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ABSTRACT 

Shuang Luo: MS. 
Master of Science Thesis 
Tampere University 
Bioengineering, MSc 
May 2019 
 

The development of Next Generation Sequencing (NGS) technology resulted the rapid accu-
mulation of a large amount of sequencing data demanding data mining. Various of variant calling 
softwares and pipelines came into being. Genome Analysis Toolkit (GATK) and its Best Practices 
quickly became the industrial gold-standard for variant calling because of its speediness, high 
accuracy and throughput. GATK has been updated all the time. The latest and strongest version 
is GATK4 which enabled parallelization and cloud infrastructure optimization via Apache spark. 
Currently, Broad Institute has cooperated with many cloud providers to deploy GATK Best Prac-
tices on cloud platform. However, there is no benchmarking data released for GATK4 and no 
cooperation with CSC (CSC – IT Center of Science Ltd) cPouta IaaS (Infrastructure as a Service) 
cloud.  
 We optimized WDL (workflow description language) script of germline SNPs and Indels short 

variants discovery workflow from Best Practices and ran it by Cromwell execution engine on a 
virtual machine of cPouta cloud which featured a 24 cores Intel(R) Xeon(R) CPU E5-2680 v3 with 
hyper-threading. In addition, we benchmarked pipeline execution time(s) for five seperated pipe-
lines of this workflow with three 30X WGS (Whole Genome Sequencing) datasets: NA12878, 
NA12891 and NA12892 and explored optimized run-time parameters for GATK4 tools, PairHMM 
thread scalability in HaplotypeCaller, GATK4 thread scalability for PGC in MarkDuplicates and 
execution times comparison for GATK4 SortSam vs SortSamSpark and MarkDuplicates vs 
MarkDuplicatesSpark. 
We found the real execution time for similar WGS datasets with different size and features 

showed consistency and execution time and dataset size were roughly positive correlated. The 
optimal threads number is 12 for GATK4 HaplotypeCaller in ERC mode, giving rise to 12.4% 
speed-up. The optimal PGC threads number is 2 for GATK4 MarkDuplicates. And, multi-threading 
with Spark local runner highly speeded up GATK4 tool execution. SortSamSpark enabled 16 local 
cores gave rise to a speed-up of 83.6%. MarkDuplicatesSpark enabled 16 local cores gave rise 
to a speed-up of 22.2% and 37.3%, seperately with and without writing metrics file. 
With detailed virtural machine setting up, optimized parameters and GATK4 performance 

benchmarking data, this thesis is a guide for implementation of GATK4 Best Practices germline 
SNPs and Indels short variants discovery workflow on CSC cPouta cloud platform.    
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1. INTRODUCTION 

Whole-genome sequencing (WGS) means completing the sequencing of a whole genome at 
one time. Thus, WGS data contains all information of that genome and can be used to discovery 
almost any variants from an organism. WGS technology provides various of benefits in both sci-
entific research and clinical diagnostics [1–4]. With the purpose of more extensive applications of 
WGS, fast sequencing technology and affordable sequencing price are needed [5]. The advent 
of Next-Generation Sequencing (NGS) technique [6, 7] revolutionized the field of WGS [8] and 
greatly expanded its range of applications, from research laboratory to clinic [9]. Since 2005, NGS 
techniques developed and started dominating the sequencing market. It provided higher sensitiv-
ity, larger throughput, improved speed and much lower price. The wide adoption of NGS has 
generated and accumulated lots of sequencing data, which demands deeper and wider data min-
ing and analysis capabilities. A lot of genetic data analysis pipelines and tools were developed to 
call variants from NGS data. The Genome Analysis Toolkit (GATK) and its Best Practices [10, 11] 
by Broad Institute are the most outstanding representatives. GATK contains lots of genetic anal-
ysis tools and specially focus on variants discovery and genotyping from Illumina human WGS 
and whole-exome sequencing (WES) data. GATK is compatible to multi-platform and takes ad-
vantage of Docker container technology [12] to reduce or even remove the environment configu-
ration issues. There are different versions of GATK. The newest one is the GATK4, which is faster, 
more accurate and uses Apache Spark [13] for parallel processing and cloud infrastructure utili-
zation. To ensure the high repeatability and accuracy of variant calling process, Broad Institute 
designed and promoted a series of variant calling workflows named Best Practices which provides 
step by step guidelines from a DNA library preparation to final variant callset collecting. The most 
widely used Best Practices workflow is the one for germline SNPs and Indels variants discovery 
[14] in DNA sequencing data, which is also the workflow discussed and tested in this thesis. Broad 
Institute offered a new pipelining solution which is capable of parallel computing and user-friendly, 
it contains a new workflow description language called WDL and its execution engine Cromwell, 
which can execute WDL script in a local platform and on a cloud computing platform.  
The Institute of Molecular Medicine Finland (FIMM) and CSC – IT Center for Science Ltd 

(CSC), the company where I wrote this thesis, decided to start a pilot project which aims to con-
nect FIMM´s biomedical data-producing devices directly to CSC´s computing platform and enable 
pipeline implementation and performance benchmarking of GATK4 Best Practices with Docker 
container on CSC´s Pouta open shell IaaS cloud. 

1.1 Whole Genome Sequencing (WGS) and Next Generation 
Sequencing (NGS) 

DNA sequencing is the process of determining the order of four different nucleotides in a spe-
cific DNA fragment [15]. They are adenine (A), thymine (T), guanine (G) and cytosine (C). WGS 
refers to sequencing the entire genome of an organism, not just this organism's chromosomal 
DNA, but also mitochondria DNA or chloroplast DNA for plants. Thus, this technique can almost 
identify any type of genetic mutations for an organism. The value of WGS is enormous. As WGS 
data encompasses the intrinsic relevance of all genes and correlative life features, it helps to 
identify the new biomarkers and drug targets, adds the information of human complex disease, 
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and has great guiding significance in animal and plant economic traits and breeding research, 
species origin, domestication, group history dynamics, etc. On the other hand, it requires more 
data interpretation, better storage and management solutions and higher technical challenges, 
such as much faster sequencing speed, bigger data storage, faster and easy data transfer and 
lower sequencing cost per genome.  
In 1973, Gilbert and Maxam published the 24 base-pairs long nucleotide sequence of the lac 

operator using “wandering-spot analysis” method [16], which took 2 years and 1 month to deter-
mine per bp. In 1977, Sanger published the 5375 base-pairs DNA sequence of the genome of 
bacteriophage φX174 using a simple but faster “plus and minus” method [17]. In 1979, whole 
genome shotgun sequencing was deployed to sequence small genomes which contains several 
thousands of nucleotides [18]. Eight years later, Smith, Hood and Applied Biosystems developed 
fluorescence-based Sanger sequencing machines named ABI Prism 370A, which was able to 
sequence around 1000 bases per day [19–21]. It exponentially speeded up DNA sequencing. 
However, these techniques were still time-consuming, labor-intensive and quite expensive for 
WGS. But bioscientists were confident that whole genome sequencing of species will provide 
great support to various aspects of life science research, such as: disease analysis, breeding and 
evolution science [22]. The Human Genome Project (HGP) with a budget of 3 billion US dollars 
is one of the manifestations of scientists' confidence. It was firstly proposed by American scientists 
in 1985, then was jointly initiated globally by scientists in the United States, Britain, France, Ger-
many, Japan and China in 1990 [23]. The contradiction of scientists' hunger for the large-scale 
sequencing of species and the limitations of existing sequencing technologies has always existed. 
Until 2005, this contradiction was drastically mitigated. A company 454 Life Science introduced 
the revolutionary pyrophosphate sequencing-based ultra-high-throughput genome sequencing 
system. The Genome Sequencer 20 System, which was reported by Nature magazine as a mile-
stone [7]. It pioneered “sequencing-by-synthesis” method and became the first pioneer of NGS. 
It sequenced 20,000,000 bases per day. NGS is also known as high-throughput sequencing or 
massive parallel sequencing. NGS is marked by the ability of sequence hundreds of thousands 
to hundreds of millions of DNA molecules in parallel with the using of a short read length. NGS 
gets its name after the first-generation Sanger sequencing, which mainly includes three modern 
sequencing technologies (systems/platforms): Illumina´s Genome Analyzer, HiSeq 2000 and 
MiSeq; Roche´s GS FLX Titanium and GS Junior; Life Sciences’ Ion Torrent PGM and SOLiD 
sequencing [24]. NGS offers rich information, higher sensitivity to detect low frequency variants, 
higher throughput of sequencing and lower sequencing cost. 

1.2 FIMM, CSC Pouta IaaS Cloud and Pilot Project 

Biomedical data-producing devices can generate large amounts of data every day. For exam-
ple, a modern genome sequencer can generate 3 terabytes of data per day [25]. This data usually 
needs to be pre-processed and annotated with appropriate metadata before being specifically 
analyzed. And the environment/platform for data generation and storage is different from the com-
puting platform used for the data analysis, which means that large-scale data transfer is essential. 
Previously, the transfer of large amounts of data was labor-intensive work, requiring not only un-
interrupted supervision but also a lot of manual operations, such as up to 50 checks. Moreover, 
biomedical data, especially human data, is sensitive. Therefore, the storage and transfer of bio-
logical data require a higher level of security. 
FIMM, Institute of Molecular Medicine Finland, concentrates on human genetic research and 

personalized medicine. FIMM has tons of biological data that requires a large amount of safe 
storage space to store the data and a high-speed computing platform to analysis the data. CSC 
is a Finnish supercomputer center with absolute security, strong computing power and massive 
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storage space and it is free for academic use in Finland. It is undoubtedly the best choice for 
FIMM. 
CSC – IT Center for Science is a Finnish center of expertise in information technology for 

science, education and culture. It is a non-profit Finnish state enterprise, 70% share is hold by 
Finnish state while the rest of shares are hold by higher education institutions, such as universities 
and universities of applied science. CSC aims at offering internationally high quality digital ser-
vice, high-performance computing, expert ICT (Information and communications technology) so-
lutions, manages data and software. It provides both public commodity and private senstive data 
processing IaaS cloud services. They are cPouta and ePouta, seperately. IaaS stands for Infra-
structure as a Service. Consumers can get services from the infrastructure via the Internet, con-
taining controling of memory, computing resource and storage and so on.  Both Pouta IaaS clouds 
provide a programmable API and a web interface. Users can easily generate their online virtual 
machine (VM) instance via the web interface, control the VM, network and storage as well. VMs 
are run on various sets of compute node hardware. CSC currently provides two kinds of compute 
nodes, one for High-performance computing (HPC) load which connected with 40 Gb/s Ethernet 
and another for genetic computing load (such as web servers or software developing servers) 
which connected with 10 Gb/s Ethernet. User can online connect their virtual machine via given 
external IP address as well. Compared with other IaaS platforms, CSC cPouta IaaS Cloud HPC 
nodes are exclusively designed for HPC, thus virtual machine scheduling does not oversubscribe 
the resources. It avoids contention and supposed to provide more stable and predictable perfor-
mance characteristics which is optimal for testing and benchmarking work. 
As discussed in introduction, FIMM and CSC was targeting on directly connecting sequencer 

to computing platform and achieving complete automation of NGS data analysis workflows. 
An example process is shown in Figure 1 and is described below. 

 
Figure 1. Example process of the CSC and FIMM cooperated pilot project. 

• First, FIMM genome sequencer write a new genome as a uBAM file or FASTQ file (intro-
duced later) on a server provided by CSC. This server encrypts the data file using CSC 
public key. File is sent to CSC via private network that connects FIMM intranet domain to 
CSC network using MPLS (Multiprotocol Label Switching, for continuous data stream). 
MPLS is a internet protocol routing technique in telecommunications networks which uses 
connection-oriented short path label to direct data tansfer between nodes, thus speeding 
up traffic flow [26].      

• Second, submitted file is stored to a buffer. Before this file will be processed, metadata 
requirements will be checked and must be fulfiled (pre-processing).  
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• Third, standard workflow to decrypt the data, validate integrity, quality control (QC) or 
other type of standard processing steps. Based on the results of this analysis and re-
search target, the orginal file is delected or re-encrypted for others to use (ingestion). 

• Fourth, the re-encrypted original file and result file will be passed to and archived in a 
secure storage database (Sensitive Data Management System, SDMS).  

• Finally, the data stored in the secure storage database also can be selectively passed to 
private resources database. Meanwhile, researchers can control and manage their data 
and analysis workflows via remote desktop connection which connecting their virtual ma-
chines of HPC server and private resources database. 

This thesis considers the implementing and benchmarking an NGS data analysis workflow, 
which relate to the ingestion part of the Figure 1. Figure 2 shows the detailed example process of 
it and is described below. 

 

Figure 2. NGS data analysis workflow implementation on Pouta VM. 

NGS data analysis workflow was constructed as an WDL script. Researcher uploaded WDL 
script file, input json file, configuration file if needed, and other input files, such as reference ge-
nome file and known sites file to CSC Pouta VM. Script was run on its execution engine Cromwell 
in Pouta VM. More information is descripted in Section 2 and Section 3. 
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2. ABOUT NGS METHODOLOGY AND APPLICA-
TION 

A main NGS methodology and application is variant calling. In this section, variant calling 
stages, different types of variants, variant calling workflow involved file formats, such as FASTA, 
FASTQ, SRA, SAM, BAM, CRAM, VCF, GVCF and the relative index and nonstandard files are 
presented. The gold-standard variant caller Genome Analysis Toolkits (GATK) and its Best Prac-
tices workflows, a new and powerful workflow description language WDL and its execution engine 
Cromwell and container technology, especially Docker containers are introduced as well.     

2.1 Variants and Variant Calling 

Since the NGS method has been widely used worldwide, the total amount of sequence data 
has increased in an unexpected speed. The huge amount of sequence data makes demand on 
deeper and various of analysis. Many new bioinformatics pipelines and related tools have been 
developed rapidly to call variants from NGS data. “Variant calling” refers to the process of identi-
fying variants from sequence data.  
Variants can be mainly classified into several kinds: Single Nucleotide Polymorphism (SNP), 

Insertion/Deletion (Indel), Structure Variation (SV) and Copy Number Variation (CNV).  
SNP is one nucleotide difference at a given position compared to its reference genome. It is 

the most common variation occur in human beings with a frequency around 0.05% to 0.1% [27].  
Indel means a short DNA fragment is inserted or deleted in the given position. The length of 

an Indel is supposed to be less than 1 k base pair (bp) [28]. In fact, in human genome, the most 
common length of Indel is much shorter. The mean length of insertion is only 8 bp and deletion is 
only 5 bp [29].  
SV is the variation in structure of an organism's chromosome. SV is a major source of genomic 

variation and contains various kinds of variations, such as duplications, Copy Number Variations, 
inversions, translocations and large insertions and deletions (>1 kb) [30]. Strictly speaking, CNV 
belongs to SV. But CNV is one of the most important pathogenic factors of human disease and 
its probability of occurrence is relatively high, it is usually discussed separately [31, 32]. Research 
shows that there are around two thirds of human genome is constituted from repeats [33]. CNV 
is a type of duplication or deletion event that affects lots of base pairs. 
For the whole-genome sequence and whole-exome sequence, there are usually three steps 

to deploy variant calling: sequencing, read mapping/alignment and variant identification.  First, 
sequencing the whole genome of an individual or group to generate the WGS or WES data, usu-
ally in the FASTQ format [34] or unmapped BAM (uBAM) format [35]. Second, aligning these 
reads to a reference genome to form BAM or CRAM [36] files. Finally, distinguishing the difference 
between sequencing reads and reference genome, generating a VCF file which contains all the 
discovered variants information. The variant calling performance and time-consumed are largely 
depend on the caller applied and calling strategies. In addition, the sequencing depth, coverage, 
quality and aligner involved have an impact. 

2.2 On File Formats 

File format, also known as file type, refers to a special encoding method of information, which 
enables the information being stored and identified in a computer file. Different file formats are 
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needed by different targets and fields. There are various file formats are created for bioinformatics, 
such as FASTA, FASTQ, BAM, BED, VCF, BCF and so on. They are created originally by certain 
specific bio software or workflow pipelines, and developed into commonly deployed standard for-
mat. Unification standards of file formats highly benefit the development of bioinformatics tools 
and analysis pipelines. No matter what kind of tools, workflows or platforms are used by upstream 
sample preparation, people always can use the same downstream analysis workflow if they want 
due to the unification standards of file formats. In this section, I discuss various kinds of file for-
mats which are most relevant to variant calling. 

2.2.1 FASTA format 
The FASTA format is a text-based format used to record and present nucleotide or peptide 

sequences, in which each letter code refers to each nucleotide or amino acid. It also contains the 
sequence name and necessary comments. The FASTA format was created by a software pack-
age named FASTA. It has become a standard sequence file format because it occupies small 
size and is easily processed with any text-processing tools.  
A typical FASTA file starts with a one-line description, followed by lines of sequence data. The 

single-line description starts with a greater-than (>) symbol which is obligatory and closely fol-
lowed by the identifier and description of sequence which are nonessential. 
Example: (Neisseria gonorrhoeae plasmid pCmGFP) 
>NC_011521.1:4419-5135 Neisseria gonorrhoeae plasmid pCmGFP, complete se-

quence 
ATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTCTTGTTGAATTAGATGGT 
… 
CTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACTATACAAATAA 
In a variant calling workflow, the reference genome sequence usually in the FASTA format. 

Typical file extensions are .fasta, .fa or .fa.gz (gzip compressed). 

2.2.2 FASTQ and SRA formats 
The FASTQ format can be viewed as an extension of the FASTA format. It contains in addition 

correlative sequence quality information after its sequence data [34]. The quality information is 
presented as a numeric score, which is encoded as ASCII character to keep one-to-one mapping 
between sequence and its quality. Like the FASTA format, the FASTQ is text-based file format. It 
was created by Sanger institute, and has become the default standard for storing high-throughput 
sequencing raw reads directly from sequencer. Typical file extensions are .fastq, .fq or .fq.gz (gzip 
compressed). 
A typical FASTQ file contains 4 lines: The first line starts with the character “@”, closely fol-

lowed by a sequence identifier and a nonessential sequence description. The second line pre-
sents the sequence data. The third line starts with symbol plus (+) and optionally followed by the 
sequence identifier, which is the same as the one in the first line. The last line shows the sequence 
base quality encoded as an ASCII character.  
Example: Paired-end FASTQ file of NA12878 
@ERR194147.1 HSQ1004:134:C0D8DACXX:1:1104:3874:86238/1 
GGTTCCTACTTCAGGGTCATAAAGCCTAAATAGCCCACACGTTCCCCTTAAATAAGA-

CATCACGATGGATCACAGGTCTATCACCCTATTAACCACTCACG 
+ 
CC@FFFFFHHHHHJJJFHIIJJJJJJIHJIIJJJJJJJJIIGIJJIJJJIJJJIJIJJJJJJJJJ-

JIJHHHHFFFDEEEEEEEEDDDCDDEEDDDDDDDDD 
The base quality score is used to describe the possibility of an inaccurately called base. If the 

base sequencing error rate is Perror, the value of base quality is Q = -10log10* Perror. Thus, the Q 
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value is proportional to base quality. Because of the development of sequencing technology in 
different companies, there are three different kinds of FASTQ formats. They are separately de-
ployed by Sanger, Solexa and Illumina sequence platforms. Table 1 shows the comparison 
among them. 

Table 1. FASTQ formats comparison. 

The NCBI SRA format (short read archive, currently named as sequence read archive) can be 
viewed as a variant of FASTQ format but contains more description information. Reads stored in 
the SRA format can be easily converted into FASTQ format via SRA toolkit. 

2.2.3 SAM, BAM and CRAM formats 
The SAM (Sequence Alignment Map) format is a file format used to store aligned/mapped 

high-throughput sequencing data, using TAB as separator [35]. The BAM (Binary Alignment Map) 
format and the CRAM format both are compressed versions of SAM. BAM is by definition the 
lossless compression, while CRAM can range from lossless to lossy compression depending on 
how much compression rate is wanted. Generally, CRAM shows significantly better lossless com-
pression than BAM and is highly compatible with BAM. One can easily convert BAM files to 
CRAM. 
A typical SAM file contains two sections, an annotation information (header section) and an 

alignment result (alignment section). The header section is optional. Each line starts with the 
character “@”, followed by a two-letter header record type code. They are: @HD used to illustrate 
the format version, sorting order of alignment, grouping of alignments and sub-sorting order of 
alignment; @SQ for reference sequence dictionary; @RG for read group; @PG for program in-
formation used; And @CO for one-line text comment. The alignment section, one alignment line 
presents per read information, includes 11 mandatory fields and an optional field, which are sep-
arated by tabs. These fields are presented in a fixed order. When certain field information is not 
available, according to the field definition, it can be “0” or “*”. These mandatory fields´ types and 
descriptions are presented in following Table 2: 

Table 2. Overview of mandatory fields in SAM. 

Sequencing 
platform 

ASCII char-
acter range 

Lower limit Quality score 
type 

Quality score 
range 

Current situa-
tion of appli-
cation 

Sanger, Illu-
mina (1.8 and 
later version) 

33-126 33 Phred quality 
score 

0-93 Still using 

Solexa, Illu-
mina (1.3 and 
earlier ver-
sion) 

59-126 64 Solex quality 
score 

5-62 Except for al-
ready se-
quenced 
data, no 
longer been 
used  

Illumina (1.3 
to 1.7 ver-
sion) 

64-126 64 Phred quality 
score 

0-62 Except for al-
ready se-
quenced 
data, no 
longer been 
used 

Order Field Type Regexp/Range Description 
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Optional fields (format: TAG: TYPE: VALUE), where TAG has two uppercase letters, each 
TAG represents a type of information, one TAG can only appear once in one line. The TYPE 
represents the TAG corresponding a value, which can be a printable character, signed integer, 
single-precision floating number, printable string including space, byte array in the Hex format 
and integer or numeric array. 
Fundamentally, SAM, BAM and CRAM files, although are different formats, contain the same 

information and can be replaced with each other. However, according to their respective charac-
teristics, they are used for different purposes in practice. 
BAM files are used directly in GATK Best Practices for processing and analysis. The CRAM 

file is mainly used for archiving because it has the highest compression ratio and may cause 
performance issues if directly used like BAM. Both SAM files and CRAM files can be easily con-
verted to BAM files by Picard [37]. In GATK4, Picard is bundled. 
In GATK Best Practices, SAM, BAM, CRAM files need to meet additional requirements: 
• Must contain right file extension: .sam, .bam and .cram. 

1 QNAME String [!-?A-~]{1,254} Query template NAME 
2 FLAG Int [0, 216 − 1] bitwise FLAG: The number of the 

template mapping case, each num-
ber represents a comparison, where 
the value is the sum of the numbers 
that match the situation 

3 RNAME String \*|[!-()+-<>-~][!-~]* Reference sequence name: If the 
SQ-SN is defined in the comment, it 
must be consistent with it, and for 
unmapped segment without coordi-
nate, marked as “*” 

4 POS Int [0, 231 − 1] 1-based leftmost mapping position: 
First base in a reference sequence 
coordinated as 1, 0 means an un-
mapped read 

5 MAPQ Int [0, 28 − 1] Mapping Quality = −10 log10* Prob-
ability when mapping position is 
wrong, rounded to the nearest inte-
ger. 

6 CIGAR String \*|([0-9]+[MIDNSHPX=])+ CIGAR string: Compact Idiosyn-
cratic Gapped Alignment Report, 
which is based on a reference se-
quence and uses numbers with let-
ters to indicate alignment results 

7 RNEXT String \*|=|[!-()+-<>-~][!-~]* Ref. name of the mate/next read 
8 PNEXT Int [0, 231 − 1] Position of the mate/next read 
9 TLEN Int [−231 + 1, 231 − 1] observed template length: the left-

most is positive, the rightmost is 
negative, the middle is not defined 
positive or negative, the segmenta-
tion is not divided (single-segment), 
or when it is not available, here is 0 

10 SEQ String \*|[A-Za-z=.]+ segment sequence 
11 QUAL String [!-~]+ ASCII of Phred-scaled base qual-

ity+33 
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• Must passed with their index files. If there is not yet, users can easily generate the index 
files by Picard BuildBamIndex. 
• Must successfully past the validation of Picard ValidateSamFile. 
• The header section must contain @RG with sample name. 
• Every read in BAM file must belong to a read group listed in header. 
• The reads must be sorted in coordinate order. 
The easiest way to check whether a file meets the GATK requirements is to use SAMtools [35] 

to check the BAM header: Samtools view -H data.bam. 

2.2.4 VCF and GVCF formats 
VCF (Variant Call Format) is a plain-text file format, which is used to store genetic variants. 

VCF is the favorite format and only well-supported variant call format by GATK, which can be 
generate by GATK HaplotypeCaller [38] in normal mode or by GenotypeGVCFs [39]. This format 
originally developed by 1000 Genome Project [40]. However, now the Genomic Data Toolkit team 
of the Global Alliance for Genomics and Health has the responsibility of continuous development 
and updates. VCF not just stores the variants themselves (SNPs, Indels, Structural variants and 
so on) and locations but also other metadata, such as the dataset ownership, sample statistics 
and a quality score [41]. VCF is usually stored in its compressed version, a .gz file or a BCF 
depending on two different compression methods used. VCF is a text file format, thus it can be 
opened and edited by any text editors but as discussed before, it contains abundant information, 
and hence VCF file is usually big. Editing the VCF file with a text editor is not a good choice, as it 
can even cause editor to crash. Also, to ensure the right file format, users are forbidden to edit it 
with any word processors. Opening or editing part of VCF with a special tool is the best way.  
The basic structure of VCF can be divided into two parts: header and variant call records. The 

following figure shows a typical VCF format structure. 

 
Figure 3. Basic structure of VCF. 

There is one kind of VCFs which is called the "sites-only" VCF having a different structure. It 
contains only 8 columns, without FORMAT and sample-specific information. 
If GATK HaplotypeCaller is called in the -ERC GVCF mode, not in the normal mode, a GVCF 

file will be produced instead of a VCF file. GVCF (Genomic VCF) is a specific kind of VCF file. Its 
basic format structure is the same as normal VCF but it contains extra information. No matter 
where there is a variant call or not, the GVCF contains records for all sites, which is essential for 
later joint calling cohort analysis. There is another kind of GVCF produced by HaplotypeCaller in 
the -ERC BP_RESOLUTION mode. I didn´t use it in this thesis. However, the difference between 
the two GVCFs is: later kind of GVCF has an individual record at every site while the ERC GVCF 



10 

 

has an individual record only at variant sites but instead has a non-variant block records for all 
non-variant sites. 

2.2.5 Index file and nonstandard file formats 
GATK Best Practices is mainly related to three kinds of file formats which can be indexed: 

BAM, VCF and FASTA (sometimes, FASTQ). For a big file, the index file works as its external 
table of contents which allow fast random access to this file without reading through the whole big 
file. The index file extension follows a similar rule. For BAM, it is .bai, for FASTA, it is .fai, for VCF, 
it is .idx and for VCF.gz, it is .tbi. Users can easily index their files. There are various ways to do 
it. For example, SAMtools is an easy option to index BAM, FASTA and FASTQ file with command: 
samtools index *.bam, samtools faidx *.fasta and samtools fqidx *.fastq. IGV [42, 
43] and GATK are good at indexing VCF file. 
Besides these standard file formats mentioned above, many nonstandard file formats have 

been created by programs. For instance, GATK (see section 2.3) creates lots of intermediate files. 

2.3 Genome Analysis Toolkit (GATK) and Best Practices 

Genome Analysis Toolkit (GATK) 
Because of the increase in demand, many variant callers appear on the market. Four most 

popular among them are SAMtools, Genome Analysis Toolkit (GATK), glftools 
(http://csg.sph.umich.edu/abecasis/glfTools/) and Atlas2 [10, 11, 35, 44]. There are also a number 
of articles that compare the performance of various callers [45]. Generally speaking, GATK 
demonstrates faster speed, bigger throughput and higher accuracy. As time progressed, GATK 
developed by the Broad Institute has gradually became the gold-standard for the variant calling 
process with its outstanding performance. The toolkit offers a wide variety of tools and it focuses 
on variant discovery and genotyping. It is an industry standard for identifying SNPs and Indels in 
germline DNA and RNAseq, especially for human whole-genome sequencing and whole-exome 
sequencing data generated by Illumine sequencing technology [45].  Besides the variant caller 
itself, GATK contains lots of utilities to perform related tasks such as quality control and assess-
ment of high-throughput sequencing data, and has the popular Picard toolkits bundled. In other 
words, GATK features a rich professional ecosystem: users can not only complete a single simple 
work such as data diagnosis, but also a complex series of work, such as from reads to detected 
variants. All these tasks can be accomplished by the harmonized GATK command syntax and a 
user guide. At the heart of GATK is an industrial-grade infrastructure and engine that handles 
data access, transformation and traversal, and high-performance computing. In particular, GATK4 
uses Apache spark [13] for parallelization and cloud infrastructure optimization.  
GATK supports different POSIX-compatible platforms such as Linux, Unix and MacOSX but 

does not support Microsoft Windows. The major system requirement is Java 1.8 (Oracle Java and 
OpenJDK are both officially supported) and some tools need Python and R. Docker containers 
are the recommend way to run GATK without worrying about environment configuration and de-
tails about Docker will be discussed in a subsequent section. Users can either download GATK 
Docker images from Dockerhub [46] (broadinstitute/gatk) or the GATK package source code di-
rectly from Broad Institute GATK download page [47].  
GATK Best Practices 
As discussed before, the variant discovery begins from the DNA library preparation, go through 

sequencing, to variant calling. The GATK team believes that each task should be a step in a well-
documented protocol instead of isolated and disconnected task. Differences in experimental de-
sign or differences in sample preparation and processing will both result in a change in the final 
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variation test results. In order to achieve high repeatability and high accuracy of the test results, 
a complete set of workflows is crucial. 
The industry standard GATK Best Practices are the variant discovery workflows for high-

throughput sequencing data used at the Broad Institute. It offers step-by-step protocols for de-
tecting different variants and in different type of input data. There are six main workflows, they 
are: Data Pre-processing, Germline SNPs and Indels, Somatic SNVs and Indels, RNAseq SNPs 
and Indels, Germline CNVs and Somatic CNVs.  
The analysis phase of the workflow mainly consists of two or three stages: 1) Data pre-pro-

cessing, which is a general step, starting from raw data (in FASTQ or uBAM format) to analysis-
ready BAM file. This phase involves alignment to the reference genome, sorting, marking dupli-
cation and Recalibrate base quality scores. 2) Variant discovery, which starts from analysis-ready 
BAM file. This involves detecting variants from one or more individual genomes and filtering to 
reduce false positives. The output variants are generally represented in VCF format, unless vari-
ants such as CNV that cannot be represented by VCF, will be presented by other structured text-
based formats. 3) Filtering and annotation, which is an optional step that typically includes filtering 
and annotation to generate a call set for downstream analysis. This typically involves using known 
variants, truth sets and other metadata resources to evaluate and improve the accuracy of the 
results and provide additional information. 

2.4 WDL and Cromwell 

An efficient genetic analysis workflow requires not only a complex set of processing and anal-
ysis chains, but also parallelism, dependencies between input and output, and intelligent recovery 
from interrupted state. In the past, people often used Perl to write analysis scripts, and Scala [48] 
implemented parallel computing. But this is not an efficient nor simple solution for biologists, that 
is because they require a lot of computer knowledge and programming skills. But biologists prefer 
to focus on the genetic analysis work itself, not on the learning of tools. Broad Institute now offers 
a new pipelining solution, which involves a new workflow description language, WDL and an ex-
ecution engine that can execute it both on the cloud and locally, Cromwell [49]. 
WDL 
WDL is an open source workflow description language written in human readable and easy to 

write syntax. It defines the various tasks in a workflow, links them in an orderly manner and has 
built-in advanced functions for implementing parallel computing (scatter-gather). Almost everyone 
can understand its usage and can run it on the cloud and locally. WDL is a cross-user and platform 
language. In order to improve the repeatability and expand the scope of GATK best practices 
workflows, Broad Institute's production pipelines scripts of GATK4 Best Practices are written in 
WDL. 
The core components of WDL scripts are: workflow, task, call, command and output. There 

are additional optional components: runtime parameters, meta-information and parameter-meta 
descriptions of inputs and outputs. 
Cromwell 
Cromwell is an open source workflow management system for scientific workflows. It can run 

WDL and Common workflow language (CWL) both. It supports multiple public clouds (Google 
Cloud, Alibaba Cloud, Intel BIGstack and Amazon Web Services) and HPC schedules natively 
via pluggable backend. It is flexible in scale can either work as a server or just in a standalone 
mode. 
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2.5 Virtual Machines and Containers 

One problem in software development and running is the environment configuration. To suc-
cessfully run a certain software, users must ensure that they deployed the right operating system 
settings and installed various libraries and components. It is really common that a software works 
very well on some user´s computer but totally crashes on others. It asks for extra work for devel-
opers and good computer knowledge for users as well. Here, I discuss two popular solutions: 
virtual machine and containers.  

2.5.1 Virtual Machine 
One solution is a virtual machine. It can run another operating system in one operating system, 

such as running a Linux system on a Windows system. The application is not aware of this be-
cause the virtual machine looks exactly the same as the real system, and for the underlying sys-
tem, the virtual machine is a normal file, deleted without it, and has no effect on other parts. 
Although the user can restore the original environment of the software through the virtual ma-

chine. However, this approach has several drawbacks [50].   
(1) More resources 
The virtual machine monopolizes part of the memory and hard disk space. Other programs 

cannot use these resources while it is running. Even if the application inside the virtual machine, 
the actual memory used is only 1 MB, the virtual machine still needs several hundred MB of 
memory to run. 
(2) More redundant steps 
A virtual machine is a complete operating system. Some system-level operating steps cannot 

be skipped, such as user login. 
(3) Slow start 
The time it cost to start the virtual machine is exactly it cost to start the operating system. It 

may take a few minutes for the app to actually run. 

2.5.2 Linux Container 
Due to these shortcomings of virtual machines, another virtualization technology has been 

developed: Linux Containers (LXC). 
Instead of emulating a complete operating system, the Linux container isolates processes. In 

other words, a protective layer is placed outside the normal process. For the process inside the 
container, the various resources it touches are virtual, thus achieving isolation from the underlying 
system. 
Since containers are process-level, there are many advantages over virtual machines. 
(1) Fast start-up 
The application inside the container is directly a process of the underlying system, not a pro-

cess inside the virtual machine. Therefore, starting the container is equivalent to starting a pro-
cess, rather than starting an operating system, the speed is much faster. 
(2) Less resource occupation 
The container only occupies the required resources. Because the virtual machine is a com-

plete operating system, it is inevitable to occupy all resources. In addition, multiple containers can 
share resources, and virtual machines are exclusive resources. 
(3) small size 
The container only needs to contain the components used, and the virtual machine is pack-

aged by the entire operating system, so the container file is much smaller than the virtual machine 
file. 
(4) Better application performance 
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Strictly speaking, whether a container or a virtual machine provides better application perfor-
mance is depending on the type of workload [51–53]. However, containers usually offer better 
application performance because of no hypervisor, especially when the application talks to the 
I/O devices [54].  
In short, the container is like a lightweight virtual machine that provides a virtualized environ-

ment, but at a much lower overhead. 

2.5.3 Architecture comparison virtual machine vs. container 
Architecture comparison between a virtual machine and a container is presented in Figure 4.  

 
Figure 4. Architecture comparison between virtual machine and container. 

There are three major differences between them: 1) On the same physical machine, different 
virtual machines own their separate guest operating systems while different containers share the 
same operating system (Host OS). Thus, a container is a more lightweight solution compared 
with a virtual machine via getting rid of these separate guest operating systems. 2) The hypervisor 
layer, such as VMware ESXi [55], VirtualBox [56], Xen [57] and KVM [58], is essential to a virtual 
machine while is not needed by a container. It also called virtual machine monitor (VMM), is a 
platform virtualization software runs on a physical host machine to enable multiple guest operating 
systems running concurrently. 3) Each virtual machine has its own image file and these image 
files are isolated from each other, while containers image files are created layer by layer which 
means containers may share some of their image files.  

2.5.4 Docker and Docker container image 
Docker [12] is currently the most popular Linux container that provides an easy-to-use con-

tainer usage interface. Docker packages the application's dependencies with the program in a 
single file. Running this file will generate a virtual container. The program runs in this virtual con-
tainer as if it were running on a real physical machine. With Docker, you don't have to worry about 
environmental issues. Overall, Docker's interface is fairly simple, and users can easily create and 
use containers and put their own applications into containers. Containers can also be versioned, 
copied, shared, and modified just like managing common code. 
Docker packages application and its dependencies in an image file. Only through this file can 

the Docker container be generated. The image file can be thought of as a template for the con-
tainer. Docker generates an instance of the container from the image file. The same image file 
can generate multiple container instances running at the same time. 
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Image is a binary file. In actual development, an image file is often generated by inheriting 
another image file, plus some personalization settings. For example, you can add an Apache 
server to your Ubuntu image to form your image. The image file is generic. If the image file of one 
machine is copied to another machine, it can still be used. In order to facilitate sharing, after the 
image file was created, it can be uploaded to the online warehouse. Docker's official repository 
Docker Hub is the most important and most common image repository. 

2.5.5 Main uses of Docker 
The main uses of Docker are currently in three categories. 
(1) Provide a one-time environment. For example, testing other people's software locally, 

providing unit testing and build environment for continuous integration. 
(2) Provide flexible cloud services. Because the Docker container can be opened and closed, 

it is suitable for dynamic expansion and shrinkage. 
(3) Forming a microservices architecture. With multiple containers, one machine can run mul-

tiple services, so the microservices architecture can be simulated on this machine. 

2.5.6 Docker in GATK Best Practices 
In latest GATK Best Practices, GATK4, Picard, SAMtools and Python2.7 are called as docker 

images which are declared on each pipeline's input json files. Therefore, users do not need to 
configure the environment required by each tool, only need to configure the environment for 
Cromwell. This greatly simplifies the environment configuration of running scripts. 
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3. GATK BEST PRACTICES WORKFLOW  

The two most important targets of this thesis are: 1) Enabling the pipeline implementation of 
GATK Best Practices workflow on CSC cPouta IaaS Cloud. 2) Collecting performance bench-
marking data. Completed tasks contain automating the adjusted GATK Best Practices for 
germline short variants (SNPs and Indels) discovery with Docker container in three common 
widely used human whole genome sequence data (NA12878, NA12891 and NA12892) which 
sequenced by Illumina Cambridge Ltd. and download from European Nucleotide Archive (ENA) 
[59] and collecting necessary performance benchmarking data (such as multi-threads control, 
needed swap space, tools running time, PairHMM scalability in GATK4 HaplotypeCaller and so 
on). The GATK Best Practices Workflows are constructed as WDL scripts and run on Cromwell. 
This paper can be used as a guide to implement efficiently GATK Best Practices on CSC cPouta.  

3.1 Flow of the single sample calling and joint calling pipelines 

The original pipeline provided by Broad Institute for Data Pre-processing of each sample starts 
from a list of unmapped bam (ubam) files which are separated based on Read Group Tags (which 
are indicated as the flowcell:lane ID in FASTQ files), and ends with a BAM file which composed 
with Analysis-Ready reads of that sample. This analysis-ready BAM file will be passed to the 
following HyplotypCaller pipeline as input, applied GATK4 HaplotypeCaller with -ERC GVCF 
mode, then generate one GVCF file for each sample. In this thesis, the above steps were per-
formed to each of three human whole-genome sequence samples (NA12878, NA12891 and 
NA12892) and generated three GVCF files, separately. Finally, I adopted multiple-sample variant-
calling strategy to increase the sensitivity of GATK, made cohort analysis with all three GVCF 
files. I passed them simultaneously to Joint Calling pipeline, eventually got one VCF file which 
contains all genotypes for three samples at all sites. 
Broad Institute prefers uBAM file format over FASTQ. The uBAM files are generated directly 

from the Illumine basecalls in Broad Institute instead of FASTQ files which are commonly gener-
ated by other sequencing providers, in order to reserve all metadata together with sequence 
reads.  Thus, pipelines offered by Broad Institute will not write FASTQ files. However, FASTQ 
files still were common widely used by data pre-processing workflows provided by company and 
research institutes except Broad and most of sequencing providers generate FASTQ files with 
the raw unmapped read sequences.  
Here, to ensure these users who only own raw sequence data in paired-end FASTQ format 

could utilize this workflow for germline short variants discovery as well, I added two pipelines in 
the beginning. Firstly, Linux Command Line Pipeline was used to divide paired-end FASTQ files 
into a set of FASTQ files according the flowcell:lane ID (which will be indicated as RG tags in 
uBAM or BAM files). Secondly, Sequence Format Conversion Pipeline was utilized to transfer 
FASTQ files to a list of unmapped bam (ubam) files, which can be passed to Data Pre-processing 
Pipeline. In addition, besides the main outputs mentioned above, each pipeline produce other 
files as well, such as index files, csv files and so on.  
Figure 5 and 6 combined show our adjusted GATK Best Practices Germline Short Variant 

Discovery workflow which contains 5 pipelines in total.  
These 5 pipelines are: 

1. Linux Command Line Pipeline 
2. Sequence Format Conversion Pipeline 
3. Data Pre-processing Pipeline 
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4. HaplotypeCaller Pipeline 
5. Joint Calling Pipeline 

Figure 5 shows pipelines from No.1 to No.4 which describes the whole germline short variant 
single calling workflow, from FASTQ raw sequence data to a GVCF file generated by Haplotype-
Caller and Figure 6 shows pipeline No.5, Joint Calling Pipeline which describes the cohort anal-
ysis of all three samples. In two figures, the documents of inputs/outputs are colored orange and 
the processing pipelines are colored light blue and text with bold. 
 

 
Figure 5. Overview of the single sample calling workflow. 
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Figure 6. Overview of the Joint Calling Pipeline. 

3.2 Arguments, methods and algorithms for the pipelines 

This section introduces mainly applied methods, algorithms and tools with its arguments in the 
adjusted GATK Best Practices of this thesis. Section 3.2.1 describes the major steps for Data 
Pre-processing pipeline which is the essential pipeline for any variant calling workflows. Its target 
is producing analysis-ready BAM file for each sample from raw sequencing data (FASTQ or uBAM 
file). Section 3.2.2 describes HaplotypeCaller Pipeline with ERC GVCF mode. Section 3.2.3 de-
scribes GVCFs consolidating process which aims to increase the scalability and speed of later 
process. Section 3.2.4 describes Joint Calling Pipeline which used for cohort analysis to increase 
discovery rate. Section 3.2.5 describes variant filter and algorithm used in this thesis. Arguments 
for main tools involved in described pipelines are listed in Appendix A. 

3.2.1 Map to Reference, Mark Duplicates and Base Quality 
Score Recalibration 

Data pre-processing is an obligatory initial phase for any variant calling workflows. It contains 
three common steps: (1) Mapping reads to reference genome to produce a BAM or SAM file 
which sorted by coordinate aiming at providing a common coordinate framework for later analysis; 
(2) Marking duplicates to reduce the biases caused by DNA library preparation step such as PCR 
amplification; (3) Applying base quality score recalibration to increase sensitivity and specificity, 
because the GATK variant calling algorithm relies heavily upon each base quality of reads. In 
addition, at the very first step, the raw sequencing data must has already passed the quality con-
trol checks. 
There are major 7 steps, in the data pre-processing pipeline of this thesis.  

1. I got the BWA version which will be wrote in the PG record of the header of BAM file 
that produced by next step with GATK MergeBamAlignment tool.  

2. The Picard SamToFastq tool combined with bwamem and samtools were used to 
convert reads from uBAM format to FASTQ format and mapped to the reference ge-
nome. Then, GATK MergeBamAlignment tool was used to merge the original uBAM 
and BWA-aligned BAM files. This step was performed per-read group and the flowcell-
level uBAM input files were aligned paralleled via scatter-gather function.  

3. GATK MarkDuplicates, SortSam and SetNmAndTags tools were used to mark dupli-
cate reads, sort BAM file by coordinate order and fix tag values for NM and UQ.  

4. Python was used to create sets of intervals for later scatter-gather paralleling over 
chromosomes and output to a stdout where it was parsed into a WDL Array[Ar-
ray[String]].  
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5. GATK BaseRecalibrator tool was used to generate the recalibration model and this 
step was performed paralleled over chromosomes via scatter-gather function based 
on last step´s output.  

6. GATK GatherBQSRReports tool was used to merge multiple recalibration report ta-
bles from last step scattered BaseRecalibrator runs. Then, the GATK ApplyBQSR tool 
was used to apply the Base Quality Score Recalibration model by interval parallelly 
via scatter-gather function.  

7. Finally, the GATK GatherBamFiles tool was used to combine multiple recalibrated 
BAM files from last step scattered ApplyRecalibration runs. 

 
Base Quality Score Recalibration (BQSR) and involved tools: BaseRecalibrator and Ap-

plyBQSR 
GATK variant calling algorithm accuracy is heavily dependent on the base quality score. How-

ever, since biases are introduced by the sequencing process such as sequencing reaction situa-
tions or sequencer itself, the sequencer assigned base quality score is not accurate enough. In 
order to eventually improve variant calling accuracy, BaseRecalibrator [60] utilizing machine 
learning methods [61] to build correction model which can intelligently adjust estimated base qual-
ity score.  
Base Recalibration contains two key steps and one optional step.  

1. Build a model of covariation based on the read data and sets of known variants (such 
as dbSNP, ExAc or GnomAD resource) to generate a recalibration table. If there are 
no known variants yet, bootstrap will be used [62]. First, the unrecalibrated data will 
be used to do the first round of SNP calling. Then, the found SNPs with the highest 
confidence will be used as the database of known SNPs and sent to BaseRecalibrator. 
Finally, do SNP calling with the recalibrated data. Users can repeat above steps until 
convergence.  

2. Adjust the base quality score based on that model. ApplyBQSR produces recalibrated 
BAM or CRAM files based on previously generated recalibration table.  

3. (optional) Build a second model to visualize this base recalibration process via plotting 
before and after plots.  

It is worth mentioning that read filters such as: MappingQualityZeroFilter, MalformedReadFilter, 
BadCigarFilter, NotPrimaryAlignmentFilter, FailsVendorQualityCheckFilter, DuplicateReadFilter 
and MappingQualityUnavailableFilter have been automatically applied to the data by engine be-
fore BaseRecalibrator. 

3.2.2 Call Variants Per-sample 
Firstly (optional), the script checked the input was cram or not, if it was cram file, samtools was 

used to convert cram to bam. Then, variants were called in parallel over grouped calling intervals 
via scatter-gather function. The GATK HaplotypeCaller –ERC GVCF mode was used to generate 
GVCF by interval. Finally, all these per-interval GVCFs were merged by Picard MergeVcfs tool. 
 
HaplotypeCaller Algorithm 
HaplotypeCaller works in 4 steps.  

• Define active regions.  
• Reassemble each active region based on a De Bruijn-like graph to determine the pos-

sible haplotypes. Then, realigns these haplotypes against their reference haplotypes 
based on Smith-Waterman algorithm to identify potential variant sites.  

• Determine likelihoods of previously found haplotypes according PairHMM algorithm. 
• Finally, assign genotypes for sample via applying Bayes´rule on each potential variant 

site.  
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Generally speaking, by introducing local de-nova reassembling of haplotypes in active regions, 
HaplotypeCaller is able to efficiently and more accurately call SNPs and Indels at the same time. 
HaplotypeCaller has normal VCF mode and so called GVCF mode. In this thesis, I deployed 
HaplotypeCaller with –ERC GVCF mode. This mode generated intermediate GVCF instead of 
normal VCF files. These GVCF files were jointly passed to Joint Calling pipeline for cohort analy-
sis. 

3.2.3 Consolidate GVCFs 
Before Joint calling process, the GATK GenomicsDBImport tool was used to consolidate the 

three single-sample GVCF files into a datastore: GenomicsDB datastore. This step can increase 
the scalability and speed of the upcoming joint genotyping process. Arguments for tool Ge-
nomicsDBImport are listed below. All bash variables needed for the command line have been set 
before. 

3.2.4 Joint-Call Cohort 
In the Joint Calling Pipeline, the GATK GenotypeGVCFs tool was used to perform joint geno-

typing on three previous generated GVCF files from sample: NA12878, NA12891 and NA12892 
which all stored in a GenomicsDB workspace. Finally, generated a set of SNPs and indels variants 
waiting for filtering.  

3.2.5 Filter Variants by Variant (Quality Score) Recalibration 
Joint Calling Pipeline can be generally split into two parts: 1) Joint genotyping with tools Ge-

nomicsDBImport and GenotypeGVCFs and 2) Variant Quality Score Recalibration (VQSR) with 
tools: VariantRecalibrator and ApplyVQSR. When variant recalibration cannot be performed, 
hard-filtering will be used to instead. Filtering (via VQSR or hard-filtering) is an important and 
undeletable step for the whole Variant Calling Workflow which can significantly reduce false pos-
itives. 
 
Variant Quality Score Recalibration (VQSR) and involved tools: VariantRecalibrator and 

ApplyVQSR 
The target of variant quality score recalibration (VQSR) is to assign a well-calibrated probabil-

ity, called VQSLOD score, to each variant call inside of a call set. Then, filter variants based on 
the VQSLOD score of each variant call to significantly reduce the number of false positives. VQSR 
is a two-step process. The first step is completed by tool VariantRecalibrator and the second step 
is completed by tool ApplyVQSR. First, VariantRecalibrator uses machine learning method to 
build a filtering model based on these high-accuracy known variant sites, typically are HapMap 
sites [63] or polymorphic sites found in human omni 2.5M SNP Chip Array [64]. Then, this model 
is applied to all input variants to evaluate the probability of each variant is true and generate 
VQSLOD score for each variant. Eventually, this tool will produce two output files: a recalibration 
table file which will be used in the second step and a tranches file which shows various metrics 
of the recalibration callset for slices of the data. Second, ApplyVQSR filters input variants based 
on the recalibration table and a given target sensitivity value. This filtering is not a simple “pass 
or fail” process, but assigning different level annotation to each slice of the dataset, called tranche, 
according its truth sensitivity and “filter” in this case does not means removed but marked as 
filtered. 
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3.3 On the Parallelism of the pipeline 

This section introduces parallel computing and implementation in GATK Best Practices. 

3.3.1 Parallel Computing 
Parallel computing refers to using multiple processing units to perform several operations at 

the same time in parallel, instead of sequentially i.e one after another. The basic idea is to use 
multiple processors to solve the same problem collaboratively which means the problem or com-
puting task need to be decomposed into several parts that can be done independently. Each part 
will be calculated in parallel by different processors. 
Although parallel computing is an effective way to improve the computing speed and pro-

cessing power of computer system, it has "overhead" costs as well. Enabling parallel computing 
will introduce additional work, such as file access management, dividing jobs and collecting re-
sults. Thus, it is important to keep the balance between benefits and costs avoiding unnecessary 
parallelism or too many parallel branches. A parallel computing system can be either a computer 
with multiple processors/cores shared memory parallelism or a cluster of processing units inter-
connected distributed memory parallelism. 

3.3.2 Parallelizing the GATK 
Parallelism can be implemented in GATK via multi-threading or via the scatter-gather function. 
Multi-threading and Spark 
A process is the instance of a computer program which is being excuted by one or multiple 

threads. A thread is a unit of execution and execution scheduling of a process. Threads depend 
on the existence of processes. Under the process, you can share the memory of the process, and 
also have a memory space of your own. This memory space is also called the thread stack. It is 
allocated by the system when the thread is created. It is mainly used to save the data used inside 
the thread. Multi-process means different programs or replicates of the same program running 
at the same time. Multi-threading means that there are multiple threads under one process. Each 
thread executes any part of this process code, including parts currently being executed by another 
thread. The comparision between thread and process is showed in Figure 7.  

  
Figure 7. Process vs. Thread. 
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For some tools of GATK3 with built-in multi-threading option, it can be easily enabled by argu-
ments: -nt or –nct. “nt” stands for number threads which controls the number of data threads 
sent to the processor (machine level). “nct” stands for number CPU threads which controls the 
number of CPU threads allocated to each data thread (core level).  
In GATK4, an open-source software library called Spark [13] is used to enable multi-threading. 

Many GATK4 tools are Spark-capable but not all of them and these Spark-capable tools are still 
in beta version which are not suitable for production yet. Users can use Spark without additional 
installations because all necessary dependencies needed to use Spark already are bundled by 
GATK4 itself. Spark-enabled GATK4 tools can be run on both a local multi-core machine and on 
a Spark cluster. Example command lines are as follow. 1. “--spark-master local[n]”. It 
means run on a local machine with n cores. “n” can be replaced with “*” which means using all 
cores. 2. “--spark-master spark://23.195.26.187:7077”. It means run on a Spark cluster 
at 23.195.26.187, port 7077. 3. “--spark-runner GCS --cluster my_cluster”. It means run 
on my_cluster in Google Dataproc. 
The performance of GATK4 can be improved by involving the Intel Genomics Kernel Library 

(GKL) [65]. GKL is an open-source collection of optimized components used in genomics appli-
cations which was developed by Intel and Broad Institute. In the case of hardware compatibility, 
it can provide alternatives to the key components of the GATK4 toolkit. Alternatives can signifi-
cantly improve the speed of operation and optimize algorithms. For example, in HaplotypeCaller 
tool, alternative code adds Open Multi-Processing (OpenMP) [66] support for multi-threaded con-
trol. More detail information and testing data is showed in section 4.3. OpenMP is a portable 
application program interface (API) to direct multi-threaded, shared memory parallelism. It is com-
posed by three basic API components: compiler directives, runtime library routines and environ-
ment variables.  
Scatter-Gather 
Multi-threading parallelism takes place within one process, the scatter-gather approach in-

volves multiple processes. There are two pipelining methods to enable scatter-gathering in GATK. 
The GATK-Queue and combination of Cromwell with WDL script. GATK-Queue is a command-
line job manager and scripting framework for multi-stage genomic analysis. According Broad In-
stitute document [67], GATK support for Queue was permanently discontinued upon release of 
GATK 4. The one applied in this thesis is the combination of Cromwell with WDL script. In scatter 
step of the scatter-gather, Cromwell generates separate command lines based on a given WDL 
script. These command lines will run that tool on certain portion of the input data and produce 
their results separately. All the results will be stored in temporary files. In the gather step, Crom-
well collects all the results into a final output file. Figure 8 shows a scatter-gather parallelism 
example and descripted below. 

  
Figure 8. Example of Scatter-Gather. 



22 

 

In this example, I have sets of sample BAM files. Instead of direct passing all of them into tool 
HaplotypeCaller (ERC mode), I firstly scattered them into 3 separate BAM files (BAM1, BAM2 
and BAM3). Each of BAMs went through tool HaplotypeCaller (ERC mode) and produced its 
GVCF file. Then, all three GVCFs were gathered into one final output file, typically as an array 
file. It is worth mentioning that while using scatter-gather function, users still can use GATK´s 
internal multithreading capabilities inside of each scatter branches (nodes) to increase the bene-
fits of parallelism. 

3.4 Experimental Setup 

Hardware Specifications 
All experiments and testing were conducted on cPouta Virtual Machine provided by CSC. The 

Virtual Machine flavor used in this experiment was hpc-gen2.24core. In this flavour, CPU was 
Intel Xeon CPU E5-2680 v3, with hyper-threading, VCPUs was 24 cores. RAM is 117.2 GB, nodes 
ran CentOS 7 system and connected with 40 Gb/s Ethernet. Root Disk was 80 GB with 3 attached 
volumes: volume t-vol1 attached on /dev/vda, 900 GB. volume t-vol2 attached on /dev/vdb, 
4000GB. volume t-vol3 attached on /dev/vdc, 3500 GB. The instance featured a local SATA disk, 
no RAID. Swap space was 99 GB. According testing results, swap space is essential for running 
GATK4 Best Practices but the size of swap space can be adjusted according user´s analysis 
scale. 
Software Requirements 
Docker, docker-ce-17.06.0.ce-1.el7.centos.x86_64.rpm was downloaded from docker-ce ver-

sion for centos 7 download page (https://download.docker.com/linux/cen-
tos/7/x86_64/stable/Packages/). Cromwell, Cromwell-33.1.jar was downloaded from 
broadinstitute/cromwell GitHub page (https://github.com/broadinstitute/cromwell/re-
leases). GATK4, Samtools and Python2.7 called as Docker images which are declared on each 
pipeline's input json files. 

3.5 Genomes Datasets 

Single sample-calling workflow starts from a FASTQ file and ends at a generated GVCF file. 
It contains 4 pipelines: Linux Command Line Pipeline, Sequence Format Conversion Pipeline, 
Data Pre-processing Pipeline and HaplotypeCaller Pipeline. The Paired-End FASTQ files used 
by this thesis (sample NA12878, NA12891 and NA12892 [59], WGS, 30X sequencing coverage) 
were downloaded from European Nucleotide Archive (ENA) [68]. Sample NA12878 came from a 
Utah woman who had a genetic disease (CYP2D6 mutation) and her parents´ samples are 
NA12891 (father) and NA12892 (mother).  NA12878 is the most commonly used testing data and 
the three members of CEU trio (NA12878, NA12891 and NA12892) are the recommend bench-
marking data for GATK Best Practices by Broad Institute. All detailed information of WGS datasets 
for Linux Command Line Pipeline and Sequence Conversion Pipeline are mentioned in the Table 
3 and Table 4. The uBAM files used for Data Pre-processing Pipeline are listed in Table 5. The 
datasets used by the HaplotypeCaller Pipeline and the Joint Calling pipeline are listed in Table 6. 
These three GVCF files used by Joint Calling Pipeline are generated by passing the Paired-End 
FASTQ files through the single sample calling workflow. The last tool HaplotypeCaller in single 
sample calling workflow produced one GVCF and its index file for each sample. Table 7 lists 
reference files and know sites resources for single sample calling workflow and Joint Calling Pipe-
line. 
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Table 3. WGS Dataset for Linux Command Line Pipeline. 

Table 4. WGS Dataset for Sequence Format Conversion Pipeline. 

Se-
quenc
e type 

Sample Library 
Name 

Plat-
form_unit 

File Used Size(G
B) 

X 
Cov
er-
age 

Read 
Lengt
h 

 NA1287
8 

ERR1941
47 

HSQ1004:1
34 

ERR194147_1.fastq
.gz 

47.9 30X 100 

    ERR194147_2.fastq
.gz 

48.9   

Input 
WGS 
Da-
taset 

NA1289
1 

ERR1941
60 

HSQ1008:1
75 

ERR194160_1.fastq
.gz 

46 30X 100 

    ERR194160_2.fastq
.gz 

48   

 
 

NA1289
2 

ERR1941
61 

HSQ1008:1
76 

ERR194161_1.fastq
.gz 

51 30X 100 

    ERR194161_2.fastq
.gz 

52   

Sam
ple_
Nam
e 

Read-
Group_Name 

Fastq_1 Fastq_2 Li-
brary
_nam
e 

Plat-
form
_na
me 

Plat-
form_
unit 

Siz
e(G
B) 

NA1
287
8 

ERR194147_
C0D8DACXX
.1 

ERR194147_C0
D8DACXX.1_1.fa
stq 

ERR194147_C0
D8DACXX.1_2.fa
stq 

ERR
1941
47 

Illu-
mina 

HSQ1
004:1
34 

 

 ERR194147_
C0D8DACXX
.2 

ERR194147_C0
D8DACXX.2_1.fa
stq 

ERR194147_C0
D8DACXX.2_2.fa
stq 

    

 ERR194147_
C0D8DACXX
.3 

ERR194147_C0
D8DACXX.3_1.fa
stq 

ERR194147_C0
D8DACXX.3_2.fa
stq 

    

 ERR194147_
C0D8DACXX
.4 

ERR194147_C0
D8DACXX.4_1.fa
stq 

ERR194147_C0
D8DACXX.4_2.fa
stq 

    

NA1
289
1 

ERR194160_
C0JVFACXX.
5 

ERR194160_C0J
VFACXX.5_1.fas
tq 

ERR194160_C0J
VFACXX.5_2.fas
tq 

ERR
1941
60 

Illu-
mina 

HSQ1
008:1
75 

 

 ERR194160_
C0JVFACXX.
6 

ERR194160_C0J
VFACXX.6_1.fas
tq 

ERR194160_C0J
VFACXX.6_2.fas
tq 

    

 ERR194160_
C0JVFACXX.
7 

ERR194160_C0J
VFACXX.7_1.fas
tq 

ERR194160_C0J
VFACXX.7_2.fas
tq 

    

 ERR194160_
C0JVFACXX.
8 

ERR194160_C0J
VFACXX.8_1.fas
tq 

ERR194160_C0J
VFACXX.8_2.fas
tq 
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Table 5. WGS Dataset for Data-Processing Pipeline. 

Table 6. Input Datasets for HaplotypeCaller Pipeline and Joint Calling Pipeline. 

NA1
289
1 

ERR194161_
D0UYCACXX
.4 

ERR194161_D0
UYCACXX.4_1.f
astq 

ERR194161_D0
UYCACXX.4_2.f
astq 

ERR
1941
61 

Illu-
mina 

HSQ1
008:1
76 

 

 ERR194161_
D0UYCACXX
.5 

ERR194161_D0
UYCACXX.5_1.f
astq 

ERR194161_D0
UYCACXX.5_2.f
astq 

    

 ERR194161_
D0UYCACXX
.6 

ERR194161_D0
UYCACXX.6_1.f
astq 

ERR194161_D0
UYCACXX.6_2.f
astq 

    

 ERR194161_
D0UYCACXX
.7 

ERR194161_D0
UYCACXX.7_1.f
astq 

ERR194161_D0
UYCACXX.7_2.f
astq 

    

File Type Sample File Used Size(GB) 
txt NA12878 NA12878_unmapped_bam.list 312 KB 
uBAM  ERR194147_C0D8DACXX.1.un-

mapped.bam 
33 

uBAM  ERR194147_C0D8DACXX.2.un-
mapped.bam 

33 

uBAM  ERR194147_C0D8DACXX.3.un-
mapped.bam 

33 

uBAM  ERR194147_C0D8DACXX.4.un-
mapped.bam 

33 

txt NA12891 NA12891_unmapped_bam.list 312 KB 
uBAM  ERR194160_C0JVFACXX.5.un-

mapped.bam 
31 

uBAM  ERR194160_C0JVFACXX.6.un-
mapped.bam 

32 

uBAM  ERR194160_C0JVFACXX.7.un-
mapped.bam 

32 

uBAM  ERR194160_C0JVFACXX.8.un-
mapped.bam 

32 

txt NA12892 NA12892_unmapped_bam.list 312 KB 
uBAM  ERR194161_D0UYCACXX.4.un-

mapped.bam 
35 

uBAM  ERR194161_D0UYCACXX.5.un-
mapped.bam 

35 

uBAM  ERR194161_D0UYCACXX.6.un-
mapped.bam 

34 

uBAM  ERR194161_D0UYCACXX.7.un-
mapped.bam 

35 

File Type Sample File Used Size(GB) 
Analysis-Ready 
Bam Files 

NA12878 NA12878.hg38.bam 66 

Analysis-Ready 
Bam Files 

NA12891 NA12891.hg38.bam 63 
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Table 7. Reference Files and Known Sites Resources for Single Sample Calling Workflow 
and Joint Calling Pipeline. 

 

 

Analysis-Ready 
Bam Files 

NA12892 NA12892.hg38.bam 67 

GVCF Files NA12878 NA12878.hg38.g.vcf.gz 2.7 
GVCF Files NA12891 NA12891.hg38.g.vcf.gz 3.1 
GVCF Files NA12892 NA12892.hg38.g.vcf.gz 2.1 

File Type File Used Size(GB) 
Reference Genome 
Fasta 

hg38_v0_Homo_sapiens_assem-
bly38.fasta 

3.1 

dbSNP VCF Files hg38_v0_Homo_sapiens_assem-
bly38.dbsnp138.vcf 

11 

Known Indels Sites 
VCFs 

hg38_v0_Homo_sapiens_assem-
bly38.known_indels.vcf.gz 

0.06 

JointGenotyp-
ing.one_thousand_ge-
nomes_resource_vcf 

hg38_v0_1000G_phase1.snps.high_con-
fidence.hg38.vcf.gz 

1.8 

JointGenotyp-
ing.omni_resource_vcf 

hg38_v0_1000G_omni2.5.hg38.vcf.gz 0.05 
 

JointGenotyp-
ing.mills_resource_vcf 

hg38_v0_Mills_and_1000G_gold_stand-
ard.indels.hg38.vcf.gz 

0.02 

JointGenotyping.axi-
omPoly_resource_vcf 

hg38_v0_Axiom_Exome_Plus.geno-
types.all_populations.poly.hg38.vcf.gz 

0.003 

JointGenotyping.hap-
map_resource_vcf 

hg38_v0_hapmap_3.3.hg38.vcf.gz 0.06 
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4. BENCHMARKS 

I collected 4 pipelines execution time(s) with 3 different datasets, compared the execution 
time(s) with Spark local runner enabled or not in two tools: SortSam(Spark) and MarkDupli-
cates(Spark). In addition, I explored the GATK4 PairHMM threads scalability in tool Hyplotype-
Caller, and investigated the GATK4 thread scalability for Java parallel garbage collection in tool 
MarkDuplicates. 

4.1 Workflow Execution Time(s) for WGS Samples 

I tested 4 pipelines (Sequence Format Conversion, Data Pre-processing, HaplotypeCaller and 
Join Calling pipelines) with three Whole Genome Sequence (WGS) data: NA12878, NA12891 
and NA12892 and collected their baseline execution time(s). The bwa mem tool involved in Data 
Pre-processing pipeline was enabled to execute 16 threads with command line "bwa mem -K 
100000000 -p -v 3 -t 16 -Y $bash_ref_fasta". The other tools are all deployed with default 
value which means single-threaded. Testing results are listed in Table 8 and Figure 9. Time(Real) 
is wall clock time. It is the time from start to finish of the call. Time(User) is the amount of CPU 
time spent in user-mode code (outside the kernel) within the process. It is the actual CPU time 
used to execute the process. Time(Sys) is the amount of CPU time spent in kernel within the 
process. 
Comparing the execution time(s) for three different WGS samples with similar characteristics, 

pipelines execution time(s) showed consistency. The Real Execution Time(s) to complete pipe-
lines in three different datasets were very close, for Sequence Format Conversion pipeline took 
around 1h23mins (mean), for Data Pre-Processing pipeline took around 34h54mins (mean), for 
HaplotypeCaller pipeline took around 4h26mins (mean), for Joint Calling pipeline took around 
1h26mins and for the whole workflow took around 42h9mins (mean). The real execution time(s) 
for three datasets were slightly different because of small difference in dataset´s size and fea-
tures. Generally speaking, total real execution time from FASTQ file to GVCF file (from Sequence 
Format Conversion to HaplotypeCaller pipeline), the smallest dataset NA12891 took shortest pro-
cessing time 39h17m24.456s, the largest dataset NA12892 took the longest processing time 
42h45m16.765s and mean processing time was around 40h42m48s. 
The real execution time for similar WGS datasets with different size and features showed con-

sistency and execution time and dataset size were roughly positive correlated. 
Table 8. Execution Time(s) for Three WGS Samples. 

Pipe-
line 

Sample File 
Size(
GB) 

Time(Real) Time(User) Time(Sys) 

Se-
quence 
Format 
Con-
version 

2xPaired_End_NA12878 
Fastq.gz 

96.8 1h24m13.25
8s 

1m48.401s 0m14.658s 

 2xPaired_End_NA12891 
Fastg.gz 

94 1h14m31.18
8s 

1m40.021s 0m11.855s 

 2xPaired_End_NA12892 
Fastq.gz 

103 1h30m21.14
4s 

1m49.312s 0m19.364s 
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Figure 9. Real execution time(s) for NA12878, NA12891 and NA12892 WGS datasets in single 
calling pipelines (Sequence Format Coversion pipeline, Data Pre-processing pipeline and Hap-
lotypeCaller in ERC mode pipeline). Mean real time stands for the mean real execution time of 
processing above three WGS datasets for each pipeline. 

4.2 Single-Thread vs Parallelized Run 

Unlike GATK3 which can enable multithreading on a multicore CPU via the –nt and –nct argu-
ments, GATK4 was originally designed single-threaded. However, there are built-in multithreading 

Data 
Pre-
pro-
cess-
ing (16 
thread
s for 
bwa 
mem) 

List of NA12878 uBAMs 132 34h11m11.1
60s 

42m31.043s 3m43.535s 

 List of NA12891 uBAMs 127 33h26m51.5
94s 

40m16.328s 3m30.946s 

 List of NA12892 uBAMs 139 37h3m36.91
6s 

43m32.385s 4m9.170s 

Haplo-
type-
Caller 

NA12878.hg38.bam 66 4h30m10.98
3s 

13m14.295s 0m35.697s 

 NA12891.hg38.bam 63 4h36m1.674
s 

12m6.269s 0m42.976s 

 NA12892.hg38.bam 67 4h11m18.70
5s 

11m41.254s 0m38.704s 

Joint 
Calling 

NA12878.bam.hg38.g.vcf.gz 2.7 1h26m15.20
2s 

2m52.504s 0m22.295s 

 NA12891.bam.hg38.g.vcf.gz 3.1 
 NA12892.bam.hg38.g.vcf.gz 2.1 
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control arguments in the HaplotypeCaller tool. Its enabling method and testing result are showed 
in section 4.3. As discussed in section 3.3.2, some GATK4 tools have two versions: Spark-capa-
ble and non-Spark capable versions, such as: MarkDuplicates and MarkDuplicatesSpark. These 
Spark-capable tools with the “Spark” suffix and users better to invoke GATK using its wrapper 
script rather than directly calling the jar file, because the wrapper can automatically choose the 
right jar file and set appropriate parameters. Some tools only exist in spark versions, thus, there 
is no Spark suffix in their name. No matter which one, GATK Spark-capable tools can both run 
on local or with Spark Cluster. Once you have a machine with multiple CPU cores, you can easily 
run Spark-enabled GATK tools with arguments: -- --spark-runner LOCAL --spark-master 
local[n]. 
Here, I locally enabled two Spark-capable tools in GATK4: SortSamSpark and MarkDuplica-

tesSpark and compared the real execution time(s) with their non-Spark version. I tested GATK 
4.0.4.0 SortSam and SortSamSpark with 8 cores and 16 cores of local runner and GATK 4.1.0.0 
MarkDuplicates and MarkDuplicatesSpark with 16 cores of local runner with and without writing 
metrics file (enabled and disabled by argument "-M"). The results are showed in Figure 10 and 
Figure 11. 

 
Figure 10. Real execution time(s) for GATK 4.0.4.0 SortSam and SortSamSpark enabled 8 
cores and 16 cores Spark local runner. Testing sample for SortSam and SortSamSpark is 
ERR194147_C0D8DACXX.1.unmapped.aligned.unsorted.bam file which is the 
ERR194147_C0D8DACXX.1 unmapped bam file (listed in Table 5) aligned to reference ge-
nome via Best Practices workflows. Error bars denote one standard error around the mean of 
three runs.  
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Figure 11. Real execution time(s) for GATK 4.1.0.0 MarkDuplicates, MarkDuplicates plus 
SortSam, MarkDuplicatesSpark enabled 16 cores Spark local runner with and without writing 
metrics file. Testing sample for MarkDuplicates and MarkDuplicatesSpark seperately is the out-
put bam file of SortSam and SortSamSpark in Figure 10. Error bars denote one standard error 
around the mean of three runs. 

GATK version 4.0.4.0 was the one I used for benchmarking the Best Practices workflows in 
this thesis. But MarkDuplicatesSpark of GATK 4.0.4.0 reported “Duplicate key -1” error and GATK 
team claimed that they have fixed this issue in version 4.0.5.0 [69]. However, MarkDuplica-
tesSpark of GATK 4.0.5.0 is still a beta version which is not suitable for production. Until GATK 
4.1.0.0 version, MarkDuplicatesSpark become a newly out-of-beta replacement for the old Mark-
Duplicates plus SortSam steps of the Best Practices workflows [70]. The output of GATK 4.1.0.0 
MarkDuplicatesSpark is not just marked duplicates but also coordinated sorted. Thus, I compared 
the execution time of MarkDuplicatesSpark with the execution time for MarkDuplicates plus 
SortSam. In addition, according Ref. [71], GATK team mentioned that the writing metrics file step 
is likely the bottlenecks and there is a standalone tool called EstimateLibraryComplexity which 
can be used to collect the exact same metrics file. Separating the duplicates marking and metrics 
file writing is a good choice to run tool MarkDuplicatesSpark more efficiently, special for these 
users who don’t need the metrics file. Thus, I collected the real execution time(s) for MarkDupli-
catesSpark enabled local 16 cores with and without writing metrics file. 
From Figure 10, I found that non-Spark version of SortSam cost longest execution time which 

was around 61 minutes and SortSamSpark with local 16 cores cost shortest execution time which 
was around 10 minutes showing 83.6% improvement. When I doubled the local cores from 8 to 
16, the excution time decreased from around 15 minutes to 10 minutes showing 33.3% improve-
ment.  
From Figure 11, I found that non-Spark version MarkDuplicates cost shortest time which was 

around 97 minutes. However, as I mentioned above, GATK 4.1.0.0 MarkDuplicatesSpark is the 
replacement of the old MarkDuplicates and SortSam. I summed their execution times and com-
pared it with the execution time of MarkDuplicatesSpark enabled local 16 cores with and without 
writing metrics file. Non-Spark version of MarkDuplicates plus SortSam cost the longest time 
which was around 158 minutes and MarkDuplicatesSpark enabled 16 cores cost around 123 
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minutes, showing 22.2% improvement. When I omitted the metrics file writing step, it cost only 99 
minutes which showing 19.5% more speed-up.  

4.3 PairHMM Scalability in GATK4 HaplotypeCaller 

As discussed in section 3.3.2, Genomics Kernel Library (GKL) speeds up GATK4 analysis 
operation and optimizes algorithms. HaplotypeCaller is an essential tool of GATK4 for Best Prac-
tices. GKL's key points for optimizing the HaplotypeCaller tool are: Introduced the AVX optimized 
version of the PairHMM and Smith-Waterman algorithms, and added OpenMP support to the 
PairHMM algorithm for multi-threaded control [72]. AVX [65] is the abbreviation of Advanced Vec-
tor Extensions which refers to a set of instructions for doing 256-bits single instruction multiple 
data operations on Intel architecture CPUs. It improves processor's floating-point processing per-
formance and scientific computing power. GATK4 has built-in pre-configuration to enable auto-
matic detection for AVX hardware support. In this thesis, our testing cPouta Virtual Machine fea-
tures Intel(R) Xeon(R) CPU E5-2680 v3, with hyper-threading and Intel AVX2. Users can easily 
enable multi-threading of PairHMM in HaplotypeCaller –ERC mode by adding two flags: "--pair-
hmm-implementation AVX_LOGLESS_CACHING_OMP" and "--native-pair-hmm-threads n". “n” 
stands for the number of threads.  
After testing, the optimal number of threads for GATK4 HaplotypeCaller –ERC mode seems 

to be 12. Compared with 1 threads, execution time reduced from 26.7 minutes to 23.4 minutes, 
12.4% improvement. Detailed data are showed in Figure 12. 

 
Figure 12. GATK4 thread scalability in HaplotypeCaller. The measurements at 1, 2, 4, 6, 8, 10, 
12, 14, 16, 18, 20, 22 and 24 PairHMM thread were presented. Testing Sample is 
NA12878.hg38.bam -L chr20:1-25000000. The error bars denote one standard error around the 
mean of three runs. 

4.4 GATK4 Parallel garbage collection 

In Ref. [73], enabling Java Parallel Garbage Collection (PGC) in GATK3.7 reduced the tool 
execution time but did not show the same improvement in GATK3.8. Here, I enabled PGC in 
GATK4.0.4.0 MarkDuplicates tool with threads: 1, 2, 4, 8, 16 and 20 in our virtual machine and 
compared the execution time(s). The java option argument used to enable PGC is: --java-options 
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"-XX:+UseParallelGC -XX:ParallelGCThreads=n" and n stands for number of ParallelGC 
Threads. The results are showed in Figure 13. 

 
Figure 13. GATK4 MarkDuplicates scalability for Java Parallel Garbage Collection. The meas-
urements at 1, 2, 4, 8, 16 and 20 PGC thread were presented. Testing sample is 
ERR194147_C0D8DACXX.1.unmapped.aligned.unsorted.bam which is the 
ERR194147_C0D8DACXX.1 unmapped bam file (listed in Table 5) aligned to reference ge-
nome via Best Practices workflows. The error bars denote one standard error around the mean 
of three runs. 
 
I found that the number of optimal PGC threads was 2 for GATK4 tool MarkDuplicates giving 

rise to a speed-up of 2.1%.  When enabled with PGC 2, the mean real execution time of three 
replicates for MarkDuplicates is 89.2 minutes which is the shortest. After that, the execution time 
was increasing with the number of PGC threads. 

4.5 Summary of optimized parameter values 

The tested optimizations of GATK4 tools in order to run Best Practices more efficiently in this 
thesis are listed in Table 9. 

Table 9. Summary of optimized parameters. 

Tool Name Spark local runner PGC threads AVX threads 
SortSamSpark 16 N/A N/A 
MarkDuolicatesSpark 16 N/A N/A 
MarkDuplicates N/A 2 N/A 
HaplotypeCaller N/A N/A 12 
 
Among these optimizations, enabling multicore spark local runner for GATK4 Spark tools pre-
sented highest speed-up while enabling multiple PGC threads presented lowest speed-up. How-
ever, all the GATK4 spark tools are still in beta version, except the MarkDuplicatesSpark in 
GATK4.1.0.0 [70]. In addition, to efficiently ran the whole workflow of  Best Practices for germline 
short variants (SNPs and Indels) discovery, I enabled 16 threads for bwa mem tool.   
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5. CONCLUSIONS 

As mentioned in the Introduction, because of the prosperity of NGS technology and the rich 
information contained in NGS data from where there is the potential to find various type of genetic 
mutations, a large number of institutions, tools and workflows for sequencing information analysis 
came to market. GATK and its Best Practices from Broad Institute are among the best, especially 
the implementation which combines the latest version GATK 4 with the Cromwell execution en-
gine, WDL scripts and Docker containers. Because of the advantages of faster speed, higher 
throughput and accuracy, the rich ecosystem and complete and uniform workflows which starts 
from DNA library preparation to final VCF collection, GATK and its Best Practices have become 
the industrial gold-standard for variant calling. 
This project belongs to a pilot project hold by CSC and FIMM which aims at connecting FIMM´s 

genome sequencers directly to CSC´s computing platform and automatically processing NGS 
data analysis on CSC Pouta Cloud environment. Its tasks contain enabling pipeline implementa-
tion and performance benchmarking of GATK4 Best Practices on cPouta virtual machine. More-
over, most of the data will remain in Finland where using CSC services. 
Institute of Molecular Medicine Finland (FIMM) focuses on human genomic research and per-

sonalized medicine. It owns several mainstream sequencers, such as NovaSeq, HiSeq and 
Miseq. FIMM also provided downstream analysis services. The biggest demanding is the variant 
calling workflow. FIMM wants complete automated NGS data analysis for variant calling work-
flows, from DNA library preparation to the final VCF generation. Accurate, automatic or even one-
click completion. Currently, Broad Institute cooperates with Alibaba Cloud, Amazon Web Ser-
vices, Intel, Cloudera, IBM, Microsoft Genomics and Google Cloud providing a similar automated 
analysis platform but there is no benchmarking data released for GATK4 and no cooperation with 
other cloud platforms. 
cPouta laaS Cloud is the main production laaS Cloud provided by CSC which runs on Open-

Stack cloud software and can be connected to the external IP address enabling customers widely 
available service. It provides a large amount of computing resources for Finnish research institu-
tions and universities for academic use. In addition, cPouta has other advantages, such as provid-
ing a programmable API and a web interface that enable users to easily generate, control and 
manage their virtual machines online; providing both compute nodes for HPC and more genetic 
computing load. cPouta environment links to other CSC computing environments, I.e., Taito and 
Sisu supercomputers which enables fast and barrier-free data transmission. The work presented 
in this thesis run on virtual machines generated on cPouta laaS Cloud, with flavor hpc-gen2.24 
core. The flavour featured Intel(R) Xeon(R) CPU E5-2680 v3, with hyper-threading, 24 VCPUs.  
This thesis presented the detailed VM hardware setup, five variant calling pipelines codes and 

algorithm introduction, benchmark pipeline execution time(s) from single sample calling to joint 
calling pipelines with three WGS datasets: NA12878, NA12891 and NA12892 (except bwa-mem 
testing with 16 threads, other tools ran with default value which means single-threaded). I also 
explored optimized run-time parameters for GATK4 tools, PairHMM thread scalability in Haplo-
typeCaller, GATK4 thread scalability for PGC in MarkDuplicates and execution time(s) compari-
son for GATK4 SortSam vs SortSamSpark and MarkDuplicates vs MarkDuplicatesSpark. Results 
showed pipelines execution time(s) for similar WGS datasets with different size and features were 
quite close and execution time and dataset size were roughly positive correlated. The optimal 
threads number is 12 for GATK4 HaplotypeCaller with ERC mode which reduced the average 
execution time(s) of three replications for NA12878.hg38.bam -L chr20:1-25000000 from 26.7 
minutes to 23.4 minutes (12.4% improvement). The optimal PGC threads number is 2 for GATK4 
MarkDuplicates. Multi-threading with Spark local runner did highly speed up tool 
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SortSam(SortSamSpark) and MarkDuplicates(MarkDuplicatesSpark) execution. SortSamSpark 
enabled 16 local cores gave rise to a speed-up of 83.6%. MarkDuplicatesSpark enabled 16 local 
cores gave rise to a speed-up of 22.2% and 37.3%, if omit metrics file writing step via removing 
"-M" argument.  
This thesis describes five separate pipelines that can be flexibly combined according to the 

different types of input files and analysis stages. Acceptable input file formats including: FASTQ, 
uBAM, and GVCF. This workflow is extensible for companies that need to apply this workflow to 
multiple data sets simultaneously. By deploying this workflow on a computer cluster, the respec-
tive sample analysis process can be processed on each node in parallel at the same time.  
 Optimizing the pipeline will always be an important issue. It is generally considered from two 

perspectives: improving hardware performance and optimizing software. 
Multi-threading in PGC and PairHMM gives rise to very limited computing speed improvement. 

But GATK4 is not like GATK3 which can easily and directly enable multi-threading and multicore 
with two arguments. However, according to Broad Institute´s description, GATK4 is the newest 
version of GATK with completely rewrote core code, also with better accuracy and faster speed. 
Its parallel algorithm is mainly implemented by Spark, both local runner and Spark cluster runner. 
Spark cluster runner is a trend of development in the industry. At present a large number of 
GATK4 tools´ Spark versions still under development which are not suitable for production, as of 
the completion of this thesis. In the future, when Broad Institute developed the mature Spark 
version, it will be very useful to replace the normal version with the Spark version in the Best 
Practices and benchmarking performance. The Intel white paper for GATK Best Practices Pipe-
line Deployment [74] mentioned that faster storage and disk I/O significantly affected GATK3 tools 
performance when running multiple pipelines simultaneously. It is worth to test the GATK4 tools 
execution time(s) using SSD and HDD in the future. 
The paper's GATK4 Best Practices benchmarking result can help customers predict sample 

analysis time and price and make more reasonable experimental arrangements. Parameter opti-
mization evaluation of some tools in GATK4 can help sequencing analysis companies to improve 
pipelines, reduce time consumption and unit price of sample analysis and enhance market com-
petitiveness. 
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APPENDIX A: ARGUMENTS FOR MAIN TOOLS 

Arguments for main tools involved in described pipelines are listed in below Program1. 
(All bash variables needed for the command line have been set before). 
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MarkDuplicates  
# Identifies and tags duplicate reads in a BAM or SAM file. 
--INPUT ${sep=' --INPUT ' input_bams} \ 
--OUTPUT ${output_bam_basename}.bam \ 
--METRICS_FILE ${metrics_filename} \ 
--VALIDATION_STRINGENCY SILENT \ 
--OPTICAL_DUPLICATE_PIXEL_DISTANCE 2500 \ 
--ASSUME_SORT_ORDER "queryname" \ 
--CREATE_MD5_FILE true 
 
SortSam  
# Sorts the input SAM or BAM file based on its records such as: 

coordinate and queryname (QNAME) then produces an index file. 
--INPUT ${input_bam} \ 
--OUTPUT /dev/stdout \ 
--SORT_ORDER "coordinate" \ 
--CREATE_INDEX false \ 
--CREATE_MD5_FILE false \ 
 
BaseRecalibrator 
# Detects systematic errors in base quality scores with machine 

learning model. 
-R ${ref_fasta} \ 
-I ${input_bam} \ 
--use-original-qualities \ 
-O ${recalibration_report_filename} \ 
--known-sites ${dbSNP_vcf} \ 
--known-sites ${sep=" --known-sites " known_indels_sites_VCFs} \ 
-L ${sep=" -L " sequence_group_interval} 
 
ApplyBQSR 
# Applies base quality score recalibration. 
-R ${ref_fasta} \ 
-I ${input_bam} \ 
-O ${output_bam_basename}.bam \ 
-L ${sep=" -L " sequence_group_interval} \ 
-bqsr ${recalibration_report} \ 
--static-quantized-quals 10 --static-quantized-quals 20 --static-

quantized-quals 30 \ 
--add-output-sam-program-record \ 
--create-output-bam-md5 \ 
--use-original-qualities 
 
HaplotypeCaller 
# Call germline SNPs and indels via local re-assembly of haplotypes 

in –ERC GVCF mode. 
-R ${ref_fasta} \ 
-I ${input_bam} \ 
-L ${interval_list} \ 
-O ${output_filename} \ 
-contamination ${default=0 contamination} ${true="-ERC GVCF" 

false="" make_gvcf} 
 
MergeVcfs 
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# Combines multiple variant files into a single variant file. 
--INPUT ${sep=' --INPUT ' input_vcfs} \ 
--OUTPUT ${output_filename} 
 
GenomicsDBImport 
# Import VCFs to GenomicsDB datastore. 
--genomicsdb-workspace-path ${workspace_dir_name} \ 
--batch-size ${batch_size} \ 
-L ${interval} \ 
--sample-name-map inputs.list \ 
--reader-threads 5 \ 
-ip 500 
 
GenotypeGVCFs 
# Perform joint genotyping on three input GVCFs in the form of 

GenomicsDB workspace. 
-R ${ref_fasta} \ 
-O ${output_vcf_filename} \ 
-D ${dbsnp_vcf} \ 
-G StandardAnnotation \ 
--only-output-calls-starting-in-intervals \ 
--use-new-qual-calculator \ 
-V gendb://$WORKSPACE \ 
-L ${interval} 
 
VariantRecalibrator \ 
# Uses machine learning method to build a filtering model for Indel 

variants based on high-accuracy known variant sites 
-V ${sites_only_variant_filtered_vcf} \ 
-O ${recalibration_filename} \ 
--tranches-file ${tranches_filename} \ 
--trust-all-polymorphic \ 
-tranche ${sep=' -tranche ' recalibration_tranche_values} \ 
-an ${sep=' -an ' recalibration_annotation_values} \ 
-mode INDEL \ 
--max-gaussians 4 \ 
-resource mills,known=false,train-

ing=true,truth=true,prior=12:${mills_resource_vcf} \ 
-resource axiomPoly,known=false,train-

ing=true,truth=false,prior=10:${axiomPoly_resource_vcf} \ 
-resource dbsnp,known=true,train-

ing=false,truth=false,prior=2:${dbsnp_resource_vcf} 
 
VariantRecalibrator \ 
# Uses machine learning method to build a filtering model for SNP 

variants based on high-accuracy known variant sites 
-V ${sites_only_variant_filtered_vcf} \ 
-O ${recalibration_filename} \ 
--tranches-file ${tranches_filename} \ 
--trust-all-polymorphic \ 
-tranche ${sep=' -tranche ' recalibration_tranche_values} \ 
-an ${sep=' -an ' recalibration_annotation_values} \ 
-mode SNP \ 
--sample-every-Nth-variant ${downsampleFactor} \ 
--output-model ${model_report_filename} \ 
--max-gaussians 6 \ 
-resource hapmap,known=false,train-

ing=true,truth=true,prior=15:${hapmap_resource_vcf} \ 
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-resource omni,known=false,train-
ing=true,truth=true,prior=12:${omni_resource_vcf} \ 

-resource 1000G,known=false,train-
ing=true,truth=false,prior=10:${one_thousand_genomes_resource_vcf} \ 

-resource dbsnp,known=true,train-
ing=false,truth=false,prior=7:${dbsnp_resource_vcf} 

 
ApplyVQSR \ 
# Apply variant quality socre recalibration for Indel variants. 
-O tmp.indel.recalibrated.vcf \ 
-V ${input_vcf} \ 
--recal-file ${indels_recalibration} \ 
--tranches-file ${indels_tranches} \ 
--truth-sensitivity-filter-level ${indel_filter_level} \ 
--create-output-variant-index true \ 
-mode INDEL 
 
ApplyVQSR \ 
# Apply variant quality socre recalibration for SNP variants. 
-O ${recalibrated_vcf_filename} \ 
-V tmp.indel.recalibrated.vcf \ 
--recal-file ${snps_recalibration} \ 
--tranches-file ${snps_tranches} \ 
--truth-sensitivity-filter-level ${snp_filter_level} \ 
--create-output-variant-index true \ 
-mode SNP 

Program 1. Arguments for main tools. 


