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Abstract

Metal detectors have been used for a long time for treasure hunting, security screening,
and finding buried objects such as landmines or unexploded ordnance. Walk-through
metal detection (WTMD) portals are used for making sure that forbidden or threatening
metallic items, such as knives or guns, are not carried into secure areas at critical locations
such as airports, court rooms, embassies, and prisons.
The 9/11 terrorist act has given rise to stricter rules for aviation security worldwide, and
the ensuing tighter security procedures have meant that passengers face more delays at
airports. Moreover, the fear of terrorism has led to the adoption of security screening
technology in a variety of places such as railway and coach stations, sports events, malls,
and nightclubs.
However, the current WTMD technology and scanning procedures at airports require
that all metallic items be removed from clothing prior to scanning, causing inconvenience.
Furthermore, alarms are triggered by innocuous items such as shoe shanks and artificial
joints, along with overlooked items such as jewellery and belts. These lead to time-
consuming, manual pat-down searches, which are found inconvenient, uncomfortable, and
obtrusive by some.
Modern WTMD portals are very sensitive devices that can detect items with only small
amounts of metal, but they currently lack the ability to further classify the detected item.
However, if a WTMD portal were able to classify objects reliably into, e.g., “knives”,
“belts”, “keys”, the need for removing the items prior to screening would disappear,
enabling a paradigm shift in the field of security screening.
This thesis is based on novel research presented in five peer-reviewed publications. The
scope of the problem has been narrowed down to a situation in which only one metallic
item is carried through the portal at a time. However, the methods and results presented
in this thesis can be generalized into a multi-object scenario. It has been shown that by
using a WTMD portal and the magnetic polarisability tensor, it is possible to accurately
distinguish between threatening and innocuous targets and to classify them into 10 to 13
arbitrary classes. Furthermore, a data library consisting of natural walk-throughs has
been collected, and it has been demonstrated that the walk-through data collected with
the above portal are subject to phenomena that might affect classification, in particular a
bias and the so-called body effect. However, the publications show that, by using realistic
walk-through data, high classification accuracy can be maintained regardless of the above
problems. Furthermore, a self-diagnostics method for detecting unreliable samples has
also been presented with potential to significantly increase classification accuracy and the
reliability of decision making.
The contributions presented in this thesis have a variety of implications in the field of
WTMD-based security screening. The novel technology offers more information, such as
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ii Abstract

an indication of the probable cause of the alarm, to support the conventional screening
procedure. Moreover, eliminating the need for removing all metallic items prior to
screening enables design of new products for scenarios such as sports events, where
conventional screening procedures might be inconvenient, creating thus new business
possibilities for WTMD manufacturing companies.

The positive results give rise to a variety of future research topics such as using wideband
data, enabling simultaneous classification of multiple objects, and developing the portal
coil design to diminish signal nonlinearities. Furthermore, the ideas and the basic principles
presented in this thesis may be applied to other metal detection applications, such as
humanitarian demining.
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Nomenclature

The following is not an exhaustive list of all symbols in this thesis. However, there are
various symbols used throughout this thesis and they are listed here, along with some
selected important ones. The symbols that are not included here are explained whenever
used, or their meaning will be clear from the context of use. The use of a symbol for
several distinct purposes has been avoided.

Latin alphabet

D(a, b) Distance between a and b
Ht, Hr H-fields for transmit and receive coils, respectively
={} Imaginary part of the given complex number
j Imaginary unit
K(a,b) Kernel function of input vectors a and b
K Neighbourhood size parameter for the KNN algorithm
↔
M Theoretical magnetic polarisability tensor
M̂ Estimated magnetic polarisability tensor
mi,j Element (i, j) of an MPT matrix
N Number of elements (in a vector, sum, etc.)
p Object xyz-position vector
p̂ Estimated object xyz-position vector
P Theoretical object trajectory
P̂ Estimated object trajectory
P (var) Probability of var
P (var1 | var2) Probability of var1, given var2
Q(ω) Quadrature signal
r Residual value
R(ω) In-phase signal
<{} Real part of the given complex number
t Time
x Sample, feature vector

Greek alphabet

β Levenberg-Marquardt solution, sample consisting of M̂ and P̂
λ MPT eigenvalue
λ 1x3 vector of MPT eigenvalues
µ Bias signal
ω Angular frequency

ix



x Nomenclature

Ω Set of classes, i.e., states of nature
Ωi Class i
ρ Theoretical portal input signal
ρ̂ Measured portal input signal
τ Magnitude of eigenvalue λ
ϕ Phase angle of eigenvalue λ



List of Publications

I Makkonen J., Marsh L. A., Vihonen, J., Visa, A., Järvi, A., Peyton, A. J. "Clas-
sification of metallic targets using a single frequency component of the magnetic
polarisability tensor", Journal of Physics: Conference Series, 450(1):012038, 2013.

II Makkonen J., Marsh L. A., Vihonen, J., Järvi, A., Armitage, D. W., Visa, A., Peyton,
A. J. "KNN Classification of Metallic Targets using the Magnetic Polarizability
Tensor", Measurement Science and Technology, 25(5):055105, 2014.

III Marsh L. A., Makkonen J., Vihonen, J., Visa, A., Järvi, A., Armitage, D. W.,
Peyton, A. J. "Investigation of the significance of the ’body effect’ on sensitivity to
metallic objects in a walk-through metal detector", Journal of Physics: Conference
Series, 450(1):012037, 2013.

IV Makkonen J., Marsh L. A., Vihonen, J., O’Toole, M. D., Armitage, D. W., Järvi,
A., Peyton, A. J., Visa, A. "Determination of Material and Geometric Proper-
ties of Metallic Objects using the Magnetic Polarisability Tensor", IEEE Sensors
Applications Symposium (SAS), Zadar, Croatia, 13-15 April, 2015.

V Makkonen J., Marsh L. A., Vihonen, J., Järvi, A., Armitage, D. W., Visa, A.,
Peyton, A. J. "Improving Reliability for Classification of Metallic Objects using a
WTMD Portal", Measurement Science and Technology, 26(10):105103, 2015.

xi





1 Introduction

Metal detectors have been used for a long time for treasure hunting, security screening,
and finding buried objects such as landmines or unexploded ordnance (UXO). History
tells us that the first proper metal detector was used already in 1881 by Dr. Alexander
Graham Bell. The then president of the United States of America (US), James Garfield,
had been shot by an assassin. A bullet was stuck inside the president, and in an attempt
to save his life, Dr. Bell developed a device that could successfully detect small concealed
metallic items. However, the device did not work on the president and the bullet was not
found. Later, it was discovered that the metallic coil spring bed that the president was
lying on caused so much background noise as to compromise Dr. Bell’s effort [1]. This is
an important lesson about the significance of background interference and signal-to-noise
ratio (SNR) in detecting and classifying metallic objects.

Metal detection technology was already in use at the time of World War II and advanced
rapidly due to the need for land mine detection [2]. A study by Roston [3] proves that,
already in 1948, the research community knew how to distinguish between ferrous and
conductive targets. The motivation for the separation was to suppress unwanted signals
caused by elements such as ferrous rocks and thus to avoid the problem of the above Bell
scenario.

Walk-through metal detection (WTMD) portals are devices capable of detecting metallic
items carried through their detection space. The portals are used to ensure that forbidden
or threatening metallic items, such as knives or guns, are not carried into secure areas.
Airports are perhaps the obvious examples of metal detection, but these devices have also
been used at, for example, government buildings, such as court rooms, embassies, and
prisons. Historically, the reason for adopting WTMD technology, first at airports, was
that between 1968-1972, 364 plane hijackings were reported worldwide. Consequently, a
law was introduced in 1973, stating that all passengers and their luggage must be checked
for concealed weapons [4, 5].

In fact, a great number of plane hijackings have been carried out by using knives instead
of firearms. For example, such a case happened in New York in September 2001 (The
9/11 terrorist act), when two commercial flights were hijacked and crashed into buildings,
causing the death of 2996 people and significant damage to the buildings, e.g., destroying
two 110-story World Trade Center towers [6]. This gave rise to stricter rules for aviation
security worldwide [7]. Tighter security measures mean that passengers must now arrive
earlier at airports and face more delays [8].

Moreover, after this terrifying incident, the fear of terrorism has led to the adoption of
security screening technology in a variety of scenarios. High speed trains [9], bus stations
[10], marine ports, sports events [11–13] and even malls [14, 15], nightclubs, and schools
[16, 17] have been secured, or have been suggested to be secured by using WTMD portals.
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2 Chapter 1. Introduction

However, e.g., the current WTMD technology and scanning procedure at the airports
requires that passengers must remove all metallic items from their clothing prior to
scanning. Furthermore, if the portal sets off an alarm, a manual pat-down search must
be conducted on the passenger, a procedure that is time-consuming, labour and capacity
intensive (i.e., more parallel lines for scanning), and therefore causes delays. Passengers
may find this inconvenient, and the pat-down search is seen as uncomfortable and obtrusive.
In addition, those with artificial, metallic hip, or shoulder joint replacements often trigger
the current detectors [18], resulting in unnecessary searches.
Modern WTMD portals are very sensitive devices and can detect items with only small
amounts of metal, such as handcuff keys [19]. However, their ability to further classify the
detected item is limited. The portals must fulfill a certain set of requirements [20] defined
by, e.g., the US National Institute of Justice (NIJ [21]). These requirements specify which
threatening items must be detected by the portal and trigger an alarm, and, on the other
hand, which innocuous items should not trigger an alarm. There is also an upper limit for
the number of allowed false alarms (i.e., the false positive (FP) rate). These requirements
change due to increasing safety concerns that again affect legislation. Therefore, portal
devices must be modifiable in order to accommodate any new requirements.
In addition to their ability to detect the metallic items, modern portals can roughly
determine the location of the potential threat. This implementation varies by the
manufacturer, but generally the portals indicate a portal region or a horizontal/vertical
band of the likely object location and thus help security personnel in their manual
pat-down search.
The current practice of removing all metal before scanning simplifies the task of the
portal by significantly narrowing down the problem scenario. However, if the WTMD
portal could, in addition to detecting the metallic items, reliably classify objects into
classes “knife”, “belt”, “lighter”, “keys”, and such, the need to remove them items would
disappear and allow, e.g., the passengers with artificial joints to bypass time-consuming
pat-down searches. Moreover, crowds of people entering, e.g., shopping centres or sports
events would be inconvenient and slow to scan using the airport style procedure, in which
all metal has to be removed before screening. Fine-grained classification of objects would
enable portal manufacturers to design a variety of new products for high throughput of
people without compromising safety. The purpose of this thesis is to show that such a
paradigm shift in WTMD-based security screening is possible.

1.1 Related work

Walk-through metal detection belongs to a wider scope of concealed weapon detection
(CWD). The use of a variety of other technologies has been proposed for CWD, including
millimetre waves, and Terahertz, Infrared, and X-ray -imaging [22, 23]. These, however,
will not be covered in this thesis.
There are a few approaches in the literature that have dealt with an intelligent WTMD
system, based both on electromagnetic induction (EMI) and magnetometer sensors. The
approaches by Al-Qubaa et al. [24], Elgwel et al. [25], and Kauppila et al. [26] use EMI,
and these studies will be discussed further in Chapter 5. On the other hand, Roybal et al.
[27] and Kotter et al. [28] used a magnetometer -based portal to detect and locate metallic
objects and to discriminate between threatening and innocuous items. Magnetometers
are limited in that they can detect only magnetic materials; therefore, objects made of
non-magnetic steels, such as some knives, will go undetected.
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Detecting and classifying metallic objects by using EMI has been studied widely by other
research communities. The technology has been applied to detecting and classifying buried
metallic objects (buried object detection and identification, BOD), namely landmines
[29] and unexploded ordnance [30, 31]. The literature on these fields contains a great
amount of useful information that can be applied to the problem field of this thesis. The
applicability of these technologies to security scanning at airports was acknowledged
already in 1997 [32]. The main differences between the fields (CWD and BOD) are as
follows:

• Prior knowledge of target objects: In BOD, the types of targets likely to be
encountered are known. In CWD, not many assumptions can be made of threat
items.

• Sensor/target movement: In BOD, the sensor moves while the target remains
stationary. In CWD, the target moves while the sensor remains stationary.

• Type of EMI technique: In this thesis, a continuous wave (CW) excitation technique
is used at a single frequency. In the BOD literature, CW is sometimes used, but
most studies concentrate on pulsed EMI. Studies on pulsed EMI are referred to
whenever the knowledge is applicable to our system, or to provide general background
knowledge. The principles of these techniques are covered in Chapter 2.

1.2 Objectives of the thesis

The main objective of this thesis is to show that metallic target objects can be reliably clas-
sified by using a WTMD portal, which is capable of estimating the magnetic polarisability
tensor (MPT) and the trajectory of the target.

To achieve its main objective, this thesis contains the following key contributions:

• To present a data library that has been collected to investigate the responses of
typical metallic objects; and

• To present the characteristics of the data in the library and the physical phenomena
that pose challenges to classification.

The main objective is divided into secondary objectives as follows:

• To show that metallic objects in the above library can be classified as threatening
or innocuous and into 10 to 13 classes; and

• To show that in spite of the challenges, reliable classification is possible.

Figure 1.1 presents a classification system structure by Duda et al. [33]. The contributions
of this thesis are related to the parts inside the red rectangle.
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Figure 1.1: The structure of a classification system, as presented by Duda et al. [33]. The
contributions of this thesis are related to the parts inside the red rectangle. The rectangles with
capitalized text represent processes, whereas the rounded rectangles represent information or
data.

1.3 Scope

The electromagnetic phenomena and interactions between concealed metallic items and the
measurement system are complex. Therefore, it is not feasible with practical applications,
such as the walk-through metal detection presented here, to aim at their accurate modeling.
Consequently, this thesis has adopted an engineering approach. The background theory is
kept simple: it is a coarse approximation of reality yet based on well-founded theoretical
evidence found in the literature. Chapter 2 briefly presents the underlying physics and
the approximation used; thereafter, the simple approximation is used.

Although in a real-life WTMD scenario the number of metallic items is unknown, in this
thesis the problem scope is narrowed down to a situation in which only one metallic item is
carried through the portal at a time. However, the methods and results presented in this
thesis can be generalized into a multi-object scenario if the SNR and the resolution of the
measurement system are good enough. In Section 5.7, references are made to literature
that could be used for extending the system to handle multiple targets simultaneously.
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Furthermore, the portal operation in this work is such that each coil works at a distinct
single frequency, as opposed to a situation in which information on a wide frequency band
can be obtained. In this thesis, the object is characterized by using a magnetic dipole
model, and the limitations of the model may, in theory, affect the applicability of the
results.

1.4 Publications and author’s contribution

This thesis is based on five publications. The role of each publication is clarified in
Chapter 5. In four of them (Publications I, II, IV, and V), the author was the main
author and mainly responsible for producing them. Furthermore, the author collected
practically all the walk-through scan data.

The author designed the experiments for Publications I and II with Dr. Marsh and Prof.
Anthony Peyton. The manuscript of Publication I was written in cooperation with Dr.
Marsh. The manuscript of Publication II was written mainly by the author. The author
also conducted the experiments for publications I and II.

The main author of Publication III was Dr. Liam Marsh. The walk-through scans for the
study were performed by several candidates (including Dr. Marsh and the author). The
author planned the study in cooperation with Dr. Marsh and assisted in the experiments
and in writing the manuscript.

The experiments for publications IV and V were planned with Dr. Juho Vihonen and
Dr. Marsh and performed by the author with some assistance from Dr. Marsh. The
manuscripts were written by the author with some assistance from Dr. Vihonen and Dr.
Marsh.

The comments and feedback from the other authors were important and helpful in writing
all the papers.

1.5 Outline of the thesis

This thesis is comprised of six chapters.

Chapter 1 introduces the field of metal detection and security screening. The background
and motivation for the study are given, followed by the objectives, research methods,
restrictions and contributions of the thesis.

Chapter 2 presents some background theory of EMI metal detection and characterization
of metallic objects.

Chapter 3 presents the measurement system used in this thesis and explains how estimates
of the magnetic polarisability tensor and the trajectory of the object are calculated.

Chapter 4 presents the main problems about the classification of metallic items using
EMI data.

Chapter 5 discusses the contributions of this thesis in terms of its objectives in Section
1.2. Furthermore, generalization of the results is considered.

Chapter 6 concludes the thesis.





2 Electromagnetic induction
spectroscopy

This chapter provides information about the basic principles of electromagnetic induction
and how it can be used to classify metallic objects. This information is crucial for
understanding the design of the measurement system in Chapter 3, and the phenomena
observed in the experiments described in Chapter 5.

Section 2.1 provides information about the electromagnetic (EM) properties of metallic
objects and how metallic objects can be detected and subsequently characterized using
EMI. Section 2.2 explains the principle of the dipole model and how it is used to describe
metallic objects. Section 2.3 presents parametric models for EMI characterization; i.e.,
how EMI responses can be parametrized using a physical model. Finally, Section 2.4
provides information about alternative physical models that tackle the drawbacks of the
dipole model.

2.1 Detection and characterization of metallic objects

Many kinds of metals, such as iron, aluminium, copper, magnesium, chromium, and even
gold, are used in common objects that might be carried through a WTMD portal. Each
metal has its characteristic EM properties that arise from its chemical structure. However,
objects are usually made of alloys instead of pure metals. Alloys are mixtures of metals
that consist of several components in specific ratios. Hence, each alloy has its characteristic
EM properties depending on its components. Furthermore, these properties might change
according to how the alloy is manufactured, e.g., as a result of heat treatment and plating.

The most important EM properties are conductivity and permeability. Conductivity
describes the capability of the material to conduct an electric current. The SI unit
for conductivity is Siemens per metre (S/m), and it is often denoted by the symbol σ.
Permeability describes the magnetic behaviour of a material. The SI unit for permeability
is Henry per metre (H/m), but it can be also given as relative permeability, as explained
in Table 2.1.

Among the most common alloys in everyday items are different types of steel, each of
which is designed for a specific purpose. For example, AISI/304 stainless steel, one of
the most common types of stainless steel, is non-magnetic and may contain a variety
of metals, including iron, chromium, nickel, and manganese [34]. Table 2.1 lists some
approximate EM properties of common materials.

Everyday objects may consist of several distinct metallic parts, i.e., be heterogeneous in
terms of their metal content. For example, the blades, casing, and screws of a Swiss army
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Table 2.1: Approximate EM properties of some pure metals and alloys. Permeability is given
as relative permeability µR = µ/µ0 where µ0 is the vacuum permeability. The values in the table
are for representative purposes only. True values depend on a variety of factors, and can differ
significantly. See [35–37] for reference.

Metal type Conductivity σ (MS/m) Rel. permeability µR Class

Aluminium 36.9 1.000022 Paramagnetic
Brass 15.9 1.01 Paramagnetic
Carbon steel 5.9 100 Ferromagnetic
Copper 58.5 0.999994 Diamagnetic
Gold 44.2 0.99996 Diamagnetic
Iron 10.1 200 . . . 4000 Ferromagnetic
Magnetic steel 1.4 1000 . . . 1800 Ferromagnetic
Nickel 14.3 100 . . . 600 Ferromagnetic
Silver 62.1 0.99998 Diamagnetic
Stainless steel 1.36 1.02 Paramagnetic
Zinc 16.6 <1 Diamagnetic

knife may all be made of different alloys. Moreover, the distinct parts can be welded,
glued, or joined with metallic or non-metallic screws, affecting the EM properties of the
object. The EMI response of heterogeneous objects is hard to model due to, e.g., the
magnetic coupling between the parts.

EMI-based metal detection is based on exploiting the fact that metallic objects cause a
change in a magnetic field, and that this change depends on the intrinsic properties of
the object, such as size, shape, permeability, and conductivity. In an EMI-based metal
detection system, a primary magnetic field is generated by feeding a current into the
transmit coil. A metallic object in the primary field will alter the field, and this change can
be detected at the receive coil (i.e., the sensor). Detected changes form the input signal
of the system. This signal, in turn, contains information about the intrinsic properties of
the object, enabling characterization and classification.

A metallic object alters the primary field by two principal mechanisms. In case of a
permeable object, the magnitude of the primary field is amplified, while its phase remains
unchanged. However, if the object is conductive, eddy currents are induced in it. This, in
turn, generates a secondary magnetic field which interacts with the primary field, altering
its signal phase and weakening its magnitude.

The above principle is simple and easy to understand. However, in reality, magnetic
and electric interactions between the coils and the target object are more complex and
can be quantified using the Maxwell equations; see, e.g., [38]. Unfortunately, exact
modeling of the interactions is often computationally challenging, and therefore, practical
solutions must use some approximation. Hence, we assume that the target object is
far away from the coils and small in size compared to the wavelength of the excited
primary field. This assumption allows us to ignore the so-called displacement currents in
the Maxwell equations. The resulting model is called the eddy current approximation
[39]. Importantly, in order to keep calculations simple, we must assume that the target
object does not change the excited primary magnetic field–which is clearly not true and
produces a small model error in the calculations. For the remainder of this thesis, we use
this approximation and deal with the model error later.

There are two main approaches to EMI-based metal detection, depending on the type of
the input signal fed into the transmit coil. These are pulsed excitation EMI (also known
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as time-domain EMI or pulsed EMI ) and CW EMI. In pulsed EMI, a pulse signal is fed
into the transmit coil, whereas in CW EMI, the input signal is a continuous sinusoidal
wave.
Pulsed EMI was not used for the experiments of this thesis. However, a large part of the
literature on the characterization and classification of metallic objects using EMI has
been produced using the technique. Therefore, it is covered for the sake of completeness.
Moreover, many of the methods presented in this thesis may be directly applied to portals
that use pulsed EMI. Furthermore, the methods may apply to fields such as humanitarian
demining where pulsed EMI is commonly used.
In the pulsed EMI method, as the input current vanishes due to pulsed operation, the
primary field decays, which in turn causes the secondary field to collapse. The changes in
the decaying primary signal can be detected at the receive coil. The characteristics of this
signal change (the decay signature) are dependent on the shape, size and EM properties
of the object.
In turn, in CW EMI, the changes caused by a metallic item can be seen directly at the
receive coil as a phase and magnitude difference between the transmitter and receiver,
and the input signal of the CW system (for a single coil pair) is given by

f(ω) = <(f(ω)) + =(f(ω)) = R(ω) + jQ(ω), (2.1)

where ω is the angular frequency, j is the imaginary unit, R(ω) is the frequency-dependent
real (<) component, and Q(ω) the frequency-dependent imaginary (=) component [40, 41].
The real (in-phase) part is in phase with the primary field, and the imaginary (quadrature)
part is 90° out of phase with the primary field [41]. It should be noted that here the
labeling of real and imaginary components is arbitrary, and that the signals could as well
be named the other way around. For conductive, non-magnetic metals, such as copper
and aluminium, R(ω) should always take positive values, whereas for ferrous metals, R(ω)
should be negative at low frequencies [42]. Such heuristic information may be exploited
in metal classification.
Because CW EMI methods work at predefined discrete frequencies, they are subject to
noise only at them. Hence, the systems can operate at a much higher SNR than pulsed
EMI systems [43]. On the other hand, pulsed EMI methods allow use of a much wider
range of frequencies, and hence receive potentially more information on the characteristics
of the object. However, yielding acceptable SNR is challenging due to its more difficult
filtering of noise.

2.2 Dipole model

The measured input signal of an EMI system is often not useful as a raw signal for
characterization and classification purposes. Storing such a large amount of data is not
feasible, and computational complexity of data processing is high. Therefore, a variety of
models have been proposed to parametrize EMI responses. For example, Williams et al.
[44] have used a bivariate Gaussian model, whereas Tran et al. [45] have proposed the
use of Daubechies Wavelets. These methods, however, do not exploit the existing prior
knowledge on the underlying physics that causes the EMI responses.
Motivated by applications such as landmine and UXO detection, physics-based modeling
of the EMI response of metallic objects has been studied for decades. Chesney et al. [46]
were the first to properly address object characterization and classification using a pulsed
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EMI response. They found that, e.g., the shape and amplitude of EMI responses behave
differently as a function of orientation with aluminium and steel objects.

Defining a generic analytical model for the EMI response of an arbitrary metallic object is
extremely difficult, if not impossible. However, analytical solutions exist for the response
of a sphere, cylinder, spheroids [47], and arbitrary bodies-of-revolution [48]. Also, Sebak
et al. [49] have presented an integral equation for modeling the EMI scattering of a
homogeneous, permeable, and conductive object of arbitrary shape. However, these
models are, owing to computational limitations, mostly prohibitively complex to use
in real world applications. Moreover, there exists a wide range of metallic objects that
are neither spherical nor axisymmetric. Therefore, a variety of simplistic physical EMI
response models have been developed, of which the dipole model is perhaps the most
commonly used.

The dipole model presents the target as an infinitesimally small point 1 source [50], i.e., a
set of colocated dipoles that scatter the primary magnetic field. The scattering caused
by the target is parametrized using the magnetic polarisability tensor, also known in the
literature as the magnetic polarisability dyadic [51], which essentially defines how the
target modifies the field vector values Ht and Hr (i.e., H-fields) of the primary magnetic
field in each main axis, namely X, Y, and Z in a three-dimensional (3D) space. A relation
exists between the measured signal, the H-fields and the MPT; it can be stated in terms
of the voltage induced in the receive coil, and according to Abdel-Rehim et al. [52], be
written as

Vind = η ·HT
t
↔
MHr, (2.2)

where η = jωµ0
IR

, µ0 is the permeability of free space, jω is the phase angle component,
and IR is the electric current present in the receive coil. Field vectors Ht and Hr are
three-dimensional so that H = [HX HY HZ ]. The H-fields of any known coils can be
analytically solved by using the Biot-Savart -law [53]. Because the field vectors are 3D,
the MPT is a 3-by-3 matrix. For a CW EMI system, the values of the MPT are complex
because the object changes the magnitude and the phase angle of the input signal; i.e.,
there is a frequency-dependent phase shift between the primary and secondary fields
[40, 41], as described in Section 2.1. Hence, the magnetic polarisability tensor

↔
M at the

excitation frequency ω is given by (see, e.g., Norton et al. [54])

↔
M (ω) =

mX,X(ω) mX,Y (ω) mX,Z(ω)
mY,X(ω) mY,Y (ω) mY,Z(ω)
mZ,X(ω) mZ,Y (ω) mZ,Z(ω)

 . (2.3)

Moreover, it is symmetric such that mX,Y = mY,X , mX,Z = mZ,X , and mY,Z = mZ,Y .
Hence, there are six unknown components, and if complexity is taken into account, there
are 12 unknown terms. The MPT values are functions of the frequency ω and depend on
the size, shape, and EM properties of the object. Similarly, the MPT exists for a pulsed
EMI system response. The dyadic is similar, but its elements, i.e., the descriptors of
the scattering, are functions of time instead of frequency. Hence, the time-domain MPT

1To be precise, the target is not assumed to be a point because then it would have no shape; such an
assumption would invalidate what we want to achieve by using the model. Instead, the approximation is
asymptotic in the size of the object (assuming a fixed shape) going to zero, as pointed out by Prof. Bill
Lionheart.



2.2. Dipole model 11

↔
M (t) is given by

↔
M (t) =

mX,X(t) mX,Y (t) mX,Z(t)
mY,X(t) mY,Y (t) mY,Z(t)
mZ,X(t) mZ,Y (t) mZ,Z(t)

 . (2.4)

The above symmetry also applies to the time-domain MPT.
The 3-by-3 matrix MPT representation is called the rank 2 tensor and it is well understood
and mathematically proven in the magnetostatic case (i.e., permeable objects only, see,
e.g., [55] for details); Osborn [56] calculated the demagnetization factors of the general
ellipsoid already in 1945. For a long time, its use for the eddy current approximation case
(e.g., Norton et al. [54]) remained mathematically unproven. Recently, this conventional
view of representing the MPT has been challenged by Ammari et al. [57], who claim
that a rank 4 tensor is necessary, resulting in a total of 81 unknown terms in the matrix.
These terms would be significantly more challenging to solve. However, Ledger and
Lionheart [58] show that the conventional rank 2 tensor is indeed enough to characterize
an object. Hence, the theory behind the MPT is well established, and theoretical values
for rotationally symmetric objects such as cylinders, have been presented [59]. Baum [60]
has shown that the MPT can be used to represent nonsymmetric objects, and hence six
unknowns in the MPT matrix, as shown in (2.3), are necessary.

The eigenvalues λ of the MPT
↔
M are given by a vector (eigenvalue vector or triplet) of

three complex values
λ(
↔
M) = λ = [λ1 λ2 λ3]. (2.5)

They are a rotation invariant representation of the MPT, as shown in Publication II.
Depending on the type of the MPT, the eigenvalues are either a function of frequency or
time. Figures 2.1 [61] and 2.2 [61] show the frequency response of the MPT eigenvalues
for a steel cylinder in two distinct orientations. Clearly, the frequency dependency of the
eigenvalues, and consequently the MPT, is significant.

Figure 2.1: Frequency response of MPT eigenvalues of a steel cylinder, vertical orientation
(from Norton et al. [61] ©2001 IEEE).

The dipole model is a coarse approximation that has been used because of its simplicity
and subsequent low computational cost. Moreover, it has been shown by Bell et al. [62]
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Figure 2.2: Frequency response of MPT eigenvalues of a steel cylinder, horizontal orientation
(from Norton et al. [61] ©2001 IEEE).

that the dipole model works well enough for modeling the response for a variety of objects.
However, the simplification comes at a cost; the dipole model is subject to limitations and
assumptions. In addition to assuming that the target is an infinitesimally small point, or
at least materially homogeneous, the dipole model assumes that the excited primary field
is essentially uniform through the volume of the target. 2 Smith and Morrison [63] have
shown that if the distance from the sensor to the target is much greater than the size of
the target, the dipole model yields a very good approximation of the secondary magnetic
field caused by the object. However, real objects are finite in size, and real coils generate
non-uniform fields; therefore, the above assumptions are not valid [62]. Furthermore, the
dipole model is not suitable for modeling objects that are positioned close to the sensor,
and it cannot represent the complexities of heterogeneous objects [62, 64]. Consequently,
the simplifications cause the model to break down with realistic data [50, 65], introducing
an element of model error into the estimated parameters. Bell et al. [62] have shown that
the eigenvalues of a steel rod change significantly as a function of orientation and distance
from the coils. Far away from the coils the results are acceptable, but close to the coils
the approximation breaks down. The authors state that this is due to the fact that large
variations occur close to the coils in both direction and strength in the primary field over
the length of the bar. Hence, they claim that a single set of eigenvalues obviously cannot
fully represent an EMI response.

2.3 Parametric models for EMI response presentation

This section focuses on the parametrization of the dipole model, i.e., the MPT and
in particular its eigenvalues. The literature offers a variety of options for representing
them. Finding these unknown parameter values based on measured EMI data is an
inverse problem, which can be solved by mathematical optimization. However, such

2As described above, the size of the object approaches zero asymptotically as the distance from the
coils approaches infinity. This also to say that uniformity of the field values is not explicitly required; yet
the accuracy of the model increases as the size of the object gets smaller.
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inverse optimization algorithms are not covered here, but information about the possible
algorithms is available in the literature for each parametric model.

The MPT eigenvalues essentially define the transfer function of the system formed by
the input signal, the target object, and the output signal. For example, in a pulsed EMI
system the eigenvalues can be thought to define the impulse response of the particular
system. The transfer function can be defined using the Laplace transform. The so-called
poles and zeros of the Laplace-space transfer function then essentially define the behaviour
of the system. The Laplace transform space is also called the complex frequency plane as
the poles are defined to be complex values s = σ + jω. See, e.g., [66] for details.

Using this idea, Baum [67] introduced a methodology called the singularity expansion
method (SEM) to represent the EMI response of conductive metallic targets, independent
of the exciting signal waveform, in terms of singularities in the Laplace transform plane
[68]. In particular, according to Baum, the Laplace-plane poles represent complex natural
frequencies of the target, and reveal its intrinsic properties. According to the established
theory, a low-frequency EMI response of highly conducting, permeable objects can be
characterized by natural (complex Laplace-plane) frequencies that are real and negative
[51, 69]. Geng et al. [70] provide a thorough explanation of the theory and show that
each eigenvalue λi can be modeled as a sum of N Laplace-plane poles, given by

λ(s) =
N∑
n=1

An
s− ζn

, (2.6)

where An is the nth expansion coefficient, and ζn is the nth pole. Note that the notation
here is altered from the original version given by Geng et al. [70]. According to the
authors, one or two of these poles are usually necessary to represent the measured response,
whereas Riggs et al. [69] state that most EMI responses of (conductive) objects can be
characterized by only two or three poles. For example, Tarokh et al. [71] have used this
approach to represent the MPT eigenvalues of CW EMI data. Similarly, Carin et al.
[59] have modeled the pulsed EMI response of finite length metallic cylinders and rings
by using two or three poles, and state that the approach can also be applied to general
rotationally symmetric targets.

Additionally, real and negative poles, according to the theory [66], correspond to damped
exponentials that define how the signal decays as a function of time. According to
Baum, the response can be represented as a sum of damped exponentials or exponentially
decreasing sinusoids [67]. Therefore, the two representations are equivalent. The time-
dependent decay of the receive coil signal is of special interest for pulsed EMI systems.
Hence, a common approach in the literature (see, e.g., Baum [51] and Collins et al. [72])
has been to model the time-domain EMI response of a permeable, conducting target as a
sum of damped exponentials, given by

λi(t) =
N∑
n=1

Ane
−αnt, (2.7)

where An is an amplitude factor that depends on the size of the target and on its distance
from the sensor, and αn is a decay parameter [51, 72]. Similarly, Pasion and Oldenburg
[73] argue that the time decay behaviour of dipoles along each axis, i.e., each eigenvalue,
depends linearly on

λi(t) = κi(t+ αi)−ψie−t/γi , (2.8)
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where κi, αi, ψi, and γi are the decay parameters, and their values depend on the
size, shape, conductivity and permeability of the target object. The authors propose
a nonlinear inversion process to be used for finding the parameter values [73]. As an
example of this general approach, Geng et al. [70] have shown that a pulsed EMI response
of conducting and permeable bodies of revolution (BoR) can be modeled as a sum of
damped exponentials, and that the damping constants are strongly dependent on the
shape, conductivity, and permeability of the target.

Modeling the wideband frequency response (spectrum) of an EMI signal has also been
studied. For example, Gao et al. [43] have used a so-called Method of Moments analysis
to model the EMI spectra of objects, assuming that they are BoR. The benefit of knowing
the EMI spectrum is that different frequencies reveal distinct characteristics of the objects.
For example, Chilaka et al. [74] state that discrimination of thick-walled and thin-walled
ferrous cylinders necessitates the use of low frequencies (< 30 Hz). Above these frequencies,
wall thickness does not affect the response and distinct cylinders look almost identical
[74].

Furthermore, Miller et al. [48] have proposed three parametric models to estimate the
EMI spectra of different types of objects. The models are based on analytical solutions
found in the literature, namely for a sphere, a cylinder, and multiple conducting loops.
The proposed three-parameter model is for permeable spheres and cylinders, the four-
parameter version for wire loops, and the five-parameter version for complex targets.
Their results show that the EMI response of most targets can be modeled accurately by
using only a few parameters. Furthermore, Bell et al. [62] state that the four-parameter
model can be used to successfully present the frequency domain EMI response of a variety
of compact objects. The model is given by

f(ω) = R(ω) + jQ(ω) = A{s+ (jωυ)ς − 2
(jωυ)ς + 1}, (2.9)

where ω is the frequency, A is an amplitude, υ is a response time constant, and where ς
determines the width of the response spectrum, and s is a factor controlling the relative
magnitudes of response asymptotes at low and high frequencies [62]. Recently, to enable
faster inversion, this model has been reduced to a two-parameter version by Ramachandran
et al. [75] by using a gradient angle model.

A somewhat similar approach, the discrete spectrum of relaxation frequencies (DSRF)
(see, e.g., studies by Wei et al. [76, 77]) is a model that describes the EMI spectrum of an
object as a discrete set of pairs {ζK , cK}, where ζk = 1/τk is a relaxation frequency, and τk
is the corresponding relaxation time, and ck is the amplitude related to the corresponding
frequency. These pairs define the frequency bins of the spectrum. The spectrum can
be solved analytically for basic shapes such as spheres and cylinders. The relaxation
frequencies are position and rotation invariant, but the amplitudes are not. The DSRF
contains information about the shape, size, orientation, permeability, and conductivity of
the object, and using it, the frequency spectrum of an EMI signal can be presented by

Ψ(ω) = c0 +
N∑
n=1

cn
1 + jω/ζn

, (2.10)

where c0 is a shift term, N is the number of relaxations, i.e., the model order, cn are
the real spectral amplitudes, and ζn the relaxation frequencies. Wei et al. [76, 77] have
provided methods for estimating the DSRF parameters. Furthermore, Tantum et al. [78]
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have used a structured Relevance Vector Machine (sRVM) to find the DSRF spectrum for
an object using CW EMI at 21 distinct frequencies. The idea is that the sRVM assigns
weights for each frequency, based on their importance, and most of them will converge to
zero [79]. Scott and Larson [80] have presented DSRF-representations for several small
objects, and Krueger et al. [81] have used a dictionary of DSRF responses to determine
the location and orientation of unknown buried targets.

2.4 Extensions of the dipole model and representing
heterogeneous objects

As discussed above, the dipole model is a coarse approximation with several weaknesses.
According to Shubitidze et al. [82], the validity of the dipole model is often compromised
in case of heterogeneous objects, causing a certain degree of model error, as also discussed
in Section 2.2. Unfortunately, many common items are heterogeneous, i.e., contain a
variety of metal alloys and consist of distinct parts. Consequently, several approaches
have been proposed for extending the dipole model to accommodate real objects in a
better way.

Zhang et al. [83] have extended the dipole model to allow for targets of complex
shapes, namely UXO. Thus the object is represented by multiple sets of dipoles, each set
assigned to distinct physical locations within the target. This arrangement accommodates
heterogeneous objects, though it does not take into account the magnetic coupling between
object parts [83]. Moreover, Braunisch et al. [84] have used the dipole model to present the
EMI response of a collection of small (conducting and permeable) objects, while trying to
take their mutual interactions into account. This can be seen as an attempt to understand
the EM behaviour of heterogeneous objects. Nevertheless, Shubitidze et al. [82] claim
that a model using several dipoles to simulate a heterogeneous target cannot accurately
represent a true EMI response because such an approach does not take magnetic coupling
into account. They have studied the EMI-responses of various heterogeneous metallic
objects. The main issues of concern are, first, coupling between the distinct parts of the
object, and second, close proximity issues that change the characteristics of the response,
i.e., its spectrum, significantly when the object is close to the coils. They propose a hybrid
model for heterogeneous targets, and show that it can represent the response of certain
heterogeneous objects more accurately than the dipole model [82].

Shubitidze et al. have also proposed two generalized dipole models, namely the normalized
surface magnetic source (NSMS) model [85] and the orthonormalized volume magnetic
source (ONVMS) model [65]. The NSMS model associates the object with a prolate
spheroid that is composed of radially oriented dipoles. Hence, the total scattered magnetic
field is approximated as a sum of all the magnetic fields that have been radiated by these
dipoles. The authors demonstrate by measurements that the NSMS is more robust than
the dipole model [85]. The ONVMS, on the other hand, associates the measured response
with a set of magnetic dipole sources that, instead of a single point, are distributed over
the volume that the primary magnetic field interrogates. The model tackles the problems
of the simple dipole model by allowing for heterogeneous objects, significant variations of
magnetic fields, and even multiple objects with overlapping signals. By definition, the
ONVMS does not contain more information than the dipole model, but the quality of its
information is better, especially in the presence of noise, complex targets, and overlapping
target signatures [65]. The ONVMS has been shown by Bijamov et al. [86] to outperform
the dipole model and perform well in a variety of field tests to detect UXO.
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Apart from the different versions of the dipole model, other approaches have been
introduced. Grzegorczyk et al. [87] have modeled highly permeable and conductive
objects as ellipsoids, as opposed to bodies of revolution. Zhang et al. [64], on the other
hand, have modeled metallic objects as homogeneous spheroids of arbitrary shape, size,
permeability, and conductivity. Furthermore, they state that spheroids can accurately
represent the responses of homogeneous, irregular objects, and that even many types of
heterogeneous objects might be modeled by using two or more spheroids. The parameters
of their proposed model are rotation and position invariant, and characterize the physical
properties of the object, enabling classification. However, since the estimated parameter
values are not directly related to the intrinsic parameters of the object, intelligent
classification algorithms are necessary [64].



3 WTMD measurement system

This chapter presents the measurement system, referred to as the portal, used in this
thesis, and it covers the part of the system flowchart shown in Figure 3.1. The input
for this subsystem is a single walk-through scan, whereas its output is the solution β
consisting of an estimate for the MPT matrix (M̂) and an estimate of the trajectory of
the object in the XYZ-space (P̂).

Figure 3.1: The scope of Chapter 3 as a flowchart.

The methods reported in this thesis are not dependent on the portal. Any WTMD
system design that is capable of consistently estimating the MPT (see Section 2.2) of the
unknown object can be used. In addition, some methods require a capability to estimate
the trajectory of the unknown object.

3.1 Sensors, sensing and segmentation

Years of research and cooperation between Tampere University of Technology (TUT),
Finland, Rapiscan Systems, and the University of Manchester, United Kingdom (UK),
culminated in the development of a WTMD portal technology capable of reliably estimat-
ing the MPT of a target object. Initially, the ideas were tested at TUT using a prototype
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system (see Kauppila et al. [26]). The system was built from a classification point of
view, and hence the main focus was to estimate the MPT of the target without having to
accurately position the target object based on EMI data. This estimation was achieved by
using a custom six-coil geometry design that produced uniform magnetic fields in three
dimensions across the detection space. The design greatly simplified the recontruction of
the MPT (2.3). However, mainly because of the coil design, the so-called body effect (see
Section 5.1) soon proved problematic in the early prototype. This meant that the signal
caused by the human body often dominated the target object signal.

Later, a more sophisticated prototype WTMD measurement system (the portal) was built
at the University of Manchester. Various papers have been published on the portal (see,
e.g., the publications by Marsh et al. [88, 89]). Figure 3.2 shows the portal structure
along with definitions of coordinate axes, namely X, Y, and Z. The X-axis denotes the
walking direction. Thus, when a person walks through the portal, the transmit coils will
be on the left-hand side and the receive coils on the right-hand side. The portal volume
is 0.75 metres (m) × 2.05 m × 0.83 m (X × Y × Z). The overall design of the portal is
similar to that of the professionally built, official devices used at airports.

Figure 3.2: The portal. The coordinate axes used throughout this thesis are marked, along
with the transmit and receive coils. (Modified from Publication II ) ©2014 IOP Publishing.
Reproduced with permission. All rights reserved.

The portal uses a total of 16 coils. Its coil geometry is shown in Figure 3.3(a) (from
Marsh et al. [89]). There are eight transmit coils in one side panel, and eight receive
coils in the other. The corresponding transmitters and receivers are not aligned with
each other, but instead they are placed at different heights, except for the lowest pair. In
addition, the coils on each side overlap slightly. The coils are so-called gradiometer coils,
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as shown in Figure 3.3(b) (from Marsh et al. [89]). Their design cancels out the effect of
the so-called far field, increasing the SNR of the system.

The system uses CW excitation by way of a single frequency for each coil pair, as opposed
to systems described in, e.g., the landmine detection literature, which often use multi-
frequency excitation. All transmitters operate at distinct frequencies, ranging from around
8 kHz to 14 kHz, to allow distinguishing of the signals from each other, i.e., to eliminate
crosstalk. The width of the frequency bands is approximately from 500 Hz to 1 kHz.

Figure 3.3: EMBody portal coil configuration (From Marsh et al. [89]) ©2013 IOP Publishing.
Reproduced with permission. All rights reserved.

The system produces measurements at a rate of 100 Hz. Each measurement sample,
for practical reasons such as limitations of SNR, contains data from 34 out of 8x8=64
possible coil combinations. The system output has been calibrated using a magnetic,
non-conductive ferrite sphere so that each coil pair produces a roughly equal response in
terms of amplitude.

The system has an adjustable triggering threshold that defines the change in a coil pair
signal required to trigger the portal. If a large enough response is measured, the portal will
record data before and after the trigger point. If the threshold is met at time Ttriggered,
the system captures one second of data between [Ttriggered − 0.5s . . . Ttriggered + 0.5s].
Figure 3.4 demonstrates this for one coil pair. The measured input signal consists of an
in-phase and a quadrature part, as described in (2.1).
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Figure 3.4: The portal is triggered when the signal for one coil pair exceeds the triggering
threshold. One second of data is recorded, half a second before Ttriggered, and half a second
after. The signal owes its shape to the arrangement of the gradiometer coils. Note that this
picture is for illustration purposes only and does not represent real data.

3.2 Feature extraction: Applying the dipole model

In order to classify the detected target object, it is crucial to obtain information on its
characteristics, namely its material and dimensions. For this purpose, the object must be
characterized by applying a model to measured data. The dipole model (as described in
Section 2.2) is used to model the WTMD portal data because it provides a reasonable
approximation of the object while its simplicity enables real-time data processing.

As presented in Section 2.1, permeability and conductivity, along with the size and
shape of the object, determine how it interacts with the excited primary magnetic field.
Figure 3.5 shows an overview of these changes. A magnetic object, i.e., an object with
considerable permeability, amplifies the magnitude of the primary field (see Figure 3.5(a)).
On the other hand, in case of a conductive object, eddy currents are induced in it, thus
creating a secondary magnetic field. This secondary field will interact with the primary
field, affecting its phase and magnitude. The effect on magnitude will be opposite to the
primary field, i.e., it will be weakened. A highly conductive object will have a significant
effect on both the phase and the magnitude of the primary field. This is demonstrated
in Figure 3.5(b). The phase and magnitude of this change depend on the frequency of
the excited signal. On the other hand, as shown in Figure 3.5(c), an object with low
conductivity will have only a relatively small effect on the phase of the primary field. In
practice, many objects that are carried through WTMD portals are both conductive and
magnetic, so the above effects are often mixed.

The system can be described with the dipole model by introducing, at each location in
the XYZ-space within the portal, a relation between the measured signal, the receive and
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Figure 3.5: The effect of different kinds of materials on the primary magnetic field.

transmit H-fields, and the MPT of the unknown object (see (2.2)). This is given by

ρ(p,
↔
M) = HT

t (p)
↔
MHr(p), (3.1)

where Ht and Hr are the transmitter and receiver coil magnetic field vectors, respectively,
p = [X Y Z]T is the object centre position vector, and

↔
M is the MPT of the object. The

elements of the MPT matrix
↔
M are complex values (mi,j = <(mi,j) + j =(mi,j)) due to

the presence of in-phase and quadrature signals, as explained in Section 2.2. However,
the elements are not defined to change as a function of frequency because the system
is defined to use a single frequency at around 10 kHz. As described earlier, this is not
exactly true as each transmit coil has its own designated frequency band.

Marsh et al. [89] have presented examples of MPT values for various kinds of objects
(Figure 3.6 (from [89])). For a magnetic spherical object (Figure 3.6(a)), the diagonal
values should all be the same. A magnetic, infinitely thin rod aligned with one axis of
the system should have a nonzero value for only one diagonal element (Figure 3.6(b)).
The depicted MPT indicates that only the Y-components of the H-field vectors affect
the output signal. However, if the rod is even slightly rotated, the MPT values change
as other components of the H-field vectors are affected. Similarly, for a magnetic disc
aligned along the YZ-plane, the MPT matrix should be as shown in Figure 3.6(c). On
the other hand, for non-magnetic objects, owing to the physical facts described earlier in
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Figure 3.6: Examples of MPT values for some objects (from Marsh et al. [89]). Here the
parameter k is an arbitrary constant term representing the magnitude of the element. ©2013
IOP Publishing. Reproduced with permission. All rights reserved.

this thesis, the tensor is different, as shown in Figure 3.6(d). However, as demonstrated
in Figure 3.5, the conductivity of the object plays a large role in this case and hence the
MPT values depend on the excitation frequency of the system.

3.3 Target MPT and trajectory estimation

The geometry of a coil determines the shape of the magnetic field it creates. For metallic
object detection and characterization, the direction of the magnetic field vectors is crucial
because the technique is based on detecting changes in the excited primary magnetic
field. The target object affects the field vectors differently depending on their orientation
in relation to the object. Hence, the target object can be seen by the detector solely
from the directions of the field vectors. Indeed, to estimate the MPT for the object, it
is essential that the magnetic field sees the object from as many directions as possible
[61]. If the target is seen from one direction, only one linear combination of the MPT
eigenvalues can be measured [62].

For example, a solenoid-based measurement system can be used to estimate the MPT
for any object small enough to fit inside the solenoid. A solenoid is a coil that is formed
by a helix of wire [90]. The magnetic field that it generates inside itself is strong and
unidirectional along the length of the coil; i.e., the field vectors run parallel inside it,
as demonstrated in Figure 3.7. Hence, with a solenoid, a metallic item can be seen
from one direction at a time. While solenoids can be used to estimate the MPT for an
object, measurements must be taken using several object orientations to capture enough
information in all three dimensions.

When the exact position of the target object is known, the MPT for the target can be
solved trivially as long as enough measurements are available from at least six views
(corresponding the six unknowns in

↔
M) on the object (see Kauppila et al. [26]). Exactly

six views are needed if they are selected optimally. However, in a WTMD scenario, the
object trajectory, i.e., its position as a function of time, is unknown. Hence, it must be
estimated simultaneously with the MPT parameters. It is not feasible to analyze all
possible trajectories and all possible MPT parameter combinations to find an optimal
solution. Hence, some heuristic knowledge must be used. It is known a priori that if
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Figure 3.7: A solenoid creates a strong magnetic field in one direction. The wire is shown in
red and the magnetic field vectors in black.

a person is carrying a concealed object through the portal, the trajectory of the object
will be more or less a straight line at a slight angle in relation to the portal side panels,
with any curvature resulting from the gait and movement of the arms (e.g., in case of a
wristwatch) or legs/feet (e.g., a concealed knife near the ankle or shoe shank). Therefore,
it is common sense to start off with an initial guess of the trajectory that is a straight
line, i.e., that only the X-position changes as a function of time while Y and Z remain
constant.

In the WTMD portal, the orientation of the unknown object cannot be controlled.
However, during a walk-through, we assume that the object travels at a roughly constant
orientation through the portal. Consequently, the orientation of the target changes slightly
in relation to the field vectors as the object travels along the portal, as shown in Figure
3.8. Moreover, as all the coil combinations get an independent view on the object, enough
measurements are made from a sufficient number of angles to get a good idea of how the
object behaves in an EM sense. Finally, measurements are taken at a high rate of 100 Hz,
enabling removal of noise by averaging.

The system response ρ̂ consists of a time series of measurements that are recorded of
each walk-through scan. Normally, this is approximately one second of data, i.e., 100
measurement frames at 100 Hz. As the portal records data from 34 coil pairs, one second
of walk-through scan data contains 100 frames × 34 coils pairs = 3400 measurement
values.

A theoretical dipole model -based relationship between measurements and the MPT has
been presented in (3.1). The transmitter and receiver coil magnetic field vectors Ht
and Hr are known because they can be analytically solved. However, the object centre
position vector p and the MPT

↔
M are unknown. It is not possible to use analytical,

straightforward methods to find
↔
M and the series of estimated object positions p̂i, i.e.,

the path or trajectory of the object. Therefore, it is an inverse optimization problem to
find them.
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Figure 3.8: An object trajectory in the primary magnetic field shown as red dots, from left to
right. Red arrows indicate the direction of the magnetic field vectors (shown in black). Along its
trajectory, the object is interrogated from a variety of directions. Note that this picture is highly
simplified and for illustration purposes only.

The solution of inverse optimization is defined as β = {M̂, P̂}, where P̂ is the estimated
object trajectory. The inversion algorithm tries to find such a solution β that it minimizes
the difference between the actual measured response ρ̂ and the theoretical response
calculated with the above model (ρ = ρ(p̂, M̂)). The function to be optimised may be
written as

F = ||ρ̂− ρ||22. (3.2)
This optimization process is solved with the Levenberg-Marquardt algorithm (LMA), for
which the details can be found in the literature [91, 92]. The algorithm starts by defining
the initial guess β0 = {M̂0, P̂0} for a solution. The initial guess of the MPT is defined
to be the identity matrix, i.e., M̂0 = I3. P̂0 is determined by finding the coil pair with
the strongest response, and then assuming that the object travels along a straight line
through the portal.
The residual value, r, is a measure for prediction error within inverse optimization, and
it indicates the quality of β. In the case of the portal, the residual is calculated by
taking the L2-norm of the difference between the actual measurements ρ̂ and the forward
response ρ as a function of the estimated MPT M̂ and the path P̂, and dividing this
value by the L2-norm of the measurements ρ̂, given by

r = ||ρ− ρ̂||
||ρ̂||

, (3.3)
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where ρ̂ contains measurement values over time for all transmitter-receiver coil pairs.

The estimates described here are used in all the publications, as well as in Chapter 5,
where the experimental results of this thesis are reported.





4 Classification methods

This chapter provides an overview of the available methods for classifying metallic targets,
i.e., magnetic singularity identification (MSI) [69]. Perhaps the first method to classify
metallic targets using EMI was proposed by Chesney et al. [46] in 1984. Over the past 30
years, the techniques have advanced with a variety of methods available now. Beran et al.
[93] have proposed a model to coarsely divide methods of metallic object classification using
EMI (see Figure 4.1). In their model, the two main approaches are statistical classification,
i.e., model-based approaches, including generative and discriminative methods, and library
methods. Generative methods (Section 4.3) aim to model the underlying data distribution
that has produced the measured samples, whereas discriminative classifiers (Section 4.4)
try to find a decision boundary in the so-called feature space. Library methods, (Section
4.5) also known as example-based or dictionary matching approaches, on the other hand,
match the unknown sample with samples in a predefined library [93]. Before reviewing the

Figure 4.1: Classification methods, as described by Beran et al. [93].

different classification methods, this chapter introduces the basic concepts of classification
(Section 4.1) and features (Section 4.2).

4.1 Basic concepts and terminology

Pattern classification is a process of assigning given unknown samples x to one of predefined
categories, i.e., classes Ω = {Ω1 Ω2 . . . ΩNΩ}, where NΩ refers to the number of classes.
The true class of the current sample in consideration, Ω(x), is also called the state of
nature in the literature. In the context of classifying metallic objects, these terms are
defined as follows. Samples x are Nfeat-dimensional feature vectors that describe objects,

27



28 Chapter 4. Classification methods

given by
x = [feature1 feature2 . . . featureNfeat

] (4.1)
A feature is typically either some measurement value, or a mapping from the measurement
data space to a lower dimensional space, e.g., the mean value of a time-series of measure-
ments. A good feature should characterize objects in terms of the classes of interest, i.e.,
produce similar values for objects within the same class, and dissimilar values for others
[33]. These feature values are calculated by using measurements recorded by the WTMD
portal. Moreover, because the parameter estimation described in Section 3.3 produces
samples β that contain information on the characteristics of an unknown metallic object,
we can write xi = βi, although x can contain further feature values extracted from β.
Classes Ω are the categories that we wish to use for classification. The simplest and
the most common scenario for WTMD portals is to distinguish between threatening and
innocuous objects. Hence

Ωsimple = {Ω1 = Innocuous, Ω2 = Threat}. (4.2)

However, for some scenarios, a more fine-grained categorization might be needed. For
example, the threatening items can be further divided into sharp objects and firearms.
On the other hand, innocuous objects can be classified, e.g., as belts, mobile phones, and
wrist watches:

Ωmultiple = {Ω1 = Belt, Ω2 = Coins, Ω3 = Knife , . . . , Ω13 = Gun}. (4.3)

In case of metallic objects, however, defining formally what kind of objects should fall into
these categories is challenging. For example, a variety of weapons have been designed to
look like innocuous items, such as knives that resemble a lighter or a pen [94]. Obviously,
in a security screening application, they should be classified as knives, but if the knife
is also a lighter, how can the machine tell the difference? However, if the classes are
heterogeneous, i.e., contain a variety of different kinds of objects, finding a model that
is common for all the objects is challenging. For example, the class knife might include
simple knives that consist of a single metallic blade and a wooden or plastic handle. On
the other hand, some knives have a metallic handle, and Swiss Army knives contain a
variety of different small tools whilst on the outside resembling a block of metal. The
common feature of all knives is that they contain a blade. However, it is difficult to state
exactly what a common knife is like as a metallic object. These difficulties of defining the
classes pose a great challenge to classifier design.
Although a classifier can be based solely on heuristic rules, such as using arbitrary
fixed thresholds for feature values, most systems generalize, i.e., learn the decision
rules from a given set of examples, the training data. This learning process can be
supervised or unsupervised. Supervised learning means that a set of training samples
XTRAINING = [x1 x2 . . . xNT RAINING

] (NTRAINING is the number of training samples)
with known respective class labels ΩTRAINING = [Ω(x1) Ω(x2) . . . Ω(xNT RAINING

)] is
available. However, in unsupervised learning, this information is completely or partially
unavailable. In this thesis, the emphasis is on supervised learning, although some
unsupervised learning methods are covered in Section 5.7.

4.2 Features

As mentioned in 4.1, features are a means of making samples separable into classes to
facilitate classification. A good feature should extract relevant information from the data
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and/or the underlying phenomenon that the data describe. Features can, first, describe
the data in a compact way, make raw data unnecessary, and enable simple comparison
between the feature values, and, second, characterize the target by representing its intrinsic
properties. Most parameters of the physical models described in Chapter 2 act as features
because they describe the measured EMI signal in a compact manner and characterize
the target. There are many examples of this in the literature. Tarokh et al. [71] have
used the Laplace-plane pole representation of MPT eigenvalues to classify buried objects
with a CW EMI device. In a pulsed EMI scenario, Fernandez et al. [95], used some decay
parameters as features while applying the NSMS model, whereas Shubitidze et al. [96]
have shown with real UXO test scenario data that use of such features can help accurately
distinguish between UXO and clutter.

In the case of WTMD, raw time-domain measurement data consisting of the induced
voltage of each coil pair is not very useful for classifying metallic objects, because it
does not characterize the target adequately because it contains background noise and
information related, e.g., to the speed of the walk-through and the gait of the candidate.
Therefore, the MPT is a step towards a better characterization of the target, containing
relevant information for classification, such as its intrinsic properties. In theory, the MPT
is independent of target location but orientation-dependent, making it unsuitable for use
as a feature. Therefore, eigenvalues λ, as defined in Section 2.2, have been introduced,
and as shown in Publication II, they constitute a rotation- (and location-) invariant [54]
representation of the MPT, and hence a good feature. Moreover, according to Bell et al.
[62], the eigenvalues contain all the information within the MPT that can be used for
classification. 3

In this thesis, eigenvalues λ as such refer to their Cartesian presentation, i.e., to complex
two-dimensional values whose real part is on the X-axis and imaginary part on the Y-axis.
However, for practical purposes, a polar presentation of the eigenvalues is defined. The
magnitude of an eigenvalue λi is given by

τ(λi) = τ = ||λi|| =
√
λi · λi, (4.4)

where λi is the complex conjugate of λi. In polar presentation, the magnitude is on the
Y-axis. Similarly, the angle ϕ(λi) of an eigenvalue is given by

ϕ(λi) = ϕ = atan(<(λi),=(λi)), (4.5)

where atan is the four-quadrant arctangent function. In polar presentation, the angle is
on the X-axis, and its range is usually [−π . . . π]. Correspondingly, the magnitude is on
the Y-axis. These concepts are visualized in Figure 4.2.

It is known a priori that some materials are typical of certain types of objects, and
similarly, e.g., knives are usually long and thin objects. Therefore, heuristic features for
metallic target characterization might include descriptors of material, size, and shape.
There are many examples in the literature that indicate the usefulness of MPT eigenvalues
for this purpose. Norton et al. [61] state that the MPT represents the object as a
uniform and ellipsoidal shape, and that its eigenvalues can be related to the lengths of

3Because the eigenvectors of
↔
M are complex, they do not contain real orientation information for

the object. It has been suggested by Prof. Lionheart that the real and imaginary parts of
↔
M may

be considered separately, hence yielding two sets of real eigenvectors. The relationship between these
orientations may then be of value. However, SNR-related problems are likely to arise in WTMD portals.
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Figure 4.2: Eigenvalues and their angles and magnitudes, shown on a Cartesian plot.

the semi-major axes of the ellipsoid. 4 Furthermore, according to Bell et al. [40, 62],
the eigenvalues of the MPT are related to the strength of the induced field along the
principal axis of the target, and there is a strong correlation between the size of the target
and the magnitudes of the eigenvalues. Moreover, they state that measurements of the
longitudinal vs. transverse field ratio of the object show a strong correlation between the
physical aspect ratio of the object and the corresponding measurements [40].

Many studies have used this aspect ratio as a feature for classification. In these studies,
the elements of the time domain diagonalized MPT were often given by ΛX = m1,1,ΛY =
m2,2,ΛZ = m3,3; these values correspond to the eigenvalues λ. In case of a cylindrical
object, there are two distinct values: Λlongitudinal = m1,1 and Λtransverse = m2,2 = m3,3
(see, e.g., Khadr et al. [97] for details).

Khadr et al. [97] and Bell et al. [40] have used this representation for UXO/clutter
discrimination using a pulsed EMI system. They propose a feature for modeling the
length-to-diameter aspect ratio of the detected object, assumed to be a prolate spheroid,
given as the ratio |Λlongitudinal/Λtransverse| of two time-domain eigenvalues of the MPT.

However, this approach may not be reliable. Indeed, in the magnetostatic case, the above
ratio is known to be nonlinear [55]. Furthermore, for the eddy current case, there are
examples of nonlinearity in the literature. Bell et al. [40] consider a pulsed EMI system
and argue that since the time window is of fixed length, the ratio of the transverse and
longitudinal responses depends not only on the shape of the target but also on its size.
More importantly, they have shown that the ratio is also frequency-dependent. In a more
recent study, Bell et al. [62] state that in the time-domain, the transverse and longitudinal
responses of the targets have different decay rates. This results in different ratios of the
above eigenvalues at different times, and hence frequencies. A detailed analysis of the
relationship between the eigenvalues and target size appears in another study by Bell et al.
[41]. Barrow and Nelson [98] have used a similar method and ratios of the ΛX,Y,Z -values
to determine the shape of targets. However, they found that these values are related to
object dimensions in a nonlinear fashion, and that there is a typical variance of 20-30%

4There exists mathematical proof of this in the magnetostatic case [55]. However, in the eddy current
case, i.e., for conductive objects, this remains hypothetical.
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around the mean of each value– -even for a steel sphere. They state that this variation
in the values may arise from a measurement error due to sensor noise and inaccuracies
in location estimation. To complicate things further, the coil geometry used affects the
ratio; therefore, Grimm and Sprott [99] have studied different transmitter-receive coil
geometries to be used with the above method.

However, a variety of advanced features exploiting the aspect ratio have been proposed.
Pasion and Oldenburg [73] use the decay parameters in (2.8) to determine the shape of
the object. They use ratios κ1/κ2 and ψ1/ψ2 to decide whether the geometry is plate-like
or rod-like. Similarly, Norton et al. [54] have proposed ordnance-likeness as a feature to
distinguish between UXO and clutter. First, they ordered the eigenvalue vector by their
real parts in such a way that <(λ1) < <(λ2) < <(λ3). Then, a ratio was calculated by

OrdnanceLikenessRatio = <(λ3)−<(λ2)
<(λ2)−<(λ1) . (4.6)

This ratio was then calculated at multiple excitation frequencies, and the feature for
each object was the mean of log(OrdnanceLikenessRatio) across all frequencies. The
imaginary parts of the eigenvalues were found less suitable for this purpose, as shown
in the results [54]. Ambrus et al. [100], while using a pulsed EMI landmine detection
system, took this idea further by constructing a 3-by-3 matrix of the ratios of all three
eigenvalues, each of which was measured at three time gates of the detector, i.e., at three
points in time, to capture the signal decay characteristics.

In addition to methods using the aspect ratio, some approaches in the literature classify
metallic targets based on their volumetric size. However, these methods use more advanced
classifiers. Zhang et al. [64] have used support vector machines (SVM) and neural networks
(NN) for this (SVM and NN are described in Section 4.4). In addition, Fernandez et al.
[101] have shown that spheroids of different sizes can be discriminated by their volume
and radius by using an SVM. These studies suggest that features can be generated that
enable use of size and shape information as features for classification.

Extracting material information from EMI data has also been reported. Huang and Won
[102] have used CW EMI and modeled metallic targets as permeable and conductive
spheres and used the model parameters to determine the conductivity and permeability
of the targets. However, the results show that solving permeability and conductivity
is feasible only in a noise-free scenario. Furthermore, using pulsed EMI, Pasion and
Oldenburg [73] have used the parameter ψ in (2.8) to determine whether the target is
magnetic or non-magnetic. Furthermore, Trang et al. [103] have studied the relationship of
the phase angle and magnitude of a CW EMI response and the material of metallic targets.
According to them, the permeability of the target can be seen at very low frequencies of
the in-phase component of the response. Moreover, the phase angle of various metals,
namely magnetic steel, non-magnetic steel, copper, brass, lead, and aluminium, was found
to be independent of object orientation [103].

4.3 Statistical classification and generative methods

Bayesian decision theory lays the basis for optimal classification rules. The Bayes formula
relates the posterior probability to the priors as

P (Ωi|x) = P (x|Ωi)P (Ωi)
P (x) , (4.7)



32 Chapter 4. Classification methods

where P (Ωi|x) is the posterior probability for the state of nature being Ωi given that the
feature vector is x, P (x|Ωi) is the prior conditional probability for the feature vector x
given that the state of nature is Ωi. P (x) and P (Ωi) are the independent probabilities for
x and Ωi, respectively. The prior (a priori) probabilities P (Ωi) for the classes in Ω are
unknown, i.e., it is not possible to know how many, e.g., threats are encountered compared
to innocuous items. Therefore, it is common to assume that each class is equally probable,
but this also makes it impossible, in most cases, to use (4.7) directly for classification. If
the prior probability density function (PDF) for each class is known, the likelihood ratio
test (LRT) is the optimal classifier [33]. The LRT states the ratio between how likely the
given data x is under the class Ωi compared to the null hypothesis. A decision threshold
for the ratio Υ is used to classify the samples. However, in most cases, the true PDFs
P (x|Ωi) for each class Ωi are unknown, though they may be estimated by using training
data: the true PDF is replaced with a maximum likelihood estimate (MLE) of the PDF.
As a visual example, Figure 4.3 shows a scenario of modeling the PDF for some class
using its eigenvalues λ. For each of the three eigenvalues, there is a cloud of data points
within the training values. This cloud can be used to find an approximation of the PDF,
or three PDFs, should each cloud be considered a PDF of its own.

Figure 4.3: A PDF has been estimated for each eigenvalue of some category. The eigenvalues
of an unknown sample x are shown in red. It is a statistical problem to estimate the probability
of the red points having been created by the PDFs shown.

Collins et al. [72] were among the first to incorporate Bayesian decision theory in MSI,
namely in landmine detection, using both CW EMI and pulsed EMI. For classification,
they used the so-called generalized likelihood ratio test (GLRT). The GLRT is a generalized
version of the LRT, which can be used even if there are unknown parameters in the PDFs.
The GRLT is given by

PMLE(x|Ω1)
PMLE(x|Ω2) ≶ Υ, (4.8)
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where PMLE(x|Ωi) is the maximum likelihood estimate of P (x|Ωi), and Υ is a decision
threshold parameter (for details, see, e.g., Duda et al. [33]). The results of the Collins et
al. study showed that the GLRT significantly outperforms the conventional threshold
based methods. The GLRT has also been used for CW EMI data by Riggs et al. [69].
The performance of the GLRT using both signal space, i.e., using only the raw signal, and
feature space classification has been compared in the literature. For example, Tantum
and Collins [104] used decay parameters as features and compared that with using the
whole time-domain signal for classification. Based on their simulated results, they argue
that using the whole signal yields a higher level of accuracy than using the features.
However, Aliamiri et al. [50] have made a similar comparison and come to an opposite
conclusion. They state that this is because of model mismatch, i.e., the presence of
non-Gaussian deterministic noise within the signal, especially in case of large targets. Yet,
they show that some reasonable violations may be tolerated against the dipole model
assumptions if their effect on parameter estimation is well understood. Furthermore, they
state that overcoming the model mismatch problem requires developing a rich library
that takes parameter variation, such as their position and orientation dependency, into
account as completely as possible. They used kernel density estimation (KDE) with a
Gaussian kernel to estimate prior PDFs for the classes. The MPT eigenvalues at 4 distinct
frequencies were used as features. However, they observed that the eigenvalue PDFs were
markedly non-Gaussian by nature. Consequently, a whitening transform was applied
to normalize the shape of the data distribution prior to applying KDE. Furthermore,
though the MPT eigenvalues should be orientation- and position- invariant in principle,
this is not the case in reality; therefore, measurement data from several orientations and
positions are needed to model the PDFs [105].
In summary, while feature-space classifiers are suboptimal in theory compared, e.g., to
a signal space GLRT, they are more robust against the problems of the dipole model.
Aliamiri et al. [50] argue that as long as the feature value clouds are distinct and
well-defined, the feature-based methods perform well regardless of the above model
mismatch.

4.4 Non-parametric discriminative methods

Parametric classification methods are problematic because they depend on the estimation
of prior PDFs for each class. Moreover, parametric PDF estimation always assumes a
unimodal PDF, making modeling of multimodal PDFs impossible. On the other hand,
discriminative, non-parametric feature-based methods skip prior PDF estimation and
instead, using the training data, aim to directly estimate the posterior probabilities
P (Ωi|x) for a given feature vector, i.e., to solve the probability of each class Ωi, given the
unknown sample x.
Typically, a discriminative classifier finds a decision rule that divides the feature space into
regions, each of which corresponds to a certain class Ωi. A linear discriminant analysis
(LDA) -based binary classifier is one of the simplest examples of such functionality.
Based on training data, it finds a linear function that divides unknown samples into
two categories. The linear function is defined by finding a weight factor wi for each
training sample xi. In case of two features, the problem can be seen as finding a line in
two-dimensional space that divides the training samples into two categories in an optimal
way. The linear discriminant is calculated by

w · x ≶ Υ, (4.9)
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where w is a weight vector, and Υ is the decision threshold. This simple binary LDA
approach may be easily applied to a multiclass case by defining a binary decision tree
classifier. A binary decision tree is an intuitive and transparent way to define the
classification logic of a system. Such a tree consists of a series of decision nodes, which
divide the feature space hierarchically into subspaces until a conclusion is reached, i.e., a
leaf of the tree. Each decision node may be defined as a binary LDA rule, though any
rule that divides the feature space can be used. Moreover, the nodes need not even deal
with numeric features. This makes decision trees a logical choice for problems in which
similarity between feature values is difficult to define. The complexity of a node can vary
from a simple linear discriminant to a multilayer neural network.
Pasion and Oldenburg [73] propose a classification scheme that resembles a tree classifier.
The inputs of the classifier are, as discussed in Section 4.2, parameters ψ1, ψ2, κ1, and
κ2. First, the algorithm calculates ψ = (ψ1+2)/2. If ψ > 0.8, the object is likely to be
magnetic; otherwise, it is considered non-magnetic. Then in case of magnetic targets, if
κ1/κ2 > 1 and ψ1/ψ2 < 1, the object is magnetic and rod-like. However, if κ1/κ2 < 1
and ψ1/ψ2 > 1, the object is magnetic and plate-like. In the case of non-magnetic
targets, if κ1/κ2 > 1, the object is non-magnetic and plate-like. Otherwise, the object is
non-magnetic and rod-like [73]. This heuristics-based method has been shown applicable
in practice to identify of UXO [106]. Why this does not make a proper binary tree is
that in theory undefined outcomes are possible because the leaves do not cover the whole
feature space.
A support vector machine (SVM) is a linear binary classifier, and hence related to the LDA
classifier. Therefore, it is suited, e.g., for distinguishing between threatening and innocuous
items. An SVM requires no a priori knowledge about the underlying process that has
generated the data [101]. Let xi be feature vectors for training and gi ∈ {−1, 1} the
corresponding ground truth labels for the two classes in consideration, i.e., for Ω0, g = −1
and for Ω1, g = 1. An SVM searches for a hyperplane gi(xi ·w+ sf )−1 ≥ 0, where w is a
vector of weight factors and sf is a scaling factor. The optimal hyperplane should maximize
the margin 2/|w|. The idea is that most weights w are found irrelevant during the training
phase in such a way that they converge to zero terms. The remaining samples that get
nonzero weights are called support vectors, and they essentially define the hyperplane.
Moreover, to prevent overfitting, an SVM imposes a penalty for misclassifications. This is
called the capacity of the machine (for details on SVMs, see, e.g., Duda et al. [33] and
Fernandez et al. [95]).
This linear SVM can be transformed into a non-linear version by using a kernel function
K(a,b) = Φ(a) · Φ(b), which maps the input vectors a and b into a higher dimensional
space [33]. The radial basis function (RBF), also known as the Gaussian kernel, is a
commonly used kernel function. It is given by K(a,b) = e−|a−b|2/2σ2 , where σ is a
parameter controlling kernel width. This function essentially measures the similarity
between a and b; i.e., when they are close in Euclidean space, the output is close to
one, and if they are dissimilar, the output is close to zero. Therefore, the classifier will
converge to the nearest neighbour classifier with small values of σ [33, 101, 107] (see
Section 4.5).
To discriminate between multiple classes, the problem must be split into several binary
classification problems by using multiple one-against-one (OAO) or one-against-all (OAA)
SVM classifiers, or a directed acyclic graph SVM [108]. In the OAO method, the output
class is usually determined by choosing the class that has most positive outcomes out
of all comparison pairs. In the OAA method, on the other hand, usually the class with
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the best performance is assigned as output. Furthermore, the multiclass problem can be
converted to a binary classification tree problem, in which each node is solved with an
SVM, as demonstrated by Fei and Liu [109].

In the literature, the SVM is widely used for BOD. For example, Fernandez et al. [101]
used an SVM with a RBF kernel to classify UXO. They measured their data using CW
EMI at five distinct frequencies and used MPT eigenvalues as classification features. The
classifier discriminated objects based on their size, namely radius, length, and volume
[101]. They have also successfully used a multiclass SVM with a voting-based OAO
approach to classify UXO, this time with time-domain decay parameters as features [95].
Moreover, Aliamiri et al. [50] have used a similar multiclass SVM OAO approach to
classify buried objects.

4.5 Dictionary matching and K-nearest neighbour classification

Dictionary matching, also known as fingerprint matching [110], is a non-parametric
classification method, in which training data is used to form a library (dictionary) of
feature vectors (fingerprints). Like discriminative methods, dictionary matching estimates
the a posteriori probabilities P (Ωi|x) from the training samples; i.e., class labels from
training data are used directly to classify unknown samples. The classification outcome is
constructed by matching the unknown sample x with the most similar feature vector in
the library. The similarity of samples in terms of given features is based on some distance
metric D(a,b).

Perhaps the most commonly used distance metric is the Euclidean distance, also known
as the L2-norm. In case of two vectors a and b of N samples, it is given by

D(a,b) =

√√√√ N∑
i=1

(ai − bi)2. (4.10)

Norton and Won [61] have used the L2-norm has been used as a goodness-of-fit measure
for multi-frequency MPT eigenvalues as follows:

Em =
Nf∑
l=1

3∑
i=1

wl|λ̂i(ωl)− gλi(Ωn, ωl)|
2
, (4.11)

where ωl is the lth discrete frequency, wl is a (positive) weighting factor for each frequency,
g is a scaling factor, λi(Ωn, ωl)is the ith eigenvalue for class Ωn and frequency ωl, and
λ̂i(ωl) is the ith eigenvalue of the unknown sample, measured at frequency ωl. Moreover,
the authors state that using separate scaling factors (gR and gQ) for real and imaginary
parts of the eigenvalues may yield better classification results. However, scaling is only
necessary if the signal amplitude must be normalized, as in UXO detection. The WTMD
data is already scaled, as explained in Chapter 3. Other common distance metrics include
the Manhattan distance (i.e., L1 norm), Minkowski, and Chebyshev distances [111].

These simple metrics may not be suitable for certain types of features, e.g., in a case when
the classifier must determine the similarity between two eigenvalue spectra, such as sets
of DSRF-parameters, because the spectra may contain a different number of frequency
bins [79]. Earth Mover’s Distance (EMD) is defined as the work needed to convert one
DSRF spectrum into another; hence the name. In addition, Huang and Won [112] have
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proposed a distance metric for two CW EMI spectra containing the same number of
frequency bins, given by

D(a,b) =

Nf∑
i=1

(|<(ai)−<(bi)|+ |=(ai)−=(bi)|)

M∑
i=1

(|<(bi)|+ |=(bi)|)
, (4.12)

where D(a,b) is the misfit in percent, i is the index of frequency bin, and Nf is the
number of frequency bins used.

Figure 4.4: The K-nearest neighbour algorithm principle. The neighbourhoods K = 1, K = 3,
and K = 5 are marked with circles. For K = 5, the classification outcome would be the blue
category, otherwise the red one.

Nearest neighbour classifiers are typical dictionary matching methods. Already in 1988
by McFee and Das [113] used such methods to classify magnetometer-based MPT data
based on early findings in the field, such as the study by Moskowitz and Della Torre [114].
Nearest neighbour classification works as follows. Using the definitions in Section 4.1,
let XTRAINING be a vector of NT training samples, and ΩTRAINING their respective
class labels. Let x′ ∈ XTRAINING be the nearest neighbour of an unknown sample x
and Ω′ its class label. The term nearest neighbour refers to the sample x′, which is
at the shortest distance from x, i.e., x′ = arg min D(x,xi), xi ∈ XTRAINING, where
D(a,b) is the distance function used to measure the similarity of samples a and b. The
nearest neighbour classifier relies on a single sample to determine the class. This leads
to suboptimal performance in terms of theoretical error rate, i.e., the Bayes rate [33].
Intuitively, the reliability of the decision can be improved by using more samples for
classification. In K-nearest neighbour (KNN) -classification, K nearest samples in terms
of distance D are chosen, and the class label that appears most often within these samples
is assigned to sample x. To avoid draws, K is usually an odd number. Figure 4.4 shows
the principle of KNN-classification. Increasing the value of the parameter K lowers the
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theoretical upper bound for the classification error rate; i.e., the error gets closer to the
Bayes rate. On the other hand, the K nearest neighbours must be close enough to x in
terms of distance D not to lose classification reliability. As a compromise, small values
such as 3 and 5 are often used. The idea of the KNN method is to model the underlying
PDFs using only the local neighbourhood close to the sample x [115].

A variety of modified versions of the KNN have been presented in the literature. Non-
uniform weighting of the nearest neighbour samples has been proposed to give more
importance to the samples that are similar to x in terms of the distance measure [115, 116].
Such weighting enables use of a larger region K while keeping the focus on the nearest
samples. Furthermore, a fuzzy version of the KNN has been proposed by Remus et al.
[115], to enable the nearest neighbours to have a fuzzy membership in multiple classes.

The literature contains a variety of studies on the use of the KNN for scenarios such as
distinguishing between landmines and clutter. For example, in one such study, Tantum
et al. [79, 117] used DSRF spectra as features and the EMD for distance calculation.
In addition, Fails et al. [111] used the four parameter model (2.9) by Miller et al. [48]
as features. Their distance calculation employed a search region of K samples, and
within the region, compared the mean distance from x to landmine targets with the mean
distance to clutter targets.





5 Classification of metallic targets
using the WTMD portal

This chapter presents the contributions reported in the included five publications, and
shows that the objectives laid out in Section 1.2 have been met. Furthermore, the
contributions and results are discussed.

The structure of this chapter is as follows. Section 5.1 presents the concept of the so-called
body effect and explains how it shows in measurements made with the portal. Section
5.2 presents the data collection procedure used in this thesis and provides an overview
of the library contents. Section 5.3 provides information about the kind of noise and
bias components in the library samples and elaborates the reasons for their occurrence.
Furthermore, information is provided about how the effect of these components can be
diminished. Section 5.4 discusses the factors that contribute to the reliability of the
samples from the classification point of view. In addition, a novel method to detect
unreliable samples is presented. Section 5.6 shows that metallic objects can be accurately
classified using the WTMD portal and the KNN. Section 5.5 demonstrates that MPT
eigenvalue angles ϕ contain information about the material of the object, and that a
correlation exists between MPT eigenvalue magnitudes τ and the dimensions of objects.
Finally, Section 5.7 generalizes on the results.

5.1 Body effect

The body effect is a phenomenon that describes the interference caused by the human
body in the received portal signal. It can be either inductive or capacitive in nature,
depending on its source. From an electromagnetic point of view, the body is somewhat
conductive and eddy currents thus flow around the body, creating a secondary magnetic
field, which in turn affects the primary field. This inductive body effect adds up to the
changes caused by the actual target object. Furthermore, because the body is a large
object, its EM response is significant enough to be measurable with the portal. However,
according to experts in the field, the scale of these inductive effects depends on coil design
and the sensitivity of the portal; the phenomenon can be seen mainly in devices designed
to detect very small items.

In the portal described in Chapter 3, the body effect happens mainly due to, as shown in
Publication III, capacitive coupling between the human body and the portal coils. The
key to the phenomenon is the electric field generated by the transmit coils. The effect is
then based on the relatively high permittivity of the human body, which consequently
causes the body to act as a capacitor and generates direct electric interference in the

39
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receive coil signal. Therefore, the capacitive body effect does not, in principle, alter the
magnetic fields within the portal detection space.
The results in Publication III show that each of the five candidates had a unique, repeatable
body effect signal, which did not correlate with the approximated body volume. Based
on observations of the raw measurement signal, a conclusion was made that for large test
objects, in this case NIJ gun phantoms, the body effect was relatively small whereas for
small objects, such as an NIJ aluminium knife phantom, the body effect signal was clearly
summed with that of the target, as shown in Figure 7 from Publication III.
Publication I showed that the body effect may significantly affect the classification results.
Consequently, it had to be taken into account in designing the data library and the
experiments in this thesis.
Furthermore, the capacitive body effect might be reduced or even removed by preventing
the electric field caused by the transmit coils from entering the portal detection space. In
Publication I, it was suggested that this may be done using insulative screening (such
as tape or paint on the portal panels) between the body and the portal coils. However,
the inductive body effect cannot be removed by physical means. On the other hand, a
calibration routine could be developed to remove both body effect components because
evidence suggests that they form a measurable and repeatable error component to the
signal.

5.2 Data library

Portal manufacturers are usually the ones to do research on detecting and classifying
metallic objects with WTMD portals. And understandably, they are reluctant to release
their data to public domain for fear of disclosing technical details and corporate secrets
and providing competitors with potentially useful information. Therefore, no database is
publicly available of parametrized EMI responses, such as MPT eigenvalues of typical
metallic objects. Hence, the data library for the studies in this thesis was constructed by
the author using the measurement system described in Chapter 3 at the University of
Manchester, UK.
The data was collected via natural walk-through scans performed by several subjects
(candidates), though most (>95%) of them in the library were performed by the author.
As discussed in Section 5.1 and shown in Publication III, the body effect influences the
measured signal and the obtained MPT values. Thus, using mainly the same candidate
for data collection ensures that the measurements are comparable, and that also any
variance in other factors, such as gait, is eliminated.
Furthermore, since walk-through speed and object trajectory may affect the measurement
values and thereby the estimated MPTs, it is crucial to be able to produce consistent,
repeatable measurements. No exact method was used to control the walk-through speed;
thus, as a compromise, the aim was to walk through the portal always at the same,
natural, steady pace.
The object trajectory, path, varies mainly as a function of object placement (location) on
the body of the candidate as well as on the placement of the steps that the candidate takes.
Naturally, different candidates also have a different height and gait, which might affect
the resulting trajectories. In Publication V, it was demonstrated that object location,
and hence the path, has an effect on the MPT eigenvalues, and therefore a method for
controlling the trajectories is necessary. Keeping the object in a repeatable location for
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the duration of a walk-through always produces about the same object trajectory if the
candidate enters the portal in the same way and walks along the same steps. This was
ensured by marking a foot placement grid on the portal floor (Figure 5.1).

Figure 5.1: Step guidance markings on the portal floor.

The repeatability of object location was ensured as follows. An apron, i.e., a plastic and
cardboard vest with location markings, was constructed with the markings of the apron
showing 12 locations. The locations were selected to correspond to the test locations for
WTMD portals defined by the NIJ [20, p. 7] (see Figure 2 of Publication V; note that only
8 of the 12 locations are shown). This measurement setup made data collection repeatable
and enabled production of comparable MPT values (an example of a walk-through scan
and the data collection setup is shown in Figure 1 in Publication V).

In total, the data library contains 142 objects and 4394 samples. Figure 5.2 shows a
comprehensive list of the object types and the objects included in the library. Figure 5.3
features examples of the objects in the library.

Figure 5.4(a-d) shows the eigenvalues of the selected objects and Figure 5.5(a-d) the
corresponding objects. Each object registers eigenvalue clusters in both non-magnetic
(ϕ ∈ [0 . . . 1]) and magnetic (ϕ ∈ [2 . . . pi]) zones. Experience shows that objects made of
a single type of metal yield eigenvalue clusters in only one of these zones (details, e.g., in
Publication IV). Thus, the phenomenon in Figure 5.4 may be due to the fact that the
objects consist of several distinct metals. However, their exact metallic composition is
unknown.

Figure 5.6 shows the eigenvalues of an object consisting of eight phantom bullet cases.
This example is here to show that sometimes inverse optimization finds two or more
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Figure 5.2: Objects comprising the library. The numbers in brackets indicate the total number
of objects within the particular category.

distinct solutions for the same object (for more information, see Section 5.4). Here the
two cluster triplets may have been caused by the fact that the measurements came from
two distinct object locations. However, experience has shown that this phenomenon is
somewhat rare in the library.
The data library contains a wide variety of objects, and the number of objects is relatively
large. However, because there exists a practically infinite number of different metallic
objects, the library is, in the end, quite small and sparse. Furthermore, for each object,
the number of samples is limited. Performing walk-through scans was time-consuming
and data could not be gathered on all objects at various portal locations and orientations.
However, for the purposes of this thesis, the library contains enough samples, especially
since the measurements were carefully selected to study the phenomena of interest.

5.3 Bias and noise in signals

Publication V proves that an element of bias and different noise components are present
in the measured system response ρ̂, and that the response can be given by

ρ̂(p,Θ) = ρ+ µ(p,Θ) + Nbody + N , (5.1)

where Θ is the orientation of the object, ρ the theoretical response solely for the target
object, µ(p,Θ) a position and orientation dependent bias term, Nbody the body effect,
and N a general noise term. Generally, in the above equation, the body effect signal cannot
be considered noise, but rather a systematic error term. However, the body effect depends
on the physiological properties of the person (e.g., the volume of body fluids, which varies
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Figure 5.3: Opinel-brand knives and shoe shanks. The knives from top to bottom are: Opinel
Effile (size 12), Opinel INOX (size 8), and Opinel Lame Acier (size 8). Note that in their
dimensions the blades resemble the shoe shanks.

due to conditions such as dehydration) and hence may vary daily. Furthermore, from the
point of view of the underlying dipole model and from an overall perspective described in
(5.1), the body effect term Nbody represents an individual noise-like error source.
Moreover, Publication V states that estimated eigenvalues can be thought to consist of
several parts that are determined by the above bias and noise terms in the signal:

λ(M̂) = λ(
↔
M) + µλ + Nλ, (5.2)

where each term denotes the contribution of the corresponding terms in (5.1). Nλ

contains the combined noise effect caused by Nbody and N. Figures 3(a-d) in Publication
V demonstrate the positional and orientation biases and noise in the data.
Based on the background knowledge in Chapters 2 and 3, the bias term consists of all
the imperfections that cause the dipole model to be built on a skewed view of the object.
These imperfections exist mainly due to the fact that the primary field vectors are in
reality not perfectly parallel, as shown in Figure 5.7, and that especially near the transmit
coils they are far from the requirements of the dipole model. Second, the strength of the
field vectors varies due to, e.g., the decay of the magnetic field further away from the
transmit coils. Third, the view on the object is not optimal because some view directions
always register more measurements than others. Finally, though the measurement system
used in this thesis is a single frequency excitation system, each transmit coil functions
at a distinct frequency. The frequency bands are some 500Hz-1kHz apart. This may
seem like a small difference, but as shown by the eigenvalue frequency response curves in
Figures 2.1 and 2.2, significant changes can happen to MPT eigenvalues within a couple of
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Figure 5.4: Eigenvalues of selected objects in the library. Note that the Y-axis scale of (c) is
distinct. The different symbols denote the eigenvalues λ1, λ2, and λ3 ordered by magnitude.
The corresponding objects are shown in Figure 5.5.

frequency bands. The MPT estimation process does not take such changes into account,
a limitation that may cause some of the current bias. Moreover, the positional bias may
depend also on the material of the object because, according to Shubitidze et al. [82], the
response of heterogeneous targets can change close to the coils.

The literature supports the existence of the bias term. For example, Aliamiri et al.
[50] have noticed that the spread of data values modeled with the dipole model is non-
Gaussian by nature, a finding that corresponds to the bias term introduced in Publication
V. Moreover, they claim that the variability in the values is deterministic, agreeing with
the findings in Publication V. According to Aliamiri et al., apart from background noise,
the parameter variation is caused by model mismatch, meaning that the dipole model is
not a good approximation of the underlying physics. They conclude that the bias could
be reduced by using a more accurate physical model [50].

Eliminating the main sources of the bias, namely getting the magnetic fields to correspond
more closely to the assumptions made in the definition of the model, or using operating
frequencies closer to one another, seems challenging and beyind the scope of this thesis.
Nevertheless, reducing the bias would be beneficial. Because it may never be possible
to produce unbiased and high SNR measurements across the whole portal space, these
problems must be addressed and taken into account at the later stages of the system,
namely feature extraction, classification, and decision making. For example, a feasible
option might be to use the estimated path information to compensate for the positional
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Figure 5.5: Examples of objects in the library. a) Canadian coins b) a Swiss knife (1) c) A
tobacco tin d) a Swiss knife (2). The corresponding eigenvalues are shown in Figure 5.4.

bias. Because similar trajectories yield similar MPT estimates for the same object, the
trajectory information could be used to increase or decrease the reliability of the sample.
Alternatively, one might use only the fingerprints from roughly the same location for the
dictionary matching process. This could be done by estimating a YZ-plane centre position
for the samples using their trajectories. However, this does not apply to the orientation
bias because there is no method available to estimate the orientation of objects.

5.4 Detection of unreliable samples

As explained in Section 3.3, the inverse optimization -based parameter estimation algo-
rithm seeks a solution β that best fits the measured signal ρ̂, given the physical model
defined in Section 3.2. From the classification point of view, one would want the algorithm
to yield such a solution β that the MPT estimate M̂ would always be as close to the
theoretical MPT

↔
M as possible. The same applies to the path estimate P̂ and P. However,

several factors cause problems that can finally lead to poor MPT estimates. A poor
MPT estimate here means that the estimated parameter values differ significantly (i.e.,
to an amount clearly not resulting from normal noise variance) from the true theoretical
MPT. Such poor estimates are called Unreliably Inverted Tensors (UITs) in Publication
V. Since theoretical MPT values are unknown, another way to define a UIT is to approach
the problem through repeatability. From the classification point of view, theoretical
MPT values are not necessary if the classification algorithms use only training data that
is produced by the same or a similar measurement system with the same properties.
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Figure 5.6: Phantom bullet cases, 8 pieces. Note that the eigenvalues form two sets of three
clusters because of two separate solutions found by inverse optimization. Importantly, the distinct
solutions come from two separate portal locations. The points marked in red come from location
2-2, whereas the black points come from near the coils, location 1-3 (for location details, see
Publication V)

Figure 5.8 shows a UIT scenario by using estimated MPT eigenvalues for a belt. Inverse
estimation has here produced two distinct solutions.

Several factors may produce UITs. First, the assumptions limiting the applicability
of the dipole model (see Section 2.2) may be invalid. Indeed, real objects are rarely
homogeneous and never infinitely small to be presented as a point in space, nor are they
an infinite distance away from the coils to ensure parallel field vectors across the sample.
Consequently, the model may not be valid for the given object and measurement, and
the solution that yields the lowest residual may, in fact, be a poor estimate for the true
MPT. Inverse estimation can thus produce values that have a low fitting error, but that
are outliers compared to the other data points assigned to the objects of the same object
class [118].

Second, the problem with many inverse optimization algorithms, including the one used
in the portal, is that they can get stuck at local minima instead of finding the global
minimum, i.e., the optimal solution, as demonstrated in Figure 5.9. Therefore, the solution
depends on the initial guess taken [118].

The literature offers approaches to tackle the problem of sample unreliability. Remus and
Collins [118] have proposed a method using the Fisher information metrics as a means to
evaluate the quality of samples produced by inverse optimization. In addition, Walker et
al. [119] propose a measure called the figure of merit for quantifying data quality, based
on factors such as the perceived SNR of the signal and size of the detected object. Such
data quality measures may help quantify the reliability of classification outcomes.

On the other hand, Grzegorczyk et al. [120] have used a Kalman filter to reduce the
effect of Gaussian noise on the inverse estimation of the MPT and the position of metallic
targets. The problem with this approach is that the noise may in reality not be Gaussian,
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Figure 5.7: The limitations of the dipole model. The figure shows the shape of the magnetic
field created by a coil in 2D. Close to the coil, the field vectors are curved, causing a skewed
view of the object (a). Further away from the coil, the field vectors are parallel, enabling use of
the dipole model for object (b).

as shown by Aliamiri et al. [50]. Furthermore, Beran et al. [121] have proposed two
methods for taking data uncertainty into account when considering estimated EMI model
parameters. The first method models data uncertainty, i.e., noise, with Gaussian PDFs
and thereby trains an SVM, which is consequently optimized for noisy data. The second
one tackles the problem of multimodal data distributions, such as the one shown in Figure
5.8, by creating a set of points for each measurement by inverse optimization by using
a large number of distinct initial guesses. The consequent multimodal distribution is
modeled using a Gaussian mixture model [121].

Publication V proposes a method for detecting UITs. This method can be considered to
perform so-called outlier detection [122], and it uses residual-value- and heuristics-based
features calculated from the path information. Logistic regression (LR) is used to choose
the best set of features along with corresponding weights and thresholds. The results show
that the novel method can, indeed, detect samples that would otherwise be unreliable
for classification, enabling a consequent significant increase in classification accuracy
with the rest of the samples. Furthermore, path-based features performed better than
residual-based features, but a combination of a moderate residual threshold, such as
rT = 0.6, in combination with path features performed best. The publication proposes
that samples detected as UITs be fed back to inverse optimization with a new initial
guess. Experience has shown that these UITs derive largely from a poor initial guess,
which is quite hard to recover from.

Moreover, this encourages improvement of inverse optimization by using several initial
guesses instead of one, as proposed by Beran et al. [121]. The resultant possible increase
in computational time is not a concern because of the sinking costs of processor power.
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Figure 5.8: An example of two distinct solutions (shown in red and black) found by the
inverse optimization. The upper graph shows the eigenvalues for a belt, and the lower one the
corresponding residual histogram.

5.5 Estimating material and geometric properties of objects

Publication IV showed that it is possible to distinguish between a variety of metals using
a single frequency component of the MPT. Furthermore, it was showed that only one
eigenvalue, λ3, i.e., the one with the largest magnitude, is needed. Consequently, the
angle ϕ3 was the feature to classify materials. The materials used for the study were
aluminium, copper, stainless steel, ferrous steel, and brass. Accuracies of over 94% were
reported for using only ϕ3 as a feature, whereas using the magnitude τ3 as additional
information helped to raise the accuracy beyond 98%. For these classifications, a simple
LDA classifier was used.

Furthermore, Publication IV examined the correlation between MPT eigenvalue magni-
tudes, τ , and object dimensions. For this, a library consisting of a variety of metallic
strips and cylinders was used. The results showed that the object surface area and the
length of the MPT magnitude vector, |τ |, correlate. Moreover, for similar objects of
similar materials, this correlation is somewhat linear.

Section 4.2 discussed many approaches found in the literature to estimate the aspect
ratio of an object by using either the ratio of eigenvalues as such or that of eigenvalue
magnitudes. Such an approach is logical because a variety of object classes can often be
described by their shape. However, in the context of the portal, this is not straightforward.
As shown in Publication IV, it is not accurate to estimate dimensions by using magnitude
values. Thus, using these values to estimate the aspect ratio of an object may not be
reliable. Moreover, as explained in Section 4.2, concerns have been voiced about using such
an approach. Because the ratio of eigenvalues (or magnitudes) is not constant, exploiting
it for a classification feature should be done in a constrained scenario, preferably when
the types of possible target objects are known a priori.
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Figure 5.9: The principle of inverse optimization. The algorithm can get stuck at local minima
because the residual value grows as the solution moves away from the minimum.

Publication IV demonstrated that the phase angle and magnitude of MTP eigenvalues
correspond to the material and geometric properties of the object. Therefore, it is logical
to use these features to determine the similarity of two given samples. However, feature
scaling can be a problem because a difference in phase angles cannot directly be compared
with a difference in magnitudes. Moreover, as shown in Figure 5.10, phase angle values
of low magnitude MPT eigenvalues are noisy and contain no reliable information. The
above feature weighting may be a possible solution, but these features could also be used
separately. In many scenarios, it may be enough to determine for each MPT eigenvalue
λi whether it refers to a magnetic or a non-magnetic entity, and whether the magnitude
of λi is small, i.e., noisy, or large enough to be considered for material determination.

5.6 KNN Classification of metallic targets using WTMD EMI
data

Publications I, II, and V, exploited a KNN-algorithm for classification. In Publications
I and II, each eigenvalue vector λ was sorted in order of an increasing magnitude τ of
each eigenvalue λi; i.e., that λ1 is the smallest and λ3 the largest by magnitude. The
distance D between the sample to be classified, x̂, and each sample xi in the dictionary,
the collection of known reference samples, was calculated using a distance measure, given
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Figure 5.10: The effect of noise and low MPT eigenvalue magnitudes on the corresponding
phase angle values. Low magnitude eigenvalues cannot be relied on when their angle is used for
classification. Note that the figure is for illustration purposes only and does not represent real
data.

by
D(λa,λb) =

√
(λa,1 − λb,1)2 + (λa,2 − λb,2)2 + (λa,3 − λb,3)2, (5.3)

where λi are eigenvalue vectors, and λi,j are the corresponding sorted eigenvalues. This
distance was calculated only once for the sorted eigenvalue vectors. However, in Publication
V, the distance was calculated six times, i.e., once per each permutation of the eigenvalue
orders within the vectors. Regardless of the distance calculation method, the class of
sample xi with the smallest resulting distance was selected as the classification outcome
because sorting the eigenvalues λi by magnitude τ does not always result in matching
the corresponding clusters with one another.

The effect of the parameter value K was studied in Publications I and II. Because the
training data contained only a few samples of each class, using values K = 3 or higher
resulted in worse performance than using K = 1, i.e., the nearest neighbour -classifier.
Hence, it has been shown that K = 1 is a suitable value when the size of the training
data is small. Therefore, Publication V used only K = 1 instead of repeating the study
of the previous papers.

In Publication I, for a library of 1316 samples, an accuracy in excess of 98% and a recall
of over 99% were reported to distinguish between threatening and innocuous objects. In
classifying the samples into 10 categories, accuracies were over 94%. Filtering out samples
with a residual value of more than 0.5 improved results, highlighting the fact that in
principle, samples with a high residual value are more unreliable to classify than those
with low residual values.

Publication I also addresses the impact of the body effect on classification. The results
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with two candidates of significantly different body size suggest that the body effect can be
seen also with high SNR objects, and that it can significantly affect classification accuracy.
The accuracies gained with the body effect test data were significantly lower than those
from other tests.
In Publication II, for a library of 835 samples, the threat/innocuous -classification yielded
accuracies of over 95%, with a recall of over 95%. Classification accuracy into 13 categories
was reported to be over 85%. These results are slightly worse than those in Publication I,
but this is because of a more challenging library of objects, which was collected especially
to test the limits of the method. Again, filtering out high residual samples using thresholds
of 0.35 and 0.5 improved accuracies at the cost of not being able to classify all the samples.
Moreover, the results of Publication II indicate that the classification method was indeed
capable of handling fine differences in object size and materials when the data were
recorded by using a single location. This capability was demonstrated in Publication II
by distinguishing between 1) different kinds of knives, 2) different shoe shanks, 3) metallic
containers of different sizes, and 4) knives and shoe shanks. Furthermore, the method
was shown to be able to estimate the number of phantom bullet cases in a phantom gun.
Publication II concluded that 1) a broader object library is needed, that 2) the library
should contain objects in several locations and orientations, and that 3) separability
of different materials, shapes and sizes of objects should be studied. 1) and 2) were
demonstrated in Section 5.2, and 3) was discussed in Section 5.5.
Finally, Publication V showed that a classification method that uses all possible eigenvalue
permutations performs slightly better than one that uses sorted eigenvalue vectors.
Furthermore, the proposed UIT detection method, when used prior to classification, can
significantly reduce the number of misclassifications.
In conclusion, classifying metallic objects with KNN yields demonstrably excellent accuracy
results. Therefore, it is certainly possible to classify metallic objects with the method
presented in this thesis.
However, KNN may have the downside of relying only on the library of training samples. In
a scenario where a variety of unknown objects of known classes are likely to be encountered,
an SVM with a Gaussian kernel may be a suitable option because it functions like KNN
but has perhaps a slightly better capacity for generalization.
Furthermore, the Euclidean distance used in Publications I, II, and V may have the
weakness of being sensitive to the scaling of features. The one-to-one scaling between the
calibrated real and imaginary components of MPT eigenvalues is arbitrary and does not
necessarily yield optimal distance scores to distinguish between different object classes.
Another type of scaling or calibration of these components may affect classification
performance. Instead of using the above arbitrary scaling, it is possible to find scalar
weights for each feature. Hence, for MPT eigenvalues, the distance would be of the form

Dweighted(a,b) =
N∑
i=1

wi ·D(a(i),b(i)) , where a and b are feature vectors, a(i) and b(i)
are the ith feature values of a and b, and wi are the weights that can be estimated by
using training data.
Three studies in the literature that reported metallic object classification using a WTMD
portal. Al-Qubaa et al. [123] have proposed an electromagnetic imaging -based WTMD
portal, which classifies 12 distinct objects, namely six guns, a knife, a wristwatch, a key, a
screwdriver, and a pair of scissors, as threatening and innocuous objects. This classification
method is based on creating features using, e.g., the discrete wavelet transform and the
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fast Fourier transform and classifying samples using an SVM or a NN classifier. However,
the classification accuracies reported [24, 124] are low compared to those in this thesis.
Furthermore, the amount of data in the reported tests allows no analysis of the reliability
of the method. In addition, no real walk-through scans were used in the study.

Elgwel et al. [25], on the other hand, have proposed a method to classify conductive
objects in a pulsed EMI WTMD portal scenario. The research was based on finite element
modeling (FEM) -simulations only. The method exploited a so-called decay parameter as
a feature to characterize objects. Six objects were studied, namely a wristwatch, a key, a
mobile phone, a knife, a handgun, and a hand grenade. The simulations indicate that
the method could detect multiple objects simultaneously and distinguish between them.
However, adding noise to the simulation quickly lowered performance [25]. Because this
study was based on simulations only, the feasibility of its method for a real-world scenario
cannot be analyzed.

The study by Kauppila et al. [26], conducted at Tampere University of Technology, can
be considered pioneering for the publications in this thesis, which focused on nearest
neighbour -based classification of metallic targets using EMI data measured with a WTMD
portal. However, there are some key differences between the study by Kauppila et al. and
the ones presented in this thesis. First, Kauppila et al. used no real walk-through scan
data because of the body effect problems described in Section 3.1. Instead, to simulate
the performance of their system, they used real MPT estimates of a wide range of objects.
To validate their results, they produced real measurement data using a WTMD system
prototype and a special robotic arm. Second, as mentioned in Section 3.1, the two systems
differ in their coil geometries though the inverse estimation algorithms in this thesis would
apply to both systems. Third, Kauppila et al. used the L1-norm as a distance measure
instead of the Euclidean distance used here. Nevertheless, Kauppila et al. have shown
with simulations based on real MPT estimates that metallic targets can be classified with
a single frequency component (over a wide range of frequencies) of the MPT. Furthermore,
they used robotic arm data successfully to validate the simulated results. In sum, their
results are comparable to those presented here, as shown in Publication V. Therefore,
this thesis confirms that the classification performance predicted by Kauppila et al. can
be achieved by using real walk-through scan data, and that the body effect is no longer a
prohibitive factor for the technology. Based on these observations, it can be argued that
the methods and results of this thesis represent the state-of-the-art in the field.

5.7 Generalization and future work

This thesis has focused on a single object scenario in which the number of target objects per
walk-through scan is one. However, in practice, a WTMD system must deal with multiple
objects simultaneously. In BOD, several studies have been reported on simultaneous
detection and characterization of multiple objects (Hu et al. [125], Economou et al. [126],
Remus and Collins [127], and Grzegorczyk et al. [128]), confirming its feasibility. Moreover,
at least two studies have reported multi-object detection and characterization using a
WTMD portal. First, Elgwel et al. [25] considered a simulated multi-object scenario.
Second, and most importantly, Marsh et al. [129] tested the same measurement system
used in this thesis for a multi-object scenario by using up to three objects simultaneously;
the dipole model enables the representation of multiple objects using multiple MPTs if
the objects are sufficiently far apart. Therefore, the methods presented in this thesis can
be expected to be generalizable to a multi-object scenario in the near future. Essentially,
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if MPTs can be reliably estimated for all targets, the classification methods presented
here are undoubtedly capable of dealing with the task. However, there is work to be
done to optimize the measurement system so that reliable inverse optimization could be
realized for locating and characterizing an arbitrary number of targets.
In this thesis, supervised learning techniques were used as the primary means to train
classifiers. However, the necessary predefined training data may not be representative
or even available [86]. Furthermore, producing labeled training data is laborious and
expensive. It is also practically impossible in general to have a set of training data
that would, e.g., contain all the objects that might be encountered in a real-life security
screening scenario.
On the other hand, unsupervised learning can reduce human involvement in training the
methods and allow for online learning of unknown target types. The literature contains
some studies on using unlabeled training data for classifying metallic objects. For example,
Benavides et al. [130] have used unsupervised learning, namely self-organizing maps,
to discriminate UXO. Furthermore, Liu et al. [131] have proposed a semi-supervised
learning method for detecting and classifying UXO, which uses both labeled and unlabeled
data, and have demonstrated the usefulness of their method in a real-world scenario. In
addition, Bijamov et al. [86] have proposed a semi-supervised UXO classification method
based on an iterative clustering algorithm, which first groups unlabeled EMI signatures
of targets into clusters and, step by step, requests labels for them. As labels are revealed,
the system learns more and more different types of UXO and clutter signatures. The
number of clusters to be formed is predefined.
This clustering approach is somewhat analogous to my earlier work [132] in the context
of semantic video retrieval. In a WTMD scenario, the approach may be used for a
semi-supervised online learning scheme as follows. First, the method should contain a
fairly large amount of training data from most classes to be encountered. The system then
calculates the distance of an unknown sample x to the known samples. If the distance
is small enough, i.e., the classification decision can be trusted, the object is classified as
usual. However, if x resembles no known sample, the portal triggers the alarm. A manual
inspection is carried out to identify metallic target(s). This identification information is
then input into the system by a human operator. If the target cannot be identified, the
system may still store its EMI signature and path estimate for use in clustering. Based on
the labeled and unlabeled samples, the system should be able to improve its classification
method on the fly.
This thesis has presented classification algorithms to distinguish between metallic objects.
Figure 5.11 shows an overview of the structure of the proposed system. However, these
algorithms cannot directly be applied to a real security screening scenario without any
additional intelligence for final decision making. The reliability of the classification
decision must be analyzed, and based on the cost of misclassifications, a decision must
be made, e.g., on whether to raise the alarm or not. The implementation of this logic
is application-specific. However, the method by Pasion et al. [133] serves as a good
starting point. The authors have proposed two thresholds for decision making. The first
is a data quality threshold, which determines the minimum SNR for measurements to
ensure sample reliability. The second is a threshold that determines the maximum reliable
distance for library methods; i.e., how far the closest matching library sample can be from
the unknown sample to rely on it for classification. Pasion et al. propose that optimal
threshold values could be determined by using either training data or simulations.
The methods presented in this thesis may enable use of a single portal hardware solution
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Figure 5.11: A classification system overview as presented in [33] (left) and the corresponding
structure used in this thesis.

while tailoring a variety of classification schemes for different scenarios. For example,
various items are forbidden at major sporting events, shopping malls, and airports. In
these cases, only the EMI signature library, and possibly the classification algorithm, must
be changed. Ideally, one could add to and remove forbidden items from the library on the
fly as operational requirements change. As long as MPT parameters can be solved for the
detected target object, a KNN classification scheme can be set up trivially by gathering
training samples of, e.g., the threat objects that the system is required to detect.



6 Conclusion

Chapter 5 has shown that the WTMD portal described in Chapter 3 can help accurately
classify metallic objects into 10 to 13 arbitrary classes and distinguish threatening objects
from innocuous ones.

Furthermore, it has been shown that although the measurements made with the portal
are subject to many problems, such as body effect and signal bias, they can be overcome
and a high classification accuracy can be maintained.

A self-diagnostics method for detecting unreliable samples has also been presented. The
results show that the method can significantly increase classification accuracy and the
reliability of decision making.

Further generalization of the results has been discussed in Section 5.7, and, arguably, the
technology can be commercialized. The next steps in this direction are, first, to enable
simultaneous classification of multiple objects, and, second, to diminish or compensate
for the effects of bias and noise by designing hardware that can produce better SNR
and minimize the effect of model mismatch. However, based on the information in the
literature and the observations made in this thesis, compensating for the problematic
issues by introducing algorithmic tools on the classifier side may be a good way forward.
Other topics for future work include enabling the use of multiple excitation frequencies to
gain more information on the frequency response of the object.

The implications of the results of this thesis are three-fold. Firstly, for the EMI-based
metal detection and characterization research community, it has been shown that the
MPT, having been successfully used in the field of UXO/landmines for years, can be
applied to WTMD security screening. In addition, the positive results encourage using the
methods presented here also for other research, such as classification of UXO/landmines.
Second, for the field of WTMD security screening, it has been shown that a paradigm
shift, i.e., eliminating the need to remove all metallic items before screening, is possible.
Moreover, the novel technology offers more information by indicating the probable cause
for the alarm to support the conventional screening procedure. Finally, the technology
enables design of new products for time-critical WTMD screening scenarios such as major
sporting events and train stations where airport-style methods may be too slow and
inconvenient, and opens up new business possibilities for companies like Rapiscan.
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Abstract. A k-nearest neighbour (KNN) classification algorithm has been added to a  

walk-through metal detection system which is capable of inverting the magnetic polarisability 

tensor of metallic targets at a frequency of 10 kHz. Pre-computed library data is used to 

determine the class of the object, e.g. ‘knife’ or ‘mobile phone’, and is consequently capable of 

determining if an object is considered a threat. The results presented show a typical success 

rate of 95%. An investigation into classification accuracy between different candidates is also 

presented to determine the significance of the body effect on the success of the classification. 

1. Introduction 

Modern walk-through metal detectors are incredibly sensitive, precision measurement systems. Their 

widespread use for detection of threats in environments such as airports, prisons and public buildings, 

combined with the competition between several leading manufacturers has ensured that the current 

generation of technology is capable of detecting very small items such as handcuff keys and integrated 

circuits [1]. In the aviation industry metallic threats are principally considered to be knives and guns 

and are thus considerably larger than the smallest detectable objects. Improved signal-to-noise ratios 

may continue to be sought by manufacturers in an attempt to increase the detectability of non-

magnetic, low conductivity materials such as some stainless steels, however the most significant 

challenge is no longer to detect the objects, but to determine whether they present a threat or not. 

 It is reported that between 2000 and 2010 a total of 17 out of an estimated 310 million commercial 

flights were hijacked worldwide [2]. Using these numbers it is estimated that in this ten year period the 

chances of a plane being hijacked was in the region of 1 in 18.2 million. This statistically rare threat 

can be contrasted with the fact that in environments such as airports it is common for people to carry 

several innocuous items such as mobile phones, jewellery, or keys, and current regulations require that 

travellers must remove these items prior to screening. This causes a great deal of disruption and 

inconvenience, and requires a large number of staff to administer. These facts demonstrate that any 

method capable of determining which items located on a person are threatening, and which are 

innocuous has the potential to greatly improve the aviation industry.  
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 In this study, a tomographic metal detection system [3] which is capable of inverting the magnetic 

polarisability tensor, �����, from a single walk-through scan has been used as the measurement system. A 

library of tensors produced by this system has been recorded for a variety of different objects. To 

examine the capacitive and inductive effect of the human body on the measurements, known as the 

body effect, a separate library using two candidates has been collected. A classification algorithm 

based on the k-nearest neighbour (KNN) approach has been implemented, and the performance of the 

algorithm is tested for both the general library case, and the body effect case. 

 Although the method which is reported here is done so with focus on the aviation industry, the 

methods documented in this paper may be applied to any system which is capable of yielding the 

magnetic polarisability tensor; including detection systems for UXO/landmines. 

2. Method 

2.1. Producing the library 

The library was constructed by simple walkthroughs using the WTMD described in [3]. This system 

uses eight pairs of transmit-receive coils, each of which operate at a different frequency. These 

frequencies range from 8 kHz to 13.8 kHz and are arranged lowest to highest from floor level 

upwards, with a separation of approximately 700 Hz between neighbouring channels. The system 

inverts a single tensor, and consequently offers only a single point on the tensor’s continuously 

varying frequency spectrum [5]. Theoretically the inverted tensor is valid at the frequency 

corresponding to the parallel channel which is level with the object, however to for simplification and 

as the range of operating frequencies is relatively small the tensors are assumed to correspond to a 

frequency of 10 kHz – the median frequency value centred about the average height of candidates. 

 The library was constructed by repeatedly conducting walkthrough measurements. One object was 

carried through the detector at a time per scan, and its orientation and position on the candidate was 

varied between scans. The library contains a total of 33 different objects, and was built using data 

from 1316 walk-through scans. These scans were conducted using three different candidates. The 

objects belong to 10 different classes which are shown below. Numbers in brackets represent the total 

number of measurements per class. 
 

• Belts (40) 

o 1 belt 

•  Coins (80) 
o 3 sets of coins 

• Keys (90) 

o 3 sets of keys 

• Knives (424) 

o 11 knives 

•  MP3 Players (80) 

o 4 MP3 players 

 

• Pocket Mirrors (50) 

o 1 pocket mirror 

• Mobile Phones (120) 

o 4 mobile phones 

• Wristwatches (40) 

o 1 wristwatch 

• Guns and gun parts (352) 

o 2 guns 

o 1 set of bullets 

• Scissors (40) 

o 1 pair of nail scissors 

o 1 pair of office scissors 

The data recorded for each walk-through consists of the estimated tensor value, M
t
, the residual of the 

inversion algorithm, r, and the estimated coordinates for the path of the object, P. The main library, 

subsequently referred to as ‘Main, all’ contains of all the recorded measurements.  

 A second library, called ‘Reduced’, was produced which consisted of a single object per class. This 

was done to balance the probability of classification, as the outcome of KNN algorithms is known to 

be dependent upon the number of samples per class. The data consisted of measurements from two 

different locations, in the left trouser pocket and along the central line of the portal at chest height; 

these are labelled ‘Left pocket’ and ‘Chest’. At each position, 10 scans were performed, resulting in 20 

measurements for each object. Thus, the total size of this second library was 200 measurements.  

 Previous testing with a calibration object has indicated that some tensor components deviate by up 

to 50% when the same object is scanned in different regions of the portal. Typically this variation 

occurs as the object trajectory moves from one side panel of the detector to the other. In order to 

demonstrate this effect and to evaluate the performance of the KNN algorithm in such circumstances, 

the results from the ‘Chest’ and ‘Left pocket’ libraries described above have been compared.  

Sensors & their Applications XVII IOP Publishing
Journal of Physics: Conference Series 450 (2013) 012038 doi:10.1088/1742-6596/450/1/012038

2



 

 

 

 

 

 

 Tensor reliability can be estimated from the residual value, r, of the inversion algorithm described 

in [3]. The residual is calculated by taking the L2-norm of the difference between the actual 

measurements, ρ , and the forward response as a function of the inverted tensor and 3D coordinates, 

ρ̂ , and dividing this value by the L2-norm of the inverted measurements, ρ̂ ; this is defined in (1). 
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 Experience has shown that residual values greater than 0.50 indicate unreliable tensors, and that 

anything in excess of 0.35 can be considered to be a poor representation of the object’s tensor. As a 

result of this observation a further two versions of each library have been created. These have been 

made by selecting all of the samples that have a residual less than 0.5 and 0.35. The libraries are called 

’X, r < 0.5’ and ‘X, r < 0.35’ respectively, where X represents the base library name.  

 A total of ten objects were used to construct the library for investigation of the body effect, five of 

which were threat objects and the remaining five were innocuous ones. The threat objects were the 

aluminium and steel NIJ handguns [6] and three knives - Opinel Lame Acier 12, the Opinel Inox 8 and 

a large kitchen knife with a stainless steel blade. 

 Two adult candidates of substantially differing heights were used to conduct this experiment. 

Candidate A had a height of 1.86 m and candidate B had a height of 1.55 m. Each person performed 

the same number of walkthroughs, 10 for each object, which resulted in 100 measurements per 

candidate. The object location was chosen to be central with respect to the distance between the side 

panels, and at chest height of candidate A. The same height was maintained for candidate B, resulting 

in keeping the object at approximately neck level. 

 Figure 1 shows a typical response of how the inverted tensors vary with different candidates. The 

different colours represent the two candidates, and the different markers represent the three different 

eigenvalues. The two test objects, made of aluminium and stainless steel, in the case shown represent 

guns. Due to the clustering of the points for each candidate it is believed that the differences 

correspond to the body effect rather than noise from the inversion algorithm. 

 

 

Figure 1. Body effect on eigenvalues 

2.2. Implementation of the algorithm 

The method is based on the classification algorithm presented in [4]. The magnetic polarisability 

tensor, �����, takes the form of a complex, symmetric 3×3 matrix as shown below: 
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The algorithm firstly calculates the eigenvalues of the tensor, λ��. These eigenvalues are a rotation-
invariant representation of �����. As ����� is complex its eigenvalues form a vector containing three complex 

values. These three values are then sorted in order of increasing magnitude, 
sλ
v
. The magnitude is 

calculated by multiplying each value by its complex conjugate. 

 Each object is classified by using (2) to compare the Euclidean distance, 
iD   between the object’s 

sorted eigenvalues and all of the samples in the library, where the subscript i refers to the library 

index. The vector of distances is sorted in order of smallest to largest values to produce S
v
, and the first 

K values are selected. The classification outcome, ζ , is calculated by taking the statistical mode, 

Mo(), of the class of each of the K nearest distances as shown in (3); often K is an odd number to 

reduce the chances of even numbers of neighbours belonging to different, most popular classes.  

 

  (2) 

  (3) 

The results of the classification are evaluated according to two criteria. Firstly, by the accuracy of 

determining whether an object is considered to be threatening or innocuous, and secondly, by the 

accuracy of correctly identifying which of the 10 classes the object belongs to. Normalised values for 

the latter case have also been calculated to correct for differences in class sizes. This is defined as the 

average recall for all classes. 

 False negatives, i.e. classifying an object as innocuous when it is really a threat, are not acceptable 

in the application area. Therefore, the threat recall score should be 100% while still maintaining an 

acceptable level of overall accuracy. In a security screening application, this means that all threats are 

spotted while maintaining a low false alarm rate. 

2.3. Limitations of the method 

The results presented in this paper consider only situations where a single metallic object is within the 

detection volume of the portal. The classification algorithm would theoretically perform equally well 

regardless of how many objects are detected, providing that the quality of all tensors remains the same. 

The case of multi-object classification remains untested for measured data. 

 Although the algorithm utilises the tensor approximation (which is location invariant), and tensor 

eigenvalues (which are rotation invariant), the inversion algorithm is sensitive to certain locations 

within the detector space and also to variations in orientation as the object passes through the detector. 

In addition to this, it is known that the orthogonal field components are not of equal magnitude, and 

that as a result the direction with respect to floor-to-ceiling displacement tends to be noisier. Also, the 

areas at the very top and very bottom of the detector have a reduced concentration of coils, and 

consequently the tensor quality decreases in these regions. The effect on the classification outcome 

can be equated to that of cases with large residual values (typically r > 0.35). 

 As a final point it should be noted that KNN algorithms are highly dependent upon the underlying 

example library. If the library is not exhaustive, samples that are numerically far away from all of the 

examples tend to be classified as the class that has the most examples.  

3. Results and Discussion 

The results of the KNN are shown in Table 1. The algorithm was run once for each library with the 

parameter value K=1. For the library ’Main, all’ the algorithm was run also with parameter values 

K=3 and K=5. Leave-one-out cross validation was used, unless stated otherwise. The results show that 

the classifier performance seems to be the best with K=1 when the library ‘Main, all’ is used. This is 

most likely due to the fact that there are only a few samples from some classes and a large number of 

samples from others. As discussed previously this is a limitation of KNN. 
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Table 1. Full results of experiment. 

Library           K Accuracy (%), 

threat/innoc. 

Accuracy (%), 

class 

Accuracy (%), 

class, norm. 

Recall (%),  

threat 

Main, all 1 98.9 97.6 96.0 99.4 

Main, all 
3 98.3 97.1 94.9 99.4 

Main, all 
5 98.6 96.7 94.1 99.5 

Main, R < 0.5 
1 99.3 98.9 97.9 99.8 

Main, R < 0.35 
1 99.5 99.0 97.7 99.7 

Chest 
1 99.3 97.4 97.4 99.0 

Chest, R < 0.5 
1 100 99.7 99.8 100 

Chest, R < 0.35 
1 100 99.4 98.6 100 

Left Pocket 
1 99.6 96.7 97.2 100 

Left Pocket, R < 0.5 
1 100 98.1 98.3 100 

Left Pocket, R < 0.35 
1 100 97.5 97.4 100 

Reduced 
1 100 98.5 98.5 100 

Body Effect, all^ 
1 100 98.5 97.9 100 

Body Effect, all* 
1 96.5 88.0 82.9 100 

Candidate A 
1 100 100 100 100 

Candidate B 
1 100 97.0 95.7 100 

 
 ^ based on a ‘leave-one-out’ classification approach 

 * based on a classification of Candidate A’s measurements using Candidate B’s library data and vice versa 

 

 Table 1 shows that the classifier appears to execute properly with all of the libraries tested. Recall 

is 99% or higher for all tested libraries; from a practical point of view this value needs to be higher to 

prevent security breaches, however this could be improved by improving the complexity of the 

classification algorithm, and also by biasing the threat objects in the library. 

 The testing with Candidates A and B shows that the body effect seems to be noticeable in 

classification results. In the results the recall of threat objects remained at the required value of 100%, 

however the ability to classify the objects fell substantially. Also, there were a greater number of false 

positive classifications where innocuous objects were misclassified as threats. In the testing, the 

performance was reduced when the library and test data was swapped such that the library was for 

Candidate A’s data, whilst Candidate B was being scanned, and vice versa. 

 It can be seen that removing high residual samples generally improves the performance by a 

noticeable amount, cutting down misclassifications by 36-55%. However, it can be noticed that in 

some instances the removal of all samples with a residual higher than 0.35 does not improve 

performance. This is because there are fewer examples of some object classes such as keys and coins 

that tend to yield noisy tensor values. This causes bias towards the classes with a higher number of 

examples, and larger items which are more readily detectable. 

 The results show that, as expected, the classifier performs better when using only data from a single 

location, e.g. pocket data, instead of using a mixed set of data. 

4. Conclusions and Future Work 
The results of this study show that the modified KNN algorithm is capable of classifying targets 

consistently and with a typical normalised accuracy of over 95%, and a recall value of in excess of 

99%. Based on this, it is clear that this improvement shows great promise to the field of inductive 
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metal detection. However, there are a number of improvements that could be made to this algorithm 

and there is further research which can be conducted which the authors expect would improve the 

results shown here. 

As previously discussed, the KNN approach is a relatively simple algorithm which is subject to 

several limitations. It is probable that the success of the method reported here could be improved by 

implementing a more complex algorithm. One way to enhance the method is to use heuristics and the 

3D location information of the metallic object that is given by the detector system. For example, if an 

object was to be classified as a wristwatch, then statistically it is very unlikely that it would be near the 

floor level. Also, given the variation in tensor components as a function of location within the 

detector, the location information of the object to be classified could be used to increase the trust in 

those object samples in the library that have been recorded from the same region of the detector space. 

An extra level of validation could be added to the algorithm which would take this into account, 

thereby improving the result. 

 The results presented in this paper indicate that the detector and classifier are sensitive to 

substantial changes in the body size of the candidate. Even if samples were to be recorded in the 

absence of the candidate, e.g. with a robotic arm, there is still a correction that must be made for the 

body effect. One possible way to reduce this capacitive coupling would be to introduce screening 

between the coils and the person being measured. Although this paper has shown that the classification 

remains successful regardless of the contribution of the body effect from the candidate, further study is 

needed to determine the extent of this effect and how it may be overcome. 

 Given the strong frequency dependency of the tensor, it is considered that the most significant 

adaptation which could be made to improve the effectiveness of the classification algorithm would be 

to use the broadband tensor components rather than those at a fixed frequency; the classification 

would be fitting a curve rather than a single point. This remains a topic for future research. 
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Abstract
Walk-through metal detectors are used at check points for preventing personnel and passengers
from carrying threatening metallic objects, such as knives and guns, into a secure area. These
systems are capable of detecting small metallic items, such as handcuff keys and blades, but
are unable to distinguish accurately between threatening objects and innocuous items. This
paper studies the extent to which a K-nearest-neighbour classifier can distinguish various
kinds of metallic objects, such as knives, shoe shanks, belts and containers. The classifier uses
features extracted from the magnetic polarizability tensor, which represents the
electromagnetic properties of the object. The tests include distinguishing threatening objects
from innocuous ones, classifying a set of objects into 13 classes, and distinguishing between
several similar objects within an object class. A walk-through metal detection system is used
as source for the test data, which consist of 835 scans and 67 objects. The results presented
show a typical success rate of over 95% for recognizing threats, and over 85% for correct
classification. In addition, we have shown that the system is capable of distinguishing between
similar objects reliably. Overall, the method shows promise for the field of security screening
and suggests the need for further research.

Keywords: eigenvalues, KNN, classification

(Some figures may appear in colour only in the online journal)

1. Introduction

Walk-through metal detectors (WTMDs) are used in
environments such as airports, prisons and public buildings
for detection of threat objects. Their widespread use, combined
with the competition between several leading manufacturers,
has ensured that the current generation of technology is capable
of detecting very small items such as handcuff keys and
integrated circuits [1]. In the aviation industry, metallic threats
are principally considered to be knives, guns and gun parts.
They are thus considerably larger than the smallest detectable
objects. Improved signal-to-noise ratios may continue to
be sought by manufacturers in an attempt to increase the
detectability of non-magnetic, low conductivity materials such

as some stainless steels, however the most significant challenge
is no longer to detect the objects, but to determine whether they
present a threat or not.

It is reported that between 2000 and 2010 a total of 17 out
of an estimated 310 million commercial flights were hijacked
worldwide [2]. Using these numbers, it is estimated that in
this ten year period the chances of a plane being hijacked was
in the region of 1 in 18.2 million. In contrast to this threat,
in environments such as airports, it is common for people to
carry several innocuous items containing metal, such as mobile
phones, jewellery and keys. Current regulations require that
travellers must remove these items prior to WTMD screening.
This causes a degree of disruption and inconvenience, and
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requires a large number of staff to administer. Any method
capable of reliably recognizing the items located on a person
can remove the need for manual inspections, or even make it
possible to be screened without removing metallic items. To
the best of our knowledge, there are few published studies on
performing an intelligent classification apart from [3].

This paper describes a K-nearest-neighbour (KNN) based
classifier algorithm, first proposed by [3], and studies the
extent to which it can distinguish between different objects
that may typically be encountered with a WTMD. This is
demonstrated with several test cases. Real walk-through data
are used for the testing. An advanced metal detection system
[4], which is capable of calculating the position and magnetic

polarizability tensor,
↔
M, of one or more metallic objects from

a single walk-through scan, has been used as the WTMD and
the measurement system. A library of tensors produced by this
system has been recorded for a variety of different objects.

The purpose of this paper is to investigate the potential
of the methods proposed above using data from the WTMD
portal. The portal is the first of its type and the deviation
in the tensor components between different object locations
and orientations can be significant. However, in theory, the
eigenvalues for measured object tensors are considered to be
rotation and location invariant, as discussed in section 3.2.
Hence, we work under this assumption and use measurements
from a single location and object orientation known to yield
results with good signal-to-noise ratio; these results should
then be generalizable for other locations and orientations.

The data library used in this paper is not exhaustive. The
classes have been chosen arbitrarily, but are a representative
sample of the range of objects that are commonly carried by
people. Moreover, the classes contain only a sparse sample
of the range of objects that might be included in a real
world scenario. Finally, the overall number of measurements is
considered to be sufficient to prove whether further collection
of a larger library is justifiable.

The rest of the paper is organized as follows. The
following section contains background and work related to
this study. The third section describes the experimental system,
i.e. WTMD and tensor inversion, along with the data library
for the study. The fourth section presents the method. The
fifth section describes the experimental results while the sixth
section discusses the results. Finally, section 7 concludes the
paper and provides suggestions for future research. Although
the focus of this paper is on the aviation industry, the methods
documented may be applied to other types of metal detection
systems capable of yielding the magnetic polarizability tensor,
e.g. detection systems for unexploded ordnance (UXO) and
landmines.

2. Background

WTMDs have been in use since the 1970s, and technical
development has lead them to be highly accurate systems.
However, there have been few attempts to add intelligence
to them. Steps to this direction have been taken by Kauppila
et al [3], and Marsh et al [4] that have made it possible to
determine the polarizability tensor and the path of a metallic

object passing through a real working WTMD. This is based
on an inversion algorithm that is covered in section 3.2.

Pattern classification is an old research problem, and its
theory has developed throughout decades. The KNN classifier
is one of the simplest and most well-known algorithms for this,
and countless modifications have been made to it for tackling
a variety of classification problems. It is easy to implement,
needs only few parameters, and it can be applied to many
kinds of data. Also, the algorithm is capable of modelling
arbitrary decision surfaces based on the data. However, its
performance is highly dependent on the underlying example
library, which has to be large enough. The large database might
lead to slow classification performance and increased system
memory requirements. Moreover, performance depends on the
explicitly defined distance function that is used for comparing
samples [5].

KNN has been applied to landmine and UXO detection by
Fails et al and Tantum et al [6, 7]. Compared to our work, these
use distinct methods of characterizing the electromagnetic
responses of the objects. Bell et al [8] and Norton et al [9]
have used eigenvalues of the magnetic polarizability tensor
for distinguishing between UXO and clutter, but have not used
KNN for the classification. Kauppila et al [3] have extended the
idea and used a KNN classifier for classifying the eigenvalues.
We use the same algorithm, but on a more advanced WTMD
system.

3. The walk-through metal detector measurement
system

This section provides background information on the
measurement system, the inversion algorithm and their use for
measurements. Together they provide the data for the study.
The WTMD measurement system will be referred to as the
portal. It should be noted that the method reported in this
paper may be used with any system capable of consistently
inverting the magnetic polarizability tensor.

3.1. The portal hardware

The WTMD described in [4] was used as a data acquisition
system. This system uses 16 coils, 8 of which are transmitters
which operate at different frequencies. These frequencies
range from 8 to 13.8 kHz and are arranged from lowest
to highest from floor level upwards, with a separation of
approximately 700 Hz between neighbouring channels. The
coil geometry, along with the portal, is shown in figure 1. The
system is capable of taking 320 complex measurements per
second across this detector volume and is capable of inverting
the magnetic polarizability tensor to a typical accuracy of 10%
within 5 s of a single walk-through scan.

3.2. Tensor inversion

The system measures the change in signal caused by objects
passing through the portal space. We would like to get
information on the characteristics of the object, i.e. its material,
size and shape. To achieve this, we estimate what kind of an

2
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Figure 1. Left: coil geometry of WTMD data acquisition system.
Right: the portal hardware.

object could have caused the measured change in signal. For
this purpose, we use a magnetic polarizability tensor model.
It refers typically to a complex-valued symmetrical 3-by-3
matrix

↔
M ( f ) =

⎡
⎣

mx,x mx,y mx,z

my,x my,y my,z

mz,x mz,y mz,z

⎤
⎦

=
⎡
⎣

Mx,x + jNx,x Mx,y + jNx,y Mx,z + jNx,z

My,x + jNy,x My,y + jNy,y My,z + jNy,z

Mz,x + jNz,x Mz,y + jNz,y Mz,z + jNz,z

⎤
⎦ (1)

which provides a point representation of the conductive and
magnetic properties of an object. The tensor is symmetric such
that mx,y = my,x, mx,z = mz,x and my,z = mz,y and it is possible
to model the system response by

ρ(p) = HT
t (p)

↔
M Hr(p) (2)

given that the object centre position vector p = [xyz]T , the
transmitter and receiver coil magnetic field vectors Ht and

Hr, and the object tensor
↔
M are known. Consequently, in our

WTMD application,
↔
M and p are unknown and need to be

estimated based on the system response and the model (2).

This leads to an optimization problem to find the tensor
↔
M that

produces an approximate response ρ, minimizing the function

F = ‖ρmes − ρ‖2
2 (3)

where ρmes represents the measured system responses. This is
solved with the Levenberg–Marquardt algorithm.

The reliability of the inversion, i.e. how well can the model
fit the measured signal, can be estimated from the residual
value, r. The residual is calculated by taking the L2-norm of
the difference between the actual measurements, ρmes, and the
forward response as a function of the inverted tensor and 3D
coordinates, ρ, and dividing this value by the L2-norm of the
inverted measurements, ρ̂; this is defined in (4). The residual
value can be also seen as a confidence value for the tensor:

r =
√∑n

k=1 |ρk − ρmes[k]|2√∑n
k=1 |ρmes[k]|2

. (4)

Table 1. The contents of Library B. Numbers in brackets represent
the total number of measurements per class. The number of scans
per object varies, but there is a minimum of five scans per object.

1. Knives (200) 2. Model guns / bullet 3. Scissors (30)
cases (180)

14 Knives 8 Model guns 1 Pair of nail
scissors

2 Sets of phantom 1 Pair of office
bullet cases scissors

4. Shoe shanks (90) 5. Containers (70) 6. Belts (25)
6 Shoe shanks 5 Containers 4 Belts

7. Wristwatches (20) 8. Keys (20) 9. Lighters (20)
3 Wristwatches 4 Sets of keys 2 Lighters

10. Jewellery (30) 11. Coins (75) 12. Artificial
joints (15)

1 Bracelet 9 Sets of coins 1 Hip joint
1 Necklace

13. Mobile
electronics (60)
3 Mobile phones
2 MP3 players

3.3. Test library production

Test data were recorded by repeatedly conducting walk-
through scans. One object was carried through the portal
at a time, keeping the orientation and position constant.
The position was approximately in the centre of the portal
horizontally, and at chest height vertically. The orientation
was as follows. For a flat rectangular object, the object was
kept flat against the chest, in such a way that the longest edge
of the object was aligned horizontally. The data recorded for

each walk-through consists of the estimated tensor value,
↔
M,

the residual of the inversion algorithm, r, and the estimated
coordinates for the path of the object, P.

Since there were several problems to be studied, two test
libraries were recorded. The first one, Library A, contains
knives, metallic containers (different tins), shoe shanks and
a model gun with phantom bullet cases. The knives consist
of six hunting knives (HK) and four Swiss army knives (SK,
Swiss knife). The HKs that we used are Opinel brand, while
the Swiss army knives were of various brands. The model gun
is a phantom of a Glock 17 [10], with a ferrous steel barrel
and slide and polymer handle and magazine. Also, there is
a set of phantom bullet cases made of brass. For the model
gun with phantom bullet cases, five different objects, i.e. using
a varying number of phantom bullet cases inside the model
gun, were defined and 20 measurements were conducted per
object. For the rest of the objects; ten knives, six containers
and six shoe shanks; ten measurements each were conducted.
The total size of Library A is 320 scans for 27 objects. The
contents of Library A are shown in table 2.

A broader range of objects was used for Library B. It
contains Library A as a whole, but the additional measurements
performed increased the total size to 835 scans for 67 objects.
The contents of the library are shown in table 1. Some items
are shown in figure 2.
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(a)
(b)

(c)

Figure 2. Some objects from Library B. (a) NIJ test object, phantom stainless steel gun, and the model gun with some phantom bullet cases.
(b) Shoe shanks . (c) Artificial hip joint.

Table 2. Library A contents, excluding the model gun and phantom bullet cases. HK stands for hunting knife, SK for Swiss knife, SS for
shoe shank, CS for carbon steel and StS for stainless steel. The dimensions are the blade lengths for the HKs, and height × width for the
shoe shanks as they are thin objects.

Object Material Dim (mm) Object Material Dim (mm)

HK1 CS 80 SK1 StS 90 × 26 × 17
HK2 CS 85 SK2 StS 85 × 27 × 19
HK3 CS 90 SK3 StS 90 × 26 × 17
HK4 CS 100 SK4 StS 58 × 19 × 9
HK5 CS 120 Tobacco tin (C1) Unknown 100 × 76 × 29
HK6 StS 85 Cigarette box (C2) Unknown 96 × 81 × 15
SS1 Unknown 100 × 23 Lighter box (C3) Unknown 97 × 46 × 20
SS2 Unknown 110 × 12 Pocket mirror (C4) Unknown 92 × 60 × 9
SS3 Unknown 110 × 15 Credit card holder (C5) Unknown 93 × 55 × 6
SS4 Unknown 120 × 12 Zippo (C6) Unknown 57 × 30 × 10
SS5 Unknown 128 × 14
SS6 Unknown 135 × 15

4. Classification algorithm

The method is based on the classification algorithm presented
in [3]. For the rest of the paper, this is referred to as
the classifier, whereas the whole method including tensor
inversion is referred to as the method. The KNN classifier
is a simple algorithm that assumes that the training data are
clustered using a certain feature space, that a similarity metric
that is derived from the distance between samples, is enough
to find the correct class for the sample. The algorithm firstly

calculates the features for each data point, i.e. tensor
↔
M. These

are the eigenvalues of the tensor, given by

λ = [λ1λ2λ3]. (5)

They are a rotation-invariant representation of
↔
M. This is

shown by the following short proof.
Let R be any rotation matrix that satisfies the conditions

RT = R−1, det(R) = 1 and RRT = I, where I is the identity

matrix. For any 3-by-3 matrix, a rotated version
↔
MR of

↔
M is

as follows:
↔
MR = R

↔
M R−1. (6)

Consider an eigenvalue λ of
↔
MR and the corresponding

eigenvector v. By definition,
↔
MR v = λv, given that v �= 0.

Noting that Iv = v, we may write (
↔
MR −λI)v = 0. Evaluation

of the characteristic polynomial yields

det(
↔
MR − λI) = det(R

↔
M R−1 − λI) = det(R

↔
M R−1

−RλR−1) = det(R(
↔
M −λI)R−1) = det(

↔
M −λI).

Therefore, the eigenvalues of
↔
M and

↔
MR are the same. Hence,

the eigenvalues are rotation invariant.

As
↔
M is complex, its eigenvalues form a vector containing

three complex values. These three values are then sorted in
order of increasing magnitude, ||λk|| . In a 2D complex plane, it
is the distance from the origin of the eigenvalue. The magnitude
is given by

||λk|| =
√

λk · λk (7)

where λk is the complex conjugate of λk. The eigenvalues
are sorted because the distance calculation uses a pairwise
comparison between them, and therefore the sorting acts like a
guess to minimize the distance to the other objects in the class.
The eigenvalues can be seen to exist in a polar coordinate
system, and therefore in addition to the magnitude, the angle
φ(λk) of the eigenvalue, as seen from the origin, is given by

φ(λk) = ϕ = atan2(Re(λk), Im(λk)) (8)

where atan2 is the arctangent function, and Re and Im are the
real and imaginary parts of the eigenvalue, respectively.

Each object is classified by using (9) to compare the
Euclidean distance, Di, between the objects sorted eigenvalues
and all of the samples in the library, where the subscript i refers
to the library index. The vector of distances is sorted in order of

smallest to largest values to produce
↔
M, and the first K values

are selected. The calculation of the Euclidean distance in the
case of eigenvalues is shown in figure 3. The classification
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Figure 3. Principle of KNN Euclidean distance calculation based on
eigenvalues. The distance here is shorter to class B, and is
D = d(B, 1) + d(B, 2) + d(B, 3). The x-axis represents the real
component of the eigenvalue, whereas the y-axis represents the
imaginary component.

outcome, ζ , is calculated by taking the statistical mode of the
class of each of the K nearest distances as shown in (10); often
K is an odd number to reduce the chances of even numbers of
neighbours belonging to different, most popular classes:

D(
−→
λ a,

−→
λ b) =√

(
−→
λ a,1 −−→

λ b,1)2 + (
−→
λ a,2 − −→

λ b,2)2 + (
−→
λ a,3 − −→

λ b,3)2 (9)

ζ = Mo(Class {S1, . . . , Sk}) (10)

where Mo is the statistical mode.

5. Test cases and results

We investigate the performance of the algorithm by using four
different scenarios. The first one is the most typical case for
a WTMD: distinguishing between threatening objects (threat,
T ) and innocuous, i.e. non-threatening, objects (non-threat,
T ′). The second case is classifying objects into 13 object
classes. The third one studies distinguishing knives from shoe
shanks. The final one is a more fine-grained analysis, as we
investigate the ability to distinguish a variety of knives from
one another. Also, the same is done for shoe shanks and the
model gun and phantom bullet cases.

The evaluations are carried out using a leave one sample
out (LOO) cross validation (CV), and a 4-fold CV over 100
iterations. For the folds, three scenarios are used: 25% of
the samples are used as test data and 75% are used as the
library (training) data (25/75-CV); 50%–50% (50/50-CV); and
75% test–25% library (75/25-CV). The results quoted are the
averages of all iterations.

Accuracy refers to the percentage of the samples that
were correctly classified. Recall describes the percentage of
the samples of a specific class that were correctly classified.
Normalized accuracy (Norm. acc) is used for eliminating the
effect of varying sample numbers between the classes. It is
defined as the average recall over all the classes.

Table 3. Results for TC1 and TC2. T recall (%) indicates what
percentage of the threat objects was correctly classified. Class. (%)
is the overall accuracy that indicates what percentage of all samples
was correctly classified into 13 classes. Norm. (%) is the normalized
accuracy that indicates the average recall over all 13 classes.

T versus T recall Class. Norm.
Library K CV T’ (%) (%) (%) (%)

B 1 LOO 97.6 97.9 94.7 91.1
B 1 25/75-CV 97.5 97.8 94.5 90.8
B 1 50/50-CV 97.0 97.2 93.3 89.3
B 1 75/25-CV 95.4 95.8 90.1 85.0
B 3 LOO 97.0 97.3 93.3 89.2
B 5 LOO 96.3 95.3 91.1 86.6
B, r < 0.35 1 LOO 99.8 99.5 99.1 94.6
B, r < 0.50 1 LOO 98.6 99.1 97.1 94.2

5.1. Test case 1 (TC1): threats versus innocuous objects

For the usefulness of the algorithm, its capability of separating
threats and non-threats is crucial. Generally, threats are
weapons and other dangerous objects. These are sharp items
such as knives and scissors; and guns, their parts and bullet
cases. Moreover, we consider metallic containers threats
because they can conceal the aforementioned objects from
the scanner, as the magnetic field does not enter them. Hence,
if one were to put a knife in a metallic box, the knife may not be
seen by a scanner. It should be noted that this threat definition
differs from earlier studies [3], and therefore, comparing the
results is not straightforward.

We have divided Library B into threats and non-threats
by tagging guns and parts, knives, scissors and containers as
threats. All remaining items are tagged non-threats. Hence, the
library for this test case is as follows: 480 threats and 355 non-
threats. For further testing, we have created additional libraries
by removing all samples from the library that have a residual
r greater than a threshold value. We call these libraries B, r <

Threshold, where Threshold is replaced by the actual value.
The NIJ [11] defines general requirements for WTMD

performance [12]. False negatives, i.e. classifying an object as
a non-threat when it is really a threat, are not acceptable in the
application area. Therefore, in official tests, any commercial
WTMD must recognize all introduced threat objects correctly
while maintaining a low false alarm rate. According to the NIJ,
the false positive rate can be up to 25%. This means that one
out of four non-threats can be classified as a threat. The false
positives are not considered to be dangerous; however they
cause unnecessary time delays as there is a subsequent need
for manual inspection.

The results for TC1 are shown in table 3. The threat recall
scores (T recall (%)) mean that one object of class T in 20 to
200 would be falsely classified as T ′. Furthermore, the high
overall accuracies (Class. (%)) gained indicate a much lower
false alarm rate than required by NIJ.

5.2. Test case 2 (TC2): object classification

We have divided Library B into 13 classes of objects, as shown
in table 1. As in 5.1, additional libraries called B, r < Threshold
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Figure 4. Normalized confusion matrix for Library B, K=1, LOO.
Each row represents an object class. The colours show to which
object classes the classifier has assigned the samples. Correctly
classified samples are on the diagonal.

Figure 5. Eigenvalues for knives and shoe shanks. The circles
represent knives, while the dots are shoe shanks. The light shaded
circles are the ten knife samples that were misclassified in the leave
one object out case.

are also used. The classifier was run with the same test setups
as in TC1.

The results for all tests are shown in table 3. The
normalized confusion matrix for the case Library B,
K = 1, LOO is shown in figure 4. It should be noted that
object classes Keys and Artificial Joints have ceased to exist
in library B, r < 0.35, since these classes yield high residual
scores. Therefore, the result is for 11 classes instead of 13. The
lowest overall accuracy was 85%. On the other hand, the best
accuracy of around 99% demonstrates great potential.

5.3. Test case 3 (TC3): knives versus shoe shanks

Shoe shanks present a difficult problem for WTMDs, since
they have a similar shape and material as some knives.
Furthermore, many people do not realize that their shoes could
contain metal and therefore will trigger the WTMD to alarm.
In addition, taking one’s shoes off and putting them back on is
considered to be a time consuming and a frustrating operation.
Some airports, though, enforce this in order to reduce false
alarms.

To study this problem, we set up a library of six shoe
shanks and ten knives, ten measurements per object. Hence,
the library contains only two classes. Figure 5 shows the
eigenvalues for the used test data. It can be seen that the angles
of the eigenvalues differ between the two object groups.

Table 4. Results for TC3.

K CV Accuracy (%) Knife recall (%)

1 LOO 100 100
1 25/75-CV 100 100
1 50/50-CV 100 100
1 75/25-CV 99.5 99.3
1 Leave one object out 93.8 90.0

Table 5. Results for TC4.

Shoe Model
Knives shanks Containers gun/bullet

K CV (%) (%) (%) cases (%)

1 LOO 99.0 93.0 100 98.0
1 25/75-CV 99.0 92.8 99.1 96.9
1 50/50-CV 99.0 91.3 98.1 95.2
1 75/25-CV 99.0 88.0 94.2 91.7

The classification algorithm was run with the same CVs as
in the previous experiments, but a leave one object out CV was
added. This means that there were no samples of the object to
be recognized in the KNN library, and therefore the problem
is much harder for the classifier. This gives us an idea whether
the classifier can make generalizations of the two classes by
using a limited number of objects in the library. The results are
shown in table 4. The results demonstrate that the classifier can
distinguish between knives and shoe shanks with an accuracy
greater than 93% in all cases.

5.4. Test case 4 (TC4): resolution studies

In order to get an idea of the resolution of the method, we
have classified different groups of similar objects in Library
A: knives, shoe shanks, metallic containers and the model gun
with phantom bullet cases. The classification results of the test
cases are shown in table 5.

5.4.1. Knife distinction. There are ten different knives in
Library A, and they differ by size, shape and material. Many
of the knives are very similar, typical difference in length
being 1 cm between nearest examples. The HKs have a thin
metallic blade and a wooden handle, supported by a metallic
ring. The Swiss knives are thick pieces of metal containing
many small blades and tools, in addition to a larger blade that
is approximately the length of the knife as a whole. The details
for the knives are shown in table 2.

The eigenvalues for the six different HKs are shown in
figure 6. The knives HK1–HK5 are made of the same carbon
steel material. This can be clearly seen from the fact that
their largest eigenvalues seem to have the same angle. The
magnitude of the sample cluster centre gives an indication of
the length of the blade of the particular knife. However, the
stainless steel knife, HK6, has a distinct angle. The blade of the
knife is of the same length as the HK2, but the magnitudes of
the two knife cluster centres differ significantly. This suggests
that only when sample clusters have the same angle can
assumptions of the object size be made.
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Figure 6. Eigenvalues of hunting knives. The dots represent the
middle and smallest eigenvalues, and the different symbols the
largest ones.

Figure 7. Eigenvalues for the Swiss army knives.

Figure 7 shows the eigenvalues of the Swiss knives. It
can be seen that the eigenvalues follow the same trend as
the ones for the HKs, but that the magnitude of the middle
eigenvalue component cluster centre is different. This is due to
the thickness of the knives. Clearly, SK3 is the largest and SK4
the smallest one. The proportions are somewhat related to those
seen in table 2. These observations suggest that assumptions
on object material and dimensions might be made based on
the eigenvalues.

All test cases for the knife distinction yielded an excellent
99% accuracy, as shown in table 5.

5.4.2. Shoe shank distinction. Shoe shanks are seemingly
made of more or less the same material, and their dimensions
and shape tend to be similar. The dimensions of the shoe
shanks in Library A are shown in table 2, and their largest
eigenvalue components are shown in figure 8; the two other
components are small and clustered together. It can be seen
that although some of the clusters overlap, they seem mostly
separable. The classification accuracy was an acceptable
88%–93%. The results for this test are shown in table 5.

5.4.3. Container distinction. As can be seen from figure 9, the
eigenvalues give information on the material and the physical
dimensions of the objects. This is in line with the observations
of the other tests presented in this section.

The tobacco tin (C1) is the largest object in size and
consequently the magnitudes of its eigenvalues are the largest

Figure 8. Largest eigenvalues for the shoe shanks. The middle and
smallest eigenvalues are clustered together near the origin since the
objects are thin and narrow strips of metal.

Figure 9. Eigenvalues for the containers.

of the group. They form three clusters, the centres of which
have large magnitudes. The cigarette tin (C2), on the other
hand, is slightly smaller in two dimensions and significantly
smaller in the other and that is mirrored in the eigenvalues.
There are two clusters of the two objects that are close to each
other and one cluster each that are separated. It is possible to
see that the objects are made of a similar material, because the
angles of the cluster centres are similar for both objects.

The rectangular markers representing the credit card
holder (C5) suggest similar results. The cluster centres have
the same angles as the aforementioned objects, suggesting a
similar metal being used to construct it. However, in this case,
one cluster is close to the clusters of the other two objects,
while the other two clusters are much closer to the origin. This
indicates that one dimension of the objects is close to the two
other objects, and the two other dimensions are significantly
smaller.

The zippo (C6), shown with pentagram markers, is the
smallest object of the group, since all the eigenvalues are
grouped near the origin, i.e. have small magnitude. The pocket
mirror (C4) and the lighter box (C3) eigenvalues cluster centres
have different angles, compared to the rest of the objects.
Moreover, despite having one dimension approximately as
large as the largest object, the cluster centre magnitudes are all
significantly smaller than the ones of C1 and C2. This suggests
that the magnitude is only comparable along the same angle
when comparing object dimensions.

The results for the LOO CV yields 100% accuracy of
classifying the containers. Despite the physical similarity of
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Figure 10. Eigenvalues for the model gun and phantom bullet cases.
A set of clusters is zoomed in to show the similarity in shape
between the phantom bullet case eigenvalue clusters and the others.
The bullet signal appears to be summed on the phantom gun-signal

the objects, this is hardly a surprise, given the clear separability
between the eigenvalue clusters shown in figure 9.

5.4.4. Distinction of model gun with phantom bullet cases.
For testing the algorithms’ capability of distinguishing small
differences in objects, we use the steel model gun with a plastic
handle. The model gun body (barrel) should yield a certain
strong signal, whereas the phantom bullet cases should look
distinct in the feature space. We try to see whether the number
of phantom bullet cases within the handle can be derived from
the eigenvalues only. The test cases that we consider are: empty
(no phantom bullet cases), 3, 8 and full 17 phantom bullet
cases. For each of these cases, 20 measurements are taken in
one location.

The eigenvalues for the model gun and phantom bullet
cases are shown in figure 10. Clearly, the electromagnetic
properties of the phantom bullet cases (shown with ◦
markers) differ significantly from the other cases. The largest
eigenvalues of the model gun cases seem to be clustered
around the same value. This is due to the large tensor
component caused by the steel barrel of the model gun.
However, the three phantom bullet cases situation is already
some distance from the others in terms of the middle
eigenvalue, and even further away in terms of the smallest
eigenvalue. The other model gun cases are separated only
in terms of the smallest eigenvalue. This suggests that the
separation of the three phantom bullet cases is due to a
positioning issue of the phantom bullet cases, rather than
the amount of phantom bullet case metal in the object. In
the latter case, the samples for the empty model gun and the
three phantom bullet cases situation should be closer to one
another.

The results shown in table 5 indicate that the cases can
be classified with over 91% accuracy. This is encouraging for
the KNN algorithm, as the separability of the cases is not clear
based on figure 10.

6. Discussion

The results of TC1 suggest that threats and non-threats can
be effectively distinguished by the method. However, the

recall scores were inadequate for a real life application since
they are not considered to be sufficiently accurate. Only
when high residual values were removed from the library,
and therefore some problematic items disappeared from the
library altogether, were they close to 100% and therefore
could pass commercial testing. This, however, suggests that
the method is capable of reaching this level of accuracy if
the underlying hardware can yield consistent, accurate data.
Different CVs demonstrate that having only a few measured
samples of the object in the library signifies a drop in accuracy.
Increasing the value of K has a negative effect on accuracy
scores.

TC2 shows that the method can distinguish between 13
classes at a very good accuracy, with the normalized values
varying between 85% and 91%. This is not much lower
than the scores in TC1, where there were only two classes.
The results behave similarly to TC1 as a function of library
size, the value of parameter K and the quality of the tensors
used. The confusion matrix shows that some classes are more
difficult to recognize than others; these include belts, keys and
coins.

TC3 and TC4 suggest that it is possible to distinguish
between intuitively similar objects. For all of the test scenarios,
very high accuracy scores were recorded. Furthermore, the
figures of the eigenvalues show clearly that the classes
are indeed separable by a simple classifier. Moreover,
especially the hunting knife comparison has suggested
that object material and size can be yielded from the
eigenvalues, suggesting there is more work needed on the
separability of different materials, shapes and sizes of metallic
objects.

This material and size information could be used for
enhancing the classifier performance by using heuristics.
Furthermore, there are more possibilities for doing this. For
example, positional information derived from the inversion
algorithm could be used for distinction between shoe shanks
and other objects. Shoes are always near the floor level.
Therefore, objects at chest level should not be classified as
shoe shanks. Similarly, if an object was to be classified as a
wristwatch then statistically it is very unlikely that it would
be around the feet. On the other hand, knives could be hidden
in boots or socks, and therefore making any assumptions like
this should be done with great consideration. We have left this
for future research.

The most obvious limitation of the KNN, the need for a
large set of examples in the library, has so far prevented us
from getting a realistic estimate on the true performance of a
WTMD that uses our method. The worst case scenario for the
classifier, and a realistic one, is that the actual test object to be
classified is not in the training library. There are two ways of
overcoming such a situation. The first one is to have a classifier
capable of forming a generalization of the classes that could
fit unseen objects reliably into them. The leave one object out
CV that we performed in TC3 suggested that the classifier
can cope with the scenario. The second, and probably easier
way, is to attach a certain level of trust into the classifications.
Thus, in cases of uncertainty, a manual inspection could be
conducted to determine the cause of the alarm. Moreover,
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this could allow the new previously unknown object to
be added to the underlying library, hence enabling online
learning.

7. Conclusions and future work

The results shown in this paper demonstrate that the algorithm
is capable of classifying targets consistently and with a typical
normalized accuracy of over 95%, and a recall value in excess
of 99%. This is considered to be sufficient to suggest that this
improvement shows great promise in the field of inductive
metal detection. The tests have shown that similar objects of
slightly different sizes can be distinguished with accuracies
typically in the range of 85%–100%.

However, there are a number of improvements that could
be made to this algorithm and there is further research which
can be conducted which the authors expect would improve the
results shown here. The observations made on the eigenvalues
of the hunting knives, along with similar results in TC4,
suggest that information on object sizes and materials might
be derived from these data. This indicates that some further
heuristics could be applied to the classification algorithm. We
aim to study the separability of different materials, shapes and
sizes of objects to get an understanding on the limitations of
these heuristics. Also, a much broader library is needed for
testing the algorithm’s capability to make a generalization of
the classes. This library should contain samples of different
object locations and orientations to enable testing of heuristics
that are based on location information given by the inversion
algorithm.
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Abstract. An investigation has been carried out to determine the extent to which a walk-
through metal detection system is affected by the capacitive and inductive coupling between
candidates’ bodies and the coil array – known as the ‘body effect’. In this experiment both
small and large items are investigated to determine ratio of the signal contribution from the
candidate compared to the object, and a comparison is made between the response of a small
object both with and without the candidate. Also an experiment is presented to demonstrate
the inductive / capacitive nature of this signal.

1. Introduction
Walk-through metal detectors (WTMDs) are widely used for personnel screening in security
and checkpoint applications. The sensitivity of these detectors is limited by either interference,
electronic noise in the receiver circuitry or by spurious inductive or capacitive coupling associated
with the presence of the candidate, often known as the body effect. A similar limitation is
encountered with other metal detection systems such as the product effect with on-line conveyor
type metal detectors and the ground effect with metal detectors for detection of buried objects.
This paper investigates the significance of the body effect signal compared to that of metallic
targets. There has been little research into this area despite the potential sensitivity limit it
presents. It is expected that by better understanding the body effect it should be possible to
overcome this restriction.

In this paper a walkthrough metal detector (WTMD) capable of calculating the magnetic

polarisability tensor of metallic objects,
↔
M, is used as a measurement system. The operation of

this system is reported elsewhere [1]. Previous studies [2] have shown that the inductive signal
from metallic objects can be related to the magnetic field via the magnetic polarisability tensor,
↔
M, which is represented as a complex, symmetric 3 × 3 matrix.
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System measurements, λ, are related to the magnetic polarisability tensor and the incident

magnetic field vectors as shown in equation 1. In this expression the vectors
⇀
Htx and

⇀
Hrx

correspond to the values of H-field for the transmit and receive coils respectively. The system
inverts the tensor from the computed magnetic field data and measurements. However, this
expression does not contain any terms which take into account the effect of the capacitive signal.
Consequently any signals of capacitive nature cause errors in the data fitting in the inversion
algorithm. In order to improve the data fit, and consequently to perform more accurate tensor
inversion it is necessary to account for the capacitive input to the system prior to performing
the inversion.

λ =
↔
M

⇀
Htx •

⇀
Hrx (1)

2. Background
Like all electrically conductive objects the human body can store electric charge and display
capacitive propoerties. This behaviour is exploited by devices such as touch-screens, however
the build-up of static electricity can cause damage to sensitive electronic components and in some
electrostatically sensitive processes the operators must also be earthed via a tethered conductor.
Typically the human body has a capacitance in the region of 100 pF [3].

In a similar way as eddy currents flow around metallic targets, they are also able to flow
around the human body. This leads to the possibility of a distributed inductive response
from the candidate as induced eddy currents circulate through conductive and dielectric body
tissues. The electrical conductivity of human muscle is approximately 2.5×10−1 Sm−1 at 10
kHz [4]. Although this is considerably smaller than that of metallic targets e.g. alumimium at
3.58 × 107Sm−1 [5] it is still measurable. As the human body is considerably larger than the
pairs of transmit-receive coils throughout the detector the effect is distributed and consequently
does not follow a response similar to the case of small metallic targets. Most biological tissues
contain water, which is weakly diamagnetic, having a real magnetic susceptibility, χ, of about
−9 × 10−6 [6] at room temperature. As a consequence of this it is known that the magnetic
properties of water influence the magnetic properties of biological tissues.

An example of an inductive response from a metal object, in this case a model aluminium gun
[7] as defined by the US National Institute for Justice (NIJ) is shown in figure 1; the x-axis has
been normalised such that the object is defined at being in the centre of the detector at t=0s.
It is possible to compare this signal with the coil geometry used to acquire it, which is shown in
figure 3, note the symmetry of the object response, which results from the symmetrical design
of the coil array. The coils shown in figure 3 display the fact that the transmit coil (shown in
the solid line) contains a single crossover at the point x=0m and the receive coil (shown with
a dashed line contains two crossover points at x=±0.18m). These three crossover points are
shown on figure 1 at the points t=-0.23, 0 and 0.2s.

Figure 1. Example inductive signal Figure 2. Example body effect signal
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Figure 3. Example tx-rx coil pair

Unlike the high conductivity inductive signal shown in figure 1 a typical body effect signal
does not follow a trend. An example of the signal produced by a ‘clean scan’ – i.e. from the
passage of a candidate free from metallic objects is shown in figure 2. The data for this figure was
obtained using the same coil pair used for the measurements shown in figure 1. Now however,
there is no zero-crossing in the centre of the signal, no symmetry and the real and imaginary
components are no longer proportional to each other (i.e. a straight line in the impedance plane),
as is the case for the high conductivity inductive measurements.

3. Experimental Setup
Five candidates each made a total of 40 passes through the detector whilst wearing clothing
which was free from metallic elements. Ten passes were recorded for when the candidate had
no metallic items in their possession, and for the case when they carried steel and aluminium
NIJ handguns and an NIJ aluminium knife [7]. On each occasion when the candidate was
carrying an item it was placed at the midpoint of the detector with respect to the panel-to-
panel displacement, a height of 1.1m with respect to the ground level and all points in the
direction of transit through the detector (shown as the x, y and z-axes respectively on figure 4).

In order to determine the nature of the body effect, i.e. if it is predominantly capacitive or
inductive, a second investigation has been conducted. This experiment consists of demonstrating
the effect that grounding the candidate has on the portal, and the system response to saline of
varying conductivity. In the first test a candidate entered the detector and remained inside the
portal whilst stretching their right arm outside the sensitive region of the detector. After several
seconds the candidate had a grounded wire touched against their right hand for several more
seconds; this was then removed. Due to the fact that grounding the candidate is a capacitive
action, a change in signal level is expected should the portal be sensitive to the capacitance of
the body. The second test involved recording the signal response for a 10 L bucket of saline of
varying conductivity from 13.83 mSm−1 to 11.18 Sm−1.

Figure 4. Approximate object trajectory
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For each candidate a series of physical measurements were taken to allow for estimation of
their body size. In total five parameters were measured – height, the peak width of shoulders,
the peak chest size, the waist size and the height of the waist from the ground.

4. Results
The main results from this experiment are shown in figures 5 to 8. In each figure a total of ten
walkthrough scans for each of the five candidates is shown. It is possible to see from figures 6 and
8 that the signal from the guns is so strong that it is difficult to see the effect of the body on the
measurements. This is reflected in the fact that all of the scans are fully overlaid on one another.
Figures 5 and 7 however show that the different candidates give distinguishable responses which
are consistent across each of the candidate’s walkthroughs. Also inculded in figure 7 are the
results for ten scans in the case when the object is not attached to a candidate. To achieve these
measurements the object was attached to an insulating pole, and passed through the WTMD.

Although the measurements for the aluminium knife have a far smaller signal than that of the
aluminium gun (approximately an order of magnitude difference) it is still possible to see that
the two signals share a common phase bias; this is as a result of the response of the aluminium.
However, in the case of the knife it is possible to see that this response is superimposed onto
that of the body signal to produce the different candidate clusters shown. In the case of the
candidate-free scan for the aluminium knife it is possible to see that the response (labelled ‘No
Candidate’on figure 7) is very linear. This figure clearly shows that the presence of a body along
with the object can significantly obscure the target response.

Table 1 shows the Pearson correlation coefficient of the NIJ aluminium gun and aluminium
knife for each candidate, averaged across all ten walk-through scans. It also shows the average
for the candidate-free scan of the aluminium knife. The aluminium gun measurements show very
strong correlation for all candidates with all values in excess of -0.99, thereby verifying that the
body signal produced by the candidates has not significantly distorted the response. However, in
the case of the aluminium knife the correlation is significantly worse for each candidate, ranging
from -0.639 to -0.742. In contrast to these values the coefficient for the ‘no candidate’ case is
in excess of -0.99. These results confirm that the system is capable of measuring a clear, linear
response for small targets, however that they are adversely affected by the body effect.

In the case of the clean scans it is also possible to identify clustering of different candidates,
however, as would be expected, this is not as obvious as with the aluminium knife. The results
show that all five candidates show a distinctly repeatable response when walking through the
detector, and with the exception of a single scan for ‘candidate 5’ the walk-through profiles do
not significantly deviate from the main cluster for each candidate.

Table 1. Pearson correllation coefficient for aluminium targets.

Object Candidate 1 Candidate 2 Candidate 3 Candidate 4 Candidate 5 No Candidate

Knife -0.7420 -0.6329 -0.7017 -0.6536 -0.6388 -0.9994
Gun -0.9974 -0.9989 -0.9967 -0.9996 -0.9993 n/a

Table 2 shows the recorded dimensions of each of the five candidates. The table shows that
candidates 3, 4 and 5 are generally larger than candidates 1 and 2. However, the region of
interest (1.1 m from the ground) corresponds approximately with waist-level for all candidates;
the order of candidates from largest to smallest waist size is [4; 2; 3; 5; 1]. Analysis of the data in
figure 5 shows that there is no clear correlation between waist size, or between the candidates’
physical size and the magnitude or phase of the response. This implies that the relationship
between the candidate and the clean scan response is not directly based upon physical size of
the body.
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Figure 5. Results of clean scan Figure 6. Results for NIJ aluminium gun

Figure 7. Results for NIJ aluminium knife Figure 8. Results for NIJ steel gun

Table 2. Selected dimensions of candidates.

Dimension Candidate 1 Candidate 2 Candidate 3 Candidate 4 Candidate 5

Height 1.79 m 1.74 m 1.87 m 1.86 m 1.85 m
Shoulders 1.15 m 1.04 m 1.34 m 1.23 m 1.17 m
Chest 0.96 m 0.99 m 1.09 m 1.10 m 1.02 m
Waist 0.86 m 1.06 m 1.02 m 1.10 m 0.94 m
Waist Height 0.98 m 0.95 m 1.07 m 1.05 m 1.00 m

4.1. Investigation of the Nature of the Body Response
Figure 9 shows the results of the tests for capacitive coupling. In figure 9(a) at sample reference
S=0 the detector is empty. At approximately S=400 ‘candidate 1’ stepped into the detector
space; the response jumps up at the point and settles down. At S=750 the candidate was
grounded, and remained grounded until S=2350. The candidate then remained in the portal until
S=2850. Each of these phases are clearly visible on the figure. The clear change that occurs when
the candidate is grounded demonstrates that the body signal contains a significant capacitive
component. In figure 9(b) the response is seen to vary almost entirely in the quadrature
component as a function of conductivity. The offset of this linear response is also indicative
of capacitive coupling between the coils and the saline.
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Figure 9. Tests for capacitive coupling between the candidate and the detector

5. Conclusions and Future Work
The results from this paper show that calibration for the body effect is not required for highly
detectable objects such as the NIJ handguns; this is due to the fact that the inductive signal
dominates in such cases as figures 6 and 8 show. However, there is a visible body signal in the
case of both no metallic targets, and for small metallic targets as in figures 5 and 7 respectively.
The experiments presented in this paper have demonstrated that a significant proportion of this
body signal occurs as a result of capacitive coupling between the candidate and the coil array.
The magnitude of this body effect response compared to that of small targets demonstrates a
need for either calibration to account for the body signal, or screening to reduce it.

The results of this experiment demonstrate that the body effect appears to be distinct for
each candidate. This is reflected in the fact that each of the five candidates produces a clustered
response which is shown for all ten scans. This is an encouraging result as it demonstrates
that the body effect is both measurable, and repeatable, which are two requirements for the
development of a calibration routine.

The next step for this research, having identified the capacitive element of the body effect,
is to establish a measurable, theoretical link which can be used to model it. This would then
allow for the inclusion of the body effect into the forward model (equation 1) which would
subsequently improve the quality of the measured data.
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Abstract—A walk-through metal detector system has been
used for measuring the magnetic polarisability tensor for a
variety of metallic objects. We propose a method for classifying
objects by their metallic composition using features of the tensor.
Furthermore, we investigate the potential of using the tensor
representation as an indication geometric properties of the object.
The method used is shown to be accurate for classification of
material composition. Furthermore, the results suggest that it is
possible to use the tensor to distinguish between similar objects
of different sizes in limited scenarios. These findings demonstrate
the potential for this method, but also suggest the need for further
studies.

I. INTRODUCTION

In the European Union (EU), scrap metal is currently
sorted using a variety of methods. Ferrous materials represent
approximately 70% of processed waste, and can be readily
extracted by magnetic means [1]; some light metals such as
aluminium, magnesium and their alloys are identied by eddy
current separation [2], accounting for a further 7.5%. However,
there is no automated method that allows for the separation
of the remaining 22.5% of materials including copper, zinc,
brass, bronze, lead, and stainless steel, in addition to non-
metals. It is predicted that the metallic composition of the
heavy metals may be identified by their magnetic polarisability
tensor, a measure previously demonstrated in electromagnetic
metal detection systems.

Metal detector systems are used for a variety of purposes
including security screening, detection of buried or visually
obscured objects and identifying stray metallic components
in food and drug processing lines [3]. The response of these
types of inductive metal detectors is known to vary by phase
and magnitude due to the presence of samples consisting of
different metallurgical properties, e.g. iron, stainless steel and
copper. As a consequence of this, it is anticipated that such a
system could be used to classify different metallic samples.

Previous studies [4] have shown that the magnetic polar-
isability tensor can be derived by measurement inversion; this
frequency dependent quantity is known to represent the object
in terms of geometric aspect ratio, metallurgical composition
and orientation. Inverted polarisability tensors have been used

for classification of metallic objects in the case of a walk-
through metal detector (WTMD) [5], [6]. Also, the tensor
representation has been used for discriminating landmines or
unexploded ordnance from metallic clutter objects [7]–[9]. The
development and application of robust classification algorithms
such as the one presented in this paper has the potential to
significantly improve the industry sector, facilitating large-
scale automation of scrap metal recycling. Such systems could
be used to dramatically increase the amount of scrap materials
that is successfully recycled.

The ability to coarsely classify objects by their size is also
advantageous as it would enable on-line validation of results by
means of comparison with an augmented visual shape scanning
system. As such metal sorting systems operate at high speed,
and using a single-pass of the object, it is essential to be able
to determine the reliability of the measurements prior to any
sorting.

In this study a walk-through metal detector system has been
used [4] to perform a series of measurements of objects. A
range of metal types have been considered, including those
which can currently be separated, e.g. aluminium and iron,
as well as samples which are currently sorted by hand, such
as stainless steel and brass. A simple classifier is presented
for classifying the objects by material. Also, analysis is per-
formed to identify how differences in geometric proportions,
and metallic composition impact the terms of the magnetic
polarisability tensor, and hence how they may be used to
determine these object properties.

The rest of the paper is organized as follows. Firstly, a
description of some of the underlying theory behind the tensor
model is provided, along with how it can be used for object
classification. This is followed by a description which details
the mechanism by which metallurgy affects object response.
Results are presented for both material classification and
determination of geometric properties of objects. Finally, some
further discussion, conclusions and future work is provided.



II. BACKGROUND

A. Measurement system and data collection method

The WTMD-portal, which operates at a single frequency
as described in [4] has been used as the measurement system,
and it will be referred to in short as the portal. However,
the methods described and results provided in this paper are
independent of the measurement system. This means that the
same principles can be used implemented in more application
specific geometries e.g. conveyor-based systems.

Measurements were obtained by conducting consistent, nat-
ural walk-through scans which were performed by a volunteer
carrying a single metallic object. Predefined step markings
on the portal floor were used to provide repeatable walking
patterns, and a special apron for carrying the test objects on
the body was used for maintaining a fixed trajectory for each
scan.

B. The polarisability tensor model

The measurement system operates by detecting changes in
its background magnetic field, and records these perturbations
as the system response ρ. The system then uses this response to
estimate the magnetic polarisability tensor of the target object
by means of inversion. This inversion is based on a modified
Levenberg-Marquardt algorithm, and is described fully in [4].
Target objects are assumed to be linear, and the tensor model
defines a point representation of the conductive and magnetic
properties of an object as a complex 3-by-3 matrix

↔
M (f),

given by
↔
M (f) =


M ′x,x + jM ′′x,x M ′x,y + jM ′′x,y M ′x,z + jM ′′x,z
M ′y,x + jM ′′y,x M ′y,y + jM ′′y,y M ′y,z + jM ′′y,z
M ′z,x + jM ′′z,x M ′z,y + jM ′′z,y M ′z,z + jM ′′z,z


 (1)

The tensor is symmetric in such a way that Mx,y = My,x,

Mx,z =Mz,x, and My,z =Mz,y .

The eigenvalues of the tensor
↔
M form a vector of three

complex values that are ordered ascendingly by their absolute
values, given by

λ = [λ1 λ2 λ3] (2)

λ has been shown to be useful for classifying metallic objects
[5], [6]. The magnitude of an eigenvalue is given by

r = ||λk|| =
√
λk · λk (3)

where λk is the complex conjugate of λk. The same order as
in λj applies, and hence r = [r1 r2 r3] where r1 ≤ r2 ≤ r3.
For each eigenvalue, r is the distance from the origin in a 2-
dimensional complex plane. Similarly, the phase angle φ(λk)
of the eigenvalue in relation to the origin, is given by

φ(λk) = ϕk = atan2(Re(λk), Im(λk)) (4)

where atan2 is the arctangent function, and Re and Im are
the real and imaginary parts of the eigenvalue, respectively.
Thus, the angles form the vector ϕ = [ϕ1 ϕ2 ϕ3], where the
subscript indices refer to the same order as for λ and r. The
angle corresponds to the phasor response θ of measurement
signal ρ.

Fig. 1. Variation of object response for identical steel and aluminium samples
at 12.5 kHz.

C. Classification of material and geometric properties of
metallic objects

Fig. 1 shows an example of the difference in response
ρ for aluminium and steel samples of identical dimensions.
The figure shows that metallurgy plays a significant role
in the response of an object to an inductive measurement
system, and that it has the potential for use as a feature for
classification. Everyday items such as automotive parts, elec-
trical conductors and construction materials tend to be made
from common steels, aluminium alloys, or copper. However,
specialist machinery and other bespoke components tend to be
made of less common steels and aluminium alloys; therefore
a broad range of metallurgies has to be considered. Fig. 1
and underlying theory dictates that the phasor response (θ) is
particularly dependent upon object material composition; this
angular variation is reflected in the tensor and its eigenvalues
ϕ. Hence, we want to investigate whether ϕ is a good feature
for metal classification.

The difference in the phasor response of objects is dictated
by its mechanism of field scattering; for magnetic, non-
conducting objects e.g. ferrite, the incident field tends to be
concentrated through the object, and the phasor response is
close to zero degrees. For objects which are highly conductive
e.g. aluminium and copper, a secondary field is produced as a
result of induced eddy currents, producing a variation in the
phasor response.

The magnitude of the tensor components varies in accor-
dance with the physical dimensions of the object. Due to skin
effect induced eddy currents tend to circulate close to the
surface of the object, and hence the relationship is dominated
by surface area rather than volume.



TABLE I. THE APPROXIMATE ELECTROMAGNETIC PROPERTIES OF
TEST OBJECT MATERIALS.

Metal type Conductivity (MS/m) Permeability

Stainless steel 1.41 1.05
Aluminium 20.2 1.00
Fe 4.28 60
Brass 15.66 1.01

TABLE II. THE TEST OBJECT TYPES, MATERIALS AND NUMBER OF
SAMPLES. THE THICKNESS OF THE STRIPS IS APPROX. 1.5 MM. THE

NUMBER OF SAMPLES FOR EACH OBJECT IS PRESENTED IN PARENTHESIS.

Cylinders diameter x height (mm) (number of samples)

Aluminium 25x25 (10), 30x30 (20), 35x35 (10)

Fe 25x25 (10), 30x30 (10), 35x35 (10)
25x50 (5), 25x75 (5), 25x100 (5)

Stainless steel 25x25 (10), 30x30 (20), 35x35 (10)
25x50 (5), 25x75 (5), 25x100 (5)

Strips height x width (mm) (number of samples)

Aluminium 199x30 (5), 199x25 (5), 200x20 (5)
200x15 (5), 175x20 (5), 175x25 (5)

Fe 200x30 (5), 200x20 (5), 200x25 (5)
200x15 (5), 175x25 (5), 175x20 (5)

Brass 77x20 (10), 113x24 (20)

III. EXPERIMENTS

A. Material classification

Materials are difficult to define specifically due to the fact
that most metallic objects are made of alloys instead of pure
metals. However, the samples under test consisted of alu-
minium (Al), brass (Br), an alloy made of mainly copper and
zinc), standard stainless steel (SS), a steel typically containing
chromium, carbon or manganese in varied quantities, and fer-
rous steel (Fe). The electromagnetic properties of the different
materials are shown in Table I. We selected a total of 29 objects
shown in Table II for these four classes. Each object is made of
a single alloy, and there were two types of objects - cylinders
and strips; these are shown in Fig. 3. Out of these objects,
11 were selected for the material classification experiment:
the brass strips (2 pcs), and aluminium (3), stainless steel (3)
and iron (3) cylinders. The cylinders chosen were spherical,
i.e. their diameter and height are equal. The measurements for
these objects were recorded around the same operating point
within the portal. Their eigenvalues are shown in Fig. 2.

As it can be seen from Fig. 2, each material yields distinct
ϕ3 values, and that non-magnetic materials (aluminium, brass,
stainless steels) are easily separable from ferrous materials.
Therefore, phase angle based discrimination is key for material
classification.

To test the separation ability of the features (r3 vs. ϕ3), we
present a simple multiclass linear discriminant classifier ζ(x).
The linear discriminant functions for the classifier are given
by

gi(x) = w
T
i x+ w0, i = 1...4, (5)

where x is the feature vector to be classified, wi a weight
vector and w0 the necessary bias factor, see [10]. Let possible
outputs of ζ(x) be ω1 = brass, ω2 = stainless steel, ω3 =
aluminium, ω4 = iron. The output is selected to be ωi if
gi(x) > gj(x) for all j 6= i.

Fig. 2. Eigenvalues (r3 vs. ϕ3) of brass strips (black), aluminium cylinders
(red), and AISI/304 stainless steel cylinders (blue), and iron cylinders (green).
While the magnitude r3 as such is clearly insufficient for classification, the
phase ϕ3 seems to separate the materials fairly well.

TABLE III. RESULTS (CONFUSION MATRIX, %) FOR MATERIAL
CLASSIFICATION USING ONE FEATURE. OVERALL NORMALIZED

ACCURACY WAS 94.8% (10-FOLD CV) AND 94.9% (2-FOLD CV).
NORMALIZED ACCURACY FOR BR/SS-CLASSIFICATION WAS 89.5%

(10-FOLD CV), AND 89.9% (2-FOLD CV).

10-fold CV 2-fold CV

class Br SS Al Fe Br SS Al Fe

Br 96.4 3.6 0 0 95.7 4.3 0 0
SS 17.3 82.7 0 0 15.9 84.1 0 0
Al 0 0 100 0 0 0 100 0
Fe 0 0 0 100 0 0 0 100

TABLE IV. RESULTS (CONFUSION MATRIX, %) FOR MATERIAL
CLASSIFICATION USING TWO FEATURES. OVERALL NORMALIZED
ACCURACY WAS 99.4% (10-FOLD CV) AND 99.1% (2-FOLD CV).

NORMALIZED ACCURACY FOR BR/SS-CLASSIFICATION WAS 98.7%
(10-FOLD CV) 98.2% (2-FOLD CV).

10-fold CV 2-fold CV

class Br SS Al Fe Br SS Al Fe

Br 100 0 0 0 100 0 0 0
SS 2.6 97.4 0 0 3.6 96.4 0 0
Al 0 0 100 0 0 0 100 0
Fe 0 0 0 100 0 0 0 100

We set up the classifier by using MATLAB [11] to train
the weights. Two versions of the classifier were created:
The first classifier uses only φ3 as a feature, whereas the
second classifier uses also r3. Fig. 4 shows the principle
of the classifiers and demonstrates the separability of brass,
aluminium, and stainless steel. The decision border H1 uses
only φ3, whereas H2 uses also r3.

For a scientific evaluation, the performance of the classifier
was tested with a nested stratified cross-validation (CV). 10-
fold and 2-fold cross-validations were used over 100 iterations.
The results for the first classifier are shown in Table III, and
for the second classifier in Table IV. The results show that the
use of two features yields significantly better results in terms
of distinguishing between brass and stainless steel.

B. Determination of geometric properties

For the second experiment regarding geometric properties
of metallic objects, we selected 27 objects, i.e. all the objects
shown in Table II, except the two brass strips. Fig. 5 shows that



Fig. 3. Brass strips, aluminium, iron, and stainless steel cylinders, and iron
and aluminium strips.

while a fairly linear correlation exists between the eigenvalue
magnitudes and the dimensions of similar objects, it is not
feasible to generalize the finding to different types of items.
However, this property could be exploited in scenarios where
the number of classes is limited and objects have known
parameters e.g. sorting component sizes on a production line.

The best overall correlation that we found was between
the surface area of the object and the length of eigenvalue
magnitude vector r. As expected, the volume of the items did
not seem to correlate with the eigenvalues. The metallic strips
might be problematic in this sense as their surface area is large,

Fig. 4. Brass (black), aluminium (red), and AISI/304 stainless steel (blue)
separated by decision borders H1 and H2. H1 utilizes only the phase angle,
whereas H2 uses a linear combination of phase angle and magnitude.

Fig. 5. Length of the eigenvalue magnitude vector of aluminium (red),
stainless steel (blue), and magnetic (black) cylinders (o) and strips (x) are
plotted against their surface area.

whilst at least one of the dimensions is relatively small.

IV. DISCUSSION AND CONCLUSIONS

Because the measurement system used for this study is de-
signed mainly for detecting fairly large threat objects (knives,
sharps objects, guns, etc.), and each measurement involves
a person introducing a body effect in the measured signal,
the system is not optimized for material determination. A
tailored system is likely to produce a much better signal-to-
noise ratio and therefore more reliable results. Although exact
composition of metal alloys is unknown, we have shown that
a fingerprint for each material type can be identified in the
eigenvalues.

A linear discriminant classifier was used for testing the
eigenvalue features. However, there are various other classifier
types that might be used for the purpose, such as support vector
machines, and the choice depends on the application area in
question. Here the use of the linear discriminant was motivated



mostly by its simplicity rather than fine-tuned classification
performance.

Based on the results, we argue that it is possible to
consistently classify objects according to material type. We
have also shown that it is possible to use eigenvalues to
distinguish between similar objects of different sizes in limited
scenarios. The correlation between surface area and eigenvalue
magnitude has also been established.

Given the results presented in this paper, the next step
for this research is to construct an application-specific mea-
surement system i.e. a conveyor-based arrangement to further
investigate object properties in a manner in which would be
expected for such a system. In addition to this change in
detector geometry it would also be advantageous to expand
the system, and the algorithm, to perform multi-frequency
investigation of targets. It is anticipated that this approach
would significantly enhance the process, due to the fact that
material response is known to vary significantly as a function
of frequency [8], [12].
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Acronyms

Acronym	 Definition
CWD	 Concealed weapon detection
EM	 Electromagnetic
FEM	 Finite element modelling
KNN	 K-nearest neighbour
LMA	 Levenberg–Marquardt algorithm
LR	 Nested binomial logistic regression analysis
NIJ	 National Institute of Justice
SNR	 Signal-to-noise ratio
UIT	 Unreliably inverted tensor
UXO	 Unexploded ordnance
WTMD	 Walk-through metal detection

1.  Introduction

Walk-through metal detection (WTMD) portals are gener-
ally used for ensuring that forbidden metallic objects are not 
taken into security-critical areas. They are used especially at 

airports and important government buildings. Recently, the 
fear of terrorism has led to adoption of this security scanning 
technology in, for example, trains and sports events. This cre-
ates a demand for novel technology that would enable fast, 
unobtrusive scanning of large amounts of people. The current 
WTMD portal technology often requires the removal of all 
metallic objects before scanning, which is often considered 
to be inconvenient. Modern WTMD portals are accurate in 
detecting metallic objects. However, there have been few 
attempts further to classify the objects that have triggered an 
alarm at the portal, for example, as innocuous and threatening 
objects. Such capability might enable screened people to walk 
through the WTMD portal with metal, making the scanning 
process faster and less obtrusive. However, this requires a high 
accuracy and reliability of classification.

Metallic objects can be efficiently described using a mag-
netic polarisability tensor model [1, 2]. It has been shown 
that an inversion algorithm can be used for estimating the 
tensor model parameters and the trajectory of the object by 
using measured data from a purpose-built WTMD portal [3]. 
Our previous work [4, 5] has shown that firstly, a k-nearest 
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neighbour (KNN) algorithm along with the inverted tensor 
data from the WTMD portal can be used for object classifica-
tion at high accuracy (over 85% for classification into 10–13 
object types, and 95% for separating threatening objects from 
innocuous ones) and secondly, that the measured WTMD 
portal data contains enough information for this type of clas-
sification. Also, the results are repeatable and even small dif-
ferences in object dimensions can be distinguished. Moreover, 
we have presented a simple method for recognising and dis-
carding poor quality samples and hence improving classifica-
tion accuracy [4].

However, the test data in [4, 5] were generally recorded 
by using a single object orientation and by passing the 
object along the same trajectory through the WTMD 
portal. Although the classification features of the tensor 
data should, in theory, be rotation and position invariant, 
i.e. independent of the orientation of the object and its tra-
jectory, due to practical reasons this is not the case in the 
WTMD portal used in the aforementioned studies, and thus 
an element of bias is introduced to the data. In addition, 
the inversion method is suspect to noise, especially the so-
called body effect [6]. These facts have not been taken into 
account by [4, 5] and therefore their results are not gener-
alisable as such.

In this paper, we take the next step towards robust classi-
fication of metallic objects by reducing the effect of bias and 
noise on the reliability of the methods. Firstly, we investigate 
the properties of the noise and the bias caused by the orienta-
tion and position dependency. Secondly, we introduce a novel 
classification method that can cope with biased and noisy 
tensor data. Thirdly, we propose a novel method for detecting 
unreliable tensor data, thus enhancing the reliability of the 
classification.

The paper is organised as follows. The next section describes 
the background information for the paper, along with related 
studies. The third section contains the analysis of noise and 
bias in the signals, and describes the novel classifier and its 
performance. Section  four presents the novel algorithm for 
detection of unreliable data. Section five discusses the results 
and their significance, and finally, section six concludes the 
paper and gives suggestions for future research.

2.  Background and related work

2.1.  Related work

Concealed weapon detection (CWD) has been studied widely 
and a variety of solutions have been proposed [7]. However, 
metal detectors such as WTMD portals at airports still play a 
large role in CWD. The portals detect metallic objects, but are 
generally unable to classify them further into threatening and 
innocuous items.

The magnetic polarisability tensor representation can 
be used for characterising the electromagnetic (EM) prop-
erties of metallic objects [2]. It describes any metallic 
object as a 3 × 3 matrix. Previously, the eigenvalues of the 
tensor matrix have been proposed as features for classifica-
tion purposes, including landmine detection [8, 9] and for 

discriminating unexploded ordnance (UXO) from clutter 
[8, 10–13].

Kauppila et al [1] have proposed the use of tensor eigen-
values for classifying metallic objects in a WTMD portal sce-
nario. Furthermore, we have shown that metallic objects can 
be accurately classified using a purposely designed portal and 
eigenvalues of the tensor matrix [4, 5], and that the measure-
ment system is affected by a phenomenon called the body 
effect [6]. It has also been shown that the technology can 
accurately distinguish between different types of metal [14].

There is some also other previous research on the subject 
of metallic object classification using a WTMD portal. An 
approach based on EM imaging technology has been proposed 
by Al-Qubaa et al [15]. However, the used test set is limited, and 
although the results are not directly comparable, the reported 
classification accuracies seem lower than in our studies [4, 5].

2.2. The walk-through metal detector measurement system 
and data acquisition

This study uses the same WTMD measurement system 
and setup as [3–5], which will be referred to as the portal. 
However, the methods reported in this paper are not dependent 
on the portal, and they may be used with any system capable 
of consistently inverting the magnetic polarisability tensor 
as described in section 2.3. This system uses 16 coils, eight 
of which are transmitters operating at different frequencies, 
ranging from 7 kHz to 14 kHz. The coil geometry is shown in 
figure 1 [3]. The portal volume is × ×0.75 m 2.05 m 0.83 m, 
and the design of the portal is largely similar to those in use 
at airports.

The data for the experiments has been collected by 
repeated, natural walk-throughs performed by test persons 
carrying an object. The object has been placed on the body 
of the person by using a specialised apron with markings. 
This enables the test objects to be passed through the portal 
in a repeatable way, along predefined paths. The portal floor 
is marked with a foot placement grid in order to keep the 
walk-throughs as similar as possible. The data collection 
setup is shown in figure 1.

2.3.  EM signals, tensor inversion, and basic concepts

A WTMD measurement system, such as the portal described 
here, is able to detect changes in its excited magnetic field 
caused by the passage of a metal object. The resultant mea-
surements consist of a series of these changes. When a large 
enough metallic object is passed through the portal, the detec-
tion system is triggered, and the corresponding time series of 
measurements is recorded as the system response ρ̂.

Our aim is to classify the object that has caused the detec-
tion system to trigger, and therefore information on the char-
acteristics of the object, i.e. its material, size and shape, are 
needed. To achieve this, we estimate what kind of an object 
could have resulted in ρ̂ using the magnetic polarisability 
tensor model. The model defines a point representation of the 
conductive and magnetic properties of an object as a complex 

3 × 3 matrix ( )
↔

fM , given by
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where f is the excitation frequency of the system. The tensor is 
symmetric such that =m mx y y x, , , =m mx z z x, , , and =m my z z y, ,  
and it is possible to model the system response by the forward 
response model (the model), given by

ρ( ) = ( ) ( )
↔ ↔

p M H p M H p, T
t r� (2)

given that the object centre position vector = [ ]x y zp     T, the 
transmitter and receiver coil magnetic field field vectors Ht 

and Hr, and the object tensor 
↔
M are known. Consequently, in 

our WTMD application, 
↔
M and p are unknown and need to 

be estimated as follows. Based on the model (2) and the mea-
sured signal ρ̂, it is an inverse optimisation problem to find 
the tensor estimate �M that fits the best to the model, i.e. mini-
mises the difference between the measured response ρ̂ and the  
response (  �ρ ρ= ( ˆ )p M, ) calculated with the model. The func-
tion to be optimised may be written as

ρ ρ= ‖ ˆ − ‖F .2
2� (3)

We call this optimisation process the inversion, and it is 
solved with the Levenberg–Marquardt algorithm (LMA). The 
solution of the inversion is defined as �β = { ˆ }M P, , where P̂ 

is the object path, i.e. a vector consisting of estimated object 
centre positions �pi .

The eigenvalues λ of tensor 
↔
M are given by an ordered 

vector (eigenvalue vector or triplet) of three complex values

λ λ λ λ λ( ) = = [ ]
↔
M     .1 2 3� (4)

They are a rotation-invariant representation of 
↔
M (see e.g. 

[5]), and therefore a useful tool for object classification. The 
vector λ is sorted in order of increasing magnitude of each 
eigenvalue λi, i.e. that λ1 is the smallest, and λ3 the largest by 
magnitude. The magnitude of an eigenvalue λk is given by

τ λ τ λ λ λ( ) = = ‖ ‖ = ⋅k k k k� (5)

where λk  is the complex conjugate of λk. Hence, the sorted 
vector of magnitudes is τ τ τ τ= [ ]   1 2 3  where τ τ τ⩽ ⩽1 2 3. In a 
2D complex plane, τ is the distance from the origin of the 
eigenvalue.

The eigenvalues can be seen to exist in a polar coordinate 
system, and therefore in addition to the magnitude, the angle 
φ λ( )k  of the eigenvalue, as seen from the origin, is given by

φ λ φ λ λ( ) = = ( ( ) ( ))atan Re , Imk k k� (6)

where atan is the four-quadrant arctangent function, and Re 
and Im are the real and imaginary parts of the eigenvalue, 
respectively. The angle values for the eigenvalue vector λ can 
be then written as φ φ φ φ= [ ]   1 2 3 , where the vector is also 
ordered by increasing magnitude τ.

Figure 1.  Left: coil geometry of WTMD data acquisition system (reproduced from [3]). Right: the portal hardware and the data 
acquisition setup. The candidate is wearing an apron with location markings. The target object is marked in the picture, along with the 
step markings on the floor.
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Eigenvalue vector �λ( )M  and β including the estimated path 
P̂ are in this referred to as a sample for simplicity.

3.  Noise and bias in the measured signal

3.1.  Definitions of noise and bias

In an ideal scenario, the measured system response would con-
sist of only the signal caused by the target object. However, in 
reality, a bias and different noise components are present. The 
overall measured response can be written in a simplistic form

ρ ρ μΘ Θˆ ( ) = + ( ) + +p p N N, , ,body� (7)

where Θ is the orientation of the object, ρ the theoretical 
response for the object, μ Θ( )p,  a bias term, Nbody the so-called 
body effect [6], and N a general noise term.

The theoretical system response term ρ is unknown, but 
can be estimated for a known object by simulation using finite 
element modelling (FEM), or approximated by using a sole-
noid-type measurement system with Helmholz coils.

Introduction of orientation and positional biases to the 
signal is a typical problem that might arise in any WTMD 
portal architectures like the one shown in figure 1. The main 
reason for the orientation bias is that the sensitivity of the 
system is not equal for all main axes, and therefore rota-
tion causes a modified response. Positional bias is due to the 
fact that the signal-to-noise ratio (SNR) is dependent on coil 
geometry and thus not equal within the portal. Also, the model 
(2) is a point presentation and assumes that the magnetic field 
is parallel for the whole object. Particularly, if the object is 
too close to the coils, this is not valid. Furthermore, because 
the tensor eigenvalues are frequency dependent, the fact that 
neighbouring transmit coils are excited at distinct frequen-
cies (approximately 500 Hz–1 kHz apart) may introduce some 
bias. Hence, μ Θ( )p,  that depends on position p and orienta-
tion Θ of the object, is introduced.

The body effect Nbody is a noise term that depends on the 
person walking through the portal, and the electromagnetic 
properties and size of the object. The body effect is mainly 
caused by capacitive coupling between the human body and 
the coils.

The term N is the overall ambient noise that consists 
of elements from the noise sources, roughly given by 

ε= + +N NN A P IQ where NA is the amplifier noise, inclusive 
of voltage, current and thermal noise; εP parasitic voltages 
induced into receive coil (due to cross-coupling), and NIQ is 
the noise from demodulation and filtering.

In theory, at any given frequency, the eigenvalues λ of the 
inverted tensor �M should be invariant in relation to the ori-
entation Θ of the object and its position p within the portal. 
However, LMA fits biased and noisy measurement values to 
the model (2). Therefore the estimated tensor values will also 
contain noise and a bias, and moreover, due to the nature of 
the optimisation algorithm, the effect of these phenomena to 
the tensor values is non-linear. Based on noisy measurement 
definition in (7), the tensor eigenvalue vector consisting of 
inverted noisy eigenvalues can be written as

λ λ μ( ˆ ) = ( ) + +
↔

λ λM M N ,� (8)

where each term denotes the contribution of the corresponding 
terms in (7). λN  contains the combined noise effect caused by 
Nbody and N. As we will show in section 3.2, it is convenient to 
describe the different components in the above simplistic way.

3.2.  Data analysis

To study the bias components, two data libraries (see table 1) 
were collected: library OrLib (4 objects, 4 orientations) for 
the orientation bias, and library LocLib (2 objects, 12 loca-
tions) for the positional bias. As explained in section 2.2, a 
special apron was used for marking the locations (location 
in this context refers to the placement of the object on the 
body of the candidate, resulting in characteristic paths when 
walking through the portal) in the upper body of the candidate 
and carrying the object fixed onto the body. The upper body 
area was divided into a 4 × 3 grid, resulting in 12 locations. 
See figure 2 for details of the locations (figure 2(a)) and orien-
tations (figure 2(b)) used for the data collection.

Figure 3 presents a selection of data in OrLib and LocLib. 
From figure 3(a), we observe that for each orientation there 
exists a distinct cluster, and hence the orientation-dependent 
bias exists. Furthermore, the size of the clusters, i.e. the vari-
ance of the eigenvalues, can be generally seen to be caused by 
the noise component λN. Also, because λN can be assumed to 
be constant for every orientation, the variation of size between 
clusters is due to the orientation bias.

Furthermore, analyzing figure 3(b), we see that firstly, the 
orientation bias can be mostly seen in the magnitude τ and 
that the effect on τ is significant, up to around 20% for τ3. 
Secondly, angle φ of an eigenvalue is not affected to a great 
extent by the bias if τ for the particular eigenvalue component 
λi is large enough. Therefore, angle φ and magnitude τ repre-
sent eigenvalues in a way that might be better suited for clas-
sification purposes than the Cartesian version in figure 3(a).

Also, in figure 3(c) a bias component is present as similar 
markers form small, distinct clusters. It should also be noted 
that vertical location does not seem to affect the bias compo-
nent significantly. On the other hand, the poor SNR area of the 

Table 1.  Libraries for bias experiments.

Object
Num.
Ors N/Or

N 
(OrLib)

Num.
Locs N/Loc

N 
(LocLib)

HK10 4 40 160
HK12 4 40 160 12 5 60
Alugun 4 40 160 12 5 60
Steelgun 4 40 160
OrLib 640
LocLib 120

Note: LocLib = location experiment library. OrLib = orientation experiment 
library. N = number of samples. Num.Ors = Number of orientations. Num.
Locs = Number of locations. N/Or = Samples per orientation. N/Loc = 
Samples per location. HK10 and HK12 = Hunting Knives, Opinel brand, 
sizes 10 and 12, respectively. NIJ [16] gun phantoms Alugun (aluminium) 
and Steelgun (steel) Alugun ja Steelgun = NIJ aluminium and steel model 
guns, respectively.
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Figure 2.  (a) Orientations for library OrLib shown on the apron. (b) Locations (marked on the apron) for library LocLib. Note that 
locations 2–1, 2–3, 4–1 and 4–3 are not marked.

Figure 3.  (a) HK12 eigenvalues (cartesian coordinates) for 4 orientations. See colour coding in (b). (b) HK12 (polar coordinates, pc). 
Colour coding of orientations applies for all three symbols (that stand for λ1, λ2, and λ3). (c) HK12 eigenvalues (pc) for 12 locations. See 
legend for horizontal and vertical location markers. See legend of (d). (d) Alugun eigenvalues for 12 locations. Legend in upper right hand 
corner refers to the locations shown in figure 2.
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portal (red markers) produces, as expected, more noisy and 
scattered values compared with the areas shown with green 
and blue markers. Finally, in figure  3(d), distinct locations 
yield distinct clusters, and therefore a bias is present, and is 
mostly a function of horizontal location.

As a conclusion, we argue that significant orientation and 
positional biases ρμ and λμ exist, and are mainly present in 
magnitude τ of the eigenvalues. This result means that any 
classifier must take this dependency into account, and a 
single sample of an object cannot serve as a prototype for 
classification.

3.3.  Novel classifier for countering noise and bias

In our previous studies [4, 5], we used a modified KNN-
algorithm for classifying the samples. The distance D between 
the sample to be classified, x̂, and each sample xi in the tem-
plate library, the collection of known reference samples, was 
calculated using a distance measure, given by

λ λ λ λ λ λ λ λ( ) = ( − ) + ( − ) + ( − )D ,a b a b a b a b,1 ,1
2

,2 ,2
2

,3 ,3
2

� (9)

where λi are eigenvalue vectors sorted by magnitude, as 
stated in section  2.3, and λi j,  are the corresponding sorted 
eigenvalues.

This conventional method assumes that ordering eigen-
values by magnitude τ results in small distance values for 
samples from the same object/class. However, sometimes the 
τ-values are similar for two eigenvalues of the same object/
class, and noise might change the order of comparison. As we 
have shown in section 3.2, bias term μλ and noise term λN  have 
a significant impact on the variation of magnitude τ-values. 
Therefore, two samples recorded for the same object might 
yield large distance values. Figure 4 demonstrates the problem 
situation and how it affects distance calculation.

As a solution, we introduce a novel classification algo-
rithm. We calculate distance D for all six sample order per-
mutations σ σ σ σ σ σ σ= { }         1 2 3 4 5 6  of eigenvalue vector λ, i.e. 
λ σ λ λ λ( ) = [ ]   2 2 1 3 . The class of sample xi with the smallest 
resulting distance is selected as the classification outcome. 
We can write

λ λ λ λ σ( ) = ( ( ( )))σ
∈{ }

D D, min , .a b
j

a b j
1...6� (10)

Instead of using K samples for deciding the classification out-
come, we select the sample with smallest σD -value, i.e. the 
nearest neighbour.

We tested the new method by classifying a set of libraries 
(see table  2) with the previously defined ((9), parameter 
K   =   1) and new methods. The results are shown in table 3. 
Furthermore, the libraries OrLib and LocLib (see section 3.2) 
were combined and the resulting library (720 samples) was 
classified into knives and guns by using Library E as the 
template library. The results show that the novel classifier 
increases classification accuracy significantly compared with 
the previously reported method, reducing misclassifications 
by 5–46% for libraries D–H. Also, the novel classifier is able 
to cope with biased tensor values in LocLib and OrLib.

4.  Self-diagnostics for improving classification 
reliability

4.1.  Inversion reliability and unreliably inverted tensor detec-
tion

The quality of solution β found by the inversion algorithm LMA 
(as described in section  2.3) is crucial for classification reli-
ability. Especially, if the estimated tensor �M is poor, the sample 
in consideration is Unreliable from a classification point of view. 
We call these samples unreliably inverted tensor (UIT), and the 
rest of the samples good samples for brevity. In this section, we 
introduce a method for self-diagnostics of the WTMD portal. 
The purpose of the method is to detect any UITs before using 
them for classification. Hence, the method has the potential to 
increase the reliability of classification of metallic objects.

The quality of solution β depends, firstly, on the quality of 
the measurement ρ̂, i.e. SNR. If e.g. the body effect dominates 
the signal ρ̂, inverting the tensor for the metallic object becomes 
impossible. Secondly, the quality of the initial guess solution 

�β = { ˆ }M P,0 0 0  made by LMA is crucial. Finally, independent 
of measurement quality, the solution depends on the validity 
of the model (2) for the scenario, in particular the shape of the 
object and the properties of the excited magnetic field.

Figure 4.  When calculating the distance between two sets of 
eigenvalues λ, a problematic situation arises when there are two 
eigenvalue λ clusters that have approximately the same magnitude 
τ. If the samples are ordered using τ for distance calculation, the 
algorithm may end up calculating the inter-cluster distance d2 
instead of the small intra-cluster distance d1.

Table 2.  Libraries for testing the novel classifier.

Library Samples Classes

D (2013) 1316 10 classes [4]
E (2014) 835 13 classes [5]
G 3990 115 objects as separate classes
H 369 40 objects as separate classes

Note: D and E were used in our earlier papers. G is a large library for 
classifying samples into objects (e.g. HK12) rather than object classes 
(such as knives). H is similar to G, but smaller in size and the samples are 
measured using apron location 1–3 (see figure 2) that yields good SNR.
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The quality assessment of sample β should consider both �M 
and the estimated path P̂. The quality of �M can be intuitively 

defined by how well it corresponds to the theoretical tensor 
↔
M 

for the detected object. This, however, cannot be solved since 

the detected object and therefore 
↔
M are unknown. Instead, the 

reliability of �M has to be determined by secondary, indicative 
measures. Previously, the residual r, a measure for inversion 
performance, has been proposed as an indicator of the quality 
of �M [4]. The residual and the definition of the quality of �M 
will be discussed in section 4.2.

The quality of P̂ has not been addressed previously. On 
the other hand, it has been shown that P̂ is realistic for good 
samples [3, 17], i.e. the quality of �M and P̂ go hand in hand. 
Moreover, assumptions on the possible trajectory of the object 
can be made based on a priori knowledge. Hence, we argue 
that it is possible to use heuristic principles for determining 
the quality of P̂.

We propose a novel UIT detection method (path analysis) 
based on the analysis of P̂ (see section 4.3): we hypothesize 
that if P̂ is not credible, i.e. it does not reflect the supposed tra-
jectory of the object, then the sample in consideration is likely 
a UIT. Consequently, we argue that path P̂ contains additional 
information on the UIT detection problem compared to using 
solely the residual r, and therefore features derived from P̂ 
could be used for detecting UITs either on their own, or in 
conjunction with r.

To test these claims, we will compare the performance of 
three UIT detection methods, respectively based on residual 
analysis, the novel path analysis, and a combination the two 
(combined analysis). Subsequently, section 4.4 describes the 
experiments and results of comparison between the aforemen-
tioned three methods.

4.2.  Residual analysis UIT detection method

The residual value, r, is a measure for prediction error within 
the inversion, i.e. quality of β. In this case, the residual is cal-
culated by taking the L2-norm of the difference between the 
actual measurements ρ̂, and the forward response ρ as a func-
tion of the inverted tensor �M and path P̂, and dividing this 
value by the L2-norm of the measurements ρ̂, given by

ρ ρ
ρ

= ‖ − ˆ‖
‖ˆ‖

r� (11)

where ρ̂ contains measurement values over time for all trans-
mitter-receiver coil pairs.

The lower the residual, the better the solution found by the 
inversion represents the measured signal ρ̂ when using the 
model (2). However, it does not represent only the quality of 
the solution, but the suitability of the model itself for repre-
senting the signal. Therefore, it is possible that a poor quality 
solution yields a low residual value.

The residual analysis-based UIT detection method, as we 
have described previously in [4], works as follows. Let rT be 
a residual threshold between 0 and 1. For any sample, if its 
residual >r rT, it is deemed a UIT. However, our data anal-
ysis suggests that for each set {object, Θ, P} there exists a 
typical residual value (usually between 0.1 and 0.5) for the 
successfully inverted samples, and therefore, choosing rT is 
challenging.

4.3.  Path analysis UIT detection method

It is known a priori that when a person walks through the 
portal, any metallic object placed on the torso should follow a 
relatively straight trajectory, any curvature resulting from gait 
and the slight angle in which the portal is entered. Hence, if 
e.g. path P̂ is not following a roughly straight line, the sample 
might be a UIT. Examples of estimated paths for good sam-
ples and UITs are shown in figures 5 and 6. Note a special 
case shown as the black straight line in figure  5. Here, the 
estimated path ˆ = ˆP P0, and the inversion has failed to find a 
sensible solution.

To model the typical behaviour of the paths for good sam-
ples and UITs, a set of heuristic path features are calculated 
using P̂. Example features include the coordinate ranges of P̂ 
in horizontal and vertical directions. Subsequently, the path 
analysis-based UIT detection method uses a set of these fea-
tures to form a classifier based on linear discriminant analysis 
[18]. The classifier parameters are trained, i.e. optimised, 
using a recent machine learning technique.

4.4.  Experiments and results

A set of annotated data labeled as UITs and good samples is 
needed for training and testing the UIT detection methods. In 
order to label samples, we need to define what kind of sam-
ples are UITs in this context. The most important issue for 
reliability, from classification point of view, is repeatability. 
Normally, for each unique set Θ{ }Pobject, , , the eigenvalues 
of the tensor estimates form clusters (see e.g., figure  3(a)).  

Table 3.  Results for the novel classifier (All %).

Library T(o) T(n) I(T) C(o) C(n) I(C) N(o) N(n)

D (2013) 98.9 99.0 9.1 97.6 97.9 12.5 96.0 96.4
E (2014) 97.6 98.7 45.8 94.7 96.5 34.0 91.1 93.4
G 97.2 97.4 7.1 86.1 86.9 5.8 79.6 80.2
H N/A N/A — 93.2 95.1 27.9 93.0 94.9
LocLib   +  OrLib N/A N/A — 99.9 99.9 0 99.9 99.9

Note: T = Accuracy for distinguishing between threatening and innocuous objects. C = classification accuracy. N = normalised classification accuracy i.e. 
average precision. o = KNN classifier presented in our earlier papers. n = novel classifier. I = percentage of reduced misclassifications (for C or T).

Meas. Sci. Technol. 26 (2015) 105103



J Makkonen et al

8

If the eigenvalues for a solution differ significantly from these 
clusters, we say that the sample in consideration is a UIT. This 
kind of approach is called outlier detection [19].

A large amount of samples were inspected visually and 
any eigenvalue outliers were labeled as UITs. The training 
data was divided into two differently balanced sets (training 
libraries) for examining how training data composition affects 
UIT detection performance: library A (109 samples, of which 
59 UITs) and library B (297 samples, of which 22 UITs). The 
union of libraries A and B is named library C. Library A con-
tains samples from e.g., knives, coins, and jewellery, whereas 
library B contains samples from 13 object classes.

To train the UIT detection methods, an automated machine 
learning approach, namely nested binomial logistic regres-
sion analysis (LR), was applied. Logistic regression [20] in 
this context essentially finds a linear discriminant classifier for 
deciding whether the given sample is a UIT or a good sample. 
The classifier is formed by the input vector of binary features, 
their corresponding weights that the logistic regression anal-
ysis learns based on given training data, and the discriminating 
criterion to make the final decision. To implement logistic 
regression for this study, we used GLMNet for MATLAB [21].

To be able to use LR for training the residual analysis-
based UIT detection method, the single feature r was 

Figure 5.  Examples of inverted paths in 3D for good samples (left) and UITs (right). See figure 1 for reference.

Figure 6.  Examples of inverted paths in 2D (XY and XZ planes) for good samples (left) and UITs (right). See figure 1 for reference. 
The shape of the path in XY-plane results from gait. Our previous experience shows that the path should be roughly linear in XZ-plane 
(representing horizontal movement). This is not the case for UITs.
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quantized into 35 binary residual features using 35 values 
between 0.05 and 0.9 for threshold rT. Essentially, the clas-
sifier learns the best value for rT. For the path analysis-based 
UIT detection, we analyzed paths of UITs and good samples 
in library C. Figure  6 demonstrates the difference between 
typical good paths and some UIT paths. Based on this knowl-
edge, we selected four suitable path features (see examples 
in figure 7). To use these features in LR, a set of thresholds 
were used for quantizing them into 89 binary path features. 
For each feature, between four and 33 equally distributed 
thresholds were used. The combined analysis-based method 
was trained by using both the residual features and the binary 
path features for LR, resulting in a total of 124 binary input 
features.

The methods were trained by using all three training 
libraries, resulting in three versions (differing by parameters) 
of each method. The performance results for these methods 
are shown in table 4. A 10-fold nested cross validation of data 
was used for LR. The results show that regardless of training 
library, path analysis and combined analysis-based methods 
are more accurate in predicting UITs than the residual anal-
ysis-based method.

The results were validated by using library G (see 
table  2). Each method detected and removed UITs from 
the library. The remainder of the library was then classi-
fied using the novel classification algorithm described in 
3.3. In addition to the aforementioned trained versions of 
the UIT detection methods, we created a set of new ones 
for studying the effect of rT on the residual analysis. Eight 
new residual analysis UIT detection methods were created 
by assigning them static values for rT. Values of rT were 
{ }0.20 0.25 0.30 0.35 0.40 0.50 0.60 0.70 . In addition, three 
combined analysis UIT detection methods were created by 
first using residual analysis with a static rT (0.5, 0.6, and 
0.7, respectively) for pre-filtering the library and then the 
trained path analysis -based method (trained by using library 
C) for the remainder. The results are shown in figure 8. The 
results suggest firstly, that the presented novel UIT detection 
methods are able to reduce the amount of misclassifications 
significantly, and secondly, that regardless of parameters and 
used training libraries, it is possible to gain better classifica-
tion accuracy by using path analysis and combined analysis 
-based methods compared to using residual-based methods.

Using conservative residual thresholds (e.g. 0.6 or 0.7) 
yields significant improvement on original classification 
accuracy. Nevertheless, lowering rT further does not yield 
significant improvement after =r 0.35T . On the other hand, 
regardless of their parameters, the markers for the path anal-
ysis and combined analysis-based methods are all above the 
curve formed by residual analysis-based method markers. 
This further validates our previous observations, suggesting 
our hypotheses stated in section 4.1 are correct.

5.  Discussion

We have shown that significant positional and orientation bias 
components are present in inverted samples β. Because the 
magnitude τ of sample eigenvalues is especially affected by 
the bias components, the use of τ for fine grained analysis, for 
example estimating object size and shape, might be problem-
atic. On the other hand, the angle φ of sample eigenvalues is 
robust against the bias. In addition, it has been shown [14] that 
φ contains information on the material of the object, while τ 
contains coarse information on the dimensions of the object. 
Therefore, instead of using Cartesian coordinates, τ and φ 
should be used for classification purposes, e.g. distance cal-
culation, when possible. The novel classifier presented in this 
paper used Cartesian coordinates and was shown to cope with 

Figure 7.  Feature histograms for separating UITs from the good samples. On the left, Z-coordinate range means the amount of horizontal 
movement within the path. Note that UITs tend to have values greater than 10, whereas the good samples get lower values. On the right, 
Z-coord. range + Y-coord. range means the sum of the horizontal and vertical ranges for the path. Similarly, the good samples get values 
below 20, but UITs get higher values.

Table 4.  Results for UIT prediction using logistic regression.

Library

Method
UIT prediction 
accuracy (%) Gain over guess

A B C A B C

Random 
guess

54.1 92.6 80.0 1.00 1.00 1.00

Residual 
analysis

70.6 94.6 85.7 1.30 1.02 1.07

Path 
analysis

85.3 99.0 89.7 1.58 1.07 1.12

Combined 
analysis

88.1 99.7 92.6 1.63 1.08 1.16

Note: Random guess means the accuracy score gained with a naive predictor 
with a static output (the class with the highest a priori probability) for 
all samples. Gain over guess defines how much better the method is than 
Random guess.
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biased values. However, its principle is independent of the 
applied distance measure.

The positional bias might be compensated by using samples 
that are measured using the same approximate location (i.e. 
portal region) as the template library in the KNN matching 
process. The region can be estimated using the estimated path 
P̂ of the object. On the other hand, the orientation of the target 
object cannot be estimated in the current portal setup. This 
gives rise to the need for novel, robust distance measures.

The presented UIT detection methods can be used for two 
main purposes. Firstly, for removal of unreliable samples 
from classifier training data, or in the case of a KNN classi-
fier, the template library samples xi. Secondly, self-diagnostics 
of the inversion could be performed as follows. If a UIT is 
detected, the inversion process can be re-initiated with a new 
initial guess. Hence, in theory the only samples to be com-
pletely discarded, leading to a potential manual scan, would 
be the ones with poor SNR. This way it is possible to move 
the markers in figure 8 towards the left, being able to classify 
walk-throughs while performing self-diagnostics.

In the case of the combination methods that produced the 
highest gains in classification accuracy, the rate of UITs was 
around 35–40%. There are three main reasons why the P̂-based 
methods classified a significant number of samples as UITs. 
Firstly, the data set used for training the methods was small 
and sparse, and overfitting is likely. Better training data con-
taining a wider range of objects might improve performance. 
Secondly, the features used for the training were arbitrary and 
were chosen because of their simplicity. Using more complex 
and a larger number of features might improve results. Thirdly, 
commercial WTMD portals produce better SNR measure-
ments than the experimental portal in this study, and improving 
the SNR of the system might lower the ratio of UITs.

6.  Conclusions and future work

This paper has presented methods and knowledge that can take 
metallic object classification using WTMD-technology closer 

to practice. There is strong evidence that there is a significant 
positional and orientation bias component in the inverted ten-
sors, and that the bias mostly affects the magnitude of tensor 
values. We have also proposed a novel classifier and shown, 
firstly, that it yields better classification accuracy than the previ-
ously presented methods, and secondly, that it is capable of clas-
sifying noisy and biased samples. The findings on UIT detection 
suggest that the reliability of classification can be improved by 
using features derived from the estimated object path.

Our findings give rise to several topics for future research. 
Previously, the residual has been used widely for considering 
the validity of solutions found by inversion algorithms, but 
we have shown that outlier detection methods, such as the 
UIT detection method described here, might be considered. 
Furthermore, research on diminishing the effect of the bias 
components should be carried out. This could be done either 
by redesigning the portal coils or developing classifiers and 
distance measures that are more robust against the bias com-
ponents. Finally, the technology should be tested in a multi-
object scenario where several metallic objects might be carried 
through the portal at a time.

The methods and results presented in this paper might also 
be applied to any EM metal detection technologies, such as 
humanitarian demining.
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