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Abstract

In this thesis, the problem of depth-map image compression is treated. The com-
pilation of articles included in the thesis provides methodological contributions in
the fields of lossless and lossy compression of depth-map images.

The first group of methods addresses the lossless compression problem. The
introduced methods are using the approach of representing the depth-map image
in terms of regions and contours. In the depth-map image, a segmentation defines
the regions, by grouping pixels having similar properties, and separates them using
(region) contours. The depth-map image is encoded by the contours and the
auxiliary information needed to reconstruct the depth values in each region.

One way of encoding the contours is to describe them using two matrices of
horizontal and vertical contour edges. The matrices are encoded using template
context coding where each context tree is optimally pruned. In certain contexts,
the contour edges are found deterministically using only the currently available in-
formation. Another way of encoding the contours is to describe them as a sequence
of contour segments. Each such segment is defined by an anchor (starting) point
and a string of contour edges, equivalent to a string of chain-code symbols. Here
we propose efficient ways to select and encode the anchor points and to generate
contour segments by using a contour crossing point analysis and by imposing rules
that help in minimizing the number of anchor points.

The regions are reconstructed at the decoder using predictive coding or the
piecewise constant model representation. In the first approach, the large constant
regions are found and one depth value is encoded for each such region. For the
rest of the image, suitable regions are generated by constraining the local variation
of the depth level from one pixel to another. The nonlinear predictors selected
specifically for each region are combining the results of several linear predictors,
each fitting optimally a subset of pixels belonging to the local neighborhood. In
the second approach, the depth value of a given region is encoded using the depth
values of the neighboring regions already encoded. The natural smoothness of the
depth variation and the mutual exclusiveness of the values in neighboring regions
are exploited to efficiently predict and encode the current region’s depth value.

The second group of methods is studying the lossy compression problem. In a
first contribution, different segmentations are generated by varying the threshold
for the depth local variability. A lossy depth-map image is obtained for each
segmentation and is encoded based on predictive coding, quantization and context
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tree coding. In another contribution, the lossy versions of one image are created
either by successively merging the constant regions of the original image, or by
iteratively splitting the regions of a template image using horizontal or vertical
line segments. Merging and splitting decisions are greedily taken, according to the
best slope towards the next point in the rate-distortion curve. An entropy coding
algorithm is used to encode each image.

We propose also a progressive coding method for coding the sequence of lossy
versions of a depth-map image. The bitstream is encoded so that any lossy version
of the original image is generated, starting from a very low resolution up to lossless
reconstruction. The partitions of the lossy versions into regions are assumed to
be nested so that a higher resolution image is obtained by splitting some regions
of a lower resolution image. A current image in the sequence is encoded using
the a priori information from a previously encoded image: the anchor points are
encoded relative to the already encoded contour points; the depth information of
the newly resulting regions is recovered using the depth value of the parent region.

As a final contribution, the dissertation includes a study of the parameteriza-
tion of planar models. The quantized heights at three-pixel locations are used to
compute the optimal plane for each region. The three-pixel locations are selected
so that the distortion due to the approximation of the plane over the region is
minimized. The planar model and the piecewise constant model are competing in
the merging process, where the two regions to be merged are those ensuring the
optimal slope in the rate-distortion curve.
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Chapter 1

Introduction

“Begin at the beginning,” the King said gravely,
“and go on till you come to the end: then stop.”
— Lewis Carroll, Alice in Wonderland

1.1 Motivation

A depth-map image is an image that stores information about the distance from
the optical center of the camera to the point in space represented in the image.
Recently, the acquiring techniques for this type of images have improved a lot, and
many types of specialized sensors are now available on the market. Even more,
the depth-map estimation techniques based on computer vision tools were also
improved and are now presenting much better results. Since the Three Dimensions
(BD) experience is captivating the users, a wide range of applications that use
depth-map images have been developed. Computer vision, gaming industry, movie
industry, mobile phone industry, BDIFree Viewpoint Video, or 3D Television (BDTYI)
are only a few examples of research areas, where the applications use multiple
cameras to capture views of the scene from different viewpoints. Every application
aims to provide a very good BDJexperience to the user, therefore a lot of research has
been done to improve the quality of the acquired depth-map images. This research
was focused on developing techniques which can compress the depth-map images
either without any information loss, called lossless (image) compression, or at a
good enough quality by accepting some information loss, called lossy compression.

The BD effect is perceived by a human, who receives two color images, one
for each eye. The synthesis of the color images, necessary for rendering a certain
viewing angle of the scene, can be achieved using the Depth-Image-Based Render-
ing (DIBRI) technique, starting from two or several color images and one or more
depth-map images. A depth-map image is more redundant than a color image
and can be compressed losslessly at a lower bitrate. The depth-map compression
became an active research field in the recent years, and many new techniques have
been proposed. Below we list briefly a few main approaches that were proposed
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in the last several years. A depth-map image may be compressed by applying
different decorrelating transforms [21] [39) [I01]; by decomposing the image using a
tree triangular decomposition [I8]; by down-sampling the image and compressing a
smaller size image [64]; by conserving the edges found in the image using wedgelets
[23] or platelets [96]; by representing the image using pyramidal structures [40];
by applying state of the art bit-plane compressors (e.g. JBIG) [36, [101]; by trans-
mitting to the decoder a segmentation of the image and encoding different entities
to reconstruct the image [24], 57]; or by modifying video standards (e.g. H.264,
HEVC) to compress a depth-map video sequence [49, [100, 102 [103].

In this dissertation, we choose to represent the depth-map image using a de-
signed segmentation that divides the image into regions having pixels with similar
proprieties. The developed algorithms are reconstructing the initial depth-map
image at the decoder from an encoded segmentation and some auxiliary informa-
tion, with which we are able either to recover the information in each region and
to obtain exactly the same image, or to reconstruct the regions with a controlled
distortion and to obtain a lossy version of the initial image.

1.2 General overview of the algorithms

The algorithms developed for this thesis are divided into two groups according to
their characteristic to compress an image with or without information loss: loss-
less compression algorithms and lossy compression algorithms. A general overview
of the algorithms, from the chronological point of view, is presented below by
mentioning a few details about the ideas used in each algorithm.

In a first published article [82] (detailed in the author’s Master Thesis [77]),
we first introduced an algorithm containing most of the ingredients that we use
in our compression schemes. That paper was not included in this thesis, but is
a precursor of the seven publications [P1]-[P7] included in this thesis. The main
idea of the algorithm is to design segmentations suitable for prediction, which are
transmitted to the decoder using region contours by codifying each contour using
chain-code representations. The regions are reconstructed using prediction, where
the smallest details in each region are encoded by the prediction residuals.

In the first publication [PI] of this thesis, we further developed the concepts
from [82]. We first improved the prediction inside each region by introducing a
mixture of local predictors, and by searching on both directions, column-wise and
row-wise, to find the variant where the codelength of the residual prediction errors
is the smallest. Secondly, we improved the contour compression by introducing five
options for encoding the contour segments, from which the best option is selected.

The second publication [P2] introduces a lossy compression algorithm. The
main idea of the algorithm is to generate a set of segmentations. Each segmenta-
tion creates a lossy version of the initial image, where the distortion is controlled by
a selected threshold. The algorithm starts from an over-segmentation, where the
regions contain pixels having the same depth value. The segmentations are gener-
ated by merging neighboring regions, in an order determined by their cardinality.
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Two regions are merged if the variation of the depth values inside the region does
not exceed a threshold. In the final stage, each lossy image is compressed losslessly
using prediction techniques, residual quantization, and chain-code representation.

Our main algorithm for lossless compression is dubbed Crack-Edge—Region—
Value ([CERY]) and is presented in the third publication [P3]. uses the initial
partition into constant regions of the image, where each region contains pixels
having the same depth value, and improves the compression of both region contours
and depth values when compared with the state of the art algorithms. In the
first stage, denoted Algorithm C, the algorithm collects distributions at template
contexts, finds the optimal context tree, and then uses the tree in the compression
of crack-edges (or contour edges), which are the ‘atomic’ elements used to represent
the region contours. In the second stage, denoted Algorithm Y, the algorithm
encodes the regions depth value using the list of depth values of the already encoded
neighboring regions.

In the fourth publication [P4], we focus on developing an image segmentation
algorithm, where the segmentations are designed for lossy compression. Each
created lossy image corresponds to a certain distortion, and can be compressed
using an entropy coder (e.g. [CERY])). Sequences of segmentations are obtained
either by merging regions or by splitting regions. In the region merging process,
we select the pair of regions to be merged as the pair that obtains, after the
merging, the lossy image with the best estimated slope in a Rate-Distortion (RDI)
plot. In the region splitting process, a template is selected and the procedure is
reversed, by splitting regions, and encoding more efficiently the contours using
horizontal and vertical lines. The algorithm, denoted Greedy rate-distortion Slope
Optimization (GSQ)), uses the piecewise constant model to reconstruct the regions.

In the fifth publication [P5], we studied the problem of finding the optimal
solution for generating and encoding contour segments. A contour segment is de-
scribed using an anchor point, a direction point, and a sequence of three-orthogonal
(30T) chain-code symbols. The problems tackled by the algorithm are the gen-
eration of the contour segments, the traversing of contour intersections, and the
coding of the anchor points in such a way that the contour codelength is as small as
possible. The algorithm was denoted Anchor Points Coding (BAPC), and is our one-
dimensional coding solution of contours, having very similar results with [CERV]
our bi-dimensional coding solution.

In the sixth publication [P6], we focused on designing an algorithm that can
provide the progressive coding of a sequence of images generated by the region
merging phase of [GS0] the algorithm being called Progressive coding of GSO se-
quences (P=GSQO)). In [P6], the goal was to develop a progressive coding algorithm
that can obtain good results over a wide range of rates without paying a high price
for the progressive functionality, and so that the performance is not degraded too
much when compared with non-progressive methods.

Finally, in the seventh publication [P7], we studied the parameterization of
the planar model for lossy image compression, and we choose the heights (in the
optimal Least Squares (3] plane) of three pixel positions, as parameters for the
planar model. Seven methods are compared to find a way of choosing the three
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optimal positions to improve the baseline results, where the constant model is
used. The developed algorithm was denoted Plane Fitting (PF), and its results
have further improved the constant model results because of the use of a more
complex model, that introduces a lower distortion inside each region, and due to
the efficiency of Algorithm D, which is used to compress the plane parameters.
The algorithm was extended to the GSOm with Plane Fitting (GSOmPE)
algorithm by introducing a competition between the constant and planar models
in the region merging decision so that better segmentations are generated for the
lossless compressors.

Three other articles were published on related topics and are not included in
this compilation of publications. In [88], the contours of fractal [28] and depth-map
images are encoded using a combination of active horizontal and vertical line con-
tours, that separate the current pixel from the northern and western neighboring
pixel. In [86], is used in a two-phase compression algorithm for histological
images. In [83], a preliminary study of the contour intersections is presented, and
the similarities of the optimal context trees are analyzed.

1.3 Outline of the thesis

The thesis is organized as follows. In Chapter [2] we describe the general concepts
(common in most of our methods), the basic coding methods, and the statistical
methods, i.e. the building blocks used in the development of our algorithms.

In Chapter [3] we describe the algorithms developed for lossless compression.
We start by first analyzing the recent state of the art lossless compression algo-
rithms and then discuss the algorithms developed for transmitting to decoder the
image segmentation, by encoding its regions contours. Two ideas were used in our
algorithms: the contour is encoded either by sequences of vertex positions codi-
fied by the Three-OrThogonal (BOTI) representation [PIl [P5], or by contour edges
using template contexts [P3]. To reconstruct losslessly the image, our algorithms
contain a second stage, where we developed methods for encoding the constant
model parameters used by the region reconstruction procedure. Here, two ideas
were tested: predictive coding using a mixture of predictors [P1], and the use of
the list of depth values of the neighboring regions for ‘guessing’ the symbols [P3].

In Chapter [4 we describe the lossy compression of depth-map images. We start
by analyzing the recent state of the art lossy compression algorithms. The algo-
rithm from [P2] based on variability constrained segmentations is described first,
and is followed by a detailed analysis for the[@SOlalgorithm [P4] using region merg-
ing and region splitting. The progressive coding of sequences [P6] is presented
next, and is using all available a priori information. Finally, the parameterization
of the planar model is studied using seven alternative methods in [P7].

In Chapter [f| we present the compression results of the proposed algorithms for
the available datasets of depth-map images. In Chapter [6] we present the original
contributions introduced by the seven publications selected for this compilation of
articles and we draw the final conclusions.



Chapter 2

Basic Principles

“Secret agent 00111 is back at the Casino again, playing a game of
a chance, while the fate of mankind hangs in the balance.”
— Solomon Wolf Golomb, Run-Length Encoding

In this chapter, we describe the basic principles used in the development of our
algorithms. In Section we discuss about depth-map images. In Section we
describe the way we choose to represent the depth-map images and the sequences
of symbols used to encode the image. The basic principles of entropy coding
are mentioned in Section [2.3] while in Section we introduce the statistical
models used to encode different sequences of symbols generated by the image
representation.

2.1 Depth-Map images

Figure shows the pinhole camera model, where the point in space with the
coordinates (X,Y,D) is projected on the image plane at the coordinates (x,y).
The matrix D(z,y) represents the depth-map of the points in the scene, recorded
at the integer coordinates z = 1,2,...,n,, y = 1,2,...,n. in the image plane,
where n, and n. are the number of rows and columns respectively.

When a depth sensor is used to acquire the depth-map image, the data are
recorded in a matrix I, called intensity image [107], with the relation between I

and D being:
1

Iwy) (1 _ 1y 1’
Qi (Dm DM) + Dy
where D)y is the maximum depth and D,, is the minimum depth acquired by the
sensor, and Q; = 2° — 1 is the maximum quantization level used. In our tests the

D(z,y) = (2.1)

intensity images are saved using b = 8 bits.
When the depth is estimated by stereo matching [71} [84] from two color im-
ages taken from two different viewpoints, the output of the stereo matching is the
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point in image plane
pointinspace  (X,Y,D)
<— principal axes ’

X

principal point

focal length image plane

Figure 2.1: Pinhole camera geometry. The projection on the image plane of a
point in space. OXY D are the principal axes and O is the camera center. pxry are
the image plane coordinates and p is the principal point. f is the camera’s focal
length. A point in space with the coordinates (X,Y,D) is projected on the image
plane at the coordinates (x,y).

disparity image B. Each disparity value B(z,y) at position (z,y) is inversely pro-
portional to the depth D(x,y). An example of a pair of depth and color images,
corresponding to one viewing position of the scene, is presented in Figure 2.2}

Irrespective of the methods for computing the depth, we use in this dissertation
the generic matrix Z that we choose to call as depth-map image, where Z can be
either the intensity image I or the disparity image B.

If aBDl view is synthesized using the color images of two views, the matrix Z is
known as a disparity image [27, 91] and stores the distance using disparity values.
The applications of depth-map images are covering many areas of computer vision
where the point cloud represents the geometry of the observed scenes and further
tasks can be, e.g., object detection and recognition.

Additionally, the depth-map image can be used for view synthesis in the im-
portant application of 3DTV [34], where new views can be synthesized starting
from the color images of two given views, and using the information from the
depth-map image.

2.2 Image representation

In our approach, the input matrix Z is represented using two types of information:
e An image segmentation, that divides the image into regions.
e A set of depth values, used to reconstruct each region.

A region may contain one pixel or a collection of pixels, and each region may
contain pixels having the same depth value or similar depth values, depending
on the type of segmentation used to represent the image. Figure [2.3] shows all
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Figure 2.2: The pair of images corresponding to one viewing position of Art image
(full-size, viewing point ‘disparityl’) from Middlebury dataset. The pair is com-
posed of: (a) one color image, and (b) one depth-map image (disparity image).

the contours found in the initial image Art, where each region contains pixels
having the same depth value. In our approach for lossy compression, we developed
segmentation algorithms that are selecting a subset of contours out of the initial set
of contours by either creating regions with certain proprieties [P1], or by ranking
the contours [P4]. For lossless compression, all the contours found in the initial
image (see Figure are encoded.

The region pixels are connected in 4-connectivity, which means that a pixel
position (z,y) has four neighbor pixel positions: (z+1,y), (z—1,y), (z,y+1), and
(z,y —1). Let us denote Q = {(x4,y:) }i=1,2,....m, & generic region of Z, containing
m pixels, and let us denote d, the depth value used to represent 2, which can be
the depth value of every pixel in €2 or the average value of the pixels in . If the
matrix Z is divided into ng regions, then the £** region of the segmentation is €
and is having m, pixels with depth dp.

2.2.1 Contour representations

A segmentation is represented using the regions contours. Let us denote as contour
map the union of all contour edges (or crack-edges) that form the regions contours,
where a ‘contour edge’ is the atomic element used to represent the regions contours.
A contour edge is used to separate two neighboring pixels in the contour map. If the
contour edge is active, then the two pixels are belonging to two different regions. If
the contour edge is inactive, then the two pixels are belonging to the same region.
One way of encoding the contour, represented using contour edges, is to encode all
the contour edges, active and inactive, that can be found in the image (see Section
3.2.1)). For a very simple segmentation, where only a few contour edges are set
active, a large codelength is used to inform the decoder about the positions of the
inactive contour edges.
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Figure 2.3: Example of the initial image partition, where each region contains
pixels having the same depth value. The contours separating the regions are
marked with red. (a) The image Art (full size, viewing point ‘disparityl’) from
the Middlebury dataset; (b) The zoom in the cyan rectangular from (a).

Another strategy for encoding the contour is to create its one dimensional rep-
resentation by first dividing it into sequences of contour edges, called here contour
segments, and then to codify each contour segment as a sequence of symbols that
describes the way it is ‘drawn’ on the contour map. To draw a contour edge, the
decoder needs to know the positions of its two ends, which are called here vertices.
Since the contour of the regions is continuous, in a sequence of edges, we need
to encode the positions of both vertices of the first edge, and the position of one
vertex for each of the rest of the edges. Hence, a contour segment, formed of
n — 1 neighbor edges, can be represented using a sequence of n adjacent vertices,
eg. [P P, --- P,]T. The sequence of vertices can be encoded using a chain-
code representation, which informs the decoder how to draw the contour edges, i.e.
by starting from a current vertex and continuing with one of its adjacent vertices,
where the selection of the next adjacent vertex is codified by a chain-code symbol
until the end of the contour segment.

Chain-code representations

Many types of chain-code representations were developed for different purposes
[10, (111, [74]. In [87], five chain-code representations are studied while compressing
the contours of binary images. If we choose an 8-connectivity for the pixels (i.e. a
pixel has eight neighbor pixels), then the contour can be codified using one of the
following chain-code representations:

o Freeman 8 symbols (F8). Each of the 8 adjacent vertices is codified by a
symbol according to their position relative to a current vertex position. The
set of symbols used is {0,1,...,7} and corresponds to a variation with a 7§
angle around the origin, which is the current position.
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o Differential Freeman 8 symbols (AF3). Here, the next adjacent vertex in the
sequence is codified by angular rotation, where the direction of movement
us

is rotated with an angle of multiple 7. The distribution of the symbols is

closer to the exponential distribution.

If the 4-connectivity is selected to create a region (i.e. a pixel has four neighbors),
then the contour can be codified using one of the following chain-code representa-
tions:

o Freeman 4 symbols (F7). It is similar to [E8, but uses a set of four symbols
{0,1,3,4}, corresponding to a & angle variation around the unit circle.

o Differential Freeman 4 symbols {AF7). It is similar to [F4] but after moving
from one vertex to an adjacent vertex, there are only three more adjacent
vertices as possible options to move forward, and each option is encoded by
a symbol in the set {0,1,2}.

o Three-orthogonal (30T). The symbols in the representation are set using the
position of the adjacent vertices relative to the current vertex, and using
a long term memory of the movement when traversing a contour segment
(see Figure . This representation was chosen in this dissertation and is
described in more detail in the next subsection.

30T chain-code representation

The BOT] representation is encoding the current vertex, say P, o, relatively to the
previous two vertices in the sequence, P; and P;11, using a symbol s; € {0,1,2}
(see Figure . BOTI codifies a sequence of vertices starting from the third ver-
tex in the sequence, until the last vertex in the sequence. Hence, the first two
vertices P, and P, must be coded using a different strategy, and the remaining se-

quence of vertices, [P3 P, --- P,]7, are codified by a corresponding vector
[s1 s2 -+ sp_o]T, where s; is aBOT symbol.

TheBOTIrepresentation is describing the advance in the description of a contour
segment, from one vertex to one of the three remaining adjacent vertices, using a
symbol with one of the following meanings:

(0) A symbol ‘0’ is describing the advance from the current vertex to the vertex
found on the position for which the previous and next contour edges form a
straight line. The symbol has also the significance of ‘going forward’.

(1) A symbol ‘1’ is describing the advance from the current vertex to the vertex
found on the position for which the direction of movement is the same as
previously and the orientation changes: horizontal <+ vertical.

(2) A symbol ‘2’ is describing the advance from the current vertex to the vertex
found on the position for which the direction of movement and the orientation
are changing. The symbol has the significance of ‘going back’.
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Symbol 0 - 30T Symbol 1 - 30T Symbol 2 - 30T Symbol 1 - 30T
0-AF4 1-AF4 2- AF4 2-AF4

P

P+I

Figure 2.4: Examples of vertices codified by a 30T or by a AF4 symbol. In
the 30T representation the unknown vertex positions, P42, is codified using the
last two known vertex positions, P;y; and P;, and the long term memory of the
movement, where the memory is updated while traversing the contour segment. In
the AF4 representation the unknown vertex positions, P; o, is codified only using
the last two known vertex positions P;1; and P;. Known contour edges are marked
with blue lines, and known vertices are marked with black dots. The arrow shows
the next adjacent vertex to visit, P; s, which is marked with green dots. Previous
movements done while traversing the contour are marked with dotted lines.

The [AF4 and BOT] representations are compared in [83], where the contour
of fractal and depth-map images are compressed. The results have shown that
the representation is more suitable to represent the contours, because
generates a sequence of symbols that has more redundancy, and that contain a
distribution with a lot of symbols 0 and 1, and only a few symbols 2. Figures
(c,d) are showing how the use of the long term memory in the 30T represen-
tation is decreasing the number of symbols 2 and increasing the number of symbols
1 compared to the AF4 representation.

2.2.2 Region reconstruction

The last stage of our compression scheme is the regions reconstruction stage. In
the previous stage, the decoder received the information about the contour and
used it to define the partition of the image into regions using the set of regions
{Q}e=1,2,.. ng- To finish the representation of the image, the decoder is recon-
structing each region in the image by setting a depth value to each pixel.

In this dissertation, we used two ways for encoding the information needed
to reconstruct the regions. One way is to develop a predictor (see Section
and to encode the prediction error computed for each pixel in the region. The
prediction techniques use the causal neighborhood to estimate the depth of each
pixel, and therefore the segmentation plays an important role and it is designed
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so that prediction errors are as small as possible. Another way to reconstruct the
regions is to use a model to fill each region (e.g. constant or planar model). For
the constant model, one depth value is encoded for each region and is set to each
pixel. For the planar model (see Section , three parameters are encoded and
are used together with the pixels coordinates to compute a plane and to set each
pixel with a depth value.

2.3 Entropy coding

Entropy coding is an efficient way of compressing a sequence of symbols, taken
from a known alphabet. In its simplest form (as in the optimal Huffman coding
[33]), each symbol in the alphabet is mapped to a codeword by a reversible map-
ping so that the sequence is reconstructed losslessly from the encoded sequence of
codewords.

Let us consider a sequence of symbols x” = x5 ... z,, containing n elements,
where each element z; is a symbol in the finite (k < n) alphabet {s;|i = 1,2,...,k}
of k symbols and the counts of symbols of X" is D = [n1 ng ... ng|’, where n;
is the frequency of symbol s;. The empirical probability distribution from x™ is
P=1[p1 p2 ... pp]T, where p; = i is the empirical probability of occurrence for
symbol s;. P contains the probability for each symbol in the alphabet to be the
next element x,41 in the sequence.

In 1948, Claude Elwood Shannon, who is known as “the father of information
theory”, published his famous paper “A Mathematical Theory of Communication”
[85], where he introduced the Shannon Lossless Coding Theorem. His source cod-
ing theorem states that for a sequence of independent and identically distributed
random variables, having the probability distribution P, the entropy H is the low-
est bound on the average number of bits per symbol, with which the sequence can
be compressed. The entropy is computed as

k
H = *Zpi logy pi. (2.2)
=1

The sequence x", composed of n symbols, may be encoded losslessly using in
average n - H bits.

2.3.1 Estimators of probability distribution

In data compression, the sequence x" can be encoded by updating adaptively the
probabilities of the symbols. In the initial stage, the same probability p; = % is
associated to each symbol in the alphabet. The associated probability distribution
is updated in the stage where element x; is encoded, to be used in the next stage
where the element x; is known, by associating a new set of probabilities to each
symbol in the alphabet. There are many types of probability estimators used in
literature, which are usually classified according to the proprieties of the sequence.
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The most used type of estimators is the add-constant predictor family [14], which
is written as

Ng, +¢C
n+ ke’

where p; (2,41 = ;) is the probability associated to the symbols s;, i.e. the prob-
ability that the next symbol in the sequence is symbol s;; n is the number of
elements in the sequence that were already encoded; k is the length of the sym-
bols alphabet; and ¢ is a predictor’s constant. When ¢ takes some specific values,
famous estimators are obtained:

pi(‘rnJrl :si) = i= 1723"'7k7 (23)

(a) If ¢ =1, then the add-one estimator is obtained, known also as the Laplace
(D) estimator [47], and (2.3)) is rewritten as

ng, + 1
n+k’

Pi(Tni1 = si) = i=12,... k. (2.4)

(b) If ¢ = %, then the add-half estimator is obtained, known also as the

Krichevsky-Trofimov (KT)) estimator [42], and (2.3)) is rewritten as

1
n91+§

k
n+§

Di(Tnt1 = 85) = ,1=1,2,... k. (2.5)

However, sometimes different values for the predictor’s constant c offer better
results, e.g. ¢ = 0.42 was used in [51].

2.3.2 Arithmetic coding

Arithmetic coding [46], [97] is a form of entropy encoding, that can obtain a code-
length close to the optimal codelength computed by the entropy using the proba-
bility distribution.

It encodes the entire string of data by creating a string of code that represents a
fractional value found in the interval [0, 1). The algorithm is encoding one symbol
at a time. It partitions at each iteration a smaller interval from the initial interval
[0, 1), where each partition has the intervals proportional to the values in the
current probability distribution. The interval corresponding to the current encoded
symbol is retained as the new interval. Therefore, the algorithm is dealing with
smaller intervals at each iteration, and the generated code string is selecting the
encoded symbol in each of the nested intervals. The string of data is recovered by
using the code string to partition and retain at each iteration the nested subinterval
in a procedure that the encoder used to generate the code.

Let us consider now encoding the sequence x™ using the arithmetic coder. Let

us suppose its alphabet is {s1, s2,..., s} and the Laplace (L) estimator is used
to update the probabilities. Before anything is transmitted, every symbol has the
same probability p(s1) = p(s2) = ... = p(sg) = 1 and the initial interval is

portioned into k intervals: symbol s; has associate the first interval [0, p(s1)),
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symbol sy has associate the next interval p(s;)+ [0, p(sz2)), and so on until symbol
sk has associate the last interval Zf;ll p(si) + [0, p(sk)) = [1 — p(sk), 1). After
receiving the first element in the sequence x1, e.g. ©1 = sy, the encoder uses the
ideal codelength L(p(z1)) = L(p(s¢)) = —logy(p(se)) [bits] to inform the decoder
that 1 = sy and narrows the initial interval to the interval associated to the
symbol s; by selecting Zf;ll p(si) + [0, p(s¢)) as the new interval. The Laplace
estimator is used to update the probabilities of the symbols and the current
interval is portioned again into k intervals using the new probability distribution.
In the second iteration, the encoder uses L(p(x2)) bits to transmit to the decoder
the element s, the interval is further narrowed to the interval associated with the
symbol used to represent x5, and the probability distribution is updated using the
Laplace estimator. This procedure continues until the last element in the sequence
is encoded using L(p(z,,)) bits. It can be proven that, the sequence x™ is encoded
using approximately the codelength

k
L(Pp(x™)) = —log, (M Hn') : (2.6)

i1

2.3.3 Golomb-Rice coding

A different strategy, for encoding the sequence of symbols x", is to codify the
symbols in the original alphabet {s;}i=12 . r using a set of codewords, called a
code. For each symbol (or string of symbols) the code associates usually a variable-
length codeword that is formed of symbols 0 and 1.

The most used codes are the prefix codes, which have the propriety that, in
the set of codewords, a codeword is never a prefix (initial segment) of any other
codeword in the set. The Huffman code is an optimal prefix code that creates a set
of codewords such that the average codelength is minimized. The Huffman algo-
rithm was developed in 1952 by David A. Huffman [33]. However, if the alphabet
is infinite, we cannot apply directly the Huffman algorithm.

When the infinite alphabet has a geometric distribution, the Golomb-Rice (CRI)
code [25, [69] is the optimal prefix code. Each integer symbol s; = i is represented
using the quotient’s codeword and the remainder’s codeword, when the symbol
s; is divided by a parameter M. For a fast implementation, the parameter M is
selected as a power of 2, i.e. M = 2FGr_The quotient ¢; and the remainder r;
are computed as ¢; = | 1], and r; = 5;%M (meaning r; equals s; mod M). The
quotient’s codeword is generated by unary coding, writing a ¢;-length string of
bits set as 0, followed by one bit 1, to mark the end of the string. The remainder’s
codeword is generated by writing r; in the binary format. The codelength needed
to encode x" can be estimated using the parameter M. The algorithm first
searches for the optimal parameter kf that obtains the minimum codelength.
The first value encoded by is k¢, and is followed by n pairs of quotient and
remainder codewords. The decoder first obtains kf,,, computes M = 2kGr and
then uses M to decode the sequence x".
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2.4 Statistical models for prediction and coding

The entities used in the representation presented in Section are each codified
by a sequence of symbols. However, before encoding each sequence using the arith-
metic coding, we are using a statistical model for achieving a good compression.
A context model selects for each element x; in the sequence x™ a context in which
x; is usually found. For one-dimensional signals, the context is created using a
window of recently encoded symbols. For bi-dimensional signals (e.g. matrices),
the coding is done line by line (or similarly column by column), and the context is
created using the already encoded lines. In this case the context is usually called a
Template Context [51] and it contains the elements located at the pixel positions
selected, in order, according to the ¢; or f3 norm computed between the current
pixel position and the selected pixel position.

2.4.1 One-dimensional models

A one-dimensional model uses the previous N symbols in the sequence to create a
set of contexts, where N is the order of the model. A zero-order model will then
have k% = 1 contexts for which the probability distribution is computed. This
model encodes the sequence x™ using a probability distribution computed by one
of the estimators presented in Section m For an 1-order model, k' contexts
are created (since there are k symbols in the alphabet), and in each one of them
a probability estimator is updating the probability distributions. Hence, for an
N-order model, kN contexts are created.

A graphical representation of the contexts is a tree, called context tree, de-
noted by 7. Each node of the tree represents a context for which a probability
distribution is computed. In each node, there are k& branches labeled with the k&
symbols in the alphabet. A context tree having the tree depth N is the graphical
representation of all the models from the first order until the N** order, since at
every tree depth ¢, between 1 and N, we have the contexts of the f-order model.

Adaptive Markov Model

The Adaptive Markov Model (AMMI) uses the kv contexts of the N-order model,
where k is the length of the alphabet. Its contexts are represented by all tree nodes
at depth N, the reason why the adaptive Markov model is sometimes called the
Fully Balanced Context Tree Model.

Let us consider that the N-order adaptive Markov Model is used to encode the
sequence X", and the probability distributions are computed using the Laplace
estimator. The context of each element in the sequence is obtained using the
previous N elements in the sequence. For the element x; we obtain the context
Cj =zj_1xj_2...zj_n. The probability distribution used to compress x; is the
one corresponding to context Cj, i.e. p(x;|C; = xj_12j_2...2;_n). In the graph-
ical representation, this corresponds to traversing of the context tree T' from the
root node to the leaf that represents the context C;. The traversing is done by
selecting, at each node of the tree, the branch labeled with the current symbol
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in the context. For example, from the root node of the context tree T' we select
the branch labeled s; = z;_1, then in the new node we select the branch labeled
8; = xj_o, until the last branch, labeled s; = x;_n, is selected.

Let us denote the distribution in the context C; as D; = [njl n% ni]T,
where n? is the frequency of symbol s;, j =1,2,..., kN is the context index, and
1=1,2,...,k is the symbol index. We can then encode the sequence x™ using the

N-order Adaptive Markov Model (N=AMM]) with Laplace () 