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ABSTRACT

Hugo Fooy: Software Usage Data Visualization
Master of Science Thesis
Tampere University
Software Engineering
June 2019

This thesis aims at investigating the adequacy of the Unified Model for Software Engineer-
ing Data and its technical framework for developing visualizations of software usage data. Two
visual notations were developed using the aforementioned framework and its visualization tem-
plates. The data source was provided by logs of the software Kactus2 that had been previously
collected. The two visualizations were evaluated both on a semantic level with an ontological
analysis (based on the BWW-model), and on a syntactic level with the Physics of Notations. They
were also presented to developers of Kactus2 for an additional assessment of their usability and
usefulness. The results indicate that the data model and framework are indeed adequate for vi-
sualizing complex usage data from Kactus2. Furthermore, the visualizations appear to be both
easy to understand and useful (in the sense that they provide insight to the usage of the soft-
ware) by the developers. Based on these results, we argue that software visualizations of usage
data in general - and in particular using the Unified Model for Software Engineering Data - should
be studied and developed further as they may help improve software engineering products and
processes.

Keywords: software visualization, visual notation, usage data, post-deployment data, physics of
notations, ontological analysis, syntactic analysis
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1 INTRODUCTION

Software visualization is a branch of Software Analytics (SA), which is the use of software
data to enable better decision-making. Analytics allow managers and engineers to rely
on rational information rather than intuition. Through automated tools, the large amount
of data that originates from software can be turned into insight, improving the software
development processes and products. As the field of SA develops, software analytics
have been classified by various authors [2, 12, 39]: how and why they are performed,
who they are performed for, or the analytical questions driving the process are several
ways to categorize SA. Different types of software analytics call for different metrics. The
choice of the metrics is related to the usage that will be made of the software data [10].

Software engineering produces a huge amount of data, from its early planning phase
through its development, and while being used [9]. In this thesis, we will focus on Post-
Deployment Data (PDD) or usage data. This is data that results from the interaction of the
user with the software, after its deployment. Such data may come from logs, bug reports,
stack traces, etc. To this date, PDD has mainly been used in automatic applications
testing, or to analyse user behaviour. Feature usage is also a very well know application
of PDD analytics.

Data collection is a non-trivial preliminary step to all analytics. How software data col-
lection can be implemented is a vast subject, thus we will only focus on the collection of
PDD. The collection of usage data comes with intrinsic challenges and limitations, that
must be addressed. Hence, the specifics of the target and context for the application
should be carefully considered when selecting a data collection technique [56]. Suon-
syrjä presented a selection framework for automated usage data collection technologies
[54].

Visualization is crucial to software analytics for helping people process the data in a more
efficient way. This is especially true when information has to be shared between people
with different levels of expertise, for example developers and stakeholders. Designing
good visualizations is therefore a major issue and should be taken seriously. When de-
signing a visual notation, one should take into account both its semantics (what is rep-
resented) and its syntax (how it is represented) to carry out the information in the best
way possible. The Physics of Notation proposes a set of principles for designing effective
visual notations, with a focus on syntax [41]. The Guidelines of Modeling offers a more
general approach on designing information models [48]. To date, most software visual-
izations still revolve around understanding software through its structure, behavior and
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evolution using hierarchical or graph visualizations [34].

This thesis is concerned with the software visualization of usage data. Limiting the ana-
lytics to usage data is interesting because it is not very much studied, compared to the
other types of software data. Especially in software visualizations, PDD has been very
little used. We will focus on the visualization and analytics part, detaching ourselves from
the task of collecting the data itself. The rest of this chapter will describe how the topic
came to be, and how we formed our research questions.

1.1 Defining Goals

This thesis was started with the general goal of working on software visualizations. Anna-
Liisa Mattila ([34, 35, 36, 37]) has been working extensively on this topic, and it was de-
cided to use her work as a basis. Using the Unified Data Model, the functioning database
and visualization template described in [36] (cf. Section 2.5), we would try to extend the
proof-of-concept by creating new visualizations for a different data set. An agreement
with Esko Pekkarinen ([23]) was made, that we could use the data collected on the soft-
ware Kactus2 (cf. Section 3.1). From this, we defined the research questions, described
below.

1.2 Research Questions

Given the data and tools at our disposal (cf. Chapter 3), the following research ques-
tion was defined: Is the presented data model and visualization framework suitable for
developing software usage visualizations?

More precisely, we tried to answer the following questions:

RQ1 Can the Unified Data Model for Software Engineering be used to efficiently model
software usage data?

RQ2 Can the framework presented be used to develop insightful visualizations of soft-
ware usage data?
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2 THEORETICAL BACKGROUND

This chapter presents the theoretical foundations of this thesis. Section 2.1 introduces
the field of software analytics. Section 2.2 describes the type of data that this thesis is
concerned with: post-deployment data, and section 2.3 presents the techniques of data
collection related to post-deployment data in particular. Finally, section 2.4 presents the
state-of-the-art of software visualizations, and visualizations of post-deployment data.

2.1 Software Analytics

2.1.1 Software and Analytics

Analytics is the use of analysis and data to make better (i.e., more rational) decisions.
This discipline shifts the decision-making process from intuition to systematic reasoning.
Buse and Zimmermann suggest that the software industry has many qualities that make
it fit for analytics: data-rich, labor intensive, timing dependent, dependent on consistency
and control, dependent on distributed decision making, and low average success rate [9].
As a response to the increasing amount of available software data, the industry developed
software analytics, which is defined by Buse and Zimmermann as:

Analytics on software data for managers and software engineers with the aim
of empowering software development individuals and teams to gain and share
insight from their data to make better decisions. [10]

Today, the amount of data available for analysis requires that software analytics make
use of automated tools (at least to some extent). Moreover, decision-making should be
based on up to date information. Non-automated collection and analysis techniques are
is this regard often too slow [39].

Analytics can be seen as a multi-layered process, from the measurement of raw data to
insight, through quantitative and qualitative analysis. This was described by Kaushik for
web analytics [24], but can be easily generalized to software analytics (cf. Figure 2.1).
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Goal

Insight

Qualitative Analysis

Models and Simulations

Metrics

Measurements

Why?

How much?

What?

Figure 2.1. Overview of analytics, adapted from [24].

2.1.2 Types of Software Analytics

Software analytics can be classified in several ways. In [39], the authors detail different
kinds of analytics. The following categories classify software analytics based on the team
position, analysis quality, tool used, focus and target audience:

• Internal vs External. Analytics can be performed either by the internal team, or
by an external entity. This brings two main challenges to the analytics. As an
external team does not have access to live data, a copy must be sent outside a
company’s firewall for analytics. The other challenge is that such practices may
require anonymization of the information to tackle privacy issues.

• Quantitative vs Qualitative. Quantitative methods rely extensively on automated
statistical tools; qualitative methods are more manual and require more interaction.
Both methods require careful design to be rigorous and thus useful.

• Data mining tools vs Visualization tools. Data mining tools are automatic processes;
they are designed to produce one conclusion. Visualizations are interactive tools;
they let users control the output of the analytics. The authors point out that most
analytics today focus on data mining.

• Explanatory vs Deployment. An explanatory study is preliminary, and might or not
be successful. In this kind of analytics, the goals (how to add value to the business)
are not clearly defined yet. Deployment analytics is integrated throughout the years
in the product life cycle. This second analytics is made possible only once the goals
have been defined after a successful explanatory analytics.

• Audience. The potential audience for analytics: developers, managers, researchers,
etc. Each type of audience having particular needs and wants.

Another way to classify analytics is with regard to its intent. Banerjee, Bandyopadhyay,
and Acharya describe four types of analytics [2].

• Descriptive analytics answer the question of "What happened?" through collected
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Past Present Future

Information

Insight

Figure 2.2. Classification of analytical questions, from [12].

metrics.

• Diagnostic analytics focuses on understanding "Why?" something happened.

• Predictive analytics tries to forecast "What will happen?" based on the analysis of
the past.

• Prescriptive analytics gives guidelines for "What should be done?" in the future.

Davenport, Harris, and Morison look at analytical questions that drive analytics. They
divided questions into insight- and information- seeking, and whether they are concerned
with the past, present or future (cf. Figure 2.2) [12]. Buse and Zimmermann report that
insight questions are harder to answer than information questions, as well as questions
regarding the future as compared to past or present questions [10].

2.1.3 Needs and Applications of Software Analytics

In practice, managers and developers use different software analytics with different objec-
tives in mind. Buse and Zimmermann studied the needs of 110 professional developers
and managers in software analytics. Their results show which metrics and artifacts are
most important and used, and how analytics can help making better decisions [10].

Artifacts are the elements on which a metric is measured (for example, code complex-
ity can be evaluated on a function, class, or entire product). Artifacts that were seen
as important by developers or managers were: feature, product, component, bug report,
binary, test case, function, class, team, and author. Analyzing individual features was
considered to be the most important, but many artifacts are a source of unique infor-
mation. Furthermore, it appears also relevant to consider these artifacts simultaneously,
even though all are important by themselves.

Developers and managers use a great number of different metrics for analytics. Accord-
ing to [10], the most valued were failure information (feedback from end-users) and bug
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reports (results of the testing processes). Buse and Zimmermann also asked what the
participants of their study would use if it was available. An important result is that most
metrics could be used by twice as many developers and managers, if these indicators
were made available. Differences are noted between what is preferred by developers
(velocity, churn, readability, complexity : code-related metrics) and managers (failure in-
formation, telemetry, testing: customer-related metrics). As with artifacts, there is a trend
for using metrics together more than independently.

Understanding what information is truly needed requires as well understanding how this
information can be used. The researchers of [10] grouped the answers of the participants
around common themes. A variety of usages of software data was mapped out.

• Targeting Testing. Deciding which piece of code needs to be tested.

• Targeting Refactoring. Deciding which piece of code needs to be rewritten.

• Release Planning. Deciding which feature to release and when.

• Understanding Customers. Identifying which features are valuable or problematic
for the users.

• Judging Stability. Anticipating future changes and deciding on the fate of a (sub)system.

• Targeting Training. Evaluating the training needs of new individuals or teams.

• Targeting Inspection. Deciding when to start a code review or inspection.

Among these, targeting testing was by far the most mentioned scenario by both devel-
opers and managers, followed by targeting refactoring (mainly developers) and release
planning (managers).

2.2 Post-Deployment Data

2.2.1 Software Data

Software development produces a wide variety of data [9]. Whether it is the source code
itself, the test logs or the bug databases, software development data is widely available,
and has been very much studied [39]. But software data may also originate from out-
side its development period. One such data type is concerned with data produced after
the product has been deployed: Post-Deployment Data (PDD), as described by Olsson
and Bosch [43]. The authors identity five usages of PDD: new feature development, fea-
ture improvement, feature usage, diagnostics, and operation/performance. PDD itself
comprises of a wide variety of data sources such as incident reports, usage logs, stack
traces, etc.

Our thesis focuses on usage data, data originating from the interactions of the users
with the software. This definition of usage data can be related to Schuur, Jansen, and
Brinkkemper’s definition of Software Operation Knowledge (SOK) usage data [49], with a
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more precise focus on the user-interface interaction level. In [3], Begel and Zimmermann
list 145 questions that software engineers would like data scientists to investigate. The
top two questions of that list are related to software usage. This shows that there is a dire
need of usage data for improving software products and processes.

In [55], Suonsyrjä et al. evaluate the potential of automatic collection of PDD to fulfill the
needs for such knowledge in the Finnish software development industry. Post-deployment
data is here used to consider data that is automatically collected after the commercial
launch of a product. The results highlight that most of the different types of analyses
desired from PDD were value analysis, users’ problems detection, and use path analysis.
Furthermore, the data types desired were time spent, performance, amount of use, and
errors. Yet the main knowledge source were still revolving mainly around direct (meet-
ings) or indirect (questionnaires) customer contact, which are not automated. Challenges
mentioned in the study were broad, concerning acquiring and processing the data, as
well as the maturity of processes and customers, and privacy concerns. Suonsyrjä et al.
conclude that automatic collection of PDD has the potential to help teams improve their
processes and products, but still lacks more research and development.

2.2.2 Applications of PDD

Post-deployment data has been used for several reasons in multiple contexts. In test-
ing especially, usage data has been highly valued for some time. Brooks and Memon
present a technique for testing GUI applications, based on usage profiles (sequences
of events executed on a GUI, also called user-sessions) [5]. The web industry in par-
ticular has made a great use of PDD for automatic testing of web applications through
user-sessions [14, 15, 47, 53]. Lautenschlager and Ciolkowski show that the collection
of runtime data for incident diagnosis can be beneficial in cloud applications, but must be
carefully designed to prove useful [27].

Web applications have also widely considered usage data for understanding the be-
haviour of users on certain platforms. Clickstreams (a user’s path through a website)
shows how a website is navigated. Such data has been used to study how a website is
used, the propensity to stay or leave, etc [6, 28]. Atterer, Wnuk, and Schmidt further im-
prove this idea by adding data such as mouse movements and keyboard inputs to better
track user actions on web pages [1].

PDD has been used for identifying feature value through usage. Tyrväinen et al. use fast
feedback from customers to improve the time needed for feature development [57]. Fabi-
jan, Olsson, and Bosch study how feature value can be tracked, and how this metric can
be used to make decisions for feature development or reduction [16]. Feature usage as a
metric for feature reduction has also been studied by Marciuska, Gencel, and Abrahams-
son [30, 31]. Mattila et al. use feature usage along issue management and development
data in order to visualize usage density [35].
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2.3 Data Collection

How data is collected is not necessarily obvious, and should not be disregarded. As
this thesis is concerned solely with PDD, we will not elaborate on collection of other
types of software data. In [56], Suonsyrjä et al. list and evaluate different technological
approaches to usage data collecting.

2.3.1 Challenges and Limitations of PDD Collection

To evaluate the data collection methods, the authors of [56] build a list of the challenges
and limitations of usage data collecting:

• Number of use cases. Too few use cases (i.e., planned concrete usages of the
data) is an inefficient use of resources. Too many use cases may result in data
collection that is not able to satisfy any of them.

• Timeliness. When information is generated must be considered, as it can limit the
collection and use of the data. For example, incident reports are created only when
incidents occur.

• Confusion. Continuous collection may incite to implement continuous testing (e.g.,
of partially developed interfaces). This can lead to user confusion.

• Legality. Country-specific laws, regulations and permissions must be taken into
account when designing a usage data collection method. This is even more true
since the recent application of the GDPR1.

• Safety. The chosen technique must consider privacy and security issues.

• Data sources. If there are several distinct data sources, then either: the data must
be unified before being processed (cf. Section 2.5), or the analyzer must be able to
process the different types of data.

• Lack of a systematic approach. Without a systematic approach for collecting data,
more difficulties in the course of the data-driven software development process will
occur.

• Usability. The collected data should be easily available, attractive, and usable by
the intended people.

These challenges and limitations will be considered in the selection processes of the right
approach for a specific application.

1https://eugdpr.org/ - General Data Protection Regulation of the European Union
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2.3.2 Technological Approaches

Suonsyrjä et al. identify five different approaches to usage data collection.

1. Manual implementation. Manual implementation is simply adding statements in the
code, that will collect the desired data. Its advantages are that it provides very high
flexibility and configurability while minimizing the overhead. The disadvantages of
this approach are the big work effort required for large projects, and that it makes
reuse almost impossible. Manual implementation is thus best suited for preliminary
testing, or for a very specific data source and target.

2. Automatic instrumenting with a separate tool. Automatic instrumenting relies on
tools (such as [11]) that can automatically insert instrumentation code into the
source code. Compared to the manual implementation described above, this ap-
proach reduces greatly the efforts required, and provides much better reuse possi-
bilities. On the other hand, these tools focus on only one source or target. This may
raise the overhead proportionally. This approach is best suited in situations where
the main criteria is the low implementation effort.

3. Aspect-oriented approach. The aspect-oriented approach has its roots in aspect-
oriented programming (AOP), a programming paradigm that focuses on the modu-
larization of concerns at the level of the source code. This method allows to con-
sider complex conditions for executing the data collection code. This results in a
very expressive technique that can target system- and application-specific instru-
mentation. Like manual implementation, it is very flexible. But as for the previous
approach described, the automation of the instrumentation reduces greatly the work
effort required. The possibility of reuse will be good only for applications that use
the same syntax for the data collection.

4. Alternative implementation of a UI library. The modification of a standard UI library
for user interaction allows to very easily collect usage data. The efforts required are
thus low, but induce performance overhead. Reuse and configurability are not an
issue. One concern is that some data might be out of reach from such UI libraries.

5. Execution environment. Without touching the software itself, the data collection
can be done by the environment. It is especially the case for languages that are
executed in a virtual machine, such as Java and JavaScript, where method and
function calls can be monitored. The pros and cons are similar to those of the
alternative UI library. One difference is that the data collected may require heavy
post-processing.

With these five approaches for automatic data collection defined and their challenges and
limitations, the authors developed a framework for selecting the proper approach.
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2.3.3 Selecting the Right Approach

The authors describe in [56] already a first selection framework for automated usage data
collection technologies. This framework was tested then refined in [54]. The version pre-
sented here is the improved one. Figure 2.3 summarizes the six steps of the framework.

1. Defining a main goal for the data collection. The target(s) must be specified in order
to select the right approach.

2. Removing irrelevant evaluation criteria that do not apply to the project. A summary
of these criteria and their relation to the collection techniques can be seen in table
2.1.

3. Finding out the critical limitations to the technological approaches, dependant on
the context of the data collection.

4. Rejecting the unsuitable techniques if critical limitations are faced.

5. Prioritizing the evaluation criteria with regards to the main goal defined in the first
step.

6. Evaluating the remaining techniques. The +/- indications in table 2.1 may serve as
guidelines, but each project is different and must be treated with care.

This framework is intended as a general guide for companies and researchers wanting
to implement a usage data collection system. See section 3.1.2 for details on how this
framework was used to chose the data collection system for Kactus2.

1. Define a main goal

2. Remove irrelevant
evaluation criteria

4. Reject unsuitable
techniques

3. Find out critical
limitations

5. Prioritize the
remaining evaluation

criteria

6. Evaluate the
remaining techniques

Figure 2.3. The refined collection framework for user-interaction collecting techniques,
from [54].

2.4 Data Visualization

2.4.1 Designing Visual Notations

Ever since the beginning of the software engineering industry in the 1940s, data visual-
izations have played a major role. The first visual notation of software engineering data
dating back to 1947 [19]. Today, software data visualizations are used at every stage
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Table 2.1. Summary of the techniques evaluations, from [54].

Techniques

Criteria Manual Tools AOP UI Lib. E.E.

Timeliness + +/- + + +/-

Targets + - +! - +/-

Scalability -! + +! + +!

Overhead + - +/- - -

Sources + – - - -

Configurability + - + + +/-!

Security + +/-! +/- + +/-

Reuse - + - - +!

Change +! + -! -! +

+ = Supports selecting

- = Technique has limitations

+/- = No clear support nor limitations

! = A possible ground rejection

of the SE process. The reason for that is obvious: visual notations are extremely effec-
tive at sharing information, especially between people with different levels of technical
knowledge.

In The "Physics" of Notations (...)[41], Moody defines a visual notation (what is called
a visualization throughout this thesis) as: a set of graphical symbols (the vocabulary), a
set of compositional rules (the grammar), and a set of definitions of the meaning of each
symbol (the semantics). Together, the vocabulary and grammar form the syntax of the
notation [41]. The author notes that while the semantics of notations in SE have been
largely studied, the syntax was mostly left out of most evaluation methods. This in spite
of the fact that the form (hence the syntax) of the visualization has been shown to be at
least as important as their content, especially for beginners.

For a visual notation to be worth ten thousand words, it needs to be designed to achieve
cognitive effectiveness [26]. This measure of how well a visualization works is based on
the speed, ease, and accuracy required by the human brain to process it. For evaluating
the visual notations, the widely accepted method has for the most part been ontological
analysis: a two-way mapping between the notation and the ontology (cf. Figure 2.4). The
problem of the ontological approach is that it targets the semantics of the notation, but
not its syntax (what is represented: the concept-construct mapping, not the form that the
constructs take).

To fill the need for evaluating the syntax of visual notations, Moody proposes a descrip-
tive theory of how visual notations communicate, and a prescriptive theory of principles
for designing effective visual notations [41]. The communication theory is represented in
figure 2.5. The sender encodes the message in the form of a diagram (using a visual no-
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Figure 2.4. Ontological mapping, from [41]. There should be a 1:1 mapping between the
concepts and the constructs to avoid construct deficit, redundancy, overload, and excess.
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Figure 2.5. Descriptive theory, from [41].

tation), and the user decodes this signal. The medium is the physical platform on which
the diagram is shown, and noise represents the interference that can happen at every
level. Effectiveness is here measured by the match between what the creator intended
and what the user actually received.

The prescriptive theory describes 9 principles for designing effective visual notations (cf.
Figure 2.6).

1. Semiotic Clarity This principle is an extension of the aforementioned (and detailed
later on) ontological analysis. Based on the theory of symbols of Goodman [20], it states
that there should be a one-to-one correspondence between the symbols and their ref-
erent concept. Applied to visual notation, we are looking at a mapping of the semantic
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Figure 2.6. Prescriptive theory principles, from [41]. The honeycomb structure illustrates
the desire of the authors to encourage modifications and extensions to the principles by
further research.

constructs and the graphical symbols of the visual notation. When the one-to-one corre-
spondence is not achieved, the following phenomenon are observed. Figure 2.7 shows
the four phenomenon undermining semiotic clarity.

• Symbol redundancy occurs when multiple graphical symbols have the same se-
mantic meaning, they can be interchanged without modifying the meaning of the
notation. Such symbols are called synographs. This adds an extra cost to the
user of the visualization to remember several symbols for the same construct and
should be avoided.

• Symbol overload is the situation where a single graphical symbol does not have a
unique meaning. Such symbols are called homographs. As they introduce ambi-
guity within the notation, they should as well be avoided.

• Symbol deficit happens when some semantic constructs are not represented by any
graphical symbol. While this undermines semiotic clarity, it is not always a bad thing
in SE visual notation which are often highly complex. In this regard, not showing all
constructs on a visualization helps reduce complexity, improving understanding.

• Symbol excess on the contrary, occurs when graphical symbols bear no meaning:
they are not linked to any construct. Such as using explicit symbols to display com-
ments. As they increase the complexity without bringing any additional information,
they should be avoided.

2. Perceptual Discriminability The accuracy with which one can distinguish the sym-
bols is crucial for the accurate interpretation of a diagram [63]. Perceptual discrimination
is the first phase of perceptual processing (i.e., seeing): the automatic, very fast process
that occurs before the actual cognitive tasks can start [42].
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Figure 2.7. Semiotic (non-)clarity: (a) symbol redundancy, (b) symbol overload, (c) sym-
bol deficit, (d) symbol excess.

• Visual distance is the primary determinant of discriminability between symbols. We
measure it by the number of visual variables that differ and the size of these dif-
ferences. The 8 visual variables (cf. Figure 2.9) were defined by Bertin, Berg, and
Wainer [4].

• The primacy of shapes states that the shapes of graphical symbols is the primary
basis for distinguishing between them. Hence the size of the repertoire of shapes
used in a visual notation should be a primary concern.

• Redundant coding of information reduces the risk of misinterpretation and dimin-
ishes the effects of noise. Using several visual variables to identify unique symbols
is a simple example of redundant coding.

• Perceptual popout happens when visual elements have a unique value for at least
one variable. They ’pop-out’, meaning that they can be detected and processed in
parallel. This increases the cognitive efficiency of the diagram.

• Textual differentiation of symbols is an ineffective way of dealing with complexity. It
relies on adding text to discriminate between otherwise identical graphical symbols.
While this can be used to distinguish symbol instances, it should not be used to
distinguish symbol types.
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3. Semantic Transparency This principle requires that graphical symbols provide cues
to their meaning. Semiotic transparency is a continuum between directly perceivable and
opaque meaning. This concept (here described for the generic notion of symbol) applies
to both icons and relationships in a visual notation.

• Semantically immediate symbols can be directly understood even by a novice sim-
ply through its appearance.

• Semantically opaque symbols have a purely arbitrary relationship between the sym-
bol and its meaning.

• Semantically perverse symbols can induce a novice to infer a different or opposite
meaning based on the appearance of the symbol.

• Semantically transparent symbols provide a cue to the meaning, but require some
initial explanation.

Perceptual resemblance, having common logical properties, functional similarities, or us-
ing metaphors and cultural associations help with semantic transparency.

4. Complexity Management This principle reflects the ability to deal with complexity
(i.e., the amount of elements on a diagram) without overloading the human mind. The
limits of the human mind are both perceptual (the perceptual discriminability capabilities)
and cognitive (working-memory capacity). Two main techniques can be used to handle
complexity.

• Modularization consists of reducing the complexity of large diagrams by dividing
them into subsystems. This reduces the cognitive load and helps increase the
speed and accuracy of understanding information [38]. Semantic constructs (like
subsystems) are not enough on their own; they need to be supported by diagram-
matic conventions as well (syntactic level).

• Hierarchy is a very effective way of making complexity manageable by humans. The
top-down construction of diagrams is called decomposition or refinement, while a
bottom-up approach is called abstraction or summarisation.

5. Cognitive Integration This theory applies when multiple diagrams are used to rep-
resent different aspects of a system. Whether it is diagrams of the same type that apply
to different parts of the system (i.e., homogeneous integration), or different types of
diagrams (i.e., heterogeneous integration). The cognitive integration of diagrams
theory states that multi-diagrams representation must support both conceptual and per-
ceptual integration to be cognitively effective (figure 2.8) [25].

• Conceptual integration: mechanisms that help the user assemble information from
several diagrams into one coherent representation. Summary diagrams (that pro-
vide a simplified view of the whole system) and contextualization (showing the
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focus of the current visualization in the context of the system as a whole) are two
effective techniques.

• Perceptual integration: indicators to simplify the transition and navigation between
the diagrams. Many mechanisms can help perceptual integration, such as identifi-
cation (i.e., clear labelling of diagrams), level numbering, including navigational
cues or even a navigational map.

Diagram 1 Diagram 2perceptual
integration

navigation
between
diagrams

overall
cognitive
map

conceptual
integration

Figure 2.8. Cognitive integration: multiple diagrams are used to represent a system.

6. Visual Expressiveness This is a measure of the number of visual variables used in a
notation. While the perceptual discriminability describes the visual variations between two
graphical symbols, visual expressiveness measures the utilization of the graphic design
space. Information-carrying variables are variables used to encode information, and
free variables are variables that are not formally used in the notation. The degree of
visual freedom is the number of free variables used, and is the inverse of the visual
expressiveness. Textual notations have 8 degrees of visual freedom (they are called
non-visual); a notation that has 0 degree of visual freedom is visually saturated.

While color is one of the most effective visual variables, it should not be used alone but in
conjunction with others. The choice of the variables used should be based on the nature
of the information: form follows content. The aim is to match the properties of the visual
variable with those of the construct to be represented. Figure 2.9 shows the 8 visual
variables as defined by Bertin, Berg, and Wainer [4].

7. Dual Coding This theory advises to use both text and graphics at the same time to
convey information more efficiently than if either was used on their own [45]. Even though
just like color (and we have discussed this before are well), text should not be used on
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Figure 2.9. The 8 visual variables, from [4].

its own to distinguish between two symbols, it can be a form of redundant coding. An-
notations directly of the visual notation can be used to clarify meaning and improve the
understanding of the diagram. Another application of dual coding are hybrid symbols:
a text + graphics combination that reinforce or extend the meaning of the graphics (cf.
Figure 2.10).

0..1 3..15 0..1 3..15

Graphical encoding Textual encoding Dual coding

Figure 2.10. Hybrid symbols: implementing dual coding by using a combination of text
and graphics.

8. Graphic Economy The number of different graphical symbols used in a notation
(graphic complexity) should be cognitively manageable. The graphic complexity of a
notation is measured by the size of its visual vocabulary. While diagrammatic complexity
(cf. Principle 8: Complexity Management) looks at the number of elements displayed,
graphic complexity looks at the amount of different symbols. The span of absolute
judgement of an individual - his ability to distinguish perceptually distinct alternatives - is
around 6 categories [40]. Therefore, this is our upper limit for graphic complexity. Graphic
economy can be achieved in different ways.

• Reducing semantic complexity by removing or partitioning the spectrum of semantic
constructs.

• Introducing symbol deficit by choosing not to show some semantic constructs graph-
ically and introducing more textual encoding.

• Increasing visual expressiveness by increasing the number of visual variables used
to discriminate between symbols. Indeed, the limit of 6 symbols applies only if a
single visual variable is used for perceptual discrimination.

9. Cognitive Fit The use of different visual dialects for different tasks and audiences is
a principle of cognitive fit theory that is widely accepted in the IS field [50, 59, 60]. To
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achieve good performances in problem-solving, there should be a three-way fit between
the problem representation, task characteristics, and problem solver skills. This implies
that different visual notations should be used for different combinations of these three
elements. Two main reasons drive the need for the use of multiple notations regarding
cognitive fit.

• Expert-novices differences suggest that novices will require visualisations that have
better perceptual discriminability, reduced complexity, more semantic transparency,
use explanatory text, and present simplified vocabularies than experts.

• The representational medium is a major determinant in the design of a visual nota-
tion. Whether a diagram will need to be drawn by hand, or is solely generated by
software should impact the requirements of the notation.

Interactions between the principles The interactions that these nine principles have
among each other is shown in figure 2.11. Some principles work well together, creating
synergies. Others have a negative influence on each other, and trade-offs must be made.
Note that all relations are symmetric. Following are the main interactions:

• Semiotic Clarity. Symbol excess and redundancy increase Graphic Complexity
(negative) while symbol overload and deficit reduce it (positive).

• Perceptual Discriminability. Increases Visual Expressiveness (due to the increase
in visual distance). The reverse is also true.

• Visual Expressiveness. Reduces the effects of Graphic Complexity. Graphic Econ-
omy limits the use of Visual Expressiveness.

• Graphic Economy. A high amount of symbols decreases Perceptual Discriminability
by making it more difficult to distinguish them.

• Cognitive Fit is influenced positively by Perceptual Discriminability, Complexity Man-
agement, Semantic Transparency, Graphic Economy, and Dual Coding by helping
novices. Semantic Transparency may decrease Cognitive Fit fit for experts.

• Cognitive Fit. Semantic Transparency and Visual Expressiveness both make hand
drawing more difficult.

Eight years after [41], Van Der Linden and Hadar discuss the application of the PoN (the
prescriptive theory) in their systematic literature review [58]. In their analysis of 70 appli-
cations of the PoN, a little more than half concerned the creation of new notations, the
other half being existing notations or forks. In most cases, no other notation than PoN
was considered. More surprisingly, the users of the notation were not involved at all in
the vast majority of analyses. Trade-offs in the notation were not discussed with users,
and proposed design changes or new notations were not evaluated on their cognitive ef-
fectiveness. This shows that even though PoN is highly used for analysing and designing
visual notations, this is not done with much care. The core idea of PoN that designing
visual notations should be a rational process, not a subjective one, seems to often be left
out.
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Figure 2.11. Interactions between the principles, from [41]. + indicates a positive effect,
- a negative effect, and +/- means the effect is either positive or negative depending on
the situation.

2.4.2 Designing Information Models

While the PoN focuses on visual notations in the domain of SE, a more general model
is the Guidelines of Modeling (GoM) from Schuette and Rotthowe [48]. This approach
proposes a framework for rational design of information models. Six main principles are
described:

1. Construction Adequacy. A consensus (between the model designers and users)
must be found on the represented problem and on the model. Without this, the
designer can not ensure that the construction quality of his model can be evaluated.

2. Language Adequacy. The language used to construct the model (e.g., a visual
notation) must be suitable and correct. Suitability will be impacted by the choice of
the modeling technique and relevant model constructs. Correctness refers to the
proper application of the meta-model’s grammar and syntax.

3. Economic Efficiency. This principle emerges from a purely economic yet rational
point of view, where resources are not unlimited. The benefits coming from the
designed model must outweigh the costs of developing it. Note that this principle
may conflict with other principles.

4. Clarity. The model must be easily comprehensible for the user. Hierarchical de-
composition, layout design and information filtering should be done by the model
with the user in mind. Filters may be content-specific (show different detail levels in
one model) or methodical (which allow the user to configure the meta-model).

5. Systematic Design. This expresses the need for an inter-model consistency be-
tween structural models (logical composition of structure) and behavioural mod-
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els. A well-thought meta-model of information systems should indeed include both
types.

6. Comparability. Models and meta-models should be comparable semantically re-
garding their correspondence and similarity. Two models can only be compared if
each element of one model can be expressed in the other model.

The GoM-Architecture further specifies that these guidelines can be used independently
(or with varying importance), depending on the restrictions of the actual modeling project.

2.4.3 Semantic Analysis of Visual Notations

As previously discussed, ontological analysis (or semantic analysis) is now a widely ac-
cepted method for evaluating visual notations, especially in the field of software engi-
neering [17, 51]. A typical approach is to base the analysis on the Bunge-Wand-Weber
(BWW) model of information system [44]. The BBW model (cf. [61, 62]) is derived from
Mario Bunge’s ontological model, which is inspired by systems theory [7, 8].

Ontological analysis postulates that there should be a bijection (i.e., two-way mapping)
between the concepts of the ontology, and the semantic constructs used in the model.
In this context, an ontological concept is a real-world construct (e.g., thing, property,
system). Semantic constructs are obtained from a description of the grammar (here, the
grammar is a visual notation). The first mapping - from concepts to constructs - is called
the representation mapping. This mapping describes how the ontological concepts are
represented by the semantic objects. The second mapping - from constructs to concepts
- is the interpretation mapping. This mapping describes whether and how a semantic
construct stands for in the ontology. The representation mapping brings the notion of
completeness; achieved when the representation mapping is total (i.e., when all concepts
can be represented by constructs). With the interpretation mapping comes on top the
notion of clarity ; achieved when the interpretation is both total and one-to-one.

A visualization will be said to be complete if the representation mapping is total (all con-
cepts can be represented by constructs). Otherwise, the visualization is said to be in-
complete or to have construct deficit (cf. Figure 2.12). A construct deficit means that not
all ontological concepts can be represented, which is usually undesirable.

The ontological clarity of the visualization - how ’clearly’ each construct represents a con-
cept - can be undermined by construct overload, construct redundancy, and construct
excess. These can be seen through the interpretation mapping (cf. Figure 2.13). Con-
struct overload appears when one construct maps into one ore more concepts. Construct
redundancy shows that several constructs map to the same concept. Finally, construct
excess arises when a construct does not map to any concept (this exposes a deficiency
in the ontological model chosen, or that the construct goes beyond the intended scope of
the visualization).
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Figure 2.12. Ontological completeness (left) and ontological incompleteness or construct
deficit (right).
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Figure 2.13. Ontological completeness with from left to right: (a) construct overload, (b)
construct redundancy, (c) construct excess.

The expressive power of a visual notation is measured by both its ontological complete-
ness and clarity. This notion can be used to compare two versions of the same visu-
alization, for example. Assuming that the chosen ontological model was valid from the
start, the evaluation of a visualization’s completeness and clarity can indicate potential
improvement areas.

The ontological concepts of the BWW-model are detailed in appendix B.

2.4.4 Software Visualization Today

In their recent systematic literature review (SLR), Mattila et al. describe the state of the
research on software visualization [34]. Diehl defines software visualization as visualizing
the structure, behaviour, and evolution of software [13]. But as the authors of the SLR
explain, SE processes generate data (such as development data) that does not fit into
that definition. In the SLR, the authors tried to understand 1) The reasons, methods, and
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Table 2.2. Studied aspects in software visualization research, from [34].

Studied aspects Structure Execution Evolution ManagementDevelopmentRequirementsOptimizationRendering Other
Amount of studies 37 25 15 6 3 3 3 3 2
Data source x studied aspects Structure Execution Evolution ManagementDevelopmentRE OptimizationRendering Other Total
Source code 33 6 11 5 0 1 0 2 0 46
Software execution data 7 22 1 0 0 0 2 1 1 28
Change / version data 5 1 10 3 2 0 1 0 1 17
Static code analysis 8 5 2 1 0 0 2 0 0 15
Usage data 1 2 2 0 1 0 0 0 0 5
Documents and models 2 0 0 0 0 3 0 0 2 5
Test data 1 2 1 1 0 0 0 0 0 4
Other 2 1 1 0 0 0 0 0 0 4
Not relevant / Not stated clearly 4 0 3 2 1 0 0 2 0 9
Visualization format x studied aspects Structure Execution Evolution ManagementDevelopmentRequirementsOptimizationRendering Other Total
Hierarchical and Graph-Based Techniques 31 17 11 3 2 2 1 3 2 61
Geometric projection techniques 12 12 5 2 0 0 2 1 0 26
Timelines 1 9 5 3 3 0 1 0 0 18
Info graphics 7 6 4 3 1 0 1 0 0 17
Icon-based techniques 6 3 4 0 0 0 1 0 0 12
Text based visualizations 5 1 2 0 0 0 0 0 0 7
Tag- and word-clouds 2 0 3 1 0 0 0 1 0 5
Pixel-oriented techniques 1 3 0 0 0 0 0 0 0 4
Other 3 4 4 3 0 1 1 0 0 11
Not stated clearly 1 0 0 0 0 0 0 0 0 1

data sources for software visualization, and 2) The maturity of the field of research.

The results show that the reasons for using software visualizations are mainly program
comprehension, collaboration and engagement, as well as support and maintenance.
What is generally visualized is the structure and execution of the software, and several
code quality metrics. Most visualizations were developed to be used by developers and
software architects, few were intended for testers or managers. The methods most used
for the visualizations were graph and tree visualizations. Others include timelines, poly-
metric views, clusters, and heat maps.

Based on the studied themes, data sources and visualization methods, the authors clas-
sify the 83 articles reviewed into 9 categories. Understanding 1) software structure, 2)
software execution, and 3) software development. Showing 4) the evolution of software,
5) software project management. As well as 6) requirements engineering, 7) optimization
of computing and resources, 8) visualization algorithms and rendering, and 9) others.
The results show that the theme studied influences the data sources and methods used
for the visualization (cf. Table 2.2).

This systematic literature review shows that today, software visualizations are still mainly
used for understanding software structure, behavior and evolution through hierarchical or
graph visualizations, by analysing source code. Moreover, while the field of research has
developed quite well and is very active, it is still lacking maturity.

2.4.5 Usage Data Visualization

The main propose of PDD visualizations is currently related to feature usage. Mattila
et al. integrated usage data along with issue management data and development data
to create a mashup visualization [35]. The aim of their visualization was to show how
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well continuous delivery of features was achieved through the project development. The
timeline-based visualization (cf. Figure 2.14) is divided in two parts. The upper part
shows features’ lifespans (1 feature per line) from issue created (in blue), then develop-
ment on-going (in yellow), to development done (in gray). The pink vertical lines following
the end of the development show the usage of the feature by the end-users. The bot-
tom part of the visualization shows the amount of unfinished (yellow) and finished (gray)
features.

Figure 2.14. Mash-up software visualization, from [35].

Marciuska et al. make use of usage data to generate a Feature Usage Diagram [32]. Their
work focuses on the usage of features per users (which features was used by whom and
when), in the context of feature-reduction: selecting which features to remove in a (possi-
bly bloated) software. Their visualization (cf. Figure 2.15) is a directed graph linking fea-
tures together, and indicating their usage. Links indicate that a feature can be accessed
through another feature. Feature groups represent sets of features that share access to
the features outside the group. Marciuska and Abrahamsson present a visualization tool:
Feature Usage Explorer, that implements this visual notation for HTML5-based applica-
tions [29].

Matejka, Grossman, and Fitzmaurice present a usage collection and visualization tool for
generating heat-maps of GUIs [33]. The colored heat-map displays the usage of features
in an interface, directly on top of it. Figure 2.16 shows the result of a heat-map on a
classical GUI (Microsoft Word in this case).
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Figure 2.15. Feature Usage Diagram, from [32].

Figure 2.16. UI heat-map, from [33].

2.5 Data Modeling

From the data source to the data visualization, a necessary step is the use of a data
model to represent and store the data. In [36], Mattila et al. present the Unified Model for
Software Engineering Data (UMSED). The objective of this data model was to overcome
the barrier of having multiple data formats (resulting from multiple data collecting tools and
software engineering processes). It does so by defining a common format for software
engineering data that can therefore be used as a basis for building reusable visualization
and analysis components.

The version of the model described here is an adaptation that differs from the original.
This version refines the notions of Event, StateChange, Construct, and Origin. How these
elements are linked to each other can be seen in figure 2.17.

Event is an action performed by a user on one or more constructs at a certain time.

Construct (or artifact) is an aspect of software engineering that is interesting for visual-
ization and analysis purposes. Constructs are the objects on which events are performed,
and can also be the user himself.

StateChange is an optional attribute of an event. It is used when the event triggers a
change of state in the construct it is linked to.

Origin is the source and context of the data.

This model allows to represent software engineering data in a generic way. Several data
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Figure 2.17. Graphical representation of the Unified Model for Software Engineering
Data, from [36] (updated).

types originating from different data sources can here be easily linked to each other, once
converted to the data model.
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3 RESEARCH MATERIAL

This chapter presents the research materials that this thesis is based on. Section 3.1
presents the data that is used: its source (the software Kactus2), how that data had been
collected, and the analytics that were previously made on this data. Section 3.2 describes
the visualization framework in which we have integrated the data, as well as the original
visualization plugin, and previous applications of these tools.

3.1 Data Source

3.1.1 Kactus2

The data that serves as the material for this thesis originates from Kactus2. This software
is being developed at Tampere University by a research group of the Pervasive Computing
Department. It was first presented in [22] and published as open source in 2011. Its
source code can be found on github1.

The development team describes the software as "a graphical EDA toolset for design-
ing embedded products, especially FPGA-based MP-SoCs. The toolset supports reuse,
exchange, and integration of Intellectual Properties (IPs), thus increasing productivity of
hardware development, but potentially also assisting co-operation with software devel-
opment."2 EDA (Electronic Design Automation), also called Electronic Computer-Aided
Design (ECAD), is a category of software tools for designing electronic systems. An
MP-SoC (Multiprocessor System on a Chip) is an integrated circuit that integrates all
components of a computer or other electronic system that has the particularity of having
several processors.

The target users of Kactus2 are SMEs (Small and Medium-size Enterprises) that use FP-
GAs and on- or off-chip processors. The software is also used by students, for example
at Tampere University (as it will be discussed later). The latest version of the software
(Kactus2 3.6.5) was released on 29/06/20183 for both Windows and Linux operating sys-
tems, and has been downloaded more than 500 times to date. It is written in C++11 and
Qt 5.10.1, and currently contains more than 300,000 lines of code.

1https://github.com/kactus2/kactus2dev
2http://funbase.cs.tut.fi/#kactus2
3https://sourceforge.net/projects/kactus2
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Figure 3.1. An example of the Kactus2 Interface.

3.1.2 Data Collection

The data was collected in the context of [54]. In this paper, Suonsyrjä describes the rea-
sons for choosing specific collecting techniques in 3 case study companies. With the help
of the author, the development team of one case study (Kactus2) used the framework de-
signed in [56] to select the appropriate data collection approach. After evaluating several
options and their feasibility, the selected technique was the aspect-oriented approach (cf.
Section 2.3.2). The most important criteria considered were: security, amount of sources
and targets, configurability, low work effort and reuse possibilities.

The data that serves as our research material was collected in the beginning of 2017,
on a group of students in several laboratory exercise sessions. The collected data was
stored in a log file for each user session of Kactus2. The logs were then consolidated
into a unique file for analysis. The log consists of around 4,5004 timestamped entries
recorded by the collection system.

25.01.2017 08:32:24 user X i n session Y: Document Z unlocked .

Listing 3.1. Example of a log entry.

Each line of the log consists of the following information (cf. Listing 3.1):

1. The user_id of the user.

2. The session_id of the recorded session. Note that a session cannot be restarted
once it has been quit.

4Due to the way the collection was implemented, some events were recorded twice. Other anomalies in
the logs required corrections.
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3. The time and date of the recording.

4. The action that was recorded. The complete list of all different actions present in
the logs can be seen in appendix A.

The data was collected to answer three different questions:

1. What features are used/not used? This question was deemed too general and was
narrowed thus down to: Which toolbar actions are used most?

2. How long does it take for the user to find the unlock button?

3. Which help pages are viewed most?

To answer the first question, all toolbar button presses were recorded. The objective was
to count the number (or percentage) of uses of these features, in order to possibly re-
arrange the feature icons accordingly. To answer the second question, the timestamps
of when documents are opened, closed, locked or unlocked were recorded. The re-
searchers and developers wanted to achieve multiple things: finding out if the app was
intuitive (especially for the first time users), profiling users based on their level, and in-
vestigate a potential problem with the unlock-feature. To answer the third question, the
collection system records the switch from one interface to the other. This is because
a help page is automatically opened as a sidebar by Kactus2 when a new interface is
opened. The objective was to see where users have struggles. Identifying areas of
struggle could have helped improve the usability of the software (e.g., by implementing a
wizard functionality, making help-tours or similar).

3.1.3 Analytics

Resulting from the data collection process, the researchers performed some analytics on
the data collected from Kactus2. Statistics on times between two actions, per session,
were shown on a table (cf. Table 3.1). Another table (cf. Table 3.2) shows the statistics of
the toolbar button presses.

Two visualizations were also created at that time. The first one (cf. Figure 3.3) is a simple
bar graph, that plots the time needed for a user to unlock a document after opening it.
This represents the fourth statistics in the table 3.1. The second one (cf. Figure 3.2)
is an event path graph where each state represents a unique action. The size of an
arrow between two states s1 and s2 represents the probability that in the logs, action 2
is recorded directly after action 1. No analytics were made on the data collected from the
opening of help pages.
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Figure 3.2. Event path graph.

Table 3.1. Session times between two actions (in seconds).

From: Start Library Start Doc Open Start

To: Library Doc Open Doc Open Unlock Unlock

1 160 347 507 70 577

2 174 176 350 16 366

3 259 247 12 34 46

4 110 28 138 76 214

5 22 68 90 251 341

6 25 474 499 15 514

7 26 80 106 52 158

8 96 283 379 36 415

9 56 24 80 78 158

10 83 146 229 58 287

11 62 965 1027 240 1267

12 418 44 462 19 481

13 19 419 439 105 543

14 8 41 49 89 138
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Table 3.2. Statistics on toolbar button presses.

Clicked on... Count Clicked on... Count

About 1 Save 27

Configure Library 35 Save All 4

Default 1 Save As 6

Exit 1 Select Tool 3

Help 1 Settings 4

Interconnection Tool 12 Undo 3

Locked 12 Unlocked 165

Makefile Generator 116 View Library Integrity Report 1

MCAPI Code Generator 1 Visible Windows 2

Refresh 21 New 2

Refresh Library 11

Figure 3.3. Time for document opened to unlocked, per session (in seconds).
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Issue Collectors & Linkers

Backend

REST API

Mongo DB

Github commit & issue collector

JIRA issue collector

Github issue collector

Gitlab issue collector

Agilefant issue collector

Jenkins test data collector

Custom test log parser

Custom operation history parser

Visualization plug-ins

Duration Timeline

Lifespan Timeline

Amount Timeline

Figure 3.4. Implementation of the framework, from [36] (updated). Issue Collectors and
Linkers are examples of usages of this framework.

3.2 Technical Framework

3.2.1 Database

The logs taken from Kactus 2 are parsed and formatted into the Unified Model for Soft-
ware Engineering Data (UMSED) presented in 2.5. To use this data model, a framework
is presented for sending, storing, and retrieving the data [36]. This framework uses a
NodeJS5 server running a MongoDB6 database. To send and retrieve data, a REST API
is used.

For each data source, a pair of collector and linker must be implemented. The collector
retrieves the data from the original source and converts it into the data model. The linker
is used to send the data and to create the relations between events and constructs in the
database. The visualization then takes care of using the data for creating visualizations
(cf. next subsection). Figure 3.4 shows the implementation of this framework.

3.2.2 Visualization Plugin

In [36] is also presented a visualization plugin, which uses the D37 framework. It is
an open-source JavaScript library for manipulating documents based on data. D3 (for
Data-Driven Documents) uses HTML5, SVG, and CSS standards for producing dynamic,

5NodeJS - http://www.nodejs.org
6MongoDB - http://www.mongodb.org
7D3.js - https://d3js.org
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Figure 3.5. Visualization of test log information, from [36].

Figure 3.6. Visualization of usage logs, from [36].

interactive data visualizations in web browsers. The plugin retrieves the data from the
database, converts it into the visualization data format and generates the visualization
based on the required template.

The timeline-based template proposed is parameterized. Users can select which attribute
of which artifact will be used as the y-axis. This allows very precise grouping of events,
as events related to the same y-axis identifier will be drawn on the same line. Figures
3.5, 3.6, and 3.7 show examples of different uses of this template.

3.2.3 Applications of the Framework and Visualization Plugin

In [36] are mentioned several parsers as a proof-of-concept for the framework. These
are parsers for Jira, Github, test log, and product usage log data. The data is parsed and
sent to the database, and accessed through the REST API. For the visualization plugin,
[36] gives two visualization examples, for usage logs (figure 3.5) and test logs (figure 3.6).
Each line of the visualization represents a constructs: test sets in figure 3.5 and operation
types in figure 3.5. In both visualizations, the length of the bars on each line represent
the duration of the execution (respectively of the test and of the operation). Colours are
used to distinguish between failed and successful operations.

Hylli et al. present a tool for collecting issue management data from different services
[21]. It describes an intermediate model for data from a specific domain, that is then
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Figure 3.7. Visualization of issue management data, from [21].

converted in the UMSED. The visualization plugin is then used to display this data. Figure
3.7 shows how the visualization plugin has been used to visualize issue lifespans and
events from a Github project. Each line represents an issue, the length of the bar being
its duration. Circles on the lines show events related to the issue.

Patrushev uses a modified version of the UMSED [46]. It is used to handle software
data form Github repositories, but the data is not intended to be used by the visualization
plugins. A different framework is thus implemented to take care of this modified data
format. The data is here destined to be used for training of a self-organizing map, in
order to analyze software project management patterns.
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4 METHODOLOGY

This chapter describes the methodology and process of constructing this thesis. Section
4.1 shows how the Unified Data Model presented in section 2.5 was implemented. Sec-
tion 4.2 describes the process of designing and developing visualizations for the data of
Kactus2. Section 4.3 details how the visualizations were evaluated.

4.1 Data Model

The first step towards the objectives (cf. Section 1.1) was to insert the data coming
from Kactus2 (described in section 3.1) into the UMSED presented in section 2.5. The
data model distinguishes primarily events and constructs, making them the main building
blocks of the model. It was thus necessary to start by analysing the logs and identifying
what would qualify as an event or as a construct.

These are examples of how log entries are formatted.

25.01.2017 08:32:24 user A i n session B: Document C unlocked .
27.01.2017 09:34:12 user P i n session Q: Help page R opened .
29.01.2017 10:01:52 user X i n session Y: Cl icked on Z .

Listing 4.1. Example of 3 log entries.

4.1.1 Elements of the Data Model

From the definition of a construct presented in the data model - an aspect of software
engineering that is interesting for visualization and analysis purposes, the objects on
which events are performed - four elements stand out:

• User The user is the starting point of the logs. He is the one performing actions on
the other constructs.

• Session Sessions are created by users, and all actions on documents and help
pages are contained within a session.

• Document Documents can be opened, closed, locked and unlocked by a user
within a session.
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• Help page Help pages are opened by a user within a session.

These four software engineering concepts are interesting for analysis, and provide es-
sential information on the usage of the software. The third line in the log example shows
another SE concept: what the user has clicked on. This was not considered to be relevant
as a construct (but is not ignored none the less, as explained below).

State Change

from
to

Construct

type
name
description

Origin

id
context
source

Event

type
time
duration
author

0..1 1 1 1

1

1

1

1..*

1

0..*

Model

Implementation

State Change

Document Closed

from: Document Opened
to: Document Closed

Document Locked

from: Document Unlocked
to: Document Locked

Document Unlocked

from: Document Locked
to: Document Unlocked

Page Opened

to: Page Opened

Clicked on [...]

type: Feature

Event

time: Date
author: String
state change: String
origin: Origin
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type: User
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name: String
description: String
origin: Origin

Document

type: Document
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Kactus2

source: Kactus2
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id: String
context: String

Session started

type: Start/end

Session

type: Session

Document Opened

from: Document Closed
to: Document Opened

Session Closed

from: Session Opened
to: Session Closed

Session Opened

from: Session Closed
to: Session Opened

Clicked on Exit

type: Start/end

Document [...]

type: Document

Help page [...]

type: Help page

10..*

Figure 4.1. Implementation of the Unified Data Model for Software Engineering Data.
Yellow elements are related to documents, orange to help pages, red to sessions. Purple
are features, blue are users, green is the origin.

Once constructs were identified, we looked at what events (i.e., actions performed by a
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user on one or more construct(s) at a certain time) appear in the logs. The events were
separated into four categories, which result from how the data was collected (cf. Section
3.1.2 and the three questions that lead the data collection process):

1. Start/end The events marking the beginning of a new session, and its end.

2. Documents The events indicating that a document has been opened, closed, locked
or unlocked.

3. Help pages The events indicating that a help page has been opened.

4. Features The events indicating that a feature has been used (i.e., the button presses
on the toolbar of Kactus2).

These four types of events encompass all the actions recorded in the logs. The events
were marked as state changes (i.e., optional attribute of an event used when the event
triggers a change of state in the construct it is linked to) when adequate. This was the
case for the first three types of events enumerated above. Finally, the origin (i.e., source
and context of the data) was obvious. The source is the log file used, and the context is
the software itself: Kactus2.

Figure 4.1 shows the implementation of the Unified Data Model for Software Engineering
Data.

4.1.2 Links Between the Elements of the Data Model

In the model shown in 2.17, multiple events can be linked to one-another. This was
not necessary in our case. But we do link several constructs together, and of course
constructs to events. One user is linked to one or more sessions. A session is comprised
of one or more events. An event can be a state change, and can be linked to at most one
help page or one document. Help pages and documents are linked to the user that uses
them and the session in which they exist. In this configuration, a document or help page
is never accessed by different users.

4.1.3 Data Parsing and Linking

The integration of the logs into the database was designed to remain coherent with the
previous implementations of the framework (cf. Figure 3.4, Collectors and Linkers). Three
modules take care of handling the data upstream:

1. The Collector receives input from the user (e.g., which log file to use), and lets the
Parser collect the data, then send this data to the Linker.

2. The Parser parses the desired log file and returns the list of events, state changes,
users, sessions, documents and help pages.
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3. The Linker formats the received data into the events and constructs as defined by
the UMSED implementation (cf. Figure 4.1). It then sends these to the database.
Finally, it creates the links between the elements of the database.

Collectors & Linkers

Collector

1. Receives input

2. Gets data from Parser

3. Sends data to Linker

Parser

1. Parses the logs

2. Creates events, users
sessions, documents,
state changes and help
pages

Linker

1. Creates the formatted
artifacts and events
2. Sends the artifacts
and events to the DB

3. Links the data in the
DB

Backend

REST API

Mongo DB

Figure 4.2. Implementation of the integration of the data in the database.

4.2 Visualizations

4.2.1 Session Timelines

The first visualization - named Session Timelines - was designed to display the lifespans
of the sessions, and the events that occurred during these lifespans. The objective was to
be able to compare easily the evolution of the sessions between each other. The starting
point for this visualization was the Issue Timeline visualization shown in figure 3.7 which
displayed the lifespan of issues from Github.

The Session Timelines visualization can be seen on figure 4.3. The visualization should
be read line-by-line. Each line represents a session of a user. The user is indicated (in
color) on the right of each line.

All sessions start artificially at the same time to display the events in parallel. This allows
to compare all sessions at the same time, independently of the time and date of their
creation.

The events recorded are displayed on the session timelines by colored circles. Four types
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Figure 4.3. Session Timelines visualization.

of events are distinguished:

1. Start/End in blue. These events indicate the opening and closing of the session.

2. Documents in green. These events indicate actions performed on documents by
the user during the session (document open, locked, unlocked, or closed).

3. Help pages in orange. The events indicate the opening of a help page in the
software.

4. Features in red. These are the events recorded by the clicks of the user on the
main task bar (toolbar button presses).

When hovering over an event circle, the bottom-right tool-tip box provides more details
on the event (action recorded, page/document related, etc).

On the top, the Filter data option allows to filter by user and/or event type. The coloured
legend indicates the type of the events displayed on the session lifespan.

Between the legend and the actual visualization, the interactive time-selector allows to
zoom-in the visualization to get a more localized view of the events.

4.2.2 User Timeframe

The second visualization - named User Timeframe - was designed to show in more detail
the unfolding of events in each session individually. The main objective was to see the
flow of actions in a session, through the documents opened and help pages viewed1.

1The opening of help pages is recorded automatically each time the user enters a new view in the
software. Therefore tracking the help pages indicates us what the user is viewing at each moment.
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Figure 4.4. User Timeframe visualization.

The visualization is divided in three parts (cf. Figure 4.4):

1. Session (represented in pink). The first line displays the lifespan of the whole
session. On this lifespan the events classified as features are represented by darker
pink circles. These are the events recorded by the clicks of the user on the main
task bar.

2. Documents (represented in blue). The next lines (three lines in the example) show
the lifespans of the documents opened by the user during the session. Different
shades of blue indicate the state of the document (open, locked, or unlocked). The
events that lead to the changes of the state are indicates by circles of the same
color.

3. Pages (represented in yellow). The last lines (six in the example) show the lifespans
of help pages viewed by the user. In essence, it shows the path taken by the user
through the session in the software. Yellow circles indicate the opening of a page,
orange circles indicate the switching to another page.

Hovering over the lifespans or events will display the tool-tip box (as in the first visualiza-
tion), giving more indications. The names of the documents and help pages and displayed
left of the corresponding lines. Hovering over the names will display the complete name
in the tool-tip box.

On the top left corner, we are able to select the user and session that we want to visualize.
The legend and time-selector work in the same way as the first visualization.

4.3 Evaluation

We will use two complementary approaches (semantic and syntactic analysis) for eval-
uating the two visualizations developped. An ontological evaluation of the visualizations
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will be made to provide a semantic analysis. The syntax of the visualizations will be
evaluated in regards to the Physics of Notations [41]. Looking at both the syntax and se-
mantics of the visualizations will allow us to assess both what is represented and how it
is represented. Our hypothesis is that the ontological evaluation will be likely to find flaws
or incompleteness in the data model used. Because what we can represent is inherently
limited by the design of the data model itself. On the other hand, the syntactic analysis
should give us insight into the adequacy of the visualization templates for representing
the data: how the data is represented depends on the visual notations developed.

4.3.1 Semantic Analysis

Similarly to Opdahl and Henderson-Sellers in their ontological evaluation of the UML, we
will base our semantic analysis on the Bunge-Wand-Weber (BWW) model of information
system [44]. The BBW model (cf. [61, 62]) is derived from Mario Bunge’s ontological
model, which is inspired by systems theory [7, 8].

The semantic domain was defined by analysing the data model (UMSED) discussed in
section 2.5, which was used to model the data collected. Hence our semantic domain
is the set of semantic constructs that are described by or can be inferred from the data
model.

The detailed tables can be found in the following appendices:

1. BWW-model: Appendix B. The set and description of the ontological concepts.

2. Semantic domain: Appendix C. The set and description of the semantic con-
structs.

3. Representation mapping: Appendix D. The mapping between the ontological con-
cepts and the semantic constructs.

4. Interpretation mapping: Appendix E.The mapping between the semantic con-
structs and the ontological concepts.

The objective of the representation mapping from the BWW-model to the semantic do-
main is to:

1. Identify redundant constructs, which overlap semantically with others.

2. Identify construct deficits in the semantic domain.

The interpretation mapping from the semantic domain to the BWW-model is needed to:

1. Identify constructs that are not problem-domain oriented: construct excess.

2. Identify overloaded constructs, that are intended to represent different kinds of phe-
nomena.

3. Define precisely the meaning of each semantic construct.
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Our assumption is that this semantic analysis will reveal potential weaknesses in either
the data collection process, or the data model used to contain this data.

4.3.2 Syntactic Analysis

To complete the evaluation of the visualizations, we will confront our visual notations
with the Physics of Notations [41]. Described in section 2.4.1, this theory gives rational,
evidence-based principles for designing effective visual notations. This approach is com-
plementary to the ontological analysis, because such an evaluation will not differentiate
two visual notations that have the same semantics but different syntax. This is critical
as we know that form has a comparatively greater effect on cognitive effectiveness than
content in visual representations in information systems [26, 52]. This theory has been
used for example, to evaluate the cognitive effectiveness of the BPMN 2.02 visual nota-
tion [18]. Our visualizations will be evaluated on the nine principles of PoN, considering
as well the interactions between the principles.

Questionnaire - Session Timeframe visualization
Question Answer type
1 How easy was it to understand the 

visualization?
Scale 1 to 5 with 1 = Very hard, 5 = Very easy

2 Could the visualization be used to assess the 
usage of Kactus2?

Scale 1 to 5 with 1 = Not at all, 5 = Absolutely

3 What is in your opinion the most important 
piece(s) of information that can be viewed 
with the visualization? 

Open answer

4 Could the visualization be used to improve 
the software in any way?

Yes/No

5 Would you find personal use in this 
visualization as it is? 

Scale 1 to 5 with 1 = Not at all, 5 = Absolutely

6 What if the data had been collected on "real 
users" (as opposed to lab students)?

Scale 1 to 5 with 1 = Not at all, 5 = Absolutely

7 Rate the usefulness of: the user filter Scale 1 to 5 with 1 = Not useful at all, 5 = Very useful
8 Rate the usefulness of: the event type filter Scale 1 to 5 with 1 = Not useful at all, 5 = Very useful
9 Rate the usefulness of: the event type legend Scale 1 to 5 with 1 = Not useful at all, 5 = Very useful

10 Rate the usefulness of: the time-selector Scale 1 to 5 with 1 = Not useful at all, 5 = Very useful
11 Rate the usefulness of: the tool-tip Scale 1 to 5 with 1 = Not useful at all, 5 = Very useful
12 How would you improve this visualization? Open answer

Table 4.1. Questions on the Session Timeframe visualization. Questions were asked in
this exact order.

4.3.3 Questionnaire

A third method to evaluate the visualizations was to gather feedback from potential users
(i.e., developers of the software Kactus2). This feedback took the form of a question-
naire that was sent to two developers. The questionnaire was divided in two parts, one
for each visualization. Each part started by a description of the visualization, aided with

2Business Process Modeling Notation - http://www.bpmn.org/
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screenshots, and was followed by a series of questions. As the visualizations are inter-
active, explaining it only with screenshots without the ability for the developers to try it
out themselves is not optimal. The rationale for this decision was the convenience of
the procedure, as the platform which hosts the visualizations and technical framework is
unstable and hardly portable. Asking the developers to try to install it themselves and
load the data might have discouraged the respondents. Performing a face-to-face inter-
view and providing the up-and-running visualizations was excluded as well, as it was also
deemed inconvenient for the developers.

The objective of the questionnaire was to have an idea of the actual usefulness of the
visualizations, as well as the potential ease of use and understanding. The questions
asked for each visualization are listed in tables 4.1 and 4.2. The questions were asked in
the order shown in the tables, after the description of each visualization. Questions 1, 2
and 4 were followed by an optional comment field. We mentioned that questions should
be left blank if the respondent did not know the answer or simply did not wish to respond.
Before starting the questionnaire, we asked for consent to use the answers in the context
of this thesis. The questionnaire was anonymous, in the sense that we do not know which
developer is behind each response (i.e., names were not asked in the questionnaire).

Questionnaire - User Timeline visualization
Question Answer type
1 How easy was it to understand the 

visualization?
Scale 1 to 5 with 1 = Very hard, 5 = Very easy

2 Could the visualization be used to assess the 
usage of Kactus2?

Scale 1 to 5 with 1 = Not at all, 5 = Absolutely

3 What is in your opinion the most important 
piece(s) of information that can be viewed 
with the visualization? 

Open answer

4 Could the visualization be used to improve 
the software in any way?

Yes/No

5 Would you find personal use in this 
visualization as it is? 

Scale 1 to 5 with 1 = Not at all, 5 = Absolutely

6 What if the data had been collected on "real 
users" (as opposed to lab students)?

Scale 1 to 5 with 1 = Not at all, 5 = Absolutely

7 Rate the usefulness of: the legend Scale 1 to 5 with 1 = Not useful at all, 5 = Very useful
8 Rate the usefulness of: the time-selector Scale 1 to 5 with 1 = Not useful at all, 5 = Very useful
9 Rate the usefulness of: the tool-tip Scale 1 to 5 with 1 = Not useful at all, 5 = Very useful

10 How would you improve this visualization? Open answer

Table 4.2. Questions on the User Timeline visualization. Questions were asked in this
exact order.

We tried to follow good practice of questionnaire design. But we are not experts in this
discipline and bias is ultimately unavoidable. In general, we aimed to:

• Go from general questions to specific questions, to avoid the framing effect.

• Avoiding double questions (i.e., questions that contain a non-trivial assumption).

• Avoiding phrasing questions using double-negations.

• Allowing the respondent to abstain from answering.

• Restrain from giving examples of answers in the question.
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Furthermore, for questions with scaled answers, we chose an odd scale (in our case, 1 to
5). An odd scale allows the respondent to select the middle option in the scale, which is
the easy answer if the respondent is unsure. While an even scale (e.g., 0 to 5) does not
permit this: the answer will be situated either on the left or the right of the middle. This
kind of scale might seem like forcing the hand of the respondent to not be neutral.
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5 RESULTS

This chapter will present the concrete implementation of the visualization, the results of
the semantic (ontological) and syntactic analysis, as well the responses to the question-
naire discussed in section 4.3.

5.1 Implementation

This section will detail the technical implementation of the visualizations, changes and
additions to the pre-existing code base of the framework and templates. The original
source code can be found on Bitbucket1. The forked version that we are working on can
be found on Github2.

5.1.1 Technical Framework

The part of the code base that is responsible for the handling of the data is located in
datasources. The structure of that part can be seen in figure 5.1. Each sub-folder (such
as agilefantparser) is responsible for fetching the data from the source and sending
it to the database. As we used a new data source, we created a new sub-folder log to
handle this.

We followed the same structure as the previous data handlers by using a three-file system
composed of three main files.

• collector.js receives the input (log file name) from the user and sends the data
from the parser to the poster.

• getdata.js parses the log file given as input and returns a coherent data structure.

• poster.js transforms the data received into the data format specified by the database
(constructs, events and links), and sends this data to the database.

1https://bitbucket.org/rimina/n4s-visu/src/master/
2https://github.com/coin-quin/vis-a-vis
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datasources

agilefantparser

gitparser

issue-collector

log

apis

node_modules

collector.js

getdata.js

poster.js

log.txt

Figure 5.1. Source code structure: data sources. In green are the new folders and files
created. In blue is the data source.

5.1.2 Visualizations

The code base of the visualizations is slightly more complex, and can be seen in figure
5.3. We will detail only the new files created (in green and purple). The modified files (in
orange) were only slightly altered, mainly to accommodate for the new files. Again, we
followed the same file organization as the previous visualizations did.

Views session_timeframe.html and user_timeline.html are the HTML pages which
are the first user interfaces (UIs) of the visualizations. On them are displayed the filtering
options and the data query specifiers. Figure 5.2 shows the interface of the User Timeline
visualization.

UI Utilities The files x_query_ui.js3 retrieve the contents from the aforementioned
views. The files x_template.js3 define the containers and svg elements that will be
used to frame the diagram.

Visualizations The files x_main.js3 are the main files of the visualizations. They ini-
tialize the diagrams and data structures, and load the data onto the graphical elements.

Visualization Templates The files session_timeframe.js and user_timeline.js de-
fine the graphical characteristics of the diagrams used in the visualizations. The file

3Replace x with either user_timeline or session_timeframe.
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Figure 5.2. Starting UI of the User Timeline visualization.

data_selector.js is used by the User Timeline visualization. It is the user- and session-
selection component used to browse between the various users and sessions.

Data processors The files x_dataprocessor.js are used to perform various opera-
tions on the data used by the visualizations. Such operations include parsing, sorting
and filtering for example.

5.2 Ontological Analysis

The ontological analysis will look at the mapping between the ontological concepts of the
Bunge-Wand-Weber model [61, 62] and the semantic constructs. The detailed tables can
be found in the following appendices:

1. BWW-model: Appendix B. The set and description of the ontological concepts.

2. Semantic domain: Appendix C. The set and description of the semantic con-
structs.

3. Representation mapping: Appendix D. The mapping between the ontological con-
cepts and the semantic constructs.

4. Interpretation mapping: Appendix E. The mapping between the semantic con-
structs and the ontological concepts.

We used the representation mapping to highlight potential construct deficits and groups
of redundant constructs in the semantic domain. The interpretation was used to reveal
overloaded constructs and excessive constructs in the semantic domain.
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frontend

src

css

genereic_vis.css

ophi_vis.css

style.less

js

dataquerry

processors

session_timeframe_dataprocessor.js

user_timeline_dataprocessor.js

processor_utilities.js

...

ui_utilities

session_template.js

custom_query_ui.js

user_template.js

user_query_ui.js

...

dist

vis_templates

data_selector.js

time_selector.js

session_timeframe.js

user_timeline.js

...

visualizations

session_timeframe_main.js

user_timeline_main.js

...

views

session_timeframe.html

user_timeline.html

index.html

...

Figure 5.3. Source code structure: frontend. In green are the new files created for
the User Timelines visualization. In purple are the new files created for the Session
Timeframes visualization. In orange are the existing files modified. Three dots indicate
files of other visualizations that we are thus not using.

5.2.1 Redundant Constructs

Construct redundancy occurs when two or more semantic constructs represent the same
ontological concept. We must distinguish two types of redundancies in our semantic
domain:

1. Technically redundant constructs represent the same BWW-concept because they
are sub-types of a more general (non-redundant) construct. This is not particularly
problematic.

2. Genuinely redundant constructs actually represent the same BWW-concept in the
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Sub-types of SEM-entities SEM-object, SEM-user, SEM-session, SEM-document,
SEM-help page, SEM-action, SEM-event, SEM-state
change.

Sub-types of SEM-entity
properties

SEM-object property, SEM-user property, SEM-session
property, SEM-document property, SEM-help page prop-
erty, SEM-actio propertyn, SEM-event property, SEM-state
change property.

Table 5.1. Technically redundant semantic constructs.

problem-domain. This potentially indicates a weakness in the semantic domain.

Semantic constructs that represent sub-types of BWW concepts We have identi-
fied three main cases where semantic constructs are technically redundant because they
are sub-types of other constructs:

1. BWW-thing is represented by an instance of a SEM-entity, as well as all its sub-
types.

2. BWW-property is represented by SEM-entity property, as well as all its subtypes.

3. BWW-class is represented by SEM-object and SEM-action, as well as their sub-
types.

The types and subtypes are shown in table 5.1.

Genuinely redundant semantic constructs We have not found genuinely redundant
constructs. This may be explained by the fact that the semantic domain of our problem is
quite simple and restricted already.

5.2.2 Construct Deficit

Construct deficit occurs when a BWW-concept is not represented by any SEM-construct.
We detail the major deficits here:

• The BWW-property function of a thing maps the thing to some value. It represents
how the property of a thing changes over time. The only changing property of the
entities of our semantic domain is the state of a SEM-object, which is a BWW-
intrinsic property. What represents this function is thus the lifespan of the SEM-
object. But the lifespan is not in itself a semantic construct of our model.

• A BWW-law property (natural- or human-law) of a thing is a rule that restrict the
properties of a thing. While rules are indeed given both by the data model (e.g., a
SEM-state change is linked to exactly one SEM-event) and the data source itself
(e.g., a SEM-action is linked to exactly one SEM-session), there are no semantic
constructs that represent these laws.
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• A BWW-process in a thing is a chain (or tree) of events on a thing, or states of that
thing. The state of a SEM-object is (as previously mentioned) an intrinsic property
of that object. If the list of SEM-events linked to a SEM-object is indeed a construct,
that he list of states is not. The BWW-process is thus only partially represented.

• The BWW-history of a thing is the chronologically ordered list of states that a thing
traverses in time. For the same reason hereabove stated, the history of a SEM-
object is not represented by a semantic construct.

• BWW-composite and component things (and the related notions) have no repre-
sentation in our semantic model. All SEM-entities exist by themselves, even though
they may be structurally linked to others.

• The BWW-system environment is the set of things that interact with the system
but are not part of it. Our model has not semantic constructs for representing this.

5.2.3 Construct Overload

Construct overload occurs when a semantic construct can be used to represent several
different BWW-concepts. Again, this is only problematic if the different BWW-concepts
are not sub-types of each other. The main construct overload identified comes from SEM-
object property and is problematic. This can be interpreted as any BWW-property of an
SEM-object such as name or state. But the state of a SEM-object can also be interpreted
as a BWW-state (stable or unstable) of a SEM-object.

5.2.4 Construct Excess

Construct excess occurs when a semantic construct does not represent any BWW-
concept. There are two possible types of excess. Firstly, genuinely excessive semantic
constructs, which even though they are intended to represent the problem have no BWW
interpretation. And secondly, the semantic constructs that are not problem-oriented, i.e.,
they are useful parts of the model for development or comprehension-related purposes
but are not meant to represent the problem itself. We have not identified any construct
excess in the semantic domain of our problem.

5.3 Syntactic Analysis

In the syntactic analysis, we consider at the nine principles for designing cognitively ef-
fective visual notations proposed by Moody in the Physics of Notations [41]. Both visu-
alizations - Session Timeframe and User Timeline - will be discussed in terms of their
cognitive effectiveness.
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The Physics of Notations looks in detail at the visual syntax of notations: the combination
of the visual vocabulary (the set of graphical symbols) and visual grammar (the set
of compositional rules). It was thus necessary to define the visual syntax of our visual
notations. As our visualizations are quite simple, so are their syntax. The syntax of the
Session Timeframe visualization can be seen in tables 5.2 (visual vocabulary) and 5.3
(visual grammar). The syntax of the User Timeline visualization is slightly more extensive
and can be seen in tables 5.4 (visual vocabulary) and 5.5 (visual grammar).

Visual vocabulary
Graphical symbol Detail Image Meaning
Line light blue color lifespan of a session

Circle green color document-related event

red color feature-related event

orange color help page-related event

blue color session start/end event

Text highlighted (right-hand side) user name

Table 5.2. Visual vocabulary of the Session Timeframe visualization.

Compositional rules
Graphical representation Meaning
Circle placed along a (light blue) line at 
position x (seen from timeline)

The event (circle) related to the session (line) 
occured at relative time x (of timeline)

Highlighted-text on the right of a line The session (line) has been created by user y 
(text)

The (light blue) line starts/end at position x 
(seen from timeline)

The session (line) starts/end at relative time x (of 
timeline)

Circles are "piled up" on a line at position x 
(seen from timeline)

Events (circles) in a same session (line) occur at 
the same relative time x (of timeline)

Table 5.3. Visual grammar of the Session Timeframe visualization.

5.3.1 Semiotic Clarity

Semiotic clarity looks at the mapping between the visual syntax and the semantic con-
structs. The set of semantic constructs forms the semantic domain: the domain that can
be visualized. The semantic domain was previously defined in the ontological analysis,
and can be seen in the appendix C.

Symbol redundancy There are no synographs in either of the visualizations. Different
graphical symbols cannot be used to represent the same semantic construct. Though
SEM-events can indeed be represented (in both visualizations) using circles of different
color, that color depends on the type of the event, hence its instance (i.e., they are not
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Visual vocabulary
Graphical symbol Detail Image Meaning
Line light pink lifespan of a session

blue (three shades) lifespan of a document

yellow lifespan of a help page

Circle light pink session start/end event

dark pink feature-related event

blue (three shades) document-related event                        
yellow help page opening event

orange help page switching event

Table 5.4. Visual vocabulary of the User Timeline visualization.

Compositional rules
Graphical representation Meaning
Light pink circle placed along a light pink 
line

The start/end event (circle) is related to the 
session (line)

Dark pink circle placed along a light pink 
line

The feature event (circle) is related to the 
session (line)

Blue circle placed along a blue line The document event (circle) is related to the 
document (line)

Yellow circle placed along a yellow line The help page opening event (circle) is related 
to the help page (line)

Orange circle placed along a yellow line The help page switching event (circle) is related 
to the help page (line)

The light pink line starts/end at position x 
(seen from timeline)

The session (line) starts/end at absolute time x 
(of timeline)

The blue line starts/end at position x (seen 
from timeline)

The document (line) is opened/closed at 
absolute time x (of timeline)

The blue line changes shade at position x 
(seen from timeline)

The document (line) changes state at absolute 
time x (of timeline)

The yellow line starts/end at position x 
(seen from timeline)

The help page (line) is opened/closed at 
absolute time x (of timeline)

Circles are "piled up" on a blue line at 
position x (seen from timeline)

Events (circles) in a same document (line) occur 
at the same relative time x (of timeline)

Session selection Moving between the sessions of a user
User selection Moving between the users
Blue (three shades) line in session 
visualization

The document (line) is related to the session

Yellow line in session visualization The help page (line) is related to the session

Table 5.5. Visual grammar of the User Timeline visualization.

genuinely redundant). Two circles of different colors could not represent the same event.
The same can be said for the lifespan lines of the SEM-objects in the User Timeline
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visualization.

Symbol overload There are no homographs in either of the visualizations. Each sym-
bol has a unique meaning (i.e., is associated with a single semantic construct). Though
one circle could represent and instance of a SEM-event, it cannot represent any type
of event (that is determined by the color variable) or any other semantic construct. The
same can be said here again for the lifespan lines of the SEM-objects in theUser Timeline
visualization.

Symbol excess There are no excess symbols in either visual notations. All symbols
used have a meaning, they are used to represent a semantic construct. The tool-tip
that is displayed when hovering over an event or lifespan can be seen as a comment or
annotation, but does not consume any visual symbol (i.e., it is not excessive).

Symbol deficit Symbol deficit appears differently in the two visualizations, so they will
be detailed separately. In the Session Timeframe visualization, the following semantic
constructs are no represented by graphical symbols:

• SEM-documents are not represented, hence neither is their relationship with the
User and Session semantic constructs.

• SEM-help pages are not represented, hence neither is their relationship with the
User and Session semantic constructs.

• The only SEM-state change effectively represented is the opening and closing of
a session (seen by the start and end of the session lifespan line). State changes
related to documents are not represented.

• The relationship between SEM-event and SEM-state change (SEM-relation be-
tween SEM-actions) is not represented as well for the other stage changes.

In the User Timeline, the SEM-user is not explicitly represented by a visual symbol. This
is unless we consider that the visual notation is comprised of all the individual session
visualizations, that are navigated through the user and session lists. With this in mind,
we can see that SEM-user is represented by the aggregation of the visualizations of its
sessions. Through this lens, the User Timeline visualization does not present symbol
deficit.

5.3.2 Perceptual Discriminability

To measure the perceptual discriminability of two visual symbols, we look at their visual
distance. Visual distance is defined by a) the number of visual variables on which they
differ, and b) the size of these differences.
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Both visualizations consist of two main types of elements (inherited from the data model):
constructs and events. Constructs - sessions, documents and help pages - are repre-
sented by colored lines of variable length, while events are represented by colored circles
of fixed size. Figure 5.4 details the visual variables used in both visual notations.

Visual variables
Variable Usage Meaning
Shape line, circle lines represent constructs (session, document, help page); circles 

represent events
Color circle color, line color circles are of different colors depending on the type of event they 

represent; lines are of different color depending on the type of 
construct they represent (and in for documents the state of the 
construct)

Brightness* circle color, line color circles of the same color use different shades to further precise 
the action of the event; blue lines (for documents) use different 
shades to precise the state of the construct

Size line length the length of the construct line indicates the lifespan of the 
construct

Horizontal position (x) line start/end positions, 
circle position

the starting (resp. ending) position of the contruct line indicates the 
starting (resp. ending) time of the lifespan of that construct; the 
position of a circle represents the time at which the event occurs

Vertical position (y) line position, circle 
position

the vertical position of a line represents the construct to which it 
belongs; the vertical position of a circle represented that the event 
is related to that construct

Texture - -
Orientation - -

Figure 5.4. Visual variables used in the visual notations. Texture and orientation are not
used. (*)The brightness is only used in the User Timeline visualization.

The two main types of elements present in the visual notations (constructs and events)
differ on shape: lines and circles. This respects quite well the primacy of shapes, and is
enough to clearly discriminate between what is a construct and what is an event.

In the Session Timeframe visualization, events and sessions (the only represented con-
struct) differ on both shape and color, bringing dual coding. Instances of sessions are
differentiated by their vertical position and are labelled, bringing textual differentiation.
The sessions are further differentiated in size and ending (horizontal) position, which in-
dicates the lifespan of the session. Events differ on three variables: color (type of the
event), vertical position (session to which they are related), and horizontal position (time
at which they occur).

In the User Timeline visual notation, some circles and lines share the same color. Hence
events and constructs only differ on shape. Color is here used to distinguish between
the types of constructs. Instances of a same construct type are differentiated by their
vertical position and are labelled, bringing textual differentiation. Within an instance of a
document, its state is distinguished by the shade (brightness) of the line. Events differ on
four variables: color (type of the event), brightness (action of the event), vertical position
(construct to which they are related), and horizontal position (time at which they occur).
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5.3.3 Semantic Transparency

Semantic transparency is about the extent to which the meaning of a graphical symbol
can be inferred from its appearance. In the visualizations, the lines and circles are not
semantically immediate: a novice could not guess that one represents a construct and
the other an event solely through their shape. But the other visual variables (such as
the position and size) give a cue to their meaning. A line placed along a timed-axis is
something that has a life duration. A circle in this context is a clue that it might represent
something that is punctual: it exists at a certain instant in time. Hence we argue that
lines and circles are semantically translucent : they provide a cue to the meaning of the
symbols but still require some initial explanation.

Figure 5.5. Semantically translucent notation: lines (constructs) and circles (events)
placed along a timed-axis.

A similar argument can be made for the relation between the events and the constructs,
as the vertical position of the circles is the one of the lines (events are placed on top of
the construct lifespan). In this case, we argue that the relation is close to being seman-
tically immediate. Figure 5.5 illustrates the semantic transparency in the User Timeline
visualization.

5.3.4 Complexity Management

Complexity management is concerned with diagrammatic complexity, that is the number
of symbol instances on a diagram. Managing this complexity should be done though
mechanisms such as modularization or hierarchy, in order to improve the ability of the
notation to represent a large amount of information without causing cognitive overload.

The main way in which our visualizations provide complexity management is through
modularization, thanks to the interactive time selector that lets the user adjust the time
window of the visualization. This allows to zoom-in the horizontal axis, displaying less
visual symbols at the same time. Details of the visualizations are that way easier to
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Figure 5.6. Example of modularization with the time-selector in the User Timeline vi-
sualization. On the left: the default visualization. On the right: the same visualization
zoomed-in between 12:35 and 12:55.

notice. Figure 5.6 shows an example of this method on the User Timeline visualization.

Modularization is also implemented by the Session Timeframe visual notation in a sec-
ondary manner by providing a filter option. This allows the user of the visualization to
chose which user(s) to display on the diagram, as well as the event type(s). Effectively
reducing the number of graphical symbols to process. The User Timeline visualization
implement hierarchy by dividing the elements shown per session and per user. Hence
the graphical elements displayed are limited within a single session of a single user.

5.3.5 Cognitive Integration

Cognitive integration applies when several diagrams are used in conjunction to represent
a system. In our case this brings the following question: do we consider that this ap-
plies to our two visualizations? As they use use the same data source, we can indeed
see them as two diagrams that display different parts of the system. As they are different
types of diagrams, we are looking at heterogeneous integration. The only way to navigate
between those diagrams is through the index page, which contains links to both visualiza-
tions. No mechanism is implemented to easily switch between the two. No perceptual or
conceptual integration mechanisms are provided to use the visualizations in conjunction
with each other.

We then look at the individual visualizations by themselves. As the Session Timeframe
is a monolithic visualization composed of a single diagram, cognitive integration does
not apply to it. More relevant in this regard is the User Timeline visualization which, as
previously discussed, can be seen as an aggregation of multiple single-session diagrams.



56

The different diagrams are browsed through the user and session selection options. This
way of selecting users and sessions is a mechanism that supports perceptual integration:
cues that simplify the navigation and transition between diagrams. What it does not
support well is conceptual integration: helping the user to assemble the information from
the multiple diagrams.

5.3.6 Visual Expressiveness

Visual expressiveness looks at the saturation of the graphic design space in a visual
notation. This is measured by the number of variables used to encode information, and
is the inverse of visual freedom: the number of free (not formally used) variables.

From figure 5.4, we see that most of the visual variables are formally used in both nota-
tions. The Session Timeframe visualization makes use of five information-carrying vari-
ables: shape, color, size, and horizontal and vertical position. The degree of visual free-
dom is thus of three (only brightness, texture and orientation are not used). The User
Timeline visualization achieves a visual expressiveness of six by adding brightness to the
set of information-carrying variables used by the first visualization.

Color is used to distinguish between event types, as well as between construct types.
While this makes use of one of the most cognitively effective visual variables, it is the sole
way of discriminating between these types. This is not recommended in a visual notation
as color is sensitive to variation in both human perception and display characteristics. No
mechanism is implemented to accommodate the use of the visualizations by color-blind
people, or to allow the printing of diagram in black-and-white color.

Figure 5.4 shows that while many visual variables are used in the notations, some only
use a very limited range of value. This is most noticeable with shape (lines and circles)
and color (three to four colors). On the other hand, the position (horizontal and vertical)
variables are used to their full range potential.

It is worth noting that throughout this syntactic analysis, we have considered shades of
colors in the User Timeline notation as different levels of brightness of these colors. We
do not believe that considering shades as distinct colors (thus not using the brightness
visual variable) changes the analysis significantly.

5.3.7 Dual Coding

When used as a form of redundant coding, the addition of text to complement graphics
(dual coding) can reinforce and clarify the meaning of visualizations. The tool-tip that is
displayed when hovering over an event or a construct is a form of annotation. It provides
additional information on the visual symbol targeted, directly onto the diagram. The leg-
end that helps the user remember which color represents which type of event or construct
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can also be considered as an annotation. The Session Timeframe visualization makes
use of hybrid (graphics+text) symbols to display the user name, as well as the session
number next to the session lifespan. The User Timeline only uses hybrid symbols in the
documents and help pages names (next to the construct lifespan) to discriminate between
the instances of these constructs.

5.3.8 Graphic Economy

Graphic economy aims at reducing graphic complexity : the size of the visual vocabulary
of a notation. The objective is to stay below the limit of six distinct alternatives for a
single visual variable. Combining several visual variables increases (almost in an additive
manner) this limit. Both visualizations have a very limited visual vocabulary (cf. Figures
5.2 and 5.4). This can be explained for both visualizations by the low semantic complexity
of the system: there is simply not a lot to show from the data. This is even more visible
with the Session Timeframe notation, which has a slight symbol deficit.

5.3.9 Cognitive Fit

The cognitive fit theory suggests that a single visual notation is unlikely to be fitted for
both novices and experts, as well as for both hand-drawn diagrams and computer draw-
ing tools. Hence several visual dialects (e.g., a "pro" and a "lite" one) should be designed
within visual notations. Both visualizations are intended only for a single representational
medium: a computer screen. Furthermore, they are drawn automatically from the data
fed, using the visualization templates developed. In this situation, considering other repre-
sentational media is irrelevant. Similarly, there is no alternative dialect for communication
with experts or novices.

5.3.10 Interactions Between the Principles

Knowing of the interactions between the previously discussed nine principles allows us
to look at where trade-offs were made, and where synergies were exploited, intention-
ally or not. One of the clear interactions has been mentioned already: having construct
deficit (form the semiotic clarity principle) in the Session Timeframe visualization leads
to more graphic economy. For both visualizations, we can also see that having visually
expressive notations (good usage of the graphical design space) helps with the percep-
tual discriminability of symbols. Interestingly, while cognitive integration tends to impact
negatively semiotic clarity and graphic economy, this does not seem to be the case in our
visualizations.
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Questionnaire - Session Timeframe visualization
Question Answers
1 How easy was it to understand the 

visualization?
Avg: 3.5/5

2 Could the visualization be used to assess the 
usage of Kactus2?

Avg: 4/5

3 What is in your opinion the most important 
piece(s) of information that can be viewed 
with the visualization? 

1) The most import in the visualization is the time aspect of the events i.e. 
what events occur in temporal proximity.
2) The tooltips. Detailed information of the actions could help in developing 
the user interface to more user friendly. The time it takes for the user to 
open documentation after opening a document.

4 Could the visualization be used to improve 
the software in any way?

Yes (100%)

5 Would you find personal use in this 
visualization as it is? 

Avg: 2.5/5

6 What if the data had been collected on "real 
users" (as opposed to lab students)?

Avg: 4/5

7 Rate the usefulness of: the user filter Avg: 4.5/5
8 Rate the usefulness of: the event type filter Avg: 5/5
9 Rate the usefulness of: the event type legend Avg: 3.5/5

10 Rate the usefulness of: the time-selector Avg: 4/5
11 Rate the usefulness of: the tool-tip Avg: 4/5
12 How would you improve this visualization? 1) The tooltip has too much clutter with all the strings of numbers and 

characters which could be improved by formatting and removing 
unnecessary data.
2) Change the colours of the orange and red circles. Remove the start / 
end circles (the line is enough). More detailing on the actions (currently 
hidden in a tooltip).

Table 5.6. Answers to questions on the Session Timeframe visualization.

5.4 Questionnaire

The two developers responded to the questionnaire. Tables 5.6 and 5.7 list the answers of
the questionnaire for the first and second visualizations. The results show that both visu-
alizations were mostly easy to understand once explained. One respondent commented
that "The [Session Timeframe] visualization provides a clear layout with distinct colors".
For the User Timeline visualization, one respondent noted that he "did not understand
what the purpose of the session line was". Both visualizations were considered useful for
assessing the usage of Kactus2. One respondent noted that "After getting used to it, [the
User Timeline visualization] contains detailed information of a single session".

In the Session Timeframe visualization, the most important insight provided concerned
the time aspect: "temporal proximity" of events and the time needed between the opening
of a document and the opening of documentation. Additionally, the extra information
contained in the tool-tip was deemed important. In the User Timeline visualization, the
most important pieces of information were: the user navigation between the documents
and help pages, as well as the documents usage.

Both respondents agreed that the Session Timeframe visualization could be used to im-
prove the software. One respondent commented that the UI could be improved according
to the data, if more details were provided. The other respondent noted that "the visualiza-
tion could show what features (toolbar buttons etc.) should be grouped together for easy
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Questionnaire - User Timeline visualization
Question Answers
1 How easy was it to understand the 

visualization?
Avg: 3.5/5

2 Could the visualization be used to assess the 
usage of Kactus2?

Avg: 4/5

3 What is in your opinion the most important 
piece(s) of information that can be viewed 
with the visualization? 

1) The visualization shows how the user navigates between the different 
documents/help pages.
2) Time spent and specific actions performed on the different documents.

4 Could the visualization be used to improve 
the software in any way?

Yes (50%) / No (50%)

5 Would you find personal use in this 
visualization as it is? 

Avg: 3.5/5

6 What if the data had been collected on "real 
users" (as opposed to lab students)?

Avg: 4/5

7 Rate the usefulness of: the legend Avg: 4.5/5
8 Rate the usefulness of: the time-selector Avg: 4.5/5
9 Rate the usefulness of: the tool-tip Avg: 3.5/5

10 How would you improve this visualization? 1) It might be interesting to see the navigation between documents, so 
maybe add a new event on the document open-close timeline to show 
when the user returns to that document. Again, the tooltip could be clearer. 
2) Add the possibility to see a sample of all of the sessions, possible 
filtered by the selected user.

Table 5.7. Answers to questions on the User Timeline visualization.

and fast access". The User Timeline visualization was considered as a potential basis for
improving Kactus2 by only one (out of two) respondents. He noted that the visualization
"displays the need of help files, which could be the result of an unclear user interface".

On average, it seems like the respondents indicated would make little personal use of
the Session Timeframe visualization. Answers for the User Timeline visualization are
more positive. For both visualizations, having access to real-use data (as opposed to
data collected on students’ laboratory sessions) would improve the usefulness of the
visualizations.

According to the respondents, the most useful features of the Session Timeframe visual-
ization are the event-type and user filters. The most useful features of the User Timeline
visualization are the legend and time-selector.

In the Session Timeframe visualization, improvement areas were the tool-tip, color scheme
and information displayed. The same comment about the tool-tip comes also for the User
Timeline visualization. Other improvements of this visualization would be navigation be-
tween the documents and a grouped view of all sessions of a user.
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6 DISCUSSION

In this thesis, we apply the Unified Model for Software Engineering Data (UMSED) to
post-deployment data (PDD), specifically usage data, that had previously been collected
from the Kactus2 software. We design two visualizations for this data, based on the tech-
nical framework and visualization templates designed for this data model. The objective
is to two-fold: assessing the adequacy of the UMSED for representing software engineer-
ing data from usage logs, and extending the proof-of-concept of the technical framework
and visualization templates to visualizations of complex usage data. We find that the
data model is adequate for representing accurately the structure of the usage data logs
that originate from Kactus2. The results show that it is possible to develop visualizations
of software usage data that provide useful insight into the usage of Kactus2, with the
aforementioned technical framework.

In this chapter, we will present our interpretation of the results of the ontological and
syntactic analysis, as well as the feedback evaluation questionnaire. We will then mention
the limitations of our work, and suggest directions for further research.

6.1 Interpretation of the Results

6.1.1 Ontological Analysis

Representation Mapping The semantic analysis of the visualization shows that the
model used for the visualizations is incomplete with regards to the BWW ontological
model. Indeed, several construct deficits are apparent, indicating that some BWW-
concepts cannot be represented by the semantic domain of our visualizations. In practice,
the main deficits are linked to the notion of lifespan which is an integral part of the visual-
ization. Yet the lifespan was not mentioned as part of the semantic domain. The reason
for it is that the lifespan of a construct represents a complex aggregate of data from dif-
ferent parts of that data model. Furthermore, which elements are part of a lifespan differ
between the two visualizations. The other deficits are not to be disregarded nonetheless,
as they show potential limitations of the data model.

Interpretation Mapping On the contrary, the results show that the semantic domain
of the visualizations is mostly clear. The instances of construct redundancy are not
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problematic, as they are not genuinely redundant. Moreover, no construct excess was
identified. But a problematic case of construct overload was identified. This indicates
that the model induces confusion regarding the notion of state and how it should be
represented.

6.1.2 Syntactic Analysis

Semiotic Clarity The analysis shows that both visualizations are clear. Between the
semantic constructs and the graphical symbols, there is no symbol redundancy, excess
or overload in the visual syntax of our notations. The instances of symbol deficits are
not weaknesses either, as they result from a deliberate choice to limit the scope of each
visualization to a certain number of elements. Trying to remove deficits would result in an
increase of the graphic complexity, which is undesirable.

Perceptual Discriminability We argue that considering the very low amount of graph-
ical symbols in the Session Timeframe visualization, the visual distance between the
symbols is sufficient. The perceptual discriminability of symbols in the User Timeline vi-
sualization is only slightly less good. In both visual notations, enough visual variables are
used to ensure that symbols that represent different constructs are easily distinguished.
Discriminating between instances of a same construct that share many similar properties
(e.g., two feature-related events that differ on the specific feature used, while happening
at the same time in the same session) is significantly harder but is addressed by the
tool-tip. Improving perceptual discriminability would require improving the visual expres-
siveness of the visualizations (see below).

Semiotic Transparency Both visualizations perform only mildly with regards to this
principle. The use of colored lines and circles as the main shapes in the notation comes
from the visualization template that we based our design on. While it provides a uniform
look to all visualizations based on it, the template leaves very little space for implementing
mechanisms that would improve the transparency of the notation. Furthermore, as noted
by a respondent of the questionnaire, the choice of colors may give a (wrong) cue to the
meaning of events (e.g., red or orange usually refer to warning or errors). This can be
fixed by using more neutral colors for events. Note that the legend should prevent this
misinterpretation. The use of icons to better represent construct types and event types
could help improve the semiotic transparency of our visualizations, but would distance
them from the original templates.

Complexity Management Our visualization can prove to be very complex in terms of
diagrammatic complexity (i.e., the number of symbol instances displayed). Both visual-
izations are good at managing this complexity, firstly though the time selector. which can
be used to limit the events shown within a time frame. This mechanism is included in the
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default visualization template. The Session Timeframe visualization further manages this
complexity by providing two filters, for both event types and users. The User Timeline no-
tation uses instead hierarchy to divide the visualization into users and sessions. All those
mechanisms are efficient and ensure that the notations are not overloaded with symbols.

Cognitive Integration Between the two visualizations, cognitive integration was not
though of at all. This is an obvious problem, as they are two different visualizations of the
same data, and nothing is implemented to use them in conjunction. This originates from
the technical framework that we are working with, which clearly never took this aspect
into account. Within the User Timeline visualization - seen as a combination of session
diagrams - little is done to help navigate between the sessions or the users. The sole
perceptual integration mechanism is the user and session selection, which is done in
arguably the most crude way. A more user-friendly diagram selection mechanism would
improve this aspect. Furthermore, as it was noted by a respondent of the questionnaire,
a "possibility to see a sample of all of the sessions, possibly filtered by the selected user"
would be a great addition to the visualization. Effectively, this would provide a much
needed cognitive integration mechanism.

Visual Expressiveness Both visualizations make a relatively good use of the graphic
design space by using between five and six visual variables out of eight (shape, color,
brightness, size, and horizontal and vertical position). The left-out variables are texture
and orientation. The use of texture could significantly improve both visualizations if used
in conjunction with colors as a form of redundant coding. This would fix the issue pointed
out in the results, that color was used a the sole variable used to discriminate between
event and construct types. Orientation would be hard to include in the visualizations as
they are. Circles do not support it, and the lifespan lines would lose meaning. This
highlights another problem which is that while shapes are used, the notations use only
two of them: lines and circles. Increasing the range of shapes used would improve the
notations and enable the use of orientation.

Dual Coding This principle is not used extensively by our visualizations. The main use
of text to complement graphics is done through the tool-tip box. Which, as it was noted
by a respondent of the questionnaire, "could be improved by formatting and removing
unnecessary data". In practice, the tool-tip was thought of more as a debugging tool when
designing the visualizations. We believe that improving it to become a real annotation
would prove extremely useful. Hybrid symbols are used in few instances, but could also
be added to help improve the perceptual discriminability of event instances.

Graphic Economy As both visualizations have a very limited visual vocabulary (coming
from the low semantic complexity), their graphic complexity is already quite low. This is
even improved by having symbol deficit and using combination of visual variables (good
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visual expressiveness). We do not believe that it is necessary to look at improving the
graphic economy of either visualizations.

Cognitive Fit The representation medium of our visualisations is fixed: a computer
screen. This comes from the fact that a) the visualizations are generated by software,
and b) are interactive. Hence adapting the visual notations to make them fit another
medium is not an option. The real question from cognitive fit theory that applies here is
the one of the audience. In our case, the target audience was always thought of as the
developers of the software. This is inherent to what data we are trying to visualize, and
has less to do with the visual syntax itself. We believe that the visual notation itself can
be understood by both experts and novices and that in this case, having multiple visual
dialects makes little sense.

6.1.3 Questionnaire

The questionnaire was answered by the two developers of Kactus2, which are the main
target audience of our visualizations. The results show that the respondents found both
visualizations easy to understand, and considered that they could be used to assess the
usage of Kactus2 and thus improve the software in some way. These responses are
very encouraging, considering the limitations of the data itself (see below). Several ideas
for improvements were proposed, suggesting that the developers indeed understood the
potential applications of the visualizations in their work.

6.2 Research Questions

The interpretation of the results hereabove enables us to answer the original research
questions.

Can the Unified Data Model for Software Engineering be used to efficiently model
software usage data? The results of the ontological analysis have shown that our im-
plementation of the UMSED, while incomplete with regards to the BWW-model, is able to
represent most ontological concepts. More importantly, the semantic domain was found
to be mostly clear, with the exception of the state as previously noted. The model is thus,
according to our results, not perfect. But it does a satisfying job at representing the usage
data collected from Kactus2. We argue that the presented model is a sufficiently sound
basis for modeling software usage data, as it proved to be the case for our visualizations.

Can the framework presented be used to develop insightful visualizations of soft-
ware usage data? The results of the syntactic analysis indicate that both visualizations
are overall cognitively efficient. But also pointed out areas where major improvements
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in the visual syntax could be made. Hence we argue that the technical framework and
visualization templates are a good basis for developing good visual notations of software
usage data. Furthermore, the results of the questionnaire strongly suggest that these vi-
sualizations may indeed provide useful insight into the usage of Kactus2. We argue that,
given carefully collected usage data, the presented framework can help in developing
acute visualizations of software usage data.

Ultimately and considering the limitations detailed below, we argue that the presented
data model and visualization framework is indeed suitable for developing software usage
visualizations that provide useful insight into the usage of Kactus2.

6.3 Limitations

Data source One major limitation comes from the data itself. Making a good visualiza-
tion without good data is a complicated task. Our data source was far from being perfect.
First of all we had no control over the data, as it had been collected back in 2017 (data
collection itself was out of the scope of this thesis). The collection of this data was not
motivated by either an explanatory nor a deployment analysis as it usually is the case.
Rather, it was done with the main purpose of trying out a data collection technique. The
data that would be collected was thus only secondary to the process. Secondly, the data
was collected over a short period of time (1 month), with a limited set of participants (16
users) which were performing similar predefined tasks (laboratory exercises). We are
thus far from real-world usage data of the software. Thirdly, the implementation of the
data collection was not perfect either. For example, some events are sometimes logged
twice, not all events are properly logged (like closing of a session), and most importantly
the timestamps are only accurate to the second - resulting in many seemingly concur-
rent events. All these lead to an imperfect data source, that may not be an accurate
representation of the reality that the visualizations pretend to display.

Semantic domain Both the ontological analysis and the first principle of the Physics of
Notations (semiotic clarity) rely on a preexisting definition of the semantic domain of the
visualization. We had no formal ground for defining such a domain, and it was constructed
by trial and error until it seemed accurate enough. We believe that such a lack of a
theoretical basis for defining the semantic constructs that form the domain is a potential
source of bias in our subsequent analysis.

Questionnaire The questionnaire was answered by the two developers of Kactus2.
This is obviously a very small sample of respondents to make generalizations out of it.
Moreover, we have no expertise in designing academic questionnaires, and many biases
may be present in the questions themselves, and no pretesting of the questionnaire was
performed. Finally, knowing that the questionnaire would be used to assess the quality of
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the work of this thesis, the respondents might have been kinder in their evaluations than
otherwise. This suggests caution in the interpretation of the responses.

6.4 Future work

Future work should firstly focus on addressing the aforementioned limitations of this the-
sis. One direction would be to put the data model through further testing with large-scale,
real-world usage data. Future research on usage data visualization should also aim to
integrate proper user feedback through better means than a questionnaire, if possible.
Regarding the visualization templates, the issues discussed could be resolved by fu-
ture versions of the technical framework. Finally, usage data coming from different data
sources could be combined using the UMSED, to try and provide even more comprehen-
sive visualizations of the data.



66

7 CONCLUSION

This thesis aimed at investigating the adequacy of the UMSED (Unified Model for Soft-
ware Engineering Data) and its technical framework for developing visualizations of soft-
ware usage data. We started by taking logs from the software Kactus2, parsing and
formatting them to fit the database used in the framework. The logs, containing times-
tamped recordings of user interactions with the software, had been previously collected
in 2017. Once the data was completely integrated, we designed and implemented two
visualizations by adding onto the original code base of the framework. The first visual-
ization aimed at comparing the evolution of user-sessions in the software. The second
focused on analysing usage of the software by each user.

On both visualizations, we performed a semantic (ontological) analysis and a syntactic
analysis (using the Physics of Notations’ principles). Furthermore, the visualizations were
evaluated by the two developers of the software through a questionnaire.

We found that the presented data model and technical framework presented were ad-
equate for visualizing the usage data from Kactus2. The visualizations performed well
both in terms of semantic expressiveness and cognitive effectiveness. Moreover, they
appeared to be insightful, providing important information regarding the use of the soft-
ware, and easily understandable by the developers.

Further research should focus on generalizing those results by using multiple data sources
and performing large-scale user evaluation of such type of visualizations. In general, the
field of software usage data visualization is still very much unexplored. Our work thus
contributes to expanding the amount of scientific research on the subject.

We hope that it will inspire researchers to further study and evaluate the usability of soft-
ware usage data visualizations. Similarly, it should encourage companies to invest into
the implementation of visual notations of usage data, in order to improve their software
processes and products.
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A ACTIONS RECORDED IN THE LOGS

The log1 of Kactus2 is comprised of 4627 entries shared between 64 sessions created by
16 users. The average number of entries per session is 72,296875. The different types
of entries recorded are listed here: Clicked on...

• About

• Configure Library

• Default

• Exit

• Help

• Interconnection Tool

• Locked / Unlocked

• Makefile Generator

• MCAPI Code Generator

• New

• Refresh

• Refresh Library

• Save / Save As / Save All

• Select Tool

• Settings

• Undo

• View Library Integrity Report

• Visible Windows

And the following:

• Session started

• Document X opened / closed / locked / unlocked

• Help page Y opened

1Complete logs can be found at https://github.com/coin-quin/vis-a-
vis/blob/master/datasources/log/log.txt
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B BWW ONTOLOGICAL CONCEPTS

The following tables (B.1 to B.9) present the basic concepts of the BWW-model as de-
scribed in [44]. Note: BWW refers to Bunge-Wand-Weber [61, 62], to distinguish the
ontological concepts from the semantic constructs of the semantic domain (see appendix
C).

Ontological Construct Description

BWW-thing The elementary unit in our ontological model. The real
world is made up of things.

BWW-property [of a
thing], BBW-property of a
particular

Things possess properties, we know about things in the
world via their properties.

BWW-property function
[of a thing]

A property is modeled via a function that maps the thing
into some value. A BWW-property function represents how
a property changes over time.

BWW-codomain [of a
property function]

The set of values into which the function that stands for the
property of a thing maps the thing.

BWW-intrinsic property
[of a thing]

A property that is inherently a property of an individual
thing.

BWW-mutual property [of
two or more things]

A property that is meaningful only in the context of two or
more things. A property is either intrinsic or mutual, exclu-
sively.

BWW-complex property
[of a thing]

A complex BWW-property comprises other properties,
which may themselves be complex.

Table B.1. Basic concepts in the BWW-model: Things and properties.

Ontological Construct Description

BWW-law property [of a
thing]

Properties can be restricted by laws relating to one or sev-
eral properties.

BWW-natural law prop-
erty

Natural laws are established by nature.

BWW-human law prop-
erty

Some laws are human-made artifacts. 1) Events and pro-
cesses may sometimes violate human laws, but not natural
ones. 2) A law is either natural or human, exclusively.

Table B.2. Basic concepts in the BWW-model: Natural and human laws.
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Ontological Construct Description

BWW-class [of things] A set of things that can be defined by their possessing a
particular set of properties. All groups of BWW-properties
that are possessed by at least one BWW-thing define a
BWW-class.

BWW-natural kind [of
things]

A natural kind is defined by a set of properties and the laws
connecting them.

BWW-characteristic prop-
erty [of a class or nat-
ural kind], BWW-property
in general

A property (in general) that defines a class or natural kind.
If the property is a law, it defines a natural kind, not a class.

BWW-subclass [of things] A set of things that can be defined via their possessing the
set of properties in a class plus an additional set of proper-
ties.

Subkind (sub-natural
kind) [of things]

A set of things that can be defined via their possessing the
set of properties and laws in a natural kind plus an addi-
tional set of properties and the laws connecting them.

Natural kind/sub-kind re-
lationship

The relationship between the kind and subkind in the above
definition.

Table B.3. Basic concepts in the BWW-model: Classes and natural kinds.

Ontological Construct Description

BWW-state [of a thing] The vector of values for all property functions of a thing.

BWW-history [of a thing] The chronologically ordered states that a thing traverses in
time.

BWW-event [in a thing] A change of state of a thing. It is effected via a transforma-
tion (see below).

BWW-process [in a thing
or system thing]

An intrinsically ordered sequence of events on, or states of,
a thing. Processes are either chains or trees of events.

BWW-transformation [of a
thing]

A mapping from a domain comprising states to a codomain
comprising states.

Table B.4. Basic concepts in the BWW-model: States, events and transformations.

Ontological Construct Description

BWW-state law [of a
thing]

A property that restricts the values of the property functions
of a thing to a subset that is deemed lawful because of nat-
ural laws or human laws.

BWW-transformation law
[of a thing]

Events are governed by transformation laws that define the
allowed changes of state.

Table B.5. Basic concepts in the BWW-model: State and transformation laws.
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Ontological Construct Description

BWW-external event [in a
thing, subsystem or sys-
tem]

An event that arises in a thing, subsystem or system by
virtue of the action of some thing in the environment of the
thing, subsystem or system. The before-state of an external
event is always stable. The after-state may be stable or
unstable.

BWW-internal event [in a
thing, subsystem or sys-
tem]

An event that arises in a thing, subsystem or system by
virtue of lawful transformations in the thing, subsystem or
system. The before-state of an internal event is always un-
stable. The after-state may be stable or unstable.

BWW-stable state [of a
thing]

A state in which a thing, subsystem or system will remain
unless forced to change by virtue of the action of a thing in
the environment (an external event).

BWW-unstable state [of a
thing]

A state that will be changed into another state by virtue of
the action of transformation in the system.

Table B.6. Basic concepts in the BWW-model: Internal/external events and stable/unsta-
ble states.

Ontological Construct Description

BWW-conceivable state
space [of a thing]

The set of all states that the thing may ever assume.

BWW-possible state
space [of a thing]

The space of states that are possible given our understand-
ing of the laws of nature.

BWW-lawful state space
[of a thing]

The set of states of a thing that comply with the state laws
of the thing.

BWW-conceivable event
space [of a thing]

The set of all possible events that can occur in the thing.

BWW-lawful event space
[of a thing]

The set of all events in a thing that are lawful, because (a)
nature permits them to occur, and (b) there are no human
laws that denote them as unlawful.

Table B.7. Basic concepts in the BWW-model: State and event spaces.

Ontological Construct Description

BWW-coupling [of things],
BWW-acting on [another
thing]

A thing acts on another thing if its existence affects the his-
tory of the other thing. The two things are said to be cou-
pled.

BWW-binding mutual
property, BWW-direct
acting on

A thing acts directly on one or more other things when the
former thing changes a BWW-binding mutual property they
all possess.

BWW-coupled event When an event in one thing changes a BWW-binding mu-
tual property and thereby causes an external event in an-
other thing.

Table B.8. Basic concepts in the BWW-model: Coupling.
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Ontological Construct Description

BWW-composite thing A composite thing may be made up of other things (com-
posite or primitive). Things can be combined to form a com-
posite thing.

BWW-component thing A BWW-thing in the composition of a composite thing.

BWW–whole-part relation
[between things]

The property of being in the composition of another thing or,
complementary, of having another thing as a component.

BWW-resultant property
[of a composite thing]

A property of a composite thing that belongs to a compo-
nent thing.

BWW-emergent property
[of a composite thing]

A property of a composite thing that does not belong to a
component thing.

BWW-system [of things] A set of things is a system if, for any bi-partitioning of the
set, couplings exist among things in the two subsets.

BWW-system composi-
tion

The things in the system, i.e., its component things.

BWW-system environ-
ment

Things that are not in the system but interact with things in
the system.

BWW-system structure The set of couplings that exist among things in the system
and things in the environment of the system.

BWW-subsystem A system whose composition and structure are subsets of
the composition and structure of another system.

BWW-system decomposi-
tion

A set of subsystems such that every component in the sys-
tem is either one of the subsystems in the decomposition
or is included in the composition of one of the subsystems
in the decomposition.

BWW-level structure Defines a partial order over the subsystems in a decompo-
sition to show which subsystems are components of other
subsystems or the system itself.

Table B.9. Basic concepts in the BWW-model: Composites and systems.
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C VISUALIZATION SEMANTIC CONSTRUCTS

The following tables (C.1 to C.4) describe the semantic domain of our visualizations.
That is, the set of semantic constructs that are described by or can be inferred from the
data model. Note: SEM refers in this context to semantic, to distinguish the semantic
constructs from the ontological concepts of the BWW-model (see appendix B).

Semantic Construct Description

SEM-entity Entities are the semantic building blocks. That includes SEM-
objects and SEM-actions.

SEM-entity property Entities have properties, such as a unique identifier.

Table C.1. Basic concepts in the semantic-model: Entities.

Semantic Construct Description

SEM-action Actions on the SEM-objects. That includes SEM-events and
SEM-state changes.

SEM-event Events are actions performed by a SEM-user.

SEM-state change A state change in a SEM-object is triggered by a SEM-event
performed on that object.

SEM-action property Actions possess properties, such as time and date.

SEM-event property Events possess properties (such as type for example).

SEM-state change
property

State changes possess properties, such as from, to.

Table C.2. Basic concepts in the semantic-model: Actions.
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Semantic Construct Description

SEM-object Objects are what the data model used calls as constructs.
That includes SEM-users, SEM-sessions, SEM-documents,
and SEM-help pages.

SEM-user Users are the humans that interact with the software. They
perform actions on other objects. A user has a name (unique
identifier).

SEM-session Sessions are the underlying structure of the user behavior.
They are created and terminated by the SEM-user. It is
within a session that other objects (SEM-documents, SEM-
help pages) exist, and that actions occur. A session has a
name (unique identifier).

SEM-document Documents are files opened, closed, owned and in general
used by a SEM-user within a SEM-session. A document has
a file name and a hash (unique identifier).

SEM-help page Help pages are html files opened by a SEM-user within a
SEM-session. A help page has a file name and a hash
(unique identifier).

SEM-object property Objects possess properties.

SEM-user property Users possess properties, such as name.

SEM-session property Sessions possess properties, such as name or timeframe.

SEM-document prop-
erty

Documents possess properties, such as name, hash or time-
frame.

SEM-help page prop-
erty

Help pages possess properties, such as name, hash or time-
frame.

Table C.3. Basic concepts in the semantic-model: Objects.

Semantic Construct Description

SEM-relation between
SEM-entities

Two or more entities can be linked by a relation.

SEM-relation between
SEM-objects

Two or more objects can be linked by a relation.

SEM-relation between
SEM-object and SEM-
action

An object can be linked to an event or a state change by a
relation. An event or state change is always linked to an object
by a relation.

SEM-relation between
SEM-actions

Two events can be linked by a relation. An event can be lined
to a single state change by a relation. A state change is al-
ways lined to an event by a relation.

Table C.4. Basic concepts in the semantic-model: Relations.
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D REPRESENTATION MAPPING

The following tables (D.1 to D.9) present the representation mapping between the onto-
logical concepts and the semantic constructs. Note: BWW refers to Bunge-Wand-Weber
[61, 62], to distinguish the ontological concepts from the semantic constructs of the se-
mantic domain, referred to as SEM.

Ontological Concept Semantic Construct

BWW-thing Instance of a SEM-entity.

BWW-property [of a thing], BBW-
property of a particular

SEM-entity property.

BWW-property function [of a thing] The state of SEM-objects may change over
time. This is represented by their lifespan.

BWW-codomain [of a property func-
tion]

List of states of a SEM-object.

BWW-intrinsic property [of a thing] SEM-event property. Some SEM-object prop-
erty (such as state).

BWW-mutual property [of two or more
things]

SEM-state change property. Some SEM-object
property.

BWW-complex property [of a thing] Some SEM-object properties are complex
properties.

Table D.1. Representation mapping of the BWW-model: Things and properties.

Ontological Concept Semantic Construct

BWW-law property [of a thing] Rules imposed on SEM-entities and SEM-
relations.

BWW-natural law property Rules given by the data model.

BWW-human law property Rules given by the data collection.

Table D.2. Representation mapping of the BWW-model: Natural and human laws.
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Ontological Concept Semantic Construct

BWW-class [of things] SEM-objects, SEM-actions.

BWW-natural kind [of things] -

BWW-characteristic property [of a
class or natural kind], BWW-property
in general

SEM-object type: user, session, document,
help page. SEM-action type: event, state
change.

BWW-subclass [of things] SEM-user, -session, -document, -help page are
subclasses of SEM-object. SEM-event, -state
change are subclasses of SEM-action.

Subkind (sub-natural kind) [of things] -

Natural kind/sub-kind relationship -

Table D.3. Representation mapping of the BWW-model: Classes and natural kinds.

Ontological Concept Semantic Construct

BWW-state [of a thing] State of SEM-objects (it is a SEM-object prop-
erty).

BWW-history [of a thing] List of SEM-state changes linked to a SEM-
object.

BWW-event [in a thing] SEM-state change.

BWW-process [in a thing or system
thing]

Lifespan of a SEM-object.

BWW-transformation [of a thing] Mapping of SEM-state changes’ property (from,
to).

Table D.4. Representation mapping of the BWW-model: States, events and transforma-
tions.

Ontological Concept Semantic Construct

BWW-state law [of a thing] Collection of possible states of SEM-objects.

BWW-transformation law [of a thing] Collection of possible SEM-state changes of
SEM-objects.

Table D.5. Representation mapping of the BWW-model: State and transformation laws.

Ontological Concept Semantic Construct

BWW-external event [in a thing, sub-
system or system]

Some SEM-events: session start, document
open, help page open.

BWW-internal event [in a thing, sub-
system or system]

The other SEM-events.

BWW-stable state [of a thing] Closed states of SEM-objects.

BWW-unstable state [of a thing] Other states of SEM-objects.

Table D.6. Representation mapping of the BWW-model: Internal/external events and
stable/unstable states.
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Ontological Concept Semantic Construct

BWW-conceivable state space [of a
thing]

All states of SEM-objects.

BWW-possible state space [of a thing] States of SEM-objects allowed by the model.

BWW-lawful state space [of a thing] States of SEM-objects that are coherent with
logic.

BWW-conceivable event space [of a
thing]

SEM-actions.

BWW-lawful event space [of a thing] SEM-actions that are coherent with logic.

Table D.7. Representation mapping of the BWW-model: State and event spaces.

Ontological Concept Semantic Construct

BWW-coupling [of things], BWW-
acting on [another thing]

SEM-relations between entities.

BWW-binding mutual property, BWW-
direct acting on

SEM-relation between SEM-event and SEM-
state change.

BWW-coupled event SEM-relation between SEM-action and SEM-
object.

Table D.8. Representation mapping of the BWW-model: Coupling.

Ontological Concept Semantic Construct

BWW-composite thing -

BWW-component thing -

BWW–whole-part relation [between
things]

-

BWW-resultant property [of a com-
posite thing]

-

BWW-emergent property [of a com-
posite thing]

-

BWW-system [of things] The whole data structure of SEM-entities and
SEM-relations.

BWW-system composition Combination of SEM-entities and SEM-
relations.

BWW-system environment -

BWW-system structure Structure of the data model.

BWW-subsystem A SEM-session and the related SEM-objects
and SEM-actions.

BWW-system decomposition -

BWW-level structure Rules that dictate the subsystem.

Table D.9. Representation mapping of the BWW-model: Composites and systems.
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E INTERPRETATION MAPPING

The following tables (E.1 to E.4) present the interpretation mapping between the semantic
constructs and the ontological concepts. Note: SEM refers in this context to semantic, to
distinguish the semantic constructs from the ontological concepts, referred to as BWW.

Semantic Construct Ontological concept

SEM-entity BWW-thing.

SEM-entity property BWW-property of a thing.

Table E.1. Interpretation mapping of the semantic-model: Entities.

Semantic Construct Ontological concept

SEM-action BWW-class of things.

SEM-event BWW-subclass of SEM-action.

SEM-state change BWW-subclass of SEM-action.

SEM-action property BWW-property of SEM-action.

SEM-event property BWW-intrinsic property of SEM-event.

SEM-state change
property

BWW-mutual property of SEM-state change and the SEM-
object whose state changes.

Table E.2. Interpretation mapping of the semantic-model: Actions.
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Semantic Construct Ontological concept

SEM-object BWW-class of things.

SEM-user BWW-subclass of SEM-object.

SEM-session BWW-subclass of SEM-object.

SEM-document BWW-subclass of SEM-object.

SEM-help page BWW-subclass of SEM-object.

SEM-object property BWW-property of SEM-object.

SEM-user property BWW-property of SEM-user. The user name is a BWW-
intrinsic property.

SEM-session property BWW-property of SEM-session. The session name is a
BWW-intrinsic property.

SEM-document prop-
erty

BWW-property of SEM-document. The document name is
a BWW-intrinsic property. The document hash is a BWW-
mutual property of both the document and the session.

SEM-help page prop-
erty

BWW-property of SEM-help page. The help page name is
a BWW-intrinsic property. The help page hash is a BWW-
mutual property of both the help page and the session.

Table E.3. Interpretation mapping of the semantic-model: Objects.

Semantic Construct Ontological concept

SEM-relation between
SEM-entities

BWW-coupling of things, BWW-acting on another thing.

SEM-relation between
SEM-objects

BWW-coupling of things.

SEM-relation between
SEM-object and SEM-
action

BWW-coupling of SEM-actions, BWW-acting on SEM-objects.

SEM-relation between
SEM-actions

BWW-coupling of SEM-events, BWW-acting on SEM-state
changes.

Table E.4. Interpretation mapping of the semantic-model: Relations.
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