the relationship between the images is modeled using a displacement
vector v so that Ji(p) = Ji−1(p + v). A more complex relationship can be defined by
adding an affine transformation matrix T, so that Ji(p) = Ji−1(Tp + v). Still, further
additions to the model can be made. Nevertheless, this usually contradicts the general
tracking use case, as increasing the number of model parameters makes it computationally
heavy to optimize.

Assuming small difference between the images, the transformed image is approximated
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using the first order Taylor approximation

J(Tp+ v) = J(p+Bp+ v) ≈ J(p) + (Bp+ v)
∂J(p)

∂p
, (2.9)

where B = T − I is the deformation matrix and I is the identity matrix. Using this
approximation in the error term, it is differentiated with regard to the model parameters to
find such T̂ and v̂ that minimize the error. Due to the crudeness of the Taylor approximation,
the minimization is done iteratively, starting from B0 = [0T ,0T ],v = 0T , and continuing
until the error is below the set threshold.

KLT algorithm uses the simpler displacement vector model in the tracking process, assum-
ing minimal deformation between sequent frames. However, in the KLT feature quality
assessment, which is done between the current tracked region and the initial region, the
affine relationship model is used, as deformation is likely to be present at this temporally
longer scale. The complete KLT algorithm includes also the selection of good features to
track, which is based on the eigenvalues of the gradient in the tracked region.

2.3.2 Harris

Harris algorithm [24] detects corner features in an image by analyzing the SSD between
the image and its shifted version.

Similar to Equation 2.9 in the KLT algorithm, Harris algorithm uses Taylor expansion to
approximate the transformed image as J(p+ v) ≈ J(p) + v ∂J(p)

∂p . The SSD caused by a
shift v in image coordinates can then be written in a matrix form

SSDp(v) = vT

⎡⎣⟨∂J
∂x

∂J
∂x

⟩
p

⟨
∂J
∂x

∂J
∂y

⟩
p⟨

∂J
∂x

∂J
∂y

⟩
p

⟨
∂J
∂y

∂J
∂y

⟩
p

⎤⎦v = vTMpv, (2.10)

where the structure tensor Mp is formed by the gradients ⟨⟩p, which are estimated using
convolution with a gradient filter and summed up in the Gaussian window around p.

Eigenvalue analysis of the structure tensor can be used to determine the nature of the
intensity changes in the region. If either of the eigenvalues λ1, λ2 is large, the region is
determined as an edge, since there is a strong gradient in one direction. If both eigenvalues
are large, the region is determined as a corner having large gradient in all directions. The
Harris corner measure H is thus determined as

H = λ1λ2 − κ(λ1 + λ2)
2 = det(M)− κtr(M)2, (2.11)

where constant κ controls the balance between edge response and corner response. The
second form of the equation uses trace tr and determinant det to avoid the inefficient
eigenvalue computation.
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2.3.3 Fast Retina Keypoints

Fast Retina Keypoint (FREAK) algorithm [1] is one of the frequently used feature extraction
and matching methods. The algorithm is named after the analogies made in the original
paper between the human retina and the used sampling pattern.

FREAK descriptor is formed by first sampling the point area using "retinal" sampling
pattern, which consists of overlapping circles with higher density in the middle, density
decreasing and radius increasing when moving further away from the center. The circles
represent the receptive fields that are smoothed using Gaussians with σ equal to the circle
radius.

The intensities between pairs of the receptive field are compared to form the FREAK
descriptor, which is a string containing one-bit results of these comparisons. To make
the algorithm efficient, the algorithm performs a predefined set of comparisons. This
definition is data based: training data is formed by performing exhaustive comparison
of the receptive fields for keypoints detected in variable image data. The effective pairs
are then iteratively chosen by maximizing the variance in the training set, until 512 pairs
are picked. To define orientation, 45 receptive field pairs symmetric with regard to the
keypoint center are compared. Finally, FREAK descriptors can be matched effectively by
first comparing the first bytes of the feature vector, ruling out most of the candidates.

2.3.4 Features from Accelerated Segment Test

Features from Accelerated Segment Test (FAST) [47] is a corner detection algorithm that
compares pixel’s intensity values to its surrounding pixels to decide whether it is a corner or
not. FAST features are efficient to compute and can thus be used in real time applications.

The algorithm is based on the idea of comparing pixel’s intensity to its surrounding pixels
on the Bresenham’s circle as depicted in Figure 2.7.

Surrounding pixels ps ∈ Npp of the center pixel pc are classified as

C(ps)
ps∈Npc

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
darker if J(ps) < J(pc)− θ,

similar if J(pc)− θ < J(ps) < J(pc) + θ, and

brighter if J(ps) > J(pc) + θ,

(2.12)

where θ is the similarity threshold. If there are more than N contiguous pixels in the
circle that are all brighter or darker than the center pixel, the center pixel is classified as a
corner. However, this evaluation is not efficient to calculate, especially for N < 12. Hence,
FAST algorithm uses a machine learning approach to make a classifier simulating the
comparison process.

Training data for the machine-learning algorithm is created by classifying arbitrary image
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Figure 2.7. Bresenham’s circle used for FAST features. The 16 surrounding pixels of the
yellow center pixel are drawn in gray.

patches with binary {corner, not a corner} labels using the aforementioned algorithm. Then,
the relative position on the Bresenham’s circle that best separates the data is picked, and
it is used to classify the pixels into the three subsets of darker, similar and brighter values.
The separation and classification process is repeated for the subsets iteratively until every
pixel is correctly classified. This effectively builds a decision tree, which is then used as the
corner detector replacing the laborious calculation of the number of contiguous brighter
or darker values. Additionally, a score function is used to receive only the maxima of the
adjacent detected corners.

2.3.5 Binary Robust Independent Elementary Features

Binary Robust Independent Elementary Features (BRIEF) [5] is an efficient algorithm to
calculate, match, and store features. The drawback of the basic form of the algorithm is its
sensitivity to rotation and scaling.

BRIEF descriptor is calculated from a smoothed NxN image patch as a binary result of k
pixel intensity comparisons. Smoothing is done using a Gaussian kernel to reduce sensi-
tivity to noise. The arrangement of the k pixel comparisons is sampled from an isotropic
Gaussian distribution p1,p2 ∼ N ([0, 0]T , N

2

25 I), where p1 and p2 are pixel coordinates
relative to the center pixel. The resulting descriptor is a k bit string, where the bits tell
which of the compared intensity values were smaller. These BRIEF descriptors can be
efficiently matched based on Hamming distance between the compared strings. Usually
BRIEF is used as 16, 32, or 64 bytes version (k = 128, 256, or 512).
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2.3.6 Oriented FAST and Rotated BRIEF features

Oriented FAST and Rotated BRIEF (ORB) algorithm [48] combines variants of FAST and
BRIEF algorithm to form a robust descriptor that is efficient to compute and invariant to
rotation.

ORB uses a rotation and scaling invariant version of the FAST algorithm described in
Section 2.3.4. First, FAST keypoints are detected using a Bresenham’s circle with a radius
of nine. The detected keypoints are ranked using the Harris corner measure described
in Equation 2.11, and N keypoints with the highest scores are picked. Second, scaling
robustness is achieved by repeating the detection at different resolutions. Third, for
rotational invariance, intensity centroid is calculated based on the moments of the keypoint
area [46]. Rotation is estimated as the vector from keypoint center to the centroid.

BRIEF algorithm described in Section 2.3.5 is modified as well to make it robust to rotation.
This is done by finding an uncorrelated set of binary tests based on training data, instead of
the sampling from an isotropic Gaussian distribution that was done in the original version.
These rotated BRIEF descriptors are calculated from the locations of the oriented FAST
keypoints, forming the ORB features.

2.4 Photo Consistency

Photo consistency assesses uniformity of the compared image regions. Measures of
photo consistency can be: 1) based on functional relations between images, 2) purely
statistical, or 3) a combination of the two. In the context of our work, photo consistency is
relevant especially in disparity estimation, camera trajectory estimation, and multi-view
modeling.

Generally, photo consistency Q of a world point w within the field of view of two cameras
j, k can be defined as

Q(w) = C
(
Jj

(
N (Pjw̃)

)
,Jk

(
N (Pkw̃)

))
, (2.13)

where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C photo consistency measure,

Piw̃ projection of w into the image Ji (see Equation 2.1),

N (p) support domain around pixel p, and

Ji(N ) image intensities sampled within the domain.

Support domain N needs to be proportional to the resolution. Depending on the measure
and the implementation, the compared domain may vary from subpixel sampling to global,
whole image level.

In this section, we shortly discuss the photo consistency measures that we considered in
developing our algorithm.
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2.4.1 Intensity difference

In its simplest form, photo consistency can be calculated as SSD [23] or Sum of Absolute
Differences (SAD). These measures assume that the world points manifest themselves
as similar pixel values in the images. Namely, they assume that there are no bias or gain
changes, and that the materials are approximately Lambertian: the surface has the same
observed brightness regardless of the viewing angle, i.e., its radiance is constant. SSD
and SAD are applicable, e.g., when using a stereo camera setup with two similar sensors
and synchronized triggering.

Even if the similarity assumption holds, image sampling can produce problems in areas
where intensity is changing rapidly. This can be compensated using subpixel resolution.
Nevertheless, it comes at a high computational cost. Alternative solution to the sampling
problem is Birchfield and Tomasi sampling insensitive measure (BT) that uses linearly
interpolated intensity functions in the compared pixel areas to reduce the effect of sampling
[2].

2.4.2 Normalized Cross Correlation

Normalized Cross Correlation (NCC) is a robust measure of photo consistency that can
endure different relative scales and offsets, e.g., in varying lighting conditions. It can be
understood starting from the definition of covariance.

Covariance is defined as

Cov(X,Y ) = E
((

X − E(X)
)(
Y − E(Y )

))
, (2.14)

which is the expected value E of the product of the deviations between the variables
X,Y and their expected values. Covariance measures linear dependence, however, its
magnitude depends on the magnitudes of the variables. To address this issue, Pearson
Correlation Coefficient (PCC) is a normalized version of the covariance, defined as

PCC(X,Y ) =
Cov(X,Y )

σXσY
=

E
(
X − E(X)

)(
Y − E(Y ))

)√
E(X − EX)2

√
E(Y − EY )2

, (2.15)

where covariance is divided by the product of the standard deviations σX , σY of the vari-
ables. PCC provides a proportionate measure of the linear dependence of the variables.

If the relationship cannot be assumed to be linear, correlation can be measured using, e.g.,
Spearman’s rank correlation coefficient. Spearman correlation uses the same formula
as PCC. However, in Spearman correlation, the variables X,Y are converted to rank
variables, i.e., the variables are sorted in their value domain, and their place in the order
defines the rank variable.

NCC in the photo consistency context is essentially equal to calculating the PCC for
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discrete 2D signals X,Y , i.e., two image patches in gray scale. NCC is defined as

NCC(X,Y ) =

∑
m

∑
n(Xmn − µX)(Ymn − µY )√∑

m

∑
n(Xmn − µX)2

√∑
m

∑
n(Ymn − µY )2

, (2.16)

where µX , µY are the mean patch intensities. It should be noted that NCC does not
perform well in areas with low variance, and is undefined if either of the variances in the
denominator are zero. Matching content near depth discontinuities is also problematic, as
these areas have different content depending on the view, and thus do not correlate.

2.4.3 Mutual information

Mutual Information (MI) measures the amount of information one random variable contains
about another. In the context of photo consistency, MI [27] tells how well information in
one image can be predicted using another image. MI is insensitive to illumination changes,
reflections, and other inconsistencies between the images. It can be used even between
images coming from completely different types of sensors, e.g., for matching Magnetic
Resonance Imaging (MRI) images with regular color images.

MI between two image patches J1,J2 is the difference between their individual entropies
and the joint entropy. Entropy H is defined as

H(X) = −
∑
x∈SX

pX(x) log pX(x), (2.17)

where SX is the domain of of the variable X and pX is its probability density function
[9]. For discrete images, the probability density functions can be estimated using a joint
probability histogram. The probabilities in this histogram are calculated as the sum of
intensity value correspondences normalized by the number of pixels

P J1,J2(i, j) =
1

|Npc |
∑

p∈Npc

T
({

J1(p),J2(p)
}
== {i, j}

)
, (2.18)

T (p) =

⎧⎨⎩1 if the intensities at pixel p correspond to {i, j},

0 otherwise;

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P J1,J2 joint probability distribution

i, j ∈ [min(J),max(J)] possible intensity values in the images, and

Npc compared area around pixel pc.

An example of the formulation of the joint histogram is presented in Figure 2.8. For instance,
calculating P J1,J2(1, 2) for the presented image patches would be done as follows:

1. calculate the amount of pixels where there is the value ’1’ in the first image and the
value ’2’ in the second image → 3
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2. divide by the patch size → 3/9 = 1/3.

0 0

1/9

1/3

2/9

0

0

0

0

0

0 0 0

1/9

1/9

1/9

1 1 2

1 2 3

1 2 3

2 2 2

2 3 3

3 3 4

J₁

J₂ 1

2

3

4

1 2 3 4

J₂ 

J₁

Images
Joint probability 

histogram

Figure 2.8. Joint probability histogram for two 3x3 images. Darker values indicate higher
probability.

Individual probability distributions P J1 , P J2 can be calculated from the joint probability
distribution by summing over the rows and the columns, respectively.

Probability density function is estimated from the probability distributions by convolution
with a 2D Gaussian G. Thus, entropy can now be calculated as

H = −
∑

p∈Npc

log(P ∗G) ∗G
|Npc |

, (2.19)

where ∗ denotes convolution. Plugging the individual probability distributions and the joint
distribution in Equation 2.19, corresponding entropies are estimated. Finally, MI is defined
as

MI =

individual entropies  
HJ1 +HJ2 −

joint entropy  
HJ1,J1 (2.20)

Low joint entropy indicates that there is a clear relationship between the images, i.e, J1

explains J2 well. The individual entropy terms in turn present complexity in the images.
Thus, high MI score tells that the compared areas have high information content and are
similar to each other.

MI assumes only statistical relationship between the images and thus can be considered to
be related to Spearman correlation. To conclude, MI is robust to inconsistencies, efficient
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to calculate, and works well with optimization functions.

2.4.4 Census transformation

Census transformation [57] is an ordering based transformation that, coupled with Ham-
ming distance, can be used to measure photo consistency.

Census transformation is calculated by comparing the intensity values to the NxN neigh-
borhood around them. A bit value is received for each comparison: the value is ’1’ if
the compared neighborhood pixel has smaller intensity than the center pixel; otherwise,
the bit is assigned to ’0’. The bits are concatenated to form a string to complete the
transformation. Photometric similarity between the Census transformed images can be
assessed by calculating Hamming distance between the compared strings. The process
is illustrated in Figure 2.9.

2 2 2
2 3 3
3 3 4

1 1 2
1 2 3
1 2 3

1 1 1
1 0
0 0 0

1 1 0
1 0
1 0 0

{1, 1, 0, 1, 0, 1, 0, 0}

0+0+1+0+0+1+0+0 = 

{1, 1, 1, 1, 0, 0, 0, 0}

𝐼1  

𝐼2  

Census 
transform

Hamming 
distance

C

C

2

Figure 2.9. An example of Census transformation and the calculation of Hamming
distance.

Census transformation is considered the most robust photo consistency measure for
stereo vision [28]. As it depends on comparisons between local intensity values, Census
is invariant under changes of gain and bias.

2.5 Point cloud reconstruction

2.5.1 Triangulation

When corresponding points are found in two images, the 3D location of the source of light
w can be calculated as the intersection point between the two optical rays as presented in
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Figure 2.10.

C C’

w

e e’

p p’

Figure 2.10. In ideal case the 3D point w is found at the intersection point of the optical
rays defined by the camera centers C and C′ and corresponding pixels p and p′ (see

Equation 2.3); e and e′ are the epipoles.

However, due to inaccuracies in the found corresponding pixels and the errors of the
camera parameters, the rays usually do not intersect. Thus, in triangulation we find the
best estimate for w by minimizing its reprojection error in the images. We formulate the
minimization problem as a search for pixels close to the found corresponding pixels p and
p′ that satisfy the epipolar constraint exactly. Under the assumption of Gaussian noise in
the measurements, optimal solution to the problem can be reduced to finding real roots for
a sixth degree polynomial [25].

2.5.2 Depth from disparity

For a calibrated stereo camera system, depth is calculated through disparity estimation,
which is explained in Section 2.2. Knowing the parameters of the system, there is a direct
correspondence between disparity d and depth wz. The resulting depth can then be used
with the perspective projection model to calculate the x and y coordinates as

wz =
lb

d
, wx =

wz(px − cx)

lx
, wy =

wz(py − cy)

ly
,

where b is the baseline of the stereo camera system.
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2.6 Mesh reconstruction

In mesh reconstruction, the aim is to build continuous surfaces on top of the constructed
point clouds. There exists a multitude of algorithms corresponding to different needs for
input and output. In this section, we discuss the two algorithms we used to build a rough
and a more detailed model based on the cloud.

2.6.1 Alpha shape surface estimation

One of the simplest ways to build a mesh around points is convex hull. It is defined as the
smallest convex set that contains all the points and line segments connecting the points.
Alpha shape surface estimation is based on a generalization of convex hull [12].

Alpha shape reconstruction introduces variable α to determine the detail of the reconstruc-
tion. Cavities where there are no points in the radius equal to α are left empty. Alpha shape
reconstruction with α = ∞ results in the convex hull. On the other end, reconstruction with
α = 0 produces the original point cloud. An example of alpha shape surface estimation is
presented in Figure 2.11. Alpha shape is a simple reconstruction algorithm that through
the variable α offers a convenient way to adjust the detail in the model based on the quality
of the point cloud. [13]

2.6.2 Estimating point orientation

More refined mesh reconstruction methods usually require the point orientations as an
additional input. There are point cloud creation methods that intrinsically assess the
orientations in the measuring process, e.g., some full waveform analysis LIDAR methods
[39]. Nevertheless, generally, the raw point cloud data is unoriented, and only weak
information related to orientation is provided, such as the camera poses in stereo vision.

The standard method for point normal estimation [29] starts by defining tangent plane for
each point w. Tangent plane is calculated from the N closest points to w. Plane location
is their centroid, i.e., the mean of the point locations. Plane normal is defined as the
third principal component of the data. Principal components are orthogonal vectors that
maximize the variance in the data. The first component is pointing to the direction where
the variance is the largest, and second component is orthogonal to the first, pointing to
the largest left over variance. Thus, the third component is the normal of the plane formed
by the first two components.

As Principal Component Analysis (PCA) leaves two possible directions for the point
normals, propagation can be used to make their orientations consistent. The points are
connected using Euclidean minimum spanning tree, which is extended to connect all the
points in N neighbourhood. The graph is weighted based on the dot product between the
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(a) point cloud (b) convex hull

Figure 2.11. Alpha shape reconstruction represents the structure at the chosen level of
detail. Convex hull corresponds to alpha shape reconstruction with α = ∞. The limits of
the algorithm can be seen in the large picture: since the two rings are close to each other,

the algorithm is unable to separate them without breaking the rings’ own structure.

connected point normals ni,nj as ωi,j = 1− |ni ·nj |. Orientation is then propagated using
the minimum weight-spanning tree, assigning consistent orientation from parent nodes to
their children. [29]

2.6.3 Poisson surface estimation

Poisson surface estimation produces smooth surfaces without heuristics and tolerates a
small amount of noise. The algorithm is based on finding a solution to Poisson’s equation
for a set of oriented points. [32]

First, a continuous vector field is formed from the oriented points. An octree of depth
N is used to partition the cloud to nodes. This refers to recursively dividing the world
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space into eight sub volumes until depth N . For each node, a node function is defined
as an approximated Gaussian scaled and centered based on the node. To remove the
discretization effect of the octree, trilinear interpolation is used to estimate the value of the
vector field.

Indicator function f is defined as zero outside and one inside the model. The gradient of
f is zero everywhere except on the surface of the model, where it is equal to the inward
surface normal. Thus, the indicator function can be solved by minimizing the difference
between the vector field and the gradient of the indicator function. The surface is then
extracted from the indicator function globally adjusted to the point set. In the more recent
screened Poisson version of the algorithm [33], the adjustment is done locally to reduce the
over smoothing of the model. An example a model built using Poisson surface estimation
is presented in Figure 4.10.
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3 TUTLAB DATASET

TUTLAB dataset includes stereo video sequences recorded using a small robotic platform
in static indoors environment, in good lighting conditions. The dataset was made for testing
stereo algorithms and examination of the effect of different camera directions with regard
to movement.

3.1 Sensor setup

The sensors that were used to record the dataset are presented in Figure 3.1.

1

2

3

Figure 3.1. The sensors used to record the dataset: 1) LIDAR; 2) motion capture
cameras and a pole with reflective markers; 3) stereo cameras, IMU, and GPS.
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The robotic platform seen from all sides and more detailed measurements of the setup
are shown in Figure 3.2.

185

565

4° 

Figure 3.2. Robot setup and measurements of the recording platform: 185 mm baseline,
565 mm distance from the ground, 4° tilt downwards.

The technical details of our sensors are presented in Table 3.1.

Our main sensor was a 2.3 Mpx stereo camera setup with a baseline of 185 mm. The fairly
large baseline provides greater disparity for the stereo images and thus increases the
maximum depth detection range. We recorded at 50 FPS and with ∼ 20 ms exposure time
to ensure minimal motion blur and abundant overlap in the images even at the full speed
of the robot. We used lenses with a large FoV to get more information of the environment.
To ensure simultaneous capture of the stereo cameras, we used a trigger signal.

To get the ground truth camera poses we used motion capture. As there were high
obstacles in the recording area, we attached the reflective markers to the robot using a
pole. Seven motion capture cameras were used to cover the recording area. However, the
passive markers did not reflect enough light for the motion capture system for distances
greater than five meters, which left some of the areas uncovered. An example of the
ground truth camera poses is shown in Figure 3.3. Missing values can be seen as the
gaps in the trajectory.

LIDAR was used to get the ground truth point cloud model of the environment. Our static
setup on a tripod as seen in Figure 3.1 was placed in four central places of the laboratory
to fully cover the area captured in the stereo video data. The resulting LIDAR point cloud
is presented in Figure 3.4.
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Table 3.1. Details of the used equipment

Equipment Commercial name Technical details

Camera

x 2

Basler

acA1920-50gc

2.3 Mega pixel (Mpx)

1/1.2" Sony IMX174 CMOS

global shutter

50 Frames Per Second (FPS)

Camera lens

x 2

VS Technology

VC-0618H1

6 mm focal length

77.9◦ x 94.8◦ FoV

Motion tracking

camera

x 7

OptiTrack

Prime 17W

1.7 Mpx

360 FPS

70◦ horizontal Mpx

2.8 ms latency

LIDAR
FARO

Focus 3D x 130

0.6-130 m range

0.009◦ step size

±2 mm ranging error

Robot
Robotnik

SUMMIT-XL STEEL

Inertial Measurement Unit (IMU),

Global Positioning System (GPS)

3 m/s

omni directional wheels

Figure 3.3. Ground truth camera poses through motion capture manually aligned to the
LIDAR point cloud. The trajectory is illustrated from start to end with the colored points

from blue to red. The red arrows show the orientation of the camera.
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Figure 3.4. The ground truth point cloud model received using LIDAR.

The internal IMU and GPS data of the robot are also provided in the dataset. Nevertheless,
especially the GPS data is inaccurate as the recording was done indoors. Example of the
content is shown in Figure 3.5.

Figure 3.5. Example of the collected IMU and GPS data.

3.2 Dataset

3.2.1 Content

The dataset was recorded in TUTLAB, which is a fabrication laboratory in Tampere
University of Technology. The environment was static except for the moving heads of the
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3D printers. The area was well illuminated, which made the use of a low exposure time
possible.

In the dataset, the robot goes around a large table using different types of movement.
Using its omni directional wheels, the robot was driven with its cameras pointing in different
directions with regard to the movement. The recordings include:

(a) a lap with the cameras pointing backwards,

(b) a lap with the cameras pointing towards the center of the table,

(c) a lap with the cameras pointing away from the center of the table.

(d) two laps around the table: first with the cameras pointing forward, and second with a
small angle with regards to the moving direction, and

(e) two laps similarly in the reverse direction.

3.2.2 Data structure

The structure of the dataset is presented in Figure 3.6.

Recording

Video of the content (MP4)

IMU and GPS data (TXT)

Motion capture data (CSV)

Stereo images (RAW)Stereo images (RAW)Stereo images (RAW)Stereo images (RAW)

Recording

Recording

Recording

Recording

Calibration Stereo images (RAW)Stereo images (RAW)Stereo images (RAW)Left images (PNG)

Stereo images (RAW)Stereo images (RAW)Stereo images (RAW)Right images (PNG)

Stereo parameters (TXT)

Dataset

LIDAR point cloud (PLY)

Figure 3.6. Hierarchical structure of the dataset.

The calibration data includes stereo images with a photogrammetric object, and the
precomputed stereo parameters. The five recordings comprise the raw stereo data, the
motion capture data, and the recorded IMU and GPS data. Moreover, a thumbnail video
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is provided. Finally, there is the ground truth LIDAR point cloud, and example Matrix
Laboratory (MATLAB) functions for handling the data.

3.3 Synchronization and calibration

3.3.1 Synchronization

We used four separate systems in the recording of the dataset.

1. Stereo video (50 FPS) capture was done with C code using Open Computer Vision
(OpenCV) library on a Personal Computer (PC) on top of the robot;

2. IMU and GPS (50 FPS) were captured using a MATLAB script on the same PC
connected to the robot’s internal computer using Robot Operating System (ROS);

3. OptiTrack’s Motive software was used for motion capture (120 FPS) on a separate
PC;

4. LIDAR scanning was done using the scanners own software.

As there was no built-in synchronization in the recording process, we did it manually in the
post processing of the data. Time stamps were recorded for all the data, and the clocks
were assumed to have a constant rate. This allowed us to synchronize the data by finding
the starting point of the robot movement from the raw data. Starting point can be found
from the optical flow in the image data, the first peak in acceleration in the IMU data, and
the first deviation larger than the maximum error of the motion capture system.

The timestamps of the image files were written at the time of writing on the disk rather
than at the moment of capture. As there was considerable buffering in the writing process,
we assumed constant 50 FPS and used the image indexing for the synchronization of the
frames after finding the starting frame. This assumption was based on the fact that there
were no frames dropped during the recording process and the variance in the frame rate
was minimal.

3.3.2 Camera calibration

We recorded calibration data for the stereo cameras using the same system used to record
the actual data. We picked around a hundred stereo frames where the calibration object
thoroughly covers the imaging area of the cameras, and used MATLAB’s application for
stereo camera calibration to calculate the parameters. As the calibration object, we printed
a chessboard pattern with a grid size of 10 cm x 10 cm. Examples of the calibration
images are presented in Figure 3.7.

We positioned the chessboard in a way that there was no coplanarity, as the algorithm
assumes six degrees of freedom in the movement. The used calibration algorithm is
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Figure 3.7. Examples of the calibration images.

discussed in more detail in Section 2.1.3.
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4 PROPOSED APPROACH

In this chapter, we first give a brief overview of the proposed approach. We then discuss
the components of the algorithm in detail in their respective sections.

4.1 Overview

The proposed system is summarized in Figure 4.1.

Stereo video

Disparity 

estimation

3D segmentation

Model projection 

on video

Object stereo 

video

Structure from 

motion

Validation

Accurate object 

model

Local camera 

poses

Multi view 

modeling

Camera trajectory 

estimation

Point cloud
Global camera 

poses
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Figure 4.1. Overview of the system

Using a calibrated stereo camera system, we get stereo video data as input. We rectify
the stereo image pairs and calculate corresponding disparity maps. We then build up 3D
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point clouds based on the disparity maps. By tracking features, we estimate the camera
movement, and merge the individual point clouds to a global cloud.

Starting from the global cloud, we build an environment model. We fit a spline model to
the global cloud and segment drivable surface and obstacles based on the steepness of
the model. We further section the point cloud in the obstacle area to separate individual
object point clouds using available 3D information. Finally, we build rough object models
based on the segmented point clouds.

To improve the raw 3D models, we project them back to the original stereo video and
segment the image areas where the object is visible. Using SfM, we locally estimate
camera movement from the object video. Based on the camera poses and the quality of
the video, we choose representative keyframes to combine the available information of the
object to form an accurate object model.

Essentially, we form a multi-view problem that we solve using a patch model approach.
Patches are small slanted planes that we assume to represent the local structure of
the object. We optimize the locations and orientations of these patches by minimizing
projected photo consistencies in the image data. We then build a mesh around the
acquired model, and add texture by projecting the model back to the image space. The
final result of our algorithm is a rough environment model that can be used for movement,
and more detailed object models for recognizing and handling the objects.

4.2 Stereo algorithm

4.2.1 Disparity estimation

Calibration

First step in the pipeline is the calibration of the cameras. We use MATLAB’S implementa-
tion of stereo camera calibration, which is based on the photogrammetric method proposed
by Zhang [61]. We photograph the calibration object, which is in our case a chessboard
pattern with known grid size, from multiple views to obtain the stereo camera parameters.
As a result, we get the intrinsic parameters of the cameras and stereo parameters describ-
ing the relationship between them. The method is accurate and requires little effort to
carry out.

Calibration provides us the distortion parameters that we can use to undistort the images
as discussed in Chapter 2.1.2. Undistortion removes nonlinearities in the images, and
thus enables the use of the pinhole model to relate pixels from one camera to the epipolar
line in the image of the other camera.
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Rectification

To simplify the matching process we rectify the stereo images, which means that we
geometrically transform the images so that the epipolar lines run parallel between the
images. The rectification algorithm is discussed in Section 2.2.3. Rectification is practical
to do as it simplifies the correspondence search done in disparity estimation.

Disparity calculation

After rectification, we calculate the disparity map from the image pair via semi global
matching. The basic idea of semi global matching is to form an approximation of the global,
2D smoothness constraint by combining many 1D constraints along paths from different
directions. The details of the algorithm are discussed in Section 2.2.4.

We use MATLAB’s block wise implementation, which compared to the pixel wise calcula-
tion provides less noise at the cost of lost matches in areas with depth discontinuities. The
matching cost used is SAD which, as discussed in Section 2.4, is not robust. Nevertheless,
it is efficient to calculate and accurate when there are minimal differences between the
images [28], as is in our case.

SGBM provides good results and can be implemented to run in real time, especially
if run on specific hardware (Field Programmable Gate Array (FPGA) or Graphical Pro-
cessing Unit (GPU)). Performance of the algorithm depends on the number of disparities
considered and the number of directions used in the path wise aggregation.

Disparity filtering

We calculate two disparity maps: first, using the left image as the base image and match
right image to it, and then vice versa. This allows us to perform a consistency check to
invalidate inconsistencies caused by occlusions and noise as discussed in Section 2.2.4.
Moreover, to account for the limitations of our system due to the baseline and sampling,
we invalidate disparities corresponding to distances larger than 12 meters. Finally, we
calculate the point cloud corresponding to the disparity map as explained in Section 2.5.

4.2.2 Camera trajectory estimation

We estimate camera poses from tracked features by minimizing the reprojection error of
points triangulated from the feature locations.
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Feature detection, extraction, and tracking

In the beginning of our camera trajectory estimation algorithm, we detect corner features
in the images using FAST algorithm, which is discussed in more detail in Section 2.3.4.
We utilize FAST features, as they are efficient to compute without trading off accuracy.
FAST algorithm can be run in real time, which is essential in our algorithm. At the keypoint
locations found by FAST, we extract FREAK descriptors. They are efficient to compute and
robust, as discussed in Section 2.3.3. The specific algorithms used for feature detection
and extraction are not set in stone. For instance, ORB algorithm discussed in Section
2.3.6 could be considered to provide more robustness.

To find stable features for camera pose estimation, we filter the feature space using circular
matching as illustrated in Figure 4.2. In our implementation of circular matching, we use

Previous right 
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frame

Current right 

frame

t - 1

t

Figure 4.2. Circular matching

the KLT feature tracking discussed in Section 2.3.1. Starting from the feature candidates
in the previous left frame, we track them to the previous right frame. We continue the
tracking to the current right frame, and then to the current left frame. Finally, we complete
the circle by returning to the previous left frame. Features that are tracked back close to
their origin (< 0.5 pixel error) are accepted. [21]

We carry on filtering the features based on their age and strength. Along the tracking
process, we weight the features based on the number of consecutive frames they are in,
i.e., their age. We increase the weights until N frames (N = 15 in our implementation), in
which case we revert them back to the smallest value. We pick one representative feature
in every 50x50 block; first criteria being the weight, and second the feature strength.

Our weighting system, based primarily on the feature age, ensures that old feature tracks,
which are more likely to be rotationally correct, are taken into account. The old features
generally correspond to objects geometrically further away, persisting in the FoV despite
movement. This is also why they are not that good for estimating translation, for which
features closer to the camera are needed. The eventual drop to the minimum weight for
the oldest features guarantees that we take newer features into account for this purpose.
As a whole, the weights offer a good balance between translation and rotation estimation.
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Redetection of features

After the initial detection of features, we repeat the detection process when there are not
enough tracked features left. Features are left out evidently when they go out of the FoV.
Moreover, we also discard features in the circular matching process.

In our redetection implementation, we bucket the features to perform the detection only in
areas where new features are needed. We divide the image in 50x50 blocks, and repeat
the detection in blocks where there are no features left. To keep our algorithm simple, we
carry out this step by doing the detection to the whole image and masking new features in
blocks where we still have old features.

Pose computation

Ending up with filtered features uniformly distributed across the image, we calculate the
pose based on these features. We triangulate the world locations of the features in
previous view as explained in Section 2.5.1, using the known feature locations and camera
parameters. We then estimate the new camera poses by minimizing the reprojection error
of the triangulated points in the current view.

We use Random Sample Consensus (RANSAC) approach, where we iteratively sample
the feature space and minimize the reprojection error for the subsamples of the data. We
evaluate the resulting camera model using the whole data and preserve the best model.
We end the iterative process when the probability of outliers for the model is small enough,
or when we reach the maximum number of iterations.

For the reprojection error minimization, we use MATLAB’s implementation of the Levenberg-
Marquardt algorithm. We use quadratic loss function as the cost, and project to the left
camera only. Thus, our cost function is defined as

C([R|t]) =
(
FJL

− Cart(KL[R|t]X)
)2
,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[R|t] camera pose to optimize,

FJL
matrix containing detected feature locations in the current left image,

KL is the intrinsic matrix of the left camera,

X is the matrix of triangulated locations from the previous view, and

Cart is the transformation from world coordinates to image (Cartesian)

coordinates, where each column of the input matrix is divided by the

corresponding entry of the third row.

Levenberg-Marquardt is the standard optimizer used for nonlinear least squares problems
such as ours, and quadratic loss function is the most commonly used loss function for it.
We also considered Huber loss, which is a combination of squared loss and mean absolute
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error, where the Huber cost factor defines the boundary between the two. However, the
cost factor varies depending on the data and thus, brings in redundant complexity to the
algorithm.

We experimented also reprojection to both left and right image planes to have a more
complete error assessment. This turned out to provide negligible improvement with regard
to the performance loss.

4.2.3 Data segmentation

Input data for segmentation is the global point cloud, which we form by combining the
individual clouds derived from the disparity maps. Before merging, we transfer the clouds
to the global coordinate system based on the calculated camera movement.

Drivability model

We fit a surface model to the global point cloud data using cubic spline interpolation. The
spline model consists of piecewise third degree polynomials, which helps to mitigate the
oscillation phenomenon that emerges when using models that are more complex. We
rotate the point cloud to have the gravity vector codirectional to the z-axis, and sample the
spline model at the selected grid spacing in the xy-plane.

Depending on the input data, we carry out following filtering steps. 1) As the spline model
cannot represent drivable cavities, we exclude points above height h from the fitting. 2)
For noisy point cloud data, we estimate normals for the points by fitting local planes to the
neighboring N points. We then exclude points whose estimated normals deviate more
than α from the gravity plane. 3) We smooth the acquired model using sliding median
filtering.

We label the model in the xy-grid as 1) drivable, 2) obstacle, 3) safety area, or 4) uncertain.
We label model areas that do not have real points in radius r as uncertain, since they
are based on interpolation. Using sliding window, we take the highest and lowest point in
the neighborhood and determine the area drivable or obstacle based on the steepness
angle α defined as depicted in Figure 4.3. Finally, we set the areas that are close to the
obstacles as safety areas. An example of the spline model is represented in Figure 4.4.

If the drivable surface can be assumed to be planar, e.g., in indoors areas, we use plane
fitting as an alternative for the drivability estimation. We label the fitted plane based on
the points projected to it. 1) We define the area as an obstacle if there are points in the
drivable volume above the area, i.e, above the confidence interval of the plane and below
the height of the vehicle. Moreover, areas that have projected points below the plane and
and not enough points inside the plane confidence interval are labeled as obstacles. 2)
The area is labeled drivable if there are enough points inside the plane confidence interval
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Figure 4.3. Steepness of the model is determined using simple trigonometry.

Figure 4.4. We use spline model fit to the global cloud to estimate drivability for the robot.
Drivable areas are drawn in green, obstacles in red, safety areas in purple, and areas with
insufficient information are in light blue.

and it was not labeled as an obstacle. 3) Safety areas and 4) uncertain areas are defined
similar to the spline model.

Rough object models

After drivability estimation, we continue by refining the interesting areas of the model, i.e.,
the obstacle areas. We segment the global cloud to object clouds based on connectivity
of the obstacle areas in the xy drivability map. These object clouds include noise due to
the limitations of stereo vision and drift in estimated camera movement. Examples of the
rough models are presented in Figure 4.5.

The models are accurate enough for moving around in the environment without bumping
to objects. We can also make rough estimates of their geometry, such as volume and
orientation. Object recognition based on the rough models would be rather challenging
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Figure 4.5. Examples of the rough 3D object models segmented from the global point
cloud.

even with a specific library of possible objects. For interaction purposes that require
delicate contact with the object, we need models that are more detailed. An example of
the acquired rough environment model containing the estimated drivable surface and the
object models is presented in Figure 4.6.

Figure 4.6. Same view from the left camera and from the constructed rough environment
model. Colors of the objects have been randomly assigned.

4.3 Multi-view algorithm

The main criteria considered in this part of the algorithm is the accuracy of the model.
Performance is less of an issue as we can wait for the model to be processed before
interaction. Situation is different from the drivability model where real time processing is
needed in order to move in a dynamic environment.
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4.3.1 Keyframe selection

To improve the accuracy of the object models we return to the image data to combine all
available information of the object. We form a rough mesh model on top of the object point
cloud using MATLAB’s implementation of alpha shape reconstruction discussed in Section
2.6.1. It provides a simple and efficient way to estimate the rough shape of the object.

We project the constructed mesh models to the stereo images, and pick and mask the
frames based on the projections. The objective of this processing step is to remove
abundant information that would slow down further processing and possibly lead to noisy
results. We leave the models rough on purpose to ensure that the real object is fully
covered.

To remove abundant data, we pick frames to represent the object called keyframes. Criteria
that we consider in the keyframe selection are as follows:

• sufficient overlap - enough same content in the images,

• sufficient baseline - enough distance between the cameras (shorter baseline gives
more uncertainty),

• degeneracy avoidance - motion degeneracy (camera rotating without translation)
and structure degeneracy (coplanar points in physical space, e.g., wall),

• number of frames - diminishing returns after sufficient level of coverage is reached,

• motion blur - greatly reduces the amount of extracted features, and

• minimizing reprojection errors.

The keyframe selection could be done automatically based on the global camera trajectory
and the analysis of the image data. If data is insufficient, more information could be ordered
to be collected. As our implementation is only demonstrative, we pick the keyframes
manually to ensure proper coverage.

4.3.2 Structure from motion

We use MATLAB’s implementation of SfM to get camera parameters that are locally
accurate with regard to the object. This is essential to do as we base our multi-view
matching process on epipolar constraints with small margin for error. In SfM, we optimize
the camera parameters by simultaneously forming a sparse model of the object, and
minimizing the model’s reprojection error in the images.
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4.3.3 Multi-view modeling

We combine the obtained information of the object using multi-view stereopsis, following
the approach of Furukawa and Ponce [17].

Features

We start by detecting and extracting features in the images. To get comprehensive
coverage, we combine corner features detected using Harris corner detector discussed in
Section 2.3.2, and blob features using a Difference of Gaussians (DoG) based algorithm.

DoG is defined as the difference between 2D convolutions (∗) on the image J using two
discrete 2D Gaussian filters G with standard deviations σ and κσ. The ratio κ = 1.6 is
chosen to provide an approximation of the Laplacian operator [41]. Filter size is defined
proportional to the standard deviation as s = 2⌈2κσ⌉+ 1 to contain the significant portion
of the Gaussians. As convolution is distributive, the DoG operator can be noted as

Di = |(Gσi −Gκσi) ∗ J|.

We calculate the DoG response for three different deviations σi ∈
{
2

i
2K, i = 0, 1, 2

}
,

where K determines the detected blob size, and is chosen based on the image resolution.
Using a 3x3 sliding window, we find the local minima and maxima of the responses. Finally,
we select as features only the points that have the strongest response to the middle-sized
DoG filter D1, and thus, correspond specifically to the Gaussian of this size. The process
is illustrated in Figure 4.7

Figure 4.7. Steps of our DoG algorithm. First, three responses are calculated for
Gaussians with different deviations. Then local minima (red) and maxima (green) are

selected using sliding window. In the end, those minima and maxima that are the
strongest for the middle sized Gaussian are preserved.

We assure an even distribution of features by dividing the image into a γ sized grid and
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selecting the ρ strongest features of both types from each image block.

Patch initialization

Starting from the features in one image, we search epipolar matches in other images.
This means that we pick all the features whose location differs less than N pixels from
the epipolar line corresponding to the feature location in the reference image. We do
the matching only between features of the same type. An illustration of the process is
presented in Figure 4.8.

(a) reference image (b) matched image

Figure 4.8. Subset of features in reference image and corresponding matches in the
other image. All features that are < N pixels from the epipolar line are considered as

match candidates.

Based on these candidate matches we form patches, which are small slanted planes. First,
we triangulate the locations of the patches from the feature locations of the candidate
pairs. Second, we initialize the patch normals to be pointing towards the reference camera.
Finally, we define the corners of the patch so that its projection in the reference image is
the kxk pixel area around the feature location.

Patch filtering

To filter out the unlikely matches from the candidate patches, we remove those whose
normal differs more than 60◦ from the vector pointing from the patch toward the other
camera. We calculate the visibility in other cameras in the same manner. Filtering process
is demonstrated in Figure 4.9.

We estimate the photo consistency in visible cameras for the remaining patches. We
project the patch model to the visible cameras and calculate NCC (discussed in Section
2.4.2) between the reference image and the projected image. If there are more than
m cameras where photo consistency is estimated below κ, we accept the patch for the
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(a) visibility filtering (b) photo consistency filtering

Figure 4.9. (a) Patch normals are initialized to point towards the reference camera (blue).
The patches for which the angle between the vector from patch center towards the

matched camera (red) and the patch normal is greater than 60◦ are filtered out (the red
portion). (b) Patches after photo consistency filtering.

optimization procedure.

Patch optimization

Ending up with a set of potential candidates for the patches, we find the optimal location
and normal orientation for them. We use sparse exhaustive search, going through the
combinations of modifications for distance from the reference camera, normal pitch and
normal yaw (roll is fixed by the reference camera x-axis). Patch definition with regard to
the reference camera stays the same, and thus, the reference image does not change.

If there are more than n projections where the photo consistency is measured below
κ/2, the patch is accepted, and patch candidates originating from the same features are
removed from the optimization process. We start the optimization from the candidates
closest to the reference camera, as they are better defined due to the limits of image
sampling. The patch model is ready when there are no more patch candidates left.

Model reconstruction

The reference approach [17] continues from this step by expanding the patches to their
neighborhood to fill the holes in the model. However, for our purposes of interaction and
recognition of the object, the model has already enough detail.

To avoid unnecessary complexity in the implementation, we make a point cloud representa-
tion of the patch model using their center locations. We remove clear outliers by calculating
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the average distance between points in the neighborhood and then thresholding based on
the standard deviation. We then build a mesh model on top of the denoised cloud using
Poisson surface reconstruction discussed in Section 2.6.3. As the algorithm requires an
oriented point cloud, we estimate the point normals using approach discussed in Section
2.6.2.

Finally, we add texture to the model by projecting each triangle in the mesh to the camera
with the best view. We determine the best view by first taking the cameras that are in
the 60◦-visibility cone determined by the surface normal, and then picking the camera
whose normal has the smallest dot product with the surface normal. An example of the
built models is shown in Figure 4.10.

Figure 4.10. Point cloud built from the patch model and the final textured model.
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5 EVALUATION

In this chapter we compare our implementation to the current SoA methods. We also
discuss the limitations of our algorithm and the possible improvements that could be made.

5.1 Disparity estimation

5.1.1 State of the art

During recent years, the focus of the stereo vision research has been in applying machine-
learning methods to the problem. Here we shortly discuss two of these approaches.

Matching cost computation using convolutional neural networks

In the seminal work of Zbontar and LeCun [59], neural networks replace elements of the
traditional approach. Matching cost computation is done using a Convolutional Neural
Network (CNN) trained to calculate similarity measures for small image patches. The
general steps of dense disparity calculation are 1) cost aggregation, 2) disparity calculation,
and 3) refinement.

1) Cost aggregation is done following the work of Zhang et al. [60], where support region is
grown in four directions, combining similar pixel values up to a distance limit. Furthermore,
semi global matching is carried out in four directions as explained in Section 2.2.4. 2)
Disparity calculation is performed by selecting the disparities that minimize the calculated
matching cost. 3) Disparities are refined: first using the left right consistency check,
second using subpixel estimation by fitting a quadratic curve, and finally by filtering the
disparity map using a median and a bilateral filter.

End to end solution using neural networks

The current leading algorithms in the stereo benchmarks have gone further, and propose
end-to-end solutions using neural networks. One of the recent algorithms is Pyramid
Stereo Matching Network (PSMN) proposed by Chang and Chen [6].
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In PSMN, CNN is first used for feature extraction. Then, spatial pyramid pooling is done,
which means that features are compressed in different scales to provide a more global
context. The outputs of the pyramid pooling for the stereo images are concatenated to
form a 4D cost volume, which is fed to a stacked hourglass architecture to learn more
context information. Finally, disparity is calculated as the sum of disparities weighted by
their predicted probability. The current leading algorithm [7] of the KITTI 2015 benchmark
[20] is based on a modification of PSMN.

5.1.2 Benchmark: KITTI 2015 stereo

KITTI 2015 stereo benchmark consists of a set of 1392x512 pixel stereo images captured
from a car driven in urban environment. The benchmark is evaluated based on the
ground truth disparities received using a LIDAR. The current leading real time (> 5 FPS)
implementations in the benchmark with related publications are presented in Table 5.1.
The GPU implementation of the disparity estimation via semi global matching [27] (shown
in bold) can be regarded as an optimal version of our algorithm. [20]

Algorithm
Disparity Running

GPU
outliers (%) time (s)

DispNet with correlation layer [42] 4.3 0.06 yes

Multi block matching [16] 6.0 0.13 no

Learning of cost volume aggregation [36] 6.3 0.03 yes

Semi global matching [27] 6.3 0.11 yes
Appearance aligned block matching stereo [15] 6.6 0.08 no

Summed normalized cross correlation [14] 7.1 0.08 no

Embedded stereo via semi global matching [26] 8.2 0.0064 yes

Prediction correction optical flow [10] 8.4 0.08 yes

Efficient large scale stereo [22] 9.6 0.19 no

OpenCV block matching [3] 25.2 0.1 no

Convolutional spatial propagation [7] 1.74 0.5 yes

OpenCV semi global block matching [27] 10.84 1.1 no

Table 5.1. Real time algorithms (> 5 FPS) in KITTI 2015 Stereo benchmark (on 25.1.2019).
Outliers are disparities with > 3 px or > 5 % error, and the percentage is calculated as an
average over ground truth pixels. Current leading submission and the OpenCV SGBM
implementation are provided for reference below the dashed line.

Based on the benchmark results, semi global matching is a viable option for real time
disparity estimation. The algorithm is robust, and as a model based approach, it has the
advantage of being mathematically explainable compared to the data driven methods.
Thus, its limitations are known and they can be taken into account.

If the criteria for real time is loosened, the benchmark is currently dominated by deep
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learning based methods, leading submissions achieving under two percentage of disparity
outliers. It is arguable if these algorithms perform equally well for different types of data.
Nevertheless, the benchmark results are promising, and the learning based methods will
likely be dominant in applications where transparency of the algorithm is not crucial and
training data is available.

5.1.3 Evaluation: TUTLAB dataset

We calculated disparity maps for the TUTLAB dataset using our implementation of the
SGBM algorithm, and the SoA PSMN algorithm, which is openly available at [6]. Examples
of the results are presented in Figure 5.1.

The most significant difference between the two algorithms is that PSMN produces a
smooth disparity map that covers the entire image, whereas the SGBM disparity map
contains values only in the areas where it found correspondences. Geometry of the stereo
camera system constrains the searched area to exclude areas not visible in both cameras,
manifested as the missing values on the left and right side of the SGBM disparity map
(5.1b). PSMN, on the other hand, is not limited by the hard constraints of the real world,
and extrapolates disparities even in these areas that technically do not have a disparity.
Similarly, SGBM does not calculate disparities in the occluded regions that are only visible
to one of the cameras, while PSMN does. In addition to the legitimate missing values,
SGBM fails to calculate disparities here and there, mainly in the homogeneous areas of
the image.

To assess the accuracy of the evaluated disparities, ground truth is needed. As there
was no synchronization between the LIDAR and motion capture system, the alignment
between the ground truth model and the trajectory had to be done manually. First, the
trajectory was roughly scaled, rotated, and translated to the correct place as presented in
Figure 3.3. For finer alignment, the raw data and the ground truth point cloud projections
were visually compared to reduce the alignment error, as presented in Figure 5.2.

Evidently, the alignment is not perfect, and thus disparity ground truth is not established.
Instead, we construct point clouds corresponding to the SGBM and PSMN disparity maps.
These point clouds are placed inside the LIDAR point cloud using the manually aligned
ground truth camera poses. As the accuracy metric, mean distance to the ground truth
cloud is calculated. The results are presented in Table 5.2.

Table 5.2. Mean and standard deviation of the distance to the ground truth model.

Algorithm µ (m) σ

PSMN (full) 0.12 0.13

SGBM (full) 0.11 0.29

PSMN (< 5 m) 0.09 0.05

SGBM (< 5 m) 0.08 0.04
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(a) Rectified left image

(b) DSGBM (c) DPSMN

(d)
√

|DSGBM −DPSMN |

Figure 5.1. Disparity maps calculated from the TUTLAB data: (a) original rectified image;
(b) our implementation of SGBM; (c) PSMN; and, (d) squared disparity difference,

disregarding areas where SGBM did not produce a result.

When a lower limit to the disparity is not set, PSMN produces rather large errors in the
farther regions, where the smooth disparity map results in erroneous smooth surfaces.
The full point cloud reconstruction based on SGBM has lower mean distance to the ground
truth, as disparity is only estimated in the areas where the algorithm finds correspondences.
Different from the PSMN cloud, SGBM produces clusters of clear outliers here and there,
whereas the erroneous points of the PSMN are systematically wrong. At a short distance,
the distance to the ground truth is similar for both algorithms. An example of the distribution
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Figure 5.2. The same view from the raw image data and the ground truth camera pose
manually aligned to the LIDAR point cloud.

of the errors is shown in Figure 5.3.

(a) SGBM (b) PSMN

Figure 5.3. Distribution of the error in the reconstructed point cloud model: (a) SGBM;
and, (b) PSMN. Error is presented by a color scale from blue to red.

5.1.4 Discussion

SGBM produces a cloud whose points are more exact, especially if an appropriate lower
limit to the disparity is set. However, there are points missing in the areas where the
disparity estimation failed, and some clearly erroneous points. PSMN produces a smooth,
continuous point cloud without clear outliers. Nevertheless, there are larger errors in the
points further away from the camera.

Point cloud produced from the PSMN result is more visually pleasing, and would be better
suited for, e.g., Virtual Reality (VR) applications where the deviations from the ground
truth in further areas are not problematic. In our case of building an exact model of the
environment, the systematic errors that PSMN produces would cause issues, as they
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would be harder to remove via denoising than the clearly erroneous points of SGBM.

SGBM can be implemented to run in real time on specific hardware (GPU/FPGA) [26],
and on Central Processing Unit (CPU) with modifications to the algorithm [16]. There
are several implementations openly available: from the basic OpenCV implementation, to
the hardware specific real time implementations. SGBM can be considered the standard
method of the traditional disparity estimation algorithms, having a vast support in the
literature. It provides an explainable workflow, where the desired properties such as the
accuracy and the efficiency of the algorithm can be tuned to suit the application. For
instance, the matching cost can be changed to a more robust Census or MI if there are
large differences between the sensors, and the global context can be emphasized by
increasing the number of paths in the smoothness constraint.

PSMN and other CNN algorithms need specific hardware (GPU) to run. Most of the current
algorithms are optimized for accuracy rather than speed. However, real time operation
has been achieved [36], [42]. There are several CNN implementations openly available for
disparity estimation. Nevertheless, they are not on the standard library implementation
level of SGBM. As an example, in the course of this work, considerable effort was put into
finding an implementation that could be run for our data.

Generalization of the end-to-end neural network disparity estimation algorithms remains
debatable. The PSMN model that we used in our evaluation was trained using the KITTI
2015 stereo dataset, which consists of outdoor driving scenes with a completely different
camera setup from ours. For our TUTLAB dataset, the results were comparatively worse,
as SGBM was able to beat PSMN in accuracy. Still, the results were promising for such
a different dataset, indicating that CNN based solutions have potential to be generally
superior to traditional methods if appropriate data is available for training.

The lack of appropriate data is the key issue in the application of neural networks in
disparity estimation. Generating ground truth disparities currently requires a costly dynamic
LIDAR, and the sensor still has its issues with resolution and reflections, which have to be
taken into account. Data can be created via simulation. However, it is arguably impossible
to build an accurate simulation of reality, and the algorithm is likely to learn traits specific to
the simulation. Currently there are few datasets openly available, and they are for specific
use cases.

Finally, the data driven algorithms lack explainability compared to SGBM. The architectures
are built based on feature extraction via convolution, with different heuristics added on top,
to produce as good result as possible. What exactly happens in each part of the network
is difficult to quantify, and thus harder to optimize.
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5.2 Camera trajectory estimation

5.2.1 State of the art

Camera trajectory estimation from video data is generally referred to as visual odometry.
At present, the most accurate visual odometry algorithms estimate the structure of the
environment at the same time to ensure consistency.

Visual SLAM using ORB features

The current SoA visual Simultaneous Localization and Mapping (SLAM) approach is called
ORB SLAM2 [44].

ORB SLAM2 is based on ORB features that are discussed in Section 2.3.6. The algorithm
tracks features locally, and uses bundle adjustment to minimize reprojection error of the
tracked points. Bundle adjustment is also done for the keyframes that are chosen from the
image sequence to acquire a consistent trajectory. Finally, when a loop is detected, pose
graph optimization is used to close the loop, and the loop sequence is bundle adjusted to
correct the trajectory.

5.2.2 Evaluation: TUTLAB dataset

We calculated camera trajectories for the TUTLAB dataset using our feature based
algorithm, and the SoA ORB SLAM 2, which is openly available under the GNU General
Public License at [44]. The estimated trajectories are presented in Figure 5.4.

As explained in Chapter 3, our ground truth via motion capture was not synchronized with
the other sensor systems. Thus, the presented ground truth trajectories were manually
1) scaled to the corresponding size and 2) rotated around the gravitational axis to have
initial camera angle corresponding to the estimated trajectories. Moreover, the ground
truth trajectory has values missing due to the limitations of the motion capture system.
Nevertheless, it accurately represents the shape of the trajectory for the acquired parts.

Visual comparison to the manually aligned ground truth shows that the shape of the
estimated trajectories is close to the real trajectory for both algorithms. The most evident
difference between the two algorithms is the lack of loop closure in our version, which
results in the prominent drift in the trajectories. Given the similarity between the shapes
of the estimated trajectories, our algorithm combined with a loop closure implementation
would arguably produce trajectories comparable to the SoA.

Even with its flaws, the ground truth data can be used to accurately model the ground
plane, as it is invariant to the manual scaling and rotation around the gravitational axis.
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(a) Backwards (b) Inwards

(c) Outwards (d) Two laps

(e) Two laps in reverse direction

Figure 5.4. Calculated trajectories for the TUTLAB dataset (see Section 3.2 for detail on
the sequences). Trajectories produced by our algorithm are drawn in blue; ORB SLAM 2
trajectories are drawn in red; and the ground truth trajectories are presented by the black

dots.

Thus, we can reliably quantify the error in the estimated trajectory height relative to the
ground plane. First, we fit the ground plane model ax+ by + cz + d = 0 to the ground truth
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data by setting b = −1 and stacking the N data points to form equation

y = Xβ ⇐⇒

⎡⎢⎢⎢⎣
y1
...

yN

⎤⎥⎥⎥⎦ =
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x1 z1 1
...

...
...

xN zN 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a

c

d

⎤⎥⎥⎥⎦ , (5.1)

from which the least squares plane model estimate can be calculated as (XTX)−1XTy.
We then calculate the distance to the plane model for each estimated camera pose, and
assess the error per one step of the algorithms as the change in the distance of the
consecutive poses. The results are presented in Table 5.3

Table 5.3. Mean and standard deviation of the error in the trajectory height estimation per
one step (∆t = 0.8 s) of the algorithms for the five TUTLAB sequences.

ORB SLAM 2 Ours

Seq. µ (mm) σ µ (mm) σ

(a) 0.13 0.89 0.31 1.84

(b) 0.00 1.46 −1.82 2.43

(c) 0.14 1.79 −0.18 2.25

(d) −0.01 1.54 0.54 1.02

(e) −0.01 1.50 −1.57 1.68

The mean trajectory height error per one step for ORB SLAM 2 is close to zero as a result
of the loop closure, whereas there is upwards or downwards drift in our algorithm. For
longer sequences, the error deviations for both algorithms confirm that complementary
methods are indeed needed for drift avoidance: be it loop closure, planarity assumption, or
something else. Normalized error histograms overlaid with the estimated normal probability
density functions are presented in Appendix A.2.

5.2.3 Discussion

It should be noted that our dataset is mainly limited to planar camera motion apart from
the trembling of the platform. Especially outdoors applications would likely contain all six
degrees of freedom, as uneven surfaces would result in camera pitch and roll changes
in addition to the variance in height. Given the errors in the TUTLAB evaluation, we
presume that neither of the algorithms would work in a completely unconstrained setting
as is. Nevertheless, usually assumptions about, e.g., the planarity of the movement can
be made.

The lack of loop closure is the evident defect of our system. Drift can only be reduced to a
point, as the error accumulates over time, causing the trajectory to diverge. Loop closure
boils down to forming a compressed model of the traversed environment, and efficient
detection of an already visited location. For instance, ORB SLAM2 utilizes dynamic
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keyframe memorization and comparison between the feature presentations to detect the
loops. In addition to loop closure, GPS provides a good reference to correct the trajectory
outdoors, while indoors the planarity assumption is convenient.

5.3 Environment model

5.3.1 State of the art

Point cloud segmentation methods can be roughly classified in model fitting, region
growing, and feature clustering based subgroups, of which our focus is in the model fitting
based segmentation.

Our algorithm is based on spline or plane model fitting accompanied with the object
segmentation based on the model. Similar approaches can be found in the literature: 1)
For drivability estimation, building a surface model by fitting splines to the point cloud has
been proposed by Broggi et al.[4]; 2) Object segmentation based on surface continuity on
the other hand has been proposed by Douillard et al. [11].

Octree based region growing

One of the current SoA approaches to the environment segmentation is octree based
region growing proposed by Vo et al. [56]. Octree is a hierarchical structure which
recursively divides the space into smaller subspaces until satisfactory detail is achieved.
The use of octrees is especially beneficial for real time algorithms, as it makes the data
handling more efficient.

The octree algorithm starts by dividing space into voxels (3D pixels) until they are represen-
tative of the underlying cloud. For each voxel, normal vector and residual are calculated
as the voxel features. The normal vector is estimated using PCA, and the residual is
calculated as the Root Mean Square Deviation (RMSD) of the cloud from the plane defined
by the center of mass of the points and the estimated normal. The algorithm continues
by grouping voxels with similar features to form smooth surface segments. Finally, region
growing is used to extend the boundary voxels.

5.3.2 Evaluation: TUTLAB dataset and outdoors tests

The quality of the environment model is largely dependent on the accuracy of the disparity
estimation and the camera pose estimation, as the merged global cloud is the input data
for our algorithm. Especially drift and other inconsistencies in the trajectory estimation are
problematic, as the whole model becomes deformed when the error accumulates.
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Plane model

In an indoors setting, we cut corners by fitting a plane to the floor, and estimated obstacles
with regard to deviations from the floor. In our tests, we found the algorithm to work well,
given that 1) there was enough texture in the floor to correctly fit the plane, and 2) when
the operation time was moderate so that the drift did not cause the floor to twist. The
accuracy of the input point cloud from our pipeline allowed the spline model to differentiate
objects of the size of a basketball as obstacles in the drivability model.

Object segmentation based on the continuity in the drivability model correctly segmented
the clearly separate objects of the environment. However, as the segmentation was done
in 2D, some volumetrically distinct objects were clumped together.

Spline model

As the more general solution, spline model is able to estimate drivability in more complex
outdoors scenes with uneven topographies. The distinction between the drivable and
obstacle areas was done based on the maximum model height difference in the sliding
window area, which was adjusted based on the capability of the vehicle. Some detail was
lost in the object boundaries compared to the plane model, and there was more tendency
for adjacent objects to be clumped together in the object segmentation step when using
the spline drivability model.

We tested the spline algorithm in outdoors and indoors settings, where it was able to
distinguish the drivable areas in the environment. An example of the outdoor results is
shown in Figure 5.5.

Figure 5.5. Example of the spline model. Drivable surface is drawn in green, obstacles in
red, and areas too close to the obstacles in purple. The point cloud where the spline

model is fitted is also shown for reference.

5.3.3 Discussion

Our modeling algorithm was able to correctly estimate drivability for the moderately noisy
point clouds produced by our pipeline. Given that the direction of gravity is known or can be
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estimated, the local height differences of the model accurately differentiate the obstacles
from the drivable surfaces. The model forms a compact presentation of drivability: it is
essentially a 2D matrix containing the heights in the environment. The model can be locally
updated based on the input point clouds to allow real time dynamic drivability estimation.

For object segmentation, the connectivity in the drivability map roughly divides the obstacle
areas into objects and clumps of adjacent objects. A true volumetric representation such
as the octrees has a clear edge in this regard, as the spline model only has one value for
height in each map location.

5.4 Multi-view modeling

5.4.1 State of the art

Photogrammetry is a heavily researched topic, and hence there is a plethora of commercial
and open solutions available for multi-view modeling. The packages generally combine
multiple algorithms together to provide a seamless workflow for the end user. Of the current
open software, we mention OpenMVS, COLMAP [50], and AliceVision [31]. General steps
in the photogrammetry pipeline are 1) feature and image matching to find confluences, 2)
SfM to estimate camera parameters, 3) dense depth estimation, and finally 4) meshing
and texturing the model. Our focus was in the dense depth estimation, as we already had
the estimated camera parameters. We picked our algorithm to implement based on the
results in the Middlebury multi-view stereo benchmark.

5.4.2 Benchmark: Middlebury multi-view stereo

Middlebury multi-view stereo benchmark [52] consists of two sets of 640x480 images
captured around an object. The benchmark is evaluated based on a ground truth 3D model
of the object acquired using a LIDAR. There are three categories based on the number of
used views: "Full" with over 300 views, "Ring" with around 50 views and "Sparse" with 16
views.

Adding views to the multi-view problem provides diminishing returns in the quality of the
model, as the information in the new views is mostly already provided in the sparser
coverage. Meanwhile, the computation time increases, depending on the complexity of the
algorithm, at least linearly. Thus, we focus on the sparse multi-view modeling case, as our
aim is to increase the overall quality of the model without losing too much in performance.

In Table 5.4 are presented the ten most accurate algorithms for sparse multi-view modeling
in the Middlebury benchmark. Results for the multi-view algorithm [17] that we used as
the basis of our implementation are shown in bold.
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Algorithm
Sparse Total Sparse

completeness completeness running

(%) (%) time (min)

Y. Furukawa et al. (v3)[17] 99.25 99.55 180
Y. Furukawa et al. (v2) [17] 99.2 99.38 290
N. Savinov et al. [49] 98.75 99.4 2600

Z. Li et al. [38] 98.65 98.88 100

S. Li et al. [37] 98.05 99.12 0.83

W. Huang et al. [30] 97.85 98.7 5.4

Y. Liu et al. [40] 97.8 97.8 20

S. Galliani et al. [19] 97.8 98.87 5.0

I. Kostrikov et al. [35] 97.55 98.45 91

A. Zaharescu et al. [58] 97.5 98.2 40

Table 5.4. Ten most accurate algorithms for sparse multi-view modeling in the Middlebury
multi-view stereo benchmark (on 31.1.2019). Completeness measures the fraction of
the ground truth closer to the reconstruction than the threshold (1.25 mm). "Sparse"
completeness is the mean of "Dino Sparse" and "Temple Sparse" results, and total
completeness is the mean of the all three "Sparse", "Ring", and "Dense" categories.
"Sparse" running time is the mean of the normalized "Sparse" running times, where
normalization is done with regard to the test processor clock speed.

According to the Middlebury benchmark, the algorithm we chose to implement is the most
accurate for sparse multi-view modeling. It has also been proved to work in a more general
scenario for outdoor scenes [53]. The running time for the algorithm is fairly high. However,
we only implemented the ideas of the initial sparse model building and left out the tedious
refining process, which is the most time consuming part of the algorithm.

It should be noted that the Middlebury benchmark provides a very limited test setting
having only two scenes. The data is optimal in the sense that the scenes are seen from all
angles, and accurate camera parameters are provided. The visual hull in the images is
exploitable, as the background is easily extracted. Moreover, the images in the dataset
are in low resolution. EPFL benchmark [53] contains more robust scenes for multi-view
stereo evaluation. Nevertheless, an online platform for evaluation of the algorithms is not
included. Of the more recent work, ETH3D benchmark [51] and "Tanks and Temples" [34]
benchmark provide potent alternatives to the de facto Middlebury benchmark.

5.4.3 Evaluation: TUTLAB dataset

As described in Section 4.3, we implemented our multi-view algorithm from scratch based
on the well-established approach of Furukawa et al. [17]. Our algorithm produced results
similar to the ones presented in the original paper for the Middlebury dataset, as seen in
Figure 4.10). However, we did not manage to achieve same kind of performance for our
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TUTLAB test data.

The purpose of the multi-view algorithm in our pipeline was to improve the accuracy of
the rough models received from the stereo algorithm. We intended to combine temporal
information by picking keyframes that contain the object of interest, and run the multi-view
algorithm. Nevertheless, compared to the "Sparse" multi-view case of the Middlebury
benchmark, our data had considerably less angles covered as the robot was merely
going past the objects. Moreover, our camera parameters had the error of the trajectory
estimation via SfM, and the scenes were in general far from the optimal setting of the
Middlebury data. By manually picking the keyframes used for the multi-view modeling,
we were able to obtain results corresponding to basic SfM approaches. An example of
the results is shown in Figure 5.6. There are erroneous points near depth discontinuities,
where the background is homogeneous, and the cloud is not dense. The achieved level of
accuracy is clearly insufficient for proper model building.

Figure 5.6. Point cloud model produced by our multi-view algorithm and the original
object in an image.

For comparison, we run the open AliceVision software for the same data containing the
chair. Similar error with the homogeneous background can be seen, and the model in
general is deformed.
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Figure 5.7. Textured mesh model produced by open source AliceVision software.

5.4.4 Discussion

Multi-view modeling has the clear potential to improve the model quality, especially if the
object is seen from multiple angles. Our aim was to improve the object model to the
accuracy that would enable interaction with the object. Our implementation was able to
achieve this level of performance for the optimal Middlebury benchmark data. However,
for our test data the results were not satisfactory.

The difficulties encountered when testing with the TUTLAB dataset are likely related to
insufficient view coverage of the object. The robot passing by an object does not produce
enough information for the multi-view algorithm to build an accurate model. Specific
camera trajectory, e.g., around the object is needed, and presumably, a refinement step to
produce an object model for interaction purposes.

On another note, current multi-view algorithms require a lot of computation and are thus
slow to run. Conclusions cannot be made based on our proof of concept MATLAB
implementation. However, as can be seen in the Middlebury benchmark (Table 5.4),
the runtimes are generally in the scale of minutes or hours even for sparse multi-view
modeling.



63

6 CONCLUSION

In the course of this work, we studied and implemented the full pipeline of environment
modeling from the viewpoint of autonomous machines. The main steps in the pipeline are
disparity estimation, camera trajectory estimation, constructing an environment model for
movement purposes, and building an accurate object model for interaction.

We implemented disparity estimation using traditional SGBM method. We evaluated our
implementation against a SoA CNN based method using our test data, for which both
provided equally accurate results. The largest advantage of the traditional method is its
explainability and traceability; whereas the CNN based methods have the potential to
produce more accurate results given the right training data.

For camera trajectory estimation, we implemented a feature-tracking algorithm combining
elements found in the literature. The drift of our algorithm is at the level of current SoA
for our test data. However, longer tracking periods would require loop closure to correct
the accumulating error when revisiting previously seen areas, or accurate secondary
information, e.g., in the form of GPS.

We built our environment model, with the autonomous machine in mind, as a spline
model describing the topology of the environment. We tested the algorithm in indoors and
outdoors for the noisy input point clouds produced by our pipeline. Our model was able
to accurately differentiate drivable areas and obstacles in the environment. Moreover, it
provides a compact and comprehensible presentation of the environment for drivability
estimation. As an alternative method to be used indoors, plane based model offered slight
improvement in accuracy in the object boundaries. Finally, we found that rough object
segmentation is feasible based on the connectivity in the topology map.

To build more accurate models for object handling, we implemented a multi-view algorithm
based on a SoA approach. Our implementation worked for optimal benchmark data.
However, for our test scenario, the camera movement with regard to the modeled object
did not provide adequate views to build an accurate model. If the camera can be guided to
provide proper coverage of the object, current SoA algorithms are able to build an accurate
model if computation time is not an issue.

To achieve a functional visual system for machines using our pipeline, following improve-
ments should be made. 1) Efficiency: SGBM could be implemented in hardware, and only
necessary information (built model, information needed for loop closure) should be kept
in memory. 2) Loop closure: we pondered using the built environment model to detect
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previously visited areas. Current SoA detects loops on image level. 3) Accurate object
models for interaction: this could be achieved with multi-view modeling if proper views can
be captured.

To conclude, stereo camera system shows promising results for environment modeling.
With the current SoA algorithms, it can be used as the sole sensor for autonomous
movement, and, given appropriate conditions, for interaction with the environment.
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A APPENDIX

A.1 Skew symmetric matrix

Skew symmetric matrix corresponding to a vector a = (a1, a2, a3)
T is defined as

[a]× =

⎡⎢⎢⎢⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤⎥⎥⎥⎦
.

A.2 Trajectory height estimation error
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