
Julkaisu 740 Publication 740

Mauri Kuorilehto

System Level Design Issues in Low-Power Wireless Sensor
Networks

Tampere 2008

Tampereen teknillinen yliopisto. Julkaisu 740
Tampere University of Technology. Publication 740

Mauri Kuorilehto

System Level Design Issues in Low-Power
Wireless Sensor Networks

Thesis for the degree of Doctor of Technology to be presented with
due permission for public examination and criticism in Tietotalo
Building, Auditorium TB104, at Tampere University of Technology, on
the 6th of June 2008, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of
Technology
Tampere 2008

ISBN 978-952-15-1985-7 (printed)
ISBN 978-952-15-2006-8 (PDF)
ISSN 1459-2045

Mauri Kuorilehto

System Level Design Issues in Low-Power Wireless Sensor
Networks

Final manuscript
April 29, 2008

Contact Information:
Mauri Kuorilehto

Mail: Tampere University of Technology
Institute of Digital and Computer Systems
P.O. Box 553 (Korkeakoulunkatu 1)
FI-33101 Tampere
Finland

Tel.: +358�50�486 9915 (mobile)
Fax: +358�3�3115 4561
E-mail: mauri.kuorilehto@nokia.com

ABSTRACT

Wireless Sensor Networks (WSN) are an emerging technology that is considered to
have a high potential for realizing the vision of ambient intelligence. Tiny WSN
nodes are unobtrusively embedded to environment for performing sensing, data pro-
cessing, and actuating tasks. Capabilities of a single node are limited, but the fea-
sibility of WSNs lies on the collaboration of nodes. WSNs are envisioned for a
wide variety of applications ranging from home automation to military surveillance.
Supporting the diversity of applications within the resource constraints is commonly
considered to necessitate application-speci�c tailoring of nodes, communication pro-
tocols, and application algorithms.

This Thesis presents a design methodology for facilitating the development of appli-
cation-speci�c WSNs from an abstract design phase to the prototype implementation.
The functionality of a WSN is �rst designed in Wireless Sensor Network Simulator
(WISENES) design environment with abstract deployment models. The novel fea-
tures in WISENES are the graphical design of the models combined with the full-
scale design time simulations for accurate evaluation of WSN performance, and the
back-annotation of the performance results from prototypes for further improving
simulator accuracy.

A runtime environment in the methodology preserves the design time abstractions
during a prototype implementation on node platforms. The runtime environment for
resource limited nodes is realized by a preemptive multithreading Operating System
(OS), SensorOS, and a middleware that supports runtime distribution of application
processing. A distinctive feature in SensorOS is its accurate time concept that en-
ables the implementation of tightly synchronized WSN protocols and time sensitive
applications. A lightweight allocation algorithm of WSN node middleware assigns
application tasks and network maintenance roles with an objective to maximize net-
work lifetime.

The application-speci�c tailoring of WSNs and the feasibility of the presented de-
sign methodology are illustrated by two case studies. An energy ef�cient Tampere
University of Technology WSN (TUTWSN) targeted to low data rate monitoring ap-

ii Abstract

plications is adapted to relay TCP/IP data through WSN and con�gured for delay sen-
sitive operation in an indoor surveillance application. The results show that presented
methods and tools facilitate and hasten the design, con�guration, and implementation
of WSN protocols and algorithms for different applications.

PREFACE

The research work for this Thesis was carried out in the Institute of Digital and Com-
puter Systems at Tampere University of Technology during the years 2001�2007.

I would like to express my gratitude to my supervisor Prof. Marko Hännikäinen for
his guidance and motivation during the research. I am also grateful to Prof. Timo
D. Hämäläinen for his guidance and for the opportunity to carry out the research
in DACI research group. In addition, thanks to both for giving me challenging and
rewarding responsibilities in DACI research group. Sincere acknowledgements go
also to Prof. Shuvra S. Bhattacharyya and Prof. Jari Porras for reviewing and giving
valuable comments on the manuscript of the Thesis.

Many thanks to my colleagues in DACI research group for the inspiring working
atmosphere and enjoyable discussions mostly in the coffee room. Especially, Dr.
Tero Kangas, Dr. Panu Hämäläinen, Dr. Jari Heikkinen, Mr. Timo Alho, M.Sc, and
Mr. Erno Salminen, M.Sc, deserve thanks for their insights and support on research
related and not so much research related issues. Also thanks to Mr. Mikko Kohvakka,
M.Sc, Mr. Jukka Suhonen, M.Sc, and to the other members of TUTWSN team for
their valuable work in the development of technology that made this Thesis possible.

This Thesis was �nancially supported by Tampere Graduate School in Information
Science and Engineering (TISE), Finnish Funding Agency for Technology and Inno-
vation (TEKES), Academy of Finland, Nokia Foundation, Tekniikan edistämissäätiö
(TES), Heikki ja Hilma Honkasen säätiö, KAUTE-säätiö, Ulla Tuomisen säätiö, and
HPY:n tutkimussäätiö.

Finally, thanks to my family. Most of all, I thank my beloved wife Miia. Your love
and understanding carried me through these years, and you were there for me even
then, when I may not have deserved it. You and our lovely sons Emil and Alex keep
showing me what is really important in this life.

Tampere, May 2008

Mauri Kuorilehto

iv Preface

TABLE OF CONTENTS

Abstract . i

Preface . iii

Table of Contents . v

List of Publications . ix

List of Abbreviations . xiii

1. Introduction . 1

1.1 WSN Technology Overview . 1

1.2 Objective and Scope of Research 3

1.2.1 Research Topics . 4

1.2.2 Research Methods and Results 5

1.3 Main Contributions . 6

1.4 Thesis Outline . 7

2. WSN Characteristics and Design Factors 9

2.1 WSN Applications . 9

2.1.1 Envisioned Application Domains 9

2.1.2 Application Tasks . 10

2.1.3 Experimental Applications 11

2.2 Communication and Systems Software Standards Related to WSNs 12

2.2.1 Wireless Communication Standards 13

2.2.2 Systems Software Standards 14

2.3 Unique Characteristics of WSNs 15

2.4 Design Factors for WSNs . 16

vi Table of Contents

3. Systems Software for WSNs . 19

3.1 Operating Systems . 19

3.1.1 OS Requirements . 20

3.1.2 Basic Concepts of WSN OSs 21

3.1.3 Related Research on WSN OSs 24

3.2 Middleware . 27

3.2.1 Middleware Requirements 28

3.2.2 WSN Middleware Approaches 28

3.2.3 WSN Middleware Proposals 30

4. Design of WSNs . 39

4.1 WSN Design Flow . 39

4.2 Models of Computation . 41

4.2.1 Finite State Machines . 42

4.3 Related Research on WSN Design 43

4.3.1 WSN Design Methodologies 43

4.3.2 WSN Simulation Tools . 48

5. Design and Implementation of WSNs with WISENES 51

5.1 WISENES Design Environment 51

5.1.1 WISENES Deployment Models 52

5.1.2 WISENES Framework . 52

5.1.3 Existing Protocol Designs in WISENES 53

5.1.4 WISENES Design Results 55

5.1.5 WISENES Framework Results 56

5.2 Systems Software for Prototyping 58

5.2.1 SensorOS . 58

5.2.2 WSN Node Middleware 60

5.3 Application-speci�c Tailoring of WSNs: Case Studies 61

Table of Contents vii

5.3.1 TCP/IP Experiments . 61

5.3.2 Indoor Surveillance WSN 63

6. Summary of Publications . 65

7. Conclusions . 69

Bibliography . 71

Publications . 93

LIST OF PUBLICATIONS

This Thesis consists of an introductory part and the following publications that have
been previously published. In the introductory part the publications are referred to as
[P1], [P2], ..., [P6].

[P1] M. Kuorilehto, M. Hännikäinen, T. D. Hämäläinen, �Rapid Design and Eval-
uation Framework for Wireless Sensor Networks,� Ad Hoc Networks, ac-
cepted, DOI: 10.1016/j.adhoc.2007.08.003.

[P2] M. Kuorilehto, M. Hännikäinen, T. D. Hämäläinen, �A Survey of Application
Distribution in Wireless Sensor Networks,� EURASIP Journal on Wireless
Communications and Networking, Special Issue on Ad Hoc Networks: Cross-
Layer Issues, vol. 2005, no. 5, pp. 774�788, December, 2005.

[P3] M. Kuorilehto, T. Alho, M. Hännikäinen, T. D. Hämäläinen, �SensorOS: a
New Operating System for Time Critical WSN Applications,� in Embedded
Computer Systems: Architectures, Modeling, and Simulation, Lecture Notes
in Computer Science, vol. 4599, S. Vassiliadis, M. Bereković, T. D. Hämäläi-
nen (Eds.), Springer-Verlag, Heidelberg, Germany, 2007, pp. 431�442.

[P4] M. Kuorilehto, M. Hännikäinen, T. D. Hämäläinen, �A Middleware for Task
Allocation in Wireless Sensor Networks,� in Proceedings of the 16th Annual
IEEE International Symposium on Personal Indoor and Mobile Communica-
tions (PIMRC 2005), Berlin, Germany, Sep. 11�14, 2005, pp. 821�826.

[P5] M. Kuorilehto, J. Suhonen, M. Kohvakka, M. Hännikäinen, T. D. Hämäläi-
nen, �Experimenting TCP/IP Performance for Low-Power Wireless Sensor
Networks,� in Proceedings of the 17th Annual IEEE International Sympo-
sium on Personal Indoor and Mobile Communications (PIMRC 2006), Hel-
sinki, Finland, Sep. 11�14, 2006, 6 pages.

[P6] M. Kuorilehto, J. Suhonen, M. Hännikäinen, T. D. Hämäläinen, �Tool-Aided
Design and Implementation of Indoor Surveillance Wireless Sensor Net-

x List of Publications

work,� in Embedded Computer Systems: Architectures, Modeling, and Sim-
ulation, Lecture Notes in Computer Science, vol. 4599, S. Vassiliadis, M.
Bereković, T. D. Hämäläinen (Eds.), Springer-Verlag, Heidelberg, Germany,
2007, pp. 396�407.

Supplementary Publications

Supplementary publications are not included into the Thesis, but due to their close
relation to the Thesis they are separated as an own list. These are referred to as [S1],
[S2], ..., [S6] in the introductory part.

[S1] M. Kuorilehto, M. Kohvakka, M. Hännikäinen, T. D. Hämäläinen, �High
Level Design and Implementation Framework for Wireless Sensor Networks,�
in Embedded Computer Systems: Architectures, Modeling, and Simulation,
Lecture Notes in Computer Science, vol. 3553, T. D. Hämäläinen, A. D.
Pimentel, Jarmo Takala, S. Vassiliadis (Eds.), Springer-Verlag, Heidelberg,
Germany, 2005, pp. 384-393.

[S2] P. Hämäläinen, M. Kuorilehto, T. Alho, M. Hännikäinen, T. D. Hämäläinen,
�Security in Wireless Sensor Networks: Considerations and Experiments,�
in Embedded Computer Systems: Architectures, Modeling, and Simulation,
Lecture Notes in Computer Science, vol. 4017, S. Vassiliadis, M. Berekovic,
T. D. Hämäläinen (Eds.), Springer-Verlag, Heidelberg, Germany, 2006, pp.
167-177.

[S3] J. K. Juntunen, M. Kuorilehto, M. Kohvakka, V. A. Kaseva, M. Hännikäi-
nen, T. D. Hämäläinen, �WSN API: Application Programming Interface For
Wireless Sensor Networks,� in Proceedings of the 17th Annual IEEE Interna-
tional Symposium on Personal Indoor and Mobile Communications (PIMRC
2006), Helsinki, Finland, Sep. 11�14, 2006, 5 pages.

[S4] J. Suhonen, M. Kuorilehto, M. Hännikäinen, T. D. Hämäläinen, �Cost-Aware
Dynamic Routing Protocol for Wireless Sensor Networks - Design and Pro-
totype Experiments�, in Proceedings of the 17th Annual IEEE International
Symposium on Personal Indoor and Mobile Communications (PIMRC 2006),
Helsinki, Finland, Sep. 11�14, 2006, 5 pages.

[S5] M. Kohvakka, M. Kuorilehto, M. Hännikäinen, T. D. Hämäläinen, �Perfor-
mance Analysis of IEEE 802.15.4 and ZigBee for Large-Scale Wireless Sen-

xi

sor Network Applications�, in Proceedings of 3rd ACM International Work-
shop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous
Networks (PE-WASUN'06), Torremolinos, Spain, Oct. 6, 2006, pp. 48-57.

[S6] J. Suhonen, M. Kohvakka, M. Kuorilehto, M. Hännikäinen, T. D. Hämäläi-
nen, �Cost-Aware Capacity Optimization in Dynamic Multi-Hop WSNs�, in
Proceedings of Design, Automation and Test in Europe (DATE'07), Nice,
France, Apr. 16-20, 2007, pp. 666-671.

xii List of Publications

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

API Application Programming Interface

CAD Computer Aided Design

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DCOM Distributed Component Object Model

DVS Dynamic Voltage Scaling

EFSM Extended Finite State Machine

ETSI European Telecommunications Standards Institute

FIFO First In First Out

FSM Finite State Machine

GDI Great Duck Island

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HIPERMAN High Performance Radio Metropolitan Area Network

HIPERLAN High Performance Radio Local Area Network

HVAC Heating, Ventilation, & Air Conditioning

HW Hardware

I2C Inter-Integrated Circuit

xiv List of Abbreviations

I/O Input/Output

ID Identi�er

IEEE Institute of Electrical & Electronics Engineers

IP Internet Protocol

IPC Inter-Process Communication

JMS Java Message Service

LR-WPAN Low-Rate Wireless Personal Area Network

MAC Medium Access Control

MIPS Million Instructions Per Second

MCU Micro-Controller Unit

MoC Model of Computation

MOM Message Oriented Middleware

NWK Network

OS Operating System

OSI Open Systems Interconnection

PC Personal Computer

PDA Personal Digital Assistant

PIR Passive Infra-Red

POSIX Portable Operating System Interface

QoS Quality of Service

RFID Radio Frequency Identi�cation

RMI Remote Method Invocation

RPC Remote Procedure Call

RTOS Realtime Operating System

xv

RTT Round-Trip Time

SDL Speci�cation and Description Language

SLP Service Location Protocol

SQL Structured Query Language

SQTL Sensor Query and Tasking Language

SW Software

TCL Tool Command Language

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TDOA Time Difference of Arrival

TUT Tampere University of Technology

TUTWSN Tampere University of Technology Wireless Sensor Network

UART Universal Asynchronous Receiver Transmitter

UI User Interface

VM Virtual Machine

WISENES Wireless Sensor Network Simulator

WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Network

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

WWAN Wireless Wide Area Network

XML Extensible Markup Language

1. INTRODUCTION

The number of embedded computing systems used in the everyday life is growing
rapidly. The development is gearing towards the vision of ambient intelligence,
where these small-sized, low-cost, embedded devices will become unobtrusive, or
disappearing technology [67, 68, 124, 179, 180]. One of the key building blocks for
the envisioned technology are Wireless Sensor Networks (WSNs) [85, 104]. WSN
does not refer only to a single network implementation but a new emerging technol-
ogy [13, 26, 40, 178].

A WSN consists of large number of tiny sensor nodes gathering information from the
surroundings, processing it collaboratively, and communicating it wirelessly to loca-
tions, where data can be exploited [6]. The envisioned possibilities of the technology
have resulted in constantly growing interest in research community [5,6,26,31], and
more recently also in industry [104].

1.1 WSN Technology Overview

The concepts related to the WSNs are introduced with an example scenario depicted
in Fig. 1. A large number of nodes is randomly deployed in the vicinity or inside an
inspected phenomenon [6]. The nodes self-organize and collaboratively coordinate
the sensing process depending on the phenomenon [131]. Instead of sending raw
data, each node re�nes its measurement results. The results are further aggregated or
fused to obtain more accurate and complete application results while forwarding them
towards a data gathering point, a sink node [40,47,153]. The sink node typically acts
as a gateway to other networks and user devices [85]. The backbone infrastructure
may implement a part of the complex data processing functionality of the WSN, and
contain components for data storing, visualization, and network control [157].

In WSNs, networking is controlled by a layered protocol stack, an example of which
is shown in Fig. 1. The stack does not strictly follow the layered Open Systems
Interconnection (OSI) reference model due to the cross-layer design needed for the

2 1. Introduction

UI

Node

Gateway

Database

Sink node

Inspected phenomenon

Multi-hop routing

MAC protocol

Middleware

Protocol stack

Application

Physical layer

WSN Transport

UI

Node

Gateway

Database

Sink node

Inspected phenomenon

Multi-hop routing

MAC protocol

Middleware

Protocol stack

Application

Physical layer

WSN Transport

Fig. 1: An example WSN application scenario.

optimization of networking performance and energy ef�ciency [81, 149]. A Medium
Access Control (MAC) protocol at the data link layer controls channel access, and
maintains network connectivity and topology. A routing protocol at the network
layer creates multi-hop paths between endpoint nodes, while a transport protocol
implements end-to-end �ow control, if necessary. At the presentation layer, a mid-
dleware sits between the application, the rest of the protocol stack, and an Operating
System (OS). The main tasks of a WSN middleware are the abstraction of under-
lying communication and hardware, the formulation and coordination of application
task execution within the network, and the combining of data gathered from different
sources, i.e. data fusion [131].

The features of WSNs enable both monitoring and control functionality, and a variety
of potential applications in environmental, home, health, and military domains [5,
6, 26, 85, 156, 178]. Thus, WSNs may cover scenarios from information-intensive
video monitoring systems [4, 103] to low duty cycle, indoor and outdoor monitoring
networks [88,157]. Similarly, the number of nodes in a network may vary from a few
to hundreds or thousands.

The diversity of applications and their contradictory requirements make a single,
�xed solution suitable for all WSN applications impossible [50, 85, 132]. Exist-
ing standards for wireless communications, such as cellular telephone networks,
WiMAX [186], Institute of Electrical & Electronics Engineers (IEEE) 802.11 Wire-
less Local Area Network (WLAN) [74], or Bluetooth [20] are not suitable for most
WSN scenarios because of the large number of nodes and required energy ef�ciency.
While IEEE 802.15.4 Low-Rate Wireless Personal Area Network (LR-WPAN) [77]
and ZigBee [223] are promising standard technologies also for WSNs [13, 57], they

1.2. Objective and Scope of Research 3

cannot be adapted to all potential applications [113].

Mainly due to the immaturity of the technology and the lack of standards, the com-
mercialization of WSNs is still taking the �rst steps. Most of the available products
are node platforms with little or no further functionality [161,193�198,202,204,206�
208], but complete monitoring and control systems are also emerging [190�192,196,
199�201, 203, 205, 206, 209]. Still, most of the implementations rely on proprietary,
mainly research initiated solutions [6, 62, 132].

Early WSN research merely focused on protocols and algorithms for low-power
and scalable MAC [5, 64, 120, 136, 148, 172, 216] and multi-hop routing [2, 7, 13,
80, 93, 134]. Subsequently, more attention has been paid on higher layer issues
such as middleware [59, 65, 66, 129, 218], in-network processing and collaboration
[34, 47, 212, 215, 222], as well as on the de�nition of suitable abstractions for WSN
programming and data access [54, 56, 92, 101, 105, 115, 142, 149].

In order to meet the contradictory objectives resulting from the diversity of applica-
tion domains, the protocols, algorithms, and nodes need to be tailored according to
the application-speci�c requirements [21,104,132,168]. This requires design choices
at different levels of abstraction, starting from the initial selection of components and
ending to the �ne tuning of compile and runtime parameters [50]. Consequently,
system level design methodologies are needed for the management and con�guration
of the potential networking implementations so that the tightening performance and
reliability requirements of the applications are satis�ed [135].

1.2 Objective and Scope of Research

Chong and Kumar state that "the development of sensor networks requires technolo-
gies from three different research areas: sensing, communication, and computing
(including hardware, software, and algorithms)" [26]. This Thesis discusses the de-
sign and implementation of software for wireless communications and application
algorithms. Sensing and hardware issues are not discussed in detail.

This Thesis focuses on low-power WSNs consisting of resource constrained nodes.
To de�ne the resources more explicitly, the order of magnitude for the available re-
sources is outlined by the capabilities of an example node. The average power con-
sumption of a node should be from hundreds of microwatts to few milliwatts. The
node is battery powered and equipped with a Micro-Controller Unit (MCU) having a
couple of MIPS processing capacity, around 128 KB of code, and less than 10 KB of

4 1. Introduction

OS

ApplicationApplicationApplicationRequirements &

specification

Design &

implementation

Integration

Testing

WSN

protocol stack

WSN middleware

Design flow Software architecture

Hardware platform

SW

System level design

ComponentsAbstract
models SWSWprotocol

Parameters

ac_length := 4

sf_length := 0.5

slots := 8

ac_length := 4

sf_length := 0.5

slots := 8

beacons := 2

Configuration

Refining for implementation

OS

ApplicationApplicationApplicationRequirements &

specification

Design &

implementation

Integration

Testing

WSN

protocol stack

WSN middleware

Design flow Software architecture

Hardware platform

SW

System level design

ComponentsAbstract
models SWSWprotocol

Parameters

ac_length := 4

sf_length := 0.5

slots := 8

ac_length := 4

sf_length := 0.5

slots := 8

beacons := 2

Configuration

Refining for implementation

Fig. 2: Design �ow, concepts in system level design, and a single node software
architecture used in this Thesis. Design phases and components covered in this Thesis
are shaded.

data memory. The communication bandwidth provided by the duty-cycled protocols
varies from few bits per second to around a hundred kbps.

In this Thesis, WSNs are viewed as embedded systems that consist of hardware and
software components [11, 41]. In general, an embedded system can be loosely de-
�ned as a special-purpose system that includes one or more software programmable
parts [135,187]. This de�nition can be intuitively applied to both a single sensor node
and the WSN as a whole. The analogy continues with design challenges: how much
hardware is needed, is it possible to reuse existing components, how to minimize
power consumption, does it work and ful�ll the requirements, etc. [187]. These chal-
lenges are even more critical in WSNs, since the testing and evaluation of networks
are dif�cult [50]. While a wide variety of design methodologies and tools has been
proposed for the development embedded systems, these design issues have gained far
less attention in WSNs [11, 21, P6].

1.2.1 Research Topics

The main contributions of the Thesis are outlined in Fig. 2. The focus is on the ab-
stractions, methods, and tools for system level design of WSNs, and on the architec-
ture supporting software implementation for WSNs. The sequence of steps followed
during the WSN design, i.e. design �ow [187], is adopted from embedded systems.
It is an iterative process that consists of requirements and speci�cation, design and
implementation, integration, and testing (veri�cation) phases [84, 133, 187].

1.2. Objective and Scope of Research 5

In system level design, a WSN is composed of a set of components that comprise
node platforms, communication protocols, and applications. Initially, these com-
ponents are described by abstract models de�ning the system functionality. During
the design, the models are re�ned to detailed hardware and software implementa-
tions. The components can be either selected from a library and con�gured accord-
ing to the application requirements or implemented from scratch [85]. Con�guration
means the composition of utilized algorithms and the tuning of parameters so that
operational requirements are met. The requirements are set by the deployment case.
The deployment in this context means the placing of the fully functional WSN and
its applications to the �nal operation environment [132]. The functionality of a de-
ployed WSN can also be changed through runtime reprogramming or recon�gura-
tion [37, 126, 177].

The architecture for software implementation is provided by systems software that
facilitates the prototyping and �nal implementation on physical node platforms. The
systems software manages node resources and provides application independent ser-
vices. In this Thesis, systems software consists of an OS and a middleware layer.
Application scenarios illustrate the design and con�guration of application-speci�c
WSNs.

1.2.2 Research Methods and Results

The system level design methodology and the tools presented in this Thesis have
been developed during the research. The research outcomes and the main topics they
address are clari�ed in Table 1. The de�nition of abstract deployment models, their
early re�nement, and evaluation with large scale and long-term simulations are done
with the Wireless Sensor Network Simulator (WISENES) tool. WISENES allows
the graphical design of deployment models at higher abstraction level. Thus, the
core functionality of the system is described without the consideration of low level
implementation details, such as speci�c implementations of algorithms, composition
of packets, or order of bit �elds, etc. The design time evaluation in WISENES makes
it possible to assess the suitability of a WSN con�guration prior to the actual low
level implementation.

The software architecture for prototyping is implemented by SensorOS. It supports
time critical WSN applications with sophisticated resource and power management
functionality. Further, SensorOS system services support the low level implementa-
tion of the deployment models with the same Model of Computation (MoC) as used
in WISENES. On top of SensorOS, the developed middleware supports runtime coor-

6 1. Introduction

Table 1: Main research results of this Thesis and the addressed topics.
Research outcome Covered research topics
WISENES - Abstract WSN models as communicating state machines

- WSN design �ow (design and implementation phase)
- Component con�guration and con�guration evaluation

SensorOS - Systems software for WSN applications
- Single node software architecture

WSN node middleware - Systems software for WSN applications
- Runtime coordination and con�guration

WSN deployment cases - Evaluation and testing of presented tools and methods

dination and management of application tasks. Finally, these tools and environments
are combined to a single design �ow that aids design, con�guration, and implemen-
tation of WSNs.

The challenges in the design and implementation of application-speci�c WSNs are
highlighted by two example application scenarios. External data relay and indoor
surveillance applications are implemented using Tampere University of Technology
Wireless Sensor Network (TUTWSN) protocols and prototypes [88,157]. TUTWSN
is a proprietary WSN technology developed in the Institute of Digital and Computer
Systems at Tampere University of Technology (TUT). It is targeted to low data rate
monitoring applications, in which the main objectives are scalability and energy ef�-
ciency [88]. Prototype node platforms, applications, and a backbone support infras-
tructure have been implemented for the evaluation of TUTWSN protocols and for
exploring the possibilities of WSNs [157].

The technological details and implementations of node platforms, algorithms for
MAC and routing, as well as detailed approaches for cross-layer design are out-
side the scope of this Thesis. Similarly, solutions for automated design space explo-
ration [84] or code generation from WISENES to SensorOS on hardware platforms
are not given. The limited resources of WSN node platforms still favor manual im-
plementation [S1], even though a tight integration of the design environment and OS
diminishes the resource consumption considerably [176].

To summarize, systematic methodologies and tools supporting different phases from
application requirements to the WSN deployment are needed in order to manage the
continuously expanding WSN design space [132]. The claim of this thesis is that the
design methods, tools, and software architecture presented in this Thesis facilitate
the design and con�guration of application-speci�c WSNs.

1.3. Main Contributions 7

1.3 Main Contributions

As a summary, the main contributions of the Thesis are:

• A survey of existing tools and frameworks for the design and simulation of
WSNs, and a review of WSN OSs and middleware.

• Abstract deployment models for describing WSN functionality. The models
divide the system to manageable, interactive entities.

• A high abstraction level design and evaluation framework, WISENES, for
WSN protocol and application development.

• Systems software for WSN nodes, consisting of SensorOS and WSN node mid-
dleware. The software architecture aids the implementation of WSN applica-
tions and protocols on a very resource constrained WSN nodes.

• Two deployment cases that express the challenges related to design and im-
plementation of real WSN deployments, and prove the feasibility of developed
methods and tools.

1.4 Thesis Outline

This Thesis consists of an introductory part and six publications [P1-P6]. The intro-
ductory part presents WSN technology, gives technical background and motivates the
work. The main results are presented in the publications. The rest of the introductory
part is organized as follows:

Chapter 2 introduces WSNs and highlights their special characteristics and require-
ments. WSN applications and application domains are also discussed. The chapter
includes also a short overview of existing and emerging standards related to WSNs.

Chapter 3 focuses on the systems software for WSNs. The chapter concentrates on
the general concepts and related work regarding OSs and WSN middleware.

Chapter 4 discusses the WSN design challenges and motivates the need for a system-
atic design �ow. An overview of existing methodologies and tools is given.

Chapter 5 composes the research results described in detail in publications [P1-P6].
The main focus is on the tools and methodologies related to WSN design and proto-
typing with WISENES and SensorOS.

8 1. Introduction

Chapter 6 summarizes the publications included in the Thesis.

Chapter 7 concludes the Thesis.

2. WSN CHARACTERISTICS AND DESIGN FACTORS

This chapter outlines the design space of WSNs based on the current and envisioned
application domains and experimental implementations. Standards related to WSN
communication and software architecture are presented as a baseline for WSN de-
sign. From the outlined design space, a set of common characteristics is derived to
represent the unique properties of WSNs. While these characterize most of the WSN
scenarios, they do not describe individual deployments. Therefore, the design factors
that formalize more detailed requirements for each case are given.

2.1 WSN Applications

The tasks for WSN applications depend mainly on the sensors and actuators available
in nodes, since the in-network processing and communication capabilities allow a
rich set of application functionality. Currently, the actuators are limited mostly to
servo drives and different types of switches, while the physical quantities that can be
measured with already existing technologies are diverse. These include for example
temperature, humidity, pressure, acceleration (vibration), sound, light (luminance,
image), magnetic �elds (compass), location, chemical compositions, and mechanical
stress [6, 43, 85].

2.1.1 Envisioned Application Domains

The measured physical quantities and their fusion produce input information for the
applications. The typical WSN application domains envisioned in the literature are:

Home automation: WSNs are envisioned as one of the key building blocks
for the smart homes and intelligent buildings. Example usage scenarios in-
clude Heating, Ventilation, & Air Conditioning (HVAC) control, and local and
remote management of home appliances [6, 85].

10 2. WSN Characteristics and Design Factors

Environmental monitoring: Environmental applications cover scenarios from
condition monitoring to wildlife tracking. WSNs can be used for instrumenting
both agriculture and wild nature. Another application area is catastrophe (e.g.
wild�re, earthquake, tsunami) prevention and disaster relief [6, 26, 31, 62, 85,
165].

Industrial monitoring and control: The replacement of traditional cabling
in machine surveillance and maintenance systems is the main application for
WSNs. Further, WSNs can be bene�tted for managing logistics [26, 85].

Military: Military applications were the driver for the �rst WSN research ini-
tiatives [26, 132]. While the scope has expanded rapidly, military is still one
of the main application areas. Usage scenarios cover for example intelligence,
surveillance, reconnaissance, and targeting [6, 26].

Personal security and asset management: WSNs are envisioned to replace
or extend existing wired alarm systems in home, of�ce, and other public en-
vironments such as airports and factories. Compared to wired systems, WSNs
allow faster deployment, more �exibility, and larger area coverage [6, 26].

Traf�c control: WSNs make it possible to extend the traf�c monitoring and
control systems farther away from the most critical points. Temporary situa-
tions such as roadworks and accidents can be covered in place [26, 85]. A far
reaching vision embeds a WSN node to every vehicle. These nodes share the
traf�c information, generate warnings of accidents and jams, and guide drivers
in route selections [26, 128].

Health care: Biomedical sensor networks can be used to gather physiological
data directly from patients [6, 85, 139]. Other health care related application
areas are drug administration, and tracking of doctors and patients in hospital
premises [6, 85].

2.1.2 Application Tasks

In most of the WSN applications, the nodes are either data sources or data sinks.
Source nodes perform sensing and disseminate the data to sink nodes. Typically,
sink nodes relay the information to an external client, e.g. a human user [5, 85].
Applications, in which the gathered data is processed within the network and used
for controlling actuators are still rare [3].

2.1. WSN Applications 11

Even though the application domains are diverse, the applications share some basic
characteristics. In general, four typical tasks that are independent of the application
domain can be identi�ed [6, 85, 110]:

Monitoring: Determine the value of a parameter in a given location or at the
coverage area of the network. Typically, the task is completed using periodic
measurements.

Event detection: Detect the occurrence of events of interest and their parame-
ters. The detection can be performed either by a single node or by a group of
nodes depending on the complexity of the event.

Object or event classi�cation: Identify an object or an event. This requires
the combination of data from several sources and collaborative processing to
conclude the result.

Object tracking: Trace the movements and position of a mobile object within
the coverage area of the network.

2.1.3 Experimental Applications

A set of experimental application deployments is listed in Table 2 in order to illustrate
the application types in practice. The selected applications are based on research pro-
posals, since commercial networks are still quite rare and detailed information about
them is not available. The columns of the table give an overview of the characteristics
of the current deployments. The scale de�nes the number of nodes, and the lifetime
the length of the deployment. The data interval illustrates the activity of the network
by giving the frequency of data communication.

Most of the presented WSNs are targeted to environmental monitoring. The scale of
the deployments is still quite limited and the lifetimes do not reach a year. Further,
the activity is quite infrequent in most of the applications.

Weather conditions in forest environments are monitored in the heathlands of North-
ern Germany [171], in Kangasala [157], and by NIMS [15], Macroscope [170] and
PicoRadio project [125]. CORIE [154] measures the temperature and pressure at
stations located in the Columbia River, while GlacsWeb [106] measures similar as-
pects in glaciers. An agricultural WSN deployment to a vineyard setting is discussed
in [16]. Wildlife is observed by Great Duck Island (GDI) [164] that monitors the

12 2. WSN Characteristics and Design Factors

Table 2: Examples of research-based experimental WSN deployments.
Deployment Scale Lifetime Data interval
Environmental monitoring
CORIE [154] 18 N/A 1-15 min
GDI [164] 150 4 months 20 min
GlacsWeb [106] 8 few months 1 day
Heathland [171] 24 16 days 1 hour
Kangasala [157] 19 >4 months 1 minute
Macroscope [170] 33 44 days 30 seconds
NIMS [15] 7 N/A 3-20 seconds
PicoRadio [125] 25 1-2 months 5 seconds
Vineyard [16] 65 6 months 5 minutes
ZebraNet [221] 7 12 months 8 minutes
Shell�sh [30] 4 <1 day 5 minutes
Building monitoring
SensorScope [137] 20 2 months 5 minutes
Wisden [213] 10 <1 day <1 second
Object tracking
Multi-target tracking [114] 144 <1 day few seconds
PEG [141] 100 <1 day 0.5 seconds
PinPtr [145] 56 <1 day <1 second
Vehicle tracking [130] 6 N/A <1 second
VigilNet [63] 70 <1 day <1 second

occupancy of seabird burrows, by ZebraNet [221] that tracks animal movements, and
by WSN for a short period monitoring of shell�sh catches [30] .

In buildings, the monitored aspects are either structures or conditions for HVAC con-
trol. Wisden [213] tracks vibrations in building structures, while SensorScope [137]
measures light, sound, and temperature in an indoor environment.

Due to the relative complexity of object tracking, the number of proposals is quite
limited and the lifetimes of the deployments are quite short. In most of the cases, the
given lifetime is not restricted by the battery capacity but the fact that the deployment
is merely an experiment performed only for a short period of time. Vehicle tracking
is implemented using ultra-sound in PEG [141], with infrared light in [130], and
with multiple different types of sensors in VigilNet [63]. Multiple targets are tracked
simultaneously in [114] using Passive Infra-Red (PIR) sensors. PinPtr [145] locates
a shooter based on the Time Difference of Arrival (TDOA).

2.2. Communication and Systems Software Standards Related to WSNs 13

2.2 Communication and Systems Software Standards Related to WSNs

Standards and de facto technologies in wireless communications and systems soft-
ware are diverse, but only few are suitable for low-power WSNs. Even these cannot
be applied to all WSN applications. Instead, the standards set a common reference
platform, to which application-speci�c tailoring of WSNs can be based on [113].
Furthermore, especially in industrial applications the inter-operability and continuity
guaranteed by standards are important design drivers [23, 185].

In this Thesis, the standards set a starting point and reference for the research. The
discussed standards are limited to wireless communications, OSs, and middleware.
Design and programming languages are not discussed, since they do not address
system level design issues.

2.2.1 Wireless Communication Standards

Currently, the wireless communication technologies are aiming towards both higher
data rates, and lower cost and power consumption [111]. From the standard technolo-
gies, Wireless Wide Area Networks (WWANs), such as cellular telephone networks,
and Wireless Metropolitan Area Networks (WMANs), e.g. harmonized IEEE 802.16
[76] and ETSI High Performance Radio Metropolitan Area Network (HIPERMAN)
[46] standards promoted and certi�ed by the WiMAX Forum [186], target to large
area coverage and broadband data communication.

WLANs are designed for replacing or extending wired Ethernet. Currently, IEEE
802.11 WLAN [74] is the prevailing technology, which is expanding rapidly to busi-
nesses, homes, and most recently to public hot spots [108, 183]. Ad-hoc networking
support is being standardized for IEEE 802.11 WLAN by the ESS Mesh Networking
Task Group [79]. Other WLAN technologies, such as High Performance Radio Local
Area Network (HIPERLAN)/2 [45], have not been able to penetrate to the WLAN
market.

The separation of WLANs and Wireless Personal Area Networks (WPANs) is not
distinct [71]. In general, WPANs target to low-cost and low-complexity connection of
personal devices, like laptops, Personal Digital Assistants (PDAs), and mobile phones
[144]. Bluetooth [20] and IEEE 802.15.4 LR-WPAN [77] together with ZigBee [223]
are currently the most well-known technologies. Several industry initiatives have
proposed improvements or alternatives for Bluetooth and ZigBee. These include
Wibree [184], Z-wawe [220], MiWi [48], and ANT [8] that target to lower power

14 2. WSN Characteristics and Design Factors

WMAN

Range

Data rate

1 m

10 m

100 m

1 km

10 km

1 10 100 1 10 100
kbit/s Mbit/s

W
L

A
N

WSN

WPAN

WWAN

WMAN

Range

Data rate

1 m

10 m

100 m

1 km

10 km

1 10 100 1 10 100
kbit/s Mbit/s

W
L

A
N

WSN

WPAN

WWAN

(a)

WSN

Power

Mobility

ultra-low

fixed low high

WPAN

WLAN

WMAN

low

medium

high
W

W
A

N

WSN

Power

Mobility

ultra-low

fixed low high

WPAN

WLAN

WMAN

low

medium

high
W

W
A

N

(b)
Fig. 3: Comparison of WSNs to other wireless technologies in terms of (a) range and
data rate, and (b) power consumption and mobility.

consumptions or cost effectiveness compared to the standard technologies.

IEEE 1451.5 working group targets to the inter-operability of sensors by standard-
izing the interfaces and use of wireless communications in smart transducer sys-
tems [78,163]. The wireless interfaces used by IEEE 1451.5 include standard WPAN
and WLAN technologies [163]. The main focus of IEEE 1451.5 is on the interfaces
and it does not de�ne any new protocols for communication.

The suitability of the wireless technologies for low-power WSNs is assessed in Fig. 3.
An IEEE originated classi�cation categorizes technologies according to their range,
data rate, and power consumption [70,71,144]. In addition to these, the �gure consid-
ers also the mobility of nodes [23, 108]. Scalability is left out from the comparison,
since none of the technologies reaches the scales of tens of thousands of nodes envi-
sioned for WSNs. The power consumption caused by high data rates and long range
communications in WWAN, WMAN, and typically also in WLAN make them un-
suitable for low-power WSNs. WPANs are closest to meet the unique requirements
of WSNs.

2.2.2 Systems Software Standards

Several standards or de facto standards de�ning OSs and especially middleware archi-
tectures have been widely adopted in computer systems. While standard technologies
for OSs and Realtime Operating Systems (RTOSs) are quite rare, several middleware
standards exist for implementing distributed processing in computer networks and
clusters.

2.3. Unique Characteristics of WSNs 15

Widely used OSs, such as Microsoft Windows and Linux, have not been standardized
as is. Yet, they as well as most of the other common OSs and a part of RTOSs conform
Portable Operating System Interface (POSIX) standard [75]. POSIX speci�es a set
of OS services required for application implementation and a common Application
Programming Interface (API) for accessing these. More technology speci�c varia-
tions of the POSIX standard have been de�ned by Single Unix Speci�cation [116]
and Linux Standard Base [99].

The middleware standards in computer networks specify common interfaces and
conventions for transferring execution to remote locations, messaging between end
points, and for service discovery [P2]. The main objective is to abstract the hetero-
geneities in hardware platforms, communication protocols, OSs, and programming
languages [174]. Common Object Request Broker Architecture (CORBA) [174],
Java Remote Method Invocation (RMI) [160], and Microsoft's Distributed Compo-
nent Object Model (DCOM) [73] are object-oriented architectures for remote pro-
cessing. They rely on client-server model and abstraction through interface speci�-
cations. Java Message Service (JMS) [159] is an API of a Java-based Message Ori-
ented Middleware (MOM) for communication between remote clients. Also service
discovery approaches utilize client-server architecture. Service Location Protocol
(SLP) [58] implements discovery in Transmission Control Protocol (TCP)/Internet
Protocol (IP) networks and Jini [158] in Java environment. UPnP [107] targets to
general interoperability.

In general, the memory requirements of these technologies exceed the resources
available on sensor nodes [P2]. Therefore, these standards mainly steer the func-
tional requirements for WSN systems software.

2.3 Unique Characteristics of WSNs

Even though the WSNs possess some similarities with the other wireless ad-hoc net-
works, there are several characteristics that set WSNs apart from other communica-
tion networks [6]. While all of these characteristics may not be applied together, the
following lists the main unique properties of WSNs.

Communication Paradigm: The type of service provided by WSNs differs
from traditional wired and wireless communication networks [43]. Compared
to e.g. TCP/IP , the communication does not occur between speci�c endpoints
but it merely originates according to geographical locations or data content

16 2. WSN Characteristics and Design Factors

(e.g. "nodes in Tampere region" or "nodes with measured temperature value
above 20 °C") [153, P5]. This kind of data-centric nature makes individual
node Identi�ers (IDs) unimportant.

Application-speci�c: A single end device in a computer network may have
multiple applications, and the network should be able to serve each application
according to its Quality of Service (QoS) requirements for throughput, de-
lay, and reliability. Conversely, a WSN is deployed to perform a speci�c task
or a small set of tasks. This makes it possible to use application-dependent
node platforms, communication protocols, data aggregation, and in-network
processing and decision making [153].

Unpredictability: WSN are subject to a number of uncertainty factors [153].
First, nodes are error-prone due to harsh operating conditions. Communication
links are unreliable because of node errors, simple modulations, mobility of
nodes, and external or internal interferences. Also, WSN protocols have a
built-in dynamic nature caused by continuously changing data structures, e.g.
routing tables, used for decision making. These aspects make even static WSNs
unpredictable [153].

Scale and Density: Compared to other wireless networks, in most WSN sce-
narios the number of nodes and their density is few orders of magnitude larger
[5, 43]. These factors depend on the needed sensing coverage and robustness
(redundancy).

Resource constraints: The nodes in low-power WSNs are small sized and
battery powered. As hardware design is guided by these factors, the compu-
tation, communication, memory, and energy resources of nodes are very lim-
ited [6, 153, P2].

Nature of deployment: The deployment of nodes can be random to harsh or
hostile environments [5]. This hinders the maintenance, and makes the replace-
ment of nodes impractical [157]. Still, the requirements and applications of the
WSN may change also during the deployment. This implicates that runtime
recon�guration and reprogramming are needed [37, 126].

2.4 Design Factors for WSNs

Several efforts for formalizing the design factors for WSNs have been published
[5, 6, 85, 132, 144, 168]. These concentrate mainly on the functional issues related

2.4. Design Factors for WSNs 17

to the communication protocols [5, 6, 85, 168]. In order to cover also system level
aspects, the functional factors are complemented with deployment factors character-
izing physical WSN deployments [132].

The design factors de�ne the requirements for the WSN design. Further, they are suit-
able for comparing different deployments and for identifying similarities between ap-
plications [5,132]. This facilitates the reuse and selection of existing node platforms,
communication protocols, and algorithms for different application scenarios.

Deployment Factors

The deployment factors extract the main requirements for the physical deployment.
They guide the selection of node platforms, and their placement to the target environ-
ment.

Network Deployment: The actual deployment process can be random or nodes
can be manually set to designated places. Nodes are either placed only once or
nodes and batteries can be iteratively replaced [132].

Cost, size, resources, and energy: A node can be about the size of a brick,
matchbox, or grain. Nodes are either mains powered, or the operating energy
can be stored in batteries, or scavenged from the environment. Manufacturing
costs of nodes can vary from few cents to hundreds of euros [5, 132].

Communication modality: Typically, the communication modality in WSNs
is radio waves but other modalities are available. These include light, induc-
tive coupling that is used in Radio Frequency Identi�cation (RFID) systems,
capacitive coupling, sound, or ultrasound [6, 132].

Connectivity and coverage: The connectivity of the network depends on the
radio coverage, while the coverage itself in this context de�nes how certainly
and reliably an event can be detected with physical sensors. These can vary
from fully connected and covered to sporadic, in which case only parts of the
area can be monitored and nodes are only occasionally in the communication
range of other nodes [132].

Functional Factors

The functional factors de�ne the guidelines for protocol and application behavior.
While the deployment factors have most in�uence before a WSN is deployed, these

18 2. WSN Characteristics and Design Factors

have more effect on the active operation of the network.

Fault tolerance: The overall operation of a WSN must be robust against fail-
ures of individual nodes. In addition to algorithms increasing reliability, this
can be addressed by redundant deployments, when more nodes than strictly
necessary are used [6, 85].

Autonomous operation: The possibilities for manual administration of a WSN
depend on the application. However, self-organization, self-con�guration, and
error recovery are typically required mechanisms in WSNs due to the large
number of nodes and their high density [85].

Lifetime: The de�nition of the lifetime depends on the application. It can be
de�ned as the time until half of the nodes die or when network stops delivering
application data reliably [168]. In general, the lifetime of battery powered
nodes can be from hours to several years [132].

Dynamic nature: Mobility and interference from the surroundings create a
dynamic operating environment for WSNs. Mobile nodes can be attached to
moving objects, in�uenced by forces of nature (e.g. wind, water, earthquake,
avalanche, landslide), or have actuators enabling node mobility [132, 168].

Network performance: In low-level, the network performance can be char-
acterized by throughput, latency, jitter, and the number of lost and duplicated
packets [71]. Typically, improved performance results in increased resource
consumption. This trade-off needs to be adapted according to the application
requirements [4, 129, 153, 168].

Accuracy of results: The required accuracy of results depend on the appli-
cation. In several WSN scenarios, distributed collaboration among nodes is
required to obtain needed accuracy [85, P2].

Security: The need for security and privacy is evident in certain application
domains e.g. in health care and military [119, S2].

3. SYSTEMS SOFTWARE FOR WSNS

From a design point of view, the systems software (term system software is used in-
terchangeably) creates a runtime environment that supports design time abstractions
in the �nal implementation on node platforms. For WSNs, a major challenge for the
systems software is how to provide generalized abstractions for wide variety of ap-
plications in the constraints set by node resources. Typically, this results in trade-offs
between the level of abstraction, expressiveness, and the ef�ciency of implementa-
tion [129].

In WSNs, the separation between OSs and middleware is not explicit. In computer
systems, middleware sits between applications and OS that provides already a rich
set of functionality and well-de�ned interfaces. In WSNs, the de�nition and imple-
mentation of such abstractions and interfaces in a layered manner is dif�cult due to
the limited resources of nodes. Therefore, OS and middleware functionality can be
combined to a single framework [129]. Regardless of the separation between OS and
middleware in an actual implementation, in this chapter they are consider as separate
entities.

This chapter discusses requirements and basic concepts of both OSs and middleware
for WSNs. Further, related research is surveyed on both areas. An OS is a lower level
component for hardware abstraction that handles resource management and supports
concurrent execution for managing parallel data and control �ows [69, 85, P2]. On
top of OS, middleware provides an abstraction that supports desired programming
paradigms and hides the details of underlying network infrastructure. Moreover, mid-
dleware controls application task execution and coordinates collaborative in-network
processing [131, P2].

3.1 Operating Systems

In computer systems, OSs facilitate the implementation and use of computer pro-
grams and resources for both application programmers and end users. OS services

20 3. Systems Software for WSNs

include the concurrent execution and communication of multiple programs, access
and management of Input/Output (I/O) devices and permanent data storage (�le sys-
tem), and control and protection of system access between multiple users [152]. In
WSNs, these services are only partially required [153].

3.1.1 OS Requirements

WSN OSs should enable concurrent execution of multiple realtime applications and
protocols with a considerably smaller memory footprint than that of full feature gen-
eral purpose OSs [153]. The main requirements for OSs are the management of
limited resources and the facilitating of the development of WSN applications [69].
The requirements are summarized more speci�cally in the following list.

Small memory footprint: A typical WSN node has 128 KB code and less than
10 KB of data memory [68, 157, P2]. In order to preserve most of the memory
resources for application and protocol implementation, available memory for
OSs is very limited [44, 69].

Concurrent programming: WSN nodes handle concurrent data �ows that
must be served in timed manner [69, 85, 153]. Data is originated by sensors or
routed from other nodes. OS needs to support concurrency of tasks in order
to interleave high-level processing of parallel data �ows with low-level events
and communication protocol functionality [69].

Energy management: System level energy management is required due to
the battery powered nature and lifetime requirements of WSN nodes. An OS
must control the sleep states, shutdown unused peripherals, and use Dynamic
Voltage Scaling (DVS) techniques in order to make ef�cient use of energy
resources [44, 85].

Realtime operation: The tight relation to real world inherently sets tight tim-
ing constraints to WSN operation [153]. A realtime operation is required for
meeting deadlines associated to data and event processing [44].

Memory management: WSN communication requires local data buffering
and variable sized control data structures for network maintenance. In order to
get a full use of data memory, dynamic memory allocation is needed [44].

3.1. Operating Systems 21

Hardware abstraction: One of the main services of OSs is to abstract hard-
ware access behind a uni�ed interface [152]. This concerns MCU and periph-
eral devices, such as sensors, actuators, radios, and other I/O devices.

Robustness: An OS needs to be reliable in its operation and support reliable
execution of applications, since fault tolerance is one of the key requirements
for WSN operation [69].

Modularity: In addition to protocol stack optimization, the diversity of ap-
plication requirements necessitates also application-speci�c tailoring of OSs.
Thus, OS services and device drivers that are not required by deployed appli-
cations and protocols should be excluded from the tailored OS [69].

3.1.2 Basic Concepts of WSN OSs

General purpose OSs follow either monolithic or microkernel architecture. A mono-
lithic OS implements all system services inside the kernel. A microkernel includes
only the most essential features of OS, while other services are implemented in ex-
ternal processes or servers [152]. In WSNs, such architectural choices are not as
evident, since OS protection and interfaces are not well-established [44, 55].

Even though networking is a key service in WSNs, there are varying opinions whether
it should be embedded to the OS kernel or not [19, 24, 44, 69]. While an integrated
network stack eases the application development, it hinders the interchangeability
and con�guration of protocols [69]. A modular stack keeps the kernel smaller and
simpler, but it has to compete of Central Processing Unit (CPU) time with application
tasks, which increases the risk of malfunction and starvation.

Currently, the con�guration of a WSN is mainly considered as a design time issue.
Yet, the dynamic nature of networks requires also runtime recon�guration [177].
Therefore, a dynamic loading of both application and OS modules are useful in
WSNs [24, 37, 38, 61].

Basically, two main architectural choices are utilized for concurrent processing in
WSN OSs. A process-based preemptive multithreading is adapted from computer
systems. Another approach is event-based, which is motivated by the event-driven
nature of WSNs [85].

22 3. Systems Software for WSNs

Ready queue

Processor

Event 1 queue

create exit

Event 2 queue

Event n queue

Event 1 wait

Event 2 wait

Event n wait

Event 1

occurs

Event 2

occurs

Event n

occurs

dispatch

Thread:

- Context

- Stack

- Functionality

Preempt/timeout

Ready queue

Processor

Event 1 queue

create exit

Event 2 queue

Event n queue

Event 1 wait

Event 2 wait

Event n wait

Event 1

occurs

Event 2

occurs

Event n

occurs

dispatch

Thread:

- Context

- Stack

- Functionality

Preempt/timeout

Fig. 4: Thread management in preemptive multithreading OSs [152].

Preemptive Multithreading

Preemptive multithreading offers a common programming model to application de-
velopers. Fig. 4 illustrates the queuing of threads and their state changes in a pre-
emptive scheduler. Each process or thread (thread is used from now on) is an inde-
pendent functional unit that is executed in its own context. A running thread may be
swapped from CPU due to preemption or a blocking wait operation initiated by an
OS system call. In former, the thread is put back to the ready queue, and in latter to
an event-speci�c wait queue. When the event occurs, the thread is put to the ready
queue [152].

Preemptive multithreading offers a seemingly parallel execution of threads and en-
ables priority-based scheduling, in which the tasks with highest importance can be
scheduled at de�ned timestamps [44]. However, in WSNs the context switching adds
considerable overhead to the processing of typically very simple application tasks.
Also, a preemption requires that each thread has a dedicated memory for its context
and stack [38].

3.1. Operating Systems 23

Task queue

Processor

Event handler queue

Task

activation

exit

Completion

Event

occurs

dispatch

Component:

- Context

- Event handler

- Command handler

- Task

create

Instant re-activation

Event

complete

dispatch

Event passing

Event Events

processed

Task queue

Processor

Event handler queue

Task

activation

exit

Completion

Event

occurs

dispatch

Component:

- Context

- Event handler

- Command handler

- Task

create

Instant re-activation

Event

complete

dispatch

Event passing

Event Events

processed

Fig. 5: Scheduling of events and tasks in event-based OSs.

Event-based Kernels

Event-based kernels are built around event-handlers, as depicted in Fig. 5. An event-
handler reacts to an event, which is initiated by a hardware interrupt that indicates
e.g. a reception of data from radio, a timer event, or available data from a sensor. An
event is propagated upwards through a layered architecture. Data is processed in tasks
designated for regular processing. When a task needs services from lower layers e.g.
for sending data, it issues a command that traverses downwards in hierarchy [69].

Each event and command handler, and regular tasks run to completion. Thus, context-
saving is not required. Reactiveness is obtained through event-handlers that preempt
currently running task or command processing [69]. As a consequence, especially the
data memory usage of such OSs is low. As a drawback, an event-driven programming
model is somewhat dif�cult to comprehend [38, 44, 85]. Since each task runs to
completion, lengthy task processing needs to be partitioned at the application level

24 3. Systems Software for WSNs

[38].

3.1.3 Related Research on WSN OSs

Embedded RTOSs, such as OSE, QNX Neutrino, VxWorks, and Symbian OS are
widely used in industrial control and telecommunication systems. However, their
memory consumption is too large for resource constrained sensor nodes [19, 69].
Small memory footprint general purpose RTOSs, such as FreeRTOS or µC/OS-II, do
not meet the strict timing and power mode utilization requirements of WSNs [19].

Existing OS proposals for WSNs are summarized in Table 3. SensorOS presented in
[P3] is included to facilitate comparison. The dimensions in the table highlight the
resource consumption, realtime capability, and con�gurability of OSs. The second
column de�nes kernel type adopted by the OS and the third one the principal MCU
architecture, to which OS has been implemented. Two following columns present
OS resource consumption with the given target hardware. The sixth column de�nes
whether OS guarantees soft or hard deadlines, or none at all. Recon�guration is
typically supported either by allowing bootloader type reprogramming of the whole
code image, or by enabling dynamic loading of tasks. The last column lists additional
services provided by the OS. The values given in the table are from cited reference
publications, unless stated otherwise. Therefore, e.g. memory consumption may not
be valid for latest release of OS, or it may depend greatly on application-speci�c
con�guration.

Preemptive Multithreading OSs

Preemptive multithreading for sensor nodes with POSIX style API is implemented
in MOS [19]. MOS implements priority-based scheduling, synchronization between
threads, and power saving features. Network stack is implemented as an OS service.
The data memory consumption of MOS kernel is only 500 B but this does not include
the stacks of application threads [19].

Similar approach to MOS is taken in nano-RK [44], which implements also a �xed
priority preemptive scheduling. In addition to the features implemented in MOS,
nano-RK introduces resource reservation policy, through which application threads
can allocate CPU time, network bandwidth, and sensor resources [44].

RETOS [24] extends MOS and nano-RK features by supporting dual mode operation
that separates kernel and user modes. RETOS functionality can be recon�gured by

3.1. Operating Systems 25

Ta
bl

e3
:C

om
pa

ris
on

of
ex

ist
in

g
W

SN
O

Ss
.

O
S

M
ai

n
ap

pr
oa

ch
M

CU
Co

de
(K

B)
D

at
a(

B)
Re

al
tim

e
Ru

nt
im

e
O

th
er

se
rv

ic
es

re
pr

og
ra

m
m

in
g

Se
ns

or
O

S
[P

3]
pr

ee
m

pt
iv

e
PI

C1
8

6.
8

11
5

so
ft

no
ne

µs
re

so
lu

tio
n

tim
in

g

M
O

S
[1

9]
pr

ee
m

pt
iv

e
A

tm
el

AV
R
∼1

4
1)

∼5
00

1)
so

ft
no

ne
ne

tw
or

k
sta

ck
,r

em
ot

e
co

m
m

an
d

sh
el

l
na

no
-R

K
[4

4]
pr

ee
m

pt
iv

e
A

tm
el

AV
R
∼1

0
2)

∼2
00

0
2)

ha
rd

no
ne

ne
tw

or
k

sta
ck

RE
TO

S
[2

4]
pr

ee
m

pt
iv

e
A

tm
el

AV
R

23
.7

11
25

so
ft

m
od

ul
e

ne
tw

or
k

in
te

rfa
ce

,
re

lo
ca

tio
n

m
em

or
y

pr
ot

ec
tio

n
t-k

er
ne

l[
55

]
pr

ee
m

pt
iv

e
A

tm
el

AV
R

28
.2

∼2
00

0
no

ne
no

ne
vi

rtu
al

m
em

or
y

Ti
ny

O
S

[6
9]

ev
en

t-b
as

ed
A

tm
el

AV
R

3.
4

3)
22

6
3)

no
ne

no
ne

ac
tiv

em
es

sa
ge

s
al

lo
w

in
g

RP
C

SO
S

[6
1]

ev
en

t-b
as

ed
A

tm
el

AV
R

20
.0

11
63

no
ne

dy
na

m
ic

lo
ad

in
g

dy
na

m
ic

m
em

or
y

po
ol

,
of

co
m

po
ne

nt
s

ru
nt

im
ei

nt
eg

rit
y

ch
ec

k
Be

rth
a[

98
]

ev
en

t-b
as

ed
80

51
∼1

0
1)

∼1
50

0
1)

no
ne

ta
sk

s
bu

lle
tin

bo
ar

d
sy

ste
m

fo
rR

PC
BT

no
de

sO
S

[1
7]

ev
en

t-b
as

ed
A

tm
el

AV
R

34
.7

[1
8]

10
29

[1
8]

no
ne

fu
ll

sy
ste

m
Bl

ue
to

ot
h

sta
ck

,t
up

le
re

pr
og

ra
m

m
in

g
sp

ac
e,

Ja
va

sm
ob

le
ts

CO
RM

O
S

[2
14

]
ev

en
t-b

as
ed

A
tm

el
AV

R
5.

5
13

0
no

ne
no

ne
tra

ns
pa

re
nt

RP
C

Co
nt

ik
i[

38
]

ev
en

t-b
as

ed
/

A
tm

el
AV

R
3.

8
>2

30
4)

no
ne

dy
na

m
ic

lo
ad

in
g

of
Se

rv
ic

ea
bs

tra
ct

io
n

pr
ee

m
pt

iv
e

pr
oc

es
se

s

1)
A

cc
ur

at
ev

al
ue

no
tg

iv
en

2)
In

cl
ud

es
ei

gh
tt

as
ks

,e
ig

ht
m

ut
ex

es
,a

nd
fo

ur
16

B
ne

tw
or

k
qu

eu
es

3)
In

cl
ud

es
as

im
pl

em
ul

ti-
ho

p
pr

ot
oc

ol
an

d
te

m
pe

ra
tu

re
se

ns
in

g
ap

pl
ic

at
io

n
4)

D
at

am
em

or
y

de
pe

nd
so

n
nu

m
be

ro
fp

ro
ce

ss
es

,m
ax

im
um

ev
en

tq
ue

ue
le

ng
th

,a
nd

nu
m

be
ro

fm
ul

tit
hr

ea
de

d
ta

sk
s

26 3. Systems Software for WSNs

runtime loading of modules. OS does not include full feature network stack, instead
it offers layered interfaces for networking [24].

Like RETOS, t-kernel [55] incorporates OS protection. The protection is imple-
mented by modifying application code during runtime. The same approach is used
also for virtual memory abstraction. Yet, runtime code modi�cation may incur unex-
pected delays and increases code size [24, 55].

Event-based OSs

A widely known WSN OS, TinyOS [69], uses a component-based event-driven ap-
proach for task scheduling. Software is divided into components encapsulated in
frames. Each component has a separate command handler for upper layer requests
and an event handler for lower layer events. The processing is done in atomic tasks.
The frame de�nes the context in which the event and command handlers, and the
tasks related to the component are executed [69].

In TinyOS, components and their communication is statically de�ned at compile
time. A more dynamic approach is taken in SOS [61] that adopts the component
model from TinyOS but allows runtime loading and unloading of components. SOS
kernel maintains modules, handles memory management, and implements communi-
cation between modules [61].

Similar architecture to SOS is implemented in Bertha, OS for Pushpin nodes [98].
The components, referred to as process fragments, can communicate with other pro-
cess fragments in the same and neighbor nodes through a bulletin board system.
Runtime loading and unloading service allows the migration of process fragments
between nodes [98].

A lightweight OS for BTnodes [17] does not support runtime con�guration of events
or tasks. In BTnodes OS, all application processing is done within the event handlers.
BTnodes can share their sensory data through a distributed tuple space that abstract
the origins of data [17].

The basic architecture of CORMOS [214] consists of events and event-handlers that
are organized to modules. The communication events between modules are signaled
through event paths. An event path can exist between local or remote modules, which
makes the communication between distributed application modules possible [214].

Event-handler based kernel of Contiki [38] supports dynamic loading of modules. A
program module that contains required relocation information can be linked to the

3.2. Middleware 27

OS kernel during runtime. Unlike in other event-handlers, an interrupt handler does
not generate an event directly but sets a �ag that is checked by a polling mechanism.
In addition, Contiki implements a support for preemptive multithreading through a
library on top of the event-handler kernel [38].

Summary of WSN OSs

As stated, in WSNs also OS and its parameters need to be con�gured application-
speci�cally [85]. The suitability of OS depends on the resources of node platforms
and the requirements of applications and protocols. Thus, a commercial embedded
RTOS may be the best selection, if WSN nodes have enough resources and applica-
tion requires performance and services of such OS.

In general, the memory used by event-based kernels is smaller than that of preemptive
ones. On the other hand, event-based OSs suffer from the programming model and
incapability to support long-term processing [38, 95]. More general purpose archi-
tecture of preemptive OSs supports design time abstractions better. In Contiki [38], a
designer can freely map the tasks to event-handler or to multithreading depending on
the requirements and available resources [38].

A priority-based preemptive scheduling allows time critical operation of high priority
tasks. In event-based kernels, only event-handlers can be guaranteed to run in time-
critical manner [69,85]. An event-handler needs to be short and mainly pass an event
to a task for processing. This may not be suf�cient for time critical signal processing
applications or networking protocols.

SensorOS [P3] has an accurate time concept for implementing time critical function-
ality. Further, compared to other preemptive multithreading OSs, SensorOS has a
considerably smaller memory footprint.

3.2 Middleware

The main objective of computer system middleware, such as CORBA, is to allow
the execution of distributed systems on top of heterogeneous hardware and software
architectures [174]. A middleware implements an abstraction layer between applica-
tions and network protocols and OSs [174]. Since WSNs lack standardized network
and OS interface, a uni�ed basis for WSN middleware is absent [131].

28 3. Systems Software for WSNs

3.2.1 Middleware Requirements

As in case of OSs, legacy computer system middleware is not suitable for WSNs
due to the differences in programming paradigms and the constraints set by limited
resources [129, 153, 218]. A WSN middleware should implement a runtime environ-
ment that supports development, maintenance, deployment, and execution of WSN
applications [59, 131]. The main requirements derived from these functionalities are
listed below.

Abstraction: Similarly to computer system middleware, WSN middleware
should abstract the heterogeneity of underlying hardware and software archi-
tectures [59, 131].

Task formulation: The requirements of a deployed WSN may vary, which
changes the tasks the network needs to perform [49]. Therefore, a formulation
is required for de�ning the tasks of the network [131].

Task allocation: A middleware should support programming paradigms and
data-centric nature of WSNs [131]. Middleware is responsible for translating
used programming paradigms to tasks and allocating these to individual sensor
nodes [56, 153].

Aggregation, data fusion, and in-network processing: A WSN middleware
possesses application knowledge that is required for controlling in-network
processing [59, 131]. Therefore, middleware manages data aggregation and
fusion [59, 129].

Access interface to external networks: In addition to in-network control,
WSN middleware should extend the network abstraction also for external net-
works and devices. This can be used for accessing WSN data but also for
outsourcing WSN computation to more powerful platforms [129, 131].

Application QoS: In this context, the application QoS de�nes how different
design factors can be satis�ed by the WSN. A middleware adapts application
QoS to networking QoS, makes necessary trade-offs, and takes actions that are
needed to meet the required level of service [60, 65].

3.2.2 WSN Middleware Approaches

Due to the immaturity of technology, there are no uni�ed classi�cation for WSN
middleware. In the classi�cation presented in Fig. 6, WSN middleware is �rst cat-

3.2. Middleware 29

Mobile agent

WSN Middleware

Programming abstraction

Global Local

Runtime execution support

VM Database
Application

driven

Kairos

Pleiades

Abstract regions

FACTS

GSN

Matè

VM«

SINA

Cougar

TinyDB

DSWare

TinyLIME

TeenyLIME

TCMote

Sensorware

Agilla

MagnetOS

MARE

MiLAN

Yu et al.

DFuse

Park et al.

Impala

Mires

Mobile agent

WSN Middleware

Programming abstraction

Global Local

Runtime execution support

VM Database
Application

driven

Kairos

Pleiades

Abstract regions

FACTS

GSN

Matè

VM«

SINA

Cougar

TinyDB

DSWare

TinyLIME

TeenyLIME

TCMote

Sensorware

Agilla

MagnetOS

MARE

MiLAN

Yu et al.

DFuse

Park et al.

Impala

Mires

Fig. 6: Classi�cation of WSN middleware [56, 59].

egorized to programming abstractions and runtime support depending on the main
objective. The former creates an abstracted view of the network and sensor data,
while the latter focuses on runtime systems and mechanisms for supporting applica-
tion execution [56,59]. However, the classi�cation is not unambiguous, since runtime
environments may provide some sort of abstractions for WSN, and on the other hand,
programming abstractions require runtime support for realization [59].

The programming abstractions are sub-categorized to global and local, depending
whether the network behavior is viewed as a single entity or divided into local groups
de�ned by criteria, such as data content, location, or network topology [56, 59].
Nevertheless, these should not be mixed up with programming languages, such as
nesC [52] that are discussed in Chapter 4. While programming languages are ab-
stractions of the capabilities of computer hardware, these are abstractions of network
capabilities.

The runtime execution support is divided into four subcategories depending on the
system architecture. Again, the classi�cation to Virtual Machines (VMs), databases,
mobile agents, and application-driven middleware may partly overlap. For example,
mobile agents typically execute on top of VM. VMs abstract underlying hardware
and software through a virtualized environment, while database middleware view
WSN as a data storage that can be queried [153]. Mobile agents realize the mobile
code paradigm, in which the code is moved to data origins for local processing instead
of data [51]. Application-driven middleware control and allocate tasks to nodes based
on the QoS requirements and guidelines set by the application [59].

30 3. Systems Software for WSNs

3.2.3 WSN Middleware Proposals

The categorization of WSN middleware proposals is depicted in Fig. 6. A summary
of their main features is presented in Table 4 and Table 5, classi�ed according to
the classes presented above. WSN node middleware presented in [P4] is included in
Table 5. The columns assess the resource requirements of the middleware and how
they satisfy the requirements de�ned in Section 3.2.1.

The second column of the tables de�nes the requirements set to the implementa-
tion platform. Tiny denotes a Mote-class device [68], small e.g. Intel XScale class
devices, while large means Personal Computer (PC) or PDA type of devices. The
heterogeneity abstraction de�nes the level of independency from underlying hard-
ware and software, roughly categorized to full, partial, or none. The fourth column
speci�es a method for describing application tasks for middleware. The task allo-
cation column de�nes whether application tasks are assigned to nodes statically at
design time or dynamically, and whether the allocation is centralized or distributed.
The aggregation column depicts the level of aggregation support, again roughly clas-
si�ed to full, partial, and none. The next one presents the middleware interface for
external WSN data access. A term custom interface denotes a highly implementation
dependent function or message interface. The last column lists other key features.

Virtual Machines

Matè [95] is a simple custom bytecode interpreter for very resource constrained
nodes. Matè instructions express high-level WSN operations, which incurs to a very
small code size. Small-sized Matè applications can be ef�ciently injected to WSN.
Yet, these capsules do not possess features of mobile agents but instead disperse and
infect the whole network [95].

VM? [91] implements a component-based subset of Java VM for resource con-
strained nodes. The runtime VM engine contains only the services needed by the
application. Both, the application and the VM can be recon�gured with incremental
updates.

Database Middleware

In database middleware, WSN data is accessed by queries that are served by dis-
tributed query processors [153]. Basically, Structured Query Language (SQL) data-

3.2. Middleware 31

Ta
bl

e4
:S

um
m

ar
y

of
V

M
,d

at
ab

as
e,

an
d

m
ob

ile
ag

en
tp

ro
po

sa
ls

fo
rW

SN
m

id
dl

ew
ar

ec
om

pa
ris

on
.

M
id

dl
ew

ar
e

Ta
rg

et
H

et
er

og
en

ei
ty

Ta
sk

fo
rm

ul
at

io
n

Ta
sk

al
lo

ca
tio

n
A

gg
re

ga
tio

n
Ex

te
rn

al
da

ta
M

isc
el

la
ne

ou
s

pl
at

fo
rm

ab
str

ac
tio

n
ac

ce
ss

M
at

è[
95

]
tin

y
pa

rti
al

no
ne

no
ne

no
ne

co
de

ca
ps

ul
es

lim
ite

d
ex

pr
es

siv
ity

V
M

?
[9

1]
tin

y
fu

ll
Ja

va
cl

as
s

no
ne

no
ne

Ja
va

cl
as

s
co

n�
gu

ra
bl

ee
ng

in
e

SI
NA

[1
42

]
la

rg
e

fu
ll

SQ
TL

sc
rip

t
dy

na
m

ic
,

pa
rti

al
SQ

TL
sc

rip
ts

di
str

ib
ut

ed
Co

ug
ar

[2
15

]
tin

y
pa

rti
al

qu
er

y
pl

an
dy

na
m

ic
fu

ll
qu

er
ie

s
ce

nt
ra

liz
ed

Ti
ny

D
B

[1
05

]
tin

y
pa

rti
al

SQ
L

ty
pe

dy
na

m
ic

,
fu

ll
ba

sic
an

d
ev

en
t-b

as
ed

qu
er

ie
s

ce
nt

ra
liz

ed
SQ

L
ty

pe
qu

er
ie

s
D

SW
ar

e[
97

]
N

/A
pa

rti
al

no
ne

dy
na

m
ic

,
pa

rti
al

SQ
L

ty
pe

qu
er

ie
s,

da
ta

ca
ch

in
g

ce
nt

ra
liz

ed
ev

en
td

et
ec

tio
n

Ti
ny

LI
M

E
[3

3]
tin

y
pa

rti
al

da
ta

te
m

pl
at

e
dy

na
m

ic
,

no
ne

tu
pl

er
ea

d
ce

nt
ra

liz
ed

Te
en

yL
IM

E
[2

9]
tin

y
fu

ll
ca

pa
bi

lit
y

dy
na

m
ic

,
no

ne
tu

pl
er

ea
d

tu
pl

es
pa

ce
sh

ar
ed

tu
pl

es
di

str
ib

ut
ed

to
on

e-
ho

p
ne

ig
hb

or
s

TC
M

ot
e[

35
]

tin
y

pa
rti

al
at

tri
bu

te
s

dy
na

m
ic

,
no

ne
tu

pl
eg

et
ce

nt
ra

liz
ed

Se
ns

or
W

ar
e[

22
]

sm
al

l
fu

ll
TC

L
sc

rip
t

dy
na

m
ic

,
no

ne
TC

L
sc

rip
ts

di
str

ib
ut

ed
A

gi
lla

[4
9]

tin
y

pa
rti

al
ag

en
tc

od
e

dy
na

m
ic

,
no

ne
m

ob
ile

ag
en

t
lo

ca
lt

up
le

sp
ac

e
di

str
ib

ut
ed

fo
rd

at
as

ha
rin

g
M

ag
ne

tO
S

[1
4]

la
rg

e
fu

ll
no

ne
dy

na
m

ic
,

no
ne

no
ne

sin
gl

es
ys

te
m

im
ag

e
di

str
ib

ut
ed

M
A

RE
la

rg
e

fu
ll

ta
sk

de
sc

rip
to

r
dy

na
m

ic
,

no
ne

tu
pl

ea
cc

es
s

ge
ar

ed
fo

rm
ob

ile
di

str
ib

ut
ed

en
vi

ro
nm

en
ts

32 3. Systems Software for WSNs

Table5:Sum
m

ary
ofapplication-driven

m
iddlewareand

program
m

ing
abstraction

proposalsforW
SN

s.
M

iddleware
Target

H
eterogeneity

Task
form

ulation
Task

allocation
A

ggregation
Externaldata

M
iscellaneous

platform
abstraction

access
W

SN
node

tiny
partial

Q
oS

levels
dynam

ic,
none

custom
tuplespacefortask

m
iddleware[P4]

distributed
interface

and
Q

oS
datasharing

M
iLA

N
[65]

N
/A

partial
stateand

dynam
ic,

none
custom

Q
oS

graphs
distributed

interface
Yu

etal.[218]
N

/A
partial

Q
oS

dynam
ic,

none
custom

speci�cation
distributed

interface
D

Fuse[94]
large

partial
task

graph,
dynam

ic,
full

fusion
A

PI
fusion

function
distributed

Park
etal.[118]

sm
all

partial
task

graph
static,

partial
custom

m
obileagentsfor

centralized
interface

runtim
em

igration
Im

pala[102]
large

partial
param

eter
dynam

ic,
none

custom
supportsruntim

e
table

distributed
interface

reprogram
m

ing
M

ires[150]
tiny

partial
topic

none
partial

publish
/

subscribe
K

airos[56]
sm

all
full

m
acro-

static,
none

rem
otedata

preprocessorcode
program

m
ing

centralized
accessinterface

m
odi�cation

Pleiades[92]
tiny

partial
m

acro-
dynam

ic,
partial

rootnode
constructsfor

program
m

ing
distributed

interface
concurrentexecution

A
bstractregions[181]

tiny
full

region
none

full
none

abstractions
FACTS

[167]
sm

all
full

rule
none

partial
none

functionsforlow
leveloptim

ization
G

SN
[1]

large
full

virtualsensor
dynam

ic,
partial

SQ
L-type

centralized
queries

3.2. Middleware 33

base queries identify the requested data. These may be supplemented with mecha-
nisms for more complex in-network processing [105, 215].

In SINA [142], database queries are injected to network as Sensor Query and Tasking
Language (SQTL) [82] scripts. These scripts migrate from node to node depending
on their parameters. The allocation of queries to individual nodes is implemented by
an execution environment that compares SQTL script parameters to node attributes
and executes script only if these match. The expressivity of SQTL scripts allows also
more complex tasks, e.g. by timer utilization for execution triggering [82, 142].

In Cougar [215], a query optimizer at the gateway node determines energy ef�cient
query routes. Query plans generated by the query optimizer are parsed in the nodes
by a query proxy. Based on the data �ow and computation plan speci�cations de�ned
in query plans, local query proxies make sensing, aggregation, and communication
decisions [215].

TinyDB [105] takes a similar approach to Cougar. In TinyDB, a query processor in a
node supports basic SQL type query operations and data aggregation for improving
network energy ef�ciency. In addition, TinyDB supports event-based queries that are
initiated in-network after the occurrence of a speci�ed event is detected [105].

A similar event detection service to TinyDB is implemented by DSWare [97]. In
addition, DSWare improves data availability by distributing frequently queried data
to the network and increases robustness by grouping nodes with similar objectives
for management [97].

TinyLIME [33] extends LIME middleware [109] to WSNs. In LIME, data and com-
munication use tuple space [53] for sharing information. A LIME client can access
sensor tuple in a tuple space through TinyLIME. A TinyLIME instance queries data
from the node that serves the queried tuple. The scalability of TinyLIME is limited
to a star topology [33].

While TinyLime relies heavily on LIME, TeenyLIME [29] implements the tuple
space concepts in WSN environment. A tuple space is shared only among one-hop
neighbors, thus each node has an own view of the tuple space. Each node can ad-
vertise its characteristics and sensing capabilities to the neighbors in speci�c tuples.
These can be used for controlling and activating tasks within the network [29].

TCMote middleware [35] takes similar approach to that of TinyLIME, but does not
extend the tuple space outside the WSN. The queries and prede�ned alerts utilize
tuple channels for information exchange. Similarly to TinyLIME, The TCMote does
not support multi-hop WSNs [35].

34 3. Systems Software for WSNs

Mobile Agent Middleware

A mobile agent is an object that carries executable code, its internal state, and data
[123]. A mobile agent makes its migration and processing decisions autonomously
[51]. In order to obtain platform independency and relatively small object size, mo-
bile agents are typically implemented on top of VMs [51].

In Sensorware [22], application tasks are implemented as Tool Command Language
(TCL) scripts. A user requests for WSN data and services by injecting a script to the
network. Each script contains task functionality and an algorithm that controls the
script migration. The small size of TCL scripts allows their ef�cient migration [22].

Mobile agents in Agilla [49] are implemented with custom bytecode, quite similar
to Matè [95]. High-level instructions result to small-sized agents, which migrate
ef�ciently between nodes. The agents communicate through a local tuple space [53].
Reactions are used for notifying an agent of the events it is interested in [49].

In MagnetOS, [14] application tasks are implemented as Java objects. MagnetOS
utilizes automatic object placements algorithms that aim to minimize network com-
munication load by moving Java objects nearer to the data source. MagnetOS is
implemented on top of a distributed VM [147] abstracting network resources as a
single Java VM. Resource requirements make MagnetOS suitable only for high-end
sensor nodes [59].

MARE middleware [155] is merely targeted to mobile ad-hoc networks, but its re-
source requirements are comparable to MagnetOS. In MARE mobile agents move
towards data sources and perform communication locally. A tuple space [53] is used
for resource discovery and communication between agents [155].

Application-driven Middleware

The application-driven middleware covers proposals that perform networking and
execution control with the aid of guidelines initiated by an application [59]. Typically,
the application awareness is realized by a task allocation functionality that distributes
processing to nodes.

MiLAN [65] takes an application QoS speci�cation as an input. The QoS speci�-
cation contains e.g. the required accuracies and monitoring intervals for application
tasks, and their dependencies on other tasks. During runtime, MiLAN adapts network
operation to meet the application QoS and to lengthen network lifetime. Multiple ap-
plications are interleaved according to their importance. MiLAN is tightly integrated

3.2. Middleware 35

to the underlying protocol stack, which enables networking adaptation according to
the application needs [65].

Like MiLAN, a cluster-based middleware [218] uses application QoS speci�cation
for runtime control of network operations. The middleware manages underlying net-
work topology by forming clusters and controls resources and task allocation in them.
Tasks are allocated by a heuristic algorithm that attempts to minimize computation
and communication energy costs [219].

An application task graph de�nes the guidelines for task and role assignments in
DFuse [94]. Application tasks are implemented as fusion functions that are allocated
to the nodes by a distributed algorithm. While the operation is initiated by a root
node, the allocations are dynamically re-evaluated in order to �nd a more optimal
con�guration [94].

Application-driven task allocation is combined with mobile agents in [118]. Com-
munication and dependency graphs are extracted from the application at design time.
The graphs are modi�ed for minimizing the communication costs by link and sched-
ule optimization. During runtime, the execution is adapted by mobile agents [118].

The application adaptor of Impala [102] changes active tasks and the nodes execut-
ing them based on the application parameters. The changes are coordinated by a
state machine describing application functions and the trigger conditions for state
transitions. Application tasks can be updated during runtime by a centralized control
entity [102].

Mires [150] is merely a MOM but its actions are controlled by the application. Mires
uses a publish/subscribe architecture, in which nodes advertise their tasks (topics)
and external user applications select desired tasks for execution [150].

Programming Abstractions

A global abstraction is also referred to as macroprogramming since it allows the
programming of WSN as a whole and hides the individual nodes from the application.
Local abstractions focus on the nature of sensed data within a local context [59].

Kairos [56] creates a global programming environment with node, neighbor, and data
access abstractions. Nodes and neighbors are accessible independent of the underly-
ing topology. A distributed program implemented with the abstractions is converted
in compile time to individual instances executed in nodes on top of Kairos runtime.

36 3. Systems Software for WSNs

The runtime environment manages global and shared variables and communication
between program instances [56].

Pleiades [92] takes quite similar approach to Kairos. Applications are programmed
for complete WSN, not for individual nodes. Pleiades language includes constructs
for accessing the state of nodes and for supporting concurrent execution. A com-
piler generates code modules for individual nodes from the Pleiades programs. The
execution of the modules within the network is controlled by a runtime system [92].

Abstract regions [181] are a communication abstraction among local groups of nodes.
A runtime environment supports neighbor querying and data sharing that can be uti-
lized for distributed application programming. The algorithms for region construc-
tion can be dynamically changed [181].

The main abstractions in FACTS [167] middleware are facts and rules. Facts abstract
data representation and communication, while rules de�ne the means for data pro-
cessing. A rule is executed on top of an interpreter, a rule engine. The execution
is �red by an event with a prerequisite that the conditions (e.g. availability of data)
of the rule are satis�ed. A function is an abstraction that can be used for accessing
low level resources and for the ef�cient implementation of algorithms using machine
code [167].

A local abstraction is provided by a GSN middleware [1] that allows the program-
ming of virtual sensors using Extensible Markup Language (XML). Virtual sensors
abstract both the sensor data access and communication from the application pro-
grammers. Runtime support is implemented by Java-based containers that host and
manage virtual sensors [1].

There are few other programming abstractions, such as Protothreads [39] and TML
[112], that convert the abstractions during compile time. However, since these do not
include runtime support, they are not further discussed.

Summary of WSN Middleware

WSN middleware is still evolving and many proposals are early stage architectural
and algorithmic explorations without an existing implementation on node platforms
[59]. Further, the resources of target hardware, objectives, and assumptions vary
considerably. Therefore, a fair comparison of WSN middleware is dif�cult.

A framework for middleware evaluation is proposed in [59]. In this Thesis, the sum-
mary presented in Table 4 and in Table 5 follows the main requirements presented in

3.2. Middleware 37

Section 3.2.1. Thus, the tables create the basis for comparison. In general, middle-
ware support is mainly targeted to applications, thus they do not facilitate protocol
development. This is not entirely true for programming abstractions, which extend
also to the lower layers [56, 181].

The suitability of the different approaches depend on the applications and resources
of the nodes. Database middleware suit to static networks with structured data que-
ries. VMs and mobile agents are bene�cial in applications that require task mobility.
The programming abstractions facilitate the description of application functionality,
but their support for runtime actions is more restricted [59].

While these approaches create suitable abstractions for WSNs and integrate the net-
work level awareness to the operation of a single node, they lack common, light-
weight methods for formulating and allocating application tasks in dynamic net-
works. This is best solved by application-driven middleware that steers network and
single node operation depending on the surrounding conditions and application re-
quirements.

Compared to the WSN node middleware presented in this Thesis, other application-
driven middleware are the closest. The approaches taken in MiLAN and in [218] are
quite similar to that of WSN node middleware. Compared to these, the tuple space
and a lightweight task allocation algorithm of WSN node middleware are applicable
for tiny WSN nodes. Further, unlike the task allocation of [218], which assumes ho-
mogeneous node resources and communication links [219], WSN node middleware
adapts to dynamic operating conditions typical for WSNs [157].

38 3. Systems Software for WSNs

4. DESIGN OF WSNS

This chapter outlines the concepts and related work on methodologies and tools that
facilitate the WSN design. First, a generic design �ow, which de�nes the phases that
need to be considered in WSN design process, is introduced. Then, different MoCs
for abstract system description are discussed shortly. Finally, the related work in
system level design is discussed, focusing on the design methodologies and tools.

4.1 WSN Design Flow

A design �ow speci�es the series of steps for system implementation. Typically some
steps involve Computer Aided Design (CAD) tools [187]. A related concept is design
methodology, which is a method of proceeding through the levels of abstraction in
order to complete a design [187].

A widely adopted design approach in embedded systems is HW/SW co-design �ow
[187]. The main phases in the �ow are depicted on the left hand side of Fig. 7.
Based on the requirements, system architecture is de�ned by identifying the main
components. After that, hardware and software components are designed relatively
independently. Last two steps are system integration and testing. A design phase
itself can be divided to smaller, similar design cycles [187].

In embedded system domain, several tools are available for managing the design
�ow from abstract modeling to the �nal implementation [84]. The fundamentals
behind the methodologies can be generalized also for WSNs but the methods and
abstractions need to be specialized [21, 135]. While the details of the underlying
network architecture should be abstracted from a designer, it is essential that a WSN
design methodology considers the differences in paradigms, resource constraints, and
unpredictability throughout the design �ow [11, 21].

The unique characteristics of WSNs need to be taken account especially during the
design phase. First, the existing hardware and software components are con�gurable

40 4. Design of WSNs

Requirements and specification

Architecture design

Integration

System test

SW designHW design

System modeling

Simulation

Prototyping

Performance and configuration

Requirements and specification

Architecture design

Integration

System test

SW designHW design

System modeling

Simulation

Prototyping

Performance and configuration

Fig. 7: A HW/SW co-design �ow and the WSN design �ow used in this Thesis for
the comparison of design methodologies.

by their nature [21, 143]. Therefore, a component reuse with a tailored con�gura-
tion is a notable option. Second, potentially very large scale and random operating
conditions make full system prototyping and testing infeasible [100, 121, 162, P1].
Therefore, more scalable veri�cation methods are required, preferably earlier in the
design �ow.

The WSN design �ow used for the comparison of existing design methodologies is
presented in Fig. 7. In general, the �ow adapts the HW/SW co-design methodol-
ogy [187], but the design phase considers the above mentioned WSN speci�c char-
acteristics. Right hand side of the �gure shows the phases of the system level design.
The detailed design of hardware and software follows the co-design �ow.

Phases of the WSN design �ow are introduced below. The design �ow considers
only the actual sensor network, not for example backbone network access or support
infrastructure. In the explanation, a term designer refers to one or more persons who
are responsible of the technical speci�cation, design, implementation, and testing of
the system.

Requirements and speci�cation: The �rst step in the design �ow is a require-
ment analysis that determines the basic characteristics of the system [187]. The
requirements can be formalized with the design factors discussed in Section
2.4.

System modeling: In this phase, a designer models system functionality with
a set of abstractions that allow implementation independent system descrip-
tion [21]. The system modeling phase includes the description of both software

4.1. WSN Design Flow 41

functionality and hardware capabilities. The abstractions enable scalability be-
tween different applications and node platforms [21], and hide the implemen-
tation details from application designers [11].

Simulation: The simulation phase analyzes the suitability of models for the ap-
plication scenario [146]. With simulations, the applicability and performance
of modeled algorithms and components can be evaluated rapidly with a large
number of nodes and in a long-term operation. Further, in a simulation environ-
ment, the operation of the system can be monitored and controlled easily [41].
The simulations are run either with abstract models or a low-level implemen-
tation.

Prototyping: Due to the unpredictable environment and severely constrained
node platforms, simulations cannot realistically mimic all features of WSN
deployments. Therefore, prototyping with a real hardware in a realistic envi-
ronment is crucial for system assessment [41]. This phase may discover several
new aspects that were not visible in simulation phase. These can be for exam-
ple radio interference or unpredictable errors due to resource constraints, such
as stack over�ows or out-of-memory conditions [41].

Performance and con�guration: In this phase, the obtained performance re-
sults from the simulation and prototyping phases are assessed and evaluated
against the non-functional requirements of the application. If results are not
acceptable, model con�gurations need to be altered, or components replaced
or redesigned. Otherwise, the design produces a con�guration for deployment
with realistic performance estimates.

Integration: In the WSN design, integration phase combines the different
components to a full feature system, i.e. a deployment. In this phase, tasks
are mapped to the deployed nodes.

System testing: Even though a comprehensive testing of a full feature WSN
deployment is challenging and infeasible [41, 162], a set of tests for validating
network operation need to be conducted. Due to the complexity involved, the
number of tests during this phase should be minimized. Testing can be allevi-
ated by automated tools for network diagnostics gathering and analyzing [157].

42 4. Design of WSNs

4.2 Models of Computation

In the system modeling phase, the functionality of the system is described by abstract
models. In general, a model can be de�ned as a simpli�cation of the modeled entity.
The model describes only those characteristics and properties of the entity that are
essential for the design [83].

In order to serve a design task, a model should incorporate an appropriate level of
detail. Thus, it should be simple enough to allow e.g. fast simulation of the system,
but accurate enough to provide required results about the system operation. In system
design, the rules and constraints for the description of models are de�ned by the used
MoC [83, 84].

A MoC de�nes the computation, communication, synchronization, and the relative
timing of concurrent processes comprising a system. The relative importance of the
different aspects varies depending on the modeled system. This variance is also vis-
ible in different MoCs, some of which focus mainly on describing the computation
while others concentrate on the communication and synchronization of concurrent
processes [83].

Several different kinds of MoCs have been developed for system design. The most
common ones are Finite State Machines (FSMs), Petri Nets, and Kahn process net-
works. FSMs are best suited for modeling the computation the system, whereas Petri
Nets focus on the communication and concurrency of the system. Kahn process net-
works combine these by connecting state-aware processes through unbounded First
In First Out (FIFO) channels. Each of these MoCs have many variants and descen-
dants that can be considered as separate MoCs [83, 84].

4.2.1 Finite State Machines

The design methodology presented in this Thesis utilizes an FSM MoC that is well-
suited for describing communication protocol functionality [72, 176]. FSMs are a
simpli�cation of a Turing machine. An FSM consist of a �nite number of states and
transitions between the states. Each state transition is triggered by an input event.
The output of the system can either be associated to states or to state transitions. An
FSM can be deterministic, when a same input in a certain state causes always the
same transition, or nondeterministic, in which case there can several transitions from
a state with same input, and the realized one can be any of these [83].

In their basic form, FSMs are quite limited in their expressiveness. The limitations

4.3. Related Research on WSN Design 43

have been recti�ed by different variants that improve data processing capability and
hierarchy of FSMs. Examples of these are FSMs with datapath, statecharts, and
Extended Finite State Machines (EFSMs). The �rst one annotates state transitions
with arithmetic operations in order to simplify the representation of data processing
and conditional execution. Statecharts are based on the hierarchy of concurrent FSMs
that run synchronously in a lockstep mode. This means that outputs of an FSM are
visible in the inputs of other FSMs at the next time cycle. EFSMs are essentially
statecharts with two main differences. First, they are asynchronous and second, they
support more advanced data processing and storing through variables [83, 84].

4.3 Related Research on WSN Design

Due to the iterative nature of the design phase and the challenges involved in the
�nal deployment, several tools and methodologies have been proposed for facilitating
WSN design and evaluation. A major challenge for these tools is the integration of
the design phases from abstract modeling to a low level implementation on node
platforms.

Due to the immaturity of WSN technology and the lack of established practices there
is no common basis for the categorization of design tools and methodologies. The
methodologies vary in target objectives and domains as well as in taken approaches.
Further, quantitative metrics for the comparison of design methodologies cannot be
easily derived, since some of the main objectives, such as easiness and expressivity,
depend merely on the subjective experiences of a designer [84].

The boundary between design and runtime environments targeted to WSN domain
is not always evident. This section discusses the efforts targeting to the system level
design and evaluation of WSNs. More speci�cally, the focus is on tools and method-
ologies that aid the development of complete WSN deployments, and on simulation
environments.

4.3.1 WSN Design Methodologies

In WSN domain, research considering structured design approaches is still evolving.
In system level issues, the research has merely focused on runtime environments
discussed closely in Chapter 3.

The proposals discussed in this section cover different phases in WSN design �ow. In
general, they provide abstractions, methods, and tools that aid a designer to manage

44 4. Design of WSNs

the process. Fundamental issues, such as programming paradigms and approaches
for data extraction and network control are not discussed [32, 54, 188].

Main characteristics of existing design methodologies are outlined in Table 6. In gen-
eral, approaches can be categorized to model-driven, component-based, and platform-
based design methodologies. Integrated development environments are considered as
a separate subclass. The WISENES design environment presented in Chapter 5 and
in [P1,P6] is included in the table for comparison. The dimensions of the table assess
the tool support in different phases of the WSN design �ow, and highlight the scope
and the main properties of the methodologies in order to facilitate their comparison.

The �rst column of the table identi�es the methodology and the second de�nes the
main approach. The next one lists the design �ow phases that are supported. Proto-
typing denotes the implementation on physical node platforms. The abstraction de-
�nes the interfaces and models that hide the low-level implementation details. Com-
ponents considered by the design methodology are listed in the �fth column. Possi-
ble components are application (app), communication protocols (comm), and node
platforms (node). The evaluation column lists a method or methods that are used
for assessing the selected design. The last two columns indicate, whether the given
property is supported by the design methodology. Design space exploration means
either automated or manual con�guration optimization for the given deployment.

Model-driven Design

A model-driven design uses domain-speci�c, tailored models and abstractions for
aiding the design process [138]. In this context, the model-driven design method-
ologies include those proposals that support WSN design with existing models or
metamodels.

In [101], internals of WSN operation are abstracted by collaboration groups, which
are collections of nodes or more abstract entities, agents. An application is designed
on top of this abstraction using a state-centric programming model. Application per-
formance can be estimated with high level simulations.

Collision free and aware models are used for abstracting communication in [217].
The methodology supports analytical evaluation of application algorithms on top of
communication models. The exploration of suitable network parameters is performed
manually [217].

Tinker [42] does not directly fall into the category of model-driven design method-
ologies but this is the closest in the used classi�cation. Tinker focuses on application

4.3. Related Research on WSN Design 45

Ta
bl

e6
:C

om
pa

ris
on

of
W

SN
de

sig
n

m
et

ho
do

lo
gi

es
.

M
et

ho
do

lo
gy

A
pp

ro
ac

h
Co

ve
re

d
A

bs
tra

ct
io

n
Co

m
po

ne
nt

s
Ev

al
ua

tio
n

G
ra

ph
ic

al
D

es
ig

n
sp

ac
e

ph
as

es
de

sig
n

ex
pl

or
at

io
n

W
IS

EN
ES

[P
1,

P6
]

m
od

el
-d

riv
en

de
sig

n,
ev

al
ua

tio
n,

de
pl

oy
m

en
t

ap
p,

co
m

m
,n

od
e

sim
ul

at
io

n
SD

L
m

an
ua

l
pr

ot
ot

yp
in

g
m

od
el

s,
EF

SM
Li

u
et

al
.[

10
1]

m
od

el
-d

riv
en

de
sig

n,
ev

al
ua

tio
n

co
lla

bo
ra

tio
n

ap
p

sim
ul

at
io

n
no

ne
no

ne
gr

ou
p,

sta
te

Yu
et

al
.[

21
7]

m
od

el
-d

riv
en

de
sig

n
co

m
m

un
ic

at
io

n
ap

p
an

al
yt

ic
al

no
ne

m
an

ua
l

m
od

el
Ti

nk
er

[4
2]

da
ta

-c
en

tri
c

de
sig

n
ap

pl
ic

at
io

n-
lev

el
ap

p
sim

ul
at

io
n

no
ne

m
an

ua
l

da
ta

str
ea

m
s

ne
sC

[5
2]

co
m

po
ne

nt
-

pr
ot

ot
yp

in
g

co
m

po
ne

nt
ap

p,
co

m
m

co
de

an
al

ys
is

no
ne

no
ne

ba
se

d
in

te
rfa

ce
s

an
d

op
tim

iz
at

io
n

G
RA

TI
S

[1
75

]
co

m
po

ne
nt

-
de

sig
n,

ev
al

ua
tio

n
co

m
po

ne
nt

ap
p,

co
m

m
co

m
po

ne
nt

co
m

po
ne

nt
no

ne
ba

se
d

m
od

el
va

lid
at

io
n

as
se

m
bl

y
Vi

pt
os

[2
5]

co
m

po
ne

nt
-

de
sig

n,
ev

al
ua

tio
n,

pt
ol

em
y

II
ap

p,
co

m
m

,n
od

e
sim

ul
at

io
n

pt
ol

em
y

II
m

an
ua

l
ba

se
d

pr
ot

ot
yp

in
g

M
oC

s
Bo

ni
ve

nt
o

et
al

.[
21

]
pl

at
fo

rm
-

de
sig

n,
ex

pl
or

at
io

n
in

te
rfa

ce
ap

p,
co

m
m

,n
od

e
no

ne
no

ne
au

to
m

at
ic

ba
se

d
ab

str
ac

tio
ns

Ba
ks

hi
et

al
.[

11
]

pl
at

fo
rm

-
de

sig
n

vi
rtu

al
ap

p
no

ne
no

ne
m

an
ua

l
ba

se
d

ar
ch

ite
ct

ur
e

Sh
en

et
al

.[
14

3]
pl

at
fo

rm
-

de
sig

n,
ev

al
ua

tio
n,

pl
at

fo
rm

ap
p,

no
de

m
od

el
-b

as
ed

no
ne

au
to

m
at

ic
ba

se
d

pr
ot

ot
yp

in
g

m
od

el
s

sim
ul

at
io

n
Em

sta
r[

41
]

in
teg

ra
te

d
ev

al
ua

tio
n,

ru
nt

im
e

ap
p,

co
m

m
sim

ul
at

io
n

no
ne

m
an

ua
l

de
ve

lo
pm

en
t

pr
ot

ot
yp

in
g

en
vi

ro
nm

en
t

W
or

ld
en

s[
50

]
in

teg
ra

te
d

ev
al

ua
tio

n
no

ne
ap

p,
co

m
m

,n
od

e
sim

ul
at

io
n

no
ne

m
an

ua
l

de
ve

lo
pm

en
t

46 4. Design of WSNs

data and it abstracts communication and node platforms by few simple loss mod-
els. The main objective of the tool is the exploration of different data processing
algorithms for input data streams [42].

Component-based Design

In WSNs, component-based design is motivated by TinyOS architecture [69]. The
main abstraction in design process is a software component implementing a dedicated
function. A component is accessed through a well-de�ned interface [52]. A reuse of
existing designs is directly enabled by the component-based architecture, assuming
that the component interfaces and speci�cations are standardized [9, 28].

All existing proposals in this category exploit or complete TinyOS. A key technology
is nesC [52] programming language, which extends C language with built-in compo-
nent model as well as concurrency and communication support. While characterized
as a language, nesC aims to holistic system design [52].

In the generic WSN design �ow, nesC language addresses only the prototyping phase.
A graphical interface for component design is provided by GRATIS [175] and Vip-
tos [25]. GRATIS offers a graphical interface for assembling the components to a
complete system, and generates runtime code for connecting the components auto-
matically [175].

Viptos is built on top of ptolemy II design environment [122] and it supports all
phases in the design �ow. Viptos integrates the MoCs available in ptolemy II to nesC,
TinyOS, and TOSSIM [96, P1]. Viptos complements the functionality of VisualSense
simulation environment [12, P1]. Graphical designs can be simulated with Visu-
alSense, or generated as executables for TOSSIM simulations or TinyOS nodes [25].

Platform-based Design

In platform-based design, an application speci�cation is re�ned on top of the abstrac-
tion of potential implementation platforms [21, 84, 86]. Typically, this methodology
includes an automatic exploration of platform con�gurations for the given applica-
tion [84]. In WSN context, the platform includes also communication protocols in
addition to physical node parameters [21].

In [21], three abstraction layers for applications, protocols, and node platforms sepa-
rate the design to distinct models. The key concept is the exploration of the protocol

4.3. Related Research on WSN Design 47

parameters so that application requirements are met in constraints set by node plat-
forms. The requirements are extracted with a Rialto tool that analyzes all possible
communication combinations of the application [21].

Algorithm design method proposed in [11] possesses similar characteristics. Node
platform and communication are modeled coarsely by a virtual architecture, on top
of which application algorithms can be synthesized to actual programs allocated to
the nodes. Each phase is performed manually [11].

Models for rapid prototyping of WSNs are introduced in [143]. In a design phase,
the methodology abstracts nodes and networking using a set of energy models and
connectivity graphs. The design space exploration to obtain mainly hardware param-
eters is based on the simulation of applications with the energy models. Prototyping
is used for validating the accuracy of evaluation [143].

Integrated Environments

The development environments covered in this section cannot be considered as design
methodologies, since they do not offer any abstractions for system design. Instead,
they provide tools for supporting different phases of the design process.

Emstar [41] is a Linux-based development environment for protocol and application
software development. The main component in Emstar is a runtime environment,
which runs on diverse execution platforms. This allows evaluation of the �nal exe-
cutables with simulations, prototyping, or their combination [41].

A quite similar approach is taken in Worldsens [50]. Compared to Emstar, World-
sens incorporates two simulators, one for large scale network simulations and other
for cycle accurate simulation of a single node. Both simulators run native target plat-
form code. Further, the simulators can be synchronized for cycle accurate large scale
network simulation [50].

Summary of WSN Design Methodologies

The comparison of design methodologies is dif�cult because of the lack of unam-
biguous metrics, and contradictory goals and approaches. The parameters de�ned in
Table 6 set a starting point for qualitative comparison of WSN design environments.

Most of the methodologies support abstract design phase, but only few cover also
evaluation and prototyping. There are divergent opinions, whether there should be

48 4. Design of WSNs

a separate high-abstraction level design, and a low-level implementation phase [50].
While separate environments make the creation of higher level abstractions easier,
the porting of the models to the �nal implementation may introduce additional bugs
[173].

In summary, model-driven and component-based design methodologies provide suit-
able abstractions for WSN design. Platform-based design methodologies support au-
tomatic exploration of different network or node platform con�gurations. While in-
tegrated development environment introduce a rich set of tools for prototyping phase,
they lack design abstractions.

In WSNs, the most fundamental design choices need to be made before a large scale
deployment. Thus, the evaluation in the early phase of the design �ow has a sig-
ni�cant importance in the process. If its results are reasonably accurate, the design
choices can be based on a solid foundation.

From the related design methodologies, Viptos [25] incorporates quite similar fea-
tures compared to WISENES. Both enable a graphical design of models, and the
evaluation of the models through simulations. Viptos allows WSN design with sev-
eral different MoCs and it has an integrated support for code generation on top of
TinyOS [69], while in WISENES the EFSM models need to be ported manually. In
comparison to other methodologies and tools, the main bene�ts of WISENES are the
accuracy design time performance evaluation and the back-annotation of measured
information from prototypes for further re�ning the result accuracy [P1].

4.3.2 WSN Simulation Tools

The principles and requirements for WSN simulation are thoroughly discussed in
[P1]. Further, related research on the area is presented and analyzed in detail in the
publication. Yet, some new WSN simulation environments have been published.
These include three networking oriented simulators, namely SenQ [173], WSNet
[50], and GTSNetS [117], as well as three sensor node simulators, Avrora [169],
VMNet [210], and DiSenS [182].

SenQ [173] is a descendant of sQualnet [151] reviewed in [P1]. Compared to sQual-
net, SenQ has a more accurate node model that take time drifting of internal node
oscillators into account. SenQ emulates over 1 000-node networks with �nal exe-
cutables developed as SOS [61] operating system threads. In SenQ, it is also possible
to simulate WSN protocols parallel with IP-based nodes [173].

4.3. Related Research on WSN Design 49

WSNet [50] is a discrete event simulator with a custom engine. The simulations scale
to more than 3 000 nodes. The transmission medium is modeled in detail, but sensing
is not considered. The node model incorporates a linear battery model. WSNet is
parameterized with a set of con�guration �les that de�ne radio and node models
[189]. During runtime, the simulations can be monitored through a Graphical User
Interface (GUI) and events are logged to trace �les [189]. WSNet can be used in
conjunction with Worldsens [50] development environment for simulating code that
is directly applicable for �nal implementation.

GTSNetS [117] is built on top of GTNetS [127] simulator. With sparse network
topologies, the simulator scales up to 100 000-node networks. Incorporated sensing
model is accurate, while radio and power models are simple. The simulator visual-
izes execution through a GUI and outputs accurate log �les. Simulated code is not
applicable for sensor nodes [117].

Avrora [169] is a scalable cycle accurate sensor node simulator, that can simulate up
to 10 000-node networks. Avrora contains a simple models for transmission medium
and sensing, and optionally also an accurate energy model. Avrora is parameter-
ized by de�ning possibly multiple simulated object �les during startup [10]. Out-
put is controlled by instrumenting the simulated system with function-speci�c moni-
tors [10]. As typical for sensor node simulators, simulated code is directly applicable
for �nal implementation [169].

Similarly, VMNet [210] is a cycle-accurate simulator that scales approximately to
500-node networks. The transmission medium, node, and power models of the sim-
ulator are realistic. A sensing model reads sensor inputs from �les. Simulations are
con�gured by input �les and output results are stored to logs. Executables simulated
in VMNet are directly applicable for �nal implementation [210].

DiSenS [182] is also a cycle-accurate simulator that executes binaries directly appli-
cable for different types of sensor nodes. DiSenS support simulations of thousands of
nodes, and due to the distributed simulation engine, the scalability can be increased
by adding more workstations. Simple sensing, radio, and power models are imple-
mented as plug-in modules [182].

In comparison to WISENES, the networking oriented simulators contain quite similar
features. Even though the reported scalability of GTSNetS is an order of magnitude
larger than that of other simulators, the sparse topologies with which the results are
obtained are not realistic in typical WSN scenarios. Compared to other simulators,
the distinct features of WISENES are the possibility to simulate virtually any hard-
ware platform still maintaining the realistic model of node resources, the accuracy of

50 4. Design of WSNs

design time simulation results, and the integration to a complete design �ow.

5. DESIGN AND IMPLEMENTATION OF WSNS WITH WISENES

This chapter presents the design of application-speci�c WSNs using WISENES and
summarizes the results of this Thesis. The details of concepts, implementations, and
results presented in this chapter are given in publications [P1-P6]. The chapter fo-
cuses on the proposed tools and methodologies for the design and prototyping of
WSN protocols and applications. Two application scenarios are presented for high-
lighting challenges involved and for illustrating the phases in the application and
protocol design.

The organization of the chapter follows the order of publications. First, WISENES
design environment is presented, including the design �ow, models, and results. Sys-
tems software for prototyping in WISENES design �ow is provided by SensorOS and
WSN node middleware. Their implementations and results are discussed prior to the
application scenarios.

5.1 WISENES Design Environment

WISENES is targeted to the system level design of fully functional large scale WSN
deployments. WISENES de�nes a methodology and models for the design, and a
framework for design time performance evaluation through simulations. WISENES
framework is presented in [P1] and design abstractions in [P6].

WISENES design �ow, depicted in Fig. 8, speci�es the steps for the realization of an
application-speci�c WSN. First, a designer de�nes deployment models that describe
key components and their functionality. These models are simulated in WISENES
framework in order to obtain an accurate estimation of the network performance with
a given con�guration. The con�guration is optimized manually until an acceptable
one is found. The simulation phase is followed by prototyping with node platforms.
The prototyping is facilitated by SensorOS and WSN node middleware that imple-
ment similar abstractions for deployment models. The accuracy of design time model
simulations is improved by back-annotating performance results from the prototypes

52 5. Design and Implementation of WSNs with WISENES

Requirements and specification

WISENES design

Integration

System test

WISENES deployment model

WISENES simulation

Prototyping with SensorOS

Performance and configuration

b
ack

-an
n

o
tatio

n

Requirements and specification

WISENES design

Integration

System test

WISENES deployment model

WISENES simulation

Prototyping with SensorOS

Performance and configuration

b
ack

-an
n

o
tatio

n

Fig. 8: WISENES design �ow and the phases in WISENES design.

to the WISENES framework. Again, required phases are iterated until a con�guration
meets application requirements.

5.1.1 WISENES Deployment Models

WISENES deployment models abstract the main functional components in WSN de-
sign. A designer de�nes these abstractions, which are application model, communi-
cation model, node model, and environment model. The relations and main properties
of the models are depicted in Fig. 9.

An environment model describes the characteristics of the environment that sur-
rounds WSN deployment. A node model incorporates physical node capabilities and
programming and hardware access interfaces. Thus, it models also OS and middle-
ware functionality. A communication model de�nes the protocol stack and its con-
�guration. The core application functionality is speci�ed by the application model.

5.1.2 WISENES Framework

WISENES framework implements the design environment by supporting deploy-
ment model abstractions. MoC used for describing applications and protocols in
WISENES is EFSM. Currently, the MoC is implemented using Speci�cation and
Description Language (SDL) [140]. WISENES tool uses a commercial Telelogic
TAU SDL Suite [166] environment that allows graphical SDL design and automatic
code generation for simulations. The executables generated from WISENES are too
resource hungry for the most constrained nodes [S1]. The resource effectiveness can
be improved by tightly integrating SDL models to SensorOS [176].

5.1. WISENES Design Environment 53

Environment model

• Wireless medium

parameters

• Phenomena

characteristics

• Target areas and

objects

• Mobility charts

• Parameters in XML

Node model

• Resource control

• Interfaces for

application and

communication

models

• Functionality

in SDL

• Parameters in

XML

Application model

• Set of communicating tasks

• Functionality in SDL

• Parameters in XML

Communication model

• Layered protocol stack

• Functionality in SDL

• Compile-time parameters

in header files

Environment model

• Wireless medium

parameters

• Phenomena

characteristics

• Target areas and

objects

• Mobility charts

• Parameters in XML

Node model

• Resource control

• Interfaces for

application and

communication

models

• Functionality

in SDL

• Parameters in

XML

Application model

• Set of communicating tasks

• Functionality in SDL

• Parameters in XML

Communication model

• Layered protocol stack

• Functionality in SDL

• Compile-time parameters

in header files

Fig. 9: Overview and main features of WISENES deployment models.

The functionality of protocols and applications is de�ned in EFSMs that are im-
plemented as SDL processes and procedures. A detailed introduction to SDL and
WISENES environment description for protocol design are presented in [P1]. For
simulations, WISENES framework and deployment models are parameterized in a
set of XML con�guration �les. The input parameters and output results generated
from WISENES simulations are depicted in Fig. 10. During runtime, the progress
of simulations can be monitored through a GUI, while detailed networking and data
events are stored to log �les for postprocessing.

5.1.3 Existing Protocol Designs in WISENES

WISENES design capabilities are demonstrated by two full-feature protocol stack
implementations, TUTWSN and ZigBee . Protocol functionality is described in SDL
processes that are grouped to SDL packages according to the protocol layers. Such
a modular approach makes it possible to exchange a protocol layer by only adapting
its interfaces.

TUTWSN

The WISENES implementation of TUTWSN protocol stack consists of three layers.
A Time Division Multiple Access (TDMA) MAC protocol is implemented at the
data link layer and cost-aware routing at the network layer. A middleware layer
has two alternative designs, a request-based TUTWSN API [S3] and the WSN node
middleware, described in [P4].

54 5. Design and Implementation of WSNs with WISENES

WISENES

file input (.xml)

file output (.log) socket connection

• Node parameters

• Transceiver unit parameters

• Peripheral parameters

• Protocol configuration parameters

• Application configuration parameters

• Transmission medium parameters

• Sensing parameters

• Node mobility parameters

• Power consumption

• Memory consumption

• Network performance

• Protocol performance

• Application performance

• Node population

• Network topology

• Node battery levels

GUI

WISENES

file input (.xml)

file output (.log) socket connection

• Node parameters

• Transceiver unit parameters

• Peripheral parameters

• Protocol configuration parameters

• Application configuration parameters

• Transmission medium parameters

• Sensing parameters

• Node mobility parameters

• Power consumption

• Memory consumption

• Network performance

• Protocol performance

• Application performance

• Node population

• Network topology

• Node battery levels

GUI

Fig. 10: WISENES input parameters and output results.

The main design objectives of TUTWSN MAC are energy ef�ciency, scalability, and
autonomous operation [88,157]. These are realized by a clustered topology, which is
maintained by tightly synchronized TDMA operation. The scalability and application
QoS are supported by distributed algorithms for channel and time slot allocation,
neighbor discovery, and link capacity optimization [S6].

TUTWSN routing protocol creates and maintains multi-hop paths to one or more sink
nodes. Each node selects several alternative routes according to routing costs. The
costs are calculated using cost functions that are weighted with traf�c class dependent
parameters. Route maintenance overhead is minimized by embedding cost updates
to MAC layer network maintenance signaling [S4].

ZigBee

At the data link layer of WISENES ZigBee stack, the IEEE 802.15.4 LR-WPAN
MAC protocol supports beacon-enabled mode [77]. At the network layer, WISENES
ZigBee stack implements a cluster-tree topology with hierarchical addressing and
routing [223]. The ZigBee stack implementation incorporates a simple middleware
that adapts the stack to the WISENES application model. In addition to [P1], more
implementation details and simulation results about the ZigBee stack in WISENES

5.1. WISENES Design Environment 55

Table 7: Statistics of WISENES SDL implementations for TUTWSN and ZigBee.
SDL Process Decl. States Tra. Proc. Sym. Stat. Exec.
TUTWSN MAC

Channel access 1122 20 194 129 2079 3141 3072
Management entity 195 9 32 13 297 381 130

TUTWSN routing
Route management 479 10 81 43 838 1290 1276
Data service 158 3 41 21 314 373 125

TUTWSN API
API service 150 4 25 10 180 283 71

IEEE 802.15.4 LR-WPAN MAC
Channel access 834 34 163 75 2202 2732 2205

ZigBee NWK layer
NWK management entity 327 12 55 30 574 899 366
NWK data entity 277 4 47 26 393 519 184

Adaptation middleware
Interface adaptor 72 4 20 4 167 185 105

can be found from [S5].

5.1.4 WISENES Design Results

The quality of a design methodology and abstraction are subjective matters. The com-
parison of WISENES and related design methodologies is presented in Section 4.3.1.
As shown in [P1] and [P6], environment and node model parameters are de�ned in
structured XML con�guration �les. The design of a communication model consisting
of a complete WSN protocol stack is straightforward due to the hierarchical structure
of the SDL and modularity of the WISENES framework. Further, graphical design
with EFSMs suits well for protocol modeling [P1]. Event-driven application model
design introduced in [P6] conforms to the basic nature of the WSN [69, 85].

The feasibility of WISENES design environment is proved in [P1]. The author of
this Thesis implemented the IEEE 802.15.4 LR-WPAN MAC protocol within two
working weeks. In spite of the familiarity of WISENES and protocol internals, the
development cycle was considerably shorter than projected.

In order to visualize the complexity of WSN protocols, the statistics of the current
TUTWSN and ZigBee implementations in WISENES are presented in Table 7. The
statistics are gathered by a complexity measurement tool incorporated in Telelogic
TAU SDL Suite [166]. SDL related terms are further explained in [P1].

56 5. Design and Implementation of WSNs with WISENES

The �rst column, declarations (Decl.), gives the count of all procedure, data type,
variable, and other entity declarations in the SDL process. The following two col-
umns present the number of distinct states and transitions (Tra.), which start from a
state on a reception of an input signal and end to another state. The following col-
umn gives the number of procedures (Proc.) that are used for hierarchical design.
The sixth column depicts the number of graphical symbols (Sym.), which can be e.g.
tasks containing several statements, procedure calls, or output signals. The following
column de�nes the count of statements (Stat.) in the SDL process. A statement is
for example an assignment within a symbol. The number of execution paths (Exec.)
gives a good estimation of the process complexity by specifying a close approxima-
tion of the alternative paths from the start of a transition to its end.

The number of states, procedures, and statements in Table 7 shows the extend of the
protocol designs. As indicated by the �gures, especially the channel access proto-
cols are complex consisting of a number of states and hierarchical SDL procedures.
Yet, as the selected MoC suits well to the design of communication protocols, the
implementations are well structured and can be easily comprehended.

5.1.5 WISENES Framework Results

In WISENES, the performance evaluation of WSNs during the design time is allowed
by the simulation of deployment models. Detailed node model parameters de�ne the
capabilities and runtime characteristics of node platforms. In simulations, these ca-
pabilities are emulated accurately in WISENES framework. In addition, transmission
medium parameters in the environment model are derived from measured signal at-
tenuation graphs. These create a realistic basis for the simulations.

WISENES scales well to the simulation of thousands of nodes. Largest WISENES
simulations have been 10 000-node networks [S1]. In order to assess the accuracy
of the WISENES output results, a simulated power consumption is compared with
the measured results from prototypes in Fig. 11. The average difference between
measured and simulated results is 6.7 %. The difference results from small absolute
values with subnodes and from the slight discrepancies in timing modeling. The sim-
ulated models are further re�ned by back-annotating prototype results to WISENES
through deployment models and framework services. In the back-annotation, static
power consumptions and execution related benchmark information are manually set
to the con�guration �les de�ning deployment models and given as input parameters
to WISENES framework routines that emulate low-level execution.

5.1. WISENES Design Environment 57

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

Access cycle length (s)

P
o

w
er

 (
m

W
)

Headnode 1, Prototype

Headnode 1, WISENES

Headnode 2, Prototype

Headnode 2, WISENES

Subnode 1, Prototype

Subnode 1, WISENES

P
o

w
er

 (
µ

W
)

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

Access cycle length (s)

P
o

w
er

 (
m

W
)

Headnode 1, Prototype

Headnode 1, WISENES

Headnode 2, Prototype

Headnode 2, WISENES

Subnode 1, Prototype

Subnode 1, WISENES

P
o

w
er

 (
µ

W
)

Fig. 11: Simulated WISENES power consumption results in comparison to measured
prototype power consumption.

Compared to [P1], a more advanced and dynamic version of TUTWSN stack is sim-
ulated in [P6]. With this version, the difference between measured and simulated
power consumptions is 6.6 %. The accuracy of networking delay is 9.5 %, in aver-
age. Since TUTWSN MAC and routing protocols adapt the network topology and
routes dynamically, simulated and prototyped network con�gurations are not com-
pletely identical.

In addition to [P1] and [P6], simulation results about the performance of WISENES
and existing protocol designs are presented in [S1,S5]. Common results show node
power consumption, data throughput and delay, and network lifetime. Moreover,
protocol designs can be freely instrumented to obtain desired results.

The key bene�t of WISENES compared to the other WSN simulators is that the
evaluation of the network and application performance is carried out during the high
abstraction level design phase. While this is possible also in VisualSense, its simu-
lation results are signi�cantly less accurate than those of WISENES due to the more
inaccurate modeling of execution and physical environment. Moreover, in WISENES
prototyping results are back-annotated to the simulator to further improve simulator
accuracy.

58 5. Design and Implementation of WSNs with WISENES

5.2 Systems Software for Prototyping

For prototyping with physical node platforms, the design time abstractions are imple-
mented by systems software. The systems software support for distributed processing
in WSNs is reviewed in [P2]. The publication focuses on runtime abstraction of appli-
cation distribution by assessing services for service discovery, task allocation, remote
task communication, and task migration.

As a conclusion, a need for OS and middleware support in WSNs is emphasized.
The recommended architecture consists of a preemptive multithreading OS and a
middleware performing network level task allocation and control. For WISENES
design �ow these services are implemented by SensorOS and WSN node middleware.

5.2.1 SensorOS

SensorOS implements a runtime environment for WSN protocols and applications.
It manages resource usage, timeliness, and coexistence of multiple tasks on a single
node, and offers interfaces for hardware access and OS services. SensorOS design
and implementation on TUTWSN node platforms is presented in [P3].

The main objectives for SensorOS are low resource consumption and accurate time
concept for implementation of time critical protocols and applications. The approach
taken by SensorOS is a preemptive multithreading kernel with a priority-based sched-
uler. A traditional programming model with a POSIX-like API is easy to use and suits
to the modeling of different kinds of design abstractions. The message-passing Inter-
Process Communication (IPC) and centralized event service make it possible to adapt
a state machine based WISENES application and communication models on top of
SensorOS. Further, SensorOS services are modeled in WISENES, which eases the
integration of design time models to the �nal implementation.

SensorOS Architecture

Both application tasks and WSN protocols are implemented as SensorOS threads.
The SensorOS architecture with main OS components is depicted in Fig. 12. OS
kernel provides services for message-passing IPC, thread scheduling, timer man-
agement, synchronization through mutexes, and memory and power management.
Interrupt-driven device drivers are integrated to the kernel while other peripherals are
controlled directly by the accessing thread.

5.2. Systems Software for Prototyping 59

Kernel

Scheduler

IPC

Timer Power management

Task 1
API

Interrupt-

driven drivers

UART

ADC

Context-

related drivers

Memory management

Hardware abstraction layer

I2C

Radio

Task 2 Task nTask 3 . . .

Synchronization

Kernel

Scheduler

IPC

Timer Power management

Task 1
API

Interrupt-

driven drivers

UART

ADC

Context-

related drivers

Memory management

Hardware abstraction layer

I2C

Radio

Task 2 Task nTask 3 . . .

Synchronization

Fig. 12: Overview of SensorOS architecture.

SensorOS Results

The feasibility of SensorOS API is shown in [P6], which presents a code for an
application thread that implements a motion detection task. The API is easy to use
and it preserves WISENES design abstractions. The comparison of SensorOS to the
related OSs is given in Section 3.1.3.

The performance of SensorOS is evaluated in [P3]. Excluding the strictly neces-
sary low-level Hardware Abstraction Layer (HAL) operations for context switching
and hardware register access, SensorOS is implemented in C. Compared to strictly
optimized assembly implementation, this may impose some performance drawbacks
but improves portability. On a TUTWSN PIC node, SensorOS requires at minimum
6 964 B of code memory. With a sophisticated memory management and an I/O li-
brary, the code memory usage is 8 586 B. Depending on the con�guration, SensorOS
kernel requires 115�134 B of data memory. A per thread stack takes typically 128 B.
Since the size of a dynamic memory pool is con�gurable, SensorOS can host over 20
threads simultaneously on a TUTWSN PIC node.

The execution times of kernel functions are presented in [P3]. The variances in op-
eration times are quite minor, which is important for a time-sensitive OSs. SensorOS
implements an accurate wait service for high priority threads. The mean error for
the deadlines of the wait service is below 2 µs and the maximum error less than 5 µs
when compared to the wall clock time.

60 5. Design and Implementation of WSNs with WISENES

Protocol stack SensorOS

Application

Node hardware platform

WSN node

middleware

Tuple space

Task

Data redirecting

Task hosting Task allocation

PowerMemory

OS kernel

Routing protocol

MAC protocol

Task Task

Protocol stack SensorOS

Application

Node hardware platform

WSN node

middleware

Tuple space

Task

Data redirecting

Task hosting Task allocation

PowerMemory

OS kernel

Routing protocol

MAC protocol

Task Task

Fig. 13: Overview of WSN node middleware architecture.

5.2.2 WSN Node Middleware

WSN node middleware presented in [P4] extends the single node environment created
by SensorOS with a network level control. The middleware creates an abstraction, on
top of which application tasks can communicate without knowledge of the physical
nodes hosting them.

WSN node middleware aims in maximizing the network lifetime by allocating ap-
plication tasks and network topology maintenance roles for nodes. The allocation is
coordinated within the boundaries set by virtual clusters that are directly mapped to
underlying network topology or freely formed. Middleware actions are coordinated
by an application QoS speci�cation that de�nes the requirements and relations of
tasks.

Middleware Architecture

The architecture of WSN node middleware is illustrated in Fig. 13. The middleware
sits on top of SensorOS and WSN protocol stack. The middleware functionality is
implemented by four components that are task allocation, task hosting, tuple space,
and data redirecting.

Task allocation uses a lightweight algorithm for �nding a set of nodes for application
task execution and for electing the controller of a virtual cluster. Task hosting man-
ages binaries and if necessary transfers them to other nodes. Tuple space is used for
sharing internal middleware data between the nodes of a virtual cluster. The commu-

5.3. Application-speci�c Tailoring of WSNs: Case Studies 61

nication between application tasks is targeted to correct nodes by the data redirecting
component.

Middleware Simulation Results

The concept and performance of WSN node middleware is evaluated with WISENES.
The WISENES implementation of the middleware follows the architecture presented
above. Two application scenarios are created for assessing the ability of the mid-
dleware to balance loading and to extend network lifetime. Middleware operation is
adjusted by parameterizing the fairness of load balancing.

Middleware performance results are compared to a reference implementation, which
does not incorporate any network level control. With a simple network and applica-
tion, the middleware extends the time before the �rst node runs out of energy by a
factor 6.85. In a more dynamic scenario, the factor is 3.9. Absolute lifetimes given in
[P4] are short since nodes are powered by 0.22 F capacitors in order to demonstrate
the performance of the middleware. The dynamic data memory consumption of the
middleware is below 200 B.

5.3 Application-speci�c Tailoring of WSNs: Case Studies

The methodologies and tools presented in this Thesis are motivated by WSN applica-
tions. Two application scenarios have been implemented for illustrating application-
speci�c tailoring of WSNs. Detailed results of the case studies are presented in pub-
lications [P5] and [P6].

Both applications are implemented with TUTWSN protocols and node platforms. In
spite of the built-in support for operation adaptation and con�guration, TUTWSN
solutions and algorithms are best suited for low data rate monitoring networks [88].
In addition to [P1,P3-P6], TUTWSN protocol stack and prototype platforms are in-
troduced in [87�90, 157, S2-S4,S6].

5.3.1 TCP/IP Experiments

Publication [P5] analyzes and implements a TUTWSN con�guration for TCP/IP
communication relaying. In an outlined use scenario, a low-power monitoring WSN
is occasionally con�gured for improved throughput and delay, while still preserving
overall energy ef�ciency.

62 5. Design and Implementation of WSNs with WISENES

User TCP dataWSN data ServerUser TCP dataWSN data Server

Fig. 14: Network architecture for TCP/IP communication in WSN.

Design Choices

The networking architecture for the application is depicted in Fig. 14. When a need
for TCP/IP connection between two external users arises, a route for TCP data is
created. Since TCP communication affects only to a subset of nodes, full feature
TCP/IP stacks available for low resource MCUs are not an ultimate solution [36,211].
The connection maintenance and control signaling in TCP generates unnecessary
network traf�c for nodes not related to the link [27]. Therefore, TCP packets are
fragmented and sent as application data within the network.

TUTWSN protocols are manually con�gured for the application. TUTWSN MAC
protocol is adapted to higher throughput with a more frequent duty cycle. This does
not interfere with the basic WSN operation and can be realized with a reasonable
effort.

TCP/IP Experiment Results

A signi�cant contribution of [P5] is the analysis and suitability assessment of TCP/IP
for low-power WSNs. The adaptation results to trade-offs between TCP/IP perfor-
mance and energy ef�ciency of WSNs. The analysis shows that legacy TCP �ow
control algorithms perform poorly in WSNs since packet losses are not caused by
congestion but merely bit and node errors.

The performance of TUTWSN in the application-speci�c con�guration is assessed by
measuring Round-Trip Time (RTT), throughput, and power consumption with differ-
ent network con�gurations. An average RTT for a 100 B packet over 10-hop network
is below six seconds, which is an acceptable delay. Yet, RTT depends on the packet
size and number of hops. These do not affect as much to the throughput, which is

5.3. Application-speci�c Tailoring of WSNs: Case Studies 63

2.3 kbps. The power consumption of a node participating to TCP/IP communication
varies between 1.73 mW and 3.82 mW depending on the activity.

5.3.2 Indoor Surveillance WSN

In publication [P6], WISENES design �ow and tools are used for designing and im-
plementing an indoor surveillance WSN. First, the suitability of different TUTWSN
con�gurations is manually explored with WISENES simulations. After the results
indicate that a con�guration meets application requirements for network longevity
and communication delay, WSN is prototyped on top of SensorOS.

Design Principles

The indoor surveillance network has two application tasks, one for periodic tempera-
ture measurements for HVAC control and another for detecting motion in monitored
premises. The periodic measurements have a low priority, but motion alerts require
delay sensitive operation. The objective in the design is to �nd a TUTWSN con-
�guration that adapts to the reactive operation required by motion detection but still
preserves overall energy ef�ciency.

In order to show an example of con�guration evaluation in WISENES, a bandwidth
allocation algorithm in TUTWSN MAC protocol is parameterized with different
guaranteed reservations. After the simulations are completed and the con�guration
found, application tasks are implemented as SensorOS threads and TUTWSN proto-
cols parameterized accordingly.

Indoor Surveillance WSN Results

In order to assess application requirements for lifetime and reactivity, simulation
models and prototypes are instrumented for the monitoring of power consumption
and data routing delay. The simulated results show that with a con�guration that
grants guaranteed bandwidth for each node every sixth second, an average delay per
hop is around four seconds. With the same con�guration, a node equipped with a
motion detection sensor consumes 443 µW in average. Moreover, average simulated
power consumption is 650 µW for a node performing active data routing. This con-
�guration is selected for prototyping, since its results indicate shortest per hop delay.

64 5. Design and Implementation of WSNs with WISENES

Fig. 15: TUTWSN PIC node with an integrated PIR sensor.

In prototyping phase, the same aspects are measured with physical TUTWSN pro-
totypes. The measurements are done with TUTWSN PIC nodes with integrated
PIR sensors. Fig. 15 depicts a TUTWSN PIR node on a plastic enclosure. Delay
and power consumption results correspond accurately to simulated ones, as shown
in Section 5.1.5. The prototype implementation of the motion detection task with
TUTWSN stack supporting subnode functionality consumes 38.1 KB of code and
2 253 B of data memory on TUTWSN PIC nodes.

6. SUMMARY OF PUBLICATIONS

The publications of this thesis are based on the work of the author during years be-
tween 2003 and early 2007. This chapter summarizes the contents of the publications
and clari�es the contribution of the author. The co-authors have seen and agree with
the descriptions. None of the publications have previously been used as a part of a
doctoral thesis.

The publications can be divided into two main groups. The publications [P1-P4]
outline the requirements, and propose tools and methods for the design and imple-
mentation of WSNs. The second group consists of the publications [P5, P6] that
present application-speci�c tailoring of WSN con�gurations.

Publication [P1] presents WISENES design and evaluation environment. The main
focus of the publication is on the WISENES framework and its utilization for WSN
design and evaluation. The accuracy of WISENES evaluation results is proved by
TUTWSN simulations and prototype measurements. The performance of WISENES
in large scale simulations is evaluated by a temperature measurement application
with TUTWSN and a simpli�ed version of ZigBee and IEEE 802.15.4 LR-WPAN
protocol stack.

The author designed and implemented WISENES framework as well as the proto-
cols and applications for the simulations. The publication was written by the author.
Prof. Marko Hännikäinen and Prof. Timo D. Hämäläinen outlined the functional
requirements for WISENES and revised the draft version of the publication.

Publication [P2] is a survey of systems software support for distributed processing in
WSNs. The publication reviews and evaluates existing algorithms and methods that
aim in facilitating the implementation of distributed applications. Further, require-
ments and implementation guidelines for systems software in WSNs are outlined.

The author conducted the background study, analyzed the material, and made con-
clusions according to the �ndings. The text was written by the author. Prof. Marko
Hännikäinen and Prof. Timo D. Hämäläinen gave ideas for the survey and revised
the text.

66 6. Summary of Publications

Publication [P3] presents the design and implementation of SensorOS, a lightweight
OS for resource constrained WSN nodes. SensorOS is designed according to guide-
lines given in [P2]. SensorOS uses a preemptive priority-based scheduler and is suit-
able for time critical WSN applications and protocols. The publication illustrates the
minimal resources consumption and timing accuracy of the OS, and gives an example
of SensorOS usage in a simple WSN application scenario.

The author is the main architect of SensorOS. The implementation of SensorOS for
TUTWSN nodes was mainly carried out by Mr. Timo Alho, M.Sc, assisted by the
author. The author wrote the publication. Prof. Marko Hännikäinen and Prof. Timo
D. Hämäläinen improved the writing style.

Publication [P4] proposes a task allocation middleware for distributed processing of
WSN applications. Similarly to SensorOS, WSN node middleware is based on the
�ndings of [P2]. WSN node middleware utilizes a simple but fair algorithm for bal-
ancing communication and computation load between nodes. The middleware ab-
stracts underlying network topology by de�ning application communication primi-
tives between tasks instead of nodes. WSN node middleware is designed and imple-
mented in WISENES environment and evaluated by simulations.

The author designed and implemented the WSN node middleware in WISENES. The
simulations, result analysis, and writing of the publication were done by the author.
Prof. Marko Hännikäinen gave comments during the research and revised the text.
Prof. Timo D. Hämäläinen improved the writing style.

Publication [P5] discusses and analyzes the suitability and approaches for integrating
TCP/IP communication to low-power WSNs. In general, the communication pro�les
of TCP/IP and WSNs differ considerably, which sets challenges for the integration.
The publication presents the con�guration of TUTWSN protocols for higher band-
width and shorter delay. The con�guration is made manually without WISENES
or SensorOS. The results indicate that such a con�guration results to the trade-off
between energy ef�ciency and performance.

The author con�gured and modi�ed TUTWSN protocol stack for TCP/IP and imple-
mented required software components for Linux. TUTWSN protocols are designed
by Prof. Marko Hännikäinen, Mr. Mikko Kohvakka, M.Sc, Mr. Jukka Suhonen,
M.Sc, and the author. TUTWSN node prototypes are designed by Mr. Kohvakka.
Mr. Suhonen has implemented the general purpose version of the TUTWSN proto-
cols for node prototypes. The publication was written by the author. Prof. Marko
Hännikäinen supervised the work and revised the text. Prof. Timo D. Hämäläinen
improved the text.

67

Publication [P6] composes the tools and methods presented in this Thesis. In the
publication, an indoor surveillance WSN is designed and evaluated with WISENES.
Based on the WISENES results, a suitable con�guration is implemented on top of
SensorOS. The publication shows the analogy between WISENES and SensorOS
abstractions and illustrates the straightforward transition from the design to the im-
plementation phase.

The author de�ned the application scenario, designed it in WISENES environment,
and wrote the publication. The SensorOS design and implementation were performed
by the author and Mr. Timo Alho, M.Sc. TUTWSN nodes are designed by Mr.
Mikko Kohvakka, M.Sc, and protocols implemented by Mr. Jukka Suhonen, M.Sc.
Mr. Teemu Laukkarinen modi�ed TUTWSN protocol implementation for SensorOS.
Mr. Jari Juntunen, M.Sc, implemented the indoor surveillance application and per-
formed the measurements with node prototypes together with the author. Prof. Marko
Hännikäinen provided comments and revised the text, Prof. Timo D. Hämäläinen
suggested improvements to the draft version of the publication.

Supplementary publications

Supplementary publications [S1-S6] are not included into the Thesis since they are
not essential to present the main contributions of this work. However, they give fur-
ther insights to the research area. Of the publications, [S1] and [S5] present additional
WISENES capabilities and simulations. The publication [S2] concentrates on the se-
curity issues in WSNs and shows the con�guration of TUTWSN for security-enabled
mode. TUTWSN protocols, algorithms, and interfaces used in the application exam-
ples of the Thesis are presented in [S3, S4, S6].

The supplementary publication [S1] explores the scalability of WISENES for WSNs
with large number of nodes. The possibilities for generating executable code from
high level SDL descriptions in WISENES to the node platforms are also discussed.

In [S2], the security threats faced in WSN deployments, and the architectures pro-
posed for securing WSNs are reviewed. TUTWSN protocol stack is con�gured to
support a centralized method to distribute secret keys for encryption and authentica-
tion.

The publication [S3] presents the design and implementation of a data and service
access API. In the application scenarios presented in this Thesis, this WSN API has
been used for data gathering and runtime con�guration of the TUTWSN protocols.

68 6. Summary of Publications

The supplementary publications [S4] and [S6] present TUTWSN protocols and algo-
rithms used in application examples of the Thesis. The principles and implementation
of the TUTWSN routing protocol are discussed in [S4]. An algorithm for dynamic
communication capacity allocation within the network is introduced in [S6].

In [S5], a mathematical analysis that evaluates the suitability of IEEE 802.15.4 LR-
WPAN and ZigBee for large scale WSNs is given. WISENES simulations are used
to validate the analysis models.

7. CONCLUSIONS

WSNs are envisioned to have a huge potential for diversity of applications that bridge
humans, computers, and physical world. At its current state, the technology is not ma-
ture enough for realizing the far-reaching visions. However, within the last decade
the advances in manufacturing technologies have made low-cost and low-power com-
munication and computation devices possible.

The current devices enable a wide variety of applications, even though they do not
yet meet the vision of �smart dust�. Instead, most of the challenges lay on software,
including communication protocols, applications, and systems software. Existing
software architectures used e.g. in Internet do not suit for WSNs due to the extreme
resource constraints. Further, standardization may not be an optimal solution for
WSNs, since the divergent requirements call for application-speci�c solutions. While
ZigBee standardizes a con�gurable protocol stack, it can address only a small subset
of possible applications.

Even though the application-oriented nature and application-speci�c tailoring of de-
ployments are commonly acknowledged characteristics of WSNs, there are no well-
de�ned methods for structuring application requirements nor common methodologies
for WSN design. The diversity of applications together with the possible con�gura-
tions of node platforms and software components constitute a huge design space that
need to be managed when designing a new WSN deployment.

As with maturing technologies in general, the abstraction level in WSN development
increases as the technology evolves. The need for a low-level bit optimization and
OS support remains, but higher level abstractions are required for the design and
implementation of constantly larger and more complex WSNs. This necessitates
systematic design methodologies and tools that support these abstractions throughout
the design �ow.

This Thesis presented a design methodology that provides abstract models for the de-
scription of WSN protocol and application functionality. These abstract deployment
models are evaluated with simulations for assessing the performance of different de-

70 7. Conclusions

ployment con�gurations. A runtime environment extends the model abstractions also
to the prototyping phase.

The design abstractions proposed in this Thesis are based on the WISENES deploy-
ment models. These models were found suitable for WSN functionality description
at a high abstraction level. The main features of WISENES framework are the sup-
port for graphical design of deployment models using EFSM MoC, the evaluation
of the network performance with accurate simulations of the models, and the back-
annotation of performance results from prototypes.

SensorOS and WSN node middleware extend the WISENES design abstractions to
the prototyping phase on real node platforms. SensorOS implements preemptive mul-
tithreading with a very small memory footprint. Further, its accurate time concept
serves the needs of time-sensitive WSN applications and protocols. WSN node mid-
dleware creates a seemingly distributed application processing environment on top of
SensorOS. Its lightweight but ef�cient task allocation algorithm lengthens network
lifetime by balancing application and networking processing between nodes. Even
though the code generation from WISENES to the �nal implementation was not con-
sidered in this Thesis, the required technology and tools are already available.

Two case studies were shown to illustrate the challenges involved, and the feasibility
of selected abstractions and tools. Both application scenarios were relative simple
but typical for current WSNs. A performance optimized network con�guration is
suitable also for other applications than TCP/IP. The indoor surveillance application
represented applications that have multiple tasks with contradictory requirements.

The main bene�t of WISENES compared to the related work is that the accuracy of
simulations makes it possible to verify the WSN performance reliably already dur-
ing the high abstraction level design phase. Together with well-de�ned deployment
models and graphical design environment, this hastens the design and con�guration
of suitable protocols and algorithms for a WSN deployment. The systems software
supporting the same MoC on node platforms facilitates the transition from the design
phase to the prototyping and �nal implementation.

Current WSN applications are hindered by the resource and programming model lim-
itations set by the platforms and runtime environments. Since the resource constraints
will most likely persist also in future due to the trend towards a smaller physical size,
more complex and demanding applications need to be enabled by evolving program-
ming models. The system level design methodology proposed in this Thesis solves
this by de�ning high level abstractions for the description of application functionality
and distribution, and by supporting these abstractions throughout the design �ow.

BIBLIOGRAPHY

[1] K. Aberer, M. Hauswirth, and A. Salehi, �The global sensor network
middleware for ef�cient and �exible deployment and interconnection of
sensor networks,� LSIR, Tech. Rep. 2006-006, April 2006. [Online].
Available: http://infoscience.ep�.ch/

[2] K. Akkaya and M. Younis, �A survey on routing protocols for wireless sensor
networks,� Elsevier Ad hoc Networks, vol. 3, no. 3, pp. 325�349, May 2005.

[3] I. F. Akyildiz and I. H. Kasimoglu, �Wireless sensor and actor networks: Re-
search challenges,� Elsevier Ad Hoc Networks, vol. 2, no. 4, pp. 351�367,
October 2004.

[4] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, �A survey on wireless mul-
timedia sensor networks,� Elsevier Computer Networks, vol. 51, no. 4, pp.
921�960, March 2007.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, �A survey on
sensor networks,� IEEE Communications Magazine, vol. 40, no. 8, pp. 102�
114, August 2002.

[6] ��, �Wireless sensor networks: a survey,� Elsevier Computer Networks,
vol. 38, no. 4, pp. 393�422, March 2002.

[7] J. N. Al-Karaki and A. E. Kamal, �Routing techniques in wireless sensor net-
works: a survey,� IEEE Wireless Communications, vol. 11, no. 6, pp. 6�28,
December 2004.

[8] (2007) This is ant, a wireless personal area network solution website.
[Online]. Available: http://www.thisisant.com/

[9] W. Archer, P. Levis, and J. Regehr, �Interface contracts for tinyos,� in Proc.
6th international Conference on information Processing in Sensor Networks
(IPSN'07), Cambridge, MA, USA, April 25-27 2007, pp. 158�165.

72 Bibliography

[10] (2007) Avrora website. [Online]. Available:
http://compilers.cs.ucla.edu/avrora/

[11] A. Bakshi and V. K. Prasanna, �Algorithm design and synthesis for wireless
sensor networks,� in Proc. 2004 International Conference on Parallel Process-
ing, Montreal, Quebec, Canada, August 15�18 2004, pp. 423�430.

[12] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao, �Modeling of sensor nets
in ptolemy II,� in Proc. 3rd International Symposium on Information Process-
ing in Sensor Networks (IPSN'04), Berkeley, CA, USA, April 26�27 2004, pp.
359�368.

[13] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu, �Wire-
less sensor networks: A survey on the state of the art and the 802.15.4 and
ZigBee standards,� Elsevier Computer Communications, vol. 30, no. 7, pp.
1655�1695, May 2007.

[14] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. D. Kim, B. Zhou, and E. G.
Sirer, �On the need for system-level support for ad hoc and sensor networks,�
ACM SIGOPS Newsletter on Operating Systems Review, vol. 36, no. 2, pp.
1�5, April 2002.

[15] M. A. Batalin, M. Rahimi, Y. Yu, D. Liu, A. Kansal, G. S. Sukhatme, W. J.
Kaiser, M. Hansen, G. J. Pottie, M. Srivastava, and D. Estrin, �Call and re-
sponse: experiments in sampling the environment,� in Proc. 2nd International
Conference on Embedded Networked Sensor Systems (SenSys'04), Baltimore,
MD, USA, November 3�5 2004, pp. 25�38.

[16] R. Beckwith, D. Teibel, and P. Bowen, �Report from the �eld: Results from
an agricultural wireless sensor network,� in Proc. 29th Annual IEEE Interna-
tional Conference on Local Computer Networks (LCN'04), Tampa, FL, USA,
November 16�18 2004, pp. 471�478.

[17] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and L. Thiele, �Pro-
totyping wireless sensor network applications with btnodes,� in Wireless Sen-
sor Networks, First European Workshop, EWSN 2004, ser. Lecture Notes in
Computer Science, H. Karl, A. Willig, and A. Wolisz, Eds. Springer, 2004,
vol. 2920, pp. 323�338.

[18] J. Beutel, O. Kasten, M. Ringwald, F. Siegemund, and L. Thiele, �Bluetooth
smart nodes for ad-hoc networks,� Computer Engineering and Networks

Bibliography 73

Laboratory, ETH Zurich, Tech. Rep. 167, April 2003. [Online]. Available:
http://www.tik.ee.ethz.ch/

[19] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruen-
wald, A. Torgerson, and R. Han, �MANTIS OS: An embedded multithreaded
operating system for wireless micro sensor platforms,� Mobile Networks and
Applications, vol. 10, no. 4, pp. 563�579, August 2005.

[20] Speci�cation of the Bluetooth System, Bluetooth Special Interest Group (SIG)
Std. 2.0 + EDR, 2004.

[21] A. Bonivento, L. P. Carloni, and A. Sangiovanni-Vincentelli, �Platform based
design for wireless sensor networks,� Mobile Networks and Applications,
vol. 11, no. 4, pp. 469�485, August 2006.

[22] A. Boulis, C.-C. Han, and M. B. Srivastava, �Design and implementation of
a framework for ef�cient and programmable sensor networks,� in Proc. 1st
International Conference on on Mobile Systems, Applications, and Service
(MobiSys'03), San Francisco, CA, USA, May 5�8 2003, pp. 187�200.

[23] X. Carcelle, T. Dang, and C. Devic, �Industrial wireless technologies: appli-
cations for the electrical utilities,� in Proc. IEEE International Conference on
Industrial Informatics (INDIN'06), Singapore, August 16�18 2006, pp. 108�
113.

[24] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon, �RETOS:
resilient, expandable, and threaded operating system for wireless sensor net-
works,� in Proc. 6th international Conference on information Processing in
Sensor Networks (IPSN'07), Cambridge, MA, USA, April 25-27 2007, pp.
148�157.

[25] E. Cheong, E. A. Lee, and Y. Zhao, �Viptos: A graphical development
and simulation environment for tinyos-based wireless sensor,� UCB,
Tech. Rep. UCB/EECS-2006-15, February 2006. [Online]. Available:
http://www.eecs.berkeley.edu/

[26] C.-Y. Chong and S. P. Kumar, �Sensor networks: Evolution, opportunities, and
challenges,� Proceedings of the IEEE, vol. 91, no. 8, pp. 1247�1256, August
2003.

[27] W. Chonggang, K. Sohraby, H. Yueming, L. Bo, and T. Weiwen, �Issues of
transport control protocols for wireless sensor networks,� in Proc. 2005 Inter-

74 Bibliography

national Conference on Communications, Circuits and Systems (ICCCAS'05),
HongKong, China, May 27�30 2005, pp. 442�426.

[28] D. Chu, K. Lin, A. Linares, G. Nguyen, and J. M. Hellerstein, �sdlib: a sensor
network data and communications library for rapid and robust application de-
velopment,� in Proc. 5th international Conference on information Processing
in Sensor Networks (IPSN'06), Nashville, TN, USA, April 19-21 2006, pp.
432�440.

[29] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, �TeenyLIME: transiently
shared tuple space middleware for wireless sensor networks,� in Proc. Inter-
national Workshop on Middleware For Sensor Networks (MidSens'06), Mel-
bourne, Australia, November 28 2006, pp. 43�48.

[30] K. Crowley, J. Frisby, S. Murphy, M. Roantree, and D. Diamond, �Web-based
real-time temperature monitoring of shell�sh catches using a wireless sensor
network,� Sensors and Actuators A: Physical, vol. 122, no. 2, pp. 222�230,
August 2005.

[31] D. Culler, D. Estrin, and M. B. Srivastava, �Overview of sensor networks,�
IEEE Computer, vol. 37, no. 8, pp. 41�49, August 2004.

[32] D. E. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo, �A network-
centric approach to embedded software for tiny devices,� in Lecture Notes in
Computer Science. Springer, 2001, vol. 2211, pp. 114�130.

[33] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, and G. P. Picco,
�TinyLIME: bridging mobile and sensor networks through middleware,� in
Proc. 3rd IEEE International Conference on Pervasive Computing and Com-
munications (PerCom'05), Kauai Island, HI, USA, March 8�12 2005, pp. 61�
72.

[34] A. D`Costa and A. M. Sayeed, �Collaborative signal processing for distributed
classi�cation in sensor networks,� in Information Processing in Sensor Net-
works: 2nd International Workshop, IPSN 2003, ser. Lecture Notes in Com-
puter Science, F. Zhao and L. J. Guibas, Eds. Springer, 2005, vol. 2634, pp.
126�140.

[35] M. Diaz, B. Rubio, and J. M. Troya, �A coordination middleware for wire-
less sensor networks,� in Proc. 2005 Systems Communications (ICW'05,
ICHSN'05, ICMCS'05, SENET'05)), Montreal, Quebec, Canada, August 14�
17 2005, pp. 377�382.

Bibliography 75

[36] A. Dunkels, �Full TCP/IP for 8-bit architectures,� in Proc. 1st International
Conference on Mobile Systems, Applications and Services (MobiSys'03), San
Francisco, CA, USA, May 5�8 2003, pp. 85�98.

[37] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, �Run-time dynamic linking
for reprogramming wireless sensor networks,� in Proc. 4th International Con-
ference on Embedded Networked Sensor Systems (SenSys'06), Boulder, CO,
USA, October 31�November 3 2006, pp. 15�28.

[38] A. Dunkels, B. Grönvall, and T. Voigt, �Contiki - a lightweight and �exi-
ble operating system for tiny networked sensors,� in Proc. 29th Annual IEEE
International Conference on Local Computer Networks (1st IEEE Workshop
on Embedded Networked Sensors) (EmNetS,04), Tampa, FL, USA, November
16�18 2004, pp. 455�462.

[39] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, �Protothreads: Simplify-
ing event-driven programming of memory-constrained embedded systems,� in
Proc. 4th International Conference on Embedded Networked Sensor Systems
(SenSys'06), Boulder, CO, USA, October 31�November 3 2006, pp. 29�42.

[40] J. Elson and D. Estrin, Sensor Networks: A Bridge to the Physical World.
Springer, 2004, pp. 3�20.

[41] J. Elson, L. Girod, and D. Estrin, �EmStar: Development with high system vis-
ibility,� IEEE Wireless Communications, vol. 11, no. 6, pp. 70�77, December
2004.

[42] J. Elson and A. Parker, �Tinker: a tool for designing data-centric sensor net-
works,� in Proc. 5th international Conference on information Processing in
Sensor Networks (IPSN'06), Nashville, TN, USA, April 19-21 2006, pp. 350�
357.

[43] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, �Next century chal-
lenges: Scalable coordination in sensor networks,� in Proc. 5th annual
ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom'99), Seattle, WA, USA, August 15�20 1999, pp. 263�270.

[44] A. Eswaran, A. Rowe, and R. Rajkumar, �Nano-RK: An energy-aware
resource-centric RTOS for sensor networks,� in 26th IEEE International Real-
Time Systems Symposium (RTSS'05), Miami, FL, USA, December 5�8 2005,
pp. 256�265.

76 Bibliography

[45] (2007) HiperLAN website. [Online]. Available:
http://portal.etsi.org/radio/HiperLAN/HiperLAN.asp

[46] (2007) HiperMAN website. [Online]. Available:
http://portal.etsi.org/radio/HiperMAN/HiperMAN.asp

[47] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, �In-network aggregation tech-
niques for wireless sensor networks: a survey,� IEEE Wireless Communica-
tions, vol. 14, no. 2, pp. 70�87, April 2007.

[48] D. Flowers and Y. Yang, �MiWi wireless networking protocol stack,�
Microchip Technology Inc., Tech. Rep. AN1066, February 2007. [Online].
Available: http://www.microchip.com/

[49] C.-L. Fok, G.-C. Roman, and C. Lu, �Rapid development and �exible deploy-
ment of adaptive wireless sensor network applications,� in Proc. 25th IEEE
International Conference on Distributed Computing Systems (ICDCS'05),
Columbus, OH, USA, June 6�10 2005, pp. 653�662.

[50] A. Fraboulet, G. Chelius, and E. Fleury, �Worldsens: development and pro-
totyping tools for application speci�c wireless sensors networks,� in Proc.
6th international Conference on information Processing in Sensor Networks
(IPSN'07), Cambridge, MA, USA, April 25-27 2007, pp. 176�185.

[51] A. Fuggetta, G. P. Picco, and G. Vigna, �Understanding code mobility,� IEEE
Transactions on Software Engineering, vol. 24, no. 5, pp. 342�361, May 1998.

[52] D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and D. Culler, �The
nesC language: A holistic approach to networked embedded systems,� in Proc.
ACM SIGPLAN 2003 Conference on Programming Language Design and Im-
plementation (PLDI'03), San Diego, CA, USA, June 9�11 2003, pp. 1�11.

[53] D. Gelernter, �Generative communication in linda,� ACM Programming Lan-
guages and Systems, vol. 7, no. 1, pp. 80�112, January 1985.

[54] D. Gracanin, M. Eltoweissy, A. Wadaa, and L. A. DaSilva, �A service-centric
model for wireless sensor networks,� IEEE Journal on Selected Areas in Com-
munications, vol. 23, no. 6, pp. 1159�1166, June 2005.

[55] L. Gu and J. A. Stankovic, �t-kernel: providing reliable OS support to wire-
less sensor networks,� in Proc. 4th International Conference on Embedded
Networked Sensor Systems (SenSys'06), Boulder, CO, USA, October 31�
November 3 2006, pp. 1�14.

Bibliography 77

[56] R. Gummadi, O. Gnawali, and R. Govindan, �Macro-programming wireless
sensor networks using kairos,� in Distributed Computing in Sensor Systems,
1st IEEE International Conference, DCOSS 2005, ser. Lecture Notes in Com-
puter Science, V. K. Prasanna, S. S. Iyengar, P. G. Spirakis, and M. Welsh,
Eds. Springer, 2005, vol. 3560, pp. 126�140.

[57] J. A. Gutiérrez, E. H. Callaway, Jr., and R. L. Barrett, Jr., Low-Rate Wireless
Personal Area Networks ... Enabling Wireless Sensors with IEEE 802.15.4, ser.
IEEE Standards Wireless Networks Series. IEEE Press, 2004.

[58] E. Guttman, C. Perkins, J. Veizades, and M. Day, Service Location Protocol,
version 2, IETF Std. RFC 2608, 1999.

[59] S. Hadim and N. Mohamed, �Middleware challenges and approaches for wire-
less sensor networks,� IEEE Distributed Systems Online, vol. 7, no. 3, pp. 1�
15, March 2006.

[60] ��, �Middleware for wireless sensor networks: A survey,� in Proc. 1st In-
ternational Conference on Communication System Software and Middleware
(Comsware'06), New Delhi, India, January 8�12 2006.

[61] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, �A dynamic
operating system for sensor nodes,� in Proc. 3rd International Conference on
Mobile Systems, Applications, and Services (MobiSys'05), Seattle, WA, USA,
June 6�8 2005, pp. 163�176.

[62] J. K. Hart and K. Martinez, �Environmental sensor networks: A revolution
in the earth system science?� Earth-Science Reviews, vol. 78, no. 3-4, pp.
177�191, October 2006.

[63] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao,
P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh, �VigilNet:
An integrated sensor network system for energy-ef�cient surveillance,� ACM
Transactions on Sensor Networks, vol. 2, no. 1, pp. 1�38, February 2006.

[64] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, �An application-
speci�c protocol architecture for wireless microsensor networks,� IEEE Trans-
actions on Wireless Communications, vol. 1, no. 4, pp. 660�670, October
2002.

[65] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo, �Middle-
ware to support sensor network applications,� IEEE Network, vol. 1, no. 18,
pp. 6�14, January/February 2004.

78 Bibliography

[66] K. Henricksen and R. Robinson, �A survey of middleware for sensor net-
works: state-of-the-art and future directions,� in Proc. International Work-
shop on Middleware For Sensor Networks (MidSens'06), Melbourne, Aus-
tralia, November 28 2006, pp. 60�65.

[67] J. Hill and D. E. Culler, �Mica: a wireless platform for deeply embedded
networks,� IEEE Micro, vol. 22, no. 6, pp. 12�24, November/December 2002.

[68] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, �The platforms enabling
wireless sensor networks,� Communications of the ACM, vol. 47, no. 6, pp.
41�46, June 2004.

[69] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, �System ar-
chitecture directions for networked sensors,� in Proc. 9th ACM International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS'00), Cambridge, MA, USA, November 12�15 2000,
pp. 94�103.

[70] P. Hämäläinen, �Cryptographic security designs and hardware architectures
for wireless local area networks,� Ph.D. dissertation, Tampere University of
Technology, Tampere, Finland, December 2006.

[71] M. Hännikäinen, �Design of quality of service support for wireless local area
networks,� Ph.D. dissertation, Tampere University of Technology, Tampere,
Finland, November 2002.

[72] M. Hännikäinen, J. Knuutila, T. D. Hämäläinen, and J. Saarinen, �Us-
ing SDL for implementing a wireless medium access control protocol,�
in Proc. IEEE International Symbosium on Multimedia Software Engineer-
ing(MSE'00), Taipei, Taiwan, December 11�13 2000, pp. 229�236.

[73] M. Horstmann and M. Kirtland. (1997) Dcom architecture. Microsoft
Corporation. [Online]. Available: http://msdn2.microsoft.com/en-us/library/

[74] IEEE Standard for Information Technology�Telecommunications and Infor-
mation Exchange Between Systems�Local and Metropolitan Area Networks�
Speci�c Requirements�Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Speci�cations, IEEE Std. 802.11, 1999.

[75] IEEE Standard for Information Technology - Portable Operating System Inter-
face (POSIX), IEEE Std. 1003.1, 2004.

Bibliography 79

[76] IEEE Standard for Local and Metropolitan Area Networks � Part 16: Air In-
terface for Fixed Broadband Wireless Access Systems, IEEE Std. 802.16, 2004.

[77] IEEE Standard for Information Technology�Telecommunications and Infor-
mation Exchange Between Systems�Local and Metropolitan Area Networks�
Speci�c Requirements�Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Speci�cations for Low-Rate Wireless Personal Area
Networks (LR-WPAN), IEEE Std. 802.15.4, 2006.

[78] (2007) IEEE 1451.5 project website. [Online]. Available:
http://grouper.ieee.org/groups/1451/5/

[79] (2007) IEEE 802.11 working group website. [Online]. Available:
http://grouper.ieee.org/groups/802/11/

[80] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, �Di-
rected diffusion for wireless sensor networking,� IEEE/ACM Transactions on
Networking, vol. 11, no. 1, pp. 2�16, February 2003.

[81] Information Technology�Open Systems Interconnection�Basic Reference
Model: The Basic Model, ISO/IEC Std. 7498-1, 1994.

[82] C. Jaikaeo, C. Srisathapornphat, and C.-C. Shen, �Querying and tasking
in sensor networks,� in SPIE's 14th Annual International Symposium on
Aerospace/Defense Sensing, Simulation, and Control (Digitization of the Bat-
tlespace V), vol. 4037, Orlando, FL, USA, April 24�28 2000, pp. 184�197.

[83] A. Jantsch, Modeling Embedded Systems and SoCs: Concurrency and Time in
Models of Computation. Morgan Kaufmann Publishers, 2004.

[84] T. Kangas, �Methods and implementations for automated system on chip ar-
chitecture exploration,� Ph.D. dissertation, Tampere University of Technology,
Tampere, Finland, September 2006.

[85] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Net-
works. John Wiley & Sons Ltd, 2005.

[86] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli, �System-level design: Orthogonalization of concerns and
platform-based design,� IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 19, no. 12, pp. 1523�1543, December
2000.

80 Bibliography

[87] M. Kohvakka, M. Hännikäinen, and T. D. Hämäläinen, �Energy optimized
beacon transmission rate in a wireless sensor network,� in Proc. The 16th An-
nual IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC'05), Berlin, Germany, September 11�14 2005, pp.
1269�1273.

[88] ��, �Ultra low energy wireless temperature sensor network implementa-
tion,� in Proc. The 16th Annual IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC'05), Berlin, Germany,
September 11�14 2005, pp. 801�805.

[89] ��, �Wireless sensor network implementation for industrial linear posi-
tion metering,� in Proc. 8th Euromicro Conference on Digital System Design
(DSD'05), Porto, Portugal, August 30�September 3 2005, pp. 267�273.

[90] M. Kohvakka, J. Suhonen, M. Hännikäinen, and T. D. Hämäläinen, �Transmis-
sion power based path loss metering for wireless sensor networks,� in Proc.
The 17th Annual IEEE International Symposium on Personal, Indoor and Mo-
bile Radio Communications (PIMRC'06), Helsinki, Finland, September 11�14
2006.

[91] J. Koshy and R. Pandey, �VMstar: synthesizing scalable runtime environments
for sensor networks,� in Proc. 3rd International Conference on Embedded Net-
worked Sensor Systems (SenSys'05), San Diego, CA, USA, November 2�4
2005, pp. 243�254.

[92] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan, �Reliable and ef�-
cient programming abstractions for wireless sensor networks,� in Proc. 2007
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI'07), San Diego, CA, USA, June 10�13 2007, pp. 200�210.

[93] J. Kulik, W. B. Heinzelman, and H. Balakrishnan, �Negotiation-based proto-
cols for disseminating information in wireless sensor networks,� Kluwer Wire-
less Networks, vol. 8, no. 2, pp. 169�185, May 2002.

[94] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto, A. Paul, and U. Ra-
machandran, �DFuse: a framework for distributed data fusion,� in Proc. 1st In-
ternational Conference on Embedded Networked Sensor Systems (SenSys'03),
Los Angeles, CA, USA, November 5�7 2003, pp. 114�125.

Bibliography 81

[95] P. Levis and D. Culler, �Maté: a tiny virtual machine for sensor networks,� in
Proc. 10th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS'02), San Jose, CA,
USA, October 5�9 2002, pp. 85�95.

[96] P. Levis, N. Lee, M. Welsh, and D. Culler, �TOSSIM: accurate and scalable
simulation of entire TinyOS applications,� in Proc. 1st International Confer-
ence on Embedded Networked Sensor Systems (SenSys'03), Los Angeles, CA,
USA, November 5�7 2003, pp. 126�137.

[97] S. Li, Y. Lin, S. H. Son, J. A. Stankovic, and Y. Wei, �Event detection services
using data service middleware in distributed sensor networks,� Telecommuni-
cation Systems, vol. 26, no. 2, pp. 351�368, June 2004.

[98] J. Lifton, D. Seetharam, M. Broxton, and J. Paradiso, �Pushpin computing
system overview: a platform for distributed, embedded, ubiquitous sensor net-
works,� in Proc. 1st International Conference on Pervasive Computing (Per-
vasive'02), Zurich, Switzerland, August 26�28 2002, pp. 139�151.

[99] (2006) Linux standard base, version 3.1. Linux Foundation. [Online].
Available: http://www.linuxbase.org/

[100] J. Liu, L. F. Perrone, D. M. Nicol, M. Liljenstam, C. Elliott, and D. Pearson,
�Simulation modeling of large-scale ad-hoc sensor networks,� in Proc. 2001
Simulation Interoperability Workshop, Harrow, Middlesex, UK, June 25�27
2001.

[101] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao, �State-centric programming for
sensor-actuator network systems,� IEEE Pervasive Computing, vol. 2, no. 4,
pp. 50�62, October�December 2003.

[102] T. Liu and M. Martonosi, �Impala: a middleware system for managing au-
tonomic, parallel sensor systems,� in Proc. 9th ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming (PPoPP'03), San Diego,
CA, USA, June 11�13 2003, pp. 107�118.

[103] Y. Liu and S. K. Das, �Information-intensive wireless sensor networks: po-
tential and challenges,� IEEE Communications Magazine, vol. 44, no. 11, pp.
142�147, November 2006.

[104] C. G. Luca Benini, Elisabetta Farella, �Wireless sensor networks: En-
abling technology for ambient intelligence,� Microelectronics Journal, vol. 37,
no. 12, pp. 1639�1649, December 2006.

82 Bibliography

[105] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, �The design of
an acquisitional query processor for sensor networks,� in Proc. ACM Interna-
tional Conference on Management of Data (SIGMOD'03), San Diego, CA,
USA, June 9�12 2003, pp. 491�502.

[106] K. Martinez, P. Padhy, A. Riddoch, R. Ong, and J. Hart, �Glacial environ-
ment monitoring using sensor networks,� in Proc. REALWSN 2005, Stock-
holm, Sweden, June 20�21 2005.

[107] (2006) UPnP device architecture. Microsoft Corporation. [Online]. Available:
http://www.upnp.org/resources/documents.asp

[108] A. Mihovska, F. Platbrood, G. Karetsos, S. Kyriazakos, R. V. Muijen,
R. Guarneri, and J. M. Pereira, �Towards the wireless 2010 vision: A tech-
nology roadmap,� Wireless Personal Communications, vol. 42, no. 3, pp. 303�
336, August 2007.

[109] A. L. Murphy and G. P. P. and, �LIME: a middleware for physical and logical
mobility,� in Proc. 21st International Conference on Distributed Computing
Systems (ICDCS-21), Phoenix, AZ, USA, April 16�19 2001, pp. 524�533.

[110] (2007) Wireless ad hoc sensor networks website. National Institute of
Standards and Technology � Advanced Network Technologies Division.
[Online]. Available: http://w3.antd.nist.gov/wahn_ssn.shtml

[111] Y. Neuvo, �Future wireless technologies,� in Proc. IEEE 6th CAS Symposium
on Emerging Technologies: Frontiers of Mobile and Wireless Communication,
Shanghai, China, May 31�June 2 2004, pp. I_1�I_3.

[112] R. Newton, Arvind, and M. Welsh, �Building up to macroprogramming: an
intermediate language for sensor networks,� in Proc. 4th international Confer-
ence on information Processing in Sensor Networks (IPSN'05), Los Angeles,
CA, USA, April 24�27 2005.

[113] D. Niculescu, �Communication paradigms for sensor networks,� IEEE Com-
munications Magazine, vol. 43, no. 3, pp. 116�122, March 2005.

[114] S. Oh, P. Chen, M. Manzo, and S. Sastry, �Instrumenting wireless sensor net-
works for real-time surveillance,� in Proc. 2006 IEEE International Confer-
ence on Robotics and Automation (ICRA'06), Orlando, FL, USA, May 15�19
2006, pp. 3128�3133.

Bibliography 83

[115] S. Olariu, A. Wada, L. Wilson, and M. Eltoweissy, �Wireless sensor networks:
leveraging the virtual infrastructure,� IEEE Network, vol. 4, no. 18, pp. 51�56,
July/August 2004.

[116] (2004) Single unix speci�cation, version 3, 2004 edition. The Open group.
[Online]. Available: http://www.opengroup.org/

[117] E. Ould-Ahmed-Vall, G. F. Riley, B. S. Heck, and D. Reddy, �Simulation
of large-scale sensor networks using GTSNetS,� in Proc. 13th IEEE Inter-
national Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS'05), Atlanta, GA, USA, September
27�29 2005, pp. 211�218.

[118] H. Park and M. B. Srivastava, �Energy-ef�cient task assignment framework
for wireless sensor networks,� CENS, Tech. Rep. 0026, September 2003.
[Online]. Available: http://research.cens.ucla.edu

[119] A. Perrig, J. Stankovic, and D. Wagner, �Security in wireless sensor networks,�
Communications of the ACM, vol. 47, no. 6, pp. 53�57, June 2004.

[120] J. Polastre, J. Hill, and D. Culler, �Versatile low power media access for wire-
less sensor networks,� in Proc. 2nd International Conference on Embedded
Networked Sensor Systems (SenSys'04), Baltimore, MD, USA, November 3�5
2004, pp. 95�107.

[121] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M. Karir, �ATEMU:
A �ne-grained sensor network simulator,� in Proc. 1st IEEE International
Conference on Sensor and Ad Hoc Communication Networks (SECON'04),
Santa Clara, CA, USA, October 4�7 2004, pp. 145�152.

[122] (2006) Ptolemy II website. [Online]. Available:
http://ptolemy.eecs.berkeley.edu/ptolemyII

[123] H. Qi, Y. Xu, and X. Wang, �Mobile-agent-based collaborative signal and in-
formation processing in sensor networks,� Proceedings of the IEEE, vol. 91,
no. 8, pp. 1172�1183, August 2003.

[124] J. M. Rabaey, M. J. Ammer, J. L. da Silva Jr., D. Patel, and S. Roundy, �Pico-
radio supports ad hoc ultra-low power wireless networking,� IEEE Computer,
vol. 33, no. 7, pp. 42�48, July 2000.

84 Bibliography

[125] J. M. Reason and J. M. Rabaey, �A study of energy consumption and reliability
in a multi-hop sensor network,� ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 8, no. 1, pp. 84�97, January 2004.

[126] N. Reijers and K. Langendoen, �Ef�cient code distribution in wireless sensor
networks,� in Proc. 2nd International Workshop on Wireless Sensor Networks
and Applications (WSNA'03), San Diego, CA, USA, September 19 2003, pp.
60�67.

[127] G. F. Riley, �Large-scale network simulations with GTNetS,� in Proc. 35th
Winter Simulation Conference (WSC'03), New Orleans, LA, USA, December
7�10 2003, pp. 676�684.

[128] O. Riva and C. Borcea, �The urbanet revolution: Sensor power to the people!�
IEEE Pervasive Computing, vol. 6, no. 2, pp. 41�49, April�June 2007.

[129] K. Römer, �Programming paradigms and middleware for sensor networks,� in
Proc. GI/ITG Workshop on Sensor Networks, Karlsruhe, Germany, February
26�27 2004, pp. 49�54.

[130] ��, �Tracking real-world phenomena with smart dust,� in Wireless Sensor
Networks, First European Workshop, EWSN 2004, ser. Lecture Notes in Com-
puter Science, H. Karl, A. Willig, and A. Wolisz, Eds. Springer, 2004, vol.
2920, pp. 28�43.

[131] K. Römer, O. Kasten, and F. Mattern, �Middleware challenges for wireless
sensor networks,� ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 6, no. 4, pp. 59�61, October 2002.

[132] K. Römer and F. Mattern, �The design space of wireless sensor networks,�
IEEE Wireless Communications, vol. 11, no. 6, pp. 54�61, December 2004.

[133] C. Rowen, Engineering the Complex SOC - Fast, Flexible Design with Con-
�gurable Processors, ser. Prentice Hall Modern Semiconductor Design Series.
Prentice Hall, 2004.

[134] N. Sadagopan, B. Krishnamachari, and A. Helmy, �Active query forwarding
in sensor networks,� Elsevier Ad Hoc Networks, vol. 3, no. 1, pp. 91�113,
January 2005.

[135] A. Sangiovanni-Vincentelli, �Quo vadis, SLD? reasoning about the trends and
challenges of system level design,� Proceedings of the IEEE, vol. 95, no. 3,
pp. 467�506, March 2007.

Bibliography 85

[136] P. Santi, �Topology control in wireless ad hoc and sensor networks,� ACM
Computing Surveys, vol. 37, no. 2, pp. 164�194, June 2005.

[137] T. Schmid, H. Dubois-Ferriere, and M. Vetterli, �Sensorscope: Experiences
with a wireless building monitoring sensor network,� in Proc. REALWSN
2005, Stockholm, Sweden, June 20�21 2005.

[138] D. C. Schmidt, �Model driven engineering,� IEEE Computer, vol. 39, no. 2,
pp. 25�31, February 2006.

[139] L. Schwiebert, S. K. Gupta, and J. Weinmann, �Research challenges in wire-
less networks of biomedical sensors,� in Proc. 7th annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking (MobiCom'01),
Rome, Italy, July 16�21 2001, pp. 151�165.

[140] (2007) SDL Forum Society website. [Online]. Available: http://www.sdl-
forum.org/

[141] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and D. Culler,
�Design and implementation of a sensor network system for vehicle tracking
and autonomous interception,� in Proc. 2nd European Workshop on Wireless
Sensor Networks (EWSN'05), Istanbul, Turkey, January 31�February 2 2005,
pp. 93�107.

[142] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, �Sensor information net-
working architecture and applications,� IEEE Personal communications,
vol. 8, no. 4, pp. 52�59, August 2001.

[143] C.-C. Shen, C. Badr, K. Kordari, S. S. Bhattacharyya, G. L. Blankenship,
and N. Goldsman, �A rapid prototyping methodology for application-speci�c
sensor networks,� in Proc. IEEE International Workshop on Computer Archi-
tecture for Machine Perception and Sensing (CAMPS'06), Montreal, Quebec,
Canada, September 18�20 2006.

[144] A. Sikora, �Design challenges for short-range wireless networks,� IEE Proc.
Communications, vol. 151, no. 5, pp. 473�479, October 2004.

[145] G. Simon, M. Maróti, Ákos Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap,
J. Sallai, and K. Frampton, �Sensor network-based countersniper system,� in
Proc. 2nd International Conference on Embedded Networked Sensor Systems
(SenSys'04), Baltimore, MD, USA, November 3�5 2004, pp. 1�12.

86 Bibliography

[146] G. Simon, P. Völgyesi, M. Maróti, and Ákos Lédeczi, �Simulation-based op-
timization of communication protocols for large-scale wireless sensor net-
works,� in Proc. 2003 IEEE Aerospace Conference (AeroConf'03), vol. 3, Big
Sky, MT, USA, March 8�15 2003, pp. 1339�1346.

[147] E. G. Sirer, R. Grimm, A. J. Gregory, and B. N. Bershad, �Design and imple-
mentation of a distributed virtual machine for networked computers,� in Proc.
17th ACM Symposium on Operating Systems Principles (SOSP'99), Kiawah
Island, SC, USA, December 12�15 1999, pp. 202�216.

[148] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, �Protocols for self-
organization of a wireless sensor network,� IEEE Personal Communications,
vol. 7, no. 5, pp. 16�27, October 2000.

[149] L. Song and D. Hatzinakos, �A cross-layer architecture of wireless sensor net-
works for target tracking,� IEEE/ACM Transactions on Networking, vol. 15,
no. 1, pp. 145�158, February 2007.

[150] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and
J. Kelner, �Mires: a publish/subscribe middleware for sensor networks,� Per-
sonal and Ubiquitous Computing, vol. 10, no. 1, pp. 37�44, February 2005.

[151] (2006) sQualnet website. [Online]. Available:
http://nesl.ee.ucla.edu/projects/squalnet/

[152] W. Stallings, Operating Systems Internals and Design Principles, 5th ed.
Prentice-Hall, 2005.

[153] J. A. Stankovic, T. F. Abdelzaher, C. Lu, L. Sha, and J. C. Hou, �Real-time
communication and coordination in embedded sensor networks,� Proceedings
of the IEEE, vol. 91, no. 7, pp. 1002�1022, July 2003.

[154] D. C. Steere, A. Baptista, D. McNamee, C. Pu, and J. Walpole, �Research
challenges in environmental observation and forecasting systems,� in Proc.
6th Annual ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom'00), Boston, MA, USA, August 6�11 2000, pp. 292�
299.

[155] M. Storey, G. Blair, and A. Friday, �MARE: resource discovery and con�g-
uration in ad hoc networks,� Mobile Networks and Applications, vol. 7, pp.
377�387, October 2002.

Bibliography 87

[156] W. Su, Özgür B. Akan, and E. Cayirci, Communication Protocols for Sensor
Networks. Springer, 2004, pp. 21�50.

[157] J. Suhonen, M. Kohvakka, M. Hännikäinen, and T. D. Hämäläinen, �Design,
implementation, and experiments on outdoor deployment of wireless sensor
network for environmental monitoring,� in Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation, 6th International Workshop, SAMOS
2006, ser. Lecture Notes in Computer Science, S. Vassiliadis, S. Wong, and
T. D. Hämäläinen, Eds. Springer, 2006, vol. 4017, pp. 109�121.

[158] (2001) Jini architecture speci�cation, version 1.2. Sun Microsystems.
[Online]. Available: http://www.sun.com/software/jini/

[159] (2002) Java message service speci�cation - version 1.1. Sun Microsystems.
[Online]. Available: http://java.sun.com/products/jms/

[160] (2003) Java remote method invocation speci�cation. Sun Microsystems.
[Online]. Available: http://java.sun.com/javase/technologies/core/basic/rmi/

[161] (2007) SunSPOTWorld website. [Online]. Available:
http://www.sunspotworld.com/

[162] S. Sundresh, K. WooYoung, and A. Gul, �SENS: a sensor, environment and
network simulator,� in Proc. 37th Annual Simulation Symposium (ANSS'04),
Arlington, VA, USA, April 18�22 2004, pp. 221�228.

[163] D. Sweetser, V. Sweetser, and J. Nemeth-Johannes, �A modular approach to
IEEE-1451.5 wireless sensor development,� in Proc. 2006 IEEE Sensors Ap-
plications Symposium (SAS'06), Houston, TX, USA, February 7�9 2006, pp.
82�87.

[164] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler, �An
analysis of a large scale habitat monitoring application,� in Proc. 2nd Inter-
national Conference on Embedded Networked Sensor Systems (SenSys'04),
Baltimore, MD, USA, November 3�5 2004, pp. 214�226.

[165] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and
D. Estrin, �Habitat monitoring with sensor networks,� Communications of the
ACM, vol. 47, no. 6, pp. 34�40, June 2004.

[166] (2007) Telelogic TAU SDL suite website. [Online]. Available:
http://www.telelogic.com/products/tau/sdl/

88 Bibliography

[167] K. Ter�oth, G. Wittenburg, and J. Schiller, �FACTS - a rule-based middleware
architecture for wireless sensor networks,� in Proc. 1st International Confer-
ence on Communication System Software and Middleware (Comsware'06),
New Delhi, India, January 8�12 2006.

[168] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, �A taxonomy of wire-
less micro-sensor network models,� ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 6, no. 2, pp. 28�36, April 2002.

[169] B. L. Titzer, D. K. Lee, and J. Palsberg, �Avrora: scalable sensor network
simulation with precise timing,� in Proc. 4th international Conference on in-
formation Processing in Sensor Networks (IPSN'05), Los Angeles, CA, USA,
April 24-27 2005.

[170] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong, �A macroscope in the
redwoods,� in Proc. 3rd International Conference on Embedded Networked
Sensor Systems (SenSys'05), San Diego, CA, USA, November 2�4 2005, pp.
51�63.

[171] V. Turau, M. Witt, and C. Weyer, �Analysis of a real multi-hop sensor network
deployment: The heathland experiment,� in Proc. 3rd International Confer-
ence on Networked Sensing Systems (INSS'06), Chicago, IL, USA, May 31�
June 2 2006.

[172] T. van Dam and K. Langendoen, �An adaptive energy-ef�cient mac proto-
col for wireless sensor networks,� in Proc. 1st International Conference on
Embedded Networked Sensor Systems (SenSys'03), Los Angeles, CA, USA,
November 5�7 2003, pp. 171�180.

[173] M. Varshney, D. Xu, M. Srivastava, and R. Bagrodia, �SenQ: a scalable simu-
lation and emulation environment for sensor networks,� in Proc. 6th interna-
tional Conference on information Processing in Sensor Networks (IPSN'07),
Cambridge, MA, USA, April 25-27 2007, pp. 196�205.

[174] S. Vinoski, �CORBA: integrating diverse applications within distributed het-
erogeneous environments,� IEEE Communications Magazine, vol. 35, no. 2,
pp. 46�55, February 1997.

[175] P. Völgyesi and Ákos Lédeczi, �Component-based development of networked
embedded applications,� in Proc. 28th Euromicro Conference (EUROMI-
CRO'02), Dortmund, Germany, September 4�6 2002, pp. 68�73.

Bibliography 89

[176] G. Wagenknecht, D. Dietterle, J.-P. Ebert, and R. Kraemer, �Transforming
protocol speci�cations for wireless sensor networks into ef�cient embedded
system,� in Wireless Sensor Networks, 3rd European Workshop, EWSN 2006,
ser. Lecture Notes in Computer Science, K. Römer, H. Karl, and F. Mattern,
Eds. Springer, 2006, vol. 3868, pp. 228�243.

[177] Q. Wang, Y. Zhu, and L. Cheng, �Reprogramming wireless sensor net-
works: challenges and approaches,� IEEE Network, vol. 20, no. 3, pp. 48�55,
May/June 2006.

[178] N. Wanga, N. Zhangb, and M. Wang, �Wireless sensors in agriculture and
food industry - recent development and future perspective,� Computers and
Electronics in Agriculture, vol. 50, no. 1, pp. 1�14, January 2006.

[179] M. Weiser, �Hot topics: ubiquitous computing,� IEEE Computer, vol. 26,
no. 10, pp. 71�72, October 1993.

[180] ��, �The computer for the 21st century,� ACM SIGMOBILE Mobile Com-
puting and Communications Review, vol. 3, no. 3, pp. 3�11, July 1999.

[181] M. Welsh and G. Mainland, �Programming sensor networks using abstract
regions,� in Proc. 1st Symposium on Networked Systems Design and Imple-
mentation (NSDI'04), San Francisco, CA, USA, March 29�31 2004.

[182] Y. Wen, R. Wolski, and G. Moore, �DiSenS: scalable distributed sensor net-
work simulation,� in Proc. 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP'07), San Jose, CA, USA, March
14�17 2007, pp. 24�34.

[183] (2007) Wi-Fi alliance website. [Online]. Available: http://www.wi-�.org/

[184] (2007) Wibree website. [Online]. Available: http://www.wibree.com/

[185] A. Willig, K. Matheus, and A. Wolisz, �Wireless technology in industrial net-
works,� Proceedings of the IEEE, vol. 93, no. 6, pp. 1130�1151, June 2005.

[186] (2007) WiMAX forum website. [Online]. Available:
http://www.wimaxforum.org

[187] W. Wolf, Computers as Components: Principles of Embedded Computing Sys-
tem Design. Morgan Kaufmann Publishers, 2001.

90 Bibliography

[188] A. Woo, S. Madden, and R. Govindan, �Networking support for query pro-
cessing in sensor networks,� Communications of the ACM, vol. 47, no. 6, pp.
47�52, June 2004.

[189] (2007) Worldsens website. [Online]. Available: http://www.worldsens.net

[190] (2007) accsense website. [Online]. Available: http://www.accsense.com/

[191] (2007) Aginova inc. website. [Online]. Available: http://www.aginova.com/

[192] (2007) Archrock website. [Online]. Available: http://www.archrock.com/

[193] (2007) BTnodes website. [Online]. Available: http://www.btnode.ethz.ch/

[194] (2007) chip45 website. [Online]. Available: http://www.chip45.com/

[195] (2007) Cirronet website. [Online]. Available: http://www.cirronet.com/

[196] (2007) Crossbow technology website. [Online]. Available:
http://www.xbow.com/

[197] (2007) Dust networks website. [Online]. Available:
http://www.dustnetworks.com/

[198] (2007) Ember corporation website. [Online]. Available:
http://www.ember.com/

[199] (2007) Emerson process management - smart wireless website. [Online].
Available: http://www.emersonprocess.com/smartwireless/

[200] (2007) Grape networks website. [Online]. Available:
http://www.grapenetworks.com/

[201] (2007) Libelium website. [Online]. Available: http://www.libelium.com/

[202] (2007) MAXFOR technology inc. website. [Online]. Available:
http://www.maxfor.co.kr/

[203] (2007) Millennial net website. [Online]. Available: http://www.millennial.net/

[204] (2007) Moteiv website. [Online]. Available: http://www.moteiv.com/

[205] (2007) Sensicast website. [Online]. Available: http://www.sensicast.com/

[206] (2007) Sensinode website. [Online]. Available: http://www.sensinode.com/

Bibliography 91

[207] (2007) Telegesis website. [Online]. Available: http://www.telegesis.com/

[208] (2007) TinyNode website. [Online]. Available: http://www.tinynode.com/

[209] (2007) WiSuite website. [Online]. Available: http://www.wisuite.com/

[210] H. Wu, Q. Luo, P. Zheng, and L. M. Ni, �VMNet: Realistic emulation of wire-
less sensor networks,� IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 2, pp. 277�288, February 2007.

[211] L. Xiaohua, Z. Kougen, P. Yunhe, and W. Zhaohui, �A TCP/IP implementa-
tion for wireless sensor networks,� in Proc. IEEE International Conference on
Systems, Man and Cybernetics (SMC'04), vol. 7, Hague, Netherlands, October
10�13 2004, pp. 6081�6086.

[212] Z. Xiong, A. D. Liveris, and S. Cheng, �Distributed source coding for sen-
sor networks,� IEEE Signal Processing Magazine, vol. 21, no. 5, pp. 80�94,
September 2004.

[213] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govin-
dan, and D. Estrin, �A wireless sensor network for structural monitoring,� in
Proc. 2nd International Conference on Embedded Networked Sensor Systems
(SenSys'04), Baltimore, MD, USA, November 3�5 2004, pp. 13�24.

[214] J. Yannakopoulos and A. Bilas, �CORMOS: a communication-oriented run-
time system for sensor networks,� in Proc. 2nd European Workshop on Wire-
less Sensor Networks (EWSN'05), Istanbul, Turkey, January 31�February 2
2005, pp. 342�353.

[215] Y. Yao and J. Gehrke, �The cougar approach to in-network query processing in
sensor networks,� ACM SIGMOD Record, vol. 31, no. 3, pp. 9�18, September
2002.

[216] W. Ye, J. Heidemann, and D. Estrin, �Medium access control with coordinated
adaptive sleeping for wireless sensor networks,� IEEE/ACM Transactions on
Networking, vol. 3, no. 12, pp. 493�506, June 2004.

[217] Y. Yu, B. Hong, and V. K. Prasanna, �Communication models for algorithm
design in networked sensor systems,� in Proc. 19th IEEE International Par-
allel and Distributed Processing Symposium (IPDPS'05), Denver, CO, USA,
April 4�8 2005.

92 Bibliography

[218] Y. Yu, B. Krishnamachari, and V. K. Prasanna, �Issues in designing middle-
ware for wireless sensor networks,� IEEE Network, vol. 1, no. 18, pp. 15�21,
January/February 2004.

[219] Y. Yu and V. K. Prasanna, �Energy-balanced task allocation for collaborative
processing in networked embedded systems,� Mobile Networks and applica-
tions, vol. 1-2, no. 10, pp. 115�131, February 2005.

[220] (2007) Z-wave alliance website. [Online]. Available: http://www.z-
wavealliance.org/

[221] P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi, �Hardware design
experiences in zebranet,� in Proc. 2nd International Conference on Embedded
networked sensor systems (SenSys'04), Baltimore, MD, USA, November 3�5
2004, pp. 227�238.

[222] J. Zhu, S. Papavassiliou, and J. Yang, �Adaptive localized qos-constrained data
aggregation and processing in distributed sensor networks,� IEEE Transac-
tions on Parallel and Distributed Systems, vol. 17, no. 9, pp. 923�933, Septem-
ber 2006.

[223] ZigBee Speci�cation, ZigBee Alliance Std. r13, 2006.

PUBLICATIONS

94 Publications

PUBLICATION 1

M. Kuorilehto, M. Hännikäinen, T. D. Hämäläinen, �Rapid Design and Evaluation
Framework for Wireless Sensor Networks,� Ad Hoc Networks, accepted, DOI:
10.1016/j.adhoc.2007.08.003.

© 2007 Elsevier B.V. Reprinted with permission.

ARTICLE IN PRESS
Ad Hoc Networks xxx (2007) xxx–xxx

www.elsevier.com/locate/adhoc
Rapid design and evaluation framework for
wireless sensor networks

Mauri Kuorilehto a,*, Marko Hännikäinen b, Timo D. Hämäläinen b

a Nokia Technology Platforms, Visiokatu 3, FIN 33720, Tampere, Finland
b Tampere University of Technology, Institute of Digital and Computer Systems, Korkeakoulunkatu 1, FIN 33720, Tampere, Finland

Received 29 October 2004; received in revised form 12 July 2006; accepted 21 August 2007
Abstract

The diversity of applications and typically scarce node resources set very tight constraints to Wireless Sensor Networks
(WSN). It is not possible to fulfill all requirements with a general purpose WSN, for which reason the rapid development of
application specific WSNs is preferred. We present a new framework called WIreless SEnsor NEtwork Simulator (WISE-
NES) for the design, simulation, and evaluation of WSNs. The target WSN is designed in Specification and Description
Language (SDL), simulated in WISENES, and implemented on target platform either through automatic code generation
or manually. The high-level WSN model is back-annotated with the measured values from a real platform. In this way,
very accurate WSN simulations can be performed with a rapid design cycle. WISENES itself has been verified with TUT-
WSN (Tampere University of Technology Wireless Sensor Network) and ZigBee protocols. The MAC protocol of ZigBee
was designed in two weeks from scratch by one designer, which shows the effectiveness of WISENES. For accuracy com-
parison, the results show 6.7% difference between the modeled and measured TUTWSN prototype power consumption.
WISENES hastens the evaluation of new protocol and application configurations, especially for the large scale and
long-term WSN deployments.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Wireless Sensor Network (WSN); Network simulation; Medium access control (MAC); Energy efficiency
1. Introduction

Wireless Sensor Network (WSN) applications are
diverse ranging from toys to military systems. Typ-
ical challenges for WSN are large scale, constantly
1570-8705/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.adhoc.2007.08.003

* Corresponding author. Tel.: +358 71 800 8000; fax: +358 3
3115 4561.

E-mail addresses: mauri.kuorilehto@nokia.com (M. Kuori-
lehto), marko.hannikainen@tut.fi (M. Hännikäinen), timo.d.ha-
malainen@tut.fi (T.D. Hämäläinen).

Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
changing network topology, and error prone com-
munications, while in WSN nodes processing and
storage capacities, as well as energy resources are
limited. Most often WSNs are demanded to be
robust against environmental strains, and able to
autonomously recover from error situations. Fur-
ther, depending on the applications and the interac-
tion with environment, time synchronization and
security requirements can be strict [1,2].

Opposite to general expectations, an all-purpose
WSN is not a reasonable goal, since it is impossible
.

design and evaluation framework for ..., Ad Hoc Netw.

mailto:mauri.kuorilehto@nokia.com
mailto:marko.hannikainen@tut.fi
mailto:timo.d.hamalainen@tut.fi
mailto:timo.d.hamalainen@tut.fi

2 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
to meet all the real life constraints simultaneously.
Instead, WSN protocol layers and their configura-
tion parameters must be tailored to meet the specific
application requirements. However, the design
space is very large and makes the design automation
the most important challenge for real working
WSNs. A designer simply cannot handle all the
parameters, functions, and their complicated depen-
dencies without a tool support.

Prototyping can be applied to a single node func-
tionality and small scale WSN testing. However, pro-
totypes are not applicable for verifying the operation
of e.g. a thousand-node network during a five year
deployment. Even moderate sized networks benefit
from extensive simulations, but the accuracy of sim-
ulation is very important. According to our experi-
ences on real WSNs, the smallest and a minor-
looking issue might cause severe changes for example
in the network power consumption. Therefore, the
accuracy of the design and performance estimations
is not an option but essential for any real WSN.

Several legacy computer network simulators exist
for the testing and modeling of communication
protocols, but they omit WSN specific aspects. Pro-
posed WSN simulators vary in their implementa-
tion, scale, and in the accuracy and coverage of
the modeling of node platforms, protocols, and real
world phenomena. Common features are the
models for dedicated platforms, sensing, and wire-
less networking. However, none of the previous
WSN simulators offers a complete and seamless
design flow from abstract sketching to the real
implementation.

Our WIreless SEnsor NEtwork Simulator
(WISENES) framework is the first tool that enables
the design, simulation, implementation and evalua-
tion of WSNs with measured back-annotated infor-
mation. WISENES is targeted to the design of
deployable, real WSN networks. The main difference
to the other proposed frameworks is that there is no
need to carry out a separate high abstraction WSN
modeling project and another development project
for the actual implementation. Instead, WISENES
supports all phases in the design flow. However, if
preferred, WISENES can also be used for the plain
simulations like other WSN simulators. In all cases,
WISENES eases the assessment of the protocol and
application interoperability, and the evaluation their
applicability for different sensor node platforms.

The key benefit of WISENES is that the evalua-
tion of protocols, applications, and their different
configurations is carried out starting from the
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
design phase. The framework defines rules and
interfaces for a designer to the protocol stack and
application implementation. The functionality,
type, or composition of the protocols is not limited
by the framework. Sensor nodes, transmission med-
ium, and inspected phenomena are modeled sepa-
rately in the WISENES framework. The WSN
protocols and applications are implemented in Spec-
ification and Description Language (SDL) [3]. The
models of high abstraction level SDL are compiled
to executables used for both simulation and final
implementation. Unlike in the other WSN simula-
tors, target node platforms are not restricted to a
specific pre-defined platform.

WISENES has been tested and its own perfor-
mance evaluated with large TUTWSN (Tampere
University of Technology Wireless Sensor Network)
[4] and ZigBee networks [5]. For the evaluation of
WISENES accuracy, real and simulated TUTWSNs
are compared. However, the comparison of different
WSNs themselves is not the primary scope of this
paper.

This paper is organized as follows. Section 2 dis-
cusses the related work in the area of WSN simula-
tion and presents the comparison of WISENES with
the other WSN simulators. WISENES design is pre-
sented in Section 3 and Section 4 introduces the
WISENES framework. The use of WISENES for
TUTWSN and ZigBee protocol implementation is
presented in Section 5. Section 6 gives the evalua-
tion of WISENES, and the TUTWSN and ZigBee
simulation results. Finally, conclusions are given
and future work projected.

2. Related work

Legacy computer network simulators, such as ns-
2 [6], GloMoSim [7], Qualnet [8], OPNET [9],
OMNeT++ [10], Scalable Simulation Framework
(SSF) [11], and J-Sim [12] enable the simulation of
wireless network behavior and protocol stack oper-
ation but lack accounting for WSN characteristics.
This is overcome in the simulators proposed specif-
ically for WSNs, which we have categorized to net-
working oriented and sensor node simulators. The
networking oriented simulators model the transmis-
sion medium in detail and are more suitable for the
large scale WSN simulations. The sensor node sim-
ulators mainly simulate the operation of a single
node but implement a lightweight communication
model. Currently, there exist eleven relevant propos-
als for the networking oriented WSN simulators
design and evaluation framework for ..., Ad Hoc Netw.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 3

ARTICLE IN PRESS
and six proposals targeting to the sensor node mod-
eling. These are compared with WISENES in Sec-
tion 2.3.

2.1. Networking oriented simulators for WSN

Most of the proposed networking oriented simu-
lators are based on the legacy computer network
simulators. SensorSim [13] and Naval Research
Laboratory’s (NRL) sensor network simulator [14]
extend ns-2 with general WSN features. sQualnet
[15] is built on top of Qualnet and Simulator for
Wireless Ad-hoc Networks (SWAN) [16] is based
on SSF. SENSIM [17] and simulation template for
EYES [18] utilize OmNet++ environment, while J-
Sim sensor simulator [19] adds WSN features to
its parent simulator. VisualSense [20] is an extension
to Ptolemy II [21], Prowler [22] utilizes MATLAB,
and H-MAS [23] and SENSE [24] implement cus-
tom simulation environments.

The most realistic transmission media and proto-
col stacks are available in SensorSim, NRL simula-
tor, sQualnet, and J-Sim sensor simulator. While the
first two rely on the models available in parent sim-
ulators, the last two include also a set of WSN pro-
tocols. VisualSense has several models for
transmission medium, which vary in their accuracy.
SWAN and Prowler include abstracted transmission
media and lowest layer protocol models that esti-
mate the network operation. SENSIM, EYES simu-
lator, H-MAS, and SENSE have error free
transmission medium models, in which the signal
propagation is dependent only on the transmission
range. Simple protocol stacks are available for
SENSIM, H-MAS, and SENSE. In VisualSense
and EYES simulator, the protocol stack is imple-
mented by the designer.

A separate sensing channel containing also the
sensed targets is used for phenomena modeling in
SensorSim, NRL simulator, sQualnet, and J-Sim
sensor simulator. VisualSense has also a dedicated
channel for modeling the propagation of different
phenomena. Of the other related simulators, SWAN
models catastrophic plume dispersion, and H-MAS
generates random sensor readings. Prowler, SEN-
SIM, EYES simulator, and SENSE do not support
phenomena sensing.

Concerning the node platform capabilities, only
the power consumption is accounted in the related
simulators. SensorSim, sQualnet, SENSE, SEN-
SIM, and J-Sim sensor simulator have detailed
power models, which consider battery discharge
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
rate and relaxation. NRL simulator and EYES sim-
ulator use linear battery models, in which the max-
imum energy capacity is available independent on
the discharge rate. Prowler and VisualSense esti-
mate the power consumption based on activity,
whereas in SWAN and H-MAS power consumption
is not taken into account.

The simulated code is applicable directly for
hardware platforms in SensorSim, sQualnet, J-sim
sensor simulator, and partly in VisualSense. In Sen-
sorSim, simulated SensorWare applications are
compatible with custom hardware platforms [25].
The other three simulators enable the execution of
applications, and sQualnet also higher layer proto-
cols, on Berkeley motes [26] on top of well-known
WSN Operating System (OS) TinyOS [27].

VisualSense uses a graphical notation for the
design and supports a combination of different
Models of Computation (MoC) of Ptolemy II.
Abstracted application scripts can be simulated also
in Prowler.

2.2. Sensor node simulators

Most of the proposed sensor node simulators are
targeted to TinyOS motes. Complete TinyOS sys-
tem can be simulated with TinyOS SIMulator
(TOSSIM) [28], ATmel EMUlator (ATEMU) [29],
and TinyOS Scalable Simulation Framework
(TOSSF). TOSSF itself is an extension to SWAN
[30]. SENS [31] supports only TinyOS application
simulation. EmSim implements a simulation envi-
ronment for custom Em* Linux applications and
protocols [32]. Sensor Network Asynchronous Pro-
cessor (SNAP) [33] is a hardware emulator, which
connects several processors on a Network-on-Chip
(NoC).

The TOSSIM transmission medium model is
directed graphs with individual bit error rates,
whereas in ATEMU and EmSim the transmission
medium is error free accounting only the transmis-
sion range. TOSSF utilizes a transmission medium
model from SWAN and in SENS transmission med-
ium and networking protocols are combined into a
simple model. In SNAP, NoC models the transmis-
sion medium. Protocol stacks in TOSSIM, ATEM-
U, and TOSSF are dependent on TinyOS
configuration. EmSim and SNAP implement simple
protocols for the system testing.

Phenomena sensing is modeled in TOSSF by the
plume dispersion model of SWAN. TOSSIM and
EmSim retrieve a sensor reading from an external
design and evaluation framework for ..., Ad Hoc Netw.

4 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
source. SENS incorporates a separate environment
model that supports sensing and actuating. In
SNAP and ATEMU phenomena are not modeled.
None of the simulators models power consumption.

The applications from all sensor node simulators,
and protocols from other than SENS, can be
directly mapped to the hardware platforms. How-
ever, the platform is restricted to a specific one.

2.3. Comparison of WISENES with related

simulators

The comparison of WISENES and the other
WSN simulators is summarized in Table 1. The
comparison is based on the public information
available about each simulator and the possible par-
ent simulator engine. If exact scalability informa-
tion is not available, the simulator is assessed
according to the largest reported simulations.

The scope of input parameterization is vital when
comparing the configurability of simulators to dif-
ferent kinds of platforms, protocols, and applica-
tions. Also, the availability of Graphical User
Interfaces (GUI) and the type of information output
by the simulator are accounted in the comparison.
The possibility to use simulated protocols and appli-
cations for the final implementations on physical
platforms defines the applicability of a simulator
as a complete design and development environment.

The term accurate results denotes a very close cor-
respondence of the simulation results to the real
world measurements with physical WSN prototypes.
Accurate results in full-scale simulations need to
combine at least realistic models for communica-
tions (application, transmission medium, transceiver
unit, and low-level communication protocols) and
node platform (energy, memory, peripheral I/O,
and computation). The node state changes, periphe-
ral activation, and leakage currents contribute to the
accuracy of energy consumption. The memory allo-
cation and thread scheduling in simulator depend on
the accuracy of the OS model of the simulator.

As shown in the table, most of the simulators are
capable of simulating WSN scenarios consisting of
thousands of nodes. This is an acceptable limit for
the current WSNs, but in future the capability to
simulate networks with in order of magnitude larger
scale is required.

Major differences between the simulators are in
input and output parameterization. Although sen-
sor node simulators emulate a single node platform
in detail, they do not allow the testing and evalua-
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
tion of applications and protocols on other types
of sensor nodes. Further, they omit the modeling
of node power consumption. From the simulators,
WISENES incorporates the most comprehensive
modeling of node platforms, which allows a detailed
description for virtually any real node platform. In
addition to power consumption, which is consi-
dered also in several other simulators, WISENES
accounts memory and computation capacities.
From the related simulators, the possibility to define
different platforms is available only in sQualnet,
but its modeling is not as detailed as that of
WISENES.

Most of the simulators visualize network topol-
ogy and key parameters through GUI. The event
information is gathered to trace or log files with
varying level of detail. From the related simulators,
ns-2 based simulators output extensive trace files.
Compared to the other simulators, WISENES out-
puts extensive event and data statistics but in addi-
tion also detailed information about the node
resource usage. Further, in WISENES a designer
can add own log items e.g. to obtain the values of
a desired parameters during the simulated period.

The simulated code is directly applicable for node
platforms in sensor node simulators. In networking
oriented simulators, two approaches are taken for
the final implementation. Either the simulated pro-
tocols and applications are converted to executables
for node platforms, or an existing code library is
used for emulating a node in a large scale simula-
tion. In the latter, the node implementation already
exists, and only the configuration parameters for the
final implementation are acquired by the simula-
tions. WISENES is the only simulator that supports
both of these. The SDL generated C from WISE-
NES with a custom lightweight kernel is also appli-
cable for the resource constrained sensor nodes [34].

A rapid protocol evaluation for a specific appli-
cation is possible only if the simulator protocol
stack is modular and its layers interchangeable.
Most of the simulators that descend from a legacy
computer network simulator incorporate a modular
protocol stack. In WISENES, the protocol layers
communicate through pre-defined interfaces, which
allow the replacement of simulated protocols at
the different layers. Graphical design of protocols
and applications is possible only in WISENES and
VisualSense. In both simulators the high abstraction
level designs can also be embedded to node plat-
forms. However, WISENES provides significantly
more accurate results compared to VisualSense.
design and evaluation framework for ..., Ad Hoc Netw.

Table 1
Comparison of WISENES and existing WSN simulators

Simulator Simulator
engine

Scalability Simulator input Simulator output Final
implementation

Bene Deficiencies

WISENES Extended
telelogic
TAU SDL

�10,000 [34] Nodes, protocols,
applications,
mediums (XML)

GUI, log files, (data,
energy, memory,
CPU, errors)

SDL code
generation/C
modules directly

Grap design, accurate
resul dular,
scala back-annotation

Sensing channel

Networking oriented simulators

SensorSim ns-2 �2000 [17] Power model,
protocols (TCL)

ns-2 nam UI, trace
files (data, energy,
errors)

Applications for
SensorWare, ns-2
protocols

Accu esults, variety of
proto ns-2), modular

No memory and CPU
modeling

sQualnet Qualnet �10,000 Nodes, traffic,
protocols (scripts)

Qualnet Visualizer,
statistics files (data,
energy)

nesC applications
directly

Accu esults,
integ to HW,
mod calability

No memory and CPU
modeling in simulator

NRL
simulator

ns-2 �2000 [17] Nodes, protocols,
sensing (TCL)

ns-2 nam UI, trace
files (data, energy,
errors)

ns-2 protocols Vari protocols (ns-2),
mod

No memory and CPU
modeling

SWAN DaSSF �10,000 Nodes, plume
dispersion (DML)

GUI, system
printouts (data
counters, delay)

WiroKit routing
protocol directly

Scala Inaccurate medium model,
no node and sensing
modeling, no modularity

SENSIM OmNet++ �5000 Protocols (ini-file
(for OmNet++)

OmNet++ GUI
(data)

None Mod No sensing, memory, and
CPU modeling

EYES
simulator

OmNet++ <1000 Protocols (ini-file
(for OmNet++)

OmNet++ GUI
(data,errors)

None Mod Inaccurate energy and
medium modeling, no
memory and CPU models

J-Sim sensor
simulator

J-Sim >1000 [35] Protocols (script) Text output, GUI
possible, (data)(1)

Applications
directly

Mod No GUI, no memory and
CPU modeling

VisualSense Ptolemy II �100 MoC
configurations
(Ptolemy II)

Ptolemy II GUI
(topology, node
information)

Algorithms
integrated to
TinyOS [36]

Grap design, algorithm
integ

No protocol stack, nodes
modeled by power model

Prowler MATLAB <1000 Application (script) GUI (data) None MAT for algorithm
testin

Inaccurate protocol, node,
and medium modeling

H-MAS Custom >100 Nodes, protocols
(text)

GUI, event files
(data)

None Inaccurate protocol and
medium modeling, no
modularity, scalability

SENSE Custom �1000 Topology, traffic
(script)

None(2) None Mod No output, inaccurate
medium modeling, no node
and sensing modeling

(continued on next page)

M
.

K
u

o
rileh

to
et

a
l.

/
A

d
H

o
c

N
etw

o
rk

s
x

x
x

(
2

0
0

7
)

x
x

x
–

x
x

x
5

A
R

T
IC

L
E

IN
P

R
E

S
S

P
lease

(2007),
d

o
i:10.1016/j.ad

h
o

c.2007.08.003

cite

th
is

article
in

p
ress

as:
M

.
K

u
o

rileh
to

et
al.,

R
ap

id
d

esign
an

d
evalu

atio
n

fram
ew

o
rk

fo
r

...,
A

d
H

o
c

N
etw

.

fits

hical
ts, mo
bility,

rate r
cols (

rate r
ration
ular, s
ety of
ular

bility

ular

ular

ular

hical
ration

LAB
g

ular

Table 1 (continued)

Simulator Simulator engine Scalability Simulator input Simulator
output

Final
implementation

Benefits Deficiencies

Sensor node simulators

TOSSIM Custom �10,000 TinyOS code TinyViz, debug
(data, node)

Directly Applicability of
code for mores

No energy
modeling, same
code for all nodes

ATEMU Custom �100 TinyOS code
network, nodes
(XML)

XATDB
debugger (debug
data)

Directly Applicability of
code for mores

No sensing and
energy models,
scalability

SENS Custom �10,000 Node profiles
(text)

GUI, text files
(data, energy,
errors)

Applications
directly

Scalability Only for
applications, node
and medium
models

TOSSF DaSSF (SWAN) �10,000 TinyOS code,
SWAN
parameters

SWAN output(3) Directly Scalability Inaccurate medium
model, no node
and sensing
modeling

Em* EmSim Custom <100 Simulation case
(script) [37]

Debug traces
(node)

Directly Applicability
of code

Inaccurate medium
model, no node
and sensing
models, scalability

SNAP FPGA Emulator �100(4) Configuration
(for FPGA)

FPGA debug
interface (node)

Directly Emulation Inaccurate medium
model, no sensing
modeling,
scalability

(1) J-Sim outputs simulation related data to an ‘‘instrument channel’’, to which user can implement a custom UI.
(2) No information about output is given, only results given show simulation times and simulator memory consumption.
(3) TOSSF I/O is not specified, but we assumed SWAN I/O due to the relation.
(4) SNAP emulators can be connected to increase scalability, but no evaluation is given.

6
M

.
K

u
o

rileh
to

et
a

l.
/

A
d

H
o

c
N

etw
o

rk
s

x
x

x
(

2
0

0
7

)
x

x
x

–
x

x
x

A
R

T
IC

L
E

IN
P

R
E

S
S

P
lease

cite
th

is
article

in
p

ress
as:

M
.

K
u

o
rileh

to
et

al.,
R

ap
id

d
esign

an
d

evalu
atio

n
fram

ew
o

rk
fo

r
...,

A
d

H
o

c
N

etw
.

(2007),
d

o
i:10.1016/j.ad

h
o

c.2007.08.003

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 7

ARTICLE IN PRESS
Generally, the networking oriented simulators
are more suitable for the network-wide evaluation,
whereas the strength of the sensor node simulators
lies in the testing and optimization of a single node
operation. From the related simulators, SensorSim
and sQualnet implement the most comprehensive
simulation environment. Compared to WISENES,
their battery and sensing models are currently more
accurate. The distinctive features of WISENES are
the complete design flow from the high abstraction
level graphical models to the final node implementa-
tion, the accurate full-scale simulations with config-
urable protocol stack and node platform models,
and the back-annotation of performance informa-
tion from real platforms.

3. Designing WSNs with WISENES

WISENES defines the rules and interfaces for the
WSN design and provides a library that contains
existing protocols and a set of implementations for
known functions. A reference WSN protocol stack
used in WISENES is depicted in Fig. 1 in correspon-
dence to the OSI model [38].

The key layer for WSN topology creation, chan-
nel access, and power management is the Medium
Access Control (MAC) protocol. The topology in
WSNs is either clustered or flat. In a clustered topol-
ogy, nodes are grouped to clusters, in which a cen-
tral cluster headnode coordinates the networking
and associated subnodes. In a flat topology all
nodes are equal. A routing protocol creates multi-
hop paths for the end-to-end communication. A
middleware layer hides the heterogeneities of under-
Application
layer

Transport
layer

Session
layer

Presentation
layer

Network
layer

Data link
layer

Physical
layer

OSI stack

Application
layer

Middleware

MAC protocol

Transceiver unit

WISENES WSN stack

Application
layer

Transport
layer

Session
layer

Presentation
layer

Network
layer

Data link
layer

Physical
layer

Application
layer

Multi-hop
routing protocol

MAC protocol

Transceiver unit

Fig. 1. WISENES WSN and OSI model protocol stacks.

Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
lying protocol stacks and node platforms from
applications [1].

The composition of the protocol stack is net-
work and application dependent, thus all layers
are not mandatory in WISENES. The transceiver
unit at the physical layer is part of the WISENES
framework and the lowest layer protocol sends
data to the transmission medium through its
interface.

Multiple WSN applications can be simulated
simultaneously in WISENES. Applications are
designed as a set of tasks communicating together.
Tasks initiate sensing, perform data processing
and aggregation, and initiate data transfers. The
application layer, which implements a host environ-
ment for application tasks, is a part of the WISE-
NES framework.

Applications are implemented either in detail
using SDL or by a task graph. The task graph is a
simple data dependency graph described by the sim-
ulator input parameters. In addition to the task data
dependencies, it defines the task activation frequen-
cies, and task sensing and data characteristics. This
approach enables the testing of different types of
applications with minimum effort.

3.1. WISENES input and output

The input parameter and output result groups of
WISENES are summarized in Fig. 2. WISENES
input parameters are defined using eXtensible
Markup Language (XML), each parameter set hav-
ing a dedicated file with a pre-defined structure.
WISENES

file input (.xml)

file output (.log) socket connection

• Node parameters
• Transceiver unit parameters
• Peripheral parameters
• Protocol parameters
• Transmission medium parameters
• Sensing parameters
• Application parameters

• Power consumption
• Memory consumption
• Network performance
• Protocol performance
• Application performance

• Node population
• Network topology
• Node battery levels

GUI

WISENES

file input (.xml)

file output (.log) socket connection

• Node parameters
• Transceiver unit parameters
• Peripheral parameters
• Protocol parameters
• Transmission medium parameters
• Sensing parameters
• Application parameters

• Power consumption
• Memory consumption
• Network performance
• Protocol performance
• Application performance

• Node population
• Network topology
• Node battery levels

GUI

Fig. 2. WISENES input parameter groups and output results.

design and evaluation framework for ..., Ad Hoc Netw.

Table 2
WISENES input parameters and their types

Parameter Type Description

Node parameters

Execution capacity Integer (MIPS) Instructions CPU can execute in a second
Instruction memory size Integer (instruction) Available instruction memory
Data memory size Integer (byte) Available data memory
Power unit capacity Float (mAh) Initial energy capacity in node battery
Active state power

consumption
Float (lW) Consumed power in active state

Sleep state information [Float, float] array (ms, lW) Required idle time before activation and power consumption in sleep
state

Harvesting capacity Float (lW) Power node can harvest from environment
Transceiver unit(s) Integer array (identifier) Transceiver unit(s) on the node
Peripherals Integer array (identifier) Peripherals attached to the node
Node coordinates Float array (m) Three-dimensional coordinates for node (x,y,z)

Transceiver unit parameters

Throughput Integer (bps) Transceiver unit data rate
Start-up transient period Float (ms) Start-up transient time before receiver/transmitter is ready
Data loading information [Integer, float] pair (bps, lW) Throughput and power consumption during transceiver to CPU

communication
Receiver power Float (lW) Power consumption while receiver is active
Transmit power levels [Integer, float] array (dBm,

lW)
Available transmit powers and corresponding power consumption

Carrier sensing power Float (lW) Power consumption during carrier sensing operation (if available in
transceiver)

Peripheral parameters

Type Constant string (identifier) Defines the peripheral type, e.g. sensor, ADC, location-finding system,
mobilizer

Phenomena Integer array (identifier) Phenomena the peripheral is related to, if sensor
Relations Integer array (identifier) Relations to other peripherals
Activation time Float (ms) Time the peripheral is active once activated
Activation power Float (lW) Power consumption when peripheral is active

Protocol parameters (for each protocol layer)

Instruction memory
consumption

Integer (instruction) Instruction memory required by the protocol layer

Data memory consumption Integer array (byte) Protocol static and dynamic data memory consumption

Transmission medium parameters

Signal attenuation curve Float array (constant) Define signal attenuation curve coefficients (k,b,v)
Minimum PER Float (constant) Minimum PER in the transmission medium
Sensing parameters

Active phenomena Integer array (identifier) Phenomena that can inspected
Limits Float array (dependent unit) Lower and upper limits separately for each sensed phenomenon value

Application parameters

Task activation interval Float (ms) The interval between task activations
Task data activation Integer (constant) After how many activations task initiates a data transfer
Task data amount Integer (byte) The amount of data sent by the task
Task data relations Integer array (identifier) Task to which the data is sent
Task peripheral relations Integer array (identifier) Peripherals required by the task
Instruction memory

consumption
Integer (instruction) Task instruction memory consumption

Data memory consumption Integer array (byte) Task static and dynamic data memory consumption
Task executed operations Integer (constant) Executed operations per task activation
Task population Integer array (identifier) A list of node identifiers defining the nodes, in which the task binary is

located

8 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
Node parameters are given in two separate files. The
first defines the capabilities of node platforms, and
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
the other per-node platform type and node
coordinates.
design and evaluation framework for ..., Ad Hoc Netw.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 9

ARTICLE IN PRESS
WISENES outputs information in two forms.
Detailed information about the simulated WSN
and nodes is collected to log files. Each protocol
and data event during a simulation is logged with
the parameters that define the cause and the conse-
quence of the event. Log data are written to per-
node directories, each protocol layer, application,
and a control instance modeling OS routines having
a dedicated .log-file. During an active simulation
run, the progress of a simulation is illustrated
through GUI presenting the node population, net-
work topology, and node energy level.

Input parameters at each group and their types
are presented in detail in Table 2. Node, transceiver
unit, and peripheral parameters define the capabili-
ties of sensor node platforms. Protocol related input
parameters define the static memory consumption
for each protocol, while the rest of the characteris-
tics are specified in the protocol SDL implementa-
tion. Transmission medium parameters define its
modeling and sensing parameters active phenom-
ena. An application task graph and an initial appli-
Table 3
WISENES output results and their types

Result Type Descript

Power consumption (final and variation during time)

Node, total Float (lW) Total po
CPU Float array (lW) Power c
Transceiver unit Float array (lW) Transcei
Peripherals Float (lW) Peripher
Protocols Float array lW Power c

node)
Application tasks Float array (lW) Power c

node)

Memory consumption (final and variation during time)

Application tasks, instruction Integer array (instructions) Instructi
Application tasks, data Integer array (byte)) Static an

node
Protocols, data Integer array (byte) Static an

Network performance (averaged and variation during time)

Throughput Integer array (bps) Through
Delays Float array (ms) Transfer
PER Float array (constant) Packet e
Collisions Integer Number

Protocol performance (averaged and variation during time)

Delays Float array (ms) Delays d
Buffering Integer array (constant) Buffer le
Throughput utilization Float array (constant) Utilized

Application performance (averaged and variation during time)

Delays Float array (ms) Commu
Activation accuracy Float array (ms) The var
Data coherence Float array (constant) The accu

Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
cation task population are described in the
application parameters.

Table 3 shows the output results and their types.
As the events are logged as they occur, the momen-
tary values of the presented results are stored into
the logs. Depending on the type of the result, the
values are also accumulated or averaged to obtain
an overall knowledge about the system behavior.

3.2. WISENES user interfaces

WISENES has two UIs for controlling and mon-
itoring simulation runs. Simulations are started and
controlled through a command line interface. The
progress of the simulation and the topology of a
simulated WSN are visualized in WISENES GUI.
GUI is implemented in Java using Java foundation
classes Swing packages [39]. The communication
between GUI and WISENES is implemented by a
socket interface. A screenshot of GUI visualizing a
hundred-node TUTWSN simulation is depicted in
Fig. 3.
ion

wer consumption in node
onsumption in CPU in execution and different sleep states
ver unit power consumption in sending, receiving, and scanning
al power consumption separately for each
onsumption in the execution of different protocols (network vs.

onsumption in the execution of application tasks (network vs.

on memory consumption in application tasks per node
d dynamic data memory consumption in application tasks per

d dynamic data memory consumption in protocols per node

put per link in the network
delays per link

rror rate per link
of collisions in a node

ue to buffering and control in different protocol layers
ngths in the protocol
vs. available throughput

nication delays between tasks
iance in task activation times vs. to expected activation times

racy and sufficiency of provided data

design and evaluation framework for ..., Ad Hoc Netw.

Fig. 3. WISENES GUI screenshot from a hundred-node TUT-
WSN simulation.

10 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
Different node roles, in this case cluster head-
nodes and subnodes, are shown by different colors.
Remaining energy levels and the received signal
strengths of the active communication links are pre-
sented in a pop-up window when a node is selected.
By double clicking a node, its transmission ranges
with different transmit powers are illustrated. Fur-
thermore, nodes can be moved by dragging and
dropping them in GUI.
3.3. WISENES tools

A set of Tool Command Language (TCL) scripts
is implemented for WISENES initiation and result
handling. The initiation scripts facilitate a simula-
tion case construction from different protocols and
a random node population generation for large sim-
ulation cases. The possible relations between differ-
ent types of platforms can be given as a parameter
to the population generation script, e.g. in order
to force ten low power nodes in the vicinity of a
more powerful one.

The result handling scripts facilitate power con-
sumption, data packet tracing, and link utility eval-
uations. The power consumption information is
gathered from individual nodes and a listing defin-
ing detailed power characteristics for different com-
ponents in each node is created. The packet tracing
tracks the hops of a packet from its source to the
destination node, and determines the delays on dif-
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
ferent hops and protocol layers. The link utility
evaluates activity and congestion of node to node
connections.
4. WISENES framework

The WISENES framework consists of models for
transmission medium, sensing channel, sensor node,
and of a central simulation control that manages
simulations and handles simulator Input/Output
(I/O). Networking protocols and node platform
modeling are embedded to the sensor node model.

In addition to application tasks and protocols
described by the designer, SDL is used for the
implementation of the WISENES framework. The
tool used for SDL development is Telelogic [40]
TAU SDL Suite [41], version 4.5. The SDL suite
uses a graphical notation for SDL design, and pro-
vides tools for simulation, integration, and
implementation.
4.1. SDL introduction

SDL is used for designing systems ranging from
general software to embedded applications. MoC
in SDL is parallel communicating Extended Finite
State Machines (EFSM). SDL hierarchy has multi-
ple levels, of which the system level consists of a
number of blocks that clarify the representation.
They can be recursively divided into sub-blocks.
The behavior of a block is implemented in processes
described by EFSMs. The representation of a pro-
cess can be simplified by implementing a part of
the functionality in a procedure. Blocks and pro-
cesses can be implemented using the type concept
of SDL, which allows their instantiation. These type
definitions can be included with other type defini-
tions to SDL packages that facilitate modular sys-
tem design. The maximum number of instantiated
blocks must be defined at a compile time, whereas
processes can be created dynamically during run-
time [42].

Processes in a same or in different blocks commu-
nicate by asynchronous signals that can carry any
number of parameters. Each process has an infinite
First-In-First-Out (FIFO) buffer for incoming sig-
nals. Signal routes define which type of signals a
process can send and to which processes. An outgo-
ing signal is routed according to the signal route or
a Process IDentifier (PID). Communication
between processes can also be executed synchro-
design and evaluation framework for ..., Ad Hoc Netw.

Application

Node

W
IS

E
N

E
S

 fram
ew

ork

SDL implementation

Transceiver unit

Peripheral

XML configuration files

Transmission medium

Sensing

Protocols

Protocol n

Protocol n-1

Protocol 0

...

Application
task procedures

D
esigner

SDL DataParameters Commands

SDL

Sensor node model

Application layer
Node

control

Transceiver unit

Central
simulation

control Node
simulation

control

Sensor
interface

Transmission medium

Sensing channel

Environment functions

Simulator execution environmentSocket interface

Application

Node

W
IS

E
N

E
S

 fram
ew

ork

SDL implementation

Transceiver unit

Peripheral

XML configuration files

Transmission medium

XML configuration files

Transmission medium

Sensing

Protocols

Protocol n

Protocol n-1

Protocol 0

...

Application
task procedures

D
esigner

SDL DataParameters Commands

SDL

Sensor node model

Application layer
Node

control

Transceiver unit

Central
simulation

control Node
simulation

control

Sensor
interface

Transmission medium

Sensing channel

Environment functions

Simulator execution environmentSocket interface

Fig. 4. The architecture of WISENES instantiation.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 11

ARTICLE IN PRESS
nously by calling remote procedures, which are
exported on the process interface [42].

Due to its formality, SDL can be automatically
converted for example to C source code, which
can then be used to make an executable application
or simulation. Telelogic TAU SDL simulation
engine supports discrete event simulations and real-
time simulations. In WISENES we utilize discrete
event simulation, in which events are processed
and handled in the order of occurrence. This makes
the time concept fully parallel and avoids an active
waiting during the idle times.

Environment functions are needed for the inter-
action between SDL and its execution environment.
Dedicated functions are defined for environment
initialization, unloading, signal output, and signal
input. The output function is called when a signal
is sent from the SDL system to the environment.
Because a method for interruption is absent in
SDL, the input function must be polled for receiving
signals from the environment. In Telelogic TAU
SDL simulation engine, the input function is called
after every transaction, which is an execution flow
from a state to another triggered by an incoming
signal. An SDL procedure can be substituted by
an external function, in a case where SDL lacks
expressivity or a more efficient implementation is
desired. Both environment and external functions
are implemented in C for WISENES.

4.2. WISENES instantiation

The instantiation of WISENES is depicted in
Fig. 4. The designer selects the protocols from the
library or implements new ones in SDL and inte-
grates them to the WISENES framework. The
upper and lower interfaces of the protocol stack
are the pre-defined interfaces to the application
layer and transceiver unit, respectively. Application
functionality is either implemented as SDL proce-
dures or described by a task graph.

The protocol stack consists of data link, network,
and middleware layers that are instances of block
types implemented in SDL packages. The interfaces
between the layers are fixed, but a layer can be
bypassed, i.e. a network layer can communicate
with the application layer at its upper interface.
The internal implementation of layers is not
restricted in any way.

Node platforms are parameterized in the XML
configuration files that are parsed by Central Simu-

lation Control. The parameters are passed to Sensor
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
Node model. Node coordinates are relayed also to
Transmission Medium and Sensing Channel, both
of which have also dedicated parameters.

The interfacing of WISENES GUI is imple-
mented in environment functions that maintain
the socket connection. Information to GUI is
updated only periodically in order to lessen commu-
nication. A data structure that defines sensor node
parameters is sent to the environment functions as
a signal parameter and parsed to the socket.

The SDL system of WISENES framework is
illustrated in Fig. 5. The framework consists of
SDL blocks that implement the main functional
models and the central simulation control. The sen-
sor node is a dynamic block of type Node_Type, and
the number of its instances is specified by NODE_-
COUNT. The figure depicts also the signal routes
between the blocks and a dedicated signal route to
the environment.
4.3. Central simulation control

The central simulation control initiates the
WISENES framework, controls active simulation
design and evaluation framework for ..., Ad Hoc Netw.

system WISENES_Framework

Sensing_Channel

Central_
Simulation_
Control

Sensor_Node
(count):Node_Type

Node_Type
Transmission_Medium

SensingCtrlCh
(SensingToCtrlSignals)

(CtrlToSensingSignals)
SensingCh

(SensingToNodeSignals)

(NodeToSensingSignals)

Sensing
EnvCtrlCh

(CtrlToEnvSignals)

(EnvToCtrlSignals)

NodeCtrlCh

(CtrlToNodeSignals)

(NodeToCtrlSignals)
Ctrl

MediumCtrlCh

(CtrlToMediumSignals)

(MediumToCtrlSignals)

Medium

MediumCh
(NodeToMediumSignals)

(MediumToNodeSignals)

Fig. 5. The SDL system level of WISENES framework.

12 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
runs, and performs event logging. The information
gathering for the control and logging is imple-
mented in remote procedures that are presented
with their parameters in Table 4.

The input parameters of UpdateNodeInformation

procedure specify the node identifier, current bat-
tery level, role, and the connectivity to other nodes.
The node role defines whether a node is a headnode,
a subnode, or a sink. Sensor nodes call the proce-
dure whenever any of the parameter values changes.
The information is relayed to GUI and utilized for
determining whether the simulation end condition
is satisfied. The end condition is set by the designer
and it defines a simulation time limit, a percentage
of dead nodes, or e.g. a limit for an application task
activation count.

Distinct remote procedures for event and data
packet logging are exported for each protocol layer,
application tasks, and for framework components.
Their parameters vary depending on the layer. Logs
are stored in dedicated data structures and written
to files either periodically when WISENES memory
consumption exceeds a pre-defined limit, or at the
end of the simulation.
Table 4
The remote procedures exported by the central simulation control

Procedure Parameters

UpdateNodeInformation NodeId, NodeRole, BatteryState,
TransceiverUnit, Connectivity

LogXxxEvent NodeId, EventName, Cause,
Consequence, . . .

LogXxxData NodeId, PacketId, DataLength,
DataAction, . . .

Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
4.4. Transmission medium

The transmission medium model provides the
connectivity between sensor nodes. It is imple-
mented as an SDL process that redirects signals
from a source to the destination sensor node SDL
blocks. Sensor nodes register their node identifier
and transceiver unit PID to the transmission med-
ium for enabling the data redirecting. Due to the
nature of SDL data typing, transmitted data are
separately copied for each destination node.

The signal propagation in the transmission med-
ium is based on the transceiver unit dependent sig-
nal attenuation. The curve S defining the Packet
Error Rate (PER) is

S ¼ kd � bþ P
v

� �
; ð1Þ

where d is the distance between the source and des-
tination nodes (m), and P is the transmit power
(dBm). Constants k, b, v are derived from the mea-
sured signal attenuation curve. PER for a packet is

PER ¼
1; if S P 1

S; if L < S < 1

L; if S 6 L

8><
>:

9>=
>;; ð2Þ

where L is the lower limit for the PER.
In order to realistically model the hidden node

problem and collisions, S is calculated separately
for each node within the coverage of the transmis-
sion. The transmit power is specified by the source
node. After the PER evaluation, a random number
0 6 r < 1 is generated again separately for each
node. A transmission is successful, if r > PER. If
design and evaluation framework for ..., Ad Hoc Netw.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 13

ARTICLE IN PRESS
S > 1, the signal attenuates during the transmission,
otherwise the signal is relayed to the destination. If
S < 1 and r < PER, the unsuccessful transmission is
indicated to the recipient but the copying of the
actual data is not performed.

A delay during a transmission is calculated by
dividing the packet length by the transceiver unit
throughput. The delay of the signal propagation in
the medium is omitted. Thus, a packet is relayed
to the destinations immediately after the transfer
delay.

4.5. Sensing channel

The sensing channel model simulates physical
phenomena. Similarly to the transmission medium,
the sensing channel utilizes node coordinates.
Each phenomenon is modeled separately with indi-
vidual propagation characteristics. The propagation
depends also on the media in the vicinity.

Our current sensing channel implementation gen-
erates random stimuli for phenomena, except for
the location queries that return node coordinates.
The upper and lower limits are defined for each phe-
nomenon. Currently simulated phenomena are tem-
perature, humidity, vibration, sound, luminance,
and location information. The selected approach is
applicable for environmental monitoring, but a
more detailed sensing channel must be implemented
for e.g. object tracking applications.

4.6. Sensor node

The sensor node SDL block implementing the
node model is depicted in Fig. 6. On the sensor node
model, Physical layer, Sensor Interface, Application
Layer, and Node Control blocks are part of the
WISENES framework, while the instantiated proto-
col layers are selected or implemented by the
designer. The signal routes between the protocol
layers are for data communications, whereas the sig-
nals sent from the node control to the other blocks
are for the initiation and shutdown.

4.6.1. Physical layer

A transceiver unit process at the physical layer
models the hardware and its device driver. The pro-
cess implements the interface to the transmission
medium, performs collision detection, and models
the internal delay in a transceiver unit. Depending
on the modeled hardware, additional features such
as Cyclic Redundancy Check (CRC) [38] for error
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
detection or an algorithm for encryption are incor-
porated to the model. No real CRC or encryption
calculation is performed, but the data consistency
is validated from the parameters of the signal
received from the transmission medium. The upper
interface of the transceiver unit defines signals for
the lowest protocol layer. Dedicated signals are
declared for the transceiver unit control, transmitter
or receiver enabling, carrier sensing, data sending,
send confirmation, and data reception indication.

Transferring data to or from the transceiver unit
causes delay, because a transceiver unit is typically a
distinct hardware component on a node platform. A
delay, which is calculated by dividing the data
length in bits by the interface bit rate, is generated
when data is loaded to or from transceiver unit.

4.6.2. Sensor interface

The sensor interface block implements a process
that models the Analog-to-Digital Converter
(ADC) and sensor operations. When an application
task initiates sensing, it sends a signal to the sensor
interface process. The process activates the sensor
and other required peripherals (e.g. ADC for sam-
pling the analog sensor output) for that phenome-
non. The sensor interface process acquires a value
from the sensing channel by signal exchange. The
operation delay depends on the associated sensor
and possibly on the ADC sampling frequency,
which are defined in the input parameters. The used
peripherals are reserved during the operation.

4.6.3. Application layer

The application layer consists of a process that
implements the scheduling of application tasks. This
approach is selected to facilitate the task scheduling
when they are implemented as SDL procedures.
When an application is described as a task graph,
the application layer process emulates the execution
of tasks. In this case no real functionality apart
from the sensing and data transfer initiation is
implemented.

The application task procedures are implemented
by the designer. They define the functionality of the
tasks, while the task state control and scheduling are
implemented in the application layer process. Task
state is running when it is executed, ready when it
is ready for execution but another task is running,
or wait when the task requires either a timer, data,
or sensor event to occur before running. Supported
scheduling algorithms are round robin and static
priority scheduling.
design and evaluation framework for ..., Ad Hoc Netw.

block type Node_Type

SensorInterface

ApplicationLayer

Middleware:MiddlewareLayer

Network:NetworkLayer

DataLink:DataLinkLayer

Physical:PhysicalLayer
NodeControl

Sensing
(NodeToSensingSignals)

(SensingToNodeSignals)

Ctrl
(NodeToCtrlSignals)

(CtrlToNodeSignals)
Medium

(NodeToMediumSignals)

(MediumToNodeSignals)

SensorSensingCh
(NodeToSensingSignals)

(SensingToNodeSignals)

AppSensorCh
(SensorToAppSignals)

(AppToSensorSignals)

AppMiddleCh
(AppToMiddleSignals)

(MiddleToAppSignals)

App

MiddleNetCh
(MiddleToNetSignals)

(NetToMiddleSignals)

Net

Middle

NetDlCh
(DlToNetSignals)

(NetToDlSignals)

Net

Dl
MiddleDlCh

(DlToMiddleSignals)

(MiddleToDlSignals)
Middle

Dl

DlPhyCh
(DlToPhySignals)

(PhyToDlSignals)

Phy

Dl

PhyMediumCh

(NodeToMediumSignals)

(MediumToNodeSignals)

Medium

CtrlSensorCh

(CtrlToSensorSignals)

CtrlAppCh

(CtrlToAppSignals)

CtrlMiddleCh

(CtrlToMiddleSignals)
Ctrl

CtrlNetCh

(CtrlToNetSignals)
Ctrl

CtrlDlCh

(CtrlToDlSignals)
Ctrl

CtrlPhyCh

(CtrlToPhySignals)
Ctrl

NodeCtrlCh
(NodeToCtrlSignals)

(CtrlToNodeSignals)

Fig. 6. The SDL block type for WISENES sensor node.

14 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
When a task is ready and scheduled for process-
ing, the application layer process calls the procedure
that implements the task. The event that moved the
task to the ready state and the payload associated to
the event are given in the parameters of the proce-
dure. When the task completes its next transition
it enters to the wait state. The waited event is
returned to the application layer process. In occur-
rence of an event, all tasks waiting for it are set to
the ready state.
4.6.4. Node control

The node control block consists of two processes,
Node control and Node simulation control. The node
control process implements OS routines in WISE-
NES. The possible states of a sensor node and the
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
actions triggering node state transitions are depicted
in Fig. 7. When the node is in an active state, its
Central Processing Unit (CPU) and transceiver unit
are powered. Transceiver unit dependent states
receiving and transmit are substates of the active
state. The node enters to a transceiver sleep state,
when its transceiver unit is not needed during a con-
stant period. When there is nothing to process on
CPU, the node is set to a sleep state that depends
on the length of the inactive period. The periods
and corresponding sleep states are defined in the
input parameters. Tasks can be executed and sens-
ing activated when the node is in the active state,
one of its substates, or in the transceiver sleep state.

The remote procedures exported by the node
control for implementing OS routines are presented
design and evaluation framework for ..., Ad Hoc Netw.

activetransmit receiving

data sent AND TX disable

Tx enable

RX enable

received data
OR RX disable

transceiver
sleep

node
sleep

data
timer

no time
window

sleep
timer

off time
period

sensing
active

CPU
sleep

sleep time
period

sleep
timer

activetransmit receiving

data sent AND TX disable

Tx enable

RX enable

received data
OR RX disable

transceiver
sleep

node
sleep

data
timer

no time
window

sleep
timer

off time
period

sensing
active

CPU
sleep

sleep time
period

sleep
timer

Fig. 7. Sensor node states and state transitions in WISENES.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 15

ARTICLE IN PRESS
in Table 5. Periodically activated protocols and
application tasks call SetNextActiveTime procedure
to indicate their next wakeup time. When all proto-
cols and application tasks are inactive, the node
control sets the node to a sleep state. The memory
management for application tasks and protocols is
implemented in ReserveMemory and FreeMemory
procedures. Protocols and applications reserve
CPU time slots by calling Execute procedure. The
executed operations are given as a parameter. A
protocol may check remaining energy resources of
Table 5
The remote procedures exported by the node control and node
simulation control

Procedure Parameters

Node control

SetNextActiveTime CallerId, ActivationTime,
TransceiverUnitControl

ReserveMemory CallerId, Type, Amount
FreeMemory CallerId, Type, Amount
Execute CallerId, OperationCount
GetCurrentBatteryLevel Returns CurrentLevel

Node simulation control

UpdateNodeRole NodeRole
UpdateConnectivity NearbyNodeIds,

NearbyNodeSignalStrengths
ConsumePeripheralPower PeripheralId,

ActivationTime
ConsumeTransceiverSendPower SendBytes
ConsumeTransceiverReceivePower Type,

ReceiverActivationTime
SetNodeState State
MarkActiveExecution CallerId, OperationCount
GetRemainingEnergy Returns RemainingEnergy

Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
the node by calling GetCurrentBatteryLevel

procedure.
The Node simulation control implements a per-

node interface to the central simulation control
and models the power consumption of node plat-
form. In the initiation, the node simulation control
relays node parameters in signal parameters to the
node control and to the different layers. During an
active simulation run, the node simulation control
gathers GUI related information from the node
and passes it to the central simulation control.
Remote procedures that implement the gathering
are presented in Table 5. UpdateNodeRole and
UpdateNodeConnectivity must be called from proto-
cols that possess the required information.

The node power consumption modeling is imple-
mented in the node simulation control by a linear
battery model, in which the component power con-
sumption is independent of the battery discharge
rate. The remote procedures related to the power
consumption are called only from the SDL pro-
cesses that are part of the WISENES framework.
The sensor interface process indicates a peripheral
activation by calling ConsumePeripheralPower pro-
cedure. Procedures ConsumeTransceiverSendPower

and ConsumeTransceiverReceivePower are called
by the transceiver unit process when a transmitter
and a receiver are activated, respectively. The node
control marks the node state transitions by calling
SetNodeState and indicates the execution by calling
MarkActiveExecution. GetCurrentBatteryLevel pro-
cedure in the node control calls GetRemainingEner-

gy to determine the battery level.
The power consumption in a sensor node can be

divided into a very detailed level, as peripherals,
protocols, and application tasks can be identified
when they indicate their activation by calling a ded-
icated remote procedure. The power consumption
by the transceiver unit can be split between the
transmission and reception, while CPU power con-
sumption can be assigned to the different states,
and to the application tasks, protocols, and device
drivers.

The harvesting of energy from the surroundings
is modeled in the node simulation control, if such
a peripheral is available at the node platform. The
generated energy is randomized between 0 and the
harvesting capacity limit specified in the input
parameters. When a sensor node runs out of energy,
the node simulation control removes the node from
the transmission medium and indicates this to the
central simulation control.
design and evaluation framework for ..., Ad Hoc Netw.

16 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
4.7. Prototype mapping in WISENES

The accurate parameterization of sensor node
platforms in the XML configuration files and the
detailed capability modeling in the WISENES
framework lead to the simulation results that corre-
spond to those obtained from real node platforms.
We refer the parameterization of hardware plat-
forms and their modeling in the simulator to as pro-

totype mapping.
The exact modeling of node and peripheral state

changes, and the detailed specification of the node
power characteristics in the input parameters result
in realistic mapping of the power consumption. For
a fine-grained power consumption mapping of pro-
tocol and application execution, the number of exe-
cuted operations given as a parameter to Execute

procedure must be estimated during the initial
design phase. For the further evaluation, bench-
marking information from the prototype measure-
ments is utilized.

The memory and processing capacities of the
node platforms are defined in the input parameters.
The static instruction and data memory usage of
protocols and applications is parameterized,
whereas the dynamic data memory consumption
depends on the data buffering and control con-
structs stored within each protocol layer. The pro-
cessing capacity is controlled by Execute

procedure in the node control.
The delays in the data transmissions are modeled

in the transmission medium and in the transceiver
unit. This approach considers the transfer delay
and the internal processing delay of the transceiver
unit, but omits the signal propagation delay in the
transmission medium.

4.8. Simulation of node code implementations in

WISENES

In addition to the simulation of node models that
are composed of protocols implemented in SDL,
WISENES contains a prototype emulation environ-

ment, which allows the simulation of low-level C
implementations that are directly applicable for
node prototypes. Similarly to sQualnet [15], the C
code implementation is integrated above the data
link layer by a dedicated network layer SDL block.
This block consists of a process that redirects the
per-node signals received from the data link layer
to the emulation environment and vice versa, and
implements the timer concept for the emulation.
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
When an SDL block in WISENES is created for
a node, the prototype emulation environment cre-
ates a simulator host OS thread for the node and
associates the thread to the node id. On the recep-
tion of a signal from the data link layer, the SDL
block calls a signaling function from the prototype
emulation environment. The emulation environ-
ment redirects the signal to the correct thread and
converts the signal parameters to a function call
or to a message for the final C implementation.
After the subsequent processing is completed, the
SDL block calls a query function at the emulation
environment. The query function gathers the events
caused by the received signal and passes them back
to the SDL block. The indications related to timers
are handled similarly.

The current version of the prototype emulation
environment in WISENES supports TUTWSN C
code implementations. The required effort for port-
ing the emulation environment core to support
other platforms is minimal. Only the interface pro-
vided by the emulation environment for the C code
needs to be adapted.

5. WISENES use-cases: TUTWSN and ZigBee

WISENES is used for the design and evaluation
of two use-cases: proprietary TUTWSN and a stan-
dard ZigBee network. In both, the design starts
from scratch and ends up to extensive performance
simulations. Prototype platforms for both cases are
parameterized using the XML configuration files
and the protocols are designed and implemented
in SDL.

5.1. TUTWSN implementation

TUTWSN is a very energy efficient WSN tar-
geted to low data rate applications, such as environ-
mental and industrial monitoring [4]. TUTWSN
consists of a configurable full feature protocol stack,
a family of physical node platforms, and several
GUIs for the network management and
visualization.

5.1.1. TUTWSN protocol stack

The TUTWSN protocol stack in WISENES con-
sists of a middleware, a multi-hop routing protocol
at the network layer, and a MAC protocol at the
data link layer. TUTWSN MAC is an energy effi-
cient clustered protocol that minimizes the time
spent in a receiving state per a node. Time Division
design and evaluation framework for ..., Ad Hoc Netw.

Fig. 8. TUTWSN Xemics prototype.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 17

ARTICLE IN PRESS
Multiple Access (TDMA) is used for the intra-clus-
ter communication, whereas neighboring clusters
operate on different frequency channels. The control
signaling, not the data transfers, for the inter-cluster
communication is performed on a dedicated net-
work signaling channel.

At the beginning of each access cycle a cluster
headnode broadcasts an active network beacon to
the network signaling channel. Other headnodes uti-
lize the beacon for the multi-hop routing, whereas
subnodes listen the channel only when they are
searching for a cluster for the association. Neighbor
discovery times are shortened by idle network bea-
cons that are sent during the inactive period of the
access cycle. An idle network beacon indicates the
time of the next active network beacon.

The communication within a cluster is performed
during a superframe consisting of cluster beacons,
aloha slots for contention, and reservation data
slots. The inter-cluster data transfers are made dur-
ing the superframe of the recipient headnode. Clus-
ter beacons start a superframe by informing the
associated nodes of the allocated reservation data
slots and access cycle timing. Subnodes listen the
beacons but sleep the rest of the access cycle, unless
they have data to process. In the contention slots,
subnodes and neighbor headnodes send occasional
data and slot reservation requests to the cluster
headnode. The reservation data slots are allocated
for periodical data transfers. Each slot consists of
an uplink for data sending to the headnode and of
a downlink for acknowledgements and data sending
to the associated node.

The TUTWSN MAC protocol in WISENES
implements a self-organizing cluster creation algo-
rithm, and intra-cluster and inter-cluster communi-
cation. For the inter-cluster communication, the
cluster access cycle timing can be adapted according
to the routing protocol needs. In order to minimize
the delay, the start time of the own access cycle is
adjusted so that the superframe is completed right
before the start of the access cycle of the next hop
cluster. The length of a slot is 20 ms, uplink and
downlink being both 10 ms. The access cycle length,
and the number of contention and reservation data
slots are varied.

The flooding routing protocol is implemented for
the multi-hop path creation. Route requests are
broadcast to the network until a path to the destina-
tion is found. In order to avoid unnecessary com-
munication, the route requests are identified so
that duplicates can be discarded. Further, the neigh-
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
boring information from the MAC layer is utilized.
If a node knows a valid route to the destination, it
initiates a response. Each node stores only the
address of the next hop and the total hop count
for each destination.

The TUTWSN middleware layer controls the
application task hosting in sensor nodes and
abstracts the communication between tasks. The
middleware keeps track of the neighbor nodes,
which host tasks that are related those tasks hosted
by the node itself. When a task sends data to
another task, the middleware redirects the data to
the correct node.
5.1.2. TUTWSN prototype platform

The TUTWSN prototype used in the simulations
is depicted in Fig. 8. The main component on the
prototype is a 2 MIPS Xemics XE88LC02 [43]
MicroController Unit (MCU) consisting of a Cool-
Risc 816 processor core, a 16-bit ADC, 22 KB pro-
gram memory, and 1 KB data memory. 2.4 GHz
NordicVLSI nRF2401 transceiver unit [44] on the
prototype supports 250 kbps and 1 Mbps data rates
with transmit power adjustable between �20 and
0 dBm. A 16-bit CRC error detection is imple-
mented in the transceiver unit. For the environmen-
tal monitoring, the prototype has an integrated
MAX6607 temperature sensor. A 0.22 F capacitor
is used as the energy storage for the prototype.

The mapping between the TUTWSN prototype
and the WISENES sensor node model is depicted
in Fig. 9. The TUTWSN protocol stack for the pro-
totype is implemented in C and executed on Xemics
MCU. In WISENES, it is implemented in SDL on
the sensor node model. Application tasks run on
top of the protocol stack. A lightweight OS that is
implemented in C controls the scheduling and
power management on the prototype. In WISE-
NES, its functions are modeled by the node control.

The nRF2401 transceiver unit and its device dri-
ver are implemented by the transceiver unit process
design and evaluation framework for ..., Ad Hoc Netw.

Sensor node model in SDL

Node control

Application

Middleware

Routing

MAC

Transceiver
unit

TUTWSN prototype platform

Xemics XE88LC02

nRF2401
Sensors

Middleware

Lightweight OS
Routing

MAC
Device driver

ADC control
Device driver

Application

Power
unit

Sensor
Interface

Power
model

WISENESPrototype implementation

Hardware parametrization C implementation

ADC

Mapping

Sensor node model in SDL

Node control

Application

Middleware

Routing

MAC

Transceiver
unit

TUTWSN prototype platform

Xemics XE88LC02

nRF2401
Sensors

Middleware

Lightweight OS
Routing

MAC
Device driver

ADC control
Device driver

Application

Power
unit

Sensor
Interface

Power
model

Hardware parametrization C implementation

ADC

Fig. 9. The prototype mapping between the WISENES sensor node model and TUTWSN prototype.

18 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
in WISENES. The sensor interface process models
the sensors, ADC, and their device drivers. The
power model in the node simulation control simu-
lates the power unit and the power consumption
of the hardware components.

Fig. 10 gives an example of the XML configura-
tion parameters that specify the presented TUT-
WSN prototype for WISENES. A dedicated
parameter set for a sensor node is assembled from
the node type parameters (a), transceiver unit
parameters (b), peripheral parameters (c), and node
parameters (d). The transceiver unit dependent sig-
nal attenuation curve constants for nRF2401 are
following: k = 0.2385, b = 2.7, v = 18.0, and
L = 0.03. These are obtained by measuring PER
for different distances and deriving the values from
the results.
5.2. ZigBee implementation

ZigBee [5] is a networking architecture targeted
to low-cost and low-power monitoring and control
applications. Although not directly designed for
WSNs, many of its characteristics have encouraged
its use also in WSN scenarios. The topology in a
ZigBee network can be either star or mesh. In the
star topology, a single ZigBee coordinator controls
the whole network, whereas in the mesh topology,
nodes communicate directly through peer-to-peer
links. A special type of a mesh network is a clus-
ter-tree topology, in which a coordinator starts the
network but other coordinators (referred also to
as ZigBee routers) can extend the network. In the
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
following, we concentrate on the cluster-tree topol-
ogy, because it is the only alternative for the low-
power WSNs and the closest to the TUTWSN
use-case.

5.2.1. ZigBee protocol stack

The ZigBee protocol stack defined in the specifi-
cation consists of a MAC protocol, network layer,
and application layer. WISENES implements a full
featured version of the IEEE 802.15.4 Low-Rate
Wireless Personal Area Network (LR-WPAN)
MAC protocol [45] for ZigBee, and a simplified ver-
sion of the ZigBee networking layer. The same mid-
dleware layer as in TUTWSN is used on top of the
ZigBee protocols.

The ZigBee MAC in the cluster-tree topology
networks uses a beacon-enabled channel access. A
ZigBee network is started and its parameters defined
by a ZigBee coordinator. When joining to a net-
work, a ZigBee router starts transmitting beacons
on the same communication channel with the
parameters advertised by its parent. The beacon is
followed by a Contention Access Period (CAP) for
Carrier Sense Multiple Access (CSMA) data trans-
fers. Periodic data transfers between the ZigBee
coordinator and a child device can be made in
guaranteed time slots during a Contention Free Per-
iod (CFP) that follows CAP in the superframe of
the ZigBee coordinator. The length of the access
cycle (beacon period) and the superframe (CAP per-
iod) depends on the constants BeaconOrder and
SuperframeOrder that are defined by ZigBee
coordinator.
design and evaluation framework for ..., Ad Hoc Netw.

<node_type id=“1”>
<name>TUTWSN Xemics Node</name>
<type>FFU</type>
<cpu_info>

<capacity>2000000</capacity>
<code_memory_inst>8000</code_memory_inst>
<data_memory_byte>1024</data_memory_byte>

</cpu_info>
<battery>

<voltage_V>3.0</voltage_V>
<capacity_mAh>0.57</capacity_mAh>
<efficiency>0.8</efficiency>
<harvest_uW>0</harvest_uW>

</battery>
<state_info>

<state name=“active” ms=“0” uW=“1350”/>
<state name=“node sleep” ms =“3” uW=“19”/>

</state_info>
<transceiver_unit id=“1”/>
<peripheral_info>

<peripheral id=“1” count=“1”/>
<peripheral id=“2” count=“2”/>

</peripheral_info>
</node_type>

<transceiver_unit id=“1”>
<name>nRF2401</name>
<throughput_bps>1000000</throughput_bps>
<rssi capability=“NO”/>
<data_load_info bps=“230400” uW=“1310”/>
<receiver_info transient_ms=“0.25” uW=“43600”/>
<transmitter_info>

<transient_ms>0.25</transient_ms>
<tx_power_levels>

<tx_power dBm=“-20” uW=“18700”/>
<tx_power dBm=“-10” uW=“23500”/>
<tx_power dBm=“-5” uW=“26400”/>
<tx_power dBm=“0” uW=“29300”/>

</tx_power_levels>
</transmitter_info>
<carrier_sense_info capability=“NO”/>

</transceiver_unit>

<peripheral id=“1” phenomenon=“NONE”>
<name>ADC</name>
<dependency id=“0”/>
<active_period ms=“0.5” uW=“15”/>

</peripheral>
<peripheral id=“2” phenomenon=“TEMPERATURE”>

<name>Temperature sensor</name>
<dependency id=“1”/>
<active_period ms=“0.1” uW=“10”/>

</peripheral>

<node_list count=“5”>
<node id="1“ type=“2”>

<coordinates x=“0.0” y=“0.0” z=“0.0”/>
</node>
<node id=“2“ type=“1”>

<coordinates x=“7.23” y=“3.4” z=“0.72”/>
</node>
<node id=“3“ type=“1”>

<coordinates x=“8.4” y=“-5.21” z=“1.03”/>
</node>
<node id=“4“ type=“1”>

<coordinates x=“15.4” y=“-8.53” z=“1.76”/>
</node>
<node id=“5“ type=“1”>

<coordinates x=“22.4” y=“0.21” z=“0.93”/>
</node>

</node_list>

<node_type id=“1”>
<name>TUTWSN Xemics Node</name>
<type>FFU</type>
<cpu_info>

<capacity>2000000</capacity>
<code_memory_inst>8000</code_memory_inst>
<data_memory_byte>1024</data_memory_byte>

</cpu_info>
<battery>

<voltage_V>3.0</voltage_V>
<capacity_mAh>0.57</capacity_mAh>
<efficiency>0.8</efficiency>
<harvest_uW>0</harvest_uW>

</battery>
<state_info>

<state name=“active” ms=“0” uW=“1350”/>
<state name=“node sleep” ms =“3” uW=“19”/>

</state_info>
<transceiver_unit id=“1”/>
<peripheral_info>

<peripheral id=“1” count=“1”/>
<peripheral id=“2” count=“2”/>

</peripheral_info>
</node_type>

<transceiver_unit id=“1”>
<name>nRF2401</name>
<throughput_bps>1000000</throughput_bps>
<rssi capability=“NO”/>
<data_load_info bps=“230400” uW=“1310”/>
<receiver_info transient_ms=“0.25” uW=“43600”/>
<transmitter_info>

<transient_ms>0.25</transient_ms>
<tx_power_levels>

<tx_power dBm=“-20” uW=“18700”/>
<tx_power dBm=“-10” uW=“23500”/>
<tx_power dBm=“-5” uW=“26400”/>
<tx_power dBm=“0” uW=“29300”/>

</tx_power_levels>
</transmitter_info>
<carrier_sense_info capability=“NO”/>

</transceiver_unit>

<peripheral id=“1” phenomenon=“NONE”>
<name>ADC</name>
<dependency id=“0”/>
<active_period ms=“0.5” uW=“15”/>

</peripheral>
<peripheral id=“2” phenomenon=“TEMPERATURE”>

<name>Temperature sensor</name>
<dependency id=“1”/>
<active_period ms=“0.1” uW=“10”/>

</peripheral>

<node_list count=“5”>
<node id="1“ type=“2”>

<coordinates x=“0.0” y=“0.0” z=“0.0”/>
</node>
<node id=“2“ type=“1”>

<coordinates x=“7.23” y=“3.4” z=“0.72”/>
</node>
<node id=“3“ type=“1”>

<coordinates x=“8.4” y=“-5.21” z=“1.03”/>
</node>
<node id=“4“ type=“1”>

<coordinates x=“15.4” y=“-8.53” z=“1.76”/>
</node>
<node id=“5“ type=“1”>

<coordinates x=“22.4” y=“0.21” z=“0.93”/>
</node>

</node_list>

a

b

c d
Fig. 10. TUTWSN prototype: (a) node type, (b) transceiver unit, (c) peripheral and (d) node parameters for WISENES.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 19

ARTICLE IN PRESS
Each child device communicates with its parent
coordinator during CAP. All transactions must be
completed before the end of CAP. Before a trans-
mission, a random back-off period is waited. After
the back-off, the state of the transmission medium
is assessed. If the medium is busy, the back-off pro-
cedure continues. If a coordinator has data pending
for its child devices, it indicates the identifiers of
these child devices in the beacon. When a device
receives a beacon listing its address, it sends a data
requests to the coordinator, after which the trans-
mission of data is made.

The ZigBee networking layer in WISENES
implements a mechanism for joining and leaving
the network, the algorithms for the cluster-tree
topology formation, and data routing from devices
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
to the ZigBee coordinator. The routes are created
according to parent associations, i.e. each ZigBee
router sends data targeted to the ZigBee coordina-
tor to its parent. The continuous neighbor discovery
and the support for other network topologies are
not implemented. Further, the short address assign-
ment and superframe scheduling algorithms benefit
the simulator addressing and timing information.

5.2.2. ZigBee prototype platform

The prototype platform used in WISENES for the
ZigBee evaluation is constructed from two separate
components. The MCU module of the prototype is
2 MIPS PIC18LF4620 MCU [46] with 64 KB of pro-
gram and 4 KB of data memory, an integrated 10-bit
ADC, and an interface to MAX6607 temperature
design and evaluation framework for ..., Ad Hoc Netw.

<node_type id=“1”>
<name>ZigBee PIC node</name>
<type>FFU</type>
<cpu_info>

<capacity>1000000</capacity>
<code_memory_inst>32768</code_memory_inst>
<data_memory_byte>3986</data_memory_byte>

</cpu_info>
<battery>

<voltage_V>3.3</voltage_V>
<capacity_mAh>2100</capacity_mAh>
<efficiency>0.91</efficiency>
<harvest_uW>0</harvest_uW>

</battery>
<state_info>

<state name=“active” ms=“0” uW=“3010”/>
<state name=“node sleep” ms =“2” uW=“30”/>

</state_info>
<transceiver_unit id=“2”/>
<peripheral_info>

<peripheral id=“1” count=“1”/>
<peripheral id=“2” count=“2”/>

</peripheral_info>
</node_type>

<transceiver_unit id=“2”>
<name>CC2420</name>
<throughput_bps>250000</throughput_bps>
<rssi capability=“YES”/>
<data_load_info bps=“460800” uW=“1310”/>
<receiver_info transient_ms=“0.22” uW=“54820”/>
<transmitter_info>

<transient_ms>0.22</transient_ms>
<tx_power_levels>

<tx_power dBm=“-15” uW=“28300”/>
<tx_power dBm=“-10” uW=“31400”/>
<tx_power dBm=“-5” uW=“37600”/>
<tx_power dBm=“0” uW=“46400”/>

</tx_power_levels>
</transmitter_info>
<carrier_sense_info capability=“YES” uW=“54200”/>

</transceiver_unit>

a

<node_type id=“1”>
<name>ZigBee PIC node</name>
<type>FFU</type>
<cpu_info>

<capacity>1000000</capacity>
<code_memory_inst>32768</code_memory_inst>
<data_memory_byte>3986</data_memory_byte>

</cpu_info>
<battery>

<voltage_V>3.3</voltage_V>
<capacity_mAh>2100</capacity_mAh>
<efficiency>0.91</efficiency>
<harvest_uW>0</harvest_uW>

</battery>
<state_info>

<state name=“active” ms=“0” uW=“3010”/>
<state name=“node sleep” ms =“2” uW=“30”/>

</state_info>
<transceiver_unit id=“2”/>
<peripheral_info>

<peripheral id=“1” count=“1”/>
<peripheral id=“2” count=“2”/>

</peripheral_info>
</node_type>

<transceiver_unit id=“2”>
<name>CC2420</name>
<throughput_bps>250000</throughput_bps>
<rssi capability=“YES”/>
<data_load_info bps=“460800” uW=“1310”/>
<receiver_info transient_ms=“0.22” uW=“54820”/>
<transmitter_info>

<transient_ms>0.22</transient_ms>
<tx_power_levels>

<tx_power dBm=“-15” uW=“28300”/>
<tx_power dBm=“-10” uW=“31400”/>
<tx_power dBm=“-5” uW=“37600”/>
<tx_power dBm=“0” uW=“46400”/>

</tx_power_levels>
</transmitter_info>
<carrier_sense_info capability=“YES” uW=“54200”/>

</transceiver_unit>

b
Fig. 11. ZigBee prototype: (a) node type and (b) transceiver unit parameters for WISENES.

20 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
sensor. The transceiver unit is 2.4 GHz Chipcon
CC2420 transceiver [47], which is IEEE 802.15.4
standard compliant. The transceiver support
250 kbps data rate and the transmit power is adjust-
able between �24 dBm and 0 dBm. A CR123A lith-
ium battery is used as an energy storage.

Although the prototype is assembled with two
distinct components, the resulting platform is realis-
tic. MCU has enough resources for the ZigBee
implementation. The power consumptions of the
components are measured separately, but they are
combined in WISENES. The transceiver unit
parameters are measured using a Chipcon SmartRF
CC2420DK Development Kit [47]. The constants
for the transmission medium are: k = 0.08,
b = 3.4, v = 6.0, and L = 0.05. The WISENES
XML configuration parameters describing the pro-
totype node type (a) and transceiver unit (b) are
depicted in Fig. 11.

6. WISENES evaluation

The design of a new protocol and the deployment
of a complete WSN protocol stack in WISENES are
straightforward for the designer due to the hierar-
chical structure of SDL and the modularity of the
WISENES framework. The graphical design based
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
on state machines is well-suited for the protocol
modeling. The modeled protocols are internally
independent of WISENES, but an external interface
for the adaptation of each layer to the WISENES
framework is required. Interface templates are pro-
vided for the designer.

For the usage evaluation, the full feature ZigBee
MAC protocol was implemented according to the
specification by a single designer within two work-
ing weeks. The designer was familiar with the
WISENES interfaces, but still the development
cycle was faster than expected. The SDL description
attached to the IEEE 802.15.4 standard was too
incomplete to be used in WISENES.

The full implementation of the ZigBee MAC pro-
tocol in WISENES consists of three processes hav-
ing totally 31 different states. In addition, 75 SDL
procedures are implemented in order to avoid
redundant implementations and clarify the descrip-
tion. The number of state transitions in the imple-
mentation is 163. Among the transitions, there are
in total 1817 divergent execution paths. The imple-
mentation of TUTWSN MAC protocol in WISE-
NES consists of two processes that have totally 21
states and 32 procedures. The number of state tran-
sitions is 112, but there are still 2642 divergent exe-
cution paths.
design and evaluation framework for ..., Ad Hoc Netw.

1 2

2

1

Aggregated data

Subnode

Sensed data

Headnode

Sink node

1 2

2

1

Aggregated data

Subnode

Sensed data

Headnode

Sink node

Aggregated data

Subnode

Sensed data

Headnodee

Sink node

Fig. 13. Static topology for the prototype mapping test case.

0

50

100

150

200

250

10 100 1000

Sensor Node Count

T
im

e
(s

)

Simulation, No GUI

Simulation, GUI

Logging

Fig. 12. Time required for the simulation of a single node in
WISENES for a 24-h period with varying total number of nodes.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 21

ARTICLE IN PRESS
The simulation and evaluation capabilities of
WISENES are assessed by simulating TUTWSN
and ZigBee networks. The application used in the
simulations is an environmental monitoring applica-
tion. All nodes in WSN observe the temperature in
their vicinity. Sensed data are aggregated in cluster
headnodes (coordinator) and routed for a further
processing to the sink node (ZigBee coordinator).
The application is implemented by describing it as
a task graph.

The evaluated aspects in WISENES are the per-
formance of the simulator, applicability for the
large scale simulations, and the accuracy of the pro-
totype mapping. All simulations are executed on a
workstation with a 2.8 GHz Pentium4 processor
with 1 GB of memory and running Windows XP
SP2. WISENES memory consumption is limited to
150 MB, meaning that gathered log data are written
to files when the limit is exceeded.

6.1. WISENES performance

TUTWSN simulations are repeated five times
with 10, 100, and 1000 of nodes. The node popula-
tion is randomly generated for each simulation run.
Monitored aspects are the correct functionality and
performance. The initial energy capacity of a TUT-
WSN node is set twenty times larger than specified
in Fig. 10 in order to obtain required lifetime. The
TUTWSN access cycle in simulations is 10 s, and
each node measures temperature once in an access
cycle and sends the result towards the sink node.
Headnodes aggregate the subnode readings to a sin-
gle data packet.

The presented WISENES performance is the
time elapsed for the simulation of a single node
for a 24-h period. During that time, a node initiates
8640 data packets. The resulting time is obtained by
dividing the overall network simulation time by the
node count. The elapsed per-node simulation times
with and without GUI are depicted in Fig. 12. In
addition, the time consumed on writing the log data
to files is presented separately.

The operations on a single node remain similar
regardless of the node count. Hence, the simulation
time per a node should be at the same level in all
cases. However, as depicted, the time per node
increases as the node count increases. This is caused
by the increased time consumption in the processing
of longer lists in both Telelogic TAU SDL Suite
simulation engine and WISENES framework com-
ponents. The communication with GUI is time con-
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
suming but the penalty is independent of the node
count. The increase in the simulation time is caused
by the environment function polling and the large
amount of node information passed through the
socket interface.

As depicted in Fig. 12, the time consumed on log
writing with 1000 node simulations is ten times
longer than in the other cases. A reason for this is
not accurately known, but it may be due to the frag-
mentation of the storage disk, because the size of the
logged data in this case is over 12 GB.

6.2. Prototype mapping results

For the evaluation of the prototype mapping
accuracy, a similar configuration, illustrated in
Fig. 13, is constructed for both WISENES and pro-
totypes. Subnodes S1 and S2 perform sensing and
send the data to headnode H1 once in every access
cycle. Headnode H1 aggregates data and sends them
to the sink node through headnode H2. The number
of contention slots is four, reservation data slots are
limited to eight, and idle network beacons are sent
every 250 ms. The access cycle length is 1, 2, 5,
and 10 s. Cluster scanning is avoided by using static
access cycle timings.
design and evaluation framework for ..., Ad Hoc Netw.

0

300

600

900

1200

1500

1 2 5 10

Access cycle length (s)

0

20

40

60

80

100

120

140

160

180

1 2 5 10

0

300

600

900

1200

1500

1 2 5 10

Access cycle length (s)

P
ow

er
 (

μW
)

P
ow

er
 (

μW
)

a

b

Transceiver

Peripherals
MCU, sleep

MCU, active
Power unit

Transceiver

Peripherals
MCU, sleep

MCU, active
Power unit

Fig. 15. The power consumptions of different components in
TUTWSN: (a) headnode and (b) subnode in a thousand-node
network.

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10

Access cycle length (s)

P
ow

er
 (

μW
)

H1, Prototype
H1,WISENES
H2, Prototype
H2, WISENES
S1, Prototype
S1,WISENES

Fig. 14. Modeled WISENES and measured TUTWSN prototype
power consumptions in the prototype mapping test case.

22 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
Fig. 14 presents the simulated power consump-
tion from WISENES in contrasts to the measured
prototype power consumption. Generally, the
power consumption in subnodes is minimal com-
pared to that of headnodes. The margin between
the two headnodes is not considerable, because the
only difference in their activity is one active reserva-
tion data slot. When compared to the prototype
measurements, the WISENES results are very accu-
rate. The overall average difference is 6.73%. The
results are more accurate for headnodes, average
difference being 4.0% for H1 and 4.8% for H2.
Due to the very low activity, the modeling in sub-
nodes is more inaccurate, as the average difference
in case of S1 is 11.34%. The main reason to this is
the differences in the timing models of WISENES
and the prototypes.

Other aspects related to prototype mapping are
delay and throughput. As mentioned, WISENES
models delays in the transmission medium and
transceiver units accurately. Only the delay of signal
propagation is omitted, but it is negligible in short
distances when compared to the other delays in
transmissions. Moreover, the main causes for the
delays on WSNs are higher layer protocol buffering
and channel access. Thus, the verification of the
delay mapping is omitted.

WSNs do not utilize the full bandwidth available
on their transceiver units but only a small fraction
of it. The throughput depends on the channel access
method and PER. In WISENES, PER is derived
from the transceiver unit dependent measurements
and the implemented channel access methods are
identical. Hence, the further verification of the
throughput mapping is also omitted.
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
6.3. TUTWSN simulation results

A network of thousand nodes is simulated in
order to evaluate the applicability of TUTWSN in
large scale. The number of contention slots is set
to four, reservation data slots to eight, and idle net-
work beacons are sent every 250 ms. The access
cycle length is 1, 2, 5, and 10 s. The environmental
monitoring application is again activated once in
an access cycle.

6.3.1. Power consumption
The average power consumptions for five arbi-

trary selected headnodes and subnodes are depicted
in Fig. 15a and b respectively. The scale in Fig. 15a
is approximately eight times larger than in Fig. 15b.
The power consumptions of the transceiver unit,
peripherals, power unit, and MCU in sleep and
active states are presented separately.
design and evaluation framework for ..., Ad Hoc Netw.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 23

ARTICLE IN PRESS
As shown, the transceiver unit is the dominating
power consumer in both headnodes and subnodes.
With shorter access cycles, the share of the trans-
ceiver unit in the power consumption is more dom-
inant. The headnodes spend considerably more time
with CPU active, due to added processing and
active waiting while receiving data. The subnodes
spend most of the time in the sleep states.

Compared to the power consumptions in the pro-
totype mapping case, the presented results are aver-
agely 28.7% larger for subnodes and 22.4% larger
for headnodes. This is mainly due to the scanning
required for the network topology creation and
maintenance, which were omitted in the prototype
mapping case. Further, headnodes have more active
reservation data slots.
0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Hops from sink

A
ve

ra
g

e
 d

e
la

y
(s

)

AC 10 s
AC 5 s
AC 2 s
AC 1 s

AC 10 s
AC 5 s
AC 2 s
AC 1 s

a

6.3.2. TUTWSN lifetime

The lifetimes of TUTWSNs with different access
cycle lengths are presented in Fig. 16. The lifetimes
are shown for both a case where a node acts as a
headnode until it runs out of energy, and a case
where a headnode deliberately releases its duty
when its remaining energy level is first 50% and then
10%. The network lifetime is considered as the time
until 50%r 20% of the nodes are left. In the first
case, measurement data with reasonable accuracy
can be obtained from WSN, while in the latter case
the accuracy suffers but the network is still capable
of providing routes to sink node.

The changing of the cluster headnode balances
the load between the nodes in the network. This
lengthens the time until the first node runs out of
energy. Yet, the time between the first and the last
node running out of energy is minimal. As shown
in Fig. 16, the lifetime of the network until half of
0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Access cycle length (s)

N
et

w
or

k
lif

et
im

e
(h

)

No change, 20%
Change, 20 %
Change, 50 %
No change, 50%

Fig. 16. TUTWSN lifetimes in different conditions.

Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
the nodes are remaining is considerably longer when
the headnode duty is circulated. Instead, with life-
time consideration of 20% of nodes remaining, the
network longevity is better if the headnode is not
changed.

If a node operates as a subnode continuously,
lifetimes are 5.2, 9.9, 21.2, and 34.2 h for 1, 2, 5,
and 10 s access cycles respectively. The reason for
the short lifetimes is the extremely limited capacity
of the capacitor being the energy storage at the
nodes. For comparison, with a 1 cm3 non-recharge-
able lithium battery, the obtained lifetimes for a
subnode are 96, 182, 391, and 631 days for 1, 2, 5,
and 10 s access cycles respectively [48].
6.3.3. Delay and throughput

Fig. 17a depicts the communication delays for
different number of hops from a source to the sink
node. The delays are measured after the cluster
access cycle timings have been adapted and stabi-
lized. For one and two second access cycles, the
delays are acceptable. For an environmental moni-
0

250

500

750

1000

1250

1 2 3 4 5 6 7 8 9 10
Access cycle length (s)

H
In

In
Su

T
h

ro
u

g
h

p
u

t (
bp

s)

Headnode, received
Intercluster link, 4 slots
Intercluster link, 3 slots
Intercluster link, 2 slots
Subnode, sent

b

Fig. 17. TUTWSN: (a) packet delays to sink and (b)
throughputs.

design and evaluation framework for ..., Ad Hoc Netw.

24 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
toring application, the delays are adequate even
with the longer access cycle lengths. A per hop delay
is quite independent of the distance from the sink
node but the nodes in which several data flows con-
verge cause congestion.

Throughputs for a subnode and a headnode, as
well as for the active inter-cluster links with different
number of reservation data slots are depicted in
Fig. 17b. A subnode has one active uplink for the
headnode. The headnode throughput is its incoming
throughput. The number of the reservation data
slots for an inter-cluster link is varied between two
and four, depending on the available slots. Obvi-
ously, the throughput decreases as the access cycle
length increases. This is acceptable, as the access
cycle length is typically adapted according to the
application requirements.

6.3.4. TUTWSN adaptability

The adaptability of TUTWSN is evaluated by
simulating unexpected error situations. An unrecov-
erable error is simulated at the cluster headnode.
The times elapsed until the network is reconfigured
are depicted in Fig. 18 for the different access cycle
lengths. The subnodes do not start the self-organiz-
ing cluster creation algorithm immediately, as a
cluster beacon may be lost due to a packet error.
Thus, the reconfiguration time depends on the limit
of the missed cluster beacon back-off counter. A
case, in which the cluster headnode is able to inform
about its state, is given as a reference.

As can be seen, the reconfiguration time is almost
directly proportional to the access cycle length. The
reconfiguration delay is not considerable with the
short access cycles, whereas the delay is over half
a minute for the longer access cycles.
0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10
Access cycle length (s)

R
ec

on
fig

ur
at

io
n

tim
e

(s
)

4 AC Back-off
3 AC Back-off
2 AC Back-off
Informed

Fig. 18. The reconfiguration times of TUTWSN on an unex-
pected error situation.

Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
6.4. ZigBee simulation results

The applicability of ZigBee to WSN applications
is evaluated by simulating the ZigBee protocols with
the defined environmental monitoring application.
In the simulations, the beacon order of ZigBee
MAC protocol is varied from 6 to 10, which results
to the access cycles of 0.98, 1.97, 3.93, 7.86, and
15.73 s. We refer these to as 1, 2, 4, 8, 16 s access
cycles for clarity. The superframe order is set to 2,
thus the length of the active period consisting of
the beacon and CAP is 61.44 ms.

6.4.1. Small scale ZigBee network

The prototype for ZigBee is modeled from the
components, the characteristics of which are mea-
sured individually. Therefore, we do not compare
the simulated results to physical deployment mea-
surements. For a fair comparison, we use the same
statically defined network configuration for ZigBee,
which is presented for TUTWSN in Section 6.2. The
application in the ZigBee simulation is identical to
that of TUTWSN simulations.

The power consumption results from the ZigBee
simulations are depicted in Fig. 19. The difference
between ZigBee device and coordinator power con-
sumptions is considerably bigger than the same dif-
ference between the corresponding TUTWSN
nodes. This is caused by the active listening of the
complete CAP, which is also the reason for the iden-
tical results of both coordinators. Compared to
TUTWSN, the power consumption of a device is
averagely two times and that of a coordinator aver-
agely 3.5 times larger than the power consumption
of the corresponding TUTWSN node.
0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10 12 14 16

Access cycle length (s)

P
ow

er
 (

μW
)

Coordinator 2

Coordinator 1

Device 1

Fig. 19. The power consumption in a small scale ZigBee
network.

design and evaluation framework for ..., Ad Hoc Netw.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Hops from sink

D
el

ay
 (

s)

AC 16 s

AC 8 s
AC 4 s

AC 2 s
AC 1 s

Fig. 21. ZigBee packet delays to the ZigBee coordinator.

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 25

ARTICLE IN PRESS
6.4.2. Large scale network

In the large scale ZigBee simulations, a network
that consists of 100 nodes is simulated. The size of
the simulated network is restricted by the usage of
the same communication channel throughout the
network. In dense networks, the distribution of
coordinator superframes so that they do not overlap
is problematic. In the simulations, 35 coordinator
capable devices and 65 reduced function devices
are distributed randomly to a 60 · 60 m area. Due
to the congestion, the parameters of the environ-
mental monitoring application are changed so that
each coordinator stores the temperatures received
from the devices over two access cycles. The results
are then aggregated to a single data packet, which is
routed towards the ZigBee coordinator.

The power consumptions of the different compo-
nents in coordinators and devices are depicted in
Fig. 20a and b respectively. The access cycle length
is varied between 1 and 16 s and the results are aver-
0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16

Access cycle length (s)

P
ow

er
 (

μW
)

Transceiver

Peripherals
MCU, sleep

MCU, active
Power unit

0

50

100

150

200

250

1 2 4 8 16

Access cycle length (s)

Transceiver

Peripherals
MCU, sleep

MCU, active
Power unit

Transceiver

Peripherals
MCU, sleep

MCU, active
Power unit

P
ow

er
 (

μW
)

Transceiver

Peripherals
MCU, sleep

MCU, active
Power unit

a

b

Fig. 20. The power consumptions of different components in
ZigBee: (a) coordinator and (b) device in a hundred-node
network.

Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
aged over five arbitrarily selected coordinators and
devices. The scale in Fig. 20a is 18 times larger than
in Fig. 20b. Compared to results presented in
Fig. 19, the power consumption of a coordinator
is quite similar, whereas in the case devices the
power consumption depicted in Fig. 20b is consider-
able larger for longer access cycles. This is caused by
the network scanning, which is required for topol-
ogy creation and reformation in case of errors. A
node scans for a complete access cycle when search-
ing for a network.

In comparison to TUTWSN, the differences are
similar to those presented in Section 6.4.1, except
for the device vs. subnode power consumption with
longer access cycles. While in TUTWSN the scan-
ning times and the energy required for network
maintenance diminishes as the access cycle length
increases, the effect is opposite in ZigBee. Further,
the proportional share of the transceiver unit on
the power consumption is significantly larger in Zig-
Bee than in TUTWSN.

The delays in data routing towards the ZigBee
coordinator with the different access cycle lengths
are depicted in Fig. 21. As in the case of TUTWSN,
with 1 and 2 s access cycles the delays are moderate,
but with the longer access cycles the delay becomes
unacceptable. TUTWSN outperforms ZigBee in this
case. The reason for this is that in ZigBee the start
times of the access cycles are not delay optimized
as in TUTWSN.
7. Conclusions

The large design space of WSNs cannot be man-
aged without a complete tool for the WSN design,
configuration, and evaluation. This paper presents
design and evaluation framework for ..., Ad Hoc Netw.

26 M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx

ARTICLE IN PRESS
WISENES, which is the first tool that supports the
graphical design, simulation, final implementation,
and evaluation of WSNs within a single framework.
The WISENES framework enables a modular
design of WSN protocols and applications. Differ-
ent platforms and protocols are evaluated in order
to obtain an optimal configuration for a specific
application. The back-annotation of the measured
performance information from physical node plat-
forms improves the accuracy of the simulation
results.

The implementation of TUTWSN and ZigBee
networks shows that the design of protocols and
their performance evaluation in WISENES is fast.
The graphical state machine based notation is expli-
cit and designer friendly. The TUTWSN and ZigBee
network simulations prove the applicability and
performance of WISENES for the simulations of
large networks. Further, the simulated performance
results correspond to those of real physical
platforms.

Our main future work is projected on the devel-
opment of a more accurate sensing channel model
and mobility support. At the moment, the WISE-
NES framework is not publicly available, but we
are planning to open it as an online web-based
WSN design service. We are also considering open
source SDL tools for the design.

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A
survey on sensor networks, IEEE Communications Maga-
zine 40 (8) (2002) 102–114.

[2] J.A. Stankovic, T.F. Abdelzaher, L. Chengyang, S. Lui, J.C.
Hou, Real-time communication and coordination in embed-
ded sensor networks, Proceedings of the IEEE 91 (2003)
1002–1022.

[3] SDL Forum Society Homepage, http://www.sdl-forum.org/,
visited in November 2005.

[4] M. Kohvakka, M. Hännikäinen, T.D. Hämäläinen, Ultra low
energy wireless temperature sensor network implementation,
in Proc. 16th annual IEEE Int. Symp. on Personal Indoor and
Mobile Radio Communications, 2005, pp. 187–200.

[5] ZigBee Specification, http://www.zigbee.org/, visited in
October 2005.

[6] The Network Simulator – ns-2, http://www.isi.edu/nsnam/
ns/, visited in November 2005.

[7] X. Zeng, R. Bagrodia, M. Gerla, GloMoSim: a library for
parallel simulation of large-scale wireless networks, in: Proc.
12th Workshop on Parallel and Distributed Simulations,
1998, pp. 154–161.

[8] Qualnet Network Simulator, http://www.qualnet.com/, vis-
ited in November 2005.

[9] OPNET Modeler,http://www.opnet.com/products/modeler/
home.html, visited in November 2005.
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
[10] OMNeT++ Community Site, http://www.omnetpp.org/
index.php, visited in November 2005.

[11] Scalable Simulation Framework, http://www.ssfnet.org/,
visited in November 2005.

[12] J-Sim Homepage, http://www.j-sim.org/, visited in Novem-
ber 2005.

[13] S. Park, A. Savvides, M.B. Srivastava, Simulating networks
of wireless sensors, Proc. Winter Simulation Conference
2001 (2001) 1330–1338.

[14] I. Downard, Simulating sensor networks in ns-2, http://
pf.itd.nrl.navy.mil/nrlsensorsim/, visited in November 2005.

[15] sQualnet: A Scalable Simulation Framework for Sensor
Networks website, http://nesl.ee.ucla.edu/projects/squalnet/,
visited in November 2005.

[16] J. Liu, L.F. Perrone, D.M. Nicol, M. Liljenstam, Simulation
modeling of large-scale ad-hoc sensor networks, in: Proc.
2001 Simulation Interoperability Workshop, (2001).

[17] C. Mallanda, A. Suri, V. Kunchakarra, S.S. Iyengar, R.
Kannan, A. Durresi, S. Sastry, Simulating wireless sensor
networks with omnet++, http://csc.lsu.edu/sensor_web/sim-
ulator.html, visited in November 2005.

[18] S. Dulman, P. Havinga, A simulation template for wireless
sensor networks, IEEE Int. Symp. on Autonomous Decen-
tralized Systems, 2003, fast abstract.

[19] A. Sobeih, W.-P. Chen, J.C. Hou, L.-C. Kung, N. Li, H.
Lim, H.-Y. Tyan, H. Zhang, J-Sim: A Simulation and
Emulation Environment for Wireless Sensor Networks,
http://www.j-sim.org/, visited in November 2005.

[20] P. Baldwin, S. Kohli, E.A. Lee, X. Liu, Y. Zhao Modeling of
sensor nets in ptolemy II, in: Proc. 3rd Int. Symp. on
Information Processing in Sensor Networks, 2004, pp. 359–
368.

[21] Ptolemy II, http://ptolemy.eecs.berkeley.edu/ptolemyII/, vis-
ited in November 2005.

[22] G. Simon, P. Völgyesi, M. Maróti, Á. Lédeczi, Simulation-
based optimization of communication protocols for large-
scale wireless sensor networks, Proc. IEEE 2003 Aerospace
Conference 3 (2003) 1339–1346.

[23] B.C. Mochocki, G.R. Madey, H-MAS: a heterogeneous,
mobile, ad-hoc sensor network simulation environment, in:
Proc. 7th Annual Swarm Users/Researchers Conference,
2003.

[24] G. Chen, J. Branch, M.J. Pflug, L. Zhu, B. Szymanski,
SENSE: A sensor network simulator, http://www.cs.rpi.edu/
~cheng3/sense/, visited in October 2005.

[25] A. Boulis, C.C. Han, M.B. Srivastava, Design and imple-
mentation of a framework for efficient and programmable
sensor networks, in: Proc. 1st Int. Conf. on Mobile Systems,
Applications, and Services, 2003, pp. 801–805.

[26] Crossbow Technology, http://www.xbow.com/, visited in
November 2005.

[27] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K.
Pister, System architecture directions for networked sen-
sors, Proc. 9th ACM Int. Conf. on Architectural Support
for Programming Languages and Operating Systems (2000)
94–103.

[28] P. Levis, N. Lee, M. Welsh, D. Culler, TOSSIM: accurate
and scalable simulation of entire TinyOS applications, Proc.
1st ACM Conf. on Embedded Networked Sensor Systems
(2003) 126–137.

[29] M. Karir, J. Polley, D. Blazakis, J. McGee, D. Rusk, J.S.
Baras, ATEMU: a fine-grained sensor network simulator, in
design and evaluation framework for ..., Ad Hoc Netw.

http://www.sdl-forum.org/
http://www.zigbee.org/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.qualnet.com/
http://www.opnet.com/products/modeler/home.html
http://www.opnet.com/products/modeler/home.html
http://www.omnetpp.org/index.php
http://www.omnetpp.org/index.php
http://www.ssfnet.org/
http://www.j-sim.org/
http://pf.itd.nrl.navy.mil/nrlsensorsim/
http://pf.itd.nrl.navy.mil/nrlsensorsim/
http://nesl.ee.ucla.edu/projects/squalnet/
http://csc.lsu.edu/sensor_web/simulator.html
http://csc.lsu.edu/sensor_web/simulator.html
http://www.j-sim.org/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://www.cs.rpi.edu/~cheng3/sense/
http://www.cs.rpi.edu/~cheng3/sense/
http://www.xbow.com/

Marko Hännikäinen (M.Sc.’98, Ph.D.’02,
TUT) acted as a research scientist and a
project supervisor at the Institute of
Digital and Computer Systems at TUT
in 1998–2007, and was nominated to
professor in 2007. He co-directs the
DACI research group, concentrating on
wireless sensor networks, high abstrac-

M. Kuorilehto et al. / Ad Hoc Networks xxx (2007) xxx–xxx 27

ARTICLE IN PRESS
Proc. 1st IEEE Int. Conf. on Sensor and Ad Hoc Commu-
nication Networks, 2004.

[30] L.F. Perrone, D.M. Nicol, A scalable simulator for TinyOS
applications, Proc. Winter Simulation Conference 2002
(2002) 679–687.

[31] S. Sundresh, K. Wooyoung, A. Gul, SENS: a sensor,
environment and network simulator, in: Proc. 37th Annual
Simulation Symposium, 2004, pp. 221–228.

[32] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Rama-
nathan, D. Estrin, Em*: a software environment for devel-
oping and deploying wireless sensor networks, CENS
Technical Report 0034, 2003. http://research.cens.ucla.edu/,
visited in November 2005.

[33] C. Kelly IV, V. Ekanayake, R. Manohar, SNAP: a sensor
network asynchronous processor, Proc. 9th Int. Symp. on
Asynchronous Circuits and Systems (2003) 24–35.

[34] M. Kuorilehto, M. Kohvakka, M. Hännikäinen, T.D.
Hämäläinen, High level design and implementation frame-
work for wireless sensor networks, in: Proc. Embedded
Computer Systems: Architectures, Modeling, and Simula-
tion, 2005, pp. 384–393.

[35] Evaluation of J-Sim, http://www.j-sim.org/comparison.html,
visited in November 2005.

[36] VisualSense Homepage, http://ptolemy.eecs.berkeley.edu/
visualsense/, visited in November 2005.

[37] Getting Started with the EmStar Simulator, http://cvs.cen-
s.ucla.edu/emstar/tut/emsim.html, visited in November
2005.

[38] W. Stallings, Data and Computer Communications, Sixth
ed., Prentice-Hall, 2001.

[39] The swing tutorial, http://java.sun.com/docs/books/tutorial/
uiswing/, visited in August 2005.

[40] Telelogic Homepage, http://www.telelogic.com/corp/, vis-
ited in September 2005.

[41] Telelogic TAU SDL Suite, http://www.telelogic.com/corp/
products/tau/sdl/index.cfm, visited in September 2005.

[42] Specification and description language (SDL), ITU-T Rec-
ommendation Z.100, http://www.itu.int/ITU-T/study-
groups/com17/languages/, visited in June 2006.

[43] XE88LC02 Sensing Machine, Data Sheet, http://www.xe-
mics.com/, visited in September. 2005.

[44] Nordic VLSI nRF2401, Data Sheet, ver 1.0, http://
www.nvlsi.no/, visited in September 2004.

[45] Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs), IEEE Standard 802.15.4, 2003.

[46] PIC18 Data Sheet, http://www.microchip.com/, visited in
October 2005.

[47] Chipcon CC2420 Data Sheet, http://www.chipcon.com/,
visited in October 2005.
Please cite this article in press as: M. Kuorilehto et al., Rapid
(2007), doi:10.1016/j.adhoc.2007.08.003
[48] S. Roundy, P.K. Wright, J. Rabaey, A study of low level
vibrations as a power source for wireless sensor nodes,
Elsevier Computer Communications 26 (11) (2003) 1131–
1144.

Mauri Kuorilehto (M.Sc.’01, TUT)
received the M.Sc. in Computer Science
from Tampere University of Technology
(TUT), Finland. He is currently pursuing
his Ph.D. in the Institute of Digital and
Computer Systems at TUT. His research
interests include network simulation,
operating systems, and application dis-
tribution in wireless sensor and ad hoc
networks.
tion design tools, and novel web
Timo D. Hämäläinen (M.Sc. ‘93,
Ph.D.’97, TUT) acted as a senior
research scientist and project manager at
TUT in 1997–2001. He was nominated
to full professor at TUT/Institute of
Digital and Computer Systems in 2001.
He heads the DACI research group that
focuses on three main lines: wireless local
area networking and wireless sensor
networks, high-performance DSP/HW
based video encoding, and interconnec-

tion networks with design flow tools for heterogeneous SoC
platforms.

applications.
design and evaluation framework for ..., Ad Hoc Netw.

http://research.cens.ucla.edu/
http://www.j-sim.org/comparison.html
http://ptolemy.eecs.berkeley.edu/visualsense/
http://ptolemy.eecs.berkeley.edu/visualsense/
http://cvs.cens.ucla.edu/emstar/tut/emsim.html
http://cvs.cens.ucla.edu/emstar/tut/emsim.html
http://java.sun.com/docs/books/tutorial/uiswing/
http://java.sun.com/docs/books/tutorial/uiswing/
http://www.telelogic.com/corp/
http://www.telelogic.com/corp/products/tau/sdl/index.cfm
http://www.telelogic.com/corp/products/tau/sdl/index.cfm
http://www.itu.int/ITU-T/studygroups/com17/languages/
http://www.itu.int/ITU-T/studygroups/com17/languages/
http://www.xemics.com/
http://www.xemics.com/
http://www.nvlsi.no/
http://www.nvlsi.no/
http://www.microchip.com/
http://www.chipcon.com/

PUBLICATION 2

M. Kuorilehto, M. Hännikäinen, T. D. Hämäläinen, �A Survey of Application Dis-
tribution in Wireless Sensor Networks,� EURASIP Journal on Wireless Communica-
tions and Networking, Special Issue on Ad Hoc Networks: Cross-Layer Issues, vol.
2005, no. 5, pp. 774�788, December, 2005.

EURASIP Journal on Wireless Communications and Networking 2005:5, 774–788
c© 2005 Mauri Kuorilehto et al.

A Survey of Application Distribution
in Wireless Sensor Networks

Mauri Kuorilehto
Institute of Digital and Computer Systems, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
Email: mauri.kuorilehto@tut.fi

Marko Hännikäinen
Institute of Digital and Computer Systems, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
Email: marko.hannikainen@tut.fi

Timo D. Hämäläinen
Institute of Digital and Computer Systems, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
Email: timo.d.hamalainen@tut.fi

Received 14 June 2004; Revised 23 March 2005

Wireless sensor networks (WSNs) are deployed to an area of interest to sense phenomena, process sensed data, and take actions
accordingly. Due to the limited WSN node resources, distributed processing is required for completing application tasks. Propos-
als implementing distribution services for WSNs are evolving on different levels of generality. In this paper, these solutions are
reviewed in order to determine the current status. According to the review, existing distribution technologies for computer net-
works are not applicable for WSNs. Operating systems (OSs) and middleware architectures for WSNs implement separate services
for distribution within the existing constraints but an approach providing a complete distributed environment for applications is
absent. In order to implement an efficient and adaptive environment, a middleware should be tightly integrated in the underlying
OS. We recommend a framework in which a middleware distributes the application processing to a WSN so that the application
lifetime is maximized. OS implements services for application tasks and information gathering as well as control interfaces for the
middleware.

Keywords and phrases: ad hoc networking, distribution, service discovery, task allocation, wireless sensor networks.

1. INTRODUCTION

Wireless sensor networks (WSNs) have gained much atten-
tion in both public and research communities because they
are expected to bring the interaction between humans, envi-
ronment, and machines to a new paradigm. Despite being a
fascinating topic with a number of visions of a more intelli-
gent world, there still exists a huge gap in the realizations of
WSNs. In this paper, we define WSNs as networks consist-
ing of independent, collaborating nodes that can sense, pro-
cess, and exchange data as well as act upon the data content.
Compared to traditional communication networks, there is
no preexisting physical infrastructure that restricts topology.

WSNs are typically ad hoc networks [1] but there are ma-
jor conceptual differences. First, WSNs are data-centric with

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

an objective to deliver time sensitive data to different destina-
tions. Second, a deployed WSN is application-oriented and
performs a specific task. Third, messages should not be sent
to individual nodes but to geographical locations or regions
defined by data content [2].

In WSNs quantitative requirements in terms of latency
and accuracy are strict due to the tight relation to the en-
vironment. In general, the capabilities of an individual sen-
sor node are limited, but the feasibility of WSN lies on the
joint effort of the nodes. Thus, WSNs are distributed sys-
tems and need distribution algorithms. Another motivation
for distribution is the resource sharing. Further, to obtain re-
sults, WSN applications typically require collaborative pro-
cessing of the nodes sensing different phenomena in diverse
areas [2].

The main focus of WSN research, as well as wireless
ad-hoc network research in general, has been on different
protocol layers, reviewed in [2, 3, 4, 5, 6, 7, 8] and on en-
ergy efficiency [9, 10]. Recently, issues concerning security,

A Survey of Application Distribution in WSNs 775

context-sensitivity, and self-organization have gained more
attention [11]. Surveys concerning application layer issues
and prototype implementations are fairly limited [4, 12,
13]. Furthermore, proposals implementing distribution are
emerging as the complexity of applications increases. These
are covered in [2] but the discussion of proposals supporting
application distribution is limited to few solutions for distri-
bution control.

In this paper, we focus on four essential distribution as-
pects in WSNs, namely, service discovery, task allocation, re-
mote task communication, and task migration. The service dis-
covery comprises of identifying and locating services and re-
sources required by a client. In homogeneous WSNs, the ser-
vice discovery is not important but when node platforms and
the composition of tasks are heterogeneous, the service dis-
covery is essential. The task allocation specifies a set of sensor
nodes, on which the execution of an application task is acti-
vated. The remote task communication covers the means for
communication between distributed tasks through a wireless
communication link. The task migration means the methods
for transferring a task executable from a sensor node to an-
other. The algorithms defining the target nodes for migration
are included in the task allocation.

Algorithms that are tightly bound to an application are
not discussed. The presented distribution aspects are selected
due to their generality for different types of WSNs and appli-
cations. We omit, for example, data fusion and data aggrega-
tion that are beneficial only for applications that gather data
to a centralized storage.

In this paper we review the application distribution for
WSNs focusing on distribution implemented in systems soft-
ware. By systems software we mean software components
providing application-independent services and managing
node resources. The proposed solutions vary according to
tools provided, requirements placed on the underlying plat-
forms, and targeted applications and environments. How-
ever, the current proposals lack an integrated solution pro-
viding a distributed operating environment for WSN appli-
cations. This approach would lead to a more efficient usage
of resources.

This paper is organized in two main parts as follows. The
first part describes the basics of objectives, challenges, and
systems software solutions of WSNs. In addition, a summary
of WSN application proposals is presented in order to define
requirements. The second part starting in Section 3 contains
the survey of distribution proposals followed by their analysis
in Section 4. Finally, conclusions are given in Section 5.

2. OVERVIEW OF WSNs

In order to give an overview of WSN applications, we review
some examples and their characteristics. These are listed in
Table 1. The selection is mainly based on prototype imple-
mentations and thus all the scopes of WSNs might not be
represented.

The first column in Table 1 lists the applications and the
second classifies them according to the main task. The third
column presents the requirements set by the application. The

networking requirements in terms of data amount and fre-
quency are defined in the fourth column, while the last col-
umn gives the scale and density of the application.

Most of the applications gather, evaluate, or aggregate
data from different types of sensors. Major differences are
in networking requirements and complexity. Unfortunately,
accurate values or limits to these properties are not often re-
ported, which complicates a fair comparison.

The nature of applications listed in Table 1 varies, but at
least four main tasks can be identified [28]. Monitoring is
used to continually track a parameter value in a given lo-
cation, and event detection recognizes occurrences of events.
Object classification attempts to identify an object or its type
and object tracking traces movements of an object.

For the presented applications, the “worst-case” WSN
would comprise of an extensive number of nodes with vary-
ing density and a network topology that constantly changes
due to the errors in communication, mobility of nodes, and
inactive nodes [3]. To complete complex tasks in the sce-
nario, the application requires distributed processing within
the network.

In our view, WSN application quality of service (QoS) is
constructed from network lifetime, network load, accuracy
of data, and fault tolerance. Network load in this case com-
prises of the required data latency, throughput, and reliabil-
ity. WSN protocols and their functions are adapted according
to the QoS requirements. Currently, security is a QoS issue
that is often omitted in WSNs. The natural reason is that se-
curity requires too much resources [2].

For the rest of the paper we define an environmental mon-
itoring application that is used for the analysis of the pro-
posed solutions. For clarification, we refer to the application
as EnvMonitor. The main task of the application is the con-
stant gathering of location-dependent information within a
defined area. In addition to the passive monitoring involved
in the environmental monitoring applications in Table 1, En-
vMonitor consists of active monitoring tasks reacting to con-
dition changes in WSN. The passive monitoring data are
gathered to a central storage and aggregated during the rout-
ing. Active in-network monitoring tasks execute signal pro-
cessing algorithms locally in order to determine threshold
values for temperature and humidity. When a threshold is
reached, a set of predefined actions modifying the applica-
tion QoS and the communication topology taken. The mod-
ifications alter the requirements for data composition, accu-
racy, and latency. The priority of active monitoring tasks pre-
cedes passive monitoring.

2.1. Systems software for WSNs

A general-purpose operating system (OS) is an example of
systems software. Early WSNs have not included systems
software due to scarce resources and simplicity of applica-
tions. However, complex applications require systems soft-
ware because it eases the control of resources and increases
the predictability of execution. The heterogeneity of plat-
forms can be hidden under common interfaces provided by
the software. Still, the major disadvantages are heavy compu-
tation and memory usage.

776 EURASIP Journal on Wireless Communications and Networking

Table 1: Examples of prototyped applications for WSNs.

Application Type Requirements Data amount and frequency Scale and density

Great Duck Island
[14]

Environmental
monitoring

Data archiving,
Internet access, long
lifetime

Minimal, every 5–10 min,
2–4 h per day 32 nodes in 1 km2

PODS in Hawaii [15]
Environmental
monitoring

Digital images,
energy-efficiency

Large data amounts,
infrequently

30–50 nodes in 5
hectares

CORIE (Columbia
River) [16]

Environmental
monitoring Base stations, lifetime

Moderate data amounts,
infrequently

18 nodes in
Columbia River

Peek value evaluation
[17]

Environmental
monitoring

Collaborative
processing, minimal
network traffic

Moderate data amounts,
periodically

Case dependent

Flood detection [18]
Environmental
monitoring

Current condition
evaluation

50 bytes every 30 s
200 nodes 50 m
apart

SSIM (artificial
retina) [19] Health

Image identification,
realtime, complex
processing

Large data amounts,
frequently every 200 ms

100 sensors per
retina

Human monitoring
[20] Health

Quality of data,
security, alerts

Moderate data amounts,
depend on the human stress
level

Several nodes per
human

Mountain rescue [21] Health
Communication
intensive

Large data amounts in high
frequency

One per rescuer in
mountain area

WINS for military
[22]

Military
Target identification,
realtime, security,
quality of data

Large data amounts,
infrequently

Several distant
nodes

Object tracking [23] Military
Collaborative
processing, realtime,
location-awareness

Large data amounts with high
frequency near an object

7 (prototype)
nodes in proximity

Vehicle tracking [24] Military
Identification and
coordination,
realtime

Large data amounts every 8 s
near an object

1024 nodes in
40 km2

Intelligent
input/output [25] Home entertainment

Communication
intensive

Large data amounts with high
frequency

One node per
input device

WINS condition
monitoring [22]

Machinery monitoring
Data aggregation,
machinery lifetime
projection

Depend on machinery
complexity and its current
status

Few nodes per
machinery

Smart kindergarten
[26] Education

Video streaming,
identification,
location-awareness

Large data amounts in
variable frequencies

Tens of sensors,
indoor

Smart classrooms
[27] Education

Context-sensing, data
exchange

Large data amounts in
random frequency

Several nodes in
classroom

The systems software for WSNs implements single node
control and network-level distribution control. The single node
control software implements the low-level routines in a node,
whereas the network-level distribution control manages ap-
plication execution within several nodes.

Single node control
The single node control operates on a physical node depicted
in Figure 1. A processing unit consists of CPU, storage de-

vices, and an optional memory controller for accessing the
instruction memory of the main CPU. A sensing unit con-
sists of sensors and an analog-to-digital converter (ADC). A
transceiver unit enables the communication with other sen-
sor nodes. A power unit can be extended by a power genera-
tor that harvests energy from environment. Other peripheral
devices, like actuators for moving the node and location find-
ing systems, are attached to the node depending on the ap-
plication requirements [3].

A Survey of Application Distribution in WSNs 777

Processing unit

Code memory
(∼ 128 KB)

Memory
controller

Data memory
(∼ 4 KB)

CPU
(∼ 2 MIPS)

Sensing unit

10-bit
ADC

Sensors

Actuators

Location finding
system

Power unit

Power generator
Transceiver unit

(< 256 kbps)

Figure 1: Reference hardware platform architecture of a sensor
node.

The reference values in Figure 1 are the resources avail-
able in MICA2 mote [29]. The power consumption of a node
is in order of mW when active and in order of μW when the
node is in sleep. The power unit is typically an AA battery or
similar energy source.

The single node control is accomplished by OS or vir-
tual machine (VM). In the reference platform, OS is executed
on the main CPU and it uses the same instruction and data
memories as applications. Services implemented by OS in-
clude scheduling of tasks, interprocess communication (IPC)
between tasks, memory control, and possible power control
in terms of voltage scaling and component activation and in-
activation. OS provides interfaces to access and control pe-
ripherals. The interfaces are typically associated with layered
software components with more sophisticated functionality,
for example a network protocol stack.

Network-level distribution control

Distribution control relies on networking. Figure 2 depicts
an example protocol stack for WSN in comparison to two
widely utilized stacks, the OSI model [1] and a distributed
system in a wireless local area network (WLAN). In a WLAN
computer, the TCP/IP stack is used through a sockets ap-
plication programming interface (API). The WLAN adapter
that contains the medium access control (MAC) protocol
and the WLAN radio is accessed by a device driver.

There is no unified protocol stack for WSNs and most
of the proposed stacks are just collections of known pro-
tocol functions. At the moment, the IEEE 1451.5 Wire-
less Sensor Working Group [30] is standardizing the phys-
ical layer for WSNs with an intention to adapt link layers
from other wireless standards, for example, Bluetooth [31],
IEEE 802.15.4 low-rate wireless personal area network (LR-
WPAN) [32], or IEEE 802.11 WLAN [33]. Other types of
networks posing common characteristics with WSNs are mo-
bile ad hoc networks (MANETs) [34] targeted to address mo-
bility.

In WSNs, the essential protocol layers are the MAC pro-
tocol on the data link layer and the routing protocol on the
network layer. The MAC protocol creates a network topology

and shares the transmission medium among sensor nodes.
The topology in WSNs is either flat, in which all sensor nodes
are equal, or clustered, in which communication is controlled
by cluster headnodes. The routing protocol allows commu-
nication via multihop paths. A transport protocol that im-
plements end-to-end flow control is rarely utilized in WSNs.
The middleware layer is equivalent to the presentation layer
in the OSI model [1].

For WSNs, the development of a distributed environ-
ment requires the consideration of all four distribution as-
pects. The control actions are taken according to the applica-
tion QoS. The distribution aspects are typically implemented
on the middleware layer on top of OS. Thus, the middle-
ware component can reside in different types of platforms. In
addition to OS routines, the middleware utilizes networking
interface to implement communication between its own in-
stances on different sensor nodes. Some distribution aspects
can also be implemented directly by OS.

3. SURVEY OF DISTRIBUTION PROPOSALS

Numerous technologies for the service discovery and remote
task communication are available for computer networks.
The task migration is typically a transfer of a binary code im-
age or a Java applet. In computer networks, the task alloca-
tion is often not the main concern as resources are sufficient.
Even though not directly applicable for WSNs, the computer
network technologies define the basic paradigms and algo-
rithms for the application distribution.

Other types of wireless ad hoc networks, like MANETs
and Bluetooth, have common characteristics with WSNs.
First, communication in these networks is very similar to
WSNs. Second, the resource constraints must be considered,
even though the limits are looser than in WSNs. For this
reason we include technologies proposed for MANETs and
Bluetooth in our assessment of WSN proposals.

A distinct categorization of proposed solutions for WSNs
cannot be made since a proposal typically present a more
complete architecture addressing several distribution as-
pects. Therefore, we categorize the proposals according to
their system architecture to OSs, VMs, middlewares, and
stand-alone protocols.

3.1. Architectural paradigms

Figure 3 presents three architectural paradigms for distribu-
tion, which are client-server, mobile code, and tuple space.
In computer networks, the client-server architecture is ap-
plied for the service discovery and remote task communi-
cation. It consists of one or multiple servers hosting a set
of services and clients accessing these. A directory service is
maintained at the server in the service discovery. In the re-
mote task communication, a client outsources a task process-
ing to a server. Two alternatives are available, remote proce-
dure calls (RPCs) and object-oriented remote method invo-
cations (RMIs). As the internal data and state of objects are
accessed only through the object interface, RMI achieves bet-
ter abstraction and fault tolerance. In addition, objects can be
cached and moved [35].

778 EURASIP Journal on Wireless Communications and Networking

WSN OSI-model WLAN computer

WSN application
Application

layer Application program

Middleware
Presentation

layer Distributing middleware

Session
layer Sockets API

WSN transport
protocol

Transport
layer TCP/UDP

Multi-hop
routing protocol

Network
layer IP

Error control
Data link

layer

WLAN adapter
device driver

WSN MAC protocol WLAN MAC protocol

Transceiver unit
Physical

layer
WLAN radio

OS

OS

Figure 2: OSI model, WSN, and distributed system in WLAN protocol layers.

Client

Server

Request data

(a)

Client

Mobile code

(b)

Client

Tuple insert
Tuple read

Tuple remove
Request data
Tuple distribution

(c)

Figure 3: Three architectural paradigms for distribution: (a) client-server, (b) mobile code, and (c) tuple space.

Differences in programming languages and platforms
must be hidden in the remote task communication. Stub pro-
cedures are generated for this from interface definitions. A
stub procedure at the client marshals a procedure call to an
external data presentation, which is then unmarshalled back
to a primitive form at the server [35].

In the mobile code paradigm, instead of moving data
from a client to a server for processing, the code is moved to
the data origins, and data are then processed locally. A mo-
bile agent is an object that in addition to the code carries its
state and data. Furthermore, mobile agents make migration
decisions autonomously. They are typically implemented on
top of VMs for platform independency [36].

The concept of tuple space was proposed originally in
Linda [46] for the remote task communication, but it is ap-
plicable also for the service discovery. Tuples are collections
of passive data values. A tuple space is a pool of shared in-
formation, where tuples are inserted, removed, or read. Data
are global and persistent in the tuple space and remain un-
til explicitly removed. In the tuple space, a task does not

need to know its peer task, tasks do not need to exist si-
multaneously, and they do not need to communicate di-
rectly.

3.2. Computer networks

Service location protocol (SLP) [47], Jini [48], universal plug
and play (UPnP) [49], and secure service discovery service
(SDS) [50] implement a client-server architecture service
discovery in computer networks. The tuple space is utilized
in JavaSpaces [51] on top of Jini and in TSpaces [52]. For the
remote task communication, Sun RPC [53] and distributed
computing environment (DCE) [54] are well-known RPC
technologies. The best-known object-oriented technologies
are common object request broker architecture (CORBA)
[55], Java RMI [56], and Microsoft’s distributed common
object model (DCOM) [57]. The mobility of terminals is
addressed in Mobile DCE [58], Mobile CORBA [59], and
Rover Toolkit [60]. Schedulers for computer clusters imple-
ment task allocation within a cluster by allocating tasks to the
most applicable resources [61].

A Survey of Application Distribution in WSNs 779

Table 2: Implemented distribution aspects in single node proposals.

Proposal Target
network

Resource requirements
(CPU/code memory/
data memory)

Service discovery Task allocation
Remote task
communi-
cation

Task
migration

OS-based architectures

EYES OS [37] WSN 1 MHz / 60 KB / 2 KB Resource requests Not supported RPC Not supported

BTnodes [38] WSN 8 MHz/ 128 KB/ 64 KB Tuple space Not supported Callbacks Smoblets

TinyOS [39] WSN 8 MHz/ 128 KB/ 4 KB Not supported Not supported Active messages Not supported

BerthaOS [40] WSN 22 MHz/ 32 KB/ 2,25 KB Not supported Not supported BBS Binary code

MOS [25] WSN 8 MHz/ > 64 KB/ > 1 KB Not supported Not supported Not supported Binary code
download

QNX [41] LAN 33 MHz/ 100 KB/ N/A Network manager SMP scheduler Message passing Not supported

OSE [42] LAN N/A/ 100 KB/ N/A Hunting service Not supported Phantom process Not supported

VM-based architectures

Sensorware [17] WSN N/A/ 1 MB/ 128 KB Not supported
Script population
specification

Not supported
TCL script
migration

MagnetOS [43] WSN N/A / N/A / N/A Not supported
Automatic object
placement

DVM [44]
Mobile Java
objects

Maté [45] WSN 8 MHz/ 128 KB/KB Not supported Not supported Not supported
Code capsule
update

Distribution technologies designed for computer net-
works are typically both computation and communication
intensive and cannot be implemented on sensor nodes. They
are based on the client-server architecture and use detailed
specifications for services and interfaces. These technologies
do not consider the possible mobility or unavailability of sen-
sor nodes. While mobility is addressed in Mobile DCE, Mo-
bile CORBA, or Rover toolkit, these still rely on the client-
server architecture from DCE and CORBA.

3.3. Distribution proposals for WSNs

From systems software proposals for WSNs, OSs and VMs
implement the single node control and middleware archi-
tectures implement the network-level distribution control.
These can be supported by stand-alone protocols that ad-
dress only a single distribution aspect. We contribute the
WSN proposals according to distribution aspects they imple-
ment.

OS-based architectures
The distribution aspects implemented in OSs are listed in
Table 2. In addition, the second column defines the type of
a network OS is targeted for, while the third one gives OS
resource requirements. In WSNs, OSs implement a very lim-
ited set of services and they are fairly primitive in their na-
ture. As shown in Table 2, the remote task communication is
addressed typically by providing a simple method for RPC.
The service discovery is rarely implemented in OS but on a
higher system services layer that is associated to OS. Tasks
migrate as binary code, because OSs do not support code in-
terpreting.

The service discovery is implemented in EYES OS [37]
on a distributed services layer above the OS by utilizing re-
source requests to neighbor nodes. Also Bluetooth smart
nodes (BTnodes) [38] implement distribution in system ser-
vices above a lightweight OS. BTnodes use the tuple space to
implement the service discovery. The task allocation is not
implemented in any of the proposals.

A client-server type RPC is applied to the remote task
communication in TinyOS [39], BerthaOS (for Pushpin
nodes) [40], and in EYES OS. In the component-based
TinyOS, the handler name of the remote component and re-
quired parameters are encapsulated in a TinyOS active mes-
sage. BerthaOS uses bulletin board system (BBS) for IPC and
nodes can post messages also to BBS of a neighbor node. In
EYES OS, the basic RPC between neighbor nodes is applied.
BTnodes use the tuple space also for information sharing and
for sending notifications to callbacks routines.

The task migration as binary code is possible in BetrhaOS
and in MultimodAI NeTworks of In-situ Sensors (MANTIS)
OS (MOS) [25]. BerthaOS allows the in-network initiation of
transfers and checks the code integrity using a simple check-
sum, but neither it nor MOS considers the vulnerability of
the system to malicious code. In BTnodes, precompiled Java
classes, smoblets, are able to migrate but they must be exe-
cuted on more powerful platforms.

Embedded OSs and RealTime OSs (RTOS), like QNX
[41] and OSE [42], support service discovery and remote
task communication in OS services. In QNX, the network
of computers is abstracted to a single homogenous set of re-
sources. QNX uses message passing to implement IPC and
hides remote locations in process and resource managers.

780 EURASIP Journal on Wireless Communications and Networking

The local managers interact with a network manager that
handles name resolution. OSE uses stub procedures, referred
to as phantom processes, for the remote task communica-
tion. A phantom process uses a link handler to communi-
cate with the peer phantom process on the remote node. The
remote node is discovered by a hunting system service that
broadcasts service requests to the network.

From these proposals, QNX and OSE offer a distributed
environment for applications, but they require more efficient
sensor node platforms. Their resource requirements shown
in Table 2 do not contain all the components required for
the implementation of the distributed environment. The re-
source requirements set by other OSs are in the same order of
magnitude. All the proposed OS architectures implement the
single node control over the application tasks of EnvMonitor.
The most applicable environment for EnvMonitor is available
in BTnodes, where the tuple space implements service dis-
covery and callbacks and smoblets support in-network dis-
tributed processing.

VM-based architectures

Compared to OSs, VMs offer hardware platform indepen-
dency and substitute the lack of hardware protection by the
protection implemented in code interpreters. The distribu-
tion aspects, target network, and required resources of VM
architectures are categorized in Table 2. As shown, the mobile
code is a common approach to distribution, whereas service
discovery is not supported.

The task allocation is supported by Sensorware [17] and
MagnetOS [43]. The population of tool command language
(TCL) scripts in Sensorware is specified in the scripts them-
selves. MagnetOS utilizes automatic object placements algo-
rithms that adaptively attempt to minimize communication
by moving Java objects nearer to the data source. The remote
task communication is addressed only in MagnetOS that re-
lies on distributed VM (DVM) [44]. DVM abstracts network
of computers to a single Java VM (JVM).

As depicted in Table 2, the mobile code is a TCL script
in Sensorware, a custom bytecode capsule in Maté [45], and
a Java object in MagnetOS. The size of the TCL scripts and
especially the Maté code capsules is small compared to the
size of Java objects. In Maté that operates on top of TinyOS
a new code capsule is sent in TinyOS active messages to all
nodes.

From the proposed solutions, Sensorware and Magne-
tOS implement task migration and task allocation, whereas
in Maté only the latest code version is updated to all nodes.
Implementation of MagnetOS on sensor nodes is not pos-
sible, Sensorware sets considerable requirements for under-
lying platforms, and Maté is implemented to very resource
constrained nodes.

Like OSs, these proposals implement the single node con-
trol for EnvMonitor. From these proposals, Sensorware is the
most suitable for EnvMonitor due to its migration, alloca-
tion, and task coprocessing capabilities. However, the con-
trol for these actions must be implemented by the application
scripts.

Middleware architectures

Middleware architectures implement a higher abstraction
level environment for applications. Generally, three differ-
ent approaches in WSN middlewares can be identified. First,
a middleware coordinates the task allocation based on the
application QoS. Second, WSN is abstracted to a database
that supports query processing. Third, a middleware controls
application processing in the network based on the current
context of surrounding environment. The context depends
on the location, nearby people, hosts, and devices, and the
changes in these over time [62]. The target network and dis-
tribution aspects for proposals are listed in Table 3.

Application QoS is applied for controlling the task alloca-
tion in the configuration adaptation of the middleware link-
ing applications and networks (MiLAN) [20], in the resource
management of the cluster-based middleware architecture
for WSNs [63], and in QoSProxies of the QoS-aware middle-
ware for ubiquitous and heterogeneous environments [64].
The cluster-based middleware and MiLAN adapt also the
network topology. The QoSProxy selects an application con-
figuration matching available resources and makes resources
reservations to guarantee the specified QoS for that configu-
ration. Both MiLAN and QoS-aware middleware adopt ser-
vice discovery protocols from computer network solutions.
QoS-aware middleware requires a more powerful platform
than the other two.

A database approach is taken in sensor information and
networking architecture (SINA) [24], in TinyDB [65] on top
of TinyOS, and in Cougar [66]. In SINA, database queries
are injected to network as sensor querying and tasking lan-
guage (SQTL) [71] scripts. These scripts migrate from node
to node depending on their parameters. The task allocation
in SINA is implemented by a sensor execution environment
(SEE), which compares SQTL script parameters to node at-
tributes and executes script only if these match. In TinyDB
and Cougar, the task allocation is implemented by a query
optimizer that determines energy-efficient query routes. The
query plans generated by the query optimizer are parsed in
the nodes and then executed accordingly. TinyDB supports
also event-based queries that are initiated in-network on the
occurrence of an event.

Application adaptation based on the current context
is performed by Linda in a mobile environment (LIME)
[67], mobile agent runtime environment (MARE) [21], and
reconfigurable context-sensitive middleware (RCSM) [27].
Service discovery is implemented by the tuple space in LIME
and MARE. RCSM uses a custom RKS [68] protocol that re-
duces communication by advertising services only if they can
be activated in the current context and potential clients are
in the vicinity. LIME implements task allocation by reactions
added to tuples. The MARE control manages nearby mobile
agents and allocates tasks to the agents. RCSM ADaptive ob-
ject containers (ADC) activate tasks in an appropriate con-
text.

The tuple space in LIME and MARE is used also for the
remote task communication. LIME supports also location-
dependent recipient identification. RCSM utilizes RCSM

A Survey of Application Distribution in WSNs 781

Table 3: Implemented distribution aspects in middleware and stand-alone protocol proposals.

Proposal Target network Service discovery Task allocation
Remote task
communication

Task migration

Middleware architectures

MiLAN [20] WSN
SLP, Bluetooth
SDP

Configuration
adaptation

Not supported Not supported

Cluster-based
middleware [63]

WSN Not supported
Resource
management

Not supported Not supported

QoS-aware
middleware [64] MANET SLP/Jini/SDS QoSProxy Not supported Not supported

SINA [24] WSN Not supported Attribute matching
in SEE

Not supported SQTL scripts

TinyDB [69] WSN Not supported
Query optimizer,
event-based queries

Not supported Not supported

Cougar [66] WSN Not supported Query optimizer Not supported Not supported

LIME [67] MANET Tuple space Context reaction Tuple space Mobile Java objects

MARE [21] MANET Tuple space MARE control Tuple space Mobile Java objects

RCSM [27] MANET RKS [68] Adaptive object
containers

R-ORB Not supported

Stand-alone protocols

GSD [69] MANET Service groups Not supported Not supported Not supported

Bluetooth SDP [31] Bluetooth Clients and servers Not supported Not supported Not supported

Task migration in [70] WSN Not supported Not supported Not supported Edit scripts

context-sensitive object request broker (R-ORB) that adapts
basics from CORBA ORB. Both LIME and MARE utilize mo-
bile agents implemented as Java objects for the task migra-
tion.

Unlike OSs and VMs, most of the middleware architec-
tures implement the network-level distribution control but
do not address the single node control. Middlewares rely-
ing on the application QoS specification address mainly task
allocation, but leave other aspects to external components.
The database abstraction is applicable to a certain type of ap-
plications, like EnvMonitor, but the expressivity of the SQTL
scripts in SINA, the event-based queries in TinyDB, and es-
pecially the query processing capabilities in Cougar do not
support complex in-network processing. As can be seen from
Table 3, context-aware proposals cover distribution aspects
extensively. They implement extensive environment for En-
vMonitor but their resource requirements are too high for
sensor nodes.

Stand-alone protocols

The environment provided by OSs, VMs, or middleware
architectures can be supported by stand-alone protocols
implementing dedicated functions. We do not cover WSN
MAC and routing protocols but focus on protocols that im-
plement any of the four distribution aspects. The protocols
and their target networks are listed in Table 3.

The group-based service discovery protocol (GSD) for
MANETs [69] and the Bluetooth service discovery protocol
(SDP) [31] implement the service discovery. In GSD, termi-

nals advertise their services and nearby service groups within
the distance of n hops. Service requests are forwarded to-
wards the service provider based on group advertisements. A
Bluetooth terminal maintains information about its services
in an SDP server. Searching and querying for existing services
are performed by an SDP client that queries one server at a
time.

An approach for minimizing the transferred binary code
size on the task migration is proposed in [70]. The proposal
transmits only the differences between the existing and the
new code. The algorithm is adopted from the diff command
of UNIX.

These protocols can be used as separate components for
EnvMonitor, but none of them provides a complete environ-
ment. GSD is communication intensive due to the multi-hop
advertisements. Bluetooth SDP does not support broadcast
queries, which restricts its applicability in large WSNs. The
task migration proposed in [70] cannot be initiated in WSNs
due to the complexity of the algorithm and the lack of in-
tegrity checking.

4. ANALYSIS OF PROPOSALS

A comprehensive comparison of the proposals is problematic
due to the diversity of platforms, applications, and imple-
mentations. However, the requirements for each distribution
aspect are similar, which makes their assessment possible. In
the analysis, we concentrate on the proposals targeted for
WSNs.

782 EURASIP Journal on Wireless Communications and Networking

Table 4: System testing and validation environments for distribution proposals.

Proposal Test environment
Simulation and
testing tools

Prototype
platform

Result accuracy Published results

OS-based architectures

TinyOS [39] Prototype TOSSIM [72] Motes Accurate
Component sizes, OS routine
delays, computation costs

BerthaOS [40] Prototype None Pushpin None Functionality mentioned

EYES OS [37] None None None None None

MOS [25] Prototype PC emulator
XMOS [25]

Nymph Moderate
Memory and power consumption,
test application performance results

BTnodes [38] Prototype None
Micro-size
BTnodes

Moderate
Component sizes, energy
consumption

VM-based architectures

Sensorware [17] Prototype SensorSim [73] Linux IPAQ Accurate
Framework size, execution delays,
energy consumption

MagnetOS [43]
Windows/Linux
JVM

Custom packet-
level simulator

PC None
Internal algorithm comparison
in simulator

Maté [45] Prototype TOSSIM [72] TinyOS mote Accurate
Bytecode overhead, installation
costs, code infection performance

Middleware architectures

MiLAN [20] None None None None None

Cluster-based
middleware in [63]

Algorithm
simulation

Custom
simulator

None None
Heuristic resource allocation,
algorithm performance

Qos-aware
middleware in [64] None None None None None

SINA [24] Simulations GloMoSim [74] None Poor
SINA networking overhead,
application performance

TinyDB [65]
Simulations,
prototype

Custom en-
vironment

TinyOS mote Accurate
Query routing performance in
simulations, sample accuracy and
sampling frequency in prototypes

Cougar [66] None None None None None

LIME [67] JVM None PC Poor Approximations about Java code size

MARE [21] JVM None PDA Poor Service discovery performance

RCSM [27] Prototype None
PDA with custom
hardware

RCSM poor,
RKS accurate

RCSM memory consumption,
RKS size, communication,
energy consumption

Stand-alone protocols

GSD [69] Simulations GloMoSim [74] None Poor
Influence of internal parameters
on service discoverability

Task migration
in [70]

PC None
Tested in EYES
nodes

Accurate
Algorithm performance,
influence of internal parameters

4.1. Testing and validation of WSN proposals

Discussed WSN architectures vary in their complexity and
requirements. In order to provide a scope for the assessment
of proposals, their testing and validation environments are
presented in Table 4. The test environment is presented in the
second column. The simulation and testing tools and proto-
type platforms identify the proposal validation tools and test
platform. The published results and their accuracies are listed
in the last two columns.

Generally, prototypes exist for the single node architec-
tures and their results are accurate including information
required for comparison. Instead, on the middleware layer,
proposals are evaluated by simulations or not at all. The
simulation results are inaccurate as they compare only the
internal algorithms and do not give any information for
a general comparison. Of course, exceptions exist in both
cases.

Even though some of the presented results in Table 4 are
accurate and their scope is adequate, the direct comparison

A Survey of Application Distribution in WSNs 783

Table 5: Characteristics of technologies implementing service discovery.

Technology Communication Scalability Fault tolerance Requirements Benefits (pros) Problems (cons)

Resource
requests

Requests
to neighbors

Restricted
to neighbors

Broadcasted
to all neighbors

Resource
declaration

One-hop
communication

Scalability

Tuple space Tuple operations Balancing between
memory and scale

Redundant
information

Memory pool in
each node

Source and target
independency

Communication/
memory load

Network
manager

Name resolution re-
quests to manager

Local manager area,
but extensible

Possibly redundant
network managers

Resource managers,
register to manager

Scalability due to
naming

Name resolution,
communication
load

Hunting
service

Broadcast hunt ser-
vice requests

Not restricted Lost services can be
rehunted

Remote service
identification

Lightweight after
initiation

First hunt latency
and communica-
tion load

Bluetooth
SDP

Peer-to-peer link Only nearby nodes
one at a time

Service information
only in the host

Bluetooth protocol
stack

Querying for
available services

Scalability, no
broadcast

RKS
Advertises for po-
tential clients

Only to nearby clients Advertisements
when context and
clients applicable

Context definitions
for services

Advertisements Scalability

GSD service
groups

Service and group
advertisements

n-hop diameter, but
groups span wider

Redundant
information

Service registration Request routing
based on group
advertisements

Communication
load (both ad-
vertisements and
requests used)

of distribution performance is not possible. The prototype
platforms vary in their efficiency, the simulators in their ac-
curacy, and the test applications in their requirements and
functionality. As the area is evolving rapidly, generally ac-
cepted benchmarks would ease the comparison of the pro-
posals. However, the definition of general-enough bench-
marks for WSNs is difficult due to their application-specific
nature.

4.2. Comparison of technologies

We classify the technologies for each distribution aspect sep-
arately. The classification dimensions for a technology are
communication mechanism, scalability to large WSNs, fault
tolerance, and requirements that must be met before the tech-
nology can be used. For each technology, we also assess its
pros and cons in general. These dimensions offer tools for
the evaluation of the robustness and applicability of a tech-
nology for different kinds of WSNs and applications.

Service discovery

The classification of the service discovery technologies in the
proposals according to the defined dimensions is presented
in Table 5. From the presented solutions, all but the tuple
space and GSD rely on client-server architecture. Still, the
network manager is the only centralized server. In general,
two problems can be identified from the proposals. They ei-
ther have a restricted scalability or require intensive commu-
nication.

The client-server technologies that are limited to nearby
nodes do not scale to large WSNs. GSD and the tuple space
both scale to large networks but they require more commu-
nication for locating a service. However, in both technolo-
gies the communication load can be decreased by increasing
the number of hops, to which the service information is dis-
tributed. This increases the communication during the ini-

tiation but reduces it during the discovery, with the cost of
increased memory consumption.

Task allocation
The technologies that implement a mechanism for the task
allocation and the characteristics of each technology are
listed in Table 6. As peer-to-peer communication is not
needed in all the technologies, the communication mecha-
nism is replaced by a more general outlining of the taken ap-
proach. As shown in Table 6, the variance of technologies is
greater than in the service discovery. As most of the technolo-
gies are middleware layer implementations, the main reason
for the variance is the three different approaches taken at that
layer.

The most promising approach is the task allocation based
on application QoS. It does not restrict the implementa-
tion of tasks nor rely on the surrounding context. Instead,
it enables the adaptation of application operations depend-
ing on the current application requirements. The application
requirements can be adjusted depending on the output of
the application itself, which makes the technologies adaptive
to changing conditions. Generally, application-QoS-based
technologies require a central control for the task allocation,
but a distributed control lacks similar adaptability.

Remote task communication
From the remote task communication technologies classified
in Table 7, most utilize traditional RPC or RMI that are tai-
lored for resource constrained environments. The tuple space
and callbacks, which also utilize tuple space, are the only ex-
ceptions.

In general, the technologies either are restricted in their
scalability or burden memory and communication resources.
The problem in RPC and RMI technologies is the require-
ment for a client to know the server. In the tuple space and
callbacks this is not required. In the callbacks, the message

784 EURASIP Journal on Wireless Communications and Networking

Table 6: Characteristics of technologies implementing task allocation.

Technology Approach Scalability Fault tolerance Requirements Benefits (pros) Problems (cons)

SMP
scheduler

Scheduling of tasks
to free resources

Not restricted Redundant High-speed bus,
shared memory

Efficiency and
transparency

Inapplicable
requirements

Script popu-
lation
specification

Specification in mi-
grating scripts

Not restricted Multiple copies
in network

Control in appli-
cation scripts

No control
required

Expressivity of
specification

Automatic
object
placement

Activating and mov-
ing objects near to
source

Not restricted Multiple agents
available

Object placement
algorithms

Reduced data
communication

Complexity

Configuration
adaptation

Mapping tasks to
available resources

Not restricted Changes active
nodes adaptively

Feasibility analy-
sis,
state updates

Application QoS
consideration

Control
communication

Resource
management

Heuristic algorithm
balancing load [75]

Restricted to
a cluster

Continuous
allocation

Control messages Network lifetime
maximizing

Algorithm
complexity

QoSProxy

Component and
service adaptation
for resources and
application QoS

Network-wide in
small networks

Adaptation accord-
ing to conditions

Application QoS
specification

QoS adaptation
dynamically to
available resources

Server required,
complexity and
communication

Attribute
matching in
SEE

Matching script at-
tributes to node pa-
rameters locally

Not restricted Multiple copies
in network

Accurate attribute
specifications

Local late binding Restricted
expressivity

Query
optimizer

Optimizing query
routing to network

Optimization in
gateway node

Redundancy
in queries

Disseminated
query plans

Only required
set of nodes
activated

Networking load
of query plans

Event-based
queries

Initiate query on oc-
currence of event

Not restricted Possibly several
event detectors

Event identifica-
tion
capability

In-network
reaction

Loading of event
source node

Context
reaction

Reactions on tuples
and executed on
matching context

Reaction restricted
to a location

Redundancy in tu-
ple space

Location
identifying

Task executed only
when its context is
applicable

Scalability

MARE
control

Nearby agents form
an execution
environment

Restricted to nearby
agents

Possible
redundancy

Agent managers
controlling agents

Agent cooperation
in complex tasks

Scalability

Adaptive
object
containers

ADC activates tasks
in correct context

Not restricted Possible
redundancy

Context interface
specifications

Only applicable
tasks activated

Complex context
specifications

is sent to a registered callback function whenever the value
of a tuple changes. The tuple space does not support such
interests on tuples. Like in the service discovery, the com-
munication and memory load of the tuple space are ad-
justable.

Task migration

The technologies for the task migration are summarized in
Table 8. Most of the technologies rely on the mobile agents
due to their fault tolerance and smaller physical size. Three
technologies rely on binary code in order to lessen the com-
putation load caused by the agent interpreting.

In order to use binary code in the task migration, the
possible errors during transfers and malicious attacks must
be managed. The edit script generation algorithm is too
complex to be executed in nodes, thus making it inappli-
cable for dynamic WSNs. From the VM approaches, the
TCL and SQTL scripts and Maté bytecode capsules are more
lightweight than Java objects because of the complexity and
memory requirements of JVM.

4.3. Suitability assessment

Generally, the OS and VM proposals support the remote
task communication and the task migration but leave the
task allocation and the service discovery to an application
or other external components. On the contrary, middleware
approaches concentrate on implementing the task allocation,
leaving other aspects for the tuple spaces or some legacy pro-
tocols. MARE and LIME are the only proposals that cover all
distribution aspects. However, the utilization of JVM and the
distributed tuple space requires resources that are not gener-
ally available in current WSN platforms.

We assess the applicability of the proposals for En-
vMonitor. For a fair comparison, we separately compare
the approaches for node platforms with enough resources,
and then for platforms with limited resources defined in
Figure 1. The main aspect considered in the assessment is the
completeness of the operating environment provided for the
application. In a complete environment, the application does
not need to consider its distributed nature but the distribu-
tion is handled by the systems software. Further, the adap-

A Survey of Application Distribution in WSNs 785

Table 7: Characteristics of technologies implementing remote task communication.

Technology Communication
implementation Scalability Fault tolerance Requirements Benefits (pros) Problems (cons)

Active
messages

Remote handler,
data encapsulation

Not restricted N/A Awareness of
remote handler

Mapping to
TinyOS event
model

Handler name in
ASCII

BBS Message posting to
neighbor BBS

Restricted to neigh-
bor nodes

Message posted to
all neighbors

Neighbor posting
enabled by sender

One-hop
communication

Scalability,
memory load

EYES OS RPC N/A Restricted to
neighbors

N/A N/A One-hop
communication

Scalability

Callbacks Callback registered
to a tuple

Restricted to nodes
sharing tuple space

Callback registered
only in one node

Shared tuple space
between nodes

Callback fired only
on an event

Fault tolerance

Message
passing

Custom networking
(QNet) operations

Not restricted Possibility for
redundant
messages

Name resolution Mapping to local
IPC

Network naming
overhead

Phantom
process

Messages sent by
link handler

Not restricted Possible secure
channels

Created channel for
communication

Mapping to local
IPC

Required hand-
shaking,
communication
load

DVM Invocation
redirection

Not restricted N/A Compile time script
modification

Seamless IPC be-
tween objects

Communication
and processing
load

Tuple space Tuple operations Not restricted Redundant Shared tuple space
between nodes

Distributed in
space and time

Communication/
memory load

R-ORB Message-oriented
communication

Requires nearby
recipient

Activated when link
available

Context sensing Activated only in
applicable context

Scalability

Table 8: Characteristics of technologies implementing task migration.

Technology Communication Scalability Fault tolerance Requirements Benefits (pros) Problems (cons)

Binary code Binary code after
negotiation

Only to one neigh-
bor at a time

Simple
checksum

Initiated by the binary
code itself

Runtime initiation Scalability, bit er-
rors, binary size

Binary code
download

Binary code from
workstation

No in-network
initiation

No protection User initiates
downloads

Possibility to update
OS components

Errors, binary size,
user interaction

Smoblets Java applet modules Execution only in
laptops/PDAs

Java interpreter
protection

Efficient platforms Complex processing
outsourcing

Executed only in
efficient nodes

TCL script
migration

TCL scripts The scale specified
in scripts

TCL interpreter
protection

Injected to network
by a user

Dynamic migration,
small size of scripts

Complex popula-
tion specifications

Mobile Java
objects

Objects on top
of JVM

Not restricted Interpreter
protection

Event initiating
mobilization

Scalability Communication
and processing
load

Code capsule
updates

Small capsules in one
active message

Script populated
to all nodes in
network

Maté interpreter
protection

Injected to network
by a user

Small size of scripts No controlled
migration

SQTL scripts Custom query scripts The scale specified
in scripts

SEE interpreter
protection

Injected to network
by a user

Small size of scripts Communication
cost in broadcast

Edit scripts Scripts containing
changes to old code

No in-network
initiation

Erroneous/missing
scripts requested
from neighbors

Generation of edit
scripts in workstation

Small size of scripts Complexity, no in-
network operation

tivity of the proposals to changing conditions and the task
allocation for extending network lifetime are emphasized.

For resource rich environments, MARE is the most suit-
able environment. The sensing and aggregation tasks in Env-
Monitor can be allocated by the MARE control, and the active
monitoring tasks can be implemented as mobile agents that
are activated on demand.

For typical WSN platforms, MARE is not applicable
due to its resource requirements. On the other hand, BTn-
odes fit to the restricted resources. The callbacks can be
used to implement active monitoring tasks in EnvMoni-
tor. The only aspect that is not supported by BTnodes is
the task allocation so that the load is balanced between
nodes.

786 EURASIP Journal on Wireless Communications and Networking

4.4. Recommendations

From the systems software proposals for WSNs, OS and VM
technologies implement the single node control and separate
solutions for application distribution. The middleware pro-
posals are applicable to the network-level distribution con-
trol. However, we argue that in WSNs, OS and middleware
layers must be integrated to provide sufficient services within
the constraints set by applications and platform resources.

In this kind of an approach, OS and middleware are in-
side the same framework so that information about OS in-
ternals and network topology is applicable to the middle-
ware layer. Thus, this approach minimizes extra computa-
tion required for interfacing OS routines and communica-
tion due to the control signaling. Further, the middleware
layer is aware of the influences of its actions at both the single
node and network level. This awareness can be beneficial in
the network-level power management and in the balancing
of node loading.

For a sufficient environment for EnvMonitor, OS must
implement a preemptive scheduling of tasks, a memory and
power management, and a local IPC. The memory control
should support static and dynamic memory and maintain in-
formation about available memory. We recommend the us-
age of a message-passing IPC because it is easily extended
to the remote task communication. This kind of a general-
purpose OS can be implemented on limited resources as
shown in [25].

In addition to the local services, OS informs the middle-
ware about the node energy and storage consumption, net-
work role, associations, and nearby nodes and routes. An in-
ternal interface for the middleware to control tasks, power
states, and network is implemented in OS. When all distri-
bution aspects are implemented on the middleware layer, the
components are able to utilize the information from each
other more efficiently.

For service discovery we recommend the tuple space,
since the pure client-server architecture is too static for
WSNs. The resource and communication load of the tuple
space can be diminished by selectively distributing tuple stor-
ing to nodes that use the tuple data and by dividing tuples to
two-level hierarchies similar to GSD. The nodes that need a
tuple for their operation can be identified with the support
of task allocation. By sending only service group tuples to the
distant nodes, less memory is needed but requests for tuples
can still be routed accurately.

For the task allocation, the current application-QoS-
based middleware proposals implement sufficient technolo-
gies. However, simpler algorithms that require less control
communication should be used, even with the cost of accu-
racy.

For the remote task communication we recommend a
simple approach that marshals the local message passing IPC
to network packets. The remote nodes are identified by the
service discovery. To make the delivery of a packet reliable,
acknowledgements must be used. This is more lightweight
than the tuple space, and the fault tolerance does not depend
on the available recipients.

From our perspective, the task migration is required only
in very dynamic applications, like object tracking. These
applications require a VM-based environment. In OSs, the
communication cost of the large binary transfers is extensive.
Thus, the task migration should only be used when extremely
necessary. The transfers must be protected with checksums
and digital signatures, even though these are resource con-
suming.

We recommend also the usage of virtual clusters. A vir-
tual cluster may follow the physical topology or it can be a
set of adjacent nodes that have elected a single control en-
tity. By storing detailed tuple information and performing
task allocation within the boundaries of a virtual cluster, the
communication and memory load can be diminished.

5. CONCLUSIONS

Our survey of WSN applications and their distribution
shows that, despite many proposals, no common bench-
marks nor detailed, large-scaled experiments have been pub-
lished. The research seems to focus either on node imple-
mentations or theoretical work on distinct aspects, such as
routing algorithms, without a realistic relation to physical
platforms.

The systems software proposals are still evolving. Cur-
rently, they implement technologies and algorithms for ap-
plication distribution but lack an approach combining a dis-
tributing middleware layer to OS providing a single node
control. This kind of an approach is needed in order to im-
plement a distributed operating environment, which sup-
ports application QoS and extends network lifetime, for re-
source scarce sensor nodes.

REFERENCES

[1] W. Stallings, Data & Computer Communications, Prentice-
Hall, Englewood Cliffs, NJ, USA, 6th edition, 2001.

[2] J. A. Stankovic, T. E. Abdelzaher, C. Lu, L. Sha, and J. C. Hou,
“Real-time communication and coordination in embedded
sensor networks,” Proc. IEEE, vol. 91, no. 7, pp. 1002–1022,
2003.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on sensor networks,” IEEE Commun. Mag., vol. 40,
no. 8, pp. 102–114, 2002.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks,
vol. 38, no. 4, pp. 393–422, 2002.

[5] K. Akkaya and M. Younis, “A survey on routing protocols for
wireless sensor networks,” Elsevier Ad Hoc Network Journal,
vol. 3, no. 3, pp. 325–349, 2005.

[6] H. Karl and A. Willig, “A short survey of wireless sen-
sor networks,” Tech. Rep. TKN-03-018, Technical Univer-
sity Berlin, Berlin, Germany, 2003, available: http://www.tkn.
tu-berlin.de/publications.

[7] D. Chen and P. K. Varshney, “QoS support in wireless sensor
networks: a survey,” in Proc. International Conference on Wire-
less Networks (ICWN ’04), pp. 227–233, Las Vegas, Nev, USA,
June 2004.

[8] S. Tilak, N. B. Abu-Ghazaleh, and W. B. Heinzelman, “A
taxonomy of wireless micro-sensor network models,” ACM
SIGMOBILE Mobile Computing and Communications Review,
vol. 6, no. 2, pp. 28–36, 2002.

A Survey of Application Distribution in WSNs 787

[9] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava,
“Energy-aware wireless microsensor networks,” IEEE Signal
Processing Mag., vol. 19, no. 2, pp. 40–50, 2002.

[10] A. J. Goldsmith and S. B. Wicker, “Design challenges for
energy-constrained ad hoc wireless networks,” IEEE Wireless
Communications, vol. 9, no. 4, pp. 8–27, 2002.

[11] D. Remondo and I. G. Niemegeers, “Ad hoc networking in
future wireless communications,” Computer Communications,
vol. 26, no. 1, pp. 36–40, 2003.

[12] N. Xu, “A survey of sensor network applications,” available:
http://enl.usc.edu/∼ningxu/papers/survey.pdf.

[13] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution,
opportunities, and challenges,” Proc. IEEE, vol. 91, no. 8, pp.
1247–1256, 2003.

[14] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. An-
derson, “Wireless sensor networks for habitat monitoring,”
in Proc. International Workshop on Wireless Sensor Networks
and Applications (WSNA ’02), pp. 88–97, Atlanta, Ga, USA,
September 2002.

[15] PODS, A Remote Ecological Micro-sensor Network Project
website, http://www.pods.hawaii.edu.

[16] CORIE website, http://www.ccalmr.ogi.edu/CORIE.
[17] A. Boulis, C.-C. Han, and M. B. Srivastava, “Design and im-

plementation of a framework for efficient and programmable
sensor networks,” in Proc. 1st International Conference on Mo-
bile Systems, Applications, and Services (MobiSys ’03), San
Francisco, Calif, USA, May 2003.

[18] P. Bonnet, J. Gehrke, and P. Seshadri, “Querying the physical
world,” IEEE Pers. Commun., vol. 7, no. 5, pp. 10–15, 2000.

[19] L. Schwiebert, S. K. S. Gupta, and J. Weinmann, “Research
challenges in wireless networks of biomedical sensors,” in
Proc. 7th ACM International Conference on Mobile Comput-
ing and Networking (MobiCom ’01), pp. 151–165, Rome, Italy,
July 2001.

[20] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A.
Perillo, “Middleware to support sensor network applications,”
IEEE Network, vol. 18, no. 1, pp. 6–14, 2004.

[21] M. Storey, G. S. Blair, and A. Friday, “MARE: resource discov-
ery and configuration in Ad hoc networks,” J. Mobile Networks
and Applications, vol. 7, no. 5, pp. 377–387, 2002.

[22] H. O. Marcy, J. R. Agre, C. Chien, L. P. Clare, N. Romanov, and
A. Twarowski, “Wireless sensor networks for area monitoring
and integrated vehicle health management applications,” in
Proc. AIAA Guidance, Navigation, and Control Conference and
Exhibit, Portland, Ore, USA, 1999, Collection of Technical Pa-
pers. Vol. 1 (A99-36576 09-63).

[23] K. Römer , “Tracking real-world phenomena with smart
dust,” in Proc. 1st European Workshop on Wireless Sensor Net-
works (EWSN ’04), pp. 28–43, Berlin, Germany, January 2004.

[24] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor in-
formation networking architecture and applications,” IEEE
Pers. Commun., vol. 8, no. 4, pp. 52–59, 2001.

[25] H. Abrach, S. Bhatti, J. Carlson, et al., “MANTIS: system sup-
port for MultimodAl NeTworks of In-situ Sensors,” in Proc.
2nd ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA ’03), pp. 50–59, San Diego, Calif,
USA, September 2003.

[26] M. B. Srivastava, R. R. Muntz, and M. Potkonjak, “Smart
kindergarten: sensor-based wireless networks for smart de-
velopmental problem-solving enviroments,” in Proc. 7th ACM
International Conference on Mobile Computing and Network-
ing (MobiCom ’01), pp. 132–138, Rome, Italy, July 2001.

[27] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta, “Re-
configurable context-sensitive middleware for pervasive com-
puting,” IEEE Pervasive Computing, vol. 1, no. 3, pp. 33–40,
2002.

[28] NIST Wireless Ad hoc Networks Project website, http://www.
antd.nist.gov/wahn ssn.shtml.

[29] MICA2 data sheet, available: http://www.xbow.com.
[30] IEEE P1451.5 Wireless Sensor Working Group website,

http://grouper.ieee.org/groups/1451/5.
[31] Bluetooth Special Interest Group, “Bluetooth specification,

version 1.1,” February 2001.
[32] Wireless Medium Control (MAC) and Physical Layer (PHY)

Specifications for Low Rate Wireless Personal Area Networks
(LR-WPAN), IEEE Standard 802.15.4, 2003.

[33] Wireless LAN Medium Control (MAC) and Physical Layer
(PHY) Specifications, IEEE Standard 802.11, 1999.

[34] IETF Mobile Ad-hoc Networks Working Group website,
http://www.ietf.org/html.charters/manet-charter.html.

[35] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Sys-
tems: Concepts and Design, Addison-Wesley, Boston, Mass,
USA, 3rd edition, 2001.

[36] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code
mobility,” IEEE Trans. Software Eng., vol. 24, no. 5, pp. 342–
361, 1998.

[37] P. J. M. Havinga, “System architecture specification,”
EYES Project Deliverable 1.1, available: http://www.eyes.eu.
org/dissem.htm.

[38] J. Beutel, O. Kasten, F. Mattern, K. Roemer, F. Siegemund, and
L. Thiele, “Prototyping wireless sensor networks with BTn-
odes,” in Proc. 1st European Workshop on Wireless Sensor Net-
works (EWSN ’04), pp. 323–338, Berlin, Germany, January
2004.

[39] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter, “System architecture directions for networked sensors,” in
Proc. 9th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (AS-
PLOS ’00), pp. 94–103, Cambridge, Mass, USA, November
2000.

[40] J. Lifton, D. Seetharam, M. Broxton, and J. Paradiso, “Push-
pin computing system overview: a platform for distributed,
embedded, ubiquitous sensor networks,” in Proc. 1st Interna-
tional Conference on Pervasive Computing (Pervasive ’02), pp.
139–151, Zurich, Switzerland, August 2002.

[41] QNX website, http://www.qnx.com.
[42] OSE website, http://www.ose.com.
[43] R. Barr, J. C. Bicket, D. S. Dantas, et al., “On the need

for system-level support for ad hoc and sensor networks,”
ACM SIGOPS Newsletter on Operating Systems Review, vol. 36,
no. 2, pp. 1–5, 2002.

[44] E. G. Sirer, R. Grimm, A. J. Gregory, and B. N. Bershad, “De-
sign and implementation of a distributed virtual machine
for networked computers,” in Proc. 17th ACM Symposium on
Operating Systems Principles (SOSP ’99), pp. 202–216, Kiawah
Island, SC, USA, December 1999.

[45] P. Levis and D. Culler, “Maté: a tiny virtual machine for sen-
sor networks,” in Proc. 10th ACM International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS ’02), pp. 85–95, San Jose, Calif, USA,
October 2002.

[46] D. Gelernter, “Generative communication in linda,” ACM
Trans. Programming Languages and Systems, vol. 7, no. 1, pp.
80–112, 1985.

[47] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service lo-
cation protocol, version 2,” IETF, RFC 2608, June 1999.

[48] Jini Architecture Specification, version 2.0, Sun Microsystems,
June 2003, available: http://www.sun.com/software/jini/specs.

[49] UPnP Device Architecture, Microsoft Corporation, June 2000,
available: http://www.upnp.org/resources/documents.asp.

[50] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and
R. H. Katz, “An architecture for a secure service discovery

788 EURASIP Journal on Wireless Communications and Networking

service,” in Proc. 5th International Conference on Mobile Com-
puting and Networking (MobiCom ’99), pp. 24–35, Seattle,
Wash, USA, August 1999.

[51] JavaSpaces Service Specification, version 2.0, Sun Microsys-
tems, June 2003, available: http://www.sun.com/software/
jini/specs.

[52] T. J. Lehman, A. Cozzi, Y. Xiong, et al., “Hitting the dis-
tributed computing sweet spot with TSpaces,” Computer Net-
works, vol. 35, no. 4, pp. 457–472, 2001.

[53] R. Srinivasan, “RPC: remote procedure call protocol specifi-
cation version 2,” IETF, RFC 1831, August 1995.

[54] The Open Group Portal to World of DCE, website, http://
www.opengroup.org/dce.

[55] Object Management Group website, http://www.omg.org.
[56] Java RMI specification, Sun Microsystems, 1997–2003, avail-

able: http://java.sun.com/products/jdk/rmi/reference/docs.
[57] M. Horstmann and M. Kirtland, “DCOM architec-

ture,” Microsoft Corporation, July 1997, available: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnanchor/html/dcom.asp.

[58] A. Schill and S. Kümmel, “Design and implementation of
a support platform for distributed mobile computing,” Dis-
tributed Systems Engineering, vol. 2, no. 3, pp. 128–141, 1995.

[59] S. Adwankar, “Mobile CORBA,” in Proc. 3rd International
Symposium on Distributed Objects and Applications (DOA
’01), pp. 52–63, Rome, Italy, September 2001.

[60] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek, “Mobile com-
puting with the rover toolkit,” IEEE Trans. Comput., vol. 46,
no. 3, pp. 337–352, 1997.

[61] Supercluster.org website, http://www.supercluster.org.
[62] B. Schilit, N. Adams, and R. Want, “Context-aware computing

applications,” in Proc. Workshop on Mobile Computing Systems
and Applications (WMCSA ’94), pp. 85–90, Santa Cruz, Calif,
USA, December 1994.

[63] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Issues in de-
signing middleware for wireless sensor networks,” IEEE Net-
work, vol. 18, no. 1, pp. 15–21, 2004.

[64] K. Nahrstedt, X. Dongyan, D. Wichadakul, and L. Baochun,
“QoS-aware middleware for ubiquitous and heterogeneous
environments,” IEEE Commun. Mag., vol. 39, no. 11, pp. 140–
148, 2001.

[65] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“The design of an acquisitional query processor for sensor
networks,” in Proc. 22nd ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’03), pp. 491–502,
San Diego, Calif, USA, June 2003.

[66] Y. Yao and J. Gehrke, “The Cougar approach to in-network
query processing in sensor networks,” ACM SIGMOD Record,
vol. 31, no. 3, pp. 9–18, 2002.

[67] A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: a
middleware for physical and logical mobility,” in Proc. 21st
International Conference on Distributed Computing Systems
(ICDCS ’01), pp. 524–533, Phoenix, Ariz, USA, April 2001.

[68] S. S. Yau and F. Karim, “An energy-efficient object discov-
ery protocol for context-sensitive middleware for ubiquitous
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 11,
pp. 1074–1085, 2003.

[69] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin, “GSD: a
novel group-based service discovery protocol for MANETS,”
in Proc. 4th International Workshop on Mobile and Wireless
Communications Network (MWCN ’02), pp. 140–144, Stock-
holm, Sweden, September 2002.

[70] N. Reijers and K. Langendoen, “Efficient code distribution
in wireless sensor networks,” in Proc. 2nd ACM International

Workshop on Wireless Sensor Networks and Applications, pp.
60–67, San Diego, Calif, USA, September 2003.

[71] C. Jaikaeo, C. Srisathapornphat, and C.-C. Shen, “Query-
ing and tasking in sensor networks,” in Proc. 14th Interna-
tional Symposium on Aerospace/Defense Sensing, Simulation,
and Control, vol. 4037 of Proc. SPIE’s, pp. 184–197, Orlando,
Fla, USA, April 2000.

[72] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accu-
rate and scalable simulation of entire TinyOS applications,”
in Proc. 1st ACM Conference on Embedded Networked Sensor
Systems (SenSys ’03), pp. 126–137, Los Angeles, Calif, USA,
November 2003.

[73] S. Park, A. Savvides, and M. B. Srivastava, “Simulating net-
works of wireless sensors,” in Proc. Winter Simulation Confer-
ence (WSC ’01), pp. 1330–1338, Arlington, Va, USA, Decem-
ber 2001.

[74] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a library for
parallel simulation of large-scale wireless networks,” in Proc.
12th Workshop on Parallel and Distributed Simulations (PADS
’98), pp. 154–161, Banff, Alberta, Canada, May 1998.

[75] Y. Yu and V. K. Prasanna, “Energy-balanced task allocation
for collaborative processing in networked embedded systems,”
in Proc. ACM SIGPLAN Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’03), pp. 265–274, San
Diego, Calif, USA, June 2003.

Mauri Kuorilehto received the M.S. de-
gree in 2001 from Tampere University of
Technology (TUT), Finland. He is currently
pursuing his Ph.D. degree and acting as
a Research Scientist in the DACI Research
Group, the Institute of Digital and Com-
puter Systems at TUT. His research inter-
ests include wireless sensor and ad hoc net-
works concentrating on distributed pro-
cessing, operating systems, and network
simulation.

Marko Hännikäinen received the M.S. de-
gree in 1998 and the Ph.D. degree in 2002
both from Tampere University of Technol-
ogy (TUT). Currently he acts as a Senior
Research Scientist in the Institute of Dig-
ital and Computer Systems at TUT, and
a Project Manager in the DACI Research
Group. His research interests include wire-
less local and personal area networking,
wireless sensor and ad hoc networks, and
novel web services.

Timo D. Hämäläinen received the M.S. de-
gree in 1993 and the Ph.D. degree in 1997
both from Tampere University of Technol-
ogy (TUT). He acted as a Senior Research
Scientist and Project Manager at TUT dur-
ing 1997–2001. He was nominated to be
Full Professor at TUT, Institute of Dig-
ital and Computer Systems in 2001. He
heads the DACI Research Group that fo-
cuses on three main lines: wireless local
area networking and wireless sensor networks, high-performance
DSP/HW-based video encoding, and interconnection networks
with design flow tools for heterogeneous SoC platforms.

PUBLICATION 3

M. Kuorilehto, T. Alho, M. Hännikäinen, T. D. Hämäläinen, �SensorOS: a New Op-
erating System for Time Critical WSN Applications,� in Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation, Lecture Notes in Computer Science,
vol. 4599, S. Vassiliadis, M. Bereković, T. D. Hämäläinen (Eds.), Springer-Verlag,
Heidelberg, Germany, 2007, pp. 431�442.

© 2007 Springer-Verlag Berlin Heidelberg. Reprinted with kind permission of Sprin-
ger Science+Business Media.

SensorOS: A New Operating System for Time Critical
WSN Applications

Mauri Kuorilehto1, Timo Alho 2, Marko Hännikäinen1, and Timo D. Hämäläinen1

1 Tampere University of Technology, Institute of Digital and Computer Systems
P.O. Box 553, FI-33101 Tampere, Finland

{mauri.kuorilehto, marko.hannikainen, timo.d.hamalainen}@tut.fi
2 Nokia Technology Platforms, Tampere, Finland

timo.a.alho@nokia.com

Abstract. This paper presents design and implementation of a multi-threading
Operating System (OS), SensorOS, for resource constrained Wireless Sensor Net-
work (WSN) nodes. Compared to event-handler kernels, such as TinyOS, Sen-
sorOS enables coexistence of multiple time critical application tasks. SensorOS
supports preemptive priority-based scheduling, very fine-granularity timing, and
message passing inter-process communication. SensorOS has been implemented
for resource constrained Tampere University of Technology WSN (TUTWSN)
nodes. In TUTWSN node platform with 2 MIPS PIC micro-controller unit, Sen-
sorOS kernel uses 6964 B code and 115 B data memory. The context swap time
is 92 µs and the variance of timing accuracy for a high priority thread less than
5 µs. The results show that the realtime coordination of WSN applications and
protocols can be managed by a versatile OS even on resource constrained nodes.

1 Introduction

Wireless Sensor Networks (WSN) consists of a large number of randomly deployed
nodes that self-organize and operate autonomously. A WSN node is characterized by
restricted resources in terms of memory, energy, and processing capacity, and by unreli-
able wireless link with limited bandwidth. While advances in manufacturing technolo-
gies have resulted in smaller and cheaper platforms suitable for WSN realizations, the
resource constraints persist as the environments become more demanding. Simultane-
ously, the complexity and number of tasks of WSN applications increases [1].

The key functionalities for the layered WSN protocol stack are the controlling of
channel access, network topology creation and maintenance, and route formation. The
protocols together with multiple applications comprise an extremely complex system
that must be fitted to resource constrained WSN nodes. Further, due to the tight inter-
action with the real world, realtime requirements are strict. Therefore, realtime com-
munication and coordination are required in both single node and network level [2].
At a single node level, resource usage, timeliness, and peripheral access are managed
by an Operating System (OS) [3]. The network level control in WSNs is handled by
middleware architectures that perform task allocation and network control [2,4]

This paper presents the design and implementation of SensorOS, a preemptive multi-
threading kernel for resources constrained TUTWSN (Tampere University of Tech-
nology WSN) nodes [5]. The time sliced Medium Access Control (MAC) protocol of

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 431–442, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

432 M. Kuorilehto et al.

TUTWSN requires timing accuracy and efficient use of power saving modes. SensorOS
guarantees timing with a priority-based realtime scheduler. The evaluation proves Sen-
sorOS suitability for WSNs, and shows the feasibility of the simple POSIX-like Appli-
cation Programming Interface (API). A network level coordination can be incorporated
into SensorOS by a distributing middleware for task allocation [6].

1.1 Related Work

Embedded Realtime OSs (RTOS), such as OSE, QNX Neutrino, and VxWorks are
widely used in industrial and telecommunication systems. However, their memory con-
sumption even in the smallest configurations is too large for resource constrained WSN
nodes. Small memory footprint RTOSs, such as FreeRTOS, have a general purpose ap-
proach and do not meet the strict timing and energy saving requirements of WSNs.

The most widely known OS for WSNs is TinyOS [7] that uses a component-based
event-driven approach for task scheduling. Each component has a separate command
handler for upper layer requests and an event handler for lower layer events. The pro-
cessing is done in an atomic task. SOS [8] adopts the component model from TinyOS
but allows dynamic runtime loading and unloading of components. Similar approach
without relation to TinyOS is taken in BerthaOS [9]. Event handler kernel of Contiki
[10] supports dynamic loading and can be complemented with a library for preemp-
tive multi-threading. In CORMOS [11], all system and application modules consist of
handlers that communicate seamlessly with local and remote modules using events.

Preemptive multi-threading for sensor nodes with POSIX API is implemented in
MOS [12] and nano-RK [13]. Both support priority-based scheduling and have inte-
grated networking stack and power management features.

Due to run to completion semantics, event handler OSs, such as TinyOS, are poorly
suitable for applications with lengthy computation, e.g. cryptographical algorithms.
Further, compared to traditional preemptive kernels, their programming paradigm can
be difficult to understand. The drawback of preemptive schedulers is the increased data
memory consumption as a separate stack is needed for each thread. While Contiki par-
tially solves this, it faces the problems of event-driven OS if multi-threading is not used.

The approach in SensorOS is similar to MOS and nano-RK. Features that put Sen-
sorOS apart from these two are very accurate time modeling and energy efficiency. The
energy efficiency results from the sophisticated use of advanced power saving modes.

1.2 Contents of the Paper

The architecture and design of SensorOS are discussed in Section 2. Section 3 presents
TUTWSN platform and environment. The implementation of SensorOS on target plat-
form is presented in Section 4 and evaluation results in Section 5. Finally, conclusions
are given in Section 6.

2 SensorOS Design

SensorOS design objective is a realtime kernel that supports features required by WSN
protocols and applications. WSN protocol and application tasks are executed as separate

SensorOS: A New Operating System for Time Critical WSN Applications 433

threads communicating with SensorOS Inter-Process Communication (IPC) methods.
The composition of threads implementing protocols and applications is not restricted.

In this paper, a task is a functional entity, whereas a thread is the OS context, in
which a task is executed. A task can be divided into multiple threads, but on the other
hand several tasks can be executed within a single thread.

2.1 Design Requirements

A WSN protocol stack consists of several functional entities that require cross layer in-
teraction for controlling network operation. Typically, the energy efficiency of a WSN
results from the accuracy of MAC protocol timing. Accurate timing allows longer sleep
periods since the wake-up can be done just before the active period. In addition, a tight
relation to the real world requires reactiveness from applications. As a result, the pro-
gramming of complex protocols and applications, and the managing of their communi-
cation and synchronization are extremely challenging and tedious without OS control.

The requirements for SensorOS derive from the characteristics of WSNs. The main
functional requirements are seamless coexistence of multiple tasks, realtime capability,
and timing accuracy. Due to limited WSN node capabilities, efficient usage of resources
is essential. Portability is required to deal with heterogeneous WSN node platforms.
Memory management is needed to allow as many tasks as possible to be located in a
node and power management to maximize the lifetime of battery-powered nodes.

More abstract requirements for SensorOS relate to the ease of use and the integration
of a distributing middleware. A simple API facilitates application development. The
middleware integration is alleviated by using a message passing IPC that can be easily
abstracted to network packets.

2.2 SensorOS Architecture

The architecture of SensorOS is divided into components as depicted in Fig. 1. Tasks
access OS services through API. The main components in the kernel are scheduler, mes-
sage passing IPC, timer, synchronization, memory and power management. Interrupt-
driven device drivers (UART and Analog-to-Digital Converter (ADC) in Fig. 1) are
integrated into the kernel, whereas context-related drivers (I2C, radio) are executed in
the context of a calling thread without a relation to the OS kernel. In general, devices
accessed by a single thread are context-related, while shared devices are included in the
kernel. Hardware resources are accessed through a Hardware Abstraction Layer (HAL).

Each thread in SensorOS has a Thread Control Block (TCB) for per threadL infor-
mation. A thread can be in three different states. When a thread is executed on MCU
it is running. The state of a thread is ready when it is ready for execution but another
thread is running, and wait when it needs an event to occur before execution.

A thread can be waiting for multiple different type of events in SensorOS. The rela-
tion between a running thread, a ready queue, and different wait queues are depicted in
Fig. 2. When a thread is created it is put to the ready queue, and it can explicitly exit
when running. Threads waiting for a timeout are in timer queues and those waiting for
IPC in message set. Synchronization is waited in per mutex queues and a completion of
peripheral operation in a peripheral specific item.

434 M. Kuorilehto et al.

Kernel

Scheduler

IPC

Timer Power management

Task 1API

Interrupt-

driven drivers

UART

ADC

Context-

related drivers

Memory management

Hardware abstraction layer

I2C

Radio

Task 2 Task nTask 3 . . .

Synchronization

Kernel

Scheduler

IPC

Timer Power management

Task 1API

Interrupt-

driven drivers

UART

ADC

Context-

related drivers

Memory management

Hardware abstraction layer

I2C

Radio

Task 2 Task nTask 3 . . .

Synchronization

Fig. 1. Overview of SensorOS architecture

Ready queue Running

Timer queues

create exit

Message set

Mutex queues

Peripheral items

timer wait

message wait

mutex wait

peripheral wait

timeout

message

received

mutex

acquired

peripheral

event

dispatch
Ready queue Running

Timer queues

create exit

Message set

Mutex queues

Peripheral items

timer wait

message wait

mutex wait

peripheral wait

timeout

message

received

mutex

acquired

peripheral

event

dispatch

Fig. 2. Thread queues and events moving a thread from a queue to another

2.3 SensorOS Components

SensorOS components maintain TCBs of threads accessing their services. The inter-
relations between components are kept in minimum, but clearly scheduler is dependent
on other components.

Scheduler – SensorOS incorporates a priority-based preemptive scheduling algorithm.
Thus, the highest priority thread ready for execution is always running. Threads at the
same priority level are scheduled by a round robin algorithm without a support for time-
slicing.

When an event changes a thread to the ready state, the scheduler checks whether
it should be dispatched. If it has a higher priority than the running thread, contexts are
switched. When the running thread enters to a wait state, the highest priority thread from
the ready queue is dispatched. If the ready queue is empty, power saving is activated.

Timer – Timer component implements timeout functionality. The local time in Sen-
sorOS is microseconds since system reset. Timing is divided into two separate ap-
proaches that have their own timer queues. A fine granularity timing provides
microsecond accuracy for applications and communication protocols that need exact

SensorOS: A New Operating System for Time Critical WSN Applications 435

timestamps. The coarse timing is for tasks that tolerate timeout variations in order of
millisecond.

IPC – The method for communication between tasks in SensorOS is message-passing
IPC. A thread allocates a message envelope and fills it, after which it is sent to the
recipient. The message must always be assigned to a certain thread. Broadcast messages
can be implemented using multiple unicast messages.

Synchronization – Synchronization controls the flow of execution between tasks and
access to peripheral devices and other hardware resources. The synchronization is im-
plemented with binary mutexes. A mutex can be waited by several threads, of which the
highest priority thread acquires it when released. Each mutex has its own wait queue.
Avoiding of priority inversion is not considered but it is left to programmers [3].

Memory Management – In SensorOS, dynamic memory management is incorporated
for message envelopes and for temporary buffers occasionally needed by tasks. A thread
allocates and frees previously reserved blocks from a memory pool.

Power Management – Since the activity of WSN nodes is in order of few per cents,
power management is crucial. In SensorOS, the power management of peripherals is
implemented in the device drivers. The power saving activation of context-related de-
vices is left to the task that controls the device, because the task is aware of the device
activation patterns. Instead, the power modes of MCU and integrated peripherals are
managed by OS. When there are no threads to schedule, MCU is set to platform depen-
dent power saving mode, of which it is woken up by an external event.

Peripherals – The interrupt-driven device drivers integrate peripherals, such as ADC
and UART, tightly to SensorOS kernel. They have separate functions for open, close,
control, read, and write operations. The read and write operations are controlled by in-
terrupts. A thread can block its execution on such peripheral until the specified number
of bytes has been transferred. The context-related device drivers are either non-blocking
or can use an external interrupt source for controlling read and write operations.

3 TUTWSN Platforms and Protocols

SensorOS is primarily targeted to TUTWSN node platforms and protocols. TUTWSN
is an energy efficient WSN framework targeted mainly for monitoring applications.
TUTWSN incorporates several different types of node platforms, a configurable proto-
col stack, and user interfaces for network monitoring and application visualization.

3.1 TUTWSN Node Platform

Several different types of node platforms are used in TUTWSN. An outdoor tempera-
ture sensing node platform illustrated in Fig. 3 is built from off-the-shelf components.
The main component is PIC18LF4620 MCU, which contains a 10-bit integrated ADC
and 1 KB of EEPROM as a non-volatile data storage. The power unit consists of a
MAX1725 regulator with 2.4 V output voltage and a 3 V CR123A lithium battery. In
addition, a DS620 digital thermometer is integrated to the platform. The radio interface

436 M. Kuorilehto et al.

Fig. 3. TUTWSN PIC node platform

Table 1. TUTWSN PIC node power consumption in different states

MCU Radio Power (mW)

active receive 60.39
active transmit (0 dBm) 39.90
active transmit (-20 dBm) 26.73
active active 3.68
active off 3.29
idle off 1.27
sleep off 0.031

on the platform is a 2.4 GHz nRF2401A transceiver unit that supports 1 Mbit/s data rate
and transmit power between -20. . .0 dBm.

MCU has a 64 KB Flash as code memory, each instruction word taking two bytes.
Internal SRAM data memory is limited to 3986 B. With internal oscillator the MCU
frequency can be either 4 MHz or 8 MHz resulting in 1 MIPS and 2 MIPS, respectively.
For power saving, PIC supports idle and sleep modes. The measured power consump-
tions of TUTWSN node platform in PIC MCU power modes with 4 MHz frequency
and different radio activation states are depicted in Table 1. The power consumptions
of other, application dependent, peripherals are typically in order of hundreds of µWs.
The radio power consumption on receive and transmit is dominant.

3.2 TUTWSN Protocols

The main protocols in TUTWSN stack are Time Division Multiple Access (TDMA)
MAC and gradient-based routing. The MAC protocol creates a clustered network topol-
ogy and controls wireless channel access. The coordination between clusters is done on
a dedicated signaling channel, while each cluster operates on its own frequency chan-
nel. The routing protocol creates routes from cluster headnodes to a sink based on the
cost gradient of the route.

The cluster headnode maintains its access cycle by periodic beacons. Neighbor
headnodes and subnodes associate to the cluster for data communication. The objec-
tive of TDMA MAC is to minimize power-hungry radio idle listening, which requires
accurate time synchronization among nodes.

4 SensorOS Implementation

SensorOS is implemented on TUTWSN PIC nodes. The implementation follows the
architecture presented in Section 2. Common functionality is implemented separately,

SensorOS: A New Operating System for Time Critical WSN Applications 437

whereas hardware dependent parts are included in HAL in order to facilitate portability.
The common functionalities and most of HAL are implemented in ANSI C. Only a
small portion of the lowest level HAL, e.g. context switch, is implemented in assembly.

4.1 Implementation of Hardware Abstraction Layer

Lowest level context switching, power saving, timer, and peripheral access are detached
from SensorOS kernel to the HAL implementation. Internal registers that need to be
saved at context switch are MCU dependent. Also power saving modes need low level
register access. Each peripheral has a HAL component that implements interface to
dedicated I/O ports and interrupt handlers.

Each MCU has an own set of hardware timers and their control registers. HAL timer
implementation consists of time concept, interrupt handlers, and time management rou-
tines. SensorOS utilizes two different time concepts implemented by HAL; a microsec-
ond resolution timer for accurate timing and a millisecond resolution timer for timeouts.
The interrupt handlers update internal time and when a time limit expires indicate this
to the OS timer through a callback function. The time management routines are for get-
ting and manipulating internal time, setting of timeout triggers, and atomic spinwait for
meeting an exact timeline.

4.2 Implementation of SensorOS Components

SensorOS API consists of system calls listed in Table 2. Peripheral system calls are
for character devices (e.g. UART) while context-related devices have dedicated inter-
faces. SensorOS is initialized in main -function, which issues user_main -function after
OS components have been initialized. In user_main, threads for application tasks and
required mutexes are initialized. After the user_main returns, scheduling is started.

Scheduler – A thread is created with os_thread_create that takes the stack and Process
IDentifier (PID) as parameters. This simplifies the implementation but prevents run-
time creation and deletion of threads. The modification of the kernel for such a support
is straightforward. When a thread is created it is inserted to the ready queue but the
scheduler is not invoked until the running thread releases processor.

Instead of a completely modular approach, the scheduling decisions are distributed
to kernel components. This complicates the changing of scheduling algorithm but im-
proves context switching performance. When an event moves thread(s) to the ready
queue, the OS component checks whether one of the threads has a higher priority than
the running one. If true, an OS service for swapping threads’ contexts is invoked. The
context of a thread is stored in its stack. A running thread can release processor with
os_yield or it can permanently exit. When there are no threads to schedule, an idle
thread is scheduled for activating MCU sleep mode through HAL.

Event waiting in SensorOS is implemented by a single interface that allows a thread
to wait simultaneously for multiple events. The events include timeout, message re-
ceived, character device read and write, peripheral device, and user generated events.
Function os_poll_event loops actively while os_wait_event blocks the thread until any
of the events occur. When an event for a thread is raised, the scheduler checks whether
the thread waits for the event and if it does performs scheduling.

438 M. Kuorilehto et al.

Timer – Timer operation is mainly implemented in HAL but API and scheduling on
timeouts are provided by the OS component. The system time is obtained with the func-
tion os_get_time. Accurate timestamps for events are set with os_get_entryperiod,
which returns the internal time at the moment of the function call. Both utilize mi-
crosecond resolution timer.

The accurate microsecond resolution wait is implemented by os_wait_until. The
thread is blocked until a threshold before the deadline. The atomic spinwait in HAL is
used to suspend the operation until the timestamp. In the current implementation, only
one thread can issue os_wait_until at a time to guarantee accurate timing.

Table 2. SensorOS system call interface, categorized by components

Thread and scheduler management system calls

void os_thread_create(os_proc_t *p, os_pid_t pid, os_priority_t pri,
char *stack, size_t stackSize, prog_counter_t entry)

void os_yield(void)
os_eventmask_t os_wait_event(os_eventmask_t events)
os_eventmask_t os_poll_event(os_eventmask_t events)

Timer system calls

uint32_t os_get_time(void)
os_uperiod_t os_get_entryperiod(void)
int8_t os_wait_until(os_uperiod_t event)
void os_set_alarm(uint16_t timeout)

IPC system calls

os_status_t os_msg_send(os_pid_t receiver, os_ipc_msg_t *msg)
os_ipc_msg_t* os_msg_recv(void)
int8_t os_msg_check(void)

Synchronization system calls

void os_mutex_init(os_mutex_t *m)
void os_mutex_acquire(os_mutex_t *m)
void os_mutex_release(os_mutex_t *m)

Memory management system calls

void* os_mem_alloc(size_t nbytes)
void os_mem_free(void *ptr)

Character device system calls

os_status_t os_open(os_cdev_t dev)
void os_close(os_cdev_t dev)
int8_t os_write(os_cdev_t dev, const char *buf, uint8_t count)
int8_t os_read(os_cdev_t dev, char *buf, uint8_t count)
void os_close(os_cdev_t dev)

SensorOS: A New Operating System for Time Critical WSN Applications 439

To initialize a millisecond resolution wait, a thread issues os_set_alarm. The thread
is put to the timer queue that is sorted according to the timeouts. The first item in
the queue is passed to HAL in order to trigger a callback function when the timeout
expires. The callback function sets the timer event for the first thread in the queue. A
zero timeout period can be used with os_wait_event to check a status of other events.

IPC – The memory allocation for message envelopes and the contents of messages
are left to the application. A message is sent with os_msg_send that inserts the mes-
sage to the recipient’s queue and sets the message received event. Each thread has an
own message queue in its TCB. A thread can check whether its queue is empty with
os_msg_check. A message is removed from the queue by calling os_msg_recv.

Synchronization – When a mutex is created with os_mutex_init, its wait queue and
owner are cleared. If the mutex is blocked by another thread when os_mutex_acquire
is issued, the calling thread is inserted to the wait queue of the mutex. Otherwise the
caller becomes the owner of the mutex. When the owner calls os_mutex_release and
the wait queue is not empty, the highest priority thread is moved to the ready queue, or
scheduled immediately if its priority is higher than that of the running thread.

Memory Management – Currently, there are two alternatives for memory management.
A binary buddy algorithm allows the allocation of different sized blocks, while a more
lightweight alternative uses static sized blocks and is mainly targeted to message en-
velopes. Memory is allocated with os_mem_alloc and released with os_mem_free.

Peripherals – The interrupt-driven character device drivers are opened and closed by
os_open and os_close, respectively. The device handle contains the owner, type, and
event information and defines the HAL routines and data pipe for communication be-
tween HAL and OS. Data to the device is sent with os_write and received with os_read.
Both return the number of bytes handled. The completion of a pending operation can
be waited either by os_flush or os_wait_event.

5 Evaluation

The objectives of SensorOS evaluation are the verification of correct functionality and
the measuring of OS resource consumption and performance. A test application, which
consisting of three tasks and emulates WSN protocol stack and an application, is im-
plemented for evaluation. Task1 models TDMA-based WSN MAC protocol, task2 a
routing protocol, and task3 an WSN application with periodic sensing and processing.

The highest priority thread (task1) is activated periodically with a hard deadline.
It executes for a short period and sends a message to the next highest priority thread
(task2) on every tenth activation. Task2 waits for message and processes it when re-
ceived. Then it sends a message to the lowest priority thread (task3). Task3 is activated
periodically and if it has a message it performs lengthy processing.

5.1 Resource Usage

The portable implementation in ANSI C results slightly more inefficient use of re-
sources than an assembly optimized one. The code and static data memory consumption

440 M. Kuorilehto et al.

of each OS component are depicted in Table 3. Help routines include implementations
for internal OS lists and a small set of library functions.

The code memory usage of SensorOS with static block memory management is
6964 B and with binary buddy 7724 B, which are 10.6 % and 11.8 % of the available
memory, respectively. These do not include an optional I/O library that implements
printf type routines. Static data memory used by SensorOS is 115 B or 118 B, depend-
ing on the used memory management. These do not include thread stacks and TCBs. A
thread context takes 36 B on average but in interrupts additional 35 B is stored. Since
the context is kept in the thread’s stack, a typical stack size is 128 B. The size of TCB
is 17 B. Thus, over 20 threads can be active simultaneously in TUTWSN PIC platform.

5.2 Context Switch Performance

The performance of SensorOS is evaluated by measuring the context switch overhead
and the executions times of main kernel operations. These are given in Table 4 with
timing accuracy results. MCU is run at 8 MHz and loaded by five threads that have
averagely 2 ms activation interval. The results are gathered over 50000 iterations.

Context swap time includes the storing of an old and restoring of a new thread to
MCU. The initialization of os_wait_until sets a trigger to HAL. The thread is woken
up 2 ms before the deadline and after a scheduling delay the rest of the time is spent in
spinwait. The time in os_set_alarm is consumed in timer queue handling and a trigger
setting. The os_wait_event time is the delay from a timer interrupt to the scheduling
of the thread. The IPC delay is measured from the sending of a message from a lower
priority thread to its processing in a higher priority one.

The os_wait_until is evaluated by measured the absolute error between the resulted
timing and the real world time. The maximum inaccuracy is below 5 µs and typically the
error is less than 2 µs. The variance is caused by thread atomicity consideration when
returning from the spinwait, thus it is affected by MCU clock frequency.

Table 3. Code and data memory usage of different SensorOS components

OS component Code memory (B) Data memory (B)

Scheduler 728 38
Thread 184 0
Event handling 384 1
Timer 646 6
IPC 248 0
Mutex 428 0
Binary buddy memory management 1048 5
Static block memory management 288 2
Character device 414 0
HAL 2266 68
Help routines 1378 0
I/O library 862 16

SensorOS: A New Operating System for Time Critical WSN Applications 441

Table 4. SensorOS kernel operation times and timing accuracy

Operation
Time (µs)

Min Mean Max

HAL context swap 92 92 92
os_wait_until timeout initialization 125 125 125
os_wait_until spinwait time after thread wakeup 1) 680 1110 1310
os_set_alarm timeout initialization 1) 222 270 324
os_wait_event context switch from timer interrupt 1) 486 532 558
IPC from lower priority thread to higher one 346 346 346

os_wait_until timing absolute error 0.0 1.8 4.2
1) The results may vary slightly depending on the number of threads.

kernel / systemcalls

interrupts (timer)

idle thread

task 3

task 2

task 1

preempt system calls (os_mem_alloc, os_msg_send)

timer interrupt
(os_wait_event)

timer interrupt & spinwait
(os_wait_until)

kernel / systemcalls

interrupts (timer)

idle thread

task 3

task 2

task 1

preempt system calls (os_mem_alloc, os_msg_send)

timer interrupt
(os_wait_event)

timer interrupt & spinwait
(os_wait_until)

Fig. 4. Task and kernel activation in SensorOS

5.3 Test Application Operation

The scheduling of tasks and kernel components in the test application is depicted in
Fig. 4. MCU preemption on periodic scheduling of task1 is clearly visible. Kernel is
activated when system calls are done for timer wait, messaging, and memory allocation.
The idle thread is scheduled to activate power saving when other tasks are inactive.

The lengths of timer interrupt periods show the difference between os_wait_until
and os_wait_event triggered by os_set_alarm. As the latter can return immediately
after the timeout interrupt, the delay is considerably shorter than in os_wait_until.

6 Conclusions and Future Work

This paper presents a full functionality OS for resource constrained WSN nodes. Com-
pared to existing WSN OSs, SensorOS implements more accurate time concept and
sophisticated power management routines, which are needed by energy efficient and
time critical WSN protocols and applications. The portability and conventional API
facilitate the implementation of large WSN scenarios with multiple applications. The
evaluation shows that SensorOS obtains excellent performance with minimal resources.

442 M. Kuorilehto et al.

Our future work concentrates on implementation and integration of the distributing
middleware to OS. Further, we are exploring methods for lightweight dynamic linking
of new application threads transferred over wireless link.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine 40(8), 102–114 (2002)

2. Stankovic, J.A., Abdelzaher, T.F., Lu, C., et al.: Real-time communication and coordination
in embedded sensor networks. Proceedings of the IEEE 91(7) (2003) 1002–1022

3. Stallings, W.: Operating systems internals and design principles, 5th edn. Prentice-Hall, En-
glewood Cliffs (2005)

4. Kuorilehto, M., Hännikäinen, M., Hämäläinen, T.D.: A survey of application distribution
in wireless sensor networks. EURASIP Journal on Wireless Communications and Network-
ing (5), 774–788, Special Issue on Ad Hoc Networks: Cross-Layer Issues (2005)

5. Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Ultra low energy wireless temperature
sensor network implementation. In: Proc. 16th Annual IEEE International Symposium on
Personal Indoor and Mobile Radio Communications, Berlin, Germany, pp. 801–805. IEEE
Computer Society Press, Los Alamitos (2005)

6. Kuorilehto, M., Hännikäinen, M., Hämäläinen, T.D.: A middleware for task allocation in
wireless sensor networks. In: Proc. 16th Annual IEEE International Symposium on Personal
Indoor and Mobile Radio Communications, Berlin, Germany, pp. 821–826. IEEE Computer
Society Press, Los Alamitos (2005)

7. Hill, J., Szewczyk, R., Woo, A., et al.: System architecture directions for networked sen-
sors. In: Proc. 9th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, USA, pp. 94–103 (2000)

8. Han, C.C., Kumar, R., Shea, R., et al.: A dynamic operating system for sensor nodes. In:
Proc. 3rd International Conference on Mobile Systems, Applications, and Services, Seattle,
WA, USA, pp. 163–176 (2005)

9. Lifton, J., Seetharam, D., Broxton, M., Paradiso, J.: Pushpin computing system overview: a
platform for distributed, embedded, ubiquitous sensor networks. In: Proc. 1st International
Conference on Pervasive Computing, Zurich, Switzerland, pp. 139–151 (2002)

10. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system
for tiny networked sensors. In: Proc. 29th Annual IEEE International Conference on Local
Computer Networks, Tampa, FL, USA, pp. 455–462. IEEE Computer Society Press, Los
Alamitos (2004)

11. Yannakopoulos, J., Bilas, A.: Cormos: a communication-oriented runtime system for sensor
networks. In: Proc. 2nd European Workshop on Wireless Sensor Networks, Istanbul, Turkey,
pp. 342–353 (2005)

12. Bhatti, S., Carlson, J., Dai, H.: Mantis os: An embedded multithreaded operating system for
wireless micro sensor platforms. Mobile Networks and Applications 10(4), 563–579 (2005)

13. Eswaran, A., Rowe, A., Rajkumar, R.: Nano-rk: An energy-aware resource-centric rtos for
sensor networks. In: 26th IEEE International Real-Time Systems Symposium, Miami, FL,
pp. 256–265. IEEE Computer Society Press, Los Alamitos (2005)

PUBLICATION 4

M. Kuorilehto, M. Hännikäinen, T. D. Hämäläinen, �A Middleware for Task Alloca-
tion in Wireless Sensor Networks,� in Proceedings of the 16th Annual IEEE Interna-
tional Symposium on Personal Indoor and Mobile Communications (PIMRC 2005),
Berlin, Germany, Sep. 11�14, 2005, pp. 821�826.

© 2005 IEEE. Reprinted, with permission from the proceedings of PIMRC 2005.

2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications

A Middleware for Task Allocation in Wireless
Sensor Networks

Mauri Kuorilehto, Marko Hannikainen, Member, IEEE, and Timo D. Hamdlainen, Member, IEEE

Abstract- Resource constrained platforms, dynamic nature,
and complex applications set challenges to the development of
Wireless Sensor Networks (WSN). Sophisticated tasking and
networking control is required in WSNs to reach lifetimes in
order of years. This paper presents a WSN node middleware,
which controls task allocation and WSN topology according to
the current requirements of the application. The middleware
uses a lightweight algorithm that balances communication and
computation load between nodes. The discovering of resources
and application tasks are comprised by a tuple space that
selectively disperses information to nodes. The middleware has
been implemented and evaluated in a WIreless SEnsor NEtwork
Simulator (WISENES) that models resource usage and network
operation accurately. The results show that in a static network
configuration the obtained lifetime with our middleware is 6.8
times longer compared to an uncontrolled network while the
increase in processing is negligible and the peek data memory
usage increases by 11.6%. In a dynamically changing network
the lifetime increases by a factor 3.9. Our middleware does not
limit the applications and networks and improves the
performance and predictability of WSNs significantly.

Index Terms-Middleware, Task allocation, Service discovery,
Wireless Sensor Network (WSN)

I. INTRODUCTION

WIRELESS Sensor Networks (WSN) consist of numerous
resource constrained nodes. These nodes gather data,

perform collaborative data processing, and forward data to a
sink node for further processing. Tasks in sensor nodes are
restricted by limited communication, processing, memory, and
energy resources [1].

Potential WSN applications are diverse in numerous
domains ranging from military to home appliances. Due to the
diversity of applications, also their Quality of Service (QoS)
requirements vary in terms of required dynamicity, scalability,
resources, lifetime, connectivity, robustness, and realtime [2].

The design and implementation of a general purpose WSN
is not feasible but WSN protocols and their configuration
parameters must be tailored application-specifically. The most
important WSN protocol is a Medium Access Control (MAC)
protocol that maintains network topology and controls channel

Manuscript received March 11, 2005.
M. Kuorilehto, M. Hannikainen, and T. D. Hamalainen are with Institute of

Digital and Computer Systems, Tampere University of Technology,
Korkeakoulunkatu 1, Tampere, FI-33710 Finland (email: {mauri.kuorilehto,
marko.hannikainen, timo.d.hamalainen}@tut.fi).

access. WSN topology is either clustered, where a set of
subnodes is coordinated by a headnode, or flat, in which all
nodes are equal. The multi-hop paths between nodes are
created by a routing protocol on top of MAC.
A need for a common Application Programming Interface

(API) that hides the heterogeneity of platforms and protocols
has emerged in WSNs as application and platform complexity
has increased. A middleware layer has been proposed for that
purpose. In addition to pure functional API, middlewares for
WSNs incorporate control for task allocation and network
topology in order to improve network performance [3].

In this paper, we present a WSN node middleware that
embodies a computationally lightweight algorithm for load
balancing between heterogeneous nodes inside one cluster.
The middleware improves WSN longevity and predictability,
and allows the network to adapt its functions according to the
changes in environmental conditions. The middleware does
not restrict task functionality and relations. Thus, it is
applicable to applications from simple monitoring to complex
signal processing. The middleware is either stand-alone or
cooperates with node Operating System (OS) such as
SensorOS, which is being developed in Institute of Digital and
Computer Systems at Tampere University of Technology
(TUT).
A task allocation in the WSN node middleware lengthens

WSN lifetime by an algorithm that adapts network topology
and allocates sensing and data processing tasks evenly to
nodes in a cluster. The flexibility for adaptation is achieved by
a tuple space [4] that stores task parameters and application
QoS information. In addition, our middleware consists of a
data redirecting that implements API for application tasks,
and of a task hosting that initiates optional binary transfers of
task executables between nodes.
Our middleware has been developed in WIreless SEnsor

NEtwork Simulator (WISENES) on top of TUTWSN protocol
stack [5]. WISENES gives accurate information about node
and network performance, which are analogous with the
TUTWSN prototyping results. WSN node middleware
simulation results show a considerable increase in WSN
lifetime and predictability when the middleware is used.

This paper is organized as follows. Related research is
discussed in Section II. The design of our middleware is
presented in Section III. Section IV gives details on the
middleware implementation to WISENES followed by
simulation results in Section V. Finally, conclusions are given
and future work projected in Section VI.

978-3-8007-2909-8/05/$20.00 ©2005 IEEE 821

2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications

II. RELATED WORK

The ongoing research on WSNs concentrates on MAC and
routing algorithms, and node prototype implementations.
WSN research on distributed processing is still quite limited.
From the existing middleware proposals, application QoS

specification based task allocation and network topology
adaptation are done in [6], [7], and [8]. These take adaptive
actions within the network. However, the algorithms are
communication and computation intensive and are restricted
in scalability and applicability for heterogeneous platforms.
A centralized task allocation by a sink node is implemented

in [10]. Static topology is assumed, which limits the
applicability of the approach in dynamic WSNs. Further,
efficient transceivers are required for communication link to
the sink node. A design time approach is taken in [11], in
which application task communication and dependencies are
modified prior to deployment. During runtime, load is
balanced by task migration on top of a Virtual Machine (VM).
However, the approach is unable to adapt WSN operation
according to the changes in environmental conditions. WSN
abstraction as a database, e.g. [12], [13], allocates tasks in
database queries but is not applicable to more complex tasks.

Task hosting transfers task executables between nodes.
Object migration is implemented in several VM architectures
[11], [14], [15]. Yet, VM resource usage is extensive for
resource constrained WSNs. MANTIS [16] and PushPin [17]
implement task binary code transfers. Pushpin uses a simple
checksum for integrity checking but neither protects system
against malicious code.
A tuple space proposed originally for computer networks in

Linda [4] has been adapted also for WSN and mobile ad-hoc
environments [14], [15], [18]. Tuples are collections of
passive data values that are inserted to, removed from, or read
from a shared tuple space.

III. MIDDLEWARE DESIGN

Unlike the related proposals, our middleware is applicable
for resource constrained WSNs. The task allocation algorithm
that balances differences in node energy consumption is
computationally lightweight, but still leads to excellent results.
The task allocation is supported by a tuple space that
minimizes memory consumption among the nodes sharing the
tuple space. Further, binary transfers are implemented to
guarantee needed task population.

A. Objectives and Requirements
The main objective of the WSN node middleware is to

maximize WSN lifetime. By the lifetime we mean the time
elapsed until the first node runs out of energy. The load is
balanced between nodes, so that the remaining lifetime of
WSN can be estimated accurately. As communication in
WSNs is generally more costly than computation [18], the
middleware control messages are decreased even with the cost
of increased computation.
Our middleware is designed for different types of WSNs,

node platforms, and applications. The only pre-requisites to

the node platforms are the ability to estimate remaining energy
and available memory, and an option to write to their own
instruction memory. The WSN topology and application
nature are not restricted.
The middleware adapts its actions according to application

QoS requirements. The QoS requirements consist of several
QoS level specifications. These define for each level the task
composition, priorities, and dependencies, data latency and
accuracy, and the relations to other QoS levels. Thus, an
application must be divided into tasks having a solitary
function and QoS levels must be specified for the middleware.
A QoS level lists the tasks that are activated on the level.

For each task, the redundancy within a virtual cluster is
derived from the data accuracy specification. Needed timing
and connectivity are defined by data latency and
dependencies. The currently active QoS level depends on the
rules, which specify limit trigger values for the available
resources in the network, or for a quantity that is being
monitored.

B. Middleware Network Topology
Our middleware divides nodes into virtual clusters that

define the borders for node cooperation. In a clustered
network topology, virtual clusters are directly mapped to
MAC layer clusters as depicted in Fig. 1 (a). In a flat
topology, proximate nodes construct virtual clusters as shown
in Fig. 1 (b). The clustered MAC topology is more suitable for
our middleware. First, the nodes are spatially proximate
justifying data aggregation. Second, the communication
infrastructure is set and therefore negotiations for link
formation are avoided. Third, the number of hops is limited
thus restricting the communication load.

Within a virtual cluster, a controlling node coordinates
middleware layer actions, while other nodes, subnodes, act
accordingly. The communication within the virtual cluster and
between nearby virtual clusters is routed by controlling nodes.
In a clustered network topology, the controlling node is the
headnode of the cluster. In a flat topology the controlling node
is elected by the members of the virtual cluster.

C. Middleware Architecture
The four main components in the WSN node middleware

and their relations to each others and to other components in a
node are depicted in Fig. 2. First, application tasks register
themselves to the task hosting (1). After the initialization, the
task allocation activates tasks in the node and defines their
data dependencies (2). Next, a task sends data to a dependent
task (3) through the data redirecting. The data redirecting

~~~~~~~~~~~~~~~~~~~~~~~.......'.. ...... XControlling node
o Subnode
-Active data link
--Inactive data link

.......... .... .........
cluster

(a) (b) -_ ._ _
Fig. 1. Virtual cluster composing for (a) clustered and (b) flat MAC layer
network topology.

978-3-8007-2909-8/05/$20.00 ©2005 IEEE 822



2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications

pplication sk T I _ iterations is defined by the task redundancy. The limit is

d=w( k) (2)

............................;~~~~~~~~~~~~~~~~~~~~~~~~. ... , . .. -. ... _...Memor 7 F 1
_Wcoi~ :onl

-- Network data - * Middleware control messages
Fig. 2. The WSN node middleware architecture.

identifies a node that executes the dependent task using the
tuple space (4). Finally, the data is either routed locally to a
task or sent to network through WSN protocol stack.

Middleware components send control messages in order to
relay information between components. All components pass
messages to their counterparts in other nodes through the data
redirecting (4). The task hosting stores task binary information
to the tuple space (A). The task allocation uses hosting
information for task activation decisions (B) and stores active
task information to the tuple space (C). The task allocation
changes network topology through MAC and routing
protocols, and retrieves node resource information from
memory and power control (D). A transport protocol and OS
kernel are optional components that are not mandatory but can
be applied if they offer added value.

D. Task Allocation
The task allocation has three main tasks that are task

activation, network topology adaptation, and the controlling of
application QoS levels. The task allocation in the controlling
node makes decisions, while subnodes supply the controlling
node with information. The subnodes send first a register
message listing hosted tasks, and after that periodically an
update message that defines active tasks and memory and
energy resources in the subnode.
The application QoS level specification defines task activity

and requirements. In addition to active tasks, the controlling
node assignment is allocated periodically. As controlling node
is under heavier computation and communication loading than
subnodes its resources exhaust more rapidly.

The task allocation determines for each task a set of nodes,
Sn, that host the task and have available memory and
computation resources for the task activation. For each task,
there is a set of nodes where the task is active, Sa c Sn, and a
set of nodes where it is inactive, S, c Sn
Our task allocation algorithm evaluates all pairs, for which

maxj(ES)-minj(Esa ) > d (1)
is true, and changes the task allocation between them. The

operators maxj and minj return thejth maximum and minimum
value of remaining energies Es, respectively. The number of

where k is a coefficient, and E4 is the remaining energy in
the controlling node. Factor w sets different limits for task and
controlling node allocation. Generally, active tasks are
allocated more frequently than controlling node assignment.

The task allocation defines also the currently active QoS
level. A QoS level has at least one limit condition, after which
another QoS level is activated. When the limit is met, the new
level is activated and task allocation changed accordingly.

E. Task hosting
The task hosting keeps track of the task binaries in the

nodes within a virtual cluster. If the required QoS cannot be
met with the available tasks, the task hosting negotiates a
binary transfer between two nodes. A node that hosts the task
initiates a peer-to-peer transfer to a node with a similar Micro-
Controller Unit (MCU). If such a node is not available, the
active QoS requirements cannot be satisfied.
The task binary transfers expose WSN to several security

vulnerabilities and consume resources excessively. A bit error
may lead to a fatal error while a node is executing an
erroneous task. A malicious party can also inject tasks to the
network. Therefore, the binary transfers are done only when
extremely necessary. We protect the nodes against bit errors
using Cyclic Redundancy Check (CRC). When malicious
attacks are considered as a risk, the CRC is replaced by digital
signatures that verify the validity and origin of the task binary.

F. Tuple space
Task and QoS level information are stored in the tuple

space. The tuple space stores internal middleware data used by
the other components. A tuple information is shared within a
virtual cluster. Nodes store only tuples that are valid in their
current virtual cluster. A controlling node minimizes used
memory by dispersing tuples only to subnodes that need the
information. However, a required redundancy is maintained
for recovering from error situations in nodes and from
disconnected communication links.
The basic tuple space operations are in for inserting a tuple,

out for removing the tuple, and read for getting the tuple data.
We divide the tuple hierarchically into subtuples that can be
modified by an update operation. Thus, a subtuple can be
replaced without reinserting the complete tuple.

Fig. 3 (a) shows the task tuple structure. The tuple lists the
nodes hosting and actively executing the task. The nodes, to
which tuple is sent are listed in dispersed nodes. Task
characteristics identify the task, its relations and requirements,
and its resource usage provided by benchmarking data. A task
tuple is dispersed to nodes executing tasks that have a data
relation to the task. All tuples are also updated to the new
controlling node when changed.
The QoS tuple is presented in Fig. 3 (b). The tuple defines

the remaining energy limit, after which the level is no more
activated. Active tasks list the priority, redundancy, data

978-3-8007-2909-8/05/$20.00 ©2005 IEEE 823



2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications

Task QoS level
- hosting nodes general

-node_ids:list(int) ls.evel:-int
--> active nodes . energy limit:int

- node ids:list(int) active tasks

<*-7-dispersed nodes 0-task list:list(struct)
.-node ids:list(int) i:n. ._ g g - ~~~redundancy:int I
j characteristics j data_task_id:int

* id:mt ".~~~~~0-priority: nt.-peripherals:list(int)
M
m delay:int

' related_tasks:list(int) .
- memory:struct I relations
...-binary:int 4 - trigger list:list(struct)

-data:int "g -trigger_task:int
*.--complexity:int L.,- n level:int
-time:int i__ -_level:int

(a) (b)
Fig. 3. Structures for (a) task and (b) QoS tuples.

relations, and maximum latency for each task. The relations to
other QoS levels are defined by the list of trigger conditions.
A trigger condition defines a limit value for a task output, e.g.
an averaged temperature, after which a new level is activated.
The QoS tuples are dispersed to the new controlling node.

G. Data redirecting
The data redirecting abstracts the nodes inside a virtual

cluster to a unified set of resources. It offers API, through
which application tasks communicate independent of their
hosting nodes. The data redirecting also encapsulates the
middleware control messages to network packets, and in the
receiving end relays the control message to the correct
middleware component.
An application task sends data to another task, not to a

node. The data redirecting requests the node for that task from
the tuple space. Used communication paradigm is message
passing. Underlying OS features are utilized, if available but
they can also be replaced by internal implementation.

IV. IMPLEMENTATION FOR WISENES

The WSN node middleware has been implemented in
WISENES in order to test middleware performance and
suitability for WSNs. The middleware is simulated on top of
TUTWSN protocols that are developed at TUT [20].
A. Simulation Environment

The simulations are done in WISENES that models node
resource constraints and consumption accurately, and models
also environmental aspects. Prototyping is applicable to the
testing of networks with tens of nodes but WISENES extends
the evaluation possibility also to large network configurations.

The node platforms and their capabilities are specified to
WISENES through an XML interface. From the simulations
WISENES outputs information about timing, networking, and
power, memory, and processing resource consumption. The
output results are congruent to prototype measurements.
WSN protocols in WISENES are implemented in

Specification and Description Language (SDL). The layers

and the interfaces between protocols are defined by the
designer. The WISENES framework models transmission
medium, phenomena, and node resource consumption. It also
logs protocol and node events during simulations. The
framework has a Graphical User Interface (GUI) for runtime
network topology and node state monitoring.
TUTWSN energy efficiency derives from a clustered MAC

protocol that uses Time Division Multiple Access (TDMA)
for intra-cluster communication and Frequency Division
Multiple Access (FDMIA) for interleaving neighbor clusters.
Control for inter-cluster communication is done on a network
signaling channel, whereas data are transferred during the
access cycle of recipient cluster.

During an access cycle, a headnode sends network beacons
to network signaling channel and manages data transfers in a
super frame. The super frame consisting of cluster beacons,
aloha slots for contention, and reservation data slots. Cluster
beacons inform associated nodes of cluster timing and
reservation data slots. Contention slots are for occasional data
and association or slot reservation requests, and reservation
data slots for periodical data transfers.
TUTWSN routing protocol broadcasts requests to neighbor

nodes until a path to the destination is found. The neighbor
cluster information from MAC protocol is utilized to decrease
communication. Each node stores only the next hop node
identifier and the total hop count to destinations.

Several prototype platforms have been fabricated for
TUTWSN. The main component in TUTWSN Xemics
prototype, depicted in Fig. 4 (a), is a Xemics XE88LCO2 2
MIPS MCU consisting of a CoolRisc 816 processor core, a
16-bit Analog-to-Digital Converter (ADC), 22 KB program
memory, and 1 KB data memory. 2.4 GHz NordicVLSI
nRF2401 transceiver unit on the prototype supports 250 kbps
and 1 Mbps data rates. The transmit power is adjustable
between -20 and 0 dBm.
A more resource constrained TUTWSN nRF prototype is

depicted in Fig. 4 (b). 1 MIPS Intel 8051 MCU, 12-bit ADC,
and nRF2401 are integrated into a single chip. The prototype
has 4 KB of program and 256 B of data memory.

B. Middleware Implementation
The WSN node middleware is implemented on top of

TUTWSN routing protocol. The middleware SDL block is
depicted in Fig. 5. Each of the four main components is
implemented as an SDL process. The SDL processes
communicate with asynchronous signals that are routed
through signal routes.

The data redirecting SDL process passes data as signals
between application, middleware components, and TUTWSN
protocol stack. It requests a destination node for the task data

(a) (b)
Fig. 4. TUTWSN (a) Xemics and (b) nRF prototypes.

978-3-8007-2909-8/05/$20.00 ©2005 IEEE 824



2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications

Fig. 5. The WSN node middleware SDL block.

from the tuple space SDL process by a signal.
The tuple space SDL process is implemented according to

the design except the tuples are dispersed only to nodes that
need the data. The redundancy for fault tolerance is not
supported. Tuples are stored in SDL data structures that are
interfaced through in, out, read, and update signals.
The task allocation SDL process implements task allocation

algorithm and controls application QoS levels. The QoS levels
are specified through the XML interface. The control
messages are passed as SDL signals. The task hosting SDL
process tracks hosted tasks but does not model binary
transfers.

V. SIMULATION RESULTS
The WSN node middleware is evaluated by two simulation

cases. The first case tests the functionality and performance of
the middleware with a static application and a homogeneous
network. The second case evaluates middleware adaptability
and performance in a dynamic network with heterogeneous
node platforms. In both cases TUTWSN access cycle is ten
seconds and the super frame consists of four contention and
eight reservation data slots.

For the simulations, both modeled TUTWSN nodes have a

0.22 F capacitor as an energy source. TUTWSN Xemics
prototype can operate approximately 1.5 hours as a headnode
and 20 hours as a subnode with the capacitor. TUTWSN nRF
prototype is able to act only as subnode for 12 hours.

The comparison of the WSN node middleware to the
related proposals is not feasible, because the assumptions for
the node resources, topology, and communication capacity
differ considerably. Further, published results in the related
work typically do not provide enough information for
comparison, but mainly prove the functionality of the
proposal.

A. Static Case
The network consists of ten TUTWSN Xemics prototypes

that are within radio range of each others. The application has
only two tasks and one QoS level. Temperature sensing task

10

8-

0

(a) 4

0

0 2 4 6
Tine (h)

50
co

0 40

30

(b) 20

10
zO

8 10 12

0 2 4 6 8 10
Timw (h)

Fig. 6. Static case (a) node lifetimes and (b) peak difference in minimum and
maximum remaining energy levels as a function of time.

requires 50% redundancy, and one second delay. The
temperature aggregation task averages data.
The remaining nodes in the network as a function of time

are depicted in Fig. 6 (a) when k is 0, 2, and 4. A case without
task allocation is given as a reference. As shown, our

middleware lengthens the network lifetime by a factor 6.85
compared to the reference case. Most importantly, the time
between the first and the last node running out of energy is

very short when WSN node middleware is used. The value of
k does not have significant effect, as the load is balanced more
accurately when the remaining energies approach zero.

The difference between minimum and maximum relative
remaining energy levels at the nodes is depicted in Fig. 6 (b)
with k varying similarly. The difference decreases as the
network lifetime approaches, but for smaller values of k the
difference is very large at the beginning. Thus, the network
lifetime estimation at a random moment is accurate only with
larger values of k.
The data memory consumption of a task tuple is 20-30 B

depending on the length of the lists. A QoS tuple takes
approximately 30 B. During the test case, at most 94 B of data
memory is used in the controlling node. This is 11.6% of the
overall data memory usage. The required processing for the
middleware algorithms is done during MCU idle times while
it is actively pending on the transceiver unit. Thus, MCU
activation is not increased by the middleware.

B. Dynamic Case
15 TUTWSN Xemics and 15 TUTWSN nRF prototypes are

randomly deployed for the second test case. Ten of the nRF
prototypes are equipped with a temperature sensor, and five
with a humidity sensor. TUTWSN Xemics prototypes include
both sensors.

The application has three QoS levels listed in TABLE I. On
initiation, the lowest QoS level is activated, and the level is

978-3-8007-2909-8/05/$20.00 ©2005 IEEE

......

* k=4

- M|

825

0

'...X



2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications

TABLE I
DYNAMIC CASE APPLICATION QoS LEVELS

QoS level Sensing tasks Aggregated data Limit(redundancy) destination
Low Temp. (20%) None 200C
Medium Temp. (50%) Temp. sink node 300C
High Temp. (50%) Temp. sink node,

Hum. (20%) Hum. sink node

changed when a limit condition is met. The simulated
temperature is modeled so that it exceeds 20°C five times and
30°C once.
The change of a controlling node is more problematic when

nodes are randomly deployed. Some of the subnodes may be
out of range from the new controlling node. They must search
a new cluster or form a new one, which consume energy. We
use the option in TUTWSN prototypes to adjust transmit
power to avoid the cluster scattering in most of the cases.

The network lifetimes until first node runs out of energy are
depicted in TABLE II with and without transmit power
adjusting. A network without task allocation is again given as
a reference, and k is 0, 2, and 4. The lifetime with the WSN
node middleware is smaller than in static case, because there
are around five subnodes per a controlling node while in the
static case the ratio was nine to one.
When a cluster scatters, subnodes consume their resources

when they search for a new one. As a smaller value of k
lengthens the interval between controlling node changes,
resulted network lifetime is longer. The transmit power
adaptation also diminishes the number of uncovered nodes,
and therefore increases the lifetime, in average by 22%.
The peek data memory consumption of the controlling node

in the test case was 192 B, for which the data memory of a
TUTWSN Xemics prototype was sufficient.

VI. CONCLUSION
The presented middleware uses a computationally

lightweight but still efficient task allocation algorithm to
balance load in WSN. Our middleware is applicable for
different types of WSNs and applications. It can be used also
for network wide task allocation by forming hierarchical
clusters, i.e. clusters of clusters.
The WSN node middleware activates tasks and allocates the

controlling node assignment evenly to nodes within a virtual
cluster. Further, the middleware adapts its actions according to
an application QoS specification. The results show that the
network lifetime and predictability in terms of remaining
lifetime estimation are improved, while the increase in the
consumption of other resources is negligible.
Our main future research objectives are on network wide

task allocation using hierarchical virtual clusters. The

TABLE II
DYNAMIC CASE NETWORK LIFETIMES tN HOURS FOR DIFFERENT VALUES OF

K WITH AND WITHOUT TRANSMIT POWER ADAPTATION
Transmit No task WSN node middleware

middleware and a custom OS, SensorOS, will be implemented
on TUTWSN nodes and tested on the prototypes.

REFERENCES
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, "A survey on

sensor networks," IEEE Communications Magazine, vol. 40, issue 8, pp.

102-114, Aug. 2002.
[2] K. Romer, F. Mattern, "The Design Space of Wireless Sensor

Networks", IEEE Wireless Communications, vol. 11, issue 6, pp. 54-61,

Dec. 2004.
[3] J.A. Stankovic, T.F. Abdelzaher, L. Chengyang, S. Lui, J.C. Hou, "Real-

time communication and coordination in embedded sensor networks,"
Proceedings ofthe IEEE, vol. 91, pp. 1002-1022, Jul. 2003.

[4] D. Gelermter, "Generative communication in Linda," ACM Trans.

Programming Languages and Systems, vol. 7, pp. 80-112, Jan. 1985.
[5] M. Kuorilehto, M. Hiinnikainen, T.D. Hiimialainen, "Rapid design and

evaluation framework for wireless sensor networks," Elsevier Ad Hoc
Networks, submitted for publication.

[6] W.B. Heinzelman, A.L. Murphy, H.S. Carvalho, M.A. Perillo,
"Middleware to support sensor network applications," IEEE Network,
vol. 18 issue 1, pp. 6-14, Jan./Feb. 2004.

[7] Y. Yang, B. Krishnamachari, V.K. Prasonna, "Issues in designing
middleware for wireless sensor networks," IEEE Network, vol. 18 issue

1, pp. 15-2 1, Jan./Feb. 2004.
[8] P. Scerri, P.J. Modi, W.M. Shen, M. Tambe, "Applying constraint

reasoning to real-world distributed task allocation," in Proc. Ist ACM
Int. joint Conf on Autonomous Agents and Multiagent Systems,
Bologna, 2002.

[9] M. Kafil, I. Ahmad, "Optimal task assignment in heterogeneous
distributed computing systems," IEEE Concurrency, vol. 6 issue 3, pp.

42-50, Jul.-Sep. 1998.
[10] M. Younis, K. Akkaya, A. Kunjithapatham, "Optimization of task

allocation in a cluster-based sensor network," in Proc 8th IEEE Int.
Symp. on Computers and Communication, Kemer, 2003, pp.329-334.

[11] H. Park and M.B. Srivastava, "Energy-efficient task assignment
framework for wireless sensor networks," CENS Technical Report 26,
Sep. 2003.

[12] C.C. Shen, C. Srisathapomphat, C. Jaikaeo, "Sensor information
architecture and applications," IEEE Personal Communications, vol. 8
issue 4, pp. 52 -59, Aug. 2001.

[13] Y. Yao, J. Gehrke, "The Cougar approach to in-network query

processing in sensor networks," ACM SIGMOD Record, vol. 31 issue 3,
pp. 9 -18, Sep. 2002.

[141 M. Storey, G. Blair, A. Friday, "MARE: resource discovery and
configuration in ad hoc networks," Kluwer J. Mobile Networks and
Applications, vol. 7, pp. 377-387, Oct. 2002.

[15] A.L. Murphy, G.P. Picco, G.C. Roman, "LIME: a middleware for
physical and logical mobility," in Proc. 21st Int. Conf: on Distributed
Computing Systems, Phoenix, 2001, pp. 524-533.

[16] H. Abrach, S. Bhatti, J. Carlson, et al., "MANTIS: system support for
multimodai networks of in-situ sensors," in Proc. 2nd ACM Int.
Workshop on Wireless Sensor Networks and Applications, San Diego,
2003, pp. 50-59.

[17] J. Lifton, D. Seetharam, M. Broxton, J. Paradiso, "Pushpin computing
system overview: a platform for distributed, embedded, ubiquitous
sensor networks," in Proc. Ist Int. Conf: on Pervasive Computing,
Zurich, 2002, pp. 139-15 1.

[18] J. Beutel, 0. Kasten, F. Mattern, K. Roemer, F. Siegemund, L. Thiele,
"Prototyping wireless sensor networks with btnodes," in Proc. 1st
European Workshop on Wireless Sensor Networks, Berlin, 2004, pp.

323-338.
[19] G.J. Pottie, W.J. Kaiser, "Wireless integrated network sensors,"

Communications ofthe ACM, vol. 43, issue 5, pp. 51-58, May 2000.
[20] M. Kohvakka, M. Hannikainen, T.D. HamaliIinen, "Wireless sensor

network implementation for industrial linear position metering," 8th
EUROMICRO Conf: on Digital System Design, Porto, 2005, accepted
for publication.

978-3-8007-2909-8/05/$20.00 ©2005 IEEE

power mode allocation k=0 k=2 k=4
No adjust 1.41 4.61 4.02 3.88
Adjusted 1.38 5.44 5.02 4.82

826



PUBLICATION 5

M. Kuorilehto, J. Suhonen, M. Kohvakka, M. Hännikäinen, T. D. Hämäläinen, �Ex-
perimenting TCP/IP Performance for Low-Power Wireless Sensor Networks,� in Pro-
ceedings of the 17th Annual IEEE International Symposium on Personal Indoor and
Mobile Communications (PIMRC 2006), Helsinki, Finland, Sep. 11�14, 2006, 6
pages.

© 2006 IEEE. Reprinted, with permission from the proceedings of PIMRC 2006.



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

EXPERIMENTING TCP/IP FOR LOW-POWER WIRELESS SENSOR NETWORKS

Mauri Kuorilehto, Jukka Suhonen, Mikko Kohvakka, Marko Hännikäinen, and Timo D. Hämäläinen
Tampere University of Technology / Institute of Digital and Computer Systems

P.O.Box 553, FI-33101, Tampere, Finland
{mauri.kuorilehto, jukka.suhonen, mikko.kohvakka, marko.hannikainen, timo.d.hamalainen}@tut.fi

ABSTRACT

This paper presents the analysis and real experiments on
TCP/IP communication in a low-power monitoring Wireless
Sensor Network (WSN). TCP/IP flow control, addressing,
and packet fragmentation are adapted in a gateway that re-
lays TCP/IP communication to WSN. The performance of
TCP/IP is evaluated between endpoint PCs communicating
over TUTWSN (Tampere University of Technology WSN),
which is used as a transparent communication medium for
TCP/IP data. The evaluation results show that the window-
based flow control algorithms of TCP perform too aggressively
in WSNs, where random bit errors and topology changes are
main reasons for errors instead of congestion. Further, a fre-
quent duty cycle is needed in WSN to compensate the TCP/IP
overhead. In TUTWSN, compared to an environmental mon-
itoring application with two second activity cycle and native
WSN transport, the enabling of TCP/IP consumes five times
more power.

I. INTRODUCTION

Wireless Sensor Networks (WSN) consists of numerous re-
source constrained sensor nodes that are deployed to perform
a specific task. These nodes self-configure and operate au-
tonomously targeting to the network lifetimes in order of years.
Due to the large scale and random deployment a node replace-
ment is usually not an option. Thus, energy efficiency, robust-
ness against environmental strains, and self-recovery are the
key characteristics of WSNs. Applications for WSNs are di-
verse in home automation, industrial and environmental moni-
toring, military, and health care [1, 2].

Transmission Control Protocol (TCP) / Internet Protocol (IP)
stack is the de facto standard in Internet, but it is generally not
considered as the enabling technology for WSN communica-
tion. Considerable header overhead, connection management,
and end-to-end flow and congestion control lead to poor per-
formance in low-power WSNs characterized by resource con-
strained nodes, unreliable communication links, and frequently
changing network topology [3, 4].

The integration of WSN to TCP/IP networks is still neces-
sary for remote access (monitoring and control), and in general
for enabling the ubiquitous computing [5]. Basically, there are
three different integration approaches, depicted in Fig. 1. First,
TCP/IP is the enabling communication technology (referred to
as direct tcp). Second, a WSN gateway operates as a proxy
that does address translation and flow control adaptation (proxy
tcp). Last, WSN is a transparent medium that passes TCP/IP
traffic on top of its infrastructure (native tcp).

In direct tcp, TCP/IP communication is routed to WSN,

whereas in proxy and native tcp the communication is adapted
at the gateway. Direct and proxy tcp support sockets and
TCP/IP applications in nodes, while native tcp passes TCP
communication as WSN application data. In proxy and native
tcp, WSN protocols are used for communication. The most
important protocols are Medium Access Control (MAC) and
multi-hop routing. A MAC protocol controls wireless com-
munication channel access and maintains network topology.
A routing protocol creates multi-hop paths for the end-to-end
communication between nodes.

The applicability of TCP/IP for wireless ad hoc networks has
been widely studied and enhancements proposed [3, 6]. For
WSNs, a proxy tcp approach is proposed in micro-IP [7] and
nanoIP [8]. Both abstract WSN as an IP-subnet, which restricts
the number of nodes to 254. Small memory footprint TCP/IP
stacks with the most common features are presented in [9, 10].
These are applicable for resource constrained WSN nodes in
terms of memory, but the problems due to communication con-
ventions remain. A customizable protocol stack with TCP/IP
support for different wireless environments is proposed in [11].
Even though promising, TCP/IP still needs considerable modi-
fications for the full scale operation in low-power WSNs [12].

In this paper we analyze and evaluate the inter-operability of
TCP/IP and a low-power monitoring WSN. We use a native tcp
approach to adapt TCP/IP to a Time Division Multiple Access
(TDMA) based low data rate WSN. The implementation and
experiments are done with TUTWSN (Tampere University of
Technology WSN) that consists of full feature protocol stack
and node platforms [13, 14]. TUTWSN is used for real experi-
ments but results are valid for TDMA-based WSNs.

This paper is organized as follows. Section II outlines WSN
characteristics and compares the requirements and objectives
of TCP/IP and WSNs. Section III presents the TUTWSN pro-

TCP/IP Proxy

Proxy tcpDirect tcp

TCP/IP adaptation

Native tcp

WSN MAC

Transceiver unit

TCP application

sockets

TCP / UDP

IP

WSN application

WSN transport

Multi-hop routing

WSN MAC

Transceiver unit

WSN MAC

Transceiver unit

sockets

WSN protocols

(TCP/IP features)

TCP application

IP routerIP router

Gateway

WSN

node

TCP/IP Proxy

Proxy tcpDirect tcp

TCP/IP adaptation

Native tcp

WSN MAC

Transceiver unit

TCP application

sockets

TCP / UDP

IP

WSN application

WSN transport

Multi-hop routing

WSN MAC

Transceiver unit

WSN MAC

Transceiver unit

sockets

WSN protocols

(TCP/IP features)

TCP application

IP routerIP router

Gateway

WSN

node

Figure 1: Host and node protocol stacks for different TCP/IP
and WSN integration approaches.

1-4244-0330-8/06/$20.00 c©2006 IEEE



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

tocols and platforms. The implementation of TCP/IP adap-
tation for Linux and TUTWSN nodes is presented in Section
IV and evaluation results in Section V. Finally, conclusions are
given in Section VI.

II. WSN AND TCP/IP CHARACTERISTICS

WSNs are characterized by resource constraints and tight inte-
gration to the real world. In addition, the communication para-
digm differs considerably from that of traditional TCP/IP net-
works. In WSNs, individual nodes and their identification are
not important. Instead, data and data interests are targeted to a
location, or to a set of nodes that fulfil the conditions specified
in the data or interests [2].

A. WSN Challenges

WSNs are data-centric with an objective to deliver time sensi-
tive data to different destinations. Further, a deployed WSN is
application-oriented and performs a specific task. Due to the
tight integration to environment, WSN applications have strict
realtime and security requirements [2].

The challenges for WSN protocols are the high density and
scale, and unpredictability caused by communication errors
and temporarily unavailable nodes. Due to the scale and the na-
ture of deployment, WSNs must operate autonomously, mean-
ing that they must be self-configuring, self-operating, and self-
maintaining [1].

The application requirements and communication chal-
lenges must be met within the strict constraints set by node
platforms. The program and data memory, and processing ca-
pacity in WSN nodes are very limited. Further, the nodes are
typically battery-powered or the operating energy is scavenged
from the environment. Therefore, the energy resources are lim-
ited and need to be preserved [1].

B. WSN and TCP/IP Relations

The architecture for TCP/IP networking over WSN discussed
in this paper is depicted in Fig. 2. Two or more TCP/IP end-
points (user/server) communicate over WSN through gateways
and intermediate nodes. The base WSN infrastructure, sensing
operations, and data relaying are maintained simultaneously
with TCP/IP communication. The path for TCP/IP commu-
nication is referred to as tcp route but WSN data are sent also
along that route. In case of direct and proxy tcp, every WSN
node may be a part or a communication endpoint of the tcp
route, while in native tcp nodes only relay TCP/IP data between
the gateways.

There are several conceptual differences between WSNs and
TCP/IP networks in communication paradigm, flow control,
and predictability. In contrast to data-centric WSNs, TCP com-
munication is connection-oriented between specific endpoints.
The end-to-end connection maintenance and flow control gen-
erates considerable amount of control traffic between connec-
tion endpoints. In WSNs, the communication over wireless
links is the dominant cause for energy consumption. There-
fore, the flow control is performed over a single hop in order to
avoid costly end-to-end retransmissions [4].

GatewayUser Node tcp routeWSN data ServerGatewayUser Node tcp routeWSN data Server

Figure 2: Networking architecture for TCP/IP communication
over WSN.

TCP flow control assumes that all communication errors
are caused by congestion while the main reasons for errors in
WSNs are random bit errors, topology changes, and temporar-
ily unavailable nodes. Further, TCP assumes symmetric uplink
and downlink in a connection, but in WSNs their delay and
throughput may differ considerably [3, 4].

While direct tcp faces the general TCP/IP drawbacks in wire-
less environments, proxy tcp allows energy efficient WSN op-
eration but leads to buffering and flow control adaptation chal-
lenges in gateway TCP/IP proxy. The generality of native tcp is
limited but it is an energy efficient approach for random TCP/IP
communication with moderate load.

1) TCP/IP Adaptation to WSNs

In direct tcp, WSN uses legacy TCP/IP for communication. In-
stead proxy tcp and native tcp require the adaptation of TCP
flow control, IP addressing, and packet fragmentation. In proxy
tcp, the TCP/IP proxy in gateway converts these to correspond-
ing WSN counterparts. The TCP/IP adaptation layer in gate-
way handles the addressing and fragmentation in native tcp but
relays the flow control over WSN.

The transmission rate in TCP depends on the sizes of the peer
receive window and sender congestion window (CWND). The
congestion window is resized based on the networking condi-
tions. The utilized window control algorithms depend on the
TCP version. In general, the algorithms use received acknowl-
edgements and timeouts for controlling their decisions.

In this paper, we use one of the most widely adopted TCP
version, TCP Reno [15]. TCP Reno has four phases, slow start,
congestion avoidance, fast recovery, and fast retransmit. In
slow start, CWND is increased exponentially on reception of an
acknowledgement until a threshold value is reached. After this,
in congestion avoidance phase CWND is increased linearly on
successful transmission. On an error situation, fast recovery
and retransmit algorithms are applied. These decrease the size
of CWND and retransmit lost or reordered packets in order to
avoid slow start phase, which is reactivated by a retransmission
timeout (RTO).

The window-based congestion control algorithms of TCP
may lead to the aggressive reduction of the transmission rate
due to a single bit error or topology change [4]. This is ac-
counted in proxy tcp, which instead of legacy TCP algorithms
uses WSN specific flow control algorithms.



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

The 32-bit addresses in IPv4 or 128-bit addresses in IPv6
must be mapped to WSN addresses in gateways for the routing
of TCP data in WSN. Further, a typical IP packet fragment
size is 1500 B in Ethernet networks. If WSN does not support
frames of that size, these must be fragmented to WSN frames
in the gateway.

2) WSN Configuration for TCP

In general, direct and proxy tcp WSNs are targeted for TCP/IP
communication. In case of native tcp, TCP/IP communication
is relayed as application layer traffic. Basically, a low-power
WSN throughput is not sufficient for TCP/IP networking. If
possible, the WSN MAC and routing protocols should be con-
figured for high throughput and short delay. This can be re-
alized by increasing duty cycle, through route selections, or
by diminishing the number of hops by increasing transceiver
transmit power.

Due to the limited resources in WSN nodes, existing com-
munication conventions should be exploited as much as pos-
sible. Thus, additional code and data memory usage should
be minimized. A more frequent duty cycle or higher transmit
power results to an increased energy consumption. This can-
not be avoided, but it can be adjusted as a trade-off between
throughput and energy. Due to the energy trade-off, the number
of nodes that are affected by the TCP/IP communication should
be minimized. Thus, if possible the configurations should be
restricted only to the nodes that are part of tcp routes. This
minimizes the effect of the adaptation on overall network per-
formance.

III. TUTWSN PROTOCOLS AND PLATFORMS

TUTWSN is a full feature framework that consists of several
applications, a customizable protocol stack, a family of node
platforms, and different monitoring and control user interfaces
for mobile and PC gateways. The operation of TUTWSN has
been tested and its features improved based on the informa-
tion gathered on several deployments in real environments with
over hundred of nodes [13, 14].

A. TUTWSN Protocols

TUTWSN uses a TDMA-based MAC protocol, which min-
imizes transceiver idle listening time. A clustered network
topology is used for improving the overall network energy ef-
ficiency. The gradient-based routing in TUTWSN optimizes
data relaying costs in network level.

1) TUTWSN MAC Protocol

The clustered topology is maintained by a cluster headnode. A
headnode controls communication within the cluster and per-
forms inter-cluster data routing with other headnodes. Other
nodes, referred to as subnodes, communicate only with their
associated headnode.

The access cycle of a cluster, maintained by the headnode,
is depicted in Fig. 3. The headnode transmits periodic network
beacons advertising its presence on a network channel. These
beacons are used for the self-organization and for the control of

SF

Access cycle

Network
channel

Cluster
channel

B

SF

Beacons

Aloha slots Reservation slots

SF

Access cycle

Network
channel

Cluster
channel

B

SF

Beacons

Aloha slots Reservation slots

Figure 3: TUTWSN access cycle.

inter-cluster communication. Each cluster operates on a dedi-
cated cluster channel, which is selected so that it does not over-
lap with the channels used by the neighbor clusters and their
neighbors.

The communication within the cluster and inter-cluster data
transfers are made during a superframe (SF). SF is started by a
cluster beacon, which contains cluster timing and slot reserva-
tion information. The beacon is followed by ALOHA slots, in
which subnodes and neighbor headnodes may send association
and slot reservation requests, and occasional data. Reservation
slots are allocated by the headnode for periodic data transfers.
A slot consists of uplink and downlink parts, each being 10 ms.

2) TUTWSN Routing Protocol

Our routing protocol creates routes based on the cost-gradients
to a gateway. Data routing is performed only when there are
active data interests for WSN.

An interest initiated by a gateway is flooded to the network
by unicast transmissions. Each headnode that receives an in-
terest scans for nearby clusters and forwards the interest sep-
arately to all clusters, except the one it was received from.
When forwarding, the headnode adds its cost to the interest. A
headnode determines the next hop based on the cost gradients
of the received interests. The cost depends on the number of
hops to the destination, remaining energy, local loading (num-
ber of associated nodes), and the transceiver transmit power
required to reach the next hop node.

A node scans the network channel periodically for new
neighbors and interests. Once a new next hop is selected, a
node associates to the cluster at the MAC layer. A node can
maintain simultaneously several alternative routes. The cost
gradient for a route is signaled in the MAC layer cluster bea-
cons, thus routing can be easily adapted. Interests are peri-
odically updated by broadcasting them in the downlink slots
so that they traverse to the reverse direction along the routes.
Thus, after the initial route formation, the energy required for
the network maintenance is minimal.

B. TUTWSN Node Platform

The TUTWSN node platform, which is used in this paper, is
illustrated in Fig. 4. The main component is PIC18LF4620
nanowatt series Micro-Controller Unit (MCU) with 64 KB
code and 3986 B data memory. MCU contains also an 10-
bit integrated Analog-to-Digital Converter (ADC) and 1 KB of
EEPROM as a non-volatile data storage. The power unit con-



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

Figure 4: TUTWSN PIC node.

sists of a MAX1725 regulator with 2.4 V output voltage and
a 3 V CR123A lithium battery. In addition, a DS620 digital
thermometer is integrated to the platform.

The radio interface on the platform is a 2.4 GHz nRF2401A
transceiver unit, which supports 1 Mbit/s data rate and trans-
mit power between -20. . .0 dBm. The integrated Cyclic Re-
dundancy Check (CRC) calculation and address detection logic
of the transceiver unit are used by TUTWSN MAC for the er-
ror detection and as the network address. This limits the packet
size to 32 B leaving 26 B for MAC after 4 B address and 2 B
CRC.

IV. TCP/IP ADAPTATION IMPLEMENTATION FOR

TUTWSN

We have selected native tcp approach for evaluation, because of
its suitability for low-power WSNs, such as TUTWSN. For the
evaluation we have implemented software for Linux PCs oper-
ating as WSN gateways and configured TUTWSN to a through-
put optimized mode. A Linux PC is connected to a gateway
WSN node through a serial port with 57600 baud rate.

A. TCP/IP Adaptation Layer Implementation on Linux

Our TCP/IP adaptation layer is implemented by Linux WSN
Adaptation (LWA) application on Ubuntu Linux with kernel
2.6.8.1. The software architecture for Linux is depicted in
Fig. 5. A network application (or IP router) communicates
through a legacy Linux networking stack consisting of sockets
and protocol layers. A Universal TUN/TAP driver [16] passes
IP packets to LWA, which fragments and relays data to WSN
through a serial port.

LWA performs addressing adaptation and IP packet frag-
mentation to WSN frames, whereas legacy Linux TCP flow
control is used. An IP address is mapped to a WSN node ad-
dress based on the information gathered during connection ini-
tiation.

TCP/IP adaptation

Network application

BSD sockets

INET sockets

TCP

IP

Linux TCP/IP stack

User

Kernel

UDP

TUN/TAPEthernet

LWA

/dev/ttySX

1 1

2 2

TCP/IP adaptation

Network application

BSD sockets

INET sockets

TCP

IP

Linux TCP/IP stack

User

Kernel

UDP

TUN/TAPEthernet

LWA

/dev/ttySX

1 1

2 2

Figure 5: Linux implementation software architecture.

In startup phase (1), LWA creates an instance of a TUN/TAP
driver and initiates a file handle to the serial port. TUN/TAP
driver network interface is automatically configured as a sep-
arate subnet with ifconfig command. The data communication
between the TUN/TAP driver and LWA during the active phase
(2) is made through a file handle retrieved during the initializa-
tion. When LWA writes to the file handle data are passed to
IP. Respectively, data sent by IP can be read from the file han-
dle. The communication with a gateway WSN node is made
similarly through a file handle (/dev/ttySX). The serial port is
configured with low latency option using setserial command.

B. TUTWSN Protocol Configuration

In TUTWSN, a cluster headnode maintains its own access cy-
cle and communicates with the next hop during SF of that clus-
ter. Rest of the time is spent on a sleep mode with periodically
sent network beacons. This idle time can be utilized for con-
figuring the network for higher throughput and shorter delay.
Because the routes in TUTWSN are gradients to the gateways,
tcp routes are formed automatically. Yet, as uplink and down-
link are always successive, the same route is used for both di-
rections.

The idle time can be used efficiently, if the start times of SFs
are adjusted so that

ni = ni−1 + (a − (l + on)), (1)

where ni is the SF start time of ith cluster from the gateway
and ni−1 the start time for the next hop cluster. The length of
an access cycle is denoted by a, the maximum length of SF by
l, and on is the interval desired between the end of own SF and
the start of the next hop cluster SF.

TUTWSN access cycle is configured to a high throughput
mode by adding additional SFs during the idle period, as de-
picted in Fig. 6. Original SFs are used for WSN communica-
tion, while the additionals SFs are for TCP data. Because same
SF structure is used, additional code is needed only for control.

An additional SF is started by a beacon, which contains tim-
ing and slot reservation information. Reservation slots are for
associated nodes that are part of the active tcp routes. The start
time for jth additional SF during the access cycle is

sj = n + j(l + os) j ∈ {1, 2, . . . , x}, (2)

Cluster ci+1
channel

B Reservation slots

Cluster ci
channel

Cluster ci-1
channel

Original SFAdditional SF

TCP dataWSN data

Cluster ci+1
channel

B Reservation slots

Cluster ci
channel

Cluster ci-1
channel

Original SFAdditional SF

TCP dataWSN data TCP dataWSN data

Figure 6: Principle of access cycle adaptation.



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

where n and l are the start time and length of the original SF,
respectively, and os the idle time between the additional SFs.
The number of additional SFs (x) during an access cycle de-
pends on the lengths of the idle and SF periods.

V. EVALUATION RESULTS

The evaluation is performed by measuring TCP and WSN per-
formance with physical TUTWSN prototypes and two Linux
laptops. TCP internal operation is monitored during active con-
nections over WSN. The applicability of WSN for native tcp is
evaluated with HTTP and FTP applications.

For the evaluation purposes, TUTWSN nodes on a tcp route
utilize modified SFs. SF consists of cluster beacons, one
ALOHA slot, and eight reservation slots. The interval between
SFs is 500 ms. Per-hop acknowledgements are used to guaran-
tee frame delivery. TCP version used in the experiments is the
default Linux kernel TCP Reno.

A. TCP performance

TCP performance is evaluated by monitoring sender CWND
and RTO when a 200 KB file is transmitted through a TCP con-
nection over TUTWSN. The data transfer is made with netcat.
The error situations are generated to the tcp route by removing
and adding nodes.

The variation of sender CWND and RTO values during the
connection (from initiation to completion of the data transfer)
is depicted in Fig. 7. On top of the figure are the number of
hops in the tcp route at the given time intervals and generated
topology changes.

A removal of a node from the tcp route leads to the loss of
TCP data currently processed by the node, whereas a node ad-
dition does not cause errors. As shown in the figure, when
data are lost the size of CWND decreases and RTO increases.
However, WSN is fully operational almost immediately after
the node removal and no congestion occurs. Thus, even though
TCP Reno attempts to avoid activation of slow start algorithm,

0

4

8

12

16

0 250 500 750 1000
Connection time (s)

W
in

d
o

w
 s

iz
e 

(k
B

)

0

40

80

120

160

ti
m

e
o

u
t 

(s
)(k

B
)

CWND RTO Added node Removed node

4 3 2 1 2 3 4 3 2 1 hops

0

4

8

12

16

0 250 500 750 1000
Connection time (s)

W
in

d
o

w
 s

iz
e 

(k
B

)

0

40

80

120

160

ti
m

e
o

u
t 

(s
)(k

B
)

0

4

8

12

16

0 250 500 750 1000
Connection time (s)

W
in

d
o

w
 s

iz
e 

(k
B

)

0

40

80

120

160

ti
m

e
o

u
t 

(s
)(k

B
)

CWND RTO Added node Removed node

4 3 2 1 2 3 4 3 2 1 hops

Figure 7: Sender CWND and RTO with varying WSN topology
during 200 KB TCP data transfer.

CWND is still downsized too aggressively for WSNs. The RTO
is derived from a smoothed Round Trip Time (RTT) of the net-
work. It is increased by the errors but stabilizes afterwards.

B. Round Trip Time

The performance of an HTTP application depends on RTT of
the network. RTTs for a tcp route in TUTWSN are measured
using ping command. Fig. 8 depicts RTTs with IP packet sizes
of 50, 100, 200, 500, and 1000 bytes for different number of
hops. The presented results are averaged over 50 pings. The
given packet size includes 20-byte IP and 8-byte Internet Con-
trol Message Protocol (ICMP) headers. RTTs include Linux
PC processing but it is negligible. Yet, due to TDMA in WSN
there may be at most 250 ms jitter in the delay at the initiation
of transmission.

As shown, RTTs increase steadily for greater number of
hops. For the same number of hops, RTT depends on the num-
ber of SFs that are required for transmitting the fragments of a
packet. Because 50 B and 100 B packets can be sent within a
single SF, their results are similar.

C. Throughput

In the used TUTWSN configuration, a single frame carries 19 B
of TCP data as payload. Thus, with 500 ms access cycle and
eight reservation slots, the theoretical maximum throughput for
a tcp route is 2432 bps. The measured throughput of an FTP
application through a tcp route for different number of hops is
depicted in Fig. 9.

The FTP application is modeled by netcat and the through-
put is measured at the receiving Linux PC for successfully re-
ceived IP packets. The given throughput values are averaged
over 5 minutes of constant loading. Discarded packets are not
included in the results. This and the usage of acknowledge-
ments and retransmissions for guaranteed delivery are the rea-
sons why theoretical maximum is not reached.

D. Power Consumption

In a TDMA-based TUTWSN, a more frequent duty cycle leads
to the increased power consumption. The power consumption

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10
Number of hops

R
o

u
n

d
 t

ri
p

 t
im

e
 (

s)

1000B
500B
200B
100B
50B

(s
)

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10
Number of hops

R
o

u
n

d
 t

ri
p

 t
im

e
 (

s)

1000B
500B
200B
100B
50B

(s
)

Figure 8: Round trip time with varying packet size for different
number of hops.



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

2000

2100

2200

2300

2400

1 2 3 4 5 6 7 8 9 10

Number of hops

T
h

o
u

g
h

p
u

t 
(b

p
s)

Figure 9: Measured throughput for a tcp route for different
number of hops.

has been measured by supplying a node with a 0.4 F capac-
itor. An average current consumption is determined by the
slopes of the capacitor terminal voltages. From the currents,
the power consumption is calculated with 3.0 V supply volt-
age. The power consumption of a node that is part of a tcp
route is measured separately when maintaining a connection
and during maximum loading.

During the tcp route maintenance without TCP data traffic, a
WSN node sends two network and cluster beacons, and listens
for ALOHA slot and two reservation slots. Further, it receives
the cluster beacon of the next hop node. The measured average
power consumption of a node is 1.73 mW. During the maxi-
mum loading the average power consumption is 3.82 mW.

As a comparison, in an environmental monitoring TUTWSN
[14] with two second access cycle a cluster headnode that
routes data from a single subnode to the next hop cluster con-
sumes averagely 0.72 mW. The headnode maintains its own ac-
cess cycle, depicted in Fig. 3, and sends the data received from
subnode and initiated by itself to the next hop during SF of that
cluster. Both nodes initiate a new frame approximately every
tenth second. Thus, the increase of the power consumption due
to the TCP communication is not significant considering the
increased activity and more frequent duty cycle.

VI. CONCLUSIONS AND FUTURE WORK

This paper experiments the performance of TCP/IP in a low-
power WSN. The differences in their communication profiles
are considerable, but TCP/IP and WSN integration is needed
for ubiquitous computing. The presented results indicate that
TCP flow control algorithms perform poorly in WSNs and low-
power WSNs need a frequent duty cycle in order to provide
adequate throughput. Further improvements can be achieved
by using a proxy approach that diminishes the header overhead
and adapts TCP flow control.

Our future work will focus on the the better integration of the
throughput optimized mode to the environmental monitoring

TUTWSN. In TUTWSN, the trade-off between performance
and energy can be adjusted by shortening or lengthening slots
and access cycle. Yet, this requires additional considerations in
the implementation in order to maintain the basic WSN opera-
tions.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, Aug. 2002.

[2] J. A. Stankovic, T. F. Abdelzaher, C. Lu, L. Sha, and J. C. Hou, “Real-
time communication and coordination in embedded sensor networks,”
Proceedings of the IEEE, vol. 91, no. 7, pp. 1002–1022, July 2003.

[3] Y. Tian, K. Xu, and N. Ansari, “Tcp in wireless environments: Problems
and solutions,” IEEE Communications Magazine, vol. 43, no. 3, pp. S27–
S32, Mar. 2005.

[4] W. Chonggang, K. Sohraby, H. Yueming, L. Bo, and T. Weiwen, “Is-
sues of transport control protocols for wireless sensor networks,” in Proc.
2005 Int. Conf. on Communications, Circuits and Systems, HongKong,
China, May 2005, pp. 442–426.

[5] M. Weiser, “Hot topics-ubiquitous computing,” Computer, vol. 26,
no. 10, pp. 71–72, Oct. 1993.

[6] H. Elaarag, “Improving tcp performance over mobile networks,” ACM
Computing Surveys, vol. 34, no. 3, pp. 357–374, Sept. 2002.

[7] D. Göthberg. (2004, June) Micro-ip for embedded systems. [Online].
Available: http://www.micro-ip.org/

[8] Z. Shelby, P. Mähönen, J. Riihijärvi, O. Raivio, and P. Huuskonen,
“Nanoip: the zen of embedded networking,” in Proc. IEEE International
Conference on Communications, vol. 2, Anchorage, Alaska, USA, May
2003, pp. 1218–1222.

[9] A. Dunkels, “Full tcp/ip for 8-bit architectures,” in Proc. 1st Interna-
tional Conference on Mobile Systems, Applications and Services, San
Francisco, CA, USA, May 2003, pp. 85–98.

[10] L. Xiaohua, Z. Kougen, P. Yunhe, and W. Zhaohui, “A tcp/ip implemen-
tation for wireless sensor networks,” in Proc. IEEE International Confer-
ence on Systems, Man and Cybernetics, vol. 7, Hague, Netherlands, Oct.
2004, pp. 6081–6086.

[11] I. Solis and K. Obraczka, “Flip: a flexible interconnection protocol
for heterogeneous internetworking,” Mobile Networks and Applications,
vol. 9, no. 4, pp. 347–361, Aug. 2004.

[12] A. Dunkels, J. Alonso, T. Voigt, H. Ritter, and J. Schiller, “Connect-
ing wireless sensornets with tcp/ip networks,” in Proc. 2nd International
Conference on Wired/Wireless Internet Communications, ser. Lecture
Notes in Computer Science, vol. 2957. Frankfurt, Germany: Springer,
Feb. 2004, pp. 143–152.

[13] M. Kohvakka, M. Hännikäinen, and T. D. Hämäläinen, “Ultra low en-
ergy wireless temperature sensor network implementation,” in Proc. 16th
Annual IEEE International Symposium on Personal Indoor and Mobile
Radio Communications, Berlin, Germany, Sept. 2005.

[14] J. Suhonen, M. Kohvakka, M. Hännikäinen, and T. D. Hämäläinen, “De-
sign, implementation, and experiments on outdoor deployment of wire-
less sensor network for environmental monitoring,” in Proc. Embedded
Computer Systems: Architectures, Modeling, and Simulation, Samos,
Greece, July 2006, accepted.

[15] K. Fall and S. Floyd, “Simulation-based comparisons of tahoe, reno and
sack tcp,” Computer Communication Review, vol. 26, no. 3, pp. 5–21,
July 1996.

[16] M. Krasnyansky. (2005, Aug.) Universal tun/tap driver. [Online].
Available: http://vtun.sourceforge.net/tun/



PUBLICATION 6

M. Kuorilehto, J. Suhonen, M. Hännikäinen, T. D. Hämäläinen, �Tool-Aided Design
and Implementation of Indoor Surveillance Wireless Sensor Network,� in Embed-
ded Computer Systems: Architectures, Modeling, and Simulation, Lecture Notes in
Computer Science, vol. 4599, S. Vassiliadis, M. Bereković, T. D. Hämäläinen (Eds.),
Springer-Verlag, Heidelberg, Germany, 2007, pp. 396�407.

© 2007 Springer-Verlag Berlin Heidelberg. Reprinted with kind permission of Sprin-
ger Science+Business Media.



Tool-Aided Design and Implementation of Indoor
Surveillance Wireless Sensor Network

Mauri Kuorilehto, Jukka Suhonen, Marko Hännikäinen, and Timo D. Hämäläinen

Tampere University of Technology, Institute of Digital and Computer Systems
P.O. Box 553, FI-33101 Tampere, Finland

{mauri.kuorilehto, jukka.suhonen, marko.hannikainen,
timo.d.hamalainen}@tut.fi

Abstract. This paper presents the design and implementation of an indoor sur-
veillance Wireless Sensor Network (WSN) using tools for hastening and facili-
tating the different phases in the WSN development. First, the application case
is described in WISENES (WIreless SEnsor NEtwork Simulator) framework by
four models, which define application, communication, node, and environment.
WISENES enables a graphical design of the models combined with accurate
simulations for performance evaluation. Next, surveillance application tasks and
communication protocols are implemented on node platforms on top of SensorOS
Operating System (OS). A congruent programming model of SensorOS allows a
straightforward mapping of WISENES models to the final implementation. The
evaluation of the indoor surveillance WSN implemented with Tampere Univer-
sity of Technology WSN (TUTWSN) protocols and platforms reaches a lifetime
in order of years while still ensuring reactive operation. Further, the results show
only 9.5 % and 6.6 % differences in simulated and measured networking delay
and power consumption, respectively. Our results indicate that accurate early de-
sign phase simulations can relieve the burden of prototyping and low level imple-
mentation by a realistic configuration evaluation during design time.

1 Introduction

Wireless Sensor Networks (WSN) are an emerging ad hoc networking technology, in
which a large number of miniaturized sensor nodes organize and operate autonomously.
Communication, computation, energy, and memory capacities of individual nodes are
limited, but the overall network capability results from the cooperation of nodes [1].

The envisioned applications for WSNs are diverse in environmental monitoring,
home, industry, health care, and military. In spite of the diversity of applications, they
possess common domain independent characteristics. A typical application gathers
measurement data from different sensors, aggregate them, and route data to a central
gathering point, a sink. Alternatively, nodes perform in-network data fusion and make
either independent or distributed control actions through actuators [2].

The communication in WSNs is controlled by a layered protocol stack. The key
layers are Medium Access Control (MAC) that manages channel access and network
topology, and routing that creates and maintains multi-hop paths between end points
[1]. The communication requirements for a WSN are application-specific, thus a single
protocol stack is not suitable for all cases. Yet, the maturity and properties of WSN

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 396–407, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Tool-Aided Design and Implementation of Indoor Surveillance WSN 397

protocol stacks are evolving, which allow the optimization of existing protocols and
software architectures for a variety of applications through configuration [3].

As the number of design choices and complexity of WSN applications increases, the
management of the vast design space and the configuration exploration for an applica-
tion requires design automation tools. Until recently, design automation has not been
considered in WSN community, but the main focus of research has been on energy ef-
ficient and scalable protocols [2]. However, considering the rapid evolution, the burden
of WSN design without tools will evidently be unbearable. In order to substantially
hasten and facilitate WSN development, tools need to support all phases in the WSN
design and help the designer to make reasonable the design choices [4].

The WSN design flow used in this paper is presented in Fig. 1. Design dimensions
extract the key parameters from the application requirements for steering system design
and implementation phases. In the design phase, a system is divided into separate mod-
els for application, communication, node, and environment. These models are defined,
configured, and evaluated to obtain a suitable system composition for hardware and
software implementation. The system is evaluated by both simulations and prototyping.
In general, simulations reveal possible performance tweaks in large-scale and long-term
deployments, while prototyping verifies the operation of the implementation in its final
execution environment. Before the final deployment, required phases are iterated until
application requirements are met.

In this paper, we present the design and implementation of an indoor surveillance
WSN using support tools. For WSN design, our WIreless SEnsor NEtwork Simulator
(WISENES) [5] defines methods for the formal description of application and com-
munication model functionality and dependencies. WISENES allows accurate perfor-
mance evaluation of graphical Specification and Description Language (SDL) models
through simulation. For the final deployment, application and communication models
are implemented on top of SensorOS [6] Operating System (OS) that offers a congruent
interface with WISENES. The indoor surveillance application is designed and imple-
mented with TUTWSN (Tampere University of Technology WSN) node platforms and
protocols [7]. The evaluation of the design case shows the feasibility of the tools and
their applicability for rapid development of application-specific WSNs.

WSN application requirements

Evaluation of design dimensions

Hardware and software implementation

Prototype WSN evaluation

System model design, configuration, and evaluation

Final deployment

WSN application requirements

Evaluation of design dimensions

Hardware and software implementation

Prototype WSN evaluation

System model design, configuration, and evaluation

Final deployment

Fig. 1. Different phases in the proposed WSN design flow



398 M. Kuorilehto et al.

The rest of the paper is organized as follows. Section 2 discusses related research in
area of WSN design. The requirements for the surveillance application, and TUTWSN
protocols and platforms are presented in Section 3. Section 4 shows WSN design with
WISENES. The prototype implementation of the surveillance WSN on top of SensorOS
is presented Section 5. Finally, conclusions are given in Section 6.

2 Related Work

While a wide variety of system architectures are proposed for WSNs, TinyOS [8] has
gained the most popularity. TinyOS is a component-based OS for event-driven WSNs.
TinyOS component development is facilitated by nesC [9] programming language that
adopts the TinyOS programming model. TOSSIM [10] implements a simulation en-
vironment for large scale WSNs built with TinyOS. For data gathering applications,
TinyOS can be supplemented with TinyDB [11] that abstracts WSN as a database.

Several higher abstraction level design tools are also proposed for TinyOS systems.
VisualSense [12] extends Ptolemy II with WSN features and allows the development of
WSN protocols and applications using different Models-of-Computation (MoC) avail-
able in Ptolemy II. Applications developed with VisualSense are integrated to TinyOS
and TOSSIM through a Viptos interface. GRATIS [13] introduces a graphical tool for
TinyOS component design and management. In [14], the mapping of applications im-
plemented as SDL models to TinyOS components is proposed. A loose relation to
TinyOS is present also in Prowler [15] that is a MATLAB-based simulation environ-
ment targeted for application algorithm testing and optimization for TinyOS nodes.

A platform based design methodology for WSNs is proposed in [4]. The approach
is based on three abstract models for applications, protocols, and hardware platforms.
A Rialto tool defines requirements for the protocols by exploring all possible com-
munication combinations of the application model. The protocol stack configuration
is optimized to meet application requirements in the constraints set by platform can-
didates. A quite similar approach is taken in [16], in which communication protocols
and platform are abstracted to a virtual architecture for algorithm design and synthesis.
The proposed design flow concentrates on the modeling concepts and does not provide
tool support. In [17], a system level design methodology is proposed for cost function
guided optimization of mainly hardware parameters. The tool supported optimization
utilizes static network graphs and energy models for design space exploration.

From the related proposals, most are singular tools addressing only a minor part of
the WSN design. The platform based design in [4] and VisualSense are nearest to our
approach. Compared to [4], WISENES allows the graphical design of not only applica-
tion models but also communication protocols. Further, the mapping of the models to
the final implementation is more straightforward through SensorOS. Compared to Visu-
alSense, WISENES design abstractions and interfaces are more comprehensive and ori-
ented for WSN applications in particular. Further, due to detailed modeling WISENES
outputs more accurate performance results in earlier phase, which hastens the overall
development by avoiding unnecessary iterations caused by flawed design choices.



Tool-Aided Design and Implementation of Indoor Surveillance WSN 399

3 Indoor Surveillance WSN

An indoor surveillance WSN monitors temperature and detects motion in the public
premises of a building. The WSN has three active tasks; motion detection, temperature
sensing, and a sink task for data gathering. The relations between tasks together with
the basic network architecture are illustrated in Fig. 2a.

The surveillance WSN is designed and implemented with TUTWSN protocols and
platforms. In addition to a configurable protocol stack and a family of node platforms,
TUTWSN consists of several applications and different monitoring and control User In-
terfaces (UI) [7]. TUTWSN is accessed through an Application Programming Interface
(API) that defines the data interests for the network.

3.1 Surveillance WSN Requirements

The motion detection task interfaces a Passive Infra-Red (PIR) sensor for generating
movement alerts, which are forwarded to the sink task. The temperature sensing task
measures surrounding temperature periodically and sends it to the sink task. Tempera-
ture sensing task is activated once per minute in all nodes. The motion detection task
is present only on nodes located in public premises, such as isles. The sink task is exe-
cuted on a gateway that connects WSN to external networks. The sink stores data to a
database and forwards alerts to monitoring UIs.

The requirements for the two sensing tasks differ significantly. The motion detection
task is event-based and activated by movement. Generated alerts have high priority,
are delay critical, and need reliable transmission. Instead, periodic temperature mea-
surements are low priority packets and occasional data losses are acceptable. In order
to avoid constant maintenance, the WSN should operate approximately a year without
battery replacements.

3.2 TUTWSN Protocols

TUTWSN MAC protocol combines slotted-ALOHA and reservation data slots for adap-
tive and extremely energy efficient operation. The clustered topology is maintained with
periodic beacons by cluster headnodes that also perform inter-cluster communication
by synchronizing to neighbor headnodes. Subnodes maintain synchronization and com-
municate only with their parent headnodes. The MAC protocol provides a reliable data
transmission service for upper layers. A bandwidth allocation within a cluster is con-
trolled by an adaptive algorithm that reacts to the communication profile changes.

TUTWSN routing protocol forms routes towards a sink based on cost-gradients.
Each node maintains several alternative routes each with a different cost function. Rout-
ing selects typically two or three synchronized parents for MAC according to the next
hops for routes. The cost function used for application data depends on the traffic class.
The cost information is updated in the network maintenance communication, thus addi-
tional control communication is needed only for adaptive recovering from link failures.

TUTWSN protocols can be tailored for different kinds of applications with a rich set
of configuration parameters during both design and runtime. Design time MAC layer
configuration includes e.g. access cycle and network maintenance timing, role selection



400 M. Kuorilehto et al.

WSN

Motion

Temperature
Sink

Nodes

UIUIUI

Ethernet
Gateway

Database

WSNWSN

Motion

Temperature
Sink

Nodes

UIUIUI

Ethernet
Gateway

Database

(a)

Antenna

MCU board

(MCU, radio,

sensors)

Power unit

UI (led,

button)

Antenna

MCU board

(MCU, radio,

sensors)

Power unit

UI (led,

button)

(b)

Fig. 2. An overview of (a) surveillance WSN architecture and (b) TUTWSN PIC node

directions, intervals for topology control, and bandwidth reservation and usage param-
eters. Cost function coefficients and protocol reactiveness can be configured for routing
at design time. During runtime, MAC layer can be configured by altering number of
Time Division Multiple Access (TDMA) slots and node roles, and routing by selecting
used cost functions. The applications of a network can be configured by changing the
data interests.

3.3 TUTWSN Prototype Platform

TUTWSN node platform used in this paper is illustrated in Fig. 2b. The main compo-
nent is PIC18LF4620 nanowatt series Micro-Controller Unit (MCU) with 64 KB code
and 3986 B data memory. MCU contains also an 10-bit integrated Analog-to-Digital
Converter (ADC) and 1 KB of EEPROM as a non-volatile data storage. The power unit
consists of a MAX1725 regulator with 2.4 V output voltage and a 3 V CR123A lithium
battery with 1600 mAh capacity. In addition, a DS620 digital thermometer is integrated
to the platform. A PIR-sensor is attached to a connector provided for external sensors.
The radio interface on the platform is a 2.4 GHz nRF2401A transceiver unit, which
supports 1 Mbit/s data rate and transmit power between -20. . .0 dBm.

4 WSN Design with WISENES

In WISENES [5], protocols and applications are designed in high abstraction level us-
ing SDL. SDL components, blocks, can be structured hierarchically in order to clarify
the presentation, while the functionality is implemented in processes described as Ex-
tended Finite State Machines (EFSM). Processes communicate with signals that initiate
state transitions at the recipient processes. Such a programming model is suitable for
communication systems and for WSN applications that are typically activated by an
event and alter their state and processing depending on the events and their parameters.

WISENES utilizes commercial Telelogic TAU SDL Suite for the graphical design of
protocols and applications, and for the code generation of simulation cases. The core
functionality, modeling approach, simulation framework, and environment and platform



Tool-Aided Design and Implementation of Indoor Surveillance WSN 401

description are independent of the Telelogic tools. The characteristics of the environ-
ment and sensor nodes are defined accurately for WISENES in a set of eXtensible
Markup Language (XML) configuration files. The detailed parameters and the realis-
tic modeling of wireless transmission medium, physical phenomena, and sensor node
hardware capabilities result to accurate performance information of simulated proto-
cols, nodes, and networks. Simulation results are stored to logs for the post-processing
of the energy, processing, memory, and sensor usage statistics for individual nodes.
Further, networking performance for the whole WSN and for different applications is
output in terms of delays, throughput, collisions, and bandwidth utilization.

4.1 WISENES Model Abstraction

WISENES incorporates four models defined by a designer. These are application model,
communication model, node model, and environment model. The hierarchy and main
properties of the models are depicted in Fig. 3. The environment model defines the
parameters for wireless communication (signal propagation, noise), describes overall
characteristics (average values, variation) for different phenomena, and specifies sepa-
rate target areas (e.g. buildings) and objects (e.g. humans, animals, vehicles). The en-
vironment model defines also the mobility of nodes and target objects.

WISENES application model allows a designer to describe the functionality and re-
quirements of an application separately. This eases the exploration of the performance
and suitability of application configurations for different kinds of networks and envi-
ronments. The functionality of an application is divided into tasks that are implemented
as SDL statecharts. The operational parameters and requirements of the application
are specified in XML configuration files. These parameters define the dependencies
between the application tasks, task activation patterns, and Quality of Service (QoS) re-
quirements for the applications. The QoS parameters define task priorities, networking
requirements in terms of data reliability and urgency, and an overall network optimiza-
tion target. The optimization target is used to steer communication model and it can be
for example a maximal network lifetime, load balancing, or high performance.

The communication model specifies the networking for WSN applications. The
WISENES communication model consists of a protocol stack implemented in SDL and

Environment model

• Wireless medium

parameters

• Phenomena

characteristics

• Target areas and

objects

• Mobility charts

• Parameters in XML

Node model

• Resource control 

• Interfaces for

application and

communication

models

• Runtime functionality

in SDL

• Parameters in XML

Application model

• Set of communicating tasks 

• Functionality in SDL

• Parameters in XML

Communication model

• Layered protocol stack

• Functionality in SDL

• Compile-time parameters

in header files

Environment model

• Wireless medium

parameters

• Phenomena

characteristics

• Target areas and

objects

• Mobility charts

• Parameters in XML

Node model

• Resource control 

• Interfaces for

application and

communication

models

• Runtime functionality

in SDL

• Parameters in XML

Application model

• Set of communicating tasks 

• Functionality in SDL

• Parameters in XML

Communication model

• Layered protocol stack

• Functionality in SDL

• Compile-time parameters

in header files

Fig. 3. WISENES models for designer and their main characteristics



402 M. Kuorilehto et al.

a set of configuration parameters. Protocol configuration parameters are set at design
time, while application-specific requirements, such as network optimization target, are
input from the application model during runtime.

The node model describes the characteristics and capabilities of physical node plat-
forms. The node model is implemented by WISENES framework and it is parameter-
ized in XML configuration files that define node resources, peripherals and transceivers.
WISENES SDL node model implements an OS type interface to applications and com-
munication protocols for resource management and execution control.

4.2 Surveillance WSN Design

In WSN design with WISENES, the initial selection of the communication protocols
and their parameters is made by the designer. It is our belief that hands-on knowledge
and past experiences always result to a sophisticated selection for a starting point.

WISENES Model Design. WSN design in WISENES starts with the definition of
models. The environment model is defined in XML. For the indoor surveillance WSN
case, it specifies a slightly error-prone communication environment, stationary node
locations, typical average values for phenomena, and few target objects with random
mobility patterns. A node model is implemented for TUTWSN PIC node by describing
its physical characteristics in XML configuration files. The main functionality for the
designed WSN is defined in application and communication models.

The application model consists of the three tasks. Their parameters are given in XML
configuration files. Fig. 4a shows configuration parameters for the motion detection
task. The functionality of tasks is implemented as SDL statecharts. WISENES imple-
mentation of the motion detection task is depicted in Fig. 4b. The task is activated by
two events; a motion detection event from a PIR-sensor and a timer event for PIR-sensor
reactivation. A motion detection event triggers a data transmission and the initialization
of a timeout, while a timer event reactivates the PIR-sensor. Timeout is needed to avoid
continuous alerts. The periodical sensing task initiates a temperature measurement on a
timer event, and sends data and initializes the timer after a sensor event. The sink task
stores received data to a database.

The communication model design for TUTWSN consists of five SDL processes.
TUTWSN API is implemented in a single process, while routing and MAC layers are
divided into two separate processes. In routing layer, topology and route management
are implemented in one process, and data handling in another. In MAC, channel access
is implemented separately from TDMA adaptation control. The processes incorporate
totally 48 states, 372 transitions, and 4937 different execution paths.

The communication model configuration is based on the application requirements.
TUTWSN MAC protocol uses 2 s access cycle to balance energy-efficiency, scalability,
and delay-critical operation. The number of ALOHA slots is set to four and reservation
slots to eight. Bandwidth allocation parameters are explored to obtain the most suitable
configuration. Two different cost functions are defined for routing; a delay optimized
for motion alerts and a network lifetime optimized for temperature measurements.

Simulation Results. The performance of the surveillance WSN with the presented
model implementations is evaluated with WISENES simulations. A network of 150



Tool-Aided Design and Implementation of Indoor Surveillance WSN 403

<application_model>
<task id=”MOTION”>
<interval ms=”0”/>
<priority level=”1”/>
<sensors>

<sensor id=”PIR”/>
</sensors>
<data>

<target task=”SINK”/>
<priority level=”1”/>
<reliable set=”yes”/>
<urgent set=”yes”/>
<opt target=”DELAY”/>

</data>
</task>
<task id=”TEMPERATURE”>
...

</task>
</application_model>

(a)

;FPAR
  IN motionNodeId NodeId_t,
  IN motionEvent ApplicationWaitEvent_t,
  IN/OUT motionParameter ApplicationTaskParameter_t,
  IN/OUT motionInfo ApplicationTaskCommonItem_t;

procedure MotionDetectTask

DCL
  motionTime TIME,
  motionData AppDataUnit_t;

motionEvent

motionTime :=
CALL NodeTimer_Now

SenseDataReq(
  MOTION_TASK,
  PH_MOTION)

motionData :=
CALL MotionDetectMakeAlert(
  motionNodeId,
  motionTime)

ApplicationDataReq(
  SINK_TASK,
  MOTION_DETECT_QOS,
  length( motionData ),
  motionData )

motionInfo!wait_event :=
  APPLICATION_WAIT_EVENT_SENSOR;
motionInfo!wait_time := 0;

motionInfo!wait_event :=
  APPLICATION_WAIT_EVENT_TIMER;
motionInfo!wait_time :=
  motionTime +   D_CAST * PIR_REACTIVE_TIME_S;

APPLICATION_WAIT_EVENT_SENSOR APPLICATION_WAIT_EVENT_TIMER

ELSE

;FPAR
  IN motionNodeId NodeId_t,
  IN motionEvent ApplicationWaitEvent_t,
  IN/OUT motionParameter ApplicationTaskParameter_t,
  IN/OUT motionInfo ApplicationTaskCommonItem_t;

procedure MotionDetectTask

DCL
  motionTime TIME,
  motionData AppDataUnit_t;

motionEvent

motionTime :=
CALL NodeTimer_Now

SenseDataReq(
  MOTION_TASK,
  PH_MOTION)

motionData :=
CALL MotionDetectMakeAlert(
  motionNodeId,
  motionTime)

ApplicationDataReq(
  SINK_TASK,
  MOTION_DETECT_QOS,
  length( motionData ),
  motionData )

motionInfo!wait_event :=
  APPLICATION_WAIT_EVENT_SENSOR;
motionInfo!wait_time := 0;

motionInfo!wait_event :=
  APPLICATION_WAIT_EVENT_TIMER;
motionInfo!wait_time :=
  motionTime +   D_CAST * PIR_REACTIVE_TIME_S;

APPLICATION_WAIT_EVENT_SENSOR APPLICATION_WAIT_EVENT_TIMER

ELSE

(b)

Fig. 4. Example WISENES application model (a) XML parameters and (b) SDL implementation
for motion detection task

semi-randomly deployed nodes is simulated for a 24-hour period. 50 nodes include a
PIR-sensor and three operate as a sink, while the rest measure temperature and perform
data routing. Different configurations are evaluated by parameterizing bandwidth allo-
cation algorithm. A default reservation slot interval (r) sets the maximum time between
granted reservation slots for a member node. In simulations r is set to 6 and 12 seconds.

Application requirements are verified by monitoring the delay of motion alerts, and
node power consumption. The delay of temperature measurements is considered for
comparison. Fig. 5a shows the average delays of motion alerts and temperature mea-
surements for different r values as the function of number of hops from a sink node (hop
count). As shown, with a same hop count, the alerts experience slightly smaller delay
than the temperature measurements, because of the delay optimized routing of alerts.
Further, in TUTWSN a delay optimized route has typically less hops, which further
improves the performance compared to temperature measurements. The average power
consumptions of 10 randomly selected headnodes are 650 µW and 635 µW, and of 10
subnodes with PIR-sensor 434 µW and 443 µW for r = 6, and r = 12, respectively.

The simulation results of initial communication model configuration are acceptable.
The configuration with r = 6 obtains a slightly better performance and balances net-
working reactiveness and lifetime. Assuming that 90 % of the battery capacity can be
exploited, with 1600 mAh CR123A battery the simulated power consumptions indicate
lifetimes of 276 and 414 days for TUTWSN headnode and subnode, respectively. By
rotating headnode and subnode roles the network can reach a lifetime of a year.

5 WSN Prototype Implementation

After the design is validated by simulations, the prototype implementation is made.
The application tasks and protocols are implemented manually on top of SensorOS [6]



404 M. Kuorilehto et al.

according to the WISENES application and communication models. SensorOS offers
a congruent programming interface with WISENES, which makes a fluent transition
between phases possible.

5.1 SensorOS

SensorOS is a pre-emptive multi-threading OS targeted for time critical WSN appli-
cations and very resource constrained nodes. The scheduling algorithm of SensorOS
is priority-based, but for less time critical applications SensorOS incorporates an op-
tional more lightweight kernel with a polling run-to-completion scheduler. SensorOS
kernel includes Inter-Process Communication (IPC), timing, memory, and power man-
agement services and drivers for interrupt-driven peripherals. Mutexes are included to
the pre-emptive kernel for the synchronization of thread execution. Application tasks
and communication protocols are implemented as threads on top of SensorOS API.

WISENES interfaces are adopted in SensorOS by message-passing IPC and an event
waiting interface. The message-passing allows a similar communication between
threads as SDL signals. The event waiting interface enables the implementation of a
state-based operation similar to WISENES by offering a single function for the wait-
ing of timeouts, external peripheral events, and IPC messages. Further, the power and
memory management in SensorOS are identical to those of WISENES node model.

5.2 Surveillance WSN Implementation on TUTWSN Prototypes

The prototype implementation of the surveillance WSN is realized in a limited scale
with 28 nodes (10 with PIR-sensors) on a realistic deployment environment. The full
version of SensorOS is used in nodes equipped with PIR-sensors to guarantee reac-
tiveness, while the rest of the nodes have a lightweight kernel that allows longer packet
queues. The topology and environment for the prototyped surveillance WSN is depicted
on a TUTWSN UI screen capture in Fig. 6. Arrows in the figure show the latest route.

Prototype Implementation. Application tasks are implemented as SensorOS threads.
Fig. 7 lists the code of the thread implementing the motion detection task. For

 0

 5

 10

 15

 20

 25

 30

 35

 1  2  3  4  5  6  7

D
el

ay
 (

s)

Number of hops

Temp, r=12
Motion, r=12
Temp, r=6
Motion, r=6

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 1  2  3  4  5  6  7

D
el

ay
 (

s)

Number of hops

Temperature
Motion

(b)

Fig. 5. Average (a) simulated and (b) measured (with r=6) delays for motion alerts and tempera-
ture measurements



Tool-Aided Design and Implementation of Indoor Surveillance WSN 405

Fig. 6. A screen capture from TUTWSN UI illustrating the prototyped surveillance WSN opera-
tion

readability, the details of PIR-sensor interfacing and data message construction are left
out. Other application tasks are implemented similarly. The TUTWSN protocol stack
is implemented in four threads. API, data routing, and MAC channel access are imple-
mented as separate threads similarly to WISENES communication model design, but
MAC and routing layer management operations are integrated to a same thread in or-
der to diminish IPC messaging. TUTWSN protocols are parameterized with the values
obtained in WISENES design.

The subnode implementation on TUTWSN PIC node with full feature SensorOS
consumes 38.1 KB of code and 2253 B of data memory. These are 60 % and 57 % of
available memory resources, respectively. The data memory consumption does not in-
clude a heap reserved for dynamic memory. The implementation of temperature mea-
surement application and TUTWSN protocols on top of a lightweight SensorOS kernel
takes 58.2 KB code and 2658 B data memory, which are 91 % and 67 % of available
memory, respectively.

Prototype Results. The same performance metrics gathered from WISENES simula-
tions are evaluated also for the prototype implementation in order to verify the accuracy
of WISENES models and to validate the implementation for final deployment. The de-
lays of motion alerts and temperature measurement data as the function of hop count
are depicted in Fig. 5b. In the prototype implementation r is 6 seconds.

The results correspond closely to those obtained from WISENES, average difference
being 8.9 % for motion alerts and 10.2 % for temperature data. The reason for a slightly
better performance obtained in WISENES is less retransmissions due to a bit optimistic



406 M. Kuorilehto et al.

void motion_detect (void) {
os_eventmask_t event;
os_ipc_message_t *msg;

activate_pir ();
while (1) {

event = os_wait_event (EVENT_ALARM | EVENT_PIR_INTERRUPT);
if (event & EVENT_ALARM) {

activate_pir ();
} else if (event & EVENT_PIR_INTERRUPT) {

msg = make_motion_alert_msg (SINK_TASK);
os_msg_send (API_PID, msg);
os_set_alarm (PIR_REACTIVATE_TIMEOUT_MS);

}
}

}

Fig. 7. The implementation of the motion detection application task as a SensorOS thread

environment model used in simulations. The additional loading due to the larger number
of nodes in WISENES simulations is balanced by three sinks.

The averages of measured power consumptions are 693 µW for a headnode and
467 µW for a subnode equipped with a PIR-sensor. For comparison, the measured power
consumption of a subnode running a lightweight kernel without a PIR-sensor in the
same WSN is 257 µW. These are also analogous with WISENES results, average dif-
ference being 6.2 % for headnodes and 7.0 % for subnodes with PIR-sensor.

6 Conclusions

In this paper, we present the design and implementation of an indoor surveillance WSN
with WISENES and SensorOS. The high abstraction level models are first designed in
graphical environment and then implemented on top of a full feature OS on node plat-
forms. By enabling a realistic evaluation of different configurations during the design
phase, the presented tools hasten the WSN development significantly. Further, the con-
gruent programming models make the implementation of applications and protocols on
top of SensorOS straightforward according to the WISENES models. The surveillance
WSN evaluation proves the accuracy of WISENES simulations and shows the suitabil-
ity of TUTWSN and SensorOS for the application implementation.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine 40(8), 102–114 (2002)

2. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: research challenges.
Elsevier Ad Hoc Networks 2(4), 351–367 (2004)

3. Römer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wireless Com-
munications 11(6), 54–61 (2004)

4. Bonivento, A., Carloni, L.P., Sangiovanni-Vincentelli, A.: Platform based design for wireless
sensor networks. Mobile Networks and Applications 11(4), 469–485 (2006)



Tool-Aided Design and Implementation of Indoor Surveillance WSN 407

5. Kuorilehto, M., Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: High level design and
implementation framework for wireless sensor networks. In: Proc. Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation, Samos, Greece, pp. 384–393 (2005)

6. Kuorilehto, M., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Sensoros: a new operating
system for time critical wsn applications. In: Proc. Embedded Computer Systems: Architec-
tures, Modeling, and Simulation, Samos, Greece (2007)

7. Suhonen, J., Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Design, implementation,
and experiments on outdoor deployment of wireless sensor network for environmental mon-
itoring. In: Proc. Embedded Computer Systems: Architectures, Modeling, and Simulation,
Samos, Greece, pp. 109–121 (2006)

8. Hill, J., Szewczyk, R., Woo, A., et al.: System architecture directions for networked sen-
sors. In: Proc. 9th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, USA, pp. 94–103 (2000)

9. Gay, D., Levis, P., Behren, R.v., Welsh, M., Brewer, E., Culler, D.: The nesc language: A
holistic approach to networked embedded systems. In: Proc. ACM Conference on Program-
ming Language Design and Implementation, San Diego, CA, USA, pp. 1–11 (2003)

10. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation of en-
tire TinyOS applications. In: Proc. 1st ACM Conference on Embedded Networked Sensor
Systems, Los Angeles, CA, USA, pp. 126–137 (2003)

11. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query
processor for sensor networks. In: Proc. ACM International Conference on Management of
Data, San Diego, CA, USA, pp. 491–502 (2003)

12. Baldwin, P., Kohli, S., Lee, E.A., Liu, X., Zhao, Y.: Modeling of sensor nets in ptolemy
II. In: Proc. 3rd International Symposium on Information Processing in Sensor Networks,
Berkeley, CA, USA, pp. 359–368 (2004)

13. Völgyesi, P., Lèdeczi, À.: Component-based development of networked embedded applica-
tions. In: Proc. 28th Euromicro Conference, Dortmund, Germany, pp. 68–73 (2002)

14. Dietterle, D., Ryman, J., Dombrowski, K., Kraemer, R.: Mapping of high-level sdl models
to efficient implementations for tinyos. In: Proc. Euromicro Symposium on Digital System
Design, Rennes, France, pp. 402–406 (2004)

15. Simon, G., Völgyesi, P., Maròti, M., Lèdeczi, À.: Simulation-based optimization of commu-
nication protocols for large-scale wireless sensor networks. In: Proc. 2003 IEEE Aerospace
Conference. vol. 3., Big Sky, MT, USA pp. 1339–1346 (2003)

16. Bakshi, A., Prasanna, V.K.: Algorithm design and synthesis for wireless sensor networks.
In: Proc, International Conference on Parallel Processing, Montreal, Quebec, Canada pp.
423–430 (2004)

17. Shen, C.C., Badr, C., Kordari, K., Bhattacharyya, S.S., Blankenship, G.L., Goldsman, N.: A
rapid prototyping methodology for application-specific sensor networks. In: Proc. IEEE In-
ternational Workshop on Computer Architecture for Machine Perception and Sensing, Mon-
treal, Quebec, Canada (2006)


	P1_Kuorilehto_RapidDesignAndEvaluationFrameworkForWSNs.pdf
	Rapid design and evaluation framework for wireless sensor networks
	Introduction
	Related work
	Networking oriented simulators for WSN
	Sensor node simulators
	Comparison of WISENES with related simulators

	Designing WSNs with WISENES
	WISENES input and output
	WISENES user interfaces
	WISENES tools

	WISENES framework
	SDL introduction
	WISENES instantiation
	Central simulation control
	Transmission medium
	Sensing channel
	Sensor node
	Physical layer
	Sensor interface
	Application layer
	Node control

	Prototype mapping in WISENES
	Simulation of node code implementations in WISENES

	WISENES use-cases: TUTWSN and ZigBee
	TUTWSN implementation
	TUTWSN protocol stack
	TUTWSN prototype platform

	ZigBee implementation
	ZigBee protocol stack
	ZigBee prototype platform


	WISENES evaluation
	WISENES performance
	Prototype mapping results
	TUTWSN simulation results
	Power consumption
	TUTWSN lifetime
	Delay and throughput
	TUTWSN adaptability

	ZigBee simulation results
	Small scale ZigBee network
	Large scale network


	Conclusions
	References


	P3_Kuorilehto_SensorOsNewOperatingSystemsForTimeCriticalWsnApplications.pdf
	SensorOS: A New Operating System for Time Critical WSN Applications
	Introduction
	Related Work
	Contents of the Paper

	SensorOS Design
	Design Requirements
	SensorOS Architecture
	SensorOS Components

	TUTWSN Platforms and Protocols
	TUTWSN Node Platform
	TUTWSN Protocols

	SensorOS Implementation
	Implementation of Hardware Abstraction Layer
	Implementation of SensorOS Components

	Evaluation
	Resource Usage
	Context Switch Performance
	Test Application Operation

	Conclusions and Future Work
	References


	P6_Kuorilehto_ToolAidedDesignAndImplementationOfIndoorSurveillanceWsn.pdf
	Tool-Aided Design and Implementation of Indoor Surveillance Wireless Sensor Network
	Introduction
	Related Work
	Indoor Surveillance WSN
	Surveillance WSN Requirements
	TUTWSN Protocols
	TUTWSN Prototype Platform

	WSN Design with WISENES
	WISENES Model Abstraction
	Surveillance WSN Design

	WSN Prototype Implementation
	SensorOS
	Surveillance WSN Implementation on TUTWSN Prototypes

	Conclusions
	References





