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Abstract

Artifacts are unwanted effects in tomographic images that do not reflect the nature of the
object. Their widespread occurrence makes their reduction and if possible removal an
important subject in the development of tomographic image reconstruction algorithms.
Limited angle artifacts are caused by the limited angular measurements, constraining
the available tomographic information. This thesis focuses on reducing these artifacts
via image reconstruction in two cases of incomplete measurements from: (1) the gaps
left after the removal of high density objects such as dental fillings, screws and implants
in computed tomography (CT) and (2) partial ring scanner configurations in positron
emission tomography (PET). In order to include knowledge about the measurement and
noise, prior terms were used within the reconstruction methods. Careful consideration
was given to the trade-off between image blurring and noise reduction upon reconstruction
of low-dose measurements.

Development of reconstruction methods is an incremental process starting with testing
on simple phantoms towards more clinically relevant ones by modeling the respective
physical processes involved. In this work, phantoms were constructed to ensure that
the proposed reconstruction methods addressed to the limited angle problem. The
reconstructed images were assessed qualitatively and quantitatively in terms of noise
reduction, edge sharpness and contrast recovery.

Maximum a posteriori (MAP) estimation with median root prior (MRP) was selected
for the reconstruction of limited angle measurements. MAP with MRP successfully
reduced the artifacts caused by limited angle data in various datasets, tested with the
reconstruction of both list-mode and projection data. In all cases, its performance was
found to be superior to conventional reconstruction methods such as total-variation
(TV) prior, maximum likelihood expectation maximization (MLEM) and filtered back-
projection (FBP). MAP with MRP was also more robust with respect to parameter
selection than MAP with TV prior.

This thesis demonstrates the wide-range applicability of MAP with MRP in medical
tomography, especially in low-dose imaging. Furthermore, we emphasize the importance
of developing and testing reconstruction methods with application-specific phantoms,
together with the properties and limitations of the measurements in mind.
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1 Introduction

1.1 Background

Medical devices in the field of radiation imaging utilize the interaction between radiation
and the body to non-invasively visualize structures and processes inside an organism.
Radiation imaging can be seen as a combination of three main components [1]:

Source of radiation is introduced to an object to measure a certain property. If the
measured radiation is transmitted by an external source through the object, it is called
transmission imaging (Figure 1.1a). X-ray computed tomography (CT), angiography
and radiography are some examples of imaging modalities that utilize transmission of
radiation. If radiation is emitted from within the object during measurement, the imaging
method is called emission imaging (Figure 1.1b). Positron emission tomography (PET)
and single photon emission computed tomography (SPECT) are examples of modalities
that use emission of radiation. A third possibility is that the radiation source outside the
object transmits the radiation to the object and the scattered radiation is measured, then
it is referred as scatter imaging (Figure 1.1c).

Figure 1.1: Tomographic imaging methods. (a) Transmission tomography, (b) Emission
tomography, (c) Scatter tomography.

Transport of radiation from the source to the object defines the physical interaction
between the radiation and the object. The result of this interaction produces the
information about the object. The transport process is not discussed in the context of
this thesis. Detectors record the intensity of radiation that leaves the object and reaches
designated locations [1]. They convert the energy of the stopped photons into an electrical
signal or charge. The detector system is specific to the radiation source and transport.

1



2 Chapter 1. Introduction

The level of efficiency of a detector determines how much of the radiation that reaches the
detector, is stopped and recorded. The detector systems for different sources of radiation
are briefly described in this work.

This thesis focuses on the characterization of imaging methods based on their source of
radiation, specifically tomographic data obtained from transmission and emission of radi-
ation. Transmission tomography measures the attenuation of radiation, which originates
from an external source outside the patient, and provides slice-by-slice information on
anatomical structures. The radiation source (X-rays, neutrons or gamma rays) penetrates
through the object and the rays are attenuated according to the tissue density along their
trajectories. The attenuated radiation from the transmission is measured and information
about the structural density inside the object is calculated by comparing the radiation
intensity at the source and at the detector. CT uses X-rays as the source of radiation,
which is rotated around the object to obtain multiple views from different angles for
tomographic imaging. Details on the physics and properties of CT are explained further
in Chapter 2.2.

Emission tomography (ET), also called nuclear imaging, maps the distribution of
emitted radiation, creating a functional image of the biochemical process within the body.
In ET, molecules are labeled with radioactive molecules with short half-lives, which are
injected into the bloodstream of the patient. The molecules are metabolized in the body
and the scanner measures the metabolization of the radioactive labeled molecules in the
body. In PET, when an unstable positron from the radioactive label interacts with a
nearby electron, both positron and electron are annihilated, emitting a pair of high energy
(511 keV) photons. The photons from the annihilation travel in opposite directions along
a straight line and hit the detectors in the scanner, creating the physical basis of ET
measurements. PET is a commonly used ET modality in cancer detection where the
consumption of radioactive labeled sugar by a tumor is measured. Other application
areas of PET include cardiac imaging, blood flow and volume imaging, neurochemistry
and radiation therapy [2, 3]. Tomographic data in PET is obtained by a ring of detectors
around the patient. Some of the most common positron emitters (radioactive labels) used
in PET include 15O, 18O, 13N, 11C and 18F.

Measurement from a single angle in tomographic imaging is called a projection. Pro-
jections acquired from multiple angles need to be transformed into anatomically relevant
images via image reconstruction. New reconstruction methods are constantly proposed or
existing ones are improved in the direction of the developments in medical imaging.

1.2 Objectives

This thesis investigates methods for (1) tomographic imaging with low-dose radiation, (2)
reconstruction of data from multimodality imaging, and (3) reduction of artifacts upon
reconstruction of incomplete data.

1. Demand for lower radiation doses in medical imaging has increased as the effects
of radiation on the human body are explored further. The generic noise reduction
algorithms that are developed for high-dose imaging can result in distortion or blurring
of the anatomical borders in low-dose settings. One way to prevent this distortion
is to incorporate our knowledge on noise and data into the reconstruction via prior
functions to reduce the noise without leading to erroneous estimation of image borders.
However, the heavy penalization needed for reduction of noise often blurs of the edges
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of the structures in the images, making the selection of the prior function an important
component of reconstruction. That is why P I, P III, P IV and P V study various ways
and functions to incorporate a priori information into the image reconstruction. In
ET, it is also possible to reduce the noise by increasing the sensitivity of the scanner,
which is examined in P II. P I – P V study the effects of noise on projection data and
propose methods for its reduction.

2. Multimodality or fusion imaging refers to the combination of different imaging modali-
ties to obtain more information about the human body. For instance, fusion of CT
and PET complements the structural information from CT with information on the
biochemical processes from PET, leading to a more complete picture of the disease for
better diagnostics [4]. Information from one modality can also be used to compensate
for the disadvantages of another. For example, the high image quality of CT improves
the low spatial resolution of a PET image. CT is also used for attenuation correction
of PET images. Another example of multimodality imaging is the use of PET for the
imaging of secondary radiation in proton therapy to ensure the delivery of the proton
beam to the correct location. Such multimodality alternatives bring up new challenges
for hardware designs as well as the reconstruction methods. The reconstruction of PET
data obtained from proton therapy constitutes a challenge for image reconstruction
due to its very low count rate and the use of scanners with limited angular coverage.
P IV is focused on reconstruction of low-count PET data to monitor the treatment
area in proton therapy.

3. Artifacts are undesired effects on medical images and they can be related to noise,
limitations of the system design or the measurement protocol. They prevent the
correct interpretation of the acquired measurements. Limited angle measurements
are one of the causes of such artifacts. They can cause elongation of the object or
create streak-type artifacts when the reconstruction methods cannot handle incomplete
data. Although artifact reduction methods have been around for a long time for high
activity/dose images in PET and CT, reconstruction methods for low dose measure-
ments have only become popular in the past decade (a collection of recent research on
low-dose CT and PET reconstruction can be found in [5] and [6], respectively). This
is partly because the low radiation dose protocols are still relatively new in imaging.
Another reason is the noisy images produced from low dose imaging add another
level of difficulty in the development of algorithms [6]. The reduction of limited angle
artifacts is covered in P I – P V.

This thesis addresses the abovementioned issues by proposing various methods to
reduce noise and remove artifacts in the reconstructed images, providing more accurate
images from low dose/activity CT and PET measurements. More specifically, P I, P III
and P V propose penalized reconstruction methods for reducing the artifacts caused by
high density objects in low dose CT. For PET, limited angle artifacts are tackled by
improving the sensitivity of the scanner (P II) and implementing a penalized reconstruction
method (P IV).



2 Data Acquisition

2.1 Positron emission tomography

PET measures pairs of photons emitted from a subject. Each photon in the pair travels
in opposite direction and is stopped approximately at the same time (nanoseconds apart)
by detectors at opposite sides of a PET scanner. A detected pair of photons is called an
event. Events in PET fall into one of 4 categories: (1) True coincidences, (2) Random
coincidences (randoms), (3) Scattered coincidences and (4) Multiple coincidences. All
event types are depicted in Figure 2.1.

Figure 2.1: Coincidence event types in PET. The dashed lines represent the events recorded
by the detector array.

Most PET scanners are designed in the form of ring(s) consisting crystal blocks, which
are very dense materials capable of stopping the photons emitted from an object. The
crystal blocks are coupled with detectors that convert the energy of the stopped photon
into electrical signals to be sent to a computer. The linear trajectory of an event, called a
line-of-response (LOR), is traced and the point of interaction is calculated to estimate
the emission point of the photons.

When a photon hits a crystal and is detected by the detector array, attributes such as
the coordinates of the hit, exact energy of the photon and its arrival time can be recorded.
One can record such properties for each event into a matrix, in which each detector pair
is represented with a bin. There are as many bins as the number of possible detector
pairs. The storage of events in bins is called histogramming and is commonly used in
tomographic imaging to store the acquired data. Let the measurement be represented in
histogram domain as p(s, θ), where s is the distance of an event from the scanner center
and θ is the angle of the line that connects the location of the event to the center of the
scanner. The location of an event with x and y coordinates, f(x, y) is mapped onto a
measurement bing, p(s, θ), as follows:

s = xcos(θ) + ysin(θ), t = −xsin(θ) + ycos(θ), (2.1)

4



2.1. Positron emission tomography 5

where s is on an axis parallel to the detector array and t is the axis orthogonal to it. The
interpretation of an object’s image into a set of line integrals is called Radon transform
[7]. In PET, line integrals are obtained by summing the events along the line into a
bin in the projection domain. The angle θ of each LOR makes it possible to collect
the LORs with the same angle into 2D matrices called sinograms. In a sinogram, one
dimension represents the angle of the LOR and bins of the second dimension represents a
detector pair positioned at a certain angle. All the counts detected by a detector pair are
collected into the same bin in the sinogram. This approach simplifies the data storage
and processing. However, the low photon density in PET often means that most of the
detector bins are empty, creating an inefficient way of data storage with multiple empty
bins in the matrix. The binning of the events can also cause loss of spatial resolution as
the bin size is often larger than the width of the LOR.

Another way to store data without compromising the acquisition accuracy is to collect
features of each event in a list. Considering that the number of measured events in PET
is around 20-50 million stored within 75-200 million bins, storing data in a list rather than
in a matrix is more efficient [8]. It is also more accurate as no event is binned together
[9]. Additionally, if the PET scanner is capable of recording arrival times of individual
photons in a photon pair, this information can also be easily stored in the list-mode
format.

2.1.1 Performance measures in PET
Parameters used during evaluation of PET scanner performance are highlighted here, as
they are important for the interpretation of the results in P II.

Spatial resolution determines the minimum object size that can be detected by a PET
system. To measure the spatial resolution, generally two point or line sources are placed
next to each other. The distance at which the two sources are indistinguishable gives the
spatial resolution. As the details of x-y coordinate are more important than z direction,
the sampling rate is higher in transaxial (x-y) plane than it is in the axial (z) direction.
Due to crystal orientation and variations in data sampling in different planes, transaxial
and axial spatial resolutions are usually given separately for each system. The unit of
spatial resolution is often in full-width-half-maximum (FWHM), which is related to the
standard deviation of the Gaussian curve fitted around the source image.

Energy resolution is the system’s ability to distinguish photons with different energies.
In PET, the photons with 511 keV have a clearly defined peak on the energy spectrum,
as well as smaller peaks indicating any internal radiation coming from the crystals. It is
important for the PET scanners to have a distinct 511 keV peak, which does not overlap
with the Compton peak formed by scattered events. Upon construction of the scanner, a
one-time calibration is needed to have the same energy resolution at individual outputs
from the photodetectors to correct for differences in electronics and detector nonlinearities.
To do so, a measurement without any radioactivity is conducted to determine the level
of intrinsic radioactivity of the crystals. Then, an experiment with a point source is
conducted and the energy peaks are determined with Gaussian fits over the peaks on the
charge spectrum. Mean charge values derived from the Gaussian fits in charge spectra
of intrinsic radioactivity measurements of crystals and 511 keV measurements are then
translated into their corresponding energy peak values and used for calibration of each
detector channel.

Sensitivity of a PET scanner is measured through the percentage of emitted photons
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detected by the scanner. In a PET scanner, the crystal orientation results in a trade-off
between sensitivity and spatial resolution. Crystals with smaller cross-sections provide
better spatial resolution but a decrease in cross section usually means less crystal mass.
This translates into less stopping power for the emitted photons, resulting in lower
sensitivity. Longer crystals with small cross sections don’t solve the problem because it
becomes more difficult and erroneous to determine the exact 3D location of the stopped
photon within the crystal. Placing the PET scanner as close to the subject as possible
can improve the sensitivity. This is partially because of the inverse-square law, which
dictates that a physical intensity is proportional to the distance to the source of that
intensity, and partially because less counts escape detection.

Time resolution is determined by the ability of the PET detectors in efficient differenti-
ation of the arrival of two subsequent photon events. The time resolution depends on the
decay time of the scintillation in the crystals and the processing time of the detectors
and their associated electronics. It is measured between two detectors and reported as
FWHM of the time difference between the arrivals of two photons emitted from the same
event. The conventional PET systems achieve time resolution of 2 to 10 ns, meaning that
any photon reaching detectors within that time window will be accepted to be from the
same event [10].

Time-of-flight (TOF) information is based on the difference in arrival times of two
photons from a single annihilation event. If the positron-electron interaction would
happen at the center of the scanner, both photons would arrive at the contra-positioned
detectors at the same time. This is seldom the case as the events often does not occur in
the center of the scanner. An example of off-centered events is shown in Figure 2.2. The
ability to measure time difference within picoseconds has become possible in the recent
years thanks to the developments in photodetector and crystal technologies. The TOF is
calculated according to the coincidence resolving time (CRT) of a PET system using the
formula

∆d = t1 − t2
2c , (2.2)

where ∆d is the distance between the center of the scanner and the annihilation point, t1
and t2 are the arrival times of photons to the detectors, and c is the speed of light (See
Figure 2.2a).For instance, a CRT of 400 ps results in a LOR length of 6 cm, whereas 200
ps CRT gives a 3 cm-long LOR. Considering that an average PET scanner for humans
has a field-of-view (FOV) of 80 cm, the annihilation localization becomes more accurate
with such timing information. Thanks to TOF information, it is now possible to achieve
500-700 ps timing resolution compared to 2-10 ns without TOF in commercial PET
scanners [10]. The LORs are convolved with a 1D Gaussian curve to get a probability
distribution around the annihilation point, which is depicted in Figure 2.2c.

2.1.2 Data corrections in PET
Attenuation correction is needed in PET because photons are attenuated within
the object when they travel towards the detectors. The longer a photon travels within
the object, the more it loses its energy. In the human body, the attenuation factor for
a certain tissue can be calculated analytically, or more accurately, via CT values [1].
The reciprocal of the attenuation factor is multiplied with its corresponding LOR for
correcting the effect of attenuation.
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Figure 2.2: With TOF information, the time difference between arrival of two photons is used
to determine the location of annihilation more precisely. (a) The arrival times, t1 and t2, and
the distance between the assumed and real annihilation points, ∆d. (b) Without TOF, each
point on the LOR has the same weight. (c) With TOF, each bin is weighted according to its
proximity to the point of annihilation. Modified from [4].

Normalization refers to the compensation of various object- and scanner-dependent
parameters. Most important one is the correction of sensitivity, which is highest at the
center of the FOV along the axial direction, and it decreases towards the peripheries of
the scanner. The coefficients for normalization can be calculated by generating sensitivity
images analytically or with Monte Carlo simulations. As the sensitivity images follow
the Poisson distribution of the measurement, it can be considered as a multiplicative
correction term for the data. Other factors in normalization are the compensation of
individual detector efficiencies, which is needed to obtain a uniform detection performance
from the detectors, and spatial distortion [11].

Randoms and scatter correction are additive correction factors for scattered and
random coincidences. As the size of the object increases, more photons are scattered. The
scatter fraction can be up to 50 % of the total detected counts in 3D PET imaging and
needs to be corrected for accurate reconstruction of measurements [12]. The number of
random coincidences is proportional to the level of radioactivity of the source. Therefore,
for low activity PET images, random coincidences may be ignored.

2.2 Computed tomography

In CT, a source transmits X-rays through the patient to produce a cross-sectional image
of the body. Although X-rays can penetrate into the body, they lose intensity as they
travel through it. The measured intensity Iout, and the initial intensity of a ray, Iin, are
related with

Iout = Iin · exp(−
∫ s1

s0

µ(s)ds), (2.3)

where s is the ray traveling from s0 to s1, and the attenuation coefficient is denoted with
µ [13]. Higher density materials like bone, enamel or metal attenuate the rays more,
therefore they have larger µ values. If lAC is the line integral of the linear attenuation
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coefficients along the ray’s path (exponential term in Eq. (2.3)), then the attenuation
coefficients can be calculated via Beer’s law:

lAC = ln( Iin

Iout
). (2.4)

The map of attenuation coefficients leads to the CT image. The coordinates of the path
connecting the X-ray source to the detector provide the 2D location of the beam in CT.
However, the depth information (z coordinate) cannot be obtained solely from this line
because the information acquired by the detector is a superimposition of all attenuation
effects along the path of the beam. To determine the depth of the event, detectors are
moved to a different position. The combination of information from several angles help
constructing the depth of the event. At least 180 degrees need to be covered to obtain
a reliable position. The X-ray source, or sometimes the subject, is rotated to acquire
data from several angles. In the sinogram of CT, angles correspond to the position of the
scanner and the rays detected at that angle are stored inside the bins at the corresponding
angle. In the context of CT, values of p(s, θ) refer to the X-ray intensities at the detector
at an angle θ. For a parallel beam CT, the trigonometric relationship between coordinate
systems of (s, θ) and (x, y) is the same as in PET (see Eq (2.1)).

CT scanners can have different shapes of X-ray sources such as helical, fan-shaped,
cone-shaped or parallel-shaped sources, depending on the model and generation of the CT.
Cone beam CT (CBCT) is a newer type of CT, first commercially built in 1997, which uses
a cone beam structure instead of the fan-beam type source of CT. Figure 2.3 shows the
difference between beams of an earlier fan-beam CT model and CBCT. CBCT scanners
have smaller FOVs, resulting in higher spatial resolution compared to CT scanners. There
are multiple parameters that determine the radiation dose delivered by CBCT such as the
energy and current of the beam, beam type, beam filtration parameters, and number of
views or rotations [14]. However, generally a smaller FOV translates into lower radiation
dose to the patient [15]. That is why they are regularly used for dental imaging before,
during and after surgeries [14].

Figure 2.3: Beam structures of (a) fan-beam CT and (b) cone-beam CT

2.3 Sources of artifacts

In medical images, unlike photography, it is not possible to compare the results with
the true structures of the object. If the image is distorted for any reason, it can
hinder the interpretation of the medical images. There are multiple sources of artifacts
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for different imaging modalities, but in general the causes are either physical (beam
hardening, motion, noise, scatter, limited angle imaging) or mathematical (assumptions
made on the measurement, reconstruction or prior models). In tomographic imaging,
some of the common sources of artifacts are noise in the measurements, patient motion,
missing projections due to the scanner geometry (partial ring, detector gaps), errors in
mathematical modeling of the measurement system, and failure to correct for scattered
or random events. In the context of this thesis, we will focus on the artifacts caused
by incomplete data with high noise, created in dental CT by the gaps left in the place
of high density materials after their extraction and by the limited angular coverage of
scanner geometry in PET.

2.3.1 Metal artifacts in CT
High density objects in the human body like dental fillings, hip implants, surgical clips or
spine implants degrade CT images and cause artifacts because dense materials attenuate
the X-rays more than anatomical structures in the body. Figure 2.4 shows metal artifacts
in various CT images.

Figure 2.4: Metal artifacts in CT, (a) dental fillings, (b) spine screws, (c) hip replacement.
Modified from [16].

There are several mechanisms through which artifacts occur in the presence of metallic
objects. The ones that impact the image quality the most are beam hardening, photon
starvation, scatter, noise, and the non-linear partial volume effect [13, 17]. Among them,
the most dominant ones are beam hardening, scatter and noise [18]. In the case of dental
implants, the objects are often small, but the metals used in fillings, crowns, screws
etc. can have very high densities. Therefore, the major mechanism in the formation of
metal artifacts in dental CT is partial or complete photon starvation. The metal artifacts
are commonly visible as bright and dark lines or bands along the axis of attenuation
originating from the metals. The ways for reducing artifacts in the presence of metallic
objects can be put into one of these categories according to [17]:

• Removal of the metallic objects from the FOV if possible, which is often not feasible.

• Changing parameters of the CT scan to minimize the artifacts, which doesn’t necessarily
improve the image quality enough for clinical use.

• Correction of the raw measurement data or reduction of the artifacts during image
reconstruction using metal artifact reduction (MAR) methods. The correction of
artifacts with various reconstruction and correction methods has been widely researched.
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• Replacement of corrupted projections if data cannot be corrected. Interpolation
methods are commonly used to replace the corrupt data values, but they can cause
detail loss at the metal/tissue boundary, which is usually the region-of-interest (ROI)
[19].

• Use of iterative reconstruction methods to model and compensate for the corrupted
data.

• Application of filters or post-processing on the reconstructed images to reduce artifacts.

There are several commercial solutions for MAR in CT. Philips Healthcare (Cleveland,
OH) and Siemens Healthcare (Forchheim, Germany) have adopted hybrid methods, in
which iterative approaches are combined with projection completion methods for better
image quality and reconstruction speed. For instance, the metal artifact reduction for
orthopedic implants (O-MAR) method used in Philips Ingenuity Core iteratively subtracts
the correction image from the original image [20]. Although this method was initially
designed for orthopedic implants only, it was later found to be effective for dental implants
as well [21]. Siemens uses iterative metal artifact reduction (I-MAR) in its Somatom
Definition Flash scanner, in which sinogram inpainting is combined with a weighted
filtered backprojection [22]. Single-energy-MAR (SEMAR) in Toshiba Aquilion ONE CT
(Toshiba Medical Systems, Otawara, Japan) has an iterative MAR method as well, in
which the projection completion iteratively fills the gaps left by the segmentation [23]. GE
Medical Systems (Milwaukee, WI) on the other hand, has implemented both hardware,
dual energy imaging in HD750 Discovery system, and software, compensating for the
photon starvation in monochromatic imaging in GE Revolution EVO called SmartMAR,
solutions for MAR [20]. In this thesis, P I, P III and P V focus on the reduction of metal
artifacts on the measurements of dental CT using iterative reconstruction methods, which
take available a priori information under consideration.

2.3.2 Artifacts due to limited angular coverage in PET

Full ring structures are the most common geometry for PET scanners and typically
have high detection efficiency and high count rates, resulting in good spatial resolution.
However, several limitations such as limited FOV, low sensitivity (for scanning of small
subjects), restrictions posed by multimodality imaging, and the high cost of full ring
structure have led to the exploration of different geometries in PET. Some of the geometries
used for PET scanners can be seen in Figure 2.5. Panel PET scanners like Figure 2.5a
provide flexible FOV and compact system size [24]. Fewer detectors also decrease its price
compared to a full ring scanner, but the count rate is low because of the large gap. Partial
ring PET scanners like Figure 2.5b consist of partial rings that are rotated to acquire
complete projection data. Such a configuration was used in ECAT ART (Siemens/CTI,
Inc., Knoxville, TN), in which the rings were asymmetrically positioned and rotated to
achieve full angular coverage. Partial ring and panel PET scanners for breast cancer
screening, called positron emission mammography (PEM), were also investigated for breast
cancer screening [25]. A recent review on commercial PEM scanners can be found in [26].
Alternatively, the partial ring scanners might not have a large gap between two panels,
but smaller gaps between each detector head as in Figure 2.5c–e. The configuration in
Figure 2.5c is the most popular among the manufacturers due to its high count rate and
detection efficiency [? ]. Hexagonal or octagonal geometries like Figure 2.5d and e can
have more flexible FOVs with small gaps between detector blocks compared to partial



2.3. Sources of artifacts 11

rings like Figure 2.5b. The flat panels in Figure 2.5d can be changed into curved panels
in Figure 2.5e. The HRRT (High Resolution Research Tomograph, Siemens Medical
Solutions) system is an example of an octagonal PET scanner for brain imaging.

Figure 2.5: Various geometries of PET systems in clinical use. (a) Dual-panel, (b) Partial ring,
(c) Full ring, (d) Hexagonal and (e) Octagonal PET configurations. Modified from [? ].



3 Image Reconstruction

The art of obtaining information about the human body through the measurements is
called image reconstruction. Image reconstruction consists of a forward and an inverse
problem. A forward problem is defined as the transform of a matrix into a different
domain via an operator. In a forward problem, the source of the information is clear and
its discrete representation is written as

p = Ax, (3.1)

where A is the transform operator acting from the known image x, in a column form,
into projection p. When one tries to compute x back from p, this problem is defined
as the inverse problem. For simplicity of expressions in the equations, the image vector
containing all xj at the voxels j = 1, 2, ...., J is denoted as x, the projection vector
containing all pi at the ith bin in the transformed domain with i = 1, 2, ...., I is denoted
as p and the projection operator matrix containing all values of aij is denoted as A. Each
element of A, aij , can be calculated by varying the parameters of the measurement one
at a time and then recording the measurement. As a result, image vector x is of size J ×
1, the projection vector p is of size I × 1 and the projection operator A is of size I × J.

An example of forward and inverse problem in medical imaging can be seen in Figure 3.1.

Figure 3.1: An example image and its projections as well as forward and inverse problems.
Estimates of the true image using backprojection (BP) without and with filtering are also
presented.

To recover x perfectly, the inverse problem would need to satisfy Hadamard’s conditions
[27]:

• The problem has a solution (existence);

• The problem has at most one solution (uniqueness);

• The solution changes continuously depending on the input (stability).

12
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If these conditions are satisfied, the problem is well-posed and the image can be perfectly
recovered. Otherwise, the problem is ill-posed, for which the direct inversion of the
matrix A is not possible. Reconstruction of medical images is an ill-posed problem due
to several reasons. In a discrete setting, ill-posedness can be due to the non-existence
of a solution, which occurs due to the approximation of the forward model or the
noise in the measurement. Discretization of a physically continuous system can lead
to non-uniqueness of the solution, meaning that when the number of measurements is
different than the number of voxels, I 6= J , reconstruction with the direct inversion of
matrix A is not possible. As the inversion procedure assumes complete data, incomplete
projections can cause artifacts upon image reconstruction. Even round-off errors might
affect the rank of the matrix. If the system is under-determined, meaning that number of
measurements is less than number of pixels (I<J), the solution is not unique. Even for a
linear problem, which is the assumption for transmission imaging, where direct inversion
is possible, non-uniqueness of the solution is possible due to measurement uncertainties
[1]. Therefore it is often preferred to have an over-determined system rather than an
under-determined one so that the measurement uncertainties are better accommodated.
When Hadamard’s third condition is violated, the solution becomes unstable and small
errors in the measurement can be amplified in the solution space [28]. For instance,
noise can cause measurements to have overlapping magnitudes, making a full-rank A
matrix appear singular (non-invertible). Small changes induced by noise might also make
measurements seem independent despite being parallel, resulting in singularity [1].

3.1 Analytical reconstruction methods

In ill-posed problems, the total number of voxels J is different than the total number of
measurements I, making A a non-square matrix, which cannot be inverted directly [1].
When direct inversion of the matrix is not possible, it becomes an estimation problem.
Let the pseudo-inverse of matrix A be approximated with A+, also called Moore-Penrose
inverse, then the solution of Ax = p becomes

x̂ = A+p, (3.2)

where x̂ is the estimate for image x. For a non-square matrix A, A+ assures AA+A = A,
A+AA+ = A+, (AA+)T = AA+, and (A+A)T = A+A [1]. With Moore-Penrose
inversion, even an under-determined (I < J) problem has a solution.

The matrix solution for an over-determined system can be found by solving the equation

ATAx = ATp, (3.3)

in which the square matrix ATA is inverted instead of A. AT denotes the transpose
of A and it is referred as the backprojection operator [29]. Note that ATA is usually
nonsingular and an inverse solution will exist. However, in the rare case of singularity,
regularization is needed to allow a solution and to avoid the singularity problem. The
generalized inverse of A, A+, is then expressed as

A+ = [ATA]−1AT , (3.4)
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where the term [ATA]−1 is responsible for filtering of the image. For an over-determined
system, the solution for Eq. (3.3) using Eq. (3.4) is

x̂ = A+p = [ATA]−1ATp. (3.5)

In theory, a perfect reconstruction is possible using Eq. (3.5) for a linear problem but
such a solution would not be unique due to measurement uncertainties in an ill-posed
setting. However, with a controlled error propagation, the obtained solutions would be
closely located. To make the solution in Eq. (3.5) more stable against noise, the system
can be assumed to be under-determined, and then the solution becomes

x̂ = AT [AAT ]−1p, (3.6)

which solves the inversion problem

Ax = (AAT )(AAT )−1p. (3.7)

The inversion with Eq. (3.6) is called filtered backprojection (FBP) and it is currently
by far the most common reconstruction method in clinical use [30]. Note that the filtering
step in Eq. (3.6) is performed prior to the backprojection. One reason for this is that
the Radon transform, which is the forward projection operator, does not model the
measurement process accurately. A backprojector like FBP can be more time efficient
compared to using AT matrix for backprojection, but unmatched forward models and
backprojection operators can cause high noise in the resulting image. Backprojection
results with (Eq. (3.5)) and without (Eq. (3.6)) filtering are depicted in Figure 3.1.

3.2 Iterative reconstruction methods

When the measurement noise is high or the data is incomplete, iterative reconstruction
methods are used to control the noise levels and improve the image reconstruction quality
[31]. Compared to the analytical approach, an iterative method reconstructs an image
multiple times. In each loop, called iterations, an image estimate is projected, compared
with the measured data, and then backprojected. The calculation of a new projection at
k + 1th iteration can be generalized as

Axk+1 = Axk + A∆xk, (3.8)

where ∆xk is the corrective term for xk and it represents the difference between the
measurements and the current estimate of the image at kth iteration, xk. A is the
system matrix/projection operator. For linear systems, where A doesn’t change from one
iteration to another, Eq. (3.8) can be written as

xk+1 = xk + ∆xk. (3.9)

The iterations try to minimize the difference between the projection at kth iteration and
the measurement. The process is continued until the best estimate for the solution is
achieved: convergence [11]. In iterative reconstruction methods, the imaging problem
is solved by minimizing an objective function [29]. The objective function defines the
relationship between the estimated and measured projections.
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3.2.1 Algebraic reconstruction methods
Algebraic reconstruction technique (ART) calculates the correction term ∆xk in Eq. (3.8)
for one measurement at a time and apply it to all voxels [1, 32]. The image for the next
iteration xk+1 is calculated with ART as

xk+1 = xk − (AT
t xk − pt)At

AT
t At

, (3.10)

where t = (k mod I · J) + 1 [33]. ART is not a single technique, but a family of methods
based on the principle of Eq. (3.10). They were among the first to be used in the
reconstruction of CT data [30]. Like most of the iterative reconstruction methods, ART
typically requires several iterations before a solution is reached. If an exact solution exists,
ART will converge to the solution. Otherwise, the iterations will reach a limit cycle around
the solution [34]. In that case, the iterations are stopped once a predetermined residual
error value between the estimated and acquired measurements is reached. The main
advantage of ART is its capacity for reconstruction independent from the geometry of the
projection system. As long as matrix A is available it can be used for the reconstruction,
but the large size of this matrix is also the biggest disadvantage of ART methods [33].
Due to the long computation time of ART, FBP rapidly overtook its place in clinical
practice as the standard method of reconstruction.

3.2.2 Statistical reconstruction methods
Any knowledge of the measurements prior to the reconstruction, called a-priori infor-
mation, can be incorporated into the solution of an inverse problem. Statistical image
reconstruction methods, unlike ART methods, take the nature of measurement uncer-
tainties into consideration. In a probabilistic approach, the estimate of the image to be
reconstructed, x and the measurement vector, p, are related via Bayes’ law:

P (x|p) = P (p|x) · P (x)
P (p) , (3.11)

where P(x) and P(p) are the equi-probable (uniform) probability distributions of x and
p, respectively. P(p|x) is the conditional probability of the measurement estimate given
an image x, and is also called likelihood term. P(x|p) is called a posteriori probability,
as it is the conditional probability of x given a set of measurements, p.

3.2.3 Poisson distribution
In PET, the acquisition system is assumed to be a random process with Poisson distribution
due to the Poisson statistics of the radioactive decay [11]. The logic of the arguments
presented in this section follow the order in [1]. The projection operator aij transforms
an image into its projections, and once normalized, also represents the probability of ith

measurement detected in the jth voxel, P (xj |pi). The forward model for the estimated
projections, p̂i, from an image x can be written as

p̂i =
J∑

j=1
aijxj , (3.12)
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where J is the number of voxels contributing to p̂i. It is also possible to describe the
estimated projections as a sum of unobservable projections/measurements vij as

p̂i =
J∑

j=1
vij . (3.13)

These measurements are not missing due to mis-recording or misreading of data, but
because of the superposition of Poisson photons, which makes it impossible to record the
individual contribution of photons emitted from voxel j to bin i [35]. Assuming that each
unobservable measurement vi corresponds to a measurement pi, the joint probability of
vi, pi and x can be written as

P (pi, vi,x) = P (pi|vi,x)P (pi|x)P (x), (3.14)

where P (p|v,x) =
∑I

i=1 P (pi|vi,x). The log-likelihood term can then be written as

ln P (p|x) = ln

I∑
i=1

P (pi|v,x), (3.15)

in which the knowledge of vij is not needed. The derivative of Eq. (3.15) with respect
to x results in the solution with the maximum likelihood. However, due to summing
operations over measurements, it is easier to estimate the logarithm of the joint probability
P (pi, vi,x) according to a previously estimated image xk,

Q(xk+1|xk) = E(ln P (p,v,x|xk)), (3.16)

where E(·) denotes the expected value of a function. The estimation maximization of the
log-likelihood, ln P(v|x) yields to the most likely solution for x. The probability can then
be expressed with

P (v|x) =
I∏

i=1

J∏
j=1

exp(−p̂ij) · (p̂ij)vij

vij ! =
I∏

i=1

J∏
j=1

exp[−aijxj ] (aijxj)vij

vij ! , (3.17)

where p̂ij is the estimated measurements that corresponds to unobserved measurement
vij . By taking the logarithm of Eq. (3.17), we get

ln(P (v|x)) =
I∑

i=1

J∑
j=1

[vij ln(aijxj)− aijxj − ln(vij)!]. (3.18)

By means of expectation maximization methods, we can estimate the expected values
for the unobserved measurements based on the available ones. This expectation is then
maximized towards the most likely solution. Assuming an estimate image xk is available,
we can calculate the conditional expectation of the unobserved measurements, vij , with
respect to measurements, p, and estimated solution xk as follows
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Q(xk+1|xk) = E(lnP (p,v|x)|xk) =
I∑

i=1

J∑
j=1

E(vij)ln(aijxj)− aijxj − E(ln vij !). (3.19)

The term E(ln vij !) can be taken as constant with respect to the image, and thus can be
ignored in the maximization step. As each vij contributes to jth voxel in pi (satisfying
Eq. (3.13)), the expectation of the unobserved measurements, E(vij), can be considered
the same as

E(p, vij |xk) =
aijx

k
j∑J

t=1 aitxk
t

pi. (3.20)

After taking the logarithm of Eq. (3.20), it can be maximized by taking its partial
derivative with respect to xj . By placing Eq. (3.20) into Eq. (3.19), we get

∂

∂xj
E(ln P (p,v|x|xk)) =

I∑
i=1

[
aijx

k
j∑J

t=1 aitxk
t

pi

xj
− aij ] = 0. (3.21)

Solving the equation above for xj results in

xk+1
j =

xk
j∑I

i=1 aij

I∑
i=1

aij
pi

pk
i

, (3.22)

which is the MLEM update equation [36, 37]. The EM algorithm, proposed by Shepp
and Vardi [37], and Lange and Carson [36] can be considered as the basic approach for
solving the ML problem [38]. As the log-likelihood function is concave, it is possible
to show that the iterative approach in Eq. (3.22) converges to the ML estimate [39].
When nonnegative values are assumed for the system matrix elements, aij , as is often the
case in radiation imaging, the values of the solution will always be nonnegative due to
the multiplicative nature of the updates [36]. This is in direct contrast with algebraic
reconstruction methods, which can have negative solutions.

Rather than maximizing the likelihood, one can also try to maximize the a posteriori
probability, P(x|p), to control the noise propagation, in which case it is called maximum a
posteriori (MAP) estimation. This method has been introduced by Geman et al. [40] and
since been shown to successfully control the noise levels in PET reconstruction [35, 41–43].
Assuming P(p) is constant with respect to x, the objective function to be maximized
becomes

arg maxx(P (x|p)) = arg maxx(P (p|x) · P (x)). (3.23)

The maximization of a posteriori probability is essentially a regularized version of likelihood
maximization by using the a priori probability, P(x), as the regularization/penalty term.
Taking the logarithm of Eq. (3.23) allows us to separate the two terms on the right
hand side of the equation, which makes the regularizing role of P (x) clear. Note that
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the maximizing of the logarithm of P (x|p) is equivalent to maximizing P (x|p). The
logarithm of Eq. (3.23) yields

L(x) = argmaxx ln(P (x|p)) = argmaxx[ln(P (p|vi,x)) + ln(P (x))]. (3.24)

L(x) in Eq. (3.24) is called the log-posterior and ln(P (p|x)) the log-likelihood. The
term ln(P (x)) represents any a priori information can be incorporated into the solution,
which is calculated by maximization of the expectation of the log-posterior probability in
Eq. (3.24). Note that the use of Bayesian rule can be for Poisson distributed-measurements
can be justified by the fact that above a certain count rate, the Poisson distribution
approaches to a normal distribution [1]. A solution for this objective function is found
via EM optimization, which solves the derivative of Eq. (3.24) with respect to xj

∂L(x)
∂xj

= ∂ln(P (p|vi,x)) + ln(P (x))
∂xj

=
I∑

i=1
( pi

pk
i

aijx
k
j

xj
− aij) + ∂U(x)

∂xj
= 0. (3.25)

As the term ∂U(x)
∂xj

is the function of an unknown image x, the derivative of the prior is
simply calculated at the current reconstruction xk. This approach is called one-step-late
(OSL) [35]. The OSL approach works well as long as the prior strength is not too high.
In extreme cases, the denominator may become zero or negative. With OSL, the MAP
update term can be re-written from Eq. (3.25) into MAPEM iteration as

xk+1
j =

xk
j∑N

i=i aij − ∂U(x)
∂xj
|xk

I∑
i=1

aij
pi

pk
i

, (3.26)

The prior term, U(x), can be used to encourage solutions of smooth or piecewise linear
tracer distribution in PET. This can be achieved with a Markov prior that relates the
tracer distribution of a certain voxel, xj , to its neighboring voxels, Nej , as follows

U(xj |xt,∀t 6= j) = (xj |xt, t ∈ Nej). (3.27)

Such priors can be written in the form of

U(x) = ln(U(x)) =
∑

j

lnU(xj |xt, t ∈ Nej) = −β
∑

j

∑
t∈Nej

F (xjxt), (3.28)

where the energy function F (·) suppresses the noise and β determines the weight of
the prior. Higher weights lead to smoother images, but decrease the likelihood, i.e.
the agreement between the measurement and the estimate is poorer. Most priors take
advantage of a simple energy function that is calculated from the absolute difference of
|xj − xt|. Some examples of these functions are quadratic prior, the Huber prior and
Geman prior. The prior term in Eq. (3.28) is a concave function if F |xj − xt| is convex.
This means that the convex energy functions of quadratic and Huber priors lead to a
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concave prior with a single maximum. Geman prior on the other hand is not concave, and
therefore has local maxima. This makes the initialization of the prior is highly important
as the reconstruction result depends on the initialization and the algorithm’s behavior.
The penalty weight can be incorporated into MAP as

xk+1
j = −

xk
j∑I

i=1 aij + β ∂U(x)
∂xj
|xj=xk

j

I∑
i=1

pi∑J
j=1 aijxk

j

aij . (3.29)

One can see that MLEM is a special case of MAPEM with β = 0. With the use of subsets
for data reconstruction, the MLEM becomes ordered subset expectation maximization
(OSEM) [44]. It is important to note that OSEM has different convergence rates in low and
high-count regions, high counts converging faster than the low-count areas [45]. MAPEM
approach was used for image reconstruction throughout P I– P IV and compared with
MLEM as well as FBP in these publications due to the widespread use of these methods
in clinical practice.

3.2.3.1 Least squares methods

The image reconstruction is always ill-posed due to the discretization that creates a matrix
from physically continuous forward model. Therefore, a modified matrix, as opposed to
the noninvertible matrix A, is needed for inversion method. The solution of of Eq. (3.2)
minimizes the residual error e

e = ||pmeasured −Ax||2, (3.30)

where pmeasured denotes the actual measurements with a certain measurement error.
Eq.(3.30) is called the least-squares (LS) solution of Ax = p, as minimizing the residual
norm is equivalent to minimizing the LS objective function

e2 = [pmeasured −Ax]T [pmeasured −Ax] (3.31)

Eq. (3.5) is the optimal solution for minimization of Eq. (3.31). The square term makes
the assumption that the difference between the measured and modeled/estimated values
most likely follow a normal distribution with zero mean.

The LS solution of Eq. (3.5) is a special case, a weighted form, of the solution obtained
with singular value decomposition (SVD):

x̂ = [ATWA]−1ATWpmeasured, (3.32)

where W is J × J weighting diagonal matrix and it is used for putting more weight
on the solutions with less uncertainty. The pseudo-inversion in SVD eliminates the
direct singular values, but such control is not possible in the LS solution. Therefore
regularization methods are used to constrain the solutions. Regularization is used for
reaching a minimal error, which is measured by the residual norm. It is also possible to
add prior information into LS methods. Some of the most commonly used methods for
the optimization of LS problem are iterative coordinate descent [46], conjugate gradient
[47], penalized weighted least squares [48] and adaptive-steepest-descent-projection onto
convex sets (ASD-POCS). A modified LS algorithm was implemented in P V.
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3.3 Use of priors in reconstruction

Any form of prior information, such as the probability distribution of measurements or
the structures in the image can be incorporated into the reconstruction via P (x) term in
Eq. (3.24). It is added into the MAP methods as a penalty term (see Eq. (3.29)). The
role of this term is to ensure the agreement of the solution with the knowledge on the
image. In PET, the radioactivity concentration is assumed to be piecewise-constant. It is
also known that the nature of the measurement system is Poisson-like. Median root prior
and total-variation prior are two priors that are suitable for these assumptions.

Median root prior (MRP) comes from the family of Gaussian priors, which generally
compare the intensity values within a local neighborhood of the reconstructed image and
allow the values that match with the assumption of the image. Noise is considered as an
abrupt change in intensity values between neighboring voxels and the aim of Gaussian
type priors is the suppress the noise in an image by averaging these voxels. The image
in Figure 3.2b was filtered using a Gaussian type averaging filter with size [3, 3], which
calculates the average or mean of the values within a certain neighborhood. In the case
of MRP, the image is assumed to be piecewise constant, that the values within a local
neighborhood are non-decreasing or non-increasing [49]. The comparison of the intensity
values is done with respect to the median of the local neighborhood. A large discrepancy
between the median and a voxel value is penalized. A comparison of median filtering
operation with Gaussian filtering (averaging filter) is shown in Figure 3.2 on a brain
phantom contaminated with Poisson noise.

(a) (b) (c)

Figure 3.2: Example of (a) the noisy brain phantom with Poisson noise, (b) de-noised image
with averaging filter and (c) de-noised image with median filter .

It is visible from Figure 3.2c that the noise is successfully removed by median filter
using a 2D filter size of [3, 3], which is the only parameter needed. The blurring is visible
on the smaller structures of the Figure 3.2b, which is not present in Figure 3.2c. Edges in
an image usually cause abrupt changes in the intensity values, which are often penalized
along with the noise, leading to blurry images. The penalization with a median filter
prevents the blurring of the edges in the reconstructed image.

There is no analytical derivative to be calculated for ∂U(x)
∂x in MAP with MRP. Instead,

the derivative term is replaced with xk
j−Mj

Mj
, where Mj = Med{xk

j |j ∈ Nj} and it is the
median value of the voxels around the jth voxel. As a result, the MAPEM iteration with
MRP is written as
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xk+1
j = −

xk
j∑I

i=1 aij + β
xk

j
−Mj

Mj

I∑
i=1

pi∑J
j=1 aijxk

j

aij . (3.33)

The hyperparameter β determines the weight of the penalization. More information on
its effect on the reconstruction with MRP is available in [50]. MRP was the chosen prior
term for penalization in the reconstruction methods of P I , P III, and P IV.

Total variation (TV) prior is another effective way of incorporating prior information
into both MAP and LS methods. It is based on the TV norm, which is the sum of l1
norms of the image gradient. Let the TV norm of image C be defined as function u with
elements in 3 dimensions r, s, and t

U(C)T V =
∑
r,s,t

u(r, s, t)

=
∑
r,s,t

√
(Cr+1,s,t − Cr,s,t)2 + (Cr,s+1,t − Cr,s,t)2 + (Cr,s,t+1 − Cr,s,t)2 + ε, (3.34)

where a small value of ε around 10−8 ensures differentiability of the function [51]. The
minimization of the TV norm in Eq. (3.34) also minimizes the L1-norm of the gradient
image [29]. The derivative of the function u described above is

∂U(C)
∂Cr,s,t

= Cr,s,t − Cr−1,s,t

u(r − 1, s, t)

+ Cr,s,t − Cr,s−1,t

u(r, s− 1, t) + Cr,s,t − Cr,s,t−1

u(r, s, t− 1)

+ Cr+1,s+,t + Cr,s+1,t + Cr,s,t+1 − 3Cr,s,t

u(r, s, t) .

(3.35)

The high intensity differences at the edges are more pronounced in the gradient image,
whereas the locally monotonic regions have zero gradient. Due to this gradient operation,
TV norm favors sparsity of the gradient image, in which there is groups of monotonic
regions, separated by edges or boundaries [1, 52]. This assumption helps to preserve
the edge sharpness in the reconstructed image while reducing the noise. When the TV
prior is implemented within the MAPEM scheme, MAPEM becomes TV regularized EM
(TV-EM):

xk+1
j = −

xk
j∑I

i=1 aij + β
∂T V (xj)

∂xj
|xj=xk

j

I∑
i=1

pi∑J
j=1 aijxk

j

aij , (3.36)

where TV (xj) is the derivative of the TV norm of image x at jth voxel at iteration k.
The TV norm of the 2D brain phantom with and without Poisson noise can be seen in
Figure 3.3. The TV norm of the noiseless image highlights the edges, whereas the norm
of the noisy image recovers the edges but also includes the voxel-wise changes induced by



22 Chapter 3. Image Reconstruction

(a) (b)

Figure 3.3: TV norms of (a) noiseless and (b) noisy brain phantom

the noise. As a result, the boundaries of the structures within the brain are lost due to
the noise.

With the assumption that both likelihood and a priori probability density function have
normal distribution, TV prior can be easily implemented as a cost function into the
reconstruction, resulting in the minimization of the objective function

||Ax− p||22 + ||∇a(x)||1, (3.37)

where

∇a(x) =
∑

j

∂

∂xj
TV (x)δj . (3.38)

TV prior was implemented within MAPEM and compared with MRP as a prior in P IV
for in-beam PET data. It was also incorporated into LS in P V for MAR in dental CT.

3.4 List-mode data reconstruction

Reconstruction of list-mode data is based on the backprojection of each recorded event
using the full knowledge coming from the detectors. The use of list-mode data in recon-
struction was first proposed by Barrett et al. [9] and the list-mode reconstruction via EM
algorithm for PET was first developed by Parra et al. [53]. Several algorithms have been
developed since then, mostly on the use of subsets and regularization techniques within
the reconstruction to improve the computational efficiency of list-mode reconstruction
[54–57]. Although many reconstruction methods have been proposed for histogrammed
projection data, development on list-mode reconstruction methods have been limited [8].
This was largely because the count rate has been high enough to make the histogramming
more efficient for reconstruction than list-mode data processing. In applications with low
count rate, however, there are numerous advantages of list-mode reconstruction. It results
in higher resolution, better noise levels and contrast. The TOF information can also
be easily incorporated into the list-mode reconstruction [54]. The low statistics of PET
data in applications such as breast imaging ([25]) and proton therapy ([58]), together
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with implementation of TOF information and irregular scanner geometries have put more
focus on the list-mode reconstruction in recent years.

The ML estimation of list-mode data via EM can be derived from the MLEM re-
construction of histogrammed data, which was formulated earlier in Eq. (3.22). With
list-mode data, the pi term in Eq. (3.22) is taken as 1 as each projection in histogrammed
data corresponds to a single event in the processing of list-mode data [54]. Measured
data has simply I events in total instead of I projections. The term

∑J
j=1 ai,j is the

normalization term, which represents all possible LORs between detectors. When the
histogrammed data is replaced with individual events, the MLEM equation stays almost
the same and can be written as

xk+1
j = −

xk
j∑I

i=1 aij

I∑
i=1

1∑J
j=1 aijxk

j

aij . (3.39)

The equation above is a slow method for reconstruction, as each event is backprojected
individually instead of the processing of the bins in the histogrammed data. In order to
speed it up, the reconstruction can be divided into subsets. This is easy to implement
with list-mode data because each event is independent from others. In the reconstruction
of histogrammed data with subsets, only the projections in the subset are used for
normalization of the data. In contrast, with list-mode data, all normalization factors can
be included in the reconstruction of every subset, making the backprojection of each subset
more accurate. There are several methods to incorporate the subsets into the update
equation of the image estimates (see [55] and [56] for various methods for incorporation of
subsets into reconstruction). One of the main decisions in using subsets is how to divide
the data. There are 3 main approaches: preset-counts (each subset has the same number
of events), preset-time (data is divided into equal time durations), and preset-geometry
(each subset covers a certain region in the FOV) [59]. In P IV, preset-count approach
was selected, in which all events in every subset are backprojected, then all subsets are
summed together and used to update the image. This way, the extremely low statistics of
data in each subset do not affect the noise levels in the image update and the convergence
of MLEM part of the algorithm is preserved.
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4.1 Assessing overall image quality

Mean squared error (MSE) is a measure of noise in the reconstructed image with
respect to a ground truth. It is the square of the error between the reconstructed image
and the ground truth. The MSE of images a and b is calculated as

MSE(a, b) = 1
J

J∑
j=1

(aj − bj)2, (4.1)

where subscript j represent the jth voxel of the images. MSE is straight-forward to
calculate and has a clear physical meaning, which is why it is often used a a stopping
criteria for iterative reconstruction algorithms. The iterative reconstruction process is
stopped when the error between the two images from consecutive iterations is below a
set threshold. MSE and its variations, normalized MSE (NMSE) and root mean squared
error (RMSE), were used in P I, P III and P V. MSE was also used for the comparison of
proposed reconstruction methods for MAR in this thesis.

Structural similarity index (SSIM) is based on the human visual system and it
gives importance to the preservation of structural information within an image [43].
Despite its simplicity, MSE doesn’t capture the difference in the cases of contrast stretch,
mean luminance shift, contamination by additive white Gaussian noise, impulsive noise
distortion, JPEG compression, blur, spatial scaling, spatial shift, and rotation [43]. In
these cases, another image fidelity measure like SSIM can be employed. The human
visual system can compensate for non-structural changes in the image (i.e. change in
contrast, luminance or brightness), but it is very sensitive to structural changes such as
blurring, additive noise or lossy compression. SSIM is a combination of three separate
measures: luminescence (l(a, b)), contrast (c(a, b)) and structure (s(a, b)). Depending on
the application area,the weight for these measures can be adjusted.

SSIM(a,b) = l(a,b) · c(a,b) · s(a,b). (4.2)

SSIM values are in the range of [0,1] and two identical images result in SSIM being 1.
SSIM was used in P V in order to evaluate the structural similarity between the ground
truth and reconstructed images.

Normalized mutual information (NMI) was initially developed for evaluating the
quality of multimodal image registration in [60]. However, nowadays it is also used to

24
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evaluate the similarity of information between two images [61]. The NMI is calculated
through the Shannon entropy of the images, giving the value of 1 if two images are
identical. The Shannon entropy of image a is

H(a) = −
I∑

i=1
p(i)log(pi), (4.3)

where i is the voxel index of image a, and the probability p(i) that the value of the ith

voxel occurs is calculated from the histogram of the image. The respective entropies
of two images a and b are H(a) and H(b). H(a,b) represents the entropy of the joint
intensity histogram of two images a and b [61]. It is defined as

H(a,b) = −
∑
i,j

p(i, j)log p(i, j), (4.4)

where the i and j are voxel indices for images a and b and p(i, j) is the joint probability
[62]. The mutual information (MI) between the two images can be written as

MI(a,b) = H(a) +H(b)−H(a,b), (4.5)

The NMI is then defined as

NMI(a,b) = MI(a,b)√
H(a)H(b)

, (4.6)

For the calculation of NMI, all images are scaled between [0, 255], enabling comparison
of images even when the intensity values are dissimilar. When the reconstructed intensity
values do not have clinical importance, as in the list-mode reconstruction in P IV, the
NMI becomes a useful tool to evaluate conformity of reconstruction with the ground
truth.

4.2 Region of interest analysis

Coefficient of variation (CoV) is used to evaluate the noise levels of a region within
a homogeneous ROI. It is defined as the ratio between the standard deviation (σROI) and
the mean (µROI) intensity values of the ROI.

CoV (%) = σROI

µROI
(4.7)

The higher is the CoV value, the higher is the noise. CoV was calculated in this thesis to
compare the MAR methods within homogeneous ROIs as well as in P IV.
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4.3 Evaluation of the edges

In medical imaging, the boundaries of anatomical regions need to be reconstructed as
accurately as possible in order to avoid misinterpretation in diagnosis. Also in proton
therapy treatments, where a focused proton beam is applied onto the cancerous region,
the beam needs to be positioned correctly to prevent radiation of the healthy tissue. The
edges of an image can be assessed via analysis of its 1D profile along a certain direction.

Line profile is the intensity profile of an image along a line drawn through one of its
dimensions. The intensities along this line can be compared with the line profile of a
reference image. They are also useful for calculating image properties like FWHM of an
object or the location of Bragg peak in proton therapy (the point where the protons lose
their energies and stop). Line profiles were used in P I – P V to study the recovery of
intensity values and to compare the steepness of the edges.

Sigmoid fit is a nonlinear curve that is fitted between the beginning and end points of
a known edge on a line profile. It is a useful criterion when the line profile is noisy. After
a sigmoid function is fitted on an edge, a point on this fit, i.e. 20%, 30% or 50 % of the
maximum value, is used to calculate the location of an edge and the steepness of its slope.
Although there are several sigmoid function, the sigmoid fits in this thesis are calculated
using

sig(h) = base+ max

1 + exp( h0−h
b )

, (4.8)

where h is the voxel index. The base and max are the beginning and end points of the
sigmoid fit. h0 is the position at which 50 % of the difference between max and base is
reached. b parameter determines the steepness of the slope fitted on the edge. The smaller
is the b, the steeper is the edge. Sigmoid fits can be used in analysis of the reconstruction
methods in terms of edge sharpness, spatial resolution and FWHM. They were used in
P IV for a quantitative evaluation of the edges in the reconstructed images than line
profiles.



5 Artifact Reduction in CT

5.1 Review of previous work

Metallic objects are common in dental imaging, and they are removed prior to the
measurements whenever possible. However, when metals cannot be avoided in the FOV,
MAR methods are used. MAR can be seen as a reconstruction from incomplete projection
data, where metallic regions are treated as missing information once extracted from the
data. With metals present in projection data, the first step is to identify the regions with
metallic objects and segment them out. The segmented region can then either be filled via
projection completion methods or excluded from the reconstruction after incorporating
the knowledge of its location into the iterative reconstruction algorithms.

Identification of metallic regions in MAR on a dental CT image is not a straightforward
problem because the metal artifacts stretch along the anatomical structures. Although it
is theoretically possible to segment the metals in the image (spatial) domain [63, 64], the
data is obtained in projection domain and segmentation from a reconstructed image is
prone to errors caused by the reconstruction algorithm itself. Mistakes in segmentation
can cause artifacts, especially in dental CT, since metallic objects and teeth can have
similar attenuation coefficients [65]. Some other segmentation approaches include manual
segmentation by Kalender et al., adaptive segmentation mixed with FBP by Mahnken
et al., mean-shift technique by Yu et al., active contour model by Xue et al., fusion
prior-based MAR scheme by Wang et al., and average filtering in addition to thresholding
by Wei et al.. Other examples are the use of Markov random field to identify affected
projections by Veldkamp et al., Steger method by Xu et al., which detects curvilinear
structures for precise determination of small metal object edges, and tissue-class models
by Olive et al.. See [17] for a more detailed review of these methods. The segmentation
of metals from the projections was studied as a part of the proposed MAR method in P I
in order to avoid segmentation errors in image domain.

Once the metallic regions are segmented and extracted from the measurements, the
gaps left in the places of metallic imprints create inconsistencies in the data. These
inconsistencies can result in severe artifacts upon applying analytic reconstruction methods.
Projection completion methods can be employed to fill the gaps in measurements by
interpolation of the available data, artificially creating consistent data. Approaches
for projection completion include wavelet interpolation, adaptive filtering, linear or
polynomial interpolation [66]. Other more elaborate projection completion methods have
been suggested in [67–70]. The idea behind all these methods is to reduce the metal
artifacts by pre-processing the projection data and, thereby, make it suitable for fast,
analytic reconstruction.

The most common method for projection completion is called inpainting. It was first
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used in digital image processing in [71] and then adapted for MAR in CT by Duan et al.
[72]. The inpainting method interpolates the voxel values surrounding the unknown part of
the measurements to estimate the intensity values of the unknown bins. If the gaps are not
filled correctly, projection completion methods carry the risk of misinformation, especially
at the metal/tissue boundary. Inaccurate estimation of the unknown bins can result in
the loss of the distinct boundaries between the known and estimated bins, making the
diagnosis difficult. Possible jumps at the boundaries of unknown and measured bins can
also create secondary artifacts upon FBP reconstruction [73]. Filtering and thresholding
the projection data in wavelet domain can decrease secondary artifacts, as was suggested
in [67]. Zhao et al. implemented a multiresolution approach to wavelet-based filtering for
MAR using CT data for hip joint prosthesis. It was found to be effective in reducing the
artifacts from beam hardening and photon starvation [67].

Another way to avoid secondary artifacts is to combine projection completion methods
with iterative reconstruction methods. Some of the recent examples in the literature
are [66, 73–75]. However, as such approaches take much longer than FBP, they no
longer provide the advantage of a fast reconstruction. In [66], Mehranian et al. proposed
a projection completion method with a regularized optimization scheme for MAR by
incorporating a wavelet-based Gaussian prior into the Bayesian reconstruction scheme
for X-ray CT data. A wavelet domain interpolation of the sinogram data allowed the
exploitation of the sparse nature of the sinogram. Daubechies 7-9 biorthogonal wavelets
with hard thresholding were used for filtering in wavelet domain. In [74], Tang et
al. utilized thresholding and a weighting image for the voxels near the metals, then
smoothened them via cubic interpolation to reduce secondary artifacts. The masked
sinogram and weighted image was reconstructed using TV based ASD-POCS to obtain
artificial projection values for the metallic regions, which was later used as the initial
image for FBP. Such a hybrid approach was used in P V, which combined inpainting with
iterative reconstruction methods to prevent secondary artifacts.

Iterative reconstruction methods have also been successfully implemented as stand-
alone solutions for MAR. These methods often incorporate the information about the
locations of metals into the reconstruction in the form of correction sinograms, which can
free the images from the risk of false values and boundaries. The iterative reconstruction
methods (EM and ART) for MAR were first suggested by [76] without any gap filling.
The idea of using iterative approach for MAR was further improved by [52, 75, 77, 78].
Iterative reconstruction methods are in general more robust against incomplete projections
caused by the metallic objects. While the completion of projections is a must for the
use of analytic reconstruction methods, the filling of the metallic regions is a more of a
matter of preference in iterative reconstruction.

5.2 Methods

Sequentially applied MAPEM (sMAPEM) was implemented using OSL approach
in P I [79]. It was selected for MAR due to its ability to accommodate detector gaps and
edge preservation abilities [79]. MRP was chosen for incorporating prior information into
the reconstruction. Firstly, the sinogram bins, which were affected from the metal objects,
were segmented out using a multilevel segmentation method. In the update step, the
values of the metallic regions were replaced with 1 in Jimetals

, which were later estimated
via MLEM. The projection data without metals, pi for i=1,2,...,I, were used in MAPEM.
The image estimate for the next iteration was calculated with sMAPEM as
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xk+1
j =
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i=1 aij + β
xk

j
−Mj

Mj

·
I∑

i=1
( pi∑J

j=1 aijxk
j

+ Jimetals
)aij , (5.1)

where Mj is the penalty reference calculated by median filtering of the current image
estimate for a local neighborhood around the jth voxel [49]. Throughout the iterations,
the strength of the regularization was set by gradually decreasing the value of the
penalty weight β from 1 to 0.01. With this sequential application of the spatial domain
regularization filter, the missing parts of the sinograms were filled consistently while
the undesired effects (such as blurring) of the spatial domain regularization filter were
minimized.

Adaptive multiresolution MAPEM (amMAPEM) was used in P III for the
reconstruction of a jaw phantom after segmentation of metallic regions with multi-level
Otsu’s thresholding. The reason for using this reconstruction was its shorter reconstruction
time compared to sMAPEM, as well as its performance in the presence of missing wedges
in electron tomography [80]. Unlike the single resolution level in sMAPEM, amMAPEM
reconstructs the image at different resolution levels to speed up the algorithm. The
amMAPEM uses the formula of

xk+1
j =

xk
j∑I

i=1 aij + βj
xk

j
−Mj
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·
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pi∑J
j=1 aijxk

j

aij , (5.2)

where βj is a voxel-wise regularization parameter determined by the voxel values in the
previous resolution level. The summing of voxels in lower resolution levels provides a
natural noise penalization. Mj was calculated from the median values in the neighborhood
of each voxel. The iterations at each resolution level were stopped once a pre-determined
error between two consecutive iterations was reached. The final estimate for each resolution
level was used as an initial estimate for the next one. In this case, no gap filling was used
in order to avoid errors during resizing between resolution levels.

Multiresolution conjugate gradient with total variation penalty (MRTV-CG)
was implemented in P V as an LS method for tomographic data reconstruction for MAR.
The conjugate gradient LS (CGLS) method tries to invert

Ax + η = p, (5.3)

where A is the projection operator (Radon transform in this case) and x is the image in
spatial domain. p is the measurement vector and η is the noise term given by η(x) = Dx,
where D is a regularized form of TV penalty. A regularized solution of Eq. (5.3) can be
obtained through the following TV regularized algorithm:

x`+1 = (ATA + DΓ`D)−1ATy, (5.4)

where Γ` is a weighting matrix that satisfies Γ0 = I and Γ` = diag(| Dx`| + γI)−1 for
` ≥ 1 with γ ≥ 0. The regularization matrix D is given by the derivative of the TV norm
and it is formulated as
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Di,j = β(2δi,j − 1)l(i,j)

maxi,j l(i,j) + αδi,j , δi,j =
{

1, if j = i,
0, otherwise, (5.5)

where β determines the strength of TV penalty. Parameters α and γ ensure the invertibility
of the matrices D and Γ` so that the TV iteration does not diverge. l(i,j) represents the
length of the edge between ith and jth voxel. The term maxi,j l

(i,j) refers to the maximum
length of a voxel, and it can be regarded as the voxel width in the reconstruction. The
first term of Di,j in Eq. (5.5) penalizes the jumps over the voxel edges and the second
one corresponds to the TV norm of x. The CG method was used for the matrix inversion.
If the iterations of CG converges, it minimizes the regularized objective function

F (x) = ||Ax− p||22 + 2||Dx||1, (5.6)

which can be proven based on an alternating steepest descent iteration for L1-norm
regularization assuming that D is an invertible coordinate transform, for which the
diagonal weights of D need to be non-zero [81]. Note that Eq. (5.6) is differentiable
anywhere but at one point.

In an attempt to prevent streaking artifacts from the data inconsistency at the
tissue/metal boundaries, a sinogram filtering step was implemented after inpainting, prior
to image reconstruction. In this step, dual-tree complex wavelet transform (DT-CWT)
was used to hard-threshold the lowest 80 % of the wavelet coefficients of the sinogram.
The DT-CWT has a higher directional sensitivity compared to conventional 2D wavelet
transforms, which helps to preserve the edges in the image.

A multiresolution approach was used in P V to reconstruct the image details at
different resolution levels. In the presence of noise, an image reconstructed with the finest
resolution can result in severe artifacts due to the inconsistencies in the data. However, if
the measurements are divided into coarse (i.e. larger voxel size) and fine (i.e. smaller
voxel size) resolution levels, then the coarse level reconstruction imposes a regularization
on the noise. The reconstruction of the coarse level measurement is therefore more reliable
for the large structures in the image, while the finer resolution levels can be used to add
detail into the image after filtering the noise. These properties make multiresolution a
good choice for reconstruction of noisy measurements like low dose CT data with metallic
objects. In P V, the measurement data was divided into separate resolution levels in the
wavelet domain. The wavelet coefficients of each resolution level were filtered separately,
decreasing the possibility of thresholding the relevant information out. It was observed
that the filtering of the wavelet coefficients contributed to controlling the level of noise.
More details on the use of the multiresolution approach is presented in PV.

5.3 Dataset preparation

It is a difficult task to develop a MAR method for experimental CT data due to different
protocols in clinical practice and various physical causes of artifacts in the presence of a
high density object in the FOV. Phantoms offer a simpler environment to develop and test
new MAR methods. They also enable the modeling of different causes of metal artifacts
individually, making it possible to assess the limitations of a MAR algorithm. As MAR
methods developed in the context of this thesis focus on the head and neck region, a set
of numerical 2D jaw phantoms was constructed based on the FORBILD jaw phantom of
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Oliver Watzke 1. The jaw phantoms used in P I and P III are presented in Figure 5.1
with their respective noiseless sinograms.

Figure 5.1: 2D numeric jaw phantoms and their sinograms with different size and amount of
metals for evaluation of the MAR methods. Each image is 256 × 256 pixels, and each sinogram
consists of 256 axial views and 288 projection angles. The masked sinograms after segmentation
of metals were used as inputs for image reconstruction. The metals are marked in red.

Several criteria were taken into consideration for the construction of the phantoms.
As the size, location and number of metallic implants can affect the MAR performance,
metallic objects with different sizes and in various locations were embedded into the jaw
phantom. The intensity values of the metallic objects (golden crown in this case), teeth,
jaw bone, soft tissue and oral cavity were 19.3, 2.2, 2, 1 and 0.25, respectively, according
to the ratio of the attenuation coefficients of these tissues. The effect of noise on the
reconstruction methods was also investigated using noisy projection data.

Prior to reconstruction, the metallic regions were extracted from the projection data
in P I and P III with a segmentation based on Otsu’s thresholding, which separates the
histogram of the data into two clusters with minimal intra-class variance of the mean value
[82]. As it selects the threshold from the histogram of the data, Otsu’s threshold is stable
and automated. However, it can fail if the two clusters have very different sizes, which is
the case in the segmentation of high density objects and anatomical structures. In such
cases, the selected maximum mean value might be the valley of the histogram. This is why
a segmentation approach, which performs multi-level thresholding and multiplies Otsu’s
threshold with empirical weights, was developed. These weighted thresholds are used to
obtain a binary mask for the metals. Finally, the binary mask is back and re-projected to
ensure the continuity of the high density objects on the projection data. In P V, perfect
segmentation was assumed.

The proposed methods in P I(sMAPEM), P III(amMAPEM) and P V(MRTV-CG)
were compared here using the phantom in Fig 5.2a here to allow a fair comparison.
The reconstructed images were first evaluated visually and then quantitatively. The
metallic regions in the masked projection data were filled via inpainting, prior to FBP
and MRTV-CG reconstructions. For sMAPEM and MLEM, these gaps were assigned a
fixed value of 1 in the projection data. In amMAPEM, the metallic regions were left as
zeros in the projection data. The details of each reconstruction are given in Table 5.1.

1http://www.imp.uni-erlangen.de/forbild/deutsch/results/jaw/jaw.htm
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(a) (b)

Figure 5.2: (a) The 2D jaw phantom with metals (256 × 256), (b) ROI that was used for
the calculation of CoV (marked blue) and the line along which the line profiles were calculated
(marked red), overlaid on the ground truth image.

Table 5.1: Details of the reconstruction methods

Method Penalty function Filter Interpolation β value Stopping MSE
FBP None Hann Bilinear - -

MLEM None None Bilinear 0 10−6

sMAPEM MRP None Bilinear [0.01 1] 10−6

amMAPEM MRP None Bilinear voxel-wise 10−6

MRTV-CG TV CWT-DT Bilinear 4 -

For quantitative analysis of the reconstructed images, CoV, SSIM, MSE and line
profiles were used in this work. CoV values for the reconstructed images were calculated
for a uniform region in the oral cavity (see blue ROI in Figure 5.2b). The line profiles
were measured along the red line in Figure 5.2b.

5.4 Results

The results of all reconstruction methods developed for MAR are presented in Figure
5.3 for the 4-metal case, with (0.8 % zero-mean additive Gaussian noise) and without
noise. Visual comparison of the noiseless reconstructions show that the MAP methods
easily accommodate the gaps in the data. Both sMAPEM and amMAPEM preserve the
metal/tissue boundaries and the images are almost artifact free. The dark bands along
the metals are still visible in FBP despite the inpainting for larger metals. The dark
streaks around the smaller metals in images reconstructed with MLEM make it difficult
to identify the metal/tissue boundary.

When the noisy reconstructions are compared, the effect of noise is clear in images
reconstructed with FBP. It can be observed that multiresolution LS solution (MRTV-CG)
and both MAP methods perform well in the presence of noise, while preserving the
anatomical shapes and borders. The edges of the jaw phantom are distorted in MLEM,
and this distortion is slightly visible also in the sMAPEM and amMAPEM results. The
noise is significantly reduced with amMAPEM, followed by sMAPEM. Note that the gaps
from metals were not filled in amMAPEM in order to prevent interpolation errors during
the rescaling of the projection data between resolution steps.

The results of quantitative analysis are shown in Table 5.2. The best values for each
criterion are marked in bold. sMAPEM, in overall, performs the best for the noiseless
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Figure 5.3: Reconstructed images with 4 metals. The 1st and 2nd rows present the results
without and with additive Gaussian noise with standard deviation of 0.8% respectively. All
image intensities are shown in the range of [0, 2.5].

and noisy reconstructions, followed by amMAPEM. Despite the successful noise reduction
of amMAPEM (lowest CoV for noisy reconstructions), the SSIM and MSE values are
worse than other ML methods due to the gaps left in the place of the metals in the image.
MLEM has an overall performance close to MAP methods with similar SSIM values,
but the CoV shows the difference between them in terms of noise reduction. Although
MRTV-CG has the much lower SSIM than other MAP methods, its MSE performance is
comparable. This is largely due to the hard-thresholding of the wavelet coefficients in
MRTV-CG, which could be improved by other filtering approaches.

Table 5.2: Quantitative evaluation of results from Figure 5.3

FBP MLEM sMAPEM amMAPEM MRTV-CG
SSIM without noise 0.59 0.86 0.95 0.89 0.44

SSIM with noise 0.36 0.69 0.72 0.66 0.36
CoV without noise 0.27 0.12 0.05 0.09 0.29

CoV with noise 0.39 0.18 0.15 0.11 0.30
MSE without noise (× 100) 2.60 2.94 1.13 4.92 3.27

MSE with noise (× 100) 2.96 3.43 1.50 4.94 3.59
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A part of the line profiles of the images reconstructed from noiseless and noisy
projections are presented in Figure 5.4. For the noiseless reconstructions, despite the
compensation of the gaps via inpainting, FBP cannot recover the intensity values at the
edges. MLEM also has a poor performance near the metals. The closest reconstruction
to the ground truth at the metallic region is achieved by MRTV-CG, despite the slight
overshoot in the other pixels of the line profiles. Both amMAPEM and sMAPEM recover
the intensity values and preserve clear metal/tissue boundaries, but sMAPEM recovers the
edges more accurately than amMAPEM. Among the noisy reconstructions, the line profile
of amMAPEM clearly has less fluctuations, indicating a successful noise suppression.
sMAPEM closely follows the line profile of amMAPEM, with slightly higher noise in
the image. The use of Hann filter in FBP helps reducing the effect of noise in the
reconstruction. Despite the noise penalization in both MAP methods, the line profiles
are close to the ground truth and the metal/tissue boundaries are preserved. MLEM line
profile is significantly affected by the noise, while MRTV-CG successfully suppresses most
of the noise.

Figure 5.4: A section of the line profiles from (left) noiseless, and (right) noisy reconstructions.
The metallic object is between 39th and 54th pixels.

5.5 Discussion

The MAR methods used in this thesis aim to (1) improve segmentation of high density
materials, and (2) reduce the metal artifacts with penalized iterative reconstruction
methods. The segmentation method based on multilevel Otsu’s threshold allowed a more
accurate representation of the metals compared to a single threshold. Although it was
not implemented for the phantom, the segmentation approach would benefit from a
pre-processing step to improve the contrast for the reconstruction of experimental data in
order to preserve consistency of the projections.

In P I, the gaps were filled with a constant value, whereas for P III, we haven’t
replaced the intensity values of the metals. The goal in P I and P III was to reduce the
artifacts around the metals and ensure a clear edge while suppressing the noise, which
were achieved by both methods. Among the LS solutions implemented for MAR, Sidky
et al. utilized the steepest descent algorithm to solve the inverse problem [52]. The
steepest descent algorithm uses the opposite direction of the largest gradient among the
gradients of each image dimension to select the direction of optimization, and it can get
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stuck in a limit cycle, requiring an additional adaptive step size parameter to ensure
convergence to a solution. We have chosen conjugate gradients in P V instead of the
steepest descent because the number of iterations in CG can be used as a parameter to
modify the behavior of the algorithm. The CG algorithm has also a faster convergence
rate than steepest descent. It was also demonstrated in the images reconstructed with
MRTV-CG in P V that combining projection completion and iterative reconstruction
can be beneficial for MAR. To improve reconstruction accuracy of the projection data, a
multiresolution decomposition was utilized in P V, similar to the work of Mehranian et
al. in [66].

The filtering step of wavelet coefficients in P V had a similar motive to Zhao’s work
[67]. Using wavelet coefficients, one can distinguish different frequency components and
filter the high frequency artifacts caused by metals and noise without disturbing the edges
of the object. In this regard, the selection of wavelet is important. The 2D DT-CWT
used in P V can recognize the orientation of the image fluctuations, which makes it is
considerably less sensitive to the artifacts related to alteration or compression of the
coefficients as compared to the wavelet transforms like orthogonal wavelet transforms or
biorthogonal wavelets [67]. For comparison of the effects of the DT-CWT, Haar wavelets
were used in P V. The reconstructed images after filtering with Haar wavelets resulted
in voxelization of the images, whereas the DT-CWT recovered the details of the image
successfully.

The physical processes can have an effect on the reconstruction as they change the
interaction between the object and the X-rays. Although they were not included in P I
and P III, a similar jaw phantom to Figure 5.1 was designed in P V, taking into account a
polychromatic beam model when constructing the projection data. The phantom used in
P V is depicted in Figure 5.5. The polychromatic data was included into the reconstruction
to take the beam hardening effect into account in the forward model, improving the
accuracy of the acquisition model. The energy dependent mass attenuation coefficients
of gold, bone, hard tissue and soft tissue were obtained from the National Institute of
Standards and Technology (NIST) database. The risk of committing "inverse crime" was
avoided by first constructing the sinogram with 1024 pixels and then reconstructing it on
a 512 pixel-grid. In doing so, it was ensured that the system matrix size was different
for forward and backprojection, making the improvement of the reconstruction easier to
evaluate. For modeling of the noise, Gaussian noise with standard deviation of 10 was
used. Poisson measurements was also modeled with an initial emitted photon count of
105, which can be considered standard for low-dose CT simulations [83].

In Figure 5.6, one can see the difference between the reconstructions of monochromatic
and polychromatic projection data. In the polychromatic reconstruction, the shape of the
metal in ROI 3 is recovered better. In terms of RMSE values, it was observed that the
error with MRTV-CG decreased with polychromatic phantom thanks to better modeling
of the acquisition system. On the other hand, the error from the MRTV results with
filtering of the wavelet coefficients increased after implementing a polychromatic model.
This increase in error was possibly due to the fact that more realistic modeling of the
measurement system resulted in less blurring of the image, which in turn increased the
mismatch between the individual voxels of the ground truth and the reconstructed ROI.

For even more realistic evaluation of the methods, the line tracing method could
to be modified to include the effects of beam hardening and photon starvation, which
are the prominent causes of metal artifacts in dental CT images. Furthermore, the
assumption of parallel beam geometry was used for all forward and backprojections in
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Figure 5.5: (left) 2D numeric jaw phantom used for polychromatic measurement model. The
phantom image is 1024 × 1024 pixels, and its sinogram consists of 786 axial views and 256
projection angles covering 180 degrees. The metals are marked in red. The line profile was
calculated along the red line. (right) The evaluated ROI with a metal, overlaid on the ground
truth image.

(a) (b)

Figure 5.6: Reconstruction results in ROI with MRTV-CG with (a) monochromatic and (b)
polychromatic projection data.

the proposed reconstruction methods. For a more realistic reconstruction, the cone or fan
beam geometry could be incorporated into the projection model, similar to the work of
[52]. This would incorporate the error that occurs once the cone-beam is rebinned into
parallel-beam geometry upon reconstruction.

The reconstruction methods implemented for MAR accommodated the missing infor-
mation in the projection data caused by the metals and successfully reduced the artifacts.
The sMAPEM and amMAPEM preserved the borders around the metals clearly, which
would be useful when the region of interest is close to the metallic object. If the intention
is to reduce the effect of metals as much as possible in the reconstruction, then MRTV-CG
would be a better choice. The MRP and TV prior were considered in this work due to
their ability to distinguish between noise and edges. The implementation of such priors in
the reconstruction will result in less blurring and more accurate images compared to noise
suppression with various filters applied after the reconstruction. As a generalization of
the proposed reconstructions, with high noise or sparse data (i.e. low dose CT or limited
angle imaging), penalized iterative methods produce better images compared to MLEM
and FBP. This is why MRP and TV priors were also used for reducing the limited angle
artifacts and noise in PET data.



6 Artifact Reduction in PET: A
Scanner Design

In order to control the growth rate of cancer, effective and affordable approaches are
needed for its detection, diagnosis and treatment. According to 2013 statistics of the
International Agency for Research on Cancer (IARC), breast cancer is the second most
commonly diagnosed cancer type after lung cancer worldwide [84]. The same report shows
that breast cancer is also the most common cause of cancer deaths among women in
developed countries. Increasing numbers of occurrences and deaths due to breast cancer
indicate the importance of screening for breast cancer in its early stages, which can be
achieved non-invasively with good resolution imaging techniques such as mammography,
magnetic resonance imaging (MRI) and PET. MRI is not recommended as a part of
standard screening for breast cancer due to the high number of false positives and the
probability of missing some cancers that could be detected by mammography. While
structural information can be obtained from mammography, PET has a high potential in
detecting recurrences of cancer cases as well as selection and monitoring of cancer therapy
due to its functional imaging capability. PET is also useful for imaging radiodense or
fibrocystic breasts, where mammography results can be inconclusive. As more radiotracers
became readily available in the world, PET has become a more accessible alternative for
imaging. Unfortunately, the insufficient spatial resolution of a whole-body PET (around
4–6 mm) has prevented detection of small, early stage cancer lesions [85]. The low
affordability due to high cost of PET also prevented its wide spread use. As size of
equipment and use of space are important factors in developing regions and in small
clinics, the bulky size of whole-body PETs has also contributed to the demand for the
search for alternative PET solutions [86]. All these limitations of conventional whole-body
PET have led to the development of organ-specific PET scanners, which can provide
higher sensitivity and better spatial resolution (1–2 mm) than whole-body PET [85].
AvanTomography was proposed as a highly sensitive, affordable PET demonstrator with
a portable and modular configuration for breast imaging.

6.1 Review of previous work

Positron emission mammography (PEM) offers high sensitivity due to its proximity to
the breast. A small FOV, which is needed for high sensitivity, is achieved with either a
dual-plate configuration used in standing/sitting position, similar to other two plate PEM
scanners or with ring scanners that are used in prone position [87]. PEM with 2 opposing
plates offers flexibility over the positioning of the patient’s breast, as well as the ability
to accommodate different breast sizes over the ring type scanners (i.e. dbPET-MAMMI).
This configuration enables the visualization of axilla and the lesions near the chest wall

37
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and the possibility of incorporation with biopsy operations. Despite having lower contrast
and signal-to-noise ratio than ring scanners, dual-panel design results in lower noise and a
simple assembly without complicating the structure with rotation and center of rotation
corrections [85, 86].

Since the approval of PEM technology by Food and Drug Administration (FDA) in
2003 for pre-surgical planning, evaluation of axillary lymph nodes, monitoring response
to chemotherapy and to look for recurrent diseases, several PEM scanners have been
proposed [88]. Although many PEM scanners are under ongoing research in universities,
only few are currently available on the market [85, 87, 89]. While this might be interpreted
as lack of commercialization efforts, it also points towards a need for optimizing the
scanner structures for commercial use. A detailed account of the current dedicated breast
imaging devices, which includes PEM and gamma cameras, can be found in [85, 90].
Some properties of available PEM scanners are given in Table 6.1 [85].

Table 6.1: Coincidence-detection technologies applied to breast imaging, from [85].

Manufacturer Geometry FOV Energy resolution Spatial resolution
PEM-FLEX CMR Naviscan

Corporation,
San Diego, CA

2-panel 24 × 24 × 16.4 cm3 2.3 % at 511 keV 2.5 mm FWHM
(in-plane), 6-9 mm
cross planes

Clear-PEM Crystal Clear
Collaboration,
CERN

2-panel 16 × 16 × 18 cm3 16 % at 511 keV 1.4 mm at the center
of the FOV

dbPET-
MAMMI

Oncovision, Va-
lencia, Spain

Ring 17 cm diame-
ter, 4 cm ax-
ial FOV

- 1.6 mm (FWHM
in transverse FOV),
2.7 mm at the edges
of the FOV

C-shaped PEM [91] Shimadzu Cor-
poration, Kyoto,
Japan

Ring 22.8 cm
diameter,
and an axial
extent of
10.5 cm axial
FOV

16.9 % 0.7-1.2 mm

One of the challenges in breast imaging is the trade-off between system sensitivity
and spatial resolution in conventional PET scanners. In order to achieve an accurate
level of detail from a small object like breast, both sensitivity and resolution should be as
good as possible. The use of long and narrow crystals with a small diameter increases
the sensitivity, but it worsens the spatial resolution [92]. The degradation of the spatial
resolution occurs at the reconstruction step, where the center of the crystal is taken as
annihilation point. In longer crystals, this leads to the mis-positioning of the reconstructed
LORs. Wrongly reconstructed LORs cause parallax error, which is the estimation error
that occurs when incident photons at oblique angles cannot be measured. Parallax error
increases proportionally with the distance from the center of the FOV in radial direction.
The depth-of-interaction (DOI) information helps decrease parallax error, improving the
spatial resolution, even at the center of the FOV. Without the DOI information, it is
unlikely to achieve a good sensitivity and a good spatial resolution, which makes accurate
determination of DOI very important for PEM. Another alternative is the phoswitch
configuration, where two different crystals with different light decay constants are used
instead of one long crystal [93]. This solution gives two different DOI points at the center
of each crystal, thus decreasing the parallax error. It is also possible to use a dual-sided
readout from the scintillating crystals, in which the ratio of light between two detectors
reading the same crystal helps to determine the DOI [94]. TOF information can aid in
more accurate determination of the annihilation points as well, but its implementation
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is still expensive for its wide clinical application in small scanners. All these methods
are beneficial to achieve more accurate DOI points, but all use the same scanner crystal
configuration structure, therefore they can’t eliminate the parallax error.

Axial PET (AX-PET) design uses axially oriented crystals to decouple the sensitivity
from the spatial resolution [95]. The scintillating crystal layers in AX-PET are interleaved
with an array of plastic wavelength shifting (WLS) strips, placed orthogonal to the
crystals. When a photon deposits its energy in the crystal, a correlated amount of light is
isotropically emitted in a different wavelength. Emitted light from the crystal is captured
by WLS strips. The signals from strips and crystals are detected by individually coupled
photodetectors. This information is used to determine the 3D coordinate of the photon
interaction. Position of the crystal provides the hit location in x and y (transaxial)
directions, whereas the z (axial) coordinate is calculated using the position of active strips.
Intersection point of a crystal and a WLS strip results in the exact 3D coordinate of the
annihilation. The transaxial and axial resolutons are determined by the cross-sections of
scintillating crystals and WLSs respectively. The sensitivity depends on the type of the
scintillating crystals as well as the number of crystal layers used.

6.2 Methods

AvanTomography demonstrator proposed in P II is a prototype for a highly sensitive
PET scanner for breast screening. Its design was based on the work of the Axial PET
(AX-PET) project in CERN [95], which was developed primarily as a full ring scanner
for brain or small animal imaging. Its application in breast imaging brings some distinct
advantages over the whole-body PET and other PEM scanners. Firstly, as a type of
PEM, it has a higher sensitivity compared to whole-body PET due to its proximity to
the breast. Secondly, its axially oriented crystals eliminates parallax error and provide
an exact location of the positron annihilation. P II presents the physical measurement
setup of a 6-module scanner and the initial measurement results on its performance. The
configuration of individual modules and the AvanTomography demonstrator is shown in
Figure 6.1.

(a) (b)

Figure 6.1: (a) Crystal (LYSO type), plastic wavelength shifter (WLS) strip and photodetector
(MPPC®Hamamatsu Photonics, Japan) positioning within the AvanTomography modules, (b)
Placement of the modules in the AvanTomography demonstrator. A point-like source is placed
at the center of the FOV in the experimental setup.

The construction of the modules and associated electronics are explained in P II. The
initial measurements from the demonstrator aimed at characterization of the constructed
modules such as detection efficiency and sensitivity as well as energy calibration curves.
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6.3 Experimental setup

For the experiments, a 6-module prototype was constructed in P II. Each module was
designed to be electronically and mechanically independent, connected to the computer
via a USB cable for data processing. The hardware design for each module consisted of
a bias circuit, a sensor board, and a temperature compensation unit. P II explains the
electronic design of the individual modules in detail. One of the important considerations
in this design was to ensure that the bandwidth of the transmission was sufficient enough
to handle the high data load from individual readings without data overflow. A simple
user interface (see Figure 4 in P II) was designed to check the activity level of each
crystal and WLS strip. A point-like 22Na with 675 kBq activity within a polymethyl
methacrylate (PMMA) casing was used for the experiments. The modules were placed
so that the distance from the source to the closest module was 11 cm. For coincidence
sorting a time window of 10 ns, and an energy window of 350–650 keV were used. The
processing of the measured data from the detection by the photodetectors to digital
processing in the computer is also described in detail in P II.

6.4 Simulation setup

The prototype design was also assessed using Monte Carlo simulations in Gate [96].
The simulations in Gate were based on the Monte Carlo simulations of the AX-PET
group [97]. The simulated detector model comprised of separate modules consisting
of LYSO crystals and WLS strips. In order to simulate the WLS strips efficiently, an
analytical model of light transport within the crystals and strips was implemented into
Gate simulation tool. The axial coordinate of a hit was determined from the response of
the row of strips with 1.5 mm resolution. Due to the axial orientation of the crystals,
the standard Gate packages could not be used. To ensure the event positioning of the
simulations would match the physical model, the digitizer package was modified so that
when the photons hit the crystal, the axial coordinate of the hit would be preserved
instead of being merged. The digitization modules for the x- and y-coordinates were also
changed in order to position the hit at the center of the axially oriented crystals. In the
simulation, the included physical processes were photoelectric effect, Compton scattering,
Rayleigh scattering and gamma conversion for photons, multiple scattering, ionization,
bremsstrahlung and annihilation for electrons and positrons, and atom de-excitation.
These simulations were used to measure the performance parameters such as sensitivity,
energy and spatial resolution, count rate, noise equivalent count rate and scatter fraction.
Details of the simulated model can be found in [96].

The initial simulations were conducted with a point source to determine the spatial res-
olution of the system. The list-mode data collected from the simulation was reconstructed
with a voxel resolution of 0.5 mm3 using MLEM. Afterwards, a cylindrical phantom was
used to evaluate the performance of the scanner structure in a controlled environment.
The phantom consisted of hot and cold regions filled with water, having the total activity
of 1.5 MBq. The larger cylinder had a diameter of 6 cm, whereas the small cylinders
were 2 cm in diameter and placed 1 cm away from the center of the larger cylinder (see
Figure 6.2a). The list-mode data obtained from the simulations were reconstructed with
MLEM using 1 mm3 voxel size. Only the true coincidence events were considered in the
reconstruction. As DOI was calculated from the WLS and crystals, no TOF information
was considered in the reconstruction.
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6.5 Results

Preliminary experiments with the constructed modules, also presented in P II, resulted
in an energy resolution of around 14% FWHM in the sum of crystals. The recorded
photon attenuation values were 51% at the first layer, 32% at the second layer and 17%
at the third layer. The results of the experiments with the point source are presented in
Figures 6–9 in P II. Measured sensitivity was calculated as 0.00355% from an average of
5 measurements.

From the simulations, it was observed that the photoelectric events detected by the
modules decreased exponentially when the distance from the source increased. The
effective attenuation length has been calculated by counting the photoelectric at each
crystal layer (3 modules, each with two layers of LYSOs, leading to a total of 6 crystal
layers). According to the simulations of the photopeak statistics, 54% of the photons were
stopped at the first module. Attenuations in second and third layers of the simulations were
30% and 16% respectively. The reconstruction results from the point source simulations
indicated a transaxial resolution of 2.1 mm, which was calculated from the mean of
resolutions in x (2.5 mm) and y (1.7 mm) directions. According to the simulation results,
total sensitivity of the system was 502 cps/MBq (0.05 %). Axial resolution (z direction)
was calculated as 0.66 mm for 0.5 mm3 sampling size. The energy resolution obtained
from the simulations was 11.9%. In comparison, the AX-PET scanner resulted in 1.57
mm transaxial and 0.65 mm axial resolution with an energy resolution of 12.8% [98, 99].
The simulated phantom was reconstructed using 5M true counts, results of which are
depicted in Figure 6.2. No data correction was applied.

(a) (b) (c) (d)

Figure 6.2: (a) The ground truth image, (b) reconstructed image with MLEM after 8 iterations,
(c) MAP-MRP with β = 0.3 after 9 iterations, (d) MAP-TV with β = 0.05 after 9 iterations.

6.6 Discussion

Avantomography provides a PEM scanner alternative for low-dose PET imaging in breast
screening based on preliminary results. The simulations indicate a high sensitivity and
comparable spatial resolution with other PEM scanners presented in Table 6.1. It also
achieves a comparable energy resolution to Clear-PEM and C-shaped PEM.

AvanTomography prevents the parallax error upon reconstruction without any expen-
sive hardware required for TOF or phoswitch. Without the parallax error, the overall
uncertainty in the reconstructions decrease significantly for small FOVs. In this scanner,
the crystal length determines the scanner width, i.e. the size of the FOV in the transaxial
direction. Use of longer crystals can increase the scanner width, providing a larger FOV
in the axial direction as well as increasing the angular coverage. The increased scanner
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FOV also improves the sensitivity. When a full plate PEM configuration with 16 modules
in each plate and a FOV of 5 cm in diameter was simulated, the sensitivity increased up
to 2%, indicating that a larger scanner is crucial to achieve a good sensitivity comparable
to commercial scanners. It should be noted, however, that longer crystals would widen
the FWHM of the 511 keV peak, from which the energy resolution is calculated. This is
due to the decrease in the detected number of photons with longer crystals. Worsening
of the energy resolution for longer crystals creates a limit for the crystal length to be
used in a PET application. For a good energy resolution, it is important to be able
to distinguish the photoelectric peak from the Compton region. In order to ensure the
separability of the Compton and 511 keV peaks, the crystal length should not exceed 200
mm. Considering the other FOVs presented in Table 6.1, 15 cm-long crystals would be
needed to ensure sufficient counts and full coverage of the breast.

Separate bias boards, coupled to the temperature compensation units for individual
modules might be required in the future to ensure the temperature compensation of
channels with high count rates. Even though individual temperature compensation
circuitry and the use of temperature compensation coefficient in software would improve
the results in the future, the measurement system still provided reliable results for 2-hour
measurements with the radioactive source.

In the simulations, the sensitivity was found to be almost 10 times higher than the
experimental sensitivity. The difference arises from the fact that not all the properties of
the system were modeled. The experimental system has added dead time from the intrinsic
activity counts from Lutetium, cross-talk within a layer of crystals, and non-instant data
transfer times, which were not taken into consideration in the simulations. Furthermore,
in the measurement setup, some of the counts were lost within the data acquisition system.
This loss in coincidence counts was due to the fact that in the data recording, only one
LYSO event is registered with the corresponding charge. However, if there are two or
more crystals active at the same time, since both are registered with the same charge
value, it is currently not possible to differentiate between the high and low energy photons.
Therefore energy gating on this data eliminates possible coincidences. Handling of these
multiples in the data acquisition is required to achieve higher sensitivity. Furthermore,
multiple hits within the same layer being hit by the same photon constituted a large
part of the measurement data. However, their percentage in the simulated data was
much lower. The abovementioned differences between the simulations and experimental
data, as well as the data acquisition system imperfections are most likely the cause of the
difference in sensitivity values.

The reconstruction results from the simulations indicate that despite a slight elongation
in the background, the hot and cold regions preserve their shapes. Even the elongation in
the background is decreased in TV and MRP approaches compared to MLEM due to
the median filtering in MRP and differentiation in TV. The accuracy of the phantom
shape also confirms that the modifications in Gate packages have been successful. An
optimized binning size and data correction with a normalization map from the geometric
scanner configuration could be used for better reconstruction results. In overall, the
AvanTomography demonstrator showed promising results for a PEM scanner, with suffi-
cient resolution and sensitivity for cancer detection in breast. It could provide a low cost
and accurate alternative for breast screening with an optimized structure of its modules.
With its independent modular structure, it is also possible to design other organ-specific
scanners, which target visualization of a specific region rather than whole body.



7 Artifact Reduction in PET: A
Reconstruction Method

7.1 Review of previous work

In proton therapy, proton beam can deliver a high dose of radiation to the tumor with
minimal effect on the tissues nearby. However, if the dose is not delivered to the correct
location, healthy tissue can be damaged. Imaging of the secondary irradiation in proton
therapy using PET helps adjusting the treatment plan. There are several options to
combine PET imaging with proton therapy: (1) in-room PET, in which patient is
transferred to a PET scanner in the same room shortly after proton therapy, (2) off-line
PET in which patient is transferred to a PET scanner nearby after proton therapy with
several minutes delay, and (3) in-beam PET, in which the PET data is acquired during the
treatment. As the secondary radiation from proton therapy produces a high percentage of
the short-lived isotopes, it is important to minimize the time between the treatment and
PET imaging. In P IV, we focus on the reconstruction of simulated PET data acquired
during proton therapy. The in-beam PET data is difficult to reconstruct accurately with
conventional FBP or MLEM methods for two reasons. First issue is the low count rate
of the recorded PET isotopes during proton therapy, which makes the data very noisy.
Secondly, generally a partial ring configuration is required for the beam to pass through
the PET scanner, thus limiting the acquisition angles and decreasing count rates further.
A typical problem of limited angle reconstruction without penalization is elongation of the
object orthogonal to the beam direction [100]. Several papers have been published with
suggestions on how to use reconstruction methods to reduce the elongation of in-beam
PET data [62, 101–103]. A more detailed account of the published work can be found in
P IV.

7.2 Methods

P IV proposes a MAPEM reconstruction method with MRP in order to solve the
problems of in-beam PET data. The incorporation of MRP penalizes the noise in the
image without blurring the edges. This is a major advantage of MRP as in-vivo dose
delivery verification requires accurate determination of the edges. Otherwise, the range of
the proton beam can be misinterpreted, potentially harming the organs/tissues sensitive to
radiation. MAPEM with MRP was previously implemented by [104] with histogrammed
data, in which MAPEM with MRP successfully reconstructed histogrammed data from
real measurements. Similarly, the limited angle issue was tackled in P IV with the
reconstruction of list mode data instead of histogramming the data into sinograms (see
Chapter 3.4 for the comparison of list mode data and histogramming). TOF information
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was incorporated into the reconstruction to decrease the elongation in the reconstructed
image. The reconstruction of image xj for iteration k + 1 with MAPEM using the OSL
scheme is written as

xk+1
j =

xk
j∑I

i=1 aij + β ∂U(x)
∂xj
|xj=xk

j

L∑
l=1

∑
h∈Sl

aihj
1∑J

j=1 aihjx
k,l
j

, (7.1)

where β is the hyperparameter that determines the strength of penalization. β can take
values in the range of [0, 1] because the non-negativity constraint of the reconstruction
dictates that the maximum of the hyperparameter cannot exceed the maximum of the
normalized sensitivity image

∑I
i=1 aij . The difference of Eq. (7.1) from Eq. (3.29) is the

use of subsets in the reconstruction of the data. The recorded counts are divided into
L subsets (l = 1, 2, . . . , L), each subset containing h LORs. The h LORs within each
subset are backprojected once. Then, these backprojected images from all the subsets are
summed and used to update xk

j . Processing of list-mode data using subsets speeds up
the reconstruction L times.

The MRP and TV priors were selected as penalty terms for the reconstruction of data
in P IV. In the implementation of reconstruction with MRP, the derivative of the energy
function is replaced with the difference between the jth voxel of the image x at iteration
k, xj , and the median of the neighborhood centered at voxel j, Mj , resulting in the term
xk

j−Mj

Mj
. In TV, the penalty term is replaced with the derivative of the l1 norm of the TV

function. Note that both priors were applied over 3D data.

7.3 Dataset preparation

A geometrical and a realistic phantoms were simulated for testing the reconstruction
methods for in-beam PET data. In order to test the performance of the reconstruction
methods in controlled environments, both phantoms were simulated via Monte Carlo
simulation tool Gate [105]. For both phantoms, the reconstructions of partial ring
configurations (240 and 180 degrees coverage) were compared with the reconstructions
from the full ring data. CRT for standard for PET scanners was taken as 400 ps (LOR
length of 6 cm), and 200 ps (LOR length of 3 cm) was considered as the best-case scenario.
Details of both simple and realistic phantom simulations are presented in Table 7.1.

Table 7.1: Details of phantoms used in for reconstruction of in-beam PET data

Phantom Scan time Total activity Counts (full ring) Simulated isotopes
Geometrical
phantom

60s 4 MBq 0.3 million 15O

Realistic
phantom

120s 5.9 MBq 4.5 million 10C, 11C, 13N, 14O,
15O, 30P, 38K

For the geometrical phantom, a 12 cm-long polyethylene nonvoxelized phantom with
10 cm radius was constructed with 1 kBq/cm3 activity. A high activity (hot) cylinder was
inserted into it with an activity level of 4 kBq/cm3. Another cylinder was inserted into
the larger cylinder, filled with air (see P IV for details of the simulated PET scanner).
The size of the reconstructed images for the geometrical phantom was 81× 81× 45 voxels
in x, y and z dimensions.



7.4. Results 45

For the realistic patient case, the simulated treatment plan in Geant4 Simulation Toolkit
for irradiation of a tumor near the spine and the corresponding CT data was provided by
the Department of Radiotherapy of the University Medical Centre in Groningen [106].
The isotopes collected from this simulation was used for Gate simulations of the PET
scanner. Three proton fields were delivered with proton beam angles of +40, 0 and -40
degrees with respect to the x axis in Figure 7.1b. The reconstructed image size for the
realistic patient phantom was 125 × 88 × 110 voxels in x, y and z dimensions. Both
phantoms are shown in Figure 7.1 with voxel size of 4 × 4 × 4 mm3 for the reconstruction
of both phantoms. Such large voxel sizes helps in reducing the statistical noise in the
images as well as decreasing the amount of averaging required for a reliable analysis of
the edges. All data corrections were implemented within the reconstruction algorithm in
order to preserve the Poisson characteristic of the measurement system.

Figure 7.1: The transverse views of (a) geometrical and (b) realistic phantoms

Normalization correction was applied to both geometrical and realistic phantoms. For
the geometrical phantom, the sensitivity matrix was calculated with a separate Gate
simulation. For this simulation, the same scanner configuration for the geometrical
phantom was used, but the FOV was defined as a vacuum with uniform activity and
no object. The detector responses were recorded for sufficiently large number of events.
Each recorded LOR was backprojected and summed to form the normalization coefficient
for each voxel. The normalization correction is represented with the term

∑I
i=1 aij

in
Eq. (7.1). For the realistic phantom, the sensitivity matrix was computed analytically by
backprojecting one count per LOR.

Attenuation correction factors (ACFs) for both geometrical and realistic phantoms
were constructed by calculating the attenuation of each LOR on-the-fly during the
backprojection. All the LORs were multiplied with their corresponding ACF. For the
realistic phantom, the HU values of the CT image from the patient were scaled using
bilinear interpolation to calculate the attenuation values [107]. Randoms were found
to be small enough (approx. 6% of total counts) due to low activity levels, therefore
randoms corrections was not implemented into the reconstruction. For the simplicity
of reconstruction, scattered counts were also excluded from the list mode data prior to
reconstruction.

7.4 Results

7.4.1 Geometrical phantom results
The optimal hyperparameter values (β) for TV prior and MRP were selected according to
the NMI values of the reconstructed images. Tested β values were 0.01, 0.04, 0.08, 0.15,
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0.3, 0.4, 0.6 and 0.8. The NMI values calculated for different β are shown in Figure 7.2
for a full ring configuration with 400 ps CRT. For MLEM, β is zero and it is shown in
Figure 7.2b only for comparison.

(a) (b)

Figure 7.2: (a) NMI values calculated from the 3D volume of the geometrical phantom for
full ring configuration with 400 ps CRT over 100 iterations. (b) The mean NMI values at 50
iterations for various β values. MLEM was stopped after 7 iterations. The voxel size is 4 × 4 ×
4 mm3.

The 2D slices of reconstructions with the tested β can be seen in Figure 7.3. For
MAPEM-MRP, β greater than 0.3 improves the contrast upon visual inspection (see
Figure 7.3), but the NMI values in Figure 7.2 are slightly lower for large β due to
blurring. For MAPEM-TV the β value of 0.08 results in the highest contrast and best
noise reduction. According to the results in Figure 7.2 and Figure 7.3, the optimal
hyperparameters for MRP and TV prior were selected as 0.3 and 0.08 respectively. The
NMI values from the partial ring configuration (2/3 ring) for the phantom are presented
in P IV.

β=0.01 β=0.04 β=0.08 β=0.15 β=0.3 β=0.4 β=0.6 β=0.8

Figure 7.3: 1st and 2nd rows show the reconstructed images from the geometrical phantom
with MRP and TV priors respectively after 50 iterations using various β values. Images depict
the central slices in z direction, reconstructed using full ring configuration with CRT of 400 ps.

The reconstructed images from the geometrical phantom are shown in Figure 7.4. The
elongation is visible for reconstructions of partial rings with MLEM and MAPEM-TV,
especially with 400 ps CRT. A better CRT decreases the elongation significantly in
2/3 ring reconstructions for these methods, but it is not enough to compensate for the
elongation in the 1/2 ring configuration. Checkerboard artifacts are observed in the
images reconstructed with MAPEM-TV. Some artifacts are visible outside the phantom
with MAPEM-MRP, which are more pronounced in the MAPEM-MRP results from the
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partial ring scanners. On the other hand, almost no elongation is visible in any of the
MAPEM-MRP results.

Full TOF400 Full TOF200 2/3 TOF400 2/3 TOF200 1/2 TOF400 1/2 TOF200

Figure 7.4: Reconstructed images for the geometrical phantom. Rows 1, 2 and 3 show the
results from MLEM, MAPEM-MRP and MAPEM-TV respectively. Images here are the central
slice in z direction.

The accuracy of the edges in the reconstructed images were evaluated with the 50%
point of the maximum along the sigmoid functions fitted to the line profiles. The line
profiles were calculated along the red line on the geometrical phantom in Figure 7.1.
The 50% value is denoted with h0 in Eq. (4.8). The sigmoid functions were fitted to the
normalized line profiles over the central slice and its two closest neighbors along the z
direction. The h0 and slope (b) values are presented in Table 1 of P IV, in which all
full ring reconstructions result in h0s close to the h0 of the emission map. Although the
steepest slope for the full ring reconstruction is achieved by MAPEM-TV, the slopes of the
partial ring reconstructions are significantly steeper for MAPEM-MRP than MAPEM-TV
and MLEM.

As a measure of noise reduction in the reconstructed images, CoV was calculated
over the volume of the large, background cylinder with uniform activity. The regions
at the vicinity of low and high activity cylinders were excluded from the VOI to ensure
the uniformity of the radioactivity concentration. Lower CoV indicates less noise in the
reconstructed images, while large CoV is a sign of large variation between pixels. The
CoVs for the reconstructed images are presented in Table 1 in P IV. It can be observed
that MLEM has the highest levels of CoV despite the early stopping after 7 iterations.
Both MAP methods have significantly lower CoVs than MLEM, irrespective of the ring
configuration or the TOF. The CoV values of MRP are generally lower than that of TV,
as well as having smaller variability between slices.

7.4.2 Realistic phantom results

To find the optimal hyperparameter for the realistic phantom, β values of 0.01, 0.02, 0.05,
0.07, 0.3, 0.4, 0.6 and 0.8 were tested. The NMI values are presented in Figure 7.5. The
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NMI values follow a similar trend as the NMIs of the geometrical phantom, in which
MRP retains the NMI values well over 40 % for all β, whereas NMI values of TV prior
peak around β = 0.02 and then rapidly decrease for larger β. Based on the NMI results in
Figure 7.5, optimal β values for TV and MRP were chosen as 0.02 and 0.3, respectively.

(a) (b)

Figure 7.5: (a) NMI values calculated from the 3D volume of the realistic phantom for full ring
configuration with 400 ps CRT over 100 iterations. (b) The mean NMI values at 50 iterations
for various β values. The voxel size is 4 × 4 × 4 mm3.

The 2D slices from the reconstructed images are also shown in Figure 7.6. MRP is
effective at noise suppression with β around and greater than 0.3, below which the prior
is not strong enough to reduce the noise in the images. Larger β than 0.3 only causes
slight blurring in the images reconstructed with MAPEM-MRP in Figure 7.6. For TV,
the opposite is valid; smaller β than 0.02 effectively suppresses the noise in the images,
but higher vales cause checkerboard artifacts, also called staircasing artifacts in [51].

β=0.01 β=0.02 β=0.05 β=0.07 β=0.3 β=0.4 β=0.6

Figure 7.6: 1st and 2nd rows show the reconstructed images from the realistic phantom with
MRP and TV priors respectively after 50 iterations using various β values. Images depict the
central slices in z direction, reconstructed using full ring configuration with CRT of 400 ps.

The reconstructed images from the realistic patient phantom are depicted in Figure 7.7.
They were compared with the emission image, which is the map of the radioactivity
distribution directly obtained from the simulation of the PET isotopes. The results show
an elongation in the direction of the partial ring detectors for MLEM with 400 ps CRT,
especially for the 1/2 ring. The edges of MAP reconstructions are sharper compared
to MLEM. Despite some activity outside the emission area in MRP, the overall visual
inspection indicates better reconstruction of the low activity areas close to the edges of
the irradiated area.
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emission map

Full TOF400 Full TOF200 2/3 TOF400 2/3 TOF200 1/2 TOF400 1/2 TOF200

Figure 7.7: Reconstructed images for the realistic phantom. The top row shows the emission
image. The 3 rows below the emission image show the reconstructed images with MLEM,
MAPEM-MRP and MAPEM-TV respectively. Images here are the central slices along the z
(axial) direction.

The accuracy of the reconstructed edges were evaluated using the sigmoid fit parameters
h0 and b. The sigmoid fit parameters for the reconstructions from the realistic phantom
data are presented in Table 2 in P IV. The functions were fitted to the normalized line
profiles over the central slice and its two closest neighbors along the z direction. Although
h0 values of MAPEM-TV are closer to the emission image than other reconstructions,
the slope of the sigmoid fit is steeper for the MAPEM-MRP reconstructions. All fit
parameters show a closer fit to the emission image with better TOF information.

The CoV values for the realistic phantom are shown in Table 2 of P IV, which were
calculated over the volume enclosed by the 80% iso-contour line (marked red in Figure 6 in
P IV). It is clear that all full ring configurations have similar CoVs with the MAP methods.
For the partial ring configurations, the variability across slices increase significantly. The
lowest CoV is achieved by MAPEM-MRP for nearly all configurations. The CoV values
of MLEM is close to those of MAPEM-TV largely because the early stopping of MLEM
prevents the amplification of noise, and that the checkerboard artifacts in MAPEM-TV
increase the CoV in the selected VOI.

The iso-contours for the reconstructions are depicted in Figure 6 of P IV. MAPEM-
MRP reconstructions have more similar iso-contour lines to the emission image compared
to MLEM and MAPEM-TV. With MAPEM-MRP, the high activity area, iso-contours
marked with red in Figure 6 of P IV, are very close to that of the emission image. On
the other hand, the partial ring reconstructions of MLEM and MAP-TV do not correctly
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recover the iso-contour lines for the same area.

7.5 Discussion

The limited angle artifacts in in-beam PET data were effectively reduced with the
implementation of MRP in MAPEM reconstruction in P IV. Based on the results presented
here and in PIV, MRP was found to be less sensitive to hyperparameter selection compared
to TV prior, which is also supported by previous research on MRP hyperparameter values
[49, 50]. Although 0.3 was selected as optimal value for β for MRP in this work, higher
values would also be feasible, with minimal blurring at the edges. On the other hand, the
selection of β for TV proved to be critical for the reconstruction quality, which produces
artifact-free images for a small range of values. This was also pointed out by Kinouchi et
al., where they have used MAP-TV for reconstruction of pencil-beam measurements [101].
Panin et al, who have proposed the TV method for regulating the EM algorithm, also
noted the possibility of staircasing effect in the presence of noise [51]. These studies could
raise the possibility that such checkerboard artifacts are observed due to the selection of
MAP or EM algorithms, if they weren’t also observed in [6], where the checkerboard effects
were particularly visible for low-count reconstruction results despite using TV together
with alternating direction method. It is possible then, that the sparsity assumption does
not hold in the presence of high noise in the data, leading to checkerboard effect. This
hypothesis was also tested in the thesis work of [108], which showed that the Gaussian
filtering together with MAP-TV improves the results of MAP-TV, indicating that the
high noise can indeed be the source of checkerboard effect in TV for some penalty weights,
and that it can be alleviated with a smoothening filter. Another way to obtain better
results with TV, according to the work of Yu et al., is by implementing Poisson TV,
which utilizes alternating direction method to solve the TV objective function [6]. They
found that LS-TV resulted in higher contrast than Poisson TV, but Poisson-TV was
more accurate with lower bias and variance compared to LS-TV. As the accuracy of the
reconstruction is more important in proton therapy than the contrast, Poisson-TV could
be a possible alternative for incorporating TV prior into in-beam PET reconstruction.
Incorporation of wavelet domain filtering into the penalty term alongside TV prior can
also help alleviate the artifacts caused by the TV term [109].

As general observations, the selection of the reconstruction method had a greater
impact on the reconstructed image fidelity than the CRT of the system. For instance, the
elongation was clearly visible with MLEM unless very good TOF information ( < 200
ps) was available. In contrast, very little elongation was observed with MAP methods.
Both MAP methods were stable throughout large number of iterations. When two MAP
methods are compared, the contrast recovery of MRP results was better than the ones
with TV prior. The relationship between CoV and reconstruction methods were similar to
the observations in [62], in which MLEM results from full ring scanners had higher CoV
than partial ring reconstructions with MAP-TV. Despite the difference in CoV values,
the NMI values in Figures 7.2 and 7.5 were similar to those of MLEM for optimal β.
This shows that although NMI is a good measure for overall image similarity, it does
not necessarily give us information about the noise reduction performance of different
reconstruction methods. The changes in NMI in terms of image quality was also found to
be smaller than the CoVs in [62]. The accuracy of the edges were similar for both MAP
methods, but the steeper slopes of MAPEM-MRP reconstructions indicate sharper edges
around the irradiated volume. The parameters of the sigmoid fits presented in P IV were
in line with the observations on the distal falloff in [62], in which smaller errors and lower
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variations were noted for images reconstructed with MAPEM compared to MLEM.

The artifacts in MRP, which occurred outside the irradiated area, were most likely
caused by the tails of LORs. The distortion of the slices at the edges of the irradiated
volume decreases the NMI of MAPEM-MRP, but it does not affect majority of the slices.
Despite the fact that [110] observed similar artifacts with OSEM, not MRP, the authors
mentioned that such artifacts outside the images object do not effect the dose verification
via PET imaging because the approximate beam location is already known a priori. The
same argument is valid for the study of dose verification with MRP.



8 Conclusion

The artifacts from missing measurements prevent the accurate reconstruction of structures
in tomographic imaging that is crucial for assessment and diagnosis of the imaged
subject. The methods developed within this work aimed to reduce the artifacts caused by
incomplete data in medical tomographic images with the inclusion of prior knowledge
into the reconstruction. They were implemented for incomplete projection data created
by (1) the gaps after extraction of high density materials from the projection data in
dental CT and (2) limited angular coverage of PET scanners.

The MAR methods proposed for dental CT were tested with a set of phantoms
constructed to simulate relevant biological structures for better evaluation of the algorithm
performance for each reconstruction problem. Effects of size and proximity of the high
density materials were studied, as well as the noise levels and penalty weights. After
qualitative and quantitative analysis, it was found that the methods implemented here
could provide useful for preventing secondary artifacts after removal of the metallic
objects, after being tested on experimental data. The shape, size and proximity of high
density materials were found to be important when assessing the performance of the
proposed methods, as for small, circular objects gap filling and analytic reconstruction
methods may be sufficient. For larger or irregular shaped objects, however, iterative
reconstructions would be preferable.

This thesis work on partial ring PET scanners addressed the low sensitivity problem
caused by the missing detectors. A dual-panel axial PET demonstrator was designed and
constructed, with its properties optimized for breast cancer screening. The preliminary
experiments and Monte Carlo simulations were conducted to evaluate the performance of
the scanner. With its accurate 3D localization and close proximity to the breast, such
a scanner could provide a comparable sensitivity with other available PEM scanners
with full-coverage, as well as offering a high resolution decoupled from the sensitivity. A
software method, MAP reconstruction with MRP implemented for list-mode data, was
also proposed to compensate for the missing angles of in-beam PET data. Various TOF
information and angular coverages were studied on geometrical and realistic phantoms,
using realistic dose levels and CRT values. The reconstruction results compared the
proposed reconstruction method with previously suggested ones in the literature. MAP
with MRP was shown to improve the reconstruction efficiently and in a robust way,
despite the low-count rates and partial angular coverage of PET data typically acquired
during proton therapy.

Although the iterative reconstruction methods implemented in this thesis produced high
quality reconstructions, it is important to note that for high-dose/count imaging, analytic
reconstruction methods with various gap filling techniques produce fast and reliable
images. The iterative methods are slower due to multiple iterations required to obtain
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an image. More specifically, MAP methods might introduce bias to to non-negativity
constraints and different convergence rates in low and high dose/count regions in the
image. It is reasonable to assume that with the continuous development of computing
power and parallel computing approaches, the iterative methods may become standard
for difficult cases of CT imaging as well as for the new types of PET scanners.

The results presented in this thesis were aimed at providing practical solutions to
the problems posed by limited-angle data in dental CT and PET. MAP with MRP
successfully reduced the noise in a robust way in terms of penalty weight, compared
to conventional methods, as well as improving the image fidelity. The effectiveness of
the proposed methods in the reconstruction of the low dose/count measurements is also
another reason for their implementation in clinical practice. Additionally, the successful
application of a data-driven prior such as MRP could widen the possible application areas
of such priors in the future.
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Abstract:Metal artifacts and their reduction is a common 

problem in imaging field because artifacts arising from these high 

density objects often hinder the underlying anatomical structures. 

This study investigates the performance of sequentially applied 

maximum a posteriori expectation maximization (MAP-EM) for 

metal artifact correction. Firstly, positions of metal objects were 

identified with a novel multi-level segmentation method based on 

weighted Otsu’s threshold level. The sinogram bins representing 

the metal objects were regarded as missing data which are 

modeled in the system matrix of the sequentially applied MAP-EM 

method with the spatial domain median filtering. Regularization 

level in the MAP-EM was decreased gradually throughout the 

sequences. Qualities of reconstructed images were investigated 

both qualitatively and quantitatively on a numerical jaw phantom 

with different amount of metals. NMSE% and line profile analysis 

results were in parallel with the visual impression that as 

penalization is reduced, reconstructed images have higher contrast 

with sharper boundaries between anatomical structures. This 

study provides encouraging results for using sequentially iterative 

algorithms such as sequentially applied MAP-EM in order to have 

a more accurate reconstruction of intensity values. 

I. INTRODUCTION 

IGH density objects in the field-of-view (FOV) result in so-

called metal artifacts in the reconstructed images in X-Ray 

Computerized Tomography (CT), especially in dental 

applications. Metal artifact reduction (MAR) methods intend to 

abate the severe effects of these highly attenuating materials in 

the reconstructed CT images. Attempts to use low dose radiation 

in dental imaging modalities such as cone-beam CT (CBCT) 

increases the importance of automated segmentation of metallic 

regions as low contrast between teeth and metals make metal 

extraction more difficult. Collinearity of multiple metals on the 

same image plane is also another motivation for automated 

segmentation. MAR methods are composed of two main steps: 

(1) Segmentation of the projection data (sinogram bins), which 

are affected from the high density objects in the FOV. (2) 

Reduction of the metal artifacts before or during the image 

reconstruction with the methods based on interpolation using 

neighboring sinogram bins, sinogram inpainting, Fourier and 

                                                        
* Authors have equal contribution to the paper. 

 

This work was supported by the Graduate School in Electronics, 

Telecommunication and Automation (GETA), Finland. 

 

U. Tuna, D. Us, and U. Ruotsalainen are with the Department of Signal Processing, 

Tampere University of Technology, P.O. BOX 533, FIN-33101, BioMediTech, 

Tampere, Finland (e-mail: firstname.surname@tut.fi). 

 
1 
http://www.imp.uni-erlangen.de/phantoms/jaw/jaw.htm 

DCT-based methods, projection-backprojection approaches and 

λ-MLEM method  [1-7]. If metals are extracted accurately in 

step (1), they can be treated as missing projection bins in step 

(2) for modeling of the system matrix. 

II. MATERIALS AND METHODS 

As the simulation dataset, we used a numerical jaw phantom1 

(128x128) and its sinograms (128 radial bins, 180 angular 

views). In Fig. 1, we show the 14 possible locations for metal 

dental implants in the image and sinogram domains. By picking 

various combinations for metal dental filling locations, we 

generated 4 different phantom images with various numbers and 

sizes of dental metal implants (1, 6, 7 and 14 metal fillings). In 

addition to the 4 ideal (non-noisy) cases, the generated 

sinograms were contaminated with Gaussian noise making up 8 

sinograms in total. 

 
(a)                  (b) 

Fig. 1. (a) Locations for the metal fillings are shown with red color in the numerical 

jaw phantom image. (b) The projection data affected from the metal fillings are 

shown with red color in the corresponding sinogram which is contaminated with 

Gaussian noise. Teeth, jaw bone, soft tissue and air gap inside the mouth have the 

intensity values of 1, 0.75, 0.5 and 0.25 respectively. 

Before the application of the sequentially applied MAP-EM 

method [9], we segmented the sinogram bins affected from the 

metal implants by a novel multi-level segmentation method 

using weighted Otsu’s threshold (see Fig. 2). Otsu’s method 

finds the threshold level, which minimizes the intra-class 

variance of the white and the black pixels in a gray scale image 

[8] on the image histogram. We denoted the Otsu’s threshold 

level with tOTSU. The segmentation method which we proposed 

in this study firstly performed thresholding at multiple (19 in 

this study) levels which are obtained from the Otsu’s threshold 

(tOTSU) using the experimentally found weights ai={a-9, a-8 … a-

1, a0, a1 … a-8, a-9}. In this study we used ai={0.1, 0,2 … 0.9, 1, 

1.1 … 1.8, 1.9} for threshold level weights. Secondly, the 

weighted average of the binary images generated using different 

threshold levels were calculated. The experimentally determined 

weights wi={w-9, w-8 … w-1, w0, w1 … w-8, w-9} for the weighted 

averaging were wi={1, 3, 4.6, 4.8, 5, 5.2, 5.5, 5.7, 5.9, 6, 5.9, 

H 



 

5.7, 5.5, 5.2, 5, 4.8, 4.6, 3, 1}. Thirdly, in order to ensure the 

continuity of the sinogram, sinogram was backprojected using  

 

Algorithm defined in (1) is run 91 times for each β sequence 

before changing the β to the next value. 

 

Fig. 2. Block diagram for the sinogram segmentation using the Otsu’s threshold at multiple levels. tOTSU represents the Otsu’s threshold level. The experimentally 

found weights ai:s are used to threshold the sinogram with metal artifacts at multiple levels. The weighted averaged mask sinogram is calculated with wi:s which are 

decided based on the performed experiments. The spatial and sinogram domain masks for the metal objects are generated using FBP and backprojection operators.

 

filtered back projection (FBP) with a Ramp filter. Resulting 

image was thresholded with global thresholding.  

As the final step, the metal mask was forward projected 

into sinogram domain before being fed to the sequentially 

applied MAP-EM reconstruction method. We reconstructed 

the images with the sequentially applied MAP-EM (or 

regularized MLEM) method with median filtering which was 

implemented using one-step-late (OSL) algorithm [9]. 

Sequentially applied MAP-EM with OSL algorithm is 

formulated as follows: 
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(1) 

where
1k

j



 and 

k

j
 are the pixel values in the reconstructed 

images in current and next iterations respectively, aij is the 

system matrix,  β is the control parameter for regularization, 

yi represents the projection data, Ji is the vector of ones 

modeling the unmeasured sinogram bins and Mj is the penalty 

reference calculated by using different spatial domain 

regularizers. The sinogram bins which were affected from the 

metal objects and segmented out in the previous step were 

regarded as the missing parts of the projection data. Missing 

parts of the data were modeled in the system matrix. In the 

correction sinogram, the correction factors of unknown bins 

were set to 1, which were later estimated throughout the 

iterations of MLEM.  

 

     (a)                          (b)                           (c)                           (d) 

Fig. 3. Simulation results with different amount of metal dental fillings and 

Gaussian noise contamination. Rows from top to bottom: Ground-truth images, 

images reconstructed using FBP with Ramp filter, images reconstructed with 

sequentially applied MAP-EM from non-noisy (ideal) sinograms, reconstructed 

images obtained with sequentially applied MAP-EM from noisy sinograms. 

Columns: (a) – (d) show simulations with different amounts of metal fillings. 

Green line marked on reconstructed images was used for line profile analysis. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Throughout the MLEM iterations, the strength of spatial 

regularization was reduced step-by-step by varying β from 1 

to 0.1 with steps of 0.1, where β=1 corresponds to full 

regularization. In order to avoid the situation without 

regularization, minimum β value was chosen as 0.01. Fig.4. 

depicts the decrease in blurring throughout the resulting 

images of reducing β sequences.  

With this novel sequential application of the spatial 

domain regularization filter, the missing parts of the 

sinograms were filled consistently while the undesired effects 

(such as blurring) of the spatial domain regularization filter 

are minimized. It can be observed from Fig.4 that boundaries 

around teeth become sharper as the penalization is reduced. 

III. RESULTS 

In Fig. 3, we show the simulation results with different 

amounts of dental metal fillings and Gaussian noise 

contamination. From visual inspection of reconstructed 

images, it can be concluded that sequentially applied MAP-

EM significantly reduces the blurring caused by the 

regularization in image reconstruction. In order to evaluate 

the performance of the algorithm quantitatively, percentage 

normalized mean squared error (NMSE%) was calculated 

with respect to the ground truth jaw image with the following 

formula 
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 (2) 

where Irec is the reconstructed images obtained from 

sequentially applied MAP-EM and Ignd is the ground truth 

phantom image with no metals. Teeth region was chosen as 

region of interest (ROI) for this calculation because that 

region was affected the most by the metal artifacts. NMSE% 

values for 1, 6 and 14 metal levels are shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

Fig. 5. NMSE% values for different level of metals in the numerical jaw 

phantom for selected ROI with respect to 11 β values. Blurring caused by the 

noise in the initial images is later compensated, which leads to a lower NMSE%.  

Fig. 5 indicates that NMSE% converge and become stable 

even for 14-metal case as iterations continue throughout 

decreasing β values in sequentially applied MAP-EM. In 

addition to the NMSE% calculations, we have also performed 

line profile analysis for different metal cases (see Fig.6). 

Green line in Fig.3 was used for calculating the line profiles 

of the images. Efficiency of sequentially applied MAP-EM 

was compared with the results from inpainting, which is the 

most common reconstruction algorithm in clinical 

applications. The inpainting method was applied on the noisy 

sinograms, where extracted metals are assigned to Not-a-

Number (NaN). NaNs were  later replaced by estimates from 

interpolation, calculated by using springs metaphor, which 

assumes each node is connected to its neighbors with springs 

of nominal length 0 [10]. As number of metals/missing data 

increases in the phantom, intensity values deviate more from 

the ground truth value. 

 

 

 

 

… … … … … 
β = 1 β = 0.7 β = 0.5 β = 0.3 β = 0.1 β = 0.01 

Fig. 4. Effect of gradually reducing β in MAP-EM is shown on the resulting images of numerical jaw phantom for intermediate steps of β=1, β=0.7, β=0.5, β=0.3, 

β=0.1 and β=0.01 are depicted. Blurring caused by the regularization decreases as β is reduced and teeth boundaries become sharper. 



 

 

(a) 

 

(b) 

Fig. 6. Line profile analysis for (a) β = 0.01 for 1, 6 and 14 metal cases on the 

left half of the noisy numerical jaw phantom for image clarity. Line profile for 

the ground truth image is depicted in blue. Results of inpainting on the noisy jaw 

phantom for different amount of metals is also depicted in (b). Increased 

deviation for low β can be explained by the dominating effect of noise as a result 

of the trade-off between noise reduction and image sharpness. Sequentially 

applied MAP-EM performs significantly better than inpainting in recovering the 

intensity values for both β values.  

According to the line profile comparisons in Fig.6, 

deviation from ground truth value, 1, for 1-metal case is 

higher than other metal cases. Also as amount of metals in 

the phantom increases, deviation decreases, indicating a 

stronger effect of regularization. Decrease in β makes the 

resulting images sharper, along with a slight increase in 

deviation. Inpainting results indicate good reconstruction 

quality with values close to the ground truth image for a few 

metals. However, with the increased amount of metals, 

reconstructed intensities get as low as 60% of the original 

value. When Fig.6 (a) and (b) are compared, it is clearly 

visible that the sequential MAP-EM results in closer values to 

the ground truth with respect to inpainting.  

We later applied the multi-level segmentation on a real full 

angle cone-beam CT (CBCT) phantom measurement acquired 

from Planmeca 3D Max CBCT (Planmeca Ltd, Helsinki, 

Finland). The phantom used for this measurement consisted 

of a gypsum base and braces made of steel. Constructed 

sinogram from the 3D data is shown in Fig.7 with 750 

angular views and 368 radial bins. Binary image of 

Segmented metallic regions and these regions overlaid on the 

original image can be seen from Fig.7.(b) and (c). 

 

  

 

 

 

 

 

IV. DISCUSSION AND CONCLUSION 

This study shows how sequentially applied MAP-EM 

enhances the image quality once the metals are accurately 

segmented from the numerical jaw phantoms. As penalization 

in MAP-EM was reduced, details such as boundaries around 

teeth became more visible. Also boundaries between different 

regions such as jaw bone and soft tissue were sharper for 

lower β. Larger amount of metals resulted in higher NMSE% 

in general, which was expected as the amount of missing data 

increased depending on the number of metals in the phantom. 

Initial high NMSE% in Fig. 5, which was caused by the 

added noise, was reduced throughout the iterations, leading a 

stable and convergent NMSE% value for all phantoms. 

Fluctuation in line profile analysis for β =0.01 is originated 

from the trade-off between blurring and noise. Performance of 

the reconstruction can be improved by optimizing the 

Fig. 7: (a) Constructed sinogram of size 750 angular views and 368 radial bins, (b) 

extracted regions after multi-level sinogram segmentation, (c) segmented regions 

overlaid on th original sinogram.. Overlaid image show the accurate detection of 

metals as there are no metallic regions left undetected.  

(a) 

(b) 

(c) 



 

iterations and β sequences in MAP-EM. Nevertheless, 

compared to the initial ratio of 10:1 between metal and teeth 

intensities, deviation remains low, indicating an accurate 

reconstruction. For the real jaw phantom, it can be said that 

segmentation step was accomplished so that all metallic 

regions are extracted from the original sinogram.  

Despite of the speed and efficiency of inpainting in general, 

it is visible from Fig.6 that increased number of metals in the 

image data starts reducing the performance of the algorithm. 

For higher levels of missing data, sequentially applied MAP-

EM outperforms inpainting. 

In overall, proposed multi-level segmentation was 

successful for extraction of all metals from noisy jaw phantom 

and sequentially applied MAP-EM was successfully employed 

on sinograms, where missing information from the metals 

were estimated accurately.  
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Abstract— In AvanTomography project, a compact, high 

performance module was developed for axial positron emission 
mammography, which can be integrated with X-ray 
mammography. With its axial crystal orientation, 
AvanTomography can achieve a uniform spatial resolution and 
eliminate the parallax error by unambiguously detecting the 
location of the positron annihilation. Compact design of the 
module enables a cost and space efficient system for breast 
screening. Various configurations, plate or full ring, can be 
obtained by using multiple modules, allowing the screening of 
axillary and mammary regions with a single scanner position. In 
this project, a 6-module system was constructed and tested with a 
22Na point source. Energy calibration was performed and initial 
measurements for energy resolution were conducted. 
 
Index Terms— Positron Emission Tomography (PET), Axial 
geometry, LYSO, Positron Emission Mammography (PEM), 
breast cancer, pulse width conversion. 

 

I. INTRODUCTION 

ith its functional imaging capabilities, Positron 
Emission Tomography (PET) provides a cost-effective 

alternative to invasive procedures such as dissections and 
biopsies that are used for cancer staging and treatment 
planning, which is not possible to obtain with structural 
imaging methods like X-ray Computed Tomography (X-ray 
CT) or Magnetic Resonance Imaging (MRI).  Localized 
screening techniques like Positron Emission Mammography 
(PEM) improve the overall sensitivity, which was 
demonstrated by Berg et al. [1]. This is mainly due to the 
increased sensitivity in PEM by (1) closer placement of 
detectors to the breast and (2) less amount of tissue travelled 
by the gamma rays, leading to lower dose of radiotracer 
injection [2]. Unfortunately, most of these breast PET 
scanners have the inherited problem of excluding the base of 
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the breast, the axillary tail and the lymph nodes [3]. As 
sentinel lymph node mapping is an important tool in early 
staging of breast cancer, it is important to include the axillary 
region into the screening procedure. Mammary and axillary 
PET (maxPET) addresses this issue with its large field of view 
(FOV), where the patient is scanned in prone position with 
two different scanner placements [4]. However, 65% of the 
scintillation signal is lost between the coupling of crystal array 
and photomultiplier (PM) tubes. Furthermore, the count rate is 
limited as a result of multiplexed readout [4]. Another 
example of PEM is Mammography with Nuclear Imaging 
(MAMMI-PEM) from Oncovision (Valencia, Spain), which 
has a 1.6 mm spatial resolution at the center, but the resolution 
is lowered to 2.7 mm at the edges of the FOV [5]. We aim to 
achieve a high count rate by reading each channel 
individually, limiting the data rate by thresholding in 
electronics and accomplish uniform resolution with axial 
placement of the scintillating crystals within the modules. 

II. AVANTOMOGRAPHY 
The aim of AvanTomography modules is to provide an 
alternative compact configuration for breast screening by 
incorporating Axial PET (AX-PET) concept implemented in 
CERN within a compact module. These modules are planned 
to be used in construction of a PEM. Mechanically and 
electronically independent modules provide a flexible 
structure, with which the gantry size of the scanner can be 
arranged by changing the number of modules used. Compact 
structure of AvanTomography modules make it a suitable 
candidate for smaller clinics, where a cost and space efficient 
pre-screening instrument is much needed in order to overcome 
the limitations of MRI or whole body PET/CT. 
    Inner structure of a single AvanTomography module is 
depicted in Fig.  1.  

 

Fig.  1. AvanTomography module inner structure, depicting the WLS 
strips orthogonally placed over the LYSO crystals. Both LYSO crystals 
and WLS strips and read out with MPPCs from one end. 

According to the work of Beltrame et al., AX-PET 
configuration offers a parallax-free scanner alternative with 
precise 3 dimensional (3D) localization of the point of 
positron annihilation. The main difference of AX-PET concept 
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from the conventional PET geometry is that the scintillating 
crystals are placed in the axial direction instead of 
conventional radial arrangement. Crystal layers are interleaved 
with an array of wavelength shifter (WLS) strips, placed 
orthogonal to the crystals. Both crystals and WLS strips are 
read out by multi pixel photon counters (MPPCs) at one end. 
When a photon deposits its energy in the crystal, a correlated 
amount of light is isotropically emitted. Emitted light is 
captured by WLS strips. The signals from WLS strips and 
crystals are captured by the MPPCs, which are used to 
determine the 3D coordinate of the photon interaction. In this 
configuration, the axial coordinate is recorded continuously 
along the scintillating crystals. Position of the crystal provides 
the hit location in x and y axes, whereas z axis is obtained 
from WLS strips. Intersection point of the positions of a 
LYSO and a WLS strip results in the 3D coordinate of the 
annihilation. The mid-point of WLS and LYSO are used in 
determination of the annihilation coordinates. [6]  
       AvanTomography modules improve the previous design 
in AX-PET by making it compact, without compromising the 
sensitivity, energy resolution and spatial resolution [7] [8] [9] 
[10].   

The potential of Axial PET geometry for brain imaging has 
been verified in AXPET project [6]. Also Brard and Brasse 
presented their Monte Carlo simulation results for a small 
animal PET scanner with axial PET configuration to achieve a 
spatial resolution less than 1 mm. The proof-of-concept level 
study in GATE showed that it is possible to go below 1 mm by 
using One-Pass List-Mode reconstruction algorithm [11].  

For breast screening purposes, target spatial resolution for 
the AvanTomography demonstrator was decided as 
approximately 1.5 mm, which is sufficient to detect small 
tumors (3mm and below) [2]. In this project, the focus was on 
implementing this design with smaller, low-cost modules with 
independent electronics to be used for PEM. In this article, the 
mechanical and electronics construction are described. 
Experimental performance of the 6-module system is 
presented.  

III. AVANTOMOGRAPHY MODULES SETUP 
AvanTomography modules consist of WLS strips, scintillating 
crystals and MPPCs. The data acquisition part of the system 
includes a bias board, pulse width conversion circuits and 
digital electronics boards for transmission of energy 
(converted from charge during post-processing) and location 
information. In this section, data acquisition components are 
described in detail. A simplified configuration of a module 
with its respective electronics is depicted in Fig.  2. 

 
Fig.  2. Simplified module measurement setup including the basic 
components of the module as well as the data acquisition system. 

A. Components 

The scintillating bars used in AvanTomography modules were 
PreLude®420 Lu 1.8Y.2SiO5:Ce crystals (LYSO) produced 
by Saint-Gobain Crystals, with maximum emission at around 
420 nm. Crystals are of size 3x3x150 mm3 and all surfaces are 
optically polished by the manufacturer, with a density of 7.1 
g/cm3. Wavelength shifting (WLS) strips are EJ-260-10 from 
Eljen Technology, which is based on Polyvinyltoluene (PVL) 
with high dye concentration, with a maximum emission at a 
wavelength of 490 nm. Photodetectors used in this 
demonstrator are fast Geiger-mode Avalanche photodiodes 
(S12572-050P) from Hamamatsu Photonics, marketed as 
Multi-pixel Photon Counter (MPPC) ®. MPPCs have an active 
area of 3x3 mm2 with 50x50 μm2 pixel size. Photodetection 
efficiency (PDE) of the MPPCs is maximum around 420 nm at 
25⁰C, which is compatible with the emission spectrum of the 
LYSOs.  

B. Read-out Electronics 

Bias circuit: All MPPCs received for this project require an 
average of 67 Volts (operating voltage + diode activation) as 
their operating (bias) voltage. Therefore, all modules are 
supplied with the same bias voltage generated by a single bias 
circuit. Bias circuit consists of a rectification stage and a 
resistive feedback circuit. The rectification part includes a 
gated oscillator boost controller (MCP1650 Microchip 
Technology Inc.) with a low operating current around 120 μA 
and 56% duty cycle, an inductor, a Schottky diode and  a 
transistor IRLML0100 from International Rectifier. The 
oscillator is switched on and off with a 750 kHz switching 
frequency, decreasing the external capacitor and inductor of 
the component smaller in size, making it ideal for our space 
limited design. When the oscillator (U1 in Fig.  3) is switched 
on, IC flows into the inductor (L1 in Fig.  3), in which case the 
MOSFET (Q1 in Fig.  3) is OFF and one end of L1 is 
grounded. When U1 is switched off, IC = 0 and the current 
collected in L1 flows through C2 via the Schottky diode D1. D1 
prevents the back-flow of the current into the inductor. This 
way all current collected in L1 piles up in C2 (VBIAS). Through 
the resistive feedback circuit, small portion of VC is fed back 
to the feedback pin of U1. When the feedback voltage reaches 
1.22 Volts, U1 stops switching. At this point VBIAS equals to 
67.7 Volts in the ideal setting. Taking the MPPC temperature 
sensitivity into consideration, VBIAS can be changed with the 
potentiometer within the resistive feedback circuitry. This 
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alters the feedback voltage at which U1 stops operating, thus 
changing the amount of charge collected within C2. The bias 
board has a typical 1 mA output current, most of which is 
consumed by the resistive feedback circuit.  

 
Fig.  3. Bias circuit formed with a rectification stage and a resistive 
feedback loop. 

Sensor boards (Pulse width conversion): The sensor boards 
receives the signal from the MPPCs and convert it into 
varying pulse lengths. The circuit design for sensor boards is 
based on charge-to-time conversion circuit suggested in the 
work of Parl et al. [12]. In this scheme, pulse width is 
correlated with the amount of charge detected by the 
photodetectors. Although individual photons are counted in 
the design of Parl et al., our circuit detects the photon bursts, 
meaning that the circuit sensitivity is arranged so that only 
large enough (eliminating noise and misfired MPPCs) pulses 
pass through the comparator stage and transmitted to the 
digital acquisition part, eliminating the effect of noise from the 
beginning. Due to the higher photon-detection threshold 
voltage set by VTHRESH in the circuit, even though the 
relationship between the charge and pulse width is linear, 
there is a higher offset observed [12].  
    Due to large amount of data and the space limitation, 
complexity of electronics per channel was kept as low as 
possible. Differently from the circuitry in AX-PET, no shaper 
was used for simplicity and minimal delay in the system. Also 
no trigger was implemented since the system collects all the 
information above the hardcoded threshold once it is turned 
on. Due to the high gain of MPPCs, primary amplifiers were 
not needed. Each integrating amplifier output is thresholded 
and buffered similarly to [12]. 
    Reference pulse time was calculated based on the number of 
counts in AX-PET simulations [9]. According to the expected 
count rates for LYSOs and WLSs, the amount of charge for 
full width half maximum (FWHM) of the reference charge 
was set to 26.2 pC (approximately 133 counts). For a 
reference pulse length of 100 ns, the pulse current was 
calculated to be 266 μA. 
    Each 10-channel circuitry within a module was grouped and 
assembled together on a printed circuit board (PCB), avoiding 
the risk of mismatch between MPPC slots and MPPCs due to 
the different thermal expansion coefficients of the PCBs and 
module container. 
Temperature compensation: Linearity over the dynamic range is 
necessary for accurate energy calibration and measurements. 
Unfortunately, MPPCs are sensitive to temperature change 
[13]. Therefore, the bias circuitry is arranged so that the 
operating voltage of the MPPCs can be adjusted. MPPCs are 
supplied with an initial 67.7 V, and the bias voltage can 
manually be changed within the range of 65-75 V with a 
potentiometer connected between the temperature sensing 

circuit and the resistive feedback circuit in the bias circuitry. 
1⁰C temperature increase in the system can be compensated 
with a 60 mV increase in the bias voltage [12].  
    In the work of Parl et al., an integrating stage was used as a 
part of temperature compensation by changing VCOMP in [12] 
with respect to temperature, but this requires a higher 
operating voltage for the operational amplifier (op-amp), 
increasing the energy consumption and causing heating of the 
op-amps. In order to keep the system with low power 
consumption and to avoid cooling the individual op-amps, we 
used a constant VCOMP (lower than [12]) and implemented the 
temperature compensation feature by changing the bias 
voltage of MPPCs. This modification eliminates the need for 
heat sinks around the op-amps, making the electronics design 
more compact. 
    Temperature compensation unit includes a low power 
microcontroller (ATtiny43U) from Atmel Corporation® 
(California, USA) equipped with a temperature sensor. 
ATtiny43U is placed next to one sensor board (second 
module, layer 8-9) so that its temperature is approximately the 
same as the temperature of the sensor board. The temperature 
of the microcontroller is converted into a pulse width 
modulated signal between zero and operating voltage [0,5V]. 
This voltage is then discretized by the low pass filter 
connected to it. Output of the filter is connected to the bias 
circuit with a potentiometer so that the feedback voltage fed to 
the boost controller changes according to the resistance of the 
potentiometer. 

C. Digital electronics  

Charge information from each channel is obtained by 
integrating the pulse widths received from the sensor boards. 
Corresponding energy peaks are calculated according to the 
energy calibration curve based on the intrinsic radioactivity 
peaks of LYSO and 511 keV.  
    A Cyclone FPGA from Altera is used for processing the 
charge information. One layer of LYSOs and associated WLSs 
use the same FPGA, totaling into 12 FPGA modules, each 
handling 48-49 channels. 
    WLSs are only used for position detection, therefore their 
timing window is held larger than LYSOs in order to decrease 
the data rate. A time stamp is assigned to each event detected 
by the MPPCs within a timing window of 10 ns for WLS and 
2.5 ns for LYSOs. Each event is defined by 6-bytes: 1 byte for 
preamble, 1 byte for localization of the channel (layer number 
within module, LYSO number and WLS number in 
corresponding layer), 2 bytes for the event time stamp and 2 
bytes for charge information. A priority system is established 
between the FPGAs so that information can be transferred 
without overwriting on the other channels. As the FPGAs are 
set to give priority to the incoming data, it is important to keep 
the data rate high enough to prevent overflowing. Every 2 
FPGA form digital read-out for a module and are connected to 
the computer with a separate USB serial port for initial 
experiments. Acquired data from the measurements is 
organized into list mode data format in order to enable the 
continuous input data for reconstruction. 

In order to check the activity levels of all channels in real-
time and provide effective troubleshooting of the system 
during the measurements, a serial log file was prepared in 



 

Visual Studio as a user interface. Data bandwidth consumption 
in each module is displayed as well as LYSO and WLS 
activity levels. Each LYSO channel can be selected in order to 
visualize its respective histogram and the corresponding WLS 
activities. Connectivity of the MPPCs to the LYSOs and 
WLSs can be tracked via this interface. Also the defective 
channels can easily be distinguished from the active ones by 
following the activity peaks. An example screenshot is 
depicted in Fig. 4. Note that the histogram is displayed 
cumulatively; therefore the plot is only reset when a different 
LYSO is selected. Due to the threshold value used in the 
electronics to eliminate the background, the histogram values 
lower than the threshold can be seen as zero in Fig. 4. 

 
Fig. 4. Screenshot from individual testing of a module with 22Na source 
placed 1 cm away from the module in total darkness. The first row shows 
the bandwidth consumption of the module. Second row indicates the 
activity levels of the LYSOs. Third row shows the histogram of the chosen 
LYSO (in this case layer 0, crystal 0). The last row represents the WLS 
activity for each LYSO. WLS activity is divided into 4 slots, where each 
slot corresponds to a sensor board. Notice that 511 keV peak is clearly 
seen from the histogram. 

In the future, an Ethernet connection can be established 
instead of multiple serial port connections, enabling a more 
versatile design for future applications. 

D. Module description 

The AvanTomography measurement configuration includes 6 
modules with independent customized electronics for each 
module. Each module consists of 97 channels (5 LYSO 
crystals and 92 WLS strips) and is divided into two layers. A 
black non-conductive and non-transparent Polyacetal-
Copolymer (POM) container with 2 LYSOs is mounted on top 
of another container with 3 LYSOs in order to prevent light 
sharing from crystals in different layers. Inside the modules, 
LYSOs are placed with an air gap of 1 mm from each other in 
a layer. One end of the crystals and WLSs are optically 
coupled to the MPPCs with optically clear adhesive, having a 
light transmission efficiency of approximately 99% [14]. The 
other ends of the crystals and WLSs are covered with a non-
metallic reflective film. Each layer of LYSO is covered with 
WLSs with a gap of 6 mm from the MPPC side and 9 mm 
from the reflective films for accommodating the metal frames 
holding 2 and 3 crystals in upper and lower layers 
respectively. LYSOs inside the module are held in place with 
metal plates from both ends in order to minimize the 
movement of crystals and contact with the module container. 

Due to the minimal contact achieved, LYSOs were not 
wrapped or coated. Each MPPC is placed inside a specific slot 
in the container, which prevents the motion of MPPCs and 
avoids electrical conduction or propagation between two 
adjacent MPPCs.  

E. Measurement Setup 

    6 of above-mentioned modules were constructed and tested 
for this demonstrator setup. Energy calibration was performed 
for each crystal. Performance of the overall system was tested 
in terms of energy resolution and sensitivity. In the calculation 
of the overall energy resolution, results obtained from all the 
crystals were averaged. The overall structure of the system is 
demonstrated in Fig.  5. 

 
Fig.  5. 6-module configuration of AvanTomography. A module consists 
of one 2 crystal layer and one 3 crystal layer placed in a staggered way. 
WLS strips are not shown in this image for clarity purposes, but the 
MPPC slots are visible. 

III. MODULE CHARACTERIZATION 

A. Detection efficiency 

The spatial information of the photoelectric events varies 
according to the detection axis. The point of interaction (POI) 
in the trans-axial coordinates is the center of the photoelectric 
impact. Collision points of the events were calculated 
following the above statements. Fig. 6 shows the impact 
statistics in percentage scale. According to the LYSO and 
WLS configuration per layer, the minimum binning size was 
calculated as 1.85 mm for the y coordinate and 0.5 mm for the 
z coordinate.  

 
Fig. 6. Study of the positron collision positions in percentage over the 
total statistical events. Y and z coordinates are determined according to 
the module orientation given in Fig.  1. 

Fig. 6 shows that the LYSOs closer to the source are more 
active than the lower layers, which creates photoelectric 



 

clusters. On the other hand, the WLSs close to MPPCs are 
more active and detect more positrons than the ones further 
away. This is due to the digital electronics reading, where the 
first detected WLS is recorded and the rest is ignored. 
Naturally, the signal from the WLSs closest to the MPPCs 
reach the detectors faster than the further ones. Although this 
setup is used to decrease the data amount in the initial 
measurements, future electronics will be designed to read all 
channels at all times in order to avoid loss of data.   

B. Energy calibration  

The energy calibration of the LYSOs is required so that data 
acquired from each crystal can be corrected for individual 
differences in the electronics and non-linearity in MPPC 
response [6]. It also enables a more precise localization of the 
energy peak in the overall system. The intrinsic activity of 
LYSO was taken as 39 cps/g [15]. For 30 crystals used in this 
project, the total activity was calculated to be around 11.25 
kBq (374 Bq of β− decays for a single crystal) [15]. All 
crystals were stacked together in order to increase the 
probability of photon absorption and the radioactivity was 
measured from all crystals. 
    Intrinsic radioactivity measurements for energy calibration 
were run for 1 hour in complete darkness with an integration 
time of 10 μs and bias voltage of 67.7 V. The location of 
intrinsic energy peaks of the LYSOs were characterized in pC 
for each crystal. The measurement result from one LYSO can 
be seen in Fig.  7. Although the two highest peaks of typical 
de-excitation of 176Lu (202 keV and 307 keV) are clearly 
visible in the spectrum, the lowest de-excitation photon at 88 
keV cannot be seen due to its high internal conversion 
probability [6]. Instead, the third peak with the lowest energy 
is attributed to the x-ray emission from the K-shell of the 
176Lu, corresponding to the energy peak of 55 keV observed in 
the spectrum. [15]  

 
Fig.  7. Gaussian fits superimposed on the intrinsic radioactivity peaks of 
176Lu at 202 and 307 keV on the charge spectrum of middle LYSO 
(LYSO 10).  The peak at 55 keV is generated by the x-ray emission the K-
shell of the lutetium. 

    In order to measure the 511 keV photons absorbed by the 
LYSOs, a 675 kBq point-like 22Na source was placed in the 
center of FOV with a distance of 12 cm from the closest 
module. Fig. 8 shows the 511 keV peak measured from LYSO 
10 and the nonlinear curve fit, which is 30 cm far from the 
22Na source.  

Mean charge values, derived from the Gaussian fits in 
charge spectrums of intrinsic radioactivity measurements of 
LYSO and 511 keV measurements in Fig.  7 and Fig. 8 
respectively, were translated into their corresponding energy 
peak values and used for calibrating the LYSO channels 
individually. 
 

 
Fig. 8. The counts for the 511 keV radioactivity peak value is quite close 
to the intrinsic radioactivity peaks for this crystal as the detected counts 
by the crystal are not very high to due to the distance from the source. 

A non-linear fit was calculated from the three intrinsic 
radioactivity peaks and the 511 keV peak by modification of 
the calculations from [15]. The results from this fitting can be 
observed in Fig.  9. Initial measurements lead to a 9.5% 
deviation from linearity in average for all crystals. 

 
Fig.  9. Nonlinear fitting curve along the intrinsic radioactivity and 511 
keV peaks (LYSO 10). The correlation coefficient R was calculated as 
0.926. 

IV. CONCLUSION 
During the AvanTomography project, 6 modules were 
successfully built and tested. Preliminary results indicate an 
energy resolution of around 14% FWHM in the sum which 
was similar to 12.5% in the sum that was obtained with AX-
PET from initial measurements [16]. This result is expected to 
improve with better temperature compensation as well as the 
use of optical glue between the components instead of the 
double sided tape. The next step will be to compare the 
experimental sensitivity with the simulation results obtained 
from Monte Carlo simulations by using Geant4. Additionally, 
separate bias boards for individual modules might be required 



 

in order to ensure the temperature compensation of channels 
with high count rates. 
    AvanTomography module offers a parallax-free, cost-
effective alternative to large and expensive PEM units. Also 
mechanical and electrical independence of each module 
enables personalization of the scanner depending on the 
desired use. 
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Abstract: High density objects in the field of view (FOV) cause 

artifacts in medical imaging. In X-ray computed tomography 

(CT), there are several ways to eliminate the effects of these 

artifacts. This paper aims to evaluate the performance of a novel 

reconstruction algorithm which accurately segments the metallic 

regions and reconstruct sharp metal/tissue boundaries, while 

reducing the artifacts around the metallic regions. This algorithm 

uses a multilevel segmentation algorithm based on Otsu’s 

threshold and adaptive multiresolution maximum a-posteriori 

expectation maximization (amMAP-EM). The qualities of 

Gaussian noise contaminated images were evaluated 

quantitatively using mean squared error and line profile analysis. 

The reconstructed image were compared with filtered 

backprojection (FBP) and maximum likelihood expectation 

maximization (MLEM) methods. According to the results, it is 

possible to reconstruct the images with more clear and sharper 

metal/tissue boundaries using amMAP-EM compared to MLEM 

and FBP, while avoiding the undesired artifacts such as blurring, 

streak artifacts or ringing.  

I. INTRODUCTION 

ETALS and other high density objects within the human 

body hinder the underlying anatomical structures due to their 

high attenuation coefficients, allowing fewer photons to reach 

the detectors. In computed tomography (CT), this photon 

starvation corrupts the projection data, leading to streak 

artifacts over the surrounding hard and soft tissue upon back-

projection algorithms. Strength and direction of the streak 

artifacts are greatly dependent on the shape, size and location 

of metals. As the number of metals increase, metal projections 

get rapidly wider, making it more difficult to distinguish metal 

imprints from each other and to handle the large area of 

missing data. Inaccurate localization of metallic objects in 

dental CT can be misleading in clinical applications such as 

treatment planning and post-therapy evaluation. 

Metal artifact reduction (MAR) methods define a group of 

algorithms that are designed to reduce the artifacts in images 

by ignoring or replacing the values of highly attenuated 

regions. The two main MAR methods are sinogram 

interpolation and iterative reconstruction [1]. Inpainting is one 

of the most commonly used sinogram interpolation method. 

However when the metallic regions are replaced with 

interpolated values from the surrounding pixels, the 

boundaries between anatomical regions and the high density 

objects become unclear [2]. Although iterative algorithms are 

computationally heavier and more time consuming, they cope 

better with missing data compared to non-iterative algorithms. 

The difference in performance becomes clearer as the amount 

of missing data increases. Currently the benchmarks are 

considered as filtered backprojection (FBP) among the non-

iterative reconstruction algorithms, and maximum likelihood 

expectation maximization (MLEM) among the iterative 

reconstruction methods [3].  

Aim of this paper is to present a MAR algorithm to reduce 

the artifacts around the metallic regions in dental CT images 

and to reconstruct clear and accurate metal/tissue boundaries. 

This method uses a multilevel segmentation method based on 

Otsu’s threshold, followed by adaptive multiresolution method 

for adaptive multiresolution maximum a-posteriori expectation 

maximization (amMAP-EM), which calculates the 

regularization weights using a pixel-wise approach [4]. 

amMAP-EM uses the pixel-wise noise contamination to update 

the regularization weight, eliminating the need for a priori 

information on the image [4]. The long computation time of 

iterations is decreased by using multiresolution reconstruction 

scheme, in which the image is rebinned for from larger to 

smaller pixel groups. amMAP-EM was initially implemented 

for missing wedge problem in electron tomography (ET) in 

which an image can be reconstructed even if 60 degrees out of 

180 are missing [5]. Due to its ability to handle large amounts 

of missing data, amMAP-EM was selected as the 

reconstruction algorithm in this paper, as the existence of 

multiple or large metals increase the amount of missing 

information in the sinogram after segmentation.  

II. MATERIALS AND METHODS 

4 numerical jaw phantoms1 were created for the initial 

evaluation of the algorithm performances. The sinograms were 

calculated with 256 radial bins over 180 degrees using 288 

angular views. Each jaw phantom consisted of different 

numbers of metals to test the effect of multiple metals with 

relative sizes compared to the surrounding teeth in 

segmentation and image reconstruction algorithms. 
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Fig. 1. Block diagram of amMAP-EM reconstruction algorithm [4]. I(k) is the image reconstructed at kth iteration, P is the masked projection data. This method 

takes the masked sinogram as input, in which metal values are replaced with zeros [block diagram can be enlarged to occupy both columns later like Fig.2.] 

 

Biological structure densities were assigned to be proportional 

to the values used by Oliver Watzke, within the intensity range 

of [0, 1]. Metals in these phantoms were assumed to have 10 

times higher intensity than the enamel so as to have a realistic 

relationship between the structure densities in the image. 

Gaussian noise was added to all phantoms. Different metal 

placements are shown in Fig. 2. 

In order to localize the metals in the projection data, we 

used an automated multilevel segmentation algorithm that is 

based on Otsu’s thresholding, which aims to minimize the in-

class variance within the image [6, 7]. A multilevel 

segmentation was chosen because Otsu’s thresholding method 

does not work efficiently if two classes are highly different in 

size, in which case the selected maximum mean value might 

not be the global maximum, causing the Otsu’s threshold to be 

the valley of the sinogram [8]. As the accurate detection of 

metallic boundaries is crucial in assessing the image quality at 

the vicinity of the metals, we focused on the correct 

segmentation of the metallic region boundaries and 

reconstruction of the surrounding structures free of artifacts. 

The segmentation was carried out in projection domain 

because segmentation of a continuous metallic imprint would 

be more accurate than in spatial domain, where even small 

segmentation errors would have led to a wrong segmentation. 

The binary images from the segmentation step were used to 

replace the values of metallic regions in noisy sinograms with 

zero. This masked sinogram was padded and used as an input 

for the reconstruction step.  

The chosen reconstruction method, the amMAP-EM, 

maximizes the likelihood of observing the measured 

projections subject to the prior knowledge. It uses Poisson 

model for the reconstruction data and median filter to 

implement local similarity prior. The result of each resolution 

stage initializes the next one. The binning factor is halved at 

the end of each resolution stage, automatically decreasing the 

penalization on the image. For different resolution stages, 

10x10, 22x22, 44x44, 90x90, 180x180 and 362x362 images 

were chosen so that each image size would roughly double the 

previous one. The image sizes and their intensity ranges are 

rescaled between the stages. The reconstruction was stopped at 

a pre-defined normalized mean squared error value between 

the current and previous reconstruction for all image sizes. 

Image size was updated once the stopping criterion is reached 

within the same step. In the last stage, the original projection 

data is used. The stopping criterion for the iterations was 

chosen as 10-6 for both MLEM and amMAP-EM 

reconstructions in order to achieve comparable results from 

different numbers of iterations. The working principle of the 

algorithm is explained in Fig.1. [4] 

In order to keep a clear boundary between metallic and 

anatomic regions, the segmented metallic regions were not 

replaced with interpolated values. However, for the FBP 

reconstruction, the metallic regions were left with their original 

values, as masking them out would have led to an incomplete 

dataset and wouldn’t have represented the performance of the 

method accurately. FBP reconstruction was carried out with 

ramp filter and bicubic interpolation. 



In evaluating the image quality quantitatively, firstly 

percentage normalized mean squared error (NMSE%) was 

calculated throughout the whole image. In this step, the ground 

truth image without metals was selected. The NMSE% values 

were calculated with respect to the ground truth image using 

the following formula 
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,where Irec is the reconstructed image and Ignd is the ground 

truth. The green line in Fig.2 was used for line profile analysis 

so that it doesn’t pass directly through the metallic regions but 

it is at close proximity with a high density region, in which one 

would expect to see artifacts without MAR.  

III. RESULTS 

In Fig.2, the 256x256 reconstruction results from amMAP-

EM, MLEM and FBP are presented. After FBP, the metallic 

values are saturated, and they cannot be distinguished from the 

surrounding teeth. MLEM fails to reduce the streak artifacts 

around the metallic region. amMAP-EM provides sharp edges 

at the metal/tooth boundaries for all cases presented. The 

surrounding teeth and tissue are reconstructed with no visible 

artifacts in almost all the reconstructions with amMAP-EM, 

except for the 8 metal-case, which presents minor bright and 

dark streak artifacts around the largest metals. 

 

 

 

 

 
Fig. 2. Rows 1 and 2 represent the jaw phantom with metal implants and their corresponding sinograms contaminated with Gaussian noise. Metallic implant regions are 

overlaid with red on the images. These phantoms are used for investigating the effects of various sizes and placements of high density objects. Rows  3-5  correspond to 

the results for BP, MLEM and amMAP-EM reconstructions respectively.  



The NMSE% values for the reconstructed images are presented 

in Table 1. Low levels of noise were achieved by amMAP-EM 

and MLEM compared to FBP, in which the NMSE% was much 

higher.  

Table 1. NMSE% for MLEM, amMAP-EM and FBP calculated with respect to 

their respective ground truth images 

 NMSE% 

 MLEM amMAP-EM FBP 

1 metal 0.04 0.01 0.11 

4 metals 0.03 0.02 0.21 

6 metals 0.03 0.01 0.27 

8 metals 0.08 0.05 0.32 

The line profile analysis was carried out in order to examine the 

accuracy of the reconstructed values with respect to the ground 

truth. The results of the line profile analysis are depicted in Fig. 3. 

With amMAP-EM reconstruction, all cases, except the 8-metal 

case, all images showed the same sharp intensity changes as the 

ground truth at the boundaries. 

 

 

 
Fig. 3. Line profile analysis for 1, 4, 6 and 8 metal cases on the left half of the 

noisy numerical jaw phantom. Line profile for the ground truth image is depicted 

in blue. (a), (b) and (c) depict the results of FBP, MLEM and amMAP-EM 

reconstructions of the noisy jaw phantom for different amount of metals 

respectively.  

In MLEM, 4, 6 and 8 metal cases failed to reconstruct the values 

of the enamel due to the generation of dark streak artifacts (See 

Fig. 3.b.). From the line profile of FBP, it can be seen that even 

though the boundaries are sharp, high noise in the reconstructed 

pixels makes it difficult to determine homogenous intensities for 

the anatomical regions. 

IV. DISCUSSION AND CONCLUSION 

For the reconstruction process, the focus was put on the reduction 

of the streak artifacts around the metals rather than replacing the 

values of metallic regions because the boundary detection and 

accurate determination of high density object sizes were 

considered more clinically relevant than the intensity values in the 

high attenuation regions. Although the input sinogram excluded 

the metallic regions from MLEM, the interpolated values 

gradually filled these gaps without regularization, causing dark 

and bright artifacts around the metal. In amMAP-EM, the metallic 

regions were not filled in accordance with the initial segmentation 

results. Streak artifacts were not very strong in FBP due to the 

chosen ratio of metal/teeth intensity, but this method doesn’t 

allow visual determination of metallic regions. Higher metallic 

intensity values would immediately increase the streak artifacts in 

FBP.  

As the amount missing data increases in the sinogram, both 

MLEM and amMAP-EM struggle with handling of limited data 

and the effect of noise robustness for each algorithm becomes less 

significant. This is why the NMSE% values of amMAP-EM and 

MLEM got closer at 8 metal-case, even though visual inspection 

shows fewer artifacts around the metals for amMAP-EM. Because 

of the noise amplification of ramp filter in FBP, its NMSE% was 

approximately 20 times higher than amMAP-EM, which can be 

seen from the large fluctuations in intensity in Fig. 3.c. 

Line profile analysis showed that amMAP-EM results in 

intensity values closer to ground truth, compared to MLEM and 

FBP. The amMAP-EM also achieves sharper edges with low 

noise due to its high number of iterations at different iterations. 

These properties make the amMAP-EM a promising method for 

reconstruction when the metal size and shape is important, i.e. 

(a) 

(c) 

(b) 



after dental surgeries, in which the adaptation of the metal implant 

and the surroundings is important to follow.  

In overall, the proposed MAR method, which combined a 

multi-level segmentation with amMAP-EM reconstruction, 

successfully reconstructed all metal/teeth boundaries in almost all 

cases. In order to decrease the computational load further, larger 

penalization steps can be chosen or iterations can be stopped 

earlier according to the application. For example changing the 

stopping criteria from 10-6 to 10-5 can decrease the required 

iterations by half. 
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Abstract—Dose delivery verification in proton beam 

radiotherapy is used to ensure the delivery of the dose to the 

correct location. A positron emission tomography (PET) scanner 

can be used to detect the secondary radiation during the 

treatment, so-called in-beam PET. This is a challenging 

application for PET due to the low counts and limited angular 

coverage. We propose a maximum a posteriori (MAP) 

reconstruction with median root prior (MRP) for the 

reconstruction of in-beam PET data. The proposed method was 

compared against MAP with total variation (TV) prior and 

maximum likelihood expectation maximization (MLEM), which 

have previously been used for this application. The effects of 

different ring configurations and time-of-flight (TOF) information 

were tested with simulations of a geometrical phantom and a 

realistic patient treatment plan. The results indicate that both 

MAP methods produced sharper edges than MLEM, allowing 

more accurate edge localization in the reconstructed images. Even 

for the partial ring configurations, no elongation was observed 

with MAP methods. MAP-MRP successfully reduced the noise, 

whereas MAP-TV resulted in checkerboard artifacts. MAP-MRP 

was also more stable against the selection of the reconstruction 

parameters. In conclusion, MAP-MRP offers a simple and robust 

alternative for the reconstruction of in-beam PET data. 

 

Index Terms— Proton beam radiotherapy, particle beam 

radiotherapy, partial ring scanner, list-mode PET, time-of-flight 

(TOF) 

I. INTRODUCTION 

he beams used in particle beam radiotherapy have a well-

defined, finite penetration depth with high dose deposition 

close to the end of the beam’s trajectory, the so-called 

Bragg peak. This enables treatments in which less healthy 

tissue is irradiated as compared to irradiation with photons, 

leading to a reduction in irradiation-induced complications. 

However, as a result of the Bragg peak, large dose deposition 

errors can occur if the actual treatment situation is different 

from the situation assumed during treatment planning. An in-

vivo technique to verify the dose delivery is thus essential to 

fully translate the superior dose deposition of particles into a 

clinical benefit. 

 In-vivo dose delivery verification by means of positron 

emission tomography (PET) created by the particle beam has a 

long history (see [1]–[3] for some recent reviews) and is in 

routine use in a few particle therapy centers [4], [5]. The most 

abundantly produced positron emitters are 15O (T1/2 = 2.0 min), 
11C (T1/2 = 20.0 min), 30P (T1/2 = 2.5 min) and 38gK (T1/2 = 7.6 

min). Unfortunately, radioactive decay process delays the 

information from PET, preventing real-time feedback on the 

dose delivery. Recent work on the production of very short-

lived positron emitters may pave the way to real-time dose 

delivery information using PET [6], [7].  

 In-beam PET for in-vivo dose delivery verification is a 

challenging application for PET for two reasons. The first is the 

low statistics compared to conventional PET studies. At the end 

of a proton therapy irradiation, the PET activity is typically of 

the order of 1 kBq/cm3, resulting in a small number of counts; 

a total of 0.04 M to 0.37 M counts were measured with a limited 

angle tomograph and a PET acquisition time of 200 s [8]. Such 

positron emitter activity and number of PET counts are much 

lower than those typical for diagnostic PET (10-100 kBq/cm3 

and 100-1000 M counts) and can cause the reconstructed 

images to very quickly converge to the noise instead of the 

object’s true shape. Secondly, to allow the therapeutic beam to 

reach the patient unobstructed, generally scanners with limited 

angular coverage are used [4], [8]–[10]. A notable exception is 

OpenPET, in which the second generation design with slanted 

rings allows the beam to pass unobstructed while providing full 

angular coverage [11]. Partial ring scanner configurations are 

known to result in elongation artifacts in the direction of the 

detectors, hindering the accurate estimation of the edges around 

the irradiated volume [12]. As the accurate determination of the 

edges is the most important metric for in-vivo dose delivery 

verification, potential artifacts motivate an application-specific 

reconstruction method for in-beam PET, which reconstructs 

sharp edges while reducing the overall noise in the image. The 

use of time-of-flight (TOF) PET reduces image noise and can 

mitigate limited angle artifacts, but the degree of improvement 

by using TOF information depends on the selected 

reconstruction method [13]. 

 Maximum likelihood expectation maximization (MLEM) 

with and without subsets has previously been used in 

reconstruction of PET images acquired during particle therapy 

[12], [14]–[16]. As the inversion problem is ill-posed in 

emission tomography, MLEM-like methods can result in the 

amplification of noise over the iterations, especially with low 

statistics data. This can be remedied by early stopping or post-

smoothing, but the former can result in images that are too close 

to the given prior image and the latter causes blurring at the 

edges of the image. Maximum a posteriori (MAP) methods use 

an additional weighted penalty term in the reconstruction to 

prevent the amplification of noise. Any knowledge on the 

nature of the data, which is called a prior, can be incorporated 

into the MAP reconstruction. The features of the image that 
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deviate from the prior are penalized in the reconstruction. The 

selected prior needs to reflect the assumptions on the data. The 

emission data are assumed to be locally uniform (so-called 

monotonicity), meaning that the pixel values of the image are 

approximately constant in a local neighborhood. Thus, any 

prior for imaging of biological structures with PET needs to 

allow local smoothness while preserving the edges. The total 

variation (TV) prior is one such prior [17]. It has earlier been 

suggested for particle therapy applications [13], [18], [19]. 

Once optimized, MAP reconstruction with TV prior (MAP-TV) 

outperforms MLEM. Although no artificial jumps are 

introduced with MAP-TV, the extremely low counts of in-beam 

PET data can disrupt the assumption of monotonicity and cause 

checkerboard artifacts [17].  

 In this paper, we penalize the noise using the median root 

prior (MRP) to accommodate the fluctuations in the data, while 

reducing the noise and preserving the edges [20]. MRP has 

previously been used for the reconstruction of Poisson-

distributed data [21]–[23]. Its ability to accommodate missing 

detector information was demonstrated in [24]. The penalty 

term with MRP has not been implemented for the 

reconstruction of in-beam proton therapy data so far and it is 

proposed here because of its robustness against missing 

detectors and the stability of its penalty weight. 

We aim to compare the performance of MAP-MRP with 

MLEM and MAP-TV and to determine the effects of TOF and 

partial ring configurations on these reconstruction methods.  

II. IMAGE RECONSTRUCTION 

A. 3D list-mode MAP-EM 

In list-mode (LM) reconstruction, events can be processed 

individually due to the independent nature of forward and 

backward projection of each line of response (LOR). This 

allows multiple LORs to be processed in parallel using 3-

dimensional (3D) subsets, thus speeding up the reconstruction 

significantly. In LM reconstruction, no pre-processing is 

applied, so the data statistics are preserved [25]. Without 

rebinning, TOF information can be fully exploited to improve 

the reconstruction of the LORs. In this work, the counts were 

divided into L subsets (l = 1, 2, …, L), with each subset 

containing h LORs. The current image estimate is updated 

by all L subsets and these update images are summed together 

to form a correction image. The system matrix calculations for 

each subset was distributed to multiple nodes via Techila 

Distributed Computing Engine1 with MATLAB (MathWorks 

Inc., MA, USA). An outer-iteration consists of one pass of the 

current image estimate through L subsets [26]. This subset 

approach was proposed in [27] and also used in [26], and is 

referred to as LM-EM-ML due to its convergence to an ML 

estimate. The posterior estimate of the image with list-mode 

MAP-EM reconstruction using the one-step-late (OSL) scheme 

can then be written as 
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1 http://www.techilatechnologies.com/ 

, where 
)(k

jx  is the reconstructed value of the jth voxel in the 

image at the kth iteration, J is the total number of voxels to be 

reconstructed and I is the total number of LORs. Aij is the system 

response matrix, and it denotes the probability of activity in the 

jth voxel being detected in the ith LOR. The term 
=

I

i

ijA
1

 is the 

sensitivity matrix. U(x) is the energy function whose derivative 

with respect to the current image at iteration k is the penalty 

function. U(x) determines the degree of smoothing over the 

voxels. The hyperparameter  determines the weight of the 

local regularization term.  values were chosen within the range 

of [0,1] because the positivity constraint of the image values is 

guaranteed only if the hyperparameter value does not exceed 

the maximum of the normalized values in the sensitivity image. 

A large  increases the strength of the regularization. When 

=0, the MAP-EM becomes MLEM. The penalization is 

applied onto the 
)(k

jx  once iterations of all L subsets within one 

outer iteration are completed, which prevents any instability 

due to the very low count statistics within each subset.  

1)  Median root prior (MRP) 

In MRP, the noise penalization is based on the median of the 

pixel values within a certain neighborhood. Its name comes 

from the root signal of the median filter, which passes the 

median filter unchanged [20]. The reconstruction algorithm 

with MRP assumes local monotonicity of the spatial image and 

it penalizes any deviation from the median in the neighborhood 

[28]. This enables the algorithm to preserve the edges of the 

image, allowing abrupt changes as well as smooth ones. The 

non-monotonic features smaller than a given limit are 

considered as noise and are filtered out. The size of the 

minimum details preserved in the image depend largely on the 

weight of the penalization ( value) and the window size of the 

median filter [21]. Note that the MRP penalty term is data-

driven, where the value of the median around the jth pixel, Mj, 

is directly calculated from the data. Therefore, the calculation 

of the exact derivative of the energy function U(x) in (1) is not 

possible for MRP. Instead, the difference image between the 

image from the previous iteration 
)(k

jx and ( )jxMedM k
j ;)(=  

is used. With these changes, the penalty term in (1) is calculated 

as 
j

j
k

j

M

Mx −)(

[29].  

2) Total variation (TV) 

The TV prior uses the norm of the image gradient as a criterion 

for penalization. The gradient of the image results in high 

values at the object boundaries, where the intensity values can 

be discontinuous. The TV allows these sharp changes in the 

image [17]. This is an important property for preservation of the 

edges during image reconstruction. The elongation of the object 

in partial ring scanners can also be mitigated via TV prior [13]. 

The global calculation of the TV norm ensures the smoothness 

of monotonic regions and reduces the noise. The derivative of 

the energy function for TV penalty consists of partial 

)(k
jx
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derivatives of the image estimate. In this study, the l1 norm was 

used for the calculation of the TV penalty term. The TV norm 

of an image A in x, y and z dimensions is calculated by 

( ) ( ) ( )
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2 2 2
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 where  is a small parameter that prevents division by zero and 

ensures differentiability [17]. The penalty term in (1) is then 

replaced with  

, , 1, , , , , 1,

, ,

, , , , 1 1, , , 1, , , 1 , ,

( )

( 1, , ) ( , 1, )

3
.

( , , 1) ( , , )

x y z x y z x y z x y z

x y z

x y z x y z x y z x y z x y z x y z

A A A AU A

A u x y z u x y z

A A A A A A

u x y z u x y z

− −

− + + +

− −
= +

 − −

− + + −
+ −

−

  (3) 

3) Implementation  

The reconstructions were performed in MATLAB® 2017b with 

Intel X5660 processors in the Merope and Techila computing 

clusters of Tampere University of Technology. Monte Carlo 

simulations for proton therapy were conducted via Geant4 

Simulation toolkit [30]. Gate (Geant4 Application in 

Tomographic Reconstruction, version 7.2, [31]), which is 

designed for nuclear medicine applications, was used for the 

simulation of PET system. The components of the object-

related Aij were calculated using Siddon’s ray tracing algorithm 

[32]. No normalization or attenuation correction were applied 

before the image reconstruction in order not to change the 

Poisson characteristics of the data.  

For the geometrical phantom, the sensitivity matrix for the 

scanner was computed with a separate Gate simulation, in 

which the field of view of the scanner was defined as vacuum 

with no object inside the scanner. The detector responses were 

recorded for a sufficiently large number of events. For the 

realistic phantom data, the sensitivity was computed 

analytically by backprojection of one count per LOR. An exact 

attenuation map was constructed and each LOR in Aij was 

weighted on-the-fly with its corresponding attenuation 

correction factor during backprojection. Scatter and randoms 

corrections were not included in the reconstructions. Scattered 

events were removed from the data and randoms rate was small 

enough (~6% of total counts detected) for the correction to be 

excluded.  

For the reconstruction of the geometrical phantom, 4 mm × 

4 mm × 4 mm voxel size was used, resulting in image size of 

81 × 81 × 45 in x, y and z dimensions. The reconstructed image 

size for the realistic patient phantom was 125 × 88 × 110 voxels 

in x, y and z dimensions. The window size for the median filter 

used in MAP-MRP was selected as [3 3 3] voxels. The 

reconstructed image was initialized as an array of ones for all 

reconstruction methods. For the reconstruction, subsets with 

8000 counts were used (h = 8000). 100 outer iterations were 

performed on the full data to investigate the convergence of the 

reconstructions.  values within the range of [0.01, 0.8] were 

tested. The hyperparameter values and the stopping criterion for 

the iterations were calculated for the geometrical phantom and 

later tested and used for the reconstruction of the realistic 

patient treatment plan. 

The LOR endpoints were chosen to be at a depth of 8 mm in 

the crystal and in the center of the crystal cross section. 

Coincidence resolving times (CRT) of 400 ps and 200 ps full-

width-half-maximum (FWHM) were selected because 400 ps is 

currently available in clinical use and the 200 ps has been 

obtained in small-scale setups and is thus a realistic value for a 

future generation of scanners [13], [33], [34]. For the 

reconstruction with different CRTs, the exact TOF information 

was convolved with a Gaussian function, with a FWHM is 

equal to the CRT of the system. For the partial ring 
configurations, the detectors were removed symmetrically from 

either side of the scanner. The effect of angular coverage on the 

reconstruction methods was studied for full ring (360 degrees), 

2/3 ring (240 degrees) and 1/2 ring (180 degrees) 

configurations, similar to the setting in [16]. 

III. SIMULATIONS 

1) Geometrical phantom simulation 

The geometrical phantom was used to evaluate the performance 

of the reconstruction methods with low count statistics and 

limited angular coverage. The effect of TOF information on the 

reconstruction was also studied. Activity densities in the range 

of few kBq/cm3 were used. No proton beam was simulated for 

this phantom. The full-ring PET scanner configuration in the 

simulation contained 36 detector heads distributed in a ring of 

diameter 825 mm with an axial FOV of 180 mm. The 4 × 4 × 

22 mm3 LSO scintillator crystals were set in an 18 × 45 array 

for each detector head. The energy resolution was 13% at 511 

keV, with lower and higher energy thresholds of 350 keV and 

650 keV respectively. The coincidence time window was set to 

4.5 ns. Only 15O production was simulated due to its high 

activity rate in the beginning of the proton treatment. A 60 

second PET measurement with a total activity of 4.06 MBq was 

simulated. Fig.  1.a. shows the full and partial ring scanner 

configurations for the geometrical phantom.  

 

Fig.  1. (a) Scanner configurations for the PET simulation of the 

geometrical phantom. Gray detector heads are used in the half ring 

configuration (180 degrees coverage), whereas the gray + yellow blocks 

indicate the detector heads used for the 2/3 ring (240 degrees coverage). (b) 

Transverse view of the geometrical phantom. The red solid line in (b) was 

used to calculate the line profiles.  

The 12 cm-long cylindrical polyethylene nonvoxelized 

phantom (green circle in Fig.  1.b) with 10 cm radius can be 

seen in Fig.  1.b. The hot cylinder in the phantom (red circle in 

Fig.  1.b) contains radioactive water with 4 times higher activity 

(a) 

y 

(b) 

x 
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than the background (4 kBq/cm3: 1 kBq/cm3). The cold cylinder 

(blue circle in Fig.  1.b) was filled with air without activity. 

The list of coincidences was recorded with perfect time 

resolution from the simulation, containing the exact detector 

coordinates and the TOF information. 300 K true counts were 

gathered and used to construct the LM input for the 

reconstructions. For the 2/3 and 1/2 ring configurations, 180 K 

and 130 K true counts were gathered respectively. 

2) Realistic phantom simulation  

For a more realistic phantom study, a proton therapy treatment 

plan of a patient was simulated using Geant4. The patient CT 

and treatment plan were obtained from the Department of 

Radiotherapy of the University Medical Centre in Groningen. 

The production of 10C, 11C, 13N, 14O, 15O, 30P and 38K nuclides 

during irradiation was simulated. The distribution and decay of 

these isotopes were included in the Gate simulations of the PET 

scans. The emission map in Fig.  2.a, representing the 

distribution of positron emitter decay integrated over the 

duration of the scan, was used as reference for the evaluation of 

the reconstructed images. Three proton fields were delivered to 

the patient, with proton beam angles of +40, 0 and -40 degrees 

with respect to the y axis. The 3rd irradiation field is shown in 

Fig.  2.b, as most of the positron annihilations detected by the 

scanner comes from positron emitters produced during the last 

field. Biological washout of the PET nuclides was implemented 

following the procedure of Helmbrecht et al., using one 

washout component with a half-life of 69 s and a fraction of 

0.44  [35]. A 120 second scan was simulated with 60 seconds 

delay after the delivery of the last field. The PET scanner used 

in this simulation was based on the Siemens Biograph64 

PET/CT with TrueV option (Siemens Molecular Imaging, 

Knoxville, USA). The energy resolution was set to 13% at 511 

keV, with lower and higher energy thresholds of 350 keV and 

650 keV respectively. The coincidence time window was set to 

4.5 ns. The attenuation map was obtained from the bilinear 

scaling of the HU values in the CT scan of the patient [36]. The 

total activity was 5.9 MBq (1 kBq/cm3) 60 s after the delivery 

of the last field. The dose delivered at the target area was about 

2 Gy in total (similar to the dose delivered in [18]), a typical 

value for a daily fraction of the irradiation treatment.  The full 

ring scanner simulation included 4.28 M true counts. The 2/3 

and 1/2 ring configurations resulted in 3.25 M and 2.35 M true 

counts respectively.  

 
Fig.  2. (a) The realistic patient phantom with emission map overlaid on the 

CT image. The red arrow was used to calculate the line profiles. (b) The 

dose map of the 3rd irradiation field overlaid on the CT image.  

B. Assessment criteria 

The normalized mutual information (NMI) measures the 

similarity of information between two images, giving the value 

of 1 if two images are identical [13]. It was used to select the 

optimal weight of the penalization () for TV and MRP as well 

as the stopping criteria for the MAP methods [13]. The standard 

deviation across 2D slices was also calculated as a measure of 

uncertainty. The NMI is calculated through the Shannon 

entropy of the images. The Shannon entropy of an image (H) is 

defined as 

−=

i

ipipH )(log)(          (4) 

, where the probability p(i) that the value of the ith voxel occurs 

is calculated from the histogram of the image. Let the respective 

entropies of two images A and B be H(A) and H(B). H(A,B) 

represents the entropy of the joint histogram of two images. The 

mutual information between A and B, MI(A, B), is then  

),()()(),( BAHBHAHBAMI −+=      (5) 

Using MI(A,B), the NMI is calculated as follows: 

)()(

),(
),(

BHAH

BAMI
BANMI = .      (6) 

Bias between the reconstructed images and the ground truth 

was used to evaluate the reconstruction accuracy. The bias 

between the reconstructed image A and the reference image B 

is calculated as 

( ) - ( )
100

( )

mean A mean B
Bias

mean B
=      (7) 

The coefficient of variation (CoV) was used to evaluate the 

level of noise reduction in the reconstructed images. Each CoV 

was calculated within a volume of interest (VOI) using  

         (8) 

, where  is the standard deviation of the voxels within a 

VOI, and is the mean value of these voxels. A low CoV 

indicates low noise in the image, whereas a high CoV is a sign 

of high noise within the VOI.  

Sigmoid functions were fitted to the edges of the 

reconstructed images to calculate and compare their accuracy 

in determining the edges. The following sigmoid function sig(h) 

was used in this work: 

0

max
( )

1 exp( )

sig h base
h h

b

= +
−

+

         (9) 

, where h is the pixel index along the line profile. The “base” is 

set to zero as there is no activity outside of the phantom. h0 is 

the position at which 50% of the (max - base) value is reached. 

b is a measure for the steepness of the edge. A smaller b shows 

a steeper edge and a more accurate determination of the distal 

edge.  

Iso-contour comparison was used for the evaluation of the 

realistic phantom reconstructions. As the iso-contours are used 

for dose calculations in clinical practice, they were preferred 

over the reconstructed images for visual comparison of the 

realistic phantom images.  

VOI

VOICoV



=

VOI

VOI
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IV. RESULTS 

A. Results of the geometrical phantom 

Before the comparison of reconstruction methods, the optimal 

penalization weight and number of iterations for the MAP 

reconstructions were determined. In MAP reconstruction, 

 determines the strength of penalization. The hyperparameter 

that maximizes the 3D NMI and stabilizes over iterations was 

selected as optimal for each prior. Fig.  3 shows the NMI values 

for several  over 100 iterations for 2/3 ring scanner with 400 

ps CRT. The trend of the NMI values obtained from 

reconstructions with other partial ring configurations and CRT 

values show a similar pattern.  

 
Fig.  3. NMI (%) values for selected  values over 100 iterations. NMI 

values were calculated over the 3D image volume from the 2/3 ring scanner 

with 400 ps CRT.   

It can be seen from Fig.  3 that a stable maximum NMI is 

achieved at  = 0.3 for MRP and  = 0.08 for TV. For TV, the 

NMI values rapidly decrease when  is greater than 0.08. The 

MRP results become stable at  = 0.3 and, for higher values, 

image blurring as well as the distortion of the first and last slices 

in the axial (z) dimension, due to 3D filtering, cause the NMI to 

decrease over iterations. In the selection of number of iterations, 

the dominant concern was the stability of the reconstructions, 

therefore a high number of iterations were selected for MAP 

methods. It was observed that  the NMI values of MAP 

reconstructions for the selected  values stabilize after 50 

iterations (Fig.  3). All MAP reconstructions evaluated from 

hereon were thus obtained after 50 iterations. As NMI values of 

MLEM decrease over iterations, 7 iterations were used. 

Fig.  4 shows the reconstructed images from the geometrical 

phantom for both CRT values and all scanner configurations. 

The summed slices are shown here similar to [37]. The effect 

of the missing detectors in the partial ring scanners is clearly 

visible for images reconstructed via MLEM with 400 ps CRT, 

resulting in the elongation along the direction of the detectors. 

These effects are reduced by the improved TOF information. 

Both MAP reconstructions have clear boundaries and less 

elongation. As the overall reconstruction is already better for 

MAP methods than MLEM, the effect of improved TOF is less 

pronounced on MAP than MLEM reconstructions.  

Table I gives the mean of bias and CoV as well as the sigmoid 

fit parameters for the reconstructions. The uncertainty reported 

here is the standard deviation across different slices. Bias and 

CoV values were calculated through the uniform volume in the 

background cylinder, excluding the areas near the hot and cold 

volumes to avoid spilling of activity from the high activity 

regions in case of elongation.  
TABLE I 

 BIAS, COV AND SIGMOID FIT PARAMETERS FOR THE GEOMETRICAL PHANTOM 

(TRUE h0 IS AT PIXEL 65.53, b=0) 

 Full 

ring 

400ps 

Full 

ring 

200ps 

2/3 

ring 

400ps 

2/3 

ring 

200ps 

1/2 

ring 

400ps 

1/2 

ring 

200ps 

Bias (%)       

MLEM -52.5 

± 1.2 

-50 

± 1.2 

-42.9 

± 1.4 

-43.9 

± 1.8 

-41.2 

± 5.5 

-45.5 

± 3.8 

MAP-

MRP 

-28.6 

± 1.6 

-29.6 

± 1.4 

-31.2 

± 0.8 

-32.2 

± 1.1 

-31.6 

± 3.3 

-34  

± 3.1 

MAP-

TV 

-28.3 

± 2.1 

-31.1 

± 1.8 

-32  

± 2.3 

-33.2 

± 2 

-33.2 

± 7.7 

-35.6 

± 5.3 

CoV (%)       

MLEM 63.3 

± 7.5 

66 

± 7.3 

60 

± 5.8 

65.7 

± 6.1 

64.9 

± 5.9 

70 

± 6.5 

MAP-

MRP 

38.6 

± 1.2 

38.6 

± 1.2 

45.5 

± 1.04 

43.8 

± 1.03 

52.9 

± 1.9 

50.2 

± 1.7 

MAP-

TV 

42.6 

± 6.4 

40.6 

± 5.5 

46.9 

± 6.5 

44.5 

± 5 

52.3 

± 5.6 

50.5 

± 3.8 

h0       

MLEM 
65.5 

± 0.44 

65.5 

± 0.46 

63.1 

± 0.78 

63.4 

± 0.75 

63.4 

± 0.75 

63.5 

± 0.52 

MAP-

MRP 

65.1 

± 0.16 

65.2 

± 0.14 

63.2 

± 0.41 

64 

± 0.32 

62.5 

± 0.41 

63.6 

± 0.35 

MAP-

TV 

65.3 

± 0.13 

66 

±0.10 

63.2 

± 0.33 

64 

± 0.38 

63 

± 0.32 

64 

± 0.30 

b       

MLEM 
-0.6 

± 0.37 

-0.4 

± 0.36 

-2 

± 0.66 

-1.2 

± 0.65 

-2 

± 0.63 

-0.6 

± 0.45 

MAP-

MRP 

-0.3 

± 0.29 

-0.3 

± 0.17 

-0.9 

± 0.36 

-0.9 

± 0.28 

-0.5 

± 0.34 

-0.4 

± 0.26 

MAP-

TV 

-0.4 

± 0.1 

-0.1 

± 0.01 

-1.2 

± 0.29 

-1.1 

± 0.33 

-0.6 

± 0.28 

-0.6 

± 0.27 

The MAP-MRP reconstructions achieved the best bias and CoV 

for most of the studied cases, as well as smallest standard 

deviation across slices. The MAP-TV performs slightly worse 

than the MAP-MRP for partial rings, but its CoV and bias are 

still significantly lower than those of MLEM. Better TOF 

slightly improves the contrast recovery and the fitting of the 

sigmoid function of MAP methods, particularly in partial ring 

configurations. Both bias and CoV indicates worse 

performance for MLEM for 200 ps compared to 400ps.   

The accuracy of the reconstructed edges was evaluated by 

fitting sigmoid functions to the line profiles (see Table I). The 

sigmoid fit was calculated from the average of the central slice 

and its two closest neighbors in the axial direction. As the 

falling edge was used in the calculation of the fit, the slope (b) 

is negative. When comparing the accuracy of the sigmoid fits, 

the edge of the ground truth was taken as reference, with h0 at 

65.53 and b=0. 
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Fig.  4. Reconstructed images from sum of transverse slices. The intensities in each image are normalized within the range of [0,1] after the extreme values 

are excluded from the image. Rows 1, 2 and 3 depict the MLEM, MAP-MRP and MAP-TV reconstructions respectively. MLEM images were stopped 

after 7 iterations. The MRP and TV prior reconstructions are presented here with their optimal  values after 50 iterations ( = 0.3 for MRP and  = 0.08 

for TV). The elongation along the x direction is visible for the partial ring reconstructions for MAP-TV and MLEM.  

All sigmoid fits for the full ring configuration indicate high 

accuracy of results, though the uncertainties on the fit 

parameters are smaller for MAP. For the partial ring 

configurations, the MAP methods demonstrated a sharper edge 

than MLEM for both CRT values. All partial ring 

reconstructions showed improvement with 200 ps CRT.  

B. Results of the realistic patient phantom 

Before the evaluation of the reconstructed images, the 

reconstruction parameters were tested for the realistic patient 

phantom. According to the NMI values for various  in Fig. 5 , 

optimal  was selected as 0.02 for TV.  was 0.3 for MRP. 

 

Fig. 5. NMI values for the studied  values for the realistic phantom from 

the 2/3 ring scanner with 400 ps CRT. NMI values were calculated over the 

whole image volume. 

In proton therapy, the iso-contours are commonly used to 

evaluate the treatment plan. In this study, they were used as 

indications of the relative intensities for each reconstructed 

image to make the differences between the images more visible. 

The iso-contours of the emission map overlaid on the CT image 

and the reconstructed images can be seen in Fig.  6. The iso-

contours from the MAP reconstructions follow the shape of the 

contours in the emission activity well, with MRP resulting in 

better reconstructions of the irregular contours (see the white 

arrow in Fig.  6. Also, the contours of the high intensity regions 

(80% of the maximum activity marked in red in Fig.  6) in 

MAP-MRP reconstructions are visually more similar to the 

emission map than MLEM and MAP-TV. The MAP-TV 

reconstructions have poorer performance with low statistics 

data and they do not recover uniform high intensity areas. This 

is visible from the red iso-contour areas in Fig.  6 (marking 80% 

of the maximum activity respectively). 

 Table II shows the bias and CoV values as well as the 

sigmoid fit parameters for the reconstructions of the realistic 

phantom. The bias values were calculated using the normalized 

reconstructions and emission map. Iso-contour lines were used 

to create a homogenous VOI for the calculation of the bias and 

CoV values of the realistic phantom. The red iso-contour line at 

the center of the emission image (80% of the maximum value 

within the slice) was used as a threshold to obtain an 

approximately homogenous volume. The CoV value for the 

same volume in the emission image was 5.16%.  
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Fig.  6. Transverse view of the reconstructions from the realistic phantom with iso-contours. 50 iterations were used for MAP-MRP and MAP-TV 

reconstructions ( = 0.3 for MRP and  = 0.02 for TV). MLEM reconstructions were stopped after 7 iterations.  

The bias and CoV of the partial ring reconstructions were the 

best for MAP-MRP. The improvement of CRT did not improve 

the CoV or the bias of MLEM for the partial rings, but the 

standard deviation was lower with better TOF.  

TABLE II 

 BIAS, COV VALUES AND SIGMOID FIT PARAMETERS FOR THE REALISTIC 

PHANTOM. (TRUE h0 IS AT PIXEL 53.41, b=0) 

 Full 

ring 

400ps 

Full 

ring 

200ps 

2/3 

ring 

400ps 

2/3 

ring 

200ps 

1/2 

ring 

400ps 

1/2 

ring 

200ps 

Bias (%)       

MLEM -16.5  

± 5.3 

-17.6 

± 4.8 

-19.5 

± 6.9 

-21.5 

± 6.9 

-22  

± 6.3 

-22.1 

± 7.1 

MAP-

MRP 

-6.7  

± 2.6 

-6.9  

± 2.7 

-8.3  

± 4.8 

-9.3  

± 4.5 

-10.2  

± 5.7 

-9.9  

± 4.8 

MAP-

TV 

-8.64 

± 4.5 

8.03  

± 4.02 

-14.63 

 ± 5.3 

-14.13 

± 4.4 

-15.81 

± 5.7 

-14.94 

± 4.4 

CoV (%)       

MLEM 12.4 

± 1.9 

12.7 

± 1.8 

14.9 

± 3.2  

15.2 

± 3 

15.9 

± 3.2 

16.2 

± 3.3 

MAP-

MRP 

9 

± 1.3 

8.8 

± 1.3 

11.1 

± 3.4 

10.97 

± 3 

11.7 

± 3 

11.4 

± 2.8 

MAP-

TV 

9.22 

± 1.9 

9 

± 1.6 

13.2 

± 2.9 

12.5 

± 2.5 

13.2  

± 3.1 

12.5 

± 2.9 

h0       

MLEM 54.18  

± 0.09 

53.86  

± 0.06 

54.24  

± 0.09 

53.76 

± 0.06 

54.82 

± 0.18 

54.08 

± 0.09 

MAP-

MRP 

53.25  

± 0.04 

53.30 

± 0.05 

53.18 

± 0.1 

53.33 

± 0.06 

53.01 

± 0.07 

53.57 

± 0.09 

MAP-

TV 

53.24  

± 0.05 

53.31 

± 0.04 

53.21 

± 0.09 

53.40 

± 0.07 

53.79 

± 0.17 

53.67 

± 0.09 

b       

MLEM 2.02 

± 0.07 

1.63 

± 0.05 

2.08  

± 0.06 

1.42 

± 0.05 

2.73 

± 0.12 

1.73  

± 0.07 

MAP-

MRP 

1.13 

± 0.04 

1.04 

± 0.04 

1.14 

± 0.08 

1.15 

± 0.05 

1.13 

± 0.07 

1.27 

± 0.08 

MAP-

TV 

1.03 

± 0.04 

1.02 

± 0.04 

1.24 

± 0.08 

1.20 

± 0.06 

1.81 

± 0.14 

1.38 

± 0.08 

For the evaluation of the accuracy of reconstructed edges, 

sigmoid functions were fitted to averaged line profiles from the 

central slice and its two closest neighbors (along the red line in 

Fig.  2). The line profile was not calculated along the proton 

beam directions (which one needs to do to verify the proton 

range) because the edge in the PET image shows the edge of the 

lung in cases where the proton beam is stopped beyond this 

edge, and not the proton range. The sigmoid fit parameters for 

the MAP reconstructions are similar, with MRP being slightly 

better for partial ring configurations. TOF is effective is making 

the slopes of MLEM fits steeper (smaller b), but its effect on 

MAP results were minimal. 

V. DISCUSSION 

In this study, MAP-MRP successfully improved the edge 

detection and image uniformity via the use of MRP for 

penalization in MAP reconstruction. The proposed penalty 

function was robust against the change in partial ring scanner 

configurations with low count statistics. The observations based 

on our results are in line with the results from Cabello et al. 

[13], which used the TV prior information for MAP-EM on 

pencil beam data for hadron therapy. In general, both MAP 

methods are robust against missing information due to the 

partial ring scanner configuration. MLEM, on the other hand, 

cannot compensate for the large gaps in the angular coverage 

without any regularization or very good TOF information.  

 The results from [13] indicate that if the MAP penalization 

parameter for TV is not selected carefully, the algorithm may 

not lead to a stable solution. This finding was also noted in the 

work of Teng et al., in which they compared the performances 

of MLEM with MAP with TV prior on simulated and clinical 

data [38]. In our work, MAP-MRP was much less sensitive to 

the choice of the regularization parameter (see Fig.  3 and Fig. 

5) than MAP-TV. This was due to the use of a median filter in 

MRP, which preserves the intensity changes between different 

structures, while smoothening the intensity changes within the 

filter window. Stability of MRP against noise makes it possible 

to have strong penalization without introducing additional 

artifacts in the reconstructed images. The CoV and bias values 

are similar for the MAP methods, but a difference between 

MAP and MLEM reconstructions is visible. 

 The voxel size of 4 × 4 × 4 mm3 was selected due to the high 

noise in the data. A smaller voxel size of 2 × 2 × 2 mm3 was 

x
PET

 

y
P

E
T
 M

A
P

-M
R

P
 

M
L

E
M

 
M

A
P

-T
V

 E
m

is
si

o
n

 i
m

ag
e 

2/3 ring 

400ps 
2/3 ring 

200ps 
1/2 ring 

400ps 
1/2 ring 

200ps 
Full ring 

200ps 
Full ring 

400ps 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

tested, and the line profiles were found too noisy to determine 

a reliable edge. For higher statistics, as was the case in [16] with 

coincidence counts from 15 M to 150 M, smaller voxel sizes 

could be used. But such statistics are not realistic in the proton 

therapy application considered here. 

 Previous studies have shown that TOF information 

generally improves the contrast recovery, increases the 

convergence speed and is less sensitive to noise and 

inconsistent data corrections [13], [16], [39]. Both MAP 

methods prevented the elongation and suppressed the noise 

efficiently. Therefore, the improvement of TOF did not result 

in a significant improvement for the images reconstructed with 

MAP methods. About 400 ps CRT was deemed sufficient to 

obtain sharp edges with the penalized MAP reconstruction 

methods. On the other hand, TOF information around 200 ps or 

better is needed with MLEM to achieve similar results as MAP 

reconstructions.  

The MAP methods used in this work reliably reconstructed 

clearer edges than MLEM, separating the object from the 

background. They were also better at reconstructing the images 

in the presence of missing angles. In addition to the shared 

advantages of MAP methods, the MAP-MRP approach 

achieved a better overall image quality without compromising 

the details in the image compared to MAP-TV. No additional 

artifacts were introduced by MAP-MRP while this was not the 

case for MLEM (increased noise throughout iterations) and 

MAP-TV (checkerboard artifacts). The low statistics limited 

the performance of MAP-TV, whereas MLEM performance 

deteriorated with low statistics as well as partial ring 

configurations. MAP-MRP was also robust in terms of the 

selection of the penalization weight, making it easy-to-use in 

clinics. Based on these observations, MRP within MAP method 

makes a suitable candidate for penalization for the 

reconstruction of in-beam PET data.  
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Abstract

This paper investigates the benefits of data filtering via complex dual wavelet
transform for metal artifact reduction (MAR). The advantage of using complex
dual wavelet basis for MAR was studied on simulated dental computed
tomography (CT) data for its efficiency in terms of noise reduction and removal
of secondary artifacts. Dual-tree complex wavelet transform (DT-CWT) was
selected due to its enhanced directional analysis of image details compared to the
ordinary wavelet transform. DT-CWT was used for multiresolution decomposition
within a modified total variation (TV) regularized inversion algorithm. The
DT-CWT We have tested the multiresolution TV (MRTV) approach with
DT-CWT on a 2D polychromatic jaw phantom model with Gaussian and Poisson
noise. High noise and sparse measurement settings were used to assess the
performance of DT-CWT. The results were compared to the outcome of the
single-resolution reconstruction and filtered back projection (FBP) techniques as
well as reconstructions with Haar wavelet basis. The results indicate that filtering
of wavelet coefficients with DT-CWT effectively removes the noise without
introducing new artifacts after inpainting. The multiresolution reconstruction
with DT-CWT is also more robust when reconstructing the data with sparse
projections compared to the single resolution approach and Haar wavelets.

Keywords: cone beam computed tomography (CBCT); dual tree complex
wavelet transform; iterative reconstruction; metal artifact reduction;
multiresolution

Introduction
Cone beam computed tomography (CBCT) has been increasingly used over the

past decade as it provides information on bone size, presence of foreign materials,

surrounding anatomical structures such as nerves and sinuses, precise localization of

implant placement sites, and surgical planning decisions [1, 2]. With the increased

acceptance, affordability and accessibility of metallic restorations in forms of dental

implants, fillings, crowns, screws, nails, prosthesis and plates in dentistry, and the

increasing popularity of CBCT in image-guided therapy, dental CT specific metal

artifact reduction (MAR) algorithms became one of the focus areas in the scientific

research [3]. The attenuation of high density objects such as stainless steel, gold

alloys, silver amalgam, platinum, lead, tin and aluminum, can corrupt the images

of the underlying anatomical structures in dental CT, allowing fewer photons to

reach detectors. This photon starvation corrupts the projection data, leading to

streak artifacts over the surrounding tissue upon back-projection. These artifacts
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can reduce the applicability of dental CT by hindering the underlying anatomical

structures [4].

The aim of MAR methods is to limit the possible artifacts in the vicinity of the

metals. MAR methods can be generally divided into two main categories: (1) inter-

polation/completion of projection data and (2) iterative reconstruction methods.

The former approach is not sufficient in complicated cases such as multiple met-

als [5]. The combination of these two categories is also possible and it can further

improve the reconstruction quality. An overview of these methods is provided in [6].

Inpainting is one of the most commonly used projection completion methods due

to its high computational efficiency [5]. It is an interpolation based method for filling

the missing information in an image by interpolating the information surrounding

it. Inpainting was introduced in signal processing by [7] and it has been widely used

in MAR in projection domain [5, 8] and wavelet domain [9]. In practice, inpainting

replaces the gaps in the data with NaNs and then fill them by interpolating the

intensity values surrounding the NaNs. The inpainting methods in this work was

implemented via the MATLAB code of John D’Errico [1] [10]. Although inpaint-

ing fills the gaps in an image efficiently, it can lead to secondary artifacts during

analytic reconstruction due to discontinuities at the boundary pixels, e.g., at the

metal-tissue boundary. In order to prevent such artifacts, we propose filtering the

projection data in dual complex wavelet basis within a multiresolution framework,

which combines inpainting [10] and iterative total variation (TV) reconstruction.

The multiresolution iterative total variation (MRTV) is an extension of the classical

single-resolution TV iteration [11, 12, 13]. It utilizes a coarse-to-fine approach, in

which the coarse image details are reconstructed before the finer ones to enhance

the regularity, suppress the noise, and avoid the secondary artifacts after inpainting

[14, 15, 16].

The multiresolution decomposition needed in MRTV can be obtained using

wavelets, which have been successfully applied in MAR to resolve some of the issues

with poor performance, instability and computational complexity of existing meth-

ods [4, 16, 8]. The authors in [16] implemented a wavelet-based filtering for MAR in

CT data with hip joint prosthesis, and it was found to be effective in reducing the

artifacts from beam hardening and photon starvation. Following a similar reasoning,

we chose to use wavelet coefficients to distinguish different frequency components

and filter the high frequency artifacts caused by metals and noise without disturb-

ing the edges of the object. For achieving the best possible performance, we apply

the dual-tree complex wavelet transform (DT-CWT) [17, 18, 19]. The DT-CWT

is based on two real discrete wavelet transforms (DWTs), which give the real and

imaginary parts of the DT-CWT separately. As a directionally accurate transform,

2D DT-CWT can recognize the orientation of the image fluctuations, making it con-

siderably less sensitive to the artifacts related to alteration or compression of the

coefficients as compared to the classical wavelets, e.g., Daubechies or biorthogonal

wavelets used in [16]. The complex wavelet transform (CWT) also achieves perfect

reconstruction and the dual tree approach ensures this when decomposition level is

greater than one [20]. In contrast to the ordinary 2D wavelet transform, which in-

cludes vertical, horizontal and diagonal direction modes, DT-CWT oversamples the

[1]https://se.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans
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target image with a doubled directional selectivity. Consequently, it distinguishes

both ascending and descending curves in the image, whereas DWT does not. This

is essential for preserving the reconstruction quality as good as possible. The ad-

vantages of DT-CWT was utilized within the multiresolution framework in order

to achieve good noise filtering without filtering out the details in the image. In this

study, our goal is to find out, how MRTV approach performs compared to the or-

dinary single resolution TV (SRTV) regularization and also to the classical filtered

backprojection (FBP) technique.

The influence of angular density on the reconstructions was studied by using dif-

ferent number of projections. The results with sparse projections would be relevant

with respect to lowering the total radiation dose [21, 22]. Additionally, the stability

of the algorithm against the total number of projections could make it applicable

for various CBCTs available on the market. For instance, in 2013, the number of

projections acquired ranged from 180 to 1024. The Kodak CS 9300C CBCT device

utilizes 180 projections for a total rotation angle of 180 degrees, while most devices

deliver 360 projections per full angle rotation [23].

Materials and Methods
Dataset preparation

As the simulation dataset, we used the density map of a 2D jaw phantom (1024 ×
1024). This dataset was base on the FORBILD jaw phantom (http://www.imp.uni-

erlangen.de/forbild/english/results/index.htm). Metal (golden crown), teeth, jaw

bone (cortical), soft tissue (modeled as water) and air gap inside the mouth were

modeled with density values of 19.32, 2.99 (enamel), 1.92, 1 and 0, respectively. The

locations for metallic implants in the image and projection domains can be seen in

Fig. 1 as well as regions-of-interest (ROIs). In order to avoid committing ”inverse

crime” during the reconstruction, the sinogram was constructed on a fine grid of

1024 pixels, then reconstructed on a 512-pixel grid, similar to the approach of Nuyts

et al. [24]. The projection data consisted of 768 radial bins and 256 angular views,

covering 180 degrees.

The energy dependent mass attenuation coefficients (with coherent scattering) of

gold, bone, hard tissue and soft tissue were obtained from the National Institute

of Standards and Technology (NIST) database[2]. The mass attenuation coefficient

for the tooth was approximated using the material composition of enamel from [25]

and NIST database [3]. For modeling the beam hardening, the 80 kVp spectrum

was used with 1 mm Al filtration from Fessler’s IRT toolbox [26]. A parallel beam

structure was assumed for the construction of the system matrix. Both Poisson and

Gaussian noise were modeled in the sinogram construction, following the description

of [27], which was also used in TIGRE Toolbox. For Poisson noise, the total emitted

photon count (I0) was taken as 105 and a zero mean additive Gaussian noise was

used with standard deviation of 10.

Three different measurement settings were used to evaluate the algorithm’s per-

formance against noise and sparsity of measurements. In the first one (Configura-

tion I), the number of projections was 256 with Poisson and Gaussian noise. In

[2]https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html
[3]https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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Configuration II, a sparse pattern of 128 projections in addition to the noise. In

Configuration III, the data consisted of 256 projections without Gaussian noise to

assess the performance of the single and multiresolution methods under more ideal

conditions without changing the count statistics.

The metals were extracted by global thresholding from the projection data. For

the sake of simplicity in evaluating the performance of the suggested methods,

perfect segmentation of the metals was assumed. The gaps left on the sinogram

after metal extraction were filled via inpainting.

Wavelets

The ordinary real (orthogonal) DWT [28, 29] is based on a low- and high-pass filter

function φ : R → R and ψ : R → R which together enable decomposing a given

signal f(t) as given by

f(t)=

∞∑

k=−∞
αk φ(t− k) +

∞∑

`=0

∞∑

k=−∞
βk,` 2`/2ψ(2`t− k). (1)

The filter functions are orthogonal and normalized to one, i.e., the product be-

tween two different filter functions integrated over the real line is zero and∫∞
−∞ φ(t− k)2 dt =

∫∞
−∞ 2`ψ(2`t− k)2 dt = 1. Consequently, the coefficients αk and

βk,` can be obtained via the following integrals:

αk =

∫ ∞

−∞
f(t)φ(t− k) dt (2)

βk,` =

∫ ∞

−∞
f(t)2`/2ψ(2`t− k) dt. (3)

Furthermore, the DWT conserves signal energy, meaning that the Parseval’s identity

holds:

∫ ∞

−∞
f(t)2 dt =

∞∑

k=−∞
α2
k +

∞∑

`=0

∞∑

k=−∞
β2
k,`. (4)

Together the coefficients can be organized into a tree-structured hierarchy of multi-

ple resolution levels: each level has two branches, one for low- and one for high-pass

filter coefficients.

The two-dimensional filter functions can be obtained as separable products be-

tween their one-dimensional counterparts, i.e., φ(x, y) = φ(x)φ(y), ψH(x, y) =

φ(x)ψ(y), ψV (x, y) = ψ(x)φ(y), and ψD(x, y) = ψ(x)ψ(y). The high-pass filters

ψH(x, y), ψV (x, y), and ψD(x, y) correspond to a horizontal, vertical and diago-

nal directional mode, respectively. Characteristic to the 2D DWT is that, due to

their symmetry in the Fourier domain, these modes do not distinguish between up-

ward and downward slopes in the image [19]. Consequently, DWT easily produces

checkerboard-like dense and non-directional artifacts around edges, if the coeffi-

cients are altered or compressed. The lowest-order case of the DWT is constituted

by the picewise constant Haar wavelets which have been previously used together

with TV in reconstruction [9, 30]. Therefore, it was also used here for comparison.
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In DT-CWT, the low- and high-pass filter function is assumed to be of the form

φ(t) = φh(t) + jφg(t) and ψ(t) = ψh(t) + jψg(t), (5)

where φh(t), φg(t), ψh(t), and ψg(t) are real functions. The dual-tree structure fol-

lows as each of the pairs φh(t), ψh(t) and φg(t), ψg(t) forms a real-valued and or-

thogonal wavelet-tree.

In two dimensions, the high-pass filters of the DT-CWT have altogether six direc-

tional modes [19], corresponding to the real part of the separable products φ(x)ψ(y),

φ(x)ψ(y), ψ(x)φ(y), ψ(x)φ(y), ψ(x)ψ(y), and ψ(x)ψ(y) and the angular orientations

of -63, 63, -27, 27, -45, and 45 degrees with respect to the x-axis, respectively. Of

these, the first two are nearly horizontal, 3rd and 4th one nearly vertical and the

last two diagonal modes.

As the 2D DT-CWT can recognize the orientation of the image fluctuations, it

is considerably less sensitive to the artifacts related to alteration or compression of

the coefficients as compared to the DWT. In particular, it does not produce the

checkerboard pattern in the vicinity of edges.

Total Variation Regularization

The goal of any image reconstruction in a linear system is to invert the equation

y = Lx + n, (6)

where x is the image to be reconstructed, the vector y contains the measurement

(projection) data, the matrix L is a discretized Radon transform (Radon matrix),

and n is a measurement noise term. A regularized solution of (6) can be obtained

through the following:

x`+1 = (LTL + DΓ`D)−1LTy, (7)

where Γ` is a weighting matrix that satisfies Γ0 = I and Γ` = diag(|Dx`|+γI)−1 for

` ≥ 1 with a suitably chosen regularization parameter γ ≥ 0. D is the regularization

matrix given by

Di,j =
α(2δi,j − 1)

∫
Pi∩Pj ds

maxi,j
∫
Pi∩Pj ds

+ βδi,j , with

δi,j =

{
1, if j = i,

0, otherwise,
(8)

with Pi and Pj denoting the boundary of the ith and jth pixel, respectively.

Their intersection coincides with the edges shared by these pixels. The governing

regularization parameter determining the strength of the TV regularization is α.

The role of β and γ is mainly to ensure the invertibility of the matrices D and Γ`
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so that the TV iteration does not diverge. The first term in (8) penalizes the jumps

over the pixel edges and the second one corresponds to the norm of x. In this work, β

was fixed at 10−8. The conjugate gradient method was applied for matrix inversion

with the number of steps fixed to 100. If this iteration converges, it minimizes the

regularized objective function F (x) = ‖Lx−y‖22+2‖Dx‖1 in which the latter norm

is the total variation of x , if β = 0 [31]. Consequently, the reconstructed image

is likely to have large connected subsets close to constant, which helps to reduce

noise, while preserving the edges. In this study, we call (7) the single resolution TV

(SRTV) approach. The SRTV-H refers to the stronger penalization of TV with a

larger α value.

Multiresolution TV Regularization

We propose approaching MAR via a multiresolution TV (MRTV) technique, that

is, a coarse-to-fine extension (see Appendix) of the algorithm (7). To explain this

idea, we introduce the following definition of the numerical null-space [32, 15]:

S−ε = {x | ‖Lx‖ ≤ ε‖x‖}. (9)

Here ε denotes the floating-point accuracy, which is mainly concentrated on the

fine image fluctuations. We assume that the target spaces of the wavelet low- and

high-pass filter pair provide approximations of the space of strongly suppressed

image details S−ε and that of the well-detectable details S+
ε = {0} ∪ {x | ‖Lx‖ >

ε‖x‖}, respectively. These spaces decompose the candidate solution space as given

by Rn = S+
ε ⊕ S−ε . The aim of the coarse-to-fine approach is to separate S+

ε and

S−ε in the reconstruction process in order to maximize the distinguishability of

the details belonging to S−ε . Processing the coarse details before the finer ones

can approximately separate the strongly suppressed fluctuations of S−ε from the

well-detectable ones belonging to the space S+
ε = {0} ∪ {x | ‖Lx‖ > ε‖x‖}. The

low- and high-pass wavelet filters can be obtained via a wavelet decomposition by

zeroing all the high-pass and low-pass coefficients, respectively. In other words, the

reconstruction of each wavelet level can help separating the fine image details from

the undesired components of the image such as noise and artifacts.

Numerical Experiments

The present reconstruction approach was validated in numerical experiments us-

ing the jaw phantom described earlier. The reconstruction procedure included the

following four stages:

1 detecting the metals in the sinogram via global thresholding,

2 Laplacian smoothed inpainting of the metals using the algorithm in [10],

3 DT-CWT denoising with a given hard threshold percent (0 % or 80 %), and

4 inversion of the data via the MRTV, MRTV-F, SRTV, SRTV-H, or FBP

technique.

The hard threshold refers to the percentage of the smallest wavelet coefficients

which are set to zero. It aims to further reduce the noise in the sinogram before

reconstruction. In MRTV-F, with 80 % threshold, only the largest 20 % of the

wavelet coefficients were used in the reconstruction. The DT-CWT was used in the

inversion stage (4) to obtain the multiresolution decomposition for MRTV.
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The regularization parameter values were chosen empirically. MRTV, MRTV-F

and SRTV were optimized for Configuration III. The minimal level of regularization

sufficient to suppress any staircase patterns was sought for SRTV. The regulariza-

tion strength applied in the case of MRTV was matched roughly with that of SRTV.

In SRTV-H, slightly higher value of α was used for an enhanced noise tolerance.

For SRTV and SRTV-H, it was necessary to choose γ > 0, and it was set to γ =

10−2. For MRTV, the optimal performance was obtained with γ = 0. The number

of MRTV and SRTV iteration steps taken in computing a single reconstruction was

set to be three.

The number of nested resolution levels used in MRTV computations and denois-

ing was set to be four. The multiresolution inverse estimates computed without

and with DT-CWT denoising are referred to as MRTV and MRTV-F, respectively.

The regularization parameter α was chosen empirically as 4. MRTV results were

compared with FBP and single resolution estimates SRTV and SRTV-H corre-

sponding to α = 15 and α = 20, respectively. In FBP, the Hamming filter with a

high-frequency cut-off of 1 was used in order to decrease high frequency artifacts.

Although all configurations that were implemented for DT-CWT were also imple-

mented with Haar wavelets, the best overall performing reconstruction with Haar

wavelets is depicted in the results, which was found to be filtered multiresolution

approach, denoted with Haar-MRTV-F. The details for MRTV, MRTV-F, SRTV,

SRTV-H, FBP and Haar-MRTV-F have been included in Table 1.

Table 1 Details for the reconstructions computed in the numerical experiments.

Name Levels Filter Used wavelet coefficients (%) α
MRTV 4 - 100 4

MRTV-F 4 DT-CWT 20 4
SRTV 1 - 100 15

SRTV-H 1 - 100 20
FBP 1 Hamming - -

Haar-MRTV 4 Haar 100 4

The performance of denoising of the reconstruction methods were analyzed via

the root mean squared error (RMSE), in which the jaw phantom without metals

was taken as the ground truth. At the locations of the metal implants, the intensity

values of the ground truth vector was set to be equal to the intensity value of the

teeth. Structural similarity index (SSIM) was used to evaluate the overall similarity

of the reconstructed images to the ground truth [33]. The SSIM is 1 when the

reference image is identical to the image to be evaluated. As the similarity between

images decrease, so does the SSIM value. The SSIM values were calculated for all

ROIs as well as the full image. RMSE and SSIM values were evaluated for the

full image and the ROIs 1–3 (see Fig. 1). ROI 1 corresponds to the soft tissue

surrounding the teeth and ROIs 2 and 3 include a single tooth with gold implant.

All the scripts were written using MATLAB version R2016b. To run the com-

putations, we used a high-end Lenovo P510 workstation equipped with two Intel

Xeon E5-2620v4 processors and 192 GB RAM. The projection matrices for the

multiresolution transform were stored as sparse arrays.

Results
The reconstructed images are presented in Fig. 2. The secondary artifacts in FBP

around ROI 2 are slightly less pronounced with the DT-CWT filtering step. These
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artifacts are almost completely vanished once multiresolution approach is combined

with DT-CWT. The images reconstructed with Haar wavelets are so pixelized that

it is not possible to evaluate the secondary artifacts. When images with the tooth

within ROI 3 are visually assessed, the observations for the ROI 2 still apply. Ad-

ditionally, in SRTV, artifacts caused by single-resolution filtering are visible, but

these artifacts are decreased by the increased penalty weight in SRTV-H. The con-

trast difference between the tooth and the inpainted metal is pronounced in the

single resolution images and the FBP, whereas this difference is significantly less

with MRTV and MRTV-H.

The RMSE and SSIM results are shown in Fig. 3. For Configurations I (noisy)

and II (noisy and sparse), the multiresolution approach with DT-CWT fared better

with high SSIM and lower RMSE compared to single resolution approaches. FBP

after inpainting had the lowest RMSE among all reconstructions in Configuration I,

but the RMSE rapidly increased with sparse measurements in Configuration II. In

general, the filtering of wavelet coefficients improved the RMSE and SSIM values for

Configuration II. In Configuration I, however, the filtering deteriorated all RMSE

values despite the marginal improvement in SSIM. Increasing the penalty weight in

SRTV improved the overall SSIM and RMSE values for Configurations I and II. The

exception was the slight increase in RMSE in ROIs 2 and 3 for Configuration I. Due

to the pixelization in reconstruction with Haar wavelets, its RMSE was higher than

other methods even in the noiseless measurements. In the case of Configuration III

(noiseless data), all the methods with DT-CWT achieved similar RMSE and SSIM

due to the preliminary stage optimization of reconstruction parameters (Section 1).

For dense projection data in Configuration I, the multiresolution with wavelets (both

Haar and DT-CWT) performed better than single-resolution approaches in ROI 1.

For the sparse projections in Configuration II, MRTV with DT-CWT outperformed

the Haar wavelets.

The line profiles in Fig. 4 were calculated along the red line in Fig. 1. Based on

these line profiles, it can be seen that the MRTV with wavelet filtering suppresses

the noise better than SRTV with a high penalty (SRTV-H). The pixelization of the

Haar wavelet reconstruction is also visible in the line profile. The distortions in the

line profiles of SRTV-H and Haar-MRTV-F near the metallic region become more

apparent in Configuration II, while MRTV profile is closer to the ground truth.

Discussion
This study focused on enhancing the reconstruction quality of iterative regulariza-

tion via the dual-tree complex wavelet transform (DT-CWT) [17, 18, 19] in dental

CT, combined with multiresolution. Although FBP resulted in comparable values

of RMSE and SSIM with complete data and low noise scenarios, the difference of

the proposed method became apparent with sparse data. The central finding of

this study was that the DT-CWT equipped MRTV inversion technique was more

robust in terms of noise reduction and and artifact reduction for sparse data. This

observation was supported by the numeric evaluation and also by visual compari-

son. Although part of this robustness of the reconstruction compared to FBP can

be attributed to TV penalization, the difference in error and similarity measures of

Haar and DT-CWT point at the importance in selection of the coefficients to be

filtered.
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Based on our results, DT-CWT provided virtually an artifact-free multiresolu-

tion basis, which can be observed based on the nearly identical outcome of MRTV

and SRTV in the case of the noiseless data (Configuration III). The conventional

wavelets used in the preliminary tests, in particular, the Haar basis [28], led to

pixelization of the final reconstruction. That is, the correction steps for the finer

resolutions did not match accurately enough with the coarse level estimate. Hence,

DT-CWT was found to be vital for the appropriate function of MRTV. Some ring-

ing effects were observed for the individual resolution levels, but, the final estimate

did not suffer from ringing. Other potential multiresolution bases for MRTV are

provided by ridgelets and curvelets [34, 35, 36] which similarly to DT-CWT cover

an extended set of orientations compared to the classical wavelets.

Sinogram denoising with a 80 % hard threshold (MRTV-F) improved the RMSE

values with sparse projections (Configuration II). However, the RMSE results of the

dense projections with filtering were inferior to the outcome obtained with MRTV

despite the improvement in SSIM, suggesting that some details were lost in the

thresholding process along with some noise reduction. This suggests that additional

denoising in single resolution is a not as effective technique recovery of the intensity

values as employing a multiresolution decomposition in iterative reconstruction. We

emphasize that present hard threshold filter in MRTV-F can be improved, e.g., via

a soft threshold and regional adaptivity, especially, regarding the metal implants.

Using multiple resolution levels was also found to be preferable compared to con-

trolling the regularization strength. With sparse projection data used in Config-

uration II, the SRTV-H performed equally well compared to MRTV in terms of

RMSE, possibly due to the strong penalization of the noise. With SRTV-H, the

overall image quality could be improved with respect to the artifacts by increasing

the level of the regularization, but, with the cost of decreased image sharpness. The

line profiles, however, showed a high positive bias for the tooth around the metal

and lower intensity values for the metallic implant. In contrast, MRTV achieved

an enhanced accuracy for the coarse details while maintaining the sharpness at

the level of SRTV. Another important observation was that MRTV successfully

reconstructed both 256 and 128 projection angles utilized in Configuration I and

II, respectively. In general, the coarse-to-fine reconstruction approach seems to be

advantageous regarding MAR, where reconstructing the implanted teeth accurately

can be difficult due to the inpainted sinogram regions and, thereby, the incomplete-

ness of the data. As suggested by the present study, recovering the coarse level

fluctuations before the finer ones can result in a more accurate tooth boundaries

than, if the whole image is reconstructed at once. This can be understood, since for

the present inverse problem the numerical null space S−ε [15, 32] is non-trivial and

there is infinitely many candidate solutions which fit the incomplete data. Hence, in

addition to TV, a multiresolution setting akin to the present one might work also

with other reconstruction approaches. Note that it is possible to change the mul-

tiresolution levels depending on the spatial resolution of the image. For instance,

for a 256×256 image, the resolution level would be 3, while 5 levels could be chosen

for a 1024× 1024 image.

An important future work direction is to validate the present DT-CWT based

MRTV approach in 3-dimensional clinical dental CT data. For that purpose, the
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current implementation of MRTV needs to be sped up. An obvious solution would be

to employ a graphics processing unit (GPU) for the inverse computations instead

of a standard processor. The denoising technique used in MRTV-F can also be

improved in order to achieve optimal imaging results. In addition to the sinogram,

also the reconstruction can be filtered using DT-CWT. This approach was omitted

in this study, as it did not enhance the RMSE compared to MRTV in the preliminary

tests.

Conclusion
In this work, we showed how DT-CWT can be applied in the tomographic recon-

struction process via a multiresolution (coarse-to-fine) version of a classical TV

regularization algorithm. The numerical experiments were aimed at minimizing the

reconstruction errors due to the inpainting of metallic regions in the projection data.

The multiresolution technique (MRTV) was compared to the single-resolution TV

approach, for which a lower and higher regularization strength (SRTV and SRTV-H)

was used. The results were also compared with reconstructions using Haar wavelet

basis. Qualitative and quantitative results showed that data filtering with DT-CWT

combined with multiresolution reconstruction is beneficial for recovering the details

of images while reducing the noise with filtering at each resolution level. The ro-

bustness of the reconstruction with sparse projections using DT-CWT indicates the

feasibility of these wavelets especially for sparse measurements. This could poten-

tially help decreasing the radiation dose by reconstructing high quality images from

sparse projection angles.
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Figures

Additional Files

Additional file 1 — Multiresolution (Coarse-to-fine) Approach

In the present multiresolution version of the TV regularization (see 7) the coarse details are reconstructed before the

finer ones. We utilize the DT-CWT in this procedure via the projection matrices Pφ and Pψ which multiplied with

an image vector x yield a coefficient vector for the low- and high-pass filter at a given resolution level. Furthermore,

we define a filtered Radon matrix for the coarse and fine level as Lφ = LPφ and Lψ = LPψ . Denoting

Gφ = (LTφLφ + DφΓnDφ) and Gψ = (LTψLψ + DψΓnDψ), the inversion routine can be written as follows:

(1) Set the initial guess x0 = (0, 0, . . . , 0).
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Figure 1 The dataset and ROIs. The metallic regions are marked red on the phantom. The
resolution of the phantom, from which the sinogram is calculated, is 1024× 1024 pixels. The
noisy projection data after inpainting has the resolution of 768× 256 pixels. Region of interest
(ROI) 1 consisting of the soft tissue surrounding the teeth. ROI 2 (upper left ROI) and ROI 3
(lower right ROI) include a single tooth with metallic implant (encircled).
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Figure 2 Reconstruction results for Configurations I(noisy) and II(noisy and sparse). (g) and
(h) depict the parts of the reconstructed images near ROI 2 for Configurations I and II,
respectively. (i) and (j) present the images from ROI 3 for Configurations I and II, respectively. All
images covering the same region are shown within the same color range.
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Figure 3 Quantitative results. The SSIM and RMSE values obtained from the numerical
experiments for the full image and ROIs 1–3.
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Figure 4 Horizontal line profiles for Configurations I and II. Only the line profiles of MRTV-F,
SRTV-H, Haar-MRTV-F, and FBP are depicted here for clarity of the figure. The line profiles
have been calculated over the red line in Fig 1.a.

(2) Find a coarse resolution estimate through

x
(φ)
n+1 = G

−1
φ L

T
φy (10)
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with Γn = diag(|Dφx(φ)|)−1.

(3) Find a correction vector belonging to the finer resolution level as

x
(ψ)
n+1 = G

−1
ψ L

T
ψ(y − Lφx

(φ)
n+1) (11)

with Γn = diag(|Dψx(ψ)
n |)−1.

(4) Set xn+1 = x
(φ)
n+1 + x

(ψ)
n+1 and n→ n+ 1.

(5) If n is smaller than the desired number of iterations, then repeat the steps (2)–(5).

If more than two nested meshes are used, then the correction step (2) can go through multiple resolution levels

ψ1, ψ2, . . . , ψnf via the recursive process:

x
(ψi)

n+1 = G
−1
ψi

L
T
ψi

(y − Lcx
(c)
n+1

−
i−1∑

k=1

Lψix
(ψi)

n+1) (12)

with Γn = diag(|Dψi
x
(ψi)
n |)−1 for i = 1, 2, . . . , nf .
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