TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Marko Leppanen

Vanishing Point: Where Infrastructures, Architectures,
and Processes of Software Engineering Meet




Tampereen teknillinen yliopisto. Julkaisu 1452
Tampere University of Technology. Publication 1452

Marko Leppanen

Vanishing Point: Where Infrastructures, Architectures,
and Processes of Software Engineering Meet

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 27th of January 2017, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2017



ISBN 978-952-15-3898-8 (printed)
ISBN 978-952-15-3900-8 (PDF)
ISSN 1459-2045



Abstract

Leppéanen, Marko

Vanishing Point: Where Infrastructures, Architectures, and Processes of Software
Engineering Meet

Keywords: software engineering, agile software development, continuous deployment,
continuous delivery, software architecture

In software project management, there exists a triangle-like relation connecting the re-
quired time to deliver a certain scope of software features with a certain cost. If one of
these three is affected, others must compensate for this. For example, having a faster
delivery means either a costlier product or less features, or both. Long delivery times are
usually unacceptable in any case as the business environment is changing fast.

To deal with this, contemporary software is mostly produced with Agile methods, which
emphasise developing small increments to deliver constant stream of value to the cus-
tomer. A small piece of software is easier to produce and test. Also, rapid feedback can
be gained with tight co-operation with the customer. As the increments have become
almost infinitesimally small, the working software can be constantly improved as the
changes can be delivered to the end user almost instantly. However, this is only possible
when the increments are reliably tested and the delivery itself is rapid. Thus, automation
in these crucial parts is a must. Furthermore, the customer is not able to comment on
every change in person, so the collection of the feedback must be automated. Further-
more, the software product itself has to support the continuous delivery. There exists a
certain relation between these aspects—namely the tool infrastructure, processes and the
architecture—reminiscent of the project triangle of time, cost, and scope.

In this thesis, we examine the crucial properties these aspects in the context of increas-
ing the speed of delivery—up to continuous delivery and deployment combined with the
idea of continuous feedback. Also, the ramifications of rapid software delivery are studied.
The research is carried out as interviews and related methods, such as surveys, to gain
data from the companies involved in software development. Also, some quantitative
analysis is used to back up the findings. As a result, a model is introduced based on the
research. It can be used to explore the aspects and their interrelationships. We present
a set of key enablers of increasing the delivery speed and present a set of side-effects
that have to be considered. These can be used as a guideline in the companies which
are striving to hasten their delivery pace. Additionally, a comparison of various compa-
nies based on their delivery speed is presented.



Preface

The title of the thesis refers to the point in a picture where parallel lines in space meet. It
is a metaphor for the trichotomy between software architecture, process and infrastruc-
ture, which | hope to fade out a little bit in this thesis. However, it also carries a threefold
meaning. As a researcher, | have travelled a long way to this thesis and the focus has
been missing at times. Here | wish to thank all the people who have put the show back
on the road. The title also reflects a bit of the road movie aesthetics | feel being a suitable
tribute to the Need4Speed project which was the incubator of the thesis.

First |1 wish to thank my supervisor, Tommi Mikkonen, for not only commenting and su-
pervising this work, but giving me the opportunity to join forces with such a great research
team in Need4Speed project. | also wish to thank my earlier supervisors, Kari Systa, Kai
Koskimies and the late Ilkka Haikala. A huge thank you to Kai for exposing me to the
patterns and the team, which | wish express my gratitude next; the co-authors of the
patterns book, Veli-Pekka Eloranta, Johannes Koskinen and Ville Reijonen. The discus-
sions with you guys have been invaluable source of insight and this second book has
been much easier effort after cutting my teeth with the patterns book.

Additionally, 1 would like to thank co-authors of my publications so far, especially Simo
Méakinen from Helsinki University. Without the collaboration and support from all of you,
this thesis would not have been completed in such a short time. | am deeply thankful of
your insights. Also, | would like to thank all my colleagues at the Tampere University of
Technology for their support and comments during the research. The grants from Nokia
Foundation have helped me financially through the writing of the thesis. In addition, my
pre-examiners professor Jirgen Miinch and Dr. Apostolos Ampatzoglou deserve much
credit for improving the last iterations.

I also would like to thank my friends for encouraging me during the months it took to write
the thesis. Your help has been indispensable. | would like to give a special thanks to
Teemu Sundell for his comments and reviews of this work. Finally, | express my gratitude
to my parents for their life-long support of my studies.

Nokia 19.12. 2016

Marko Leppéanen



Contents

Abstract

Preface

Contents

Terms and Definitions

List of figures

List of tables

List of publications

1

INTRODUGCTION L.ttt et e et e e e et e e eaa e e e eeeans 10
0 A (o 1122 4[] PP PP PPPPPPPPPP 12
1.2 Approach and Research QUEeSHIONS.........ccovieiiiiiiiiiiii e 13
1.3  RESEAICH OVEIVIEW.....ceiiiiiiiiiiiiiiiieeeeeee ettt ettt 14
1.4 ReSearch Method...........oouiiiiiiiiiiiiiiiiiiiiiie e 15
1.5 ThesisS CONIDULIONS. .....coiiiiiiiiiiiiiiiie e 19
1.6 Structure of ThiS TRESIS ....ccvviiiiiiiiii 20

BACKGROUND ... .ottt e et e e et e a e e e e eeeans 21
2.1 Software Development PrOCESSES.........uuuuiuiiiriiiiiiiiiiieeeieeeeeeeeeieeeeeeeeeeeeeeeeeeees 22
2.2 Software Development Tools and Infrastructure..............cccccvvveviviiiiiieveeeennn. 25
2.3 SOftWare ArCNItECIUIE ........uuiiiiiiiieiieieiieie ettt e ee e e eeeeeeees 26
2.4 CONUNUOUS *....uuiiiiiiiiiiinteieeeeeeeeseeeeee e e ettt st e e e s e e e e e e s e e e e e e e e e e e e e e e e e 28

COMPONENTS OF CONTEMPORARY SOFTWARE DEVELOPMENT ........... 33

3.1 Architecture-ProCess relation ..........ooevieiieiiee e 35



3.2 Process-INfrastruCture relation .........oo.ieieiieeie et e e eaaeen 39

3.3 Infrastructure-Architecture relation ...............cccvvveiiiiiiiiiiieeieeeeeeeee e 42
G0 S [ o] o= Tod o) BT o 1Y =T o P 45
4 CLOSURE ...ttt ettt e e e et e e e e e e e e e s 46
4.1 Research qUeSHIONS reViSIted ..........uuuiiiii i 46
4.2 Related r€SEAICN ... ... 53
4.2.1  DEVOPS.. ittt et 53
4.2.2  SEM AT e 54
4.2.3  POSE-AGIITY oo e 54
R O T (@ ] L 55
4.2.5 Continuous Deployment and Architecting...........ccouveeiiiieiiiiiiiiiiiieeeee. 55
4.3 Limitations of the reSearch ...........ccoooiiiiiiii 56
A4 FULUIE WOTK ..o 57
4.5 Introduction to included publications................uiiiiiiiiiii e 58
4.6  ConCluding reMAIKS .......ciieiiiiiee e 60

REFERENCES ...ttt e e et e e e e e e e nn e e 62



List of Figures

Figure 1 Continuous Delivery process as a pipeline. The developer does three
check ins to the version control, gets the feedback from each of them, and the final one
gets promoted to a release. Adapted from [4]. ... 11

Figure 2 Left side: The waterfall model, adapted from Royce [15]. Right side: the

Scrum process, simplified from Scrum INC. [16]. ... 13

Figure 3 Research timeline. The diamonds represent the research activities, while

the boxes represent the publications based onthem. ............cccciiiiii e, 15

Figure 4 The PAI model—the components of software development. Infrastructure,

architecture and process interact with each other related to the speed of development.
22

Figure 5 Elements of modern software development, adapted from Publication VI.
23

Figure 6 An example of a software process with elements of Continuous delivery

and rapid feedback. The tools for each phase are also shown (Publication ). ........... 31

Figure 7 An example of a Continuous Delivery maturity model, redrawn from Rehn

et al. [11]. The model consists of five maturity levels on five different aspects of the
software development, forming a matrix of 25 different possible combinations of maturity.
33

Figure 8 The publications included in this thesis and their rough relation to the
elements of software develoOpmEeNnt...........cooo i e 35

Figure 9 An example from Publication V showing how refactoring is carried out in
a software developmENt PrOCESS........ccoo i 38

Figure 10 The process presented in Publication Il. The company uses proof-of-
concept to measure end users if an idea has any business value. .................cccoeeeeees 40

Figure 11 A “social developer” requires a mature set of tools to get feedback and
information from all relevant stakeholders and to monitor the development pipeline...41



Figure 12 The overview of the tools that were found to be used in Publication VI.
The development infrastructure consists of a selection of these tools, forming an
architeCture Of IS OWN. ....coiiii i 44

Figure 13 A Kanban board and radiators as means of visual control................... 50



List of Publications

This thesis consists of a summary part and the following original publications:

VI.

Leppanen, M., Makinen, S., Pagels, M., Eloranta, V.-P., Itkonen, J., Mantyla, M.
V., & Mannisto, T. 2015. The Highways and Country Roads to Continuous De-
ployment, In: Software, IEEE, vol. 32, no. 2, pp. 64-72, Mar.-Apr. 2015,
doi:10.1109/MS.2015.50

Leppéanen, M., Kilamo, T., & Mikkonen, T. 2015. Towards Post-Agile Develop-
ment Practices through Productized Development Infrastructure. In: Rapid Con-
tinuous Software Engineering (RCoSE), 2015 IEEE/ACM 2nd International
Workshop on. pp. 34-40. IEEE. Florence, Italy. 23-23 May 2015.
doi:10.1109/RCoSE.2015.14

Kilamo, T., Leppanen, M., & Mikkonen, T. 2015. The Social Developer: Now,
Then, and Tomorrow. In: SSE 2015 Proceedings of the 7th International Work-
shop on Social Software Engineering, 2015. pp. 41-48. ACM, New York, NY,
USA. ISBN: 978-1-4503-3818-9 d0i:10.1145/2804381.2804388

Leppanen, M., Makinen, S., Lahtinen, S., Sievi-Korte, O. Tuovinen, A.-P., &
Mannisto, T. 2015. Refactoring—a Shot in the Dark? In: Software, IEEE, vol. 32,
no. 6, pp. 62-70, Nov.-Dec. 2015 doi:10.1109/MS.2015.132

Leppéanen, M., Lahtinen, S., Kuusinen, K., Makinen, S., Mannisto, T., Itkonen,
J., Yli-Huumo, J., & Lehtonen, T. 2015. Decision-Making Framework for Refac-
toring. In: 2015 IEEE 7th International Workshop on Managing Technical Debt
(MTD), October 2, 2015, Bremen, Germany. IEEE. pp. 61-68.
doi:10.1109/MTD.2015.7332627

Makinen, S., Leppéanen, M., Kilamo, T., Mattila, A.-L., Laukkanen, E., Pagels,
M., & Mannisto, T. 2016 Improving the Delivery Cycle: A Multiple-Case Study of
the Toolchains in Finnish Software Intensive Enterprises. In: Information and
Software Technology, Vol. 80, 01.12.2016, pp. 1339-1351.
doi:10.1016/j.infsof.2016.09.001

The publications are reproduced in the thesis in accordance of the publication permission
schemes of the publishers. The main contributions of the included publications follow
later in section 4.5. Detailed description of the role of the candidate per publication is
discussed in the following:

In Publication I, the candidate planned, conducted and analysed the interviews material
together with second, third, fourth, fifth and sixth authors. The seventh author contributed



in analysis and writing parts of the inception of the publication. The candidate conducted
significant part of the interviews with the fourth author and had a leading role in the writing
process.

In Publication Il, building on the material from Publication I, the candidate planned, and
conducted the interview with the help of the second author. In the analysis and writing
process, the candidate held the main responsibility. The third author had contribution in
the analysis and writing parts of the article’s inception.

In Publication IlIl, the candidate planned and carried out the survey with the first author
with evenly distributed responsibility. The analysis and writing part were carried out with
the help of the third author.

In Publication IV, the candidate planned and conducted the interviews and analysed
the resulting material together with second, third, fourth and fifth authors. The sixth au-
thor contributed in analysis and writing parts of the inception of the publication. The can-
didate conducted half of the interviews with the third and fourth authors and had a leading
role in the writing process.

In Publication V, building on Publication 1V, the candidate planned the particularizing
interview with the other authors. In the writing process, the candidate had a leading role.
The third author had a strong contribution in writing the method parts of the article.

In Publication VI, an article building on the interview data from Publication I, the inter-
views were planned and conducted by the first and sixth author along with the candidate.
The first author led the analysis contributed significantly to the interviews and to the writ-
ing of the article. The candidate had conducted the major part of the interviews and con-
tributed in the analysis of the results. The fourth author contributed in the statistical anal-
ysis of the material. The third, fifth and the seventh authors contributed in the writing the
article and analysis of the results.






1 Introduction

In the field of software engineering, there has been a growing interest in the practices of Continuous
Delivery, and pushing the concept even further to Continuous Deployment. Continuous Delivery re-
fers to “a software development discipline where you build software in such a way that the software
can be released to production at any time” [1] with priority on the keeping the software deployable
all the time, and Continuous Deployment requires all these changes to be actually deployed imme-
diately and automatically. These practices aim at producing valuable software in short cycles and at
ensuring that the software can be reliably released at any time [2]. These approaches boast several
benefits, the most obvious one being the shorter time to market. Also, the problems caused by a
separate integration and deployment phases in the software process are removed, as integration is
constantly verified by automated build and tests [3]. The practice of Continuous Integration has been
around for a while already, and is well-known in the field of software engineering. These Continuous
Delivery and Deployment practices together enable the software development organizations to add
(and even remove) features with as small overhead as possible. From this ability stems also one
valuable, but not so evident, benefit — the ability to experimentally determine the value of software
components, with real users [4]. Some companies, such as Amazon, Google, and Facebook, utilize
this by delivering new versions of the software frequently and in a timely fashion—even several times
per day [5].

While these practises have gained prominence only lately, they are not completely new ideas, as
fast delivery and Continuous Integration have been in the core of the Agile approaches for several
years. Now, the potential release pace has increased to such degree that the whole organization
must have a holistic approach to the software development. The development requires much sup-
porting structure to enable the fast pace. Firstly, the quickened release cycle sets requirements to
the organization itself and its processes. Secondly, it also requires that the tools and infrastructure
are well honed to their purpose of fast software delivery and deployment. This is called as deploy-
ment pipeline by Humble and Farley [4]. An example of this can be seen in Figure 1, where each
commit to version control system triggers build and unit tests for this change. The developer gets
feedback, and, if successful, the change is promoted to automated acceptance tests. The developer
gets the feedback from the tests. If the change is approved in the automated acceptance tests, user
acceptance tests follow. If these are also approved, the change is released. Naturally, the developer
also gets the feedback on the matter in question also.



11

| Delivery Team | | Version Control | Build & unit tests Automated
T T

T T acceptance tests
| !

i
D»Checkm ){

Triggerﬂ
Feedback

|::l— Checkin43-|:
Trigger%[;:l_\-mgger
[&s———— Feedback ! I

Feedback

User acceptance ‘ Release

lests

|::|— Checkin ﬂf—‘
Trigger [

—’—-Trigger

Feedback - Approval

Feedback

Approval L J

Figure 1 Continuous Delivery process as a pipeline. The developer does three check ins to
the version control, gets the feedback from each of them, and the final one gets pro-
moted to a release. Adapted from [4].

These two aspects, processes and infrastructure, are usually seen as an integral part of the popular
Development and Operations (DevOps) approach, which is a movement to bridge the gap between
development and operations teams [6]. In essence, DevOps promotes “Continuous *” (read, “Con-
tinuous star”) with continuous integration, continuous deployment, continuous delivery, continuous
testing and so on, even spanning to continuous business side [7]. Taking another perspective, also
the software itself has to have certain properties, manifested in architectural decisions, which support
rapid software development. For example, the well-known practice of separation of concerns allows
the software organization to develop and even deliver smaller parts easily without affecting the rest
of the system. [8].

However, many organizations struggle with the adaptation of Continuous Deployment practices. Fast
delivery requires that no extra hassle is spent in development itself, and thus more work is needed
in these supporting elements; including process, infrastructure, and software architecture. Analo-
gously with other software process improvements, it is easier to have piecemeal improvements than
to make a radical change. This resonates with the kaizen principle (continuous improvement) familiar
from the Lean literature, for example [9], as the preferred method to kaikaku (radical change). Even
though kaikaku has its applications, it may cause disturbance to the productivity which drops so
badly that the organization effectively grinds to the halt. The work spent on honing the infrastructure
and the tools also resonate with Lean manufacturing idea of 5S, where the workspace must be well-
organized before the production starts, and no work wasted in things that do not bring any value to



12

the production itself [10]. Because of this required work, the organization cannot just leap to full
Continuous Deployment and DevOps, but usually matures parallel on several aspects, reflected by
several Continuous Deployment, or DevOps maturity models [11] [12] [13], and to some degree, SO
called Stairway to Heaven model [14].

Although three aspects of software development, processes, infrastructures, and architecture, are
well studied and understood separately in the research community, there is not much literature about
how these behave together under the modern rapid software development. This thesis introduces
elements that tie Continuous Deployment, software processes, development and deployment infra-
structures, and software architecture together by approaching the topic with a series of studies in
software companies, who apply rapid software development practices with various degrees of ma-
turity. These studies deal the three aspects in parallel, but delving deeper into each subject sequen-
tially.

1.1 Motivation

This thesis aims at describing how contemporary software development is carried out in the search
of delivery speed and quick feedback. After the initial failures with linear-sequential ‘waterfall’ ap-
proaches, modern software is developed in an iterative way. The development is carried out in cycles,
where a piece of software has been developed according to some requirements and delivered to the
end users. At the same time, there has been a trend to get faster feedback if the produced piece of
software really conforms to its requirements. This is done by shortening the cycle time by delivering
ever smaller and smaller changes, so-called increments all the way to the end users (Figure 2). In
the waterfall approach, even with the iterations between steps, the feedback is slow, as the size of
the software delivered to the next step is can be large compared to the small increments of Agile.
So, with large change sets, the system can be hard to integrate, and found errors may be hard to
pinpoint and to correct. All this takes extra time.

In reality, the iterations are not confined to successive steps, so Royce recommended doing the
system twice [15]. However, getting the feedback may still take months and relies completely on the
only prototype. Instead, with the help of Continuous Integration practice, the popular Scrum frame-
work requires that every sprint produces an increment to the software system. This shortens the
feedback cycle to maximum of weeks. However, in the Continuous Delivery and Deployment, it is
possible to see the effects of a new functionality as soon as it is done, including the testing, and
deployed. However, achieving this degree of delivery speed is not trivial.



13

Product Sprint
backlog backlog

BE-ml) =

Sprint Increment

Analysis

Testing

Operations

Figure 2 Left side: The waterfall model, adapted from Royce [15]. Right side: the Scrum process,
simplified from Scrum Inc. [16].

In this thesis, we study how the fundamental parts of software development affect each other as the
delivery speed and feedback is hastened with Continuous * practices. The results will help different
stakeholders to understand what to take into account when quickening the delivery cycle and to what
aspects of the software development they should focus on in their pursuit for Continuous * practices.

1.2 Approach and Research Questions

The main goal of this thesis is to study how contemporary software development is carried out in the
current trend of increasing the delivery speed and to shed light on how the different activities of
software development are affected under the increasing speed. Thus, the main research questions
of this thesis are:

RQ1: What are the key enablers to increase the delivery speed?

We were interested in how the companies would increase their delivery speed and what obstacles
they have to remove or had removed in order to deliver more rapidly. This includes both the experi-
ences gained from the more mature companies and the key issues that the companies have to tackle.

RQ2: What are the ramifications of increasing the delivery speed?

This question was set to find out if increasing the delivery speed causes any other effects on the
company than having the requirements from RQ1 in place. This includes any benefits of the in-
creased delivery speed and side-effects on the business and the software itself.

RQ3: What is the state-of-the-practice regarding the speed of delivery practices in the companies?



14

This question is the place to see how the companies compare to each other in the context of the
delivery speed.

Based on the answers to these questions, we embark to build a descriptive model to explain the
phenomena related to the Continuous * practices and their effect on the software development under
the pressure of rapid deployment pace.

1.3 Research Overview

The research started in 2014, with an effort to chart the state-of-the-art in software development in
companies. The focus was on the speed of delivering software to the customer, and what benefits
and obstacles the companies encountered while trying to improve their delivery speed with adapta-
tion of Continuous * practices. The timeline of the research is presented in Figure 3. The chosen
approach was interviews, so we started by selecting interviewees from 15 Finnish software compa-
nies. As a result of this first interview round, companies were classified according to their delivery
speed, and problems and enablers to CD were identified. These were mostly related to software
practices and processes. This analysis was published as Publication I, “The Highways and Country
Roads to Continuous Deployment” [PI].

Moreover, one of the companies provided an interesting case to describe a contemporary software
development process with rapid delivery, involving the customer company. We conducted an inter-
view with a representative of the software company. This descriptive case study was published as a
separate article, Publication I, “Towards Post-Agile Development Practices through Productized De-
velopment Infrastructure” [PIl]. The study describes an example of so-called “post-agile development”
where tools, or the whole development infrastructure, and processes, or practices, are an important
part of the development.

After this publication, analysis with the interview data acquired for Publication | was continued with
a focus on the tool infrastructure. This new study includes four additional cases, but excludes one
previous case because it lacked detailed tooling. Thus, the number of companies interviewed for this
study totalled as 18. All this data was analysed regarding the tools used in the software development
in these organizations. The interview data formed the basis for Publication VI [PVI], which is currently
under review for journal publication.

As a follow-up, we decided to have a look at the software system itself and focused on architectural
issues. In a change-focused approach, we chose refactoring as the focal point as it is a way to make
changes to the software system architecture while following Agile practices. Constant change with-
out heavy preplanning is enabled by making only small changes to the architecture at time. For this
research, we interviewed 12 practitioners on how they see the role and importance of refactoring,
and how and when they refactor. Related to the delivery speed, its effects on refactoring practices



15

were also studied in Publication 1V [PIV]. Furthermore, a decision-making framework for refactoring
was published as Publication V [PV]. This study was based on the previous data extended with three
more in-depth cases. The architectural work is still continued in analysing software systems and their
properties that are related to rapid software development.

To get a deeper understanding in the organizational side, a survey was used to examine how soft-
ware engineering related knowledge is spread in organizations. The 25 responses were analysed
on what tools and methods the practitioners felt as important in sharing their knowledge. The results
formed the backbone of Publication Il [PIll]. The overview of the research timeline with the research
activities and the publications is shown in Figure 3.

4 additional
interviews

Interviews,
15 companies

Interview,
1 company

Interviews, Survey,
12 cases 25 resp.

3 additional
in-depth cases

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2014 2015 2016

Figure 3 Research timeline. The diamonds represent the research activities, while the boxes
represent the publications based on them.

1.4 Research Method

As a starting point for the research design we assessed the current situation of the research related
to the research questions posed for this thesis. It was found out that the research topic cross-cuts



16

several areas of software engineering, and no sufficiently satisfactory model of the interactions be-
tween these areas have yet been introduced. As such, the research relies on inductive reasoning on
theory-building [17]. Inductive research starts from the specific observations made by researcher,
where patterns may be observed. These patterns lead to tentative hypotheses, which then can be
further strengthened into a theory.

As the studied phenomena are complex in the nature, it was important to get a holistic view of the
situation. From the very beginning, it was clear that there is a vast amount of information available
in the companies. This kind of research is at best carried out in the realistic setting, where the re-
searchers have little or no authority to control or affect the studied phenomena. Thus, the selected
multiple-case studies as the main research methodology, because of its suitability in studying soft-
ware engineering related problems. Furthermore, it can be used in building theories from case study
research which aims to create constructs, such as models, from case-based, empirical evidence [18].

Most of the studied phenomena are complicated and difficult to quantify, and so interviews were
chosen as a research instrument to delve into the rich source of information. As the aim was to
explore the current situation regarding the infrastructure in the companies and to provide deep un-
derstanding of the studied phenomena, the interviews consisted of open-ended questions. As the
guidelines for these case studies was selected the ones published by Runeson and Hdst [19]. The
case selection was somewhat convenience-based, as the studies were carried out in the context of
Need4Speed project (see http://www.n4s.fi/en), which is an industry-led Finnish information and
communications technology research program focusing on fast deployment. In addition, other part-
ner companies were selected in order to increase the variety of the company domains involved.
From the selected companies, we asked to provide us representatives who had in-depth knowledge
of the researched topic. These representatives were then interviewed by the researchers. The inter-
views were recorded and the researchers also made notes during the interview.

The interviews were transcribed and thematic analysis was used to find the areas of interest and
common themes in the answers. Thematic analysis can be used as a tool for data analysis. The
main advantage of thematic analysis for our means were its suitability for several researchers and
large data sets. In addition, it allowed us to broaden our own comprehension of the studied phenom-
ena [20]. Furthermore, it allowed us to find the relevant categories from the data without any prede-
termined model or framework [21].

The interviews formed the basis for Publications | and VI, and as such, were meant to be more
hypothesis-generating than confirmative and explorative than descriptive. One case turned out to be
so interesting that we conducted a semi-structured interview with a company representative to get a
descriptive case study published as Publication PII.

As a separate line of research, the architectures of these software systems were studied by con-
ducting semi-structured interviews with the software architects. The rationale for this approach is the



17

same as with the infrastructures, the phenomenon is complex and an overview on the current state
of the art was the desired results. Here the aim was to have as many cases as possible, so collabo-
rating companies from the N4S project were used as the foundation of the sample for the cases. In
this way, an easy access to several companies was acquired. To make the sample richer, it was
extended with other partner companies known by the researchers. Yet again, thematic analysis was
used on the transcribed results of the interviews. The method was to identify common themes from
the transcripts and to annotate the respective sections of text with specific keywords. These were
analysed further to form a description of the situation in the case companies. The results were re-
ported in Publication IV. To broaden the understanding, and to form a more explanatory view on the
phenomenon of refactoring, we decided to select three cases for more in-depth study. In this study,
we selected three companies for an interview where we applied the Goals, Operators, Methods, and
Selection rules (GOMS) [22] approach to task analysis. The results of the interviews were further-
more strengthened by analysing data from the company version control system. This helped us to
triangulate the interview with the data about how the development effort proceeded and how refac-
toring operations were present in the version control system. The results were published in Publica-
tion V.

Furthermore, we set out to study the state-of-practice development set-ups in industry in the context
of the concept of social developer. In this research we executed a personal opinion survey extended
with some questionnaire-like open ended questions. The idea of a cross sectional survey [23] was
to collect data how the developers communicate in the software companies. The survey consisted
of background questions and multiple choice questions addressing the communication methods
used in the company. In addition, a Likert scale [24] was used to measure how the respondents felt
that particular method suited them and an open ended question about improving their communica-
tion. The study was disseminated to respondents by email, by direct messaging, and by face to face
discussions. These first degree companies were Finnish software intensive companies. However,
the companies were allowed to distribute the survey as they saw fit and forward it to their partners.
From the acquired 25 responses, the results were analysed and published as Publication Iil.

So, as the included publications are based on case studies and, mostly, qualitative semi-structured
interviews, there are several caveats for the generalizability of the results. In addition, the results are
more hypothesis-generating in nature than confirmatory. We are hoping that this line of research will
help a relevant theory to emerge, but now, it can only serve as a basis for this kind of future research.
However, applicable means against biases have been taken in the studies.

In the selection of the case studies, convenience sampling has been used, as it is challenging to
contact uninterested companies for interviews. However, the sheer amount of the companies inter-
viewed and the endeavour to select companies with different domains and different perceived ma-
turity in their software practices should give a more in-depth view on the studied phenomena. In
addition, the selection criteria of the cases included an effort to sample companies with different



18

sizes, domains, and degrees of maturity regarding their delivery speed. Thus, it can be said that the
sampling is not random, but theory-based.

The interviews have been designed and carried out by at least two researchers, and the interviews
have been recorded and transcribed for the analysis. All thematic analyses have been carried out
with at least two researchers, with a third person helping in the ambiguous themes. All this should
decrease the amount of researcher bias, as no single prejudice has dominated the study setup.

To summarize the research design for this thesis, we use the structure by Wohlin and Aurum [25] to
present the key characteristics of the conducted research.

Strategy phase

0 The research outcome is basic research instead of applied research, as we aim to
understand the problem rather than to propose a solution [26].

0 As the research logic, we use inductive approach instead of deductive logic. As the
research field is relatively new, there is no existing theory to test. Rather, the thesis
contributes to theory-building.

0 The purpose of research is exploratory, as there is not much existing information
available in the research topic. However, in some of the publications, the research
guestions aim to describe the explored phenomena more deeply, being descriptive
research.

0 The used research approach is falls into interpretivist category, as the studied phe-
nomena often involve human activities in a specific situation [27]. Positivist approach
would be hard in a setting where identification of quantifiable variables, and construc-
tion of testable hypotheses, and the identification of the interferences and causal rea-
sons is difficult.

Tactical phase

0 The research process can be characterized as a mixed approach, because publica-
tions mainly build on qualitative data, but are backed up by quantitative methods (for
example, the survey analysis in Publication 11l and the statistical approach to tooling
data in Publication 1V).

0 The selected main research methodology is case study to produce thicker data and
to understand more deeply individual cases than while using surveys.



19

Operational phase

0 The primary data collection method is interviews, because it is the most feasible op-
tion to study multiple cases.

0 The selected main data analysis method is thematic analysis, as it suits well for mul-
tiple researchers and is well suited for large sets of data. However, some publications
use also statistical analysis to triangulate the perception acquired from the interviews.

As such, the thesis is aimed only to explore and describe the phenomena related to the studied topic,
and does not aim to full theoretical saturation. Thus, the theory building is left on the level of con-
structing the proposed model of the effects of delivery speed, presenting the patterns found in the
data in relation with the constructed model, and comparing these findings with existing literature.

1.5 Thesis Contributions

The thesis examines what effects increasing delivery pace has to software engineering activities.qw
The chosen model is to divide the contemporary software engineering activity into three aspects,
namely the software processes, the development infrastructure, and the structure of the produced
artefact itself, the software architecture. Thus, the model is called a PAI (Process-Architecture-Infra-
structure) model.

This PAI model is then used to describe what the prerequisites for increasing the delivery speed of
the software are and what the consequences of increasing the speed are. Furthermore, the current
state-of-the-practice in the Finnish software companies was studied in the light of their delivery speed.

The main contributions of this thesis thus includes

A description and an analysis of the common actions and obstacles to increase the delivery
speed in software engineering.

A description and an analysis of the benefits and side effects of increasing the delivery speed.
A description of the situation in the Finnish software intensive companies regarding the de-
livery speed of the software.

As an additional contribution, a model helping to understand the relations between the actions, ob-
stacles, benefits, and side effects is constructed. Thus, the contributions of this thesis can be used
in companies planning their actions to achieve faster delivery they strive for.



20

1.6 Structure of This Thesis

This thesis is organized as follows. First, an introduction to the thesis topic matter was given. Next,
in chapter 2, the background information on the cornerstones of the research is given. First, general
background information is given, and then a more detailed explanation on the software processes,
infrastructures and tools, and, finally, software architectures follows. These are followed with a view
into Continuous * practices, which acts as the context where the aforementioned aspects of software
engineering are studied.

In chapter 3, the main contribution of the thesis is presented. The structure of this chapter follows
the structure where every component of software development presented in the previous chapter is
covered so that its effect on the other components is discussed in the light of the results of the
publications. Finally, the impact of speed is addressed.

In chapter 4, the closure of the thesis, some words about related research are given. In addition, the
research questions presented in the introduction are revisited. Also, future work is discussed, and
some conclusions regarding the research are presented. Finally, the included publications are intro-
duced briefly.



21

2 Background

Software development can be seen as a human activity to deliver software artefacts. To achieve this,
one needs a working software development organization with functional processes, armed with at
least the essential toolset to produce the software. The connection between these has been stated
by Fuggetta as

“A software process can be defined as the coherent set of policies, organizational structures, tech-
nologies, procedures, and artifacts that are needed to conceive, develop, deploy, and maintain a
software product.” [28]

Fuggetta uses the process as an umbrella term for both organizational and infrastructural parts, but
here we will keep them separated, and use the name process only for the organizational parts. In
addition to these, the software itself forms an important aspect. These three aspects of the software
development are usually seen as orthogonal to each other. However, now, as the benefits of the
increasing of the delivery speed of the software, backed with the continuous delivery, have been
recognized widely in the industry, the aspects have become parts of a greater system, where they
have a profound effect on each other.

To get a better understanding of the phenomena which are related to the effects of increasing the
delivery speed, a PAI model presented in Figure 4 was chosen as the way of dividing and analysing
the software engineering under the requirement of extreme delivery speed. The model is called PAI
(Process-Architecture-Infrastructure) model after the sides of the triangle in the figure. The different
aspects of the software development (Process-Architecture-Infrastructure) form the sides of a trian-
gle, and every aspect has an effect on the other aspects, depicted by the arrows forming the sides.
The research hypothesis is that these aspects direct some forces on the other aspects, such as
having a well-defined process of managing the architectural changes is helped with having a man-
datory review, launched by the Continuous Integration server and supported by a review tool, in the
deployment pipeline. Furthermore, it seems that these forces become more significant when the
delivery speed is increased. A single delivered piece of software becomes smaller as the speed
increases, but the ramifications on the software development as a whole becomes bigger and bigger.



22

Process

Architecture Infrastructure

Figure 4 The PAI model—the components of software development. Infrastructure, architec-
ture and process interact with each other related to the speed of development.

In the following sections, a brief introduction on each of these key aspects of the software engineer-
ing is presented, along with ideas related to the trend of increasing the delivery speed.

2.1 Software Development Processes

Software business processes build on organization structures, like any other business processes —
in so much as any process must be embedded in an organization [29]. Software development as a
process aims to deliver a software system, which conforms to a certain set of requirements. These
requirements, of course, may be vague, unknown, or may even change as time passes.

In general, the software development has gone through several game-changing innovations since
its inception as an established practise in 1968 NATO software engineering conference [30]. First,
as software processes started to emerge as a separate activity; a waterfall approach was used as it
was seen as the best approximation of an ideal and rational software process [31]. As the size of the
systems developed was, and still is, continuously growing, it was soon noticed that heavy design,
planning, and documentation led to the situation where the world was changing quicker than the
designers could capture the requirements for the software. Thus, more agile approaches mostly
superseded the waterfallish, linear model processes. However, the systems developed have grown
to always push the boundaries what the development organizations and technologies are able to
produce. For the second millennium, these Agile methodologies have gained popularity. They build
on a set of principles, published as a part of the Agile manifesto [32].



23

Most of these principles are present in the Lean software development (LSD), which has been de-
fined as “the application of the principles of the Toyota Product Development System to software
development” [33]. In the seven principles of LSD, the focus is on the elimination of waste, making
decisions on the last responsible moment, fast delivery, and empowered teams. In addition, ampli-
fied learning, integral experience of the customer, and holistic approach are encouraged.

Requirements Development Deployment Testing Quality
Requirements Version e . . Quality &

Elicitation Control Fievisloning Hnit Testing Performance

Backlog . . s : ;

Build Virtualization Ul Testing Code Review
Management
' Continuous Acceptance
Bug Tracking Integration Deployment Teskirig
Artifact
Repository

Communication and Feedback

Figure 5 Elements of modern software development, adapted from Publication VI.

As presented in Publication VI, modern software development consists of several activities, see Fig-
ure 5. These activities may or may not be on the responsibility of separated suborganizations. Some
organizations prefer having a separate team for taking care of certain activities. For example, an
organization may allocate testing and quality assurance to a specialized team as it can be argued
that the developers shouldn’t be the only people testing their own code. Same misconceptions and
errors that plague the code are easily transferred to the testware, if the same person does them both.
As an example, ISTQB (International Software Testing Qualifications Board) recommends avoiding
author bias in its syllabus [34] and safety-critical standards usually require the tester to be independ-
ent from the developers [35].



24

Similarly, deployment-related issues may be concern of a separate operations team, which has to
ensure that the servers, either virtualized or concrete ones, provide the software the expected envi-
ronment. As these operations-related activities require specialized skills, it might be wise to utilize
the capabilities of the people involved in their fullest, letting them to concentrate in their speciality;
the developers in coding, and the system administrators in maintaining the platforms.

Regardless of the organizational structure, there is at least some amount of agreed-upon processes
involved. Usually these processes are part of the workflow for the changes made to the code, and
can be affected by the selection of the tools for development. An example of this can be that devel-
opers ensure quality by invoking a pull request for a review for every bit of code they have checked
in to the version control. Good examples of micro-processes that could be applied in any organization
involving software development are three fairly well-known branching models for Git! version control
system. All of have been applied in several industrial settings, as found out in Publication VI; “A
successful Git branching model/Git Flow”, “Another Git branching model”, and “A rebase workflow
for Git”. Most software development organizations have to come up with a way to use version control
system, as it was the ubiquitously found tool from every company that was studied in Publication VI.

It should be noted that Figure 2 only presents the elements present in software development, and
does not discuss their mutual order. Some of these elements can be carried out in parallel to each
other to hasten up the development pace. For example, Scrum [36], being the most popular software
development process framework [37], incorporates sprints, a timebox producing an increment to the
software [38]. In a sprint, anything that is developed has to be tested in order to cross the task out
as done. Usually unit testing is done right after the implementation, by the developer herself. Any
testing beyond that might require some time and computational capacity, so these tests are started
automatically after the code has been committed, releasing the developer to produce new features,
while the old ones are tested. Simultaneously, the product owner may elicit new requirements and
put them into the so-called product backlog. The product owner works as a surrogate customer, who
tries to understand the requirements of different stakeholders and put them together as sensible and
coherent backlog items. In addition, the product owner organizes the backlog so that the greatest
value is added and the most crucial features get implemented first to ensure the customer a good
return on investment. After each sprint, there is a potentially shippable product, which can be ac-
ceptance tested by the customer, and installed to gain more insight from the end users. This kind of
parallelism helps to speed up the development, as there are artefacts in different stages in the de-
velopment.

! https://git-scm.com/



25

2.2 Software Development Tools and Infrastructure

One of the Agile principles tells that

“Build projects around motivated individuals. Give them the environment and support they need, and
trust them to get the job done.” [32]

An important part of the aforementioned environment is the actual tools with which the software is
developed. Software is no different from other engineered systems that it is built with tools, ranging
from basic stuff as the code editor and a compiler to more advanced automation tools. Also, there
are distinct disciplines involved in the development, which all need somewhat different tools. For
example, all software parts should be tested, and there are tools for defining the tests, running them,
automating them and showing the results to the developers in an easily accessible way.

In addition to the tools for building the actual system, there is the infrastructure that is used for de-
ploying the software system. Naturally, this depends heavily on the domain of the software. On one
hand, in embedded domain the deployment can be a cumbersome operation, including physical tools
for uploading the software, production stops as the system must be not in use while deploying, and
other such blocking work phases. On the other hand, contemporaryb web software can be deployed
on virtual servers on cloud leading to very fast deployment. This server environment in the production
usually has to be replicated to some degree for running the actual development and tests on the
system. So, clones of the virtual machine are run on the developers’ desktops, quality assurance
servers, acceptance testing servers and so on.

As presented by Humble and Farley, modern software engineering forms so called continuous de-
ployment pipeline from coding to deployment [4]. The role of the pipeline is the automated manifes-
tation of the process how software travels from the version control system to the user, as stated in
Publication 1. Along the way, there are several tools involved, as presented in Publication VI. The
actual choice of tools depends on various factors, such selected technology stack, legacy consider-
ations, developers’ personal preferences etc. Thus, the pipeline closely resembles the software ar-
chitecture, as several design decisions, either consciously made or by pure happenstance, affect
the actual tool chain used in a certain project.

Some examples found in Publication VI underline the close relation of the development pipeline to
the process, delivery rate and the software itself. For example, as the delivery speed is more pro-
nounced aspect in web system and these systems are prominently made with JavaScript frameworks,
several tools for automation in this domain exist. On the other hand, it was found out in Publication
| that the testing of user interfaces can be hard to automate with tools due to several reasons, such
as lack of tooling, the reactivity of the user interfaces and so on. Thus, several companies relied on
manual testing. From the sample used in Publication VI, it seems that a version control system,



26

mostly Git?, is always present, and usually some automation tool, such as Jenkins?, is used if the
company adheres Continuous Integration principle in their processes. Also, depending on the pro-
cesses of the company, additional tools, such as review tool Gerrit* is added. Thus, the selected
tools are a manifestation of the processes used in the company.

However, one can’t deduce the used processes based only on the selected toolset, as the tools may
be highly configurable and allow several ways to use them. For example, build systems use build
specification files written in a configuration language to build the deliverable software [39]. The con-
figuration, or so called build specifications, can include instructions for compiling code, executing
test cases, packaging project files and deploying new software releases [40], or they can be used to
manage dependencies of the software, for example to external libraries [39].

2.3 Software Architecture

Software architecture refers to the high level breakdown of the software system to its parts and its
description. Thus, it includes the structures of the software and their documentation. In ISO/IEC
42010 architecture description standard [41], software architecture is defined as “fundamental con-
ception of a system in its environment embodied in elements, their relationships to each other and
to the environment, and the principles guiding its design and evolution.” Compared to the code itself
that is meant to produce functionality, the architectural structures should be designed so that the
resulting software is able to conform to the non-functional requirements. In fact, Kazman & Bass
have stated that the architecture is dictated by quality requirements rather than functional ones [42].
These quality attributes are well known to the software engineering community, and several taxon-
omies and categories have been published. One of the best-understood quality models is the
ISO/IEC 9126-1 quality standard [43]. This ISO/IEC quality standard classifies the quality into a tree-
like structure having six main characteristics. The main characteristics are functionality, reliability,
usability, efficiency, maintainability and portability. Each of these is then divided into more detailed
subdivisions, for example, efficiency can be divided into time behaviour, resource utilization and
efficiency compliance.

Another way to divide software quality is to split it dichotomically into internal and external quality
[44]. This division relies on the differing viewpoints of the development and the end user, respectively.
The architecture is mostly about internal quality, as it is visible in most cases only to the developers.

2 https://git-scm.com/
3 https://jenkins.io/
4 https://code.google.com/p/gerrit/



27

If the internal quality declines, the development becomes slower and more difficult. This phenome-
non is also known as technical debt, where time spent on fixing “not-quite-right code” can be seen
as paying the interest of making unconsolidated changes to the code in the hope of speedy delivery
[45]. To countermeasure this, measures like refactoring and clean coding should be applied [46].
External quality tells about the fitness of the software for its intended purpose and can be mostly
measured with functional tests. If external quality gets worse, the software won't satisfy the end users’
(or some other stakeholders’) needs anymore. When speaking of the impact of the architecture to
software development, we are mostly speaking of quality attributes that can be classified as being
part of the internal quality.

It is known that any quality attribute cannot be achieved in isolation in real world systems [47], as
there are always some trade-offs involved. For example, improving performance by removing extra
layers in the architecture may cause a significant loss of modifiability. In some cases, one might
sacrifice internal quality for the sake of external quality. This is exactly what happens if one takes
deliberate, but prudent technical debt using the terms from the Technical Debt Quadrant by Fowler
[48]. The developers make design decisions they know that will hinder their development speed in
the future in order to deliver faster now.

The Agile principles do not give much guidelines regarding the software architecture, save for notion
of “Continuous attention to technical excellence and good design enhances agility” [32]. This princi-
ple has the underlying assumption that the decisions related to the software architecture do not only
affect the properties of the software, but the fluency of the development process. Agile proponents
usually suggest that big up-front design should be avoided, as so-called analysis paralysis may grind
the development to halt, and time is wasted in designing something that may not be ever used [49].
Thus, it is recommended to start small, and to grow your system more organically while the devel-
opment proceeds. Wrong design decisions may be fixed with the practice of refactoring, where the
system architecture is changed to conform for the desired quality attributes, but still preserving the
functionality. This kind of practice requires a high degree of automated testing to make sure that the
changes do not lose functionality or any faults are not regressing.

It should be remembered that architecture can exist on several levels. Nowadays, as the software
systems have grown larger and they—especially after the popularization of so-called microservices
[50]—have several integration points with other systems. Microservices consist of small and inde-
pendent processes, which communicate with each other. This approach makes designing the larger
systems easier by promoting a very modular approach. A good microservice is well decoupled from
others and highly cohesive focusing only on one small task, following the design principles that have
known to work well for a long time [51].

Another example of complex system architecture existing on several levels could be a control system
of a moving machine, such as a car. The software systems in modern cars are amongst the largest
software systems the humankind has ever made, often topping hundred million lines of code [52].



28

However, the system is heavily distributed as it is built from several Electronic Control Units (ECUSs),
which run parts of the software. One way to design the system is to structure the groups of function
as Logical Architectural Components (LACs). One LAC could be the locking system of a car, for
instance. These LACs can be dispersed over several ECUs, and can communicate with other LACs.
LACs consist of Logical Components (LCs), which can be rather small pieces of software, such as
the key authorization. Thus, the whole software consists of several layers of architecture, which
should be in sync with each other [53].

One other well-known example of decentralized architecture is so-called system of systems (SoS).
They are defined in [54] as systems where the components 1) fulfil valid purposes in their own right,
and continue to operate to fulfil those purposed if disassembled from the overall system, and 2) are
managed mostly for their own purpose, rather than for the purpose of the whole. Furthermore, com-
ponents are separately acquired and integrated, but maintain a continuing operational existence
independent of the whole. Thus, an embedded control system fits nicely in this definition. The prop-
erties of the system of systems emerge from the combination of the parts and the system may evolve
as the parts are replaced.

Thus, the architecture has varying degrees of granularity, and there might be need of designing the
system on several levels of abstraction. In the case of cars, or similar distributed machine control
systems, the high level design is done in collaboration with experts from other domains than software.
Electronics, hydraulics, and mechanics all can restrict the design of the software architecture. On
the other hand, on single control unit, the architecture might consist of several well-known design
patterns, such as Variable Manager [55]. Similarly, in a web-based service, such as Spotify, the
features may reside as separate and independent feature service servers in the data centers, which
can be replicated to achieve redundancy and scaling [56]. On the other hand, simple services may
rely on well-known frameworks, such as Angular.js®, and platforms, such as Node.js®, to easily im-
plement commonly needed functionalities.

2.4 Continuous *

To keep in pace with the ever-changing world, quick delivery can be a matter of life and death to a
software company as it allows them to stay a step ahead of competition [4]. Traditionally, software
systems have been delivered as single products, which are installed once and then the customer
can reap the value from the investment to the development. However, Agile methods aim at trans-
forming the value of software system to smaller increments. The principle has been stated in the

5 https://angularjs.org/
6 https.//nodejs.org/en/



29

Agile manifesto as follows: “Our highest priority is to satisfy the customer through early and contin-
uous delivery of valuable software” [32]. The software that has been developed, but is not yet de-
ployed, is not producing any return on investment. Reflecting the Toyota Production System [57],
this kind of undeployed software can be seen as inventory, which is waste that should be minimized.

Based on the above, it is proposed that the software system should be in a potentially shippable
state as often as possible. This practice is called Continuous Integration (Cl), where every new com-
mit to a code base is integrated with the whole system, and the problems associated with the Big
Bang integration are avoided. Big Bang integration refers to the situation where all code is integrated
just before the shipment, often leading to a multitude of problems, such as having a large amount of
errors, which are hard to isolate and correct, because of the vastness of the software [58]. In Con-
tinuous Integration, risks are reduced as errors are found earlier, and motivation is higher as the
developers see a working system all the time [59] [60]. Continuous Integration can be achieved
through rigorous processes and manual quality control, but most often automation and Continuous
Integration tools installed on a CI server help. These tools are triggered by every code commit a
developer makes, and the CI server builds and tests the new code automatically.

The practice of Continuous Integration was already seen as a part of the agile methodologies, es-
pecially in Extreme Programming (XP) [61]. In these agile methods, fast delivery also allows work to
be saved from the requirements elicitation. As producing new versions of the software was easy, it
was faster to show the actual software to the customer representative than to try to get the require-
ments exactly right before starting the implementation. Rapid feedback from every increment helped
to establish a system reminiscent of well-known learning cycles, like the PDCA/PDSA (Plan-do-
check-act/Plan-do-study-act) method of quality control [62], Build-Measure-Learn cycle [63] cham-
pioned by lean start-up advocates and the scientific method itself.

However, Continuous Integration is not enough, as it only requires that the developers get feedback
if their changes to the code prevent the software from being built. Thus, CI practice omits altogether
the parts of the software life cycle after the build. For example, deployment is not considered at all,
although a successful deployment of a build may require lots of effort. The practice of Continuous
Delivery brings the concept to the next logical level; the software has to be deployable all the time
[1]. Now every software change is tested to build with the rest of the system, and the configuration
of the system is such that the build could be deployed to its intended environment. As it is now
feasible to deliver any commit a developer does, the next level, Continuous Deployment, adds the
requirement of automatically passing every clean build to the deployment. Here, every commit to
version control system is automatically built on the continuous integration server, tested, and de-
ployed to the production environment successfully.

Advanced continuous deployment often requires virtualization of the deployment environments; de-
velopment, quality assurance (QA), and production, to name the most common ones. Thus, the
development activity is extended beyond the coding and building the product, and requires some



30

knowledge of these environments. This is traditionally seen as the remit of operations organization,
not development organization. Passing the built software artefact from the development to the oper-
ations causes a relay race situation, which hinders the speed and agility of the organization as a
whole. To make matters worse, in sophisticated continuous deployment the environments should be
treated like the code itself. The environment is an indistinguishable part of the software artefact,
whose configurations can be stored to the version control system along with the code.

Thus, the developers have to tightly cooperate with system operators, or, even better, have the re-
guired skillset and resources to treat the software system and the deployment environments as a
whole. This practice lends its name to the DevOps method, where development, quality assurance
and operations form a holistic approach [6]. Thus, DevOps requires heavy automation spanning the
entire delivery pipeline, with automated tests and virtualization of the environments.

Agile methods were first considered to be only suitable for limited to very small web-based socio-
technical systems [64]. Similar critique has been presented to the practice of Continuous Deployment.
It has been seen as being fully applicable only to systems that are cloud-based web systems, as this
is the environment where CD has been most beneficial. It has also been easiest to implement, as
deployment does not involve any physical systems. However, Agile methodologies have been ap-
plied nowadays on wide variety of domains, all the way up to embedded systems, even very suc-
cessfully, so it seems that Continuous Deployment will be widely adopted, even though the degree
of feasible automation depends on the domain. For example, an industrial control system may re-
guire new hardware or physical changes to the configuration of the devices, so it will be more chal-
lenging to automate than purely software-based systems residing on the web. This phenomenon
was noticed during the interviews for Publication I, where it was noted that companies in domains
which involved physical systems had somewhat slower deployment cycle.

However, it might be argued that in other domains fast delivery is not so crucial, as one of benefits
of Continuous Delivery is not only producing faster value to the customer, but to get quick feedback
from the end user [65]. This helps to get the right product to the customer, bringing more value by
fulfilling the customer needs, and reducing waste [66]. To complete the development pipeline into a
fully-connected feedback cycle, end users can also be monitored with analytic tools. The need for
requirements elicitation is vastly diminished as real usage data allows to make decisions regarding
the future of the software system [67]. In some cases, with proper customer data, new innovations
are developed even before the customers have expressed their needs that are addressed by the
innovation [68]. Thus, direct communication with customer and the end users loses some of its sig-
nificance. Tools also can, at least partially, take care of the communication between developers in
the daily work, as found in Publication Ill. Of course, some regular meetings between developers
can take place to synchronize tasks and to share common status, but mostly notifications come from
the automation tools. As features are deployed instantly after they have passed the tests, only a few
interactions between the developers are needed as the automation takes care of triggering all the
necessary steps.



31

The quality of the end product is improved as the organization can quickly produce something tan-
gible on which they can get feedback on and utilize this information in the next iteration. To achieve
a rapid development pace, everything in the development has to work together like a well-oiled ma-
chine. An example of an organization with a rapid deployment pace is presented in Publication II.
There, an industrial case was presented, where rapid software development practices were in eve-
ryday use, and Continuous Delivery was the goal (Figure 6). Although there was no strict require-
ment of Continuous Deployment, every team member was invested with the authority to deploy at
will, so the deployment management existed purely for coordinating when and what to deploy, so
that the customer gets exactly what they want. There was also the additional requirement of quick
validation of the business ideas, so it was mandated that every completely new idea could be imple-
mented as proof-of-concept in eight weeks. This proof-of-concept is launched to the end users and
a wide array of metrics is collected about the usage of the system. This collected data is then inter-
preted, and either tweakings are made to improve the original idea, more features are developed, or
the whole idea is scrapped altogether. This allows all major stakeholders, namely the business an-
alysts, the product owner, and the developers, to gain a deep insight into the product. Another ex-
ample of a well-working continuous delivery pipeline has been presented in [2].

Requirements
-Jira [
-Trello

Development
-Jenkins
-Git
-Chef

Developers

Deployment | Monitoring
-Cloudwatch
-New Relic
— -Zabbix
End-user monitoring I eigdom

-Snoobi
-Pagerdu
-Sitecatalyst € ty

-QlikView
-Optimizely

Figure 6 An example of a software process with elements of Continuous delivery and rapid
feedback. The tools for each phase are also shown (Publication I1).



32

The aforementioned way of streamlining the deployment pipeline resonates with the lean concept of
flow [69]. The software is developed no more so that a certain phase produces a batch of artefacts
which then are queued for the next phase. Instead, the artefacts flow seamlessly through the whole
pipeline of actions, which all add some value to the processed artefact. Immediately after a new
feature is conceived by recognizing the need for it, it starts flowing through the subsequent phases
until been deployed to be used by the end user. When this flow is connected as a holistic end-to-end
approach to software development by connecting development with business planning and strategy,
operations, and continuous improvement and innovation, it has been dubbed as Continuous * by
Fitzgerald and Stol [7]. A flawless flow benefits from small batch size, using automation with feed-
back in visualised form (jidoka), and kaizen, i.e. continuous improvement.



33

3 Components of Contemporary Software Development

Today, not all companies achieve such degree of maturity as the company presented in the Publi-
cation Il. In fact, it seems to be quite uncommon, as found out in Publication I. Companies seem to
have a varying degree of maturity, and it seems that companies evolve with piecemeal improvements
towards a mature continuous deployment pipeline.

To assess the maturity of an organization, there exist a few continuous deployment maturity models
and DevOps maturity models. These evaluate the capability of an organization on several different
levels depending on the model. As an example, a well-known maturity model by Rehn et al., pub-
lished as an InfoQ article [11], categorizes the five key aspects of Continuous Delivery; namely Cul-
ture & Organization, Design & Architecture, Build & Deploy, Test & Verification and Information &
Reporting. An overview of the model is presented in Figure 7. However, these categories are not
fully orthogonal to each other. As a basis, Rehn et al. acknowledge that the organizational things are
crucial for sustainable CD environment. In this model, Culture & Organization hold things that are
related to the software processes and their underlying organizational structures, i.e. testing with de-
velopment, decentralized decision-making to the team, cross-functional teams and so on. Design &
Architecture hold things that are related to the structure of the software system itself. These include,
on several levels, for example, having modularity up to the degree to API-separated components
which can be deployed individually. On the highest level, the software system is tied with the infra-
structure on which it will be deployed. The software system starts to be indistinguishable from the
deployment-related technology via virtualization.

The Contlnuous Dellvery Maturlty Model

I Culture &
| Organization

Design &
Architecture

Deploy

Test &

Information
& Reporting

Figure 7 An example of a Continuous Delivery maturity model, redrawn from Rehn et al. [11].
The model consists of five maturity levels on five different aspects of the software de-
velopment, forming a matrix of 25 different possible combinations of maturity.



34

The next level, build and deploy, covers things related to the tooling and automation of the deploy-
ment pipeline. The selection of right tools aids the developer to advance to the level where every
commit is built to be potentially deployable to the production environment, ultimately bundled with
the virtual machines. Very closely related to this category is the test and verification, as it also relies
heavily on tooling. Information and reporting are basically process related things, but on the ad-
vanced levels, most of the inputs are metrics gathered by various tools.

From this, we can see that these levels are entangled with each other. One other way to observe
the maturity is the Stairway to Heaven model [14], which puts organizations on five individual steps
from traditional waterfall approach through agile to continuous integration, continuous deployment
and, finally, being an innovation system for R&D. For example, the organization presented in Publi-
cation 1l, see Figure 6, closely resembles the described innovation system, although they do not
fully adhere to the principle of continuous deployment. In the Stairway to Heaven model, there is
only short descriptions of each level, so assessment is not possible, but it can be deducted that the
phenomena described in [11] is also present here. In any case, the model strongly suggests an
evolution of an organization towards the innovation system. The consensus seems to be that the
software development organization evolves onwards to faster delivery, on several levels, which can
be quite arbitrary depending on the units of analysis.

A less studied subject is the effect on these aspects on each other, when the delivery speed is
increased. Thus, the PAI model presented in Figure 4 is used to analyse the effect of release speed
on the three selected aspects of the software engineering, namely development processes, the tool
infrastructure, and the software architecture. See Figure 8 for the focus areas of the included publi-
cations related to the aspects of the software development. Not only the effect of speed to each of
them is studied next based on the research, but the interrelations of each of these on each other.
So, when the delivery speed is hastened, processes start to constrain and affect both the tool infra-
structure and the software architecture. Similarly, the selected tool infrastructure has its effect on the
development process and the software architecture. Finally, the software architecture will have some
consequences on the software process and the selected tool infrastructure. These interrelations form
a triangle consisting of the aspects as the sides. Changing one aspect will have its effect on all other
sides of the triangle, and more importantly, faster the release speed, more profound this effect will
be.



35

Process
Pl

Architecture Infrastructure
PIV PVI

Figure 8 The publications included in this thesis and their rough relation to the elements of
software development.

3.1 Architecture-Process relation

Designing successful software architecture requires a lot of knowledge. The architect must know the
specifics of the domain, available technologies, potential patterns of design solutions, current re-
quirements for the system, and most probable changes to them. To make matters more complicated,
this information has to be gained and shared amongst several stakeholders, such as the customer,
end users, product owners, developers and so on. Thus, this knowledge needs to be communicated,
and the organizational structure is reflected in the effectiveness of a certain communication connec-
tion. Software process can be seen as the way of working in a software organization and as a catalyst
or impediment to communication between the relevant parties.

It is a well-known fact that a system and the organization producing the system resemble closely
each other: “"Any organization that designs a system (defined more broadly here than just infor-
mation systems) will inevitably produce a design whose structure is a copy of the organization's
communication structure” [70]. This phenomenon known as the Conway’s law is also reflected in the
sociotechnical congruence framework [71]. The law stems from the real-world communication being
reflected as interfaces in the system. This relation alone binds the software architecture and the



36

software processes together tightly. It has been argued that if these two aspects of software are not
aligned, the software development is severely hindered [72]. At the same time, good architecture is
self-documenting and thus decreases the need for communication.

As the architecture is closely related to the knowledge of the design decisions of the systems, all the
information that is not evident from the code falls into realm of knowledge management, which is the
process of capturing, developing, sharing, protecting, and using the knowledge efficiently [73]. Thus,
architecture knowledge can be managed with processes [74]. The knowledge management pro-
cesses can be broadly classified to be using either of two strategies, Codification or Personalization
[75]. On one hand, Codification means storing the knowledge systematically, and providing an ac-
cess to it to the involved parties. Personalization, on the other hand, bases on establishing flows of
information between individuals, and supporting this peer-to-peer information sharing. For example,
all knowledge related to a certain technology would be available to a certain person, and anyone
who needs and is entitled to certain information about this technology will know who to ask. Codifi-
cation usually is more tool-oriented approach, but still calls for processes for storing the information
in the first place, and especially to update it, when the software is changed. Codification mostly relies
on efficient organizational structure.

One phenomenon related to architecture, but influenced by the process, is the notion of technical
debt [45]. It is a metaphor for cutting corners and adding allegorical duct-tape to the system, but can
also mean shortcuts and architectural rule violations — all those quick and dirty solutions that are
made in the hope of releasing the product more often. Technical debt resembles financial debt in the
sense that one might consider debt a resource which helps to cash in on releasing new valuable
features faster. Furthermore, as a result of the technical debt, the code becomes harder to maintain,
and in the future, it will take more effort to implement new features. This might lead into a vicious
circle, and to compensate this slower development speed, more technical debt might be introduced
to the software system. Thus, the debt that has not paid back will have some interest rate.

Technical debt can be paid back by refactoring, which means improving the design of existing code
[76]. It has also been argued that there cannot be efficient refactoring without good, and preferably
automated, tests, being an infrastructural aspect [77]. Good automated tests are required to prevent
unintentional changes to the functionality, or to prevent regression of already corrected bugs — in
short, to ensure that the changes made did not break any existing functionality. In Publication 1V,
one of the findings was that several interviewed architects deemed the essential toolset for refactor-
ing to be a good version control system and a good set of automated tests on a continuous integra-
tion server.

A major cause for technical debt is schedule pressure [78]. This is in line with Publication 1V, where
the interviewees nominated the constant rush as the leading cause of refactoring. Other reasons
listed in [78] are “carelessness, lack of education, poor processes, unsystematic verification of qual-
ity, or basic incompetence.” Thus, the selected process has a definite impact on how architecture



37

evolves, for good or worse. Also, it has been noted that accumulated technical debt as bad quality
code may lead to difficulties in estimating the workload. For example, in Publication IV, company B
representative found the code quality to be in a bad shape, and this was reflected in spending several
weeks on a feature that was expected to be completed in a few hours.

The currency to pay technical debt back is, of course, hard work. Those “not-so-right” structures
have to be corrected by refactoring the code. Refactoring also is the way that Agile methodologies
promote getting the architecture right by piecemeal growth, for example, in Crystal Clear a walking
skeleton is developed first, and it is evolved in an iterative fashion [79]. Thus, the software develop-
ment process should allow time for refactoring. Sadly, this is rarely the case, as refactoring is not
seen to bring any additional value, but just lose time in non-productive work as found out in Publica-
tion 1V. This effect is strengthened by the perceived lack of suitable metrics that would tell if there is
a need for refactoring. Usually, the metrics for the need of refactoring are so-called code smells
which are detected by the tools from the code [80]. However, they can poorly predict certain refac-
toring decisions as the more advanced problems are usually only identified by experienced evalua-
tors [81]. Thus, the main driver for refactoring decisions is the gut feeling of the developers, as seen
in Publication V.

Of course, metrics are usually supported and provided by a tool set, but they drive management
decisions, which are in the process domain. Furthermore, there are a plethora of metrics which re-
guire disciplined processes to have any meaning. Otherwise, you will get only what you measure
[82], in the worst sense of the maxim. For example, in case of duplication metric, people may, just
to “please the metric”, start to refactor the code to remove duplications, wasting valuable resources
[83]. Based on the above, it might be better to consider metrics based on the measurement of the
process itself than try to deduce the need of refactoring only from the software artefact. In Continuous
Deployment, the development effort can be made more visible as the changes are smaller and the
feedback is instant from the all the phases of the deployment pipeline [84]. Thus, this information
could be used in help of detecting the worrisome parts of the code.

It might be even difficult to say code quality really got better after refactoring effort. As stated in
Publication V, sometimes, the developers can spend even weeks in a vast refactoring effort, and
then notice that the actual quality of the code was worsened and have to revert back. This kind of
refactoring failure suggest that the refactoring should be small enough and a part of the daily work,
so reverting back would only waste minutes or hours instead of days or even weeks.

Although not found in Publication V, anecdotal evidence in the interviews for Publication IV suggests
that accumulated technical debt might lead into a situation where requirements are changed due to
the fact that the original idea is too hard to implement without using significant effort on refactoring.
Thus, it is easier to come up with an alternative plan to avert the refactoring.



38

Accumulating technical debt that cannot be corrected within couple of hours of worktime indicates
that the development process is not working optimally and the refactoring might prevent Continuous
Delivery as the refactoring task is too big to fit nicely into the streamlined process. For example,
Figure 9 depicts how one refactoring related to implementing encrypted cookies to a certain software
system was split into version control system. The figure shows that the refactoring was started as a
new branch, and the codebase was first refactored to allow the implementation of this new feature.
Then the rest of tasks related to this four-day effort are mostly new implementation, interrupted by
smaller refactorings. As a result, the development flows smoothly, as the changes related to this new
feature are contained in a separate branch, and at the same time the changes are easy to make as
the code is first refactored locally to accommodate the required functional changes.

“Created branch P s efactor | = = W
2015-03-16 feature/LPK- Use encryptad hashbangtouse I ovesessionkey || “Movedsession || “SessionIDmust
174_cookie-session- cookla a5 the pure ring ! ELE L Il handlinglegicto | be generated
 store” | ook Tne session” (__re:p:'f_‘eid_._/' l~ sade.session” | manually”

~ - R TR e Wi g 7 N =

S eIne . E “Merge with ' “Load current user “Read sessionid \::Z/:Iesls'm;:

g b hashbangto use H develop” 1 data from db” from session data” - ylosge
2015'03-17 correctly” pure ring session” ' ) redundantly”

actions” context key"” needed insession” impersonation”

_______________

“Load current user
attachmentlist
from db”

“impersonator is “Drop personid

é N
“Merge with
also a virntualuser” from public data”

develop”

...............

“No defaultkey”

" “Moved userfrom | R
“Passsessionto “R I [ o 5 | “companyinfo is “fixed
enamedlogging | | oirsessionto |

“special case for
oir-authority user”

!

eckuserda@a ) (""" TTTTss====
“S ed “Ri
20 15'03'18 expiravn'on‘n E “Merge wi-(h E "Sususcrdatam 'excludev:nuzl 'u:‘p::: a:l:‘ en:r::;::;
::;:\z::::x : develop' ‘: to 5 minutes” USES stop function” from file”
P et !
“Added endpoint “Set graceful 3 ' . - ' ~Added scriptf
for restarting shutdown timecut Allow accessony H I\:ergel wn_th ' deplzvi:c;f:;:'r
Jetty” to 10 seconds” from localhost s evelop !
“fiow: Closed " *flow: Merged feature> |
2015-03-19 9 “Reconnectto <feature>'LPK- i LPK-174_cockiesession- |
telosdepy: MongoDB" 174_cookie-session- | | store'to<develop>
" store” - (develop)” _____ ;
Legend:
PN | Refactoringwithin | Feture branch | Mergewithdev. |
| feature dev J' Creation / closing ' branch '
Figure 9 An example from Publication V showing how refactoring is carried out in a software

development process.

It is interesting to note that there exists a parallel for technical debt at the organizational level, called
social debt [85]. It refers to a situation where the organization is suboptimal in the sense that the
right people do not have opportunity to coordinate, collaborate, or cooperate their work. This leads
to situation where the productive work is hindered because of organizational problems. This is rem-
iniscent of the aforementioned Conway'’s law [70]. This is reflected in the findings of Publication Il



39

as the surveyed people desired to improve their communication by having co-located teams and
direct customer contact.

The architecture in the light of new ways doing the software, such as DevOps in the context of
Continuous Deployment [6] [86], has been argued to be one of the challenges in the software organ-
izations. However, regardless of the gravity of the issue, it has also been a little studied field [87].

3.2 Process-Infrastructure relation

In addition to automating the tasks that someone would have to do manually otherwise, a deployment
pipeline infrastructure forms several measurement points, where data and feedback can be collected.
Beginning from the Continuous integration servers, the developers get instantaneous feedback from
the automated tests, if their recent commits work as expected and no existing functionality has been
compromised. This allows the process to be transformed into more agile approach, where tasks
have clear completion criteria, or definition-of-dones, as successful tests can be demanded.as a part
of a task. In addition to tests, it is possible to add other quality assurance tools to check the code.
For example, SonarQube’ seems to be widely used in the companies, which embrace Continuous *
practices, according to the interviews cited in Publication VI. This allows the software development
to have processes related to the quality of the end product. However, there is some critique among
the developers as they do not find the metric very useful, as honing the metric does not improve the
perceived quality and the bad quality code is so self-evident that the metric doesn’t help. Blind obe-
dience to a metric may even cause bad design decisions, as found out in Publication IV. Also, code
reviews can be a tool-aided part of the process, which also can help in distributing the architecture-
related knowledge amongst the developers [88].

In addition to this kind of generated feedback, a good infrastructure allows also collecting the end
users’ actions [89]. This was a prominent feature in the infrastructure presented in Publication I,
where there was status information available to the developers from all stages from the deployment
pipeline coupled with the measurement data from the end user actions. This allowed the company
to make decisions based on the real user data and the collection of the requirements was also
backed up with end user data. In the end, they had a system which allowed them to terminate pro-
jects in proof-of-concept stage if the measurements on the end users showed lack of interest on
behalf of the users. This indicated low business value and the project could be terminated with low
sunken costs. See Figure 10 for an illustration of the process. The proof-of-concept (PoC) here is
the term used in the company, although it is not a technical proof of concept, but closely related to
the Minimum Viable Product (MVP) of the Lean movement [90]. The PoC is built when a business

7 http://www.sonarqube.org/



40

idea is born, and it is formulated as a business hypothesis, such as that people using the service are
willing to pay for an additional feature. Then, this business hypothesis is verified by building the
PoC/MVP to test the hypothesis. If the hypothesis seems to hold, then the PoC feature will be de-
veloped into a full-fledged feature. Otherwise, it is dumped.

Further
development

8 weeks

Product

1

Development features

New Proof-of-
Idea concept

No
continuation

x

Figure 10 The process presented in Publication Il. The company uses proof-of-concept to
measure end users if an idea has any business value.

Feedback

Furthermore, the developers also need to coordinate, cooperate, and collaborate in the development
team. The Continuous delivery pipelines often incorporate radiators in creating a way of visual control
to facilitate coordination of the work. Problems in the pipeline are immediately visible to all and the
state of the system can be easily checked. As found out in publication I, these systems are popular
among developers, but have the downside that they only work well with co-located teams. Distributed
teams seem to be quite commonplace—for example, 48 percent of the respondents of the survey in
Publication Il worked in a distributed team—so radiators are not enough. Of course, distribution also
hinders communication as face-to-face meetings are more difficult to organize and ad hoc commu-
nication must be carried out via tools. Naturally, supportive processes must be in place for efficient
work coordination, but ultimately they are backed by tools. So, so called “social developer” depicted
in Publication Ill is an overarching concept, where tools, methods, and processes must be in line
with each other.



41

SOCIAL DEVELOPER
< Code development Continuous delivery End user >
- Coordination of work - Distributed version . | | - Usage data collection
- Code base evolution | control s A/B testing __
- Developer workflows - Continuous integration = | - Direct user needs
Figure 11 A “social developer” requires a mature set of tools to get feedback and information

from all relevant stakeholders and to monitor the development pipeline.

There has also been a growing interest in developing so-called Product development clouds, for
example Microsoft DPaaS - development platform as a service provided by Tieto®, or development
infrastructures as a service. There has also been a strong academic interest in such collaborative
tools. One example of this is CORED, which is a browser-based editor for Java web applications
allowing collaboration in real time [91]. Other recent development was Amazon’s acquisition of
Cloud9®, which is an online browser-based integrated development environment (IDE). Cloud9 adds
to Amazon’s arsenal of building blocks for modern software development lifecycle by introducing a
development environment which is integrated to the platform [92]. In Publication Il it was evident that
the in-house development infrastructure was crucial for the rapid development of new features.
Whenever a new business idea emerged, the company could set up a full development environment
in less than one day. However, the original setup had taken a long time, and the required skills were
scarce, so only a few persons could handle the setup of the infrastructure. So, it would be a lucrative
option to buy this kind of service from another company. However, as the infrastructure has an effect
to the process, it might cause some problems as the developers might not find the offered product
development infrastructure suitable for them. Thus, they have to be highly customizable, but also it
should be very easy to take them into use.

To conclude, it all resonates with the earlier quoted definition of software process by Fuggetta [28]
as software development needing the policies, organizational structure, technologies, procedures,
and artefacts for the whole life cycle of the product. A tool can require a process to be used efficiently,
and the processes can be backed up by tools to produce useful metrics, feedback channels, to
automate manual stages, to act as a scaffolding to provide tests to prevent regression of errors and
the inadvertent changes to the functionality during refactoring and so on.

8 https.//www.tieto.com/product-development/communications-infrastructure/product-develop-
ment-excellence-communications-infrastructure/pdcloud
9 https:.//c9.io/



42

3.3 Infrastructure-Architecture relation

As stated by Lianping Chen in [86] the Architecturally Significant Requirements (ASRs) for Continu-
ous Delivery are deployability, security, loggability, modifiability, monitorability, and testability. From
these, deployability, monitorability, and testability are ultimately utilized in the development infra-
structure. So, if one has devised an architecture that allows one to deploy, monitor, and test the
software easily, it means that the corresponding parts of the infrastructure can be utilized without
any significant hassle. As a side note, one of the important ASR’s, architectural security can be
mitigated with continuous deployment as it allows one to close security holes fast as soon as they
are noticed. Usually the attacks begin at once when a security hole is published, and there is not too
much time to close a known security hole.

Of course, the chosen architectural decisions depend heavily on the chosen tools and technologies.
A certain tool can require certain decisions to be made in the software architecture, and if the tool is
changed, the decision might need to be revisited, which might lead into refactoring as presented in
Publication V. Here the pain zone is reached not because of new requirements by the customer, but
by the technical requirements set by the development infrastructure. Additionally, several technology
selections are architectural decisions in essence. For example, selecting a certain cloud computing
platform, such as Amazon AWS, can affect several other decisions, such as load balancing, the
architecture of the databases and so on. Thus, this kind of technical decisions are usually near the
root of Kruchten’s “trace from” relations in the architectural decision tree. Design decisions can trace
from technical artefacts upstream: requirements and defects, and trace to technical artefacts down-
stream. In the Kruchten’s ontology [93], pericrises i.e. executive decisions, are said to frame or con-
strain existence (ontrocrises) and property decisions (diacrises). As such, the technology and tool
decisions are such. However, in Kruchten'’s ontology, process-related decisions also classify as per-
icrises. This type of decision is said to be “driven more by the business environment (financial), and
affect the development process (methodological), the people (education and training), the organiza-
tion, and to a large extend the choices of technologies and tools.”

Also, Bellomo et al. [87], in their empirical research on three projects, in the light of continuous inte-
gration and continuous delivery practices, studied what key goals the projects had driving their de-
ployment efforts. It was found out that there were several architectural decisions which the projects
had made in order to support deployability. So, there is a definite connection between the ability to
deploy fast, and the architecture the software system has. For example, from their case studies, it
can be seen that there are several decisions such as having an integrated test framework is greatly
aided by a tactic known as Speciality Access Routines/Interfaces, which is an architectural feature.

Infrastructure as code (laC) is a recent concept that is utilized in DevOps related approaches [94].
Another term for such concepts is Programmable Infrastructure. It is a continuation of configuration



43

management, where the actual computing infrastructure is managed and provisioned with configu-
ration files, whose processing can be wholly automated. In a sense, it is writing code, usually in a
high abstraction level programming language such as YAML provided by Ansible!’, to manage and
automate the parts of the infrastructure. So, there is no need to configure the computing infrastruc-
ture separately as it can be handled with the actual application code and becomes a part of the
software system itself. Furthermore, with IaC it is possible to use same practices which are already
used in the application development; for example, using known good solutions or patterns, version
control, testing, and so on. So, in the end the development infrastructure has its own architecture
(Figure 12), and can utilize the same tools as the software itself.

The system architecture can also provide the points where certain tools may collect their data [95].
As the need for evidence-based software engineering and getting feedback from deployed systems
becomes more important, the architecture must assume that data collection from all system levels
is required and should be integrated by default [96]. Thus, to have a system presented in Publication
Il requires architectural support. Furthermore, to support process decisions, such as refactoring,
there is a need for architecture to support more advanced analysis by tools than just the code smell
detection, which can be unreliable driver for refactoring, as discussed earlier. This would mitigate
the perceived lack of metrics so prominently displayed in the interviews for Publication V.

10 https://www.ansible.com/



44

{ Ome or Zero
Slumlk
Gonglo
nmalytics
Notes
Flarry
Slack Snoabi
Flowdock Sitecatalyst
Swagger Chickview
GitHub Optimizely
Wahix Faeebook
Connect Twitter
e Wiz W

XMFP

e

mamdopaaa(l

N
Artifacrory
Maven
Jenking
Cncumber
WehDiriver Ot Autotest
Specsl
Senlntest
Rapes
Sty
Figure 12 The overview of the tools that were found to be used in Publication VI. The develop-

ment infrastructure consists of a selection of these tools, forming an architecture of
its own.



45

3.4 Impact of speed

It seems that depending on how mature in their Continuous Deployment practices are, the teams
will struggle with different kinds of problems hindering their procession towards a mature develop-
ment environment and processes. If the team has a fresh start, they will not have any development
infrastructure in place, so they have to build it. However, it requires some training and knowledge to
build the deployment pipeline. First, the essentials are needed, such as version control system. Then
new tools and systems are installed to improve the degree of automation. As presented Publication
VI it seems that the deployment tools are something that comes as last improvement to the deploy-
ment pipeline. It is quite natural as fast deployment is not essential in many organizations or domains,
so improvement effort is usually used in something else as non-automated deployment is something
that people can live with or take as granted.

Then, after the basic tools are in the place, the team usually comes to halt as their processes related
to the customer, other teams and so on, are not mature enough. This was found out in Publication I,
as one of the main obstacles that the interviewees observed in the adaptation of Continuous Deploy-
ment was the customer preferences, usually stemming from the customers’ inability to cope with the
increased release rate. Finally, the system architecture of the system developed might cause prob-
lems in squeezing out the final last minutes of the development time. The problems in architecture
may include a wide variety of problems, as encountered in the interviews for Publication I. For ex-
ample, updating single tenant databases may be slow, the system may need a high degree of par-
allelism to achieve desired response times, system live updates may pose a problem, and, related
to that, moving user sessions to new load balancer might be difficult. At the same time, introducing
more and more tools into the pipeline will impart its requirements on the software architecture, as
testing, deployability, and such details have to be tackled.

High development speed is not enough alone, as the development also has to have a direction. By
direction we mean, analogously to the physical concept of velocity, that the developed software must
conform to the requirements given by the customer, end user, and other stakeholders. As speed is
increased, these requirements can change faster than before, as other systems, business require-
ments and other related interfaces also change more rapidly. In addition to conforming to certain
requirements, the system also has to have satisfactory technical quality. This includes the internal
guality of the system, so that the system development speed can be sustained, and the availability
of the system to the end users. To ensure this, tighter feedback loops are needed on all levels of the
deployment pipeline and from the deployed systems.



46

4 Closure

In this chapter, first the research questions of the thesis are revisited, and the contribution of the
work is presented. Next, we will shortly discuss the related research to this thesis. This section is
followed by a short introduction to the included publications. Next, some future work for the line of
research is planned. This is followed by a discussion on the limitations of the research presented in
the thesis. Finally, some concluding remarks on the thesis is given.

4.1 Research questions revisited

Here the research questions are revisited and answered. Each question will be discussed in the light
of the previous chapters and summarized.

RQ1: What are the key enablers to increase the delivery speed?

In a nutshell, the key results based on the publications included in this thesis indicate that one must
have all three aspects of PAlI model presented in this introductory text in place. First, one should
have a well-automated deployment pipeline, with as few manual steps as possible, as found out in
Publication VI. This deployment pipeline is a part of a greater tool chain, which spans over from basic
development tools, such as compiling, building, and deployment, to process tools like feedback col-
lection from the various points of the deployment pipeline, deployed software, and work organization.
The common tools used in the companies studied in the context of the thesis are presented in Pub-
lication VI and an example of such infrastructure with the feedback loops can be seen in Publication
II. All this resonates well with literature of known CI practices, such as Automate the Build, Make
Your Build Self-Testing, Everyone Can See What Is Happening, and so on [97]. However, it is also
interesting to note that not every practice has to be in place to reap at least some of the benefits of
CD pipeline.

The aforementioned publications indicate that as the delivery speed increases, the tool chain is usu-
ally completed by adding more automation to the end of the pipeline. This is natural, as Continuous
Deployment focuses on the automation of the last stages of the pipeline. Similarly, the feedback
loops become shorter, and more automation can add fast monitoring to the deployed software. In
this way, one does not have to rely solely on the end user reporting on errors.

Secondly, the development pipeline should be replicable and its setup time short. Ideally, the devel-
opment infrastructure is a product-like entity which can be quickly harnessed to any new project that
would require software development.



47

In Publication I, the perceived main obstacles to adaptation were investigated. On the process, busi-
ness and organizational side the main obstacles were resistance to change, the preferences of the
customer, constraints imposed by the domain, and the developer’s trust and confidence to the tools.
In the infrastructure, the main problems were related to having different development and production
environments, and the difficulties with manual and non-functional testing. These testing problems
are of course also somewhat due to architectural problems, but the main problem seemed to be the
lack of tools aiding in the testing of certain non-functional aspects, reactivity of the system, and the
graphical user interface. So, in the absence of tools, the companies had to rely on manual testing,
and breach the first principle of having fully automated pipeline and no manual steps. Also, time to
execute the test suites may be an issue. Thus, full automated testing is not a trivial thing, and may
require development of novel tools to overcome the problems hindering the adaptation of automated
testing.

The different development and production environments can be mitigated with high degree of
productization of the development infrastructure. In addition to shortening the set-up times, produc-
tization also minimizes the differences in different environments, and removes the need of manual,
and error-prone, configuration of the different environments when starting up. However, the config-
uration management of the different environments will still be an important topic. Perhaps in the
future, more effort will be seen in productizing the infrastructures. This also resonates with the
emerging trend of offering development platforms as a service (DPaaS).

Architecture-wise, the main obstacles were legacy code and large size of the software. These can
be mitigated by prudent refactoring. However, based on Publication IV, it seemed that the companies
somewhat struggled over deciding what to refactor and when. To alleviate this, the interviewed ar-
chitects hoped to gain the trust of the managers and customers so that they could assert them on
the need of refactoring and get the required resources to do this. So, some agreed-upon and sensible
metrics, which are generated by tools, might help them in this. However, it seemed that at least for
now such metrics were rare. Another way to solve this problem would be organizational empower-
ment of the architects. Now they felt that they only have the responsibility of quick delivery, but no
resources to do this. Keeping one accountable for something they are not capable of delivering just
creates frustration [98]. The interviewed architects saw many benefits in refactoring, such as the
easier future development, increased understandability, possibility for code reuse, improved quality
attributes, and even boosting morale and motivation. With all these benefits being possibly lost be-
cause of complications in refactoring, it became clear that this is an issue which should be taken
care of if striving for quick delivery with a sustainable pace.

Based on the above, it seems that one must follow the well-known practices of managing an organ-
izational change to gain the managerial support and mitigate the resistance that might rise when
introducing the goal of quickening the deployment pace. Several of these practices are already doc-
umented, for example, by Manns and Rising in [99]. Although the interviews did not bring out it as



48

such, the concept of DevOps is an organizational change, and must be treated as such. Business-
wise, the customer might have their own processes which may be hard to adapt for quick delivery of
software. For example, the customer might not have allocated time to acceptance testing in such
rapid pace as the software development organization could produce new features. These kinds of
problems have been discussed in length earlier, for example, in [65].

In addition, the business might set also different types of obstacles. The business domain seemed
to restrict the development and delivery speed. For example, in the medical systems the safety-
related standards caused significant delay in the propagation of the new features to the end users.
In the control system domain, there might be downtimes and tight scheduling involved with deploying
new features. In mobile applications, there might also be a third party involved in the distribution of
the software, dictating some restrictions to the deployment. These might be impossible issues to
solve completely, but still many benefits of the Continuous * practices can be reaped even if the
pipeline does not extend all the way to the end user, or all changes to the code are not automatically
pushed to deployment. The development organization may still work in the mode where they have a
deployable software at hand all the time and the actual delivery is automated so, that when it is
allowed to happen, the update will be instantaneous. Moreover, there has been some evidence that
model-based design and having a plant model at hand may help in removing the need to test with
real hardware-in-the-loop systems and to automate the tests to very high degree [100]—thus ena-
bling the software development with Continuous Delivery practices.

Also, the companies craved for fast feedback mechanisms in all stages of the development, may it
be, for example, communication between individuals or information on the results of the tests on the
latest change. The need for quick ways to exchange information was reflected in the preference of
instant messaging over face-to-face communication in the most trivial communication. It might be
that the advice to avoid unproductive meetings [101] can be extended to, at least in some cases,
avoiding a meeting even with two persons, as it may interfere with flow and introduces unnecessary
communication, which might be harmful in fast-paced development. Also, the Lean principle of visual
control [102] was popular in sharing knowledge in those companies which strived for fast develop-
ment pace. The usual ways to implement this was via radiators, Kanban boards, and similar visual
aids, see Figure 13. These reduce the amount of needed communication as the state of the software
system and the deployment are visible to all developers with just a glance. In addition, automation
also can replace communication, as there are less intermediate states where someone is doing
manual work on the system. In heavily automated environment, the system has less states where it
can be. For example, with manual deployment, there is a significant time when the system is updated
with all its libraries, platforms etc. and it may be difficult to roll back all changes if some part of the
update fails. However, if the update process is automated with some suitable technology, such as
scripts, they can make sure that the system is either fully deployed online with a new version of the
software, or previous working version is retained in use.



49

So to summarize, Table 1 presents the key enablers for the increasing of the delivery speed. On the
right side, the key enablers from the previous paragraphs are presented, and on the left side, the
two most important key properties of the enabler are listed.

Key enabler

Key properties

Business domain

Domain-dependent regulations

Complexity of the software

Automated deployment pipeline

Replicability

Set up time

Fully automated testing

Size of testware

Manual tests

Environment management

Similarity of environments

Ease of configuration

Software quality

Metrics

Legacy code

Organizational support

Additional work for infrastructure and testware

Productivity losses due process changes

Feedback collection

Automation

Visual control

Table 1 The key enablers of fast software delivery.



50

Figure 13 A Kanban board and radiators as means of visual control.

RQ2: What are the ramifications of increasing the delivery speed?

The interviewees mentioned as the benefits of the fast release cycle rapid feedback, more frequent
releases, improved quality and productivity, improved customer satisfaction, effort savings, and, fi-
nally, closer connection between development and operations. This seemed to be the shared senti-
ment of all the interviewees, regardless of on what maturity level their company was. Most of the
aforementioned effects are business effects, either adding value to the product or decreasing the
cost of development due removing waste. Having the system always in shippable state and to pro-
mote all changes to production naturally leads to ability to have more frequent releases, which
smoothens the flow and reduces the pre-release stress. Furthermore, small fixes are easy to incor-
porate in the running system if the deployment is not much of a hassle, and there are good automated
tests. This may lead to better quality products and more satisfied customers. Also, system security
can be improved as security holes are quickly blocked. However, as mentioned earlier, not all cus-
tomers require or are able to accept faster releases. Related to this, if an update requires end user
activity, it may interfere with the intended use of the software product, decreasing the satisfaction.
Productivity is boosted and work effort saved as manual work is reduced and work is not wasted in



51

waiting to be deployed. It seems that the relay-race organization in companies where development
and operations are separate suborganizations seems to waste time, and this can be mitigated with
DevOps -type approach and automation.

Also, fast delivery gives the developers a heightened sense of accomplishment. This and the in-
creased situational awareness because of the quick feedback and visual control improves also de-
veloper motivation.

More surprisingly, according to Publication Il, fast delivery has profound effects on the how the busi-
ness decisions can be made. Quick delivery allows business experimentation with actual software.
This leads to ability to adhere to several of the Lean principles, such as minimum viable product,
enabled by the ability to incrementally deploy just the crucial features, having sensible and actionable
metrics allows to test different approaches to the end user requirements, and ultimately failing fast if
the business idea is not worthy of spending any resources on it anymore.

Architecturally, it seems that technical debt is more visible problem in fast delivery, as the deploy-
ment speed is so hectic that there are no natural calm spots where it could be paid back without
slowing the development pace. What could be swept under the rug earlier is now showing as the
developers are struggling to keep the software releasable all the time. So, there is a definite need
of making technical debt visible for all involved parties, so that all stakeholders can agree upon the
suitable course of action. If it remains invisible, it is unlikely that the customer is willing to pay for
refactoring. An often stated problem was that the common metrics were somewhat useless as a tool
to justify spending effort on refactoring. This became evident in Publications IV and V, as several of
the interviewed architects mentioned having faced problems while communicating the need of refac-
toring to their managers or the customer, who pays for the spent work. The developers said that their
own gut feeling is considerably better indicator of bad code quality. On one hand, obeying the metrics
blindly easily would lead to spend effort in the wrong places and, on the other hand, the real prob-
lematic parts of the code were self-evident to the experienced architects.

Even though the architects saw refactoring as a beneficial and necessary part of the work, they felt
being pulled between producing new features as fast as possible and keeping the code quality so
high that future development would be quick and easy. Also, incorporating the changes to the archi-
tecture requires an agreed-upon workflow. Furthermore, the workflows used in rapid development
usually add some reviews as the high degree of automation easily leads to situation where quality
assurance is almost fully automatic or on the responsibility of the developer. Thus, reviews add an
additional quality gate. Nowadays, when review tools are easily integrated to version control system,
every commit can be reviewed in such a short time that it does not hinder the development pace.

Also, there must be architectural support for deploying very small changes. As almost any feature
will be bigger than just one commit, there is always a possibility of having non-working features in
the system if continuous deployment is applied. To prevent this the architecture must have some



52

mechanism that will not show the work in progress to the end user. It can be achieved through feature
switches and similar mechanisms.

Infrastructure as such does not change much due the increasing speed as such, but it naturally has
to provide all the tools, environments or platforms, and the measurement points for feedback. One
definite effect of this is that more work must be spent on configuring systems, writing automated
tests, setting up environments, and such preparatory work. Thus, the spent effort becomes more
front-loaded. This may lead to higher productization degree of the development infrastructures, as
the effort may be saved by using similar and pre-configured development infrastructures where pos-
sible. Also, the preparation work must be taken into account when estimating the work effort for a
new software project.

Also, when the amount of automation in the deployment pipeline grows, it becomes evident that even
automated tasks take some time. A characteristic automated task is testing, and the time spent on
running all the automated tests could trump the delivery pace from mere minutes to several hours.
So, this clearly indicates that there still is a need of research in the field of optimizing the automated
tests, even though several improvements have been proposed, such as test case prioritization [103]

RQ3: What is the state-of-the-practice regarding the speed of delivery practices in the companies?

The third research question was set to find out how the companies fare now regarding to their deliv-
ery speed. To assess this, the interviews included several metrics and characterizations which were
related to the speed of delivery and the feedback. In addition, we used the Stairway to Heaven model
as a means of self-assessment to map the maturity of the company. As metrics and characterizations,
we used the fastest possible time for a code change to propagate to production, the cycle time to
potentially deployable software, whether the company uses an automatic chain to potentially deploy-
able software, the actual cycle time to deployment, and whether the company used an automatic
chain to deployment.

As found out in Publication I, no company had an automatic pipeline all the way to deployment in a
production environment. Thus, it seems that full-blown continuous deployment is yet to become a
common practice. Only one company had even the pipeline automated to the potentially deployable
software. It seems that the companies which were fastest based on the metrics and also on their
self-assessed scale, shared some properties in common. First, it did not seem to matter if the com-
pany was a small or large one, but the operating domain seemed to dictate some restrictions, which
hindered the delivery speed in some companies. Subsequently, most of the companies with fast
delivery cycle were operating the Web domain. The cycle times had huge differences, as the fastest
company was able to potentially deploy several times a day, and the slowest ones could only poten-
tially deploy in timeframes of weeks. Quickest one-line changes could take only minutes, whereas
in some companies it could take weeks.



53

The reasons for long times were the restrictions in business, as discussed earlier. For example,
application stores had to review all new versions, safety standard conformance assessments took
time and so on. However, it was interesting to notice that these companies rarely strived for faster
pace even in the portions which were completely in the company’s own hands. It was not felt as
necessary as the rest of the process would take so long anyways.

Furthermore, we studied the prevalence of tools in the companies, and it seemed that almost all
companies had continuous integration tools, backlog management, build, unit testing, bug tracking,
and version control systems in place. At the same time, artefact repositories and acceptance testing
tools were uncommon in the company sample. However, these are seen as an important part of
continuous delivery [4]. So, it seems that the companies had tooling for continuous integration, but
only a few companies covered the parts for continuous deployment. Quite naturally, the companies
whose toolchains were more automated and contained fewer manual steps were able to deploy
software more rapidly. Of course, it is important to remember that domain also plays a role. For
example, an embedded system does not benefit so much from automated user interface testing.
Also, even though a tool is missing, it does not mean that the activity is completely forgotten. For
example, acceptance testing could be done more conventionally by getting feedback from the user.
Furthermore, even a very complete toolchain did not guarantee daily deploys. Other restrictions
might still cause slower deploy pace.

4.2 Related research

This section presents some related fields of research. These include DevOps, SEMAT framework,
post-agility, ChatOps, and Continuous Deployment intersected with architecting process. In addition,
the included publications include more detailed related research in the scope of the published re-
search.

4.2.1 DevOps

Nowadays, almost every company claims to be using Agile methods in their development, all way
up to 94% of companies surveyed in [37]. However, a set of software development practices called
DevOps has been claiming some foothold lately [104]. DevOps is a bit different from Agile method-
ologies, as it takes a strong stance on the organizational structure. Even the name DevOps suggests
that one should not divide the organizational lines across the development and operational staff, but
to allow close cooperation between these two. Furthermore, the cooperation is extended to the actual
end users. To augment the cooperation, or if there is no easy access to the end users, real usage
data can be gathered to elicit the requirements. As the requirements are understood, it is possible
for the developers to implement the code conforming to them and to deploy the code all way to the
end users. Thus, the software development process is transforming from pushing new installations



54

to the customer to a continuous and more pull-oriented way, where features are deployed as soon
as they are implemented. This requires extensive automation and Continuous Delivery. The role of
the pipeline is the automated manifestation of the process how software travels from the version
control system to the user.

4.2.2 SEMAT

SEMAT (Software Engineering Method and Theory) is a framework describing software develop-
ment, presented by Ivar Jacobson et al. [105].The SEMAT framework divides software development
to seven core ideas, or kernels; namely opportunity, stakeholders, requirements, software system,
work, team and the way of working. This approach is different from approach presented in this thesis
as it focuses on the more concrete parts of the software development.

Way of working in the SEMAT framework can be seen as a synonym to the software process, but it
also contains parts of the infrastructure. The software system harbours the software architecture.
SEMAT can also be used in a certain way of assessing the parts of the software via so-called alphas,
where the states of the requirements, software system, and the way of working are checked on six
levels. Each state also sets objectives for improvement to get to that state.

4.2.3 Post-Agility

There has been some research on the topic of post-agile information system development. By post-
agility, Baskerville et al. mean the next step after Agility, where the problems associated with agility
are solved [106]. The problems are caused by the change of the context, where software is devel-
oped, and are answered by a change in the process. One huge problem in agility according to Bas-
kerville et al. is the boundary between agile and plan-driven parts of the organization. They speculate
that

" Instead the focus would shift towards proactively pursuing the dual goal of agility (i.e. fast re-
sponses to changing requirements, and frequent releases of valuable, working software) and align-
ment (of plans, people, and tasks) through a diversity of means, for example through (agile, plan-
driven, and other types of) method components, and software tools as well as via new ways of
organizing, specializing, communicating, managing relationships, etc.”

In their study, they identified several problems in the case companies. From these problems, they
found a new software process. This process involves a solution set of architecture, components/re-
use, estimation methods, QA & testing, parallel development, prototyping, and frequent releases. It
also involves heavily customer in the process. In the end the result was acquiring both, speed and
quality.

Although automated testing is not explicitly mentioned, it can be surmised that automating ever so
crucial QA leads into better products in less time. So, it can be said that the all three aspects of
software development are seen here as part of the solution to gain more speed and maintaining the



55

good quality of the software. It is only a natural progression that in the search for speed, automatable
parts of the process become automated.

4.2.4 ChatOps

ChatOps [107] is a recent phenomenon, often attributed to GitHub!. It is a way to do DevOps as
conversation-driven development. The whole development infrastructure is automated, and using
standardized interfaces, the tools in the infrastructure are interfaced with a chat bot. Thus, the tool
that is used for communication between developers, may it be Slack!?, HipChat'3, Flowdock!*, or
something else, is also used as a DevOps tool which empowers the developers to operate all the
tools, which allow them to build, deploy, provision, test, and monitor etc. the software. This approach
has several benefits. First, the same tool which is used for the developer communication also acts
as the tool for doing the operations. Thus, all what has been done is visible for other parties as well.
This includes the commands, the warnings, notifications and alarms from the various stages of the
development and monitoring infrastructure. This makes the development more transparent, and
helps the developers to find more easily the root causes of the problems encountered as chat logs
act as history of what has been done in the history. It also helps organizational learning as new
developers can easily follow what the more experienced colleagues are doing.

To summarize, ChatOps can be considered an amalgamation of the development process to the
development infrastructure, as the steps in the process and the organization become blurred in the
chat tool. Basically, everything on the chat is either a command to a certain part of the infrastructure,
or a way to transfer knowledge between human participants to facilitate collaboration. However, in
ChatOps, the software architecture is not a part of the concept; it is merely a thing that can be dis-
cussed over in the chat.

4.2.5 Continuous Deployment and Architecting

A recent line of research has focused on the effects of Continuous Deployment practices to the
architecture of the software [108]. This research aims to empirically explore the potential impact of
CD practices to architecting process. The results seem to show that architecture plays a significant
role in sufficiently and efficiently adopting CD, further strengthening the claims laid out in this thesis.
This work may contribute in the future significantly to the body of knowledge that is related to this
thesis.

11 https://github.com

12 https://slack.com/

13 https://hipchat.com/

14 https./ /www.flowdock.com/



56

4.3 Limitations of the research

The research presented in this thesis is subject to some limitations. These limitations stem from the
selected research methods. As the main research method was case studies, the usual criticism for
case studies is also applicable for this work. Even though case studies are promoted as being well-
suited for software engineering research [19], its weakness can be low generalizability of the results
[109]. When constructing a proper case study using interviews, one must carefully select the ques-
tions that cover the studied phenomena sufficiently with a wide range of questions. Furthermore, the
case studies must be selected so that the representativeness of the sample will be satisfactory.
Some selection bias afflicts the case selections in this study as discussed earlier in the section 1.4
about the research methods.

Otherwise, the validity of case studies can be assessed with a classification scheme by Yin [110].
Runeson and Host [19] also recommend the use of this scheme in the software engineering research.
In Yin's classification the validity of a research consists of four aspects: construct validity, internal
validity, external validity, and reliability. Next we will examine the validity of this study through these
four aspects.

First, construct validity in this reflects if the study really treats the phenomena that the researchers
wanted to study. In essence, this is ensured by shared vocabulary and understanding of the context
and the goal of the study between researchers and the interviewees. While doing interviews or sur-
veys, it should be made sure that both parties understand the questions essentially in the same way.
In the research conducted for this thesis, the threat to construct validity was mitigated with several
means. First, the interview questions were constructed in collaboration of several researchers in
order to avoid a single interpretation of the questions. Furthermore, questions were piloted to gain
insights how interviewees understood them. In the interviews, there were at least two researchers
present, so it was possible to give clarifications to most ambivalent questions and these problematic
guestions could be modified to be more understandable to subsequent interviews. Additionally, the
interviews were recorded, and notes were taken by the researchers in order to get evidence and
data as faithfully as possible. This helped the researchers to establish a chain of events and to
compare multiple sources of evidence with relative ease. The thematic analysis method helped sig-
nificantly in identifying the common themes and concepts in the interviews.

Regarding the internal validity of this research, it is of utmost importance to understand the real
causal relationships of the examined phenomena, i.e. to establish a non-spurious causal relationship.
Typically, internal validity is threatened if the researchers assume a causal relationship between two
factors and are oblivious to presence of a third factor which affects the relationship, or is the real
cause of the effect. As the studied phenomena is complex and involves a plethora of variables, it
must be made certain that the control variable is identified in isolation from the other variables. In
this research, the most important control variable was the speed of software delivery, and to isolate



57

this from the other, maybe dependent, variables, such as company size, domain, or other possible
factors, the case selection was purposefully made so that as the sample companies would have as
diverse backgrounds and domains as possible. Thus, we hoped to be able to distinguish the effects
of delivery speed from the other factors. However, all studied companies were Finnish software in-
tensive companies, so this might have affected the results. Nonetheless, the findings are in line with
previous studies, so internal validity seems not be threatened by this. Internal validity also affects
explanatory research more than the descriptive research, such as the one conducted in this thesis.

Because of the selected method of in-depth interviews and open ended questions, the sample size
had to be limited. Depending on the study, the number of interviews varied in between of 11 to 15.
This is rather small sample, and the generalizability of the results might be threatened because of
this. The possibility of selection bias has been discussed earlier. However, the personal interviews
taking from one up to three hours also allowed the researchers and the interviewees to have in-depth
discussions on the research topic and gave the researchers possibility to understand the studied
phenomena better.

Concerning the generalizability, external validity also covers the ability of others to conduct a similar
study and to arrive to similar results in the established domain for generalization. Reliability involves
the repeatability of the operations done in the case study. The replicability of the interviews is rather
poor, as every interview is a unique event. However, we as researchers, to aid the repeatability have
included a portion to every included publication describing how the research was conducted. Thus,
it is possible to follow the given protocol and to carry out a similar study. The actual questions (in
Finnish) can be acquired from the researchers. Regarding the external validity, the applicability of
the results in organizations should be rather high, as the results are presented in rather abstract
level. Due to the low number of cases and the fact that no two companies are ever the same, and
even the same company evolves as time passes, we have mostly relied in analytical generalization
rather than statistical tools. Thus, no concrete solutions can be given, but these results act as a basis
which can be adapted to the chosen organization’s own context. Thus, the results how to improve
delivery speed and what the ramifications of such improvement will be are more of a description
what has happened in other companies, and are a way to reflect what would happen in the readers
own company.

4.4 Future work

As said earlier, this thesis contributes to the existing body of knowledge of software engineering,
especially when the context is increasing the delivery pace by adopting the practices such as
DevOps and Continuous Deployment. The presented PAI model of the software processes, the de-
velopment infrastructure, and the structure of the produced artefact itself, the software architecture,



58

is derived from a series of interviews and surveys, and creates a new model to be used as a tool in
future theory-forming research.

The logical next step from this research would be combining the qualitative data from the industry
with a more quantitative data from the software development. The first steps on this direction have
already been taken with the data collection and visualization presented by Mattila et al. [84] and an
older article by Lehtonen et al. [111].

There also has been a parallel line of research, which aims at performing systematic literature re-
search on the current state of the art presented in the literature [112]. It would be interesting to
combine the interview results forming this thesis with an extensive systematic literature review to
see how the research and industrial practice differ from each other.

4.5 Introduction to included publications

In this section, we give a short introduction to the publications included in this thesis. The contribu-
tions of the authors have been differentiated in the section List of publications.

Publication I, by Leppanen, M., Makinen, S., Pagels, M., Eloranta, V.-P., Itkonen, J., Mantyla, M.
V., & Mannistg, T., and called “The Highways and Country Roads to Continuous Deployment” was
published in 2015 in IEEE Software, vol.32, no. 2. The published article analyses a set of interview
data collected from 15 Finnish software company representatives. The focus of the interviews was
in Continuous Deployment practices and their adaptation in the companies. The companies were
classified according to their delivery speed using self-assessment by the interviewee. The classifi-
cation helped us to analyse better what kinds of problems and enablers the companies face in the
relation of their current delivery speed. The main findings are that no company had adopted a fully
automated deployment pipeline, and, perhaps surprisingly, not all companies see very fast delivery
pace possible or even desirable. On one hand, the main perceived benefits of the fast release cycle
were faster feedback, more frequent releases, improved quality and productivity, improved customer
satisfaction, effort savings, and, finally, closer connection between development and operations. On
the other hand, the perceived main obstacles were resistance to change, customer preferences,
domain constraints, developer trust and confidence, legacy code, the size of the software, different
development and production environments, and the difficulties with manual and non-functional test-

ing.

Next, Publication Il, by Leppanen, M., Kilamo, T., & Mikkonen, T. “Towards Post-Agile Development
Practices through Productized Development Infrastructure” published in the Proceedings of 2™
IEEE/ACM International Workshop on Rapid Continuous Software Engineering (RCoSE 2015) de-
scribes a single case study. The research revolves around the benefits of a completely continuous
delivery workflow. In the paper, one case is described in terms of infrastructure and feedback loops.



59

Furthermore, one key finding is that the infrastructure needs to have short set-up times to allow
business experimentation and adherence to Lean principles —including minimum viable product,
sensible and actionable metrics, continuous deployment, and failing fast.

Publication Ill by Kilamo, T., Leppanen, M., & Mikkonen, T., “The Social Developer: Now, Then,
and Tomorrow” was published in Proceedings of the 7th International Workshop on Social Software
Engineering, 2015. The article focuses on the communication patterns and what kinds of communi-
cation mediums are preferred by the software developers. The research was conducted as an online
survey. The main finding is that the software developers tend to prefer fast feedback mechanisms,
and, quite surprisingly, in some cases, instant messaging over face-to-face communication. Also,
making things visible was popular, and asynchronous communication seemed to prevail over syn-
chronous methods.

Next, Publication IV, “Refactoring—a Shot in the Dark?“ by Leppanen, M., Makinen, S., Lahtinen, S.,
Sievi-Korte, O. Tuovinen, A.-P., & Mannistd, T. and published in IEEE Software, vol.32, no.6, in 2015
discusses the refactoring practices as seen by 12 senior software architects or developers, whom
we interviewed for the study. In the interviews, it became evident that refactoring as a practice was
considered as an invaluable and unavoidable part of the software development. However, the prac-
titioners faced problems while trying to justify it to their managers or the customer, who pays for the
spent work. There was a clear sentiment of the developers being caught in a cross-fire, where they
have to produce new features as fast as possible, but at the same time, try to keep the code tidy so
that the future development would still be easy. The main benefits of the refactoring were, according
to the interviewees, easier future development, increased understandability, possibility for code re-
use, improved quality attributes, and even boosting morale and motivation. Also, some risks were
seen, but deemed small compared to the benefits. These risks included breaking something already
working, causing externally visible changes, making the code quality worse regardless of the best
intent, and wasting time and effort. One clearly stated problem was that the widely used metrics did
not seem to help in justifying refactoring as the developers shared a strong impression that their own
gut feeling is considerably better indicator of bad code quality.

Publication V, by Lepp&nen, M., Lahtinen, S., Kuusinen, K., Makinen, S., Mannisto, T., ltkonen, J.,
Yli-Huumo, J., & Lehtonen, T., named “Decision-Making Framework for Refactoring”, and published
in IEEE 7th International Workshop on Managing Technical Debt (MTD 2015) handles the concept
of refactoring from a slightly different angle. The article investigates how the professionals make
refactoring decisions. The data was obtained by interviewing representatives from three companies.
In addition, one of the cases was backed up with version control data, as it revealed the actual
workflow how a certain refactoring progressed. As a result, a decision-making framework is pre-
sented.

Finally, Publication VI, “Improving the Delivery Cycle: A Multiple-Case Study of the Toolchains in
Finnish Software Intensive Enterprises” by Makinen, S., Leppanen, M., Kilamo, T., Mattila, A.-L.,



60

Laukkanen, E., Pagels, M., & Mannisto, T. published in Information and Software Technology volume
80, December 2016. The article extends the data and analysis of Publication | by focusing on the
reported tool chains in the companies. In the article, we studied what tools are used in the software
industry, and if they have any implications on the speed of delivery. One of the key findings was that
if the toolchain was highly automated and contained only few manual steps, the deployment speed
was significantly faster. Other way round, several manual steps indicates problems in the delivery
speed.

4.6 Concluding remarks

To summarize this thesis and the key findings presented in it, we conclude this thesis with some final
observations. This thesis presented insights how to improve the delivery speed of software systems,
and under what circumstances it can be achieved. Furthermore, we shed light on how the increasing
delivery speed affects the organization, its selection of tools and the developed software artefacts.

In addition, the phenomena related to the delivery speed were examined in the context of a model
explaining the relationships between the software development processes, the infrastructure of the
tools and environments, and the architecture of the software system itself. This PAlI model can be
used to examine the effects of the delivery speed on these fundamental aspects of software devel-
opment.

As researchers, we intended the publications included in this thesis to help companies to better
understand how to increase their delivery speed and to gain most of it, while avoiding the pitfalls
which may be related to this hastening of the development.

Furthermore, the thesis can be used as a basis for the scientific community to continue the research
on the themes presented here. Especially, the PAI model can help in theory building related to the
effects of fast delivery speed, Continuous * practices, and similar phenomena. It can be compared
to the traditional project management triangle, where one decides on the trade-offs between the
triple constraints of schedule, scope, and cost and struggles to maintain good quality. In PAI model,
one must take care of the three aspects of the software development in order to hasten the delivery
pace. The increased delivery speed means that the delivered increments are getting smaller, and
this requires that all sides of the triangle to be ready for this. If one of the sides is neglected, then
the delivery speed will suffer. This also means that the software development work itself turns into
developing new features and improving the quality of the code, but on the same time more work is
spent in the building of the scaffolding that is the sides of the PAI triangle.



61



62

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

M. Fowler, “ContinuousDelivery,” 30 May 2013. [Online]. Available:
http://martinfowler.com/bliki/ContinuousDelivery.html. [Accessed 2016 April 25].

L. Chen, “Continuous Delivery: Huge Benefits, but Challenges Too,” IEEE
Software, vol. 32, pp. 50-54, March 2015.

M. Fowler, May 2006. [Online]. Available:
http://martinfowler.com/articles/continuousintegration.html. [Accessed 1
December 2015].

J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation, Addison-Wesley Professional,
2010.

J. Humble, “The Case for Continuous Delivery,” 13 February 2014. [Online].
Available: https://www.thoughtworks.com/insights/blog/case-continuous-delivery.
[Accessed 16 January 2016].

L. Bass, I. Weber and L. Zhu, DevOps: A Software Architect's Perspective, 1st
ed., Addison-Wesley Professional, 2015.

B. Fitzgerald and K.-J. Stol, “Continuous software engineering and beyond: trends
and challenges,” Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering (RCoSE), pp. 1-9, 2014.

E. W. Dikjstra, “On the role of scientific thought,” Selected writings on Computing:
A Personal Perspective, pp. 60-66, 1982.



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

63

M. Imail, Kaizen: The Key to Japan's Competitive Success, New York: Random
House, 1986.

T. Osada, The 5S’s: Five keys to a Total Quality Environment, Asian Productivity
Organization, 1995.

A. Rehn, T. Palmborg and P. Bostrém, “The Continuous Delivery Maturity Model,”
6 February 2013. [Online]. Available: http://www.infoq.com/articles/Continuous-
Delivery-Maturity-Model. [Accessed 1 December 2015].

Eficode, “DevOps Quick Guides,” 2015. [Online]. Available: http://devops-
guide.instapage.com/. [Accessed 4 December 2015].

Forrester Research, Inc., “Continuous Delivery: A Maturity Assesment Model,”
March 2013. [Online]. Available: http://info.thoughtworks.com/Continuous-
Delivery-Maturity-Model.html. [Accessed 1 December 2015].

H. Holmstrom Olsson, H. Alahyari and J. Bosch, "Climbing the "Stairway to
Heaven" - A Mulitiple-Case Study Exploring Barriers in the Transition from Agile
Development towards Continuous Deployment of Software.,” in 38th Euromicro
Conference on Software Engineering and Advanced Applications, Cezme, 2012.

W. W. Royce, “Managing the Development of Large Software Systems,” in
Technical Papers of Western Electronic Show and Convention (WesCon), Los
Angeles, USA, 1970.

Scrum Inc., "The Scrum Framework,” [Online]. Available:
https://lwww.scruminc.com/scrum-framework/. [Haettu 10 January 2016].

W. M. Trochim, The Research Methods Knowledge Base, 2nd Edition, Cincinnati,
OH: Atomic Dog Publishing, 2000.



64

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

K. M. Eisenhardt, "Building theories from case study research," The Academy of
Management Review , vol. 14, no. 4, pp. 532-550, 1989.

P. Runeson and M. Hést, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical Software Engineering, vol. 14, no. 2,
pp. 131-, 2009.

G. Guest, Applied thematic analysis, Thousand Oaks, California: Sage, 2012.

J. Saldana, The coding manual for qualitative researchers, Thousand Oaks, CA:
Sage, 20089.

S. K. Card, T. P. Moran and A. Newell, The Psychology of Human-Computer
Interaction, Hillsdale, NJ, USA: Lawrence Erlbaum, 1983.

B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in Guide to
Advanced Empirical Software Engineering, Springer, 2008, pp. 63-92.

R. Likert, “A Technique for the Measurement of Attitudes,” Archives of
Psychology, vol. 140, p. 1-55, 1932.

C. Wohlin and A. Aurum, "Towards a decision-making structure for selecting a
research design in empirical software engineering,” Empirical Software
Engineering, vol. 20, no. 6, pp. 1427-1455, 2015.

J. Collis and R. Hussey, Business Research: A Practical Guide for Undergraduate
and Postgraduate Students, Palgrave Macmillan, 2009.

H. K. Klein and M. D. Myers, "A set of principles for conducting and evaluating
interpretive field studies in information systems," MIS Quarterly - Special issue on
intensive research in information systems, vol. 23, no. 1, pp. 67-93, 1999.



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

65

A. Fuggetta, "Software process: a roadmap,” in ICSE '00 Proceedings of the
Conference on The Future of Software Engineering, 2000.

H. J. Johansson, P. McHugh, A. J. Pendlebury and W. A. Wheeler, Business
Process Reengineering: Breakpoint Strategies for Market Dominance, Wiley,
1993.

P. Naur and B. Randell, "Software Engineering: Report of a conference sponsored
by the NATO Science Committee, Garmisch, Germany, Oct 1968," Scientific
Affairs Division, NATO, Brussels, Belgium, 1969.

D. L. Parnas and P. C. Clements, “A rational design process: How and why to fake
it,” IEEE Transactions on Software Engineering, vol. 12, no. 2, pp. 251 - 257, 1986.

K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S.
Mellor, K. Schwaber, J. Sutherland and D. Thomas, “Principles behind the Agile
Manifesto,” 2001. [Online]. Available: http://agilemanifesto.org/.

M. Poppendieck and T. Poppendieck, Lean Software Development: An Agile
Toolkit, Addison-Wesley Professional, 2003.

International Software Testing Qualifications Board, “Certified Tester Foundation
Level Syllabus,” 2011.

Internal Electrotechnical Commission, "IEC 61508-:2010 Functional safety of
electrical/electronic/programmable electronic safety-related systems - Part 1:
General requirements,” 2010.

K. Schwaber, “Scrum Development Process,” in Proceedings of the 10th annual
ACM conference on Object Oriented Programming Systems, Languages and
Applications (OOPSLA), 1995.



66

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

VersionOne, “9th Annual State of Agile Survey,” 2015. [Online]. Available:
https://lwww.versionone.com/pdf/state-of-agile-development-survey-ninth.pdf.
[Accessed 19 November 2015].

K. Schwaber and M. Beedle, Agile Software Development with Scrum, Upper
Saddle River, NJ: Prentice-Hall, 2001.

S. Mcintosh, B. Adams and A. E. Hassan, “The evolution of Java build systems,”
Journal of Empirical Software Engineering, vol. 17, no. 4-5, pp. 578-608, 2012.

C. Prasad and W. Schulte, “Taking control of your engineering tools,” Computer,
vol. 46, no. 11, pp. 63-66, 2013.

ISO, ISO/IEC/IEEE 42010 Systems and software engineering — Architecture
description, 2011.

R. Kazman and L. Bass, Toward Deriving Software Architectures From Quality
Attributes, Pittsburgh: Software Engineering Institute, Carnegie-Mellon University,
1994.

ISO / IEC, “Software engineering -- Product quality -- Part 1: Quality model,” 2001.

S. McConnell, Code Complete, Microsoft Press, 1993.

W. Cunningham, “The WyCash portfolio management system,” in OOPSLA '92
Addendum to the proceedings on Object-oriented programming systems,
languages, and applications (Addendum), New York, NY, USA, 1992.

M. Fowler, “Internal And External Quality,” [Online]. Available:
http://c2.com/cgi/wiki?InternalAndExternalQuality. [Accessed 24 December
2015].



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

67

L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, Addison-
Wesley Professional, 2012.

M. Fowler, “TechnicalDebtQuadrant,” 14 October 2009. [Online]. Available:
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html. [Accessed 24
December 2015].

P. Abrahamsson, M. A. Babar and P. Kruchten, “Agility and architecture: Can they
coexist?,” IEEE Software, vol. 27, no. 2, pp. 16-22, 2010.

S. Newman, Building Microservices: Designing Fine-grained Systems, O'Reilly
Media, 2015.

W. P. Stevens, G. J. Myers and L. L. Constantine, “Structured Design,” IBM
Systems Journal, vol. 13, no. 2, pp. 115-139, 1974.

R. N. Charette, "This Car Runs on Code," IEEE Spectrum, 2009.

U. Eliasson, A. Martini, R. Kaufmann and S. Odeh, “ldentifying and Visualizing
Architectural Debt and Its Efficiency Interest in the Automotive Domain: A Case
Study,” in Seventh International Workshop on Managing Technical Debt
(MTD2015), Bremen, Germany, 2015.

M. W. Maier and E. Rechtin, The Art of Systems Architecting, CRC Press, 2009.

V.-P. Eloranta, J. Koskinen, M. Leppanen and V. Reijonen, Designing Distributed
Control Systems: A Pattern Language Approach, Wiley, 2014.

G. Forsum, “Backend infrastructure at Spotify,” 15 march3 2013. [Online].
Available: https://labs.spotify.com/2013/03/15/backend-infrastructure-at-spotify/.
[Accessed 6 July 2016].



68

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

T. Ohno, Toyota Production System: Beyond Large-Scale Production, Cambridge,
MA: Productivity Press, 1988.

R. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill
Education, 2014.

M. A. Cusumano and R. W. Selby, “How Microsoft Builds Software,”
Communications of the ACM, vol. 40, no. 6, pp. 53-61, June 1997.

K. Olsson and E.-A. Karlsson, "Daily Build - The Best of Both Worlds: Rapid
Development and Control," Swedish Engineering Industries, 1999.

K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley
Professional, 2000.

W. E. Deming, The New Economics for Industry, Government, Education,
Cambridge, MA.: MIT Press, 1993.

A. Maurya, Running Lean: Iterate from Plan A to a Plan That Works, O'Reilly
Media, Inc, 2012.

P. Kruchten, “Software Architecture and Agile Software Development—A Clash of
Two Cultures?,” in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering, 2010.

G. G. Claps, R. B. Svensson and A. Aurum, “On the journey to continuous
deployment: technical and social challenges along the way,” Information and
Software Technology , vol. 57, pp. 21-31, 2015.



[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

69

T. Dingsgyr and C. Lassenius, "Emerging themes in agile software development:
Introduction to the special section on continuous value delivery," Information and
Software Technology, vol. 77, pp. 56-60, 2016.

H. Holmstrém Olsson and J. Bosch, "From Requirements To Continuous Re-
priorization of Hypotheses,” in 2016 International Workshop on Continuous
Software Evolution and Delivery, 2016.

P. Bosch-Sijtsema and J. Bosch, "User Involvement throughout the Innovation
Process in High-Tech Industries," Product Innovation Management, vol. 32, no. 5,
pp. 793-807, 2014.

J. P. Womack and D. T. Jones, Lean Thinking: Banish Waste and Create Wealth
in Your Corporation, Productivity Press, 2003.

M. E. Conway, “How Do Committees Invent?,” Datamation, 1968.

M. Cataldo, J. D. Herbsleb and K. M. Carley, “Socio-technical Congruence: A
Framework for Assessing the Impact of Technical and Work Dependencies on
Software Development Productivity,” in Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement,
Kaiserslautern, Germany, 2008.

J. O. Coplien and N. B. Harrison, Organizational Patterns of Agile Software
Development, Prentice Hall, 2004.

T. H. Davenport, "Saving IT's Soul: Human-Centered Information Management,
Harvard business review, vol. 72, 1994.

T. Dingsgyr and H. van Vliet, "Introduction to Software Architecture and
Knowledge Management," in Software Architecture Knowledge Management,
Springer, 2009, pp. 1-17.



70

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

M. T. Hansen, N. Nohria and T. J. Tierney, "What's Your Strategy for Managing
Knowledge?," Harvard Business Review, vol. 77, no. 2, pp. 106-116, 1999.

M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improving
the Design of Existing Code, Addison-Wesley Professional, 1999.

P. Bell, "Refactoring Without Good Tests," Code Climate, 5 December 2013.
[Online].  Available: http://blog.codeclimate.com/blog/2013/12/05/refactoring-
without-good-tests/. [Accessed 20 July 2016].

P. Kruchten, R. L. Nord and I. Ozkaya, “Technical Debt: From Metaphor to Theory
and Practice,” IEEE Software, vol. 29, no. 06, pp. 18-21, Nov.-Dec. 2012.

A. Cockburn, Crystal Clear: A Human-Powered Methodology for Small Teams,
Addison-Wesley Professional, 2004.

M. V. Mantyla ja C. Lassenius, "Subjective evaluation of software evolvability
using code smells: An empirical study,” Journal of Empirical Software
Engineering, osa/vuosik. 11, nro 3, pp. 395-431, 2006.

M. V. Méantyla and C. Lassenius, "Drivers for software refactoring decisions," in
ISESE '06 Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering, 2006.

H. T. Johnson, "Lean Dilemma: Choose System Principles or Management
Accounting Controls—Not Both,” in Lean Accounting: Best Practices for
Sustainable Integration, Hoboken, NJ, John Wiley & Sons, 2012.

E. Bouwers, J. Visser and A. van Deursen, "Getting What You Measure: Four
common pitfalls in using software metrics for project management,”
Communications of the ACM, vol. 55, no. 7, pp. 54-59, 2012.



[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

71

A.-L. Mattila, T. Lehtonen, H. Terho, T. Mikkonen and K. Syst&, "Mashing Up
Software Issue Management, Development, and Usage Data,” in 2nd
IEEE/ACM}International Workshop on Rapid Continuous Software (RCoSE
2015), Florence, Italy, 2015.

D. A. Tamburri, P. Kruchten, P. Lago and H. van Vliet, "What is social debt in
software engineering?,” in Cooperative and Human Aspects of Software
Engineering (CHASE), 2013 6th International Workshop on , San Francisco, CA,
2013.

L. Chen, "Towards Architecting for Continuous Delivery,” in 12th Working
IEEE/IFIP Conference on Software Architecture (WICSA), Montreal, QC, Canada,
2015.

S. Bellomo, N. Ernst, R. Nord and R. Kazman, “Toward Design Decisions to
Enable Deployability: Empirical Study of Three Projects Reaching for the
Continuous Delivery Holy Grail,” in 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Atlanta, GA, 2014.

M. Coram and S. Bohner, "The Impact of Agile Methods on software project
management,” in 12th IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS'05) , 2005.

T. Lehtonen, S. Suonsyrjg, T. Kilamo and T. Mikkonen, “Defining Metrics for
Continuous Delivery and Deployment Pipeline,” in Proceedings of the 14th
Symposium on Programming Languages and Software Tools, Tampere, 2015.

SyncDev, “Minimum Viable Product,” SyncDev. [Online]. [Accessed 1 February
2016].

J. Lautamaki, A. Nieminen, J. Koskinen, T. Aho, T. Mikkonen and M. Englund,
"CoRED: browser-based Collaborative Real-time Editor for Java web



72

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

applications,” in CSCW '12 Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, New York, NY, USA, 2012.

J. MSV, "The Master Plan Behind Amazon's Acquisition of Cloud9 IDE," Forbes,
18 July 2016. [Online]. Available:
http://www.forbes.com/sites/janakirammsv/2016/07/18/the-master-plan-behind-

amazons-acquisition-of-cloud9-ide/#83ee62228dba. [Accessed 11 August 2016].

P. Kruchten, P. Lago and H. van Vliet, "Building Up and Reasoning About
Architectural Knowledge," in QoSA'06 Proceedings of the Second international
conference on Quality of Software Architectures, 2006.

K. Morris, Infrastructure as Code: Managing Servers in the Cloud, O'Reilly Media,
2016.

S. Suonsyrja and T. Mikkonen, "Designing an Unobtrusive Analytics Framework
for Monitoring Java Applications,” in 25th International Workshop on Software
Measurement and 10th International Conference on Software Process and
Product Measurement, IWSM-Mensura 2015, Krakéw, Poland, October 5-7,
2015, Proceedings, 2015.

J. Bosch, "Speed, Data, and Ecosystems: The Future of Software Engineering,"
IEEE Software, vol. 33, no. 1, pp. 82-88, 2016.

M. Fowler, "Continuous Integration," 10th September 2000. [Online]. Available:
http://martinfowler.com/articles/continuousintegration.htmi. [Accessed 21
December 2016].

P. Bregman, "The Right Way to Hold People Accountable,” Harvard Business
Review, 2016.

M. L. Manns ja L. Rising, Fearless Change: Patterns for Introducing New Ideas,
Addison-Wesley, 2004, p. 273.



73

[100] U. Eliasson, R. Heldal, J. Lantz and C. Berger, "Agile Model-Driven Engineering
in Mechatronic Systems - An Industrial Case Study," in Model-Driven Engineering
Languages and Systems: 17th International Conference, MODELS 2014,
Valencia, Spain, 2014.

[101] M. C. Mankins, "Stop Wasting Valuable Time,” Harvard Business Review,
September 2004.

[102] J. K. Liker, The Toyota Way: 14 management principles from the world's greatest
manufacturer, McGraw-Hill Professional, 2004.

[103] C. Catal and D. Mishra, "Test case prioritization: a systematic mapping study,”
Software Quality, vol. 21, no. 3, pp. 445-478, 2013.

[104] P. Debois, “Devops: A Software Revolution in the Making?,” Cutter IT Journal, vol.
24, no. 8, pp. 3-5, 2011.

[105] I. Jacobson, P. W. Ng, P. McMahon, I. Spence and S. Lidman, “The Essence of
Software Engineering: The SEMAT Kernel,” Queue, vol. 10, no. 10, 2012.

[106] R. Baskerville, J. Pries-Heje and S. Madsen, “Post-agility: What follows a decade
of agility?,” Information and Software Technology, vol. 53, no. 5, pp. 543-555 ,
2011.

[107] T. Waits, “ChatOps in the DevOps Team,” Software Engineering Institute, 29
January 2015. [Online]. Available:
https://insights.sei.cmu.edu/devops/2015/01/chatops-in-the-devops-team.html.
[Accessed 21 April 2016].

[108] M. Shahin, M. A. Babar and L. Zhu, "The Intersection of Continuous Deployment
and Architecting Process: Practitioners’ Perspectives," in ESEM’16, Ciudad Real,
Spain, 2016.



74

[109] B. Flyvbjerg, "Five Misunderstandings About Case-Study Research," Qualitative
Inquiry, vol. 12, no. 2, pp. 219-245, 2006.

[110] R. K. Yin, Case Study Research: Design and Methods, 5th ed., SAGE
Publications, Inc, 2013.

[111] T. Lehtonen, V.-P. Eloranta, M. Leppé&nen and E. Isohanni, “Visualizations as a
Basis for Agile Software Process Improvement,” in 20th Asia-Pacific Software
Engineering Conference, APSEC 2013, , Ratchathewi, Bangkok, Thailand, 2013.

[112] P. Rodriguez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suomalainen,
J. Eskeli, T. Karvonen, P. Kuvaja, J. M. Verner and M. Oivo, “Continuous
deployment of software intensive products and services: A systematic mapping
study,” Journal of Systems and Software, 2016.



ORIGINAL PAPERS

THE HIGHWAYS AND COUNTRY ROADS TO CONTINUOUS DE-
PLOYMENT

By

Leppanen, M., Mékinen, S., Pagels, M., Eloranta, V.-P., Itkonen, J., Mantyla, M.
V., & Mannisto, T., 2015

IEEE Software vol. 32, no. 2, p. 64-72

© 2015 IEEE. Reprinted with permission.



TOWARDS POST-AGILE DEVELOPMENT PRACTICES
THROUGH PRODUCTIZED DEVELOPMENT INFRASTRUCTURE

By
Leppéanen, M., Kilamo, T., & Mikkonen, T., 2015
Proceedings of 2015 IEEE/ACM 2nd International Workshop on Rapid Continu-
ous Software Engineering (RCoSE), p. 34-40

© 2015 IEEE. Reprinted with permission.



THE SOCIAL DEVELOPER: NOW, THEN, AND TOMORROW

By
Kilamo, T., Leppanen, M., & Mikkonen, T., 2015
Proceedings of the 7th International Workshop on Social Software Engineering

2015, (SSE 2015) p. 41-48

Reproduced with a kind permission by ACM.



REFACTORING-A SHOT IN THE DARK?

By

Leppanen, M., Mékinen, S., Lahtinen, S., Sievi-Korte, O. Tuovinen, A.-P. &
Méannisto, T., 2015

IEEE Software vol. 32, no. 6, p. 62-70

© 2015 IEEE. Reprinted with permission.



DECISION-MAKING FRAMEWORK FOR REFACTORING

By

Leppénen, M., Lahtinen, S., Kuusinen, K., Mékinen, S., Mannisto, T., Itkonen,
J., Yli-Huumo, J., & Lehtonen, T., 2015

Journal of IEEE 7th International Workshop on Managing Technical Debt (MTD
2015), p. 61-68

© 2015 IEEE. Reprinted with permission.



2

IMPROVING THE DELIVERY CYCLE: A MULTIPLE-CASE STUDY
OF THE TOOLCHAINS IN FINNISH SOFTWARE INTENSIVE EN-
TERPRISES

By

Mékinen, S., Leppanen, M., Kilamo, T., Mattila, A.-L., Laukkanen, E., Pagels,
M., & Mannisto, T., 2016

Information and Software Technology vol. 80, p. 1339-1351

Reproduced with a kind permission by Elsevier.



Information and Software Technology 80 (2016) 175-194

Contents lists available at ScienceDirect

INFORMATION
AND

SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Improving the delivery cycle: A multiple-case study of the toolchains
in Finnish software intensive enterprises

@ CrossMark

Simo Maikinen®* Marko Leppidnen®, Terhi KilamoP, Anna-Liisa Mattila®, Eero Laukkanen
Max Pagels?, Tomi Mdnnist6?
2 Department of Computer Science, University of Helsinki, P.O. 68 (Gustaf Hdllstromin katu 2b), FI-00014 University of Helsinki, Finland

b Department of Pervasive Computing, Tampere University of Technology, Korkeakoulunkatu 1, FI-33720 Tampere, Finland
¢ Department of Computer Science and Engineering, Aalto University School of Science, P.O. Box 19210, FI-00076 Aalto, Finland

ARTICLE INFO ABSTRACT

Article history:

Received 16 December 2015
Revised 12 August 2016

Accepted 7 September 2016
Available online 8 September 2016

Context: Software companies seek to gain benefit from agile development approaches in order to meet
evolving market needs without losing their innovative edge. Agile practices emphasize frequent releases
with the help of an automated toolchain from code to delivery.

Objective: We investigate, which tools are used in software delivery, what are the reasons omitting cer-
tain parts of the toolchain and what implications toolchains have on how rapidly software gets delivered
to customers.

Keywords:

Continuous deployment
Continuous delivery
Software development tools
Deployment pipeline

Agile software development

Method: We present a multiple-case study of the toolchains currently in use in Finnish software-intensive
organizations interested in improving their delivery frequency. We conducted qualitative semi-structured
interviews in 18 case organizations from various software domains. The interviewees were key represen-
tatives of their organization, considering delivery activities.

Results: Commodity tools, such as version control and continuous integration, were used in almost ev-
ery organization. Modestly used tools, such as Ul testing and performance testing, were more distinctly
missing from some organizations. Uncommon tools, such as artifact repository and acceptance testing,
were used only in a minority of the organizations. Tool usage is affected by the state of current work-
flows, manual work and relevancy of tools. Organizations whose toolchains were more automated and
contained fewer manual steps were able to deploy software more rapidly.

Conclusions: There is variety in the need for tool support in different development steps as there are
domain-specific differences in the goals of the case organizations. Still, a well-founded toolchain supports
speedy delivery of new software.

© 2016 Elsevier B.V. All rights reserved.

In a quest to answer these challenges, software development
organizations have turned to agile practices such as Kanban [1],

1. Introduction

Today, software development has evolved into a high-paced
business tackling challenges of demanding contexts, changing cus-
tomer requirements and the increased need for short development
cycles and fast time-to-market. At the same time, software devel-
opment organizations should be able to produce high-quality soft-
ware while maintaining an innovative edge.

* Corresponding author.

E-mail addresses: simo.v.makinen@helsinki.fi, simo.makinen@cs.helsinki.fi (S.
Makinen), marko.leppanen@tut.fi (M. Leppdnen), terhi.kilamo@tut.fi (T. Kilamo),
anna-liisa.mattila@tut.fi (A.-L. Mattila), eero.laukkanen@aalto.fi (E. Laukkanen),
max.pagels@alumni.helsinki.fi (M. Pagels), tomi.mannisto@cs.helsinki.fi (T. Man-
nisto).

http://dx.doi.org/10.1016/j.infsof.2016.09.001
0950-5849/© 2016 Elsevier B.V. All rights reserved.

Scrum [2] and Extreme Programming (XP) [3] due to their promise
of speed of delivery, ability to adapt to changing requirements and
improved software quality. The leading principle of agile is to “sat-
isfy the customer through early and continuous delivery of valu-
able software” [4] . Some companies, such as Amazon, Facebook
and Google [5] being some of the most famous examples, have
adopted agile practices to the extent where software is released
to the customers continuously in a rapid pace. Still, many are yet
to adopt this kind of agility to its fullest.

Continuous deployment refers to the practice of deploying new
software and features to the customers as it gets developed instead
of making less frequent timed releases [6]. The one mandatory as-
pect of continuous deployment is a pipeline without any interrup-



176 S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

tions all the way from code to delivery. Hence, in order to achieve
continuous deployment, a software company must set up an auto-
mated toolchain and establish tool-related workflows [7]. A prop-
erly documented and easy to set up toolchain enables a company
to get development going rapidly and makes speedy deployment
of new software to the customers possible.

In this paper, we investigate the current state of the practice
in Finnish software organizations regarding their workflows and
toolchains. We focus on the current toolchains organizations have
in place and how automated the different stages of development
are. In addition, we investigate why tooling is not used for some
phases and does the missing tooling have effect on the speed of
delivery. We conducted interviews with the representatives of 18
Finnish software organizations. The organizations were of different
sizes and represented several business domains to get a compre-
hensive view on the phenomenon.

The rest of the paper is structured as follows: Section 2 dis-
cusses the background and related work. Section 3 introduces
the research methodology. Section 4 describes the modern soft-
ware development toolchain and its elements, constructed in
this study. Section 5 gives the results from the conducted in-
terviews. Section 6 draws comparisons with the maturity of the
toolchain and the deployment times. The results introduced in
Sections 5 and 6 are then discussed in Section 7 where the va-
lidity threats for the study are also explored together with future
directions. Section 8 summarizes the findings and concludes the

paper.
2. Background

During the past two decades software development has trans-
formed from a rigid and documentation-heavy waterfall approach
to lean and agile development models. Lately, the cross-functional
teams and the ability to rapidly deliver new software to end-users
have been noted as especially important practices. The concept of
DevOps, where developers and operations work closely together,
is fused together with continuous deployment into the day-to-
day software work. This section presents the lean principles from
which the modern-day software development practices have been
partly derived from, describes the terminology related to the con-
tinuous forms of software engineering, and positions the article
against the backdrop of related work.

2.1. Lean and DevOps

Modern software development relies on a versatile set of ag-
ile practices which in turn have been heavily influenced by lean
development principles. Lean itself originates from manufactur-
ing [8] while the concept of lean software development was in-
troduced by Poppendieck and Poppendieck [9]. The Poppendiecks’
base lean software development on seven key principles: (1) Elim-
inate waste, (2) Amplify learning, (3) Decide as late as possible,
(4) Deliver as fast as possible, (5) Empower the team, (6) Build in-
tegrity in, and (7) See the whole. Continuous software engineering
[10] is an emerging trend taking a holistic approach on continuous
development - incorporating these seven lean principles to the de-
velopment.

One development approach that relies on teams’ ability to de-
ploy features continuously in an automated manner, and is gaining
increasing popularity, is DevOps [11,12] - a portmanteau of devel-
opers (Dev) and operations (Ops). In DevOps, developers and in-
formation technology professionals (operations) work together as
a team instead of being separated in so-called 'information si-
los’. DevOps relies on practices that help to shorten the time be-
tween committing a change and its deployment to normal produc-
tion use while maintaining high software quality. Thus, it shares

many of the goals as continuous software engineering in general -
improved communication, more intensive collaboration, and faster
delivery of high quality software - as well as builds on top of a
solid toolchain from code to production.

2.2. Continuous integration, delivery and deployment

At first, a few words on terminology. There is a multitude of
terms and concepts involved in continuous software engineering
[10]. For the purpose of this paper, the distinction between con-
tinuous integration, continuous delivery and continuous deploy-
ment is crucial. In continuous integration [13], developers send
their changes frequently to version control repositories which trig-
ger tests on continuous integration servers whereas in continuous
delivery [14] the steps include additional, automated, actions to
prepare a release-ready software version. Typically, the actual re-
lease to the production system is not fully automated and requires
manual intervention with continuous delivery but in continuous
deployment [6] the last mile is also automated.

One of the principles of lean development is “deliver as fast
as possible” [15]. In this spirit, the typical agile development pro-
cess incorporates the concept of continuous integration (CI) [13].
To enable continuous integration, the developers in the team inte-
grate their work frequently under version control. Continuous in-
tegration also includes the practice of automated tests in order to
get frequent, fast feedback to the development team. Even though
there are different levels of automation and flavors to what gets
included into continuous integration, the concept is still relatively
well understood and defined.

The difference between continuous delivery and continuous de-
ployment is less well defined. In his blog, Fowler [14] defines con-
tinuous delivery “as a software development discipline where you
build software in such a way that the software can be released to
production at any time”. Neely and Stolt [16] define continuous de-
livery on the same lines as “the ability to release software when-
ever we want”. Thus, in continuous delivery, a new software ver-
sion is not necessarily deployed automatically to the users but it is
kept deployable all the time during development of new features.
Continuous deployment requires continuous delivery, but takes it a
step further and deploys every commit that passes the tests must
be delivered automatically to production [6]. For the scope of this
paper we will use the definition: continuous deployment is the
practice of always deploying new software to production as it gets
built.

Humble and Farley [17] describe that continuous delivery is
achieved with a stage-gate process called deployment pipeline,
consisting of commit stage, acceptance test stage and other testing
stages. This pipeline starts similarly to traditional continuous inte-
gration. Developers make changes to source code and each change
committed to the version control system will trigger the commit
stage of the pipeline. In this stage, software is typically compiled,
unit tested and a build artifact is produced. Often, static code
analysis and code metric collection is also done. The commit stage
should be fast and able to catch the most severe errors. Next, the
acceptance test stage is executed. It is still automatic, but executed
in a more production-like environment and can take a longer
time to complete. The purpose of this stage is to validate that the
software fulfills its acceptance criteria and could be released to
the users. After passing the acceptance test stage, the software
can go through other testing stages which can be manual, such as
user acceptance testing or capacity testing. Manual testing stages
should, however, be cut down to the bare minimum because
they stop or slow the flow in the deployment pipeline. After
passing all the testing stages, the software can be released to
production.



S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194 177

Based on the recommendations of Humble and Farley, the de-
ployment pipeline should ideally be automated as much as can be,
or at the very least, semi-automated. For example, even if deploy-
ment would not happen automatically for each successful integra-
tion, it should be possible to execute the deployment with a sin-
gle push of a button. Thus, the recommendation is that all manual
work is minimized, leading to the logical conclusion that proper
toolchains are essential to continuous delivery.

Stahl and Bosch studied what effects does continuous integra-
tion have [18] and how their differences can be explained with
differences between continuous integration implementations. Later,
they developed a meta-model to describe differences in continu-
ous integration implementations [19]. They have discovered that
(1) continuous integration practices vary between companies and
even between projects and (2) what companies call continuous in-
tegration is not as continuous as usually understood [20]. Because
of (2), Stahl and Bosch suggest calling the integration practices “au-
tomated integration flows”.

This study is similar to the study of Stahl and Bosch in the
sense that in both studies, toolchains for automated software de-
velopment are studied. However, the focus of Stahl and Bosch is on
continuous integration practice, whereas in our study, the focus is
on the whole, continuous deployment.

Leppdnen et al. [21] focused on the potential benefits and chal-
lenges of continuous deployment in a multiple-case study of 15
industry companies. They found out from the interviews that al-
though not all companies aimed for fully automated continuous
deployment, frequent releases could potentially help the compa-
nies to build better products for the customers and be more reac-
tive in development. Social factors within companies or attitudes
in the field could prevent the adoption of continuous deployment
practices. Technical matters such as the size and complexity of
projects, and the need to perform manual testing stages were seen
also to be in the way of continuous deployment. The study pre-
sented in this article is based partly on the data from the study of
Leppdnen et al. [21] but the emphasis here is on the overall devel-
opment process utilized in the companies and the underlying tool
infrastructure which were not covered in the original study.

Claps et al. [22] studied continuous deployment with a sin-
gle exploratory case study strategy. Through interviews, they dis-
covered a total of 20 technical and social continuous deployment
adoption challenges. To mitigate these, they also proposed strate-
gies which were adopted by the case company. Multiple challenges
mentioned by Claps et al., such as hardware and software infras-
tructure, deploying the product, seamless upgrades, continuous in-
tegration process, testing, source code control, shorten customer
feedback and team coordination may need tool support to be over-
come properly. Thus, their results support the argument about the
importance of toolchain.

3. Research methodology

In this section, we formalize the research methodology and
characteristics of the multiple-case study, describe the study de-
sign, detail the case companies, describe how data was collected
through interviews and analyzed with thematic analysis, and fi-
nally synthesized into the research results.

3.1. Research methodology and study design

Our multiple-case study [23] is an exploratory study of the
toolchains in Finnish software-intensive organizations interested
in transitioning towards a more rapid deployment rate — up to
continuous deployment. Our main aim is to ascertain the current
state of the practice with respect to continuous deployment in the
Finnish IT field. For this study, our formal research questions are:

« RQ1: Which toolchains are used to support software delivery?

« RQ2: What are the reasons behind the gaps in the toolchains?

« RQ3: What possible implications do toolchains have on the
speed of software delivery?

In order to help researchers consider the research process as a
whole, we use the framework by Wohlin and Aurum [24] to char-
acterize our research:

Our research outcome is basic research instead of applied re-
search, because we investigate a problem instead of proposing
a solution.

We use inductive research logic instead of deductive, because
we do not have an existing theory to test. Rather, our contribu-
tion can be used for theory-building.

Our research purpose is exploratory, as our research topic is
quite new and there are not many existing studies.

Our research approach is interpretivist, because especially RQ2
and RQ3 would be difficult to study under the positivist lens.
Our research process is mixed approach, because RQ1 and RQ2
are based on qualitative data, whereas RQ3 uses quantitative
approach.

Our research methodology is case study, because it allows
deeper investigation of the phenomenon than surveys.

Our data collection method is interviews, because it is the most
feasible option to study multiple cases, especially for questions
RQ2 and RQ3.

Our data analysis method is thematic analysis, because it is well
suited for RQ1 and RQ2. For RQ3, we also used descriptive
quantitative measures.

.

To answer the research questions, we followed the research
process depicted in Fig. 1. In the following sections, we describe
the process more specifically.

3.2. Company and case selection

The case selection of the study was made with a twofold selec-
tion criteria. Our larger population of interest comprises Finnish
software-intensive companies and enterprises interested in the
benefits afforded by faster software delivery. Inside this popula-
tion our selection comprises companies (i) participating in Need
for Speed (N4S) [25], a Finnish research program focusing on rapid
value delivery, and (ii) other companies known to researchers as
interested in the subject. The Need for Speed research program is a
four year program running from 2014 to 2017 with around 40 pro-
gram partners. Majority of the program partners, thirty or so, are
industrial organizations and the rest are universities or research in-
stitutes. Partners in the program engage in joint industrial research
and development endeavors in the area of rapid value delivery and
this article is a result of such work. By joining the program, the in-
dustry partners have shown interest and commitment to improve
their capabilities towards more real-time operations.

We approached prospective program partners and other known
companies in person and via e-mail, asking of their interest to par-
ticipate in the study. The companies could freely choose whether
to participate in the study. As such, selection at the organization
level can be considered self selection or convenience selection.
However, within this context, companies were purposefully chosen
to ensure variability in terms of domain and organization. Almost
the same selection of companies was used in a previous study [21].
Our study includes four additional cases (C6, C12, C17, C18) but
excludes one case because it lacked detailed tooling information
(Company O in [21]).

Most of the selected companies were small or medium sized
enterprises with less than two hundred employees. Several well-
established companies in the study were substantially larger, em-
ploying over ten thousand workers each. Also, the industry sectors



178 S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

Interviewee
selection

Process o n
icture ematic
P Interview :> analysis
data
Legend

Selection step

Analyzed
results

: Research .
. activity .

Research result

N4S  Other partner
companies

companies

Company

Case selection -
selection

Toolchain

Delivery
Cycle data

L —

Fig. 1. Research process of the study. Different steps of the process are explained in Sections 3.2-3.5.

Table 1
Background information of the selected case organizations.

Case  Domain Personnel  Team Size Platform Primary Technologies
C1 Consulting 80 8 Web Java

c2 Consulting 80 7 Web Java, Javascript

c3 Consulting 250 <10 Web Clojure, Javascript

Cc4 Consulting 180 3 Web Javascript, Scala

c5 Consulting 100 10 Embedded C++

C6 Embedded Systems 500 30 Embedded Proprietary

c7 Industrial Automation 15,000 50 Embedded C++

Cc8 Mobile Games 7 7 PlayStation Portable, Apple i0S, Google Android, PC  Platform specific

c9 Mobile Games 9 4 Apple i0S Unity, Scala

Cc10 Mobile Games 9 3 Apple i0S, Google Android, Windows Phone C++ (cross-compiled)
C11 Telecom >10,000 100-300 Network Java

C12 Telecom >10,000 50-100 Network C++

C13 Telecom >10,000 350 Network C++

C14 UI Framework 80 7 Web Java

C15 UI Framework 1000 200 Cross-platform C++

C16 Web Services 7 7 Web Ruby on Rails, JavaScript
Cc17 Web Services 8 3 Web Ruby on Rails

C18 Web Services 90 30-50 Web Java, Scala

of the companies differed. The consultancies were engaged with
contracted customer projects where the technologies varied per
project whereas some case companies had a more specific focus.
Companies in the mobile game industry and telecommunications
formed clearly identifiable groups. The web was a popular choice
as a platform, but some companies also targeted embedded and
mobile platforms. These included embedded Linux and consumer-
oriented mobile operating systems like Apple iOS or Google An-
droid. Software in these specific cases was typically programmed
in Java, C++ or Scala. In the web domain, Javascript and Ruby on
Rails were mentioned as was the functional programming language
Clojure. Characteristics of the companies can be seen from Table 1.
It should be noted that the cases C11 and C12 were from the same
company, but from different products. That is why we refer to the
cases as organizations instead of companies.

From this group of selected organizations, we made a selec-
tion of interviewees. We requested to interview a technically well-

versed representative of the development organization that was
their most advanced in terms of adoption of rapid delivery prac-
tices. Organization representatives were asked to evaluate whether
other teams in the organization were using similar software pro-
cesses and methods, and the rationale for potentially differing
practices but the relative experience or expertise of the team was
not judged further. Heterogeneous practices are possible especially
in large organizations so to make the responses concrete, the unit
of analysis was chosen to be the projects or products engineered
by the team of which the interviewee had direct experience. The
interviewees were software developers, architects, quality assur-
ance personnel and team leaders who worked mostly in small de-
veloper teams of less than ten people. The teams in the telecom
organizations were quite a bit larger than the more typical teams
and, in addition, were geographically distributed across multiple
sites.



S. Mikinen et al./Information and Software Technology 80 (2016) 175-194 179

Fig. 2. A typical process diagram drawn by an interviewee.

3.3. Interviews

This study utilizes the interviews conducted in a previous study
[21]. Same interview records and notes were analyzed, but four
additional interviews were done for this study alone. Also, the
analysis in this continuation study focuses on toolchains, whereas
the previous article discussed the motivations, benefits and obsta-
cles of continuous deployment practice. Overall, there were a to-
tal of around 50 questions grouped into 9 subtopics in the orig-
inal interview protocol and the same questions were used in the
additional interviews. Questions about the toolchains in the or-
ganizations were part of the broader original study design so
the datasets between the studies were compatible without fur-
ther need for adjustment. The relevant subset of questions for this
study is highlighted in Appendix A, while other topics are included
there too for completeness to illustrate the other themes covered
in the interviews but which were not pertinent to the continuation
study.

In order to answer the research questions, we chose surveys
in the form of open-ended, semi-structured interviews. Interviews
were carried out in Finnish, with two researchers present and pri-
marily one case representative. Mostly, one researcher presented
the questions following the interview outline while the other acted
as a scribe and took notes. Three separate research teams from
the participating universities were involved in conducting the in-
terviews. In addition to basic closed-ended demographic questions,
interviewees were asked a variety of open-ended and closed-ended
questions on software delivery, see Appendix A. These questions
were grouped into subtopics; the data presented in this article per-
tains to the topic of toolchains.

Interviewees were asked to describe the tools they use in daily
project activities, and to denote the stage or stages in which tools
were used as part of their development workflow. This was con-
ducted by asking the interviewee to draw a picture of their deliv-
ery process, see Fig. 2 for an example. Qualitative data from the
interviews was gathered primarily by taking notes during the in-
terviews. Using audio recordings as support, the notes were revised
after each interview in order to ensure completeness. The revised

notes were circulated with the researchers not present in the in-
terview.

3.4. Thematic analysis

The primary analysis method for the data collected in our study
is thematic analysis [26]. In thematic analysis, collected data is
first examined in order to extract relevant items such as results
or other key findings from the data. As the analysis and synthesis
progresses, extracted data is coded and assigned to common cate-
gories for grouping the coded entities. Similar codes and categories
are later associated with more abstract themes which are seen to
represent the underlying concepts. Thematic analysis allowed us
to approach the data analysis from the ground up by identifying
tools and categorizing them into common categories based on their
purpose.

Using the revised interview notes, tools used in each organi-
zation were coded into themes based on the primary purpose of
the tool (i.e. the scope and situations for which it is intended
to be used). If the notes were not comprehensive enough, au-
dio recordings were listened again to acquire the needed infor-
mation. Documentation and public websites of tools were con-
sulted in cases where the purpose of the tool was unknown to re-
searchers. Thematic analysis of qualitative data is subject to a num-
ber validity threats, the specifics of which are described in detail in
Section 7.5.

Following theme identification, each theme was given a name
to reflect a particular software development activity. For each iden-
tified tool, there is one or more associated primary activities, as
a single tool could belong to multiple activities. The constructed
activities are described in the next Section 4. After assigning the
tools to the primary activities for each organization, the represen-
tation of the toolchain with named tools for activities was sent
to the organizations for verification. Data for the toolchains was
adjusted and new tools added based on the responses. All but
two case organizations (C13, C14) responded to the verification
request.



180 S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

Table 2
Metrics analyzed in this study.

Metric Interview questions (Appendix A)

22,23,71,72 and 7.3
2.2 and 2.3

Actual releasable software cycle
Actual release cycle

3.5. Synthesis

Synthesis based on the research data commenced once the
data had been coded and confirmed. Oral descriptions of the
development process, process illustrations drawn by the respon-
dents and the codified data of tool usage in different development
stages were used to construct a representation of the develop-
ment pipeline for each organization. The constructed development
pipeline representations and information about the toolchain al-
lowed identifying pipeline sections and activities where work was
done without tools. Qualitative analysis of the interviews was used
to further analyze and describe the reasons behind the selection of
the set of tools in an organization, their usefulness and the ratio-
nale for the current workflow.

The deployment and delivery frequencies of the organizations
were analyzed by coding the verbal responses of the frequency-
related questions in the interviews as numbers. These numbers
represented the deployment and delivery capability of the orga-
nizations. The deployment and delivery capability of the organi-
zations was compared against the amount of tool-aided phases in
each case for which the data was extracted from the toolchain rep-
resentation. The definition for tool usage was binary: either the or-
ganization had tooling support for the activity or it did not.

Two frequency metrics were extracted from the interview data
(Table 2):

« Actual releasable software cycle means an actual cycle during
which the development organization produces an artifact that
could be, in principle, released. However, factors out of control
of the development organization can prevent realizing this re-
lease capability. There was no distinct question to acquire this
metric, instead the metric was extracted from multiple answers.
The interview protocol allowed such flexibility.

Actual release cycle means how often the software is actually
released. This takes into account other factors of the release.

Results yielded from counting the tool-aided phases were sub-
ject to quantitative analysis which allowed grouping of the orga-
nization based on their deployment and delivery capabilities, and
the amount of tool aided phases. This process is further described
in Section 6.

4. Modern software development toolchain

In this section, we introduce a modern software development
toolchain which was constructed based on the interviews con-
ducted and the results of the thematic analysis in this study. Each
element of the toolchain is described individually, accompanied by
references from the literature. The main elements covered in the
section include requirements as the first link in the toolchain, devel-
opment as the core element for software development, operations
as an element interfacing between various environments, testing
as the element for verification and validation, quality as an addi-
tional element ensuring the non-functional quality properties, and
finally the overarching communications and feedback which pro-
vides a common link between the elements.

A modern software development is backed up by a toolchain
that consists of automated tools from code all the way to delivery
of new software. The role of these tools is to ensure each stake-
holder can develop, test and deploy the software when they need
to and to make sure suitable feedback for from all stages of the
development process is produced. Fig. 3 illustrates the elements of
modern software development that might benefit from tool sup-
port.

4.1. Requirements

Deploying software constantly, even several times a day, re-
quires that software development teams have clear requirements
for features to work with. Without a steady flow of requirements
in the beginning of the deployment pipeline, the development
team would not be able to keep up a constant pace. Regardless
of the pace, keeping track of all the data associated with require-
ments is an essential part of software development. Here, require-
ments elicitation and backlog management tools assist in the pro-
cess.

The classic user requirements workshop organized just once in
the beginning of a project is no longer seen as the optimal solu-
tion due to the chance of miscommunicating requirements, and the
rate of change in the requirements during the actual development.
Thus, there is need for continuous feedback systems as detailed by
Maalej et al. [27]. The modern feedback systems work both ways,
pull and push. User requirements can be obtained not only by ask-
ing users directly through explicit pull mechanisms, such as work-
shops and interviews, but also by a push mechanism straight from
the users, like feature and enhancement requests. The users can
also be experimented on without their knowledge by implicit and
tacit field experiments.

In modern-day software development, prioritizing work and
knowing what needs to be done relies on maintaining a backlog,
which is essentially a cumulative collection of work to be done. Ac-
cording to agile experts, backlogs should be ordered lists of well-
defined work items. There can be several backlogs with items of
varying granularity. For example, Scrum advocates two backlog ar-
tifacts: a product backlog, with feature-scale items, and a sprint
backlog, with tasks that one person can do in a couple of hours.
Bug tracking is also closely related to backlog management as a bug
to fix is a specialized case of a development task for the developer
- a work item among others. However, in some cases, bugs are also
reported by customers or end-users, and a specialized tool may be
needed to facilitate communication.

4.2. Development

Version Control Systems (VCS) exist to manage changes in vari-
ous documents, such as source code and web pages, and other in-
formation that might change during the development of the soft-
ware. A VCS stores information to retrieve any revision of the
documents, so that the user may return to an earlier version of
the modified document. Contemporary version control systems are
usually distributed, as opposed to older centralized revision control
systems. See Otte [28] for comparison of different VCS types.

Build systems are elementary for the development of software.
Fundamentally, build systems construct deliverables based on build
specification files written in a configuration language [29]. Build
specifications can include instructions for compiling code, execut-
ing test cases, packaging project files and deploying new software
releases [30]. Build tools which can interpret the specifications also
help the developers in managing the internal and external de-
pendencies of software, for instance with the help of proprietary
mechanisms for resolving used external libraries [29].



S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194 181

Requirements Development Operations Testing Quality
Requirements Version - . . Quality &
Elicitation Control Provisioning Unit Testing Performance
Backlog Build Virtualization Ul Testing Code Review
Management
: Continuous Acceptance
Bug Tracking Integration Deployment Testing
Artifact
Repository
Communication and Feedback

Fig. 3. Elements of modern software development toolchain.

One of the challenges with build systems is that when software
systems grow in size and complexity, so do the build specifica-
tion files, requiring much effort to maintain [29]. Build systems
running large software projects can also face resource shortages
when a great number of build artifacts needs to be created over
and over again, an issue which can be alleviated with the help
of incremental builds or cloud-based parallel execution of tasks
[30].

As an additional challenge to the size of the system, a soft-
ware project might not only have internal dependencies to its own
components but to external components developed by others as
well. These can be libraries created by other teams within the or-
ganization or individual libraries, modules and packages developed
elsewhere, containing features utilized by the project in question.
When a multitude of such dependencies exist, it becomes increas-
ingly difficult to manage the different versions of each dependency
and the interdependencies between the dependencies themselves
[31].

Automated builds bring in the principle of continuous integra-
tion, which in turn is a prerequisite for continuous delivery and
continuous deployment. While CI can be implemented with an old
computer and a rubber chicken [32], that is with modest invest-
ments and suitable practices using the chicken as a passable to-
ken, in modern software development continuous integration tools
form a backbone for any continuous deployment pipeline. The task
of continuous integration tools is to monitor version control sys-
tems for changes that consequently trigger the execution of the
various steps configured on the continuous integration server [33].
The steps can include the compilation and packaging of code in or-
der to build an identifiable software version, and execution of test
suites with the aim to inform the developers whether their recent
changes were successfully integrated or not.

Together with build systems, artifact repositories offer a solution
to developers for managing dependencies and versioning different
libraries. It could also be considered that artifact repositories help
with the issue of incremental builds [30] since it is possible to
store already compiled and tested, known to work, versions into
the artifact repository.

4.3. Operations

Software can run on environments ranging from purely physi-
cal to purely virtual. Provisioning, virtualization and cloud environ-
ments make possible to set up instances of the software’s running
environment. Typically different environments, such as staging and
production, are used in parallel during development. Those should
however be such that the same build can be deployed in any of
them. When it comes to continuous deployment, it should thus
be relatively effortless to spin up new environment instances so
that the build could pass from development to production without
many obstacles or problems originating from the differences in ex-
ecution environments.

Humble and Farley introduce common antipatterns related to
delivering software. These are (1) Deploying software manually, (2)
Deploying to a production-like environment only after completing
development and (3) Manually configuring the production environ-
ments [17]. Instead, the aim should be in delivering software as
automatically as possible. To avoid challenges related with chang-
ing configurations the development environments should also be
as close as possible to the production. The same process should
also be used for deploying to all environments.

In continuous delivery and deployment, the deployment infras-
tructure can be treated as code, and it may also be versioned. Ul-
timately, the system can be reproduced wholly from the VCS. One
approach for release management to maximize continuity and sim-
ilarity of environments is blue-green deployment [17,34]. In it, two
identical versions of the production environment are maintained
- a blue one and a green one. These two take turns in being the
production. Each new deployment is done to the one not acting
as production at the time. Moving to the new software version
is done by switching the roles of the environments. The approach
also makes a roll-back to the previous release possible and smooth,
if something seems not to work in the new version.

4.4. Testing

Even though practitioners usually refer testing a separate activ-
ity, through test-driven development (TDD) and the introduction



182 S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

of continuous integration, contemporary testing is very close to
the actual development activity. This is especially true with unit
testing. Continuous integration tools with automated tests have to
ensure that changes made in development do not introduce new
bugs. The goal is to maintain a build that is tested against a thor-
ough set of unit and component tests at each integration. Main-
taining a more complete set of automated tests facilitates regres-
sion testing as the tests can be re-executed in subsequent itera-
tions. For the purpose of continuous deployment, it is still sensible
to handle testing as an element of its own right, especially when it
comes to acceptance and Ul testing that are more difficult to fully
automate.

User interface (UI) testing is a testing task where the graphi-
cal user interface is tested. A relatively small program may have
a considerable amount of Ul test cases and different sequence of
tests may cause differing response from the software. Furthermore,
a huge redesign of the Ul may cause all user interface related tests
to fail even though the actual functionality of the application may
not have been changed at all. Some areas of Ul testing, such as us-
ability or user experience testing, fall close to the domain of qual-
ity assurance as they are not purely functional testing and may be
hard to automate.

Acceptance testing is a special case of testing, where it is de-
termined if the software system conforms to the requirements, ei-
ther functional or non-functional ones. From the point of view of
continuous deployment, acceptance tests should be run in an en-
vironment like the production. Humble and Farley [17] argue that
acceptance testing should be automated and such that each build
gets tested against acceptance tests provided it passes the earlier
tests.

Traditionally, acceptance tests have required customer involve-
ment in the execution of the tests. However, this is not typically
possible if acceptance tests are run for each change to the soft-
ware. Therefore, in this paper, we usually mean automated accep-
tance tests when we use the term "acceptance test”. For automated
acceptance tests, customer involvement is required only when con-
structing the automated test case, not when executing it.

4.5. Quality

Functional testing alone is not enough to ensure the quality of
software products. However, not only continuous deployment, but
agile practices in general, promote high software quality also on
the code level and when it comes to non-functional requirements.
Thus, additional care must be taken to take into account internal
quality issues and other aspects of quality, such as performance
and security.

One apparent way to assure quality is to measure certain met-
rics of the actual software system. For example, performance is usu-
ally difficult to assure without measuring it from the software ex-
ecution. Thus, certain artificial load and stress tools may be used
to ensure the functionality of software under even hardest circum-
stances.

Several aspects of quality may be checked even without having
the software system built at all. One way to achieve this is to have
static program analysis tools, such as Lint, to check the code for
a certain patterns, which may indicate bugs, vulnerable parts, sus-
picious code or just bad coding conventions. In certain domains,
such as the medical software domain, their use is commonplace to
improve the quality of safety-critical code.

Another way to improve code level quality is to have other hu-
man beings to review the code — even in the form of pair pro-
gramming [3]. In the continuous deployment mindset, code reviews
represent a way to introduce some human intervention to the oth-
erwise automated pipeline. Some aspects of software quality may
be hard to inspect automatically, so reviews can act as an addi-

tional safety guard. Code reviews are an old practice, but nowadays
formal review sessions taking up to hours and covering large parts
of code have fallen out of popularity. Instead, it is commonplace
to integrate a code review tool to version control system so that
every committed change may be reviewed by one or several per-
sons. Persons may have various roles, for example certain people
may have to give a permission for the commit to be integrated in
the code base after they have reviewed it.

4.6. Communication and feedback

Communication and collaboration are key elements in soft-
ware development. Developers in software teams share knowl-
edge through various mechanisms, which not only can help the
team to build a social identity as a team but to also share task-
related project knowledge between members [35]. Collaborative
frameworks have use beyond the developer organization itself as
software users can be integrated into software development with
collaborative technologies [35], creating continuous push-and-pull
feedback system [27]. A continuous deployment pipeline can be
fully functional in a technical sense but without handling feedback
efficiently from the developers and users alike, the development
team might miss important cues in which direction to head next.
Optimally, feedback from users and developers is directly associ-
ated with traceable software requirements and eventually the tasks
which are put in the continuous deployment pipeline.

Feedback is an element that is crosscutting all stages of software
development. One of the reasons behind the modern development
toolchain is to make timely feedback reachable for all stakehold-
ers. Timely feedback and short feedback cycles are a cornerstone of
lean and agile. In continuous deployment, feedback is propagated
from each integration.

5. Interview results

In this section, we describe the tool usage in the case organi-
zations. First, we overview the results and then we follow the el-
ements described in Section 4 for the description of the results.
Results for the general areas of requirements, development, oper-
ations, testing, quality, and communication and feedback are each
covered in turn.

5.1. Overview

The overview of the results for each software development
stage is illustrated in Fig. 4. In the figure, grouped by domain, tool
support for every case has been plotted based on the information
retrieved from the interviews. Rows in the figure represent the re-
sults of a single interview. Entries marked with black mean that
a specific tool was used in the organization for the development
stage and white means that any tool for this stage was not used. In
certain application areas, some of the tools were considered irrel-
evant by the interviewees (e.g. user interface testing for embedded
systems): these entries are marked with light gray. When there
was not enough information to determine whether an organiza-
tion used a tool in an activity or not, we categorized the entries to
the not mentioned category indicated by the dark gray color. The
results were later confirmed from the case organizations, although
confirmation was not received from two cases (C13, C14).

In total, results from 18 cases are shown in the figure. The
results indicate that while handling requirements has shifted to-
wards a more agile way of working by de-emphasizing the us-
age of formal requirements engineering tools and applying flexible
management methods with ticketing boards, organizations have
the first half of the toolchain quite well covered. Development is



S. Mikinen et al./Information and Software Technology 80 (2016) 175-194 183
Feed-
Requirements Development Operations Testing Quality back
c
£ e 5 w0
£ g £ > £ o 2
. S 13 Y ‘- 3 £ c
Case Domain = e — & S T g £ c
g F w| £ E |5 g 2| 4 2
§ s £ | % s 25 s |2 £ g |zi B |8
£ = = o H o« E E £ ‘s ] € S S T x
] o ] c 3 5 e & 3 £ 2 |>E & |28
= o = o £ ® 2 9 ) - = a £ 5 € o
S = = @ © B 8 S = 2 - = b =0 P £
§ %3 ¥|§ = 5§ E|gz z|E & §|3% 8|53
3 a @ > a S < |&a& 2o S5 5 < |g& & [S&¢&
(«] co
Cc2 co
c3 co
Ca co
Cs co
c6 ES
Cc7 1A
c8 MG
Co MG
C1o MG
(s} TC
C12 TC
Cc13 TC
C1a ul
C15 ul
16 ws
C17 Ws
C18 WS

not used

L

irrelevant

not mentioned

Fig. 4. Summary of the tools used in the case development organizations.

Domains: CO = Consulting, ES = Embedded Systems, IA = Industrial Automation, MG = Mobile Games, TC = Telecom, UI = Ul Framework, WS = Web Service.

Table 3
An overview summarizing reported tool usage in different stages of development.
Dev. Stage Overview
Requirements Backlog management tools were common and had replaced the rarely utilized specific tools for requirements engineering. Physical

equipment like whiteboards can replace the need for backlog tools. Defects are handled with tools in most organizations.

Development

Version control practices had permeated all the organizations but branching strategies differed. Automated build systems for optimizing

the build process were almost as common. Continuous integration systems were common except in the mobile games sector. Artifact
repositories for storing precompiled libraries were not mentioned often.

Provisioning tools to configure and construct production-like environments were modestly used. Deployment tools had similar

Programming language specific unit testing tools were commonplace. User interface testing was modestly tool assisted but hard to

Operations

popularity although deployment was manual in many cases.
Testing

automate. Acceptance testing relied mostly on human judgment.
Quality

Besides separate testing procedures, quality was assured by various methods. Code quality was kept in check by occasionally used static

analysis tools and code review protocols. Non-functional qualities were assured by tools for real-time monitoring especially in the web

domain.
Communication
and Feedback

analytics were used sparingly.

Internal communication tools, sometimes associated with build and testing systems for rapid developer feedback, were used for
development. The gap between developers and third parties was not often bridged with external communication tools. Customer data

done through shared code repositories with good continuous in-
tegration support. Testing tools are used but user interface testing
and acceptance testing are somewhat overlooked. Continuous de-
ployment to production environments is not fully supported by ex-
isting tools in the organizations although certain deployment solu-
tions are in use. Internal feedback tools are abundant but tools for
customer feedback have less support. Table 3 shortly summarizes
the observations of tool usage from each development stage. There
seem to be certain domain-specific differences in tool utilization
which are further discussed in the following sections.

A well-functioning continuous deployment pipeline requires
that the output from each stage moves effortlessly to the next
development stage. Comprehensive single-vendor software suites
where development stages are interconnected by proprietary so-
lutions were nonexistent. Instead, the organizations relied on best-
of-breed tools, some of which had common interfaces that made
them compatible with each other. When it comes to local work-
stations, developers were at times given leeway in selecting suit-

able development environments they felt most comfortable with
as long as they followed the generic development process in the
organization.

Version control systems and continuous integration servers
were the integration hotspots that typically triggered workflows
and tools in other development stages. In an ordinary situation
when the degree of automation was high enough in an organi-
zation, the developer would commit work from the local work-
station to a particular branch in a remote version control sys-
tem which in turn triggered various testing activities through con-
tinuous integration servers, possibly provisioning the release to
various environments closer to the production system. Similarly,
tools for code review and version control were in some cases con-
nected so that quality checks by peer developer reviews could
be initiated after version control commits. Integration between
development activities and tools was not entirely seamless and
many tasks were still done manually, especially in the last stages
prior to production releases, but at least in several cases work



184 S.
{ + Google \
analytics
« Splunk
/+Skype "\ « Flurry
« Slack « Snoobi
« Flowdock « Sitecatalyst
« Swagger « Qlikview
« GitHub « Optimizely
* Webex « Facebook
« Connect « Twitter
«IRC « Intercom
«XMPP « One or Zero
« Confluence « Notes
o Jira
« Hipchat
«Lync
m « SharcPoint
« JMeter \ *Email /
« Zabbix
« Pingdom B
« Cloudwatch | | * Gerrit
« Squish « Github
+ Gatling « Crucible
«Flood 10 « BeyondCompare
« Jenkins + FishEye
« Yahoo
« Pagespeed
«Ab
« Selenium
«Robot
Framework
« Google
Webmaster
« Sonar
« JsHint
« JsLint
« Clang
« Valgrind Framework
« Cppcheck « Chai
+ Bullseye «Bxpect.JS | (o Selenium
+Lint +JUnit + Robot
+ Coverity * TestNG Framework « JUnit
+ Understand « Selenium Karma Monkito
+ Testdroid * Squish «PhantomJS « Jasmine
« Cucumber o Jasmine « Mocha
« Mocha « Leiningen
« BrowserStack « Midje
« Capybara « Google
+ Cucumber Test
« Geov
«Qt
Autotest
* Specs2
« Scalatest
« Rsp
\\s Minitest /

. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

o Jira
« Trello

« Confluence

+ Github

« Agilefant

« Google Docs
« Excel

« Focal Point
* Accept360

+ Kanbanik

o Jira
« Github

« Bugzilla
« Notes

« Git
« Subversion
« Mercurial

« Perforce

« Jenkins
« Maven

«Ant

« Visual Studio

« CMake

« Make

«GCC

« Clang

« Ruby on Rails
« Sht

« Jenkins
« TeamCity
« Buildbot

« Bamboo

Husndopasa(l
[ o

« Nexus
« Artifactory
+ Maven

« Jenkins

« Vagrant
+ Virtualbox

« VMware
vSphere
« Hyper-V
~Stenm SAWS
. Git « Rackspace
« Ansible
« Hockey App
+AWS « Puppet
o Chef

o Chef

« Foreman

Fig. 5. Overview of used tools in each development stage. For more information about the tools, see the tool appendix [36].

was being done to remove the bottlenecks and to reduce manual
labor.

The concrete tools used by the organizations in each develop-
ment stage reflected the development practices used in the orga-
nizations. While many of the tools can be considered independent
of the development platforms and frameworks, the availability of
tools and the current culture of tool usage in the field contributes
to the choice of tools. In this article, we refer to the tools by name.
For more information about the tools, see the tool appendix [36].

Diversity of tools used in each development stage varied ac-
cordingly as depicted in Fig. 5. Certain tools had universal ap-
plicability regardless of domain and context whereas others were
more specific to platforms and frameworks. Tools for version con-
trol (Git), continuous integration (Jenkins) and code review (Ger-
rit) could be considered universal. Testing tools were more closely
associated with development platforms. Performance testing and
monitoring tools such as New Relic had stronger support in the
web domain where availability can be a greater concern.

5.2. Requirements

In a modern software development pipeline, the access to clear
requirements is ensured through requirements elicitation, backlog
management and bug tracking. The results show that requirements
elicitation tools were used rarely and had been replaced by the
more commonly used backlog management tools such as Jira.

Tracking bugs with tools was common and alike for backlog man-
agement, Jira was the choice in many cases.

5.2.1. Requirements elicitation

The results for our study indicate that organizations did not
have many tools in use specifically for requirements elicitation.
Closer to a hundred requirements elicitation tools have been iden-
tified to exist [37] but a specialized tool for requirements manage-
ment and elicitation was used in only a single case where they
utilized Polarion Requirements.

The rest of the interviewed representatives, however, did not
explicitly mention tools for requirements elicitation and manag-
ing requirements belonging to their existing toolchain. One orga-
nization, however, indicated that they use Atlassian Jira and Trello
for requirements elicitation. Jira was also used for backlog man-
agement, so it seems that this organization effectively transforms
requirements into backlog items on the fly.

To illustrate the problems in the organizations, there is an ex-
ample from one of the interviews. An interviewee mentioned that
they were struggling to maintain a continuous flow of require-
ments for their development team. Their requirements came in
bursts so at times they were sitting idle, enjoying leisure time
at their office, and then shortly after swarmed with new require-
ments when a person in the requirements engineering role had
sufficient time to write them down.



S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194 185

Clearly, requirements engineering and elicitation tools were not
commonly used. That is not to say that the organizations would
not have processes in place for requirements engineering and elic-
itation. Perhaps one of the reasons is that in the contemporary
agile world, even large organizations are shifting towards more
continuous forms of planning, where gradually prepared require-
ments through such instruments as user stories are seen to im-
prove the development process [38]. Agile backlog management
tools are thus seen more relevant than traditional tools for require-
ment elicitation.

5.2.2. Backlog management

The usual tool for backlog management is Jira (50% of the
cases), but Trello (17%) and Confluence (11%) also have a strong
support. Jira has also been documented as the most popular tool in
previous studies [39], especially for bug tracking. In a sense, bugs
can be considered specialized occurrences of backlog tasks.

Tracking issues and directing the flow of development in a
project can also be done without the help of software tools. White-
boards and other physical tools were in some cases just as im-
portant as software in backlog management. Matter-of-factly, one
interviewee commented that “the whiteboard was predominantly
the most important tool in their project” as it could be used in
tying up information from version control, backlog management,
code review, bug tracking, acceptance testing and deployment.
Thus, it was also a means of communication as project mem-
bers could use it to convey important information. It seems that
a whiteboard is easy to use and gives transparency to information
as it can be checked by just giving a quick glance.

5.2.3. Bug tracking

Bug tracking is closely related to backlog management since a
bug fix is a certain type of a development task for the developer.
However, in some cases, the bugs are also reported by the cus-
tomer or the end-user, and a specialized tool may be needed to
facilitate communication. Thus, it is not surprising that Jira is the
most popular tool for the bug tracking as several organizations al-
ready utilized it as an internal tool for backlog management. Other
tools, also used for backlog management, were Trello and Github.
Both of these was encountered once in the interviewed organiza-
tions. Three organizations used unnamed proprietary tools for bug
tracking.

5.3. Development

Development work is supported in the pipeline with version
control, build systems, continuous integration and artifact reposito-
ries. Results for development suggest that the usage of version con-
trol tools is pervasive and Git has a strong foothold in the category.
Build tools are almost as crucial to development as version control
but the range of options for building is broader. Usage of contin-
uous integration servers, mainly Jenkins, is frequent but there are
exceptions to the rule. Artifact repositories were not often men-
tioned.

5.3.1. Version control

Almost all organizations used distributed version control sys-
tems, such as Mercurial and Git. Hybrid solutions and centralized
systems were only seen in three organizations. It is interesting to
note that even though the majority of organizations use Git (al-
most every third), their practices using it vary. At least three fairly
well-known branching models have been applied; “A successful Git
branching model/Git Flow” [40], “Another Git branching model”
[41] and “A rebase workflow for Git” [42]. In addition to the men-
tioned version control systems, some proprietary variations exist.

Further research is needed to analyze reasons and rationales be-
hind different choices and their impact on the actual development
process.

The existence of a VCS was ubiquitous to all organizations we
interviewed. It was the only tool class to achieve this status. Thus,
it underlines the need for this kind of a tool and its place as a
commodity for a software developer. This is interesting to note,
as a decade ago there were reports of organizations who did not
use version control [43]. We can only speculate if the tools have
achieved a certain degree of familiarity and maturity to be have
such widespread use.

5.3.2. Build

Based on our interviews, organizations were using several dif-
ferent systems for building. Here, it is good to distinguish between
build systems which run locally, and systems which run remotely
on a server such as a continuous integration server where addi-
tional build steps can be executed, possibly triggered by changes
in version control.

Around thirty percent of the respondents mentioned that they
used Jenkins as their build system, which is also used as a con-
tinuous integration server. Java-based build systems Maven and
Ant were almost as popular. Jenkins was mostly used as a remote
build system that is used to launch the execution of a series of
scripts containing actions for build steps. Although Jenkins utilizes
build systems like Maven and Ant that can be run locally, in sev-
eral cases build steps in Jenkins contained more complex work-
flows such as the orchestration and creation of virtual machines
for testing and transferring content between machines. Build sys-
tems dealing with makefiles were used as well: Make and CMake
were quite common choices although makefiles can contain overly
complex structures due to their design [29].

Several interviewees said they used proprietary scripts as build
systems while others commented that they used their integrated
development environments for building. The choice for a build sys-
tem can also be tied to the programming language. Certain systems
can be built best with native tools for that environment. Further-
more, dynamic programming languages such as Ruby do not re-
quire compilation. Without having code to compile, the build steps
in a Ruby on Rails application can include other actions such as
precompiling Javascript assets used in web development or prepar-
ing databases and test fixtures for testing stages.

Given their elementary role, build systems and their smooth
operation can be essential to continuous delivery and deployment.
A badly working build system creates lag in the development pro-
cess. An interviewee detailed that several years ago it took over
two hours for the build system to complete building. They sub-
sequently improved their system by buying new hardware, utiliz-
ing parallelism and incremental builds. Each of the improvements
gradually improved their development capability by reducing build
times and currently the build takes only three minutes to com-
plete. That is quite a drastic change in performance.

It can be considered that build activities can generally take a
long time to complete. Similarly to the previous case, a represen-
tative from another organization working in the embedded domain
mentioned that build times for them range from ten minutes to an
hour depending on the environment. He also said that roughly half
of their working time is spent on waiting for the test runs to fin-
ish. An efficient build system which compiles the code fast, reuses
already compiled artifacts and executes the tests in a reasonable
time would likely be on the checklist for any organization aiming
to do continuous deployment.

5.3.3. Continuous integration
The interview results show that continuous integration servers
are frequently used in organizations as part of their develop-



186 S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

s

Fig. 6. Radiators used in software developers’ work spaces.

ment pipeline. A vast majority of the organizations mentioned that
they used Jenkins as their continuous integration solution whereas
other solutions such as TeamCity, Circle CI, Buildbot or Atlassian
Bamboo were seldom in use. It seems that Jenkins has a firm
foothold in the toolchain of organizations which might be due to
its nature as an open source alternative to the other proprietary
options.

The continuous integration workflow of the organizations
matched the description of Meyer [33] quite well. Continuous in-
tegration environments had been set up so that processes on the
continuous integration server were triggered by the changes in a
version control system which was being monitored. Continuous in-
tegration servers were used to compile and build a software ver-
sion with all the necessary dependencies which could then be
put to test. Actual test execution was in some cases configured to
run in external quality assurance environments where the contin-
uous integration server pushed the freshly built software package
to. However, pushing the latest version to different testing envi-
ronments was not always automatic and required some manual
work.

Feedback from the continuous integration servers was consid-
ered important, too. Certain interviewees regarded the continu-
ous integration server as a safeguard for detecting abnormalities,
catching the defects early on. Developers could observe the output
of the continuous integration servers, and see whether their re-
cent code changes passed the bar. Continuous integration servers
may even show green status signifying success on the develop-
ers’ screens or on the information radiators found in the physical
space. An example developer space with two radiators from one of
the cases is shown in Fig. 6. The feedback loop back to the devel-
oper can be quite fast as a developer said that they can get the
information from the continuous integration server in just a few
minutes.

Passing the automated tests on a continuous integration server
can be considered crucial when it comes to advancing to the next
phase in the continuous deployment pipeline. There is little confi-
dence in the software version if it does not pass the assigned tests
it is supposed to pass. In cases where the build did not automat-

ically progress to the next phase, respondents explained that they
have to see that all tests pass before they can make the decision to
trigger processes that promote the version in the end, i.e. accepting
that the version in question is good to go.

Interestingly enough, three organizations reported not having
any specific continuous integration environment. All three shared
a common trait beside their usage of tools: they were small enter-
prises operating in the mobile games sector.

Why would a mobile game organization choose to omit auto-
mated builds and testing through continuous integration servers?
An interviewee from a games organization stated that they did
not have need for continuous integration since the developer could
quickly, in less than a minute, run all the test locally without the
help of external environments.

Still, mobile games - why not games in general - have prop-
erties which constrain the usefulness of automated testing which
might not be present in other domains as such. In another games
organization, the representative explained that there are only few
things that could be automated. Testing of a game requires sub-
jective understanding of the elements which eventually make the
game fun to play. The same ideal was reflected in the opinions of
the third organization: they had a minimal set of tools for testing
and they preferred testing of their product on real users. Hence,
under special circumstances, continuous integration tools are not
always considered essential, especially so if circumstantial factors
prevent the fully streamlined flow of a continuous deployment
pipeline.

5.3.4. Artifact repository

Artifact repositories were not so commonly used in the organi-
zations. It seems that declaring the dependencies in local project
files and downloading the libraries straight from external, pub-
lic, repositories was more common than actually using an artifact
repository within the organization.

An internal artifact repository such as Artifactory was used
to store compiled binaries in some cases. Others reported using
Sonatype Nexus, and there were some custom solutions for arti-
fact repositories, too.



S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194 187

5.4. Operations

Managing technical infrastructure and deploying software re-
quires attention to be paid to provisioning and environments and
deployment tools. Infrastructure tools for providing environments
were modestly used but organizations took advantage of virtual-
ization technologies. Deployment tools for automating the last mile
to production systems were uncommon.

5.4.1. Provisioning and environments

Interviewees had a few shared concerns when talking about
their infrastructure. Replicating development environments was
seen essential by several developers who wished to avoid mistakes
originating from incompatibilities between the local environments
of developers and those used in later stages such as testing and in
production. For that purpose they mentioned to use a tool called
Vagrant that can be used with virtualization technologies to clone
exact environments from scratch during the build stages. This way,
there should be no difference in environments. In one organiza-
tion a separate product, Ansible, was used to orchestrate the cre-
ation and provisioning of environments. VMware and Virtualbox
were popular choices for running virtual machines. For configu-
ration management, the organizations preferred to use Chef and
Puppet.

In fact, around half of the organizations used some kind of vir-
tualization technologies as part of their workflow. If the products
are being hosted in a public or private cloud, it could be con-
sidered essential to have tools available for creating, configuring
and provisioning the remote servers. Otherwise this work would
have to be done partly manually. The organizations reported to use
common cloud service providers and their services in various ways.

In one organization they found it useful to first provision the
new software versions to completely new virtual machines running
in the cloud, waiting the servers to update while still running the
old servers with the old version. Only when provisioning of enough
machines was complete, the switch to the new version was finally
made. By using the virtual machines this way, they did not have to
keep their servers down for very long after an update. This is an
example how having scalable external resources available can min-
imize the downtime and the negative environment-related effects
of version updates.

5.4.2. Deployment

Deployment tools were not too common and the last mile of
deployment involved varying amounts of manual work. Those who
were the closest of being able to deploy automatically used a
technique called blue-green deployments [17] where a new, iden-
tical environment to production called blue is set-up alongside
the currently running green one. When the so called smoke tests
pass in the blue environment, a switchover between the blue
and green environments can be done with little downtime. Jenk-
ins, the general purpose continuous integration server, was one of
the tools mentioned to be used in this context. Jenkins was also
used in other organizations where deployment was half-manual
so that the build job to production or other environments could
progress only once approved by chosen individuals. Automated de-
ployment jobs supported by Jenkins were utilized to deliver tested
builds from one staged development or testing environment to an-
other, or even to production. Scheduled deployment jobs in Jenkins
helped specifically when the deployment had to be done outside
office hours.

Capistrano was a choice for some organizations that had de-
ployment tools; this tool was used together with software writ-
ten in Ruby although it could be used with other programming
languages as well. While not strictly related to production en-
vironment deployment, one organization used a staging frame-

work called HockeyApp to create a production-like environment
in which they could test out their mobile applications before de-
ploying them to production environment. Several organizations re-
ported to have an in-house developed tool for deployment.

5.5. Testing

Testing divides into unit testing, Ul testing and acceptance testing.
While common, there were differences in the usage of unit test-
ing tools and practices across industry fields. Difficulties in testing
user interfaces showed in the responses although there were some
tools used for the task. Automated acceptance testing tools were
uncommon.

5.5.1. Unit testing

Most organizations used some kind of unit testing framework
which is in line with common development practices. All used unit
testing frameworks were open source and depended on the tech-
nology stack of the organization. For example, organizations work-
ing mostly with Java used JUnit (seven cases), those working on
C++ used Google Test or Qt Autotests (three cases) and organiza-
tions involved with web development stacks and Javascript used
Jasmine or Mocha (two cases).

Unit testing was not mentioned or used in four cases. In two
of the cases, specific tools for unit testing were not highlighted
in the interviews although unit testing practices were discussed in
general. In the other two cases from the mobile game sector, unit
testing frameworks were explicitly stated not to exist and in one
there were no plans to incorporate such frameworks. These mo-
bile gaming organizations considered unit testing challenging and
not too valuable because games rely much on player interaction.
Games are also heavily tested manually because graphical and in-
teraction bugs are only detectable by the human eye. Therefore,
bugs that unit tests would discover should anyway be discovered
when manual testing is done.

5.5.2. Ul testing

Several interviewees, especially all from the mobile game do-
main, said that testing user interfaces is a hard task to automate.
Thus, the lack of automated UI testing is one of the biggest chal-
lenges stopping the organizations from using a fully continuous de-
ployment pipeline.

Even though these organizations had tools to aid them in Ul
testing, some additional manual testing was usually involved in
full tests. One notable class of test tools include browser automa-
tion and cross-browser testing tools such as Browserstack, Sele-
nium and Phantom]S.

5.5.3. Acceptance testing

Acceptance testing is special testing where it is determined if
the software system conforms to the requirements, either func-
tional or non-functional ones. However, in the scope of continuous
deployment, acceptance testing is usually seen as the last tests to
decide if the system can be deployed. As such, it seems that the
trust for tools to handle this kind of activity is low. Only five or-
ganizations had automatic tools for acceptance testing. All other
organizations had either team decisions, product owner decisions
or manual testing as the means of acceptance testing. One organi-
zation used behavior-driven development tool, called Cucumber, to
define acceptance tests.

5.6. Quality
Regarding quality there are overall issues with quality and

performance as well as code reviews to consider. Assuring non-
functional properties of products and systems was modestly tool-



188 S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

assisted with performance being the primary quality attribute be-
ing targeted. Code reviews assisted by the tools Gerrit or Github
were a relatively common practice.

5.6.1. Quality and performance

Static analysis tools for code quality were not very common in
general, but in embedded domains, such as medical and telecom-
munications, their use was widespread. One interviewee indicated
that — as the quality requirements are quite strict in this domain
and the deployment process relatively slow - they want to invest
the effort to find out quality problems before deployment.

In web service domain, performance was the most important
quality aspect. As weak performance may result in bad user expe-
rience or denial of service, it is natural that the organizations pay
attention to this. New Relic was the most popular tool, but a wide
variety of service provider tools and stress tools were also used
to ensure performance under heavy loads. These tools include, but
were not limited to, Google Webmaster Tools, Google PageSpeed,
JMeter, Gatling and Flood. Other group of tools were used to en-
sure network availability in cloud services. Zabbix, Pingdom and
Cloudwatch are examples of such tools reported by the organiza-
tions.

Yet again, one interesting group was the mobile game organi-
zations. As their product will be used on multiple platforms, there
is a remarkable amount of testing involved in ensuring that the
games will run as intended on these. On the other hand, the orga-
nizations are rather small, so they face a proportionally huge task
whenever changes, which may be platform dependent, are made.
All three interviewed mobile organizations had solved this by us-
ing subcontracting in testing.

5.6.2. Code review

In practice, tool aided code reviews were almost uniformly con-
ducted via Github pull requests or using the Gerrit tool. Both ways
seemed to share similar popularity. Some organizations relied on
other tools also, such as FishEye or BeyondCompare. Fully manual
reviewing — usually by pair programming - was also used.

The practices vary greatly; some organizations enforce review-
ing for all commits to the version control systems, some organiza-
tions do not see any additional value for mandatory reviews. How-
ever, even those cases might review some parts of the code, if they
consider it to be critical for the quality. The interviewees also em-
phasized the effect of reviews in making the code more easier to
understand. This is in line with the findings of Siy and Votta [44].

5.7. Communication and feedback

Based on our interview results, instant messaging tools are
quite widespread: Skype, Internet Relay Chat (IRC), XMPP clients,
WebEX, Hipchat and Lync were all used for instant messaging. Two
organizations used a special purpose instant messaging application
- Flowdock - for developer communications. This tool is designed
for software development and it has hooks for other development
and testing tools. For example, one of these organizations used
Flowdock to communicate continuous integration server test fail-
ures to developers. Another web development organization used a
tool called Slack for similar purposes.

E-mail was also used for communication and for notifications
in several development stages. A traditional face-to-face discussion
was seen as an important way of conveying a message, too. Tools
do not always have to be electronic: one interviewee proclaimed
later that a whiteboard and a marker are their most important
communication tools they use on a daily basis.

Besides managing internal communication channels, the devel-
opers have to deal with external users and their feedback about a

software system. Feedback from the users can originate from ex-
plicit push communication channels [27] that allow users to ex-
plicitly express their wishes for the system. Our interview data
suggests that organizations did not have many customer-facing ex-
plicit push channels: respondents said that they mainly answered
to e-mails, phone calls or messages from contact forms. In one case
it was mentioned that a Helpdesk service called One or Zero was
used for client communication. In yet another interview it came up
that an organization had previously been using a tool called Inter-
com for handling requests but this real-time system was too taxing
for the developers to use in the end as they had to be constantly
on call.

When developers take initiative and actively seek information
from users, the communication mechanism can be referred to as
pull communication [27]. These can be either explicit methods
where developers and users collaborate such as typical workshops
or interviews, or more implicit where product or service usage
data is analyzed. There was some evidence of pull mechanisms
and tools being used in our case organizations. Organizations men-
tioned that they do surveys or personally meet with their users to
acquire feedback. Tools for implicit pull communication had lim-
ited support in web development as organizations were tracking
their users with Google Analytics, Site Catalyst, Flurry or Snoobi
and using supporting tools to visualize and understand data gath-
ered from users.

6. Comparing tooling and deployment capability

Next, we focus on studying the connection between tool usage
and deployment speed. From the interviews of each case we have
collected data about the time it takes to have a minimum deploy-
able software, and how often actual release is done. These metrics
respectively correspond to the metrics of actual releasable software
cycle and actual release cycle mentioned in the study synthesis de-
scription of Section 3.5. Based on this information, we created a
visualization which shows the differences between the release cy-
cle and deployment capability of different cases. We did not have
enough information about deployment times for one of the cases
(case C17) so it is left out from the observations.

In Fig. 7 the cases are set to timeline by the release time. In the
visualization, the deployment potential, meaning the time to build
a minimum deployable software, is visualized with black and time
spent to actual release is visualized with grey. From the figure it
can be observed that the longest release cycle is 1.5 years (case
C5) where the shortest cycle is 20 minutes (case C16). We can also
see that in many cases the deployment capability is much less than
the actual length of the release cycle. For example in case C5 the
deployment capability is one month but the release is done only
once per 1.5 years. This shows well that the release time is not
connected to deployment capability which is the case for many of
the cases presented.

As the release time itself is not a good metric in determining
how capable the organizations are in deployment, we made an-
other visualization that discards the release time and shows only
the time to minimum deployable software. This visualization is
shown in Fig. 8.

In Fig. 8 the time unit is now days whereas it was months in
the Fig. 7. From the figure we can observe that case C13 has the
weakest deployment capability, being 4 weeks, where the case C16
has the best deployment capability, being 20 min.

6.1. Case groups
We can divide the cases into four different groups based on the

deployment capability. In the first group, containing the slowest
cases, the deployment capability is approximately one month. This



S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194 189

)
R @
-I-lll‘lll ‘

Time/
months.

~
w
IS
o
o
~
@

Fig. 7. Release time of cases presented on timeline. Time unit in the figure is months. Black color presents minimum time to deployable software (deployment capability)

and grey presents the actual release time.

Fig. 8. Deployment capability of cases presented on timeline. Time unit in the figure is days.

group (G1) includes the cases C13, C5 and C12. The second group
(G2) includes cases C8, C10, C6, C9, C14, C15 and C11. In this group,
the deployment capability is from a week to two weeks. The third
group (G3) includes cases which deployment capability is around
one day. The cases in the group three are C7, C1, C4 and C3. The
last group (G4) contains cases C2, C18 and C16 which deployment
capability is less than an hour.

To see if there is any possible connection in tooling and de-
ployment capability we constructed a reordered version of the
toolchain matrix presented in Fig. 4. We ordered the matrix based
on the deployment capability (to the same order as in Fig. 8) and
we divided the matrix into four groups based on the categories
presented above. The reordered matrix is presented in Fig. 9. From
the toolchain matrix we tried to find similarities within the groups
and also compared the groups to see if the groups with better de-
ployment capability have more tooling in use than the groups that
have weaker deployment capability.

Looking at the reordered toolchain matrix, we can notice that
for the development part of the pipeline, except artifact repository,
tooling is present for most of the cases. However, we also observe
that the cases with the fewest confirmed tools belong to groups
G1 and G2 which are the slowest groups in terms of deployment
capability.

We also calculated the amounts of tool aided phases and phases
where no tools are used in the toolchain for the organizations.
In Table 4, the medians and arithmetic means for both types of
phases are presented for the organization groups. These numbers

Table 4

Level of tooling between groups. The level of tooling is calculated by counting
the number of phases which are tool aided and the number of phases which are
not tool aided for each case. The level of tooling for a group is then calculated by
arithmetic mean from the level of tooling of the cases in the group, also medians
are presented.

Group  mean and median Group  mean and median
amount of phases amount of phases
G1 no tool used 6 4
tool aided 9 1
G2 no tool used 7.29 7 G1’ no tool used 7.29 7
tool aided 7.71 8 tool aided 7.71 8
G3 no tool used 3.75 4
tool aided 1125 11 G2’ no tool used 343 4
G4 no tool used 3 4 tool aided 11.57 11
tool aided 12 1

act as indicators for the level of tooling in a certain group. We can
see from Table 4 that the means and medians of groups G3 and
G4 are close to each other. However, the G1 group has a median
similar to G3 and G4, but a mean similar to G2. This observation
refers to that the three cases in group G1 do not have high similar-
ity in level of tooling. If we look at the individual cases in G1 we
can observe that in cases C5 and C12 the use of tooling is overall
in the same level as in the cases in group G3. However, the use of
tooling in case C13 is closer to cases in G2 since in the case of C13,
tools have been mentioned only for five phases, being closer to the
mean of G2 than to G1.



190 S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

Requirements D

Feed-

Operations Testing Quality back

Domain

Requirements Elicitation
Backlog Management
Version Control
Continuous Integration
Artifact Repository

Bug Tracking

Group

Provisioning and
Environments
Deployment

Unit Testing

User Interface Testing
Acceptance Testing
Quality and
Performance

Code Review
Communication and
Feedback

G1'

G2'

[

not used

irrelevant

not mentioned

used

Fig. 9. Toolchain matrix presented in Fig. 4 reordered by deployment capability.

Domains: CO = Consulting, ES = Embedded Systems, IA = Industrial Automation, MG = Mobile Games, TC = Telecom, UI = Ul Framework, WS = Web Service Groups: Cases
are grouped by the deployment capability. G1’ = slow deployment capability, G2’ = fast deployment capability.

Based on the low similarity between cases in group G1, we dis-
carded this group from further observations. Now group G2 can
be renamed into group G1'. Furthermore, groups G3 and G4 can
be combined into a new group named G2’ based on the similar-
ity. The means and medians for these new combined groups are
also presented in the Table 4. Based on the data we can state that
there is clearly more tool support in the group G2’ which also have
overall better deployment capability than group G1'.

When comparing the groups G1' and G2’ we can find differ-
ences in tooling in many areas. In group G1’ four cases out of seven
uses unit test tools where in group G2’ all cases use unit test tools.
User interface testing is tool aided for all cases in G2’ where in
group G1’ only two cases have stated to use tools for user inter-
face testing. Differences can also be found from backlog manage-
ment and quality and performance testing. In group G2’ all cases
have stated that they use tooling for backlog management where
in group G1’ four cases out of seven have tooling for backlog man-
agement. For quality and performance testing tooling is used in
three cases in group G1'. Conversely, in group G2’ all use tooling
for quality and performance testing. For both groups, acceptance
testing and code review were the areas where least tooling were
used.

The observations refer to possible relation between tooling and
deployment capability and seconds the statement that firm auto-
mated tool support is needed to be able to deploy fast. However,
in the original group division group G1, which contains the three
cases with the weakest deployment capability in terms of time, the
use of tooling was somewhat in the same level as in G2’ (the group
with the best deployment capability). Based on this observation we
can state that the degree of tooling is not a sole guarantee of fast
deployment capability.

7. Discussion

In this section, the research questions of the study are answered
and compared to related work. Limitations to the validity of the
study are also discussed and possible directions for future work
explored towards the end of the section.

7.1. RQ1: which toolchains are used to support software delivery?

Several observations can be made from the interview data.
Looking at the interview results in Fig. 4, some of the tool
categories are used in almost all organizations. These commod-
ity tools include version control, backlog management, build, con-
tinuous integration, unit testing and bug tracking. They are used
in over two thirds (12 cases) of the development organizations.
These tools can be seen as an industry standard, and almost
every software development project should incorporate them in
the development activities. However, at least with unit testing
there seems to be some domain-related controversy. In the mo-
bile game industry, unit testing is mentioned in only one organiza-
tion which indicates that it is not a necessary component in every
domain.

Some of the tool categories are not used as much. These mod-
estly used tools are provisioning and environments, Ul testing, perfor-
mance testing, code review, deployment, and customer feedback. They
are used in a third or two thirds of the development organizations
(from six to twelve cases). It might be that some of these cate-
gories are not so useful in every context and domain. For example,
Ul testing is naturally unnecessary if the software does not have
a UL In addition, some categories can be performed well without
any software tooling, such as code reviews and communication.

Some tools are used only in a third or fewer (fewer than six
cases) of the development organizations. These uncommon tools
include requirements elicitation, artifact repository, provisioning and
environments, testing of quality attributes and acceptance testing.
Again, requirements elicitation, for instance, can be done without
tooling. Likewise, many organizations stated that acceptance test-
ing is done manually. However, automating IT infrastructure, ac-
ceptance tests and having an artifact repository are considered to
be important parts of continuous delivery [17].

Meyer [33] listed required tools for continuous integration. He
mentions that use of version control, build, continuous integration,
deployment and monitoring tools are necessary for the practice
of continuous integration. In our cases, tools other than deploy-
ment and monitoring tools are used in the majority of the organi-
zations. Deployment and monitoring (feedback category) tools are



S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194 191

also used in over half of the development organizations (10 cases
for deployment, 12 cases for feedback), but not in as many orga-
nizations as the other tools mentioned by Meyer. Thus, overall the
case organizations seem to have comprehensive tooling for contin-
uous integration, but the later parts of the continuous deployment
pipeline are not covered in all organizations.

Based on the domain of the cases, it seems that mobile gam-
ing industry does not rely on tooling as much as other domains.
This might be because mobile games rely on heavy manual testing
and games are typically so small in size as applications that it is
feasible to test them manually.

When looking at the cases when interviewees have explicitly
said not using a tool category, acceptance testing was most often
mentioned as a missing component from the toolchain (8 out of 18
cases). This implies that automated acceptance tests are still quite
rare and thus, continuous deployment is not feasible for most of
the organizations.

7.2. RQ2: what are the reasons behind the gaps in the toolchains?

Based on the interviews of organization representatives, a num-
ber of gaps were identified in the toolchains of the organizations,
and as noted, some of the tools for specific software engineering
activities were more prevalent than others. Several reasons for the
absence of tools in these areas surfaced in the analysis.

When a specific tool is not being used for an activity as part
of the toolchain in an organization, it does not necessarily mean
that the activity is completely disregarded. For instance, several of
the organizations that were not using unit testing tools still relied
on external testing services where they sent their products to be
checked. While conserving internal resources, outsourcing testing
might cause a notable delay in the flow of the continuous deploy-
ment pipeline. An activity can also be performed completely with-
out tools. Code reviews are examples of activities where a tool can
be helpful but not entirely necessary as peer reviews can be made
more or less manually.

Since parts of the continuous deployment pipeline are intercon-
nected, the tools have contingencies and are partly dependent on
the existence of other tools. Those organizations that did not have
unit testing tools also did not have user interface testing tools or
continuous integration servers running. If there are no tests to ex-
ecute, having a continuous integration server might not be worth-
while.

There might also be a gap in the toolchain of an organiza-
tion because the tool is not seen as relevant. If an organization
is mostly operating in the embedded system domain, it does not
have a strong incentive to use tools for user interface testing. In
this sense, a gap cannot always be seen as a flaw in the continu-
ous deployment pipeline of a specific organization: the context and
domain play an important role as to which tools are seen integral
and which are not.

Widespread usage of a tool might be hindered by insufficient
knowledge about the tool and the value it might provide to the or-
ganization. For instance, artifact repositories were only confirmed
to be used by a handful of organizations and perhaps not many
had seen the benefits of incremental builds or proper internal
management and versioning of in-house libraries. Continuous feed-
back systems shared a similar fate to artifact repositories in a way.
There were numerous internal communication tools used but far
fewer were utilized to interact directly with the customers and end
users or used implicitly to observe user behavior. Constant feed-
back can put a strain on the developers and thus keeping feedback
loops closed can be a conscious choice.

Concerning the final push of the software version and deploy-
ment of the application to the production environment, organiza-
tions did seem to have a certain number of associated tools but

the workflow was not fully automated. Deployments could in some
cases be done with one-button pushes but deployment was pre-
ceded by manual verification and validation activities in a vast
number of the cases. It is plausible that organizations might not
see fully automated deployment tools attractive due to their man-
ual activities in this stage of development. The various manual
steps and checks performed before deployment might also explain
why the adoption of acceptance testing tools was low: the organi-
zations were somewhat unaccustomed to capture user scenarios as
acceptance tests and were faced with the fact that user acceptance
had to be obtained through more conventional means.

7.3. RQ3: what possible implications do toolchains have on the speed
of software delivery?

Connection between toolchains and speed of software deploy-
ment time was studied based on the data gathered from the inter-
views. We noticed that the actual deployment time did not have
much relevance to deployment capability which we defined as the
minimum time to deployable software. We also observed that for
the fastest cases the deployment capability and also the deploy-
ment time can be measured in minutes whereas for the slowest
cases the deployment capability is over a month and the actual
deployment time can even be well beyond a year.

As the focus was to study if there is connection between tooling
and deployment capability, we divided the cases into groups based
on their deployment capabilities and reordered the toolchain ma-
trix presented in Fig. 4 to match the order of cases in deployment
capability timeline. The reordered toolchain matrix is presented in
Fig. 9. We observed that the toolchain is more complete in cases
that can deploy every day or more often. Based on this observa-
tion we state that the toolchain should be as complete as possible
to enable daily deployments. However, we also observed that even
a good toolchain is not a guarantee for fast deployment. In some
cases the deployment was done seldom but the toolchain was on
the same level with the cases that deploy fast. In addition, cases in
group G2 lacked many tools, but the organizations were still able
to deploy every two weeks.

7.4. Future work

In this section, we propose future research topics based on our
observations. One of the research discoveries was that organiza-
tions tend to have a better capability to deliver software than they
actually do in practice. This raises the question why there is such
a great difference between the capability to deliver and the actual
release cycle? Domain differences explain this to some extent, as
in some domains customers are more reluctant to acquire new re-
leases, but there could be other factors at play here. If the delivery
capability of an organization is a lot shorter than the actual release
cycle, does it still make sense to do rapid and small releases inter-
nally? For the organizations which have already set a steady and
relatively rapid pace, what are the benefits of having daily releases
as opposed to bi-weekly releases?

In this study, we asked the interviewees to describe their de-
velopment process and name the tools they used while develop-
ing software but we did not ask them to rate the tools for useful-
ness. Which tools in which development stages are the most criti-
cal when it comes to rapid delivery and what tools do developers
themselves find the most useful? Are the same tools needed if an
organization only strives for a bi-weekly release cycle rather than
a daily release cycle?

Besides seemingly having an effect on the capability to release
software faster, toolchains could also have an impact, positive or
negative, on product or process qualities such as defect rates. A
strong support for test automation tools could affect perceived



192 S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

product failures as could tools in other development stages like
operations and deployment; reduced manual configuration could
potentially result in fewer mistakes being made. An increased re-
liance on tools and automation could mean, however, that certain
types of bugs would go unnoticed if less human attention is paid
to each release. The overall relationship between toolchains and
product qualities remain somewhat unclear and this could be yet
another avenue for future research.

7.5. Threats to validity

Case studies may have a number of threats concerning their va-
lidity. These threats can be classified into four themes: construct
validity, internal validity, external validity and reliability [45]. In
this chapter, we will address each of these four themes with re-
spect the results of our study. In addition, we address threats
to validity concerning open-ended interviews as a data collection
method.

7.5.1. Construct validity

Construct validity refers to how well operational measures rep-
resent what researchers intended them to represent in the study
in question. For an interview study such as ours, this means ascer-
taining the extent to which interview questions were interpreted
the same way by both interviewers and interviewees. Considering
toolchains, we find there is little room to interpret direct questions
regarding their use differently. In addition, initial results from our
interviews were sent to interviewees for inspection and approval,
further strengthening the construct validity. Construct validity is
to an extent threatened by the ability of the interviewees to re-
call their development process and related tools as other sources
of evidence were not used besides the interviews. Having the in-
terviewees illustrating their development process by drawing and
asking them to add the tools to the depicted phases later reduces
this threat to construct validity.

Considering frequency metrics, there is a certain threat to con-
struct validity. Interview responses indicated that constructs like
release, deployment and delivery might not be interpreted in the
same way by all stakeholders. In order to mitigate the threat, the
metrics were defined more precisely after the interviews and the
interview responses were checked to match the definitions.

7.5.2. Internal validity

Internal validity concerns studies in which causal relationships
are examined. In particular, internal validity concerns efforts made
to ensure that possible confounding factors are identified and al-
leviated. Threats to internal validity in the study arise from the
implications of the amount of tool-aided software development
phases in the organizations.

In the analysis and discussion of data it is implied that the de-
gree of tool-aided phases has an effect on the release frequency
of the organizations. The possibility of rival explanations for the
speed of delivery cannot be ruled out as there are confounding fac-
tors which might affect the internal and external release cycles of
an organization. The pattern-matching logic held in most cases, but
not all, and confounding factors such as the domain of the orga-
nizations could already be identified. No strong causal claims are
made due to the descriptive nature of the study but the implied
validity threat is acknowledged.

7.5.3. External validity

External validity concerns the extent to which results of a case
study can be generalized. In most cases, results of a case study
cannot be wholly generalized [23]. The multiple-case design and
the replication logic with cross-case analysis increases the external
validity of this study. Limited generalization for similar contexts

may be possible although there were not many cases for each do-
main, which poses a threat to external validity. While not guaran-
teed, a practitioner operating in a particular domain may gain in-
sight to the development of their toolchain by comparing the study
context and their own environment, and applying the findings.

7.5.4. Reliability

Reliability concerns the extent to which results are dependent
on particular researchers. Ideally, a study should be able to be re-
peated by other researchers, achieving the same results [45]. We
cannot guarantee that the coding of data in our thematic analysis
is entirely void of bias; the reliability of any thematic analysis is
inherently subject to differences in interpretations by researchers
[46], although we mitigated this bias by sending the results back to
the organizations for verification. The confidence in the results of
the thematic analysis is increased by the amount of researchers in-
volved in the study as the results and findings were cross-checked
by multiple researchers.

8. Conclusions

Continuous deployment requires seamless collaboration be-
tween people working on various aspects of software engineering
and a streamlined product flow from one stage to another. Using a
sufficient amount of tools can help in achieving a state of contin-
uous deployment but it is not always straightforward to select the
right tool for the job.

The results of the interview study carried out in Finnish soft-
ware development organizations reveal the prominence of tools in
different development stages and that some tools can be consid-
ered more important in terms of continuous deployment than oth-
ers. However, the relative importance of a tool is specific to an
organization and the domain the organization operates in as the
need for the speed of deployment can differ.

While there are activities, such as code review, that can be done
without specialized tools, having proper tool support is essential
in certain stages of development. Version control systems are so
prevalent in the industry that they were found in all of the in-
terviewed organizations. Although having somewhat lower support
overall, tools in the areas of backlog management, building and
testing had high adoption rates in the organizations as well. Sup-
port for other tools varied more and the results seem to indicate
that the completeness of the whole toolchain had an effect on the
delivery and deployment capabilities of the organizations but there
were exceptions to the rule.

All organizations might not even be looking to fully achieve the
state of continuous deployment which has a direct impact on their
toolchain. Without apparent need to deliver software faster to the
end users, there is no subsequent need for tools in the toolchain
that enable continuous deployment.

Automating stages and the application of tools especially in the
later stages of development, including system testing and deploy-
ment, might not be restricted solely by the availability of appro-
priate tools. Prevailing company culture and human nature can in-
crease reluctance in adopting tools as there seems to be a tendency
to rely on manual inspection rather than automated tests to spot
latent errors and to verify the readiness of a release. Good reasons
for retaining control over releases exist but practitioners should be
aware that the reasons might as well be cultural or related to hav-
ing adequate trust on the automated toolchain.

It can be concluded that a well-established tool infrastructure
supports shipping software releases continuously. Tools ranging
from facilitating management of requirements, easing daily devel-
opment activities, ensuring quality, speeding deployment, to han-
dling rapid user feedback all may improve the delivery cycle. Orga-
nizations employing such tools in practice might just get the extra



S. Mikinen et al./Information and Software Technology 80 (2016) 175-194 193

boost to development that would allow them to shorten release
cycles and speed the delivery of new software to the ever-evolving
markets.

Acknowledgments

We would like to thank the organizations for describing their
development processes and the participants to the interviews for
their time and effort. This article was supported by TEKES [47] as
part of the N4S Program [25] of DIGILE (Finnish Strategic Center for
Science, Technology and Innovation in the field of ICT and digital
business).

Appendix A. Interview outline

Table A1
Interview topics. Questions used in this study are shown under the topics.
ID Related Type Question
Research
Questions
1 Background Information
1.1 - Closed-ended  How large is your organization?
12 - Open-ended What is the domain of the project?
13 - Closed-ended ~ What is the size of the team you
represent?
2 Methods
2.1 - Open-ended What software engineering methods are
you using?
2.2 RQl, RQ2 Open-ended Describe and draw your process from
requirements to release?
23 RQ3 Open-ended How often do you release?
3 Testing
31 RQ1, RQ2 Open-ended How is the product tested during the
development process?
3.2 RQ1, RQ2 Open-ended What testing tools and frameworks are
you using?
4 Operations
5 Toolchain
5.1 RQ1 Open-ended Add names of the tools used in the
process picture drawn at question 2.2.
5.2 RQ2 Open-ended Are there manual steps in the delivery
pipeline? How long do they take?
53 RQ1 Open-ended Do you use life cycle management
systems?
6 Life Cycle Management
7 Feedback
71 RQ3 Closed-ended  What is your lead time from a customer
bug report to release?
72  RQ3 Closed-ended ~ What is your lead time from the event
when testing is completed to release?
73 RQ3 Closed-ended  How fast can you release a change of one
source code line?
8 Delivery Challenges
9 Delivery Benefits
References

[1] DJ. Anderson, Agile Management for Software Engineering: Applying the The-
ory of Constraints for Business Results, Prentice Hall Professional, 2003.

[2] K. Schwaber, Scrum development process, in: Business Object Design and Im-
plementation, Springer, 1997, pp. 117-134.

[3] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley
Professional, 2000.

[4] K. Beck, M. Beedle, A.v. Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, ]. Highsmith, A. Hunt, R. Jeffries, ]J. Kern, B. Marick, R.C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, D. Thomas, Manifesto for Agile Software
Development, 2001, Retrieved: August 2016. URL http://agilemanifesto.org.

[5] J. Humble, The Case for Continuous Delivery, (http://www.thoughtworks.com/
insights/blog/case-continuous-delivery). Retrieved: August, 2016.

[6] T. Fitz, Continuous Deployment, 2009, Retrieved: November 2015. URL http:
/[timothyfitz.com/2009/02/08/continuous-deployment/.

[7] M. Leppdnen, T. Kilamo, T. Mikkonen, Towards post-agile development prac-
tices through productized development infrastructure, in: Rapid Continuous
Software Engineering (RCoSE), 2015 IEEE/ACM 2nd International Workshop on,
2015, pp. 34-40.

[8] Y. Monden, Toyota production system, J. Oper. Res. Soc. 46 (5) (1995) 669-
670.

[9] M. Poppendieck, T. Poppendieck, Lean Software Development: An Agile Toolkit,
Addison-Wesley Professional, 2003.

[10] B. Fitzgerald, K.-J. Stol, Continuous software engineering and beyond: trends
and challenges, in: Proceedings of the 1st International Workshop on Rapid
Continuous Software Engineering, in: RCoSE 2014, ACM, New York, NY, USA,
2014, pp. 1-9.

[11] P. Debois, Devops: A software revolution in the making, J. Inf. Technol. Manage.
24 (8) (2001) 3-5.

[12] L. Bass, I. Weber, L. Zhu, DevOps: A Software Architect’s Perspective, Addis-
on-Wesley Professional, 2015.

[13] M. Fowler, M. Foemmel, Continuous Integration, 2005. http://www.
martinfowler.com/articles/continuousintegration.html, Retrieved: August
2016.

[14] M. Fowler, ContinuousDelivery, 2013, Retrieved: August 2016. URL http://
martinfowler.com/bliki/ContinuousDelivery.html.

[15] M. Poppendieck, T. Poppendieck, Lean Software Development: An Agile Toolkit,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[16] S. Neely, S. Stolt, Continuous delivery? easy! just change everything (well,
maybe it is not that easy), in: AGILE, IEEE Computer Society, 2013,
pp. 121-128.

[17] J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation, 1st, Addison-Wesley Professional,
2010.

[18] D. Stahl, J. Bosch, Experienced benefits of continuous integration in industry
software product development: a case study, in: IASTED Multiconferences -
Proceedings of the IASTED International Conference on Software Engineering,
SE 2013, ACTAPRESS, 2013, pp. 736-743.

[19] D. Stahl, J. Bosch, Modeling continuous integration practice differences in in-
dustry software development, J. Syst. Softw. 87 (2014) 48-59.

[20] D. Stahl, J. Bosch, Automated software integration flows in industry: A mul-
tiple-case study, in: Companion Proceedings of the 36th International Confer-
ence on Software Engineering, in: ICSE Companion 2014, ACM, New York, NY,
USA, 2014, pp. 54-63.

[21] M. Leppdnen, S. Mdkinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M.V. Mdntyld,
T. Mannistd, The highways and country roads to continuous deployment,
Softw. IEEE 32 (2) (2015) 64-72.

[22] G.G. Claps, R.B. Svensson, A. Aurum, On the journey to continuous deployment:
Technical and social challenges along the way, Inf. Softw. Technol. 57 (0) (2015)
21-31.

[23] P. Runeson, M. Hoést, Guidelines for conducting and reporting case study
research in software engineering, Empirical Softw.Eng. 14 (2) (2009) 131-
164.

[24] C. Wohlin, A. Aurum, Towards a decision-making structure for selecting a re-
search design in empirical software engineering, Empirical Softw. Eng. (2014)
1-29.

[25] Digile N4S, 2015, Retrieved: August 2016. URL http://www.n4s.fi/en.

[26] D. Cruzes, T. Dyba, Recommended steps for thematic synthesis in software en-
gineering, in: International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2011, pp. 275-284.

[27] W. Maalej, H.-]. Happel, A. Rashid, When users become collaborators: To-
wards continuous and context-aware user input, in: Proceedings of the 24th
ACM SIGPLAN Conference Companion on Object Oriented Programming Sys-
tems Languages and Applications, OOPSLA '09, ACM, New York, NY, USA, 2009,
pp. 981-990.

[28] S. Otte, Version control systems, Proseminar Technische Informatik, Computer
Systems and Telematics Institute of Computer Science Freie Universitdt Berlin,
Germany, 2009.

[29] S. McIntosh, B. Adams, A.E. Hassan, The evolution of Java build systems, Em-
pirical Softw. Eng. 17 (4-5) (2012) 578-608.

[30] C. Prasad, W. Schulte, Taking control of your engineering tools, Computer 46
(11) (2013) 63-66.

[31] J. Fischer, R. Majumdar, S. Esmaeilsabzali, Engage: a deployment management
system, SIGPLAN Not. 47 (6) (2012) 263-274.

[32] J. Shore, Continuous Integration on ADollar ADay, 2006, Retrieved: Au-
gust 2016. URL http://www.jamesshore.com/Blog/Continuous-Integration-on-
a-Dollar-a-Day.html.

[33] M. Meyer, Continuous integration and its tools, IEEE Softw. 31 (3) (2014)
14-16.

[34] M. Fowler, Bluegreendeployment, 2016. (http://martinfowler.com/bliki/
BlueGreenDeployment.html), Retrieved: August.

[35] S. Ghobadi, What drives knowledge sharing in software development teams:
a literature review and classification framework, Inf. Manage. 52 (1) (2015)
82-97.

[36] Tool Appendix, 2016, Retrieved: August. URL https://goo.gl/qr6KU5.

[37] J.M.C. de Gea, ]. Nicolas, J.L.LF. Aleman, A. Toval, C. Ebert, A. Vizcaino, Require-
ments engineering tools, IEEE Softw. 28 (4) (2011) 86-91.

[38] E. Bjarnason, K. Wnuk, B. Regnell, A case study on benefits and side-effects of
agile practices in large-scale requirements engineering, in: Proceedings of the
1st Workshop on Agile Requirements Engineering, AREW '11, ACM, New York,
NY, USA, 2011, pp. 3:1-3:5.



194 S. Mdkinen et al./Information and Software Technology 80 (2016) 175-194

[39] M. Dubakov, P. Stevens, Agile Tools. The Good, the Bad and the Ugly., Tech-
nical Report, TargetProcess, 2008. Retrieved: August 2016, URL http://www.
targetprocess.com/download/whitepaper/agiletools.pdf.

[40] V. Driessen, A Successful Git Branching Model, 2015. Retrieved: August 2016.
URL http://nvie.com/posts/a-successful-git-branching-model/.

[41] A. Pelletier, Another Git Branching Model, 2016. Retrieved: August 2016. URL
http://blogpro.toutantic.net/2012/01/02/another-git-branching-model/.

[42] R. Fay, A Rebase Workflow for Git, 2016. Retrieved: August 2016. URL http:
//randyfay.com/content/rebase-workflow-git.

[43] D. Spinellis, Version control systems, Softw. IEEE 22 (5) (2005) 108-109.

[44] H. Siy, L. Votta, Does the modern code inspection have value? in: Soft-
ware Maintenance, 2001. Proceedings. IEEE International Conference on, 2001,
pp. 281-289.

[45] RK. Yin, Case Study Research: Design and Methods, Sage publications, 2014.

[46] G. Guest, KM. MacQueen, E.E. Namey, Applied Thematic Analysis, Sage, 2011.

[47] Tekes — The Finnish Funding Agency for Innovation, 2016. Retrieved: August.
URL http://www.tekes.fi/en/tekes/.






	ML_thesis12_appended
	Improving the delivery cycle: A multiple-case study of the toolchains in Finnish software intensive enterprises
	1 Introduction
	2 Background
	2.1 Lean and DevOps
	2.2 Continuous integration, delivery and deployment

	3 Research methodology
	3.1 Research methodology and study design
	3.2 Company and case selection
	3.3 Interviews
	3.4 Thematic analysis
	3.5 Synthesis

	4 Modern software development toolchain
	4.1 Requirements
	4.2 Development
	4.3 Operations
	4.4 Testing
	4.5 Quality
	4.6 Communication and feedback

	5 Interview results
	5.1 Overview
	5.2 Requirements
	5.2.1 Requirements elicitation
	5.2.2 Backlog management
	5.2.3 Bug tracking

	5.3 Development
	5.3.1 Version control
	5.3.2 Build
	5.3.3 Continuous integration
	5.3.4 Artifact repository

	5.4 Operations
	5.4.1 Provisioning and environments
	5.4.2 Deployment

	5.5 Testing
	5.5.1 Unit testing
	5.5.2 UI testing
	5.5.3 Acceptance testing

	5.6 Quality
	5.6.1 Quality and performance
	5.6.2 Code review

	5.7 Communication and feedback

	6 Comparing tooling and deployment capability
	6.1 Case groups

	7 Discussion
	7.1 RQ1: which toolchains are used to support software delivery?
	7.2 RQ2: what are the reasons behind the gaps in the toolchains?
	7.3 RQ3: what possible implications do toolchains have on the speed of software delivery?
	7.4 Future work
	7.5 Threats to validity
	7.5.1 Construct validity
	7.5.2 Internal validity
	7.5.3 External validity
	7.5.4 Reliability


	8 Conclusions
	 Acknowledgments
	Appendix A Interview outline
	 References



