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Abstract

In this thesis we are working with a function theory on the hyperbolic upper-
half space. The function theory is called the hyperbolic function theory and
it is studied since 1990's by Heinz Leutwiler and Sirkka-Liisa Eriksson. The
advantage of the hyperbolic function theory is that positive and negative
powers of hypercomplex variables are included to the theory. Thus the hy-
perbolic function theory o�ers a natural generalization of classical complex
analysis.

The hyperbolic space is de�ned as a Riemannian manifold (Rn+1
+ , hk), where

the manifold is

Rn+1
+ = {(x0, ..., xn) ∈ Rn+1 : xn > 0}

and the metric is

hk =
dx2

0 + dx2
1 + · · ·+ dx2

n

x
2k

n−1
n

.

Using harmonic di�erential forms and Cli�ord algebras with a negative sig-
nature we obtain the modi�ed Dirac operator de�ned by

Mkf = Dxf +
k

xn
Q′f,

where Dx is the Euclidean Dirac operator and Q′ is a projection type map-
ping. Null-solutions of Mk are called hypermonogenic functions.

In this work we �rst study what is the corresponding function theory, if
we assume that the Cli�ord algebra has a positive signature. This work is
accomplished in papers I-IV. We deduce the basic theory very completely
and then we prove the Cauchy type integral formulas. Especially we study
the case where functions takes their values in the so called k-vector spaces.

In papers V and VI we study mean value properties for hypermonogenic
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functions.

In the introduction part of this thesis i.e., pages before the appendix pa-
pers, we'd like to give a brief summary of topics which are important (in the
author's point of view) in the hyperbolic function theory. It is not complete
but gives some ideas for the further studies of the topic. Especially it is not a
review of my research because one may found all the details from the papers
included into this thesis.
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Brief Summary of Publications

In �rst four papers I-IV we are working with the Cli�ord algebra with the
positive signature, that is, if Rn+1 is the Euclidean space with an orthonormal
basis {e0, e1, ..., en}, the Cli�ord algebra C`n+1,0 is an associative algebra with
unit generated by the relations

eiej + ejei = 2δij,

for i, j = 0, ..., n. As a geometric model we use the upper-half space

Rn+1
+ = {(x0, ..., xn) ∈ Rn+1 : x0 > 0}

with the metric

hk =
dx2

0 + dx2
1 + · · ·+ dx2

n

x
2k

n−1

0

.

For each k ∈ R we de�ne the operator Hk by

Hkf = ∂xf −
k

x0

Q0f

where ∂x is the Euclidean Dirac operator, i.e.,

∂x = e0∂x0 + · · ·+ en∂xn

and Q0 is a projection type mapping. Null-solutions of Hk are called hyper-
genic functions. We study their basic function theory and deduce the Cauchy
integral formulea for them.

In papers V and VI we study mean-value properties. We are working with the
Cli�ord algebra with the negative signature, that is, if Rn is the Euclidean
space with a basis {e1, ..., en}, the Cli�ord algebra C`0,n is generated by the
relations

eiej + ejei = −2δij,
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for i, j = 1, ..., n. As a geometric model we use the upper-half space

Rn+1
+ = {(x0, ..., xn) ∈ Rn+1 : xn > 0}

with the metric

gk =
dx2

0 + dx2
1 + · · ·+ dx2

n

x
2k

n−1
n

.

On Rn+1
+ we de�ne the modi�ed Dirac operator Mk by

Mkf = Dxf +
k

xn
Q′f,

where the operator Dx is the Euclidean Cauchy-Riemann operator, i.e.,

Dx = ∂x0 + e1∂x1 + · · ·+ en∂xn .

Solutions of the equation Mkf = 0 are called k-hypermonogenic functions.

We denote the Cli�ord algebra generted by the elements e1, ..., en−1 by C`0,n−1.
Then we have the split C`0,n = C`0,n−1⊕C`0,n−1 en, that is, for each a ∈ C`0,n
there exist Pa and Qa in C`0,n−1 satisfying

a = Pa+ (Qa)en.

Let f be a hypermonogenic function. In paper V we study mean-value prop-
ertied for the functions Pf and in paper VI for the functions Qf .

Next we review the most important results paper by paper.

(I) In this paper the basics of hyperbolic function theory using the Cli�ord
algebra C`n+1,0 is developed. The basic operator equalities are deduced.
The main result is the Cauchy integral formula.

(II) This paper is a survey of papers I, III and IV.

(III) This paper deals with the multivector functions. The basic multivector
calculus is studied. In the last part of the paper we study integration
theory on multivector functions.

(IV) This is the sequel of paper I. We deduce the Borel-Pompeiu formula
and study multivector calculus.

(V) In this paper we study �rst hyperbolic geometry. We apply it to the
Cauchy type kernels and we obtain the hyperbolic interpretation to the
kernels.
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(VI) In this paper we study a mean value property for eigenfunctions of the
Laplace-Beltrami operator.

Lastly we express the author's contribution to the papers. In all publications
the author is the corresponding writer.

(I-IV) In these papers the author did the mathematical work.

(V-VI) The author wrote the manuscripts and contributed to the ideas.
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Chapter 1

Cli�ord Algebras

In this chapter we will consider brie�y Cli�ord algebras over the Euclidean
space Rn.

1.1 A General De�nition of Cli�ord Algebras

We will study the Cli�ord algebras for Rn with the quadratic form

Qr,s(x) = −x2
1 − · · · − x2

r + x2
r+1 + · · ·+ x2

r+s.

where r + s = n. We will denote the space Rn with the quadratic form Qr,s

by Rr,s.

The corresponding Cli�ord algebra is denoted by C`r,s . Let e1, ..., er+s be
any Q-orthonormal (i.e., Qr,s(ej) = ±1) basis of Rr,s ⊂ C`r,s. Then C`r,s is
generated by e1, ..., er+s subject to the relations

eiej + ejei =

{
2δij, if i ≤ r,

−2δij, if i > r.

A more general basis free de�nition is available for example in [6] or [1].

The most important Cli�ord algebras in our case are C`0,n and C`n,0 where
the squares of the generators are:

e2i =

{
1, if ei ∈ C`n,0,
−1, if ei ∈ C`0,n .

Consider the ordered sets A = {a1, ..., ak} ⊂M = {1, ..., n}, where 1 ≤ a1 <
· · · < ak ≤ n, and de�ne

eA = ea1 · · · eak
.

15



16 CHAPTER 1. CLIFFORD ALGEBRAS

Especially e∅ = 1 and e{j} = ej. Each a ∈ C`r,s admits the representation

a =
∑
A⊂M

aAeA,

where aA ∈ R for each A ⊂ M . The number of elements in the set A is
denoted by |A|. Elements of the form

a =
∑
|A|=k

aAeA,

are called k-(multi)vectors. The space of k-vectors is denoted by C`kr,s.
Obviously C`0r,s = R and C`1r,s = Rr,s. Thus we may decompose C`r,s as a
direct sum of subspaces by

C`r,s = R⊕ Rr,s ⊕ C`2r,s ⊕ · · · ⊕ C`r+sr,s .

The natural projection C`r,s → C`kr,s is denoted by [·]k. Each a ∈ C`r,s admits
the multivector decomposition as

a =
n∑
k=0

[a]k.

Using the projections [·]k we de�ne teh following products. The exterior
product ∧ is de�ned on multivectors by

[a]j ∧ [b]k = [[a]j[b]k]j+k.

and extended to the whole C`r,s by linearity:

a ∧ b =
n∑

j,k=0

[[a]j[b]k]j+k.

The inner product · is de�ned on multivectors by

[a]j · [b]k =

{
[[a]j[b]k]|j−k|, if j, k 6= 0,

0, otherwise,

and extended to the whole C`r,s by linearity:

a · b =
n∑

j,k=1

[[a]j[b]k]|j−k|.
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Also we need to de�ne a few involutions, namely reversion, conjugation and
main-involution. Since all involutions are algebra (anti)automorphisms we
need to �x their values only for vectors.

The main involution is the algebra automorphism ′ : C`r,s → C`r,s de-
�ned by x′ = −x.

The reversion is the algebra antiautomorphism ∗ : C`r,s → C`r,s de�ned
by x∗ = x.

The conjugation is the algebra antiautomorphism − : C`r,s → C`r,s de-
�ned as a composition of the previous involutions, that is, if a ∈ C`r,s, then
a = (a′)∗ = (a∗)′.

It is an easy exercise to see that the conjugation is well de�ned.

1.2 Cli�ord Algebras with the signature (0, n)

and (n, 0)

The Cli�ord algebras C`0,n and C`n,0 has the special role. The reason for it
is that if x ∈ Rn is a vector, then we may compute its Euclidean norm using
the Cli�ord multiplication. In C`0,n we have

xx = xx = |x|2

and in C`n,0 we have
xx = |x|2.

Consequently, if x ∈ C`0,n is non-zero we de�ne its inverse by

x−1 =
x

|x|2
.

and similarly, if x ∈ C`n,0 is non-zero its inverse is de�ned by

x−1 =
x

|x|2
.

Let us abbreviate e0 = 1. Then we may embed the vector space Rn+1 into
the Cli�ord algebra C`0,n or C`n,0 by

(x0, x1, ..., xn) 7→
n∑
j=0

xjej.
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Thus an element x ∈ Rn+1 is identi�ed with the Cli�ord number

x = x0 + x

and it is called a paravector. We may compute its Euclidean norm in C`0,n
by

xx = xx = |x|2

and if x 6= 0 its inverse is de�ned by

x−1 =
x

|x|2
.

Hence we see that a non-zero paravector admits an inverse. But in general
Cli�ord algebras are not division algebras. If n > 2 then

(1− e1e2e3)(1 + e1e2e3) = 0.

Hence some elements are zero divisors if n > 2.



Chapter 2

Geometric and Analytic

Preliminaries

2.1 The Hyperbolic Upper-Half Space

In this section we will consider the certain Riemannian manifold, called the
Poincaré upper-half space. Especially we are interested in computing dis-
tances on it.

In the next section the hyperbolic function theory is related to the Poincaré
upper-half space (Rn+1

+ , g), where the hyperbolic metric in canonical coordi-
nates is de�ned by

g =
dx2

0 + dx2
1 + · · ·+ dx2

n

x2
n

.

In general, any oriented smooth Riemannian manifold with the metric

g =
n∑

i,j=0

gijdxidxj

admits the volume form (see [7]):

dVg(x) =
√

det(gij)dx0 ∧ dx1 ∧ · · · ∧ dxn.

In the canonical coordinates on the upper-half space det(gij) = 1/x
2(n+1)
n .

Then the volume element is

dxh := dVg(x) =
dx

xn+1
n

,

19



20 CHAPTER 2. GEOMETRIC AND ANALYTIC PRELIMINARIES

where dx = dx0∧dx1∧ · · ·∧dxn is the Euclidean volume element. We de�ne
the hyperbolic surface element on a smooth manifold-with-boundary U in
Rn+1

+ with the codimension 0 by

dσh =
νdS

xnn
,

where ν is the unit normal �eld on U and dS the classical scalar surface
element.

The metric g allows us to de�ne a distance on Rn+1
+ . The geodesics are

described more detailed in the following theorem.

Theorem 2.1.1 On the Poincaré half-space Rn+1
+ geodesics are circles or

lines which meet the boundary orthogonally.

Proof. See [15] p. 71 or [8] p. 38.�

The hyperbolic upper-half space is an immersed submanifold of Rn+1. Its
tangent space at any point x ∈ Rn+1

+ can nonetheless be viewed as a sub-
space of TxRn+1. In addition, by dimensional reasons TxRn+1 = TxRn+1

+ for
each x ∈ Rn+1

+ . Let ι : Rn+1
+ → Rn+1 be the canonical immersion. Then we

may identify ι(Rn+1
+ ) and Rn+1

+ as sets. That identi�cation allow us to use
two di�erent geometric structures on Rn+1

+ parallel: the hyperbolic and the
Euclidean structures. Thus we may loosely speak of Euclidean distances and
balls on Rn+1

+ , that is, we may compute the Euclidean distance |x − y| for
x, y ∈ Rn+1

+ .

Lemma 2.1.2 (V, p. 3) The distance dh(x, a) between the points x = x0 +
e1x2 + · · ·+ xnen and a = a0 + e1a1 + · · ·+ anen in Rn+1

+ is

dh(x, a) = arcosh λ(x, a),

where

λ(x, a) = λ (a, x) =
|x− a|2 + 2anxn

2xnan
=
|x− a|2

2xnan
+ 1.

Next we brie�y review the connection between the hyperbolic and the Eu-
clidean distance of two points. As a direct computation we obtain the fol-
lowing formulae.
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Lemma 2.1.3 (V, p. 3) If x = x0 + e1x2 + · · ·+ xnen and a = a0 + e1a1 +
· · ·+ anen are points in Rn+1

+ , then

|x− a|2 = 2xnan (λ(x, a)− 1) ,

|x− â|2 = 2xnan (λ(x, a) + 1) ,

|x− a|2

|x− â|2
=
λ(x, a)− 1

λ(x, a) + 1
= tanh2

(dh (x, a)

2

)
,

where â = a0 + e1a1 + · · ·+ an−1en−1 − anen.

Next we shall prove the connection between the hyperbolic and the Euclidean
ball in Rn+1

+ .

Proposition 2.1.4 (V, p. 4) Let ι : Rn+1
+ → Rn+1 be the canonical im-

mersion. Then

ι(Bh(a,Rh)) = Be

(
τ(a,Rh), Re(a,Rh)

)
,

where
τ(a,Rh) = a0 + a1e1 + · · ·+ an−1en−1 + anen coshRh

is the Euclidean center and

Re(a,Rh) = an sinhRh

is the corresponding Euclidean radius.

The preceding proposition allow us to abbreviate brie�y by

Bh(a,Rh) = Be

(
τ(a,Rh), Re(a,Rh)

)
.

Proposition 2.1.4 says that if x is a boundary point of the hyperbolic ball
Bh(a,Rh), that is dh(a, x) = Rh then the Euclidean distance between the
points x and τ(a,Rh) is |x − τ(a,Rh)| = an sinhRh. Putting these imme-
diate consequences together we obtain the following corollary, which has an
important role in the theory of mean-value properties.

Corollary 2.1.5 (V, p. 4) If x ∈ Rn+1
+ and τ(a, x) = a0 + a1e1 + · · · +

an−1en−1 + anen cosh dh(a, x) then

|x− τ(a, x)| = an sinh dh(x, a).



22 CHAPTER 2. GEOMETRIC AND ANALYTIC PRELIMINARIES



Chapter 3

On Hyperbolic Function Theory

3.1 Operators on the Upper-Half Space

In this section we shall study some geometric operators on the Poincaré
upper-half space. First we recall the Hodge ∗-operator and its basic proper-
ties, see e.g. [14]. Although the theory of the section is classical we'd like to
give short proofs for the most important results. The most important refer-
ences of the section are the book of Helgason [5], von Westenholz [14], and
the paper of Leutwiler [9]. Note that the similar technique is also available
in the more general setting, see [11].

The Poincaré half-space is a Riemannian manifold (N, gk) such that N =
Rn+1

+ with the metric

gk =
dx2

0 + dx2
1 + · · ·+ dx2

n

x2k
n

.

The manifold Rn+1
+ = {(x0, ..., xn ∈ Rn+1 : xn > 0) admits a three di�erent

type of geometries:

• If k > 0 we obtain similar geometry that in the hyperbolic space.
Distances �decrease� when xn increase and vice versa.

• If k = 0 we obtain the Euclidean geometry.

• If k < 0 we obtain the geometry with the �in�nite distances� as xn →
∞, but distances �tends to zero� in the neighborhood of the xn-axis.

The metric gives the inner product

〈X, Y 〉 = gk(X, Y )

23



24 CHAPTER 3. ON HYPERBOLIC FUNCTION THEORY

for each tangent space. The norm is de�ned by ‖X‖ =
√
〈X,X〉 for X, Y ∈

TxN . Let ∂xi
|x be a basis of TxM and dxi|x is its dual basis of T ∗xN , i.e.

dxi(∂xi
) = δij.

Next we want to �nd orthonormal frame and coframe with respect to the
inner product 〈·, ·〉. We search the frame in the form Xj = cj∂xj

. Since

‖Xj‖2 =
c2j
x2k
n

we obtain the orthonormal frame �eld on (N, g):

Xj = xkn∂xj

for j = 0, 1, ..., n. For a coframe we denote ωj = bjdxj. Then

1 = ωj(Xj) = bjx
k
ndxj(∂xj

) = bjx
k
n

and thus bj = 1/xkn, that is

ωj =
dxj
xkn

.

Above discussion allows us to compute Hodge duals. We de�ne the n-forms

dx̆j = dx0 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

and then

ω̆j =
dx̆j
xknn

where j = 0, 1, ..., n. Then

∗ωj = (−1)jω̆j = (−1)j
dx̆j
xknn

.

Since ∗ωj = ∗dxi

xk
n

we obtain

∗dxj = (−1)j
dx̆j

x
k(n−1)
n

A well known fact is that ∗∗ = (−1)k(n−k+1) for k-forms on Rn+1
+ . Thus we

have
∗dx̆j = (−1)n+jxk(n−1)

n dxj.

A 1-form η is called harmonic if it is a solution of the system

dη = 0, d∗η = 0,



3.1. OPERATORS ON THE UPPER-HALF SPACE 25

where d∗ is the formal adjoint of d (cf. [13]) with respect to the above inner
product. It can be shown that d∗ = ∗d∗.

Above discussion allows us to prove the following application of the general
result.

Proposition 3.1.1 If η = u0dx0 + u1dx1 + · · · + undxn is a 1-form on the
upper-half space (Rn+1

+ , g). Then

dη =
∑
k<j

(∂uk
∂xj
− ∂uj
∂xk

)
dxk ∧ dxj.

and

d∗η = x2k
n

n∑
j=0

∂uj
∂xj
− k(n− 1)x2k+1

n un.

Especially, η is harmonic if and only if its component functions satisfy the
(M. Riesz) system

n∑
j=0

∂uj
∂xj
− k(n− 1)

xn
un = 0,

∂uk
∂xj

=
∂uj
∂xk

,

for k < j.

Proof. First we compute

dη =
∑
k<j

(∂uk
∂xj
− ∂uj
∂xk

)
dxk ∧ dxj.

On the other hand, since

∗η =
n∑
j=0

(−1)juj
dx̆j

x
k(n−1)
n

we obtain

d ∗ η =
n∑
j=0

(−1)j
∂uj
∂xj

dxj ∧ dx̆j
x
k(n−1)
n

− k(n− 1)(−1)n
un

x
k(n−1)+1
n

dxn ∧ dx̆n

=
(
x2k
n

n∑
j=0

∂uj
∂xj
− k(n− 1)x2k+1

n un

)
dVgk
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where

dVgk
(x) =

dx0 ∧ dx1 ∧ · · · ∧ dxn
x
k(n+1)
n

.

is the volume form. Since 1 = ∗dVgk
we obtain that

d∗η = x2k
n

n∑
j=0

∂uj
∂xj
− (n− 1)x2k+1

n un.

The proof is complete.�

Trying to avoid messy formulae we see that the one of the best possible
metric is described in the following corollary.

Corollary 3.1.2 Let (Rn+1, hk) be the hyperbolic space with the metric

hk =
dx2

0 + dx2
1 + · · ·+ dxn

x
2k

n−1
n

Then η is harmonic if and only if its component functions satisfy the (M.
Riesz) system

n∑
j=0

∂uj
∂xj
− k

xn
un = 0,

∂uk
∂xj

=
∂uj
∂xk

,

for k < j.

Next we recall an isomorphism between the space of 1-forms and the space
of paravectors. For the construction of an isomorphism we need to recall the
paravector di�erential (see [12]):

dx = dx0 + dx.

where

dx =
n∑
j=1

ejdxj

If f is a paravector we de�ne the mapping ϕ by

ϕ : f 7→ [dxf ]0.
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If f = f0 + f1e1 + · · · + fnen then ϕ(f) = f0dx0 − f1dx1 − · · · − fndxn and
we see that ϕ is an isomorphism.

The �rst detailed study of the system (in the case k = n− 1) represented in
the previous corollary is due to Heinz Leutwiler in his paper [9]. He gave the
following de�nition.

De�nition 3.1.3 A paravector valued function f = f0 + f1e1 + · · ·+ fnen is
an H-solution if ϕ(f) is a harmonic 1-form.

An important geometric operator on a Riemannian manifold (N, hk) is the
so called Laplace-Beltrami operator. If the metric is expressed as hk =∑n+1

i,j=1 hijdxidxj then the Laplace-Beltrami operator is de�ned by (cf. [5])

∆lbf =
1√

| det(hij)|

n∑
k=0

∂

∂xk

( n∑
j=0

hjk
√
| det(hij)|

∂f

∂xj

)
where f ∈ C∞(N) and hij are the elements of the inverse matrix of (hij).

The reader should notice that the Laplace-Beltrami operator is only a one
of the geometric operators on a Riemannian manifold. For example, on
n-dimensional Riemannian manifold there exists (n + 1)-Laplace operators
acting on di�erential forms.

Theorem 3.1.4 In the upper-half space the Laplace-Beltrami operator is

∆lbf = x
2k

n−1
n

( n∑
k=0

∂2f

∂x2
k

− k 1

xn

∂f

∂xn

)
,

where ∆ =
∑n

k=0
∂2

∂x2k
k

is the Euclidean Laplacian.

Proof. Since hij =
δij

x
2k

n−1
n

we have
√
| det(hij)| = 1

x
k n+1

n−1
n

. Since hij = x
2k

n−1
n δij

we obtain

∆lbf = x
2k

n−1
n

n∑
k=0

∂

∂xk

( n∑
j=0

x
2k

n−1
n δjk

x
k n+1

n−1
n

∂f

∂xj

)
.

Thus

∆lbf = x
2k

n−1
n

n∑
k=0

∂

∂xk

( 1

xkn

∂f

∂xk

)
= x

2k
n−1
n

( n∑
k=0

∂2f

∂x2
k

− k 1

xn

∂f

∂xn

)
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and the proof is complete.�

Let us de�ne the so called modi�ed Dirac operator by

Df = Dxf +
k

xn
(en, f)

for f = f0 + f1e1 + · · · + fnen, where (en, f) is the Euclidean inner product
such that (en, 1) = 0 and Dx is the Cauchy-Riemann operator de�ned by

Dx = ∂x0 + e1∂x1 + · · ·+ en∂xn .

Sometimes Dx is also called the Dirac operator or the paravector derivative.

Proposition 3.1.5 A function f is an H-solution if and only if Df = 0.

Proof. Let f = f0 + f1e1 + · · ·+ fnen. Then

[Df ]0 =
∂f0

∂x0

−
n∑
j=1

∂fj
∂xj

+
k

xn
fn

and

[Df ]2 =
∑
i,j=1
i 6=j

eiej
∂fj
∂xi

=
∑
i<j

eiej

(∂fj
∂xi
− ∂fi
∂xj

)
.

If f is an H-solution then ϕ(f) = f0dx0 − f1dx1 − · · · − fndxn is a solution
of the system

∂f0

∂x0

−
n∑
j=1

∂fj
∂xj

+
k

xn
un = 0,

∂fi
∂xj

=
∂fj
∂xi

,

for i, j = 0, 1, ..., n such that i < j. The proof is complete.�

3.2 Modi�ed Dirac Operators

Next we shall consider an operator de�ned on the set of Cli�ord algebra-
valued functions. It is an extension of the previous modi�ed Dirac operator.
Thus our aim is to �nd the operator Mk : C∞(Ω, C`0,n) → C∞(Ω, C`0,n)
such that Mkf = Df for each paravector f . If F ∈ C∞(Ω, C`0,n) then the
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generalization of the Dirac operator Dx is obvious. The inner product may
be generalized using the Cli�ord inner multiplication since

en · f = −(en, f)

for each paravector valued function f . Using that idea we may de�ne the
operator Mk by

MkF = DxF −
k

xn
en · F.

Of course the generalization is not the only possible one, but it gives us a
quite fruitful theory. The preceding operator is called the (left)-modi�ed
Dirac operator (cf. [3]). We see that the element en has the special role.
Hence we may also give the following representation for an arbitrary a ∈ C`0,n

a = Pa+Qaen,

where Pa and Qa are elements of the Cli�ord algebra generated by the
elements {e1, ..., en−1}. It is easy to see thatQaen = en(Qa)′. If we abbreviate
Q′a = (Qa)′ we have the following result.

Proposition 3.2.1 Using the preceding representation we have

MkF = DxF +
k

xn
Q′F

for F ∈ C1(Ω, C`0,n).

Proof. Assume F = PF + enQ
′F . Since en · en = −1 the proof follows.�

Sometimes (e.g. in papers I-IV) we also use the hyperbolic space Rn+1
+ =

{(x0, ..., xm) : x0 > 0} with the metric h =
dx2

0+···+dx2
n

x2
0

. Then we use the split

a = P0a+ e0Q0a

where e0 is a non-scalar Cli�ord number since we are working with the vec-
tor variables and the Cli�ord algebra C`n+1,0. The corresponding operator
(abbreviated by Hk) is de�ned by

HkF = ∂xF −
k

x0

Q0F

for F ∈ C∞(Ω, C`n+1,0) where ∂x is the Dirac operator

∂x = e0∂x0 + e1∂x1 + · · ·+ en∂xn .
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3.3 On Hypermonogenic Functions

If f is a solution of the equation Mkf = 0 it is called k-hypermonogenic.
If k = n − 1 solution are called brie�y hypermonogenic. In this section we
study some properties of the hypermonogenic functions. First we study their
structure.

The adjoint operator of Mk is de�ned by

MkF = DxF −
k

xn
Q′F

where Dx = ∂x0 − e1∂x1 − · · · − en∂xn . Let as abbreviate M = M(n−1) and
M = M (n−1).

Theorem 3.3.1 ([3]) Let Ω ⊂ Rn+1
+ be an open subset and let f : Ω→ C`0,n

be a twice di�erentiable function. Then

P (MMf) = ∆Pf − n− 1

xn

∂Pf

∂xn

and

Q(MMf) = ∆Qf − n− 1

xn

∂Qf

∂xn
+ (n− 1)

Qf

x2
n

.

If f is hypermonogenic, then Pf satis�es the equation

∆Pf − n− 1

xn

∂Pf

∂xn
= 0

and Qf satis�es the equation

∆Qf − n− 1

xn

∂Qf

∂xn
+ (n− 1)

Qf

x2
n

= 0.

We see that the P -part of a hypermonogenic function is hyperbolic harmonic
and Q part satis�es the eigenvalue equation

∆lbQf = −(n− 1)Qf.

Also we have the following important result.

Theorem 3.3.2 ([3]) Let Ω be an open subset of Rn+1. Then f : Ω→ C`0,n
is hypermonogenic if and only if for only a ∈ Ω and only ball B(a, r) ⊂ Rn+1

there exists a mapping H : B(a, r)→ C`0,n−1 satisfying the equations

f = DxH
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and

∆lbH = 0

on B(a, r).

As an example of a hypermonogenic function we express the following results.
The �rst one is a motivation for the hyperbolic function theory in general.

Theorem 3.3.3 ([3]) A mapping x 7→ xm, where m ∈ Z, is hypermono-
genic.

Corollary 3.3.4 ([3]) Functions ex, sinx and cosx (with usual de�nitions
as series) are hypermonogenic.

3.4 Integral Representations

In this section we study integral representations for hypermonogenic func-
tions. Especially we are interested Cauchy type formulas and mean-value
properties.

Let a ∈ C`0,n. Then we have

a = Pa+ (Qa)en.

The hat-involution is an algebra automorphism ̂: C`0,n → C`0,n de�ned by

â = Pa− (Qa)en.

It is an easy exercise to see that êj = (−1)δjnej and if a, b ∈ C`0,n then âb = âb̂.

In this section we denote the surface area of the unit sphere in Rn+1 by
ωn+1.

The Cauchy formula for the P -part of a hypermonogenic function is then:

Proposition 3.4.1 ([2]) If f is a hypermonogenic function on Ω and K ⊂
Ω is an oriented (n+ 1)-dimensional manifold-with-boundary. Then for each
a ∈ K we have

Pf(a) =
2nann
ωn+1

∫
∂K

P (p(x, a)ν(x)f(x))
dS(x)

xn−1
n
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where dS is the scalar surface element, ν is the outer unit normal vector
�eld, and

p(x, a) = − 1

22n−1ann
Dx

∫ 1

|a−x|
|x−â|

(1− s)n−1

sn
ds

=
xn−1
n

2an

(x− a)−1 − (x− â)−1

|x− a|n−1|x− â|n−1
.

Similarly we obtain the Cauchy formula for Q-part of a hypermonogenic
function.

Proposition 3.4.2 ([2]) If f is a hypermonogenic function on Ω and K ⊂
Ω is an oriented (n+ 1)-dimensional manifold-with-boundary. Then for each
a ∈ K we have

Qf(a) =
2nan−1

n

ωn+1

∫
∂K

Q(q(x, a)ν(x)f(x))dS(x)

where dS is the scalar surface element, ν is the outer unit normal vector
�eld, and

q(x, a) = − 1

2(n− 1)
Dx

1

|x− a|n−1|x− â|n−1

=
1

2

(x− a)−1 + (x− â)−1

|x− a|n−1|x− â|n−1
.

Using the hyperbolic geometry we may express the preceding kernels in the
following form.

Theorem 3.4.3 (V, p. 8) If dh (x, a) is the hyperbolic distance between the
points x and a in Rn+1

+ then

p(x, a) =
x− τ(a, x)

2nxnan+1
n sinhn+1 dh(x, a)

=
1

2nxn

x− τ(a, x)

|x− τ(a, x)|n+1
,

where

τ(a, x) = a0 + a1e1 + · · ·+ an−1en−1 + an cosh dh(x, a)en.
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The preceding theorem gives us an interpretation to the p-kernel. In the
classical Cli�ord analysis the Cauchy's kernel is the mapping x 7→ x−a

|x−a|n+1

(of course up to constant). In the hyperbolic case the p-kernel is just the
Euclidean Cauchy's kernel, but we compute it in the di�erent center. Also
there is the coe�cient 1/xn, what is something what we expected.

Theorem 3.4.4 (V, p. 10) If dh (x, a) is the hyperbolic distance between
the points x and a in Rn+1

+ then

q(x, a) =
(x− τ(a, x)) cosh dh(x, a)− an sinh2 dh(x, a)en

(2anxn)n sinhn+1 dh(x, a)

=
1

(2xn)n
x− τ(a, x)

|x− τ(a, x)|n+1
Qτ(a, x)− 1

(2xn)n
1

|x− τ(a, x)|n−1
en,

where

τ(a, x) = a0 + a1e1 + · · ·+ an−1en−1 + an cosh dh(x, a)en.

The preceding theorem gives us an interpretation to the q-kernel. Recall that
the Newton's kernel in the theory of harmonic function is (up to constant)
the mapping x 7→ 1

|x−a|n−1 . Thus we see that the q-kernel is a linear com-

bination of the Cauchy's and the Newton's kernels with the center τ(a, x).
Moreover, since we consider the kernel of the Cauchy's formula for the Q-part
of a hypermonogenic function, it can be expected that the coe�cient en is in
the special role.

Using the hyperbolic kernels we may prove the following mean-value proper-
ties.

Theorem 3.4.5 ([4];V, p. 12) Let U ⊂ Rn+1
+ be open. The following prop-

erties are equivalent:

(a) h is hyperbolically harmonic on U .

(b) h is smooth and

h(a) =
1

ωn sinhnRh

∫
∂Bh(a,Rh)

h(x)dσh(x)

for all Bh(a,Rh) ⊂ U .
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(c) h is smooth and

h(a) =
1

V (Bh(a,Rh))

∫
Bh(a,Rh)

h(x)dxh(x)

for all Bh(a,Rh) ⊂ U where V (Bh(a,Rh)) = ωn
∫ Rh

0
sinhn tdt is the

hyperbolic volume of the ball Bh(a,Rh).

Recall that the Q-part of a hypermonogenic function is a solution of the
Laplace-Beltrami equation, i.e.,

∆lbQf = −(n− 1)Qf.

Hence we may study their mean value properties:

Theorem 3.4.6 (VI, p. 6) Let Ω ⊂ Rn+1
+ be an open subset and let h :

Ω→ C`0,n−1 be a smooth function. The following properties are equivalent.

(1) h is an eigenfunction, i.e, is a solution of

∆lbh(x) = −(n− 1)h(x)

for x ∈ Ω.

(2)

h(a) =
1

ωn+1ψ(Rh)

∫
∂Bh(a,Rh)

h(x)dσh(x)

where

ψ(Rh) = sinhRh

∫ Rh

0

sinhn−2(t)dt

whenever B(a,Rh) ⊂ Ω.

(3)

h(a) =
n− 1

ωn+1φ(Rh)

∫
Bh(a,Rh)

h(x)dxh

where ωn+1 is the surface area of the (n+ 1)-unit sphere and

φ(Rh) = (n− 1) coshRh

∫ Rh

0

sinhn−2(t)dt− sinhn−1Rh.

whenever B(a,Rh) ⊂ Ω.
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