
Ionut Schiopu
Depth-Map Image Compression Based on Region and 
Contour Modeling

Julkaisu 1360 • Publication 1360

Tampere 2016



Tampereen teknillinen yliopisto. Julkaisu 1360
Tampere University of Technology. Publication 1360

Ionut Schiopu

Depth-Map Image Compression Based on Region and
Contour Modeling

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 29th of January 2016, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2016



Supervisor:

Prof. Dr. Ioan Tabus,
Department of Signal Processing,
Faculty of Computing and Electrical Engineering,
Tampere University of Technology,
Tampere, FINLAND

Pre-examiners:

Prof. Dr. Adrian Munteanu,
Department of Electronics and Informatics,
Vrije Universiteit Brussel,
Brussel, BELGIUM

Assoc. Prof. Dr. Faouzi Alaya Cheikh,
Faculty of Computer Science and Media Technology,
Gjøvik University College,
Gjøvik, NORWAY

Opponent:

Prof. Dr. Søren Forchhammer,
Department of Photonics Engineering,
Technical University of Denmark,
Lyngby, DENMARK

ISBN 978-952-15-3667-0 (printed)
ISBN 978-952-15-3680-9 (PDF)
ISSN 1459-2045



I dedicate this thesis to my family.

i



ii



Abstract

In this thesis, the problem of depth-map image compression is treated. The com-
pilation of articles included in the thesis provides methodological contributions in
the fields of lossless and lossy compression of depth-map images.

The first group of methods addresses the lossless compression problem. The
introduced methods are using the approach of representing the depth-map image
in terms of regions and contours. In the depth-map image, a segmentation defines
the regions, by grouping pixels having similar properties, and separates them using
(region) contours. The depth-map image is encoded by the contours and the
auxiliary information needed to reconstruct the depth values in each region.

One way of encoding the contours is to describe them using two matrices of
horizontal and vertical contour edges. The matrices are encoded using template
context coding where each context tree is optimally pruned. In certain contexts,
the contour edges are found deterministically using only the currently available in-
formation. Another way of encoding the contours is to describe them as a sequence
of contour segments. Each such segment is defined by an anchor (starting) point
and a string of contour edges, equivalent to a string of chain-code symbols. Here
we propose efficient ways to select and encode the anchor points and to generate
contour segments by using a contour crossing point analysis and by imposing rules
that help in minimizing the number of anchor points.

The regions are reconstructed at the decoder using predictive coding or the
piecewise constant model representation. In the first approach, the large constant
regions are found and one depth value is encoded for each such region. For the
rest of the image, suitable regions are generated by constraining the local variation
of the depth level from one pixel to another. The nonlinear predictors selected
specifically for each region are combining the results of several linear predictors,
each fitting optimally a subset of pixels belonging to the local neighborhood. In
the second approach, the depth value of a given region is encoded using the depth
values of the neighboring regions already encoded. The natural smoothness of the
depth variation and the mutual exclusiveness of the values in neighboring regions
are exploited to efficiently predict and encode the current region’s depth value.

The second group of methods is studying the lossy compression problem. In a
first contribution, different segmentations are generated by varying the threshold
for the depth local variability. A lossy depth-map image is obtained for each
segmentation and is encoded based on predictive coding, quantization and context
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tree coding. In another contribution, the lossy versions of one image are created
either by successively merging the constant regions of the original image, or by
iteratively splitting the regions of a template image using horizontal or vertical
line segments. Merging and splitting decisions are greedily taken, according to the
best slope towards the next point in the rate-distortion curve. An entropy coding
algorithm is used to encode each image.

We propose also a progressive coding method for coding the sequence of lossy
versions of a depth-map image. The bitstream is encoded so that any lossy version
of the original image is generated, starting from a very low resolution up to lossless
reconstruction. The partitions of the lossy versions into regions are assumed to
be nested so that a higher resolution image is obtained by splitting some regions
of a lower resolution image. A current image in the sequence is encoded using
the a priori information from a previously encoded image: the anchor points are
encoded relative to the already encoded contour points; the depth information of
the newly resulting regions is recovered using the depth value of the parent region.

As a final contribution, the dissertation includes a study of the parameteriza-
tion of planar models. The quantized heights at three-pixel locations are used to
compute the optimal plane for each region. The three-pixel locations are selected
so that the distortion due to the approximation of the plane over the region is
minimized. The planar model and the piecewise constant model are competing in
the merging process, where the two regions to be merged are those ensuring the
optimal slope in the rate-distortion curve.
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Chapter 1

Introduction

“Begin at the beginning,” the King said gravely,
“and go on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

1.1 Motivation
A depth-map image is an image that stores information about the distance from
the optical center of the camera to the point in space represented in the image.
Recently, the acquiring techniques for this type of images have improved a lot, and
many types of specialized sensors are now available on the market. Even more,
the depth-map estimation techniques based on computer vision tools were also
improved and are now presenting much better results. Since the Three Dimensions
(3D) experience is captivating the users, a wide range of applications that use
depth-map images have been developed. Computer vision, gaming industry, movie
industry, mobile phone industry, 3D Free Viewpoint Video, or 3D Television (3DTV)
are only a few examples of research areas, where the applications use multiple
cameras to capture views of the scene from different viewpoints. Every application
aims to provide a very good 3D experience to the user, therefore a lot of research has
been done to improve the quality of the acquired depth-map images. This research
was focused on developing techniques which can compress the depth-map images
either without any information loss, called lossless (image) compression, or at a
good enough quality by accepting some information loss, called lossy compression.

The 3D effect is perceived by a human, who receives two color images, one
for each eye. The synthesis of the color images, necessary for rendering a certain
viewing angle of the scene, can be achieved using the Depth-Image-Based Render-
ing (DIBR) technique, starting from two or several color images and one or more
depth-map images. A depth-map image is more redundant than a color image
and can be compressed losslessly at a lower bitrate. The depth-map compression
became an active research field in the recent years, and many new techniques have
been proposed. Below we list briefly a few main approaches that were proposed

1
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in the last several years. A depth-map image may be compressed by applying
different decorrelating transforms [21, 39, 101]; by decomposing the image using a
tree triangular decomposition [18]; by down-sampling the image and compressing a
smaller size image [64]; by conserving the edges found in the image using wedgelets
[23] or platelets [96]; by representing the image using pyramidal structures [40];
by applying state of the art bit-plane compressors (e.g. JBIG) [36, 101]; by trans-
mitting to the decoder a segmentation of the image and encoding different entities
to reconstruct the image [24, 57]; or by modifying video standards (e.g. H.264,
HEVC) to compress a depth-map video sequence [49, 100, 102, 103].

In this dissertation, we choose to represent the depth-map image using a de-
signed segmentation that divides the image into regions having pixels with similar
proprieties. The developed algorithms are reconstructing the initial depth-map
image at the decoder from an encoded segmentation and some auxiliary informa-
tion, with which we are able either to recover the information in each region and
to obtain exactly the same image, or to reconstruct the regions with a controlled
distortion and to obtain a lossy version of the initial image.

1.2 General overview of the algorithms

The algorithms developed for this thesis are divided into two groups according to
their characteristic to compress an image with or without information loss: loss-
less compression algorithms and lossy compression algorithms. A general overview
of the algorithms, from the chronological point of view, is presented below by
mentioning a few details about the ideas used in each algorithm.

In a first published article [82] (detailed in the author’s Master Thesis [77]),
we first introduced an algorithm containing most of the ingredients that we use
in our compression schemes. That paper was not included in this thesis, but is
a precursor of the seven publications [P1]-[P7] included in this thesis. The main
idea of the algorithm is to design segmentations suitable for prediction, which are
transmitted to the decoder using region contours by codifying each contour using
chain-code representations. The regions are reconstructed using prediction, where
the smallest details in each region are encoded by the prediction residuals.

In the first publication [P1] of this thesis, we further developed the concepts
from [82]. We first improved the prediction inside each region by introducing a
mixture of local predictors, and by searching on both directions, column-wise and
row-wise, to find the variant where the codelength of the residual prediction errors
is the smallest. Secondly, we improved the contour compression by introducing five
options for encoding the contour segments, from which the best option is selected.

The second publication [P2] introduces a lossy compression algorithm. The
main idea of the algorithm is to generate a set of segmentations. Each segmenta-
tion creates a lossy version of the initial image, where the distortion is controlled by
a selected threshold. The algorithm starts from an over-segmentation, where the
regions contain pixels having the same depth value. The segmentations are gener-
ated by merging neighboring regions, in an order determined by their cardinality.
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Two regions are merged if the variation of the depth values inside the region does
not exceed a threshold. In the final stage, each lossy image is compressed losslessly
using prediction techniques, residual quantization, and chain-code representation.

Our main algorithm for lossless compression is dubbed Crack-Edge–Region–
Value (CERV) and is presented in the third publication [P3]. CERV uses the initial
partition into constant regions of the image, where each region contains pixels
having the same depth value, and improves the compression of both region contours
and depth values when compared with the state of the art algorithms. In the
first stage, denoted Algorithm C, the algorithm collects distributions at template
contexts, finds the optimal context tree, and then uses the tree in the compression
of crack-edges (or contour edges), which are the ‘atomic’ elements used to represent
the region contours. In the second stage, denoted Algorithm Y, the algorithm
encodes the regions depth value using the list of depth values of the already encoded
neighboring regions.

In the fourth publication [P4], we focus on developing an image segmentation
algorithm, where the segmentations are designed for lossy compression. Each
created lossy image corresponds to a certain distortion, and can be compressed
using an entropy coder (e.g. CERV). Sequences of segmentations are obtained
either by merging regions or by splitting regions. In the region merging process,
we select the pair of regions to be merged as the pair that obtains, after the
merging, the lossy image with the best estimated slope in a Rate-Distortion (RD)
plot. In the region splitting process, a template is selected and the procedure is
reversed, by splitting regions, and encoding more efficiently the contours using
horizontal and vertical lines. The algorithm, denoted Greedy rate-distortion Slope
Optimization (GSO), uses the piecewise constant model to reconstruct the regions.

In the fifth publication [P5], we studied the problem of finding the optimal
solution for generating and encoding contour segments. A contour segment is de-
scribed using an anchor point, a direction point, and a sequence of three-orthogonal
(3OT) chain-code symbols. The problems tackled by the algorithm are the gen-
eration of the contour segments, the traversing of contour intersections, and the
coding of the anchor points in such a way that the contour codelength is as small as
possible. The algorithm was denoted Anchor Points Coding (APC), and is our one-
dimensional coding solution of contours, having very similar results with CERV,
our bi-dimensional coding solution.

In the sixth publication [P6], we focused on designing an algorithm that can
provide the progressive coding of a sequence of images generated by the region
merging phase of GSO, the algorithm being called Progressive coding of GSO se-
quences (P-GSO). In [P6], the goal was to develop a progressive coding algorithm
that can obtain good results over a wide range of rates without paying a high price
for the progressive functionality, and so that the performance is not degraded too
much when compared with non-progressive methods.

Finally, in the seventh publication [P7], we studied the parameterization of
the planar model for lossy image compression, and we choose the heights (in the
optimal Least Squares (LS) plane) of three pixel positions, as parameters for the
planar model. Seven methods are compared to find a way of choosing the three
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optimal positions to improve the baseline results, where the constant model is
used. The developed algorithm was denoted Plane Fitting (PF), and its results
have further improved the constant model results because of the use of a more
complex model, that introduces a lower distortion inside each region, and due to
the efficiency of Algorithm D, which is used to compress the plane parameters.
The GSO algorithm was extended to the GSOm with Plane Fitting (GSOmPF)
algorithm by introducing a competition between the constant and planar models
in the region merging decision so that better segmentations are generated for the
lossless compressors.

Three other articles were published on related topics and are not included in
this compilation of publications. In [88], the contours of fractal [28] and depth-map
images are encoded using a combination of active horizontal and vertical line con-
tours, that separate the current pixel from the northern and western neighboring
pixel. In [86], CERV is used in a two-phase compression algorithm for histological
images. In [83], a preliminary study of the contour intersections is presented, and
the similarities of the optimal context trees are analyzed.

1.3 Outline of the thesis
The thesis is organized as follows. In Chapter 2 we describe the general concepts
(common in most of our methods), the basic coding methods, and the statistical
methods, i.e. the building blocks used in the development of our algorithms.

In Chapter 3 we describe the algorithms developed for lossless compression.
We start by first analyzing the recent state of the art lossless compression algo-
rithms and then discuss the algorithms developed for transmitting to decoder the
image segmentation, by encoding its regions contours. Two ideas were used in our
algorithms: the contour is encoded either by sequences of vertex positions codi-
fied by the Three-OrThogonal (3OT) representation [P1, P5], or by contour edges
using template contexts [P3]. To reconstruct losslessly the image, our algorithms
contain a second stage, where we developed methods for encoding the constant
model parameters used by the region reconstruction procedure. Here, two ideas
were tested: predictive coding using a mixture of predictors [P1], and the use of
the list of depth values of the neighboring regions for ‘guessing’ the symbols [P3].

In Chapter 4 we describe the lossy compression of depth-map images. We start
by analyzing the recent state of the art lossy compression algorithms. The algo-
rithm from [P2] based on variability constrained segmentations is described first,
and is followed by a detailed analysis for the GSO algorithm [P4] using region merg-
ing and region splitting. The progressive coding of GSO sequences [P6] is presented
next, and is using all available a priori information. Finally, the parameterization
of the planar model is studied using seven alternative methods in [P7].

In Chapter 5 we present the compression results of the proposed algorithms for
the available datasets of depth-map images. In Chapter 6 we present the original
contributions introduced by the seven publications selected for this compilation of
articles and we draw the final conclusions.



Chapter 2

Basic Principles

“Secret agent 00111 is back at the Casino again, playing a game of
a chance, while the fate of mankind hangs in the balance.”

— Solomon Wolf Golomb, Run-Length Encoding

In this chapter, we describe the basic principles used in the development of our
algorithms. In Section 2.1 we discuss about depth-map images. In Section 2.2 we
describe the way we choose to represent the depth-map images and the sequences
of symbols used to encode the image. The basic principles of entropy coding
are mentioned in Section 2.3, while in Section 2.4 we introduce the statistical
models used to encode different sequences of symbols generated by the image
representation.

2.1 Depth-Map images
Figure 2.1 shows the pinhole camera model, where the point in space with the
coordinates (X,Y,D) is projected on the image plane at the coordinates (x,y).
The matrix D(x, y) represents the depth-map of the points in the scene, recorded
at the integer coordinates x = 1, 2, . . . , nr, y = 1, 2, . . . , nc in the image plane,
where nr and nc are the number of rows and columns respectively.

When a depth sensor is used to acquire the depth-map image, the data are
recorded in a matrix I, called intensity image [107], with the relation between I

and D being:
D(x, y) = 1

I(x,y)
Ql

(
1
Dm
− 1

DM

)
+ 1

DM

, (2.1)

where DM is the maximum depth and Dm is the minimum depth acquired by the
sensor, and Ql = 2b − 1 is the maximum quantization level used. In our tests the
intensity images are saved using b = 8 bits.

When the depth is estimated by stereo matching [71, 84] from two color im-
ages taken from two different viewpoints, the output of the stereo matching is the

5
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Figure 2.1: Pinhole camera geometry. The projection on the image plane of a
point in space. OXYD are the principal axes and O is the camera center. pxy are
the image plane coordinates and p is the principal point. f is the camera’s focal
length. A point in space with the coordinates (X,Y,D) is projected on the image
plane at the coordinates (x,y).

disparity image B. Each disparity value B(x, y) at position (x, y) is inversely pro-
portional to the depth D(x, y). An example of a pair of depth and color images,
corresponding to one viewing position of the scene, is presented in Figure 2.2.

Irrespective of the methods for computing the depth, we use in this dissertation
the generic matrix Z that we choose to call as depth-map image, where Z can be
either the intensity image I or the disparity image B.

If a 3D view is synthesized using the color images of two views, the matrix Z is
known as a disparity image [27, 91] and stores the distance using disparity values.
The applications of depth-map images are covering many areas of computer vision
where the point cloud represents the geometry of the observed scenes and further
tasks can be, e.g., object detection and recognition.

Additionally, the depth-map image can be used for view synthesis in the im-
portant application of 3DTV [34], where new views can be synthesized starting
from the color images of two given views, and using the information from the
depth-map image.

2.2 Image representation
In our approach, the input matrix Z is represented using two types of information:

• An image segmentation, that divides the image into regions.

• A set of depth values, used to reconstruct each region.

A region may contain one pixel or a collection of pixels, and each region may
contain pixels having the same depth value or similar depth values, depending
on the type of segmentation used to represent the image. Figure 2.3 shows all
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Figure 2.2: The pair of images corresponding to one viewing position of Art image
(full-size, viewing point ‘disparity1’) from Middlebury dataset. The pair is com-
posed of: (a) one color image, and (b) one depth-map image (disparity image).

the contours found in the initial image Art, where each region contains pixels
having the same depth value. In our approach for lossy compression, we developed
segmentation algorithms that are selecting a subset of contours out of the initial set
of contours by either creating regions with certain proprieties [P1], or by ranking
the contours [P4]. For lossless compression, all the contours found in the initial
image (see Figure 2.3) are encoded.

The region pixels are connected in 4-connectivity, which means that a pixel
position (x, y) has four neighbor pixel positions: (x+1, y), (x−1, y), (x, y+1), and
(x, y − 1). Let us denote Ω = {(xi, yi)}i=1,2,...,m, a generic region of Z, containing
m pixels, and let us denote d, the depth value used to represent Ω, which can be
the depth value of every pixel in Ω or the average value of the pixels in Ω. If the
matrix Z is divided into nΩ regions, then the `th region of the segmentation is Ω`
and is having m` pixels with depth d`.

2.2.1 Contour representations

A segmentation is represented using the regions contours. Let us denote as contour
map the union of all contour edges (or crack-edges) that form the regions contours,
where a ‘contour edge’ is the atomic element used to represent the regions contours.
A contour edge is used to separate two neighboring pixels in the contour map. If the
contour edge is active, then the two pixels are belonging to two different regions. If
the contour edge is inactive, then the two pixels are belonging to the same region.
One way of encoding the contour, represented using contour edges, is to encode all
the contour edges, active and inactive, that can be found in the image (see Section
3.2.1). For a very simple segmentation, where only a few contour edges are set
active, a large codelength is used to inform the decoder about the positions of the
inactive contour edges.
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Figure 2.3: Example of the initial image partition, where each region contains
pixels having the same depth value. The contours separating the regions are
marked with red. (a) The image Art (full size, viewing point ‘disparity1’) from
the Middlebury dataset; (b) The zoom in the cyan rectangular from (a).

Another strategy for encoding the contour is to create its one dimensional rep-
resentation by first dividing it into sequences of contour edges, called here contour
segments, and then to codify each contour segment as a sequence of symbols that
describes the way it is ‘drawn’ on the contour map. To draw a contour edge, the
decoder needs to know the positions of its two ends, which are called here vertices.
Since the contour of the regions is continuous, in a sequence of edges, we need
to encode the positions of both vertices of the first edge, and the position of one
vertex for each of the rest of the edges. Hence, a contour segment, formed of
n− 1 neighbor edges, can be represented using a sequence of n adjacent vertices,
e.g. [P1 P2 · · · Pn]T . The sequence of vertices can be encoded using a chain-
code representation, which informs the decoder how to draw the contour edges, i.e.
by starting from a current vertex and continuing with one of its adjacent vertices,
where the selection of the next adjacent vertex is codified by a chain-code symbol
until the end of the contour segment.

Chain-code representations

Many types of chain-code representations were developed for different purposes
[10, 11, 74]. In [87], five chain-code representations are studied while compressing
the contours of binary images. If we choose an 8-connectivity for the pixels (i.e. a
pixel has eight neighbor pixels), then the contour can be codified using one of the
following chain-code representations:

• Freeman 8 symbols (F8). Each of the 8 adjacent vertices is codified by a
symbol according to their position relative to a current vertex position. The
set of symbols used is {0, 1, . . . , 7} and corresponds to a variation with a π

4
angle around the origin, which is the current position.
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• Differential Freeman 8 symbols (AF8). Here, the next adjacent vertex in the
sequence is codified by angular rotation, where the direction of movement
is rotated with an angle of multiple π

4 . The distribution of the symbols is
closer to the exponential distribution.

If the 4-connectivity is selected to create a region (i.e. a pixel has four neighbors),
then the contour can be codified using one of the following chain-code representa-
tions:

• Freeman 4 symbols (F4). It is similar to F8, but uses a set of four symbols
{0, 1, 3, 4}, corresponding to a π

2 angle variation around the unit circle.

• Differential Freeman 4 symbols (AF4). It is similar to F4, but after moving
from one vertex to an adjacent vertex, there are only three more adjacent
vertices as possible options to move forward, and each option is encoded by
a symbol in the set {0, 1, 2}.

• Three-orthogonal (3OT). The symbols in the representation are set using the
position of the adjacent vertices relative to the current vertex, and using
a long term memory of the movement when traversing a contour segment
(see Figure 2.4). This representation was chosen in this dissertation and is
described in more detail in the next subsection.

3OT chain-code representation

The 3OT representation is encoding the current vertex, say Pi+2, relatively to the
previous two vertices in the sequence, Pi and Pi+1, using a symbol si ∈ {0, 1, 2}
(see Figure 2.4). 3OT codifies a sequence of vertices starting from the third ver-
tex in the sequence, until the last vertex in the sequence. Hence, the first two
vertices P1 and P2 must be coded using a different strategy, and the remaining se-
quence of vertices, [P3 P4 · · · Pn]T , are codified by a corresponding vector
[s1 s2 · · · sn−2]T , where si is a 3OT symbol.

The 3OT representation is describing the advance in the description of a contour
segment, from one vertex to one of the three remaining adjacent vertices, using a
symbol with one of the following meanings:

(0) A symbol ‘0’ is describing the advance from the current vertex to the vertex
found on the position for which the previous and next contour edges form a
straight line. The symbol has also the significance of ‘going forward’.

(1) A symbol ‘1’ is describing the advance from the current vertex to the vertex
found on the position for which the direction of movement is the same as
previously and the orientation changes: horizontal ↔ vertical.

(2) A symbol ‘2’ is describing the advance from the current vertex to the vertex
found on the position for which the direction of movement and the orientation
are changing. The symbol has the significance of ‘going back’.
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(a) (b) (c) (d)

Figure 2.4: Examples of vertices codified by a 3OT or by a AF4 symbol. In
the 3OT representation the unknown vertex positions, Pi+2, is codified using the
last two known vertex positions, Pi+1 and Pi, and the long term memory of the
movement, where the memory is updated while traversing the contour segment. In
the AF4 representation the unknown vertex positions, Pi+2, is codified only using
the last two known vertex positions Pi+1 and Pi. Known contour edges are marked
with blue lines, and known vertices are marked with black dots. The arrow shows
the next adjacent vertex to visit, Pi+2, which is marked with green dots. Previous
movements done while traversing the contour are marked with dotted lines.

The AF4 and 3OT representations are compared in [83], where the contour
of fractal and depth-map images are compressed. The results have shown that
the 3OT representation is more suitable to represent the contours, because 3OT
generates a sequence of symbols that has more redundancy, and that contain a
distribution with a lot of symbols 0 and 1, and only a few symbols 2. Figures
2.4.(c,d) are showing how the use of the long term memory in the 3OT represen-
tation is decreasing the number of symbols 2 and increasing the number of symbols
1 compared to the AF4 representation.

2.2.2 Region reconstruction
The last stage of our compression scheme is the regions reconstruction stage. In
the previous stage, the decoder received the information about the contour and
used it to define the partition of the image into regions using the set of regions
{Ω`}`=1,2,...,nΩ . To finish the representation of the image, the decoder is recon-
structing each region in the image by setting a depth value to each pixel.

In this dissertation, we used two ways for encoding the information needed
to reconstruct the regions. One way is to develop a predictor (see Section 2.4.3)
and to encode the prediction error computed for each pixel in the region. The
prediction techniques use the causal neighborhood to estimate the depth of each
pixel, and therefore the segmentation plays an important role and it is designed
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so that prediction errors are as small as possible. Another way to reconstruct the
regions is to use a model to fill each region (e.g. constant or planar model). For
the constant model, one depth value is encoded for each region and is set to each
pixel. For the planar model (see Section 2.4.4), three parameters are encoded and
are used together with the pixels coordinates to compute a plane and to set each
pixel with a depth value.

2.3 Entropy coding
Entropy coding is an efficient way of compressing a sequence of symbols, taken
from a known alphabet. In its simplest form (as in the optimal Huffman coding
[33]), each symbol in the alphabet is mapped to a codeword by a reversible map-
ping so that the sequence is reconstructed losslessly from the encoded sequence of
codewords.

Let us consider a sequence of symbols xn = x1x2 . . . xn, containing n elements,
where each element xj is a symbol in the finite (k � n) alphabet {si|i = 1, 2, . . . , k}
of k symbols and the counts of symbols of xn is D = [n1 n2 . . . nk]T , where ni
is the frequency of symbol si. The empirical probability distribution from xn is
P = [p1 p2 . . . pk]T , where pi = ni

n is the empirical probability of occurrence for
symbol si. P contains the probability for each symbol in the alphabet to be the
next element xn+1 in the sequence.

In 1948, Claude Elwood Shannon, who is known as “the father of information
theory”, published his famous paper “A Mathematical Theory of Communication”
[85], where he introduced the Shannon Lossless Coding Theorem. His source cod-
ing theorem states that for a sequence of independent and identically distributed
random variables, having the probability distribution P, the entropy H is the low-
est bound on the average number of bits per symbol, with which the sequence can
be compressed. The entropy is computed as

H = −
k∑
i=1

pi log2 pi. (2.2)

The sequence xn, composed of n symbols, may be encoded losslessly using in
average n ·H bits.

2.3.1 Estimators of probability distribution

In data compression, the sequence xn can be encoded by updating adaptively the
probabilities of the symbols. In the initial stage, the same probability pi = 1

k is
associated to each symbol in the alphabet. The associated probability distribution
is updated in the stage where element xj is encoded, to be used in the next stage
where the element xj is known, by associating a new set of probabilities to each
symbol in the alphabet. There are many types of probability estimators used in
literature, which are usually classified according to the proprieties of the sequence.
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The most used type of estimators is the add-constant predictor family [14], which
is written as

pi(xn+1 = si) = nsi + c

n+ kc
, i = 1, 2, . . . , k, (2.3)

where pi(xn+1 = si) is the probability associated to the symbols si, i.e. the prob-
ability that the next symbol in the sequence is symbol si; n is the number of
elements in the sequence that were already encoded; k is the length of the sym-
bols alphabet; and c is a predictor’s constant. When c takes some specific values,
famous estimators are obtained:

(a) If c = 1, then the add-one estimator is obtained, known also as the Laplace
(L) estimator [47], and (2.3) is rewritten as

pi(xn+1 = si) = nsi + 1
n+ k

, i = 1, 2, . . . , k. (2.4)

(b) If c = 1
2 , then the add-half estimator is obtained, known also as the

Krichevsky-Trofimov (KT) estimator [42], and (2.3) is rewritten as

pi(xn+1 = si) =
nsi + 1

2
n+ k

2
, i = 1, 2, . . . , k. (2.5)

However, sometimes different values for the predictor’s constant c offer better
results, e.g. c = 0.42 was used in [51].

2.3.2 Arithmetic coding
Arithmetic coding [46, 97] is a form of entropy encoding, that can obtain a code-
length close to the optimal codelength computed by the entropy using the proba-
bility distribution.

It encodes the entire string of data by creating a string of code that represents a
fractional value found in the interval [0, 1). The algorithm is encoding one symbol
at a time. It partitions at each iteration a smaller interval from the initial interval
[0, 1), where each partition has the intervals proportional to the values in the
current probability distribution. The interval corresponding to the current encoded
symbol is retained as the new interval. Therefore, the algorithm is dealing with
smaller intervals at each iteration, and the generated code string is selecting the
encoded symbol in each of the nested intervals. The string of data is recovered by
using the code string to partition and retain at each iteration the nested subinterval
in a procedure that the encoder used to generate the code.

Let us consider now encoding the sequence xn using the arithmetic coder. Let
us suppose its alphabet is {s1, s2, . . . , sk} and the Laplace (L) estimator is used
to update the probabilities. Before anything is transmitted, every symbol has the
same probability p(s1) = p(s2) = . . . = p(sk) = 1

k and the initial interval is
portioned into k intervals: symbol s1 has associate the first interval [0, p(s1)),
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symbol s2 has associate the next interval p(s1)+[0, p(s2)), and so on until symbol
sk has associate the last interval

∑k−1
i=1 p(si) + [0, p(sk)) = [1 − p(sk), 1). After

receiving the first element in the sequence x1, e.g. x1 = s`, the encoder uses the
ideal codelength L(p(x1)) = L(p(s`)) = − log2(p(s`)) [bits] to inform the decoder
that x1 = s` and narrows the initial interval to the interval associated to the
symbol s` by selecting

∑`−1
i=1 p(si) + [0, p(s`)) as the new interval. The Laplace

estimator (2.4) is used to update the probabilities of the symbols and the current
interval is portioned again into k intervals using the new probability distribution.
In the second iteration, the encoder uses L(p(x2)) bits to transmit to the decoder
the element x2, the interval is further narrowed to the interval associated with the
symbol used to represent x2, and the probability distribution is updated using the
Laplace estimator. This procedure continues until the last element in the sequence
is encoded using L(p(xn)) bits. It can be proven that, the sequence xn is encoded
using approximately the codelength

L(PL(xn)) = − log2

(
(k − 1)!

(n+ k − 1)!

k∏
i=1

ni!
)
. (2.6)

2.3.3 Golomb-Rice coding

A different strategy, for encoding the sequence of symbols xn, is to codify the
symbols in the original alphabet {si}i=1,2,...,k using a set of codewords, called a
code. For each symbol (or string of symbols) the code associates usually a variable-
length codeword that is formed of symbols 0 and 1.

The most used codes are the prefix codes, which have the propriety that, in
the set of codewords, a codeword is never a prefix (initial segment) of any other
codeword in the set. The Huffman code is an optimal prefix code that creates a set
of codewords such that the average codelength is minimized. The Huffman algo-
rithm was developed in 1952 by David A. Huffman [33]. However, if the alphabet
is infinite, we cannot apply directly the Huffman algorithm.

When the infinite alphabet has a geometric distribution, the Golomb-Rice (GR)
code [25, 69] is the optimal prefix code. Each integer symbol si ≡ i is represented
using the quotient’s codeword and the remainder’s codeword, when the symbol
si is divided by a parameter M . For a fast implementation, the parameter M is
selected as a power of 2, i.e. M = 2kGR . The quotient qi and the remainder ri
are computed as qi = b siM c, and ri = si%M (meaning ri equals si mod M). The
quotient’s codeword is generated by unary coding, writing a qi-length string of
bits set as 0, followed by one bit 1, to mark the end of the string. The remainder’s
codeword is generated by writing ri in the binary format. The codelength needed
to encode xn can be estimated using the parameter M. The GR algorithm first
searches for the optimal parameter k∗GR that obtains the minimum codelength.
The first value encoded by GR is k∗GR, and is followed by n pairs of quotient and
remainder codewords. The decoder first obtains k∗GR, computes M = 2k∗GR , and
then uses M to decode the sequence xn.
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2.4 Statistical models for prediction and coding
The entities used in the representation presented in Section 2.2 are each codified
by a sequence of symbols. However, before encoding each sequence using the arith-
metic coding, we are using a statistical model for achieving a good compression.
A context model selects for each element xj in the sequence xn a context in which
xj is usually found. For one-dimensional signals, the context is created using a
window of recently encoded symbols. For bi-dimensional signals (e.g. matrices),
the coding is done line by line (or similarly column by column), and the context is
created using the already encoded lines. In this case the context is usually called a
Template Context [51] and it contains the elements located at the pixel positions
selected, in order, according to the `1 or `2 norm computed between the current
pixel position and the selected pixel position.

2.4.1 One-dimensional models
A one-dimensional model uses the previous N symbols in the sequence to create a
set of contexts, where N is the order of the model. A zero-order model will then
have k0 = 1 contexts for which the probability distribution is computed. This
model encodes the sequence xn using a probability distribution computed by one
of the estimators presented in Section 2.3.1. For an 1-order model, k1 contexts
are created (since there are k symbols in the alphabet), and in each one of them
a probability estimator is updating the probability distributions. Hence, for an
N -order model, kN contexts are created.

A graphical representation of the contexts is a tree, called context tree, de-
noted by T . Each node of the tree represents a context for which a probability
distribution is computed. In each node, there are k branches labeled with the k
symbols in the alphabet. A context tree having the tree depth N is the graphical
representation of all the models from the first order until the N th order, since at
every tree depth `, between 1 and N, we have the contexts of the `-order model.

Adaptive Markov Model

The Adaptive Markov Model (AMM) uses the kN contexts of the N -order model,
where k is the length of the alphabet. Its contexts are represented by all tree nodes
at depth N , the reason why the adaptive Markov model is sometimes called the
Fully Balanced Context Tree Model.

Let us consider that the N -order adaptive Markov Model is used to encode the
sequence xn, and the probability distributions are computed using the Laplace
estimator. The context of each element in the sequence is obtained using the
previous N elements in the sequence. For the element xj we obtain the context
Cj = xj−1xj−2 . . . xj−N . The probability distribution used to compress xj is the
one corresponding to context Cj , i.e. p(xj |Cj = xj−1xj−2 . . . xj−N ). In the graph-
ical representation, this corresponds to traversing of the context tree T from the
root node to the leaf that represents the context Cj . The traversing is done by
selecting, at each node of the tree, the branch labeled with the current symbol
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in the context. For example, from the root node of the context tree T we select
the branch labeled si = xj−1, then in the new node we select the branch labeled
si = xj−2, until the last branch, labeled si = xj−N , is selected.

Let us denote the distribution in the context Cj as Dj = [nj1 nj2 . . . njk]T ,
where nji is the frequency of symbol si, j = 1, 2, . . . , kN is the context index, and
i = 1, 2, . . . , k is the symbol index. We can then encode the sequence xn using the
N -order Adaptive Markov Model (N-AMM) with Laplace (L) estimator. Thus, eq.
(2.6) is used for each context Cj , j = 1, 2, . . . , kN , and the model’s codelength is
computed as

L(PAMM,L(xn, N)) = −
kN∑
j=1

log2

 (k − 1)!(∑k
i=1 n

j
i + k − 1

)
!

k∏
i=1

nji !

 . (2.7)

Context Tree Models

The Context Tree Model (CTM) is a version of AMM where the context tree is
pruned before it is used in coding. The coding procedure can be summarized by
the following steps. Firstly, a context tree T having the maximum tree depth N

is generated. Secondly, the codlength for each node in the tree is computed using
the empirical counts of the node using (2.7). Thirdly, T is pruned and the optimal
context tree denoted T is obtained. Finally, the sequence xn is encoded using
contexts with variable length, given by the optimal context tree T . For CTM, the
encoder is transmitting to the decoder also the shape of the optimal tree, e.g. by
encoding a symbol ‘1 ’ if the labeled branch of a node is cut, and a symbol ‘0 ’ if
it remains part of the tree.

There are many algorithms developed for tree pruning and for obtaining the
optimal context tree [51, 70, 95]. In our algorithms, the pruning of the context
tree T is done using the following rule: A labeled branch is cut if the sum of the
codelengths of the k child contexts, having context length `+ 1, and the estimated
codelength for encoding the k branches is greater than the codelength of the father
context, having length `.

2.4.2 Bi-dimensional models
Template Context Models

A Template Context is a context used to encode the elements of a matrix. It is
formed for a current pixel position by selecting certain positions from the current
and previous lines and columns in the matrix. Figure 2.5 shows an example of
a template context. The positions of the elements are labeled, in order, starting
from the closest to the current pixel, going further away from it, and ending with
the 18th position that is having one of the highest `2 norm. The AMM with Laplace
that uses the template context is called here Template Context Model (TCM).

If we are encoding the symbols in the matrix starting from the top left corner
and advance line by line, the template context shown in Figure 2.5 can be used by
TCM, with the model order set as the maximum position labeled in the context.
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18 14 17
12 10 6 9 11

16 8 4 2 3 7 15
13 5 1 X

Figure 2.5: Example of a template context, where the order of the context elements
is set using the `2 norm and the row-wise coding is used. The pixel which is
currently encoded is marked with symbol X. The symbols 1, 2, . . . , 18 are marking
the position of the 18 elements, which are forming the template context.

The order in which the context elements are selected can influence the results.
The template context in Figure 2.5 can be used first as possible positions, and
different orders can be tested before an order is chosen for the final fixed template.

Template Context Tree Models

The Template Context Tree Model (TCTM) is adding a pruning stage to TCM,
where the template context tree is pruned. The contour coding algorithm from
[P3], which is described in Section 3.2.2, uses this type of model. There, because
a binary alphabet is used, the template context that has a particular mask can
predict the value of the next element in the matrix without other auxiliary infor-
mation. The main reason for this is that the region contours are continuous.

2.4.3 Predictive coding
One of the simplest ways to compress an image is to use a predictive method. The
prediction techniques, also known as lossless Differential Pulse Coded Modulation
(DPCM), are using a predictor to estimate the value of a current pixel based on
neighboring pixel values. It is easy to guess that, in some given image region, a
pixel may have a similar value with its neighbors. The image is usually scanned
line by line, and for each pixel a predicted (estimated) value is computed using the
pixels from the causal neighborhood of the current pixel. The prediction errors
are then computed as the difference between the predictor’s estimated values and
the pixel’s real values. In lossy compression, some part of the information is lost
by applying quantization, while in lossless compression the prediction errors are
encoded as they are, using a statistical model.

The improvements in predictive coding are usually done by first transmitting
to the decoder the most important image edges, by encoding the segmentation and
then applying prediction inside the regions. Because sometimes the segmentation
is too expensive to be encoded, the image is divided into blocks of different sizes
[37], or a quad-tree decomposition is used [13]. Another way of improving the
results is by selecting a predictor from a set of given predictors. This strategy is
used by Joint Photographic Experts Group (JPEG), where the set contains seven
predictors [93].
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One of the most used adaptive predictor is the Martucci predictor [52], known
also as the Median Adaptive Predictor (MAP). In our case, the predictor is estimat-
ing the depth value z = Z(x, y), of the current pixel position (x, y) in the image Z,
using the depth values of the northern (N), western (W) and northwestern (NW)
pixel positions: (x − 1, y), (x, y − 1), (x − 1, y − 1), in the causal neighborhood
of the current pixel. If we denote zN = Z(x − 1, y), zW = Z(x, y − 1), zNW =
Z(x− 1, y − 1), then MAP estimates z as

ẑMAP = median{zN , zW , zN + zW − zNW }, (2.8)

and the prediction error can be computed as ε = z − ẑMAP .

2.4.4 Planar model
A different strategy for encoding a depth-map image, is to find a segmentation
that divides the image into regions, where each region may contain an object. The
search to find an object based segmentation has a high algorithmic complexity. In
the lossy compression case, the optimization function of the algorithm depends on
the codelength needed to transmit the segmentation and the distortion introduced
in each region, while in the lossless compression case, the optimization function
depends on the codelength needed to transmit auxiliary information to reconstruct
the region exactly as initially.

The region reconstruction stage of our algorithms is based on the (piecewise)
constant model, but a parameterization of the planar model is studied in the last
publication [P7]. For the constant model only one parameter is used to recon-
struct each region, by setting each pixel in the region to be equal to the encoded
parameter, which can represent either the depth of each pixel in the region or the
average of the pixel’s depth. In the planar model case, a region is estimated using
a plane, which usually has the parametric form z = ax + by + c and where the
three parameters (a, b, c) are first estimated and then encoded.

Let us consider a region Ω` = {(xi, yi)}i=1,2,...,n, having n pixels and the pixel’s
depth values denoted zi = Z(xi, yi), i = 1, 2, . . . , n. The optimal plane that offers
the best estimation of the region is obtained by the Least Squares (LS) algorithm.
The LS solution minimizes the sum of squared modeling errors

∑n
i=1 ε

2
i , where the

errors εi are defined by
z1
z2
...
zn

 =


x1 y1 1
x2 y2 1

...
xn yn 1


ab
c

+


ε1
ε2
...
εn

 . (2.9)

Hence, the LS parameters, θ∗ =
[
a∗ b∗ c∗

]T
, are obtained. At the decoder, θ∗

is used to compute the floating point values z∗i as:

z∗i =
[
xi yi 1

]
θ∗ = zi − ε∗i , i = 1, 2, . . . , n. (2.10)
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where ε∗i are the optimal modeling errors. The initial region can be then recon-
structed as follows: at the pixel location (xi, yi), the value ẑi is computed by
rounding z∗i as

ẑi = bz∗i e = z∗i −∆∗i , i = 1, 2, . . . , n, (2.11)

where ∆∗i ∈ [−0.5, 0.5] are the rounding errors. From (2.10) and (2.11) results
that the value zi is reconstructed as ẑi = zi − (ε∗i + ∆∗i ).

In the lossless case, besides the plane parameters θ∗, the difference

zi − ẑi = ε∗i + ∆∗i , i = 1, 2, . . . , n, (2.12)

must be encoded for a perfect reconstruction.
In the lossy case, the planar model is introducing a distortion in the region Ω`

by encoding only the optimal plane parameters θ∗. The distortion can be measured
by Mean Squared Error (MSE), which is computed as

MSE(LS)
p (Ω`) = 1

n

n∑
i=1

(zi − ẑi)2 = 1
n

n∑
i=1

(ε∗i + ∆∗i )2. (2.13)

The distortion introduced in the region Ω` by the constant model with the param-
eter d` = 1

n

∑n
i=1 zi can be computed as

MSEc(Ω`) = 1
n

n∑
i=1

(zi − bd`e)2. (2.14)



Chapter 3

Lossless Compression of
Depth-Map Images

“The cure for boredom is curiosity.
There is no cure for curiosity.”

— unknown author

The chapter starts by briefly presenting, in the first section, the state of the
art coders in the research field of lossless compression of depth-map images. Three
methods [P1, P3, P5] were developed for this topic and they contain two stages:
contour compression and region reconstruction. Two contour compression algo-
rithms are introduced in the second section and two region reconstruction algo-
rithms in the third section. In the last section, we summarize the coders by
selecting an algorithm from each stage.

3.1 State of the art coders
In the lossless compression field, there are several algorithms that were designed
for depth-map image compressing. In one approach, instead of encoding (condi-
tionally) each pixel’s depth value, the authors are applying different transforms
to the binary representation of the depth values. The integers in the depth-map
image are then represented and encoded as a sequence of bit-planes. The large
constant patches (with the same symbol) will also be present in the bit-planes.
The transforms intend to lead to bit-planes with even larger constant patches. In
the last stage of the methods, binary masks or entire bit-planes are encoded as
binary images by a specialized entropy coder. For example, in one of the methods
the authors first use the Gray code [26] (also known as reflected binary code) to
do a transformation of the initial bit-plane representation of the image. In [39],
the image is divided into blocks and the depth value of each pixel is converted to a
gray code. The algorithm checks if the blocks of size 16×16 are full of symbols ‘0’
or symbols ‘1’, and encodes them using a binary switch. Since not all the blocks

19
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are filled with only one symbol, the masks of the remaining blocks are encoded
using the MPEG-4 Part 2 [15], known as the Visual Binary Shape coding scheme
of the Moving Picture Experts Group (MPEG) [63]. The same idea of transform-
ing the bit-planes is used also in [101]. This time the converted binary planes are
encoded by the Joint Bi-level Image Experts Group (JBIG) standard for bi-level
images. Moreover, the algorithm is extended to conditionally encode the left-right
pairs of depth-map images from two viewpoints of the scene. The use of the JBIG
standard offers to this method an important advantage compared to the previous
ones. This group of methods is easy to implement and relies on the performance
of the chosen entropy coder, but they were outperformed by various methods that
exploited the specific characteristics of the depth-map image.

The algorithm in [12] is called Piecewise-Constant image model (PWC). The
PWC algorithm was designed for the compression of palette images and was ob-
tained by further developing the contour coding algorithm from [90]. In publication
[P3], the experimental results show that PWC is a good solution for compressing
depth-map images. Another palette coding method can be found in [68]. The
reason why a method designed for palette image compression has good results in
depth-map compression is that it is using a context coding algorithm which is
able to detect and encode very efficiently the object boundaries and smooth areas
inside the depth-map image.

Recently, many published algorithms use the idea of modifying some of the tra-
ditional lossless image coders to take advantage of the proprieties that depth-map
images have. The H.264/AVC [9] and MPEG-4 Part 10, Advanced Video Cod-
ing (MPEG-4 AVC) are the video compression standards that are commonly used
for video compression. For example, in [29] and [30], the authors modified the
H.264/AVC standard to improve the results for depth-map compression. How-
ever, H.264 is mainly used in the lossy compression of video depth-map sequences.

The generic lossless image coders may also be used for compressing depth-map
images. JPEG-LS is the JPEG standard for lossless and near-lossless compression
of continuous-tone images and its core algorithm is called LOssless COmpression
for Images (LOCO-I) [93, 94]. The algorithm consists of two main stages that are
called modeling and encoding. Prediction, residual modeling and residual context-
based coding are the main concepts used by the algorithm. LOCO-I achieves low
complexity using the assumption that the computed prediction residuals are fol-
lowing a two-sided geometric distribution, and from the use of the Golomb-like
codes in the coding stage, shown to be an optimal solution for coding geometric
distributions. The programs are publicly available and their executable files can
be downloaded from [45]. The advantages that LOCO-I offers are: it is easy to use
and it is available online; has a low complexity and a small runtime. However,
its compression performance can be easily outperformed by using more complex
methods.

The Context-based Adaptive Lossless Image Coder (CALIC) [99] is one of
the best generic lossless image coder that obtains high lossless compression for
continuous-tone images. Modeling contexts are used by CALIC to condition the
residuals of a non-linear predictor and to make the predictor able to adapt to
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Unknown values

Figure 3.1: The causal neighborhood used by the Gradient Adjusted Predictor
from CALIC. The current pixel position, marked by X, is predicted using the
value of six neighboring pixels, marked by xn, xw, xnw, xne, xnn, xww.

different source statistics. The non-linear predictor is called Gradient Adjusted
Predictor (GAP) and uses a causal neighborhood of six neighboring pixels (see
Figure 3.1) to detect three types of edges (sharp, normal and weak) on both hori-
zontal and vertical directions. In the adaptation process, the algorithm estimates
the expectation of the prediction residuals conditioned on a large number of con-
texts rather than estimating a large number of conditional error distributions.
CALIC is achieving a low time and space complexities thanks to the efficient tech-
niques for forming and quantizing modeling contexts. The CALIC executable files
are available online [98]. The large number of modeling contexts and the efficient
coding of the predicted residuals makes possible to detect and encode the sharp
edges and the smooth areas of the depth-map image. The small runtime and the
very good compression performance are making CALIC one of the best options for
depth-map image compression.

In our test we used as state of the art encoders the PWC, LOCO-I and CALIC
algorithms. Although LOCO-I is the fastest, PWC and CALIC have the best com-
pression performance, where PWC usually has a small advantage. In the following
two sections we describe a set of algorithms for each of the two stages of our ap-
proach: contour compression stage and region reconstruction stage. In the final
section we propose different encoders by selecting an algorithm from the set of
each stage.

3.2 Algorithms for contour compression
The segmentation of a depth-map image is represented in our algorithms using the
contour map, which separates the regions from each other. In this dissertation, we
use a graph to store the contour map. The graph is having the vertices placed in a
(nr + 1)× (nc+ 1) contour grid, one size bigger than the image grid of size nr×nc
of the depth-map image Z. A graph vertex is denoted by P = (x, y), where (x, y)
are contour grid coordinates. The smallest element used to represent the contour
map is called contour edge and it separates two neighbor pixels belonging to two
different regions. A contour edge is represented in the graph using a graph edge.
The graph is created using the following rule that sets the contour grid coordinates
using the image grid coordinates. If for two neighbor pixels Z(x, y) and Z(x, y+1)
(located on the same row x in the image grid) we have Z(x, y) 6= Z(x, y + 1),
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Figure 3.2: Representation of the contour of a depth-map image. The graph edges
(or contour edges) are marked by red lines. The graph vertices are marked with
blue asterisks. (a) The zoom in the depth-map image Art (full size, viewing point
‘disparity1’) from the Middlebury dataset. (b) The contour map of the image from
(a) overlaid on the image. (c) The graph edges and vertices that form the contour
map from (b). (d) The graph used to store the contour map from (b).

then we draw a graph edge (as the active contour edge) between the vertices
(x, y+1) and (x+1, y+1) in the contour grid. Similarly, if for two neighbor pixels
Z(x, y) and Z(x+ 1, y) (located on the same column y in the image grid) we have
Z(x, y) 6= Z(x + 1, y), then we draw a graph edge (as the active contour edge)
between the vertices (x + 1, y) and (x + 1, y + 1) in the contour grid. Figure 3.2
shows the representation of the contour of a depth-map image. In Figure 3.2.(a) we
present the initial depth-map image. The contour map of the image is presented
in Figure 3.2.(b), and is represented in Figure 3.2.(c) using graph edges and graph
vertices. The graph used to store the contour map is presented in Figure 3.2.(d).

There are two equivalent ways of encoding the segmentation of the image: by
encoding the positions of the contour edges or by encoding the positions of the
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vertices. The encoding of the contour edges requires the coding of a matrix of size
(nr+1)× (nc+1), where the (active) contour edges that separates two regions are
signaled using one symbol (e.g. ‘1’) and the (inactive) contour edges that separates
the pixels in each region are signaled using another symbol (e.g. ‘0’). If the contour
edges are further represented using their ends, the vertices, the contour map can be
encoded by transmitting to the decoder the vertex positions. Sequences of adjacent
vertices are obtained by traversing the contour and collecting the contour edges
between any two consecutive vertex positions.

3.2.1 Encoding vertex positions

In publications [P1] and [P5], we choose to encode the contour using the vertex
representation. The first step in the algorithm is to ‘divide’ the contour map
into contour segments. Let us consider that the contour map of Z is ‘drawn’
using a set of nΓ contour segments, {Γk}k=1,2,...,nΓ . Each contour segment, Γk, is
represented by a sequence of nΓk adjacent vertices, that are saved in the vector
Γk = [P1 P2 · · · PnΓk

]T . A contour segment is generated by first selecting the
vertex P1, called anchor point, and by traversing the contour map and saving the
found adjacent vertex position in Γk.

Here, we choose to use the 3OT representation to codify Γk. However, the 3OT
representation is encoding the position of one vertex relatively to the position of
the previous two vertices in the sequence (see Section 2.2.1), and hence the last
nΓk − 2 vertices from Γk, i.e. [P3 P4 · · · PnΓk

]T , are codified by a vector of 3OT
symbols, Sk = [s1 s2 · · · snΓk−2]T . In each contour segment the first two vertices,
P1 and P2, must be encoded using a different strategy. The vertex P2 is called
direction point, and is encoded relative to the position of the vertex P1, the anchor
point. However, when encoding P1 there is no other a priori information that can
be used to reduce the encoded codelentgh. This is the reason why the anchor
points are the most ‘expensive’ information that needs to be transmitted to the
decoder, i.e. they require a high codelength for coding. The number of anchor
points can be reduced using a strategy that is selecting a minimum number of
contour segments based on a contour generation procedure, and by setting a set
of rules for traversing the contour map intersections.

Finally, the contour map that will be ‘drawn’ using the set of nΓ contour
segments, {Γk}k=1,2,...,nΓ , is codified by nΓ anchor points, nΓ direction points,
and a vector of 3OT symbols, denoted S, that is created by concatenating all the
3OT vectors, S = [ST1 ST2 · · · STnΓ

]T . In each of the two publications, [P1] and [P5],
a different strategy was used to reduce the codelength of the image contours. In
the first strategy [P1], the codelength of vector S is reduced, since it was usually
found to represent between 70% and 80% of the total output bitstream. That is
why in [P1] we choose to select adaptively the statistical model for vector S and
pick the one having the smallest codelength. In the second strategy [P5], we are
searching for the optimal selection of the anchor points and contour segments, by
analyzing contour crossing points and imposing rules to help us reduce the number
of anchor points. The two strategies are presented in detail next.
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Adaptive Selection of Statistical Models

The algorithm presented in [P1] has the following characteristics. The anchor
points are found using a column-wise search inside the contour map (see Figure
3.2), and are saved in a matrix Υ by setting for each anchor point P1 = (x, y) a
value Υ(x, y) = 1. The matrix Υ was initialized with values ‘0’ and is encoded
using AMM with Laplace estimator. Each direction point, P2, is codified by the
F4 representation (see Section 2.2.1) using its relative position to the anchor point
P1. All direction points are collected in a vector that is encoded using the AMM
with Laplace estimator.

The vector of concatenated 3OT symbols is encoded using the best statistical
model selected adaptively. In [P1], we choose to use also two additional represen-
tations for S. In one representation, we codify S by using two vectors S0,x and
S1,2 that are each having binary symbols where: S0,x codifies the position of the
3OT symbol ‘0’ using the symbol ‘0’, and the position of both 3OT symbols ‘1’
and ‘2’ using the symbol ‘1’; S1,2 codifies the distinction between the 3OT symbols
‘1’ and ‘2’ for each symbol ‘1’ in S0,x. The second representation is based on the
classification of contour segments. Some contour segments are forming a contour
loop because, in some cases, a region has only one neighboring region, i.e. is in-
side another region. The contour vectors obtained for this type of contours are
concatenated in a vector S1, while the others are concatenated in a vector S2.

Hence, vector S is encoded by choosing the best option between the following:
(a) apply the AMM with Laplace estimator to S;
(b) apply the CTM with Laplace estimator to S;
(c) apply the AMM with Laplace estimator to S1 and S2;
(d) apply the CTM with Laplace estimator to S0,x and S1,2;
(e) apply the AMM with Laplace estimator to S0,x and S1,2.

Codelength estimation for each of the five options is used in model selection.

The Anchor Point Coding algorithm

In publication [P5], we improved the coding of the contours in a different way.
The main idea of the algorithm is to analyze the contour crossing points and to
decide which vertices are possible anchor points and which are not possible anchor
points. Using this analysis, we can reduce the number of possible anchor points by
imposing a set of rules when traversing the contour by checking whether a vertex
is a possible anchor point or not.

A vertex used to draw the contour can have a maximum of four neighboring
vertices, resulting in four types of vertices having the degree one, two, three or
four, which are analyzed below.

(degree one) A vertex that has the degree one is denoted P 1
k , and has one

adjacent vertex. This special type of vertex can be found only on the boundary
of the contour graph, i.e. P 1

k ∈ {(1, j), (nr + 1, j), (i, 1), (i, nc + 1)}. Because it
has only one adjacent vertex, then a contour segment Γk can either start from
P 1
k , or end with P 1

k . If the contour segment starts from P 1
k , then P 1

k is its anchor
point and its adjacent vertex is the direction point, P2. Note that the position of
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P2 is found by the decoder without transmitting any additional information, since
there is only one option to continue the description of the contour segment. Let
us denote this found type of anchor point as edge anchor point, since it can only
be found on the image outer edges.

(degree two) A vertex that has the degree two is denoted P 2
k , and has two

adjacent vertices. It is easy to imagine that when we are traversing the contour
and a P 2

k vertex is reached, then one of its adjacent vertices was already visited
and is the previous vertex in the contour segment Γk. Hence, there is one option
to continue the description of the contour segment, i.e. by choosing the remaining
adjacent vertex as the next vertex in the contour segment. However, if we are
forced to choose P 2

k as an anchor point, then the second vertex in the contour
segment can be any of its two adjacent vertices. Let us denote this found type
of anchor point as double anchor point. To be able to find an anchor point, we
need first to choose a scanning method. The simplest way in which we can find
anchor points is to search in each column for a vertex that still has adjacent
vertices. Returning to our vertex type analysis, if a vertex P 2

k = (i, j) is selected
as an anchor point, then the positions (i, j + 1) and (i+ 1, j) are always unvisited
because of the way we are searching for the anchor points, i.e. column-wise. Any of
the two adjacent vertices can be selected as direction point, and hence we impose
the rule that P2 = (i, j + 1) is always selected. Note that some contour segments
are forming a loop, i.e. P1 = PnΓk

, and the second adjacent vertex was visited
within the current contour segment. Otherwise, if the contour segment is not
forming a loop, i.e. P1 6= PnΓk

, then P 2
k is the anchor point of the next contour

segment Γk+1 and the vertex P2 = (i+ 1, j) is selected as direction point. This is
the reason why these anchor points are called ‘double’. The position of the vertex
P2 is again found by the decoder without transmitting any other information.

(degree three) A vertex that has the degree three is denoted P 3
k , and has

three adjacent vertices. When a P 3
k vertex is reached while traversing the contour

map, the vertex may have one of two types, depending on whether it was previ-
ously visited or not. If it is the second time when the P 3

k vertex is visited while
traversing the contour map (note that in this case P 3

k is not an anchor point), then
it is the last vertex in the contour segment. However, if it is the first time the
P 3
k vertex is visited while traversing the contour map, then it has two unvisited

adjacent vertices. If the contour segment would end here, then the procedure of
segment generation would favor the generation of short contour segments. Since we
already experimentally confirmed that for each contour segment an anchor point
is encoded with a high codelength, one of the adjacent vertices must be selected
to continue the description of the contour segment. Here we impose the rule: if
one of the two unvisited adjacent vertices is codified by a 3OT symbol si = 0, then
we use the Directive T1 to select the next adjacent vertex to visit, else we use the
Directive T2 to select the next adjacent vertex to visit. The Directive T1 is in-
troduced to differentiate a P 3

k vertex from a P 4
k vertex (case described in the next

paragraph). Hence, a P 3
k vertex is always codified by a 3OT symbol si ∈ {1, 2},

which offers the possibility to find an anchor point position for the next contour
segment between the vertices of the previously encoded contour segment. (Note
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Directive T1. When a P 3
k vertex is reached, the next adjacent vertex is se-

lected as the one that is codified by a 3OT symbol si 6= 0.

Directive T2. When a vertex P 3
k = (i, j) is reached, if (i−1, j) and (i+1, j)

are unvisited adjacent vertices, then select the next adjacent vertex as (i+1, j)
(if (i, j − 1) and (i, j + 1) are unvisited adjacent vertices, then select the next
adjacent vertex as (i, j + 1)).

Directive T3. When a P 4
k vertex is reached, the next vertex is selected as

the one that is codified by a 3OT symbol si = 0.

Directive T4. When a Pk vertex with already three visited adjacent vertices
is reached, the remaining vertex, Pj, is adjacent if a 3OT symbol 0 codifies Pj.
If so, the decoder knows that Pk = P 4

k and goes visiting Pj (without encoding
the 3OT symbol 0), else Pk = P 3

k and Γk ends.

Directive C1. When Pk = (i, j) is reached, if the next adjacent vertex to
visit is Pk+1 = (i− 1, j) or Pk+1 = (i, j − 1), then Pk+1 cannot be a possible
anchor point.

Directive C2. When Pk+1 is reached and the previous vertex in the sequence
is Pk−1 = (i, j), if the next adjacent vertex to visit is Pk+2 = (i − 1, j) or
Pk+2 = (i, j − 1), then Pk+1 cannot be a possible anchor point.

Figure 3.3: The set of APC directives from [P5]. The Directives T1-T4 are used
for generating contour segments by traversing from a vertex to one of its selected
unvisited adjacent vertex. The Directives C1-C2 are used to check if a vertex is
not a possible anchor point position.

that the 3OT symbols si = 1 and si = 2 have the lowest frequencies among the
three symbols.) Let us denote this found type of anchor point as relative anchor
point, since its position is determined relative to a contour segment. The Direc-
tive T2 is introduced to eliminate the possibility for a P 3

k vertex to be found as
anchor point by the column-wise search. Figure 3.4.(e-p) shows all possible ways
of selecting the next adjacent vertex to visit for a vertex P 3

k having degree three,
while Figure 3.4.(a-d) shows the impossible cases.

(degree four) A vertex that has the degree four is denoted P 4
k , and has all

four vertices adjacent. A P 4
k vertex is the crossing point of two contour segments,

and it would be inefficient to select it as an anchor point. Therefore, to visit all its
adjacent vertices the P 4

k vertex is traversed two times. At the first visit, P 4
k has

three remaining adjacent vertices unvisited, i.e. three options to choose from, and
the Directive T3 is used to select one of them. At the second visit, the decoder
can detect the position of the last remaining adjacent vertex without any other
information, since it is codified by a 3OT symbol ‘0’. Note that the Directives T1
and T4 are used to distinguish a P 4

k vertex from a P 3
k vertex.
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Figure 3.4: All possible ways of selecting the next adjacent vertex to visit for a
P 3
k vertex. The arrows show the traversing of the contour and the way a contour

segment is generated, a red (black) dot is a visited (unvisited) vertex, and a red
(black) line is a visited (unvisited) contour edge. The sub-figure color labels are
marking with: (red) the impossible cases due to the Directive T2; (blue) the cases
found by Directive C1, where Pk+1 is not an anchor point; (green) the case where
Pk+1 is not an anchor point; (white) the cases where Pk+1 may be an anchor point.

The above analysis establishes that the edge and double anchor points are found
by a column-wise search, while the relative anchor points are found by checking,
using Directives C1 and C2, if each traversed vertex is or not an anchor point.
The algorithm creates a list, denoted Ψ, of vertices that were encoded by a symbol
si 6= 0, for which the hypotheses of Directives C are not satisfied (see Figure 3.3).

The Directive C1 was introduced to be used in the search of anchor points,
among the P 3

k vertices, by removing from Ψ the vertices found in the cases shown
by Figures 3.4.(f-k). The list Ψ is further shortened by the use of Directives T1
and T2, the only possible remaining cases are shown by Figures 3.4.(m-p).

The Directive C2 was introduced to search for anchor points in the cases where
a 3OT symbol ‘0’ is generated. We notice that a vertex Pk+1 = (i, j) cannot be
an anchor point in the following cases: (i) in Figure 3.5.(a) the vertices Pk+2 =
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Figure 3.5: Cases where a 3OT symbol ‘2’ encodes Pk+2. The arrows show the
traversing of the contour, a red (black) dot is a visited (unvisited) vertex, and a
red (black) line is a visited (unvisited) contour edge. The sub-figure color labels
are marking with: (blue) the cases found by the Directive C2, where Pk+1 is not
an anchor point; (white) the cases where Pk+1 may be an anchor point.

(i, j + 1) and Pk = (i+ 1, j) (and in Figure 3.5.(c) the vertices Pk = (i, j + 1) and
Pk+2 = (i+ 1, j)) were visited when we first traversed Pk+1; (ii) in Figure 3.5.(b)
Pk+1 may only be the corresponding P 3

k+1 vertex found in Figures 3.4.(b, h), cases
that are either impossible cases, or cases where Pk+1 cannot be an anchor point;
(iii) similarly, in Figure 3.5.(g) Pk+1 may only be the corresponding P 3

k+1 vertex
found in Figures 3.4.(c, i), cases for which the Directive C2 hypothesis are not
satisfied.

The anchor points are stored by two arrays (initially full of zeros): Υ, a matrix
of anchor points of size nr × nc, and Φ, a vector of flags that are selecting the
relative anchor points in Ψ. The edge and double anchor points are stored in Υ
by setting Υ(P 1

k ) = 1, and respectively Υ(P 2
k ) = 1. The relative anchor points,

P 3
k , are stored in Ψ at an incremented index `. When the hypotheses of both C1

and C2 directives are not satisfied, then if P 3
k+1 is a relative anchor point, then

we set Φ(`) = 1 (else the element Φ(`) remains set 0). These anchor points are
found using the internal list Ψ, and they are encoded by the vector Φ. Hence, any
encoded vertex Pk is signaled in Υ using the symbol 2 (‘ignore position’) if it was
not already marked (i.e. Υ(Pk) 6= 1).

The last step in the contour coding algorithm is the entropy coding step. The
image contour is now represented only using three entities: S, Φ, and Υ, each
entity being encoded by applying the CTM with Laplace estimator. In Algorithm
3.1 we present a summary of the Anchor Points Coding (APC) algorithm that is
using the analysis presented above. Some specific implementation details regarding
the entropy coding step can be found in Appendix A.1.
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Algorithm 3.1: Anchor Points Coding (APC)

The algorithm encodes the contour of an image, where the contours are represented using
a contour graph and the position of vertices in the contour graph.

(1) Search column-wise in the contour graph for a vertex with at least one unvisited
adjacent vertex (an anchor point). Mark the found vertex P1 = (i, j) as Υ(i, j) = 1.

(2) If P1 is an edge anchor point, select its only adjacent vertex as the direction point.
If P1 = (i, j) is a double anchor point, then select P2 = (i, j+1) as direction point,
and if P1 is selected again as anchor point, then select (i+ 1, j) as direction point.

(3) Generate the current contour segment, Γk, by either selecting the only unvisited
adjacent vertex as the next vertex to visit, or by selecting one of the unvisited
adjacent vertices using Directives T1-T4 as the next vertex to visit.

(4) Check each vertex from the vector Γk, of vertices that draws the current contour
segment, if it is a possible anchor point using the Directives C1 and C2. Save the
position of the found presumptive anchor points in the list Ψ of possible relative
anchor points, and mark in Υ, using the symbol ‘2’, the remaining vertices in Γk.

(5) While the current index ` points to an incremented location in Ψ:

(5.1) If Ψ(`) is an anchor point, then set Φ(`) = 1, else set Φ(`) = 0.

(5.2) Determine the position of the direction point from the way the anchor point
was traversed the first time using Directives T1-T2.

(5.2) Continue generating the current contour segment Γk as in step (4).

(6) Continue with step (1) until no more anchor points are found.

(7) Codify using the 3OT representation each Γk (starting from 3rd position), and
generate a vector Sk. Concatenate all the vectors Sk into S = [ST1 ST2 · · · STnΓ ]T .

(8) Encode each entity S, Φ, and Υ (in this order) using CTM with Laplace estimator.

3.2.2 Encoding contour edges

In publication [P3], we introduce a different strategy for compressing the contours,
where we choose to represent the contour using contour edges (called in [P3] crack-
edges). The contour edges (crack-edges) are stored using two binary matrices, each
of size nr × nc: one matrix to store the vertical contour edges, denoted V ; and
one matrix to store the horizontal contour edges, denoted H. Using these two
matrices we are able to achieve a much simpler connection between the image
grid and the contour edge grid. In each location of the vertical binary matrix
a vertical edge is stored, that is set as follows: if the pixel positions (x, y − 1)
and (x, y), in the initial image Z, are belonging to two different regions, i.e. if
Z(x, y− 1) 6= Z(x, y), then the vertical edge is set as active by V (x, y) = 1, else it
is set as inactive by V (x, y) = 0. Similarly, in each location of the horizontal binary
matrix a horizontal edge is stored, where H(x, y) = 1 if Z(x− 1, y) 6= Z(x, y) and
H(x, y) = 0 otherwise. Figure 3.6 shows an example of the way active contour
edges are set in the two binary matrices.
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Figure 3.6: The representation of contour edges using two binary matrices. Black
lines are marking the inactive contour edges. A cyan line is marking the active
vertical edge, V (x, y) = 1, between Z(x, y) and Z(x, y− 1). A blue line is marking
the active horizontal edge, H(x, y) = 1, between Z(x, y) and Z(x− 1, y).

The image contour is transmitted to the decoder by encoding the two binary
matrices H and V. Although the information regarding the crack-edges is divided
into two matrices, the coding of each vertical and horizontal edge is done using both
binary matrices. Template Context Tree Model (TCTM) is the statistical model
used to encode the representation, where two different templates are introduced.
The template shown in Figure 3.7.(a) is used to encode a vertical edge, where
the previous two lines in the two binary matrices are used to create the template
context using 10 horizontal edges from H and 7 vertical edges from V . Let us
denote T v the context tree obtained using this template. The template shown in
Figure 3.7.(b) is used to encode a horizontal edge. Similarly, the previous two
lines in the two binary matrices are used to create the template context using
7 horizontal edges from H and 10 vertical edges from V . Let us denote Th the
context tree obtained using this template. Note that in both cases the length of
the context is 17. The order, in which the edges are collected in the template
context, was fixed after testing different orders for a set of five different depth-
map images. Each image has an optimal order selection that could be found by
a greedy method. We choose not to search for it because its method is increasing
the algorithm’s complexity and the obtained decrease in bitrate is very small.

The two binary matrices, V and H, are scanned row-wise by first traversing
the row x from H, and then traversing row x from V . The symbols distributions,
at each node in each context tree T v and Th, are collected in the first pass. The
two context trees are then pruned, and the optimal context trees T v and T h are
obtained. In the second pass, the contour edges saved in the two binary matrices
are encoded using the two optimal trees [51, 70]. To lower the complexity of the
algorithm and to decrease the runtime, in [P3], we developed two versions for the
contour compression algorithm. We summarized the High Complexity (HiCo) ver-
sion (described above) in an algorithm denoted Algorithm C (Alg. C), presented
in Algorithm 3.2. In the second version of the algorithm, called Fast, the com-
plexity is decreased by using only one pass to encode each binary matrix. Hence,
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(a) (b)

Figure 3.7: The context template used to encode: (a) a vertical edge; (b) a
horizontal edge. The cyan lines are marking the position of the vertical edges
added in the templates. The blue lines are marking the positions of the horizontal
edges added in the templates. The numbers in the circles are denoting the contour
edges order in the template. Both images represent the image Z, with the contour
edges marked as in Figure 3.6.

in Fast the balanced trees T v and Th are used to encode the contour edges, and
the context template length (and tree depth), is decreased from 17 to 15.

The regions in the image must be separated by a continuous contour; otherwise
we cannot distinguish two neighbor regions, which give the contour edge the pro-
priety that each of its ends is connected with at least one other contour edge end.
Exceptions appear only for the contour edges at the image boundary. This propri-
ety is used in [P3] to improve the compression by finding deterministic cases where
the contour edge can be predicted from its neighboring edges. Unfortunately, only
for the vertical edges we found deterministic cases. In Figure 3.7.(a), if all the con-
tour edges in the positions 1, 2, and 3 are inactive, then the unknown vertical edge
marked with the red line is also inactive. A simple explanation is that, because all
the contour edges in the three positions are inactive, all four pixels, between which
these contour edges are set, are in the same region, and hence the last unknown
edge out of the four is always inactive. If only one contour edge is active and has
any position 1, 2, or 3, then the unknown vertical edge, marked with the red line
in Figure 3.7.(a), is always active. The propriety described above is used here,
since the unknown vertical edge has at the upper end a connection with one active
contour edge, it must be active so that the contour can be continuous.

The non-stationarity propriety of the context distributions was used in publi-
cation [P3], where during the count collection, we try to down-weigh some counts
in each context by halving the values of the symbols distribution. Note that the
context that has all the contour edges inactive is the only context that has a sta-
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Algorithm 3.2: Algorithm C, contour compression stage in CERV

The algorithm represents the image contour using contour edges, and encodes two binary
matrices, V and H, using Template Context Tree Model (TCTM).

(0) Initialize the context trees T v and Th up to the maximum tree depth of 17.

(1) Do one pass through the binary matrices V and H and collect: the counts in the
context tree T v using the context template in Figure 3.7.(a), and the counts in the
context tree Th using the context template in Figure 3.7.(b).

(2) Prune the balanced trees, T v and Th, using dynamic programming, and encode
the structure of the new optimal context trees, T v and T h, using a Breadth-First
Search (BFS) procedure.

(3) Do one pass through the binary matrices V and H. If the current contour edge
is not in a deterministic case, then encode the contour edges using T v and T h
(already available at the decoder); else set the corresponding deterministic contour
edge.

tionary distribution. The concept is described in more details in Appendix A.2.
For the image Art (full size, left view) of size 1390×1110 the CERV algorithm

obtains a result of 0.2065 bpp, i.e. a compression ratio of 38.7420 (see Section 5).
The contours are compressed using Algorithm 3.2 in 0.1918 bpp, i.e. 92.87% of
the final bitrate. The optimal context trees T v and T h have together a total of
1857 branches that are encoded using 227 bytes or 0.0013 bpp, i.e. 0.61% out of
the contours bitrate.

3.3 Algorithms for region reconstruction
In the previous section, we presented the first stage of a lossless coder, the contour
compression. In the second stage, for each region obtained from the segmentation,
the encoder transmits to the decoder the information needed to reconstruct it.
If all the pixels in the region Ω` have the same depth value d`, then d` is the
only information needed to reconstruct the image. If the pixels in the region have
different depth values, the linear predictive coding is used to obtain a prediction
for each value, and then the computed prediction error is encoded. The two cases
are described in the next subsections.

3.3.1 Predictive coding using mixtures of local predictors
Let us consider a region Ω` = {(xi, yi)}i=1,2,...,n formed of n pixels. The predictive
coding technique is predicting the depth value, zi = Z(xi, yi), found in a current
pixel position (xi, yi), using the depth values Z(xt, yt) of the pixels found on the
positions (xt, yt) ∈ Ω` in the causal neighborhood NP (xi, yi), of the current pixel
(xi, yi). Figure 3.8.(a) shows the pixel labeling for defining the causal neighbor-
hood NP (xi, yi) used to predict the pixel value at the position labeled “?”. Two
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d c e

a ?
f

(a) Pixel labeling for causal neighborhood in vertical and horizontal scanning

Mixture predictor index Elementary predictors
n = 2b3 + . . .+ 2b0 row-wise scanning column-wise scanning

b0 = 1 z0 = c+ a− d z0 = c+ a− d
b1 = 1 z1 = a− c+ e z1 = c− a+ f

b2 = 1 z2 = a+ e−d
2 z2 = c+ f−d

2
b3 = 1 z3 = [c a d e] wr z3 = [c a d f ] wc

(b) Mixtures of local predictors

Figure 3.8: (a) The causal neighborhood NP (xi, yi) used to predict the pixel
position (xi, yi), labeled ‘?’. The neighbor pixels labeled a, c, d and e are forming
the causal neighbors in row-wise scanning, and those labeled a, c, d and f are
forming it in the column-wise scanning. (b) The set of elementary predictors, z0,

z1, z2 and z3, used in mixtures of predictors forming. Mixture index n = 2b3 +
. . .+ 2b0 is defining the set of elementary predictors Pn(N (xi, yi)) = {a, c, zk|bk =
1,∀k ∈ {0, 1, 2, 3}}. The predictors z0, z1, z2 are the best linear fits over the causal
neighborhood, while z3 is the best linear fit over the whole region.

scanning orders are usually used to traverse the pixels in the region mask of Ω`.
Two causal neighborhoods are defined: a, c, d, and e for the row-wise scanning;
and a, c, d and f for the column-wise scanning.

In [P1], both scanning orders are tested for each region of the segmentation,
and one bit is used to encode the selection of a scanning order. For each found
scanning order an optimal predictor, with mixture index n∗, is selected among
n ∈ {1, . . . , 15} mixture predictors. For each mixture predictor, Pn(N (xi, yi)), a
codelength estimation is computed and used to select the optimal predictor. A
mixture predictor is formed from the set of four elementary predictors z0, z1, z2
and z3 (see Figure 3.8.(b)). Their selection is done by the binary representation of
the mixture index, n = 2b3 +. . .+2b0 , as follows: if the bit bk is set, ∀k ∈ {0, 1, 2, 3},
we have bk = 1, then the elementary predictor zk is added to the set of elementary
predictors, defined as

Pn(N (xt, yt)) = {a, c, zk|bk = 1,∀k ∈ {0, 1, 2, 3}}. (3.1)

Finally, for the depth zi found on the pixel position (xi, yi), its prediction ẑi is

ẑi = median{Pn(N (xi, yi))}, (3.2)

while the prediction error is computed as

ε(i) = zi − ẑi, i = 1, 2, . . . , n. (3.3)
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Let us consider a region Ω`. For each of the row-wise and column-wise scanning,
we compute the codelength estimation for each of the 15 mixture predictors having
the mixture index n = 1, 2, . . . , 15. We use the codelengths to select the optimal
mixture index n∗. For example, if n∗ = 9, then the binary representation of 9 is
1001, i.e. we have b0 = 1, b1 = 0, b2 = 0, b3 = 1. The mixture predictor is then set
as Pn(N (xt, yt)) = {a, c, z0, z3}.

The last elementary predictor in the set, z3, is designed using all the pixels in
the region Ω`. The vectors of weights wr and wc are obtained by solving an LS
problem. For the row-wise search, let us denote ψr the vector of depth values in
the region Ω`. For the ith element in the vector ψr, its four neighbors, with values
[c a d e], are set as ith row in a matrix Φr. The LS parameters are obtained as
wr = (ΦTr Φr)−1ΦTr ψr. Similarly, we obtain wc = (ΦTc Φc)−1ΦTc ψc for the column-
wise search.

Entropy coding of the prediction errors is done using the AMM with Laplace
estimator. The prediction error vector is centered before coding, and an escape
mode is introduced to encode large error values.

3.3.2 Constant model coding using neighbors list

A segmentation that divides an image into constant regions is an example of over-
segmentation. Its regions are called constant because all the pixels inside a region
have the same depth value, and the region can be reconstructed by encoding
one constant model parameter. Let us consider that Z is divided into a set of
nΩ constant regions, Ω = {Ω1,Ω2, . . . ,ΩnΩ}, where each region Ω` contains the
depth value d`. Hence, Z is reconstructed losslessly if the set of depth values
D = {d1, d2, . . . , dnΩ} is transmitted to the decoder after the segmentation. The
over-segmentation of a depth-map image has the depth value of each constant
region ‘close’ to the depth values of its neighbors, because of the type of information
stored in Z. Let us consider that each region Ω` has K` neighboring regions, that
are collected in a list N` = {Ω`,1,Ω`,2, . . . ,Ω`,K`}. The depth value d` is ‘close’ to
the list of depth values, D` = {d`,1, d`,2, . . . , d`,K`}, corresponding to the list N`.
Let us denote D` the vector that stores the list of k` unique values from D`, that
are known at the moment when d` is encoded, where D` = [d`,1 d`,2 · · · d`,k` ].

In [P3], the set D is encoded by an algorithm that encodes each value d` using
its list of likely values, denoted L`. The list L` is constructed using the vector
D`. If k`, the number of elements in D`, is k` > 2, then the algorithm is using a
clustering algorithm to perform the grouping of the values in D` around centers,
that are selected sequentially using a threshold ∆. The clustering algorithm is
using ∆ = 5, and is generating the centers as follows: (a) select as the center of
the first cluster the first value in D`, i.e. d`,1; (b) pass through D` and mark all
elements in D` that are within ∆ distance from the center d`,1; (c) recompute
the center of the cluster as the rounded mean of all values in the cluster and
denote the center Qi; (d) if the list D` is not empty go to (a). Let us denote nQ
the number of clusters obtained, where each cluster is having its center denoted
Qi, i = 1, 2, . . . , nQ.



3.3. ALGORITHMS FOR REGION RECONSTRUCTION 35

Algorithm 3.3: Algorithm Y, region reconstruction stage in CERV

The algorithm encodes the information for region reconstruction based on a constant
model. It is assumed that the image contours are already available at the decoder.

(0) Use region contours to find the set of constant regions, Ω = {Ω1,Ω2, . . . ,ΩnΩ}, and
collect depth value d` of each Ω` in the depth values set, D = {d1, d2, . . . , dnΩ}.

(1) Initialize the set of variables:

(1.1) The context counters NI
j,iC

= δC , where iC = 1, 2, . . . , 5 is the context index,
j = 1, 2, . . . , 2∆ + 1 is the index of the list of likely values, and δC = 1

2∆+1 .

(1.2) The switch counters NS
j,iC

= 1
2 , where j ∈ {0, 1} is the switch index (or the

switch value) in each context iC = 1, 2, . . . , 5.

(1.2) The default context counters Nd
j = 1

2B , for j = 0, 1, . . . , 2B − 1.

(2) Order the labels of regions in Ω in the order in which the regions are found in the
image row-wise scanning. (Do the same ordering for D.)

(3) For each Ω`, encode d`, ` = 1 : nΩ (iterate until the last element in D), as follows:

(3.1) Find the list of neighboring regions N` = {Ω`,1,Ω`,2, . . . ,Ω`,K`}, and their
list of depth values D` = {d`,1, d`,2, . . . , d`,K`}.

(3.2) Create the vector D` of unique know values from D`.

(3.3) Cluster the values in D`, and construct the list of likely values, L`.

(3.4) If d` is found in the vector L`, then set the switch S` = 1, otherwise S` = 0.

Encode S` using − log2
NSS`,iC∑
j
NS
j,iC

bits. Update the count NS
S`,iC

← NS
S`,iC

+1.

(3.5) If S` = 1, encode the index position j∗ of d` in the list L`, (for which L`(j∗) =

d`), using − log2
NI
j∗,iC∑
j
NI
j,iC

bits. Update the count NI
j∗,iC ← NI

j∗,iC + 1.

(3.5) If S` = 0, encode the value d` (which is known to belong to the set W` =

A \ L` \D`) using − log2
Nd
d`∑

j∈W`
Nd
j

bits. Update the count Nd
d`
← Nd

d`
+ 1.

If the number of clusters is nQ > 2, then the algorithm selects the first two
most populated clusters, that have the centers Q1 and Q2. If the distance between
the two centers, Q1 and Q2, is smaller than ∆ (i.e. |Q1−Q2| < ∆), then a unique
cluster is created: nQ is set to 1, and the new center is computed as the rounded
mean of the values in the two clusters. If the number of resulted clusters is larger
than two, then we set nQ = 2 and only the two most populated clusters are kept
to be used by the algorithm. Let us consider that the two clusters are having the
centers denoted as Q1 and Q2. Finally, for the region Ω`, the list of likely values
L` is set, depending on the number of clusters nQ found for D`, as:

• if nQ = 1, then L` = {Q1, Q1 + 1, Q1 − 1, Q1 + 2, Q1 − 2, . . .};
• if nQ = 2, then L` = {Q1, Q2, Q1 +1, Q1−1, Q2 +1, Q2−1, Q1 +2, . . .}.
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Figure 3.9: Example of a case where the unknown value d` = 134 is encoded using
the value of the known neighboring regions D` = [79 78 80 133].

List L` is constructed in a specific order and d` is expected to be often located
in the top ranks of L`. The depth values of the known neighbor regions, D`, are
then excluded from L`, since the neighboring regions have different values. The
first 2∆+1 elements in the list are then saved in a vector L`, in the order they are
found in L`. The algorithm distinguishes five contexts when encoding the value d`,
that are having index iC , created depending on the way the list L` is constructed:

iC =


1, if k` = 1 (implicitly nQ = 1);
2, if k` = 2 and nQ = 1;
3, if k` = 2 and nQ = 2;
4, if k` > 2 and nQ = 1;
5, if k` > 2 and nQ = 2.

(3.4)

In (3.4), context iC = 1 is used when one single unique neighbor value is known.
If two unique neighbor values are known, then the distance between the values is
checked: if the values are at a distance smaller than ∆, then the context iC = 2
is used, else the values are at a large distance and the context iC = 3 is used. If
more than two unique neighbor values are known, then the clustering algorithm
is used, and if one cluster is generated, then we use context iC = 4, else iC = 5.
Finally the depth d` is encoded using the position j∗ for which L`(j∗) = d`. Note
that j∗ is encoded using the statistics in the found context iC .

In the cases when d` is not found in L`, the context iC = 6 is used and a binary
switch, S`, is encoded to signal the decoder if the current context is iC = 6. In this
context, d` is encoded using the list of default values, W`, obtained by excluding
from the default alphabet the values that were checked and found not equal to
d`, i.e. W` is the set difference between A and the values in L` and D`, where
A = {0, 1, . . . , 2B − 1} is the alphabet of the input values stored on B bits in the
initial depth-map image Z (i.e. W` = A \ L` \D`).
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In Algorithm 3.3 we present a summary of the region reconstruction stage
from CERV [P3], which was denoted Algorithm Y (Alg. Y). Let us now consider
the example from Figure 3.9, which is a zoom in inside Figure 2.3.(a). In the
current row (i.e. row number 9), the next value to be encoded is d` = 134 and
its corresponding region Ω` has k` = 4 neighbor regions with known values. The
vector of unique known values is D` = [79 78 80 133]. Next we apply the
clustering algorithm and create the list of likely values L` as follows:

• Select the center of the first cluster as the first value found in D`, i.e. q1 = 79.
Pass throw D` and mark all the elements that are within the distance ∆ = 5
from q1, i.e. inside the interval [q1−∆, q1 +∆] = [74, 84]. The set of elements
marked for the first cluster is Sq1 = {79, 78, 80}, and the center of the
cluster is recomputed using Sq1 as Q1 = 79+78+80

3 = 79.
• The remaining unmarked element in D` is selected as the center of the second

cluster, i.e. q2 = 133. This cluster has Sq2 = {133}, and its recomputed center
is Q2 = 133.

• Since |Q1 −Q2| > ∆ (i.e 54 > 5), then nQ = 2 and
L` = {Q1, Q2, Q1 + 1, Q1 − 1, Q2 + 1, Q2 − 1, Q1 + 2, . . .}, i.e.
L` = {79, 133, 80, 78, 134, 132, 81, 77, 135, 131, 76, 82, . . .}.

• Using nQ = 2 and k` = 4 in (3.4) the context index iC = 5 is selected.
• The known values from D` are excluded from L` and the first 2∆ + 1 = 11

elements are saved in L` = [134 132 81 77 135 131 82 76 136 130 83].
• Search for the position j∗ of the unknown value d` = 134 inside the vector
L` for which L`(j∗) = d`. The value d` is found inside L` at j∗ = 1, therefore
the region’s corresponding switch is set as S` = 1.

• S` = 1 and j∗ = 1 are encoded as described at steps (3.4) and (3.5) in Alg. Y.

3.4 Algorithms summary
In this chapter, we described the algorithms introduced by three publications
[P1, P3, P5]. Each publication is presenting a lossless compression algorithm with
two stages, where the following information is encoded: in the first stage the image
contour, and in the second stage the information needed for region reconstruction.

The algorithm from [P1] is compressing the contour by transmitting to decoder
the vertex positions, and is using different statistical models to encode its sequence
of symbols (see Section 3.2.1). The regions are reconstructed using a predictive
coding technique (see Section 3.3.1). The algorithm is denoted New Complex
Version (NCV), because more complex procedures are improving the results from
[82]. NCV is designing also a segmentation in the first stage, in contrast to [P3]
and [P5] which are using an over-segmentation. The segmentation algorithm is
further developed in [P2], see Section 4.2. Its main idea is to create large regions
by collecting pixels into maximum connected sets, where a current pixel position
(x, y) is added to the set only if the absolute difference, between its depth value
Z(x, y) and the depth value of its neighboring pixels that are already in the set, is
not exceeding a variability threshold denoted λ. The variability threshold is set in
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turn as λ = 1, 2, 3, and the connected sets of pixels, having the cardinality larger
than Nλ pixels, are labeled as a region. The algorithm is simple and depends on
empirically set values Nλ and on the selected order in which the pixels are added
to the connected sets.

CERV algorithm, from [P3], is transmitting to the decoder the contour using
the contour edges encoded by Alg. C (see Section 3.2.2), and is reconstructing
the regions using Alg. Y (see Section 3.3.2). Two versions were developed for the
algorithm: CERV Fast version (CERV-Fast), that uses in Alg. C one pass through
the image; and CERV High Complexity version (CERV-HiCo), having all steps from
Alg. C. APC algorithm, from [P5], is transmitting to the decoder the image contour
using a vertex representation (see Section 3.2.1), while Alg. Y from [P3] is used to
encode the depth value of each constant region. CERV and APC are our best lossless
compression coders, and there is no dramatic difference between their results, as
we show in Chapter 5. However, if the image contains a large number of regions,
i.e. the contour map has a high contour edge density, CERV performs better, while
if the image is very simple and the constant regions are large, APC performs better.



Chapter 4

Lossy Compression of
Depth-Map Images

“If you can’t fly then run, if you can’t run then walk, if you can’t walk
then crawl, but whatever you do you have to keep moving forward.”

— Martin Luther King, Jr.

“If you are going through hell, keep going.”
— Winston Churchill

In this chapter, the state of the art coders for lossy compression of depth-map
images are briefly presented in the first section, while our four algorithms from
[P2, P4, P6, P7] are described in the following sections. The second and third
sections present algorithms based on image segmentation, in the fourth section we
tackle the problem of progressive coding, while in the fifth section we study the
parameterization of planar models, based on the selection of three pixel locations
in a region, in order to ensure a better rate-distortion performance.

4.1 State of the art coders
The field of lossy compression of depth-map was intensively studied, and during
the recent years a lot of algorithms were developed, based on different approaches
like: quad-tree decomposition [62], platelets [96], wedgelets [23], block partitioning
[106], down and up sampling of the image [64] or image decompositions [40]. In
video compression, H.264/AVC was expanded, with a lot of algorithms, which
modified parts of the code to improve the compression. However, the H.264/AVC
standard was recently complemented by the new High Efficiency Video Coding
(HEVC) standard. Other algorithms were designed especially for compressing the
depth-map images obtained by the Kinect [105] sensor.

In [62], Morvan et al. developed an algorithm that encodes the quad-tree de-
composition of the depth-map image and uses a region reconstruction algorithm
based on Wedgelets [23] and Platelets [61, 96]. The depth-map image contains

39
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smooth regions delineated by sharp edges. The smooth regions were modeled by
piecewise-linear functions and the sharp edges by straight lines. Four different
piecewise-linear functions were used in modeling: for approximating smooth re-
gions they use a constant and a linear function, while for compressing the depth
discontinuities (the sharp edges) they use a wedgelet and a platelet function. Their
method was able to outperform the JPEG-2000 [92] encoder with 1− 3 dB. The
Region Of Interest (ROI) feature of the JPEG-2000 encoder was used by Krish-
namurty et al. in [43]. The sensitivity of the rendering error depends on image
content, but a bigger impact has the quality of the depth-map, that is why they
consider the ROI coding, where they identify those regions of the image where
the depth-map must have a good quality. Their method offers an improvement
of 1.1 dB over the JPEG-2000 encoder. This group of methods used elaborated
mathematical tools to preserve the edges in the depth-map image, but they were
later outperformed by simpler algorithms using other approaches.

Another approach is based on the idea of creating a different image representa-
tion using a decomposition of the depth-map image. A hierarchical decomposition
was presented in [40], where the image is decomposed into three disjoint images
plus a description image, as follows: the regular mesh image contains the depth-
map levels; the edge-region image contains the edges of the depth-map areas; the
no-edge-region image contains the non-edge depth-map areas; and the number-of-
layer image contains information about the class each depth map value belongs
to. All images are then entropy coded by H.264/AVC. A binary tree triangular
decomposition is presented in [18], where values inside each triangle are recon-
structed by a triangle based planar approximation. The algorithm has two stages:
(i) the depth analysis stage, where the tree level decomposition is obtained by
imposing MSE and Percentage of ERRored pixels (PERR) thresholds; (ii) the cod-
ing stage, where the tree is encoded by the 7-Zip implementation of Lempel-Ziv
Markov chain algorithm, and the sorted depth values are entropy coded by the dif-
ference between two consecutive values. Another example of a lossy compression
algorithm based on depth-map image decomposition is proposed by Milani and
Cavagno in [57], where the image is first over-segmented into a large set of small
regions using the Graph-Based Segmentation algorithm [24], and then the regions
are merged according to their average depth value and the number of objects set to
be identified in the depth-map image by the coding routine. Each object is coded
by a binary mask and has an average depth value associated. A prediction for the
current depth image is first built and then refined by computing the residual signal
and iterating the coding process. The H.264/AVC standard is used to encode the
residual signal. This group of methods builds upon the idea of utilizing an entropy
coder to encode the entities that represent the depth-map image. They were later
outperform due to the development of better entropy coders and because of the
high number of entities needed to be encoded.

Another family of approaches is based on the conversion of the depth-map into
a 3D mesh. The 3D surface models are represented using regular (or semi regular)
meshes, where in a regular mesh, each vertex is connected to the same number of
edges (six in case of triangular meshes), and the edge lengths are close to an average
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value. All the depth-maps are brought to a common 3D space and are resulting
a large 3D point cloud, which represent the starting point of the algorithm. In
[67], multiple depth-map geometric proxies are compressed and used to create
the 3D mesh. The geometry proxy is an approximate description of the scene,
and it can be a parametric object such as a bounding box, a best-fit ellipsoid or
an approximate polygon-based model of the scene. The methods were developed
for a different type of application, but they proposed interesting concepts for the
compression of different patches of a depth-map image.

In another approach, Oh et al. [64] presented a method that subsamples the
depth information, and then it reconstructs the image using an adaptive interpo-
lating filter. The method is based on the idea of efficiently compressing object
boundaries, which are more sensitive to compression artifacts. The reconstruction
filter, introduced by the method, consists of a frequent-low-high filter and a bi-
lateral filter. The method offered improvements over the H.264 standard and a
reduced distortion around object boundaries. The precision of the boundary in-
formation was improved even further in [38], where the method proposed efficient
intra prediction modes around object boundaries. Due to a smooth depth-level
distribution within an object and a sharp depth-level variation near object bound-
aries the method was able to achieve a gain of 2.5− 4 dB over H.264. This group
of methods is focusing on the idea of preserving the edges in the depth-map image
using different approaches. They all show better results comparing to the H.264
standard.

The observation that “pixels of similar depth have similar motion” was ex-
ploited in several articles. In [19], the authors used this observation to eliminate a
priori the unlikely coding modes, and they achieved a 40% faster H.264 encoding
at the expense of 0.7% increase in bitrate and 0.07 dB decrease in PSNR. In [21],
the authors focused on the motion prediction of arbitrarily shaped sub-blocks and
they used predictive coding to predict the next chain-code symbol of an F4 rep-
resentation using a linear prediction model. Their method obtained an average
overall bitrate reduction of up to 30% over H.264. These methods are emphasizing
the role of predictive coding and the successful use of chain-code representations
in depth-map image compression.

In another approach, the authors proposed methods based on the idea of seg-
mentation or block partitioning. In [106], a segmentation is obtained using the
depth and color information and the regions of the image are classified as “inner
motion” regions, “background subtracted with edges” regions and “edge” regions.
The H.264/AVC standard is encoding the image’s macro-blocks according to the
features of the regions they belong to. A geometry-adaptive block partitioning al-
gorithm was introduced in [20], and modified in [38], so that no side information is
required for block partitioning, because the partitioning information is estimated
from the previous reconstructed neighboring blocks. In [36], a segmentation of
the depth-map image is obtained by selecting the most important contours using
piecewise linear approximations; the contour lines are then encoded by JBIG2
[32]. As a result, the method managed to preserve the edge information and to
achieve less geometric distortions, having a gain of 9 dB in PSNR compared to
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the JPEG-2000 encoder. In [22], the authors are using an adaptive lifting scheme
to preserve edges. Although a small gain of around 0.5 dB is obtained in PSNR,
a quality improvement is achieved in the synthesized view due to the preservation
of the edges. The block partitioning is a concept widely used in compression, e.g.
in the H.264/AVC and HEVC standards. This group of methods is successfully
exploiting different variations of the concept.

An algorithm with progressive coding functionality was first proposed in [17],
where “reversible cellular automata” is used to achieve spatial scalability. In
[53, 54], geometry information is conveyed by prioritized breakpoints found by
a breakpoint-adaptive transform. In [104], the authors present an approach where
the image is segmented into a desired number of regions, where each region is
represented using region shape and the averaged value inside the region. In [73],
the authors use an approach based on lifting operations and the piecewise planar
model for the images. Similarly, in [41] the graph-based transform is used. All
these methods propose inspiring ideas that were used in our algorithms.

In November 2010, Microsoft launched the XBOX 360 video game console,
which incorporates a motion sensor, that is placed in an input device called Kinect.
The Kinect [105] sensor is able to estimate a depth-map image, and then use it
to interpret some specific gestures, which made XBOX an electronic device with
a completely hands-free control. In [55], the researchers from Microsoft developed
an algorithm for compressing the 16-bit depth-maps generated by Kinect, using
a simple low complexity algorithm. They started from the observation that the
accuracy of the depth estimate actually decreases with the inverse of the depth.
When reading a depth value which is twice as far as another one, the error in
the estimated depth is two to four times larger. The algorithm has three steps:
inverse coding of the image, a simple prediction after a raster scan, and adaptive
Run-Length/Golomb-Rice (RLGR) coding [50].

In another approach, the planar model is used in the depth-map image com-
pression to reconstruct different regions from the image. In [58], the color data
segmentation is used to predict the depth-map image, while each region is recon-
structed using a planar model. The plane parameters are encoded only for the
region where the approximation of the planar model is sufficiently accurate for the
target bitrate, while the others are encoded using H.264/AVC. A similar algo-
rithm was presented in [72], where the compression scheme is using a joint depth
and texture coding scheme, by extending the Locally Adaptive Resolution (LAR)
codec [66]. In [65], the planar model for depth-map image compression is stud-
ied intensively. The method is placing the segmentation process in the virtual
3D point cloud, rather than simply in a left or right view. However, the planar
models are relatively few in number, and they are obtained by running a graph-cut
co-segmentation algorithm. This group of articles studied the use of the planar
model and they proposed different solutions for the problem of parameterization
and selection of the planar model. In our latest work we manage to exploit better
the planar models and to increase the number of regions where it is used.

Other approaches were proposed for depth-map video coding, and are focused
on solving problems like pixel-based motion estimation [48], disparity estimation
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[16], and many others. The most commonly used approach is the modification of
the H.264 standard [49, 100, 102, 103], where patches of code are inserted in the
standard and the methods manage to achieve a better result than H.264.

In the following sections four lossy compression algorithms are proposed, where
different concepts of the state of the art coders are inserted in our approach to
help us in our quest to outperform the state of the art coders.

4.2 Segmentation into constrained regions
Publication [P2] describes the first lossy compression algorithm we developed. The
algorithm generates different segmentations by constraining the variability and the
number of distinct depth levels inside each region. Each segmentation creates a
lossy image that is compressed using prediction and quantization techniques.

The main idea in [P2] is to use prediction inside each region to encode residual
errors with a distribution close to the exponential distribution, and to obtain
different segmentations suitable for compression. Each segmentation is having
a corresponding lossy version of Z and is represented by a point in the Rate-
Distortion (RD) curve.

To ensure low prediction errors, we constrain the regions to contain connected
pixels in 4-connectivity having only small differences between their depth values.
Let us consider a region in the image, Ω` = {(xi, yi)}i=1,2,...,n, formed of n pixels,
containing pixels with the depth values denoted zi = Z(xi, yi), i = 1, 2, . . . , n.
For a pixel position (x, y), we define its neighborhood in the 4-connectivity as
N4(x, y) = {(x−1, y), (x+1, y), (x, y−1), (x, y+1)}. For the pixel position (xt, yt)
and the region Ω`, we define the variability of the pixel as:

V (xt, yt) = min
(xi,yi)∈N4(xt,yt)∩Ω`

|Z(xt, yt)− Z(xi, yi)|. (4.1)

If in Ω` we impose a variability threshold λ = 0 (i.e. ∀(xi, yi) ∈ Ω`, V (xi, yi) ≤ λ),
then Ω` is a constant region. When the variability threshold is increased, the
segmentation is able to find in the image regions containing planar objects.

The contour compression has the highest percentage in the final codelength
and that is why, in the first step, the algorithm is smoothing the contours as
follows: if a pixel is surrounded by a majority of neighbors having very similar
depth value, then it is better to smooth the contour by setting the pixel’s value
with the value of its neighbors. If the pixel is the single position in a region with
cardinality one, then four contour edges are eliminated from the contour, which
are encoded using an anchor point (the most expensive information that is sent
to the decoder). Note that the distortion introduced by this change is very small.
The same procedure is applied when three out of the four pixel positions from
N4(x, y) have the same depth value. The change of the pixel’s value is straitening
the contour by replacing three contour edges with one contour edge, and increases
the likelihood that introduced contour edge is codified by a 3OT symbol ‘0’ or ‘1’
instead of the three initial symbols encoding the three contour edges, where one
of them is ‘2’.
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Algorithm 4.1: Lossy Constrained Region Segmentation (L-CRS)

The algorithm encodes the image Z by generating a segmentation, and by encoding the
contour and applying prediction and quantization techniques for region reconstruction.

(0) Smooth the contour by changing the contour edges separating pixels with similar
values as the majority of their neighbors: if at least 3 neighbors in N4(x, y) have
the same depth value, v, and if |Z(x, y)− v| ≤ 2, then set Z(x, y) = v.

(1) Find the connected sets of pixels having variability λ = 0 (i.e. constant regions).

(2) Label as regions the sets of connected pixels containing more than N1 pixels. Out
of the remaining pixels, find the connected sets of pixels having variability at most
λ = 1 and having the maximum number of distinct depth values γ = 2.

(3) Label as regions the sets of connected pixels with cardinality at least N2. Out of
the remaining pixels, find connected sets of pixels having variability at most λ = 2.

(4) Label as regions the sets of connected pixels containing more than 100 pixels. Out
of remaining pixels, find connected sets of pixels having variability at most λ = 3.

(5) Declare the remaining connected sets of pixels as regions.

(6) Remove the regions having less than five pixels by merging them with the biggest
neighbor region, and set the region pixels with the value of the selected region.

(7) Encode the region contours by encoding vertices using AMM and Laplace estimator.

(8) Quantize and encode the regions with almost constant depth, using T3 = 50.

(9) For the remaining regions use the near-lossless predictive compression by predicting
using the Martucci predictor and quantizing the residual values using (4.2).

The algorithm has the possibility of distinguishing the case when an object, or
the image’s background (a vertical plane), is contained in a large constant region.
That is why, after obtaining the set of connected pixels having λ = 0, the large
sets, that contain at least N1 pixels, are labeled as regions, while the remaining
pixels are used to re-determine new sets of connected pixels constrained with an
increased variability. In the next step, we use λ = 1 and also constrain the regions
to contain a small number of distinct depth values, say γ = 2, so we can quantize
these regions better, as explained below. In the next two steps we use λ = 2
and λ = 3, and label as regions the largest sets of pixels that contain at least N2
and N3 = 100 pixels. Note that these regions contain mostly objects with planar
models. The region size is constrained because we want to decrease the length
of the residual error vector, but also to be able to have a small prediction error
over a large area of the image. The remaining sets of pixels are declared regions.
The smallest regions, denoted here pixel regions, that contain five or less pixels,
are merged with the biggest neighboring regions, and hence less contour edges are
encoded in the contour compression stage. This ends the segmentation generation
stage, where N3 was fixed, and N1 and N2 are set with values between 50 and
1000 pixels, depending on the image size and characteristics.

In the next stage, quantization techniques are used as follows. If a region
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contains only a small number of distinct levels, denoted γ, then is better to quantize
and encode the region in a much simpler procedure, denoted Quantization and
coding of regions with almost constant depth:

• If the region contains γ = 2 distinct depth levels, i.e. g and g + 1, then the
quantized depth value is set as g∗, the value which occur most often in the
region, which ensures that the lowest distortion is introduced in the region.

• If the region contains γ = 3 distinct depth levels, then the optimal value g∗
is set as the truncated average over the region. The distortion introduced
by g∗ is then computed and compared with a threshold T3, and if it is above
the threshold, then we use the similar procedure as previously and encode
the optimal quantization level for the region reconstruction stage. However,
if the distortion is too high and the threshold is exceeded, then a different
procedure based on prediction and quantization is used instead.

The remaining regions, that failed the distortion constraint, are first predicted
using the optimal predictor selected from the mixture of predictors, as described in
Section 3.3.1. However, the results showed that the Marttuci predictor is selected
most of the time. For the region Ω`, containing pixels with the depth values
zi = Z(xi, yi), i = 1, 2, . . . , n, the predictor computes the set of predictions,
{ẑi}i=1,2,...,n, for each corresponding pixel. Prediction errors εi are then computed
as εi = zi− ẑi, i = 1, 2, . . . , n. Quantization of the values is done in the same way
as in LOCO-I [93], i.e. the prediction errors are uniformly quantized by:

Q(εi) = sign(εi)
⌊
|εi|+ η

2η + 1

⌋
, (4.2)

where the sign (signum) function returns ‘1’ for a positive argument, ‘-1’ for a
negative argument, and ‘0’ for a ‘0’ argument. The decoder is reconstructing zi as

z̃i = ẑi +Q′(εi) · (2η + 1), (4.3)

where the reconstruction level is biased from the midpoint of the quantization
interval towards zero, to account for the typical monotonic decreasing Probability
Density Function (PDF) of the absolute value of the residual:

Q′(εi) = Q(εi)−
sign(Q(εi)) · µ(η)

2η + 1 . (4.4)

The tests showed that the best results are obtained for the bias term corresponding
to µ(η) = η. The coding of the quantized prediction errors is done by applying
AMM with Laplace estimator. The vector of errors is centered first, and an escape
mode is introduced. The image contour is encoded in a similar way as in [P1].

When the targeted bitrate reaches the low range (say below 0.2 bpp), then we
set the last significant bit, in the binary representation of the depth values, as
the dominant value between the bits gathered from the image. The algorithm
is denoted Lossy Constrained Region Segmentation (L-CRS), and its summary is
presented in Algorithm 4.1. To improve the results at high bitrates, the step (6)
from the L-CRS algorithm is eliminated and the Near-Lossless Constrained Region
Segmentation (NL-CRS) algorithm is obtained.
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4.3 Greedy Slope Optimization

Publication [P4] presents an image segmentation algorithm, having the possibility
to generate segmentations for any given distortion. For each segmentation a cor-
responding lossy version of Z is obtained. The algorithm consists of two phases.
In the first phase, the regions in the current lossy image are merged as follows:
at each iterative step we search, and then merge, the optimal pair of two regions
that introduces the smallest distortion and the highest bitrate reduction. In the
second phase, the regions in a template image are split using straight lines. In the
RD plot, each point of the curve is corresponding to a lossy image created by the
segmentation of the initial image.

Let us consider now that the initial image is denoted Z0, and is initially divided
into the set of nΩ constant regions Ω = {Ω1,Ω2, . . . ,ΩnΩ}, where each region Ω`
contains pixels having same depth value d`, i.e. the set Ω has a corresponding
set D = {d1, d2, . . . , dnΩ}. The algorithm from [P4] was denoted Greedy rate-
distortion Slope Optimization (GSO). The merging phase is called GSO with region
merging (GSOm), and generates a sequence of images Zn. The splitting phase is
called GSO with region splitting (GSOs), and generates a sequence of images Yn.

4.3.1 GSO with region merging

GSOm is using the initial image Z0 to generate a sequence of n lossy images Zn =
{Z1, Z2, . . . , Zn}, where each image in the sequence has a given distortion. From
the current image, say Zτ , GSOm is searching and merging the necessary number
of regions so that it can generate the next image in the sequence, Zτ+1.

Let us consider, at iteration τ, the current image Zτ is represented using: the
set of n(τ)

Ω constant regions Ω(Zτ ) = {Ω(τ)
1 ,Ω(τ)

2 , . . . ,Ω(τ)
n

(τ)
Ω
}, the corresponding set

of n(τ)
Ω depth values D(Zτ ) = {d(τ)

1 , d
(τ)
2 , . . . , d

(τ)
n

(τ)
Ω
}, and the contour Γ(Zτ ) that

separates the regions, which is the reunion of all contour segments Γ(τ)
i,j , where Γ(τ)

i,j

separates the pair of regions
(

Ω(τ)
i ,Ω(τ)

j

)
. GSOm is evaluating each possible merge

and is selecting the optimal pair based on a criteria. Next we study the merge,
obtain an evaluation of the merge, and formulate the criteria.

Let us consider a pair of regions
(

Ω(τ)
i ,Ω(τ)

j

)
, denoted simply p = (i(τ), j(τ)),

which is separated by their contour segment Γp = Γ(τ)
i,j . The next image in the

sequence, Zτ+1, is generated from the current image Zτ by merging the optimal
pair of regions. If we choose to merge the pair of region p = (i(τ), j(τ)), then
a new region Ω(τ+1)

` = Ω(τ)
i ∪ Ω(τ)

j is obtained, and the depth of all the region
pixels is set to the truncated average of all initial depth values of the pixels, i.e.

d
(τ+1)
` =

⌊∑
(x,y)∈Ω(τ+1)

`

Z0(x,y)

m
(τ+1)
`

⌉
, where m(τ+1)

` is the number of pixels in Ω(τ+1)
` .

The image Zτ+1 contains the new region Ω(τ+1)
` and the remaining regions from Zτ ,

and can be represented by relabeling the elements used to describe Zτ , i.e. using:
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the set Ω(Zτ+1) = {Ω(τ+1)
1 ,Ω(τ+1)

2 , . . . ,Ω(τ+1)
n

(τ+1)
Ω
} of n(τ+1)

Ω = n
(τ)
Ω − 1 constant

regions, the corresponding set D(Zτ+1) = {d(τ+1)
1 , d

(τ+1)
2 , . . . , d

(τ+1)
n

(τ+1)
Ω
} of depth

values, and the contour Γ(Zτ+1) = Γ(Zτ )\Γ(τ)
i,j . The merging has two consequences.

First, by merging the pair of region p = (i(τ), j(τ)) into Ω(τ+1)
` , the values of all

the region pixels are modified, and an increase in distortion, ∆Dp, is introduced.
Secondly, the contour segment Γ(τ)

i,j , that separated the two regions, is eliminated
and the set D(Zτ+1) contains one element less, which is producing a decrease in
bitrate, ∆Rp.

We evaluate ∆Rp by adding the estimated codelength of the eliminated con-
tour and the codelength of encoding one depth value. The contour codelength is
evaluated using the model: C(Γp) = C1 · L(Γp), where C1 is a constant repre-
senting the cost of encoding a contour edge, and L(Γp) is the number of contour
edges in Γp. In [P4] we used C1 = 1.5 bits. In the reconstruction stage, the set
D(Zτ+1) has n(τ+1)

Ω = n
(τ)
Ω − 1 elements, i.e. one depth value is not encoded and

an estimated C2 = 8 bits are saved. Now we can estimate the decrease in bitrate
as:

∆Rp = C1 · L(Γp) + C2. (4.5)

Note that the cost for encoding one 3OT symbol is log2(3) ≈ 1.585. When a
sequence of 3OT symbols is encoded using a statistical model like AMM or CTM,
the cost is decreased, but other auxiliary information is required to be encoded,
which depends on many variables: image contour shape, image size, number of
contour segments, or contour edge density of image areas. Later tests have shown
that the cost of encoding one 3OT symbol may vary between 1.1 and 1.9 bits.

We evaluate the change in distortion as ∆Dp = MSE(Zτ ) − MSE(Zτ+1),
which depends only on the regions involved in merging: Ω(τ)

i ∪ Ω(τ)
j → Ω(τ+1)

` ,

due to the way the sequence of images, Zn, is generated. Let us denote for any
Ω(τ)
k ∈ Ω(Zτ ), k = 1, 2, . . . , n(τ)

Ω , having m
(τ)
k pixels and depth value d

(τ)
k , the

following:

(i) the sum of the original depth values as φ(τ)
k =

∑
(x,y)∈Ω(τ)

k

Z0(x, y);

(ii) the sum of the squared original depth values as ϕ(τ)
k =

∑
(x,y)∈Ω(τ)

k

Z0(x, y)2;

(iii) the sum of the squared reconstruction errors as
ρ
(

Ω(τ)
k

)
=
∑

(x,y)∈Ω(τ)
k

(
Z0(x, y)− d(τ)

k

)2
= ϕ

(τ)
k − 2φ(τ)

k d
(τ)
k +m

(τ)
k

(
d

(τ)
k

)2
.

We can compute MSE over the region Ω(τ)
k as MSE

(τ)
k = 1

nrnc
ρ(Ω(τ)

k ), and MSE

over the image Zτ as MSE(Zτ ) =
∑n

(τ)
Ω
k=1 MSE

(τ)
k . When the pair of regions

p = (i(τ), j(τ)) is merged, the new region Ω(τ+1)
` contains m(τ+1)

` = m
(τ)
i + m

(τ)
j

pixels, has the sum of the pixels initial depth values φ(τ+1)
` = φ

(τ)
i + φ

(τ)
j and the

sum of the squared depth values ϕ(τ+1)
` = ϕ

(τ)
i + ϕ

(τ)
j , and it is having the depth
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Algorithm 4.2: Greedy Slope Optimization with region merging (GSOm)

The algorithm generates the sequence Zn = {Z1, Z2, . . . , Zn} using the initial image Z0.

(0) Smooth the contour by changing the contour edges separating pixels with similar
values as the majority of their neighbors: if at least 3 neighbors in N4(xi, yi) have
the same depth value, v, and if |Z0(xi, yi)− v| ≤ 2, then set Z0(x, y) = v.

(1) Set τ = 0, and find in Zτ constant regions and represent the image using: set of
n

(τ)
Ω regions Ω(Zτ ), corresponding set of depth values D(Zτ ), and contour Γ(Zτ ).

(2) For every region Ω(τ)
k ∈ Ω(Zτ ), k = 1, 2, . . . , n(τ)

Ω in Zτ , having m
(τ)
k pixels and

depth value d(τ)
k , compute φ(τ)

k , ϕ
(τ)
k , ρ(Ω(τ)

k ), and MSE
(τ)
k . Use MSE

(τ)
k to com-

pute MSE(Zτ ) and PSNR(τ).

(3) For every pair or regions p = (i(τ), j(τ)) in Zτ , separated by Γp = Γi(τ),j(τ) :

(3.1) Estimate the rate variation, ∆Rp, using (4.5).

(3.2) Compute the change in distortion, ∆Dp, using (4.6).

(3.3) Compute the slope, λp, using (4.7).

(4) Sort increasingly first nM slope values in vector λ = [λp1 , λp2 , . . . , λpnM ], with
corresponding the list of pairs PM = [(i1, j1), (i2, j2), . . . , (inM , jnM )].

(5) While PM 6= ∅, merge the first pair, p1 = (i1, j1), and update variables as follows:

(5.1) Merge the pair of region p1 = (i1, j1) from Zτ , and compute for the new region
Ω(τ)
i ∪ Ω(τ)

j → Ω(τ+1)
` the corresponding values of m(τ+1)

` , d
(τ+1)
` , φ

(τ+1)
` ,

ϕ
(τ+1)
` , ρ(Ω(τ+1)

` ), and MSE
(τ+1)
` .

(5.2) Obtain MSE(Zτ+1) by updating MSE(Zτ ).

(5.3) Exclude from PM the pair p1 = (i1, j1) and any other pairs containing region
indexes i1 or j1 (only if Ωi1 or Ωj1 has more than three pixels).

(6) Compute ∆PSNR(τ + 1) using MSE(Zτ+1), and check if ∆PSNR(τ + 1) >

∆PSNR = 0.5 dB. If the condition is true, then save Zτ+1 and increase τ as
τ ← τ + 1, else go to step (3).

value d(τ+1)
` =

⌊
φ

(τ+1)
`

m
(τ+1)
`

⌉
. Hence, the change in distortion introduced in the image

Zτ+1 is computed as ∆Dp =
ρ
(

Ω(τ+1)
`

)
nrnc

−
ρ
(

Ω(τ)
i

)
+ρ
(

Ω(τ+1)
j

)
nrnc

, which can be rewritten
as:

∆Dp = 1
nrnc

(
m

(τ+1)
`

(
d

(τ+1)
`

)2
−m(τ)

i

(
d

(τ)
i

)2
−m(τ)

j

(
d

(τ)
j

)2
)

+ 2
nrnc

(
d

(τ)
i φ

(τ)
i + d

(τ)
j φ

(τ)
j − d

(τ+1)
` φ

(τ+1)
`

) . (4.6)

Finally, we can evaluate in the RD plot the pair p = (i(τ), j(τ)) by computing
the slope, λp, of the line that connects the points corresponding to the images Zτ
and Zτ+1. We define the slope λp using the corresponding increase in distortion,
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∆Dp, and the estimated decrease in bitrate, ∆Rp, as:

λp = tanαp = ∆Dp

∆Rp
. (4.7)

The pair of regions to merge, (Ω(τ)
i∗ ,Ω

(τ)
j∗ ), is chosen from the set of all possi-

ble pairs of neighboring regions, by greedily minimizing, in RD, the slope be-
tween the corresponding points of Zτ and Zτ+1, i.e. by choosing the pair p∗ =
(i∗,(τ), j∗,(τ)) for which the minimum slope λ∗ is obtained. However, image Zτ+1
is generated after a number of pairs are merged and the variation of distortion
computed in Peak Signal-to-Noise Ratio (PSNR), denoted ∆PSNR(τ + 1) =
PSNR(Zτ+1) − PSNR(Zτ ), reaches a threshold set by the user or a specific
threshold, i.e. ∆PSNR(τ + 1) > ∆PSNR. In [P4] we used ∆PSNR = 0.5 dB.

The concept of contour smoothing from [P2], described in the previous section,
is used in GSO to generate images with very low distortion. This time the MSE value
is used while taking the decision to generate the next image. In [P4] we used a vec-
tor of empirically MSE selected values, like [1, 5, 30, 60, 90, 500, 1000, 2000, ...].

From the implementation point of view, the evaluation of all the possible pairs
to merge has a high computational cost. One way of reducing it is to do the eval-
uation at the beginning of the process, and then update the pairs that contain one
of the regions selected to be merged. However, in [P4] we choose to avoid making
updates after each merging step. The λp values, for all possible pairs region, are
sorted increasingly in the vector λ = [λp1 , λp2 , . . .], which is then truncated to
the first nM values λ = [λp1 , λp2 , . . . , λnM ], having the corresponding list of pairs,
PM = [(i1, j1), (i2, j2), . . . , (inM , jnM )]. In the list PM , we start with the first pair
p1 = (i1, j1) and do the following: (i) merge the corresponding regions in Zτ , (ii)
exclude p1 = (i1, j1) from PM , (iii) exclude from PM any other pair of regions
that contains in the pair the region indexes i1 or j1. The process stops when the
list PM is empty. Additionally, we ‘bend the rule’ at step (iii) and do not apply it
for the smaller regions, having three or less pixels. The value nM is set as follows:
if Zτ contains more than n

(τ)
Ω = 1000 regions, then nM = 100; if Zτ contains

n
(τ)
Ω ∈ [10, 1000], then nM = bnΩ/10c; if Zτ contains less than 10 regions, then
nM = 1. A summary of the GSOm algorithm is presented in Algorithm 4.2.

4.3.2 GSO with region splitting

GSOs is designed to generate images at low bitrate. Its input image is a template
image, Y0 = Ztempl, which contains the most important contours in Z0. GSOs
generates the sequence of images Yn = {Y1, Y2, . . . , Yn}, where the regions, from
the current image Yτ , are split using horizontal and vertical straight lines to obtain
the regions of the next image Yτ+1. At the decoder, the contour is drawn using the
contour of the template image Y0 and the additional information encoded for each
region. The information contains: the decisions to split or not a current region
and, for each split, the orientation (vertical or horizontal) and the location of the
line segment (relative to the region’s bounding box).



50 CHAPTER 4. LOSSY COMPRESSION OF DEPTH-MAP IMAGES

GSOs associates a target slope λτ to each image Yτ in the sequence Yn. The
target slope λτ+1 is used to obtain the image Yτ+1 by managing the split process
inside each region from the image Yτ . In the current image Yτ , the regions are
further split only if the target slope λτ+1 allows it, i.e. a region is split if the slope
that evaluates the split is larger than λτ+1. The decisions to split a region or
not forms a ternary tree, which is traversed in a Depth-First (DF) order. GSOs is
searching to split a region Ω(τ)

` into two regions either with a vertical line segment
before column J or a horizontal line segment before line I. The region’s bounding
box is defining the range of each position, e.g. for Ω(τ)

` = {(xi, yi)}i=1,2,...,n we have
xm ≤ I < xM , ym ≤ J < yM , where xm = mini xi, xM = maxi xi, ym = mini yi,
yM = maxi yi, i = 1, 2, . . . , n. The horizontal line I is splitting Ω(τ)

` into ΩI,(τ)
`1

and ΩI,(τ)
`2

, and the vertical line J is splitting Ω(τ)
` into ΩJ,(τ)

`1
and ΩJ,(τ)

`2
.

Similarly as in GSOm, each possible split of the region Ω(τ)
` is evaluated in turn.

The splitting has also two consequences. Firstly, it is introducing for the pixels in
the region Ω(τ)

` a change (decrease) in distortion, which is denoted: (i) ∆D`,h(I)
for the horizontal split and is computed as ∆D(τ)

`,h(I) = ρ(Ω(τ)
` ) − ρ(ΩI,(τ)

`1
) −

ρ(ΩI,(τ)
`2

); (ii) ∆D(τ)
`,v (J) for the vertical split and is computed as ∆D(τ)

`,v (J) =
ρ(Ω(τ)

` )−ρ(ΩJ,(τ)
`1

)−ρ(ΩJ,(τ)
`2

). Secondly, the split is introducing a change (increase)
in bitrate, which is denoted: (i) ∆RI,(τ)

`,h for the horizontal split and is estimated as
∆RI,(τ)

`,h = C3 + log2(xM −xm); (ii) ∆RJ,(τ)
`,v for the vertical split and is estimated

as ∆RJ,(τ)
`,v = C3 + log2(yM − ym), where C3 = 8 bits includes the cost of encoding

the additional depth value after the split and the codelength of the decision.
The split is evaluated using the slope computed as λ

(τ)
`,h(I) = ∆D(τ)

`,h
(I)

∆RI,(τ)
`,h

or

λ
(τ)
`,v (J) = ∆D(τ)

`,v
(I)

∆RJ,(τ)
`,v

. GSOs selects for each Ω(τ)
` the optimal split by searching

the maximum slope from the set of slopes of all possible splits:

Ψ(τ)
` =

{
∆D(τ)

`,h(I)
∆RI,(τ)

`,h

}
xm≤I<xM

⋃{
∆D(τ)

`,v (J)
∆RJ,(τ)

`,v

}
ym≤J<yM

. (4.8)

Let λ∗,(τ)
` be the optimum slope, then the split decision is taken by checking

λ
∗,(τ)
` ≥ λτ+1. (4.9)

If the truth value of (4.9) is true, then the region Ω(τ)
` is not split, and the value

ξ
(τ)
` = 1 is encoded. If the truth value of (4.9) is false, then the region Ω(τ)

` is split
into two regions; if Ω(τ)

` is split vertically, then the value ξ(τ)
` = 2 is encoded; if

Ω(τ)
` is split horizontally, then the value ξ(τ)

` = 3 is encoded. The split decisions,
ξ

(τ)
` , are collected in a vector ξ(τ) for all the regions in Zτ and all the sub-regions

obtained by the decision to split. The vector ξ(τ) is encoded using an order two
AMM with Laplace estimator. Besides the split decision, GSOs encodes additional
information about the introduced straight lines. If ξ(τ)

` = 2, then the row index
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Algorithm 4.3: Greedy Slope Optimization with region splitting (GSOs)
- Split a region into two regions (GSOs-SplitInto2)

A recursive algorithm that splits the region Ω(τ)
` into two regions using the target slope

λτ+1, and encodes auxiliary contour information.

(0) Determine the bounding box of Ω(τ)
`1

by finding xm, xM , ym and yM .

(1) Estimate the additional rate introduced by an horizontal split, ∆RI,(τ)
`,h = C3 +

log2(xM − xm), and by a vertical split, ∆RJ,(τ)
`,v = C3 + log2(yM − ym).

(2) For each line index I = xm, xm + 1, . . . , xM − 1:

(2.1) Split Ω(τ)
` into ΩI,(τ)

`1
and ΩI,(τ)

`2
, using a straight line between rows I, I + 1.

(2.2) Compute the change in distortion ∆D(τ)
`,h(I) = ρ(Ω(τ)

` )−ρ(ΩI,(τ)
`1

)−ρ(ΩI,(τ)
`2

).

(2.3) Compute the slope λ(τ)
`,h(I) =

∆D(τ)
`,h

(I)

∆RI,(τ)
`,h

.

(3) For each column index J = ym, ym + 1, . . . , yM − 1:

(3.1) Split Ω(τ)
` into ΩJ,(τ)

`1
and ΩJ,(τ)

`2
, using a straight line between columns J, J+1.

(3.2) Compute the change in distortion: ∆D(τ)
`,v (J) = ρ(Ω(τ)

` )−ρ(ΩJ,(τ)
`1

)−ρ(ΩJ,(τ)
`2

).

(3.3) Compute the slope: λ(τ)
`,v (J) =

∆D(τ)
`,v

(J)

∆RJ,(τ)
`,v

.

(4) Find λ
∗,(τ)
` as the maximum slope in the set Ψ(τ)

` obtained by (4.9).
(5) Set the split decision as follows:

(5.1) If λ∗,(τ)
` ≤ λk+1, then set ξ(τ)

` = 1;
(5.2) If λ∗,(τ)

` > λk+1, and λ
∗,(τ)
` ∈

{
λ

(τ)
`,h(J)

}
xm≤I<xM

, then

(5.2.1) Set ξ(τ)
` = 2 and encode I∗ using log2(xmax − xmin) bits.

(5.2.2) Apply the GSOs-SplitInto2 algorithm for the region ΩI,(τ)
`1

.

(5.2.3) Apply the GSOs-SplitInto2 algorithm for the region ΩI,(τ)
`2

.

(5.3) If λ∗,(τ)
` > λk+1, and λ

∗,(τ)
` ∈

{
λ

(τ)
`,v (J)

}
ym≤J<yM

, then

(5.3.1) Set ξ(τ)
` = 3 and compress J∗ using log2(yM − ym) bits.

(5.3.2) Apply the GSOs-SplitInto2 algorithm for the region ΩJ,(τ)
`1

.

(5.3.3) Apply the GSOs-SplitInto2 algorithm for the region ΩJ,(τ)
`2

.

I∗ corresponding to the optimal split slope λ∗,(τ)
` is encoded using log2(xM − xm)

bits, and Ω(τ)
` is split into two regions having the same column indices and the

following row indices: [xm, I∗] for ΩI,(τ)
`1

, and [I∗+1, xM ] for ΩI,(τ)
`2

. If ξ(τ)
` = 3, the

column index J∗ corresponding to the optimal split slope λ∗,(τ)
` is encoded using

log2(yM −ym) bits, and Ω(τ)
` is split into two regions having the same row indices,

and the following column indices [ym, J∗] for the region ΩJ,(τ)
`1

, and [J∗ + 1, yM ]
for the region ΩJ,(τ)

`2
.
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Algorithm 4.4: Greedy Slope Optimization with region splitting (GSOs)

The algorithm generates the sequence Yn = {Y1, Y2, . . . , Yn} using the template image Y0

and a corresponding set of increasing target slopes {λ1, λ2, . . . , λn}.

(1) For τ = 0, 1, . . . , n − 1, use the current image Yτ and the input target slope λτ+1

to generate the next image in the sequence, Yτ+1, as follows:

(1.1) Smooth contour by changing the contour edges separating pixels with similar
values as the majority of their neighbors: if at least 3 neighbors in N4(x, y)
have the same depth value, v, and if |Y (x, y)− v| < γ, then set Y (x, y) = v.

(1.2) Find the constant regions in the image Yτ , and represent Yτ using the set
of n(τ)

Ω constant regions Ω(Yτ ), the corresponding set of depth values D(Yτ ),
and the contour Γ(Yτ ).

(1.3) For each region Ω(τ)
` from Yτ , ` = 1, 2, . . . n(τ)

Ω

(1.3.1) Apply the GSOs-SplitInto2 recursive algorithm (see Algorithm 4.3) for the
region Ω(τ)

` and the target slope λτ+1.

As small implementation aspect we can mention that, to decrease the distor-
tion, GSOs sets the depth value d(τ)

` − 1 to the pixels of each first line and first
column of Ω(τ)

` , if the neighbor region Ω(τ)
i has d(τ)

i < d
(τ)
` , and similarly the

depth value d(τ)
` +1 is set to the pixels of each first line and first column of Ω(τ)

` , if
d

(τ)
i > d

(τ)
` . Also, the contour in Y0 is smoothed as in GSOm, this time by constrain-

ing the absolute difference to be smaller than a threshold γ, where γ is increased
until it reaches the value 100.

GSOs is summarized in Algorithm 4.4, where Algorithm 4.3 presents the recur-
sive algorithm, denoted GSOs - Split a region Into two regions (GSOs-SplitInto2).

4.3.3 Entropy coding the GSO sequences
GSO was designed to generate sequences of lossy images from an initial image Z0.
The coding of any image in the two sequences, Zn and Yn, can be done using
CERV, APC or any other encoder.

In [P4], two algorithms are introduced by combining the contour compression
algorithm from [P2] and the region reconstruction algorithm from [P3] (Alg. Y).
The algorithm that encodes the sequence Zn is denoted Chain-Code–Value (CCV),
and the algorithm that encodes the sequence Yn is denoted Chain-Code-Line–
Value (CCLV).

The main concept in CCLV is that the value d(τ)
` , of the current region Ω(τ)

` ,

is encoded using a list of neighbors containing also the up and left neighboring
regions, because the continuous splitting with horizontal and vertical lines does not
guarantee that two neighboring regions have different depth values (i.e. d(τ)

` /∈ D`).
Hence, in Alg. Y (see Algorithm 3.3 in Section 3.3.2), the depth value d(τ)

` is now
encoded using the list L`, instead of the list L`.
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Figure 4.1: Non-progressive and progressive coding and decoding of the sequence
Zn generated from Z0. (Middle panel): Generation of the sequence Zn using
GSOm; at each step τ = 1, 2, . . . , n a lossy image Zτ is generated. (Left panel):
Non-progressive coding of Zp using a lossless compressor. (Right panel): Lossy-to-
lossless progressive coding of Zp; at each step τ = n− 1, n− 2, . . . , 0 a lossy image
Zτ is encoded conditionally to the previous encoded image Zτ+1. The red rect-
angles are representing P-GSO and the blue rectangles the other methods. Green
circles are representing an uncompressed image. Cyan rectangles are representing
bitstreams, out of which the lossy images can be decoded.

4.4 Progressive coding of GSO sequences

Publication [P6] introduces an algorithm that encodes progressively the entire
sequence of images generated by GSOm, Zn = {Z1, Z2, . . . , Zn}, that is called
Progressive coding of GSO sequences (P-GSO).

In the previous section we presented the way GSOm is generating Zτ+1 from
Zτ by merging several pairs of regions from Zτ , where the next pair to be merged
is selected by finding the minimum slope from (4.7). Each image Zτ from the
sequence Zn was encoded using a lossless compression algorithm in Lnp(Zτ ) bits.

In [P6], P-GSO is creating a bitstream from which the sequence Zn, or any sub-
sequence of it, can be generated in the reversed order, Zp = {Zn, Zn−1, . . . , Z0}.
If the bitstream is truncated, P-GSO is still able to generate the first part of the
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sequence until the information is lost. A non-progressive coding method is encod-
ing independently each image Zτ , while the progressive coding of Zτ is created
from the prefixes of the bitstream, corresponding to the sequence of images from
Zn until Zτ+1 (see Figure 4.1). Therefore, the progressive encoding of Zτ is less
efficient than the non-progressive coding, and the progressive codelength Lp(Zτ ) is
larger than the non-progressive codelength Lnp(Zτ ). P-GSO is designed to encode
each image Zτ+1, relative to the previous image Zτ , in such a way that the ‘price’
paid for the progressive functionality, Lp(Zτ )− Lnp(Zτ ), is as small as possible.

On one hand, at each step τ from 1 to n, GSOm has removed from Zτ the set
of n(τ)

∆Γ contour segments ∆Γ(τ) = {Γk}k=1,2,...,n(τ)
∆Γ

to obtain Zτ+1, which now is
having a lower number of regions than Zτ . From Section 4.3.1 we summarize here
that after we choose to merge the pair of regions p = (i(τ), j(τ)), a new region
Ω(τ+1)
` = Ω(τ)

i ∪ Ω(τ)
j is obtained, having the associated depth value d

(τ+1)
` =⌊∑

(x,y)∈Ω(τ+1)
`

Z0(x,y)

m
(τ+1)
`

⌉
, where m(τ+1)

` is the number of pixels in the region Ω(τ+1)
` .

On the other hand, at each step τ from n − 1 to 0, P-GSO is generating each
image Zτ using the known image Zτ+1 and auxiliary information (encoded with the
lowest possible codelength) to obtain Zτ . Hence, P-GSO is encoding n(τ)

∆Γ contour
segments, ∆Γ(τ), that are added to the contours of Zτ+1, in order to obtain the
contours of Zτ . In the reconstruction stage, the depth values d(τ)

i and d
(τ)
j are

reconstructed using d(τ+1)
` . Although at the beginning of the process only a few

regions (in the order of tens) are split in Zn, at the end of the process P-GSO
typically gets to split several thousand regions.

4.4.1 Progressive coding of contours
At each iteration τ , the contour segments from ∆Γ(τ) are added to the already
encoded contours Γ(τ+1), of the last known image Zτ+1 (see Figure 4.2), to obtain
the contours of the next image in the sequence, Zτ , i.e. Γ(τ) = ∆Γ(τ) ∪ Γ(τ+1).
The contour segments ∆Γ(τ) are encoded using a vertex representation, i.e. Γk is
represented by an anchor point, P1, a direction point, P2, and a chain-code vector
Sk (see Section 3.2.1). The same anchor point classification as in [P5] is used also
in [P6]: double, relative, and edge. However, P-GSO has a progressive functionality,
and, at step τ, the contour Γ(τ+1) is used as a priori information by anchor points
search procedures, which are different than the ones in [P5].

As we described in Section 3.2.1, the first step, in the coding of the contour
using the vertex representation, is to find the anchor points. The relative anchor
points are found by traversing the contour segments Γ(τ+1), and by marking, in a
binary vector Ψ(τ), the vertices that have more adjacent vertices in Γ(τ) than in
Γ(τ+1). The found vertices may have a minimum of two adjacent vertices part of
the contour Γ(τ+1), and a maximum of two adjacent vertices part of the contour
Γ(τ), which are possible direction points. Next we analyse the possible cases that
appear for a found vertex, say Pk. (i) If four adjacent vertices are part of Γ(τ+1),
then Pk can not be an anchor point, since there is no other possibility to start a
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Figure 4.2: Contour coding of Zτ at step τ . Contour map of last known image,
Zτ+1, is represented by contour edges marked with red. Contour segments ∆Γ(τ),

encoded at step τ, are represented by contour edges marked with blue. Double
anchor points are marked with black; relative anchor points are marked with green.

contour segment in Γ(τ). (ii) If three adjacent vertices are part of Γ(τ+1), then it
is possible that Pk is an anchor point and the remaining adjacent vertex is the
direction point. However, this case is very rare and may appear when the image
has a high contour density. (iii) If two adjacent vertices are part of Γ(τ+1) and Pk is
set as anchor point, then there are two options for the direction point. Therefore,
a binary switch, ξk, is used to select the correct position. The binary switches are
collected in a vector Ξ(τ). Let us denote n(τ)

ξ the number of relative anchor points,
and n

(τ)
ξ the number of direction points found for ∆Γ(τ).

The column-wise search is finding the edge and double anchor points, which
are then marked in a vector Υ(τ) by checking column-wise the contour graph of
Zτ . There is no need to encode a direction point for these two types of anchor
points as we have already shown in Section 3.2.1.

The contour segments from ∆Γ(τ) are encoded using two functions. One is
called Integer Value Encoder (IVE), which was developed to encode efficiently one
integer value that belongs to a predictable range. The other function is called
Golomb-Rice Encoding of Vectors (GR-EV) and was developed to encode a vector
of integer values using a modified version of the GR algorithm. The first stage
of the P-GSO algorithm is the progressive coding of the image contours, which is
summarized here in Algorithm 4.5. See Figure 4.3 for examples of progressive re-
constructions for the depth-map image Art. Note that on step (6) of the algorithm,
before encoding S(τ), a deterministic change is done (see Appendix A); also the
IVE function was involved in the coding of the optimal context tree.
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Algorithm 4.5: Progressive coding of GSO sequences (P-GSO) - one loop
step in contour compression stage

Algorithm for progressive coding of the contour Γ(τ) of the image Zτ using the contour
Γ(τ+1) of the image Zτ+1.

(1) Search for the relative anchor points by traversing contour Γ(τ), and then mark
in the list Ψ(τ) the anchor point vertices found by analyzing each contour vertex.
Find for each Γk its direction point, ξk, and vector of 3OT symbols, STk .

(2) Search for the edge and double anchor points using a column-wise search, and mark
their positions in Υ(τ). Find for each Γk its vector of 3OT symbols, STk .

(3) Encode the number of relative anchor points v1 = n
(τ)
ξ , and the number of edge

and double anchor points v2 = n
(τ)
∆Γ − n

(τ)
ξ , by applying the IVE function as

IVE(vi, 4, 2), i = 1, 2.

(4) Encode the anchor points by first obtaining a vector Φ, which saves the number of
consecutive values 0, and then by applying the GR-EV function to Φ. Apply this
procedure first to Ψ(τ), and then to the vectorized matrix Υ(τ).

(5) Write directly in the output file the vector of direction points, Ξ(τ), on n
(τ)
ξ bits.

(6) Encode the vector of concatenated 3OT vectors, S(τ) =
[
ST1 ST2 · · · ST

n
(τ)
∆Γ

]T
,

using CTM with Laplace estimator, and with a maximum tree depth of dT = 17.

Integer Value Encoder, IVE(v, nbδ, nbr)

The IVE function was developed to encode an integer v ≥ 0 by first finding a
smaller interval in which it belongs, and then by encoding integer v more efficient,
using the found interval limits. The process of designing the set of intervals is the
most important part of the algorithm.

Using the parameters nbδ and nbr, the IVE function is generating four intervals,
in which v is searched, as follows. The first interval is set as [0, 2nbδ ] and, if it is
selected, integer v is encoded using log2 2nbδ = nbδ bits. The following intervals are
obtained by shifting incrementally, with nbr, the number of bits needed to represent
the upper bound of the previous interval. The second interval is [2nbδ , 2nbδ(1 +
2nbr )] and log2 2nbδ+nbr = nbδ + nbr bits are needed to encode now v′ = v − 2nbδ
(we subtract from v the lower limit of the interval to scale the integer to the
found interval). The third interval is [2nbδ(1 + 2nbr ), 2nbδ(1 + 2nbr (1 + 2nbr ))]
and log2 2nbδ+2nbr = nbδ + 2nbr bits are needed to encode v′ = v − 2nbδ(1 +
2nbr (1 + 2nbr )). The last interval is reserved for encoding high values, i.e. for v ≥
2nbδ(1+2nbr (1+2nbr )), where we encode the value v′ = v−2nbδ(1+2nbr (1+2nbr ))
on log2 2nbδ+3nbr+Q = nbδ + 3nbr +Q bits, where Q is a positive integer constant.
Since v is an integer number, IVE does not cover all possible cases. However, for
the values v encoded we can easily predict their upper bound and usually this last
interval is not selected.
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(a) PSNR= 35.94 dB
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(b) PSNR= 38.15 dB
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(c) PSNR= 39.82 dB
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(d) PSNR= 43.00 dB
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(e) PSNR= 73.02 dB
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(f) PSNR= 90.47 dB

Figure 4.3: Examples of progressive reconstructions of depth-map images having
different distortion. The contour map of the last known image is represented by
contour edges marked with red. The contour segments encoded at the current
step are represented by contour edges marked with blue. Double anchor points
are marked with black; relative anchor points are marked with green.
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Golomb-Rice Encoding of Vectors, GR-EV(Φ)

The GR-EV function distinguishes two cases when coding the vector Φ, depending
on its number of elements, nΦ. A switch is used to select one of the two cases. In
the first case, the GR algorithm is applied to Φ with the parameter M = 2k∗ , by
first finding the best parameter k∗ and then encoding the vector Φ using M .

In the second case, the input vector is divided into two sub-vectors, denoted ΦL
and ΦH , then for each element from Φ we need to encode a decision specifying if
the current value is added to ΦL or to ΦH . The sub-vector ΦL collects the elements
from Φ smaller than M, while the sub-vector ΦH collects the remaining elements.
The two sub-vectors are each encoded by the GR algorithm applied to ΦL and ΦH
with the parameters ML = 2k∗L and MH = 2k∗H , respectively. The variables k∗,
k∗ − k∗L and k∗H − k∗ are each encoded by AMM with Laplace estimator.

4.4.2 Progressive region reconstruction
The second stage of P-GSO is the progressive coding of the parameters used for
regions reconstruction, where each region of Zτ is reconstructed at the decoder
using the previously known image in Zp, Zτ+1, and using the information regarding
the contour of Zτ encoded in the first stage (so the regions of the image Zτ are
currently available). Below we analyze the algorithm, which is summarized in the
Algorithm 4.6.

Let us first analyze how a region, Ω(τ+1)
` , from Zτ+1 is split in Zτ . GSOm merged

not only two regions from Zτ to form Zτ+1, but enough regions until the decision
to save Zτ+1 is taken. The region Ω(τ+1)

` is usually split, in Zτ , not only into two
regions, but in (let us say) n(τ)

` regions denoted {Ωj,(τ)
` }

j=1,2,...,n(τ)
`

. Since GSOm

is generating both Zτ+1 and Zτ , then:
(a) Each region Ωj,(τ)

` is formed of mj,(τ)
` pixels, Ωj,(τ)

` = {(xi, yi)}i=1,2,...,mj,(τ)
`

,
having the depth values zi = Z0(xi, yi) in the original depth-map image Z0.

(b) Let us denote the real value of the average inside a region Ωj,(τ)
` as

d̆
j,(τ)
` = 1

m
j,(τ)
`

∑m
j,(τ)
`

i=1 zi = φ
j,(τ)
`

m
j,(τ)
`

, and its truncated integer average value as

d
j,(τ)
` =

⌊
d̆
j,(τ)
`

⌉
= d̆

j,(τ)
` −∆j,(τ)

` , where ∆j,(τ)
` ∈ [−0.5, 0.5] is the rounding error.

Similarly, the region Ω(τ+1)
` is defined as having: m

(τ+1)
` pixels, the real-

value average d̆
(τ+1)
` = 1

m
(τ+1)
`

∑m
(τ+1)
`

i=1 zi, and the truncated average d
(τ+1)
` =⌊

d̆
(τ+1)
`

⌉
= d̆

(τ+1)
` − ∆(τ+1)

` , where ∆(τ+1)
` ∈ [−0.5, 0.5] is the rounding error.

From the split of the region Ω(τ+1)
` into the set of regions {Ωj,(τ)

` }
j=1,2,...,n(τ)

`

, it
results the following equation between the number of pixels of the regions:

m
(τ+1)
` =

n
(τ)∑̀
j=1

m
j,(τ)
` . (4.10)

Since the contour Γ(τ) is already known at the decoder, only the set of integer
depth values {dj,(τ)

` }
j=1,2,...,n(τ)

`

for each Ω(τ+1)
` are needed in the reconstruction
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Algorithm 4.6: Progressive coding of GSO sequences (P-GSO) - one loop
step in region reconstruction stage

The algorithm is coding progressively the parameters required to reconstruct Zτ , using the
contour Γ(τ) and a priori image Zτ+1.

(0) Set as empty current vectors A(τ) and B(τ).

(1) Find the set of region splits using Γ(τ) and Γ(τ+1), i.e. find the correspondences
between each Ω(τ+1)

` from Zτ+1 and a set of regions, {Ωj,(τ)
` }

j=1,2,...,n(τ)
`

, from Zτ .

(2) For every region index ` = 1, 2, . . . , n(τ+1)
Ω do:

(2.1) Find the index j for which (4.14) is true and relabel the region as n(τ)
` .

(2.2) Compute the differences bj,(τ)
` using (4.11), and append them at the end of

the vector B(τ).

(2.3) Compute the difference a(τ)
` using (4.13) and (4.15), and append it to A(τ).

(3) Encode A(τ) and B(τ) as described at (Label 1) and (Label 2) labels.

stage of the image Zτ . The algorithm encodes each set of integer depth values
{dj,(τ)
` }

j=1,2,...,n(τ)
`

as follows: the first n(τ)
` − 1 truncated averages of the set, i.e.

{dj,(τ)
` }

j=1,2,...,n(τ)
`
−1, are encoded relative to the truncated average depth d

(τ)
` ;

and the n(τ)
` -th value is predicted from the encoded averages {dj,(τ)

` }
j=1,2,...,n(τ)

`
−1

and the available truncated average d(τ+1)
` .

The algorithm assumes that the values dj` are scattered around the truncated
average d`, since GSOm selected their regions to be merged together into Ω`. Hence,
the first n(τ)

` − 1 truncated averages, {dj,(τ)
` }

j=1,2,...,n(τ)
`
−1, are encoded by the

differences

b
j,(τ)
` = d

(τ)
` − d

j,(τ)
` , j = 1, 2, . . . , n(τ)

` − 1, ` = 1, 2, . . . , n(τ+1)
Ω . (4.11)

(Label 1) Let us collect all bj,(τ)
` differences, obtained at the current step τ , in the

vector B(τ) =
[
b1 b2 · · · bn(τ)

B

]T
, where n(τ)

B is the difference between the number
of regions in Zτ and in Zτ+1. Each vector B(τ) is encoded as follows: for each
element bj , j = 1, 2, . . . , n(τ)

B , we encode its sign, using one bit, and its absolute
value, |bj |, using the AMM with Laplace estimator applied for nsB symbols. The
value nsB is found as follows: (i) find the maximum absolute difference, bM =
max

j=1,2,...,n(τ)
B

|bj |; (ii) compute the number of bits needed to represent it, nM =
dlog2(bM )e; (iii) set nsB = 2nM . Variable nsB can be transmitted to the decoder
by encoding nM using log2(7) bits. Sometimes is better to estimate the codelength
of B(τ) using nsB = bM , and check if by encoding an additional nM − 1 bits the
result is improved (see next section).

P-GSO encodes the truncated average dn
(τ)
`
,(τ)

` by predicting it using the already
encoded truncated averages {dj,(τ)

` }
j=1,2,...,n(τ)

`
−1. Since the split of Ω(τ+1)

` does
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not change the initial values of the pixels in Z0, using real value averages we obtain:n
(τ)∑̀
j=1

m
j,(τ)
`


︸ ︷︷ ︸

m
(τ+1)
`

d̆
j,(τ+1)
` =

n
(τ)∑̀
j=1

m
j,(τ)
` d̆

j,(τ)
` . (4.12)

On the other hand, using the truncated averages we obtainn
(τ)∑̀
j=1

m
j,(τ)
`

 d
(τ+1)
` +

n
(τ)∑̀
j=1

m
j,(τ)
`

∆(τ+1)
` =

n
(τ)∑̀
j=1

m
j,(τ)
` d

j,(τ)
` +

n
(τ)∑̀
j=1

m
j,(τ)
` ∆j,(τ)

` ,

and if we separate in the left term the unknown truncated average dn
(τ)
`
,(τ)

` , then:

d
n

(τ)
`
,(τ)

` = d
(τ+1)
` +

n
(τ)
`
−1∑

j=1

m
j,(τ)
`

m
n

(τ)
`
,(τ)

`

(
d

(τ+1)
` − dj,(τ)

`

)
︸ ︷︷ ︸

d̂
n

(τ)
`

,(τ)
`

+
n

(τ)∑̀
j=1

m
j,(τ)
`

m
n

(τ)
`
,(τ)

`

(
∆(τ)
` −∆j,(τ)

`

)
︸ ︷︷ ︸

ε
n

(τ)
`

,(τ)
`

,

(4.13)
where we denoted d̂n

(τ)
`
,(τ)

` , the estimation of truncated average dn
(τ)
`
,(τ)

` computed
by the decoder; and ε

n
(τ)
`
,(τ)

` , the rounding residual which depends on the coeffi-

cients
{

m
j,(τ)
`

m
n

(τ)
`
,(τ)

`

}
j=1,2,...,n(τ)

`
−1

. We obtain the minimum for
{

m
j,(τ)
`

m
n

(τ)
`
,(τ)

`

}
j=1,2,...,n(τ)

`
−1

by selecting Ωn
(τ)
`
,(τ)

` as the region with the highest number of pixels among all the
regions in

{
Ωj,(τ)
`

}
j=1,2,...,n(τ)

`

, and hence we manage to minimize εn
(τ)
`
,(τ)

` so that

m
j,(τ)
`

m
n

(τ)
`
,(τ)

`

< 1, ∀j = 1, 2, . . . , n(τ)
` − 1. (4.14)

Since Zτ stores integer values, the prediction error must be also rounded as
d̂
n

(τ)
`
,(τ)

` =
⌊
d̂
n

(τ)
`
,(τ)

`

⌉
− ∆̂n

(τ)
`
,(τ)

` , where ∆̂n
(τ)
`
,(τ)

` is the rounding error.

Finally, the depth value dn
(τ)
`
,(τ)

` is encoded by the difference:

a
(τ)
` = d

n
(τ)
`
,(τ)

` −
⌊
d̂
n

(τ)
`
,(τ)

`

⌉
= ε

n
(τ)
`
,(τ)

` + ∆̂n
(τ)
`
,(τ)

` . (4.15)

Similarly, we collect all values a(τ)
` , ` = 1, 2, . . . , n(τ+1)

Ω , in a vector A(τ). Hence,

at iteration τ, we encode A(τ) =
[
a1 a2 · · · an(τ)

A

]T
, where n(τ)

A is the number of
regions that were split in Zτ+1 to obtain Zτ .
(Label 2) The alphabet for the elements of the vectors A(τ) was found to be AA =
{−2,−1, 0, 1, 2}. The P-GSO algorithm introduced a vector of possible symbols,

Λ = [−1 0 1 − 2 2]T = [λ1 λ2 λ3 λ4 λ5]T , (4.16)
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and finds, for each element a` of A(τ), the index k` for which λk` = a`. Hence, the
procedure first finds the maximum index kM = max

`=1,2,...,n(τ)
A

k`, encodes it using
a codelength of log2(5) bits, and then encodes each index k` (which corresponds to
the element a` from A(τ)) using the AMM with Laplace estimator with an alphabet
of kM symbols.

4.5 Parameterizations of planar models
In all the developed algorithms described until now we used for the region recon-
struction stage one depth value to parameterize the reconstruction model. All the
pixels in the region are set with the truncated average over the region. This model
is known as the piecewise constant model or, simply, constant model. However,
also other models can be fitted over the region, and if the segmentation divides
the image into regions containing objects, a more complex model is more effi-
cient than the constant model. Nevertheless, the gain obtained by the decrease in
distortion is ‘payed’ with the drawback of coding (for the complex model) more
real-value parameters compared to one integer-value parameter in the constant
model case. To solve this problem, in [P7], we introduce several parameterizations
for the planar model that finds a compromise between the entropy coding of the
plane parameters and the introduced distortion.

Section 2.4.4 shown that for a region Ω` = {(xi, yi)}i=1,2,...,n, formed of n pixels
and having the depth values in the initial image Z0 denoted zi = Z0(xi, yi), i =
1, 2, . . . , n, the planar model parameters can be estimated by the LS algorithm,
which computes the best fitting plane with the plane parameters θ∗ = [a∗ b∗ c∗]T .
The distortion introduced by the plane estimated by θ∗ is given by (2.13). In [P7],
we choose to parameterize the planar model using the heights of three selected
pixels in the θ∗ plane (after truncating them to integers). In this way the entropy
coding algorithm receives as input tree integer values instead of three floating
point values, and because integer values are encoded with a lower codelength than
real values the bitrate is reduced. The drawback of this parameterization is that
the distortion introduced in the region, computed by (2.13), is higher than the
value MSE

(LS)
p , since the new plane will only approximate the optimal plane θ∗.

The introduced parameterization is discussed in the next subsection. In [P7],
seven different methods were developed and tested to find the positions of the
three heights, which are described in Section 4.5.2. The entropy coding of the
three parameters used to estimate the planar model is described in Section 4.5.3,
while in Section 4.5.4 we extend GSOm by introducing a competition between the
constant model and the planar model.

4.5.1 Planar model parameterization using three heights

Let us choose three pixel positions, denoted (using their locations in the region)
as A = (xα, yα), B = (xβ , yβ) and C = (xγ , yγ), having the values zα, zβ and zγ
in the initial depth-map image Z0. The selection of the three points A, B and C,
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for any given region Ω`, is done by a method that knows only the segmentation,
i.e. the positions of the pixels and the shape of every region Ω` (generated by the
segmentation), so that it can be applied at both encoder and decoder, after the
contour compression stage.

The heights of these three points A,B,C, in optimal plane θ∗, are the real
numbers z∗α, z∗β , z∗γ , which are given by (2.10), for i = α, β, γ. Since we choose
to encode integer valued parameters, the three heights are rounded to ẑα, ẑβ , ẑγ ,
which are the three integer parameters encoded and used for region reconstruction.
This is the reason why the method is called the Three Heights parameterization
(3H). Let us now stack the corresponding equations from (2.11), written for i =
α, β, γ, in a matrix form as follows:ẑαẑβ

ẑγ

 =

z∗αz∗β
z∗γ

−
∆∗α

∆∗β
∆∗γ

 =

z∗α −∆∗α
z∗β −∆∗β
z∗γ −∆∗γ

 =

xα yα 1
xβ yβ 1
xγ yγ 1


︸ ︷︷ ︸

Q

a∗b∗
c∗


︸ ︷︷ ︸
θ∗

−

∆∗α
∆∗β
∆∗γ


︸ ︷︷ ︸

∆

, (4.17)

where the matrix Q stacks the coordinates of the selected locations A,B,C, which
are defining a triangle 4ABC, and the vector ∆ stacks the rounding errors in
these three locations.

The reconstruction plane θ̃ =
[
ã b̃ c̃

]T , that estimates plane θ∗ using 3H, is
computed using the three parameters ẑα, ẑβ , ẑγ , and their pixel location given by
the selected method. Decoder computes the reconstruction plane, θ̃, by solving:xα yα 1

xβ yβ 1
xγ yγ 1


︸ ︷︷ ︸

Q

ãb̃
c̃


︸︷︷︸
θ̃

= Qθ̃ =

ẑαẑβ
ẑγ

 . (4.18)

In general, θ∗ is different from θ̃, but the experiments show that, using the selection
of the three pixel positions A,B,C, our methods found them reasonably close.

In the region reconstruction stage at the decoder, the reconstructed value of
the pixel location (xi, yi) is denoted z̆i, and is computed by rounding z̃i, the
corresponding height of the pixel in the reconstruction plane θ̃, where

z̆i = bz̃ie = z̃i − ∆̃i = [xi yi 1] θ̃ − ∆̃i, i = 1, 2, . . . , n, (4.19)

where ∆̃i ∈ [−0.5, 0.5] are the rounding errors.
In conclusion, the 3H method uses three heights in the LS plane to compute

the reconstruction plane θ̃, which is an estimation of the optimal plane θ∗. The
distortion introduced by the 3H method for planar model in the region Ω` is

MSE(3H)
p = 1

n

n∑
i=1

(zi − z̆i)2. (4.20)
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4.5.2 Selecting A, B, C for MSE optimization
In 3H, the selection of the three pixel positions A,B,C has an important im-
pact for both distortion and bitrate. The distortion computed in MSE for the 3H
method, MSE

(3H)
p , is closer to the distortion for the LS method, MSE

(LS)
p , if θ̃

approximates much better θ∗.
Heuristically, it is easy to imagine that, when the A,B,C points are as far

apart as possible one from another, the rounding error in A,B,C will have a
smaller influence in (4.17) and in the reconstruction plane θ̃, taking it much closer
to the ideal plane θ∗. The disadvantage of this selection is that the codelength
associated to the plane parameters is increasing a lot, since the values z∗α, z∗β , z∗γ
are increasing in magnitude when the distances between A, B and C increase.
The seven methods, presented below, are either selecting the three pixel positions
A,B,C inside the region Ω` or outside the region Ω` (but close to the regions
contour), and in such a way that the triangle formed out of the three points,
4ABC, includes Ω`.

Methods for selecting A,B,C inside Ω`

Let us denote the matrix QABC =

xα yα 1
xβ yβ 1
xγ yγ 1

 , using three indexes i = α, β, γ,

which correspond to the position of three pixel positionsA = (xα, yα), B = (xβ , yβ)
and C = (xγ , yγ), which are defining the constrained triangle 4ABC.

Method 1 (M1)

M1 is minimizing the expected MSE. From the MSE excess introduced by
3H, MSE

(3H)
p −MSE

(LS)
p , we isolate one component (MSE excess) and denote it

MSEe. The criterion of interest for the method is defined as the expected value
of MSEe, i.e. E[MSEe].

Let us now rewrite (4.20) by highlighting this time Q, the matrix that we have
to search for. First, we evaluate the difference between the two sets of parameters,
θ∗ and θ̃, using (4.17) and (4.18) as follows:

Qθ∗ = Qθ̃ + ∆⇐⇒ θ∗ − θ̃ = Q−1∆. (4.21)

Next we rewrite the difference zi − z̆i using (2.10), (2.11), and (4.19) as:

zi − z̆i = (zi − ẑi) + (∆̃i −∆∗i ) + [xi yi 1](θ∗ − θ̃)
(4.21)= (zi − ẑi) + (∆̃i −∆∗i ) + [xi yi 1]Q−1∆.

Finally, we rewrite (4.20) using the square of zi − z̆i, and by neglecting the cross-
terms, since we assume that the cross-correlations between the modeling errors
and the rounding errors are negligible. Hence, equation (4.20) is rewritten as:

MSE(3H)
p ≈MSE(LS)

p + 1
n

n∑
i=1

(∆̃i −∆∗i )2 + ∆TQ−TRQ−1∆︸ ︷︷ ︸
MSEe

,
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where R = 1
n

∑n
i=1[xi yi 1]T [xi yi 1].

If we assume that the rounding errors collected by ∆ are behaving like inde-
pendent variables, having the distribution U(−0.5, 0.5) when the LS plane is taking
all possible positions, then we obtain the expression of the criterion of interest by
taking the mean of MSEe, denoted E[MSEe], which is obtained as:

E[MSEe] = E
[
∆TQ−TRQ−1∆

]
= 1

12trQ−TRQ−1. (4.22)

Finally, we can set the three pixel locations A, B and C as the solution of the
following optimization problem:

min
A,B,C∈Ω`

tr Q−TABCRQ
−1
ABC . (4.23)

Method 2 (M2)

The second method is based on the heuristic idea that, because the three
pixel positions A, B and C are used to compute the reconstruction plane, the
triangle 4ABC must cover as much area as possible from the optimal LS plane.
However, we add also the constraint that the three points are inside Ω`, so that the
algorithm is forced to encode heights which are closer to the depth values found
in Ω`. Therefore, the pixel positions A, B, C, located as far as possible one from
another inside Ω`, should form the triangle 4ABC with the maximum area. The
value of the triangle area of 4ABC is given by |detQABC |. Hence, M2 is setting
the three pixel locations A, B and C as the solution of the following optimization
problem:

max
A,B,C∈Ω`

Area(4ABC) = max
A,B,C∈Ω`

|detQABC |. (4.24)

In both methods, M1 and M2, the matrix QABC is found by going through
all triplets of points in the region Ω`. To reduce the complexity, we set first
the pixel locations A and B based on the idea that the two points must be
placed as far apart as possible. We first set A = (xα, yα) as the first pixel
position in Ω`, found in the first column of the first row in region mask, i.e.
xα = mini=1,2,...,n{xi}, yα = mini=1,2,...,n{yi|xi = xα}. The second pixel location
B = (xβ , yβ) = (xk2 , yk2) is selected as the pixel position found at the maxi-
mum distance from the already selected position (xα, yα). The index position k2 is
found as k2 = arg maxi=1,2,...,n{(xα−xi)2 + (yα−yi)2}. Hence, the search in both
methods, M1 and M2, is done only for the remaining unknown positions C ∈ Ω`.

Methods setting A,B,C using bounding box of Ω`
This type of methods is based on the idea that triangle 4ABC should select an
area of the bounding box for the region Ω`. Let us first denote the following
coordinates: xm = mini xi, xM = maxi xi, ym = mini yi, yM = maxi yi, i =
1, 2, . . . , n. These four coordinates define four points which are forming a rectangle
that includes Ω`, which is called the bounding box of Ω`. Let us denote also
δx = xM − xm, δy = yM − ym, x̄ = xm + δx

2 , ȳ = ym + δy
2 .
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Method 3 (M3)

This method sets 4ABC as a triangle that has the maximum area inside the
bounding box of Ω`. The triangle can be formed by selecting any side of the
bounding box as the triangle’s base and any point on the opposite side. However,
we decided to search for the triangle by first finding the larger side of the bounding
box, i.e. by checking δx > δy, and then selecting two points as the ends of one of
the larger sides and the third point at the middle of the other larger side of the
bounding box. Hence, we select A = (xM , ym), and if δx > δy, then B = (xm, ym)
and C = (x̄, yM ), else B = (xM , yM ) and C = (xm, ȳ).

Method 4 (M4)

This method sets the triangle 4ABC as the smallest triangle that includes
the bounding box of Ω`. Hence, the three pixel positions are selected as follows:
A = (xm − δx, ym), B = (xM , ym), and C = (xM , yM + δy).

Methods with a different parameterization

This type of methods are all selecting the same three pixel locations A = (xM , ym),
B = (xm, yM ), and C = (xm, ym), but are using different entropy coding methods
for the parameters. In 3H, three rounded heights ẑα, ẑβ , and ẑγ were selected
as parameters. For this type of methods we developed a modified version of 3H,
where we select as parameters the following values: one rounded height, ẑγ , and
two rounded height differences, ẑα − ẑγ and ẑβ − ẑγ . This new method of param-
eterization is denoted here One Height and two height Differences parameteriza-
tion (1H2D). For the selected pixel locations, the differences can be written using
(4.17), at the encoder, and using (4.18), at the decoder, to obtain:

ẑα − ẑγ = bz∗αe − bz∗γe = δxa
∗ − (∆∗α −∆∗γ) = δxã (4.25)

ẑβ − ẑγ = bz∗βe − bz∗γe = δyb
∗ − (∆∗β −∆∗γ)︸ ︷︷ ︸

encoder

= δy b̃.︸︷︷︸
decoder

(4.26)

The second idea used for these methods is that the parameters are encoded with
a higher precision because the new selected parameters are more sensitive to the
rounding errors ∆∗α, ∆∗β and ∆∗γ . Hence, the parameters are rounded at the N th

bit of the binary representation of their fractional value. The parameter ẑγ is
transmitted, in the both methods described below, using a 1-bit extra-precision
after the decimal point, by encoding the value 2ẑγ = b2z∗γe. The sign of each of
the parameters ẑα − ẑγ and ẑβ − ẑγ is written in the output file on one bit.

Method 5 (M5)

The two height differences are encoded using their sign and their absolute
values |ẑα− ẑγ | and |ẑβ − ẑγ |. The absolute values are transmitted to the decoder,
using a 1-bit extra-precision after the decimal point, by encoding using GR the
values |2(ẑα − ẑγ)| = |b2z∗αe − b2z∗γe| and |2(ẑβ − ẑγ)| = |b2z∗βe − b2z∗γe|.
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Method 6 (M6)

M6 is encoding the values |ẑα− ẑγ | and |ẑβ− ẑγ | using the first N6 = 10 bits of
the following sub-unitary values: |b2−9z∗αe−b2−9z∗γe| and |b2−9z∗βe−b2−9z∗γe|. The
first k∗LP bits are used to obtain a decimal value, which is encoded using the AMM
with Laplace estimator, while the remaining N6 − k∗LP bits are written directly in
the output file. Note that the optimal values k∗LP , for a∗ and b∗, are first searched,
encoded (each) on log2(10) bits, and then used in the coding procedure.

Baseline method for encoding θ∗

We compare all the methods presented above with a baseline method which en-
codes the LS parameters θ∗ with an improved precision after the decimal point.

Method 7 (M7)

First two parameters a∗ and b∗ are transmitted using N7 = 8 bits extra-
precision after the decimal point, by encoding using GR, this time, the values
|b2N7a∗e| and |b2N7b∗e|. The parameter signs are written on one bit in the output
file. The parameter c∗ is transmitted using 1-bit extra-precision after the decimal
point by encoding b2c∗e.

4.5.3 Entropy coding the parameters
We assume that the planar model parameters in 3H, i.e. the three heights, are scat-
tered around the truncated average d`, the constant model parameter, the reason
why each height is encoded relative to d`. Hence, 3H can encode its parameters in
a separate bitstream, and the method can be considered as an improvement over
the results obtained by a coder based on the constant model. The parameters
are encoded by Algorithm D (Alg. D) using the differences between each height
and d`. Hence, for the methods M1:M4 we encode the differences d` − ẑα, d` − ẑβ
and d` − ẑγ , by collecting them in a vector V. Let us label each element in V as
vj , j = 1, 2, . . . , nV , where nV is the number of elements in V . For methods M5
and M6, the vector V contains the differences for the parameter ẑγ computed as
vj = 2bd`e − b2z∗γe. For the method M7, the parameter c∗ is encoded using the
difference vj = 2bd`e − b2c∗e.

Algorithm D

The vector of differences, V, is encoded by an efficient algorithm denoted Alg. D.
Below we discuss the algorithm, while its summary can be found in Algorithm 4.7.
Its main idea is to encode each element vj , j = 1, 2, . . . , nV , by its sign, sgn(vj),
written in the output file on one bit, and its absolute value, |vi|, using AMM with
Laplace estimator with nsV symbols.

Alg. D is a complex algorithm designed to encode the differences vj as best as
possible by finding the best value for the parameter nsV . The first step of the
algorithm is to find the maximum absolute difference vM = maxj=1,2,...,nV |vj | in
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Algorithm 4.7: Entropy coding of differences - Algorithm D (Alg. D)

Algorithm for encoding an input vector V of differences.

(0) Do one pass through V, find the elements |vj | ≥ 27, modify their values, and set
the corresponding escape mode.

(1) Find vM = maxj=1,2,...,nV |vj | and nM = dlog2(vM )e. Compute v̄M using (4.28).
Estimate L(v̄M ).

(2) Encode nM using log2(7). Check inequality (4.27) and set nsV .

(3) For each element vj , j = 1, 2, . . . , nV , do:

(3.1) Write sgn(vj) on one bit directly in the output file, and encode |vj | using
AMM with Laplace estimator with nsV symbols.

(3.2) If vj = vM and it is the first time we find this case, encode the escape mode
maximum index Cem on log2(3) bits and the current escape mode index on
log2(Cem). Other times when vj = vM (and if Cem 6= 0, i.e. at least one
escape mode is used), encode the escape mode index using log2(Cem) bits.
(If Cem = 2, then encode also the initial parameter with AMM with Laplace
estimator for 28 symbols.)

vector V . Next we compute the number of bits needed to represent vM as nM =
dlog2(vM )e, and then encode nM on log2(7) bits using the Arithmetic Coder for
7 symbols. The first option for setting parameter nsV is nsV = 2nM . This means
that, using only log2(7) bits, we inform the decoder to use the biggest number
represented on nM bits as the length of the alphabet in the Laplace estimator.

However, sometimes the value 2nM is too large, and the algorithm becomes
inefficient. That is why we introduced a second option for setting nsV , which
informs the decoder to use nsV = vM , by encoding the last nM − 1 bits in the
representation of vM . Now, the only question that remains is when should we use
each option? The decision to select an option is taken by checking if we can obtain
a decrease in codelength by encoding these nM − 1 more bits. We estimate the
decrease in bitrate using the estimated codelength difference between encoding
using the parameter nsV = 2nM and encoding using the parameter nsV = v̄M .
Hence, the decision is taken using the inequality:

nM − 1 < nV (L(2nM )− L(v̄M ))− g, (4.27)

where: g = 3 bits is the smallest gain accepted, L(2nM ) = log2(2nM ) = nM [bits]
is the codelength for encoding a symbol using AMM with Laplace estimator for
nsV = 2nM symbols, L(v̄M ) = log2(v̄M ) is the estimated codelength of a symbol
encoded using the AMM with Laplace estimator, with nsV = v̄M , where

v̄M = (2nM − 1) + (2nM−1)
2 = 1.5 · 2nM−1 − 0.5 (4.28)

is the average of all possible values that the maximum absolute value vM can take,
i.e. vM ∈ [2nM−1, 2nM − 1], since nM bits are needed to represent vM . Inequality
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(4.27) can be rewritten as:

nM < nV (nM − log2(3 · 2nM−1 − 1) + 1)− 2. (4.29)

Alg. D uses also an escape mode procedure. For the value |vj | ≥ 27 an escape
mode is introduced by setting vj = nsV and encoding a switch using log2(3) bits to
signal it. The following cases are used: (0) no escape case is used, (1) the selected
parameter (height) has the values zero, (2) the selected parameter is encoded
with AMM with Laplace estimator for 28 symbols. After the first value vi = nsV
is encoded, we signal the case by encoding the escape case index 0, 1 or 2 using
log2(Cem) bits, where Cem is the maximum index of the found escape mode.

4.5.4 Extension of GSOm with plane fitting
In [P7] an algorithm denoted simply Plane Fitting (PF) was developed for the
planar model, where M2 is set as the default method. The PF algorithm was
used to extend the GSOm algorithm by selecting not only which region pair to be
merged, but also which method of reconstruction to use for that pair. The new
algorithm was denoted GSOmPF, and its strategy is to choose, among all possible
pairs and among the two models, the pair and model which leads to the best slope,
in RD plot, after merging.

Next we discuss the conditions to be checked before choosing the planar model
instead of the constant model. For region Ω`, we first check if

MSE(3H)
p (Ω`) < MSEc(Ω`), (4.30)

where MSEc is computed by (2.14) and MSE
(3H)
p by (4.22). In the ideal case,

when the exact (real) parameters are encoded, the planar model has a better
distortion, however, in our case the quantization of the estimated parameters may
change the inequality. As a second condition, we estimate the two slopes in the RD
plot and then select the smallest one. Let us first consider that currently we have
a lossy version of the initial image, that has the distortion MSEx, and for which
we estimated, using the constant model, a bitrate decrease of ∆R with (4.5). The
bitrate decrease obtained, using now the planar model, will be ∆R −∆C, where
∆C is the difference between the two estimated codelength of the models. Note
that the constant model was estimated to be encoded using 8 bits and the planar
model using 12 bits, i.e. ∆C = 4 bits. The slope in RD plot for the constant model
is λc = MSEc−MSEx

∆R , while for the planar model is λp = MSE(3H)
p −MSEx

∆R−∆C . The
second condition to be checked, before selecting the planar model, is λp < λc or

MSE
(3H)
p −MSEx

∆R−∆C <
MSEc −MSEx

∆R . (4.31)



Chapter 5

Results for Datasets of
Depth-Map Images

“Tempus edax rerum.” (Time is the devourer of all things.)
— Publius Ovidius Naso Metamorphoses

In this chapter, we present the results for the proposed algorithms and compare
them with the results of the state of the art algorithms for the available datasets
of depth-map images. The first section presents a summary of all the algorithms
presented in this dissertation. The second section presents results for the lossless
compression of depth-map images, while the third section presents results for the
lossy compression.

5.1 Summary of the developed algorithms
All implemented algorithms show good results compared with the state of the
art coders, for both lossless and lossy compression of depth-map images. Before
describing the results, we would like to present a summary of all the algorithms
collected in this dissertation, see Table 5.1 for the three lossless compression algo-
rithms, and Table 5.2 for the four lossy compression algorithms.

The following datasets were used to test the algorithms in each of the seven
publications included in this dissertation:

• Middlebury dataset [31, 75], available online [76]. It contains 162 disparity
images estimated using various techniques by the Middlebury Stereo Vision
group from Middlebury College, Vermont, USA. The images have three dif-
ferent sizes: (i) 54 images at full resolution; (ii) 54 images at half resolution;
(iii) 54 images at third resolution ( 1

3 of full resolution).

• Ballet and Breakdancers sequences [107], available online [56]. They are
sequences of depth-map images from Microsoft Corporation, having available

69
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100 images for each of the eight views. In our tests we used only the first view
for the comparison with the state of the art articles because the compression
results do not change significantly from one view to another.

• Beer-garden sequence [35]. A multiview sequence of high resolution depth-
map images from Philips. The dataset was used only for lossless compression.

• Kendo and Balloons sequences [44]. Moving camera test sequences from the
Tanimoto Laboratory, Nagoya University, Japan. This datasets were used
only for lossy compression.

Table 5.1: Summary of the algorithms developed for lossless compression

Algorithm Description
NCV New Complex Version ( NCV) algorithm described in [P1].

NCV is our first algorithm developed for lossless compres-
sion. It generates a specific segmentation based on the in-
troduced concept of variability in a region, and offers a mix-
ture of predictors for region reconstruction. The segment-
ation’s contour is encoded using a basic algorithm, which
represents the contour using a sequence of adjacent vertices,
with vertex positions codified by the 3OT representation.

CERV Crack-Edge–Region–Value ( CERV) algorithm from [P3].
CERV is a two stage algorithm that compresses the im-
ages using an over-segmentation. In the first stage, Alg.
C is used to compress the image contours. The contour
is represented using its elements called contour edges (or
crack-edges), classified as horizontal and vertical. In the
second stage, Alg. Y is used to compress the depth value
of each region, using the list of known neighboring regions.

CERV-Alg.C
CERV-Alg.Y

APC Anchor Points Coding ( APC) algorithm from [P5]. APC
presents an efficient solution for compressing the contour of
an over-segmentation using the concept of contour segments
generation, and by encoding vertex positions codified by
the 3OT representation. Contour segments generation, ver-
tex analysis, and classification and coding of anchor points
are the main contributions of this algorithm. APC is us-
ing CERV-Alg.Y for compressing the depth value in each
region, to achieve lossless compression.
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Table 5.2: Summary of the algorithms developed for lossy compression

Algorithm Description
L-CRS Lossy Constrained Region Segmentation ( L-CRS) and its

near-lossless version (NL-CRS) are algorithms from [P2].
L-CRS is our first algorithm developed for lossy image seg-
mentation, which deals with the generation of segmenta-
tions for depth-map images, using the concept of variability
inside a region, in such a way that the region reconstruc-
tion is done using the concepts of quantization and coding
of almost constant regions, and the uniform quantization of
the residuals obtained by the Martucci predictor.

NL-CRS

GSO Greedy Slope Optimization ( GSO) algorithm from [P4].
GSO is generating a sequence of image segmentations for
lossy compression by creating different lossy images of the
initial image with a given distortion. The sequence of seg-
mentations is obtained either by merging regions, or by
splitting template regions. In the region merging version,
GSOm, greedy decisions to merge a pair of neighboring
regions are taken at each step, and the segmentations are
saved when the distortion reaches a specific level. The split-
ting regions version, GSOs, is designed to split the regions
of a template image, using vertical and horizontal straight
lines, until a target slope is reached.

GSOm
GSOs

P-GSO Progressive coding of GSOm sequences ( P-GSO) algo-
rithm from [P6]. P-GSO is compressing progressively a
sequence (or subsequence) of GSOm lossy images. The con-
tour compression and the region reconstruction algorithm
are encoding efficiently the current image using a priori in-
formation from the previously reconstructed image. The
performance of the P-GSO algorithm is close to that of
the non-progressive algorithms.

PF Plane Fitting (PF) algorithm from [P7]. PF deals with the
parameterization of the planar model using the introduced
Three Heights method (3H). Seven different methods are
developed and tested in [P7] to find, for any region shape,
the optimal positions of the three heights. The algorithm
is encoding the three parameters, relative to the constant
model parameter, using Algorithm D (Alg. D). An exten-
sion of the GSOm algorithm, called GSOmPF, was created
using PF to improve the quality of the segmentations.

Alg.D
GSOmPF
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Figure 5.1: Lossless compression results for (a) the Ballet sequence; (b) the Break-
dancers sequence. A comparison between our algorithms: CERV-HiCo, CERV-
Fast and APC, and state of the art lossless coders: PWC, CALIC and LOCO-I.

5.2 Results for lossless compression

The NCV algorithm, published in 2012, offered good results compared to the state
of the art coders LOCO-I and Portable Network Graphics (PNG). However, the
later developed algorithms, CERV and APC, offered much better results and that
is why we chose to only show their results here.

Figures 5.1 and 5.2 show comparative results between the CERV algorithm (with
its two versions CERV-HiCo and CERV-Fast), the APC algorithm, and the state of
the art coders: CALIC, LOCO-I, and PWC (algorithm specialized in the compression
of palette images). Compression results are presented using the compression ratio
between the file size of the original image over the compressed image, where the
best compression is offered by the compressor with the highest compression ratio
value. Here we present the results for three datasets, however, more results can
be found on CERV’s webpage [89] and APC’s webpage [79]. First two datasets are
Ballet and Breakdancers, each formed of 100 depth-map images, acquired from
a sensor in the first view (camera labeled ‘0’) of a multi-view arrangement. The
Middlebury dataset is formed of 162 estimated disparity images, divided into three
resolutions: full, half, and third. The Middlebury disparity images are estimated
from a stereo pair and structural light additional images.

In Figure 5.1, one can see that all our algorithms have better results than
the state of the art coders. Although the CERV-Fast algorithm does not use the
optimal context tree in the contour coding stage, its results are close to CERV-HiCo.
Comparing our two algorithms CERV-HiCo and APC, one can notice that there is
not much difference in their results, and only that CERV-HiCo has a small advantage
for these two datasets.
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Figure 5.2: Lossless compression results for the Middlebury dataset. A comparison
between our algorithms: CERV-HiCo, CERV-Fast, and APC, and state of the
art lossless coders: PWC, CALIC and LOCO-I.
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Figure 5.3: Encoding time of four coders over the Middlebury dataset.

In Figure 5.2, we tested the algorithms for Middlebury disparity images. This
time one can notice that the APC algorithm has sometimes a small advantage
for the full resolution, while for third resolution the advantage goes again to the
CERV-HiCo algorithm. In comparison with other three state of the art coders, our
algorithms are in the same positions as previously, by having better results.
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Figure 5.4: Lossy compression results for the frame 0, first view (cam0), from the
Breakdancers sequence: (a) from low bitrate to high bitrate; the lossless com-
pression results for three entropy coders (CCV, CERV and PWC) are marked
by dotted vertical lines, having the same color label as for the lossy compression
results; (b) a zoom in at low bitrate.

We conclude that both CERV and APC algorithms are good solutions for com-
pressing the depth-map images. If the image has a high density of contour edges
in the contour graph, then we recommend to use the CERV algorithm, while if the
depth-map is much simpler, with a low density of contour edges in the contour
graph, then we recommend to use the APC algorithm.

In Figure 5.3, we show the encoding time for CERV-Fast, CALIC, PWC, and
LOCO-I for algorithm complexity comparison. The figure shows that the complexity
of the CERV-Fast algorithm is close to the complexity of the CALIC coder. Note
that only CERV-Fast was chosen for comparison because is the only implemented
algorithm for which we have done at least some type of optimization. The C
implementation of CERV-HiCo and APC were not optimized, and their runtime is
around 60% longer than the CERV-Fast runtime.

5.3 Results for lossy compression
The results for our lossy compression algorithms are obtained by first generating
a sequence of lossy images having given distortions, using the GSOm or GSOs algo-
rithm, and then applying for each image one of the lossless compression algorithms:
CERV, APC, CCV, CCLV or PWC, for compression. In the following subsections we
selected a few images for which to show comparative results, but more results
can be found on the webpages developed for each of our algorithms: for the GSO
algorithm see [80], for the P-GSO algorithm see [78], for the PF algorithm see [81].

For each image, the compression results are presented in RD plots, where the
distortion of the depth-map image is measured using PSNR, which is computed
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Figure 5.5: Lossy compression results for image Aloe, full-size resolutions, left
view, from Middlebury dataset.

using the MSE values as

PSNR = 10 · log2
2552

MSE
, (5.1)

and the bitrate is computed as

bpp = 8 · compressed file size
image size

, (5.2)

where the bitrate value, bpp (bits per pixel), shows the number of bits needed to
encode a pixel in the image, and compressed file size is the size of the file in
bytes.

5.3.1 Region reconstruction using constant model
Figure 5.4 shows comparative results for one frame from the Breakdancers se-
quence. The GSOm algorithm generates a sequence of lossy images, which are
then encoded using an entropy coding algorithm such as CCV, CERV or PWC. The
GSOs algorithm generated a sequence of lossy images for the CCLV algorithm, while
NL-CRS is also shown in the figure. From the state of the art algorithms we se-
lected the JPEG2000 algorithm, the H.264 standard, and the algorithm from
[53], called here P80. In Figure 5.5, APC is also used for comparison this time for
the image Aloe from Middlebury dataset.

One can see that the GSO algorithm generates segmentations for a wide range of
distortions, and the combinations of the GSO algorithm with the lossless compres-
sion algorithms is a good solution for compression, since the obtained results show
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Figure 5.6: Progressive coding results for (a) frame 96, first view (cam0), from
Ballet sequence, (b) Aloe image, Middlebury dataset, full-size resolution, left view,
zoomed in the PSNR range [30, 65] dB.

significant improvement over all other lossy compression algorithms. The Figure
5.5 shows also that, even if at lossless compression the CERV-HiCo algorithms shows
better results than the APC algorithm, for lossy compression the APC algorithm
has an advantage over the CERV algorithm, since the density of the contour edges
is decreased by the region merging process.

5.3.2 Progressive coding
For progressive coding we compare our P-GSO algorithm with the state of the
art progressive method P80, and with other non-progressive methods: SP1 from
[53, 104], and our combination of GSOm algorithm and the APC or CERV algorithms.
Figure 5.6 shows progressive coding results, where one can see that P-GSO obtains
better results than the other progressive coding methods and almost similar results
to the non-progressive methods for a large interval of bitrate. Also, one can notice
that the P-GSO algorithm can provide lossy-to-lossless compression, an achievement
that the other progressive methods can not reach.

5.3.3 Region reconstruction using the planar model
In Section 4.5 we describe the algorithm from [P7], where we introduced seven
methods for finding the three positions A,B,C, whose heights in LS plane repre-
sents the parameters of the 3H method. Figure 5.7.(a) shows comparative results
of the seven methods, for an image from the Middlebury dataset. One can see
that the M2 method obtains the best results for almost half of the [40, 70] dB
range, and very similar results for the rest of the range, while the M5 method has
the best results for the other half of the range. The decision, to select these two
methods, was taken based on the experiments done on a set of test images. The
comparative results for this set can be found on the PF webpage [81].
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Figure 5.7: (a) Comparison between the seven methods M1:M7 tested for plane
fitting, for the Art image, Middlebury dataset, full-size resolution, left view. (b)
Comparison results between the state of the art methods and our algorithms used
with and without the PF method.

In Figure 5.7.(b), we compare the two state of the art methods, P80 and SP1,
with the previously developed algorithms: GSOm is used together with CERV or
APC, at which we added the PF method for extending GSOm and for improving
the region reconstruction model. Here we selected the APC lossless compressor for
the sequence of images, but the CERV algorithm can be also used, or any other
lossless compressor. In 5.7.(b), one can see that the PF method is producing a
significant improvement of the results, with a maximum of around 5 dB at the
0.05 bpp bitrate. The improvement is even larger for other images, for more results
see the PF webpage [81].
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Chapter 6

Original Contributions and
Conclusions

“Nothing is impossible, the word itself says
‘I’m possible’!”

— Audrey Hepburn

This final chapter presents in the first section the original contributions of the
compilation of articles included in this dissertation in the domains of Signal Pro-
cessing (SP) and Image Processing (IP). The second section presents the author’s
contributions to the seven publications [P1]-[P7], while in the third section we
draw the final conclusions for the work presented in this dissertation.

6.1 Original contributions
The goal of this work was to propose algorithms for depth-map image compression.
To achieve this goal, the research was divided into two parts. The first part
was focused on developing lossless compression algorithms for depth-map images,
which was the subject of Chapter 3. The approach used for compressing a depth-
map image was to encode a segmentation and to reconstruct each region of the
segmentation. Therefore, we developed algorithms for compressing the contours
of an image segmentation: CERV-Alg. C [P3] and APC [P5]; and algorithms for
region reconstruction: NCV [P1] and CERV-Alg. Y [P3]. In the second part of this
research we focused on developing algorithms for lossy compression of depth-map
images, which was the subject of Chapter 4. The lossy compression was achieved
by the algorithms by tackling different problems: image segmentation (L-CRS [P2]
and GSO [P4]), progressive coding (P-GSO [P6]), and parameterization of planar
models (PF [P7]).

In our research, the designed coders are mostly asymmetric, because the en-
coder performs more time consuming tasks compared to the decoder, e.g. context
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tree pruning, anchor points search, contour segments generation, image segment-
ation, plane estimation, etc.; while the decoder is less complex and is much faster
than the encoder, since all received information is just ‘patched’ together to create
the reconstructed image.

The main contributions of the dissertation can be summarized in the following
list:

(1) Predictive coding [P1]. The predictive coding techniques are part of an im-
portant approach in image compression, which was successfully used in the
state of the art coders like CALIC and LOCO-I. Our research presented a
mixture of 15 predictors, for both column-wise search and row-wise search,
which obtained good results. It was also the first subject of our research.

(2) Image Segmentation [P2, P4]. An important side outcome, obtained in our
research, is the development of an efficient image segmentation algorithm.
The GSO algorithm offered to the user the possibility to generate a segmenta-
tion of an image by creating a lossy image of the initial image, having a given
distortion measured in PSNR. Image segmentation is an important research
topic, where many of our results are relevant.

(3) Contour compression [P3, P5]. One of the main problems that we had to
solve, for obtaining an efficient lossless coder, was to develop an efficient
contour compression algorithm. The main reason, for which we researched
the problem, is that the codelength for encoding the contour represents a
large percentage (between 70% and 90%) of the final codelength. Two algo-
rithms were developed: one is APC, which is ‘drawing’ very easy and fast the
contour using vertex positions, has a complex contour segment generation,
and is more suitable for less complex segmentations; the other one is CERV-
Alg. C, which is more suitable for complex segmentations, since it is able to
find deterministic cases and to classify much better the contour information
into horizontal contour edges and vertical contour edges.

(4) Region reconstruction using constant model [P3]. One of the most important
algorithms, developed in our research, is the CERV-Alg. Y algorithm. Because
of the efficiency of Alg. Y in encoding constant model parameters, the results
were improved with around 15%, and the percentage of codelength allocated
for the region’s reconstruction stage was decreased to less than 15% of the
final codelength, reason why Alg. Y was integrated with most of our coders.

(5) Progressive coding [P6]. Progressive coding is an important functionality for
an algorithm, and hence we developed an efficient algorithm to compress a
sequence of GSOm images. The algorithm takes advantage of the way the
images are generated, by searching for anchor points on the contours of the
previously decoded image, and by encoding the constant model parameters
using a priori information.

(6) Parameterization of planar model [P7]. Our last published algorithm has
shown that a good parameterization of the planar model is producing signif-
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icant improvements in lossy compression. The Three Heights (3H) parame-
terization is taking advantage of Alg. Y, and introduces an efficient algorithm
for encoding depth differences, called Alg. D. The contribution in the param-
eterization was to develop methods that select the positions of three heights,
in such a way that the obtained distortion is close to the minimum distortion,
and the plane parameters are encoded efficiently by Alg. D.

6.2 Author’s contribution
This research in the field of depth-map image compression was performed while the
author was a researcher at the Department of Signal Processing, Tampere Univer-
sity of Technology, Tampere, Finland. The research was supervised by Professor
Ioan Tabus from the Department of Signal Processing of Tampere University of
Technology. All publications are the result of a close collaboration with my su-
pervisor. The author of the thesis is the first author and the main contributor to
publications [P1, P2, P4, P5, P6, P7], and the second author of publication [P3].

The strategy for encoding the depth-map images was suggested by Profes-
sor Ioan Tabus, and it was first used for the development of the algorithm from
[82], which presents the research done in my Master of Science Thesis [77]. Brief
descriptions of the author’s contributions to each publication, included in this
compilation of articles, are presented in the following:

[P1] The author proposed the main idea of the algorithm. He is also responsible
for the implementation of the algorithm, experimental results, simulations,
and for writing the manuscript. The collaboration with the second author,
Professor Ioan Tabus, consisted in several constructive discussions about the
algorithm. He also helped to improve the quality of the final manuscript.

[P2] The author proposed the algorithm’s scheme and is responsible for the design
and implementation of the algorithm, for running the experiments and ob-
taining the results, and for writing the manuscript. The collaboration with
Professor Ioan Tabus consisted of several constructive discussions about the
algorithm. He was also involved in the effort to improve the final manuscript
of the publication.

[P3] First author proposed the main idea of the CERV algorithm and an implemen-
tation of the algorithm in the MATrix LABoratory (MATLAB) programming
language. He was also responsible for writing the manuscript. During the
several constructive discussions, the author of the thesis presented modifica-
tions of the initial algorithm which improved the results. The author of the
thesis (second author of the publication) implemented the CERV algorithm
in the C programing language and added important characteristics to the
algorithm: due to the C programing language the author was able to develop
an implementation where the maximum context tree depth was increased,
which allowed the algorithm to create more contexts; he improved the prun-
ing process of the context tree with a faster and more precise estimation of
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the codelengths computed for each context tree branch; he decreased the
codelength needed to transmit the optimal context tree to the decoder; he
proposed implementation aspects that lowered the complexity of the algo-
rithm and decreased the runtime of the algorithm from a few seconds to
a few tens of milliseconds. He is responsible for the implementation of all
four versions of the algorithm, including CERV-HiCo and CERV-Fast, the de-
sign and implementation of the website, and the running of the experiments
for all the reported results. The author is responsible for adding to the
CERV-Fast implementation different types of optimizations, the most impor-
tant being the patches of code hand-written in assembly which replaced the
most performance-sensitive parts of an algorithm. The author also helped
to improve the quality of the final manuscript.

[P4] The author is responsible for the main ideas in the GSO algorithm. The
author is responsible for the designed and implemented the website and the
two algorithms, GSOm and GSOs, for the running all the experiments and
simulations, and for writing the manuscript. The collaboration with Pro-
fessor Ioan Tabus consisted in constructive discussions about the algorithm.
His experience played an important role in writing the final manuscript of
the publication, where the problem regarding the length of the publication,
imposed by the IEEE Signal Processing Letters, was overcome after long
discussions.

[P5] The author is responsible for the design and implementation of the APC al-
gorithm and its website, for running the experiments and simulation, and
for writing the manuscript. The collaboration with the second author con-
sisted in discussions about the design of the algorithm and about the final
manuscript of the publication.

[P6] The author is responsible for the design and implementation of the P-GSO
algorithm and its website, for running the experiments and simulation, and
for writing the manuscript. The collaboration with the second author con-
sisted in discussions about the algorithm. He also helped to improve the
final manuscript of the publication.

[P7] The author is responsible for the C implementation of the seven methods
introduced by the article, for the extension of the GSOm algorithm to the
GSOmPF algorithm, for running the experiments, for designing and imple-
menting the algorithm’s website, and for the writing of the manuscript. The
second author had the main idea of the publication: the selection of the three
positions A,B,C as the points that form the triangle with a maximum area
in the region, i.e. M2 method. He also wrote the first MATLAB script that
tested the methods M1 and M2. Several constructive discussions helped the
author to design the final version of some methods. The second author was
also involved in the effort to improve the final manuscript of the publication.
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6.3 Conclusions
The dissertation is a compilation of seven articles, where several algorithms are
proposed for depth-map image compression: three algorithms for lossless com-
pression [P1, P3, P5], and four algorithms for lossy compression [P2, P4, P6, P7].
In our research, we choose to encode the depth-map images using an image seg-
mentation, transmitted to the decoder using a contour compression algorithm, and
then filling the obtained regions, using a region reconstruction algorithm. Hence,
our developed lossless compression coders provide an algorithm for each of these
tasks. Two strategies were studied and two algorithms were developed to encode
the contour using vertex positions or contour edges. Also, two algorithms were
developed for region reconstruction: CERV and APC coders are the best lossless
compression algorithms that we developed. They outperform the state of the art
coders all the time.

In the proposed lossy compression algorithms, we used the strategy of gener-
ating sequences of images for each specific distortion, which are then compressed
by a lossless compressor. We further proposed the development of a progressive
coding algorithm, P-GSO, and a study of the parameterization of planar models,
PF.

At the beginning of our research two algorithms were developed, NCV and
L-CRS, that generated segmentations based on the concept of variability inside
a region. Later we developed algorithms with better results, nevertheless they
represent the starting point of our research in the two areas.
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Appendix A

Implementation Aspects

“Simplicity is prerequisite for reliability.”
— Edsger W. Dijkstra

In this chapter, we present auxiliary information regarding the implementation
of the algorithms presented in Chapter 3 and Chapter 4. All developed algorithms
were first implemented and tested in MATLAB [59, 60], the programming language
invented by Cleve Barry Moler in 1980. However, the MATLAB implementations of
the algorithms were found to be too slow, and after some preliminary MATLAB tests
almost every algorithm was reimplemented in the C programming language, where
Microsoft Visual Studio [8] was the Integrated Development Environment (IDE)
used to develop and compile each algorithm’s C project. For the NCV [P1] and
L-CRS [P2] algorithms we used a combination of MATLAB and C code, while the
other five algorithms CERV [P3], GSO [P4], APC [P5], P-GSO [P6] and PF [P7] are
implemented in the C programming language.

The last stage in each compressor is represented by the entropy coding stage,
which has as the basic principle the Arithmetic Coding algorithm [46], and hence
in each C project we used the implementation of the Arithmetic Coder designed
by Ian H. Witten in [97].

A.1 APC algorithm
In APC, before coding the vector S of 3OT symbols, some deterministic changes are
introduced at the encoder. The role of these changes is to modify the distribution
of the 3OT symbols in such a way that the final codelength is reduced. Note that
the changes are deterministic and the decoder can always detect and reverse them.

The first change is to reduce the number of 3OT symbols 2 in the vector S, and
is done by analyzing the special cases when the description of a contour segment
Γk reaches a vertex, placed on the border of an image area, where the column-wise
search guarantees that there is no adjacent vertex to codify a 3OT symbol 2. For
example, when we find an anchor point P1 = (is, js) using the column-wise search,
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(a) (b)

Figure A.1: (a) Reducing the number of 3OT symbols sk = 2, when symbol sk = 0
is impossible. Blue dots are marking the vertices checked for anchor points, the
arrows indicate the next vertex to be visited, red (black) dots are marking the
visited (unvisited) vertices, and the green dot is marking the found anchor point.
(b) Template context used for coding Υ, where ‘x’ is the label of current position.

then this guarantees that, in the contour graph, there are no unvisited vertex
positions in the previous js − 1 columns and in the first is − 1 positions (lines) of
the js column. Hence, any vertex Pk = (i, j) found at the boundary of this area,
for which i < is and j = js + 1 (or with i ≥ is and j = js), has a maximum
of three unvisited adjacent vertices. When a vertex Pk = (i, j) is reached and
the previous vertex in the contour segment was Pk−1 = (i, j + 1), then there are
only two more possibilities to further describe the contour segment, by selecting
the adjacent vertex Pk+1 = (i − 1, j) or Pk+1 = (i + 1, j) that is unvisited. In
this case symbol sk = 0 is an impossible 3OT symbols, and that is why we remap
the remaining possible 3OT symbols, 1 and 2, with the symbol 0 and respectively
symbol 1, as it is shown in Figure A.1.(a).

The second change done is to modify the optimal context tree obtained for the
vector S of 3OT symbols. Note that only for the 3OT representation, the optimal
context tree is much more unbalanced than other cases because the representation
was designed so that the symbols 2 appears as few times as possible. Hence,
in the optimal ternary context tree obtained for vector S, the subtree for the
branch labeled ‘0’ (for symbol 0) has many leaf nodes, while the subtree for the
branch labeled ‘2’ (for symbol 2) has only a few leaf nodes. By analyzing the 3OT



A.2. NON-STATIONARITY OF CONTEXT DISTRIBUTIONS 87

representation, we notice that any two consecutive vertices, in a contour segment,
can not be codified by two consecutive symbols 2, and this case may appear in
S only because of vector concatenation. Hence, we studied the context tree of
a general 3OT chain-code vector, and noticed that, in the context (sk−2 6= 2,
sk−1 = 2), the symbol sk = 1 is more frequent than the symbol sk = 0, i.e. the
probability to encode a symbol 1 is higher than the probability to encode a symbol
0. This is why the symbol sk = 1 is changed into s′k = 0, and sk = 0 into s′k = 1.
The change introduces also some other small ‘branch interchanges’ between the
subtrees ‘0’ and ‘1’, but overall the change has a positive effect. However, because
the branch ‘2’ has only a few leaf nodes with a similar position on other branches,
the change does not cause disturbances in the optimal context tree.

Another implementation aspect used in APC is the special coding of matrix Υ,
done using the TCTM. Matrix Υ is encoded as the latest information, in column-
wise scanning, using the template context of length dT = 18, as it is shown in
Figure A.1.(b). In our tests, after pruning, the optimal context tree has about
seven leaf nodes. The alphabet used to create the context tree contains three sym-
bols, however the coding distributions for each node are computed using only two
symbols, since symbol 2 is ignored because does not codify any useful informa-
tion and only specifies that the information regarding current position is already
available. At the decoder, if Υ(i, j) = 1 is decoded, then the contour segment Γk
having the anchor point P1 = (i, j) is decoded and Υ is updated with symbols 2 on
the vertex positions of Γk. Only after drawing Γk, the decoding of Υ is resumed.

A.2 Non-stationarity of context distributions

The conditional distribution, collected in each context node of the context tree,
is updated on the fly using an estimator, and is a reflection of the data observed
in the current context. For depth-map images, the context distributions are non-
stationary since the contour may have different shapes in different areas of the
image. This is why it is useful to down-weight some counts in each context after
a period of time. Hence, a halving process was introduced to halve the counts of
a given context, each time when the sum of the number of occurrences, of each
symbol in the alphabet, exceeds a certain threshold.

The optimal threshold varies for each image, and it depends on the represen-
tation of the symbols for which it is used. Hence, by setting the threshold too
low the contexts might not have collected enough information, while by setting
the threshold too high the contexts might be updated too slowly and the halving
procedure will not influence the results. For example, in the CERV algorithm the
threshold was set equal to 250, when coding the contour edges, except for the
context 0 which was left unchanged. On the other hand, in the APC algorithm,
the threshold was set to 511 when coding of the vector Φ.

Note that for the arithmetic coder with a precision of 16 bits, this threshold
was already introduced and set to the value of 16383, i.e. to 214 − 1.
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A.3 Coordinates scaling for a better precision
In (2.9), the coordinates [xi yi 1], i = 1, 2, . . . n, obtained for a region Ω`, must be
normalized for improving the precision of the optimal plane parameters, estimated
by the LS algorithm. In [27], the authors are showing that the non-isotropic
scaling of the coordinates has an important role in improving the precision of
the optimal plane parameters θ∗. Hence, we used the transformed coordinates[
x′i y′i 1

]
=
[
xi yi 1

]
T in (2.9), where the matrix T is of form

T =


√

2
δx

0 0
0

√
2
δy

0
−
√

2x̄
δx

−
√

2ȳ
δy

1

 , (A.1)

where we remind that xm = mini xi, xM = maxi xi, ym = mini yi, yM = maxi yi,
i = 1, 2, . . . , n, and δx = xM − xm, δy = yM − ym, x̄ = xm + δx

2 , ȳ = ym + δy
2 .

The transform was applied for all the methods M1 : M7 presented in [P7],
however, only for the methods M5 : M7 our tests showed an improvement in the
results.
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ABSTRACT

This paper studies the lossless compression of depth images realized
by first transmitting contours of suitably chosen regions and subse-
quently performing predictive coding inside each region and trans-
mitting the prediction residuals. For the large constant depth regions
only the contour needs to be transmitted along with the value of the
depth inside each region, while for the rest of the image we find
suitable regions where the local variation of the depth level from
one pixel to another is constrained above. The nonlinear predictors
used for each region combine the results of several linear predictors,
each fitting optimally a subset of pixels belonging to the local neigh-
borhood. Overall the obtained results exceed by a wide margin the
performance of standard image compression algorithms.

Index Terms— lossless compression, depth image, segmenta-
tion, local nonlinear prediction, context tree encoding

1. INTRODUCTION

The interest in depth images has considerably intensified since they
play a central role in many technologies like 3D imaging and com-
puter vision and because depth image sensors are widespread now.
Since depth images possess different types of redundancy than the
natural images it turns out that standard lossy and lossless compres-
sion methods can be easily surpassed over the class of depth images
by taking into account the specific sources of redundancies. For nat-
ural images the luminance has quite high variance over most objects
(due to their texture, coloring, visual details) and as such the lossless
compression by the most efficient methods can reduce the necessary
size to 2 to 4 bits per pixel, while in the case of depth images the
variability of the depth is more reduced, and we show in here that
we can obtain by lossless compression quite often under 1 bit per
pixel. The typical redundancy for depth images is due to the exis-
tence of relatively large regions of tens to hundreds connected pixels
having the same depth value, or having a very regular law of varia-
tion of the depth (e.g., accounting for planar regions or other regular
geometrical surfaces). It is thus natural to attempt for depth images
first a separation of the image into regions having specific forms of
redundancy and subsequently to exploit suitable models inside each
region. This approach was utilized in the past in a number of papers,
where typically the models of a region were considered in the form
of first order or second order polynomials in the (x, y) coordinates
and the partitioning problem was to find the best split of the image
into regions so that to minimize overall cost of transmitting the con-
tours, the polynomial parameters for each region and the modeling
residuals. Such approaches based on segmentation followed by pre-
dictive coding were discussed for example in the papers introducing

Fig. 1. Example of constrained variability segmentation of the
(427×370) image Aloe(d5). The initial 5016 constant depth regions
of the image are grouped by a 3 stage segmentation algorithm into
nr = 574 regions, when using the upper bounds on region variabil-
ity Λ = {1, 2, 3} and the lower bounds on region size {55, 45, 30}.
The 790 constant regions of size up to 4 pixels are encoded sepa-
rately and not shown in this segmentation.

MDL segmentations for color images in [1, 2, 3], and for the case of
depth images in [4].

Instead of the typical models of regions based on first or second
order surfaces, in here we consider a different approach, where the
predictive coding inside a region is realized at each pixel by a nonlin-
ear predictor applied to a causal prediction mask. The local predictor
is well suited for predicting first order variations inside the predic-
tion mask, and will work well even for second order surfaces if their
curvature is not strong and they can be approximated well by a first
order surface inside the prediction mask of about 4 neighbor pixels.
The prediction mask is not constant, it is carved to contain only pix-
els belonging to the current region, but otherwise the predictor has
fixed parameters.

We follow a similar algorithmic structure as our preliminary
conference paper [5], but in here we better optimize all involved
stages of segmentation, prediction, encoding of contours, and en-
coding of residuals, improving consistently the performance as com-
pared to [5]. Finally, we study the compression performance of our



scheme over a large set of images and observe regular groups of
patterns obeyed by the tunable parameters of the algorithm, which
makes possible the use of specific parameter sets for each image.

The depth image contains the depth value I(x, y) ∈ {0, 2B−1}
for each pixel (x, y). In our experiments the number of depth-planes
is B = 8. We define the segmentation (see Figure 1) as the union of
all regions, Ω1, . . . ,Ωnr , in which the depth image is partitioned.

2. DESCRIPTION OF THE METHOD

2.1. Segmenting into variability constrained regions

The image is partitioned into regions such that the combined cost of
encoding the contours of regions and the cost of encoding the pre-
diction residuals inside each region is minimized. Partitioning the
image into too many very small regions will lead to a too high cost of
contours, while partitioning only into a few very large regions, each
containing inside pixels with high variability of their depth, will lead
to a very high cost for encoding the residuals. The best compromise
is obtained by an iterative segmentation, where at consecutive itera-
tions the allowed variability λ inside regions is increased. At a given
iteration all connected components with variability at most λ are de-
clared regions of the segmentation if each contains more than Nλ
pixels. During the iterative process the important parameters will be
the allowed variability λ and the minimum size Nλ.

For a current pixel (xt, yt) the set of the four neighbors in 4-
connectivity is denoted N4(xt, yt). We define the variability of a
current pixel (xt, yt) inside a given region Ωj as the minimum value
of the absolute differences of the depth values between the current
pixel and those neighbors which are part of the region, as follows:

V (xt, yt) = min
(xi,yi)∈N4(xt,yt)∩Ωj

|I(xt, yt)− I(xi, yi)|.

The variability based segmentation algorithm is initialized by finding
the sets of connected pixels having variability λ = 0 and declaring
them candidate regions. We iterate for successive thresholds on vari-
ability λ ∈ Λ = {1, 2, 3}. At the iteration marked as Step λ, each
candidate region from the previous step having at least Nλ pixels
is declared a region Ωj of the segmentation, and the remaining pix-
els not yet in already decided regions are then grouped in connected
components and all such components with variability not exceeding
λ are declared candidate regions for the next step. At the last step all
candidate regions are automatically declared regions of the segmen-
tation.

The obtained segmentation is further refined by a merging stage,
where two regions smaller than δ = 20 pixels can be merged, or a
region smaller than δ pixels can be merged with one of the neighbor-
ing regions, larger or equal to δ pixels and having λ ≥ 1. Merging
is decided based on the following rule: merge two regions if the pre-
diction residuals’ cost over the merged region is less than the sum of
the prediction residuals’ costs over the two separated regions and of
the eliminated contour cost.

For the constant regions with size smaller than 4 pixels an an-
chor point is transmitted followed by the code in an enumeration of
all possible shapes. For all other regions the contour is transmit-
ted in the 3OT representation [6] and then the prediction residuals
are transmitted using entropy coding. The prediction process is de-
scribed next.

2.2. Local Nonlinear Prediction

We predict the depth I(xt, yt) for a current pixel (xt, yt) ∈ Ω by
using the values I(xi, yi) of the pixels (xi, yi) ∈ Ω which also

n row scanning column scanning
b0 = 1 z0 = c+ a− d z0 = c+ a− d
b1 = 1 z1 = a− c+ e z1 = c− a+ f

b2 = 1 z2 = a+ e−d
2

z2 = c+ f−d
2

b3 = 1 z3 = [c a d e]wr z3 = [c a d f ]wc

d c e
a x
f

Table 1. Elementary predictors, z0, . . . , z3, used for form-
ing the final fifteen mixtures of predictors P1, . . . ,P15 where
the mixture with index n = 2b3 + . . . + 2b0 is defined as
Pb3b2b1b0(NP (xt, yt)) = {a, c, zk|bk = 1, k = 0, . . . , 3}. The
first three predictors z0, z1, z2 are best linear fits using only neigh-
bor values, while the fourth is the best linear fit over the whole im-
age. At the bottom is depicted the prediction neighborhood NP of
the current pixel (xt, yt), which is marked by ”x” and also shown
are the names used for the depth values of the neighbors.

belong to a causal neighborhood NP (xt, yt) of the pixel (xt, yt),
depicted at the bottom of Table 1. For each region the horizontal
scanning (with causal neighbors a, c, d, e) and the vertical scanning
(with causal neighbors a, c, d, f) are tested, and the one giving better
performance is selected and announced to the decoder by one bit per
region.

For each scanning order the optimal predictor is selected among
15 mixture predictors, În(NP (xt, yt)), n = 1, . . . , 15, which are
evaluated in turn, estimating the cost, in bits, required for the residu-
als compression. The predictor having the smallest cost of the resid-
uals is selected to be applied for the full image and its index n∗ is
sent as side information once for the whole image. Some regions will
be scanned horizontally and others vertically, depending on which
scanning provides better performance. In the following the predic-
tion in horizontal scanning is described, since the principles for the
two scanning orders are identical.

Each nonlinear predictor În(NP (xt, yt)) is indexed by n ∈
{1, . . . , 15} or, when more informative, the index is written in bi-
nary form b3b2b1b0 with n = 2b3 + . . .+2b0 . The nonlinear predic-
tor performs the median of a collection of elementary predictions,
which we called a prediction mixture Pn(N (xt, yt)), as follows:
În(N (xt, yt)) = median{Pn(N (xt, yt))}.

Table 1 shows the elementary predictors appended in the mix-
ture depending on the value of the bits b3b2b1b0, which form the
binary representation of n, and also depending on which scanning
order is used. The elementary predictor zi is used in the mixture Pn
only when the ith bit of n is bi = 1 and when the pixels involved in
its computation exist in the neighborhood, otherwise it is left out of
consideration. The weights wr used in the globally designed predic-
tor z3 are obtained by solving a LS problem, where the data matrix
Φr collects as rows the neighbor values [c a d e], whenever they all
fall inside the region of the current pixel x. Denoting by ψr the vec-
tor collecting all corresponding current pixels x, the LS parameters
are obtained as wr = (ΦTr Φr)

−1ΦTr ψr . A similar design is per-
formed for the column-wise scanning optimal predictor parameters
wc. The elements of the vectors wr and wc are sent quantized using
10 bits each in the header of the whole file, if the bit three, b3, is set
on in n∗.



2.3. Encoding of prediction residuals

Once the optimal predictor În∗(NP (xt, yt)) is selected, the encod-
ing of the pixels in any region Ωi having Ki pixels is performed as
follows. First determine the prediction value Î(xt, yt) for each pixel
(xt, yt) in the region, with t = 1, . . . ,Ki. We define the residuals
ε(xt, yt) = I(xt, yt) − Î(xt, yt) for all pixels (xt, yt) ∈ Ωi. In
the next stage we determine the minimum and maximum residuals,
denoted by mi and Mi for each Ωi ∈ I and encode them along with
all auxiliary information. We form a stream of symbols by concate-
nating the shifted residuals ε′(xt, yt) = ε(xt, yt) − mi for all re-
gions and encode it by applying adaptive Markov arithmetic coding
with order one. For a better compression, when a shifted residual
ε′(xt, yt) is larger than an optimally determined value, MRes, we
encode the sequence {MRes, s, r}, where s and r are the quotient
and remainder of the division ε′(xt,yt)

MRes
, respectively.

2.4. Encoding of region contours

The segmentation of an image can be transmitted by sending the
contours separating the regions. The contour is transmitted using the
3OT chain-code encoded with adaptive-order Markov models [6].

Generally the collection of all borders between regions is formed
of open contours which need to be grouped in order to obtain a total
number of vertex chains as small as possible, because the transmis-
sion of starting points of a chain (which we also call anchors) is done
with a high cost (assuming independent uniform distribution for their
location in the image).

Here we introduce 5 different options of contour compression.
The first option is the algorithm presented in [5]. The second op-
tion uses an algorithm which divides the contours into closed and
open contours. For the segmentation obtained for an image not all
contour points are interconnected because a region can be inside an-
other region. For each 3OT chain-code (closed and open contour),
we apply the adaptive Markov arithmetic coding algorithm with the
determined optimal order. For the third option we use the idea of
compressing only sequences of symbols from the alphabet {0, 1}.
For that, from the initial sequence of 3OT chain-code representation
we obtain two sequences of symbols: the first sequence encodes the
position of the 3OT symbols {1, 2}, while the second sequence en-
codes the position of the 3OT symbol 2. Then for each sequence
we apply the adaptive Markov arithmetic coding algorithm with the
determined optimal order. The fourth and fifth options use the same
principle as in the first and third options, with the difference that we
apply the Arithmetic Coding Algorithm using the tree obtained by
the Context Tree Algorithm [6]. Finally, the contour is compressed
using the option which needs the lowest number of bits.

2.5. Algorithmic settings

In the version of the algorithm presented in [5], denoted here
Old Version (OV), the lower bounds on region size are N =
[N1 N2 N3] = [55 45 30], and we keep these parameter set
as a first alternative. Our extensive tests on a set of more than
1000 images have shown that for some images the compression
ratio is better if one uses a second alternative set of parameters,
N = [100 100 100], while for others it is better to use a third set
of parameters, determined by exhaustive testing the combinations
of the values N1 ∈ {20, 30, . . . , 80}, N2 ∈ {20, 30, . . . , 40},
and setting N3 = 0. For this reason we have created a more
complex version, denoted New Complex Version (NCV), that de-
termines the compression ratio for all 3 alternative parameter sets

and chooses the one that gives the optimal compression ratio. Due
to the high complexity of the algorithm, we created another ver-
sion of the algorithm, denoted New Fast Version (NFV), having the
following features: uses for segmentation only the lower bounds
N = [55 45 30]; instead of 15 possible mixture predictors considers
only the predictor with index n = 7; and chooses the best encoding
of the region contours only from the first three options.

2.6. Experimental results

We illustrated the segmentation algorithm by presenting an example
of segmentation in Figure 1. We note that the image is overseg-
mented, in the sense that the meaningful objects are split into many
regions, since this split is convenient for getting the best compression
within our scheme.

For illustrating the improvements with respect to our old algo-
rithm [5] we first present the results for the same set of images from
[8]. The comparisons with the standard JPEG-LS [7] compressor
(using the implementation provided in [9]), with the PNG compres-
sor (PNG being the format normally used for storing depth images
in the public databases), and with the old version of the algorithm
presented in [5] are illustrated in Table 2. The table shows that both
new versions, NCV and NFV, consistently achieve significant im-
provements of the compression ratio.

The dataset from [8], also used in [10][11], contains 162 im-
ages classified by size in: large, medium and small, each having 27
images taken with camera in two positions, denoted (d1) and (d5).
This gave us the opportunity to observe the behavior of the algo-
rithm for different sizes of depth images. Compared to the old ver-
sion program [5], the NCV algorithm produces improvements of the
compression ratio with 477 936 bits or 0.08% for the entire set of
54 large images, 356 528 bits or 0.23% for the 54 medium images
set, and 266 688 or 0.38% for the 54 small images set. In Table 3 we
present resulting file sizes and compression factors (CF) for a set of 6
images, for each image type, where CF is defined as compressed size
over initial size in percentage. The table shows that both new ver-
sions achieved an improvement of the compression factor and also
that NCV algorithm shows an average improvement of 6% compared
with the results of the CharLS algorithm. All results are checked for
perfect reconstruction of the original file after decoding.
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Image Initial PNG CharLS OV NFV NCV ∆LF ∆LC

Name size size size size size size size size
(disply) (bits) (bits) (bits) (bits) (bits) (bits) (bits) (bits)

Art(d1) 1370480 194736 212704 107080 102752 100592 4328 6488
Books(d5) 1370480 159560 152720 104208 95488 95288 8720 8920
Dools(d1) 1370480 272136 232496 177840 168856 165880 8984 11960

Laundry(d1) 1323120 168080 157824 102640 99648 96032 2992 6608
Moebius(d1) 1370480 193848 170272 109440 104256 103744 5184 5696
Reindeer(d1) 1323120 187112 174224 113768 109280 107256 4488 6512

Lampshade2(d1) 11544000 611288 673368 245768 239232 238192 6536 7576

Table 2. Results for the set of 7 images presented in [5], where ∆LF = LOV −LNFV , ∆LC = LOV −LNCV . With bold text are presented
the best results.

Image Image Initial PNG CharLS OV NFV NCV CF CF
Type Name size size size size size size CharLS NCV

(disply) (bits) (bits) (bits) (bits) (bits) (bits) (%) (%)

L
ar

ge
im

ag
es

Aloe(d5) 11384160 797344 859104 346576 341648 337136 7.55 2.96
Bowling2(d5) 11810400 799216 838752 315904 301256 298456 7.10 2.53
Cloth4(d5) 11544000 735504 841248 284704 281984 281152 7.29 2.44

Flowerpots(d5) 11650560 727840 884336 287176 277856 274704 7.59 2.36
Monopoly(d5) 11810400 575728 687288 261152 253680 250416 5.82 2.12
Plastic(d5) 11277600 466536 677912 198712 195752 195728 6.01 1.73
Wood1(d5) 12183360 515632 793960 235496 227760 223056 6.52 1.83

M
ed

iu
m

im
ag

es

Aloe(d5) 2846040 330440 334592 167440 158824 152048 11.76 5.34
Bowling2(d5) 2952600 326576 326536 148520 140032 137376 11.06 4.65
Cloth4(d5) 2886000 303272 307432 134672 133304 132528 10.65 4.59

Flowerpots(d5) 2912640 304320 344448 140000 134856 132432 11.83 4.55
Monopoly(d5) 2952600 247776 280016 118416 113576 112944 9.48 3.82
Plastic(d5) 2819400 204968 243136 99200 97024 96216 8.62 3.41
Wood1(d5) 3045840 207984 306448 100640 95648 92856 10.06 3.05

Sm
al

li
m

ag
es

Aloe(d5) 1263920 187472 194512 104808 94952 93752 15.39 7.42
Bowling2(d5) 1311280 175632 178776 85888 81040 79912 13.63 6.09
Cloth4(d5) 1281680 169352 168608 86440 85216 84632 13.16 6.60

Flowerpots(d5) 1293520 168032 185944 85440 82584 80288 14.38 6.21
Monopoly(d5) 1311280 130600 156864 66648 65176 64264 11.96 4.90
Plastic(d5) 1252080 109544 129256 60360 57352 55824 10.32 4.46
Wood1(d5) 1352720 107760 145096 55688 52880 51208 10.73 3.79

Table 3. Results and compression factors (CF) for a set of 6 images . With bold text are presented the best results.
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ABSTRACT

This paper presents a lossy coding method for depth images
using a segmentation constructed by selecting regions of pix-
els having the depth values obeying constraints defined in
terms of some bounds, which are tuned in order to obtain the
target distortion. The contours describing the segmentation
are transmitted using an efficient chain coding method and are
thus available also at the decoder for the next stage, which is
region based predictive coding with a tunable precision level.
The rate comprises the cost of losslessly transmission of the
contours and the cost of transmitting the residuals with the
decided precision, which is the main factor influencing the
distortion. We introduce a procedure optimizing the param-
eters involved in the segmentation and in the prediction for
a given image. As a side result, the segmentations residing
on the convex hull of the RD curve can be seen as optimal
segmentations with various granularity.

Index Terms— lossy compression, near-lossless com-
pression, depth image, segmentation, rate-distortion

1. INTRODUCTION

The subject of depth compression has received increased at-
tention recently, mostly due to the wide range of applications
for 3D representations, in computer vision, 3DTv, and com-
puter games. Applying the same compression methods for
depth images as for the gray-level or color pictures is not as
efficient as designing new methods, dedicated to the types of
regularities present in depth images. In [1] we have shown
that dedicated lossless compression methods can reduce to
half the size of compressed files produced by the standard
JPEG-LS image compressor.

The literature on lossy depth image compression is wide,
mostly in connection to the compression of multiview images,
where the interesting bit-rates are in the very low end, even
below 0.1 bpp, see e.g. [2][3] and reference lists therein. Our
method addresses higher rate ranges aiming at near-lossless
coding, with prior work existing in, e.g., [4] [5].

2. THE PRINCIPLE OF THE METHOD

The basic principle of constructing the segmentation is to split
the image into two types of regions: for the first type, a region
”with local variability λ” should contain any pixel which has
inside the region at least one neighbor such that the differ-
ence between the depth values of the pixel and its neighbor
is at most equal to a given threshold λ, and additionally the
size of the region is also constrained. In the case of regions
of second type, from the regions with local variability λ = 1
are selected those which have also global variability 1, i.e.,
they contain pixels with only two distinct depth values. The
regions obeying the local constraint variability condition may
have quite a diverse distribution of depth values, e.g., pla-
nar sections starting with one side close to the camera, with
a low depth level and ending on the other side with a very
high depth value; as a different example the regions are en-
compassing also second order surfaces, typical in the case of
round, spherical, cylindrical, or conical objects. By varying
the threshold λ the sizes of the regions will change. The pro-
cess of finding the regions is iterative, starting with finding
the connected regions at small thresholds and if they are large
enough they are declared regions, and then the process con-
tinues at larger thresholds. The values of the thresholds and
the lower bound of the region size for declaring a region are
parameters determining many possible partitions of the image
into regions. When the parameters determine a rough granu-
larity, the cost of transmitting the contours of regions is small.
Here we use chain codes which are very cheap ways of trans-
mitting losslessly the contours, and hence we do not resort to
parametric models for coding the contours in a lossy manner,
which is the option followed in most of the previous lossy
coding methods.

After the regions are defined, in each region we use lossy
predictive coding, where the prediction is performed based
on the reconstructed depth of the previously transmitted pix-
els and the quantization of the prediction residuals is uniform,
with a tunable step size 2η + 1, for all regions except those
regions which contain two or three distinct depth values. The
parameter η defining the quantization steps belongs to the set
{0, 1, 2, 3}, where η = 0 means no quantization, in which
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case the compression is lossless for the involved regions. The
regions having only two or three distinct depth values are
treated differently; in each of them only one reconstruction
value is chosen (the one minimizing the sum of square errors
inside the region) and then is transmitted to the decoder.

When the targeted bitrate is in the low range (below 0.2
bpp), we introduce an additional preprocessing stage: before
segmentation stage the last bit of the depth values is removed,
the average of all these removed bits is computed, and if the
average is larger than 0.5, a bit of one is appended as a least
significant bit of the final depth values obtained after the re-
construction at the decoder. In this way the range of depth
values is halved and only a rough reconstruction of the last
bit is performed, by the majority bit.

In the following section we present the algorithmic design
of the segmentation and the way to combine the lossless con-
tour compression and the lossy prediction residuals encoding.
The obtained results are compared with [4].

The depth image contains the depth value I(x, y) ∈
{0, 2B − 1} for each pixel (x, y). For illustrations we use as
input image the same one used in [4], namely the first frame
of view 1 from the Breakdancing sequence [6], which has the
number of bit-planes B = 8. We will define the segmentation
as the union of all regions, Ω1, . . . ,Ωnr , that make up the
depth image.

3. ALGORITHM DESCRIPTION

3.1. Generating a segmentation

The main problem for obtaining the best results is to gener-
ate a suitable segmentation of the image so that after loss-
less contour compression the decoder knows enough distinct
regions and with an additional bitstream containing the pre-
diction residuals it can obtain small overall distortion using a
low bitrate. Our solution is an iterative segmentation which
allows a different variability inside some regions, while for
other regions, beside imposing the fixed variability λ = 1, it
is additionally required that the overall number γ of distinct
depth-levels is small. At a given step of the algorithm all con-
nected components which contain more than Nλ (or Kγ) pix-
els are declared regions. The process can be characterized by
the maximum allowed variability λ with its associated mini-
mum size Nλ of a region, and the constrained number γ of
distinct depth-levels with its associated minimum size Kγ .

For a current pixel (xt, yt) the set of the four neighbors
in 4-connectivity is denotedN4(xt, yt). The variability of the
current pixel (xt, yt) inside a given region Ωj is defined as
the minimum value of the absolute differences of the depth
values between the current pixel and those neighbors which
are part of the region [1], as follows:

V (xt, yt) = min
(xi,yi)∈N4(xt,yt)∩Ωj

|I(xt, yt)− I(xi, yi)|.

The segmentation algorithm starts by finding the sets of
connected pixels having variability λ = 0 and declaring them
candidate regions. In the next stage each candidate region
having at least Kγ pixels is declared a region Ωj of the seg-
mentation, and the remaining pixels, not yet in the already
decided regions, are then grouped in connected components
that have variability at most λ = 1 and a number of distinct
depth-levels γ = 2. Using these constraints one can generate
regions that have only two consecutive depth-levels that are
compressed using a single reconstruction depth level, the one
which gives the minimum distortion. In the next step we iter-
ate for successive thresholds on variability λ ∈ Λ = {1, 3}.
At each iteration step, each candidate region from the previ-
ous step having at least Nλ pixels is declared a region Ωj of
the segmentation, and the remaining pixels not yet in already
decided regions are then grouped in connected components
and all such components with variability not exceeding λ are
declared candidate regions for the next step. At the last step
all candidate regions are automatically declared regions of the
segmentation. According to the definition of the variability
constrained regions, the obtained segmentation is unique. The
regions with size smaller than 5 pixels, which make a large
proportion of the whole number of regions, are merged with
the largest neighbor region because of the high cost of trans-
mitting them separately. This ensures the reduction of the
contour length, and even more importantly, the elimination of
some points in the contour with more than two contour-edge
intersections, points that are required to be transmitted sepa-
rately as anchor points and which require a large number of
bits for encoding.

We consider in the experiments two versions of the seg-
mentation, the first L-CRS using the merging of the very small
regions, the second, NL-CRS keeping the small regions as
part of the segmentation.

3.2. Quantization and encoding of regions with almost
constant depth

The obtained regions which have a small number, γ, of dis-
tinct levels are quantized and encoded in a simpler manner
than the rest of the regions. This simple quantization and
encoding is used because a near-lossless quantization could
have set the regions with a depth-level that produces a large
distortion.

In each region that has γ = 2 distinct depth levels, g and
g+1, the quantized depth value is set to that value, g∗, which
occur the most often among the two consecutive levels, this
process being equivalent to the reconstruction minimizing the
distortion.

In each region that has γ = 3 distinct depth levels, first the
mean square distortion after quantizing by the optimal level is
computed, and if the resulting PSNR is smaller than a thresh-
old T3 then the region is quantized and encoded using the
predictive method presented in the next section, otherwise it
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Table 1. The prediction neighborhoodNP of the current pixel
(xt, yt), which is marked by ”x”. Also shown are the letters
used for the depth values of the neighbors.

is processed similarly to the case γ = 2, where only the opti-
mal quantization level is encoded and used as a reconstruction
at the decoder.

3.3. Local nonlinear prediction

We predict the depth I(xt, yt) for a current pixel (xt, yt) ∈
Ω by using the reconstructed values Ĩ(xi, yi) of the pixels
(xi, yi) ∈ Ω which also belong to a causal neighborhood
NP (xt, yt) of the pixel (xt, yt), depicted in Table 1. We de-
noted by Ĩ(x, y) the value available at the decoder, obtained
using the quantized prediction residuals. Similarly as in [1],
for each region the horizontal scanning and the vertical scan-
ning are tested, both with causal neighbors (a, c, d), and the
one giving better performance is selected and announced to
the decoder by one bit per region. Although both scanning
orders use the same causal neighborhood, different quantized
residues are obtained for each scanning order and hence the
two compression ratios for a region are different.

In [1] we used an optimal predictor selected among 15
mixture predictors, În(NP (xt, yt)), n = 1, . . . , 15. Here the
optimal predictor is taken the one with index n = 1, which
gave the best results in our tests. Hence, the collection of
elementary predictions of the nonlinear predictor, denoted
P(N (xt, yt)), is P(N (xt, yt)) = {a, c, c + a − d}. If one
of the used neighbors are not in the causal neighborhood, the
elementary prediction is eliminated from P(N (xt, yt)).

Consequently, in this paper the prediction is calculated as
follows: În(N (xt, yt)) = median{Pn(N (xt, yt))}.

3.4. Encoding of quantized prediction residuals

The encoding of the pixels in any region Ωi having ki pix-
els is performed as follows. First determine the prediction
value Î(xt, yt) for each pixel (xt, yt) in the region, with t =
1, . . . , ki. We define the residuals ε(xt, yt) = I(xt, yt) −
Î(xt, yt) for all pixels (xt, yt) ∈ Ωi. In the next step we quan-
tize the prediction residuals ε(xt, yt) using uniform quantiza-
tion. Same as in [7], the quantizer is defined as:

Q(ε) = sign(ε)

⌊ |ε|+ η

2η + 1

⌋
,

where the signum function returns 1 for positive argument,
−1 for negative and 0 for 0 argument. The reconstructed
value, used also by the encoder, is obtained as follows:

Ĩ = Î +Q′(ε) · (2η + 1),

where the reconstruction level is biased from the midpoint
of the quantization interval towards zero, to account for the
typical monotonic decreasing pdf of the absolute value of the
residual:

Q′(ε) = Q(ε)− sign(Q(ε)) · μ(η)
2η + 1

.

The tests showed that the best results are obtained for the
bias term corresponding to μ(η) = η.

In the next stage we determine the minimum and max-
imum quantized residuals, denoted by mi and Mi for each
Ωi ∈ I and encode them along with all auxiliary informa-
tion. We form a stream of symbols by concatenating the
shifted residuals ε′(xt, yt) = Q(ε(xt, yt)) − mi for all re-
gions and encode it by applying adaptive Markov arithmetic
coding with order one. Like in [1], for a better compression,
when a shifted quantized residual ε′(xt, yt) is larger than an
optimally determined value, MRes, we encode the sequence
{MRes, s, r}, where s and r are the quotient and remainder
of the division ε′(xt,yt)

MRes
, respectively.

3.5. Encoding of region contours

The segmentation of an image is defined by contours sepa-
rating the regions. The contour is transmitted using the 3OT
chain-code representation [8].

From the five options presented in [1], option four ob-
tained the best results in our tests. For other images the opti-
mal option could be any other. The fourth option was encod-
ing the chain code by applying the Arithmetic Coding Algo-
rithm using the optimal context tree obtained by the Context
Tree Algorithm [8]. Depending on the required bitstream, the
algorithm generates a specific segmentation which has a dif-
ferent contour. For each segmentation we usually obtain a
different tree-depth for the context tree: a height tree-depth
(18 ÷ 20) for high bitrate (almost lossless), and a lower tree-
depth (14÷ 16) for low bitrate, see column 5 of Table 2.

3.6. Summary of the algorithm

The segmentation algorithm implemented, denoted Lossy
Constrained Region Segmentation (L-CRS), can be summa-
rized in a few steps:

1. Smooth the contour by eliminating some edges be-
tween pixels with similar values as follows: if at least
3 neighbors in N4(xt, yt) have the same depth value,
v, and if |I(xt, yt)− v| ≤ 2, then set I(x, y) = v;

2. Determine the connected sets of pixels having variabil-
ity λ = 0 (thus having constant depth);

3. Select the sets of pixels with cardinality larger than K2

and declare them regions; out of the remaining pixels,
determine connected sets of pixels having variability at
most λ = 1 and having the maximum number of dis-
tinct depth-values γ = 2;
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4. Select the sets of pixels with cardinality larger than N1

and declare them regions; out of the remaining pixels,
determine connected sets of pixels having variability at
most λ = 1;

5. Similar to (3), but with cardinality larger than N3 =
100 and using variability λ = 3;

6. Declare the remaining connected sets of pixels regions;

7. Set pixel regions with size smaller than 5 pixels with
the depth level of the biggest neighboring region;

8. Encode the region contours using 3OT chain-codes;

9. Quantize and encode the regions with almost constant
depth, using T3 = 50 (T3 = 45 if low bitrate = 1);

10. For the remaining regions use the near-lossless predic-
tive compression as explained in Sections 3.3 and 3.4.

Besides the fixed parameters, having the value specified
in the algorithm, the values of the parameters M2 and N1 are
the most important and have to be chosen according to the
desired bitrate. Both of them can take values from 50 to the
size of the biggest region in the image. For example to obtain
a compression with a large PSNR, one can set M2 = 50,
N1 = 50 and use eta = 0, so that only a few regions contains
distortion, while for a low bitrate one can set low bitrate =
1, M2 = 1000, N1 = 14000 and use eta = 2.

For a near-lossless compression, meaning that the abso-
lute value of the error is smaller or equal than 2η + 1, we in-
troduced another method, denoted Near-Lossless Constrained
Region Segmentation (NL-CRS), using the same algorithm as
L-CRS with the difference that we eliminate step (7).

3.7. Experimental results

The segmentation algorithm is illustrated by presenting the
segmentation result in Figure 1 (b) for the depth image from
Figure 1 (a). We note that the image is oversegmented, in the
sense that the meaningful objects are split into many regions,
since this split is optimal for our rate-distortion optimization
scheme.

We present the results in a rate-PSNR plot, where the bi-
trate is calculated as bits per pixel (bpp),

bpp = 8 · compreesed file size

initial file size
,

and the peak signal-to-noise ratio, PSNR, is computed as:

PSNR = 10 · log10
2552

MSE
.

We compared the results for the two methods introduced,
L-CRS and NL-CRS, with JPEG2000 and the two other meth-
ods from [4] and [5], denoted here Method 1 and Method 2.
Figure 2 shows the results for the five methods using one im-
age from the Breakdancing sequence. One can see that our

(a) Initial depth image

(b) Obtained segmentation

Fig. 1. Example of segmentation for a low bitrate of first
frame of view 1 of Breakdancing sequence.

methods obtain better results compared with the best existing
results, Method 1 [4]. Because L-CRS is generated from a
lossless method, the transition from lossless to lossy is steep.
Another factor is that the bitrate has two parts: we compressed
losslessly the region contours and lossy the depth-levels in-
side the regions, that is why for a low bitrate the results will
asymptotically reach the point where most of the bitrate will
be composed of contour lossless bitrate.

Figure 2 presents also the result of lossless compression
using the more complex algorithm from [1]. The result is
presented using a vertical asymptote at bitrate = 0.3933 bpp,
which is the point where PSNR =∞.

In Table 2 we take a closer look at some statistics of the
segmentation and the proportions of bitrates needed for loss-
less compression of contours and lossy compression of depth
values for 8 functioning points from the L-CRS curve pre-
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Image Segmentation Q. LP Contour comp. Depth-level comp. L-CRS
Nr. low final nr. contour maximum η bitrate % of bitrate % of Total PSNR

bitrate of reg. length tree-depth (bpp) total (bpp) total bitrate (db)
1 0 2575 142949 18 0 461 0.2265 64.48 0.1248 35.52 0.3513 61.9048
2 0 1635 140289 20 1 579 0.2223 82.80 0.0462 17.20 0.2685 57.9007
3 0 1483 134155 20 1 568 0.2120 84.39 0.0392 15.61 0.2512 56.9242
4 0 1269 124382 18 1 474 0.1957 84.86 0.0349 15.14 0.2307 55.3445
5 0 1133 112289 18 2 477 0.1775 88.31 0.0235 11.67 0.2010 53.1608
6 1 598 80145 18 1 193 0.1223 91.37 0.0116 8.63 0.1339 48.2914
7 1 536 70201 18 1 147 0.1078 92.52 0.0087 7.48 0.1166 46.7343
8 1 432 62313 17 3 147 0.0952 93.19 0.0070 6.81 0.1022 45.0466

Table 2. Examples of functioning points on the L-CRS curve from the rate-PSNR plot, with their details regarding the segmen-
tation, the quantization, and the lossy and lossless composition of compressed image. The size of the images is 1024× 768 and
has 6690 initial constant regions.
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Method 1 [4]

Method 2 [5]

JPEG 2000

L−CRS

NL−CRS

Lossless compression
  Bitrate = 0.3933 bpp

Fig. 2. Lossy depth image compression comparison of our
two implemented methods, L-CRS and NL-CRS, with JPEG
2000 and the two methods from [4] and [5], for the first frame
of view 1 (camera 0) of the Breakdancing sequence.

sented in Figure 2. The table presents also the number of
pixels, denoted lossy pixels (LP), for which we do not im-
pose a near-lossless compression which means that the abso-
lute value between initial depth-level and the reconstructed
value is greater than 2η + 1.

In Figure 1 (b) we presented the segmentation obtained
for the 6th point in Table 2. One can see that some of the 598
final regions are very small, especially in the bottom of the
image. The final segmentation contains these regions because
the depth has a great variation in this area and putting them
together produces worse results, by increasing significantly
the distortion, with just a small decrease of the bitrate.
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Context Coding of Depth Map Images under the
Piecewise-Constant Image Model Representation

Ioan Tabus∗, Senior Member, IEEE, Ionut Schiopu, Student Member, IEEE and Jaakko Astola, Fellow, IEEE

Abstract—This paper introduces an efficient method for loss-
less compression of depth map images, using the representation
of a depth image in terms of three entities: the crack-edges, the
constant depth regions enclosed by them, and the depth value
over each region. The starting representation is identical with that
used in a very efficient coder for palette images, the piecewise-
constant image model (PWC) coding, but the techniques used for
coding the elements of the representation are more advanced and
especially suitable for the type of redundancy present in depth
images. First the vertical and horizontal crack-edges separating
the constant depth regions are transmitted by two-dimensional
context coding using optimally pruned context trees. Both the
encoder and decoder can reconstruct the regions of constant
depth from the transmitted crack-edge image. The depth value
in a given region is encoded by utilizing the depth values of
the neighboring regions already encoded, exploiting the natural
smoothness of the depth variation and the mutual exclusiveness
of the values in neighboring regions. The encoding method
is suitable for lossless compression of depth images, obtaining
compression of about 10 to 65 times, and additionally can be
used as the entropy coding stage for lossy depth compression.

EDICS Category: COM-LLC Lossless Coding of Images
and Video

I. INTRODUCTION

Recently there has been an increased interest in the com-
pression of depth map images, especially due to the appear-
ance of many types of sensors or techniques for acquiring
this type of images, and also due to their wide range of
applications, starting from generating multi-view images in
3DTv, to computer vision applications, and gaming. Since the
quality of the acquired images improves all the time, there is
an interest in developing techniques which can compress these
data preserving all the information contained in the originally
acquired images.

The depth map images are formally similar to the natural
gray level images, at the pixel with coordinates (x, y) being
stored an integer value D(x, y) ∈ {0, . . . , 2B − 1} using B
bits, with the major difference being the significance of the
image values. For natural gray level images D(x, y) represents
the luminance of the object area projected at the (x, y) pixel,
while for depth images D(x, y) represents the value of the
depth or distance from the camera to the object area projected
in the image plane at the coordinates (x, y).
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Copyright (c) 2013 IEEE. Personal use of this material is permitted.
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Unlike the case of natural gray-scale images, which repre-
sent the luminance of natural images, in most depth images
there are many large regions of constant values, hence leading
to a higher redundancy, and thus to potentially much better
compression factors for depth images as compared to natural
gray scale images. Apart of the large constant regions, depth
images may contain also medium size, and even very small
regions. Some of the small regions may represent only noise,
some of them may represent also valuable geometric infor-
mation about the contours of the objects present in the depth
image. When using lossy compression of the depth images
for such applications as multi-view generation from depth-
plus-one-view, it was noticed that preserving the geometry
of the object contours is very important for achieving good
quality of the multi-view reconstructions. Hence the removing
of the small objects, or redrawing of the contours due to use of
quantization (possibly after applying an image transform), can
lead to disturbing artifacts in the multi-view reconstruction.
One possible remedy is the transmission of the lossless version
of the depth image, if it compresses well, or the transmission
of lossy versions that are as close as possible to the original.
In this paper we propose an efficient lossless compression
method, which can also be used as entropy coder for several
lossy approximations of the image, providing a wide range
of available rates in the rate-distortion plane, wider than most
existing lossy compression methods, bringing potentially more
flexibility in a multi-view generation system.

A. Preview

This paper provides a tool for encoding the representation of
a depth image in terms of the underlying partition of constant
regions (which we call patches in the rest of the paper),
focusing on efficient methods to encode the contours and the
depth-value of each patch.

Our method has a number of similarities with the method
named “the piecewise-constant image model” (PWC) [1]
which was shown to be most suited for palette images.
Both PWC and our method, CERV, start from the initial
representation of the image, in terms of binary vertical and
horizontal edges of the region contours, and in terms of the
depth value over each region. We dedicate Section VI to
present the algorithmic similarities and differences between
the two methods, after presenting in detail the content of our
method.

A crack-edge can be seen as a virtual line segment separat-
ing two pixels, which are vertical or horizontal neighbors (see
the green and red segments in Figure 1 and further details in



2

Section II-A). It has associated the value zero if the separated
pixels have the same value and one otherwise, and hence can
be used to describe the contours between constant regions. We
use two-dimensional contexts for encoding all crack-edges in
the image. Out of all crack-edges only the active crack-edges
(those which are set to one) are important because they form
the contours of the constant regions.

Once the constant regions in the depth map image are re-
constructed from the encoded contours, filling in a depth value
for each constant region is done exploiting the smoothness of
variation of depth value from one region to another. However,
unlike in the case of natural images, where one pixel is
predicted from its (small) causal neighborhood, which is bound
to a few of its neighbors in the pixel grid, now a region may
have a more varied neighborhood of regions, sometimes one
region being engulfed into another one, and thus having just
one single neighbor, or in the other extreme, one large region
may have hundreds of neighboring small regions. Prediction
in this network of regions, with variable structure of their
neighborhood, will lead to encoding distributions with very
low entropy.

The depth value at a current patch is encoded in several
different ways, depending on the values at the neighbor
patches. The efficiency comes especially from the situations
when the depth values in the already known patches are close
to the depth of the patch to be encoded, which additionally
ought to be different of all depth values of its neighboring
patches. In these situations a list of possible candidate values
for the depth of the current patch is constructed, and the rank
of the current depth in the list is transmitted, taking into
account the exclusions built in the list. It turns out that the
current depth value comes most of the times in the top few
positions, and the rank information can thus be transmitted
very efficiently.

In this paper we attempt to split the image into elements
denoted generically {ξi} which can be: 1) vertical crack-
edges, Vi,j , 2) horizontal crack-edges, Hi,j and 3) depth values
Di,j . The challenge is to utilize in the most efficient way
the redundancy between these elements and find the most
effective strategy of transmitting them. The order in which we
transmit is essential and both the encoder and decoder should
be able to construct and use in the arithmetic coding [2], [3]
the conditional probabilities P(ξi|ξj1 , ξj2 , . . . ; j1, j2, . . . < i)
in a causal way with respect to the order of transmitting
the elements. Out of the transmitted elements we may also
construct entities like regions of pixels, or clusters of avail-
able neighbor values, which can be used when defining the
conditional probabilities.

We introduce a family of algorithms for encoding depth
images, dubbed CERV (from crack-edge–region–value), hav-
ing configurable algorithmic complexity, where at one end
the encoding is done very fast, and on the other end the
encoding takes longer time in order to exploiting more intricate
redundancies. In the fast encoding variant, CERV-Fast, the en-
coding of the contours and depth values are done intertwined,
line by line, in a single pass through the image, while in
the higher compression (CERV-HiCo) variant (which also has
higher complexity) the patches over the whole image are found

and encoded first, followed by encoding the depth values. The
two variants differ also in the type of regions they use: the
CERV-HiCo variant uses patches, which are globally maximal
regions, while the CERV-Fast variant uses locally determined
constant segments as regions, for each such a region one depth-
value being encoded. Hence the essential ingredients in the
CERV representation and in the lossless coding scheme are:
the crack-edges (CE), the regions (R), and the values over
regions (V).

The algorithms can be used directly for lossless coding of
depth images. Additionally, the CERV algorithms can be used
as entropy coding blocks for lossy coding methods, where
one has to design a first processing block having the task
to build a lossy version of the image, suitable for the type
of encoding we propose. One very simple version of such a
scheme is illustrated in this paper, which together with the
CERV algorithm constitute a lossy coding method, displaying
very good results at high bitrates, and, for some images,
surprisingly competitive results even at low bitrates.

B. Related work

The recent work relevant for lossless depth image compres-
sion has proposed several algorithms specifically conceived for
depth images and additionally it considered modifications of
the methods currently used for color or gray-scale images. In
[4] the image is first split into blocks, and the initial binary
planes are transformed according to Gray coding and then
encoded using a binary compression scheme. Encoding by
bit-planes is further developed in [5], where the transformed
binary planes are encoded by JBIG and, additionally, the
problem of efficiently encoding a pair of left- and right-
disparity images is solved. In [6], [7] only the contours of the
large regions resulted from a segmentation of the image were
transmitted, using chain-codes, after which predictive coding
of the various depth-values was used inside each region. Other
line of research in lossless depth coding refers to modifying
the traditional lossless image coders for making them more
suitable for depth images coding. The lossless mode of the
H264/AVC standard was modified in order to cope better with
smoother images, with results presented in [8] and [9].

As a small departure from proper lossless compression,
which ensures perfect recovery of the original, there are also
several recent papers that discuss lossy encoding with near-
lossless [10], [11], or rendering lossless capabilities [12].

Lossless depth image compression is essentially related to
other areas of image coding, perhaps the closest being the
coding of palette images, of color map images, and of region
segmentations.

The most efficient coder for palette images is the already
mentioned method PWC [1], while another coder specially
designed for palette images [13] was also used in the past for
encoding segmentation images.

The particular technical solutions used in CERV can be
traced to a number of past contributions. The context coding of
the binary crack-edges can be seen as a constrained subclass of
encoding a binary image. General encoding of binary images
was dealt with by the ISO standard Joint Bilevel Image Experts
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Group (JBIG [14] and JBIG2 [15]) providing good perfor-
mance for a wealth of applications. More elaborated coding
schemes have proposed context trees where the selection and
the order of the pixels in the context is subject to optimization,
in an adaptive way [16]. Using context trees in a semi-adaptive
way was proposed in [17] by using a fixed context, similar to
the way it is done in the algorithm CERV.

Encoding the boundaries of regions is one of the problems
needed to be solved in seemingly distant applications: in
MDL based segmentation of images [18] [19], where the code
length for transmitting the segmentation is one term in the
MDL criterion; in object based coding, for transmitting the
boundary of objects or the regions of interest [20] [21]. Chain
codes representations and their associated one-dimensional
memory models were very often used for the specific problem
of contour coding of segmentations. Context tree coding of
contours in map images was discussed in [17]. The predictive
coding of the next chain-link based on a linear prediction
model was presented in [22]. A general memory model based
on semi-adaptive context trees was presented in [23]. PPM
using a 2D template was used in [24]. The precursor of PWC
method for contour coding is the 2D context coding of [25].

The more general topic of lossy depth map coding received
a lot of attention recently. Two of the most efficient techniques
were published in [26] and [27]. The precision of the boundary
information was seen as an important factor which needs to be
improved in [28]. Piecewise linear approximations were used
for selecting the important contours in [29], while encoding
the contours was realized by JBIG2.

Embeded coding of depth images was recently introduced
in [30], where R-D optimization is used for combining sub
band coding with a scalable description of the geometric
information.

II. REPRESENTATION BY CRACK-EDGES PLUS DEPTH OVER
CONSTANT REGIONS

A. Depth image, horizontal crack-edge image, vertical crack-
edge image

The depth image can be conveniently represented by two
groups of elements, possessing very specific redundancies: first
the set of crack-edges (which defines the contours enclosing
sets of pixels having the same depth value) and second, the
collection of depth values over all constant regions.

The depth image to be compressed is D =
{Di,j}i=1,...,nr,j=1,...,nc

, where nr is the number of
rows and nc is the number of columns. The crack-edges can
be defined using indexing in the rectangular nr × nc grid,
and we introduce a binary image of vertical crack-edges,
V = {Vi,j}i=1,...,nr,j=2,...,nc

with Vi,j = 1, if Di,j−1 6= Di,j ,
and Vi,j = 0 otherwise. Similarly, the horizontal crack-edge
image H = {Hi,j}i=2,...,nr,j=1,...,nc

is defined by Hi,j = 1
if Di−1,j 6= Di,j and Hi,j = 0 otherwise. Hence, a vertical
crack-edge refers to the left side of the current pixel, telling
if the depth of the current pixel and that of its left neighbor
are different. For illustration purposes we visualize the pixel
Di,j as the interior area of a square (see Figure 1), the
crack edge Vi,j as the left side of the square, and Hi,j as
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Fig. 1. The lattice of pixels with depth values Di,j (with numerical value
printed in red), having associated vertical crack-edges Vi,j and horizontal
crack-edges Hi,j . The crack-edges that are set to one are called active and
are represented in red, the crack-edges set to zero are inactive and represented
in green. In this example there are five patches separated by the active crack-
edges.

the top side of the square, remaining basically in the same
nr ×nc grid of indices, except that the first row of horizontal
edges H1,1, . . . ,H1,nc and the first column of vertical edges
V1,1, . . . , Vnr,1 do not contain any useful information, and it
is not necessary to be encoded. We consider here as type of
connectivity for pixels only 4-connectivity, two pixels being
neighbors only if they are neighbors on the same row (Di,j

and Di,j+1) or on the same column (Di,j and Di+1,j). The
crack-edge images are obtained by scanning the image in
row-wise order, and checking the inequalities Di,j−1 6= Di,j ,
which results in the nr × (nc − 1) crack-edge image
V = {Vi,j} and checking the inequalities Di−1,j 6= Di,j ,
which results in the (nr − 1) × nc horizontal crack-edge
image H = {Hi,j}, both images being binary valued.

B. Splitting the image into patches (regions with same depth)

A patch P is defined as a maximal region connected
in 4-connectivity in the initial image D, containing pix-
els with the same depth value, D, which is called the
depth value of the patch, DP . The interior part of the
patch is separated from the exterior part by crack-edges
set to 1 (dubbed active crack-edges), which form an un-
interrupted chain. In Figure 1 there are five patches,
e.g. the patch P1 = {D1,1, D1,2, . . . , D1,5, D2,1, D2,2}
is separated from the rest of the image by the chain
C(P1) = [H3,1, H3,2, V2,3, H2,3, H2,4, H2,5] which is called
contour of the patch (not including the outer crack-edges
H1,1, . . . ,H1,5, V1,1, V1,2, which need not be encoded).

The collection of all patches in the image is P =
{P1, . . . , PnP

} and can be constructed at the decoder starting
from the images H and V , while at the encoder the set of
patches can be obtained already while scanning the image for
setting the values in H and V . Algorithmically, constructing
the patches is done by checking the four neighbors (in 4-
connectivity) of each pixel belonging to a patch, and labeling
them as members of the same patch if they have the same
depth-value (or at decoder, testing if the candidate neighbors
are not separated from the patch by active crack-edges). When
all pixels in a patch are tested and no more growing of the



4

patch occurs, a pixel not belonging yet to any patch is used
to start a new patch and the growing of the new patch is
continued in a similar manner.

C. Characterizing the set of patches

The patches are indexed in such a way that both the encoder
and the decoder can identify and process the patches in the
increasing order of their indices, e.g in the order of reaching
the patches when we scan in row-wise order the pixels in D.

For the following descriptions each patch P` has associated
a number of features: depth, DP`

, patch size, |P`| (i.e. number
of pixels in the patch), its contour C(P`), and its set of
neighbor patches N (P`) having cardinality |N (P`)|.

A patch P`2 is a neighbor of a patch P`1 (P`2 ∈ N (P`1))
if their contours have a common active crack-edge. The depth
values of the two neighbor patches are necessarily distinct,
DP`1

6= DP`2
.

Some typical statistics concerning the crack-edges, the patch
sizes, and number of neighboring patches are shown in Table
I for a set of six depth images, which will be used for
exemplifications throughout this paper and will be described
in more details in the experimental section.

III. ENCODING THE IMAGES OF CRACK-EDGES

The two images of crack-edges H and V can be encoded
in two alternative ways. The first one, which provides the best
results over the public data-sets over which we experimented,
sends in row-wise order and in interleaved manner the rows of
H and V , as explained in Subsection III-A. The second method
encodes first a header which specifies all anchor points for the
chain-codes, followed by encoding the chains formed by the
active crack-edges, as explained in Subsection III-B.

A. Row-wise encoding the crack-edges by using context trees
with two-dimensional contexts

In this method all the crack-edges (both active and inactive)
stored in the images H and V are transmitted by scanning the
images row-wise and in an interleaved way: one row from H
is followed by the row with the same index from V . Encoding
is done using context arithmetic coding, [16], [31], where the
template used for defining the encoding context of a vertical
crack-edge, Vi,j , is formed from both horizontal and vertical
crack-edges transmitted up to the current vertical crack-edge.
The template is shown in Figure 2. One can select from the
template a coding context containing any total number n ≤ 17
of crack-edges, T v(Vi,j) = [T v

1 . . . T
v
nv

] ∈ {0, 1}nv , in the
order specified by the template. For example, in the middle
top row of Figure 5 the encoding context is T v(Vi,j) =
[T v

1 . . . T
v
5 ] = [1 1 0 0 1].

Similarly, the template Th(Hi,j) for the horizontal crack-
edge, Hi,j , is shown in Figure 3. Each of the crack-edges
marked by 1, 2, 3 in Figure 3 shares one vertex with the current
horizontal crack-edge (marked by ”?”), and hence they are the
most relevant. Next in order of relevance are the crack-edges
4−9, sharing vertices with the crack-edges 1, 2 and 3. The tem-
plate ordering was optimized over two Middlebury files (Art

and Reindeer, right view, one third resolution [32]) through
a greedy iterative process. Initially the template was taken to
contain the crack-edges marked 1 − 3 and then, at each step
of the greedy optimization, the template size was increased
by one. The new crack-edge included in the template was
the one leading to the best compression over the two images,
when considering as candidates all the neighbor crack-edges of
the crack-edges already existing in the template, obeying the
causality constraint for the overall template. The compression
performance was taken to be the one after optimally pruning
the trees built with the current template (the pruning technique
is presented in the following subsection). The process was
stopped when the size of the template became 17, mostly
for complexity reasons, but also because further enlarging
the template did not improve significantly the compression
performance.

The crack-edge indices shown in Figures 2 and 3 are
recording the order in which the crack-edges were included
in the template by the greedy algorithm. The template and the
indexing of the crack-edge in the template, thus optimized
for two images, were then fixed and used as such in all
experiments of this paper. Interestingly, trying to change the
order for the crack-edges in the template for some of the depth
images did not result in significant improvements of the com-
pression results, and hence the ordering of the crack-edges in
the vertical and horizontal templates shown in Figures 2 and 3
seem to reflect well the natural order of importance for crack-
edge neighboring in depth image contours.

We have used the context trees in the configuration requiring
that the coding contexts are leaves in an overall binary context
tree. In the fast variant, the context tree T B

nT
for the horizontal

crack-edges is a balanced tree having 2nT leaves, all at tree-
depth nT , and similarly the context tree for the vertical crack-
edges is a balanced binary tree of same depth, in which case
the data structure for storing the contexts and their counts is
simply a table indexed by the binary contexts. If the common
tree-depth nT is too large, some of the contexts will not be
seen at all, or the number of occurrences will be small, so
that their statistical relevance will also be modest. The value
of nT optimizing the overall compression for a balanced tree
was found experimentally to vary between 10 and 15. We
choose as a default value in the CERV-Fast variant the value
nT = 15.

In the case of high-compression variant of the CERV
method, the context trees are optimized by pruning the con-
texts which do not perform better than their parents, as
described in the next subsection.

1) Optimal pruning the context tree: Context tree coding is
a mature field, containing a rich literature proposing various
adaptive and semi-adaptive algorithms and their applications,
see e.g., [16], [31], [33], [34]. In the HiCo variant we use a
semi-adaptive version requiring two-passes through the image.
Further optimization of the extent of the context template and
of the order of its pixels may add some improvements in
compression efficiency, but will also slow down the execution
of the program. In the high compression variant each tree is
initialized as the balanced tree T B

nT
and then pruned to an

optimal tree at the end of the first pass through the image.
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TABLE I
STATISTICS ABOUT THE ACTIVE CRACK-EDGES AND ABOUT THE PATCHES ENCLOSED BY THE ACTIVE CRACK-EDGES.

Number of CE Number of patches Histogram of nneigh (number of neighboring
Image Format nr × nc set to 1 Total Patches of size s ∈ [10i, 10i+1) patches) using bins [2j , 2j+1)

Intervals for s = |P | Intervals for nneigh

Vert. Hor. 1 [2
,9

]

[1
0
,9

9
]

[1
0
0
,9

9
9
]

[1
0
0
0
,∞

)

1 [2
,3

]

[4
,7

]

[8
,1

5
]

[1
6
,3

1
]

[3
2
,∞

)

Art 1/2 385725 47543 61841 5893 2062 2352 987 418 74 703 1999 2493 487 162 49
Art 1/3 171310 29054 32850 4306 1706 1562 744 275 19 386 1416 1973 419 91 21

Dolls 1/2 385725 63117 78335 9581 3988 3287 1594 641 71 670 4465 3273 880 254 39
Dolls 1/3 171310 38259 46596 8588 3821 3069 1325 365 8 388 3379 3808 807 183 23
Plastic 1/2 352425 47249 21763 1829 419 804 374 139 93 789 444 445 117 18 16
Plastic 1/3 156510 29589 11746 1459 452 572 273 109 53 519 315 511 83 20 11

?

1 2
3

4

5

6

7

8
910

11
12 13

1415

16 17

Fig. 2. The template of contexts for vertical crack-edges. The vertical crack-
edge marked in red is the current one, to be predicted from the seventeen
vertical and horizontal crack-edges marked in green. The index in the template
given to each crack-edge is marked near it, the most significant being crack-
edge one.

?
1 2

34

56 7
8 9

1011

12 13
14 15

16 17

Fig. 3. The template of contexts for horizontal crack-edges. The horizontal
crack-edge marked in red is the current one, to be predicted from the seventeen
vertical and horizontal crack-edges marked in green.

The bitstreams describing the structure of the obtained vertical
and horizontal optimal trees are sent as a side information to
the decoder, so that both encoder and decoder use the same
trees, in an adaptive manner. After optimization, during the
encoding process, the counts of the symbols 0 and 1 are
initialized at each leaf (but not anymore at the interior nodes)
and they are updated at each visit of a leaf, leading to adaptive
coding distributions. The pruning process used in this paper
is presented for completeness in detail in an Appendix in the
file with additional information and at the website created for
the paper at http://www.cs.tut.fi/~tabus/CERV/Appendix.pdf.

The bitstream for transmitting the structure of an opti-
mal tree encodes in each bit the decision B(i) to split or
not the node i, starting from the root and concatenating
B(∅)B(0)B(1) . . ., by scanning at each tree-depth level the
nodes which resulted from the splits of the previously encoded
tree-depth level and including only for them the information
about being split or not. The total number of nodes in the
tree having nleaves leaves is 2nleaves − 1, but the length
of the bitstream for encoding the tree structure is possibly
smaller, since for the leaves located at the maximal possible
tree-depth nT there is no need to transmit decisions to split.
The binary bitstreams are encoded using arithmetic coding,
with probabilities assigned by an adaptive first-order Markov
model.

2) Encoding the crack-edges by using context trees: The
vertical edges and the horizontal edges are encoded sequen-
tially, row by row starting from the first row of vertical edges
V1,2, . . . , V1,nc

, and continuing in an interleaved manner of
sending each row of horizontal edges Hi,1, . . . ,Hi,nc

followed
by a row of vertical edges, Vi,2, . . . , Vi,nc

, with the last row
encoded being a row of vertical edges.

The values of the vertical and horizontal crack-edges are
transmitted using arithmetic coding, with their coding distri-
bution given by the counts collected in the two context trees.

The two context trees for encoding the V and H images
meet special situations at the boundary of the image, where
some crack-edges required in the template are not available.
In that case all the needed values which are not available
are considered to be 0, which simplifies the encoding and
decoding routines by avoiding treating separately the crack-
edges close to the border. Only the first row of vertical
edges V1,2, . . . , V1,nc

is encoded directly as a separate context,
without using the optimal vertical context tree.

In Figure 4 (a) and (b) are shown a depth map image and a
detail of the image, where the active crack-edges are overlaid,
drawn with green lines. In the lower row, left panel of Figure
5 it is shown the zoomed area Z1, where green lines are
representing the active crack-edges, while blue and red lines
are showing the crack-edges having as context the binary all-
zero vector Th(Hij), which as an integer reads Th(Hij) = 0,
and for short we call it context 0. Context 0 for the particular
case of tree-depth 17 is shown in the upper row, left panel of
Figure 5 (for some images the all-zero vector Th(Hij), called
here context 0, will have length smaller than 17 after pruning).
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In regions of the image similar to Z1, with high density of
active crack-edges, the context 0 is rarely found, while in the
large patches the context 0 will appear very often, being the
most frequent non-deterministic context in the overall image.
The next two-most frequent contexts are illustrated in a similar
manner on the middle and right panels of Figure 5. The next
most frequent 15 contexts are shown in the files containing
additional information at http://www.cs.tut.fi/~tabus/CERV/.

3) Deterministic crack-edges: In general the two images
of crack-edges, H and V can be seen to form a particu-
larly constrained pair of bi-level images. The most specific
property is the fact that the crack-edges are forming chains
that can terminate only when meeting other chains (including
themselves) or when reaching the boundaries of the image,
as can be seen from Figure 1. This property can be utilized
for deriving deterministic connections between the crack-edges
from the template and the current crack-edge, and was used for
the first time in [1], for its slightly differently defined vertical
and horizontal contexts (where some contexts of the horizontal
crack-edges resulted to be deterministic).

The context template of the current vertical crack-edge Vi,j
has a remarkable property, allowing to determine a unique
value of the current vertical crack-edge for some particular
values of the crack-edges in the template. The template con-
tains all three crack-edges, T v

1 = Hi,j−1, T
v
2 = Hi,j , and

T v
3 = Vi−1,j , marked 1,2 and 3 in Figure 2, having a common

vertex to the current vertical crack-edge Vi,j . The following
configurations are deterministic:

1) If none of the crack-edges T v
1 , T

v
2 , and T v

3 is active,
the current vertical crack-edge Vi,j is not active. To see
this, Hi,j−1 = 0 implies Di,j−1 = Di−1,j−1; Vi−1,j =
0 implies Di−1,j−1 = Di−1,j ; and Hi,j = 0 implies
Di−1,j = Di,j . Hence Di,j−1 = Di−1,j−1 = Di−1,j =
Di,j which makes Vi,j = 0.

2) If a single one of the crack-edges Hi,j−1, Hi,j , and
Vi−1,j is active, the current crack-edge Vi,j is ac-
tive. There are three configurations in this class, e.g.,
Hi,j−1 = 0, Hi,j = 0, and Vi−1,j = 1, which imply that
Di,j−1 = Di−1,j−1 6= Di−1,j = Di,j and thus Vi,j = 1.
The proof is similar for the other two configurations.

In cases where two or three of the crack-edges Hi,j−1, Hi,j ,
and Vi−1,j are active, there is no deterministic conclusion
about the value of the crack-edge Vi,j . The deterministic
situations occur rather often, as seen in Table II, their pro-
portion may vary from one third to 47% of all crack-edges
(corresponding to the large majority of vertical crack-edges,
which are about half of all crack-edges). The zoomed region
Z1 is shown in Figure 4 (c), where the active crack-edges are
shown as green lines. With thicker lines are shown in blue
or red those vertical crack-edges appearing in deterministic
contexts: the marking is blue, if their value was 0, or is red, if
their value was 1. In the whole picture from Figure 4 (a) there
are 136860 deterministic contexts, out of 170940 contexts for
vertical crack-edges (nearly 80%).

4) Accounting for the non-stationarity of context distribu-
tions: The conditional distribution collected at each context
is updated on the fly, reflecting the data observed while being
in that context. However, the depth images are non-stationary,

e.g., for pictures taken inside a room the walls, floor, and
foreground are resulting in different types of contours of the
patches. It was found useful to introduce a form of forgetting
in the updating process of the counts, in the form of halving
the counts of zeros and ones at a given context, each time when
the total number of zeros and ones exceeds a certain threshold,
as is done in many cases for re-scaling the counts used in
arithmetic coding [16] [35]. The optimal threshold, at which
halving is done, varies for different images between a few tens
and about one thousand. We have used in the experimental
section a fixed threshold, by default equal to 250, at which to
perform the halving of the counts for all contexts in all images,
except the counts for context 0, which were left unchanged.

B. Encoding by chain-codes

When the active crack-edge density is low, it may become
more efficient to encode the crack-edges along the chains of
active crack-edges and to identify the next active crack-edge
by a chain-code.

We consider an algorithm based on chain-codes, similar to
the ones used in [7] and [23], which sends first the information
about all anchors needed for defining chains, assuming that
each point in the image can be an anchor, and also marks the
anchors which are multiple start points. The encoder collects
the 3OT codes for all resulted chains and concatenates them
in a long string of symbols 0, 1, and 2. The context tree
optimal for the overall string is built and transmitted as side
information and then the chain-codes are transmitted using
the encoding distribution collected adaptively at the optimal
contexts [23]. Two alternatives were tested, the one using 3OT
chain-codes and the one using AF4 chain-codes, but very small
differences were observed among the two alternatives (results
not shown). The results for the current datasets are however
overwhelmingly in favor of the coding using 2D contexts (e.g.,
in Table II the third and last columns show a very significant
difference, in favor of 2D contexts) which is used in all the
rest of experiments in this paper.

IV. ENCODING THE DEPTH VALUE OF EACH PATCH

A. Depth dependencies across neighboring regions

In encoding the depth value of each patch the possible
closeness between its value and the values of the neighbor
patches is used for constructing suitable predictions, in the
form of a list of most likely values taken by the depth. The
fact that the depth values over neighboring patches ought to
be distinct is used for excluding from the likely list the depth
values of all neighboring patches.

The neighboring relationship between patches, which we
define by specifying the set of neighbor patches N (P`) for
each patch P`, will be specific to every image, and both
encoder and decoder will know it, since in the first stage the
contour of the patches is transmitted. The set of all patches P
and its cardinality nP = |P| are also available to the decoder.

The values of the patch-depths are transmitted in a sequen-
tial order to the decoder, hence only the patch-depths already
encoded can be used as conditioning variables. The encoding
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Fig. 4. (a) The disparity image Art from view 5, in third resolution. (b) Overlaying the active crack-edges over the marked rectangle from image Art.
The marked regions by rectangles are used for illustrations in Figures 5 and 9. (c) The vertical-crack edges from the zoomed rectangle Z1 which are
deterministically specified by their contexts are marked as follows: the ones which are active crack-edges are marked in red, the ones which are inactive
crack-edges are marked in blue. The rest of active crack-edges (in non-deterministic contexts) are marked in green. Hence, in red and blue are shown all
vertical crack-edges not needing to be encoded. The four contexts for deterministic vertical crack-edges, are all defined by the first three crack-edges in the
template of Figure 2, by the condition Hi−1,j +Hi,j + Vi,j−1 ≤ 1.
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context depth = 17  #occur = 58494   #occur of 1 = 438 context depth = 5  #occur = 10035   #occur of 1 = 778 context depth = 13  #occur = 6657   #occur of 1 = 6633

Fig. 5. The three most frequently occurring non-deterministic contexts in the pruned vertical and horizontal context trees obtained for the disparity image
Art from view 5, in third resolution. The images in the first row show the pruned contexts, where red dotted line is for the crack-edge to be predicted, thin
green line is for the template crack-edges which ought to be zero, and thick green line is for the template crack-edges which ought to be one. (Left) The
context 0, the most frequent for horizontal crack-edges, maintaining all 17 crack-edges in the pruned context. (Middle) The most frequent context for vertical
crack-edges, which was optimally pruned to context-depth 5. (Right) The next most frequent context for horizontal crack-edges, which was optimally pruned
to context-depth 13. The second row of plots is a zoom in the rectangle marked Z1 in Figure 4(b), and is marking the crack edges which were encoded
using the contexts shown in the first row. The crack-edges which were encoded in the context marked in the above row are marked as follows: with blue are
marked the inactive crack-edge and with red the active crack-edges, while with green are marked all other crack-edges active in the zoomed image. The given
numbers of occurrences refer to the whole image Art, not only to the region Z1.

order of the patch-depths is denoted here for notational sim-
plicity, as 1, 2, . . . , nP . The enumeration used here consists in
scanning the initial image line by line, and transmitting the
depth values of the patches in the order in which they are first
met during the scanning.

We considered also a second enumeration, by sorting the
patches in the decreasing order of their number of neighboring
patches, so that first are specified the depth-values of those

patches having many neighbors, adding at each instant the
depth information that is relevant for as many unknown yet
patch-depth values as possible. However, the second enumer-
ation performed slightly worse than the first one, hence in the
rest of the paper we utilize only the first enumeration.

At the moment t the depth value d∗ = DPt of the patch Pt

is encoded, making use of the depth values of the kt neigh-
boring patches forming the set Pt = {Pt(1), . . . , Pt(kt)} =
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TABLE II
COMPRESSION OF CRACK-EDGES WHEN ENCODING BY 2D CONTEXTS (COLUMNS 3-9) AND WHEN ENCODING BY CHAIN-CODES (COLUMNS 10-11).

Encoding CE by 2D contexts Encoding CE by 3OT chains
Image Format Cost CE Total CE active CE deterministic Context 0 Entropy of bit per active bit per active Cost CE

[bpp] [%] [%] [%] Context 0 CE [bits] CE [bits] [bpp]
Art 1/2 0.330 770200 14.2 41.8 22.9 0.068 1.16 1.46 0.413
Art 1/3 0.432 341787 18.1 40.0 17.3 0.067 1.20 1.58 0.570

Dolls 1/2 0.479 770200 18.4 39.5 16.8 0.127 1.31 1.76 0.645
Dolls 1/3 0.638 341787 24.8 35.9 12.8 0.167 1.29 1.91 0.945
Plastic 1/2 0.220 703660 9.8 46.8 26.1 0.041 1.13 1.37 0.268
Plastic 1/3 0.284 312227 13.2 46.0 19.9 0.055 1.07 1.38 0.364

N (Pt) ∩ {P1, . . . , Pt−1}, for which the depth values were
already encoded. The vector of these depth values is D∗(t) =
[DPt(1)

, . . . , DPt(kt)
] and its elements which are unique form

the set of depth values D∗
t .

Building directly conditioning contexts using for condition-
ing the random vector D∗(t) is not effective when the number
kt of known neighboring patches is large, because the depth
value alphabet, A, is large and the resulting contexts will be
diluted. A more structured process of conditioning is needed
for kt > 2, where first the values from D∗

t are clustered,
and the centers of the chosen clusters are used for conditional
encoding, by using two lists in the encoding process. One list,
Lt, contains likely values, close to the cluster centers, ordered
in such a way that the value d∗ is very likely to be situated in
the top positions of the list. Whenever d∗ is present in the list,
its rank is encoded, instead of the value d∗ itself. A second
list, Wt, is a default list of values and it is used when the
value d∗ is not found among the elements of the list Lt.

B. Clustering D∗
t and constructing the likely list of values Lt

The clustering algorithm performs grouping of the values
D∗

t around centers selected sequentially. The goal of the
clustering algorithm is to distinguish between two often met
cases: one case is when all neighbor values in D∗

t are very
close together, and most likely the value d∗ will be close to
all of them as well; this happens when the neighboring patches
belong to the same object in the image. The second situation is
when the neighboring patches belong to two different objects,
situated at very different depths in the image, and the values
in D∗

t form two clusters. Other, more complex, situations are
certainly possible, but their occurrence is quite rare and we
prefer a fast clustering algorithm, which selects sequentially
centers of clusters using a threshold ∆ for deciding which
values to include to the already existing centers. A fixed value
of ∆ = 5 is used throughout the paper.

The values in D∗
t are arranged in the order they are

met along the contour of the current patch. The clustering
algorithm takes the first value from D∗

t as center of the first
cluster. All other values from D∗

t that are within a distance
of ∆ from the center of the cluster are marked and allocated
to the cluster, and the center of the cluster is recomputed as
the mean of all values in the cluster. The next value from D∗

t

which is not marked yet is then taken as initial center of a new
cluster, and this cluster is grown in a similar way, including
the values of D∗

t not yet marked and situated closer than ∆
from the cluster center. The process ends when all values from

D∗
t are allocated to one of the created clusters. If the number

of resulted clusters, nQ, is larger than two, we set nQ = 2 and
only the two most populated clusters are kept, having centers
denoted Q1 and Q2. If the distance between the centers of
the two clusters is smaller than ∆, then nQ is set to 1 and
a single center is computed as the mean of the values in the
two clusters. Each cluster center, Qi, is rounded to its closest
integer value.

If the number of clusters is nQ = 1 the list of likely values
is initialized as Lt = [Q1, Q1 +1, Q1−1, Q1 +2, Q1−2, . . .],
while when the number of clusters is nQ = 2, the list is
initialized as Lt = [Q1, Q2, Q1 + 1, Q1 − 1, Q2 + 1, Q2 −
1, Q1 + 2, Q1 − 2, . . .]. Then the values in D∗

t are excluded
from the list, after which the first 2∆ + 1 elements in the
list are kept to form the final list Lt. It is expected that d∗

will be located often in top ranks of the list Lt, and therefore
its rank in the list will be encoded, instead of its value. In
order to separate the different situations regarding the number
of values in D∗

t and the number of clusters, we found five
context to be relevant for collecting statistics about the rank
of d∗ in the list Lt, as follows:

iC =





1 if |D∗
t | = 1

2 if |D∗
t | = 2, nQ = 1

3 if |D∗
t | = 2, nQ = 2

4 if |D∗
t | > 2, nQ = 1

5 if |D∗
t | > 2, nQ = 2

(1)

In the context iC = 1 the value of one single neighbor is
known, in context iC = 2 two neighbors are known and their
distance is smaller than ∆, in context iC = 3 two neighbors
are known and are further apart than ∆, in context iC = 4 the
clustering process resulted in a single ∆-bounded cluster, and
in context iC = 5 the clustering resulted in two ∆-bounded
clusters. If there is no neighbor yet known about a region, the
list Wt will be used.

The list Lt can be constructed identically at the decoder. If
the true value is contained in the list, then d∗ = Ltk, where k
is its rank in the list. A binary switch St is transmitted first,
telling if d∗ belongs to the list. If St = 1 then the rank k
will be encoded, using for driving the arithmetic coder the
statistics of the ranks collected at the context iC . If St = 0,
d∗ was not among the values in the list Lt (we deal with a
patch having very different value than those in the clusters
constructed from the neighboring patches), and then the value
of d∗ is sent using the statistics collected using the default list
Wt (we label this distribution by the label iC = 6).
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Y0. Given the set P of global patches obtained from the crack-edges
transmitted in the first stage.

Y1. Initialize counters NI
j,iC

= δC for the contexts iC = 1, . . . , 5
and indices j = 1, . . . , 2∆ + 1 in the list of likely indices,
where δC = 1

2∆+1
. Initialize the switch counters NS

j,iC
= 1

2

for the switch j ∈ {0, 1} in each of the contexts iC = 1, . . . , 5.
Initialize the value counters Nd

j = 1
2B for j = 0, . . . , 2B − 1.

Y2. Enumerate the patches from P as P1, . . . , PnP , in the order they
are met along the row-wise scanning of the depth image.

Y3. For the current patch with index t = 1, . . . , nP (iterate until the
depth values of all the patches were encoded)
Y3.1. The depth value to be encoded is d∗ = DPt . The set of

known neighbor patches is Pt = N (Pt)∩{P1, . . . , Pt−1}
and the set of depth values over these patches is D∗t =
{DP |P ∈ Pt} (set of distinct values, not a multi-set).

Y3.2. Cluster the values in D∗t and construct the list of likely
values, Lt (as in Subsection IV-B).

Y3.3. If d∗ ∈ Lt, set the switch St = 1, otherwise St = 0.

Encode St using − log2

NS
St,iC∑
i
NS

i,iC

bits. Update the count

NS
St,iC

← NS
St,iC

+ 1.
Y3.4. If St = 1, encode the rank j∗ of d∗ in the list Lt, (for

which Lt,j∗ = d∗), using − log2

NI
j∗,iC∑
j
NI

j,iC

bits. Update

the count NI
j∗,iC ← NI

j∗,iC + 1.
Y3.5. If St = 0, encode the value d∗ (which is known to belong

to the set Wt = A \ Lt \ D∗t ) using − log2

Nd
d∗∑

j∈Wt
Nd

j

bits. Update the count Nd
d∗ ← Nd

d∗ + 1.
Y3.6. Move to the next patch in the list, Pt+1, and Goto Y3.1.

Fig. 6. The Algorithm Y, for encoding the depth value in each of the constant
depth regions, using at the iteration t the set of already known depth values
over neighboring patches, D∗t , the list of likely values, Lt, and the default
list, Wt.

We illustrate the algorithm using the 4×5 image from Figure
1. When scanning row-wise the image, we find in order the
following patches: P1 having depth DP1 = 79, P2 having
depth DP2 = 101, P3 having depth DP3 = 78, P4 having
depth DP4

= 100, and P5 having depth DP5
= 102. We

consider here for simplicity of illustration ∆ = 2, although
in all the experiments we have used only the value ∆ = 5.
The Table III shows the relevant variables when processing the
five patches. The coding distribution P(d∗|iC), with iC = 6
refers to coding using the default list Wt, while the coding
distribution P(k|iC) refers to coding using the list Lt, for
contexts iC < 6.

V. THE VARIANTS OF THE CERV CODING SCHEME

The generic CERV algorithm is shown in Figure 7. In the
variant CERV-HiCo all steps of the algorithm are performed,
providing the maximum compression of the scheme. In the
variant CERV-2 the Step A4 of constructing global patches
is omitted, but still two passes are needed for the overall
encoding. In the variant CERV-3 the stage of optimizing the
coding trees, consisting of Steps A1 and A2, is omitted, while
the marking of global patches in Step A4 is performed. This
variant eliminates the need of the first pass of collecting
the counts in the coding trees and encodes with default
balanced trees, but still needs one pass through the image
for transmitting the crack-edges, only then the global patches

A0. Initialize the coding trees for the vertical and horizontal crack-
edge as two balanced trees T B

nT
having tree depth nT = 17

(default value).
A1. Do one pass through the images of crack edges and collect the

counts in all the nodes of the context trees.
A2. Prune each of the two coding trees using dynamic programming

and transmit to the decoder the structure of the optimal trees, as
described in Subsection III-A1.

A3. Do one pass through the image for encoding crack-edges,
using the two coding trees that are available at the decoder,
as described in Subsection III-A2.

A4. Mark the global patches in the image, using the crack-edge
information encoded in Step A3.

A5. Do one pass through the image and execute the Algorithm Y or
Algorithm F2.3 for encoding the depth values of the patches.

Fig. 7. Generic Algorithm A, describing the overall structure of CERV
coding algorithms. The algorithm CERV-HiCo contains all the steps and uses
Algorithm Y in Step A5; the algorithm CERV-2 does not contain Step A4
and uses Algorithm F.2.3 in Step A5; while the algorithm CERV-3 does not
contain the steps A1 and A2 and uses Algorithm Y in Step A5.

are found and finally in a second pass through the image
the depth-values are transmitted by Algorithm Y. The variants
CERV-2 and CERV-3 are introduced and exemplified solely
for illustrating the gains of the main three parts of the CERV
algorithm.

The gains of using the steps A1 and A2 (optimization of
context trees for crack-edges) and A4 (determining the global
patches) of the generic algorithm are almost equal, as seen
from the comparative results in Figure 11.

The fourth variant is the Algorithm CERV-Fast, which omits
the optimization of the context trees for encoding crack-edges
(Steps A1 and A2) and also omits the construction of the
global patches (Step A4). In this form, it can be executed
in a single pass through the image, providing much better
speed and smaller memory requirements than the CERV-HiCo
algorithm.

We present a pseudocode of the algorithm CERV-Fast in
Figure 8. Since the algorithm operates with the constant
segments on the current line instead of global patches, it
can infer that two non-connected constant segments belong
to the same region by only utilizing the information acquired
in the preceding lines of the image, while sometimes only
the subsequent lines can clarify if two segments belong to
the same patch or not. Thus, the fast variant will have to
encode depth values for all new constant segments from the
current line, that are not connected to a a known segment on
the previous line, even though some of these new constant
segments may belong to an already met patch. At the moment
t the depth value d∗ = DPt

is encoded, making use of
the depth values of the kt neighboring patches forming the
set Pt = {Pt(1), . . . , Pt(kt)} which is now only a subset of
N (Pt)∩{P1, . . . , Pt−1}, differently than in the Algorithm Y,
where the the two sets were equal.

In Figure 9 are shown cases where the fast algorithm
treats two nonconsecutive constant-segments on the current
row as belonging to two different patches, although the two
segments belong to the same patch, as revealed by the image
following the current row. The one-pass fast algorithm at the
moment of encoding the current row will encode a depth value
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TABLE III
ILLUSTRATION OF OPERATIONS IN ALGORITHM Y USING THE 4× 5 IMAGE FROM FIGURE 1.

t Pt DPt N (Pt) D∗t Q1, . . . , QnQ iC Lt rank k St PEncode
1 P1 79 {P2, P3, P4} ∅ ∅ 6 ∅ − − P(d∗|iC) = 1

255

2 P2 101 {P1, P3, P4, P5} {79} {79} 1 [80, 78, 81, 77, 82] − 0 P(d∗|iC) = 1
250

3 P3 78 {P1, P2, P4} {79, 101} {79}, {101} 3 [80, 78, 102, 100, 81] 2 1 P(k|iC) = 0.2
5×0.2

4 P4 100 {P1, P2, P3} {78, 79, 101} {79}, {101} 5 [80, 77, 102, 100, 81] 4 1 P(k|iC) = 0.2
5×0.2

5 P5 102 {P2} {101} {101} 1 [102, 100, 103, 99, 104] 1 1 P(k|iC) = 0.2
5×0.2

TABLE IV
COMPRESSION OF DEPTH VALUE FOR EACH PATCH, WITH ENUMERATION OF PATCHES BY THE ORDER OF REACHING THEM IN ROW-WISE SCANNING,

WHEN ENCODING WITH THE LIKELY LIST Lt AT A CONTEXT iC ∈ {1, . . . , 5}, OR ENCODING WITH THE DEFAULT LIST,Wt (CONSIDERED AS CONTEXT
iC = 6).

CERV- CERV-HiCo

Fast Probability of the contexts p̂(iC ) =
m(iC )
nP

Codelength per symbol in each context Codelength per pixel

Image
nLP
nP

iC iC for encoding:

1 2 3 4 5 6 1 2 3 4 5 6 Patches CEs Total

Art 1
2

1.14 0.30 0.34 0.21 0.02 0.04 0.10 1.81 0.82 2.53 3.37 0.98 6.60 0.035 0.330 0.365

Art 1
3

1.09 0.30 0.30 0.22 0.02 0.07 0.09 1.83 1.63 2.57 3.71 1.33 7.69 0.064 0.432 0.496

Dolls 1
2

1.21 0.36 0.28 0.18 0.02 0.03 0.12 2.03 1.87 2.80 3.52 2.53 6.45 0.066 0.479 0.545

Dolls 1
3

1.11 0.32 0.35 0.17 0.02 0.04 0.10 2.07 1.77 2.79 3.50 2.19 7.41 0.132 0.638 0.770

Plastic 1
2

1.34 0.71 0.10 0.09 0.02 0.00 0.08 1.47 1.81 2.95 3.86 4.83 6.86 0.011 0.220 0.231

Plastic 1
3

1.22 0.60 0.21 0.09 0.02 0.01 0.06 1.40 1.25 2.94 2.65 3.27 8.86 0.019 0.284 0.303

for the constant segment, although the algorithm Y will not
encode anything for this segment. This inefficiency of the fast
algorithm is quantified in Table IV, by the second column,
showing the number of constant segments for which the depth
was encoded in the fast algorithm, divided by the number of
patches nP , which is the number of depth values encoded in
the HiCo algorithm. The larger this ratio, the larger the relative
difference in compression between the fast algorithm and the
HiCo algorithm.

VI. DISCUSSION OF THE ALGORITHMIC SIMILARITIES AND
DIFFERENCES BETWEEN CERV AND PWC

The piecewise-constant regions in PWC, called here
patches, are separated by edges forming the edge map. In both
CERV and PWC the initial representation of the depth image
is formed of the two sets of variables: the binary crack-edge
images H and V , which are referred to as edge map in PWC,
and the depth values inside the patches.

The coding of edge map in both PWC and CERV is done
using 2D binary contexts. In PWC the contexts have a fixed
size, taken as in [25], including the 8 causal neighbor edges
for coding a vertical edge (those marked 1,3,4,5,6,7,8, and
13 in Figure 2) and 9 causal neighbor edges for coding
a horizontal edge (i.e. when encoding the horizontal edge
marked 2 in Figure 2 the context is formed of the edges marked
1,?,3,4,5,6,7,8, and 13). In CERV the whole line of horizontal
edges is encoded first, and then the line of vertical edges is
encoded, resulting in slightly different causal neighborhoods,
but this difference is minor. The main advantage in CERV,
concerning encoding edges, is the larger template used (it
includes 17 neighbor crack-edges) and the use of variable
length contexts, by employing a semi-adaptive context tree,
designed and transmitted as side information after a first pass
through the image.

F0. Initialize the memory of the algorithm: only buffers for three
rows of vertical and horizontal crack-edges are needed. Initialize
counters NV

t,i = 1/2 and NH
t,i = 1/2 for the binary symbols

i = 0, 1 observed in the contexts t from the balanced trees T V
nT

and T H
nT

. Initialize counters as in Step Y1 of the Algorithm Y
in Figure 6.

F1. Transmit the vertical crack-edges V1,2, . . . , V1,nc using a sepa-
rate context.

F2. For i = 2 to nr

F2.1. Transmit the horizontal crack-edges Hi,1, . . . , Hi,nc using
the contexts in the balanced tree T H

nT
having tree depth

nT = 15 (default value) and update the counters in each
context, obtained with the template from Figure 3.

F2.2. Transmit the vertical crack-edges Vi,2, . . . , Vi,nc using the
contexts in the balanced tree T V

nT
having tree depth nT =

15 (default value) and update the counters in each context,
obtained with the template from Figure 2. If context is
deterministic there is nothing to code.

F2.3. Find the segments of constant pixels in each line and treat
them in the order of discovery.
F2.3.1. For a generic segment of constant pixels,

D(ir, istart), D(ir, istart + 1), . . . , D(ir, istop) at
line ir .
The depth value to be encoded is d∗ =
D(ir, istart).
If any of the pixels on top of the segment has the
same depth d∗, then the current segment does not
need to be encoded, so move to the next segment
and Goto F.2.3.1.
Else, encode the depth of the segment. The
set of depths for known neighbors contains the
left pixel (we set D(ir, istart − 1) = ∅ if
there is no left pixel) and all above pixels, i.e.,
D∗t = {D(ir, istart− 1), D(ir − 1, istart), D(ir −
1, istart + 1), . . . , D(ir − 1, istop)}.

F2.3.2. Execute the Steps Y3.2 to Y3.5.

Fig. 8. The overall CERV-Fast coding algorithm
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Fig. 9. The patches from the zoomed area Z2 of image Art are represented
in random colors. When processing the row 115 (marked with horizontal
blue lines) the one-pass algorithm CERV-Fast will consider the gray segment
(115,88)-(115,90) as a new patch and will encode its depth value, although this
segment belongs together with the segment (115,133)-(115,144) to the patch
P4, for which the depth value is already known. Differently, in the two-passes
algorithm CERV-HiCo, all pixels are marked with their patch index, so the
depth values are encoded only once for each patch. Similarly, for the segment
(111,82)-(111,88) in CERV-Fast there will be a depth value encoded, while
CERV-HiCo will not need to encode anything, recognizing that the segment
belongs to the patch P5, already known as depth value at the time of scanning
the row 111.

Both methods are taking advantage of the existence of
deterministic contexts, which exist due to the constraints
existing between the four crack-edges that are sharing a given
vertex.

The quantitative gains obtained by CERV with respect to
PWC due to the different type of contexts are similar to the
gains of CERV-HiCo compared to the version CERV-3. In the
variant CERV-3 the stage of optimizing the context tree is
missing, and hence CERV-3 uses a fixed context, of size 15.
The gains obtained due to the optimization of the tree are in
average of about 1%, but occasionally they raise to 3% (see
the black curve compared to the red line reference in Figure
11). Difference between CERV-HiCo and PWC will be higher,
since PWC uses only a 8-9 long context, while CERV-3 uses
a 15 long context.

One version of PWC uses a stage of run-length coding for
repeated contexts which had a beneficial effect in the overall
compression. In CERV such a stage is not used, especially
because in CERV the contexts are much wider than in PWC.
The only significantly repeating context in CERV is the “zero”
context for horizontal crack-edges, Th(Hi,j) = 0, which has
an extremely skewed distribution, leading to very efficient
encoding.

The second main task in both PWC and CERV, that of
encoding the depth values over the piecewise-constant regions,
is accomplished by starting from different goals and redun-
dancy reduction techniques. In PWC the encoding of current
region depth is obtained by mixing three hard decisions:
diagonal connectivity, color guessing, and guess failure. The
first decision, diagonal connectivity becomes active when
two regions which are neighbors in 8 connectivity have the

same depth. This may happen frequently in palette images
containing diagonal lines of width one pixel, or when text is
overlapped to natural content. CERV does not use anything
similar to the diagonal connectivity primitive, depth images
containing rarely thin lines.

The second primitive action in PWC, color guessing, con-
sists in encoding the current unknown color conditionally on
the color of a neighbor pixel, or on the colors of three neighbor
pixels, where the conditional distribution is defined by an
intricate dynamical structure which collects information about
previous successful guesses. The list used in PWC implements
a dynamical structure, containing memory cells, where the
most recently used context gets the front position if the guess
in that context is successful. Finally, when even the second
primitive could not determine correctly the color value, a third
primitive is used in PWC, where the the color is picked from
the colors which are not included in the model, using zero
order statistics of previous usage, or if the overall number of
color values in the image is larger than 16, predictive coding is
used. The predictive coding uses the predictor from JPEG-LS
[36] and encodes the residuals as in ALCM [37].

By contrast CERV uses for color coding of the current
region only the instantaneous information about the depth
values in the neighboring regions. Since one region may
have many neighboring regions, the conditioning values used
by CERV are not only one or three, as used in PWC, but
sometimes tens of regions may be neighbors of a given
region and exploiting this network of regions results in skewed
distributions. The clustering process in CERV described in
Subsection IV-B may lead to several cluster centers, which
can be seen as several different candidate predictions, the
errors with respect to these predictions being encoded, after
the important exclusion process is enforced. In order to keep
track of the values with small errors, and at the same time
to enforce exclusion, CERV uses the list construction from
Subsection IV-B, which is a memoryless process applied to
the network of region’s neighbors at the moment of encoding
one region’s depth value. The exclusion process, enforcing
that the current region should have a distinct value than the
neighboring regions, combined with the predictive part seems
to be very suitable for depth images.

The previous parallel of the methods for color coding
in PWC and CERV reveals that the two coding techniques
are starting from the same representation of the image into
elements, but the techniques used for coding are different. We
have tested the ability of the CERV techniques to cope with
the redundancy present in general palette images. We have run
CERV over the PWC corpus made up of several typical palette
images and we found that the results of PWC were superior
for almost all files (results shown in the additional information
file), showing once more that the specific color coding used
by PWC and by CERV are very distinct. Reversely, all
results comparing CERV and PWC over the depth images in
this paper are showing consistently better results of CERV
for depth images. Consequently one can conclude that each
method is well suited for the type of images for which each
was intended in the first place.
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Fig. 10. Comparison of the compression ratio (compressed size over original
size) for CERV algorithms, PWC, CALIC, and LOCO-I, over the Middlebury
dataset (containing 54 images in three different resolutions).

VII. EXPERIMENTAL RESULTS

A. Lossless compression of depth map images

We consider here publicly available disparity images (which
are in a one-to-one mapping with depth images). The Mid-
dlebury database [32] contains in total 162 disparity maps,
for which we plot the results maintaining the grouping of
images having the same resolution (54 at full resolution, 54
at half resolution, and 54 at one-third resolution). We use
for the illustrative tables in the paper three images from
the Middlebury dataset, Art, Dolls, and Plastic (typical for
medium, low, and high compressibility) in the right view, and
with half and one-third resolution (also denoted 1/2 and 1/3
in the tables).

The nature of the image, true depth image or disparity map
(which is related to the depth by a simple invertible mapping)
does not appear to make a difference for the compression
performance of CERV, the only major place where it may
have an impact is the depth value clustering and prediction,
where the results may be different when working with depth
or disparity values. The depth images obtained as disparity
images from stereo pairs may have holes, e.g., due to occluded
regions. Interestingly, the holes present in the disparity map
images are not making the compression more difficult, being
just another type of patches in the image. We could slightly
improve the performance by taking into account the specific
value of the hole patches (usually they are the only pixels
having depth value equal to 0), and one can eliminate the
patches with depth value 0 from the prediction of depth in
Algorithm Y (i.e., by not including the value 0 in the set D∗

t )
but the improvements are usually not visible in the second
significant digit of the compression ratio.

Some typical statistics of depth map images are shown in
Table I. The number of patches (in four connectivity) is given
in the 6th column (varying between 4000 and 10000). Couple
of thousands patches contain just one pixel (column 7), a
similar number of patches contain from 2 to 9 pixels (column
8) and only a few tens of patches are larger than 1000. The
number of patches with just one neighbor (engulfed inside
their neighbor patch) are shown in column 12, and the number
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Fig. 11. Ratio of the compressed sizes achieved by each variant of the
CERV methods, with respect to the compressed size obtained by the high-
compression method, CERV-HiCo, which is taken as a reference.
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Fig. 12. Encoding time for CERV-FAST, CALIC, PWC, and LOCO-I, over
the Middlebury dataset.

of patches with more than 32 neighbor patches are shown in
column 17.

The algorithm for compressing crack-edges using 2D con-
texts is illustrated by presenting its inner variables, and also
is compared against compression by chain-codes in Table II.
The number of active crack-edges (in column 5) varies from
a quarter to one tenth of the total number of crack-edges.
The number of crack-edges which result deterministically from
their contexts (in column 6) is in the range of 35%-47% of
the total number of crack-edges and the number of horizontal
crack-edges which are encoded in the context 0 (having Th

as a full zero vector) is in the range 12%-27%. We notice that
the higher the proportion of crack edges having a deterministic
context or Context 0, the better the compression of the
crack-edges information (given in codelength for encoding
crack-edges divided by the number of pixels in the image,
in column 3 of Table II). Compression by chain-codes is
illustrated in the last two columns, which show a very poor
compression performance when compared to encoding using
the 2D contexts. An explanation of the poor performance is
the very large number of anchors needed as a header before
transmitting the chain-codes; in particular, the 3OT chain-
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codes require only 3 symbols, resulting without any entropy
coding at about log2(3) = 1.58 bits per active link, while
with the sophisticated context coding of [23] the cost reduces
to about 1.1 bit per link. However, transmitting the very
high number of needed anchors for the chain-codes raises
the average cost to 1.4 or even 1.9 bits per active crack-edge
(shown in column 10 of Table II).

The compression of depth value for each patch is illustrated
in Table IV, where are given some statistics about the encoding
process for the depth values. The patches are enumerated in
the order of reaching them in row-wise scanning. The second
column shows the ratio of the number of local patches over
number of global patches (for each local patch CERV-Fast
algorithm encodes the depth value, being less efficient than
CERV-HiCo). The relative frequency of using each context
(m(iC) is the number of occurrences of context iC in all
patches nP ) is shown in columns 3 − 8 and the average
codelength per pixel when encoding in each context (including
the cost for encoding the switching St) is shown in columns
9 − 14. The resulting codelength for patches per pixel is
shown in 15th column, which added to the 16th column,
representing the codelength for crack-edges per pixel, gives
the total codelength per pixel for the depth image, in column
17th, hence columns 15 − 17 are showing the split of the
total necessary bitrate between coding crack-edges and coding
depth values over patches.

In Figures 10-12 we present compression results over the
whole dataset Middleburry. In Figure 10 we show the compres-
sion by CERV-HiCo, CERV-Fast, PWC [1], CALIC [35], and
LOCO-I [36], where for better readability we order the images
so that CERV-HiCo compression ratios are increasingly sorted
over the group with full size resolution. The compression of
the Fast and HiCo variants are not very far apart, and both
are consistently better than the results of PWC, followed at
a larger distance by CALIC, which in turn outperforms the
LOCO-I results.

In Figure 11 we show the ratio between the compressed
sizes obtained by the four CERV variants: CERV-HiCo, which
is taken as a reference, achieves best compression for all files,
CERV-Fast produces the largest compressed sizes, but is much
faster than the other variants, and finally CERV-2 and CERV-3
are shown for clarifying the relative merit of the different steps
in Algorithm A. The least favorable result of the fast variant
is at 6% of the result of HiCo variant, but for most files the
differences are less than 3%.

The encoding and decoding times of the CERV-Fast are very
similar, since the compressor is almost symmetric. In Figure
12 are presented the encoding times for CERV-Fast over all
Middlebury set, which are largely similar to the compression
time of CALIC, while PWC is almost twice faster, while
LOCO-I is several times faster. The tests were performed on a
64-bit system with 8 GB of memory and one Intel-i7 processor
at 2GHz. The implementation of the most complex variant,
CERV-HiCo, was not optimized for fast execution and is about
three-four times slower than the CERV-Fast variant (results not
shown). Also, in Table V are shown compression results over
a subset of Middlebury dataset, from right view, comparing
with results reported in previous publications or obtained with

R1. Input: The image {Di,j}. Output: The image {Zi,j}.
R2. Find the regions {R`} of the original image {Di,j}.
R3. For each region R` find its size in number of pixels, |R`|, and

the counts N0(R`) of how many times the horizontal context
Th(Hi,j) = 0 appears in the region.

R4. Preserve large enough regions: For all regions with N0(R`) ≥
θ1 set Zi,j = Di,j for all (i, j) ∈ R`.

R5. Re-quantize the values inside small regions: For all regions with
N0(R`) < θ1 set Zi,j = θ2bDi,j/θ2e for all (i, j) ∈ R`.

R6. Find new region borders and optimally assign the depth value
inside them: Find the regions {R′`} of the image {Zi,j}. Find
the average of the values Zi,j in each region R′`, round to closest
integer the number and set all Zi,j in this region to this value.

Fig. 13. Algorithm RQ (θ1, θ2) for generating a lossy version of the original
image, by preserving all regions in which the horizontal context Th(Hi,j) =
0 appears more than θ1 times, while for all pixels outside these regions, by
quantizing the depth values with a quantization step θ2, splitting the resulting
image into constant regions, and setting optimally the depth value in each
region, to the rounded average of the values in the region.

public programs, showing again the consistent performance of
CERV-HiCo as the best of the methods, followed closely by
CERV-Fast, while all other methods have lower compression
factors. One can observe a number of regular features in
Figure 10 and Table V. The compression factors obtained for
full resolution images are much higher (in the range 25-65)
than the compression factors obtained for small size images
(in third resolution one obtain about half the compression
factors of the high resolution). One can also notice that
difficult images, where the general compressors obtain low
compression factors, remain relatively more difficult also for
the specialized depth compressors.

The sequences of depth map images Ballet and Break-
dancers (in the view camera 0) have each 100 frames and we
show in Table VI the average results over 100 frames, obtained
by CERV, PWC, CALIC, and LOCO-I when encoding each
frame independently (intra-mode) and also shown are results
with the intra-schemes from [4] and [8]. Ballet and Break-
dancers are similar ”natural” depth images, while in the se-
quence Beer-garden the background is generated synthetically,
making the intra-coding of it quite inefficient when compared
to inter-coding. We use a very simple preprocessing along the
sequence, by subtracting the current frame from the previous
one and encoding the difference image by CERV, and the other
lossless compressors. The results are shown for the first 100
frames of the sequence in Table VI, where we also show the
results obtained for Beer-garden sequence with inter-coding
schemes reported in [4] and [8].

In the file with additional results we present the complete list
of results for all the images, frames, and view-points available
in the mentioned data-sets. The CERV variants outperformed
the CALIC and LOCO-I results for all 1862 tested images.

B. Utilizing CERV as an entropy coder for lossy depth map
compression

In order to illustrate the potential usefulness of CERV
beyond the lossless compression application discussed in the
previous sections, we present a scheme where CERV can
be used for the compression of several lossy versions of an
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TABLE V
COMPRESSION RESULTS OF CERV, EXPRESSED AS original size / compressed size, COMPARED TO RESULTS OF PREVIOUS METHODS.

Image Format CERV-HiCo CERV-Fast PWC CALIC LOCO-I NCV Bit-plane-based
[1] [35] [36] [7] + JBIG [5]

Art 1 40.12 39.30 37.71 28.09 12.08 33.06 30.38
Dolls 1 27.17 26.65 25.26 20.58 10.66 22.49 22.67

Lampshade 1 47.78 46.92 45.17 37.65 16.14 42.76 41.74
Moebius 1 38.73 37.94 36.40 29.51 14.78 33.21 31.41
Plastic 1 66.34 64.93 62.15 57.15 16.64 57.62 58.04

Reindeer 1 36.94 36.20 34.80 28.86 12.41 32.25 31.29
Art 1/2 21.91 21.44 20.22 15.79 8.01 18.74 16.77

Dolls 1/2 14.69 14.32 13.47 11.56 7.28 12.00 12.44
Lampshade 1/2 25.91 25.32 23.94 20.55 10.66 23.33 22.96

Moebius 1/2 20.77 20.25 19.11 16.56 9.94 18.03 17.19
Plastic 1/2 34.56 33.65 30.91 30.04 11.60 29.30 30.96

Reindeer 1/2 20.94 20.40 19.04 15.71 8.72 17.85 17.42
Art 1/3 16.12 15.75 14.58 11.45 6.26 13.93 12.04

Dolls 1/3 10.38 10.13 9.44 8.50 5.88 8.50 8.95
Lampshade 1/3 20.10 19.69 17.90 15.65 8.86 17.81 17.23

Moebius 1/3 15.25 14.88 13.74 12.11 7.93 13.14 12.60
Plastic 1/3 26.38 25.62 22.75 23.54 9.69 22.43 23.92

Reindeer 1/3 15.59 15.23 14.02 11.82 7.50 13.08 12.95

TABLE VI
COMPARING THE COMPRESSION RESULTS OF CERV, EXPRESSED AS BITS PER PIXEL (BPP), TO RESULTS ON THE SEQUENCES BALLET, BREAKDANCERS,

AND BEER-GARDEN PREVIOUSLY REPORTED IN LITERATURE OR OBTAINED WITH PUBLIC PROGRAMS.

Initial CERV-HiCo CERV-Fast PWC CALIC LOCO-I Modified CABAC on CABAC on Bit-plane-based
[1] [35] [36] H.264/AVC [8] H.264/AVC [4] [4]

bpp bpp bpp bpp bpp bpp bpp bpp bpp

Breakdancers 8 0.338 0.353 0.370 0.428 0.765 0.366 0.692 0.474
Ballet 8 0.289 0.302 0.317 0.383 0.750 0.346 0.627 0.437

Beergarden 8 0.102 0.104 0.106 0.115 0.170 0.586 0.175 0.155

original image. We use the Algorithm RQ, shown in Figure 13,
to generate lossy versions of the original image, suitable to be
encoded very efficiently by CERV. The goal is to simplify the
original image, by preserving the large patches as they are, and
by re-quantizing the depth values located in smaller patches,
so that fewer contours and constant regions are formed after
re-quantization. When deciding which patches to preserve, one
can compare with a threshold either the number of pixels
enclosed by the patch, |R`|, or the number of occurrences
N0(R`) of the context Th(Hi,j) = 0 inside the patch. The
later was found to produce better results for the range of PSNR
smaller than 70 dB, while the former is used to produce images
with PSNR higher than 70 dB, using the threshold θ1 in the
range 2 to 14.

The algorithm, shown in Figure 13 involves simple selection
operations of the large patches of the image, followed by
quantization of the rest of the image with a uniform quantizer.
The threshold θ1, at which we select the patches to be
preserved, is changed from one image to another, with values
varying between 1 and the largest value of N0(R`), while the
quantization step θ2 is varying between 1 and 4 for all these
selection of patch sizes. When the threshold θ1 is so large
that no patches will be preserved in {Zi,j}, the whole original
image is re-quantized; in this case we use quantization step
θ2 between 5 and 14.

Each lossy image is then encoded by CERV and results in a
point in the rate-distortion plane. After all points are obtained,
we remove any point (PSNRi, Li) performing strictly worse
than another existing point, (PSNRj , Lj) (i.e., if Li > Lj

and PSNRi ≤ PSNRj). The remaining points in the RD

plane form a smooth curve, which is plotted with square
marked blue lines in Figure 14. Also shown, for the same lossy
approximation images, are the results of PWC coder. Although
the presented method for obtaining lossy approximations is
not using advanced optimization techniques, the results of
RQ+CERV, and even of RQ+PWC show very competitive
results, being the best of all other tested methods for PSNR
larger than 50-60 dB, and in the case of Aloe image the
performance is the best over the whole rate range, except a
single point where the method from [38] gives slightly better
results.

The topic of lossy compression using results of CERV can
be further investigated, to include a more involved optimiza-
tion when generating the approximation images. However,
from the presented results one can see that CERV is a very
effective entropy coder of the suitable approximations of
the original image for a wide range of rates, its use being
promising also in lossy compression.

VIII. CONCLUSIONS

The introduced CERV algorithms are shown to consistently
take better into account the specificities of depth map im-
ages when compared to recent methods specifically designed
for lossless depth coding, and compared to the established
algorithms CALIC and JPEG-LS for general lossless image
compression. CERV performs better for depth images also
when compared to the algorithm PWC, which was specifically
designed for palette images. The similarities and differences
between PWC and CERV algorithms are discussed, clarifying
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Fig. 14. Rate-distortion plots for lossy compression by several methods and
by the simple RQ-CERV and RQ-PWC described in Section VII for all images
from [30]. The losses compression values obtained by CERV and PWC are
marked by vertical lines. The results from [30] are also cited here. The images
are: Aloe (full resolution, view 1), Ballet (camera 0, frame 96), Bowling (full
resolution, view 1), and Breakdancers (camera 0, frame 0).

the different ranking of the two methods for the type of images
for which they are intended.

In lossless mode, typical average codelengths obtained by
the coding scheme are about 1.1-1.4 bits per active crack-edge
and about 2-2.7 bits per depth value of a patch, resulting in
an overall compressed size of about 0.2-0.8 bits per pixels,
or, equivalently, in reductions of the original image size of 10
to 65 times, depending on the density and shape of contours
in the image. The usage of CERV as an entropy coder in a
lossy compression scheme is illustrated using a very simple
mechanism for generating lossy images, resulting in a lossy
compressor having very good performance for the high PSNR
range.
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Lossy Depth Image Compression using Greedy
Rate-Distortion Slope Optimization
Ionut Schiopu∗, Student Member, IEEE, Ioan Tabus, Senior Member, IEEE

Abstract—We introduce a method to create lossy versions of
one image, either by successively merging the constant regions of
the original image, or by iteratively splitting the regions from a
created lossy image using horizontal or vertical line segments.
Merging and split decisions are greedily taken, according to
the best slope towards next point in the rate-distortion curve.
For each created lossy image, the region contours and the
optimal depth values can be entropy coded in three ways: with
a new algorithm, or with two existing lossless coding algorithms.
The obtained results compare favorably with the existing lossy
methods.

EDICS Category: IMD-CODE Image/video coding and
transmission

I. INTRODUCTION

THE next generation technologies in the entertainment
field are the 3DTv and the free-view point video (FFV),

in which an important role has the compression of depth map
images and sequences. Consequently, depth image compres-
sion is an active field, with many potential applications.

Lossy depth image compression was proposed in the past
using several approaches. A first approach is to obtain a de-
composition of the depth image using a binary tree triangular
decomposition [1], or a quad-tree decomposition of the depth
image with a wedgelet and platelet based approach that fills
regions [2]. A second approach is to obtain a segmentation of
the images: in [3] a segmentation of the color image is used
for segmenting the depth image; in [4] the method starts from
an over-segmented depth image and merges regions according
to the average depth value for each region and the number of
objects assumed to exist in the depth map; in [5] the depth
image is segmented into objects, and the contour and the depth
of the objects are compressed using various methods; in [6],
[7] the image is compressed by two image pyramid structures,
one for arc breakpoints and other for sub-band samples.

The letter presents an algorithm that generate sequences of
lossy depth images for the full range of rates and proposes
suitable entropy coders. The algorithm is not scalable, however
suitable modifications can make it scalable by decreasing the
performance. We show how to iteratively generate sequences
of depth images using a greedy best slope criterion by merging
regions, Subsection II-A, or splitting regions, Subsection II-B.
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Suitable entropy coding procedures are presented in Subsec-
tion II-C. Obtained results for compressing commonly used
depth images are presented in Section III.

II. DESCRIPTION OF THE GREEDY SLOPE OPTIMIZATION
(GSO) METHOD

In the GSO method we construct two sequences of lossy
images, each image being composed of connected regions,
and each region having the same reconstructed depth value.

The first sequence starts with the original image, partitioned
into its constant connected components, and the next lossy
images are generated by merging at each step the two regions,
for which the slope of the rate-distortion (RD) curve is optimal.
The greedy merging process results in a good trade-off rate-
distortion for the medium and high rates, until the number
of regions is in the order of tens. The most important image
contours of the initial depth image are contained by the last
lossy images in the sequence, any of them can be selected
to define the template for the second phase. This first phase
sequence ends with a lossy image with only two regions.

The second sequence of lossy images is obtained starting
from the chosen template, and advances by splitting the
regions, using horizontal or vertical line segments. For each
obtained lossy image we encode the contours of the regions
and the depth value of each region using entropy coding. In
general the contours of the regions are encoded using chain-
codes, except the straight line segments which are encoded
more efficiently according to their position inside a region.

Each depth image, Z, is a matrix with nr rows and nc
columns. An integer Z(x, y) ∈ {0, 1, . . . , 2B−1} is stored
for each pixel (x, y), using B bits, representing the distance
between the camera lens and a point in the scene. In this letter
we illustrate the method over images containing integers stored
using B = 8 b.

A. GSOm: GSO with region merging

We denote Z the current lossy reconstruction of the original
depth image Z0, and explain how the next image in the
sequence, Z ′, is constructed.

The image Z is partitioned as ∪nΩ
i=1Ωi, where each of the nΩ

regions is a set of pixels connected in 4-connectivity. Initially,
the partition of Z0 includes all maximal constant regions in
the image. A maximal region Ωi has the same depth value di
for all its pixels, and every pair of neighboring regions has
distinct depth values. The partition into regions is efficiently
encoded using the 3OT chain-code representation of the crack-
edges separating the neighboring pixels belonging to different
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regions [8]. For each pair of neighboring regions (Ωi,Ωj)
their common contour segment is denoted Γi,j , formed of 3OT
chain-codes. The partition is encoded using the sequence of
chain-codes Γ(Z), which is the union of all Γi,j .

The next image in the sequence, Z ′, is obtained from Z, by
merging the pair (Ωi∗ ,Ωj∗). The new partition is specified by
the contours Γ(Z ′), having one segment less, Γ(Z ′) = Γ(Z)\
Γi∗,j∗ . For brevity the pairs of region indices are denoted p =
(i, j). When merging two regions we aim at getting the best
trade-off between the estimated saving of bits ∆R, due to not
encoding Γp, and the increase in distortion ∆D, due to having
a poorer reconstruction in the common region Ω′` = Ωi ∪Ωj .
The unique depth value d′` is optimally set as rounded mean
value of the depth inside the region Ω′`. In the rest of the letter
the reconstructed depth for Ωi or Ω′i is di or d′i respectively.

In order to select the optimal merging we evaluate ∆R by
using a model for the contour codelength, C(Γp) = C1 ·L(Γ),
where C1 is a constant representing the cost of encoding
a chain-code link and L(Γp) is the number of links in the
contour Γp. In this letter we used C1 = 1.5 b and for the cost
of encoding a depth value we have used the estimate C2 = 8
b. The actual entropy coding will produce slightly different
values, but they are not known at this stage. We estimate the
rate variation, ∆R, when we eliminate the contour Γp:

∆Rp = C1 · L(Γp) + C2. (1)

The change in distortion ∆D = MSE(Z ′) − MSE(Z)
depends only on the regions involved in merging: Ωi ∪Ωj →
Ω′`, due to the iterative nature of constructing the images Z
and Z ′. In order to evaluate efficiently ∆D, we introduce for
any region Ωk with mk pixels the following variables: the sum
of original depth values φk =

∑
(x,y)∈Ωk

Z0(x, y), the sum of
squared depth, ϕk =

∑
(x,y)∈Ωk

Z0(x, y)2, and the sum of
squared reconstruction errors ρ(Ωk) =

∑
(x,y)∈Ωk

(Z0(x, y)−
dk)2 = ϕk − 2φkdk + mkd

2
k, resulting in the mean square

error over the region MSEk = 1
nrnc

ρ(Ωk) and MSE(Z) =∑nΩ

k=1MSEk. The merging of the pair of regions (Ωi,Ωj)
has the following consequences: the contour Γp is removed; a
new region Ω′` is created, having the variables m′` = mi+mj ,
φ′` = φi+φj , d′` = b φ

′
`

m′
`
e; a change in distortion is introduced:

∆Dp =
ρ(Ω′`)
nrnc

− ρ(Ωi) + ρ(Ωj)

nrnc

=
m′`d

′2
` −mid

2
i −mjd

2
j + 2(diφi + djφj − d′`φ`′)
nrnc

. (2)

The pair of regions to merge, (Ωi∗ ,Ωj∗), is chosen from all
available pairs of neighbor regions, by greedily minimizing
the slope between the points Z and Z ′ in the RD plot (Fig.
1(a)), i.e. by choosing the pair p∗ = (i∗, j∗), for which

λp = tanαp =
∆Dp

∆Rp
(3)

is minimum, resulting in the smallest slope λ∗ = tanα∗.
Although the number of available pairs of neighboring

regions nΓ in the image Zk (the same as the number of contour
segments at the current step) is large for the first images, when
moving from Zk to Zk+1 the value of λp will not change,

except for the pairs formed by the new region Ω′` with its
neighbors. To avoid making updates after each merging step,
the values of λp for all possible region pairs are sorted increas-
ingly in the vector λ = [λp1

, λp2
, . . . , λpnΓ

], corresponding to
the list of pairs of regions truncated to the first nM pairs,
[(i1, j1), (i2, j2), . . . , (inM

, jnM
)]. The pairs from the list are

marked for merging, starting from the first and continuing
sequentially, except for pairs (ik, jk) having either ik or jk
an element in an earlier pair (ik−τ , jk−τ ). Additionally, when
the size of a region Ωik is smaller than three pixels, the index
jk is allowed to appear in following marked pairs. In this
letter we used nM = 100, if nΩ/σ > 100; nM = bnΩ/σc, if
1 ≤ nΩ/σ ≤ 100; and nM = 1, if nΩ/σ < 1; where σ = 10.

For obtaining operating points in the RD curve near the
lossless rate, we apply a different method, not by merging
regions, but by modifying slightly the contours as follows: if
at least three neighbors of a current pixel with depth di, have
the same depth value, dj , and if |di − dj | ≤ 2, then we set
the depth value of the current pixel as dj . The process is done
column-wise sequentially and intermediate images are stored
along the process when MSE reached an empirically selected
value, so that ∆PSNR ∈ [3, 7].

B. GSOs: GSO with region splitting

For the second phase (GSOs), we start from one of the
images obtained in GSOm, where the number of regions is
small (here we used templates with two and nine regions) and
call this image a template, Ztempl = Y0 (see Fig. 1(a)). From
each such template, which corresponds to very low bitrates in
the RD curve obtained for GSOm, we create a sequence of
images, Y0, Y1, . . . , where the regions of the image Yk are
further split with horizontal or vertical lines to obtain the
regions of the image Yk+1. To recreate the contour at the
decoder we first encode the contours of Y0, the same way
as for GSOm, and additionally we encode: the decisions to
split or not a region; the orientation (vertical or horizontal);
and location of the line segment for each decided split.

The image Yk+1 is obtained from the image Yk, by fixing
a target slope, λk+1, and splitting all the regions iteratively,
starting from the regions of Yk until no more splits are allowed
at given slope λk+1, as explained below. The decisions to split
form a binary tree, traversed in depth-first order. The greedy
decisions are choosing between splitting with a vertical line
segment at a position J or a horizontal line segment at position
I from all possible positions determined by the boundaries of
the region Ωi (Imin ≤ I < Imax, Jmin ≤ J < Jmax). The
resulting regions are denoted ΩIi1 and ΩIi2 , for horizontal splits,
while ΩJi1 and ΩJi2 , for vertical splits.

The criterion to be maximized is the slope, in the RD plot,
from the set of slopes for all possible splits:

Ψ =
{

∆Dh(I)
∆Rh(I)

}
Imin≤I<Imax

⋃{
∆Dv(J)
∆Rv(J)

}
Jmin≤J<Jmax

,

where the changes in distortion are evaluated as ∆Dh(I) =
ρ(Ωi)−ρ(ΩIi1)−ρ(ΩIi2), ∆Dv(J) = ρ(Ωi)−ρ(ΩJi1)−ρ(ΩJi2),
and the additional rate is estimated as ∆Rh(I) = C3 +
log2(Imax − Imin), ∆Rv(J) = C3 + log2(Jmax − Jmin) for
horizontal, respectively vertical split. The constant C3 includes
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the cost of an additional depth value needed after the split
and the cost for encoding the decision. In this letter we use
C3 = 8 b, although the true encoding process uses adaptive
Markov modeling and obtains better rates, but the choice of
C3 was found to not influence the results too much. If the
maximum slope λ∗ from the set Ψ is higher than the target
slope, λ∗ > λk+1, we split the region with a horizontal or
vertical line segment, by encoding the decision and the row or
column index selected according to the maximum slope λ∗.
The decisions at each region are represented with the variable
ξ as follows: ξ = 1 for no-split decision (λ∗ ≤ λk+1); ξ = 2
for vertical split; and ξ = 3 for horizontal split. The sequence
of variables ξ collected along the split process at the encoder
is transmitted to the decoder who can reproduce the splitting
process. The variables ξ are encoded using order two adaptive
Markov arithmetic coding.

If ξ = 1, we compress d` using the up and left neighboring
region values (see Subsection II-C). If ξ = 2, we compress the
row index I∗ using log2(Imax − Imin) bits, split the current
region into two regions having same column indices and the
following row indices: [Imin, I

∗] for ΩIi1 ; [I∗ + 1, Imax] for
ΩIi2 . The case ξ = 3 for compressing and performing the
vertical splits is similar to the previous case. The process
continues by applying the algorithm first for Ωi1 and all its
descend regions, until no more splits occur in this branch, and
only then Ωi2 is processed similarly.

For minimizing the distortion, the reconstruction value in
each region is assigned as follows: the depth value d` − 1 is
set for the first line and the first column of the current region
if the neighboring region value di is di < d`; similarly it is
set to d` + 1 if di > d`. For a better compression the true
contour is smoothed as in Subsection II-A, this time using the
constraint |di−dj | < γ, where γ increases until the value 100.

In Fig. 1(a) we present a RD plot that illustrates the
principle of the method, using real points corresponding to
the generated sequences of lossy images for Breakdancers
(including also JPEG2000 results), and the angle α∗ that
minimized the slope λ∗ for generating the next image Z ′. Fig.
1(b) shows an example of segmentation for a lossy image from
GSOs, using the template with nine regions, for the initial
image Breakdancers, compressed at 0.039 bpp and having
PSNR = 45.215 dB. In Fig. 1(b) can be seen the two types
of contours: straight lines (vertical and horizontal) and non-
straight true object boundaries. In our experiments we combine
the RD curves S1 (obtained when starting from the template
having nine regions) and S2 (having a starting template with
two regions). The transition from S1, which is better in the
range of rates [0.025 , 0.1] bpp, to S2 is performed empirically
around the point having the slope λ = 200.

C. Entropy coding

For compressing the contour for the sequence of images
Z1, Z2, . . ., we used a similar algorithm as in [8], to which
we added improvements regarding the searching of the next
position of the contour. The encoder transmits a matrix con-
taining anchor points and junction points for 3OT chain-codes,
and the all 3OT chain-codes. Here we modified the order in

which the 3OT segments are concatenated, obtaining a better
compression by using the following approach: start generating
a new 3OT chain code segment by choosing the next link with
the priority list: right, up, left, down. We refer to [8] for the
detailed algorithm of encoding the region contours.

For encoding the depth values from the sequence of images
Z1, Z2, . . ., we use the method presented in [9], where the
depth value of a current region, di, is encoded using its
position in the list of possible depth values, ζ, generated using
the known values d of the neighboring regions. The contour of
Zk is obtained using 3OT chain-codes which guarantees that
di /∈ d. The initial algorithm excludes d from ζ, therefore di
is encoded using ζ ′ = ζ ∩ d. This entropy coding method for
contours & depth values is dubbed Chain-Code–Value (CCV).

For encoding the depth values from the sequence of images
Y0, Y1, . . ., a modified version of the algorithm is used: di is
compressed using the up and left neighboring region values,
and because the horizontal and vertical lines do not guarantee
di /∈ d, di is encoded using ζ (not ζ ′). We denoted this
modified algorithm Chain-Code-Line–Value (CCLV).

III. EXPERIMENTAL RESULTS

In this letter we present comparative results for six com-
monly used depth images: Breakdancers, frame 0 of cam0
from breakdancers dataset [10]; Ballet, frame 96 of cam0 from
ballet dataset [10]; Art, Aloe, Baby1 and Bowling1, full-size
resolution, left view (disp1.png) from Middlebury dataset [11].

The algorithms were implemented in C. For the arithmetic
coding routines we used the implementation from Witten et al.
For GSOm a new lossy image is saved when ∆PSNR > 0.5
dB between two consecutive lossy images or if nΩ < 10;
while for GSOs, 50 values (selected empirically) are used for
the stop criterion λk so that ∆PSNR > 0.1 dB. Regarding
the runtime, the current not optimized version of the method
generates the last image for GSOm in 1.2 s for Breakdancers
(1.9 s for Aloe) and compress a Yk image in less then 0.65 s.

In Fig. 1(c)-(i)1 the GSOm sequence is compressed us-
ing three entropy coders: CCV; a recent algorithm for loss-
less compression of depth image, Crack-Edge-Region–Value
(CERV) [9]; a palette image coder, the piecewise-constant
image model (PWC) [12]; the GSOs sequence is compressed
using CCLV. The results are compared also with: the Platelet
algorithm [2]; an algorithm which uses color information
[3], denoted here ”Color & Depth”; the Breakpoint Geom
algorithm [6]; the ”Proposed 80” algorithm from [7], denoted
here ”P80”; H.264 from [6] and [7]; our previous results [8];
the JPEG2000 standard. The Fig. 1(d) shows the results for
the Breakdancers image for low bitrates, below 0.12 bpp.
The figure shows that GSOs + CCLV and entropy coding
the GSOm sequence obtain the best results comparing with
other algorithms listed above. The CCV algorithm is not the
best lossless compressor but under 65 dB obtains the best, or
similar, results comparing with the CERV algorithm.

IV. CONCLUSIONS

The GSO algorithm presented in this letter uses the greedy
slope optimization for generating sequences of lossy images

1For more results and some lossy images see www.cs.tut.fi/~schiopu/GSO
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Fig. 1. (a) The rate-distortion points corresponding to the sequence of lossy images for Breakdancers: GSOm, with blue; GSOs, with red; JPEG2000 with
cyan. From the generic image Z to the next image Z′ the merging pair is chosen so that the angle α is minimized, obtaining α∗ and corresponding slope
λ∗. (b) Segmentation for a lossy image from GSOs, using Ztempl with nine regions, for the initial image Breakdancers, at Bitrate = 0.039 bpp, PSNR
= 45.215 dB. (c)-(i) PSNR vs Bitrate plots for the two sequences, GSOm and GOSs, compressed using the entropy coders: CCV, CCLV, CERV, and PWC,
and results previously reported in literature, for a set of 6 images. For each plot the listed BD-PSNR [13] values are showing the average improvement in
PSNR of GSOm + CCV (GSOs + CCLV) with respect to the best previously reported method, which is named Reference Method.

by merging (GOSm) or splitting (GOSs) regions. The results
showed that the compression of the sequences using suitable
entropy coder (CCV/CCLV, CERV, PWC) obtains better re-
sults over the full range of bitrates, when compared with
previously reported results in literature.
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ABSTRACT

The paper deals with encoding the contours of given regions in an
image. All contours are represented as a sequence of contour seg-
ments, each such segment being defined by an anchor (starting) point
and a string of contour edges, equivalent to a string of chain-code
symbols. We propose efficient ways for anchor points selection and
contour segments generation by analyzing contour crossing points
and imposing rules that help in minimizing the number of anchor
points and in obtaining chain-code contour sequences with skewed
symbol distribution. When possible, part of the anchor points are ef-
ficiently encoded relative to the currently available contour segments
at the decoder. The remaining anchor points are represented as ones
in a sparse binary matrix. Context tree coding is used for all entities
to be encoded. The results for depth map compression are similar
(in lossless case) or better (in lossy case) than the existing results.

Index Terms— Lossless and lossy compression, contour com-
pression, anchor points, depth map

1. INTRODUCTION

Depth compression has an important role in the multi-view compres-
sion for the 3D Television (3DTV) and Free Viewpoint Television
(FTV). In high quality view synthesis, the use of lossless compressed
images is important for eliminating the artifacts in depth map image
based rendering technologies.

In lossless compression several approaches were proposed: im-
age block splitting and Gray coding of bit planes for binary compres-
sion schemes [1], H264/AVC standard modification for depth maps
[2], palette images coder with good results for depth maps [3]. In
[4], the contour encoder uses a different contour segments generator
than the proposed method. The best performance is shown by [5],
where the contours are encoded using 2D contexts.

In lossy compression there are numerous approaches: triangu-
lar image decomposition by binary tree [6], quad-tree decomposi-
tion with a platelet based approach for region filling [7], two im-
age pyramid structures for arc breakpoints and sub-band samples
[8], a reduced image resolution and an up-sampling algorithm [9,
10]. Texture and color correlation is studied in [11], where a joint
depth/texture coding scheme is used, and in [12], where texture seg-
mentation is used for depth map segmentation. In [13], lossy ver-
sions of a depth map are created by either merging or splitting re-
gions, and are compressed lossless.

Our method uses the approach of finding in an image all maxi-
mal regions containing 4-connectivity pixels, and encoding the con-
tours and the depth value inside each region. The method is focusing
on encoding the contour using an efficient way for generating con-
tour segments, represented using their anchor points and chain-code
strings. Section 2 presents the rules for traversing the contour, and

the anchor point selection. Section 3 presents deterministic schemes
for chain-code symbols changing, and coding scheme for entities to
be encoded. Section 4 presents experimental results for lossy and
lossless compression. Section 5 draws the conclusions.

2. ANCHOR POINTS CODING (APC)

A depth map is a matrix I of size nr × nc, with the integer Ix,y
representing the depth for each pixel position (x, y). The proposed
method finds all connected regions Ωk of pixels with equal depth,
and encodes the contour and the depth value of each region. A region
Ωk containing connected pixels in 4-connectivity can be formally
defined as: for ∀(x, y) ∈ Ωk and ∀(xi, yi) ∈ {(x + 1, y), (x −
1, y), (x, y + 1), (x, y − 1)}, if Ix,y = Ixi,yi , then (xi, yi) ∈ Ωk.

The contour map is the union of all contour edges that form the
regions contours. One contour edge separates two neighboring pix-
els belonging to two different regions. The contour map is stored in
a graph having vertices placed in a (nr + 1) × (nc + 1) contour
grid, where the graph edges represent the contour edges. A vertex is
denoted by P = (i, j), where (i, j) are contour grid coordinates. If
in the image grid Ii,j 6= Ii,j+1, then in the contour grid a contour
edge is introduced between the vertices (i, j+1) and (i+1, j+1).
If Ii,j 6= Ii+1,j , then a contour edge is introduced between the ver-
tices (i+ 1, j) and (i+ 1, j + 1). Two vertices are adjacent if there
is a contour edge between them. A contour segment is ‘drawn’ as a
vector Γk = [P1 P2 · · · PnΓk

]T of nΓk adjacent vertices.
The 3OT chain-code representation [14] codify each Γk by a

vector Sk = [s1 s2 · · · snΓk
−2]

T , where si is a 3OT sym-
bol that encodes: 0 for ‘go forward’, 1 for ‘change orientation’,
and 2 for ‘go back’. A symbol si encodes a current vertex Pi+2

relatively to the previous two vertices: Pi and Pi+1. Hence, P1

and P2 are needed in order to reconstruct Γk. The chain-code vec-
tors are concatenated for coding in a long vector of 3OT symbols
S = [ST

1 ST
2 · · · ST

nΓ
]T .

We call here anchor point the first vertex in each Γk. The coding
of the anchor points is our main focus. Our method offers solutions
to generate the set Γ = {Γk}nΓ

k=1, which represents the entire con-
tour map, in such a way that we have a small number, nΓ, of contour
segments (since the anchor points are very expensive to code), and a
maximum number of symbols 0 and a minimum number of symbols
2 in S for an efficient coding of 3OT chain-codes.

A summary of the generating procedure for the set Γ and the
anchor points selection is as follows:

(a) Search column-wise (see Section 2.2) for the next anchor
point (i, j) (a vertex having unvisited adjacent vertices), and mark it
in the matrix of anchor points Υ(i, j) = 1 (see Section 2.3).

(b) Generate the contour segment Γk starting from the anchor
point, using the rules form Section 2.1, and ending in a vertex with



Directive T1. When a P 3
k vertex is reached, the next vertex is

selected so that next encoded chain-code symbol is si 6= 0.
Directive T2. When P 3

k = (i, j) is reached if (i − 1, j) and
(i + 1, j) are unvisited adjacent vertices, then visit (i + 1, j)
(if (i, j − 1) and (i, j + 1) are unvisited, then visit (i, j + 1)).
Directive T3. When a P 4

k vertex is reached, the next vertex is
selected the one that generates a chain-code symbol 0.
Directive T4. When a Pk vertex with already three visited ad-
jacent vertices is reached, the remaining vertex, Pj , is adjacent
if a chain-code symbol 0 moves from Pk to Pj . If so, the de-
coder knows that Pk = P 4

k and go visit Pj (without encoding
the 0 chain-code), else Pk = P 3

k and Γk ends.

Directive C1. When Pk = (i, j) is reached, if the next adja-
cent vertex to visit is Pk+1 = (i− 1, j) or Pk+1 = (i, j − 1),
then Pk+1 is not an anchor point.
Directive C2. When Pk+1 is reached and Pk−1 = (i, j), if the
next adjacent vertex to visit is Pk+2 = (i − 1, j) or Pk+2 =
(i, j − 1), then Pk+1 is not an anchor point.

Fig. 1. The set of APC directives to be used when reaching a vertex
either in a Γk or as an anchor point. Directives T1-T4 are used for
generating contour segments by traversing from a vertex to one of
its selected unvisited adjacent vertex. Directives C1-C2 are used to
check if a vertex is not a possible anchor point position.

no unvisited adjacent vertices. While traversing Γk, check each ver-
tex if it is a possible anchor point (see Section 2.2), and save the
found presumptive anchor points at the end of the list Ψ of possible
relative anchor points (see Section 2.3). Mark with 2 in the matrix
Υ the remaining vertices in Γk (the anchor point is already marked).

(c) While there are still unprocessed positions ℓ in Ψ, if Ψ(ℓ) is
an anchor point, set the flag of being anchor point, Φ(ℓ) = 1, else
set Φ(ℓ) = 0. Treat any such anchor point as in (b).

(d) Continue with (a) until no more anchor points are found.
(e) Encode S, Φ and Υ, in this order.

2.1. Rules for traversing contour segments

A contour segment Γk is ‘drawn’ by the vertices saved when travers-
ing the contour, in the contour segments generation. Details about
the anchor points search are present in Section 2.2. The Directives T
(see Fig. 1) are used to choose the next adjacent vertex to visit, when
there are more options. In the contour graph, the following types of
vertices can be found:

(a) P 1
k has degree one, and is a contour graph boundary: P 1

k ∈
{(1, j), (nr + 1, j), (i, 1), (i, nc + 1)}. If the adjacent vertex was
visited, then the contour segment ends, else P 1

k is the anchor point
of a contour segment and the adjacent vertex is next to visit.

(b) P 2
k has degree two. If both adjacent vertices are unvisited,

the vertex is a double anchor point (case discussed in Section 2.3),
else Γk continues to the remaining unvisited adjacent vertex.

(c) P 3
k has degree three. When a P 3

k vertex is reached, it can
have: no unvisited adjacent vertices, one unvisited adjacent vertex
to visit (P 3

k is an anchor point), or two unvisited adjacent vertices.
For the last case, if one of the unvisited adjacent vertices is encoded
by si = 0, then Directive T1 is used to select the next adjacent ver-
tex to visit, else Directive T2 is used due to the constraint of search

Fig. 2. All possible ways of selecting the next adjacent vertex to visit
for a P 3

k vertex. An arrow shows the next vertex to visit as part of a
current Γk, a red (black) dot is a visited (unvisited) vertex, and a red
(black) line is a visited (unvisited) contour edge.

Fig. 3. Cases where a chain-code symbol 2 encodes Pk+2. An arrow
shows the next adjacent vertex to visit as part of a current Γk, a red
(black) dot is a visited (unvisited) vertex, and a red (black) line is a
visited (unvisited) contour edge.

for anchor points (see Section 2.3). In Fig. 2, all possible ways of
selecting an adjacent vertex for a P 3

k vertex are shown. The con-
sequences of using Directives T1 and T2 are: (i) a vertex encoded
using si ∈ {1, 2} is a possible anchor point for a contour segment;
(ii) a contour segment with an anchor point P1 = P 3

k has a known
P2 vertex; (iii) the cases shown in Figs. 2(a-d) are impossible.

(d) P 4
k has degree four, and is the crossing of two contour seg-

ments. The first time a P 4
k vertex is reached, Directive T3 is used to

decrease the number of anchor points. The second time a P 4
k vertex

is reached, si = 0 is used to visit the last adjacent vertex, and since
this case is deterministic for the decoder, si is not encoded. Direc-
tive T4 is used to differentiate a P 4

k vertex from a P 3
k vertex, since

Directive T1 was used for a P 3
k vertex.

2.2. Anchor points search

The paper uses the column-wise search for part of the anchor points,
since it guarantees that such a found anchor point P1 = (i, j) has
unvisited adjacent vertices (i, j + 1) and (i + 1, j). The remaining



anchor points are found by checking the list Ψ of possible relative
anchor points. The list Ψ contains all the vertices encoded by a sym-
bol si 6= 0, for which Directives C (see Fig. 1) cannot be used.

Figs. 2(e-l) shows the reason why Directive T2 is used: the
second time P 3

k+1 = (i, j) is reached, the adjacent vertices (i, j+1)
and (i+1, j) are visited, and therefore P 3

k+1 is not an anchor point.
The cases from Figs. 2(f-k) are found using Directive C1. Figs.
2(m-p) shows the cases where P 3

k+1 is a possible anchor point, with
a known P2 position (see Section 2.1).

Fig. 3 shows the cases where a chain-code symbol sk = 2 is
generated. The vertex Pk+1 = (i, j) is not an anchor point in the
following cases: (i) in Figs. 3(a,c) the vertices (i, j+1) and (i+1, j)
are visited the first time Pk+1 is reached; (ii) in Fig. 3(b) Pk+1 may
only be the P 3

k+1 vertex from Fig. 2(b) (impossible case), or from
Fig. 2(h) (not an anchor point); (iii) in Fig. 3(g) Pk+1 may only be
the P 3

k+1 vertex from Fig. 2(c) (impossible case), or from Fig. 2(i)
(not an anchor point). These cases are found by Directive C2.

2.3. Anchor points classification

The information about the anchor points is stored in two arrays ini-
tially full of zeros: Υ, the matrix of anchor points of size nr × nc,
and Φ, the binary vector of flags selecting the relative anchor points
from the list Ψ. The anchor points are classified as:

(a) Edge anchor point, P1 = P 1
k , where P2 is determined as

follows: if P1 = (i, 1), then P2 = (i, 2); if P1 = (1, j), then
P2 = (2, j). These anchor points are stored by setting Υ(P 1

k ) = 1.
(b) Double anchor point, P1 = P 2

k = (i, j), has the vertices
(i, j + 1) and (i + 1, j) unvisited, and any of them can be selected
as P2. We first select P2 = (i, j + 1). If current Γk is not ‘closed’
(P1 6= PnΓk

), then a next contour segment has P1 = P 2
k and P2 =

(i+ 1, j). These anchor points are stored by setting Υ(P 2
k ) = 1.

(c) Relative anchor point, P1 = P 3
k , it is stored in Ψ at the cur-

rent index ℓ. If sk = 1 encodes the next vertex in Γk and Directive
C1 cannot be used (or if sk = 2 and Directive C2 cannot be used),
then: (i) if P 3

k+1 is a relative anchor point, set Φ(ℓ) = 1; (ii) in-
crement ℓ. These anchor points are found using the internal list Ψ
and are encoded by the vector Φ. Hence, any encoded vertex Pk is
signaled in Υ using the symbol 2 (‘ignore position’), if it was not
already marked (i.e. Υ(Pk) 6= 1.).

First two types are found by the column-wise search, and the last
type is found while traversing a contour segment.

3. DEPTH MAP COMPRESSION

The depth map I is compressed using the set Γ and the depth value
for each region. Section 2 showed that APC is coding the set Γ
using the arrays: S, Φ, and Υ. The entropy coding of each array is
described below, while the depth values are encoded (in about 10%
of the compressed file) using Algorithm Y from [5].

3.1. Chain-codes entropy coding

The vectors S is encoded using the Context Tree Algorithm [15,
16, 17], with a context tree T , built semi-adaptively, of maximum
tree-depth dT = 17. Before coding S, the following deterministic
changes are done (the decoder detects and reverses the changes):

(a) Reducing the number of symbols 2. When an anchor point
P1 = (is, js), encoded using Υ, is found, it guarantees that there
is no unvisited contour edge in the previous js − 1 columns and
is − 1 lines in column js of the contour graph. Hence, a vertex
Pk = (i, j) with i < is and j = js + 1 (or with i ≥ is and

(a) (b)

Fig. 4. (a) Reducing the number of symbols sk = 2. The blue
dots are vertices checked for anchor points, an arrow indicates the
next vertex to be visited, a red (black) dot is a visited (unvisited)
vertex, and the green dot is the anchor point. (b) The context used
for encoding the matrix Υ, where ‘x’ is the position to be encoded.

j = js) has maximum three unvisited adjacent vertices. When we
reach Pk = (i, j) and Pk−1 = (i, j + 1), then possible unvisited
adjacent vertices are Pk+1 = (i − 1, j) and Pk+1 = (i + 1, j). In
this case sk = 0 is not possible, and we remap the possible symbols
1 and 2 as shown in Fig. 4(a).

(b) Changing the context tree. The optimal ternary context
tree for S is unbalanced: subtree ‘0’ has many leaf nodes, while
subtree ‘2’ has a few leaf nodes. When studying the context tree
of a general 3OT chain-code vector, we notice that in the context
(sk−2 6= 2, sk−1 = 2) sk = 1 is more frequent then sk = 0, i.e.
the probability to encode a symbol 1 is higher than the probability to
encode a symbol 0. Hence, sk = 1 is changed into s′k = 0, and sk =
0 into s′k = 1. This introduces also some ‘branch interchanges’
between ‘0’ and ‘1’, but overall the change has a positive effect.

3.2. Coding the vector of relative anchor points

The vector Φ is encoded using the Context Tree algorithm with the
tree-depth dT = 17. The tests showed that Φ contains about 10%
symbols 1. Because the optimal context tree is unbalanced, i.e. it
has only one long branch (branch ’0’) with a few leaf nodes, the
threshold at which the symbol frequencies are halved in the arith-
metic coder was set to 511. Φ encodes 3.5÷ 4.9 bits/anchor point.

3.3. Coding the matrix of anchor points

Matrix Υ is encoded the last in column-wise scanning, using a bi-
dimensional context of length dT = 18, see Fig. 4(b). After prun-
ing, the optimal context tree has about 7 leaf nodes. The context
alphabet has three symbols, while the coding distribution has two
symbols (symbol 2 is ignored). At the decoder, if Υ(i, j) = 1 is
decoded, then the contour segment Γk with P1 = (i, j) is decoded
and Υ is updated.Υ encodes 9.9÷ 10.9 bits/anchor point.

4. EXPERIMENTAL RESULTS

Three datasets are used for simulations: the Breakdancers and Ballet
sequences [18], and the Middlebury dataset [19]. All the images are
compressed losslessly. The GSOm algorithm from [13] is used to
obtain lossy images for each selected image.
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Fig. 5. Lossless compression of depth map images.

Fig. 5 shows the results for lossless compression. APC is
compared with the state of the art methods: CERV [5] with two
versions CERV-HiCo and CERV-Fast, PWC [3], CALIC [20], and
LOCO-I [21] (the JPEG-LS implementation). One can see that APC
obtains good results comparing with all the methods, and almost
similar results with CERV-HiCo. To compare APC with the other
methods, a vector W is introduced. It computes a gain percentage
Wk = 1

100

(∑
i Method(Ii)∑
i APC(Ii)

− 1
)

for APC over a method for a

dataset, where APC(Ii) is the APC size of the compressed file, for
the image Ii from a dataset. W contains, in order, the values com-
puted for CERV-HiCo, CERV-Fast, and PWC: for Breakdances we
have W = [−0.46 3.94 8.95]T , i.e. CERV-HiCo has a mean
gain of 0.46%, while for example APC has a mean gain of 8.95%
over PWC; for Ballet we have W = [−0.59 3.62 8.80]T ; for
Middlebury W = [−1.06 0.96 7.07]T , while for Middlebury
only full-size resolution W = [0.13 2.01 6.60]T .

Fig. 6 shows the results for lossy compression1. For two images
from Middlebury, GSOm is used together with APC, CERV-HiCo
[5], PWC [3], and CCV [13] (combining [4] and [5]). The ”Pro-

1For results over the images used in [13] see www.cs.tut.fi/~schiopu/APC
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Fig. 6. Lossless compression of lossy images.

posed 80” algorithm from [8], denoted here P80, was also used as a
comparison method. APC obtains better results comparing with the
other methods, and even if the CERV compresses better than APC
the initial image, at about 65 dB APC starts to obtain better results.

5. CONCLUSIONS

The paper presented a contour coding method by generating sparse
arrays for encoding anchor points for chain-code strings. APC has
good results compared with other lossless or lossy methods. Com-
paring APC and CERV we draw the following conclusions:

(a) Similar results are obtained for lossless compression.
(b) For lossy compression, when GSOm is used together with

APC, the gains in PSNR, at certain bitrates, for the selected images,
are in the order of few dB when compared to GSOm+CERV.

(c) In terms of runtime, a comparison cannot be made since both
implementations are not optimized. APC has a smaller runtime then
CERV when encoding lossy images, since the number of contour
edges is smaller, and Φ tends to become sparser than in lossless case.

APC treats separately the information about anchor points and
contour segments, and can be modified for embedded coding.
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Abstract— A progressive coding method is proposed for depth-
map images, where the bitstream is encoded so that one can
generate many lossy versions of the original, encompassing a wide
range, from very low resolution up to lossless reconstruction.
The partitions into regions of the lossy versions are assumed
to be nested, so that a higher resolution image is obtained by
splitting some regions of a lower resolution image. The encoder
transmits to the decoder information about which regions to split,
the extra contour to be added for obtaining the shapes of the
more refined regions, and the extra depth values needed inside
each new region. The efficient encoding of the anchor points in
the progressive scenario, relative to the contour points already
encoded, and the depth information recovery, are the main
contributions of this paper. The progressive bitstream produced
by the proposed method scales well over the whole range of rates,
from low rates to lossless, reaching a performance close to that
of the non-progressive methods.

I. INTRODUCTION

The progressivity in depth-map coding is an important func-
tionality, allowing the encoder to broadcast the same bitstream
of a depth-map towards many decoders, each having different
rate-distortion requirements. Progressive depth-map coding
was proposed in [1], where reversible cellular automata are
used to achieve spatial scalability, and in [2], where geometry
information is conveyed by prioritized breakpoints found by
a breakpoint-adaptive transform. The recent algorithms for
depth-map compression are based on various methods, e.g.
bit plane compression [3] and context coding of contours [4].

In this paper the depth-map images are described using the
terminology from [4], [5], [6], the notations being in particular
similar to [6], illustrated here in Figure 1 and briefly described
below. A depth-map image is an nr×nc matrix Z that contains
the depth value Z(i, j) for each pixel position (i, j) in the pixel
grid. The image Z is represented using a set of nΩ connected
regions {Ω1,Ω2, . . . ,ΩnΩ

}, each region Ωℓ contains pixel(s)
having the (same) depth value, dℓ. The contours between
neighbor regions can be described in an (nr+1)×(nc+1) grid
of vertices. Two neighbor pixels are separated by a contour-
edge, which unites two vertices in the vertex grid. If the
pixels have different depth values, the contour-edge between
the two pixels is active, e.g. if Z(i, j) 6= Z(i, j + 1) then
there is an active contour edge between the adjacent vertices
Pk = (i, j + 1) and Pℓ = (i+ 1, j + 1) from the vertex grid.

The contours between regions can be described by se-
quences of either active contour edges or adjacent vertices.
A sequence of nΓk

consecutively adjacent vertices forms a
contour segment, denoted Γk = [P1 P2 · · · PnΓk

]T . All
contours of Z are represented by the set of contour segments
{Γk}k=1,2,...,nΓ . Each Γk is represented efficiently using the

3OT representation [4], by describing the advancing on the
contour segment from one vertex to one of its adjacent vertices
using the symbols: ‘0’ if the previous and next contour-
edges are on the same straight line; ‘1’ if the direction of
movement is the same as previously but the orientation (hor-
izontal/vertical) changes; ‘2’ if both direction of movement
and orientation are changing. Figure 1.(c) shows a sequence
of adjacent vertices and their associated 3OT symbols. Hence,
Γk is codified by an anchor point, P1, a direction point, P2,
and the vector Sk = [s1 s2 · · · snΓk

−2]
T of 3OT symbols.

Here we introduce a method for building a progressive
bitstream, where the descriptions of the regions are embedded
in such a way that the most important regions are described
first, in the lowest rate version, and then information is added
for splitting progressively the large regions into finer regions,
until getting the full detail representation. This hierarchical
segmentation and generation of a sequence of lossy images
is obtained by the Greedy rate-distortion Slope Optimization
algorithm with region merging (GSOm) [5].

Our goal here is to introduce the progressive functionality
over a wide range of rates, without degrading too much the
performance comparing to non-progressive methods. Section
II introduces the method, Section III the contour compression,
and Section IV the depth values compression. We discuss the
results in Section V, and draw conclusions in Section VI.

II. PROGRESSIVE CODING OF GSO SEQUENCES (P-GSO)

We start by briefly describing the GSOm algorithm in-
troduced in [5], that is generating the nested lossy versions
Znp = {Z1, Z2, . . . , Zn} of a depth map image Z0. Image
Zτ+1 is generated from Zτ by merging several regions of Zτ ,
where the next pair of regions to be merged is selected as
that which will produce an optimal slope in the rate-distortion
plane. The number of regions, which are merged to transform
Zτ into Zτ+1, is set by the user in order to get a certain SNR
difference. Each image Zτ is then encoded using a specialized
depth-map entropy coder (e.g. CERV[4], APC[6]) in Lnp(Zτ )
bits, resulting in a non-progressive coding of Znp.

The main contribution of this paper consists of a pro-
gressive method, dubbed Progressive coding of GSO se-
quences (P-GSO), that creates a bitstream which can be
truncated to generate the sequence Znp in the reversed order,
Zp = {Zn, Zn−1, . . . , Z0}, or any subsequence of it. In
non-progressive coding, for each image Zτ the encoding is
performed independently. In the case of progressive coding,
Zτ is created from the prefixes of the bitstream of images
from Zn to Zτ+1, which makes the progressive coding of Zτ
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Fig. 1. Graphical representation of entities used at step τ to compress the contour of the image Zτ . The known contour map of Zτ+1 is represented by
contour edges and vertices marked with red. Encoded contour segments are represented by contour edges and vertices marked with blue. Double anchor points
are marked with black and relative anchor points are marked with green. From (a) to (c) we zoom in the cyan rectangles. (a) Overlay of the contour maps of
Zτ+1 and Zτ over the depth map of the lossy image Zτ , for the image Art (full size, disp1). (b) The contour edges from the zoomed rectangle in (a). The
contour segments Γ1,2 and Γ2,3 are separating three new regions Ω1

ℓ ,Ω
2
ℓ , and Ω3

ℓ from the initial region Ωℓ. The contour segment Γ1,2 is encoded using a
double anchor point and a vector of 166 3OT symbols; the contour segment Γ2,3 is encoded using a relative anchor point, a direction point and a vector of
122 3OT symbols. (c) The contour edges and the vertices in the zoomed rectangle from (b). As an example of a binary switch, ξk has two possible values.
For Γ2,3, ξk = 1 points to the direction point P2. Four out of the 122 3OT symbols, which are encoding the contour segment Γ2,3, are shown.

less efficient than the non-progressive one. Hence, the rate-
distortion curve obtained by the progressive encoding is below
the non-progressive rate-distortion curve, since the progressive
codelength Lp(Zτ ) is larger than the non-progressive code-
length Lnp(Zτ ). Our goal is to design the encoding process
between each two consecutive images, Zτ+1 and Zτ , so that
the penalty paid for progressivity, Lp(Zτ ) − Lnp(Zτ ), is as
small as possible.

P-GSO is generating each Zτ using a priori information
from Zτ+1, and by encoding auxiliary information. On one
hand, in GSOm, at each step τ from 1 to n, the set ∆Γ(τ) =

{Γk}k=1,2,...,n
(τ)
∆Γ

of n
(τ)
∆Γ contours is removed from Zτ to

obtain Zτ+1 (having less regions), and new depth values
are computed, in each of the newly formed regions, as the
truncated average of original depth values over the region. On
the other hand, here in P-GSO, at each step τ from n − 1

to 0, we do the opposite: n
(τ)
∆Γ contours, ∆Γ(τ), are added

to the contours of Zτ+1, in order to obtain the contours of
Zτ , and the truncated averages are added to the newly formed
regions, so that at the end of step τ we reconstruct Zτ . From
a few regions (in the order of tens) present in Zn, P-GSO
is splitting iteratively the regions to obtain typically several
thousand regions, the lossy versions selected in the sequence
Zp being snapshots at intermediate stages in the split process.
At one iteration, P-GSO performs tens of splits, while in the
near-lossless part the number is in the order of thousands splits.
In the next sections we describe the progressive coding, at step
τ , of the contours and of the depth values.

III. CONTOUR COMPRESSION

The GSOm algorithm eliminates less important contours
from the contours of Zτ , to obtain the contours of Zτ+1. In
the end, Zn contains only the most important contours from
Z0. Hence GSOm is classifying in Znp the contours of Z0 in
n levels of importance: ∆Γ(1),∆Γ(2), . . . ,∆Γ(n).

The P-GSO algorithm is doing the reverse, at each iteration
is adding to the already encoded contours Γ(τ+1) of the lossy
version Zτ+1, the contour segments on the next lower level of
importance, ∆Γ(τ), to obtain the contours of Zτ , i.e. Γ(τ) =
∆Γ(τ) ∪ Γ(τ+1). Each Γk belonging to ∆Γ(τ) is encoded by
an anchor point, a direction point, and a chain-code vector Sk.

A. Anchor points representation

The encoding of anchor points was studied and an efficient
non-progressive solution, for searching and traversing the
contour segments, is given by APC in [6]. Same anchor
points classification is used also here: double, relative (see
Figure 1.(b)), and edge (located on the border of the image).
The connection to [6] ends here, all subsequent algorithmic
steps being different and specific to the goal of progressive
coding. The contour segments Γ(τ+1) are used at step τ as a
priori information in the anchor points search, and hence the
implemented search procedures are different than in [6].

The first type of search finds the so called relative anchor
points, by traversing the contour segments Γ(τ+1) and marking
in a binary vector Ψ(τ) the vertices that have a different
number of adjacent vertices in Γ(τ). The found vertices have
minimum two adjacent vertices part of Γ(τ+1), and maximum
two adjacent vertices part of Γ(τ), representing the possible
direction points. If a found vertex, say Pk, has: (i) four
adjacent vertices part of Γ(τ+1), no contour can start form
Pk in Γ(τ); (ii) three adjacent vertices part of Γ(τ+1), the
direction point is the remaining vertex (rare case); (iii) two
adjacent vertices part of Γ(τ+1), the position of each direction
point, relative to the anchor point P1 = Pk, is saved using
a binary switch, ξk (see Figure 1.(c)), that is appended to a
vector Ξ(τ). At the end of the search, n

(τ)
ξ relative anchor

points and n
(τ)
ξ direction points are found in ∆Γ(τ).

The second type of search finds the edge and double anchor
points by a column-wise search, and marks them in a matrix



Υ(τ) by checking column-wise the contour graph of Zτ . Here
there is no need to encode a direction point because: (a) an
edge anchor point is a vertex with one adjacent vertex, and it
is found at the image border; (b) a double anchor point has
two adjacent vertices part of Γ(τ), but from it can either start
a contour segment which forms a loop inside a larger region,
or start two contour segments (reason why it is called double).

The contour segment Γk is described starting with the
anchor point, continuing with the direction point, and then the
vertices described by the vector Sk of 3OT symbols, and it is
ending with a vertex that has one of the following proprieties:
(a) is on the edge of the image; (b) has at least three adjacent
vertices in the contour of Zτ+1; (c) has at least three visited
adjacent vertices in the contour of Zτ . Hence, the decoder is
able to detect the contour’s end, without knowing its length.

B. Entropy coding the contour segments

In this paper two encoding functions are introduced:
1) Integer Value Encoder, IVE(v, nbδ , nbr): The IVE

function is introduced to encode an integer v ≥ 0 by first
selecting the range in which it belongs, and encoding it using
the found range limits. A switch is used to select one out of
four possible ranges, where the first range is [0, 2nbδ ], while
the following are shifted by increasing with nbr the number
of bits needed to represent the upper bound of previous range.

2) Golomb-Rice encoding of vectors, GR(Φ): A vector Φ is
encoded depending on its number of elements, nΦ, as follows.
If nΦ ≤ 50, then Φ is encoded using the Golomb-Rice (GR)
algorithm with M = 2k

∗
. Else an encoded switch specifies to

divide or not Φ into two sub-vectors, denoted ΦL and ΦH . If
the switch is on, for each element in Φ the decision to add it
to ΦL or ΦH is encoded and the Golomb-Rice algorithm is
applied to ΦL and ΦH , else the GR algorithm is applied to Φ.

The contour segments from ∆Γ(τ) are encoded by: (a) the
vectors Ψ(τ) (of relative anchor points) and vec(Υ(τ)) (of edge
and double anchor points), each encoded by first obtaining a
vector Φ which saves the number of consecutive values 0,
and using GR(Φ); (b) two integer values v1 = n

(τ)
ξ (number

of relative anchor points), and v2 = n
(τ)
∆Γ − n

(τ)
ξ (number of

edge and double anchor points), each encoded by IVE(vi, 4, 2);
(c) the vector of direction points, Ξ(τ), written directly in
the output file; (d) the vector of concatenated 3OT vectors,

S(τ) =

[
ST
1 ST

2 · · · ST

n
(τ)
∆Γ

]T
, encoded using the Context

Tree Algorithm [7] with a maximum tree depth of dT = 17.

IV. DEPTH VALUE COMPRESSION

Here the depth of any region Ωj
ℓ is called the truncated

average value of the true depth values (from Z0) at all pixels
of the regions, and we denote it by djℓ , carrying the same sub-
or super- indexes as the region symbolic name, Ωj

ℓ .
Let us consider that a region from Zτ+1, say Ωℓ, with

the truncated average dℓ, is split into a set of nℓ regions,
{Ωj

ℓ}j=1,2,...,nℓ
in Zτ . All regions in Zτ+1 and Zτ are defined

by the GSOm algorithm as follow: (a) each region Ωj
ℓ is

formed of mj
ℓ pixels, Ωj

ℓ = {(xi, yi)}i=1,2,...,mj
ℓ
, having the

depth values zi = Z0(xi, yi) in the original depth-map image

Z0; (b) the real-valued average inside Ωj
ℓ is d̆jℓ =

1

mj
ℓ

∑mj
ℓ

i=1 zi,

and the truncated average is djℓ =
⌊
d̆jℓ

⌉
= d̆jℓ − ∆j

ℓ , where

∆j
ℓ ∈ [−0.5, 0.5] is the rounding error. The region Ωℓ is

defined similarly as having: mℓ pixels, the real-value average
d̆ℓ =

1
mℓ

∑mℓ

i=1 zi and truncated average dℓ =
⌊
d̆ℓ

⌉
= d̆ℓ−∆ℓ,

where ∆ℓ ∈ [−0.5, 0.5] is the rounding error. Since Ωℓ is split
into {Ωj

ℓ}j=1,2,...,nℓ
, then mℓ =

∑nℓ

j=1 m
j
ℓ .

The decoder has available from Zτ+1 all information de-
scribing the region Ωℓ, and from Zτ (after decoding the
contours of Zτ ) all the pixel locations and number of pixels
for each region {Ωj

ℓ}j=1,2,...,nℓ
. To obtain Zτ , it only needs

to receive the set of truncated averages {djℓ}j=1,2,...,nℓ
.

In this paper we assume that the values djℓ are scattered
around the truncated average dℓ. This assumption is used for
the first nℓ − 1 truncated averages, {djℓ}j=1,2,...,nℓ−1, that are
transmitted to the decoder using the differences

bj = dℓ − djℓ , j = 1, 2, . . . , nℓ − 1. (1)

The values bj , from all the split operations that transform Zτ+1

into Zτ , are appended in the vector B =
[
b1 b2 · · · b

n
(τ)

B

]T
,

where n
(τ)
B is the difference between the number of regions

in Zτ and Zτ+1. We encode each bj by its sign, using one
bit, and by its absolute value, |bj |, using the adaptive zero-
order model with Laplace estimator, with nsB symbols. To
set nsB we first find the maximum absolute difference bM =
max

j=1,2,...,n
(τ)

B

|bj |, compute the number of bits needed to
represent it, nM = ⌈log2(bM )⌉, and then encode nM using
log2(7) bits. Both encoder an decoder can now set nsB =
2nM . However, sometimes encoding additional bits to be able
to set nsB = bM , is improving the result.

The last truncated average, dnℓ

ℓ , is encoded using the second
redundancy: the sum of initial depth values of the pixels in
Ωℓ is equal to the sum of initial depth values of the pixels in
{Ωj

ℓ}j=1,2,...,nℓ
. This is written using real-value averages as(∑nℓ

j=1 m
j
ℓ

)
d̆ℓ =

∑nℓ

j=1 m
j
ℓ d̆

j
ℓ , or using truncated averages as




nℓ∑

j=1

mj
ℓ


 dℓ +




nℓ∑

j=1

mj
ℓ


∆ℓ =

nℓ∑

j=1

mj
ℓd

j
ℓ +

nℓ∑

j=1

mj
ℓ∆

j
ℓ . (2)

We now rewrite (2) for the selected left term, dnℓ

ℓ , as

dnℓ

ℓ = dℓ +

nℓ−1∑

j=1

mj
ℓ

mnℓ

ℓ

(
dℓ − djℓ

)

︸ ︷︷ ︸
d̂
nℓ
ℓ

+

nℓ∑

j=1

mj
ℓ

mnℓ

ℓ

(
∆ℓ −∆j

ℓ

)

︸ ︷︷ ︸
ε
nℓ
ℓ

, (3)

where d̂nℓ

ℓ is the estimation of the truncated average dnℓ

ℓ that
the decoder can compute since {djℓ}j=1,2,...,nℓ−1 and dℓ are
already available, and εnℓ

ℓ is the rounding residual that depends

on the coefficients
{

mj
ℓ

m
nℓ
ℓ

}
j=1,2,...,nℓ−1

. We minimize εnℓ

ℓ by

selecting Ωnℓ

ℓ as the region with the highest number of pixels
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Fig. 2. Comparative results for the progressive methods: P80 [2], SP1 [2],
[8], and our method, P-GSO, with the non-progressive methods: CERV [4],
APC [6], for the images (a) Ballet (cam0, f96) from lossy-to-lossless; (b)
Aloe (full size, disp1) zoomed in the PSNR range [30, 65] dB.

among all Ωj
ℓ , so that mj

ℓ

m
nℓ
ℓ

< 1, ∀j = 1, 2, . . . , nℓ−1. Finally,

we round d̂nℓ

ℓ as d̂nℓ

ℓ =
⌊
d̂nℓ

ℓ

⌉
− ∆̂nℓ

ℓ , where ∆̂nℓ

ℓ is the
rounding error, and encode dnℓ

ℓ using the prediction residual

aℓ = dnℓ

ℓ −
⌊
d̂nℓ

ℓ

⌉
= εnℓ

ℓ + ∆̂nℓ

ℓ . (4)

The values aℓ are appended to a vector A. At iteration τ

we have A =
[
a1 a2 · · · a

n
(τ)

A

]T
, where n

(τ)
A is the number

of regions split in Zτ+1. The tests showed that aℓ ∈ [−2, 2],
and hence the vector A is described using a vector of possible
symbols, Λ = [−1 0 1 − 2 2]T = [λ1 λ2 λ3 λ4 λ5]

T , by
finding for each aℓ the index kℓ for which λkℓ

= aℓ. Next we
compute kM = max

ℓ=1,2,...,n
(τ)

A

kℓ, and then encode it using
log2(5) bits. Finally we encode each kℓ using the adaptive
zero-order model with Laplace estimator with kM symbols.

V. EXPERIMENTAL RESULTS

We experiment with 180 images from three datasets: Break-
dancers and Ballet [9], and Middlebury [10], out of which

Figure 2 presents two images (see the additional file1).
The new method, P-GSO, selects from Znp a subsequence

Zp, which contains the lossy images having the distortion
the closest to some selected round values (e.g., 30, 40, 50, 60
dB). In Figure 2 we compare P-GSO with the progressive
method ”Proposed 80” from [2], called here P80, and the non-
progressive method ”Segment Param 1” described in [2], [8]
and called here SP1; and two non-progressive methods CERV
[4] and APC [6], that are used together with GSOm [5]. For
P-GSO, the first image in the sequence is encoded using APC.

One can see that the proposed method scales well over the
whole range of bitrates, from low bitrates until the lossless
bitrate. The comparison with P80, which is the only pro-
gressive method previously reported in the literature, shows
the significant improvements obtained with our method (with
gains from several dB to more than ten dB in the nearlossless
regime). When compared to the non-progressive methods, our
progressive method succeeds in having a low penalty for the
progressiveness. However due to encoding of much more inter-
mediate parameters in the embedded stream, the progressive
scheme experience the inevitable losses with respect to the
non-progressive counterpart, with more notable drop in PSNR
towards the near-lossless range.

VI. CONCLUSIONS

The new method, P-GSO, compares favorably with the
other existing progressive coding methods. The experimental
result showed that the subsequences of GSO lossy versions
are encoded form lossy to lossless reconstruction, reaching a
performance close to that of the non-progressive methods.
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ABSTRACT

We present efficient methods for parametrizing planar models, to
be used for depth value reconstruction inside selected regions in
a depth image. The optimal plane for each region is represented
using its quantized heights at three pixel locations. The decoder
uses the decoded quantized heights to approximately represent the
optimal plane. The three pixel locations are selected so that the
distortion due to the approximation of the plane over the region
is minimized. The planar reconstructions are used in competition
with the piecewise constant reconstruction at the regions obtained
through a merging process, where the two regions to be merged are
those ensuring the optimal slope in the rate-distortion curve. The
lossy depth compression algorithm including the planar modeling
obtains a significantly better rate-distortion performance than the
algorithm that uses only constant regions, with improvements up
to 8 dB.

Index Terms — Planar model, plane parametrization, entropy
coding, greedy slope optimization

1. INTRODUCTION

Depth maps compression was intensively studied using various
approaches for lossy and lossless reconstruction such as: bit plane
compression [1], context coding of contours [2], quad-tree decom-
pression and platelets [3], combining texture and depth compres-
sion [4]. Planar models were used for depth-map image com-
pression in [5], where the segmentation process takes place in the
virtual 3D point cloud. In [5], the planar models are only a few
(less than ten), and they are obtained by using a graph-cut co-
segmentation algorithm.

A depth-map image is represented by an nr × nc matrix Z
that stores the depth value Z(x, y) for each pixel position (x, y)
in the pixel grid. The image Z is partitioned into nΩ regions
Ω1,Ω2, . . . ,ΩnΩ . Each region Ωk is either a single pixel, or is
a connected region.

We build here on the footsteps of the GSOm algorithm [6],
which generates the sequence of lossy versions Z1, Z2, . . . , Zn

for the original depth-map Z0. The image Zτ+1 is generated from
Zτ , by merging several regions, where the next pair of regions
to be merged is selected as that which will produce the optimal
slope in the rate-distortion plane. In [6] the piecewise constant
model was used for depth reconstruction so that the changes in
rate-distortion, after merging two regions, are easy to compute.

In here we allow a planar model additionally to the piece-
wise constant model and decide which type of model to be used
by the greedy slope criterion. In contrast to the very few pla-
nar models used in [5], here the planar models obtain very de-
tailed descriptions, reaching thousands of small planar regions in

the near lossless regime. The importance of properly choosing the
parametrization of the plane, and of quantizing its parameters with
the right amount of bits, is now crucial.

The parametrization of the planar model, the parameter quan-
tization and encoding are discussed in Section 2. The GSOm al-
gorithm [6] is extended to include the planar model option in the
greedy decision process for image generation, as presented in Sec-
tion 2.4. The experimental results are presented in Section 3 and
the conclusions are drawn in Section 4.

2. PLANAR MODEL FOR DEPTH ESTIMATION

2.1. Planar model parameterization and estimation

The most used parametric form of the planar model is z = ax +
by+c. Alternatively, we also consider the equivalent parametriza-
tion provided by specifying three points of the plane, and we de-
scribe in the sequel the estimation, quantization and entropy cod-
ing for the two parametrizations.

Let us consider a region Ωℓ = {(xi, yi)}i=1,2,...,n formed of
n pixels, having the true depth values denoted zi = Z0(xi, yi),
i = 1, 2, . . . , n. In order to minimize the MSE over the region,
the Least Squares (LS) solution, that is minimizing the sum of
squared modeling errors

∑n
i=1 ε

2
i , is computed, where the errors

εi are defined by



z1
z2
...
zn


 =




x1 y1 1
x2 y2 1

...
xn yn 1






a
b
c


+




ε1
ε2
...
εn


 , (1)

resulting in the LS parameters, θ∗ =
[
a∗ b∗ c∗

]T . If the θ∗

parameters would be encoded, then the decoder would use θ∗ to
obtain first the floating point value z∗i :

z∗i =
[
xi yi 1

]
θ∗ = zi − ε∗i , i = 1, 2, . . . , n. (2)

where ε∗i are the optimal modeling errors. Then, in the recon-
structed image at the pixel location (xi, yi), the value ẑi is com-
puted by rounding z∗i :

ẑi = ⌊z∗i ⌉ = z∗i −∆∗
i , i = 1, 2, . . . , n, (3)

where ∆∗
i ∈ [−0.5, 0.5] are rounding errors. From (2) and (3) it

results that zi would be reconstructed as ẑi = zi − (ε∗i + ∆∗
i ).

The distortion obtained by the optimal model θ∗ over Ωℓ is:

MSE1 =
1

n

n∑

i=1

(zi − ẑi)
2 =

1

n

n∑

i=1

(ε∗i +∆∗
i )

2. (4)

However, the θ∗ parameters are not transmitted to the decoder,
but instead the heights of the plane at three selected pixels are



encoded, after truncating them to integers. Let us denote the three
pixel locations A = (xα, yα), B = (xβ , yβ), and C = (xγ , yγ),
and their values in Z0 as zα, zβ , zγ . The selection of the points
A,B,C for a given region Ωℓ is done in the same way at encoder
and decoder, according to the methods described in Section 2.2.

The heights of the optimal plane at these three points are the
real numbers z∗α, z∗β , z

∗
γ (given by (2) for i = α, β, γ), and their

rounded values ẑα, ẑβ , ẑγ are encoded and sent to the decoder.
They are represented using (3) for i = α, β, γ as:


ẑα
ẑβ
ẑγ


 =



z∗α −∆∗

α

z∗β −∆∗
β

z∗γ −∆∗
γ


 =



xα yα 1
xβ yβ 1
xγ yγ 1




︸ ︷︷ ︸
Q



a∗

b∗

c∗




︸ ︷︷ ︸
θ∗

−



∆∗

α

∆∗
β

∆∗
γ




︸ ︷︷ ︸
∆

(5)

where the matrix Q stacks the coordinates of the selected locations
A,B,C that are defining a triangle △ABC.

The decoder determines the three pixel locations A,B,C for
the region Ωℓ, as in Section 2.2, and uses ẑα, ẑβ , ẑγ to compute
the reconstruction plane, θ̃, by solving:



xα yα 1
xβ yβ 1
xγ yγ 1




︸ ︷︷ ︸
Q



ã

b̃
c̃




︸︷︷︸
θ̃

= Qθ̃ =



ẑα
ẑβ
ẑγ


 . (6)

The decoder is setting for each pixel location (xi, yi), in the re-
constructed image, the reconstructed value, z̆i, computed as the
corresponding rounded height, z̃i, in the θ̃ plane:

z̆i = ⌊z̃i⌉ = z̃i − ∆̃i = [xi yi 1]θ̃ − ∆̃i, i = 1, 2, . . . n, (7)

where ∆̃i ∈ [−0.5, 0.5] are rounding errors. Finally, the distor-
tion in region Ωℓ, computed using the planar model, is

MSEp =
1

n

n∑

i=1

(zi − z̆i)
2, (8)

while the distortion computed using the constant model is
MSEc = 1

n

∑n
i=1(zi − ⌊dℓ⌉)2, where dℓ =

1
n

∑n
i=1 zi [6] .

2.2. Selecting A,B,C for MSE optimization

The selection of the points A,B,C using various methods, as
described below, will impact on both the distortion over the re-
gion Dℓ = MSEp and the rate Rℓ. The distortion is reduced if
the approximation of the plane θ∗ by the plane θ̃ becomes better.
Heuristically, the rounding error made at the points A,B,C in (5)
will change very little the ideal plane θ∗ if A,B,C will be as far
apart one from another as possible. However, that will make the
values z∗α, z

∗
β , z

∗
γ very large in magnitude, and thus very costly

to encode. As a main trade-off, we differentiate here between
methods that are constraining A,B,C to be inside the region Ωℓ

(method M1, which minimizes an expected MSE criterion, and
method M2, which maximizes the area of the triangle ABC) and
methods allowing A,B,C to lie outside the region Ωℓ, but only
exceeding moderately the region (methods M3 to M6 below).

2.2.1. Methods searching for A,B,C inside Ωℓ

Selecting the points A,B and C of the triangle △ABC is equiva-
lent to setting the elements of the matrix Q in (6), emphasized for
clarity where needed by denoting QABC .

(M1) In this method first we consider the MSE excess, MSEp−
MSE1, second we isolate in it one component, denoted MSEe,

and finally define its expected value to be the criterion of interest.
We evaluate MSEp using the steps: (i) from (5) and (6) obtain:

Qθ∗ = Qθ̃ +∆ ⇐⇒ θ∗ − θ̃ = Q−1∆; (9)

(ii) rewrite zi − z̆i using (2), (3), and (7) as:

zi − z̆i = (zi − ẑi) + (∆̃i −∆∗
i ) + [xi yi 1](θ

∗ − θ̃)

(9)
= (zi − ẑi) + (∆̃i −∆∗

i ) + [xi yi 1]Q
−1∆;

(iii) rewrite (8) using the square of zi−z̆i and neglecting the cross-
terms (by assuming negligible cross-correlations between model-
ing errors and rounding errors):

MSEp ≈ MSE1 +
1

n

n∑

i=1

(∆̃i −∆∗
i )

2 +∆TQ−TRQ−1∆︸ ︷︷ ︸
MSEe

,

where R = 1
n

∑n
i=1[xi yi 1]

T [xi yi 1]. We now concentrate on
the term denoted MSEe and define its expected value as a mini-
mization criterion. If we assume that the rounding errors making
up the vector ∆ are behaving like independent variables with dis-
tribution U(−0.5, 0.5) when the LS plane is taking all possible
positions, then the expected MSEe is:

E[MSEe] = E
[
∆TQ−TRQ−1∆

]
=

1

12
trQ−TRQ−1. (10)

Hence, this method is looking for the locations A,B,C as the
solution of the following problem

min
A,B,C∈Ωℓ

trQ−T
ABCRQ−1

ABC . (11)

(M2) The second method is based on the heuristic idea that the
△ABC must cover as much as possible from Ωℓ (so that A,B,C
are as far as possible from one another inside the region Ωℓ). This
is achieved when △ABC has maximum area. This area is given
by | detQABC |. Hence, this method is looking for the locations
A,B,C solving

max
A,B,C∈Ωℓ

Area(△ABC) = max
A,B,C∈Ωℓ

|detQABC |. (12)

In both M1 and M2, to avoid going through all triplets of
points in the region Ωℓ, the first two locations, A and B, are se-
lected first, so that they are placed far apart one from the other: (a)
first pixel location, A = (xα, yα), is selected to be on the first col-
umn of the first row in the region mask, xα = mini=1,2,...,n{xi},
yα = mini=1,2,...,n{yi|xi = xα}; (b) second pixel location
B = (xβ , yβ) = (xk2 , yk2) is selected at the maximum distance
from (xα, yα), having the index k2 = argmaxi=1,2,...,n{(xα −
xi)

2 + (yα − yi)
2}. Then the search in both M1 and M2 is done

only for C ∈ Ωℓ.

2.2.2. Methods setting A,B,C using the bounding box of Ωℓ

Let us consider the bounding box for the region Ωℓ, formed using
the coordinates xm = mini xi, xM = maxi xi, ym = mini yi,
yM = maxi yi, i = 1, 2, . . . , n. Let us denote also δx = xM −
xm, δy = yM − ym, x̄ = xm + δx

2
, ȳ = ym +

δy
2

.
(M3) The triangle △ABC is set as the triangle having the

maximum area inside the bounding box of Ωℓ. Hence, we select
A = (xM , ym), and if δx > δy, then B = (xm, ym) and C =
(x̄, yM ), else B = (xM , yM ) and C = (xm, ȳ).

(M4) The triangle △ABC is set as a triangle that includes
the bounding box of Ωℓ. Hence, we select A = (xm − δx, ym),
B = (xM , ym), and C = (xM , yM + δy).



2.2.3. Methods with differential parameters
The next two methods, M5 and M6, are selecting the same three
pixel locations A = (xM , ym), B = (xm, yM ), C = (xm, ym),
and are encoding differential parameters. In the previous methods
three rounded heights ẑα, ẑβ , and ẑγ were selected as parameters,
however here we select as parameters the following values: one
rounded height, ẑγ , and two rounded height differences: ẑα − ẑγ ,
ẑβ − ẑγ . The differences can be written for the selected A,B,C,
using (5) at encoder, and (6) at decoder, as:

ẑα − ẑγ = ⌊z∗α⌉ − ⌊z∗γ⌉ = δxa
∗ − (∆∗

α −∆∗
γ) = δxã

ẑβ − ẑγ = ⌊z∗β⌉ − ⌊z∗γ⌉ = δyb
∗ − (∆∗

β −∆∗
γ)︸ ︷︷ ︸

encoder

= δy b̃.︸︷︷︸
decoder

The new selected parameters are more sensitive to the rounding
errors ∆∗

α,∆
∗
β ,∆

∗
γ , and hence we choose to encode the parame-

ters with a higher precision, by rounding the heights using N bits
(N being different in M5 and M6) of their fractional part. The
parameter ẑγ is transmitted using 1-bit precision after the decimal
point by encoding 2ẑγ = ⌊2z∗γ⌉ using Algorithm D (see Section
2.3). The sign of each ẑα − ẑγ , ẑβ − ẑγ is encoded using one bit.

(M5) The absolute values |ẑα − ẑγ | and |ẑβ − ẑγ | are trans-
mitted using 1-bit precision after the decimal point by encoding
|2(ẑα − ẑγ)| = |⌊2z∗α⌉ − ⌊2z∗γ⌉| and |2(ẑβ − ẑγ)| = |⌊2z∗β⌉ −
⌊2z∗γ⌉| using the Golomb-Rice (GR) algorithm.

(M6) The values |ẑα − ẑγ | and |ẑβ − ẑγ | are transmitted by
encoding the first N6 = 10 bits of the following sub-unitary val-
ues: |⌊2−9z∗α⌉−⌊2−9z∗γ⌉| and |⌊2−9z∗β⌉−⌊2−9z∗γ⌉|. The decimal
representation of the first k∗

LP bits is encoded using adaptive zero-
order model with Laplace (LP) estimator, while the next N6−k∗

LP

bits are written directly in the output file. The optimal values k∗
LP

for a∗ and b∗ are each encoded on log2(10) bits.

2.2.4. Baseline method for encoding θ∗

(M7) The parameters a∗ and b∗ are transmitted using N7 = 8
bits precision after the decimal point by encoding |⌊2N7a∗⌉| and
|⌊2N7b∗⌉| using the Golomb-Rice algorithm, and each sign by one
bit. The parameter c∗ is transmitted using 1-bit precision after the
decimal point by encoding ⌊2c∗⌉ using Algorithm D.

2.3. Encoding the planar model parameters

The parameters for the planar model are encoded differentially
with respect to the parameter of the constant model, ⌊dℓ⌉, which
is very efficiently encoded by the original GSO method [6]. All
differences are encoded by the Algorithm D. For the methods M1 :
M4 the parameters ẑα, ẑβ , ẑγ are encoded differentially with re-
spect to ⌊dℓ⌉, by encoding vj = ⌊dℓ⌉ − ẑi, where i = α, β, γ
is the parameter index, ℓ = 1, 2, . . . , nΩ is the region index, and
j = 1, 2, . . . nV is the index in a vector V that collects these
differences. For the methods M5 and M6, the parameter ẑγ is en-
coded by the difference vj = 2⌊dℓ⌉ − ⌊2z∗γ⌉, while for M7 the
parameter c∗ is encoded by the difference vj = 2⌊dℓ⌉ − ⌊2c∗⌉.

[Algorithm D] The algorithm encodes each element vj , j =
1, 2, . . . , nV in a vector V , by its sign, using one bit, and its abso-
lute value, |vi|, using the adaptive zero-order model with Laplace
estimator with nsV symbols. The maximum absolute difference
vM = maxj=1,2,...,nV |vj | is first found for V . The number of
bits needed to represent vM is computed as nM = ⌈log2(vM )⌉,
and encoded using the arithmetic coder for 7 symbols on log2(7)
bits. Finally, the value nsV is set either nsV = 2nM , or nsV =
vM if the codelength estimation shows that the transmission of
vM to the decoder improves the result.

2.4. Extending GSOm to use planar model for selected regions

In this paper we update the GSOm algorithm [6] by introducing
model selection between the constant and planar model estimated
by M2, which is in general the best performer out of M1 : M7.
We denote the new algorithm GSOmPF.

In GSOm, a competition was organized between the pair of
regions to be merged, and the strategy was to select the pair that
will result in the best slope of the RD, after that merge.

Now in GSOmPF the competition is extended, not only which
region pair to be merged, but also which method of reconstruc-
tion to use for that pair. Now the strategy is to choose among
all possible pairs and among the two models, the pair and model
which lead to the best slope in RD after merging. From distor-
tion point of view, if the exact parameters are encoded, then the
planar model has a better distortion, but since for both models we
use quantization of the estimated parameters, the ideal inequal-
ity MSEp < MSEc might not be always true. From the rate
point of view, a planar model has a higher codelength than a con-
stant model. In our simplified model from [6], we estimated the
codelength of a constant model parameter as C2 = 8 bits, while
now in GSOmPF we estimate the codelength of the planar model
parameters as C3 = 12 bits.

2.5. Depth compression using the planar model

The methods described above are implemented by a program writ-
ten in C and denoted PF, that is using the CLAPACK routines to
solve the systems of equation (1) and (6). Since Algorithm D uses
⌊dℓ⌉ to encode the selected parameters, we used entropy coders
for the average in each region and the region contours, while PF is
improving the results by encoding the selected parameters as de-
scribed above, and the model selection decision by adaptive zero-
order model with LP estimator.

More implementation details can be found on the paper’s web-
page1.

3. EXPERIMENTAL RESULTS

The following datasets are used in this paper: Middlebury [10],
Breakdancers and Ballet [11]. Next we discuss the comparative
results for 4 images, but results for 180 images can be found on
the paper’s webpage. The results for the introduced methods are
obtained by first generating the lossy depth-map images using the
GSOmPF algorithm, then using the entropy coder APC [9], and
finally applying each method M1 : M7.

In Fig. 1.(a) we show the results for running M7 with 7 differ-
ent values for N7. In most of our tests running M7 with N7 = 8
bits showed the best results. Hence, we selected N7 = 8 for com-
parison of baseline with the other methods.

In Fig. 1.(b) the methods introduced in Section 2.2 are com-
pared for the depth-map image Aloe (full size, disp1). The method
M2 shows best results for the 58−70 dB range, M5 for the 50−58
dB range, while all the methods perform almost the same below
50 dB. Hence, we selected M2 and M5 for comparison with other
methods on the rest of images.

In Fig. 1.(c)-(f) we show comparative results for four im-
ages for the following methods: (a) the method ”Proposed 80”
from [7], called here P80; (b) the method ”Segment Param 1”
from [7], that was described in [8] and called here SP1; (c) our
previous entropy coders CERV [2] and APC [9], where the lossy

1For additional information see www.cs.tut.fi/~schiopu/PF.
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Figure 1. (a) Comparison between the results of baseline method M7 (quantizing the parameters θ∗ with N7 = 5, 6, . . . , 11 bits), for Art (full size,
disp1); (b) Comparison between the seven methods M1 : M7 described in the paper, for Art (full size, disp1), where M2 and M5 have almost same
performance, better than all others; (c) - (f) Comparison between the results of the following methods: P80 [7], SP1 [7, 8], Greedy Slope Optimization
with region merging (GSOm) [6] using the entropy coders of CERV [2], APC [9], and the GSOm [6]+ APC [9] including M2 and M5 from this paper,
for the following images: (c) Aloe (full size, disp1); (d) Bowling1 (full size, disp1); (e) Ballet (cam0, frame 96); (f) Breakdancers (cam0, frame 0).

images are generated using GSOm [6]; (d) the two selected meth-
ods for comparison: M2 and M5. One can see that a significant
improvement between 3 dB and 8 dB is obtained for both M2 and
M5 algorithms. In Fig. 1.(c) we find a maximum improvement
of around 8 dB, but for other images in the datasets a maximum
improvement of almost 15 dB was achieved by M2 and M5.

4. CONCLUSIONS

We presented a method for value reconstruction inside a region
using a reconstruction plane parameterized by its values at three
pixel locations. Their quantized parameters are encoded efficiently
by Algorithm D. Several methods for finding the pixel location
were introduced and two of them consistently outperformed the
others. There are further possibilities for improvement of the pre-
sented results, if one chooses out of the seven methods the best
method for a certain lossy image at certain rate target, and involves
extra computations only at the encoder. Model selection was in-
troduced in the structure of the greedy slope optimization method
GSOm [6], resulting in overall rate-distortion performance signif-
icantly better than the original GSOm method.
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