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Abstract

The mechanism of polyethylenimine—DNA, poly(L-lysine)-DNA, peptide—-DNA, and PBAE-DNA
complex formation was studied by a time-resolved spectroscopic method. The data were analysed
by a cooperative model for multivalent ligand binding to multisubunit substrate. The formation of
polyplexes with polyethylenimines, poly(L-lysine) and peptide (KK),KGGC is observed to be
positively cooperative and negatively cooperative with PBAEs. Polymers with positive
cooperativity reach about 100% saturation in binding DNA, whereas for polymers with negative
cooperativity, the saturation level remains at about 80-90%. The type of amine groups (primary,
secondary and tertiary) of the polymers has an effect on the binding constants and the degree of
cooperativity.

The effects of pH, type of amine groups and polymer structure on the mechanism of the polyplex
formation were studied with polyethylenimines (PEI) and poly(L-lysine) (PLL). At pH 5.2 and 7.4
for PEIs and PLL, the formation of the polyplex core was observed to be complete at N/P = 2, at
which point nearly all DNA phosphate groups were bound by polymer amine groups. At higher N/P
ratios, excess polymer binds to the core polyplex, forming a shell over the core. At pH 9.2, the core
is formed at higher N/P ratios than at lower pH levels except for PLL, which behaves similarly at all
pH levels. The overall cooperative binding constants are higher at pH 5.2 than at 9.2 due to the
higher degree of amine group protonation at lower pH levels.

The ionic strength and pH affect the binding mechanism with peptide (KK),;KGGC polyplexes, but
changing the buffer does not. Molecular weight shows a clear effect on the mechanism and
efficiency of the polyplex formation: for the high-molecular weight polymers (BPEI and PLL), the
saturation level is reached at lower N/P ratios than for low-molecular weight polymers (SPEI and
peptide). In the absence of excess PEI, the transgene expression levels are lower than in the
presence of it. However, the fluorescence properties of the polyplexes in the absence and the
presence of excess PEI are similar. Hence, the original structure of the polyplex core is retained
during the shell formation.

The molecular structures of the poly(s-amino ester)s (PBAESs) can be modified in a controlled way
with the accuracy of single carbon unit. The effect of very small changes in the polymer structure
on the formation of the polyplexes was studied by changing the length of the backbone and the side
chain, by adding end caps to the polymers and by changing the molecular weight of the polymers.

For PBAEs without end caps, the highest saturation levels and overall binding constants were
observed for the linear backbones and side chains when the number of carbons was four or five,
respectively. The end-capping of PBAEs increases the amine density and the efficiency of polyplex
formation, which is observed as higher saturation levels for the end-capped PBAESs. The presence of
an OH-group in the end cap induces a change in the binding mechanism. The length of the
backbone and the side chain of PBAEs were observed to be important via amine density,
hydrophobicity and steric hindrance to the complex formation. High-molecular weight PBAEs
formed polyplexes more effectively than smaller ones.
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1 Introduction

Cancers and inheritable diseases result from inactive genes™ ?. Gene therapy is a technique for
correcting defective genes that are responsible for disease development. Gene delivery is the
process of introducing foreign DNA into host cells. Thus, gene delivery is one of the necessary
steps for gene therapy. The intracellular delivery of gene medicines is of utmost importance because
transgenes must be transferred in active form into the nucleus, and efficient gene knockdown by
SIRNA, ribozymes and antisense oligonucleotides takes place only upon the cytoplasmic delivery of
these gene medicines.*® However, DNA and oligonucleotides have poor permeability in the cell
membranes due to their large size, hydrophilicity and negative charges. In addition, DNA is
biodegradable: outside the nucleus, where enzymes are not able to repair it, it degrades in a few
minutes. Thus, to deliver DNA to its target, it has to be protected, and its endocytosis into cells
must be made possible. The viruses are able to transfer their genetic cargo to the host cells.
Although most current gene therapy research relies on viral vectors, safety problems (including
deaths in clinical trials) have slowed down the progress of this approach.’® Non-viral (chemical)
vectors, based on nano-sized particles, are potential alternatives to the viral vectors.!®! They possess
advantages that are difficult to achieve with viral vectors: versatility, lack of immunogenicity, easy
large-scale production, unrestricted DNA size and the opportunity to incorporate several different
DNA species into the same particle.l’ ® However, the chemical vectors (e.g., cationic dendrimers,
polymers, peptides and lipids) show poor efficacy in intracellular gene transfer.™**?! Biodegradable
non-viral carriers contain, e.g., ester bonds that include oxygen in their backbone. Thus, they
degrade easily, being less toxic, but at the same time, oxygen decreases the efficiency of the
vector.™*?!

The mechanisms of formation and uptake of the nanoparticles and the release of DNA inside the
cell are still unknown. Many different types of non-viral vectors have been synthesised and studied
with time- and material-consuming in vitro transfection experimentst® 24~ Through these studies,
it is possible to find out which carriers can transfect the carried genes and how efficient the
transfection is compared with known references. Very little information on the reasons why one
carrier works and another does not is obtained. Other methods, such as fluorescence spectroscopy,
surface plasmon resonance, quartz crystal microbalance and different microscopy techniques should
be utilised to yield information on what will happen to the carrier-DNA complex during the
complex formation in a test tube, in vitro interaction with the cell surface, endosomal uptake of the
complex in to the cell, the escape from the endosome inside the cell and the release of the DNA to
the nucleus of the cell (Scheme 1). Advanced polymer synthesis combined with time-resolved
spectroscopic methods can reveal, e.g., how the molecular structure of the carrier influences its
efficiency. The effect of the molecular size or the functional groups of the carrier and the effect of
the environment on the binding and releasing of DNA can be studied quantitatively. Correlating
such data with the in vitro and in vivo transfection studies will yield valuable information for
developing better chemical vectors for gene delivery.



Scheme 1 Nanoparticle formulation and extracellular and intracellular barriers for successful gene delivery.
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1.1 Aims and Outline of the Thesis

This thesis aims to contribute to understanding the complex formation between chemical vectors
and DNA, i.e., the very first step in the gene delivery process. A method based on time-resolved
fluorescence measurements recently developed in the research group™” was utilised and improved
further. With this technique, it is possible to obtain quantitative information on the mechanism and
the binding affinities of the polyplex formation and thus reveal differences between the polyplexes
prepared with different polymers.

There are many types of polymers used for non-viral gene delivery, such as polyethylenimine (PEI)
(18] chitosan™, cyclodextrins®, polypeptides (i.e., poly(L-lysine) (PLL) and peptides)®! and
others.’? PLL is one of the earliest investigated gene carriers because of its excellent DNA
condensation ability and efficient protection of DNA from nuclease digestion. However, it
transfects poorly both in vitro and in vivo.""! PEI, on the other hand, is one of the most potent
synthetic gene carriers and the most widely studied®*®!. PEI delivers DNA successfully both in
vitro and in vivo®”. These two common model polymers, i.e., PEI™ " and PLL!", were used for
testing and developing the time-resolved fluorescence method. The effects of pH, type of amine
groups, polymer structure, molecular weight, ionic strength, buffer, incubation time and free
polymer on the mechanism and efficiency of the polyplex formation were studied. One class of
polymers of interest for gene delivery are the poly(B-amino ester)s (PBAEs), which have low
cytotoxicity due to their degradability. This reduced cytotoxicity can be 100-fold compared to
commonly used non-degradable, cationic polymers such as PEL" The best PBAEs have high gene
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delivery efficacy and low cytotoxicity both in vitro and in vivo™. A selection of poly(p-amino
ester)st!"" ™ with very different molecular structures compared to the model polymers were used to
test the applicability of the method in analysing the formation of DNA polyplexes generally.
Furthermore, the molecular structures of the poly(S-amino ester)s used in this thesis can be
modified in a controlled way with the accuracy of single carbon unit. Thus, the effect of very small
changes in the polymer structure on the formation of the polyplexes could be studied.



2 Background

Typical non-viral DNA delivery systems involve polycationic species, such us cationic polymers,
peptides, cationic liposomes or micelles, that complex and condense plasmid DNA in solution,
forming nanoparticles of 40-500 nm in diameter™ 8 2 29 Nanoparticle-mediated gene
transfection involves several phases: DNA complexation, binding to the cell surface, endocytic
uptake, endosomal escape to the cytosol, nuclear entry, transcription and translation (Scheme 1).
The DNA carriers/vectors have several tasks in the gene delivery process: the vector should pack
and protect DNA from various sources of degradation, such as nucleases. It should facilitate good
circulation through tissue barriers right down to the target cell membrane. The vector should help to
fix the DNA in the cell since, as a polyanion, DNA has no spontaneous ability to adhere to the
polyanionic plasma membrane in cells. It should also help the DNA to cross the endosomal
membrane and to promote intracellular circulation and penetration of the nucleus. Finally, DNA
must be released from the nanoparticles before transcription.*” Each of these steps can be
potentially influenced by the vector used for DNA delivery systemsY.

In the next section, the properties affecting the gene delivery efficiency of the chemical vectors used
in this thesis are discussed from the literature point of view. The binding models describing the
independent and cooperative binding are introduced. Finally, the method based on time-resolved
fluorescence spectroscopy used for determining the binding affinities and constants is described.

2.1 Formation and Properties of Polymer-DNA Complexes

The cationic vectors used in gene delivery studies contain primary (NH;), secondary (NH) and/or
tertiary (N) amine groups that can be protonated. Polyethylenimine (PEI) is a cationic polymer
exhibiting the highest positive charge density when fully protonated in aqueous solution.!** 18 32 33
Branched and linear polyethylenimines (Figure 2.1) are considered promising candidates as non-
viral vectors for plasmid™ 3* ! and oligonucleotide delivery®® " both in vitro and in vivo. They
provide an attractive alternative to cationic lipid formulations because they combine remarkable
transfection efficiencies with high complex stability™® and allow transfection in the presence of
serumt®. Different kinds of polyethylenimines (PEls) were characterized by Harpe et al.l*! to gain
insight into their structural and functional properties. Analysis of the obtained data revealed
differences in the extent of branching based on the ratio of primary (1°), secondary (2°) and tertiary
(3°) amino groups. An amino group ratio of 1°:2°:3° = 1:2:1 was obtained for the synthesized PEI,
whereas commercially available PEI generally showed a higher degree of branching and thus an
amino group ratio of 1:1:1, respectively.*®! While some authors argue that lower molecular weight
PEIs are more effective transfection reagents® “1, others report failing transfection for very low
molecular weights in the range of 600-1800 Da and increasing efficiency with increasing molecular
weights of PEI™?. The purity, toxicity and biocompatibility of PEI is a matter of concern; e.g., high
molecular weight polyethylenimine (800 kDa) is a non-biodegradable polymer and cannot be
renally excreted and presents, therefore, problems for in vivo applications."” The optimal PEI
architecture for gene delivery is not known, but the 25 kDa branched PEI and 22 kDa LPEI used in
the present study are considered good model polymers of efficient vectors.™



Poly(L-lysine) (PLL) (Figure 2.1) is one of the earliest investigated gene carriers because of its
excellent DNA condensation ability and efficient protection of DNA from nuclease digestion.
Because of its peptide structure, PLL is biodegradable, which is an advantage for in vivo use™* *3!.
However, low-molecular weight (less than 3 kDa) PLLs do not form stable polyplexest**, and high-
molecular weight PLL (M, > 25 kDa) is quite cytotoxic and transfects poorly both in vitro and in
vivo.[* *1 Wwith 211 kDa PLL the polyplexes display up to 20-fold higher levels in the blood
compared to 20 kDa PLL*. Thus, 200 kDa PLL used in this study is a perfect choice as a negative
model vector.
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Figure 2.1 Structures of BPEI, LPEI and PLL.

Poly(B-amino ester)s (PBAEs)™ *6=*8] are promising agents for non-viral gene delivery due to their
large potential for structural diversity, ability to condense DNA into small and stable nanoparticles,
ability to buffer the endosome and facilitate endosomal escape. Furthermore, they are biodegradable
via hydrolytic cleavage of ester groups, have low cytotoxicity compared with some other cationic
polymers and relatively high transfection efficacy in vitro and in vivo. A library of 2350 structurally
unique, degradable PBAEs have been synthesized*®), 46 of these new polymers can transfect with a
higher efficiency than PEI™. In addition to the overall chemical structure and molecular weight of
the polymers, attaching amine-containing groups to the acrylate-end groups leads to a significant
increase in the transfection efficiency!* %%,

The vectors interact with the negatively charged DNA through electrostatic interactions leading to
polyplexes®). At physiological pH (= 7.4), the phosphates (pK, =~ 1) of the DNA are always
negative, so the number of negative charges is known®. Only the charged amines are active and
participate in the complex formation with the negative phosphates of the DNA. However, the
degree of protonation varies with the nature of the amine groups, i.e., primary, secondary or tertiary,
and the pH of the medium.®! Furthermore, the degree of protonation is affected by environmental
constraints induced by the polymer, considerably reducing the pK; of the amine groups. Hence, the
overall charge of the polymer may be distinctly smaller than the number of amine groups. 51

The pKa values depend on the number of methylene units between two amines® (amine density),
the temperature and the molecular weight of the polymers. Protonation states between neighbouring
amines in PEI will be reduced when the methylene units between two amines increases®; hence,
the high-amine density polymers, such as PEIls, have lower pK, values than low-amine density
polymers, such as PLLs. The effect of temperature has not been studied in this context and is not
addressed here since the studies are conducted at a constant temperature. The effect of molecular
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weight has been studied more elaborately!“?l. For PEIs, the pK, values decrease with increasing
molecular weight. However, the buffer capacity at physiological pH levels does not vary in a
systematic manner for PEIls of different molecular weights, suggesting that factors other than
protonation are involved.”” The complexation and condensation of oligonucleotides and DNA are
influenced by the level of protonation and the flexibility of the polymer chains*”. Hennink et al.’*
531 studied the effect of the pK, of the cationic groups on their transfection efficacy using various
cationic vinyl polymers. The pK, values varied from 7.5 to 8.8, and the lower the pK, value is, the
higher the amount of gene expression is. The pK, values for PLL vary between 9 and 11°*®"! and
for LPEI, the pK, = 7.4-8.5% %81 The average pK, for BPEI is equal to that of LPEI, i.e., 7.4-8.55%
5859 However, BPEI contains primary (100% protonated at pH << 9), secondary (50% protonated
at pH 7.4) and tertiary amine groups (pKa = 6-7, less than 50% protonated at pH 7.4)% 58 The
uptake of PLL complexes into cells is as efficient as for PEl complexes, but the transfection
efficiencies of PLL remain several orders of magnitude lower than PEIs independent of the cell line
used. A potential reason for this is the lack of amino groups with a pK; between 5 and 7, thus
allowing no endosomolysist® . At physiological pH, a large fraction of the amines of PEIs is not
protonated and can function in endosomes as a proton sponge, with endosomolytic propertiest.

For cationic polymers with a high buffering capability over a wide pH range, the endosomal escape
to the cytosol has been observed to take place via the ‘proton sponge’ phenomenon.2 62784 These
polymers usually contain secondary and/or tertiary amine groups with pK, close to
endosomal/lysosomal pH. Since the in vivo transfection studies are made at pH 7.4, not all the
amine groups of the polymer with the ‘proton sponge’ ability are protonated. During the maturation
of endosomes, the membrane-bound ATPase proton pumps actively translocate protons from the
cytosol into the endosomes, leading to the acidification of endosomal compartments and the
activation of hydrolytic enzymes. At this stage, unprotonated amine groups of the polymer will
become protonated and resist the acidification of endosomes (Figure 2.2). As a result, more protons
will be continuously pumped into the endosomes with the attempt to lower the pH. The proton
pumping action is followed by the passive entry of chloride ions, increasing ionic concentration and
leading to water influx. Eventually, the osmotic pressure causes swelling and rupture of endosomes,
releasing their contents to the cytosol.

For transfection experiments, the optimal N/P ratio of the PEI-DNA complexes is usually 3-15
depending on the vector used™® ® while the polycation~-DNA binding becomes saturated at an N/P
ratio about 2—3.513" 3 6. ¢7] ‘Boeckle et al.*™ demonstrated that the removal of free PEI from the
complexes eliminated their gene transfection ability. Thus, efficient polymer-mediated gene
delivery in the cells requires the presence of excess polymer in the solution®® % ¢! During the
formation of the polyplexes, the negative phosphate groups (P) of DNA are bound by the positive
amine groups (N) of the polymer. At a certain N/P ratio, unique to each type of polymer, nearly all
the DNA’s P groups are bound by the polymer N groups and the polyplex becomes electrically
neutral; i.e., its zeta potential (ZP) is close to zero. These complexes form the core of the
polyplexes. The excess polymer, added to this system to increase the N/P ratio to the values giving
efficient gene delivery, forms a positively charged shell around the core polyplex increasing its ZP.
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Figure 2.2 The “proton sponge’ hypotheses (pH-buffering effect). (1 & A) Polyplexes enter cell via endocytosis and are
trapped in endosomes. (2 & B) Acidic endosome buffering leads to increased osmotic pressure and (3 & C) finally to
lysis. (B) The membrane-bound ATPase proton pumps actively translocate protons into endosomes. Polymers become
protonated and resist the acidification of endosomes. Hence, more protons will be pumped into the endosomes
continuously to lower the pH. (C) The proton pumping action is followed by passive chloride ion entry, increasing ionic
concentration and, hence, water influx. High osmotic pressure causes the swelling and rupture of endosomes, releasing
their contents to cytosol. Figure modified from Ref. 33 and 64.

In addition to ZP measurements, the formation of the core—shell polyplex can be studied by
measuring the particle sizes of the polyplexes at different N/P ratios. At N/P ratios, where the
polyplex ZP ~ 0 mV, the polyplexes aggregate significantly, and the size of the observed particles
increases to > 1000 nm!** ®1, With the presence of excess polymer, the ionic repulsion between the
positive polyplexes keeps their sizes considerably smaller. For example, 25-26 kDa PLL-DNA
complexes with N/P ratios greater than 1.0 form either 25-50 nm toroids™ *4 or 40-80 nm rods!*¥
and complexes of PEI-DNA (using 25 kDa PEI) at an N/P ratio of 9.2 are homogenous 40-60 nm
toroids™). These results were obtained from dry samples with electron microscopy. When measured
with dynamic light scattering from wet samples, the size of PEI-DNA complexes ranged from 90 to
130 nm (at N/P > 8.0)1*° ®8 and the size of PLL-DNA complexes was 50 nm (at N/P > 1.4)!4,

For non-viral vectors, in addition to the molecular weight of the vector and the N/P ratio used, the
size of the polyplexes also depends on the salt concentration of the buffer solution. For instance,

7



when PEI is added to a plasmid solution (Figure 2.3), it very quickly associates with several
plasmid segments. There then follows a rapid condensation of several plasmids in a complex that
becomes positive when excess PEI is used. When this PEI-DNA condensation is carried out in the
absence of salts, these complexes, positively charged at the surface, are particles measuring between
50 and 70 nm in diameter. lonic repulsion then ensures their stability in solution. However, these
same particles aggregate very quickly when their ionic surface is screened by other ions at
physiological concentrations, e.g., 150 mM NaCl. It has thus been demonstrated that aggregates
500-1000 nm in diameter are obtained after a 10 min incubation in 150 mM of NaCl (at a N/P ratio
of 5 for PEI) (Figure 2.3).°!
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Figure 2.3 The stability of PEI-DNA polyplexes formed in the presence of excess cationic charge depends on the ionic
strength of the reaction medium. Figure modified from Ref. 3.

Since positively charged complexes interact with the cell surface by an electrostatic interaction with
anionic substances on the cell surface, such as sialic acid and proteoglycan, the zeta potential of
polyplexes is important. Polyplexes composed of polycations with molecular weights of several
thousand exhibit significantly higher zeta potentials than smaller polycations, irrespective of the
polycation used. Internalisation events also seem to be affected by polyplex particle size and zeta
potential. Generally, aggregation of the complexes makes their internalisation difficult because of
their large size. Aggregation of the polyplexes in serum-containing medium or in blood is also a
problem. However, the correlation between the transfection efficiency and particle size of the



polyplexes remains unclear™ %, not the least because of the good transfection results obtained with
highly aggregated LPEI™ 2% %86 701 For gene expression in the lungs (in vivo), the best results are
obtained with small particle size of LPEI (22 kDa) and large particle size of BPEI (800 kDa and 25
kDa)l". The in vitro large particle size of PEIs (LPEI and BPEISs) gives better transfection
efficiencies!’® ™.

Dai et al. have shown that the cellular uptake rate of BPEI-DNA polyplexes at N/P ratio 3 increased
significantly when adding excess PEI up to N/P = 10. Free 25 kDa BPEI was especially effective in
enhancing polyplex internalization. Addition of free 2.5 kDa LPEI has a comparable promoting
effect as 25 kDa LPEI and 25 kDa BPEI, with respect to transfection efficiency, when the final N/P
ratio is 10 or 15. More efficient non-viral gene transfection systems could therefore be constructed
by using high-molecular weight (M) PEls for polyplex formation in combination with free PEIs
with low M, as low M,, PEIs are associated with a lower cytotoxicity.®®’

Hanzlikova et al.’®® studied the role of free BPEI by removing the free BPEI from the polyplexes
and/or the glycosoaminoglycans (GAGs) from the cell surface (Figure 2.4A-D). The transfection
efficiency decreased in the following order: no free BPEI, no GAGs (Fig. 2.4D) > free BPEI, no
GAGs (Fig. 2.4C) > free BPEI + GAGs (Fig. 2.4A) > GAGs, no free PEI (Fig. 2.4B)". It appears
that the inhibition of polyplex transfection by cell-surface GAGs is one of the critical factors in PEI-
mediated transfection!®™ "2. This inhibition can be overcome by free PEI: the free PEI masks the
GAGs in the cell surface by binding to them, and thus the endocytosis of the core polyplex becomes
easier. Hence, the role of free PEI is linked to the GAG concentration of the target cell type.
Whether the free PEI also has some other function in the transfection process was studied by adding
free PEI at different times after the experiments with purified polyplexes were started. Since the
addition of free PEI 4 h after the purified polyplexes led to the strongest enhancement of gene
expression, it is likely that free PEI also contributes to the endosomal release or some other process
thereafter.®) First, the purified polyplexes are internalised into endosomes. The free PEI added
afterward is also internalised into endosomes, and these vesicles containing PEI alone merge with
the polyplex containing-vesicles. The free PEI can now aid in the releasing of the polyplexes from
the endosomes by the proton sponge effect. The positive effect of adding free PEI to purified
polyplexes indicates that a certain minimum amount of excess PEI (final N/P ratio > 6) is necessary
to achieve the proton sponge effect!®* ™. This can also be accomplished by using either high N/P
ratios!” or large aggregated polyplexes. The role of PEI was confirmed by a recent study!®?
showing that both free PEI and PEI polyplexes contribute to the proton sponge mechanism of PEI:
both lead to the accumulation of chloride in vesicles and the buffering of vesicular pH. Free PEI can
also have an impact on gene delivery when added to polyplexes with poor endosomal escape, e.g.,
PLL-DNA polyplexest®®: the reporter gene expression of PLL-DNA polyplexes was reported to
increase 10-fold in the presence of free PEI.1*!



A Free PEI _@ » B

103

B e B

Free PEIl removal

GAGs removal GAGs removal

Free PEI ©

203 >

LCIE G & o

(eEond) R
\I\]\i\l]ll . T Elllllllll\ O T O == B
u g w
'. .' ™

Figure 2.4 Concept of transfection experiments illustrating four different alternatives: (A) wild-type cells and
polyplexes with free PEI; (B) wild-type cell and polyplexes without free PEI; (C) GAG-deficient cells and polyplexes
with free PEI; (D) GAG-deficient cells and polyplexes without free PEIL. The highest transfection efficiencies are
observed for cases D and C. Figure from Ref. 65.

2.2 Binding Equilibria of Polymer-DNA Complexes

Equilibrium processes in which non-covalent interactions take place occur widely in chemical and
biochemical systems. The determination of the equilibrium constant of a reaction is an important
step in describing and understanding these systems. In this thesis, the substrate, i.e., DNA, is the
component whose binding is experimentally observed and the ligand, i.e., a cationic polymer, is the
component whose concentration is varied. The stoichiometric ratios are expressed in the order of
ligand—substrate. Since the binding actually takes place between the polymer amine groups and
DNA phosphate groups, we have a case where a multivalent ligand binds to a multi-subunit
substrate. Two models, the independent binding model, which is mostly used for polymer-DNA
systems in the literature, and the cooperative binding model applied in I and IV, can be used to
determine the binding constants and the binding mechanism.
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2.2.1 Independent Binding Model

In the independent binding model, the binding of a ligand (P, polymer N group) to a site on a
macromolecule (DNA phosphate group) has no impact on simultaneous or subsequent binding to
other unoccupied sites, and the reaction can be written as

P+ DNA = P:DNA. (2.2.1.1)
Thus, the proportion of DNA bound by the polymer, B, can be correlated to the binding constant of

the polyplex formation (K;) by

[P:DNA] K;[DNA][P] Ki[P]

B= [DNA]+[P:DNA] = [DNA]+K;[DNA][P] = 1+K;[P] " (2'2'1'2)
Taking the reciprocal of the resulting equation, we obtain:

1 _r

5= 1+ PGk (2.2.1.3)

where K; is the independent binding constant of the overall equilibrium and [P] is the concentration
of free amine groups (mol N groups dm™). According to equation 2.2.1.3 plotting the ratio 1/B as a
function of the 1/[P] should yield a linear dependence with the binding constant equal to the inverse
of the slope.

2.2.2 Cooperative Binding Model

In cooperative binding model, the binding of a ligand to a site on a target molecule can influence
the binding of other ligands to other unoccupied sites on the same target. For positive cooperativity,
the binding of the first ligand makes it easier for the next one to be bound. In negative cooperativity,
each succeeding ligand is bound less strongly than the previous one.l’ ™! The Hill plot model for
multivalent ligand binding to multi-subunit substratel®"" such as a cationic polymer binding to
DNA, can be described by the following binding equilibria:

Binding constant of each reaction

P + DNA = P:DNA Ki (2.2.2.1)
P + P:DNA = P,:DNA K> (2.2.2.2)
P + Py1:DNA = Py:DNA Kn (2.2.2.3)
NP + DNA = Py:DNA Kot (2.2.2.4)

Here, P is one binding group of the ligand; i.e., an active amine group of the polymer and DNA is
one phosphate group of the DNA molecule. The binding constant for the overall reaction 2.2.2.4 is
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__ [PN:DNA]

Kior = Ky X Ky X .. Ky = 0

(2.2.2.5)

If all phosphate groups of DNA are either unoccupied or all are occupied and no other situation is
possible, the system is fully cooperative and N corresponds to the number of phosphate groups on
the DNA molecule. In practice, the degree of cooperativity is less extreme and N is replaced with an

experimental Hill coefficient « :
Kypp = LNDNA] (2.2.2.6)

[P]*[DNA]

The Hill coefficient « varies from the independent value a = 1 to o > 1 for positive cooperativity
and o < 1 for negative cooperativity. If the binding is cooperative, the binding constants K;, Ky, ...,
Kn will be unequal and only the average cooperative binding constant for the binding of one

functional amine group according to the reaction P + P,_1:DNA = P:DNA (x =1, 2, ..... , N), Keo,
can be obtained as Kyt = (Kco)”.
The proportion of DNA bound by the polymer, B, is

[Pn:DNA]

" [DNA]+[PN:DNA] (2.2.2.7)

and the proportion of free DNA is
_ [DNA]
Taking a ratio of eq. 2.2.2.7 and 2.2.2.8 leads to
B __ [PN:DNA]

1-B W (2.2.2.9)
Combining eq. 2.2.2.9 with eq. 2.2.2.6:
— = (Ko)*[P]* . (2.2.2.10)

Taking the logarithm of both sides of eq. 2.2.2.10, the Hill equation for multivalent ligand binding
to a multi-subunit substrate is obtained:

In (%) = aln[P] + In(K,, )< . (2.2.2.11)

According to this equation, plotting In (%) as a function of In [P] should yield a straight line with

a slope a and an intercept In K. In practice, a Hill plot does not always appear as a single straight
line but can be a composite of two or three lines with different slopes®® or exhibit a curvilinear
behaviour®-82.
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2.2.3 Binding Isotherms

A graphical display of the binding isotherm can be a powerful means of assisting qualitative
interpretations and obtaining quantitative estimates of the binding equilibrium. To demonstrate
these plotting forms, we use simulated data, which are calculated by

_ _[PI%(Kc0)®

= P (2.2.3.1)
The cooperative binding isotherm eq. 2.2.3.1 returns to the independent binding isotherm eq. 2.2.1.2
when the Hill coefficient a = 1; hence, cooperative binding model can be used as a generic binding
model. The characteristic binding isotherms for independent, positive and negative cooperativity
systems for three different K¢, values calculated with eq. 2.2.3.1 are shown in Figure 2.5.

K, =2000 M* (a) K_=900M* (b)
0 Pos. Cooperativity & = 4 100

80

60 -

B (%)
B (%)
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20

N/P ratio N/P ratio
K, =5x10"M" ©)

a=3, Pos. Cooperativity

4
N/P ratio

Figure 2.5 Binding isotherms calculated with eq. 2.2.3.1 for different degrees of cooperativity, o and binding constants
per amine, K, (a) 2000 M™ (b) 900 M™ and (c) 5 x 10* M™%,

The effect of the degree of cooperativity can be clearly observed in Figure 2.5a. For positive
cooperativity at o values from 2 to 4, a characteristic sigmoidal shape of the binding isotherm is
observed. The saturation level of nearly 100% of the substrate bound by the ligand is obtained
already at N/P = 4 in the case of a = 4. For a = 1, i.e., the independent binding system, a smooth
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saturation curve is obtained, with B still increasing at N/P = 8. For negative cooperativity at o
values from 0.2 to 0.5, the increase in B is very steep at small N/P ratios, and the saturation level is
reached at smaller N/P ratios than for the independent system with « = 1. In addition, the saturation
level does not reach 100% at reasonable N/P ratios. By comparing Figures 2.5a—c with each other,
the effect of the K, value can be observed. The smaller the K¢, value, the higher N/P ratio is needed
for reaching the saturation level of the system. An isosbestic point is observed in the curves at B =
50% and an N/P ratio that corresponds to [P] = 1/Kc,.

Figure 2.6 presents a plot of B as a function of the N/P ratio calculated with the typical values for
the polymer—-DNA complexes used in this thesis. For systems with positive cooperativity, the
overall binding constants (Ke: = (Keo)®) had very large values on the order of 10°~10™M", whereas
for the systems with negative cooperativity, Ky values of 8-60"! were obtained. The average
binding constants (K,) behaved oppositely: for positive cooperativity, the values were smaller,
about 4000-7000 M™" than for negative cooperativity, which gave values of 10°~10° M. This
feature is logical because, for systems exhibiting positive cooperativity, the individual binding
constant increases with each bound ligand, i.e., K; < K, < Kj3_. until the saturation limit is reached,
resulting in Kyt >> Kgo. For systems exhibiting negative cooperativity the opposite takes place: the
individual binding constant decreases with each bound ligand, ie., K; > K, > K., until the
saturation limit is reached, resulting in Kyt << Kco. For the present systems with multivalent ligands
binding to multisubunit substrate, this effect is particularly strong. For positive cooperativity
systems, when one amine of the chain of amines is bound, it will be very easy for the next amines in
the same polymer chain to bind since they are already physically near the phosphates of the DNA.
Thus, a small binding constant per amine is obtained. For negative cooperativity systems, the first
amine bound will cover a large area of the surface of the DNA, preventing the next amine of the
same polymer chain from binding despite being physically close. Thus, although a large binding
constant per amine is obtained, some of the phosphate groups of the DNA remain sterically
unreachable and the overall binding constant remains small.

Typical values

100 a=4.0
| a=10
~ 60- Positive Cooperativity
S Independent
0 40 Negative Cooperativity
f a=4.0;K_=2000M" (K )=2x10"
207 «=1.0;K_=7500M"
| a=0.3;K_=5x10"M"; (K )*=51
04 ‘ ‘co ‘ ‘ c?

0O 1 2 3 4 5 6 7 8
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Figure 2.6 Binding isotherms calculated with the typical values for the polymer—DNA complexes used in this thesis.
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2.2.4 Time-Resolved Fluorescence for Binding Affinity

In the present thesis, the formation of polymer—-DNA complexes is studied by time-resolved
fluorescence spectroscopy. Thus, we need a fluorescent probe whose fluorescence properties
change clearly during the complex formation and that has a high fluorescence quantum yield, at
least either in the presence of the complex or in the absence of it. Ethidium bromide (Figure 2.7), a

positively charged fluorescence probe, fulfils these requirements.®°!
IUPAC name 3,8-Diamino-5-ethyl-6-
henylphenanthridinium
NH NH pheny
2 2 bromide
A Molecular formula C,1Hy0BrN;
N\ Molar mass (M) 394.294 g/mol
Solubility in H,O =40 g/l
CH,CHs Melting point 260-262 °C
Appearance Purple-red solid
Br- Absorption maxima | 400-500 nm
Molar absorption
FEthidium bromide coefficient at 480 nm | 5450-5600 M™*cm™
(ETI) pKa1, pPKa 2.0,0.8

Figure 2.7 Structure and properties of ethidium bromide (ETI).

While ETI is free in the solution, its fluorescence at 640 nm (Figure 2.8a) is relatively weak and
has a fluorescence lifetime of about 1.8 ns (Figure 2.8b). In the presence of DNA, ETI intercalates
between two adenine-thymine base pairs. Simultaneously, its fluorescence maximum shifts to 610
nm (Figure 2.8a), the quantum yield increases about 7-8 times and its fluorescence lifetime
increases to about 24 ns (Figure 2.8b). In our experiments, we used an ETI-DNA-nucleotide ratio
of 1:15 to ensure that all ETI is bound by DNA. Thus, in the beginning, only ETI-DNA complexes
are present in the solution.

Steady State Fluorescence at pH 7.4 @) Time-Resolved Fluorescence at pH 7.4 (b)

1,
—~ 6x10° @ ]
n [
S 108 ——ETIEDNA 3
- Free ETI ©
T 4x10° 2 014
C |
O 6
= 3x10 §
(0] 6 =
= 210 € 0.01-
8 1x10° 5 ] —— ETI:DNA, 23.67 ns
GJ 4
x < ] —— Free ETI, 1.79 ns
0; L B B e B —
520 560 600 640 680 720 760 800 0 10 20 30 40 50
Wavelength (nm) Time (ns)

Figure 2.8 Steady-state fluorescence spectra and fluorescence decay curves at 610 nm for ETI-DNA complex and free
ETI in Mes—Hepes—NaCl buffer (M-H) at pH 7.4. In all cases the excitation wavelength was 483 nm.

In the presence of a cationic polymer, the DNA is condensed and there is no more space for ETI to
stay intercalated into the DNA (Scheme 2). In addition, the environment of ETI becomes more

15



positive, which causes repulsion. Thus, ETI is freed back to the solution and its fluorescence
lifetime changes from 24 ns in DNA to 1.8 ns in solution. With increasing amounts of cationic
polymer in the solution, i.e., with an increasing N/P ratio, more ETI is freed from the DNA to the
bulk solution. Steady-state fluorescence measurements utilising the fluorescence of ETI have been
widely used to characterise DNA binding by cationic polymers and lipids™® * 2. Due to the
overlapping and broad spectra of free ETI and ETI bound by DNA, this method can only be applied
for the qualitative estimation of polyplex formation. With time-resolved fluorescence
measurements, it is possible to determine quantitatively the proportions of free ETI and ETI bound
by the DNA and thus determine the binding constants and possible multiple states of binding.
Furthermore, the time-resolved measurements are not hampered by scattering due to the presence of
DNA nanoparticles.

Scheme 2 Complex formation between carrier and DNA in the presence of ETI.

ETI:DNA Polymer DNA:Polymer
+
+ +
— 5 4
o ‘— .: .
5" b.. +
+
Terrona = 24 NS Ter;= 1.8 ns N
Kmae = 610 M + Ama = 640 NM

At the equilibrium presented in Scheme 2, there are four components present in the system: ETI-
DNA complex, free carrier (e.g., polymer), free ETI and carrier—-DNA complex. Among these, ETI-
DNA complex and free ETI are fluorescent. A two-exponential fluorescence decay curve is
observed with two distinct fluorescence lifetimes corresponding to the ETI-DNA complex and free
ETI. Since the amount of free ETI is directly proportional to the amount of formed polyplexes, the
binding equilibrium can be followed by monitoring the proportion of free ETI in the system. This
kind of behaviour can be resolved with the following equation:

I(t, 1) = a; (Ve /"1 + a,(A)e /72 (2.2.4.1)

Here 7 is the global lifetime and aj(4) is the local amplitude (pre-exponential factor) at a particular
wavelength. The amplitudes a;(A) represent the relative amount of each fluorescing species at a
particular wavelength. The decay curves are measured at different wavelengths and simultaneously
fitted to this equation. When the amplitudes obtained from the fits are plotted as a function of
wavelength for both components, the decay-associated spectra (DAS) are obtained!" "". In the case
of a mixture of different non-interacting fluorescing species, these spectra correspond to the
individual spectra of the species. Since the fluorescence quantum yield of ETI decreases when it is
freed from DNA to the bulk solution, the relative quantum yield of ETI free in the solution versus
ETI bound by the DNA, ¢, was determined from steady-state absorption and fluorescence
measurements according to
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— Qer1 _ IFpT1 o ABSED (2.2.4.2)

l -_ -_ .
re PED IFEp  ABSET]

Ineq. 2.2.4.2 ¢e is the quantum yield of free ETI, ¢ep is the quantum yield of ETI-DNA complex,
IF; is area of the fluorescence spectra with an excitation wavelength of 483 nm and ABS; is the
absorbance at 483 nm. The quantum yield-corrected spectral area of the short-living component can
be calculated by

A1,No Ycor
A, = —Liodreor

il (2.2.4.3)

where A1 nogveor 1S the raw spectral area without the correction of the relative quantum yield (¢rel).
The proportion of the short-living decay component, B, corresponding to ETI free in the solution,
was calculated from the spectral areas of the components, 4; = [ a;(1)d24, as follows:

A
XETI = 3 3A

- % 100% , (2.2.4.4)

where A; is the spectral area of the short-living component (free ETI) and A; is the spectral area of
the long-living component (ETI-DNA complex). Since the amount of free ETI is directly
proportional to the amount of P:DNA complex (Scheme 2), xzr; = B ineq. 2.2.1.2 and 2.2.2.7, and
the extent of the polyplex formation can be monitored by the relative amount of free ETI
fluorescence on the system at each N/P ratio. Thus, for the independent binding model, we get

TR (2.2.4.5)
and for the cooperative binding model, we get

A\ _ a
In (Z) = aIn[P] + In(K,,)% , (2.2.4.6)

which were used to determine the degree of cooperativities and binding constants for the present
systems""V1.
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3 Materials and Methods

This chapter presents the experimental aspects of the work, including the polymers, instruments and
sample preparation used in the studies. A full description of the experimental techniques is supplied
in publications I-1V.

The plasmid pPCMVQR (7164 bp) encoding for the beta-galactosidase enzyme as a reporter gene was
purified using a QlAfilter Plasmid Giga Kit (QIAGEN) according to the manufacturer’s instructions
at the University of Helsinki and was used as received in publications I-Ill. In publication 1V, a
plasmid-enhanced green fluorescent protein (pEGFP-N1) DNA (= 5000 bp) (Clontech), amplified
and purified by Aldevron (Fargo, ND), was used.

The behaviour of different cationic polymers was compared in this study. However, the overall
charge of the polymer may be distinctly smaller than the nitrogen number and varies with the pH of
the medium.®! In addition, the molecular weights of the studied carriers and the amine densities
(average number of amine groups in the polymer molecule, Ny, per the average molecular weight of
the polymer, M,;) vary between carriers. Thus, the amine to phosphate (N/P) ratio was used to
define the amount of vectors in the formed polyplexes. This makes it possible to compare the
behaviour of the carriers of different amine densities with each other and the behaviour of the
polymers at different pH levels.

3.1 Polyethylenimines (PEIs) and Polypeptides

The polyethylenimines and polypeptides used in this study were commercially available and used
without further purification. The properties of these carriers and the sample properties are listed in
Table 3.1. For PLL, the backbone secondary amines are part of the peptide bonds. Thus, for PLL,
only the primary amines at the end of the side chains take part in binding DNA, and only they were
taken into account when calculating the N/P ratio. The polyplex formation with branched peptide
(KK),KGGC was initially measured in IV as a reference for the binding constants of PBAEs.
(KK),KGGC was chosen since the N/P ratio used in transfection studies is 32°), which is close to
the N/Ps used for the PBAEs. (KK),KGGC was also used to study the effect of buffer and salt on
the polyplex formation. The molecular structure of peptide (KK),KGGC is shown in Figure 3.1. As
a peptide, only the primary amines at the lysine side chains and the N-terminal amines of
(KK),KGGC can take part in binding DNA. When calculating the N/P ratios, the N-terminal amines
were included as having a half-unit positive charge, so each peptide has 5 active amine groups™®.
The properties of peptide and the sample properties are listed in Table 3.1.
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Table 3.1 For PEIs and polypeptides, the weight average molecular weights (M,,), amine densities (AD), number of
amines per polymer (Ny) and measured N/P ranges (N/P Range) at each pH and buffer. M—H = Mes—Hepes—NaCl
buffer, NaAc = sodium acetate buffer, absence of NaCl, sNaAc = sodium acetate buffer, presence of NaCl.

Polymer M, AD Nn N/P at pH in Buffer Complexing in
(kDa) ((Da)™h) Range Amines Paper
BPEI 25 (43)* 581.4 0.2-8 7.4,52,92 M-H NH,, NH, N I, 1l
SPEI 070  (43)" 16.3 0.2-25 9.2 M-H NH,, NH, N I
LPEI 22 (43)* 511.6 0.2-8 7.4,52,92 M-H NH I, 1l
PLL 200 (128)* 15625 0.2-8 7.4,52,92 M-H NH, I
Peptide 0.88 (175" 5.0 0.2-26 7.4,5.2 M-H, NaAc, sNaAc  NH, v
HaN
o]
+ O -
NH; ’ o
/\/\/HKNH NH HN /YN 5
NH; N
H
o o]
o) HS
0
HzNw
N
H
NH
"HsN (KK),KGGC
o peptide
HaN

Figure 3.1 Molecular structure of peptide (KK),KGGC.

3.2 Poly(B-amino ester)s (PBAESs)

The poly(B-amino esters) studied in this thesis were synthesised at the Johns Hopkins University
School of Medicine. The monomers are shown in Figure 3.2, and a simplified presentation of the
synthesis is shown in Scheme 3. The studied PBAEs can be divided into two series according to
whether they have end-cap groups™! or not!". During the course of this thesis, the abbreviations
used for the different polymer structures changed. In paper IlI, the backbone monomers were
marked with letters and the side chain monomers with numbers, whereas in paper 1V, all monomers
were coded with a letter, B for backbone, S for side chain and E for end cap, combined with a
running number. In coding the polymers, the letters were left out and the numbers were listed in the
order BSE. For example, the polymer consisting of the monomers B4 and S4 is denoted as C28 in
paper 111 and as 44 (leaving out the letters) in paper IV. If the monomers are used in both papers,
both abbreviations are listed in Figure 3.2.
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Monomers of poly(B-amino ester)s
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Figure 3.2 Molecular structures of the monomers of PBAEs.

Scheme 3 Synthesis of PBAESs with and without an end cap amine monomer.
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3.2.1 PBAEs without End Cap (PBAEs Series 1)

In paper 11, ten PBAEs with no end-cap groups but varying backbone and side chain monomers
and molecular weights were studied in Mes—Hepes—NaCl buffer at pH 7.4. The properties of these
PBAEs are listed in Table 3.2. These PBAEs have only tertiary amine groups and much lower
amine densities than the PEIs and PLL. Thus, much higher N/P ratios, up to 113, had to be used for
efficient polyplex formation.

Table 3.2 Properties of PBAEs without end cap: weight average molecular weights (M,), amine:acrylate ratios
(Am/Ac), amine densities (AD), number of amines per polymer (Ny) and measured N/P ranges (N/P Range) of each
polymer.

BB? SCP Polymer My Am/Ac AD Nn N/P
(kDa) ((Da)™h) Range®

C=B4 36 = S6 C36=46 212 1.2 (315)* 67.3  1.0-103.2
F 28 =54 F28 16.1 1.025 (301)* 535  1.1-108.0
AA 28 AA28 20.9 1.1 (435)* 480 0.8-74.7
AA 24 AA24 8.1 1.3 (437)* 184 0.7-62.5
D 24 D24 9.5 1.05 (515)* 185 0.6-63.1
C 32=55 C32 18.1 1.2 (301)* 601  1.1-108.0
U 28 u28 15.6 1.1 (403)* 387 0.8-80.7
E=B6 28 E28=64 143 1.1 (315)* 454  1.0-103.2
C 28 C28=44 2719 1.05 (287)* 972  1.1-1132
JJ=B5 28 Jj28=54  16.8 1.1 (301)* 558  1.1-108.0

BB = backbone, diacrylate monomer, °SC = side chain, amine monomer, “These N/P ranges correspond to w/w from 1
to 100, except for AA24, for which the w/w range was 1-84

3.2.2 PBAEs with End Cap (PBAEs Series 2)

In paper 1V, the PBAEs were improved by adding end-cap groups containing different types of
amine groups. Furthermore, the polymers were fractionated, narrowing the molecular weight
distribution and thus improving the homogeneity of the polymers. The structures of these 13 PBAEs
were carefully designed to study the effect of four structural variables: (1) the molecular weight, (2)
the number of carbon groups in the diacrylate monomers that forms the polymer backbone, (3) the
number of carbon groups in the amine monomers that form the polymer side chains and (4) the
structure of the end cap. These PBAEs were studied in NaAc buffer at pH 5.2, and the polyplexes
were formed with plasmid-enhanced green fluorescent protein (P EGFP-N1) DNA (about 5000 bp).
The properties of PBAEs with end caps are listed in Table 3.3.
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Table 3.3 Properties of PBAEs of series 2: weight average molecular weights (M), amine densities (AD), number of
amines per polymer (Ny), measured N/P ranges (N/P Range) and types and amounts of amines in the end cap of each
polymer molecule.

Varying BB* SC° EC° Polymer M, AD Ny N/P Amines in
(kDa)  ((Da)h) Range  End Cap
Molecular B4 S4  E7  447L° 10.3 (25290 409  3-40 2(NH + 2N)
Weight 447\ 14.7 (262.2)* 56.0 1-40 2(NH + 2N)
447H' 91.6 (283.0)" 3235 1-40 2(NH + 2N)
Backbone B3 S4 E6 346 11.2 (253.8)T 440 0.4-40  2(2NH+ OH)
(BB) B4 446 11.8 (266.8)" 444  0.2-40  2(2NH + OH)
B5 546 9.1 (272.4)* 334  0.9-37.7 2(2NH + OH)
B6 646 10.5 (287.5)* 367 1-39.2  2(2NH+ OH)
Side Chain B4 S3  E7 437 10.3 (242.1)T 425 1-41.8  2(NH+2N)
(SC) S4 447\ 14.7 (262.2)* 56.0 1-40 2(NH + 2N)
S5 457 13.1 (270.6)* 485  1-40 2(NH + 2N)
S6 467 13.2 (281.8)* 469 1-20 2(NH + 2N)
EndCap B4 S4 - 44 11.6 (287.4)7 403 5-20 -
(EC) E2 442 10.4 (2635 396 1-38.1  2(NH+ NH,)
E4 444 10.3 (26397  39.0 1-143  2(NH+NH,)
E6 446 11.8 (266.8)" 444 0240  2(2NH + OH)
E7  447L° 10.3 (252.9)" 409  3-40 2(NH + 2N)

BB = backbone, diacrylate monomer, °SC = side chain, amine monomer, °EC = end cap, end group amine monomer. ‘L
= low M,, time of fractionation: 27-29 min, °M = medium M,,, time of fractionation: 24-26 min, 'H = high M,,, time of
fractionation: 2-23 min

3.3 Sample Preparation

All solutions were prepared either in Mes—Hepes—NaCl buffer (M—H) (at pH 7.4, 5.2 and 9.2) or in
25 mM sodium acetate buffer without salt (NaAc) and with 87 mM NaCl (sNaAc) at pH 5.1-5.2.
The final DNA concentration was adjusted to 300 uM per nucleotide, and the molar ETI/nucleotide
ratio was 1:15. The complexes were prepared by either a stepwise or a direct method. In the
stepwise method, independent of the final N/P ratio between the cationic polymer and DNA, an
initial solution with an N/P ratio of 0.2-0.6 was prepared by the vigorous mixing of equal volumes
of ETI-DNA solution and cationic carrier solution. The complexation was followed by measuring
the fluorescence spectrum of this initial solution. After the measurement, the final N/P ratio was
adjusted by the addition of the appropriate amount of carrier solution. In the direct method, the final
N/P ratio was reached with a single addition of the carrier to the ETI-DNA solution at the volume
ratio of 1:1. The measured N/P-ranges were from 0.2 to 113 depending on which carrier was
studied.

3.4 Time-Related Fluorescence, Time-Correlated Single-Photon Counting
(TCSPC)

A general scheme of the time-correlated single-photon counting (TCSPC) method is presented in
Figure 3.3. The main components used in the instrument are pulsed laser diodes (LDH series,
PicoQuant GmbH), a microchannel plate photomultiplier tube (PM) (R3809U-50, Hamamatsu) and
a TCSPC module (PicoHarp 300, PicoQuant GmbH) that combines together constant fraction
discriminators, a time-to-amplitude converter (TAC) and a multichannel analyser (MCA).
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Figure 3.3 Time-correlated single-photon counting instrument. Emission detection consists of a monochromator and
microchannel plate photomultiplier tube (PM) detector operating in photon counting mode. The PicoHarp 300 module
includes a constant fraction discriminator (CFD), a time-to-amplitude converter (TAC) and multichannel analysers
(MCA). Figure from Ref. 96.

The sample is excited by a laser pulse (1), and the same laser pulse is used as a trigger pulse for the
TAC (time-to-amplitude converter). The triggering pulse starts the generation of a linearly rising
voltage in the TAC (3), and the pulse from emitted photon stops the rising potential in the TAC (2).
The emitted photons are detected with a PM (photomultiplier tube) in photon counting mode and
thus produces an electrical pulse after each detected photon. Because the rise of TAC output voltage
is linear in time, a certain output voltage corresponds to a certain delay time, At, between the
excitation pulse and the emitted photon (3). The output voltage of TAC, U(At), as a function of the
delay time is processed by the MCA (multichannel analyser), where each channel is associated with
some voltage interval and therefore to some delay time interval. Each output voltage value adds one
to the value stored in the corresponding channel (4). E.g., the time step of the instrument can be set
to 32 ps, and then each channel stores the counts at this resolution. The measurement results, after
repeated excitation pulses, in a decay curve with the number of counts as a function of the delay
time. The time resolution of the instrument can be obtained by measuring the instrument response
function (that is, the decay profile of the scattering of the excitation pulse), and for the setup used, it
was ~ 128 ps (full width at half-maximum, FWHM = 0.128 ns at the excitation wavelength, Aexc =
483 nm). To obtain the decay-associated spectra, the fluorescence decays were collected using a
constant accumulation time with wavelengths of 560-670 nm with steps of 10 nm.

The fluorescence decays were deconvoluted and analysed using the iterative least-squares method
by simultaneously fitting to the sum of exponents in equation 2.2.4.1. The quality of the fit was
judged in terms of the weighted mean-square deviation 2 for the individual curves and for the
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global fit (for acceptable fit, xz < 1.1) and by visual inspection of the weighted residuals and their
autocorrelation function.

3.5 Hydrodynamic Particle Size, Malvern Zetasizer Dynamic Light Scattering
(DLS)

The mean hydrodynamic diameters of the polyplexes prepared from BPEI, LPEI and PLLM were
measured by the dynamic light scattering (DLS) technique using a Malvern Zetasizer auto plate
sampler (APS) (medium refractive index of water, 1.33; scattering angle of 90 degrees in triplicate
for each sample). A general scheme of the DLS (also known as PCS, photon correlation
spectroscopy) system is shown in Figure 3.4.

Laser

(1)

Digital Signal Processor

e

Afferiuator Detector Correlator Computer
Cell (4) (3) S (6)

Figure 3.4 Dynamic light scattering (DLS)

A laser (1) is used to illuminate the sample particles within a cell (2). Most of the laser beam passes
straight through the sample, but some of it is scattered by the particles within the sample. A detector
(3) set at a 90° angle with the incident laser beam is used to measure the intensity of the scattered
light. The intensity of the scattered light must be within a specific range for the detector to measure
it successfully. An “attenuator’ (4) is used to adjust the signal intensity to a proper level either by
adjusting the laser intensity or by decreasing the amount of scattered light allowed to pass through
to the detector. The appropriate attenuator position is automatically determined by the Zetasizer
during the measurement sequence. The particles are constantly moving due to Brownian motion
caused by random collision with the molecules of the liquid that surrounds the particle. An
important feature of Brownian motion for DLS is that small particles move quickly and large
particles move more slowly. The relationship between the size of a particle and its speed due to
Brownian motion is defined in the Stokes-Einstein equation. The Zetasizer APS system measures
the rate of the intensity fluctuation and then uses this to calculate the size of the particles. The
scattering intensity signal from the detector is passed to a digital signal processing board, called a
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correlator (5). The correlator compares the scattering intensity at successive time intervals to derive
the rate at which the intensity varies. This correlator information is then passed to a computer (6),
where the specialist Zetasizer software will analyse the data and derive size information.*”!
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4 Results and Discussion

This chapter summarises the most important results and findings of the studies presented in detail in
publications I-1V. First, the polyplex formation with polyethylenimines and polypeptides is
discussed™ "I, In the second part, the effect of minor changes in the molecular structure of the
PBAEs on the formation of polyplexes is discussed™" ™. In the course of these studies, it became
evident that the formation of the polyplexes is more accurately described by the cooperative binding
model than the independent binding model used in publications 11 and I11. Thus, the data from these
publications was partly reanalysed with the cooperative model and is presented in that form in this
chapter. The behaviour of polypeptide (KK),KGGC, only briefly introduced in paper IV, is
introduced more thoroughly by including some unpublished data.

4.1 Polyethylenimine-DNA and Polypeptide-DNA Polyplexesl! Il.1V]

The formation of polyethylenimine-DNA!" "! and polypeptide—DNA!" V! complexes was studied by
varying the structurel" " and the molecular weight™" of the polymers. The significance of the pH!"
on the complex formation was studied and analysed using the cooperativel" ! binding model. In
addition, the effect of incubation time (stability)!", the buffer used and the presence or absence of
salt was studied. The role of the extra polymer!"! was investigated and correlated with transfection
data™. The high-molecular weight polymers (BPEI, LPEI and PLL) were studied at an N/P range
from 0.2 to 8, whereas for the low-molecular weight polymers, higher N/P ratios up to N/P 26 for
the peptide and N/P 25 for SPEI were also measured. We would also like to correct misinformation
given in the experimental section of paper Il: the samples were prepared in a Mes—Hepes—NaCl
solution of pH 9.2, not pH 7.4, as mentioned in the paper.

4.1.1 Polyplex Formation of BPEI, LPEI and PLL at pH 7.4l

The degree of polyplex formation can be monitored by the binding isotherm, i.e., by plotting B (eq.
2.2.4.4) as a function of the N/P ratio (Figure 4.1)" "\, For BPEI, LPEI and PLL, B reaches its
saturation level of close to 100% at N/P = 2! This indicates that nearly all ETI is free in the
solution at N/P > 2. The behaviour of all polymers is similar, but small differences between
polymers are observed at small N/P (< 2) ratios.
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Figure 4.1 Binding isotherms for BPEI, LPEI and PLL at pH 7.4.

The particle size (the mean hydrodynamic diameter) as a function of the N/P ratio was studied in
paper I. At low and high N/P ratios, the particle sizes were lower than 500 nm (I, Figure 3). At N/P
= 2 the particle size increased to values over 2000 nm, with the simultaneous increase in the
polydispersity index (PDI) of the samples reflecting a wider particle size distribution (I, Figure 3).
According to the zeta potential measurements™ 8 ¢7 %4 %1 the change from negative to positive
potential takes place close to an N/P ratio of 2. Thus, the large particle sizes are probably due to
aggregation of the polyplexes when they are at nearly a charge-neutral state’® ®!. At this point, all
the DNA phosphate groups are bound by amine groups of the polymer and the polyplex core has
been formed. This N/P ratio also coincides with the saturation point observed in the binding
isotherms. At higher N/P ratios, excess polymer binds to the nanoparticle core, forming a protective
shell around it, and the particle size decreasest™® %%,

The fluorescence lifetimes change with increasing N/P ratios (I, Figure S1). For PLL, the changes
are relatively small for both components and take place only at N/P < 2 (I, Figure Sla and b). For
PEls at N/P < 2, the changes in the lifetimes are larger (see a more detailed discussion in paper I).
The fluorescence lifetime of ETI decreases in the presence of positive charges®!. Thus, it is
possible that, at low N/P ratios, when the polyplex is still negatively charged, the ETI freed in the
solution during polyplex formation does not all escape to the bulk solution, but part of it stays close
to the DNA. At N/P > 2, the polyplexes are positively charged, ETI escapes to the bulk solution and
its lifetime is equal to that of free ETI in the absence of DNA.

In the cooperative binding model, the Hill plots (eq. 2.2.4.6) are composites of three lines (at pH
7.4) with different slopes (inserts in Figure 4.2). At low polymer concentrations (N/P < 0.6), the o
values are 0.76-1.01 (Table 4.1). This implies that interaction between the polymers and the DNA
represents independent binding without cooperativity or, in the case of LPEI, slightly negative
cooperativity. At very high polymer concentrations (N/P > 2), the binding isotherm has reached its
maximum and polyplex core formation is complete. The o values obtained at intermediate N/Ps
(Table 4.1) indicate positive cooperativity of binding.
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Figure 4.2 Binding isotherms for BPEI, LPEI and PLL at pH 7.4: (e) measured points and (—) calculated by the
cooperative binding model (eqg. 2.2.3.1). Inserts: Hill plots for BPEI, LPEI and PLL at pH 7.4.
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Table 4.1 Hill’s cooperativity coefficients, a, overall cooperative binding constants, (K)” and average cooperative
binding constants per amine, K, for PEIs, PLL and (KK),KGGC at different pHs in Mes—Hepes—NaCl buffer.[" V]

Polymer pH N/P Range (Keo)® Keo (M™)
SPEI 9.2 2.0-8.0 1.36 (513 +£0.52) x 10°  (2.96 £ 0.07) x 10°
0.2-2.0 0.60 (1.74 £0.07) x 10° (5.14 £ 0.01) x 10°
BPEI 5.2 0.4-2.0 3.78 (1.0£0.1) x 10™ (5.1£0.1) x 10°
7.4 0.6-2.0 2.31 (5.4 +0.6) x 10° (6.1+0.2) x 10°
0.2-0.6 0.97 (5.7 +£0.2) x 10° (7.7 +£0.2) x 10°
9.2 0.2-7.3 1.37 (1.03 £0.07) x 10° (4.55 + 0.05) x 10°
LPEI 5.2 0.4-2.0 3.16 (3.0+0.3) x 10™ (4.3£0.2) x 10°
7.4 0.6-2.0 2.32 (4.8 +£0.5) x 10° (5.5 +0.2) x 10°
0.2-0.6 0.76 (7.5 +2.4) x 10° (6.3+1.4) x 10°
9.2 0.2-8.0 1.60 (9.17 £0.8) x 10° (5.46 £0.1) x 10°
PLL 5.2 0.4-2.0 2.63 (6.8+0.7) x 10° (5.5 +0.2) x 10°
7.4 0.6-2.0 2.06 (9.7 £0.4) x 10’ (7.4 £15) x 10°
0.2-0.6 1.01 (1.1+0.1) x 10 (1.01 £ 0.09) x 10*
9.2 0.6-2.0 2.37 (6.3 +0.8) x 10° (5.2 £0.3) x 10°
0.2-0.6 0.93 (3.7 +0.2) x 10° (6.6 +0.3) x 10°
(KK)KGGC 5.2 5080 3.43 (8.0 +1.6) x 10" (3.0 +0.9) x 10°
0.4-2.0 1.41 (2.4+0.2) x 10° (6.6 £0.1) x 10°
74 2.5-16.0 2.32 (1.1+0.2) x 10° (2.9+0.3) x 10°
0.2-2.5 0.97 (6.8 +0.7) x 10° (9.3+0.1) x 10°
5.2° 0420 231 (8.3 1.0) x 10° (7.3+0.3) x 10°
2.0-16.0 0.95 (5.5+1.1) x 10* (9.2 +1.8) x 10*
52" 50260 2.81 (243+0.38)x 10°  (9.60 + 1.57) x 102
0.4-8.0 1.26 (2.74 £0.17) x 10* (3.24 £0.03) x 10°
5.2%° 1531 2.81 (128+0.20)x 10°  (1.75+0.18) x 10°
3.1-15.4 0.50 (1.28 +0.15) x 10° (1.56 +0.01) x 10*

%in NaAc buffer without salt, "with salt in sNaAc buffer, “polyplexes were prepared by the direct method with DNA =~

5000 pb!"]
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The o values and binding constants of BPEI and LPEI are very close to each other. For PLL, the a
value and the overall cooperative binding constant, (K.)”, are lower than for PEls, but the average
binding constant per amine, K¢, is higher than for PEIls (Table 4.1). In Figure 4.2, the binding
isotherms calculated from the parameters listed in Table 4.1 are shown together with the measured
points for LPEI, BPEI and PLL at pH 7.4. The two-stage cooperative model fits to the measured
points that follow the independent or slightly negative cooperative model up to N/P = 0.6. At higher
N/Ps (> 2), the positive cooperative model realises the measured points.

The effect of molecular structure on the polyplex formation includes the effects of: a) branching or
side chains, b) the types of amines (primary, secondary or tertiary) and their ratios and c) the
distribution of the amine groups, i.e., amine density. Comparing the structures of BPEI and LPEI,
the amine densities of these polymers are equal, but the type of the amine groups differs: there are
only secondary amine groups in linear PEI but primary, secondary and tertiary amine groups in
BPEI. At pH 7.4, the effect is minor due to the pK; values and the ratios of the different amine
groups in BPEI. Thus, at pH 7.4, the major difference between these polymers is the branched
versus the linear structure of the polymer backbone. The effect of this structural difference on the
binding isotherm is small (Figure 4.1), and degree of cooperativity and the obtained binding
constants are also very close to each other. At low N/P ratios (< 0.6), the degree of cooperativity of
LPEI is somewhat negative, leading to a smaller overall binding constant. Thus, it seems that a
linear structure with all the amine groups in the backbone of the polymer causes steric hindrance at
small N/Ps. Another difference between BPEI and LPEI is the aggregation of LPEI polyplexes at
high N/P ratios, which can also be due to the branched versus the linear molecular structure (I,
Figure 3).

Comparing the structures of BPEI and PLL, they differ in all three respects. The amine groups of
the PLL backbone are involved in peptide bonds and thus do not take part in binding DNA. Thus,
only the primary amines at the end of lysine side chains bind DNA and must be taken into
consideration here. Thus, the density of active amine groups is much lower for PLL than for BPEI.
However, the primary amine groups of PLL are all protonated at pH 7.4, whereas the degree of
protonation of BPEI’s variable amine groups is closer to 50%. Again, only small differences in the
binding isotherms (Figure 4.1) of BPEI and PLL are observed and only at small N/P ratios. The
degree of cooperativity at N/Ps < 0.6 is 1 for both polymers, but the overall binding constant is
clearly higher for PLL. This effect is attributed to differences in the types of active amines in these
polymers. At N/Ps > 0.6, the degree of cooperativity is lower for PLL, leading to a smaller overall
binding constant. This can be explained by the larger distance between the active amine groups in
PLL compared with PEIs. Since the active amine groups of PLL are at the ends of the flexible side
chains, the difference in the average distance between the amine groups is actually not very large.
However, the large hydrocarbon skeleton of PLL can cause steric hindrance and thus reduce the
degree of cooperativity. The average binding constants per amine are always higher for PLL than
for PEIs. Thus, the primary amine groups of PLL seem to bind DNA more strongly than the
secondary amine groups of LPEI and the combined affinity between the primary, secondary and
tertiary amine groups of BPEL. This is in line with the observations indicating that the PEI-DNA
complexes are more easily disrupted than PLL-DNA complexes in the presence of competing
polyanions!t%% 102,
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4.1.2 Effect of pH on BPEI, LPEI and PLL Polyplexest! !

The effect of pH on complex formation was studied with high-molecular weight polymers (LPEI,
BPEI and PLL) at pH 5.2, 7.4 and 9.2!"'".

For BPEI, LPEI and PLL, the pH has a clear effect on the binding isotherms (Figure 4.3) at small
N/P ratios. The sigmoidal shape of the binding isotherms observed at pH 5.2 is absent at higher
pHs. For PEls, the saturation levels of ~ 100% are reached at N/P = 2 at low pHs (7.4 and 5.2), but
at pH 9.2, the saturation level of ~ 90% is reached at N/P = 4 for BPEI and N/P = 3 for LPEI. For
PLL, the binding isotherms at pH 7.4 and 9.2 are nearly identical.
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Figure 4.3 Binding isotherms in Mes—Hepes—NaCl buffer at pH 5.2, 7.4 and 9.2 for BPEI (a), LPEI (b) and PLL (c).

These differences between PLL and PEIs are due to the amine groups and, hence, the pK, values of
the polymers. At pH 9.2, the degree of protonation of PEIs is << 50% because of the secondary and
tertiary amine groups. The primary amines of PLL are > 50% protonated across the whole pH range
from 9.2 to 5.2, so PLL can form polyplexes efficiently at each pH, always reaching its saturation

level at close to N/P = 2.



pH does not have an effect on the fluorescence lifetimes of PLL (Figure 4.4c). For PEls, the
decrease in the lifetime of the longer-living component is somewhat smaller at pH 5.2 than at higher
pH levels. For BPEI, the lifetime of the short-living component at N/P < 2 has clearly higher values
at pH 9.2 than at lower pH values (Figure 4.4a). A similar phenomenon but weaker and persisting
at higher N/Ps is also observed for LPEI (Figure 4.4b). This is again an indication that, at low N/P
ratios, the ETI freed in the solution during polyplex formation does not all escape to the bulk
solution, but part of it stays close to the DNA. Since the pH is basic, the effect on the fluorescence
lifetime of ET1 is the opposite of that at neutral and acidic pH.
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Figure 4.4 Fluorescence lifetimes of the short-living decay components for BPEI (a), LPEI (b) and PLL (c) at different
pH values. ref ETI = free ETI in buffer at pH 9.2 (A), 7.4 (©) and 5.2 ().
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Figure 4.5 Binding isotherms for BPEI (a, d), LPEI (b, €) and PLL (c, f) at pH 5.2 (a—c) and at pH 9.2 (d-f): (o)

measured points and (—) calculated by the cooperative binding model (eq. 2.2.3.1). Inserts: Hill plots for BPEI, LPEI
and PLL at pH5.2and 9.2.
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The Hill plots (eq. 2.2.4.6) for BPEI, LPEI and PLL at pH 5.2 are composites of two lines with
different slopes (inserts in Figure 4.5a—c). Positive cooperativity (a = 2.63-3.78) is observed
already at the lowest N/P ratio. At high polymer concentrations (N/P > 2), the formation of the
polyplex core is complete and nearly all ETI has been freed to the bulk solution. At pH 7.4, the
independent or slightly negative cooperativity at low N/Ps changes to positive cooperativity at N/P
= 0.6 and continuing until N/P = 2. The behaviour of PLL at pH 9.2 (Figure 4.5f) resembles that at
pH 7.4: at low N/Ps the binding shows negative cooperativity (a = 0.9), at intermediate N/Ps,
positive cooperativity is observed (o = 2.4) and at N/P = 2, the formation of the polyplex core is
complete and o < 1. For BPEI and LPEI, the Hill plot at pH 9.2 (Figure 4.5d and e) can be
described by one single straight line with « values of 1.4 and 1.6, respectively.

Thus, it seems that pH has a clear influence on the mechanism of polyplex formation. The degree of
cooperativity is the highest at pH 5.2 and the lowest at 9.2 (except PLL, which had the lowest
cooperativity at pH 7.4). In addition, the overall cooperative binding constant (K,)“ increases with
decreasing pH (Table 4.1). For PEls, the amount of protonated amine groups increases as the pH
decreases, so both the degree of cooperativity and the overall binding constant correlate with the
number of active amine groups present in the system. For PLL, all the active amine groups are
protonated at the pH range studied, and the effect of pH is smaller than for PEIs. However, both
aand (Kg)“ also increase with decreasing pH for PLL. This could be due to increased activity of
the amine groups at lower pH levels.

4.1.3 Effect of pH, Buffer and lonic Strength on (KK)2KGGC Polyplexes('V]

The polyplex formation with branched peptide (KK),KGGC was originally measured in paper 1V as
a reference for the binding constants of PBAEs. Thus, the polyplexes were prepared in NaAc buffer
at pH 5.2 with no additional salt present. This inspired us to study the effect of the buffer and ionic
strength of the solution on the formation of the polyplexes (Figure 4.6). The Hill plots of
(KK)2;KGGC in Mes—Hepes—NaCl buffer at pHs 7.4 and 5.2 are composites of two linear regions
(inserts in Figure 4.6a and b). At low N/P ratios, the degree of cooperativity at pH 7.4 indicates
independent binding, whereas at pH 5.2, the degree of cooperativity is clearly positive (Table 4.1).
At N/P > 2, the degree of cooperativity is close to that obtained for LPEI and BPEI and thus higher
than for PLL. Changing the buffer to sNaAc at pH 5.2 and keeping the ionic strength nearly
constant did not change the behaviour of (KK),KGGC (Figure 4.6¢c). However, if the extra salt is
left out, i.e., at about 10 times smaller ionic strength, the binding mechanism of (KK),KGGC
changes (Figure 4.6c-e). The Hill plot is still a composite of two lines, but now positive
cooperativity is observed at small N/Ps, and the mechanism changes to independent binding at N/P
= 2 (Figure 4.6d).

34



M-H bufferatpH 7.4  (a) M-H bufferatpH 5.2 (b)

100 - o o 100 -
] ] o
80 80 |
. 60 . 60
S | S
@ 40 - O np2sis T 40 O NP28
b O N/PO0.2-25 — O N/PO0.4-2
20 O pH7. 4 0 9 8 -7 6 20~ < pH5.2 -9 8 7 -6
: Coop. N/P 2.5-16 "[PEF] : Coop. N/P 2-8  M[PEP]
0- Coop. N/P 0.2-2.5 0- Coop, N/P 0.4-2.
T T T
0246 8101214 16 0 2 4 6 8 1012 14 16
N/P ratio N/P ratio
sNaAc bufferat pH 5.1 (c) NaAc bufferatpH 5.2  (d)
1ooi A u A 1ooi 673 =
80 - 4 80 - —~
] ] <4
60 - 21 60 - T,
S . g 1k 5
s ] S 40| NaAc N/P 2-16
m 40 O NPs2s g 40 0 O NaAc N/P 0.4-2
1 20 0O NpPo4s i P T - ‘
20+ /A sNaAc @ 8 7 6 5 20 - O NaAc In[PEP]
1 Coop. N/P 8-26 "MPEP] ] Coop. N/P 2-16
0- Coop. N/P 0.4-8 041M Coop. NIP 0.4-2
I T I T I T I T I T I T T T T
0 5 10 15 20 25 0 2 4 6 8 1012 14 16
N/P ratio N/P ratio

NaAc and sNaAc buffer (e)

100 -
1 A
80
= 60
> |
m 404
20
| [J NaAc
0. A sNaAc
0O 4 8 12 16 20 24
N/P ratio

Figure 4.6 Binding isotherms for (KK),KGGC at pH 7.4 (a), at pH 5.2 (b), at sNaAc with salt at pH 5.1 (c), at NaAc
without salt at pH 5.2 (d) and at NaAc with and without salt (€): (o), (o) and (A) measured points and (—) calculated
by the cooperative binding model (eq. 2.2.3.1). Inserts: Hill plots for Mes—Hepes—NaCl buffer (M—H) at pH 7.4 (a) and

5.2 (b) and with (c) and without (d) salt for NaAc buffer.
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4.1.4 Effect of Molecular Weight(''1

The effect of the molecular weight of the polymer on the polyplex formation was studied by
comparing the behaviour of 0.8 kDa (SPEI) and 25 kDa (BPEI) branched PEI at pH 9.2 with each
other. In addition, the behaviour of PLL was compared to that of (KK),KGGC at pH 7.4.

The molecular weight has an effect on the N/P ratio at which the saturation level of the binding
isotherm is reached: while BPEI reaches its saturation level at N/P = 4, SPEI reaches it at N/P = 8
(Figure 4.7a). The same is observed when PLL (N/P = 2) is compared with (KK),KGGC (N/P = 8)
(Figure 4.7b). This indicates that, for polymers with relatively high-molecular weight, the complex
formation is efficient already at low N/P ratios, whereas for low-molecular weight polymers, higher
N/P ratios are required for efficient binding of DNA.
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Figure 4.7 Binding isotherms for branched high- (BPEI) and low- (SPEI) molecular weight PEIs at pH 9.2 (a) and for
high- (PLL) and low- (peptide (KK),KGGC) molecular weight polypeptides at pH 7.4 (b) (all in Mes—Hepes—NaCl
buffer).

For SPEI, the Hill plot at pH 9.2 (eq. 2.2.4.6) is a composite of three lines with different slopes
(insert in Figure 4.8), like that of PLL but different from that of BPEI. The positive cooperativity of
SPEI was observed at intermediate N/Ps (= 1.4), at low N/Ps (a = 0.6) and at high N/Ps (a = 0.3)
negative cooperativity was observed. For SPEI, the three-stage cooperative binding model fits the
measured points, as it does for high-molecular weight PLL (Figure 4.5f). The degree of
cooperativity was similar for SPEI and BPEI (« = 1.4) (Table 4.1), but the overall binding constant,

(Keo), was higher for BPEI than for SPEI. Hence, it seems that BPEI has more active protonated
amines than SPEI because of the higher molecular weight!*.
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Figure 4.8 Binding isotherms for SPEI at pH 9.2 in Mes—Hepes—NaCl buffer: (o) measured points and (—, ——)

calculated by the cooperative binding model (eq. 2.2.3.1). Insert: Hill plot for SPEI.

The Hill plots of PLL (insert in Figure 4.2) and (KK),KGGC (insert in Figure 4.6a) at pH 7.4 are
very similar, yielding nearly equal cooperativities and binding constants (Table 4.1). At pH 5.2 in
Mes—Hepes—NaCl buffer, (KK),KGGC has two regions of positive cooperativity (insert in Figure
4.6b), whereas PLL has only one region spanning from the lowest N/P to N/P = 2 (insert in Figure
4.5¢).

4.1.5 Effect of the Incubation Time after Complex Formation('!

The stability of the formed polyplexes was studied with BPEI by measuring the fluorescence decays
at different times after the preparation. The lifetime of the short-living component stayed constant
but the lifetime and proportion of the long-living component decreased with time at least up to 6 h
(I: Figure S5 and S6). In the A, values listed in paper I, Table S6, the relative fluorescence
quantum yield of ETI free in the solution versus ETI bound by the DNA, ¢,..;, has not been taken
into account since the corrected values are all so close to 100% that the trend is difficult to see. The
particle sizes of LPEI and BPEI polyplexes have been observed to grow as a function of time in
salt-containing buffers.!? 67 7. 71 1031 This aggregation of the polyplexes can induce the release of
more ETI into the bulk solution and reduce the fluorescence lifetime of the remaining ETI trapped
in the aggregates.

The polyplex preparation method has an effect on the age of the measured polyplexes. With the
direct method, the polyplexes are measured after similar incubation times (about 10-20 min). For
the polyplexes prepared by the stepwise method, the age of the polyplexes increases with increasing
N/P ratios. For 25 kDa BPEI the preparation method does not have an effect on the properties of the
polyplex, but for the 0.9 kDa (KK),KGGC, the effect is clear (Figure 4.9a). It seems that the
complexes need more time to reach equilibrium.
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Figure 4.9 Binding isotherms for peptide in NaAc buffer at pH 5.2 prepared by the stepwise (A) and direct (o) methods
(a) and binding isotherms for peptides prepared by the direct method: (o) measured points and (—) calculated by the
cooperative binding model (eq. 2.2.3.1). Insert: Hill plot for peptides prepared by the direct method (b).

4.1.6 Effectof the Free PEIl]

According to the binding isotherms, the DNA is nearly totally bound by BPEI at N/P = 2. However,
the best results in the transfection studies are obtained at N/P ratios between 6 and 8. To study the
role of the excess BPEI on the complex properties, the extra BPEI was removed from polyplexes at
N/P = 6 by size exclusion chromatography!. Unfortunately, the remaining ETI was also lost in this
procedure. Thus, ETI was added to the sample after the purification. The initial sample N/P ratio
decreased close to 3 during purification. The purified samples were spiked with BPEI to restore the
original N/P ratio of 6.0. The properties of the nanoparticles did not change during purification and
spiking, and they retain the structure formed at the original N/P ratio. However, the transfection
studies with three different cell lines (I, Figure 7) showed that the removal of excess BPEI from the
polyplexes resulted in an approximately 80—-90% decrease in transgene expression. The expression
levels were restored to the original level by spiking the purified complexes with BPEI. Thus, the
excess BPEI must facilitate transfection at the cellular level and not via indirect effects on the
BPEI-DNA complexes.

4.1.7 Summary of Polyethylenimine-DNA and Polypeptide-DNA Polyplexesl' !l

For BPEI, LPEI and PLL, the largest particle sizes, coinciding with the change from negatively
charged polyplexes to positively charged polyplexes, are observed at N/P = 2. At this N/P ratio, the
binding isotherm reaches its saturation level of about 100% and the formation of the polyplex core
is complete. At higher N/P ratios (N/P > 2), excess polymer is bound to the polyplex, the size of the
polyplex decreases again and a shell of excess polymer forms around the core polyplex."

The pH value has a clear influence on the mechanism of polyplex formation for PEIs, PLL and
(KK),KGGC. The overall cooperative binding constants are higher at pH 5.2 than at high pH levels,
reflecting the higher degree of amine group protonation at lower pH.!""!
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The presence of NaCl affects the binding mechanism of peptide (KK),KGGC, but two different
types of buffers with similar ionic strength does not change the behaviour of the peptide.

The molecular weight of the polymer is observed to have a clear effect on the complex formation"
"l. High-molecular weight polymers (BPEI and PLL) form polyplexes more effectively since the
saturation level of the binding isotherm is reached at lower N/P ratios than for low-molecular
weight polymers (SPEI and peptide).

The incubation time after complex formation is crucial for the small-molecular weight peptide
(KK),KGGC since the formation of complexes require more time to reach equilibrium than for the
high-molecular weight polymers.!! The absence of free PEI shows lower transgene expression
levels, although the fluorescence properties in the absence and the presence of free PEI are similar,
and hence the original structure of the polyplex core is retained.

The molecular structure and types of amine groups have an effect on the polyplex formation. Both
the amine density and overall cooperative binding constants are higher for BPEI (which contains
NH,, NH and N amine groups) and LPEI (which contains only NH amine groups) than for PLL
(which contains only NH, amine groups). However, the average binding constants per amine are
higher for PLL.[""

4.2 Poly(B-amino ester)-DNA Polyplexeslii. 1V]

The complex formation of poly(B-amino ester) (PBAE)-DNA polyplexes was first studied with
PBAESs containing only tertiary amines, i.e., PBAEs without end-cap groupst'l. The structures of
the monomers of the backbone and the side chain were varied. The second series of PBAEs with
end-cap groups adding primary and/or secondary and/or tertiary amines to the polymer was size-
fractionated. Thus, the molecular weight distribution in these PBAESs was narrower than in the first
series of PBAEs without end caps''). The PBAE-DNA binding was studied systematically by
varying polymer molecular weight, adding single carbon units to the backbone and side chain of the
monomers that compose the polymers and varying the type of polymer end-cap group.'™! The
binding equilibrium results were analysed using the cooperative binding method. For the PBAES
without end caps (series 1), the weight ratio, w/w, instead of the N/P ratio was used to follow the
previously published articles on these polymers. However, the w/w does not take into account the
differences in the amine density of the PBAEs. Thus, the used w/w range, from 1 to 100,
corresponds to an N/P range from 0.6 to 113 depending on the amine density of the PBAEs.

4.2.1 PBAEs without End Capslil

Ten PBAEs (Figure 3.2 and Table 3.2) with different transfection efficacies were chosen from a
large library of PBAES®. The molecular structure of the PBAEs was varied by changing the side
chain and the backbone monomers.

The binding isotherms presented in paper 11, Figure 2 were constructed from the raw data without
taking into account the quantum vyield correction factor (eq. 2.2.4.2). The corrected binding
isotherms for the PBAEs without end caps are presented in Figure 4.10. None of the polymers
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reached close to 100% saturation levels as PEIls and PLL did, but remained at 73-91%. The
differences in the binding isotherms between this set of polymers are small, although F28 and C36
are somewhat less efficient than the other polymers.

100

JJ28
C32
AA28
AA24
C28
u28
E28
D24
C36
F28

B (%)

HEOP>D> e O % %t & O

0O 20 40 60 80 100 120
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Figure 4.10 Binding isotherms for the ten PBAESs without end caps in Mes—Hepes—NaCl buffer at pH 7.4.

For most of these PBAEs, the Hill plots are composites of two lines with different slopes (Figure
4.11). Only for AA24, C28 and C36, the Hill plots were single straight lines with o = 0.46, 0.35 and
0.35, respectively, indicating negative cooperativity. At low polymer concentrations of w/w ratio <
25, the other polymers also expressed negative cooperativity with « values of 0.1-0.27 (Table 4.2).
This is due to the structure of the PBAESs: the amine density (AD) is much lower than for PEls, the
backbones and side chains contain electronegative groups (-O-CO- and OH) and the side chains
are bound to the nitrogen atoms of the backbone, causing steric hindrance in binding to DNA. As a
consequence, to complex DNA fully, much higher N/P ratios are needed for the PBAEs than for
PEls and polypeptides. Typically, high concentrations of about w/w = 40-90M"" ¥ are needed for
efficient transfection with PBAEs compared with the N/P = 5-15 used for high-molecular weight
PEls and PLL 18 31 33.55,63,65, 66, 69, 70,71, 100, 103-105] ' At hjgh polymer concentrations (w/w > 25), the
o values varied from 0.7-1.5, indicating a change in the binding mechanism to nearly independent
binding. The turning points of the binding isotherms are close to w/w = 20. Thus, it is possible that,
at this N/P ratio, all the DNA is fully bound and the core polyplex has been formed. If this is the
case, further binding with a nearly independent mechanism describes the binding of the extra
polymer forming the shell around the polyplex core. It was not possible to observe this phase with
PEls and PLL since all the ET1 escapes from the DNA during the core formation. However, due to
the negative cooperativity during the core formation for PBAEs, some of the ETI molecules stay
intercalated into the DNA. Some of these entrapped ETI molecules then escape from the polyplex
during the shell formation.

The binding constants determined with the cooperative binding method are listed in Table 4.2. As
generally is the case for systems with negative cooperativity, the overall cooperative binding
constants were lower than the average cooperative binding constants per amine.
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Figure 4.11 Binding isotherms for PBAES series 1 polymers, JJ28 (a) and AA24 (b): (o) measured points and (—)
calculated by the cooperative binding model (eg. 2.2.3.1). Inserts: Hill plots for PBAEs series 1 polymers, JJ28 (a) and

AA24 (b).

Table 4.2 Cooperative binding constants of PBAEs without end caps. Hill’s cooperativity coefficients, o, overall
cooperative binding constant, (K,)“ and average cooperative binding constants per amine, K.

Polymer w/wRange N/P Range o (Keo)® Keo (M)
128 1-25 1.1-27.0 0.24 14.7 7.54 x 10°*
25-100 27.0-108.0 1.16 1.27 x 10° 4.82 x 10°

C32 1-25 1.1-27.0 0.21 9.48 3.54 x 10°*
25-100 27.0-108.0 0.82 1.69 x 10° 5.36 x 10°

AA28 1-25 0.7-18.7 0.10 3.54 2.34 x 10°
25-100 18.7-74.7 0.86 2.55 x 10° 6.11 x 10°

AA24 1-84 0.7-62.5 0.46 48.7 4.40 x 10°
c28 1-100 1.1-113.2 0.35 32.9 1.94 x 10*
u28 1-25 0.8-20.2 0.27 13.0 1.13 x 10*
25-100 20.2-80.7 1.35 3.26 x 10° 4.05 x 10°

E28 1-25 1.0-25.8 0.27 16.7 2.89 x 10°*
25-100 25.8-103.2 0.96 4.20 x 10° 5.57 x 10°

D24 1-25 0.6-15.8 0.29 12.6 6.28 x 10°
25-100 15.8-63.1 1.46 5.26 x 10° 3.61 x 10°

C36 1-100 1.0-103.2 0.35 13.1 1.55 x 10°
F28 1-25 1.1-27.0 0.17 3.06 8.48 x 10
25-100 27.0-108.0 0.73 49.1 2.07 x 10

As discussed, earlier the time-resolved fluorescence method used in this thesis to determine the
binding isotherms and binding constants describes mostly the very first step in the gene delivery
process, i.e., the formation of the polyplex core. Thus, no correlation between the binding constants
and the transfection efficiencies was expected. The saturation levels obtained from the binding
isotherms describe the efficiency of the polyplex formation. However, the differences between the
polymers are not very clear. Thus, to estimate the relative efficiency of polyplex formation by the
PBAEs without end caps, the maximum amplitudes a; max at each N/P ratio were used. The relative
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efficiency was estimated as the difference in the ratio of the maximum amplitudes of the two
fluorescence components a;jmax at each w/w ratio, according to eq. 4.2.1.1 (Relative Efficiency of
Polyplex Formation™).

(al,max) R
min

Gemax)ypy " (4.2.1.1)

Rmax—Rmin

Relative ef ficiency =

where Riax = [(%) ] (4.2.1.2)
Max/ 1004 max

and Ronin = [<—sz) ] (4.2.1.3)
max/ 14 min

For PBAEs without end caps Rmax is the maximum amplitude ratio at w/w = 100, and R, is the
minimum amplitude ratio at w/w = 1. The relative nanoparticle formation efficiency was considered
to be 0% at a w/w ratio of 1, at which there is minimal interaction between the polymer and the
DNA. For 100% relative nanoparticle formation efficiency, a w/w ratio of 100 was used since, at
this w/w, no further changes in the fluorescence signal were observed, and it is clearly higher than
the useful w/w ratio for transfection (about 50[)).

The nanoparticle formation efficiency was calculated with a w/w ratio of 50. The obtained relative
efficiencies are presented in paper 111, Figure 5, and they are compared in paper |11, Figure 6 with
the relative transfection efficacy of the polymers that was reported earliert*®!. The increased relative
nanoparticle formation efficiency is positively correlated with the increased transfection efficacy for
most of the polymers. The B values and the relative nanoparticle formation efficiencies!"" support
each other and, thus, some correlation between the B values, and the in vitro transfection efficacy is
also observed.

Two groups with systematic change in the polymer structure can be separated from the ten PBAEs
studied in paper Ill. In the first group, all the polymers contained amine monomer 28 with varying
diacrylate monomers. From the saturation levels of these polymers presented in Figure 4.12a it is
evident that the polymers with linear backbones (JJ, C, E and U) are more efficient than those with
substituents between the acrylate moieties (AA and F) and that a shorter linear backbone with less
carbon is slightly better than longer backbones. Concerning the (Kc)“ values at low N/P ratios
(Figure 4.12b, Table 4.2) the highest overall binding constant is obtained for C28, the other linear
diacrylate monomers polymers have intermediate values and the polymers with branched diacrylate
monomers (F28 and AA28) have very low values. For the other series, the backbone monomer was
C and the side chain monomer increased in length from 4 to 6 carbons (C28, C32 and C36,
respectively) between the amine and hydroxyl groups. For this series also, the saturation level
decreases with increasing chain length (Figure 4.12c), and C28, with the shortest chain, again has
the highest (K¢)”* values (Figure 4.12d). Generally, a linear structure with high amine density
seems to be most efficient structure, and the results for transfection efficacy mostly support these
findings.
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Figure 4.12 Saturation (B value) and overall binding constant differences between PBAEs without end caps compared
with different backbones with side chain 28 (a, b) and different side chains with backbone C (c, d).

4.2.2 PBAEs with End Capsl'V]

The second series of fractionated PBAEs with end-cap groups (Figure 3.2 and Table 3.3) were
used to investigate polymer—-DNA binding by varying (1) the polymer molecular weight by adding
single carbons to (2) the backbone and to (3) the side chain of the monomers that constitute the
polymers and by varying (4) the type of polymer end-cap group (shown in Table 4.3).

The effects of the changes in the polymer structure were characterised by the binding equilibrium
using the cooperative binding model. The polyplex diameters and zeta potentials were measured at
60 w/w (polymer weight to DNA weight ratio). The transfection efficacy and cytotoxicity in vitro
with two different cell lines (MDA-MB-231 human breast and GBM319 brain cancer cells) were
measured at 30, 60 and 90 w/w. These weight ratios correspond to N/P ratios 34-40, 68-81 and
102-121, respectively. The polyplexes were prepared in 25 mM NaAc buffer at pH 5.2, regularly
used for PBAESs in transfection and cytotoxicity studiest""" % 8-,
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Table 4.3 Differences between studied PBAEs with end caps.

Molecular | Polymer Name | 447L 447TM 447H
Weight M, 10.3kDa  14.7 kDa 91.6 kDa
M,, of AD" (253 Da)* (262 Da)* (283 Da)™*
polymer Ny 41 56 324
Backbone PoLymer Name | 346 446 546 646
Number of | N¢ 3 4 5 6
Cinback | AD (254 Da)* (267 Da)* (272 Da)™* (288 Da)™*
bone N\ 44 44 33 37
M, 112kDa  11.8kDa 9.1 kDa 10.5 kDa
Side Chain PoLymer Name | 437 447TM 457 467
Number of | N¢ 3 4 5 6
Cinside | AD" (242 Da)* (262 Da)* (271 Da)* (282 Da)™*
chain N\ 43 56 49 47
M, 10.3kDa  14.7 kDa 13.1 kDa 13.2 kDa
End Cap Polymer Name | 44 442 444 446 4471
Type of the | Added Amines | - 2NH, 2NH,  2NH, 2NH,  4NH,20H  2NH, 4N
end cap AD" (287 Da)* (264 Da)* (264 Da)™* (267 Da)* (253 Da)*
N\ 40 40 39 44 41
M, 11.6kDa  10.4 kDa 10.3 kDa 11.8 kDa 10.3 kDa

“weight average molecular weights (M,,), "amine densities (AD), “number of amines per polymer (Ny), “number of
carbons in polymer backbone or side chain (N¢)

The particle sizes and zeta potentials of PBAEs with end caps were measured at N/P = 60, where all
the polymers had reached the saturation level. Hence, the net charges of the polyplexes were
positive (IV, Figure S7). The mean diameters of the polyplexes ranged from 122 to 227 nm (lll,
Figure S4). The only trend in particle sizes was observed in the backbone group: the particle sizes
decreased with increasing backbone length, i.e., with decreasing amine density and increasing
hydrophobicity. The smallest particle size was observed for polymer 346, 122 nm, and the highest
for polymer 646, 227 nm.

Figures 4.13-4.16 present the binding isotherms and Hill plots for PBAEs with end caps. For this
series of polymers, the proportion of bound DNA increased with increasing N/P ratios until it
reached a saturation limit of 64—96% at N/P ratios from 8 to 40 depending on the polymer. The B
values of most of the PBAEs saturated close to 80% at an N/P ratio of about 20, and the turning
points in the curves were near a B value of 70% at an N/P ratio < 10 (i.e., Figure 4.13). The turning
point for high-molecular weight PEls and PLL was observed at N/P = 2[' at the same N/P ratio
where the charge of the polyplexes changes from negative to positive™> 58 €7 6% %81 However, for
PBAEs with end caps, the polyplexes were reported to be neutral still at an N/P ratio of 44!, At
the turning point, most of the ETI has come out of the polyplexes into the bulk solution. The rest of
the ETI stays intercalated to DNA even though the N/P ratio is increased. Whether this indicates
that the polymer has bound only 64-96% of the DNA or that the remaining intercalated ETI has
been trapped in the polyplex cannot be determined by this method.
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Figure 4.13 Binding isotherms for the backbone group for polymers 346 (a), 446 (b), 546 (c) and 646 (d): (o) measured
points and (—) calculated by the cooperative binding model (eq. 2.2.3.1). Inserts: Hill plots for 346 (a), 446 (b), 546
(c) and 646 (d).
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Figure 4.14 Binding isotherms for the end cap group for polymers 44 (a), 442 (b), 444 (c), 446 (d) and 447L (e): (D)
measured points and (—) calculated by the cooperative binding model (eq. 2.2.3.1). Inserts: Hill plots for 44 (a), 442

(b), 444 (c), 446 (d) and 447L (e).
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Figure 4.15 Binding isotherms for the side chain group for polymers 437 (a), 447M (b), 457 (c) and 467 (d): (o)
measured points and (—) calculated by the cooperative binding model (eg. 2.2.3.1). Inserts: Hill plots for 437 (a),
447M (b), 457 (c) and 467 (d).
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Figure 4.16 Binding isotherms for the molecular weight group for polymers 447L (a), 447M (b) and 447H (c): (o)
measured points and (—) calculated by the cooperative binding model (eg. 2.2.3.1). Inserts: Hill plots for 447L (a),
447M (b) and 447H (c).

For the most of these PBAEs, the Hill plots are single straight lines, with o < 1 indicating negative
cooperativity (Table 4.4). As discussed in section 2.2.3, polymers with negative cooperativity
typically have saturation levels under 100%, whereas polymers with positive cooperativity saturate
near 100 %. In addition, the increase of B at low polymer concentrations is very strong for negative
cooperativity. This is observed for these PBAEs to such an extent that it is difficult to obtain
measuring points for B < 50%.

The parameters calculated from the Hill plots shown in Figures 4.13-4.16 are listed in Table 4.4
for each group of structural variation. The Hill plots can be analysed as single straight lines with
negative cooperativity (a < 1) except for the backbone series (Figure 4.13), i.e., 346, 446, 546 and
646, for which the Hill plots are a composite of two lines with different slopes. For 346, 446 and
546, positive cooperativity at small N/P ratios followed by negative cooperativity at high N/P ratios
was observed, whereas 646 showed negative cooperativity at low N/P ratios and positive
cooperativity at high N/P ratios.
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Table 4.4 Cooperative binding constants of PBAEs with end caps in 25 mM NaAc buffer (plasmid-enhanced green
fluorescent protein (pEGFP-N1) DNA (Clontech)). Hill’s cooperativity coefficients, a, overall cooperative binding
constant, (K¢)“, average cooperative binding constants per amine, K, and error of average cooperative binding
constants per amine, AKq,.

Varying Polymer  N/PRange  « (Keo)” Ko (MY AKg, (%)
4471 3.0-20.0 0.0 27.4+35 4.2 x 10° 0.279
Mv(\)/ISngur:?r 447M 2.0-40.0  0.22 11.3+1.2 5.7 x 10* 0.003
447H 1.0-300  0.23 149422 1.2x10° 0.008
346 0.8-4.0 1.86 (1.14+0.04)x10° 1.8x10° 1.261
4.0-40.0 017 146+1.8 8.9 x 10° 0.001
446 2.0-4.0 7.4 (1.7 £0.5) x 10% 1.0x 10° 85.27
Backbone 4.0-400  0.38 31.1+1.0 8.0 x 10° 0.013
546 0.9-3.8 246  (31+0.1)x10° 1.1x10° 1.673
3.8-37.7  0.22 7.91+1.44 1.1x 10 0.031
646 1.0-7.3 0.32 25.8+3.8 2.4 x10* 0.144
7.3-39.2 116  (3.8+0.5) x 10° 1.2 x 10° 5.647
437 1.0-104  0.28 26.7+1.2 1.1x10° 0.001
_ _ 447TM 2.0-40.0  0.22 11.3+1.2 5.7 x 10* 0.003
Side Chain 3
457 2.0-40.0  0.41 29.3+2.2 3.5x10 0.098
467 1.0-200  0.39 28.2+5.1 4.7 x 10° 0.868
44 5.0-15.0  0.62 474+58 5.3 x 10° 1.428
442 1.0-190 042 320+6.8 3.7x10° 2.032
444 1.0-143 050 59.1+6.2 3.6 x 10° 0.358
End Cap - 3
446 2.0-4.0 74 (1.7405)x 10 1.0 x 10 85.27
4.0-40.0  0.38 31.1+1.0 8.0 x 10° 0.013
4471 3.0-20.0 0.0 27.4+35 4.2 x 10° 0.279

Backbone Group. Increasing the number of carbons in the backbone monomers increases the
distance between the backbone amine groups, thus decreasing the amine density. It also increases
the hydrophobicity of the polymer. The Hill plots (Figure 4.13) for this group are a composite of
two lines with different slopes. For 346, 446 and 546, positive cooperativity is observed at small
N/P ratios of up to 4. The «values vary a lot, and no clear dependence is observed. More data
points would be needed for reliable analysis, but unfortunately, not enough of the polymers were
available for more measurements. At N/P > 4, negative cooperativity was observed. 646 showed
different behaviour: negative cooperativity at low N/P ratios and slightly positive at high N/P ratios.
This resembles the behaviour of E28, the base polymer for 646 without end caps. The (K¢,)” values
of this group vary in a wide range following the degree of cooperativity. At N/P < 4, the highest
overall binding constant is obtained for 446, whereas at N/P > 4, polymer 646 has the highest
overall binding constant. Thus, it seems that the intermediate backbone length, i.e., 4-5 carbon
units, is optimal for the formation of the polyplex core. This could be due to steric hindrance for
shorter and longer backbones. No clear correlation between the binding constant and transfection or
cytotoxicity is observed in either of the cell lines used.

End Cap Group. The base polymer 44 was end-capped with monomers E2, E4, E6 and E7 (Table
4.4 and Figure 4.16). This added one secondary amine group and either one primary amine group
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(442 and 444) or another secondary amine group plus a hydroxyl group (446) or two tertiary amine
groups (447L) to both ends of the polymer. At pH 5.2, the primary and secondary amines of the end
caps are ~100% protonated, whereas the tertiary amines of the polymer backbone are about 50%
protonated. In addition, after the end-capping, the amine density of the polymers were slightly
higher than for the parent polymer. The order of amine densities is 447L > 442 > 444 > 446 > 44,
However, the amine densities changed only a little, but the solubility of the polymers in the buffer
increased considerably. All the end-capped polymers had higher K¢, values than the base polymer
44, which is partly due to the lower solubility of 44 in NaAc buffer. No clear correlation with the
other studied parameters and the K¢, were observed. The cytotoxicity of the polymers increased in
the following order: 442, 444 > 447 > 446. Thus, from the end-capped polymers, the polymers with
secondary amine groups were less toxic and the polymers with primary amine groups were the most
toxic.

Side Chain Group. Increasing the number of carbons in the side chain monomers does not change
the distance between the backbone amine groups, but it nevertheless decreases the amine density. It
also increases the hydrophobicity of the polymer. All four polymers of this group have Hill plots of
single straight lines and negative cooperativity (inserts in Figure 4.15). The binding constant
decreases with increasing side chain length. No correlation between the binding constant and
transfection is observed for the MDA cell line, but for the GBM cell line, the transfection is more
efficient for PBAEs with high binding constants. The cytotoxicity increases with decreasing K, for
both cell lines. For this series, the decrease in the K, with increasing side chain length is more
likely due to steric hindrance caused by the increasing side chain length than the decrease in the
amine density since the physical distance between the amine groups does not change. The
increasing cytotoxicity with the increasing length of the side chain is again probably due to the
increased hydrophobicity of the polymers and thus to the reduced biodegradability.

Molecular Weight Group. The binding isotherms and Hill plots for 447L (10.3 kDa), 447M (14.7
kDa) and 447H (91.6 kDa) are shown in Figure 4.16. The degree of cooperativity is lower for
447M and 447H than for 447L. In addition to the Hill plot, this is also observed in the binding
isotherms as a sharper turning point and a decreasing turning point N/P ratio with increasing
molecular weight. The increasing polymer molecular weight leads to increasing polymer—DNA
interactions® and higher K¢, values but also to higher cytotoxicity. For the GBM cell line, the
transfection efficiency mostly followed the cytotoxicity, and the best results were obtained for
447M at a high N/P ratio and for 447L at a low N/P ratio. For the MDA cell line, at low N/P ratios,
the transfection efficiency increased with increasing molecular weight, but at high N/P ratios, 447M
gave the best results.

4.2.3 Summary of Poly(B-amino ester)-DNA Polyplexes['!. V]

In the first series of PBAEs, i.e., PBAEs without end caps, the branching versus the linear structure
of the backbone was compared, and the linear structure proved to be better. The highest binding
isotherm saturation levels and overall binding constants were observed for the polymers with
shortest linear backbone and side chain.!""
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The end-capping of PBAEs increases the amine density, increases the efficiency of polyplex
formation and thus increases the saturation levels of the binding isotherms. Type of end cap has an
effect on the binding mechanism of the PBAEs. With the E6 end cap, the Hill plots are composites
of two lines with different slopes, whereas for the other end caps, the Hill plots are a single straight
line. In addition, the polymers with the E6 end cap reach the highest binding isotherm saturation
levels."]

The length of the backbone and the side chain of PBAEs were observed to be important to the
complex formation via amine density, hydrophobicity and steric hindrances. Changing the length of
the backbone has an effect on the binding mechanism: the intermediate chain lengths had the
highest degree of cooperativity, and the longest chain length reached the highest binding isotherm
saturation level of all PBAEs. The binding constant decreases with increasing side chain length
(single phase cooperativity).!"]

The molecular weights of the PBAEs (with end caps) were also observed to have an effect on
complex formation. High-molecular weight PBAEs form polyplexes more effectively and reach
higher binding isotherm saturation levels than smaller-molecular weight polymers. ™!
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5 Conclusion

The method for studying the mechanism of polymer—DNA polyplex formation based in time-
resolved fluorescence measurements was successfully utilised with different types of polymers.
Analysing the results with the cooperative binding model for multivalent ligand binding to a multi-
subunit substrate gave quantitative information on the polyplex formation. The mechanism of
polyplex formation varies from positive cooperativity to independent binding and, further, to
negative cooperativity. For many polymers, the mechanism changes with increasing N/P ratios and
changing environmental conditions, such as pH and ionic strength. In addition, small changes in the
polymer structure can induce different binding mechanisms.

Important aspects to consider for efficient polyplex formation are the nature of the amine groups of
the polymer and especially the degree of protonation of the amine groups in polyplex formation
conditions. Generally, increasing molecular weight increases the efficiency of polyplex formation.
For this property, a compromise should be found since increasing molecular weight increases the
number of protonated amine groups and thus cytotoxicity. High amine density seems to induce
positive cooperativity.

The method for studying the mechanism of polymer—DNA polyplex formation utilised in this thesis
gives information mainly on the formation polyplex core since, after that, all the ETI has been freed
to the bulk solution. For polymers, such as many PBAEs, that exhibit strongly negative
cooperativity, both the formation core and the shell of the polyplex can be observed.

After the polyplex formation in a test tube, many other steps need to be overcome before the DNA
reaches its destination. Thus, no correlation between the binding constants and the transfection
efficiency can be expected. If such a correlation is observed, it is due to factors that affect both the
polyplex formation and the overall gene delivery process similarly. For instance, for PBAEs with
different amine side chain lengths, the longer side chain reduces polyplex formation due to steric
hindrance. At the same time, it increases cytotoxicity since it makes the polymer more hydrophobic.

During the polyplex core formation, since most of the ETI is freed to the bulk solution, this method
cannot be used for studying the role of excess polymer in the gene delivery process. For such
studies, covalently labelled DNA and polymers are needed. However, the method developed and
used in this thesis gives valuable information for understanding the packing of the polymer-DNA
complexes into the field of gene-delivery.
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ABSTRACT: The mechanism of polyethylenimine—DNA and poly(i-lysine) —DNA
complex formation at pH 5.2 and 7.4 was studied by a time-resolved spectroscopic .,
method. The formation of a polyplex core was observed to be complete at approximately

N/P = 2, at which point nearly all DNA phosphate groups were bound by polymer amine 80
groups. The data were analyzed further both by an independent binding model and by a
cooperative model for multivalent ligand binding to multisubunit substrate. At pH 5.2, the
polyplex formation was cooperative at all N/P ratios, whereas for pH 7.4 at N/P < 0.6 the
polyplex formation followed independent binding changing to cooperative binding at

higher N/Ps.

B INTRODUCTION

The development of safe and effective nonviral vectors for gene
medicines (DNA, siRNA, miRNA) is an important biomedical
challenge." Viral vectors are more effective than nonviral
systems, but the latter have advantages of easier up-scaling and
better safety. Polyethylenimine (PEI) is a cationic polymer that
is able to complex DNA and it is widely used for DNA
transfection in vitro.” > PEI constitutes a high concentration of
positively charged amine groups (primary, secondary, tertiary)
which enable effective electrostatic binding and condensation of
negatively charged DNA.° Similarly, poly(r-lysine) (PLL), a
polycation with primary amines only, has been used to
condense DNA into nanoparticles. However, in the presence
of a competing polyelectrolyte, such as heparin sulfate, a
glycosaminoglycan, PEI and PLL respond differently; PEI—
DNA complexes dissociate, whereas PLL—DNA complexes do
not dissociate as readily.” > These different responses to a
competing polyelectrolyte may in part explain the 100-fold
higher transfection efficacy for branched PEI compared to PLL
polyplexes as DNA must release from the polyplexes prior to its
transcription and translation.”'

Linear and branched PEI have been used to construct
polyplex systems that have been applied in gene delivery and
transfection studies.”>'" Linear PEI (LPEI) is composed
almost exclusively of secondary amines while branched PEI
(BPEI) is composed of primary, secondary and tertiary amines
(Figure 1). The chemical structure of PLL constitutes primary

-4 ACS Publications  © 2013 American Chemical Society
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amines in the side chains which take part on binding DNA. At
the physiological pH range (5.0—7.4), primary amines are in
the protonated state, whereas the secondary and tertiary amines
are only partially ionized."> Due to its secondary and tertiary
amines, PEI shows buffering capacity and polymer swelling at
the acidic pH of the endosomes.'” PLL does not have these
features that augment gene transfection at the cellular level.'”
Although the differences in the chemical structures account for
the transfection efficiency and toxicity, differences in structure—
activity relationship are not well understood.” Elucidating these
structure—activity relationships is critical for controlling the
functionality of novel biomaterials to be used for gene therapy.

Recently, we compared the DNA-complexation behavior of
various PEI species (small, linear, and branched). Using time-
resolved fluorescence spectroscopy, the binding constants for
polyplex formation were determined using an independent
binding model."> The independent binding model, in contrast
to the cooperative binding model, does not take into account
the simultaneous or subsequent binding of other amine ligands
at unoccupied phosphate sites on DNA. Based on this analysis,
we found that for both linear and branched PEI the
complexation process was biphasic, suggesting the mechanism
of polyplex formation varies as a function of amine
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concentration. In the present study, we continue investigate the
mechanism of polyplex formation by comparing the DNA-
complexation behavior of branched and linear PEI and PLL at
two different pH values in the pH range of endocytic vesicles.
The binding equilibrium was analyzed using the independent"?
and cooperative'* binding models.

B EXPERIMENTAL METHODS

Materials. The plasmid pCMV/ (7164 bp) encoding for the
beta-galactosidase enzyme as a reporter gene was purified using
a QlIAfilter Plasmid Giga Kit (QIAGEN) according to the
manufacturer’s instructions. Branched polyethylenimine (BPEI;
Figure 1) with a mean weight-average molecular weight of
25 kDa was purchased from Sigma-Aldrich, titrated to pH 7,
and used as a 1 mg/mL aqueous solution.

NH, 7
\LNH HN—/_NH
S~
N_/—N /_H/N/
NH;_/\DN—/_N\—\
HN_\—NH

Branched polyethylenimine 3
(BPEI)

(e}

—(—NH—?H—(U)*L—
So~wt P,

NH,

Linear polyethylenimine Poly(L-lysine)
(LPEI) (PLL)

Figure 1. Molecular structures of BPEI, LPEI, and PLL.

Linear polyethylenimine (LPEI; Figure 1), ExGen 500, with a
mean molecular weight of 22 kDa was obtained from
Fermentas. Poly(i-lysine) (PLL; Figure 1), with a mean
molecular weight of 200 kDa (Sigma-Aldrich), was chosen for
this study, since at physiological levels of salt the polyplexes
formed with 20 kDa PLL are less soluble due to
aggregation.'”'> For PLL, the backbone amines are part of
the peptide bonds. Thus, only the side chain amines bind DNA
and only they were taken into account when calculating the
N/P ratios (the molar ratio of polymer nitrogen to DNA
phosphate). Thus, for PLL only primary, for LPEI only
secondary, and for BPEI all primary, secondary, and tertiary
amines are participating to the formation of nanoparticles.
Ethidium bromide (ETI) used as a fluorescent probe was
purchased from Sigma-Aldrich.

Sample Preparation. All solutions were prepared in a
buffer containing S0 mM MES, 50 mM HEPES, and 75 mM
NaCl (adjusted to a pH of 5.2 and 7.4 using S M NaOH). The
final nucleotide concentration of DNA used was 300 uM; the
molar ETI/nucleotide ratio was 1:15. The polyplexes were
prepared by a stepwise method: Independent of the final N/P
ratio between the cationic polymer and DNA, an initial solution
with N/P ratio 0.2 was prepared by vigorous mixing of equal
volumes of ETI-DNA solution and cationic polymer solution.
The complexation was followed by measuring the fluorescence
spectrum of this initial solution. After the measurement, the
next N/P ratio was adjusted by addition of the appropriate

amount of polymer solution. The measured N/P range was
from 0.2 to 8 in each polymer at pH 5.2 and at pH 7.4.

Fluorescence Measurements. The time-resolved fluo-
rescence was measured by a time-correlated single photon
counting (TCSPC) system as described earlier.'* The decays
were collected using a constant accumulation time with
wavelengths of 560—670 nm with steps of 10 nm. The
instrumental response function was measured separately, and
the fluorescence decays were deconvoluted and analyzed by
iterative least-squares method by simultaneously fitting to the
sum of exponents in the equation

I(t, 4) = ay(2) /7 + ay(2) /7 W

where 7; is the global lifetime and a,(1) is the local amplitude
(pre-exponential factor) at a particular wavelength. The quality
of the fit was judged in terms of the weighted mean-square
deviation y* for the individual curves and for the global fit (for
acceptable fit y* < 1.1) and by visual inspection of the weighted
residuals and their autocorrelation function. The amplitudes
a;(1) represent the decay associated spectra (DAS). In the case
of a mixture of multiple noninteracting fluorescing species, the
DAS corresponds to the individual spectra of the species. The
local amplitudes (a,(4)) were corrected depending on the
sensitivity of the detector at different wavelengths and the
corrected spectral areas were calculated as A; = / a;,(1) dA . The
relative quantum yield of ETTI free in the solution versus ETI
bound by the DNA, ¢,., was determined from steady state
absorption (UV—vis spectrophotometer Shimadzu UV-3600)
and fluorescence (Fluorolog Yobin Yvon-SPEX A, = 483 nm)
measurements according to

bep Iep Apm (2)

In eq 2, ¢pyy is the quantum yield of free ETI, ¢yp is the
quantum vyield of ETI-DNA complex, I, is area of the
fluorescence spectra with excitation wavelength of 483 nm, and
A, is the absorbance at wavelength of 483 nm. The ¢, values of
0.130 and 0.136 were obtained at pH 5.2 and 7.4, respectively.
The quantum yield corrected spectral area of the short-living
component can be calculated as A;qy = A;/¢. The
proportion of the short-living decay component, B, correspond-
ing to ETI free in the solution, was calculated from the spectral
areas of the components as follows:

¢ETI IETI AED
hy= 0= T

A
B= LA 100%
Aqy T4, (3)

where A, is the spectral area of the long-living component
(ETI:DNA complex).

We used ETI as a fluorescent probe for monitoring the
equilibrium between DNA and the polymers (P). We chose the
amount of ETI in the system so that in the beginning all ETT is
intercalated in the DNA. When the polyplex is formed ETI is
freed to the bulk solution:

ETL:DNA + P = P:DNA + ETI 4)

Simultaneously the fluorescence lifetime of ETI decreases from
24 ns for ETI-DNA complex to 1.8 ns for free ETL Thus, in
the presence of polymer, a two-exponential decay curve is
observed. As the relative amount of free ETI in the solution, B
(eq 3), is directly proportional to the amount of formed
polyplexes, the formation of polyplexes can be monitored by
plotting B as a function of N/P ratio.

dx.doi.org/10.1021/jp404812a | J. Phys. Chem. B 2013, 117, 10405—10413
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Binding Constants: Independent Binding Model. In
the independent binding model reported in our previous
studies,">'®"” binding of a ligand (polymer carrier) to a site on
a macromolecule (DNA) has no impact on simultaneous or
subsequent binding to other unoccupied sites and the reaction
can be written as

P + DNA = P:DNA (%)

Thus, the proportion of DNA bound by the polymer, B, can be
correlated to the binding constant of the polyplex formation, Kj,
by
[P:DNA]

[DNA] + [P:DNA]
_ K[P][DNA]
~ [DNA] + K,[P][DNA]

K[P]
I+ KP] ©

B =

From the fluorescence measurements, we get B = A, qy/ (ALQY
+ A,). Combining this with eq 6 and taking reciprocal of the
resulting equation, we obtain:

A, 1
Al‘Qy KI[P] (7)

where Kj is the independent binding constant of the overall
equilibrium and [P] is the concentration of the polymer amine
groups (mol N-groups dm™>). In egs 6 and 7, [P] should be the
free N-group concentration, but in our analysis it was
approximated by the total N-group concentration. According
to eq 7, plotting the ratio A,/A, oy as a function of the inverse
polymer concentration, we should obtain a linear dependence
with the binding constant equal to the inverse of the slope.

Binding Constants: Cooperative Binding Model. In
cooperative binding the binding of a ligand to a site on a target
molecule can influence the binding of other ligands to other
unoccupied sites on the same target. For positive cooperativity
the binding of first ligand makes it easier for the next one to be
bound. In a plot of B as a function of free ligand concentration
a characteristic sigmoidal shape is observed.'® The Hill plot
model for multivalent ligand binding to multisubunit
substrate'®™>* was used to estimate the cooperativity of our
systems through eq 8 (derivation presented in the Supporting
Information).

A
h{l'—QY) = a In[P] + In(Kcp)”
2

(8)

where (Kc)® is the overall cooperative binding constant for
the reaction DNA + NP = DNA:Py, Ko is the average
cooperative binding constant for the binding of one functional
amine group according to the reaction DNA:P,_ , + P =
DNA:P, (x = 1, 2, .., N), and «a is the experimental Hill’s
coefficient. The values for the calculated curve of cooperative
binding in Figures 6 and Supporting Information Figure S4
were obtained from

P (Koo
I+ [P (Keo)' ©)

Particle Size. Samples for the polyplex size measurements
were prepared at both pHs with N/P ratios ranging from 0.4 to
8. The mean hydrodynamic diameters were measured by

dynamic light scattering technique (Malvern Zetasizer Auto
Plate Sampler, APS; medium refractive index of water = 1.33
and scattering angle of 90°) in triplicate from two different
samples. Thus, each N/P-ratio was measured six times. The
ages of the samples at different N/P-ratios differed from each
other at the time of measuring. From the initial time of forming
the first N/P polyplex formulation, the 0.4, 0.6, 1, 2, 4, and 8
N/P formulations were measured at 1.25, 2.5, 3.5, 4.75, 6.25,
and 7.75 h, respectively.

Transfection. CHO cells (Chinese hamster ovary cell line)
and CVI-P cells (monkey kidney fibroblasts) were grown in
DMEM supplemented with 10% heat-inactivated fetal bovine
serum, 2 mM L-glutamine, and antibiotics. ARPE-19 cells
(human retinal pigment epithelial cell line) were cultured in
DMEM/F-12 supplemented with 10% heat-inactivated fetal
bovine serum, 2 mM L-glutamine, and antibiotics. Cells were
maintained at 37 °C in a humidified atmosphere containing 7%
CO, (CHO and ARPE-19) or 5% CO, (CVI-P) and
subcultured twice a week. All cell culture media and reagents
were purchased from Invitrogen.

Polyplexes were prepared in S0 mM MES-HEPES buffer (pH
7.2) by adding polymer solution to DNA solution (in equal
volumes) at an N/P ratio of 8 (PEIs) and 4 (PLL). The
complexes were allowed to incubate for 20 min at room
temperature. DNA concentration in the resulting solution was
20 ug/mL of complex.

CHO (48000 cells/well), CV1—P (32000 cells/well), and
ARPE-19 (50 00 cells/well) cells were seeded into 48-well
plates 24 h prior to experiment to reach 80% confluency on the
day of transfection. Immediately before transfection, cell culture
medium was replaced with fresh DMEM without serum and
50 uL of polyplex solutions (corresponding to 1 ug DNA/well)
was added dropwise per well. After 5 h incubation, polyplexes
were aspirated, cells were washed twice with PBS and incubated
in cell culture media for an additional 43 h at 37 °C in a 7%
CO, humidified air atmosphere. Thereafter, cells were washed
twice with PBS and lysed with 150 uL of lysis buffer (250 mM
Tris-HCI buffer (pH 8.0), 0.1% Triton X-100) overnight at
—70 °C. The f-galactosidase activity was determined by ONPG
assay as described previously’ and normalized to the protein
content of each sample using a Bio-Rad protein assay kit (Bio-
Rad) according to the manufacturer’s microtiter plate protocol.

B RESULTS

Formation of Polymer—DNA Polyplexes. Formation of
polyplex can be monitored by plotting B as a function of N/P
ratio. These plots are presented in Figure 2 for all polymers in
both pHs. In all cases, B reaches close to 100% values at N/P =
2. This indicates that nearly all ETT is free in the solution (eq
3). The behavior of all polymers at a given pH is similar, but the
pH has a clear effect. The sigmoidal shape of the curves
observed at pH 5.2 is absent at pH 7.4.

The results of the particle size measurements are shown in
Figure 3. At low N/P ratios, the particle sizes were 300—
400 nm at pH 5.2 and 400—500 nm at pH 7.4. At N/P = 2, the
particle size increases to values over 2000 nm with a
simultaneous increase in the polydispersity index (PDI) of
the sample reflecting a wider particle size distribution. At higher
N/P ratios, the particle sizes of BPEI and PLL decrease again to
values lower than 300 nm and PDI decreases to values < 0.2,
indicating a fairly narrow size distribution. For LPEI, some
decrease is observed at pH 5.2, but at pH 7.4 no decrease in
particle size or PDI takes place up to N/P = 8. During the

dx.doi.org/10.1021/jp404812a | J. Phys. Chem. B 2013, 117, 10405—10413
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Figure 2. Proportion of the short-living component (B) versus N/P
ratio at pH $.2 and 7.4 for BPEI (a), LPEI (b), and PLL (c).

particle size measurements, the ages of the samples increased
with increasing N/P ratio (see Experimental Methods). The
particle sizes of LPEI and BPEI polyplexes have been observed
to grow as a function of time in salt containing buffers.>™*
Without salt in the buffer, the particle sizes are smaller and their
sizes remain constant over time.”>*” The particle sizes obtained
in the present study are in agreement with these studies. The
large particle sizes measured at N/P = 2 coincide with a visual
change in the samples: at this N/P ratio, large particles can be
seen by the naked eye. This effect was stronger at pH 7.4 than
at pH 5.2. Similar effect has been observed for 50—60 kDa PEI
by light scattering measurements.”® According to the zeta
potential measurements,'>*>*° the appearance of very large
particle sizes coincides with the change from negative to
positive potential and takes place close to N/P ratio 2. Thus,
the large particle sizes are probably due to aggregation of the
nanoparticles when they are at nearly charge neutral state. The
same phenomenon has been seen with cationic liposome—
DNA complexes.*® The particle sizes for all polymers are higher
at pH 7.4 than at pH 5.2 which is likely due to the more
positively charged environment at pH 5.2.

The differences between the polymers are also observed in
the changes of the fluorescence lifetimes with increasing N/P
ratio (Supporting Information Figure S1). For PLL at both pHs
the changes in the fluorescence lifetimes are relatively small for
both components and take place only at N/P < 2 (Figure Sla
and b). For PEIs at N/P < 2, where the polyplexes still have
some negative charges, the lifetime of the short-living
component corresponding to free ETI varies from 0.6 to
1.9 ns (Figure Slc and e) and the lifetime of the long-living
component corresponding to ETI-DNA complex decreases
from 24 to 18.5 ns (Figure S1d and f). The fluorescence
lifetime of ETI decreases in the presence of positive charges.'
Thus, it is possible that at low N/P ratios, when the polyplex is
still negatively charged, the ETI freed in the solution during
polyplex formation does not all escape to the bulk solution, but
part of it stays close to DNA. At N/P > 2, the polyplexes are

‘£2000 BPE @) ‘£2000 LPE| (b) 'E 2000 PLL ©
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Figure 3. Mean hydrodynamic diameters and PDI values at different N/P ratios for BPEI (a, d), LPEI (b, e), and PLL (c, f) at pH 5.2 and 7.4. The
upper limit of the device for the hydrodynamic diameter is 2000 nm, and thus, values higer than this are not shown in the figures. The errors in BPEI
and PLL particles sizes were 1—7% for PDI < 0.6 and 21—47% for PDI > 0.6. For LPEI large errors were obtained between N/P 1 and 4 at pH 5.2

and N/P 2 and 8 at pH 7.4.
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positively charged, ETI escapes to the bulk solution, and its
lifetime is equal to that of free ETI in the absence of DNA. The
changes in the fluorescence lifetimes observed for PEIs are
smaller at pH 5.2 than at pH 7.4. Since the environment at pH
5.2 is positively charged, the addition of cationic polymers does
not change the lifetimes as much as at pH 7.4.

According to the present studies, the largest particle sizes,
coinciding with the change from negatively charged polyplexes
to positively charged polyplexes, are observed at N/P = 2
(Figure 3). According to the fluorescence measurements, at this
point all ETI has been freed into the solution (Figure 2) and
reaction 4 has gone to completion. At higher N/P ratios, excess
polymer is bound to the gol lex, causing the size of the
polyplex to decrease again.'>>%2"3*736

Independent Binding Model. In Figure 4, the ratio A,/
A, qy (eq 7) is plotted as a function of the inverse amine

5 LPEI

2
@
1
O pH52
0 @ pH74
0 4000 8000 12000 16000

LPEIT" (M)

Figure 4. Ratio A,/A;qy as a function of the inverse polymer
concentration for LPEI at pHs 5.2 and 7.4.

concentration for LPEL At low polymer concentrations
corresponding to N/P ratios from 0.2 to 2, A,/A; oy decreases
linearly with increasing concentration. At higher concentra-
tions, that is, N/P > 2, A,/A,qy stays nearly constant with
increasing concentration. This behavior corresponds to that
observed in Figure 2: at low concentrations, the polyplex
formation is observed, and at higher N/Ps the reaction (eq 4)
has reached completion. At pH 5.2, the slope at low N/P ratios
is clearly greater than at pH 7.4. Similar behavior is observed
also for the BPEI and PLL (Supporting Information Figure S2).
The binding constants K; calculated from the slopes at N/P <2
are listed in Table 1. For all polymers, the binding constants
using the independent binding model are smaller at pH 5.2
than at pH 7.4. For PEIs, the binding constants are nearly equal

at each pH, but 1.3—2.0 times larger binding constants are
observed for PLL.

Cooperative Binding Model. For the present systems, the
Hill plot (eq 8) did not appear as single straight line but a
composite of two (at pH 5.2) or three (at pH 7.4) lines with
different slopes (Figure S and Supporting Information Figure

LPElatpH 7.4
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Figure S. Hill plots (eq 8) for LPEI at pH 7.4 (a) and at pH 5.2 (b).

S3). For pH 7.4 at low polymer concentrations (N/P < 0.6),
the a-values were 0.76—1.01, that is, close to 1 (Table 1). This
implies that interaction between the polymers and DNA
represents independent binding without cooperativity or, in the
case of LPE], slightly negative cooperativity. For pH 5.2, this
was not the case and positive cooperativity was observed (a =
2.63—3.78). At very high polymer concentrations (N/P > 2),
the bound fraction reaches a maximum and additional binding
does not take place.

The a-values obtained at intermediate N/Ps for pH 7.4 and
at N/P < 2 for pH 5.2 (Table 1) indicate positive cooperativity
of binding. The degree of cooperativity is higher at pH 5.2 for
all polymers. Also, the overall cooperative binding constant

Table 1. Independent Binding Constants per amine (K;), Hill's cooperativity coefficients (@), overall cooperative binding
constant (K.,)* and average cooperative binding constants per amine K¢, for PEIs and PLL at pH 5.2 and 7.4

independent model

cooperative model

polymer pH K; (Mfl) N/P range

BPEI 52 (9.5 £ 32) x 10 0.4—2.0
7.4 (7.3 £ 0.4) x 10° 0.6—2.0

0.2-0.6

LPEI 52 (14 £ 02) x 10° 0.4-2.0
74 (71 £ 12) x 10 0.6—2.0

0.2-0.6

PLL 52 (19 + 0.7) x 10° 0.4-2.0
7.4 (94 + 0.5) x 10° 0.6—2.0

0.2-0.6
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a (Kco)a Keo (Mil)
3.78 (1.0 + 0.1) x 10" (51 +0.1) x 10°
231 (54 + 0.6) x 10 (61 +£02) x 10°
0.97 (57 £02) x 10° (7.7 £ 02) x 10°
3.16 (3.0 £ 0.3) x 10" (43 £02) x 10°
232 (4.8 +0.5) x 10° (5.5 +02) x 10°
0.76 (7.5 + 2.4) x 10 (63 + 1.4) x 10°
2.63 (6.8 + 0.7) x 10° (55 +02) x 10°
2.06 (9.7 £ 0.4) x 107 (74 £ 1.5) x 10°
1.01 (L1 £0.1) x 10* (1.01 + 0.09) x 10*
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(Kco)® increases with decreasing pH (Table 1). For PEIs, the
amount of protonated amine groups increases as the pH
decreases, and thus, both the degree of cooperativity and the
overall binding constant correlate with the amount of active
amine groups present in the system. For PLL, all the active
amine groups are protonated at the pH range studied and the
effect of pH is smaller than that for PEIs. However, both a and
(Kco)® increase with decreasing pH also for PLL. This could be
due to increased activity of the amine groups at lower pH.
The independent and cooperative binding models are
compared in Figure 6 where the curves calculated from the

LPEl atpH 7.4 (a)
100
804
< 60
@ 40
20 )
/ Cooperative
0 - -- Independent
00 04 08 12 16 20
N/P ratio
LPEIl at pH 5.2 (b)
1004
80
60+
) e
20/ g A
Cooperative
0-0-¢ - - - Independent
00 04 08 12 16 20
N/P ratio

Figure 6. Proportion of DNA bound by the polymer, B, as a function
of polymer amine group concentration for LPEI at pH 7.4 (a) and at
pH 52 (b). (®) Measured points, calculated by (solid line)
independent binding model and (dashed line) cooperative binding
model.

parameters listed in Table 1 and the corresponding eqs 6 and 9
are shown together with the measured points for LPEI at both

pHs. At pH 5.2, the cooperative model fits better to the
measured points. At pH 7.4, the measured points follow the
independent model up to N/P = 0.6. Thus, at these N/P ratios,
the B values are higher than those for pH 5.2. This gives an
impression that the formation of the nanoparticles at low N/Ps
would be more efficient at pH 7.4, although the real reason for
the higher B values is the difference in the mechanism of
polyplex formation. At higher N/Ps, the cooperative model
gives more accurate results also for pH 7.4. Thus, it seems that
pH has a clear influence on the mechanism of polyplex
formation. The same behavior is observed also for BPEI and
PLL (Supporting Information Figure S4).

With the independent binding model at pH 5.2, very small K;
values are obtained. Since at this pH the system follows
cooperative binding model, these values are not relevant. For
pH 7.4, the values from independent model are nearly equal to
those obtained with the cooperative model at low N/Ps were
the cooperativity degree indicates independent binding.

The transfection experiments are done at high N/Ps (N/P =
8 for PEIs and N/P = 4 for PLL). At intermediate N/P ratios
(0.6—2.0), PEIs have both high overall cooperative binding
constants (Supporting Information Figure SS) and transfection
efficiencies compared with those of PLL. According to our data,
22 kDa LPEI is not quite as effective as 25 kDa BPEI to form
nanoparticles with DNA, but the transfection experiments have
proved that at these conditions and with these cell lines the
most effective carrier is 22 kDa LPEI (Figure SSb). The binding
constants reflect only the formation of the polyplexes according
to reaction 4, which has gone to completion at N/P = 2. At
higher N/Ps, extra polymer is bound to the nearly neutral core
polyplexes. LPEI and BPEI are both functioning DNA carriers,
but only LPEI still forms large agglomerates at N/P = 8 in salt
containing buffers which seem to be important for in vitro and
in vivo transfection.”>*’

B DISCUSSION

Very few binding constants for PEI and PLL polyplex formation
have been reported in the literature. 2552238740 The reported
values have been mainly obtained by isothermal titration
calorimeter (ITC) measurements. However, the heat exchange
during ligand binding is often small and it cannot be separated

Table 2. Independent Binding Constants Per Molecule K;" from the Present Study and Literature for BPEI and PLL

polymer binding constant (M™") solution pH method ref

BPEI 25 kDa 43 x 10° 50 mM Mes, 50 mM Hepes, 7S mM NaCl 74  TCSPC with ETI, independent method  present study
5.5 x 10° 52

BPEI 50—60 kDa 12 X 10° Tris-HCl buffer, ionic strength 0.03 7 luminescence (with ETT) 28

BPEI 750 kDa (23 + 1.8) x 10° 5% glucose @ ITC (25 °C) 25

BPEI 600 Da 2 % 10° 0.1 mM NacCl 6 ITC, SSIS model 38

BPEI 600 Da 1.8 x 10* 0.1 mM NaCl 7 ITC, SSIS model

BPEI 600 Da 1.0 x 10* 0.1 mM NaCl 8 ITC, SSIS model

BPEI 600 Da 1 x 10° Mes or Hepes 7 ITC
1x10° H,0 7 ITC

BPEI 25 kDa (5.98 + 1.79) x 10° 20 mM phosphate buffer 74 ITC (25 °C) 39

PLL 200 kDa 1.5 x 107 50 mM Mes, S0 mM Hepes, 75 mM NaCl 74  TCSPC with ETI, independent method  present study
3.0 X 10° 52

PLL? 9.08 X 107 c 48 ITC 40

PLL” 1.97 x 10° 4 6.8

“Not specified. “Size of PLL not reported. 10 mM sodium cacodylate-acetic acid, 200 mM sodium chloride, and 20 mM magnesium chloride. 910
mM sodium cacodylate-cacodylic acid, 200 mM sodium chloride, and 20 mM magnesium chloride.
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from the heat associated with conformational changes during
polyplex formation. For instance, Choosakoonkriang et al.** did
not report binding constants for PEIs (2—750 kDa BPEIs and
25 kDa LPEI at pH range 6.0 — 9.0). Tkonen et al.** did not
report a binding constant for 750 kDa PLL, although they did
obtain a value for 750 kDa BPEL The values reported in the
literature correspond to the K; values obtained in the present
study, but they were reported per polymer molecule. The K;
values per N-group listed in Table 1 can be converted to the
binding constant per molecule, K;’, by multiplying with the
average number of amine groups per polymer molecule. In
Table 2, the binding constants obtained for BPEI and PLL in
the present study are compared with the values reported in the
literature. Taking into account the differences in molecular
weights of the polymers and properties of the solutions, the
values are in agreement.

Effect of pH. pH has a clear effect on the mechanism of
polyplex formation for all polymers. At pH 7.4, the independent
binding mechanism changes to a cooperative mechanism at
N/P ratios close to 0.6, whereas for pH 5.2 the mechanism is
cooperative for all N/P ratios. This change is also reflected in
the degree of cooperativity and the overall cooperative binding
constants which both are higher at pH 5.2 than at pH 7.4. Thus,
once one amine is bound to the DNA, it induces the
subsequent binding of other amine groups more efficiently at
pH 5.2 than at pH 7.4. The pK, values for PLL vary between 9
and 11.'~* Thus, at pH < 9, all the primary amine groups
taking part in the binding of DNA are positively charged and
changing the pH from 7.4 to 5.2 has only relatively small effect
on the @ and(Kco)* values. For LPEI the pK, = 7.4—8.5.>%
Thus, at pH 7.4, about 50% of the LPEI amine groups are
protonated and decreasing the pH to 5.2 increases the degree
of protonation. This is observed as a clear increase in (Kco)*
values with decreasing pH. The average pK, for BPEI is equal
to that of LPEI, that is, 7.4—8.5.2*>*6 However, BPEI contains
primary (100% protonated at pH < 9), secondary (50%
protonated at pH 7.4), and tertiary amine groups (pK, = 6—7,
less than 50% protonated at pH 7.4).*>*” Thus, the effect of pH
on (Kco)” values is even larger than that for LPEL The
opposite is observed for the average cooperative binding
constant per amine, Kco: the values are higher at pH 7.4 than at
pH 5.2. This is due to the lower cooperativity at pH 7.4 which
in turn is due to the smaller amount of other positive species at
pH 7.4 compared with pH 5.2. Thus, the competition from the
negative phosphate groups is lower at pH 7.4 compared with
pH 5.2.

Effect of Polymer. The a-values obtained for both PEIs are
nearly equal at both pHs and clearly higher than those obtained
for PLL. Also the (K¢o)* values were higher for PEIs than for
PLL at both pHs. This is likely due to the different molecular
structures of the polymers: for PEIs, there are only two carbon
atoms between the amines, whereas in PLL there are 12. Since
the active amine groups of PLL are at the ends of the flexible
side chains, the difference in the average distance between the
amine groups is actually not very large. However, the large
hydrocarbon skeleton of PLL can cause steric hindrance and
thus reduce the degree of cooperativity. At pH 7.4 the
differences in a and (Kp)® values are much smaller, since the
higher degree of amine group protonation of PLL can partly
compensate the structural differences. On the other hand, the
Ko values are always somewhat (1.1—1.6 times) higher for
PLL than for PEIs (Table 1). Thus, the primary amine groups
of PLL seem to bind DNA more strongly than the secondary
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amine groups of LPEI and the combined affinity between the
primary, secondary, and tertiary amine groups of BPEIL This is
in line with the observations indicating that the PEI-DNA
complexes are more easily disrupted than PLL—DNA
complexes in the presence of competing polyanions.”®

Comparing the (Kco)® values and transfection efficiencies
(Supporting Information Figure SS), there is a similarity in the
behavior of PLL. However, despite the lower overall binding
constant, PLL forms nanoparticles with DNA and these
nanoparticles do enter the cells.”” The low transfection
efficiency of PLL is a sum of many factors. One factor is the
high pK, values for PLL causing all its amine groups to be
totally protonated at the pH of the transfection studies. Thus,
PLL has little buffering capacity and has a minor effect on the
pH of its environment. The amine groups of PEIs are not fully
protonated at pH 7.4 and can buffer the pH of their
environment to some extent, causing the proton sponge
effect.>>*>*775% Also the average binding constant per amine
group is higher for PLL than PEIs. This can make the release of
DNA from the PLL-polyplexes more difficult than from PEI-
polyplexes. It has been shown that the extracellular and cellular
glycosoaminoglycans (GAGs) do not affect the release of DNA
from PLL-carrier but they do affect the release of DNA from
the BPEI-carrier.”” The (Kco)® values of 25 kDa BPEI are
somewhat larger (1.1—333 times) than those of 22 kDa LPEL
However, the transfection efficiency of 22 kDa LPEI is higher
than that of 25 kDa BPEL The (K¢)® values describe only the
formation of the nanoparticle core, that is, until all the
phosphate groups of the DNA are bound at about N/P = 2.
After this, excess polymer binds to the nanoparticle core
forming a protective shell around it.>> This excess polymer has
been shown to be a crucial factor in getting DNA to its
destination, into the nucleus of the cell.'>*!

B CONCLUSIONS

Our studies explore the complexation of DNA with
polyethylenimine and poly(L-lysine) by a spectroscopic
method. Applying the cooperative binding model for multi-
valent ligand binding to multisubunit substrate showed that at
pH 7.4 the mechanism of polyplex formation changes from
independent binding to cooperative binding at N/P close to
0.6, whereas at pH 5.2 the polyplex formation is cooperative at
all N/P values. The overall cooperative binding constants were
higher at pH 5.2 than at 7.4, reflecting the higher degree of
amine group protonation at lower pH. Thus, especially for
polymer containing secondary and tertiary amine groups, it can
be beneficial to prepare the nanoparticles at lower pH although
the transfection is performed at biological pH. Both the amine
density and overall cooperative binding constants are higher for
PEIs than for PLL. However, the average binding constants per
amine group were higher for PLL which contains only primary
amine groups. For the present polymers, formation of the
polyplex core is complete at approximately N/P = 2, at which
point nearly all DNA phosphate groups are bound by polymer
amine groups and all ETT has been freed to the solution. Thus,
with the present fluorescence measurements, we cannot
observe what happens to the polyplex at higher N/Ps using
this TCSPC spectroscopic method. More studies involving
fluorescently labeled polymers are needed to unravel this.
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Hill plot model for multivalent ligand binding to multi-subunit substrate. Binding of a
multivalent ligand such as cationic polymer to a multisubunit substrate such as DNA can be
described by following binding equilibria:

Binding constant

DNA + P = DNA:P K,

DNA:P + P = DNA:P, K,

DNA:Px.y +P=DNA:Py Ky

where P is one binding group of the ligand i.e. an active amine group of the polymer. The

binding constant for the overall reaction DNA + NP = DNA:Py is

[DNA: Py]
[DNA][P]V

Koop = Ky X Ky X o X Ky =
The binding constants K;, K, ..., Ky will be unequal since the binding of an amine group to the
DNA influences the binding off subsequent amine groups on the same DNA molecule, i.e. the
binding is cooperative. If all phosphate groups of DNA are either unoccupied or all are occupied
and no other situation is possible, the system is fully cooperative and N corresponds to the
number of phosphate groups on the DNA. In practice the degree of cooperativity is less extreme

and N is replaced with Hill coefficient a:

_ [DNA:By]
= DNAPI*



The proportion of DNA bound by the polymer, B, is

5 - [DNA: Py]
~ [DNA] + [DNA: Py]

and the proportion of free DNA is

1—B= [DNA]
~ [DNA] + [DNA: Py]
Taking a ratio of these leads to
B [DNA:Py]
1—B  [DNA]

Combining this with the equation for K;; :

B —_ a — a a
1= Kiot[P]% = (Kco)*[P]

where K is the average of the individual binding constants K, K5, ..., K. Taking the logarithm

of both sides we obtain the Hill equation for multivalent ligand binding to multi-subunit

substrate:

B a

111(1 — B) = aln[P] + In(Kp)

Since —— = AI’QY, we get
1-B A,

Ayqy a

In y = aln[P] + In(K,p)

2

which was used to determine the degree of cooperativity and binding constant for the present
systems.
The values for the calculated curve of cooperative binding in Figures 6 and S4, were obtained

from

[P (e
T+ [PI*(Keo)®

B
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ABSTRACT: Polyethylenimine (PEI) is a cationic DNA condensing polymer that facilitates ¢~ +\ ~ _0.7kDa )
gene transfer into the mammalian cells. The highest gene transfer with branched PEI is obtained _ & - + ¢ !
at high nitrogen/phosphate (N/P) ratios with free PEI present. The small molecular weight PEI ) L +
alone is not able to mediate DNA transfection. Here, we used recently developed time-resolved " + WA
fluorescence spectroscopic method to study the mechanism of PEI-DNA complex formation 55 kD‘a\‘ . ‘%25 KkDa

and to investigate how free PEI, mean molecular weight, and branching of PEI affect the

complexes. Analysis of fluorescence lifetimes and time-resolved spectra revealed that for both linear and branched high-molecular-
weight PEI the complexation takes place in two steps, but the small-molecular-weight branched PEI complexed DNA at a single step.
According to the binding constants obtained from time-resolved spectroscopic measurements, the affinity of N/P complexation per
nitrogen atom is highest for LPEI and weakest for BPEI, whereas SPEI—DNA complexation showed intermediate values. Thus, the
binding constant alone does not give adequate measure for transfection efficiency. On the other hand, the presence of intermediate
states during the polyplex formation seems to be favorable for the gene transfection. Free PEI had no impact on the physical state of
PEI—DNA complexes, even though it was essential for gene transfection in the cell culture. In conclusion, the molecular size and
topology of PEI have direct influence on the DNA complexation but the free PEI does not. Free PEI must facilitate transfection at the
cellular level and not via indirect effects on the PEI"DNA complexes.

B INTRODUCTION

During the postgenomic era, any DNA sequence from the
human genome can, in principle, be transferred into the cells for
gene therapy and associated protein expression. The gene
transfer process is not, however, properly understood, and the
current DNA delivery methods tend to be problematic. Many
drawbacks and safety concerns' of otherwise efficient viral gene
delivery vectors draw close attention to the investigation of
alternative nonviral delivery systems, such as DNA polymeric
nanoparticles. Efficacy of nonviral gene transfer systems has not
matched the viral vectors yet.

The DNA nanoparticle systems are based on the complexa-
tion of the plasmid DNA with cationic polymers, liposomes,
micelles, or peptides.” DNA must be delivered into the target
cells by endocytosis and, thereafter, successfully transferred to
the cytosol and nucleus.” Because only released DNA can be
transcribed to mRNA and further translated to protein, it is
evident that the DNA release upon disassembly of the complexes
is a critical step in the gene delivery process.* The disassembly of
the DNA—polycation complexes is assumed to take place via
electrostatic competition with the extracellular and cellular
polyanions.® The DNA release is dependent on the polymer

v ACS Publications ©2011 American chemical Society

structure, but the structure—property relationships and princi-
ples of DNA complexation are not well-known.
Polyethyleneimine (PEI) is widely used cationic polymer that is
able to complex DNA and mediate efficient DNA transfection in the
cell culture.® Previous studies have shown functional differences
between branched polyethylenimine (BPEI) and poly-i-lysine
(PLL).>” Both polymers can pack and condense DNA into small
nanoparticles (less than 100 nm in diameter) but upon challenge by
polyanionic glycosaminoglycans, like heparan sulfate, BPEI-DNA
complexes may be relaxed and even disintegrated, whereas PLL—
DNA complexes retain DNA in a tightly bound complex.” In cellular
studies, BPEI has shown more efficient transfections than PLL. This
difference is not due to the increased cell uptake or nuclear entry,
because the amount of DNA delivered into the cell nuclei was similar
for both PLL—DNA and BPEI—DNA complexes.* Because DNA
release or substantial relaxation from the DNA complexes is required
for the transcription,® this may explain the 100-fold higher transfection
activity of BPEI complexes compared to the PLL complexes.*
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Recently, we introduced a new spectroscopic method to
analyze DNA—polycation interactions in the complexes. Steady-
state and time-resolved fluorescence experiments at different +/—
charge ratios (carrier/DNA) suggest that the conformation of the
BPEI—DNA is not locked: at least two states of DNA are present in
the BPEI-DNA complexes, whereas the PLL—DNA particles
include only one locked conformation of DNA.” Presumably, the
less ordered and possibly mobile structure of BPEI-DNA com-
plexes may turn these complexes more susceptible to the polyanion-
triggered DNA release in the cells. Furthermore, the small PEI
species (molecular weight 1800 and below) have been shown to
exert negligible activity, but in combination with other complexing
agents it improves gene transfection in the cells."’

An efficient PEI-mediated gene delivery in the cells requires
the excess of free PEI in the solution."" The optimal N/P ratio (PEI
nitrogen/DNA phosphate) of the complexes is usually 4—10,
whereas the DNA—polycation binding becomes saturated at an
N/P ratio of about 2.5. Although Ernst Wagner and co-workers
demonstrated that the removal of free PEI from the complexes
abolished their gene transfection ability,'” the exact mechanism of
improved transfection by free PEI is still unknown. Free PEI might
change the structure of the PEI—DNA nanoparticles or alternatively
have some independent role at the cellular level.

In this study, we compared the DNA-complexation behavior
of different PEI species (small, linear, and branched). Time-resolved
fluorescence spectroscopy and wide N/P-range, from 0.2 to 8, were
used to reveal differences in the complexation mechanism and to
determine the binding constants for the studied PEIs. The role of
free PEI on the PEI—DNA nanoparticle formation and structure
was also studied and the results were compared with in vitro
transfection studies.

B MATERIALS AND METHODS

Materials. The plasmid pCMV] that encodes beta-galactosidase
enzyme as a reporter gene was purified by QIAfilter Plasmid Giga Kit
(QIAGEN) according to the manufacturer’s instructions. Branched
polyethylenimines with a mean molecular weight of 25 kDa (BPEI)
and 700 Da (small PEI, SPEI) were purchased from Sigma-Aldrich
and used as 1 mg/mL aqueous stock solutions titrated to pH 7.
ExGen 500, a 22 kDa linear polyethylenimine (LPEI), was obtained
from Fermentas. Heparan sulfate was purchased from Sigma-Aldrich.
All cell culture reagents were obtained from Gibco-Invitrogen.

Sample Preparation. All solutions were prepared in 50 mM
MES-HEPES buffer (pH 7.4). The final DNA concentration was
adjusted to 300 1M per nucleotide and the molar ethidium bromide
(ETT)/nucleotide ratio was 1:15. The polyplexes were prepared by a
stepwise and direct method. In the stepwise method, independent of
the final charge ratio between the cationic polymer and DNA, an
initial solution with a molar ratio of PEI nitrogen to DNA phosphate
(N/P ratio) 1:S or 2:5 was prepared by vigorous mixing of equal
volumes of ETI—DNA solution and cationic polymer solution. We
followed the complexation by measuring the fluorescence spectrum.
After the measurement, the final charge ratio was adjusted by
addition of the appropriate amount of polymer solution. In the
direct method, the final charge ratio was reached with the single
addition of PEI to ETI—DNA solution; at volume ratio of 1:1.

Purification of BPEI—DNA Complexes. The BPEI—DNA
complexes were prepared in HBG buffer (5% glucose, 20 mM
Hepes, pH 7.4) by mixing equal volumes of BPEI and DNA solu-
tions at the N/P ratio of 6. The final DNA concentration of the
resulting BPEI—DNA solution was 200 ttg/mL. The BPEI—DNA

complexes were purified by size exclusion chromatography as
described previously.'” For the spiking of purified BPEI-DNA
complexes, BPEI solution was added to the purified complexes
to restore the original N/P ratio of 6. The spiked complexes
were incubated for at least 20 min at room temperature prior to
further analysis.

Fluorescence Measurements. The time-resolved fluores-
cence was measured by a time-correlated single photon counting
(TCSPC) system (PicoQuant GmBH) consisting of a PicoHarp
300 controller and a PDL 800-B driver. The samples were excited
with the pulsed diode laser head LDH-P-C-485 at 483 nm at a time
resolution of 130 ps. The signals were detected with a microchannel
plate photomultiplier tube (Hamamatsu R2809U). To diminish the
influence of the scattered excitation, a cutoff filter was used in front
of the monitoring monochromator. To study the time-resolved
spectra, the decays were collected with a constant accumulation
time in the 560—670 nm wavelength range with steps of 10 nm.
The decays were simultaneously fitted to the sum of exponents in
the equation

1(62) = Y ai(A)e” ™ (1)

where 7; is the global lifetime and a;(4) is the local pre-exponential
factor at a particular wavelength. The factors a,(1) represent the
decay-associated spectra (DAS), which in the case of a mixture of
different noninteracting fluorescing species corresponds to the
individual spectra of the species. The amplitudes were corrected
depending on the sensitivity of the detector at different wavelengths.
The spectral areas (A;) of the components can be calculated by
integrating the pre-exponential factors over the measured wave-
length range as indicated in the following equation:

A = / a(A)dA 2)

The proportions of the decay components can be calculated
from the spectral areas of the components as follows:

i

A+ A,

x 100% (3)

Xi

Transfection. Chinese hamster ovary cells (CHO), monkey
kidney fibroblasts (CV1—P), and rabbit aortic smooth muscle cells
(SMC) were grown in DMEM supplemented with 10% heat-
inactivated fetal bovine serum and 1% penicillin—streptomycin. The
cells were passaged twice a week. CHO (10 000 cells/well), CV1—P
(20000 cells/well), and SMC (20 000 cells/well) cells were seeded
into 96 well plates in 100 #L of growth medium 24 h prior to the
transfection. Purified, nonpurified, and spiked complexes were
diluted in HBG buffer to achieve a final concentration of 0.8 ug
of DNA per well. Transfection complexes were incubated with the
cells in a serum-free medium for S h, after which time the cells were
washed with PBS, and a growth medium was added. The beta-
galactosidase activity was measured 48 h after the transfection by
ONPG assay as described previously.®

B RESULTS

PEI—DNA Nanoparticle Formation. The degree of DNA
condensation was determined as a function of the N/P ratio by a
fluorescence method using ethidium bromide (ETT). It is well-
known that the fluorescence intensity and the lifetime of ETI
decrease with increasing the N/P ratio due to the displacement
of the ETI molecules intercalated in the DNA double helix by

1896 dx.doi.org/10.1021/jp109984c |J. Phys. Chem. B 2011, 115, 1895-1902
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Scheme 1. Formation of DNA Nanoparticles in the Presence
of BPEI and the Fluorescence Properties of ETI at Different
Steps
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interaction with polycations.'>'* The fluorescence decays at 610
nm, fluorescence spectra of ETI-DNA complex, and free ETTin
buffer (pH 7.4) are shown in Figure 1. The increase in fluores-
cence intensity is accompanied with a hypsochromic shift in the
fluorescence maximum from 630 nm in the absence, to 600 nm in
the presence of DNA. Because of the complexation with DNA,
the fluorescence lifetime of ETT increases from 1.87 &£ 0.01 ns in
buffer to 23.48 & 0.11 ns in the presence of DNA. At the ETI—
DNA molar ratio used in this study, ETT is fully bound by DNA,
as evidenced by the one-exponential fluorescence decay in the
presence of DNA (Figure 1).

BPEI Complexes Prepared by the Stepwise Method. The
fluorescence decay of ETT in the presence of PEI was always two
exponential (Figure 2). The lifetime of the longer-living fluorescence
component, 22.78 ns, obtained in the presence of BPEI, is similar to
the values obtained for ETT-DNA complex in the absence of PEL
The proportion of the long-living component (eq 3) decreases with
the increasing BPEI concentration (S1). At low charge ratios
(02—1.0), the lifetime of the short-living component is 3.13 ns. This
finding is in agreement with our previous studies: at these molar ratios
ETI does not totally detach from DNA during polyplex formation but
it is still loosely bound to it. At higher charge ratios the obtained
lifetime 1.85 ns is nearly equal to free ETI in the absence of DNA.
Consequently, it seems that at very low N/P ratios, BPEI forms a
loosely bound polyplex with DNA (Scheme 1). Upon addition of
more BPEI to the system, a tightly bound polyplex is formed. The

loosely bound complex acts as an intermediate in the overall equili-
brium. Its amount remains constant but minimal at all N/P ratios and
thus its presence cannot be observed at high N/P ratios.

The decay-associated spectra (DAS) for BPEI at the N/P ratio
of 0.4 and 4.0 are shown in parts b and e of Figure 3. The shape of
the shorter-living component closely resembles the shape of free ETI
(Figure 1) independent of the N/P ratio. The shape of the long-
living component is broader than for the ETI—DNA complex in the
absence of PEI, and the maximum is slightly red-shifted. The
normalized time-resolved spectra for BPEI at the N/P ratios of 0.4
and 4.0 are shown in parts b and e of Figure 4. At low N/P ratios up
to 1.0, only a small shift in time can be detected, whereas at N/P
ratios 2.0 and higher a clear shift in time from 615 to 605 nm can be
observed. At low N/P ratios, the main component present in the
system is the ETI-DNA complex. Small amounts of the loosely
bound DNAg—BPEI with ETT still attached to the polyplex are also
present. The spectrum of this complex is not known, but its effect can
be clearly observed as the round shape and slight red shift of the
spectrum 0.6 ns after excitation. At higher N/P ratios, tight BPEI—
DNA complexes are formed and ETI is released into the solution.
This pattern can be observed as the characteristic red-shifted
spectrum at 0.6 ns after excitation. As the fluorescence of free ETI
decays, the spectrum becomes blue-shifted as the remaining fluor-
escence of ETI-DNA complex begins to dominate the signal.
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The Journal of Physical Chemistry B

= BPEI, N/P = 0.4
SPEIL,N/P=0.5 a) b)

0,081 0.08
o 0.06-] o 006
o i} 1
S 1 2
3 0,044 5 0.047
£ £ ]
@ E ©

0.024 0.024

560 580 600 620 640 660 680 560 580 600 620 640 660 680
wavelength (nm) wavelength (nm)
SPEI, N/P=4.0 d BPEL N/P = 4.0 e)
) 0.0

0.087 0.08
o 0.067] S 0.06
g 1 = 1
= o
S 0.047 £ 0.04+
IS L © E
@

0.02 7 0.02

0.0 0.00+—T—T——T T T T

wavelength (nm)

0 T T T T T T
56|O 58;0 660 62|O 6410 66|O 6é0

560 580 600 620 640 660 680
wavelength (nm)

0.08

0.06

0.04

amplitude

0.02

0.00

0.06

0.04

amplitude

0.02

LPEI, N/P =0.4

L L L L
560 580 600 620 640 660 680
wavelength (nm)

LPEI, N/P =4.0

T 1T 1T 17 717 77
560 580 600 620 640 660 680
wavelength (nm)

Figure 3. DAS for SPEI, BPEI, and LPEI complexes prepared by the stepwise method: (A) short-living and (M) long-living decay component.

SPEI, N/P =05 a) BPEI, N/P = 0.4 b)
1.04 e 1.0
i)
5 ] y 2 7
Q c
it 3
el
§ 091 §§ =O=06ns 5 097
g 1.6ns N
S =/\=26 ns g i ={1=0.6 ns
< 43.6ns s =fe=43.6 ns
c
0.8 . . . - : 0.8+ . . . . \
590 600 610 620 630 500 600 610 620 630
wavelength (nm) wavelength (nm)
SPEI, N/P = 4.0 d) BPEI, N/P = 4.0 e)
1.0+ 10
o
S 1 i)
8
el (5]
9 0.9 2 09 ={J=0.6 ns
© N =@®-1.6ns
£ 1 . g ~/\=26ns
2 —9—-56ns s 46ns
=¢=43.6 ns ==/e=43.6 ns

0.8

wavelength (nm)

500 600 610 620 630

8- T T T T T T T M 1 !
590 600 610 620 630

wavelength (nm)

LPEI, N/P = 0.4

c)
1.0+
1]
c
S J
Q
(]
©
£ 094
©
€
S i ={1=0.6ns
= ~#—43.6 ns
08 tt4+——7—"7— 7"
590 600 610 620 630
wavelength (nm)
LPEI, N/P =4.0 f)
1.0 4
@0 ]
c
>
Q
o
3 0.9 ={}=0.6ns
N =@—16ns
g =/\=26ns
5 ) =@—46ns
< —=436ns
0.8 -

T+ 1T ' 1T ' 1T ' 11
500 600 610 620 630
wavelength (nm)

Figure 4. Normalized time-resolved spectra at different times after excitation for SPEL BPEI, and LPEI complexes prepared by the stepwise method.

According to Scheme 1, the polyplex formation is a two-step

reaction that can be simplified to the scheme:

DNAg +P == DNA;—P = DNA—-P+E

where DNAg, is the ETI-DNA complex, P is BPEI, DNA;—P

and E the free ETIL. At high N/P ratios the amount of loosely

bound DNAg—P complex is negligible and the proportion of
DNA bound by the polymer, B, is given by the equation9

(4)

the loosely bound polyplex, DNA—DP the tightly bound polyplex,

1898

[DNA—P] Kiot[P]

[DNAg] + [DNA—P] 1+ Kie[P]

(5)
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where K is the binding constant of the overall equilibrium
(eq 4). On the other hand, at low N/P ratios the second step is
negligible and the B can be written as:

[DNAg—P] K,[P]

B = - (6)

[DNAg] + [DNAg—P]  1+K,[P]

where K is the binding constant of the first step in the equilibrium
(eq4).Egs Sand 6 can be presented in alinear formas 1/B=1+ 1/
K,[P]. To correlate the factor B with the time-resolved fluorescence
measurements, the spectral areas of the components, A, were
corrected according to the relative fluorescence quantum yield of
the components." The corrected values A{ obtained for the short-
living component correspond [DNAg—P] at low [P] and to
[DNA—P] at high [P] and the values A; obtained for the long-
living component correspond to [DNAg] (eq 4). Thus, the ratio B
can be expressed as B = Aj/(AS + A]) o< Aj/AS5, which can be
presented in a linear form as:

AS 1

x C+K,{P] (7)
where Cis a proportionality factor correcting the difference between
the spectroscopic data and the actual concentration. Thus, plotting
the ratio A5/A{ as a function of the inverse PEI concentration (as
mol N-groups dm ) we should obtain a linear dependence with the
binding constant equal to the inverse of the slope. In the plot
obtained for BPEI shown in Figure S, two phases are visible: (1) at
low N/P ratios up to 0.6 the A5/A{ ratio decreases strongly and (2)
at N/P ratio higher than 0.6 the decrease of A3/Aj is much smaller.
At low N/P ratios, the slope is about four times larger than at high
N/P ratios indicating that the binding constant of the first step in the
equilibrium (eq 4), 500 mol N-groups dm ™, is about four times
lower than the binding constant of the second equilibrium, 2100 mol
N-groups dm ™ >. Thus, the first step in the equilibrium is the rate-
determining step for the overall reaction and its presence can only be
detected at very low N/P ratios. At N/P ratios 0.6 and higher, there is
sufficient amount of BPEI for efficient formation of the tightly bound
polyplex, and the number of loosely bound polyplex in the reaction
mixture remains very small.

Effect of Molecular Weight. The effect of the polymer molec-
ular weight on the polyplex formation was studied by comparing the
results of 25 kDa BPEI and 700 Da SPEL The lifetime of the longer-
living component, 23.22 ns, obtained in the presence of SPEI agreed
again well with that obtained for the free ETT-DNA complex. The
proportion of the short-living component increased with the

increasing SPEI concentration (S1), but its lifetime was shorter than
that for free ETI for all N/P ratios. On the DAS (parts a and d of
Figure 3), the shape of the shorter-living component resembles
closely to that of free ETI and the shape of the longer-living
component was nearly equal to that of ETI-DNA complex in the
absence of PEL In the time-resolved spectrum (parts a and d of
Figure 4), clearly two bands were present at all charge ratios: the
band at 620 nm resembling the free ETI spectrum was present
directly after excitation, leaving only the longer-living band, resem-
bling that of ETI—~DNA present at longer measuring times. Thus, no
evidence of the loosely bound polyplex could be observed for SPEI:
only the presence of ETI-DNA complex at 600 nm and free ETT at
620 nm could be observed. Plotting the A;/A ratio as a function of
inverse SPEI concentration (Figure S) yielded a linear dependence
at all N/P ratios. This finding is in line with the other data: for SPEI
the loosely bound DNA;—P complex does not exist and the
polyplex formation proceeds with a simple one-step equilibrium:

DNAg 4+ P == DNA—P +E (8)

The binding constant obtained from the slope, 4700 mol
N-groups dm ™, was clearly higher than that obtained for BPEI
(Table 1).

Effect of Polymer Topology. The effect of the PEI branching
on the polyplex formation was studied by comparing the results
obtained with BPEI and LPEL The proportion of the short-living
component (S1) was higher for LPEI at all N/P ratios. At very low
charge ratios (0.2—0.4) the lifetime of the short-living component
for LPEI is 2.10 ns. This is somewhat smaller than 3.13 ns obtained
for BPEL At higher N/P ratios, the obtained lifetime 1.87 ns is again
in good agreement with free ETI in the absence of DNA. The
lifetime of the long-living component at N/P ratios 0.2—3.0,21.3 ns,
is slightly smaller than 23.5 ns obtained for ETI—=DNA complex in
the absence of PEL At higher N/P ratios, the LPEI solutions were
very cloudy and the lifetime of the long-living component decreased
even further. On DAS (parts c and f of Figure 3), the shapes of the
component spectra for LPEI resemble closely those observed for
BPEI, except no changes in the shape of the long-living component
were observed at high N/P ratios. Also, the time-resolved spectra
(parts c and f of Figure 4) resemble closely to those obtained for
BPEI at N/P ratios 0.2—1.0, but at higher N/P ratios only a small
time dependence is observed. It seems that at high N/P ratios the
LPEI polyplexes form larger aggregates causing the cloudiness in the
solutions and gathering also unbound ETI—DNA to the structures.
This leads to the decrease in the ETI-DNA lifetimes and the red-
shifted fluorescence also at high N/P ratios observed in DAS and
time-resolved spectra.

Plotting the A5/A{ ratio as a function of 1/[LPEI] (Figure S)
reveals a similar behavior as observed for BPEL The binding constant
of 680 mol N-groups dm > for loosely bound polyplex is very close
to 500 mol N-groups dm > obtained for BPEI but the binding
constant of 6600 mol N-groups dm > for the overall equilibrium is
three times higher than 2100 mol N-groups dm > obtained for
BPEL

Effect of Preparation Method. The BPEI—-DNA complexes
were prepared by two different methods: the stepwise and direct
(Materials and Methods for details). At high N/P ratios, the
proportion of the short-living component is clearly higher for the
direct method (S2), but no great differences in the fluorescence
lifetimes between the two methods were observed (S1). In DAS
(83), the shapes of the short-living components are nearly equal, but
the spectrum of the longer-living component is further red-shifted
when the direct complexation method is used. Furthermore, the
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Table 1. Binding Constants Determined from eq 7 as Mol N-groups per dm® for BPEL, SPEI, and LPEI Prepared by the Stepwise

Method and for BPEI Prepared by the Direct Method (BPEI-D)*

PEI K; (moly dm—3)” Kot :(moly dm™3)?
BPEI 500 2100
SPEI 4700
LPEI 680 6600
BPEI-D 460 3000

K, (molpg; dm ) Kiof (molpg; dm ™ 3)°

29 x 10° 12 x 10°

7.6 x 10*
3.5 x 10° 3.4 % 10°
2.7 x 10° 1.7 x 10°

“ These binding constants were converted to the binding constants per molecule by K/ = (average molecular weight of the polymer/molecular weight

per N-group) X K, ®mol N-groups per dm>. “ mol PEI molecules per dm”.

change in the shape of the long-living component with increasing N/
P ratio is seen only in the case of the stepwise method, but not for the
direct method. Similar differences are observed also in the time-
resolved spectra (S3). Plotting the A5/A] ratio as a function of
1/[BPEI] yields nearly equal dependence with the stepwise method
(S4). However, the second phase is slightly steeper for the direct
method and thus the A5/A{ ratio at the second turning point is lower
than for the stepwise method. This leads to a slightly smaller binding
constant, 460 mol N-groups dm >, for the first step of the direct
method and to a higher binding constant, 3000 mol N-groups dm °,
for the overall equilibrium (Table 1). Thus, it seems that with the
direct method, the amount of the loosely bound polyplex stays even
smaller than for the stepwise method. Apart from this, the prepara-
tion method does not have a significant effect on the overall
formation of the polyplex.

Stability. The stability of the polyplexes was studied by
measuring the fluorescence decays at different times. The life-
time of the short-living component stayed constant but the
lifetime and proportion of the long-living component decreased
with time at least up to 6 h (S5 and S6). After the measurement,
the samples were stored at +4 °C for 18 h. Then the samples
were allowed to warm up to the room temperature and were
measured again. No more changes in the sample properties could
be observed.

Effect of Purification. To study the role of the excess BPEI
on the complex properties, the extra BPEI was removed by size
exclusion chromatography. The initial sample N/P ratio of 6.0
decreased close to 3.0 during purification. ETI was added to the
complexes after the purification. The purified samples were
spiked with BPEI to restore the original N/P ratio of 6.0. The
fluorescence decays for the BPEI complexes at an N/P ratio of
3.0 prepared by adding ETI before and after BPEI are shown in
Figure 6, and the lifetimes and the proportions of the long-living
component x; are listed in Table 2. The proportion of the short-
living component is clearly higher for the samples were ETT has
been added after BPEIL At an N/P ratio of 3.0, most of the DNA
is in the polyplexes and the positive charges of BPEI are
hindering the interaction between ETI and DNA when ETI
has been added to the system after BPEL. However, because the
presence of the long-living component can be observed, part of
ETI is able to bind on DNA. Although the results cannot be
compared with those reported above, we can use ETI to show if
any differences occur on the polyplexes during spiking. Only very
small changes can be observed in the decays (Table 1; DAS and
time-resolved spectra S7 and S8) of the purified, spiked and the
nonpurified samples where ETI was added after the complexa-
tion. Therefore, it seems that the properties of the nanoparticles
do not change during purification and spiking, but retain the
structure formed at the original N/P ratio.

The transfection studies with three different cell lines showed
that the removal of excess BPEI from the polyplexes resulted in

H
P ]
2 .
S ]
o
o 4
e
5 04
g 3
N ]
T ]
E 4
o 4
c
0.0
] ——N/P 3.0 Fresh
] ———N/P 3.0 ETI Later
i —— N/P 3.88 Purified
—r—TT—T7

0 10 20 30 40 50
time (ns)

Figure 6. Fluorescence decays at 610 nm for N/P = 3.0 prepared using
the direct method, prepared by adding ETI after polyplex formation, and
purified from N/P = 6.0 to N/P = 3.88 for the sample.

Table 2. Fluorescence Lifetimes, 7;, and the Proportion of the
Longer-Living Component A, of the Purified, Spiked, and
Different Control Samples

N/P 7,(ns) 7,(ns) x2(%)

Reference samples:

ETT added before BPEI 3.0 1.85+0.06  22.11 £0.10 49

BPEI added before ETI 3.0 1.78 £0.04  19.12 +£0.26 15
Purified sample:

before purification” 6.0 1.78 £0.03  20.74 £ 0.40 11

purified * 3.88 177 £0.02 2139 £0.32 8

spikedb 6.0 1.80 £0.03  21.77 £ 0.39 12

“ Measured 24 h after preparation, ETI added 10 min before measure-
ments. ” After the measurements, the appropriate amount of BPEI was
added to the purified sample.

approximately 80—90% decrease in transgene expression
(Figure 7). The expression levels were restored to the original
level by spiking the purified complexes with BPEL

l DISCUSSION

We have used time-resolved fluorescence spectroscopy to
investigate how the excess of polymer, its topology, and mean
molecular weight influence the complexation with DNA. Accord-
ing to the binding constants obtained from time-resolved spec-
troscopic measurements, the affinity of N/P complexation per
nitrogen atom is highest for LPEI and weakest for BPEI, whereas
SPEI—DNA complexation showed intermediate values. This is
probably due to pK, values of different amino groups in PEI
molecules and steric factors during complexation. Compared to
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Figure 7. Relative gene expression levels after PEI complex mediated
transfections. Normalized beta-galactosidase transfection of CHO,
SMC, and CV1—P cells by purified and spiked (purified+PEI) com-
plexes in comparison to nonpurified control. The results are expressed as
mean & SEM (n = 1-5).

branched BPEI, the charges of linear LPEI and small SPEI may
reach the phosphates of the DNA double helix more eﬁcectivelgr.
Furthermore, SPEI is slightly more basic than LPEI and BPEL 6

SPEI is much less efficient than BPEI and LPEI in gene trans-
fection.'>" Still the binding constant is even higher than the K,
observed for BPEI and no loosely bound complex is present for
SPEL It seems that, as in the case of PLL, the release of DNA
from the complex rather than the efficient formation of the
complex is the crucial step for efficient gene transfection. To
compare the release kinetics for the studied PEIs, the binding
constants per PEI molecule (K,,,') were calculated. At the level of
entire PEI molecules, BPEI and LPEI with high numbers of
amino groups show 16 and 44 times higher binding constants
than SPEI, respectively. SPEI molecules may have too weak
overall binding per molecule to the DNA and, therefore, it may
form too labile complexes for efficient DNA transfection.'®"”
Therefore, the high N to P binding constant and single stable
state of DNA in the polyplex may not indicate efficient gene
delivery. Rather, a combination of high molecular binding
constant per polycation molecule and existence of a loosely
bound DNA state in the complex seem to be preferred properties
for DNA transfection. High overall binding constant (Ki')
provides adequate stability in the extracellular space, and the
loosely bound intermediate state in the complex may provide
DNA release in the cells, a prerequisite for DNA transcription.

The first equilibrium step does not affect the cell uptake of the
polyplexes because the PEI-DNA complexes are usually pre-
pared at higher N/P ratios to achieve optimal transfection.
Presumably, the DNA release from BPEI and LPEI takes place
also in two-step process: from tightly bound state to the loose
state before the final DNA dissociation from the complex. This
feature may influence the intracellular release kinetics of DNA
but more studies are needed to understand the impact of loosely
bound DNA state on the cellular gene delivery.

Despite its negligible efficacy as transfection agent as such
SPEI has been shown to improve DNA transfection as a
component in cationic copolymers*>*" and in complexes with
multiple DNA binding cations.””** For example, DNA transfec-
tion by cationic lipids (DOTAP, Lipofectamine, DOSPER) and
polyamidoamine dendrimers was improved when SPEI was
included as an additional component in the complexes.”” Stabi-
lity of these DNA complexes is dependent both on SPEI and
other components, like cationic lipids. Improved efficacy of

transfection may be mediated by other factors instead of DNA
binding properties. For example, proton sponge effect, preven-
tion of endosomal acidification, endosomal swelling, and their
resulting fragility are exgected facilitate DNA entry to the cytosol
and DNA transfection.”*

The presence of free PEI was essential for the transfection
efficacy in this study (Figure 7) and in the literature.'” After the
removal of the excess of PEI, BPEI-DNA complexes lost most of
their transfection activity. In analogous experiment, Xu et al®®
showed that purification of the excess cationic lipid (DOTAP)
from the lipid —DNA complexes reduced the cellular toxicity of
the transfection, but the efficacy of gene transfer was maintained
at least at the same level. Therefore, it seems that excess of
DOTAP is not beneficial for transfection, but free BPEI is
important. In our study, the time-resolved fluorescence measure-
ments prove that the excess of free BPEI had no influence on the
physical state of BPEI-DNA complexes. Therefore, it is obvious
that the free BPEI must have an effect of its own on the cellular
level. Its effect may be related to the endosomal bul‘feringé’19 or
interactions of the polycation with the cellular glycosaminogly-
cans,*® but the exact mechanism is not known and requires
further research. The excess of free BPEIL is easy to use in the cell
culture transfection studies but when applied in vivo, free BPEI
may cause toxicity. Controlling the free PEI concentration in vivo
is difficult at the target tissue. Exploration of the mechanisms of
DNA complexation increases the understanding in the field and
may pave way to the development of improved nonviral gene
delivery systems.

B CONCLUSIONS

Our studies explore the complexation of DNA with polyethy-
leneimine by spectroscopic method. Two important issues are
highlighted by the present study. First, the two-step complexa-
tion equilibrium, which includes a loosely bound DNA—PEI
intermediate complex, is seen with efficient gene delivery systems
LPEI and BPEIL Small molecular weight PEI does not form loose
intermediate complex; it forms complexes with DNA at high
affinity per N—P pair, but the overall binding constant per small
molecular weight PEI molecule is low compared to larger
branched and linear PEI molecules. The high overall binding
constant may provide adequate stability in the extracellular space,
whereas the loosely bound intermediate complex state may
facilitate DNA release in the cells, a prerequisite for DNA
transcription. The second discovery of the present study demon-
strates that the presence of free PEI does not have impact on the
PEI—DNA complexes. Thus, the positive effects of free PEI on
transfection must be mediated by independent mechanisms at
cellular level.
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S1. Fluorescence lifetimes for a) the short-living component z;, b) the long-living component 7, and c)
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Abstract

A large number of different polymers have been developed and studied for application as DNA carriers
for non-viral gene delivery, but the DNA binding properties are not understood. This study describes the
efficiency of nanoparticle formation by time-resolved fluorescence measurements for poly(S-amino
esters), cationic biodegradable polymers with DNA complexation and transfection capability. From the
large library of poly(S-amino esters) ten polymers with different transfection efficacies were chosen for
this study. The binding constants for nanoparticle formation were determined and compared to
polyethylene imines with the same method. Although the DNA binding efficiency of the amine groups are
similar for both types of polymers, the overall binding constants are an order of magnitude smaller for
poly(B-amino esters) than for 25 kDa polyethylenimines, but yet poly(S-amino esters) show comparable
DNA transfection efficacy with polyethyleneimines. Within this series of polymers the transfection
efficacy showed increasing trend in association with relative efficiency of nanoparticle formation.

Keywords: gene delivery; poly(s-amino esters); DNA complexation; DNA binding; time-resolved fluorescence

spectroscopy

1. Introduction

The viruses are able to transfer their genetic cargo to the
host cells. Although most of current gene therapy research
relies on viral vectors, safety problems (incl. deaths in clinical
trials) have slowed down the progress of this approach [1-3].
Non-viral (chemical) vectors, based on nanoparticles, are

potential alternatives to the viral vectors. They offer

advantages that are difficult to achieve with viral vectors:
versatility, lack of immunogenicity, easy large-scale
production, unrestricted DNA size, and possibility to
incorporate several different DNA species to the same particle
[4]. However, the chemical vectors show poor transfection
efficacy [5]. Typical non-viral DNA delivery systems involve

polycationic species, like cationic polymers, cationic
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liposomes or micelles, that complex and condense plasmid
DNA in solution forming nanoparticles of 40-500 nm in
diameter [6-9]. Nanoparticle mediated gene transfection
involves several phases: DNA complexation, binding to the
cell surface, endocytic uptake, endosomal escape to the
cytosol, nuclear entry, transcription and translation.
Importantly, DNA must be released from the nanoparticles
before transcription.

Poly(B-amino esters) (PBAEs) [10-13] are promising
agents for non-viral gene delivery due to their (1) large
potential for structural diversity, (2) ability to condense DNA
into small and stable nanoparticles, (3) ability to buffer the
endosome and facilitate endosomal  escape, (4)
biodegradability via hydrolytic cleavage of ester groups, (5)
low cytotoxicity compared with some other cationic polymers,
and (6) relatively high efficacy in vitro and in vivo. The best
PBAEs are linear, synthesized at an amine/acrylate ratio of
1.2:1, and have a molecular weight of ~10 kDa [13,14].

Steady state fluorescence measurements of ethidium
bromide are widely used to characterize DNA binding by
cationic polymers and lipids. Due to the overlapping and
broad spectra of free and DNA bound ethidium bromide, this
method cannot be used in quantitative manner to resolve the
binding constants of DNA and cationic polymers. Previously
[15] we demonstrated that the nanoparticle formation and
DNA-polymer binding constants and possible multiple states
of binding can be determined with time-resolved fluorescence
using ethidium bromide (ETI) as the fluorescent probe.
Because fluorescence lifetimes and their proportions instead of
intensity are used to analyze the state of the system, the
method is not hampered by scattering and thus allowing more
quantitative analysis than steady state measurements. The
method revealed DNA complexation differences between an
efficient transfection agent (polyethylenimine; PEI) and poor
transfection agent (poly-L-lysine; PLL). For these polymers
both the nature and the density of the amine groups taking part

in the complexation of DNA are different: PEI contains

primary, seconday and tertiary amines, whereas PLL includes
only primary amines.

The purpose of this study was to extend the detailed DNA
binding constant analyses to polymers with only tertiary
amines. From a large library of PBAEs [13] ten polymers with
different transfection efficacies were chosen for this purpose.
We determined the DNA-complexation behaviour of different
PBAEs over a wide amine to phosphate (N/P) range, from 1 to
100, to reveal the complexation efficiency and mechanism,
and to determine the binding constants for the studied PBAEs.
In addition, we investigated a possible correlation between

fluorescence parameters and transfection efficacy of PBAEs.

2. Materials and methods
2.1. Materials

Plasmid DNA (pCMVp) that encodes pB-galactosidase
reporter gene was produced in E. coli, and isolated and
purified using a Qiagen Plasmid Giga kit (Qiagen, Germany).
Ten different poly(S-amino esters) (PBAEs) (Table 1) with
average molecular weights ranging from 8 to 28 kDa were
synthesized by the conjugate addition of amine monomers
(numbers) to diacrylate monomers (letters) solvent free at
95°C or in DMSO at 60°C [12]. The reaction proceeds in one
step without the production of any byproducts. The PBAES
were then dissolved in DMSO to 100 mg ml™ concentration
and were further diluted into 50 mM MES-HEPES buffer (pH

7.4) to a final concentration of 6 mg ml™.,

2.2. Sample preparation

All solutions were prepared in 50 mM MES-HEPES buffer
(pH 7.4). In preparing the Polymer/DNA complexes, the molar
ratio of PEI nitrogen to DNA phosphate (N/P ratio) was used.
The final DNA concentration was adjusted to 0.0975 mg ml™?,
i.e. 300 uM per nucleotide and the ethidium bromide (ETI) :
nucleotide ratio was 1:15. With the DNA:ETI molar ratio used
ETI is fully bound by DNA, which is observed as one-

exponential decay in the presence of DNA. The polyplexes
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were prepared by mixing the (DNA) : (ETI) solution and the were mixed rigorously to ensure effective complexation

cationic polymer solution at volume ratio of 1:1. Solutions between DNA and the polymer.

Table 1 Structures of the diacrylate and amine monomers of the studied PBAEs, their average molecular weights (MW) and amine:acrylate ratios

(Am:Ac).

Polymer
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Am/Ac
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2.3. Fluorescence measurements

The time-resolved fluorescence was measured using a
time-correlated single photon counting (TCSPC) system
(PicoQuant GmBH) consisting of PicoHarp 300 controller and
PDL 800-B driver. The samples were excited with the pulsed
diode laser head LDH-P-C-485 at 483 nm and the time
resolution was about 130 ps. The signals were detected with a
microchannel plate photomultiplier tube (Hamamatsu
R2809U). To diminish the influence of the scattered
excitation, a cutoff filter was used in front of the monitoring
monochromator. To study the time-resolved spectra the decays
were collected with a constant accumulation time (300 s) in
the 560-670 nm wavelength range with steps of 10 nm. The

decays were simultaneously fitted to the sum of exponents in

the equation I(t, 1) =X a, (De™ ™, where 7 is the

global the lifetime and a;(1) is the local the pre-exponential
factor at a particular wavelength. The factors a;(1) represent
the decay-associated spectra (DAS), which in the case of a
mixture of different non-interacting fluorescing species
correspond to the individual spectra of the species. The
amplitudes were corrected according to the sensitivity of the
detector at different wavelengths and the relative fluorescence
quantum yields of the components. The relative fluorescence
quantum yield of free ETI ®gr™ = 0.273 when ®grpna™ for
the ETI:DNA complex is set to 1. The spectral areas (A;) of the
components were calculated by integrating the corrected pre-
exponential factors over the measured wavelength range. The
proportions of the decay components can be calculated from

the spectral areas of the
x, = [A,/(A; + A5)] X 10004

components as

3. Results

The degree of DNA condensation was determined as a

function of the polymer/DNA N/P ratio by a time-resolved

fluorescence method using ethidium bromide (ETI). ETI
shows significant enhancement of fluorescence intensity and
lifetime upon intercalation with DNA (23 ns) compared to that
in bulk buffer (1.9 ns) [16-18]. During the nanoparticle
formation the ETI molecules intercalated in the DNA double
helix are displaced by interaction with polycations and ETI is
freed into the bulk solution. The two lifetime values are so
distinct that their relative contribution can be used to estimate
the extent of nanoparticle formation [15,19].

Table 2 The average fluorescence lifetimes, <t;>, for the studied
PBAEs.

Polymer <u> (ns) <> (ns)
F28 1.63+0.16 22.53+0.12
C36 1.75+£0.20 2256 +0.14
D24 1.89+0.16 22.35+0.13
E28 1.75+0.11 22.26+£0.14
u28 1.76 £0.13 22.32+0.13
Cc28 1.84+0.10 22.41+0.15

AA24 1.79+0.14 2244 +0.14

AA28 1.73+0.15 22.39+0.14
C32 1.95+0.12 23.18+0.14
JJ28 1.86 £0.10 22.30+0.15

The fluorescence decays in the presence of all the PBAEs
studied here are clearly two exponential. As an example, the
decays observed at 610 nm for C32 at different N/P ratios are
shown in Fig. 1. The fluorescence lifetimes stay constant
irrespective of the N/P ratio and the average lifetimes for each
polymer are listed in Table 2.

The lifetimes of the long-living component obtained in the
presence of PBAEs are similar to the values obtained for
ETI:DNA complex in the absence of PBAEs. The lifetimes of
the short-living component are nearly equal to free ETI in the
absence of DNA. The proportion of the short-living decay
component, X;, increases with increasing N/P ratio for all

polymers (Fig. 2). Very small differences between the
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Fig. 1. Normalized fluorescence decays at 610 nm for C28 with N/P
ratio 1 and 113.

polymers are observed although for C36 and F28 the increase
is less than for the others. The increase in the proportion of the
short-living component is also clearly observed in Fig. 3,
where the decay associated spectra for C36 and C28 at N/P
ratios 25 and 100 are presented. The shape of the shorter-
living component resembles closely to that of free ETI for all
cases. The shape of the longer-living component is broader
than for ETI:DNA complex in the absence of the polymers and
the maximum is red shifted from 600 to 610 nm. These
changes are usually observed during nanoparticle formation:
the proportion of free ETI in the system corresponds to the
formation of tightly bound polymer:DNA complexes and the
changes observed in the longer-living component correspond
to the changes in the environment of the DNA that is not yet

tightly bound by the polymer [18].

3.1. Binding constants

In a previous study [15,18] on the polyplex formation
between polyethylenimine (PEI) and DNA, we used the time-
resolved fluorescence data to determine the binding constants.
To compare the behavior of the present PBAEs with PEls, the

binding constants for PBAEs were determined in the same

JJ28
C32
AA28
AA24
C28
u28
E28
D24
C36
F28

EOPD>DOOX*teO

T T 1T T 7 T T 7 1
0O 20 40 60 80 100 120
N/P ratio

Fig. 2. Proportion of the short-living decay component, x;, as a
function of N/P-ratio for the studied PBAEs.

way. The corrected spectral areas Af obtained for the short-

living component correspond to the amount of polyplex and

the values AZC obtained for the long-living component

correspond to the amount of unbound DNA. The ratio

A / A’ can be expressed as [18]:

i::mi (1)
A K[P]

where K is the binding constant of the overall equilibrium, [P]
is the concentration of the polymer and C is a proportionality
factor correcting the difference between the spectroscopic data
and the actual concentration. Plotting the ratio A;/AlC as a
function of the inverse PBAE concentration (as mol N-groups
dm™) a linear dependence was observed for all PBAESs at least
up to N/P ratio 50. At this N/P ratio, the complexation seems
to have reached equilibrium and the A /A¢ ratio remained

nearly constant with increasing [P]. For some polymers,

further decrease in the A; / Al ratio was observed (Fig. 4)

indicating that the formed polyplexes start to aggregate at
higher N/P ratios. Examples of both types of behavior are

shown in Fig. 6. The binding constants per N-group calculated
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Fig. 3. Decay associated spectra for C36 and C28 at N/P ratios 25 and 100. (A) short-living and (m) long-living decay component.

from the slopes were between 2000 and 6300 dm® mol™ N-
groups for all PBAEs (Table 3). These values are similar to
those obtained for PEls (2100-6600 dm® mol™ N-groups).

3.2 Efficiency of nanoparticle formation

The spectral areas of each component, A;, represent the
amount of the component in the system. The differences of the
spectral areas of the components in the decay associated
spectra (Fig. 3) are however relatively small and thus prone to
experimental errors. To obtain more reliable tool for
estimating the relative efficiency of polyplex formation by the
studied PBAEs, the maximum amplitudes a; nax at each N/P
ratio were used. The relative efficiency was estimated as the

difference in the ratio of the maximum amplitudes of the two

fluorescence components a; max at each N/P ratio according to
Eq. (3):

|I'1"__.'H.IJJ:} R
zmax )y o TR

Relative efficiency = P (2)
max ML
where R__. = [(ﬂ) ] is the maximum
F2max/ 190 max

amplitude ratio at N/P =100 and R,,,,, = [(E“ﬂ) } is
1

Gomox .
TIin
the minimum amplitude ratio at N/P = 1 obtained for this
series of polymers. The relative nanoparticle formation

efficiency was considered to be 0 % at N/P ratio 1 at which
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there is minimal interaction between polymer and DNA. For
100 % relative nanoparticle formation efficiency N/P ratio
100 was used, since at this N/P no further changes in the
fluorescence signal was observed and it is clearly higher than
the useful N/P ratio for transfection (about 50 [14]). Thus, we
calculated the nanoparticle formation efficiency for this N/P
ratio 50. The obtained relative efficiencies are presented in
Fig. 5, and they are compared in Fig. 6 with the relative
transfection efficacy of the polymers that was reported earlier
[14]. The increased relative nanoparticle formation efficiency
is positively correlated with the increased transfection efficacy

for most of the polymers.

Table 3 Molecular weights and binding constants determined as mol
N-groups per dm? for the studied PBAEs. These binding constants
were converted to the binding constants per molecule by Ki'=
(average molecular weight of the polymer/molecular weight per N-
group)xK;. The values for PEIs are from reference [18].

PBAE May Kot Kot
kDa)  (@m®moly)®  (dm® molyoymer™)®

F28 16.1 3870 2.1x10°
C36 21.2 2090 1.4x10°
D24 9.5 4020 7.5x%10*
E28 14.3 4550 2.1x10°
u28 15.6 3950 1.5 x 10°
c28 27.9 6220 6.0 x 10°
AA24 8.1 2690 5.0 x 10*
AA28 20.9 4700 2.3x10°
C32 18.1 4440 2.7x10°
128 16.8 6100 3.4x 10°
linear PEI 22.0 6600 3.4 % 10°
branched PEI 25.0 2100 1.2 x 10°
branched PEI 0.7 4700 7.6 x 10*

2 dm? per mol N-groups
® dm?® per mol polymer molecules

AS/A
N
L
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Fig. 4. AZC/AlC as a function of 1/[polymer N-groups] for AA24
and E28.
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efficiency and the in vitro transfection efficacy.

4, Discussion

Previously we demonstrated differences between DNA
nanoparticle formation with PEIl and PLL. In general PEI
shows higher transfection activity than PLL. Unlike PLL, that
has only primary amines, the branched PEI includes primary,
secondary and tertiary and high charge density. PEI has a high
density of groups with pK, values close to 7. These groups are
able to buffer the acidic environment of the endosome and
facilitate endosomal escape through the “proton sponge”
mechanism [20-22]. According to our previous studies both
branched and linear 22 kDa PEI condense DNA into
nanoparticles via a two step equilibrium: first of loosely bound
DNA:PEI intermediate complex is formed followed by the
formation of the tightly bound DNA:PEI nanoparticle. The
rate of formation for the tightly bound nanoparticle is much
higher than for the loosely bound complex. Thus, the amount
of the loosely bound complex remains very small during the
polyplex formation. This deviates from the single step
nanoparticle formation with PLL.

In this study, we investigated DNA complex
formation with PBAESs that have previously shown to have
good transfection activity. Like in the case of PEI, the tertiary

amines of PBAEs are able to buffer the endosomes and

facilitate cytoplasmic delivery of DNA. However, the PBAE
mediated DNA complexation took place in one step. Although
the binding constants per nitrogen atom are similar in PBAES
and PEI, the binding constants per polymer molecule are 2 -
68 times smaller lower for PBAEs than for high molecular
weight PEIs. This is due to the structure of the PBAEs: the
density of N-groups in the polymer chain is much lower than
for PEIls. The distance between the N-groups is so long that
the co-operativity of binding to DNA is lower than for PEIs.
The PBAEs also have lower ratio of primary and secondary
amines to tertiary amines compared to PEI. As a consequence,
the PBAEs require more N-groups than PEI in order to fully
complex DNA. Typically, high N/P ratios of about 50:1 are
needed for efficient transfection compared with about 6:1 as
used for high molecular weight PEIs [13]. To further modify
the function of PBAEs, the end groups of the diacrylate-
terminated polymers have been substituted with primary
amines [24-26]. This increases the cationic charge of the
polymers, improves DNA binding affinity and condensation of
DNA into nanoparticles. Such derivative (C32) was highly
effective in transfection [24]. In fact, PBAE polymer
mediated transfection seems to improve with increasing
nanoparticle formation. This may be related to the overall
weak DNA binding levels. On the contrary, for tight DNA
binders further increase in binding affinity is expected to
decrease transfection due to the impaired DNA release in the
cells.

One of the crucial steps for efficient gene delivery is the
release of DNA from the nanoparticle to the cytosol. Because
this process is the reverse reaction of the nanoparticle
formation, for PEls this takes place in two steps. The present
results suggest that with PBAESs, this process takes place in
one step, but the low DNA binding constants of PBAEs are
expected to facilitate DNA release. This process involves
exchange reaction in which polycation will bind to the cellular
polyanions thereby rendering pDNA free [23]. On longer time
scales the degradation of PBAEs in the cells may provide

another mechanism for DNA release.
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DNA binding affinity and nanoparticle formation
efficiency are important parameters for effective non-viral
polymeric gene delivery and these parameters can be designed

by tuning polymer structure.

5. Conclusions

Recently introduced time-resolved fluorescence assay was
applied to estimate the relative efficiency of DNA
complexation by poly(S-amino ester)s. The binding constants
per amine were in the same order of magnitude for PBAEs and
branched 25 kDa PEI, but the overall binding constants per
PBAE molecule were ~10 times smaller. This explains why
the N/P ratios needed for the formation of DNA:PBAE
nanoparticles are ~10 times higher. In contrast with PEI,
PBAEs complex DNA in one step, but still they are able to
release DNA effectively.
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ABSTRACT: Polymeric vectors for gene delivery are a promising alternative for clinical
applications, as they are generally safer than viral counterparts. Our objective was to further our
mechanistic understanding of polymer structure—function relationships to allow the rational
design of new biomaterials. Utilizing poly(f-amino ester)s (PBAEs), we investigated polymer—
DNA binding by systematically varying the polymer molecular weight, adding single carbons to
the backbone and side chain of the monomers that constitute the polymers, and varying the type
of polymer end group. We then sought to correlate how PBAE binding affects the polyplex

Log Binding Constant (M")

3 4 5 6
# of Carbons in Sidechain, X

diameter and { potential, the transfection efficacy, and its associated cytotoxicity in human breast
and brain cancer cells in vitro. Among other trends, we observed in both cell lines that the
PBAE—DNA binding constant is biphasic with the transfection efficacy and that the optimal
values of the binding constant with respect to the transfection efficacy are in the range (1—6) X 10* M~". A binding constant in

this range is necessary but not sufficient for effective transfection.

B INTRODUCTION

Inheritable diseases and cancer can result from inactive genes
(ie, CFTR in cystic fibrosis or P33 as a tumor suppressor)."”
Delivering DNA and small hairpin RNA to encode and
generate a functional copy or to inhibit mRNA expression of a
nonfunctioning protein can potentially treat and cure many
genetic diseases. Viruses have been used as delivery vectors
because they are highly efficient in nucleic acid delivery, but
they can cause insertional mutagenesis, immunogenic re-
sponses, and toxicity.” The safety and efficacy of the viral
vectors depend on the viral vector type, route of administration,
and therapeutic target. To date, only two gene therapy
formulations have been approved, one by the State Food and
Drug Administration of China (2003) and the other by the
European Medicines Agency (2012); there are still no U.S.
Food and Drug Administration-approved gene therapies.*
Degradable cationic polymers are an attractive alternative to
viruses, as they are generally safer, are easier to manufacture
and mass produce, and have more functional capabilities than
viruses.” Varying a polymer’s structure and functional groups
allows one to optimize the nucleic acid delivery properties
while minimizing toxicity levels.’ High-throughput analyses of
combinatorial biomaterial libraries allow a vast number of
polymers to be screened, but rational design of structure to
control function would be more efficient.”®

-4 ACS Publications  © 2013 American Chemical Society
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We are interested in evaluating polymer structure—function
relationships to further our mechanistic understanding of
polymeric materials for nonviral gene delivery and improve
their performance (Scheme 1). We previously investigated
poly(f-amino esters) (PBAEs) as biodegradable cationic
polymers capable of promoting gene delivery to various types
of cells.”~"" These polymers are promising because of their
ability to condense DNA into nanoparticles containing many

Scheme 1. Nanoparticle Formulation and Extracellular and
Intracellular Barriers for Successful Gene Delivery

Nanoparticle design Extracellular barriers Intracellular barriers

Z
‘7 DNA complexation

| O
¥ o

) Internalization of NPs

Lysosomal
degradation

o)

R

O

Endosomal
escape

O

NPs dissociation
and
DNA release

=
o o — W
Interaction with 4
- Nuclear entry
. cell surface O'
A ) proteoglycans -t i
[ s O
eV -
s eeo 46?
Ean Nucleus

Received: January 9, 2013
Published: April 9, 2013

dx.doi.org/10.1021/ja4002376 | J. Am. Chem. Soc. 2013, 135, 6951-6957


pubs.acs.org/JACS

Journal of the American Chemical Society

plasmids per particle,"” facilitate cellular uptake,"® and mediate
endosomal escape."*"® Certain PBAE nanoparticles have been
shown to be effective for in vivo gene delivery in the eye'® and
to tumors.'” Despite this progress, the efficiency of gene
delivery using polymers remains lower than that for viral
delivery. One challenge in evaluating and optimizing polymer
structure is that synthetic polymers can be polydisperse, with
variable extents of reaction and molecular weight hetero-
geneity.'® ?° Tsolating precise polymer structures with uniform
molecular weight is key for enabling the evaluation of polymer
structure.

The interactions between a cationic polymer and DNA are
critical for facilitating DNA protection, nanoparticle formation,
cellular uptake, and subsequent DNA release.”"** Anionic
phosphate groups on the DNA associate with and bind to
positively charged amine groups on cationic polymers, resulting
in nucleic acid condensation and protection. This is important
because the degradation half-life of naked DNA in the presence
of serum is on the order of minutes.”> Binding with a cationic
carrier (ie., a golymer) can substantially increase the nucleic
acid halflife.***> An optimal DNA carrier system should bind,
condense, and protect DNA in the extracellular space but
release DNA effectively within cells. The design of such systems
requires proper understanding of the binding between DNA
and polycations.>**’

In this work, we used time-resolved fluorescence spectros-
copy,”®* a new approach for probing polymer—DNA
interactions and binding quantitatively. Here we report the
results of our systematic investigation of binding properties of
DNA and monodisperse, size-fractionated PBAEs with differ-
ential structures. In particular, we investigated series of
polymers in which the following were varied: molecular weight;
the number of carbons in the backbone, which varied the amine
density and hydrophobicity; the number of carbons in the side
chain, which varied the distance of a hydroxyl group from the
backbone and its hydrophobicity; and the end-cap type
[primary, secondary, or tertiary amine or no end cap
(diacrylate-terminated)]. The effects of these small changes in
the polymer structure were characterized by fluorescence
spectroscopy and gene delivery efficacy in human brain cancer
cells and human breast cancer cells in vitro.*® The experimental
procedures, including materials and methods and the naming
convention for the polymers, can be found in the Supporting
Information.

B RESULTS AND DISCUSSION

Polymer Synthesis and Fractionation. In the 447
polymer series with varying molecular weight (447 Low M,,
447 Med M,, and 447 High M,,), the weight-average molecular
weights (M,,) were 10.3, 14.7, and 91.6 kDa, respectively, and
the polydispersity index (PDI) increased as M,, increased (PDI
= 1.3, 1.4, and 2.9, respectively) (Table S1 in the Supporting
Information). The average M,’s for the groups in which the
backbone, side chain, and end caps were varied were 10 + 1, 13
+ 2, and 10.9 + 0.7 kDa, respectively, and the corresponding
average PDIs were 1.3 + 0.1, 1.3 + 0.1, and 1.34 = 0.09 (Table
S1). The molecular weights of the polymers were determined
by gel-permeation chromatography (GPC) (Figure 1). The
molecular weights varied considerably for the 447 molecular
weight series but were similar for the other polymers. The
similarity of the M, values and the narrow PDIs of the
comparable polymers with small differences in the backbone,
side chain, and end cap allowed comparisons between the
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Figure 1. GPC curves of fractionated polymers [relative refractive
index (RI) shift (mV/max mV) vs elution time (min)] for groups with
varying (A) molecular weight (Low, Med, and High), (B) backbone,
(C), side chain, and (D) end caps.

groups and ensured that differences were due to the monomer
type as opposed to M,, or size heterogeneity.

Representative 'H NMR spectra of polymers 44, 442, 444,
446, and 447 can be found in Figure S1 in the Supporting
Information.®

Binding Constants for Polyplex Formation. The
polyplex formation can be monitored by plotting the
proportion of bound DNA (B in eq S in the Supporting
Information) against the concentration of amine. As an
example, the plot for polymer 442 is shown in Figure 2. The
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Figure 2. Fraction of bound DNA as a function of amine
concentration for polymer 442.

proportion of bound DNA increased with increasing polymer
concentration until it reached a saturation limit of approx-
imately 76% at a polymer/DNA weight/weight (w/w) ratio of
24. Most of the PBAE polymers saturated close to 80%. The
saturation limits for polymers 44 and 346 were 60% and 96%,
respectively. Polymers with negative cooperativity typically have
saturation less than 100%, whereas polymers with high positive
cooperativity saturate near 100%.

The Hill plots for the 447 molecular weight series are shown
in Figure 3A. Similar linear curves with negative cooperativity
(Table S1 in the Supporting Information) were obtained for all
of the polymers except polymer 646 (Figure 3B—D). The fact
that the Hill plots for most of the polymers entailed negative
cooperativity and the fact that the bound fraction for most of
the polymers saturated close to 80% are in agreement.

‘While most of the polymers showed a single linear Hill plot,
varying the polymer backbone structure (646) enabled a
biphasic response (Figure 3B). Polymer 646’s Hill plot is
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Figure 3. Hill plots for polymer series with varying (A) M,, (B)
backbone, (C) side chain, and (d) end caps.

associated with negative- and positive-cooperativity phases,
which may explain why polymer 646 saturated at 96%.

This biphasic nature of binding suggests a change in the
binding mechanism increasing amine/phosphate molar ratio
(N/P). The analysis and discussion of polymer 646 will focus
on the positive-cooperativity slope associated with higher N/P,
as all of the other experiments (ie, transfection, toxicity,
diameters, etc.) were carried out at w/w ratios of 30, 60, or 90
(N/P > 35). Polymers 346 and 546 (Figure 3B) have a data
point that may be either an outlier or associated with a biphasic
binding mechanism similar to that for polymer 646. The fact
that there were too few data points in these regions where there
may be positive cooperativity for polymers 346 and 546
restricted further analysis. The multiphase cooperativity is an
interesting aspect for future investigation.

As the molecular weight of 447 increased, the binding
constant per amine (K) increased (Figure 4A). Thus, a larger
polymer molecular weight led to increased polymer—DNA
interactions and stronger binding. By utilizing this trend, one
could potentially fractionate a polymer with a particular
molecular weight corresponding to a desired binding constant.

Log K (M)

Log K (M)
Log K (M)

Figure 4. Binding constants (M™") for the series with varying (A) M,,
(B) backbone, (C) side chain, and (D) end caps. Statistical analysis
was accomplished by a one-way ANOVA and a Tukey posthoc
analysis: *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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When the effect of the number of carbons in the monomer
backbone (ng = 3, 4, S, or 6) was evaluated, the binding
constants decreased as ng increased (Figure 4B). The binding
affinity was reduced 400-fold when ny increased from 3 to 6.
The decrease in the binding constant is likely due to the
decrease in amine density with increasing ng.

The binding constants in the side-chain series (437, 447 Med
M,, 457, 467) decreased with increasing side-chain length ng
(Figure 4C). As the number of carbons in the side chain was
increased from 3 to 6, the binding affinity was reduced 24-fold.
Again, the decrease in the binding constant is likely due to the
decrease in amine density as ng increases.

The base polymer (polymer 44) had a smaller binding
constant than any of the end-capped polymers (442, 444, 446,
and 447 Low M,,). The binding constant increased by factors of
6.6 + 0.1, 15.2, and 8.0 when the base polymer was end-capped
using primary (442 and 444), secondary (446), and tertiary
amines (447 Low M,,), respectively (Figure 4D). Considering
the pK, values of primary, secondary, and tertiary amines, one
would suspect that there would be greater binding for primary
versus tertiary amine end caps; however, these differences
would be diminished as the buffer pH was 5.2. We observed a
larger K value than expected for polymer 446. This larger K
value is understandable when the molecular weight of the 446
polymer is considered: the molecular weight of the 446
polymer was 14% higher than the other molecular weights in
the end-cap polymer series (Table SI in the Supporting
Information) and thus had 3—S more amines per polymer
strand than the other polymers in the group (the non-end-
capped and primary, secondary, and tertiary amine-capped
polymers had 40, 39, 44, and 41 amines per polymer strand,
respectively).

Comparison of Binding Constant Calculation Method-
ology. The binding constant of the cationic peptide
(KK),KGGC was also evaluated to compare our time-resolved
fluorescence spectroscopy binding assay to other binding assays
found in the literature. The proportion of bound DNA (B in eq
S in the Supporting Information) as a function of (KK),KGGC
concentration displayed a saturation level close to 90%. The
Hill plot of the peptide presented in Figure S3 in the
Supporting Information shows the presence of two phases,
similar to the case for polymer 646. The kink point corresponds
to a w/w ratio of 3.6. The peptide, perhaps because of the
presence of positive cooperativity (at low w/w ratio), was
associated with a higher saturation than most of the PBAE;,
similar to what was observed with polymer 646. The Hill
coefficients of the positive- and negative-cooperativity phases
were 2.2 and 0.50, respectively, suggesting that further binding
is hindered by the already-bound amines. The overall binding
constant K* obtained from the positive-cooperativity phase was
(12 £ 0.2) x 10’ ML Plank et al.>' obtained a value of 2.09 X
10 M with this peptide, which is ~6 times smaller than
obtained by our method.

Relationship Between Polyplex Diameter and Bind-
ing. The mean diameters of the polyplexes (nanoparticles)
formed through binding and self-assembly of cationic polymers
with anionic DNA ranged from 122 to 227 nm (Figures S4 and
SS in the Supporting Information). While a polymer with one
of the smallest binding constants (646, 1.19 X 10> M™") formed
polyplexes of the largest size (227 nm) and the polymer with
the largest binding constant (346, 4.8 X 10° M™') formed
polyplexes of the smallest size (122 nm), there was not an
overall trend between the PBAE—DNA binding affinity and the

dx.doi.org/10.1021/ja4002376 | J. Am. Chem. Soc. 2013, 135, 6951-6957
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polyplex size (Figure S4). For the case of polymer backbone
length, there was an apparent decrease in the diameter as the
binding constant increased (or as the backbone lengths
decrease; Figure S4B). As the backbone length increase, the
amine density decreases and the hydrophobicity increases as
well.

While an increased binding constant appears to correlate
with smaller polyplex diameter, the trend is not very strong, as a
range of polymer binding constants and polymer structures can
produce polyplexes of similar size (Figure SSA). Our data
suggest that tighter binding (i.e., larger binding constant) may
but does not necessarily result in smaller polymer/DNA
polyplexes. The number of plasmids per polyplex, the number
of polymer chains per polyplex, and the association of
individual polyplexes with each other in ion-containing buffer
solutions can all affect the polyplex size.

The polyplex/particle diameter did not appear to show any
clear trend in transfection efficacy for either cell line (Figure
SSB and SSC). This finding suggests that the diameter of the
polymer/DNA polyplexes is not a key determining factor for
this class of PBAE particles in these cell lines. As all of the
nanoparticles studied were relatively small in diameter, they
should be able to mediate successful endocytic cellular uptake.

Polyplexes were successfully formed at both pH values (5.2
and 7.4) and at various ionic strengths (Figure S6 in the
Supporting Information). Under these conditions, the diame-
ters of the polyplexes ranged from approximately 100 to 300
nm, and no significant aggregation was observed (Figure S6).

Relationship Between Polyplex ¢ Potential and
Binding. The polyplexes’ { potentials (ZPs) (Figures S7 and
S8 in the Supporting Information) ranged from +5 to +18 mV.
There were no apparent trends between the binding constant
and the ZP (Figures S7 and S8A). In contrast to our cationic
ZPs, Eltoukhy et al.'® found that their PBAEs were neutral in
sodium acetate, which is likely explained by the use of different
polymer structures as well as formulations with w/w ratios of
20—40, which use less polymer than what was tested in our
experiments (w/w ratio = 60). Our nanoparticles were weakly
positively charged, allowing interaction with a cell’s anionic
surface. Their charge was not excessive, and they did not cause
high toxicity when added to cells. Comparison of the ZP
measurements against transfection efficacies revealed no clear
trends for either cell line (Figure S8B,C).

These findings suggest that the ZP of the polymer/DNA
particles is not a key determining factor for transfection for this
class of PBAE particles in these cell lines. As all of the
nanoparticles studied were relatively weakly positive in ZP, they
should be able to mediate successful cellular uptake.

The ZP of the polyplexes at both pH values (5.2 and 7.4)
and at various ionic strengths ranged from approximately +6 to
+25 mV (Figure S9 in the Supporting Information). The ZP
appeared to be inversely proportional to pH. At pH 5.2, the ZP
decreased as the salt content increased. At pH 7.4, the ZP did
not appear to increase in all cases as the salt content decreased
(Figure S9). The ZPs at 1:100 dilution were comparable to
those for the undiluted case.

Effect of Binding Constant on Transfection Efficacy.
Two human cancer cell lines (MDA-MB-231 and GBM319)
were utilized in these experiments to evaluate the transfection
efficacy. The former is derived from invasive triple-negative
human breast cancer and the latter is from human glioblastoma
multiforme (GBM). Generally speaking, we found both cell
lines to be difficult to transfect, with MDA-MB-231 (Figure
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SA,CE,G) being more difficult to transfect than GBM319
(Figure SB,D,FH). The relative amount of enhanced green
fluorescent protein (EGFP) per cell according to the
normalized mean fluorescence was linearly correlated with
the transfection efficacy as measured by percent of cells with
EGFP (Figure S10 in the Supporting Information).

The optimal molecular weight of the 447 polymer that
resulted in the highest transfection efficacy was polymer 447
Med M,, at a w/w ratio of 90 in both cell lines (Figure SA,B).
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Figure S. Effect of binding constant on transfection efficacy in (4, C,
E, G) MDA-MB-231 cells and (B, D, F, H) GBM319 cells for the
series with varying (A, B) M,, (C, D) backbone, (E, F) side chain, and
(G, H) end caps.

By flow cytometry, the 447 Med M,, polymer achieved 30 + 4%
and 69 + 1% transfection in the MDA-MB-231 and GBM319
cell lines, respectively. In MDA-MB-231 cells, the PBAE
nanoparticle formulation with the highest transfection efficacy
achieved 74% of the transfection percentage achieved with
Lipofectamine 2000, a highly effective positive control widely
used in the nonviral gene delivery community; positive and
negative controls can be found in Figure S11 in the Supporting
Information. In GBM319 cells, the leading PBAE nanoparticles
transfected 240% of the amount achieved with Lipofectamine
2000. Naked DNA (ie., the same dose of plasmid DNA
without added polymer) resulted in no transfection in either
cell line.

When all of the binding constants were analyzed with the
transfection efficacy, a biphasic trend was observed, with the
peak transfection occurring at an intermediate binding affinity
(Figure S12A,B in the Supporting Information). However, the

dx.doi.org/10.1021/ja4002376 | J. Am. Chem. Soc. 2013, 135, 6951-6957
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correlation is not straightforward, as similar binding affinities
can also lead to dramatically lower transfection. This is to be
expected because binding constants alone are likely insufficient
to predict whether a particular polymer will deliver DNA
successfully, as there are many factors that affect gene delivery
such as cellular uptake, endosomal escape, DNA release, and
nuclear import (Scheme 1).°

I. Effect of M,,. In the MDA-MB-231 cells, a comparison of
the 447 polymers with incremental molecular weight (Figure
SA) revealed a biphasic response, with the highest transfection
efficacy occurring at intermediate polymer molecular weight
(447 Med M,,) and intermediate binding affinity (58 000 M™").
For the w/w ratio 30 group, there was an increase in
transfection efficacy for the MDA-MB-231 cell line as the
molecular weight increased (Figure SA), whereas there was a
decrease for the GMB319 cell line (Figure SB). Polymer 447
Med M,, with a binding constant of 58 000 M~ was the most
effective polymer evaluated in terms of transfection efficacy for
the GBM319 cells (Figure SB). This suggests that there is an
optimal range: having a binding constant that is either too small
or too large is unfavorable. Polymers with small binding
constants may not be able to condense and protect the DNA
sufficiently, and ones with excessively large binding constants
likely do not release the DNA as efficiently.”* As the molecular
weight increased from 10.3 to 91.6 kDa, the transfection
efficacy decreased from approximately 60% to 30% positive
cells in the GBM319 cells.

Il. Effect of Single Carbon Differences. When the molecular
weight was held approximately constant and the backbone and
side chain were varied, the optimal binding constant was near
58000 M~ (polymer 447 Med M,,) for MDA-MB-231 cells
(Figure SC,E), and the transfection was similarly high (~70%)
for GBM319 cells for binding constants in the range (1—6) X
10* M™" (Figure SD,F). In cases where the binding constant is
smaller than 10* M/, increasing the binding constant correlates
with increased transfection efficacy for MDA-MB-231 cells.
GBM319 cells are better transfected by polymers with smaller
binding constants (10°~10* M) than the MDA-MB-231 cells
are, and this is likely due to intrinsic differences in the gene
delivery transport steps (Scheme 1) for these two cell types.
For both cell types, when the binding constant increased
further (>10° M™'), even at constant molecular weight,
transfection decreased.

Although it is common practice to use 10% fetal bovine
serum for in vitro transfection experiments, higher media serum
content may be more physiologically relevant. When 70%
serum was used to assess the transfection efficacy and its
correlation with the observed binding constants in the
GBM319 cell line, the highest transfection achieved in the
presence of high serum was similar to that observed with low
serum, approximately 70% of human cells positively transfected.
A biphasic trend similar to that under 10% serum conditions
was also observed (Figure S13 in the Supporting Information),
and a similar optimal range of binding constants, ~10* M,
was able to result in the highest transfection efficacy.

Ill. Effect of End Caps. The MDA-MB-231 and GBM319 cell
lines had very low transfection for the non-end-capped,
acrylate-terminated polymer (polymer 44). Furthermore, the
primary-amine-capped polymers (polymers 442 and 444) were
not able to transfect MDA-MB-231 cells effectively, whereas
polymers capped with primary, secondary, and tertiary amines
were able to transfect the GB319 cells.
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Secondary or tertiary amine end caps, depending on the w/w
ratio, were required for effective transfection of the MDA-MB-
231 cell line with these polymers. The GBM319 cell line could
be successfully transfected via PBAE polymers end-capped with
primary amines (442 and 444) in addition to the polymers end-
capped with secondary or tertiary amines. However, there did
not appear to be a strong trend with the binding constant and
transfection efficacy in the end-capped series (Figure SG,H).

Effect of Binding Constant on Cytotoxicity. In general,
the cytotoxicity increased with increasing polymer/DNA w/w
ratio (Figure 6). In both cell lines tested, it appeared that there
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Figure 6. Effect of binding constant on relative metabolic activity in
(A, C, E, G) MDA-MB-231 cells and (B, D, F, H) GBM319 cells for
the series with varying (A, B) M,,, (C, D) backbone, (E, F) side chain,
and (G, H) end caps.

was low cytotoxicity with polymers that had binding constants
in the 10*~10° M~ range (Figure S12C,D in the Supporting
Information).

I. Effect of M,,. Particle-induced cytotoxicity in both cell lines
increased as the binding constant (and M,,) increased (Figure
6A,B). There was relatively less toxicity in the MDA-MB-231
cell line than in the GB319 cell line, especially for the 447 High
M,, polymer.

Il. Effect of Single Carbon Differences. The cytotoxicity in
both cell lines increased as the number of carbons in the
backbone or side chain increased. Thus, the cytotoxicity
decreased (and the relative metabolic activity increased) as
the binding constant increased (Figure 6C—F).

Ill. Effect of End Caps. There was no significant cytotoxicity
in the MDA-MB-231 cell line with the 44, 442, 444, 446, and
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447 Low end-cap series, whereas there appeared to be some
cytotoxicity in the GBM319 cell line with the primary and
tertiary amine end caps. Secondary amine end caps may be
particularly less cytotoxic in the GBM319 cell line (Figure
6G,H). There was not a clear trend in the relative metabolic
activity when the type of end cap was varied.

Heparin Competition Release. The 44 polymer asso-
ciated with the weakest binding constant (526 M™") released its
DNA with the lowest amount of heparin (<2 ug/mL) (Figure
S14 in the Supporting Information). Polymer 447 Low M,, was
associated with a binding constant of 42 X 10° M™' and
released its DNA at a heparin concentration between 16 and 64
ug/mL (Figure S14). The 446 and 447 High M,, polymers were
associated with binding constants of 7.97 X 10° and 1.23 X 10°
M, respectively, and both released their DNA at heparin
concentrations between 128 and 256 pug/mL. The 446 polymer
exhibited a faint supercoiled DNA band at 128 ug/mL,
suggesting that this polymer likely releases its DNA at a lower
heparin concentration than does 447 High M,, (Figure S14).
The DNA release from the polyplexes appeared to be inversely
proportional to the binding affinity between DNA and the

polymers.
Bl CONCLUSIONS

Evaluation of polymer—DNA binding constants using time-
correlated single-photon counting and comparison of these
values to transfection efficacies allowed us to observe that
binding constants of (1—6) X 10* M~' were optimal for both
human cancer cell lines tested. Our data reveal that the
polymer—DNA binding affinity for PBAEs is biphasic with
respect to transfection efficacy, with an intermediate binding
affinity being optimal. A binding constant in the optimal range
is necessary but not sufficient for effective transfection. This
intermediate binding affinity can be independently tuned by
adding single carbons to the backbone or side-chain structure,
by varying the monomer ratio during synthesis and/or using
GPC fractionation to tune the polymer molecular weight, and
by modifying a small-molecule end group used to end-cap a
linear polymer. Probing a specific gene delivery bottleneck with
a class of polymers that were synthesized to have subtle
structural differences has revealed new quantitative and
mechanistic insights concerning how they function for gene
delivery.
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The Effect and Role of Carbon Atoms in Poly(beta-amino
ester)s for DNA Binding and Gene Delivery
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Helge Lemmetyinen, Elina Vuorimaa-Laukkanen, Marjo Yliperttula, Jordan J. Green

Experimental Procedure
L. Materials (Reagents, assays, cells and instruments)

The polymers were synthesized from commercially available monomers: 1,3-propanediol diacrylate (B3)
(Monomer-Polymer and Dajac Laboratories Inc.), 1,4-butanediol diacrylate (B4) (Alfa Aesar), 1,5-pentanediol
diacrylate (B5) (Monomer-Polymer and Dajac Laboratories Inc.), 1,6-hexanediol diacrylate (B6) (Alfa Aesar), 3-
amino-1-propanol (S3), 4-amino-1-butanol (S4) (Alfa Aesar), 5-amino-1-pentanol (S5) (Alfa Aesar), 6-amino-1-
hexanol (S6) (Sigma Aldrich), 2,2-dimethyl-1,3-propanediamine (E2) (Sigma Aldrich), 2-methyl-1,5-
diaminopentane (E4) (TCI America), 2-(3-aminopropylamino)ethanol (E6) (Sigma Aldrich), 1-(3-aminopropyl)-4-
methylpiperazine (E7) (Alfa Aesar). Other reagents include the following and were used as received: peptide
(KK),KGGC (Biomatik), tetrahydrofuran (THF) (Sigma Aldrich), dimethyl sulfoxide (DMSO), (Sigma Aldrich),
ethidium bromide (ETB; Sigma Aldrich), Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA), OptiMEM 1
(Invitrogen), plasmid enhanced green fluorescent protein (pEGFP-N1) DNA (Clontech), amplified and purified by
Aldevron (Fargo, ND). The breast cancer cell line (MDA-MB-231; ATCC) is of human origin and was cultured
using DMEM high glucose 1x media and supplemented with 10% heat inactivated fetal bovine serum (FBS) and
100 U/mL of penicillin and 100 pg/mL of streptomycin (Invitrogen). The glioblastoma multiforme (GBM) cell line
(GBM319) was derived from brain tumor stem cells from a 79-year old patient, was cultured as previously
described in DMEM:Ham’s F12 (1:1) (Invitrogen) supplemented with 10% heat inactivated FBS and 1x Antibiotic-
Antimycotic (Invitrogen).' All cells were cultured in a humid 37°C and 5% CO, atmosphere. Propidium iodide (PI)
(Invitrogen), 25 mM sodium acetate buffer (NaAc, pH=5.2) (Sigma Aldrich), CellTiter® Aqueous One Solution
Cell Proliferation Assay (Promega), Gel Permeation Chromatography (GPC) (Waters®, Breeze 2 software), a
Bruker nuclear magnetic resonance (NMR) spectrometer, UV-Vis Spectrometer (Synergyz, BioTek®, Gens
software), and a BD Accuri™ C6 flow cytometer equipped with HyperCyt® (Intellicyt Corp.) for high-throughput
were used following manufacturer instructions. A Visi-Blue™ Transilluminator was used for imaging agarose gels.
The single photon counting instrumentation consisted of a PicoQuant GmBH, PicoHarp 300 controller and a
PDL 800-B driver.

II. Methods

Polymer Synthesis and Fractionation

Diacrylate monomers that form the polymer backbones (B3, B4, Bs, B6) and amine monomers that form
the polymer side chains (S3, S4, S5, S6) were mixed neat using 1.05:1, 1.2:1, or 1.4:1 mole ratios and endcapped as
previously described with slight modification (E2, E4, E6, E7) (Scheme S1).” Briefly, the base polymer (diacrylate
and side chain) reactions were carried out for 24 hours at 90°C, solvated in THF and endcapped for 1 hr using a
0.5 M amine monomer solution. Subsequently, the polymers were purified in anhydrous diethyl ether and
vacuum dried for at least 24 hours and then fractionated by gel permeation chromatography (Waters Corp.,
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Milford MA) using THF Styragel columns (3 7.8 x 300 mm in series). Two minute time fractions were collected at
a1 mL/min flow rate and again ether purified and vacuum dried for 48 hours. The polymers were then solvated in
anhydrous DMSO to 100 mg/mL and stored at -20°C in small aliquots to minimize freeze-thaw cycles. GPC was
used to assess molecular weight of the fractionated polymers. Synthetic PBAE polymers are referred to by the
order of their constituent monomers: backbone acrylate monomer, side chain amine monomer, and end group
amine monomer. For example, B4-S4-E7 is 447 as an abbreviation (Scheme S1).

Reaction
\)-L,o, \OM*‘ ?\OH4 kR. H
l‘OH
n

Monomers
Backbone Sidechain Endcap
0 (o] A
B3 S3 H,N OH E2 H,N NH,
%)Lo/\_/‘qkf 3-amino-1-propanol >
1,3-propanediol diacrylate 2,2-dimethylpropane-1,3-diamine

o S4 N/\“/\/OH
2
B4 “\\)J\O/\/‘\/O\[(% 4-amino-1-butanol E4 HZN\)\/\,NHE

o ? 2-methylpentane-1,5-diamine
1,4-butanediol diacrylate
W
S5H;N OH

B5 \)L s J\/ 5-amino-1-pentanol E6 HZN/\/\N/\VOH

1 5-pentaned|ol dlacrylate 2-(3-aminopropylamino)ethanol

AT
S6 H,N OH
B6 MO/W\/O‘[(\\\ 6-amino-1-pentanol E7 H,N™~""N"
N

o] . - . .
1,6-hexanediol diacrylate 1-(3-aminopropyl)-4-methylpiperazine

Representative Polymer: B4-S4-E7 (447)

Scheme S1. Reaction of PBAE synthesis; backbone (B3-6), sidechain (s3-6) and various endcap (E2, E4, E6,
E7) monomers used in the PBAE library. A representative polymer (447) is shown.

Nuclear Magnetic Resonance

Representative acrylate-terminated base polymers and amine-terminated end-capped polymers were analyzed via
"H NMR. Polymers designated as "ether-purified” were synthesized in THF (or, in the case of 44 base polymer,
dissolved in THF without reaction) and then precipitated into diethyl ether as described. After 48 hr drying
under vacuum, polymers were dissolved in deuterated chloroform (CDCl,) with 0.03% v/v tetramethylsilane
(TMS) at 10-20 mg/mL. Other 44 base polymers were not purified after neat synthesis and were similarly
dissolved in CDCI; with TMS. All spectra were obtained with Bruker instruments (400 MHz, Topspin 2.0 or 2.1
software) and analyzed with NMR Processor v.12 (ACD Labs, Toronto, Canada).”

Fluorescence Measurements

Plasmid DNA encoding enhanced green fluorescent protein (pEGFP) at 0.0975 mg/mL (300 uM of
phosphate concentration) was added to ETB (20 pM) in a 15:1 mole ratio in 250 pL of 25 mM sodium acetate
(NaAc, pH s5.2). The resulting intercalated DNA-ETB complex was a homogeneous pink color. Subsequently, 250
pL of each polymer was added to the resulting solution in polymer weight to DNA weight ratio (w/w) ranging
from 1.2 to 47 w/w (N/P ratios ranging from 1 to 40) and was immediately mixed thoroughly. The polyplexes were
allowed to stabilize for 10 minutes before beginning fluorescence measurements. The time-resolved fluorescence
was measured by a time-correlated single photon counting (TCSPC) system (PicoQuant GmBH) consisting of a
PicoHarp 300 controller and a PDL 800-B driver. The samples were excited with the pulsed diode laser head
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LDH-P-C-485 at 483 nm with 130 ps time resolution. The signals were detected with a microchannel plate
photomultiplier tube (Hamamatsu R2809U). To diminish the influence of the scattered excitation, a cut-off filter
was used in front of the monitoring monochromator. To study the decay associated spectra (DAS), the decays
were collected with a constant accumulation time in the 560-670 nm wavelength range with 10 nm increments.
The decays were simultaneously fitted to the sum of two exponents in the equation (1):

I(t,l) = al(l)e—t/‘n + az(l)e‘t/fz (1)

where 7; is the global lifetime and a;(A) is the local amplitude at a particular wavelength. The factors a;(1)
represent the DAS (Figure S2), which in the case of a mixture of different non-interacting fluorescing species
corresponds to the individual spectra of the species (ETB bound to DNA and ETB free in solution). The
photomultiplier tube becomes increasingly less sensitive at higher wavelengths which was taken into account.
The spectral areas (A;) of the components can be calculated by integrating the pre-exponential factors over the
measured wavelength range as indicated in the following equation:

A; = [ a;(D)dA(2)

The short-living component, corresponding to free ETB in the bulk solution, has a lower fluorescence quantum
yield than the long-living component corresponding to ETB bound to DNA. The relative fluorescence quantum
yield of the short-living component, ¢, = 0.112 (equation 3), was calculated from the steady state absorption (UV-
VIS spectrophotometer Shimadzu UV-3600) and fluorescence (Fluorolog Yobin Yvon-SPEX, I, = 483 nm) spectra
according to the following equation:

_ ¢erB  _ IETBADNA-ETB (
¢rel - -
¢DNA-ETB  IDNA-ETBAETB

where ¢rp is the quantum yield of ETB free in solution, ¢pya grp is the quantum yield of the DNA-ETB
complex, [; is the area of the fluorescence spectra with an excitation wavelength of 483 nm and 4; is the
absorbance at a wavelength of 483 nm. The corrected spectral area (A,°) for the short living component is
obtained by dividing A, by ¢,. As polymer (P) is added to the DNA-ETB complex, the polymer binds DNA and
the ETB is freed into solution as follows:

DNA-ETB + P = DNA-P + ETB (4)

The proportion of the short-living decay component of the total area of the DAS spectra, B, is the proportion or
ratio of free ETB and is directly proportional to the amount of formed polyplexes (or the fraction of DNA bound
to polymer). Thus, the bound fraction of DNA, B, can be assessed by monitoring the ratio of free ETB and can be
calculated from the spectral areas of the components as follows:

¢
A§+A;

The bound fraction of DNA as a function of amine concentration was assessed and the maximum was

determined. All data points up to the maximum bound fraction were used to determine the binding constants. Of
note, the initial concentration of ETB in the system is chosen such that without polymer there is no free ETB.
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Binding Constant Calculation

The Hill plot equation for multivalent ligands binding to multi-subunit substrates was used to estimate the
cooperativity and binding constants for the polyplex formation®*:

In% = aln [P] + aln K (6)
2
K“ is the overall binding constant for the reaction DNA + nP = DNA-P,, K is the binding constant for the binding

of one functional amine group according to the reaction DNA-P, , + P = DNA-P, (X =1, 2, ..., n) and the slope of

the Hill plot, «, is the experimental Hill’s coefficient (a = 1 for non-cooperative systems, o < 1 for negative
cooperativity and a > 1 for positive cooperativity). The error in K is calculated from the standard error of the y-
value in the linearly fitted Hill plots.

Particle Diameter and Zeta Potential

Particle diameter was determined by nanoparticle tracking analysis (NTA) using a NanoSight NS500
(Amesbury, UK, 532 nm laser), and zeta potential was determined using a Malvern Zetasizer Nano ZS (Malvern
Instruments, UK, detection angle 173° 633 nm laser) in triplicate. Polymer/DNA nanoparticles were made at a 60
w/w ratio in 25 mM sodium acetate buffer (pH = 5.2) at a DNA concentration of 0.005 mg/ml and diluted into 1x
PBS, pH 7.4. Particles were diluted 100-fold into PBS before NTA measurement. Particles were diluted 5-fold into
PBS when using the Zetasizer; average electrophoretic mobilities were measured at 25°C, and zeta potentials (ZP)
were analyzed using the Smoluchowski model. Additional experiments of representative polyplexes were
conducted at concentrations comparable to delivery conditions at various pHs (5 and 7.4) and various ionic
strengths (150, 75, 38, 19 mM) using dynamic light scattering (Malvern Instruments, UK).

Transfection and Cytotoxicity (Relative Metabolic Activity)

MDA-MB-231 and GBM319 cells were seeded in g6-well plates at 15,000 cells per well and allowed to
adhere overnight at 37°C and 5% CO,. Polymers and DNA were diluted in 25 mM NaAc and mixed in a 1:1 v/v
ratio at 30, 60, and 9o w/w. Particles were allowed to self-assemble for 10 minutes prior to in vitro delivery.
Subsequently, 20 pL of particle solution was delivered to each well already containing 100 pL of media (10% or
70% serum) for a DNA dosage of 600 ng/well (5 pg/mL) in quadruplicate. Naked DNA at the same final
concentration in 25 mM sodium acetate and an untreated group were used as negative controls. Lipofectamine
2000 was used as a positive control to deliver 100 and 200 ng of DNA per well using a 2.5:1 v/w ratio
(Lipofectamine reagent:DNA) in quadruplicates (following manufacturer recommendations). After 4 hours of
incubation, the wells were aspirated and replenished with fresh media. To assess relative metabolic activity as an
indication of toxicity at 24 hours post-delivery, each of the wells were aspirated and incubated with 110 pL of a 1011
mixture of culture media to CellTiter 9g6® Aqueous One Solution in quadruplicate according to the
manufacturer’s instructions. The absorbance at 490 nm was measured using the Synergy2 UV-Vis spectrometer.

Flow Cytometry

The transfection efficacy was assessed using flow cytometry at 48 hours post-delivery. The g6-well plates
were aspirated, washed with PBS, and trypsinized. After quenching with 2% FBS (in PBS) with propidium iodide
(PI) at 1:200 v/v, the contents were transferred to a round-bottom g6-well plate and centrifuged at 8oo RPM for 5
minutes. After centrifuging, all but 30 pL of buffer was removed, and each cell pellet was triturated before loading
on the Hypercyt high-throughput reader. FlowJo (v. 7.6) was used for gating and further analysis. Singlets were
identified using FSC-H vs SSC-H; dying cells were identified with PI (a DNA intercalator which fluoresces with a
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compromised cell membrane) using FSC-H vs FL3-H; FLi1-H vs FL3-H was used to identify the GFP-positive
population.

Geometric and arithmetic fluorescence means of the flow cytometer’s FL1-A channel can be an indicator
of the relative amount of EGFP present on a per cell basis. Normalized fluorescence means of the FLi-A channel
were calculated by dividing the viable singlet population’s FLi1-A mean fluorescence by the untreated conditions’

mean fluorescence.
Heparin Competition Release Assay

Gel electrophoresis was accomplished using 1% agarose gels containing 1 pg/mL of ETB in a 1x TAE
buffer. The gels were loaded with 15 pL of polyplexes at 60 w/w (pEGFP-N1 of 0.01 mg/mL). The polyplexes were
allowed to stabilize for 10 minutes. Just prior to the loading the polyplexes were added to glycerol (30% v/v). The
gels were run for 1 hour using 100 volts and imaged using a Visi-Blue™ Transilluminator. Four representative
polymers ranging from the weakest to the strongest binding constants were used for the release assay (44, 447
Low M,,, 446, 447 High M,,).

Statistics

All binding constants are reported as previously described; transfection and toxicity plots show the mean
and standard error of the mean. All other physical characterizations and data plotted show the mean and
standard deviation. One-way ANOVA tests were used with Tukey post-hoc analyses to assess significance
between multiple groups. Differences were considered significant with p-values < 0.05 (* < 0.05, ** < 0.01, *** <
0.001).
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Figure S1. 'H NMR spectra of polymers 44 High (A, C), Med (E), Low M,, (G), 442 (B), 444 (D), 446 (F), and 447 (H).
These spectra are consistent with NMR analyses published previously (Sunshine, Akanda, et al.) along with spectra of
the other polymers used in this study.” (See below for further peak analyses.)

Nuclear Magnetic Resonance Spectra

Some of the spectra above include the following sharp peaks corresponding to the solvent in which the polymer
was synthesized (tetrahydrofuran, THF) or diethyl ether, used to precipitate the polymer:

THF: 1.85 ppm
Diethyl ether: 3.45-3.55 ppm (q, CH,CH,OCH,CH,)
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Diethyl ether: 3.15-3.25 ppm (t, CH,CH,OCH,CH,)

Solvent peaks were not considered during analysis. Shown in the spectra below:

44 (B4-S4) (all molecular weights)

1.45-1.6 (m, NCH,CH,CH,CH,OH and NCH,CH,CH,CH,OH)

1.6-1.75 (t, COOCH,CH,CH,CH,00C()

2.35-2.6 (t, COOCH,CH,NCH,CH,00C and t, NCH,CH,CH,CH,OH)
2.7-2.85 (t, COOCH,CH,NCH,CH,00C)

3.55-3.7 (t, NCH,CH,CH,CH,OH)

4.0-4.2 (t, COOCH,CH,CH,CH,0O0C)

5.8-5.9 (d, CH,OOCCH=CHH)

6.1-6.2 (dd, CH,OOCCH=CHH)

6.35-6.5 (d, CH,OOCCH=CHH)

442 (B4-S4-E2)

0.9-0.95 (s, NHCH,C(CH,),CH,NH,)

1.45-1.6 (m, NCH,CH,CH,CH,OH and NCH,CH,CH,CH,OH)

1.6-1.75 (t, COOCH,CH,CH,CH,00C)

2.35-2.6 (t, COOCH,CH,NCH,CH,00C and t, NCH,CH,CH,CH,OH and
t, NHCH,C(CH,),CH,NH,)

2.7-2.85 (t, COOCH,CH,NCH,CH,00C)

3.55-3.7 (t, NCH,CH,CH,CH,OH)

4.0-4.2 (t, COOCH,CH,CH,CH,00C)

444 (B4-S4-E4)
0.9-1.0 (m, NCH,CH,CH,CH(CH,)CH,N)

1.45-1.6 (m, NCH,CH,CH,CH,OH and NCH,CH,CH,CH,OH and NCH,CH,CH,CH(CH,)CH,N)

1.6-1.75 (t, COOCH,CH,CH,CH,00C)

2.35-2.5 (t, COOCH,CH,NCH,CH,0O0C and t, NCH,CH,CH,CH,OH and
m, NCH2CH2CH2CH(CH3)CHZN)

2.7-2.85 (t, COOCH,CH,NCH,CH,00C)

3.55-3.7 (t, NCH,CH,CH,CH,OH)

4.0-4.2 (t, COOCH,CH,CH,CH,00C)

446 (B4-S4-E6)

1.45-1.6 (m, NCH,CH,CH,CH,OH and NCH,CH,CH,CH,OH)
1.6-1.75 (t, COOCH,CH,CH,CH,00C and quin, NCH,CH,CH,NHCH,CH,OH)
2.35-2.6 (t, COOCH,CH,NCH,CH,00C and t, NCH,CH,CH,CH,OH and
m, NCH,CH,CH,NHCH,CH,OH)
2.7-2.85 (t, COOCH,CH,NCH,CH,00C)
3.55-3.7 (t, NCH,CH,CH,CH,OH and t, NCH,CH,CH,NHCH,CH,OH)
4.0-4.2 (t, COOCH,CH,CH,CH,00C)
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447 (B4-54-E7)

1.45-1.6 (m, NCH,CH,CH,CH,OH and NCH,CH,CH,CH,OH and

t, NCH,CH,CH,N<(CH,CH,),>NCH,)
1.6-1.75 (t, COOCH,CH,CH,CH,00C()
2.3 (s, NCH,CH,CH,N<(CH,CH,),>NCH,)
2.35-2.6 (t, COOCH,CH,NCH,CH,00C and t, NCH,CH,CH,CH,OH and m, NCH,CH,CH,N<(CH,CH,),>NCH,)
2.7-2.85 (t, COOCH,CH,NCH,CH,00C)

3.55-3.7 (t, NCH,CH,CH,CH,OH)

4.0-4.2 (t, COOCH,CH,CH,CH,0O0C)

0.08-
-~ 1.81ns

—_ - 2258ns
5 0.06-
8
2
3 0.04-
E—
< 0.02

0.00+ 7 T T T T
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Wavelength (nm)

Figure S2. Decay-associated spectra. The fluorescence lifetimes of ethidium bromide bound to DNA and free in the

solution are 22.58 and 1.81 ns, respectively, in this particular case.

Table S1. List of PBAE polymers and their number average molecular weights (M,), weight average molecular weights

(M,,), polydispersity indices (PDI), degree of polymerizations (DP), Hill coefficients («), binding constants (K),

diameters (nm), and zeta potentials (ZP; mV).

Varying Polymer M, (kDa) | M, (kDa) PDI DP o K (M") Diameter (nm) ZP (mV)
447 Low M,, 7.9 10.3 1.3 27 0.40 4.2£0.1x10° 180 14
Molecular n
Weight 447 Med M,, 10.4 14.7 1.4 35 0.22 5.8 £ 0.3x10 135 6
447 High M,, 32.0 91.6 29 110 0.23 1.23 + 0.03x10° 171 14
346 7.5 11.2 1.5 27 0.24 4.8 +0.2x10° 122 14
446 8.3 11.8 1.4 28 0.38 7.97 £ 0.09x10° 130 18
Backbone
546 7.0 9.1 1.3 23 0.22 1.03 + 0.04x10* 178 15
646 8.1 10.0 1.2 24 1.16 1.19 + 0.04x10° 230 15
437 8.1 10.3 1.3 29 0.28 1.15 + 0.01x10° 170 9
) | 447 Med m, 10.4 14.7 1.4 35 0.22 5.8 + 0.3x10* 134 6
Sidechain 3
457 10.3 13.1 1.3 33 0.41 3.5+ 0.1Ex10 160 9
467 10.3 12.5 1.2 31 0.39 4.7 +0.3x10° 165 8
44 9.3 11.6 1.2 32 0.62 526+ 9 180 1
442 7.5 10.4 1.4 25 0.42 3.5+ 0.2x10° 200 12
Endcap 444 7.4 10.3 1.4 25 0.50 3.4 +0.1x10° 190 13
446 8.3 11.8 1.4 28 0.38 7.97 £ 0.09x10° 130 18
447 Low M,, 7.9 10.3 13 27 0.40 4.2%0.1x10° 180 14

Page S8



Ln (A{S/A,)

8 / 7 6 -5
Ln [Amine]

1

Figure S3. Hill plot of peptide (KK),KGGC.
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Figure S4. The relationship between polyplex diameter and the binding constant (M) of each of the series comparing
M, (A), backbone (B), sidechain (C), and endcaps (D).
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Figure Ss. All diameters versus binding constants (A); dependence of transfection efficacy on polyplex diameters in
MDA-MB-231 (B) and GBM31g9 cells (C).
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Figure S6. Diameter of four representative polymers at various pHs and ionic strengths. (White group was via NTA;
remainder was via DLS.)
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Figure S7. The relationship between zeta potential and the binding constant (M) of each of the series comparing M,,
(A), backbone (B), sidechain (C), and endcaps (E).
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Figure S8. All ZP values irrespective of series versus binding constants (A); dependence of transfection efficacy on ZP in
MDA-MB-231 (B) and GBM319 cells (C).
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Figure Sg. ZP of four representative polymers at various pHs and ionic strengths.
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Figure S10. Normalized geometric (A) and arithmetic (B) means versus transfection efficacy in the MDA-MB-231 and
GBM319 cell lines.
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Figure S12. All binding constants for each of the series of comparison against transfection efficacy in MDA-MB-231 cells
(A) and GBM319 cells (B), as well as cytotoxicity in MDA-MB-231 cells (C) and GBM31g9 cells (D).
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Figure S13. Binding constants compared to transfection efficacy using 70% serum in the GBM319 cell line.
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Figure S14. Heparin (ranging from o to 512 pg/mL) competition release assay of four representative polymers using gel
electrophoresis; binding constants range from 526 (weakest K measured) to 1.23x10> M™ (strongest K measured).
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