TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Timo Kellomaki
Large-Scale Water Simulation in Games

Tampereen teknillinen yliopisto. Julkaisu 1354
Tampere University of Technology. Publication 1354

Timo Kellomaki

Large-Scale Water Simulation in Games

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 4™ of December 2015, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2015

ISBN 978-952-15-3643-4 (printed)
ISBN 978-952-15-3654-0 (PDF)
ISSN 1459-2045

Abstract

Water is an important element in the nature. It is also often encountered in digi-
tal games and other virtual environments, but unfortunately interaction with it is
typically very limited. The main reason for this is probably the immense compu-
tational cost of simulating water behavior. Simulating water and other fluids by
numerically solving Navier-Stokes equations is commonplace for offline engineering
applications such as bridge building, weather prediction, or aeronautics. Since the
1990s, these methods have also been applied to computer graphics, but the focus
has been in offline applications such as movie special effects. Recent advances in
programmable graphics hardware have facilitated real-time fluid simulation in a
large enough scale to be applicable in games. This far these methods have been
mostly used in games only for visual purposes. This thesis is motivated by the
wish to see more games where also the gameplay is affected by water simulation.

The first part of this thesis studies the roles of interactive water in different kinds
of games. Requirements for water simulation methods are formulated by examin-
ing those roles. The thesis then introduces some background theory and various
methods for water simulation. The focus is in heightfield-based methods, which
simplify the problem by assuming that the water surface can be represented as
a vertical displacement from a neutral level. This assumption allows very large
amounts of water to be simulated with the very limited resources available for this
purpose in a typical game. Most of these methods work on a heightfield terrain
and can be enriched with fully 3D effects such as splashes and waterfalls by adding
a particle simulation system.

An important problem is coupling the water simulation with existing rigid body
simulations that are largely used for the dynamics of game objects. The coupling
includes effects such as floating, objects moving with the flow, and building dams
out of bodies. The thesis introduces a new heightfield-based coupling method,
which allows the building of dams from rigid bodies in the heightfield context,
unlike the previous approaches. The proposed methods, including the underlying
water simulation method and visualization, were implemented in parallel using

il

graphics processing units. The methods were found to be fast enough to be appli-
cable in games.

Finally, the most promising current simulation methods are compared from a
games point-of-view using the criteria set in the beginning: performance, sim-
plicity, visual quality, richness of behavior, and rigid body coupling. Since quality
of experience is a subjective matter, user tests are recommended for comparison.
Included in the thesis is one of the first such studies, which found out that leaving
out the velocity self-advection step of a shallow water equation solver had no sta-
tistically significant effect on any of the measured psychological impacts. Based
on the analysis, recommendations for the choice of simulation methods are given
for different kinds of games.

v

Preface

In 2011 T contacted Colossal Order to discuss potential topics for my thesis. This
lead to enlightening discussions with Antti Lehto and Damien Morello, which
made me realize the untapped potential of water simulation in games and select
this intriguing and complex topic. I have also lately been honored to join Colossal
Order to work with these great people.

I would like to thank professor Tommi Mikkonen for his continuing support of my
work as the head of department, my current supervisor, professor Timo Saari for his
research co-operation and comments on the manuscript, and the pre-examiners,
professor Perttu Hamaéldinen and professor Nils Thiirey, for their valuable feed-
back. I also appreciate the financial support received from both KAUTE and Ulla
Tuominen foundation.

Working without a research group has been a hard path that I cannot recommend
to anyone. Luckily I have had the benefit of two people who share a great ability to
color the margins of any draft red with detailed and insightful comments. Firstly,
I am most grateful of the untiring work by my original supervisor, professor Antti
Valmari, to equip me with the analytical thinking tools and philosophy necessary
in scientific work.

Secondly, no words are adequate to describe the significance of my beloved wife,
Tiiti. Besides just providing invaluable emotional support and running the family
while I concentrated on my work, she has also fulfilled the roles of a peer, advisor,
and a proofreader. Finally, my dear children, Teemu and Kerttu, have shown me
a deeper purpose in life that can make a PhD thesis feel trivial.

Timo Kellomaki
Tampere, October 14, 2015

vi

Contents

Abstract iii
Preface v
List of Publications xi
Author’s Contribution to Publications xvii
Lists of Symbols and Abbreviations xXix
1 Introduction 1
1.1 Background 1
1.2 Research Questions and Methods 3
1.3 Summary of Main Contributions 4
1.4 Structure of the Thesis 6
2 Water in Games 9
2.1 Background Lo 9
2.2 Spatial Presence and Flow 10

vil

2.3 The Believability Aspect oL 11

2.4 The Gameplay Aspect 15
2.5 Water-Based Game Mechanics 17
2.6 Evaluation Criteria for Water Simulation Methods 21

3 Water Simulation 25
3.1 Navier-Stokes Equations 25
3.1.1 The Lagrangian and Eulerian Viewpoints 26

3.1.2 The Momentum Equation 28

3.1.3 The Incompressibility Equation 29

3.2 Numerical simulation 30
3.2.1 Discretization Lo 30

3.22 Stability 32

3.2.3 Numerical Simulation on the GPU 33

3.3 Fluid Solvers 35
3.3.1 The Eulerian Approach 35

3.3.2 SPH and Other Lagrangian Methods 37

3.3.3 Other Real-Time Fluid Simulation Approaches 38

4 Heightfield water simulation 41
4.1 Heightfields 41
4.2 Shallow Water Equations 42

viil

4.3 Discretizing the SWE

4.4 The Wave Equation
4.5 The Pipe Method
4.6 Pipe Method on the GPU
4.7 Visualizing Heightfield Water

5 Rigid-Body Coupling

5.1 Background oo
5.2 Object-to-Water Coupling
5.3 Water-to-Object Coupling

5.4 State of Coupling in Heightfield Methods

6 Comparison of Water Simulation Methods

6.1 Background
6.2 Performance.
6.3 Simplicityo
6.4 Visual Quality
6.5 Richness of Behavior
6.6 Coupling.
6.7 Summary

7 Conclusion

Ludography

X

57

o7

58

61

63

65

65

66

70

71

73

74

75

79

82

Bibliography

85

List of Publications

[P1]

[P2]

[P3]

[P4]

T. Kellomaki.

Fast Water Simulation Methods for Games.

In Computers in Entertainment. Accepted for publication (acceptance in
October 2014, status last updated November 9, 2015).

T. Kelloméki, and T. Saari.

A User Study: Is the Advection Step in Shallow Water Equations Really
Necessary?

In Eurographics short papers, 2014.

T. Kellomaki.
Interaction with Dynamic Large Bodies in Efficient, Real-Time Water Sim-

ulation.
In Journal of WSCG, Vol. 21, No. 2, pp. 117-126. 2013.

T. Kelloméki.

Two-Way Rigid Body Coupling in Large-Scale Real-Time Water Simula-
tion.

In International Journal of Computer Games Technology, 2014.

The permissions of the copyright holders of the original publications to reprint
them in this thesis are hereby acknowledged.

X1

xii

List of Figures

2.1 Tammerkoski rapids Lo 12
2.2 WaterinDoom 2o 13
2.3 Water in Assassin’s Creed 3 14
2.4 Water in Uncharted 3, 14
2.5 Water in Sprinkle Lo 18
2.6 Water in Cities: Skylines (alpha footage) 19
2.7 Water in Munin 21
2.8 Water in From Dust 0oL 22
3.1 1D example of the material derivative 28
3.2 Staggered 2D grido 31
3.3 Semi-Lagrangian advection 35
4.1 An example heightfield 42
4.2 Results of linearized versus full Shallow Water Equations 47
4.3 Effect of advection in games oL 48
4.4 Effect of advection in videos o0 48

4.5

4.6

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Pipe method variablesona grid. 49

An example of pipe method results 51
Sub-grid details using a fractional cell approach 59
A comparison of traditional and blocking water-body interaction . 60
A schematic of traditional versus blocking coupling in a heightfield

simulation oL Lo 63
3D Eulerian simulation o000 72
Tall cell simulation 72
SWE simulation 72
2D LBM simulation oo o 72
Wave particle simulation o000 72
FFT ocean simulation 72
3D Lagrangian simulation 72
2D SPH simulation o 72

X1iv

List of Tables

6.1 A performance comparison of simulation methods

6.2 A comparison of water simulation methods

XV

XVvi

Author’s Contribution to
Publications

The author is the sole and independent contributor to [P1], [P3], and [P4].

For [P2], professor Saari was responsible for designing and implementing the psy-
chological questionnaires. The analysis of variance was a collaboration of the
author, professor Saari, and Katja Laine. The rest of the publication, including
but not limited to, setting the research question, the regression analysis, inter-
preting the results, implementing the simulation software, administering the user
tests, and reporting the results, is the work of the author.

xXvii

List of Symbols and
Abbreviations

1D, 2D, 3D
of/ox

Vz

V-x
u-Vv

Kib, Mib, Gib
k,M,G

O(f(n))

1-dimensional, 2-dimensional, 3-dimensional
partial derivative of f with respect to z
gradient of x

divergence of x

advection operator

material derivative operator

differential operator

time step of a numerical method, s

grid spacing of a numerical method, m
acceleration, m/s?

a heightfield terrain

water depth, m

force, N

acceleration due to gravity, approx. 9.81 m/s?
acceleration vector due to gravity, (0,0, —g)”
a heightfield water surface

kibibit (219 bits), mibibit (220 bits), gibibit (23" bits)
103, 106, and 107 times a quantity

mass, kg

the set of functions that grow asymptotically at most as fast
as a constant times f(n)

XixX

v
p
ANOVA
CFD

CFL condition
FFT

FLIP
FPS
fps
GPU

LBM
LOD

NSE

PDE
PERF
PIC/FLIP
SAM

SPH

SSM

fluid pressure, N/m?

a generic quantity of interest

the value of quantity ¢ at time 7

the value of quantity ¢ at grid point ¢
time, s

velocity vector

velocity in the direction of the x axis
velocity in the direction of the y axis
position vector

fluid kinematic viscosity, m?/s

fluid density, kg/m3

analysis of variance

computational fluid dynamics, a branch of computational
physics

Courant-Friedrichs-Lewy condition

fast Fourier transform, an algorithm to convert between dis-
crete space and frequency domains

fluid implicit particle, a fluid simulation method
first-person shooter, a game genre
frames per second

graphics processing unit, a computer circuit for parallel pro-
cessing

Lattice-Boltzmann method, a fluid simulation method
level of detail

Navier-Stokes equations

partial differential equation

primary egocentric reference frame

particle-in-cell/fluid implicit particle, a variant of FLIP
self-assessment manikin, a pictorial assessment technique
smoothed-particle hydrodynamics

spatial situation model

xxi

xxii

Chapter 1

Introduction

1.1 Background

Water is one of the most interesting elements in nature. It is soothing and beautiful
to look at, fun to play with, and even creates its share of catastrophes. It would
seem, then, that it would also be an essential element in computer games and other
virtual worlds that seek to model nature. Yet a look at the bulk of current game
worlds reveals that in most cases, water only has the role of a beautiful decoration.
There are, of course, games with ships or the possibility to swim, but the water
almost always occupies a static area and has little to no meaningful gameplay
associated with it. Of course, some kind of simulation would be needed to achieve
interactivity.

Physical simulation is definitely not something foreign to games. The advent of
physics engines has raised the bar on the interaction level in game worlds. Fully
simulated rigid bodies are now trivially easy for the programmer to add in their
game, and this has created an explosion of new game genres. What could be
achieved if water simulation was as easy and commonplace?

Like all fluids, water motion is described by the Navier-Stokes equations, which
are hard to solve or even numerically simulate. Especially turbulent flows are ex-
tremely chaotic, and capturing the whole richness of water behavior would need
a very detailed simulation. Indeed, water simulation is notorious for being com-
putationally very hard, and games rarely have any extra resources available. This
is hardly surprising, since some 30-100 high fidelity images of an increasingly
large and complex game world need to be produced per second. This far, in the

2 Introduction

computer graphics field, water simulation has mostly been utilized in offline appli-
cations, such as movie special effects.

Luckily, in games we are usually not interested in the exact modeling of the com-
plexities of the real world. It can be surprising how much the laws of physics can
be simplified and even ignored to still create an illusion that the players fail to
notice as unplausible, as long as the result is wrapped in a beautiful visualiza-
tion. Knowing this, we are more prepared to solve the performance problem by
simplifying the physics simulation considerably.

One of the most common tricks used in computer graphics is to replace the
physically-based simulation with something more static that looks similar. For ex-
ample, we constantly use photographic images as textures instead of actually sim-
ulating the materials on an atomic level. This non-physical approach has proved to
work well for water modeling, because the details are fleeting, almost random, not
important to interaction, and do not systematically affect the large-scale behavior
of the body of water. Therefore we only need to coarsely simulate the large-scale
flows, such as where a river flows, using, e.g., a simulation resolution of one meter.
The visual richness of the smaller details can simply be an illusion that does not
affect the large-scale simulation.

Unfortunately, it turns out that even a coarse simulation becomes a burden on the
computational resources if large bodies of water are to be simulated. If we want to
model one square kilometer of water with a vertical extent of one hundred meters
even with a coarse resolution of one meter, a 100 million cells need to be updated
dozens of times per second.

The essential optimization is based on noticing that, in games, what happens under
the surface can often be ignored. In the big picture, only the height of the water
surface is important. Restricting to a heightfield removes the vertical simulation
dimension. While the simulation domain thus becomes two-dimensional (2D), the
game world itself still stays three dimensional (3D). It is important to differentiate
this from games with actual 2D worlds. Updating the one million remaining cells is
well within reach of our current hardware, provided that each update is simple and
can be implemented in parallel. Truly three-dimensional details, such as splashes,
are lost, but they can be added back locally where needed.

The traditional solution in computer graphics to modeling this kind of large areas
is to use different levels of detail (LOD), i.e., use a simpler simulation model, or
a coarser resolution far away from the viewer. This has some problems, though.
Coupling the different simulation resolutions is difficult, and especially so when
trying to maintain the massive parallelism needed. Another complication is that
if gameplay is to depend heavily on the simulation, the areas where the player is

1.2 Research Questions and Methods 3

not looking might still affect the game, and therefore need to be simulated at least
in some detail. As a worst case, a player might even exploit the LOD system by
altering water behaviour simply by looking at it! Some games might benefit from
LOD techniques despite these issues, but this thesis concentrates on methods that
do not use such an approach.

Another central topic besides performance is how the player is to interact with
water. Because rigid bodies are currently the main way to physically interact
with game worlds, it is essential to model the interaction between rigid bodies
and water. The two simulations need to be coupled in two directions: the bodies
float and are pushed by the water (water-to-body effects). On the other hand,
water cannot flow through the bodies, which causes various body-to-water effects.
Unfortunately, implementing this kind of coupling in real time turns out to be very
difficult.

As will be seen in the next chapter, there already exist several water simulation
games that take place in a 2D world. Almost all of these games use a particle-based
approach, which is indeed well-suited for this problem in 2D worlds. The particle-
based approach is also well-suited for 3D environments when small amounts of
water suffice. However, the situation becomes more interesting when large 3D
environments need to be modeled, since particle methods are not always compu-
tationally efficient enough. Therefore, this thesis concentrates on large 3D envi-
ronments, where no single all-encompassing solution is yet apparent.

1.2 Research Questions and Methods

This thesis strives to lower what we find to be the most important barriers pre-
venting water simulation from becoming commonplace in 3D computer games and
virtual environments that model large areas of terrain: performance problems and
implementation complexity. Another area of interest is finding ways to achieve
richer interaction, where water is lifted from its usual role in games as a decora-
tion to something that can actually be played with. Some of the reasoning behind
these goals is presented in Chapter 2. The following main research questions of
this thesis arise from this goal:

RQ1 Which of the available methods are best suited for large-scale 3D water
simulation, taking into account the strict performance limits and limited
development budgets of games?

4 Introduction

RQ2 How can the methods be improved to ease the constraints, especially to
allow richer interaction with water in games?

Our current best answer to RQ1 can be found in Section 6.7 of this thesis, and to
RQ2 in [P4].

The design science paradigm seeks to create utility by building and evaluating
artifacts, such as concepts, methods or software implementations. The created
artifacts need to solve a relevant problem, be evaluated rigorously using metrics,
and contribute to the knowledge base. This is in contrast to the behavioral science
paradigm that tries to understand different phenomena by positing and validating
theories. However, Hevner et al. suggest that these two approaches can and should
complement each other in a research cycle. [23]

Most of this work falls under the design science paradigm. We analyze the poten-
tial usage of water simulation in games and use that to find relevant evaluation
metrics. Simulation methods are then implemented, and evaluated according to
these metrics.

However, we also argue that the behavioral science aspect is currently underrepre-
sented in the computer graphics branch of water simulation research. The roots of
water simulation in computer graphics are in the science of computational fluid dy-
namics (CFD), in which the end products typically solve a technological problem,
such as building a dam that does not break. In contrast, the end products of com-
puter graphics, be it movies, games, or other virtual worlds, are built for human
users. Because of this, besides utilizing only the typical design science metrics,
such as performance, we also need to understand how and why these technologies
affect the users. The tools of behavioral science are well suited for this purpose.
The user study included in this thesis, [P2], falls partially into this category.

1.3 Summary of Main Contributions

To answer RQ1, the current methods were first compared to each other in [P1].
The fastest available method, pipe method, seemed to suffer from a bad reputation,
because the family of simulation methods it represents was often dismissed as not
believable enough. To be able to include it in the comparison, we implemented
the pipe method on a graphics processing unit (GPU). Evaluating the results
turned out to be very promising: Most of what was lost in realism was gained in
simplicity and speed, and the method was able to convincingly simulate flow over
any heightfield terrain, which already enables many interesting gameplay features.

1.3 Summary of Main Contributions 5

The results of [P1] and discussions with the game company Colossal Order led
them to use a variant of the pipe method in their hit game Clities: Skylines.

However, because the believability of different methods is hard to evaluate objec-
tively, user studies were called for. We implemented a small game that was used to
conduct such a study in [P2]. No difference between a method very similar to the
pipe method and a more complex method based on the shallow water equations
was found in any of the psychological impacts that were measured.

When analyzing RQ2, we noted that gameplay is often based on how the player
can affect the game world. Because much of the interaction in current games
is done via manipulating objects represented as rigid bodies, it was natural to
study how rigid bodies can affect water in heightfield methods. It turned out that
all of the available coupling methods in the heightfield context concentrated on
modeling small, floating bodies in a large and steady mass of water. They were
based on letting water flow right through the bodies, which is not a problem in
their context, but severely limits more general usage of these methods. The only
object-to-water effects in these previous methods were some surface waves created
for visual believability purposes.

A desire to richer interaction lead us to investigate the possibility of heightfield
methods that truly block flow with the objects, as is typical in the offline full 3D
simulations. Some simplifying assumptions allowed for a new method based on
this approach. The method was originally implemented and evaluated in [P3], and
further improved upon in [P4]. This method enriches the interaction possibilities
in games by enabling rigid bodies to dynamically block the water flow in large-scale
heightfield simulation.

To summarize, this thesis studied the requirements for large-scale water simulation
in games, and then evaluated, compared, and improved the available methods in
light of these criteria. Specifically, the main contributions of the publications
comprising this thesis are:

o In Water Simulation Methods for Games [P1], a comparison of water simu-
lation and water-object interaction methods suited for games was presented.
This included a fast, GPU-parallel implementation of the pipe method,
which was shown to be clearly faster than the competing methods. The
water was also visualized interactively with small scale details created by tex-
ture advection. The work was originally published in 2012 in the Academic
Mindtrek conference, but an extended journal version has been accepted for
publication in Computers in Entertainment.

6 Introduction

o A User Study: Is the Advection Step in Shallow Water Equations Really
Necessary? [P2] used psychological measurements and statistical analysis to
study the difference in user experience of two water simulation methods:
the shallow water equations and the simpler wave equation. No statistically
significant difference was found, suggesting that the simpler method may
suffice for some applications. The work was published as a short paper in
the Eurographics conference in 2014.

o [nteraction with Dynamic Large Bodies in Efficient, Real-Time Water Simu-
lation [P3] introduced a novel approach to rigid body coupling in the height-
field context. The method provides object-to-water coupling of a new kind,
so that the rigid bodies can block flow. This enables richer interaction with
water, such as building dams out of the rigid bodies. The work was published
in Journal of WSCG in 2013.

o Interaction with Rigid Bodies in Large-Scale Real-Time Water Simulation [P4]
further improved and generalized the method of [P3], e.g., enabling water-
to-object coupling in the same framework, fixing some rendering problems,
and making the method more physically-based and compatible with multi-
layer models. The work was published in International Journal of Computer
Games Technology in 2014.

e In addition to the publications, Chapter 2 of this thesis analyzes the potential
usage of water simulation in games. Chapter 6 significantly updates and
extends the comparison presented in [P1].

1.4 Structure of the Thesis

The rest of the thesis is structured as follows.

Chapter 2 discusses the role of water and water simulation in games in more detail.
The role of water in games is analyzed, some psychological background is given,
and the criteria for evaluating different methods are established.

Chapter 3 starts from the Navier—Stokes equations and introduces some simplifying
assumptions to arrive in a form more feasible for real-time simulation. Numerical
methods for implementing the actual simulation are then introduced. Finally,
some of the most commonly used water simulation methods are shortly reviewed.

Chapter 4 describes in more detail some of the heightfield-based simulation meth-
ods that are central to this thesis: the shallow water equations, the pipe method,

1.4 Structure of the Thesis 7

and the wave equation. Our particular implementation of the pipe method and its
visualization are also presented.

Chapter 5 addresses the problem of coupling rigid-body solvers with water sim-
ulation, for example, how to make bodies float on the water or to form dynamic
obstacles that stop the flow.

Chapter 6 compares some of the simulation methods that are best suited for games,
based on the criteria set in Chapter 2.

Finally, Chapter 7 summarizes and concludes the work, looking back at what was
accomplished and laying out a roadmap for the future.

Introduction

Chapter 2

Water in Games

2.1 Background

Most games take place in some game space, be it text-only, a visually extremely
realistic 3D environment, or something in between [81]. Most of these worlds
represent a virtual world of some kind, and reference the environment and culture
that we as players live in [57]. Because water is such a common and interesting
element in our environment, it is only natural for it to also exist in these game
worlds. This chapter analyzes the roles of water in games both using the concepts
of flow and presence, and by examining those roles in existing games. These roles
are then used as a basis for establishing criteria for the simulation methods that
could be used to implement water in games.

At least two distinct roles for water are easily identified: Making the environment
seem real or believable, and providing an interactive element to enrich gameplay.
These roles are not orthogonal, because it is a good practice to combine presenta-
tion with the game mechanics as closely as possible, but it will still be beneficial
to discuss these topics separately.

Throughout the text, the terms static and dynamic are used to refer to two separate
things: sometimes the whole water surface consists of a static geometry, e.g., a
simple plane, and the appearance of water is created using various visual tricks
that color the pixels in interesting ways. This is in contrast to dynamically moving
the actual drawn triangles according to the water surface. The other meaning
relates to the fact that in many current 3D games the surface triangles do move,
but the area covered by the water cannot change during the game (or only changes

10 Water in Games

in predetermined ways, e.g., an event that always floods a certain part of a game
level), in contrast to a mass of water that is able to freely run over the terrain.
Some kind of water simulation is needed to achieve dynamic behavior in the latter
sense.

2.2 Spatial Presence and Flow

To understand the role of water in creating believable virtual environments, the
concept of spatial presence (or simply presence) is essential. Presence has been
described as the feeling of ”being there,” or forgetting that one is only using media
instead of having a real, physical experience [36]. Feeling presence is a human
reaction to immersive media, but can also be felt using imagination [79]. Feeling
presence has been suggested to contribute to high media enjoyment [37].

According to the theory of presence proposed by Wirth et al., constructing a spa-
tial situation model (SSM, a mental image of the perceived space) is an important
precondition for presence. The SSM is constructed by observing spatial cues pro-
vided by the media, and is stronger when there many cues that are plausible and
consistent with what the user expects based on their previous experiences. [79]

However, a strong SSM alone is not enough. In order for presence to occur, the
user also has to accept the mediated space (e.g., a game world) as their primary
egocentric reference frame (PERF). In other words, the media has to continuously
compete with the real world about which space the user believes he or she is
located in [79]. According to the theory of perceptual hypothesis, the user selects
a hypothesis and looks for confirming cues. On the other hand, perception is
biased by a strong hypothesis so that the user tends to see what is predicted by
the hypothesis [8].

A plausible and rich SSM, therefore, gives rise to a stronger hypothesis, which
helps the user’s imagination to fill in the missing details that are expected to be in
the scene. On the other hand, contradictory information that breaks expectations
weakens this virtuous cycle. [79]

Interactivity strongly supports seeing the media as PERF [79]. Getting enough
feedback and having a wide variety of possible interactive actions is important [65,
80]. Other factors that contribute to seeing the media as PERF are using multi-
ple coherent modalities (such as audio cues synchronized to the visual cues) and
persistence of the spatial structures [79]. All of these are quite typical to games.

2.3 The Believability Aspect 11

Additionally, the user’s motivation may help accepting a weaker SSM as PERF.
This is helped by involvement and suspension of disbelief. Involvement happens
when the media resonates with the user’s values, experiences, and beliefs [33], but
also when the user is provided with rich interactive capabilities for acting in the
environment, for example, exploring [79]. Involvement helps presence in that it
directs the user’s concentration to the media instead of the cues from the real
world [79]. Suspension of disbelief happens when the user wants to be entertained
and therefore consciously or subconsciously ignores the conflicting cues, such as
feeling the keyboard and mouse, or a plot hole in a movie [79].

Both involvement and suspension of disbelief are the more important the less
immersive the media is. For example, books need to heavily draw on these factors,
while a more immersive virtual reality system may achieve presence completely
without them. [79]

Another important concept is flow. It is an experience acquired by deep concen-
tration on a task that can be completed. Its prerequisites are clear tasks and
goals, immediate feedback, controllable actions that affect the task, and full con-
centration on the task at hand. In a state of flow awareness of everyday life and
self is weakened, and the sense of time is distorted. It is an immensely gratifying
experience that is itself worth striving for even without other rewards. [13]

Much of the positive effect of presence on media enjoyment may be due to it
helping achieve flow [45,78]. Whether or not this is the case, it seems clear that
encouraging both presence and flow are highly important for successful computer
games [78,79].

2.3 The Believability Aspect

Because water is so common in nature, with rivers, ditches, oceans, lakes, puddles,
rain, etc., occurring everywhere in our everyday surroundings, we have strong
expectations on how it behaves and also expect to see it everywhere in the game
world. It is thus hardly possible to create a believable natural environment without
water and other liquids. On the other hand, both the visual and dynamic nature of
water include some mind-blowingly interesting, beautiful, and complex phenomena
(Figure 2.1). It is to be expected that modeling and rendering water is essential
for sustaining the believability in any virtual natural environment. In this light,
the huge effort poured into into developing visually believable water modeling for
games is not surprising.

12 Water in Games

Figure 2.1: Water exhibits complex behavior in the Tammerkoski rapids
(photo: Visab80).

Water was already present in the visually simple 3D games of the early 1990s
such as the Doom series (Figure 2.2) or Ultima Underworld. The surface was
represented as a simple, static plane with some kind of a texture, often animated.
Since these early days, rendering has progressed tremendously, and water surfaces
are now often represented almost photorealistically with effects such as reflection,
refraction, and even caustics taken into account. On the other hand, the static
plane with no dynamic geometry whatsoever can still be found from many games.
It is only very well decorated.

With the current, very advanced rendering, game worlds are starting to visually
resemble the real world. However, as we have seen, presence is not a simple
function of visually mimicking reality. Because water can be interacted with in
many complex and interesting ways, creating the right feel when a game character
or object meets water should also be essential for believability. For example, the
WWW is full of videos of players walking in shallow water and shooting their
weapons at it to compare the splashes created by the bullets. This is entirely in
accordance with the theory of presence, which emphasizes the role of interaction
and getting expected feedback in seeing the media as PERF.

Though much emphasis is still put on creating visually realistic water rendering,
the importance of the quality of interaction has not been completely ignored, ei-
ther. This is where many water simulation systems in current games come into
play. For example, several modern games incorporate a method for creating visu-
ally believable ripples from user interaction. This is important, because it helps
provide the visual cues players expect from interacting with water.

2.3 The Believability Aspect 13

AMMO | HEALTH | |ARME g

Figure 2.2: Doom 2 (1994) used simple animated textures for water.

The techniques typically used in current games range from clever use of textures
and normal mapping to FFT-based methods such as iWave [70]. These techniques
have been used to enrich the look and feel of water and interaction with it in, just
to name a few examples, F.FE.A.R., Crysis, Resistance 2, Just Cause 2, HALO 3,
Assassin’s Creed 3 (Figure 2.3), and Battlefield 4. See [60] for some details on
Assassin’s Creed 3. Uncharted 3 (Figure 2.4) went a step further towards actual
simulation by using wave particles [20, 82].

However, we argue that the bottleneck for immersiveness in current game worlds
is typically not in the visuals, but in the overly simplistic interaction possibilities.
Unlike in most other media, the player is allowed and expected to interact with
the world, but instead of the endless possibilities of subtly affecting things as in
the real world, the player is met with a mostly static environment with interac-
tion possibilities that are often binary and scripted: pull this lever down, do the
predetermined, always similar jump, or place a predesigned building here. This
in stark contrast to, say, a movie, where every subtle interaction of the characters
and the world can be preplanned.

A similar thought is brought forward by Salen and Zimmerman, when they explain
that the player is often aware of the game, its rules, the interface, the social
context, and several other aspects that are not authentical reproductions of reality.
Even more, they argue that these artificial aspects actually provide important
meaning to the play experience, and failing to recognize these aspects makes it
difficult to create meaningful play. They call this overconcentration in creating a

14 Water in Games

Figure 2.4: Uncharted 3 (2011) utilizes water simulation and advanced ren-
dering for its water.

sensory illusion the immersive fallacy [57, pp. 450-455]. This argument can also
be understood as stressing the meaning of involvement and suspension of disbelief.

A case in point is the hit game Minecraft, which employs pixelated and unrealistic
graphics, yet succeeds in evoking a strong feeling of a living world by providing
much richer interaction possibilities than most other games of its era. The success
of Minecraft seems to have started a revolution, where games are made with the
goal of enabling richer interaction than traditionally, instead of concentrating on
mere visual believability.

The two goals of interactivity and visual realism have often been in contradiction,
since static worlds are typically easier to make visually good-looking. For example,

2.4 The Gameplay Aspect 15

each new state of an object often requires almost as much work from the 3D artist
as making the original object. Another example is the possibility of precalculating
extremely realistic lighting in a completely static environment.

Due to the reasons stated above, we find it extremely important to analyze the
often neglected interactive aspects of water in games, and how they are connected
to the water simulation technology.

2.4 The Gameplay Aspect

The specialty of games compared to other media is interaction. Sicart defines
game mechanics as methods invoked by agents for interacting with the game world
(agents could be either the human players, or something controlled by the com-
puter) [61]. The mechanics are closely connected to game rules, which describe
how the game moves from a state to another. One difference is that rules are
neutral, because they are automatically evoked, while game mechanics are used to
forward the intentions or agency of a player or another agent in the game [61].

A useful dimension in game analysis is the narrative versus system-based game-
play [29]. Games that are focused on the narrative (e.g., The Walking Dead, Gone
Home) are closer to interactive movies, where the player only subtly interacts with
a pre-written plot. Game mechanics are not very important. On the other hand,
system-based games need the game mechanics to be rich enough to provide interac-
tion that is interesting or entertaining for the player. This could be via challenges
providing learning opportunities and thus the socially stirring possibility of proving
these skills in a competition (e.g., Counter Strike). Another dimension is through
creative self-expression, e.g., allowing the player to build something personal in
the world (e.g., Minecraft).

Often, systems that can provide interesting gameplay opportunities are emergent,
i.e., they are built from simple rules that interact and combine to form something
endlessly complex and surprising [66]. Simplicity, or at least naturality or famil-
iarity is important to make the game easily understandable to the audience [31].
This fits the flow theory well. A natural system helps make it clear for the user
how the task works and what the possible actions and their results are. On the
other hand, emergent, complicated systems provide ample opportunities for creat-
ing challenging tasks that can be solved with correspondingly high skills, another
essential prerequisite of flow.

16 Water in Games

It should be noted that in games that are also virtual worlds, much of the gameplay
is typically directly connected to the spatial features of the game world. For
example, rivers are often efficient positions for defenders in strategy games, and
effective tactics in first person shooter (FPS) games require flanking opponents
using cover and alternative routes around the game world.

Unfortunately, there seems to be a persistent lack of such emergent and dynamic
systems that function as a basis for interesting game mechanics. The few systems
that have been invented are often repeated from game to game, only changing the
theme and narrative. Such a phenomenon is, for example, clearly visible in the
FPS genre, where the gameplay is based on a few recurring elements: moving an
avatar in a 3D world, taking cover, and quickly aiming at the opponent.

In the last decade or so, physical simulation has proved itself to be an important
source of game mechanics. It is also connected to the physical space. So far it has
mostly taken the form of rigid body physics, the use of which has exploded with
the availability of off-the-shelf physics engines. Additionally, examples of game
mechanics based on more complex physical simulations have begun to appear,
e.g., the mud simulation in the off-road game Spintires.

Even games where most of the mechanics are traditional have nowadays added
physical simulations, because in addition to believability, simulation often provides
new gameplay possibilities. For example, in the context of an FPS, a few simple
crates lying around in the game world can be used as movable cover, makeshift
stairs to reach a high ground, or even for some creative building fun without the
game designer actually having to plan these mechanics. At best, this can be as
simple for the developer as adding the rigid body property to the objects in the
game engine. On the other end of the spectrum, many games are completely built
on game mechanics based on physical simulation, e.g., Angry Birds.

Water fits well in the picture, because it demonstrates complex yet very familiar
behavior, especially in interaction with moving bodies. It is clearly a very emergent
element in nature, providing endless possibilities for play. Just imagine the real-life
events of floating boats down creeks, letting water erode sand castles, surfing, or
even whole cities being destroyed by floods. We believe that there is an enormous
untapped pool of such gameplay possibilities emerging from even the simplest
water simulation.

2.5 Water-Based Game Mechanics 17

2.5 Water-Based Game Mechanics

Let us now analyze in more detail how water has already been employed in games
to create game mechanics. We also give examples of how simulation can enrich
those mechanics by making the water dynamic. These examples are then used as
a basis for mapping needs for water simulation methods from a gameplay point of
view.

A common usage of water is as an obstacle. In many, especially older, games the
characters either cannot enter water at all, or are drowned upon entering. In many
of these games, the role of water is purely thematic: gameplay-wise, the game could
work just as well without any references to water. Any other barrier, such as walls,
could be used for similar gameplay effects, but water is often the most believable,
natural obstacle. For example, since the play area often needs to be limited, some
kinds of borders are needed. A common solution is to make the levels islands,
naturally limited by an unending ocean around them (see e.g., the Grand Theft
Auto series). In some games, the roles of water and land are reversed: the player
controls a boat moving on water, and the shores become natural obstacles.

Simulation could significantly enrich this usage, since it allows the player to ma-
nipulate the area occupied by the water to open up new routes, or block enemies
from reaching an area.

Of course, in many games, it is possible to enter the water, which often inter-
acts with the character. Usually at least the character’s movement properties are
changed: movement is slower, and buoyancy counters gravity. Slower movement
might mean vulnerability due to inability to escape. Buoyancy opens up move-
ment in the vertical direction more freely than mere jumping. This can be used to
create game mechanics dealing with jumping above the surface. Some arcade-style
games are based on balancing the different control schemes on both sides of the
surface, e.g., game genre where the player is controlling a fish that is able to jump
out of the water [18].

Additionally, a drowning rule is sometimes implemented, limiting the time the
characters can spend underwater, which causes a potentially interesting challenge
if climbing out of the water is difficult. Sometimes the characters can also hide by
staying below the surface, but the hiding time is limited due to the drowning rule,
increasing tension.

If water in the game level is static, these mechanics are limited to voluntarily
going in to water, and pushing or luring other characters in. Simulation again
opens up new possibilities, because the water level becomes dynamic and can even

18 Water in Games

Figure 2.5: Sprinkle has 2D water-based gameplay, where a water spray is
used to extinguish fires.

be controlled by the player. Examples of such possibilities are drowning or slowing
down enemies by unleashing a mass of water, controlling water to either make high
locations reachable, protecting low locations from the water, or making water reach
a specified area to trigger a positive effect.

A different kind of gameplay space is enabled by utilizing the flow of water. This
includes waves, advecting properties such as color or temperature, and floating
objects. Traditional childrens’ play with bark boats is a good example. This last
category practically requires some kind of a dynamic simulation to become inter-
esting, since a static, precalculated flow would make the game rather repetitive.

An example of reaching new areas can be found from Munin, where the player is
able to rotate parts of the level. This causes water to flow into new areas, and
buoyancy can then be used to reach areas otherwise unreachable. The idea of
protection is the basis of the game mechanic of the prototype game made for this
thesis, which is used in [P2]. In the game, the player modifies terrain to save houses
from drowning. Examples of directing water to a goal can be found in Where’s
My Water, or various fire extinguishing games, such as Sprinkle (Figure 2.5).

Two examples of games that utilize advection are Liquidsketch, where the player
controls water flow in order to create target colors by mixing differently colored
liquids, and the city builder Cities: Skylines, where flow simulation is used, e.g., to
model where the sewage water of a city ends up (Figure 2.6). In Cities: Skylines,
the player is also able to build dams for creating power, which affects the water

2.5 Water-Based Game Mechanics 19

Figure 2.6: In Cities: Skylines, heightfield water simulation is used in a 3D
world to see where the waste water ends up.

flow. Removing the dams afterwards can also cause interesting, dynamic flooding
of the city.

The mechanics mentioned above can be further enriched if the simulation allows
for more detailed interaction with objects (usually implemented as rigid bodies).
This requires a versatile and robust coupling method between the water and the
bodies. Both kinds of coupling can be used as game mechanics: examples of water-
to-object coupling include capsizing ships, sailing, or the player pushing around
objects with a controllable water spray. Examples of the object-to-water direction
could include building or breaking dams. Combining these mechanics could be
used to create game play systems that are varying and emergent. However, as
will be discussed in Chapter 5, this kind of interaction is a technically challenging
problem in large-scale 3D fluids. Our work in [P3,P4] aimed at finding solutions
to this problem.

Since game mechanics are defined as methods of interacting with the game world,
it is useful to think how the player actually interacts with water. In some cases,
the player controls the water rather directly by inserting or removing it from some
location. The water velocity could also be affected by the player. Examples include
inserting water sources (either simple omnidirectional sources, or particle sprays
that can be directed), or affecting flow either directly by, e.g., dragging gestures
in the water, or in more creative ways, such as changing gravity.

In some games, the player can also control the terrain or objects that are then
coupled to the water. This class includes the visual ripples caused by a moving
character, but also richer interaction such as altering the terrain to push the water

20 Water in Games

around, driving a car into the water, or using several rigid bodies to build a dam.
As is typical in games, the interaction does not have to obey any natural laws. For
example, think about a magic spell that divides the sea.

Based on the above discussion, we propose a taxonomy for classifying the role of
water in games. The first class is the effect on gameplay, and consists of the
following subclasses:

G1 being an obstacle

G2 altered movement properties

G3 being directly useful at some location
G4 being harmful at some location

G5 pushing objects

G6 advecting properties (pollution, color, etc.)

The second class is the control method, with the following subclasses:

C1 no control at all

C2 adding at a location

C3 removing from a location
C4 applying forces or impulses

C5 altering terrain or objects

The no control subclass is included because interesting gameplay does not require
the player to be able to control the water. Simply coping with the natural flow
caused by gravity or other external factors is often enough.

For example, in the firefighting game Sprinkle, water is useful in certain locations,
where it extinguishes fires (G3). The control method allows player to select at what
height water is added and give an angle for the initial impulse for the inserted water
(C2, C4). The challenge becomes interesting, because physical simulation is then
used to resolve whether the water ends up in the correct location. The water
could, e.g., hit an obstacle in the way, be bounced to an area that is otherwise
unreachable, or first fill a cavity and then overflow to the desired location.

2.6 Evaluation Criteria for Water Simulation Methods 21

In Munin, puzzles are solved by using buoyancy to make the avatar reach new
platforms, which we classify as altering movement properties (G2). The interest-
ing part is the very unique control scheme, which is a combination of all of our
subclasses C2-C5: rotating a part of the level moves water to another position,
changes forces by affecting gravity, and alters the terrain as the whole structure of
the level is changed (Figure 2.7). We would like to note that it is often clever new
combinations like this that makes games interesting.

Figure 2.7: In Munin, parts of the game world can be rotated, which also
affects water.

We conclude that of the gameplay effect subclasses, being an obstacle (G1) and
altered movement properties (G2) do not require water simulation, but are clearly
enriched by it. For G3-G6, simulation is somewhat essential, because they either
require the area under water to change, or some notion of water flowing. Only
pushing objects requires coupling with dynamic objects, and the water-to-body
effects are enough. The control methods naturally require a simulation, because
static water provides very little to control. Note that the altering terrain or objects
category (C5) often requires a simulation method which is able to handle body-to-
water effects. There are varying levels of interaction that can be achieved in this
subclass, as will be discussed in Chapter 5.

2.6 Evaluation Criteria for Water Simulation
Methods

The main purpose of this thesis has been to take technology forward so that
gameplay-affecting, interactive water in games would become more commonplace.
Some roadblocks preventing such games from being implemented were analyzed

22 Water in Games

Figure 2.8: Much of the gameplay in From Dust deals with simulated height-
field water in a 3D environment.

in [P1]. Based on issues identified in that paper and the above analysis on game-
play, we set our criteria for evaluating various water simulation methods in light
of their suitability to games:

e performance

e simplicity

e visual quality

e richness of behavior

e coupling

Performance has traditionally been the main hurdle for water simulation. However,
the explosive growth of available parallel processing power with the advent of the
modern GPU is about to change things. While fully 3D water simulation is still
far out of reach for large amounts of water, the heightfield methods discussed in
Chapter 4 are already fast enough for many kinds of 3D games as exemplified by
From Dust (Figure 2.8) and our research prototype game used in [P2].

Simplicity is a factor because it makes the technology easier to adopt, and creating
tools faster and cheaper. It is often the case that a state-of-the-art method is so
complex that only few people in the world have the knowledge to properly imple-
ment it despite publications dealing with the topic. In such cases, the availability
of the method is then often dependent on single implementations that eventually
become abandoned and finally obsolete as technologies change, with nobody left

2.6 Evaluation Criteria for Water Simulation Methods 23

with the expertise to update the implementation. An example of this is the once
widely used, but now deprecated D3DX graphics programming library: imple-
mentations of some of the most complicated (and useful) features of it are still not
publicly available years after its deprecation [76].

In general, using an opaque library implementation of a complex method is usually
a less flexible approach than using such a simple approach that it can be imple-
mented in-house. On the other hand, it should be noted that even a complex
method can sometimes be successfully hidden behind a good interface.

Water simulation is not trivial to implement, not least because of the necessary
parallelization. Many of the water simulation methods and the required GPU
programming skills are too complicated to be learned by the busy game developers,
at least in smaller game studios. A lot of resources were spent for developing the
technology behind From Dust, instead of getting to focus on the content. As was
the situation with physics engines, only the proliferation of off-the-shelf solutions
made large-scale adoption of rigid body physics possible. Generic and easy-to-use
water simulation methods and libraries are called for.

Quality of user experience is here divided into two classes based on the two roles
of water in games: visual quality, and richness of behavior. As discussed above, a
visually believable game world is essential for presence, but the end goal of games
typically to try and provide an enjoyable experience.

However, media enjoyment is hard to measure objectively without user studies.
Measuring valence, flow, or enjoyment directly from the users probably give much
more useful information than, for example, calculating how closely a water simu-
lation emulates some feature of reality. However, since user studies are somewhat
difficult to conduct, richness of behavior can be used as a rough proxy for the
immersion and thus presence. We can note classes of water behavior occurring in
nature (e.g., waterfalls or wave dispersion) that can or cannot be modeled by the
method in question.

However, since presence in games is also heavily affected by the interaction quality
and involvement, it should not be the sole priority to strive for realistic and natural
effects, if they do not contribute to the believability or some gameplay feature.
Richness of behavior can thus also be characterized in terms of which gameplay
elements the method allows. For this, our analysis above can be used.

For example, some popular methods, such as FFT or wave particles, can create
very believable waves by displacing the water surface up and down, but do not
allow the area occupied by water to change dynamically. This mostly rules out the
mechanics of water being useful or harmful at some location (G3, G4) and severely

24 Water in Games

limits the usefulness of water as an obstacle or altering movement properties (G1,
G2).

As seen in the analysis of water-induced gameplay, rich and robust coupling with
the terrain and rigid bodies are essential for many new kinds of gameplay. This
criterion can also be partly evaluated by listing types of coupling that can be
achieved, such as interaction with a 3D or heightfield terrain, floating rigid bod-
ies, rigid bodies blocking flow, or the ability to cope with difficult cases such as
animated, soft, or thin objects. This topic is further discussed in Chapter 5.

Chapter 3

Water Simulation

In this chapter, we introduce the reader to the theoretical background of water
simulation and some of the most common simulation methods. For a more com-
prehensive introduction to the topic, see Bridson’s excellent book [6].

3.1 Navier-Stokes Equations

Fluid flow is often described using the incompressible Navier-Stokes equations
(NSE), which are a set of partial differential equations:

1
%—;1+u-Vu+;Vp:g+VV'VU7 (3-1a)

V-u=0, (3.1b)

where u is velocity, t is time, p is density, p is pressure, g is acceleration by gravity,
and v is viscosity.

A large variety of fluid phenomena can be modeled by solving a version of these
equations. Examples include weather prediction, air flow around planes and cars,
and water flow in a pipe or an ocean.

The NSE are notoriously ill-behaved. For example, a question regarding some basic
properties of their solutions, the Navier-Stokes existence and smoothness problem,
is one of the unsolved Millennium prize problems in mathematics [27]. Numerical

26 Water Simulation

methods are needed to solve even simplified versions of the NSE, and are often
plagued with stability problems. [6]

Turbulence is the small-scale, chaotic swirliness that is characteristic to fluid flow.
Turbulence manifests itself especially in fluids with small viscosity and high speed
flows. However, since turbulence is difficult to model numerically due to numerical
damping [15], the methods in this thesis concentrate on modeling laminar (lay-
ered) flow, where turbulence is not present. Turbulent details can be added using
non-simulated effects such as FFT [55] or noise [7], or special algorithms such as
wavelet turbulence [32] or vorticity confinement [15]. However, turbulence is more
important to the visual appearance of smoke than water. In large-scale real-time
water simulation, most of the flow is laminar and many solvers ignore turbulence
completely.

3.1.1 The Lagrangian and Eulerian Viewpoints

Let us think of measuring some property of a fluid in a continuum, for example,
air temperature. The observer can either move with the fluid flow (a weather
balloon), or be fixed to some location (a weather station). The former situation is
the Lagrangian viewpoint, which typically leads to a particle-based discretization
when modeling a fluid. The latter is the Eulerian viewpoint, which is connected
to using a grid-based discretization.

The advantage of the Lagrangian approach is that the velocity field of the fluid
moves both the quantities of interest and the observer in the same way. This
leads to a simulation, where we follow a certain number of small particles. The
forces affecting each particle are evaluated to get the acceleration of the particle.
Quantities of interest, such as density or temperature, are stored in the particles
and are thus automatically moved, or advected, by them. These quantities can
then be evaluated in any point of the continuum, e.g., as a weighted average of
the corresponding properties of the particles.

In contrast, in the Eulerian approach the simplest numerical solution is a regular
grid. In this framework, the fluid properties change in time because of two reasons:
the properties themselves can be changing (such as the whole fluid cooling off),
but also because of advection, i.e., the fact that the fluid itself moves along the
velocity field of the fluid. This means that in the next instant of time, different
portions of fluid with possibly different properties appear at the location of the
observer. For example, imagine a river with first warm water and then cold water
flowing past. Even if the water itself did not change its temperature, the water
would seem to get colder for a stationary observer in the river.

3.1 Navier-Stokes Equations 27

Even though the advection step is an additional burden compared to the La-
grangian methods, the regularity of the grid has some numerical benefits, such as
the relative easiness of approximating spatial derivatives [6, p. 7]. Also, Eulerian
methods can often employ longer time steps than what is possible in the La-
grangian approach [P1]. Intuitively, the particles can get arbitrarily close to each
other, which causes a large pressure force pushing them apart. The force should
quickly diminish as the particles get pushed apart, but a large time step combined
with a simple time integration scheme causes the large force to be applied for too
long. For a discretization based on a regular grid this obviously cannot happen,
because the forces are always calculated from quantities evaluated at the same
distance, Ax, from each other.

To understand how these approaches are related to the NSE, imagine a fluid that
consists of particles with positions x(¢), velocities u(t) = dx/dt and some property
q (e.g., temperature). Let us consider how ¢ changes in time for a particle that is
currently at some position x. Since ¢ is a function of both time and position, and
position is a function of time, we can use the chain rule to obtain [6, p. 8]:

Caltx) =2t u vy =12 (3.2

ct

ot Dt

The D notation is called the material derivative. Its first component term is dq/0t,

the measure of how the quantity ¢ itself changes in time with all else equal, and the

second term u - Vq takes into account how ¢ changes because the fluid is flowing

past the point (i.e., the fluid is advected). The advection term is exactly what is

automatically kept track of in the Lagrangian approach, because the observation

point (the particle) is also advected along the velocity field, but the Eulerian
methods need to employ a specific step to account for it. [6, pp. 4-8]

We can now use the material derivative to form more concise equations without
explicitly repeating the advection term. This kind of equations are often called
advection equations. For example, setting the material derivative to zero gives
the simplest possible advection equation, which describes a situation where the
property is not changing by itself, but is only being advected by the flow [6, p. 8]:

Dq dq
E—O@E— u- Vgq. (3.3)

Equation 3.3 should further help us see that if we wish to model the fluid from the
Eulerian viewpoint, just to reach the neutral situation with only advection and
no other changes, we need to evaluate the advection term. The research question

28 Water Simulation

TA

N

e

Figure 3.1: A 1D example of the material derivative in Lagrangian and Eule-
rian contexts. Both methods need to account for the change in general fluid
temperature (a). The advection part (b) is handled by the particle itself mov-
ing in the Lagrangian viewpoint, but needs to be specifically accounted for in
the Eulerian viewpoint.

of [P2] was whether we can drop the advection term from the velocity equation,
and still reach a believable simulation in the context of shallow water equations
(discussed in Section 4.2), and the result of subjects not noticing this simplification
should be rather surprising in light of the current discussion.

To further clarify the issue, consider the example in Figure 3.1. In it, we consider
how the temperature T'(x) in a 1D fluid changes during some time interval. The
fluid itself is cooling uniformly (a) and also moving with uniform velocity so that
it moves the distance p’ — p to the right in a single time step (b). The new
temperature is 7’(x), which is the original temperature shifted right and lowered.
Now, if we follow a particle starting from p, the particle itself is moved, using its
own velocity, to p’ during the time step. All we need to do is lower the particle
temperature. If we instead use an Eulerian viewpoint, to find out the new fluid
temperature at the grid point p/, we need to combine the effect of the shift because
of the velocity (b), and the effect of the cooling (a). These two terms correspond
to the two terms in the material derivative.

3.1.2 The Momentum Equation

We are now in position to understand the first equation of the NSE (3.1a), often
called the momentum equation. It describes how the fluid velocity u evolves over

3.1 Navier-Stokes Equations 29

time. Consider a small particle of fluid, which has mass m, and velocity u. Its
behavior is governed by the forces F' acting on it according to Newton’s law

a= 35 =F/m, (3.4)

where the material derivative is used because the velocity itself is advected by the
velocity field, just as all other fluid quantities (i.e., this is an advection equation).

Most of the components of the momentum equation 3.1a represent different accel-
erations caused by forces affecting our water particle: gravity g, pressure difference
—%Vp, and viscosity vV - Vu. However, the viscosity term is often dropped in
computer graphics, because the numerical methods used to solve the equations
create more than enough viscosity in the scales we are interested in [6, p. 13]. If
extra viscosity is needed, real-time methods typically resort to simply scaling the
velocity on each time step by a time step dependent constant p < 1 (e.g., [42,P3]).

Substituting the remaining accelerations into Newton’s equation 3.4, we arrive at
a simplified version of the momentum equation, which should be compared to the
originally presented version (3.1a):

—+-Vp=g. (3.5)

The only difference besides the now dropped viscosity term is that Equation 3.1a
has the material derivative written out. This creates the additional advection term
u - Vu. Notice that the term contains u twice, since the velocity field is advected
by the velocity field itself (i.e., the generic quantity ¢ in the above discussion on
advection is replaced by u, because the velocity of the fluid moves with fluid itself).

3.1.3 The Incompressibility Equation

Equation 3.1b is called the incompressibility equation. In reality, fluids are not
incompressible, but close enough that we treat them as such in computer graphics
and games. The equation can be understood intuitively by noticing that if the
divergence of the velocity is zero, water is flowing out as fast as it is flowing in
from other directions.

If a vector field is incompressible, it is called divergence-free. One of the most
complicated steps of the traditional fluid solvers is to ensure that the velocity field

30 Water Simulation

stays divergence-free. The discretization typically leads to a sparse linear system
that needs to be solved. However, as we shall see in the next section, the heightfield
methods are able to skip this step. Since this thesis almost exclusively deals with
heightfield methods, the incompressibility equation is not discussed further. For
a more detailed derivation of the equation and its relation to pressure, see [6, pp.
10-16].

3.2 Numerical simulation

To simulate water using a computer, numerical simulation methods are applied.
The topic is vast, but we will go through some of the basics here.

3.2.1 Discretization

The equations need to be discretized in both time and space. To solve the value
of ¢(t) in a differential equation of the form dq/dt = f(q), the equation obviously
needs to be integrated over time. In most numerical methods, this is approximated
by finding the value of ¢(t) at a finite number of time instants ¢',¢?, ..., ¢", with
At between each instant, denoted by the superscripts. There exist a plethora of
more and less accurate methods for achieving this, but for the most of this thesis,
we use the forward Euler method, which simply evaluates the next value as

¢ =q + Atf(q). (3.6)

This is only accurate if f(q) stays constant for the duration of the time step.
Many more sophisticated time integration methods exist, such as the Runge-Kutta
family [9]. However, these are typically much more costly to evaluate than forward
Euler, and games often do not benefit from the additional accuracy, since they do
not typically aim for a realistic simulation. It is possible, though, for a more
sophisticated integration method to permit using a longer time step, which might
more than make up for the slower evaluation.

To solve a differential equation of the form dq/0t = f(q) + g(q), an approximate
solution is often found using splitting: ¢' is first updated with the effect of f(q)
to get an intermediary value ¢'*, and then g(¢'") is used to calculate the effect of
g to finally obtain ¢**! [6, pp. 17-20].

3.2 Numerical simulation 31

60—
090000009

60—
0900060009

60—

teteses

leleteded

164

Figure 3.2: A staggered 2D grid similar to what was used in our water simula-
tion implementations in [P2,P4]. Some quantities are stored at the centers of
the square cells marked by the circles (typically pressure in traditional meth-
ods and water depth in heightfield methods), while others are stored in the cell
faces marked by the rhombi (typically one component of velocity per face).

4
4

The spatial discretization is typically done using a grid in the Eulerian methods
and by using some finite number of particles in the Lagrangian methods. The
grids used in real-time applications are almost always regular but come in many
variations.

When a quantity ¢ is stored in a grid, the values are defined only in grid points
q;- The necessary differential operators also need to be replaced by their discrete
versions. As an example in 1D, the gradient of ¢ at grid point 7 can be estimated
by the central difference (gi+1 — qi—1)/(2Ax), where Az is the grid spacing.

Notice that the central difference gradient operator ignores the value of ¢;, which
causes problematic behavior in water simulation. As an example, take a pressure
field such as p; = 1 + (—1)%: there are obvious pressure differences that should
cause forces toward the zero-valued cells, but the previous operator estimates the
gradient to be zero everywhere, and no forces are created. In practice, this would
mean that pressure differences between neighbors quickly grow very large and the
whole system will start oscillating. On the other hand, using the left or right
difference is obviously biased.

A common solution is to use a staggered grid (see Figure 3.2), where different
variables are stored in different locations [22]. This brings some numerical advan-
tages. For example, if water pressure is stored at the center of each cell and a
single component of the velocity at each face (i.e., u is stored halfway between two
pressure values that are adjacent in the z-axis), the Vp that is needed in velocity
updates can be evaluated using the values of p in the surrounding two cell centers:

32 Water Simulation

Vpip1 = (pi+1—pi)/Az (and similarly for each direction in a 2D or 3D situation).
This avoids the problems described in the previous paragraph. Because the gradi-
ent is always calculated between two adjacent values, any difference between the
values is guaranteed to affect the gradient. The downside is that interpolation is
needed to evaluate velocity at grid points.

3.2.2 Stability

Numerical integration methods provide only approximations of the true solutions
for the corresponding PDEs. It is usually the case that when At — 0, the numerical
solution converges to the actual solution, but as we use larger and larger timesteps,
many methods become unstable, i.e., start to exponentially deviate from the true
solution. Being true to reality is not a requirement in games as such, since we
are not really interested in the actual solution, because any believable result will
suffice. However, unstable simulations often gather huge amounts of energy and
blow up, which is naturally critically important to be avoided if gameplay is to
depend on the simulation.

An important feature of the simplistic forward Euler method used is that it is an
explicit method, meaning that ¢*T! is only a function of the state at the previous
time instant, ¢°. In contrast, implicit methods need to solve an equation that
includes the future state. They are usually more stable, but also more expensive
to calculate.

The most common tool for analyzing the stability of an explicit numerical fluid
solver is the CFL condition (after Courant, Friedrichs, and Lewy) [12]. The idea
is that the solution of a partial differential equation at (x,t) depends on the initial
conditions inside some part of the whole domain, the so-called domain of depen-
dence. This domain of dependence typically gets larger as t grows. Many grid-
based explicit numerical methods are based on finite differences, where information
is only transmitted between neighboring cells on each time step. If information
in the actual solution moves faster than this, it is often not theoretically possible
for the whole domain of dependence to affect the numerical solution. The CFL
condition quantifies this at the limit of Az — 0 and At — 0. [6, pp. 33-35]

Using the same idea, a necessary (but not sufficient) stability condition for the
convergence of most explicit time integration methods based on finite differences
can be formed:

3.2 Numerical simulation 33

Ax

—_— >

At
where |u]| is the fluid speed, which equals the speed of information in the true
solution [6, p. 34].

ul, (3.7)

As we can see, the stability condition sets an upper bound for the time step,
given Az and |u|. Smaller time steps allow for larger velocities without becoming
unstable, but using too small a time step wastes computational resources. On the
other hand, the smaller the simulation scale, the shorter time steps are needed.

Using the forward time discretization and the central difference in space together
is often called the FTCS scheme (for Forward-Time, Central-Space). It works
sufficiently well for solving many problems, such as the heat equation. Unfortu-
nately, it turns out that for some problems, including the advection equation and
the wave equation, the FTCS scheme requires an even stricter limit on the time
step to be stable. As the grid spacing Az — 0, the time step needs to be reduced
O(Ax?) [35]. Since this would usually require too small time steps to be practical,
it is typical to include some artificial viscosity by multiplying the velocities after
each time step by some value p(At) < 1. This could easily, however, cause the
water to look too viscous. Another simple option is to give up the FTCS scheme
and use, e.g., the more stable first-order upwind scheme described in Section 4.3.

3.2.3 Numerical Simulation on the GPU

GPUs were developed for the massively parallel task of transforming the vertex
points of 3D models in space, and later for evaluating lighting models for individual
pixels. Current GPUs execute up to thousands of threads in parallel, enabling
several orders of magnitude more floating point operations per second compared
to CPUs. The downside is that many of the threads are limited to run a single
program on multiple data. Additionally, execution control and synchronization
is somewhat limited, and more importantly, quickly eradicate the advantages of
parallelism. For example, it is typical that both branches of an if clause get
evaluated for all threads running the same program. These features necessitate a
completely different way of thinking compared to traditional algorithmics.

The programmability of the modern GPUs has enabled their use in various tasks
other than the original purpose of rendering computer graphics. This field is
called general-purpose computing on graphics processing units, or GPGPU for
short. GPUs are useful when solving any problem that has a very large num-
ber of operations that can be executed independently of each other. The various

34 Water Simulation

GPU programming interfaces allow short programs, so-called kernels, to be run in
parallel for a specified size of 2- or 3-dimensional arrays.

The grid-based numerical water simulation is almost a perfect match for the GPU
hardware. For example, the author’s first naive implementation of the pipe method
was sped up some 20 times even on an old GPU with 96 parallel threads, when
compared to a single-core CPU implementation.

Unfortunately, there are still several barriers to GPU programming. Development
tools are not as advanced as the tools for CPU programming, and efficient use
of the GPU requires using low-level programming languages and understanding
complex concepts, which necessarily has an adverse effect on productivity [41].
Hardware differences are not always transparently handled, and the execution
model makes implementing many non-trivial algorithms and data structures much
more complicated. Additionally, in modern games the GPU is often overworked,
while game developers struggle to employ all of the CPU cores. Despite these
factors, in such a performance-critical field as water simulation, the performance
gains are too large to be ignored.

One way to implement the basic Eulerian water simulation approach on the GPU
is to use two grid-sized arrays per quantity of interest. One copy is used as a read-
only input to the computation, while the results are written to the other copy.
Each thread processes a single simulation cell, and is able to read the previous
state freely, but only allowed to write to the single position corresponding to its
cell. After each step, the role of the buffers is reversed. This common technique
is called double buffering. It ensures that the order of processing does not affect
the results, enabling a fully parallel implementation with the only synchronization
happening between algorithm phases. GPUs also have a so-called tezture memory,
which is optimized to work quickly when used in this way instead of enabling
random write access.

Naturally, this approach limits what the programs can do, since they cannot
write to random memory positions. However, surprisingly many problems can
be mapped to this approach using some creativity. All methods implemented in
this thesis use this double-buffering model of execution, including the relatively
complicated coupling methods of [P3,P4]. This has benefited their execution speed.

Implementing the pipe method on the GPU is further discussed in Section 4.6.

3.3 Fluid Solvers 35

V(X)A

v(x)

A B

‘ -v(x)At \/

Figure 3.3: A 1D example of advecting the velocity field using the semi-
Lagrangian method. For each grid point x, the new velocity v(z,t + At) =
v(a,t), where 2/ = = — v(x)At. 2’ is an estimate of the position from which
a particle would end up at x during a single time step.

3.3 Fluid Solvers

This section introduces some methods that have been used to model water behav-
ior, focusing in methods that are applicable in real-time.

3.3.1 The Eulerian Approach

The traditional Eulerian fluid solvers are based directly on solving the NSE in three
dimensions, typically using a staggered grid. The NSE are split into three parts:
advection (Dg/Dt = 0), forces (Ou/0t = g), and incompressibility, which finds
a pressure distribution so that the incompressibility equation is satisfied [6, pp.
19-20].

The advection step could be solved using the forward Euler method, but as already
mentioned, it is very unstable for this problem. The standard procedure instead is
the semi-Lagrangian method introduced to computer graphics in 1999 by Stam [63].
It is based on a backward trace of the quantity. We are trying to find ¢'+4¢ (x),
where x is some grid point. Let us consider the position x' = x — u’(x)At, which
is a linear estimate of the position from where a hypothetical particle would need
to begin at t to end up exactly at x at t + At. Notice that we only use the known

36 Water Simulation

value of u’ at the grid point x. Now we simply let ¢4t (x) := ¢!(x’). Since x is
typically not a grid point, the value needs to be interpolated from the surrounding
values (which turns out to be an essentially free operation when using GPU texture
memory). An example of advecting the velocity field itself in 1D can be found in
Figure 3.3.

The semi-Lagrangian method is unconditionally stable. In light of the CFL con-
dition, this is intuitive, because for large velocities, information might be fetched
from several grid cells away if needed. The downside is that the necessary interpo-
lation can be thought of as a smoothing filter, which means that some small details
are lost, creating a less lively look. The loss of energy is also visible in the sim-
plified example of Figure 3.3. This phenomenon is a prime example of numerical
methods causing unwanted dissipation. There are also more advanced methods,
such as the MacCormack method and its variants, to combat the deficiencies of
this simple approach [59].

The incompressibility, or pressure projection, step is typically the most complicated
and time-consuming step in these solvers. In it, a sparse linear system needs to
be solved. Luckily, this step is avoided by the heightfield methods that are the
focus of this thesis, and is thus out of scope in this short introduction. Instead,
the heightfield methods typically directly include a force caused by the pressure
gradient Vp. This force can be integrated together with gravity using forward
Fuler, as will be shown in Chapter 4.

Unfortunately, the 3-dimensional Eulerian fluid solvers are typically too slow for
real-time applications with a large grid such that we would need in a game [P1].
To model an area with a given spatial resolution, n cells are needed in each di-
mension, giving O(n?) cells in total. Despite this, impressive small-scale effects
can be achieved with these methods also in real-time, such as the Dragon demo of
NVIDIA’s Flameworks [47].

There are several approaches to make the Eulerian solvers faster. The grid need
not be fixed and equispatial. Some research has been done on moving grids [54],
making cells larger or smaller based on the situation. A promising example of the
latter method is the tall-cell method. In it, the water surface is modeled in full 3D,
but the volume underneath the surface is represented by a single tall cell per cell
column [10, 28].

For water and other fluids with a free surface, an additional step is needed in the
full 3D context to find the surface. This can also be somewhat time-consuming.
The standard approach keeps track of a level set [6, pp. 85-94], but since this is
another issue avoided by the heightfield methods, it is not discussed further here.

3.3 Fluid Solvers 37

3.3.2 SPH and Other Lagrangian Methods

Smoothed-particle hydrodynamics (SPH) is currently one of the most common of
the particle-based methods [26]. The basis is a Lagrangian simulation, where the
advection term is automatically handled by the movement of the particles. All
that is left is to integrate the various forces affecting the particles to update their
velocity, and then to update the position based on the velocity. The forces typically
consist of pressure, gravity, and possibly viscosity.

The problem is that to find out the necessary forces, we need to evaluate the
necessary fluid quantities and their derivatives, such as pressure gradient, at the
particle locations. SPH is a method used for interpolating these quantities as a
distance-weighted sum from the values stored in the surrounding particles. The
weighting function (kernel) resembles a gaussian, but is usually selected to have a
compact support to avoid having to iterate through all other particles.

Since a very large number of particles is needed to get a good result with the
method, it is necessary to use a spatial acceleration data structure to search for
the particles that reside inside the kernel’s support. Uniform grids are currently
among the most commonly used [26]. This approach makes the method practi-
cally run in linear time in the number of particles. However, O(n?) particles are
required to get a similar resolution as in a grid with n cells per dimension. Even
with acceleration structures, the neighborhood search can be time-consuming, and
balances the comparative advantage SPH gets over Eulerian methods from the
Lagrangian handling of the advection term.

The resulting surface is not trivial to construct and render. For real-time methods,
a screen-space approach is commonly used (e.g., [1]). To avoid single particles from
being distinguishable, various smoothing methods have been proposed [26].

There is a vast literature of variants and extensions of SPH that include, e.g., GPU
implementations, different methods for enforcing incompressibility and handling
boundaries, combining particles with varying sizes or time steps, and multiphase
fluids. However, most of the methods are not designed for a real-time context. For
a recent survey on SPH in computer graphics, see [26].

The position-based method is an interesting recent development [38]. It is a La-
grangian method, but instead of working on particle velocities, the particle posi-
tions are directly manipulated. Much longer time steps can be achieved using this
method instead of SPH [39]. As this method matures, it will probably become
very competitive when simulating relatively small amounts of water.

38 Water Simulation

SPH has also been applied to simulating only the water surface, i.e., a height-
field [62]. This method is naturally much faster than a full 3D solution, since
much fewer particles are needed for large masses of water. It also retains the good
rigid body coupling properties of SPH (see Chapter 5). However, it is not cur-
rently competitive with the performance of grid-based heightfield methods due to
very short time steps, as will be seen in Chapter 6. If a position-based version of
this approach could be devised, the result might be very interesting for large-scale
simulations.

3.3.3 Other Real-Time Fluid Simulation Approaches

The Eulerian and Lagrangian viewpoints can also be combined. The typical ap-
proach is to simulate the bulk of the water with an Eulerian solver and add visual
small-scale details using a particle system. This was already done by O’Brien
and Hodgins [49], who added a simple particle system on top of their heightfield
simulation.

Another family of methods that combines the two viewpoints is FLIP (fluid implicit
particle) [5] and its variants, such as PIC/FLIP [84]. These methods can be seen
as particle-based methods that utilize a grid for some phases of the solving. These
methods are very popular in the visual effects industry, but not as commonly used
in the real-time context.

Yuksel et al. [82] introduced wave particles, which are also a Eulerian/Lagrangian
hybrid method. The particles represent disturbances in the surface, and the height-
field is interpolated from nearby particles. One of the strengths of this method is
the interaction with floating objects. New particles are created by collisions, which
enables the modeling of ship wakes and waves reflecting from various objects in the
water. However, this method still assumes an open-water scene where the surface
is at a fixed level, which limits its use in richer scenes such as rivers or dam breaks.

A large literature has also tackled the problem of representing (deep) ocean waves.
Instead of the physically-based approach, the methods used are often based on
empirical data of ocean behavior. These methods focus on modeling the periodic
behavior of open-sea scenes. Parametric methods model the water surface as a
sum of evolving periodic functions, while spectral methods model the ocean in the
frequency domain, using an inverse fast Fourier transform (FFT) to construct the
surface [69]. These methods can provide visually excellent results compared to the
computational resources invested, but typically cannot model interaction with a
terrain. They have already been used in several commercial games for open sea
scenes. For a review on these methods among others, see [14].

3.3 Fluid Solvers 39

It is also possible to use the parametric or spectral methods to create small-scale
visual details on top of an Eulerian simulation [10]. An even cheaper method
for creating similar details is to use normal mapping with precalculated textures
that are advected along the flow [75]. The latter is the approach adopted in the
visualizations of the results of this thesis.

Another approach is the Lattice-Boltzmann method (LBM), which is based on
statistical physics. The method is applicable both in 3D and 2D, and is computa-
tionally relatively efficient, simple, and able to handle boundary conditions well.
Its shortcomings include the strict limit on the time step to make the method
stable, and large memory consumption [50]. The method is commonly used in
computational fluid dynamics (see, e.g., [74,83] for references), but also occasion-
ally in computer graphics [73]. Recently, 2D versions of the method have also
been used for shallow water simulations on arbitrary terrain [51]. Ojeda’s thesis
provides a more detailed treatment of the method with a real-time focus similar
to ours [50].

40

Water Simulation

Chapter 4

Heightfield water simulation

4.1 Heightfields

This chapter discusses heightfields, which are a common way of modeling large-
scale water areas in a 3D world. Throughout the chapter, we assume a right-handed
coordinate system with the horizontal axes z and y and the vertical axis z pointing
upwards.

For large-scale water simulations in real-time, full 3D simulations are often too
slow. A common solution is to assume that the water forms a heightfield, i.e.,
the surface z-coordinate is a function h(x,y) with water below and air above the
surface. This allows the simulation to take place on a 2D grid. If n cells are required
per dimension, the time complexity is typically lowered from O(n?) to O(n?). The
regular 2D grid can be imagined as a group of adjacent water columns, where the
water is defined by an n x m 2D array of depth values. An n x m heightfield is
often visualized by creating (n — 1) x (m — 1) squares that are rendered as two
triangles each. Figure 4.1 depicts a 3 x 3 heightfield drawn as 8 triangles.

The downside of this approach is that many interesting phenomena are lost. There
can be no strictly vertical waterfalls, splashes, air bubbles, or breaking waves.
However, some of these effects only occur in limited areas in the simulation and
can be added back using, e.g., a local small-scale particle simulation or cheap
procedural methods such as animated textures, while the bulk of the water is
simulated using 2D methods [10].

42 Heightfield water simulation

L

X

cell

Figure 4.1: A 3 x 3 heightfield with one of the nine simulation cells drawn.
The centers of the cells are displaced in the vertical direction by the values of
the heightfield h, and connected to form triangles for visualization.

Some games only need oceans or other static water areas. In these cases, the
problem is to create believable waves, especially in interaction with floating objects
such as ships. It is usually enough to use heightfield-based deep water models,
which assume no terrain exists below the water. Many actual water simulation
implementations in current games are based on such models (e.g., [20,60]). The
FFT [69] and wave particle [82] methods introduced in the previous chapter are
examples of this approach.

On the other hand, in many 3D computer games, terrain is also represented as
a heightfield. It is therefore interesting to solve a different problem, where the
water flows on top of the terrain and interacts with it. Here we focus on this case.
We assume that the water flows on top of an arbitrary heightfield terrain b(z,y),
allowing the water to freely spread to dry areas. In these cases, the water can also
be represented by the depth d(x,y) > 0, with surface h = b+ d. Most simulation
methods for this setup use the depth instead of the surface as the main simulation
variable.

4.2 Shallow Water Equations

A very common approximation used to create a heightfield simulation on top of
a heightfield terrain is to ignore the vertical velocity of the water, resulting in

4.2 Shallow Water Equations 43

shallow water equations (SWE). The horizontal velocities u and v (corresponding
to the z and y directions) represent the averages in the whole column of water.

Another important assumption of the SWE is that the vertical movement of the
water is dominated by gravity and pressure, which is an agreeable approximation
if the water is only moving very slowly. Taking the vertical component of the
momentum equation 3.1a, dropping all other terms except the pressure and gravity,
and integrating from some coordinate z to the surface h results in the hydrostatic
equation [6, p. 171]

p(=) = pg(h — 2). (4.1)

Notice that in this model, there is no more any need (or even possibility) to
store or solve pressure, because it is fully determined by the depth. With these
assumptions, the shallow water equations can be derived from the NSE:

od
— +u-Vd=—d(V-u), (4.2)
ot

ou

E +u- Vu= —QVh. (4.3)

The proof is left out for brevity, but can be found, e.g., in [6, pp. 170-173]. A
conservation law form of Equation 4.2 can also be obtained by applying simple
vector arithmetic (notice that d is a function of position and time):

od
— = —V - (du). 4.4
0V (aw) (1.4
This form is more useful for numerical simulation, because it is easier to discretize
in such a way that keeps the water volume constant [10].

Equation 4.2 describes the rate of change of the fluid depth. As usual, the depth
is advected by the term u- Vd. On the right side, the negative divergence of
the velocity represents the volume density of the inwards flux to the point, which
is multiplied by the depth, which represents the vertical direction that has been
integrated out.

Equation 4.3 describes how the velocity changes, and also has two components:
the velocity self-advection term on the left, and the term describing acceleration

44 Heightfield water simulation

caused by the pressure difference on the right. Because the hydrostatic pressure
profile was assumed, this acceleration is simply the acceleration by gravity times
the surface gradient.

According to linear wave theory, the propagation speed of gravity waves depends
both on the water depth and wavelength. Long waves on deep water propagate
faster than short waves on shallow water. This dependency on wavelength is called
dispersion, which is an essential feature contributing to the look of an ocean.

Dispersion is not modeled correctly by the shallow water equations, which therefore
are often claimed not to be well suited for modeling deep oceans. Bridson writes
that even if the physics is not consciously understood by the viewer, the water will
look shallow. However, it turns out that when the water actually is shallow, the
dependency on wavelength becomes insignificant, and this simplification is less of
a problem. [6, pp. 186-187]

4.3 Discretizing the SWE

The SWE can be solved using numerous different approaches. Here we briefly
describe an explicit Eulerian approach using a staggered grid as described in Sec-
tion 3.2. This presentation roughly follows Chentanez et al. [10], and the approach
was also adopted for [P2].

First, Equation 4.4 is advanced for a step (depth integration), and then equa-
tion 4.3 is split into two steps: velocity advection and velocity integration. These
steps are repeated in this order after each other. Each of these phases can be imple-
mented as a single GPU kernel. The velocity equation is updated component-wise,
with the updates of v independent of v, and vice versa.

The height equation 4.4 can be discretized in space to get

Odyy _ (g — (dw)yy i+ ()0 — (dv);; 4.5
a Az ’ -

where the subscripts denote the grid location where a variable is evaluated, d is
the depth evaluated at the upwind direction, i.e., JH%J =d;; if Uil > 0 and
d;y1,; otherwise, and similarly for the y direction. This upwind discretization is
more stable than a symmetrical scheme [10]. The usual forward Euler integration

can now be used to advance the equation forward in time.

4.4 The Wave Equation 45

To intuitively understand equation 4.5 and the upwind scheme, consider that the
flow between two adjacent cells is coming from the cell in the upwind direction.
The volume of water incoming per second is equal to Azdu. The rate of change
of depth in a cell is then equal to the sum of these volumes through all four
cell faces divided by the cell area Axz?, which is exactly equation 4.5. Other
upsides of this formulation include that it is guaranteed to conserve volume unlike
some other schemes. It is also easy to see that the scheme automatically keeps
the depth non-negative as long as max(|ul, |v|) < Az/At. This condition should
already be familiar to the reader, because it is a version of the stability condition
in Equation 3.7 implied by the CFL condition.

The velocity advection is typically solved using the stable semi-Lagrangian method
of Stam [63]. The method is practically identical to the 3D version, as described in
Section 3.3.1. More sophisticated methods also exist, for example the MacCormack
method and its modifications [10,59], but the basic version is relatively simple and
fast. Its downside is the excessive smoothing, resulting in a loss of detail.

The velocity update is straightforwardly discretized as

g
uH%’j += —E(hiJrLj — h@j)At, (46)

and correspondingly for v.

The border conditions at the edges of the simulation area also need to be taken
into account. Reflecting borders are easy to implement by simply setting the
velocity to zero at the border. This can also be used to reflect from obstacles that
are above the water surface. As in all numerical solvers, a completely absorbing
border is very difficult to achieve. Chentanez et al. use the perfectly matched layers
method, which is based on damping the waves approaching the borders [10]. Such
an approach is especially important when modeling an open water scene.

On the other hand, in the author’s experience with simulations on a complex
terrain, it is usually sufficient to simply set the water depth at the border to zero
in order to absorb most of the water. This causes some reflections, but it is hardly
noticeable in a gaming environment.

4.4 The Wave Equation

A further simplification of the SWE is to drop the advection terms completely, as
was done already by Kass and Miller [30]. Equations 4.2 and 4.3 become

46 Heightfield water simulation

od

5= —d(V - u), (4.7)
?3_‘; = —gVh. (4.8)

Deriving equation 4.7 assumes that the depth varies only slowly [30]. This is
reasonable in some scenarios. There seems to be no justification for dropping the
velocity advection term to reach Eq. 4.8, except that the result has been found
to work well in practice. As shown in, e.g., [30], these linearized shallow water
equations are actually equivalent to just the 2D wave equation

2
h

where V - V is the 2D Laplacian operator.

Bridson points out that the wave equation has solutions that move with the speed
Vv/gd. Because waves thus move faster in deeper water, and water is typically
deeper at the top of the wave than at the front, the top tends to catch the front.
This eventually causes the wave to break. [6, p. 176]

Even though the catching-up behavior is included in the solver, the breaking of
course cannot be modeled by the heightfield approach. Breaking waves were added
to a shallow water simulation using a particle system in [10].

If D is the maximum depth value in our simulation, the previous wave speed can be
plugged into the stability condition of Equation 3.7 to get a more precise stability
condition for the time step of this method [6, p. 177]:

Ax

9D’
It implies that the stable time step actually depends on the maximum water depth
in the simulation.

At <

(4.10)

We would like to note that the conservation law form of the depth equation (4.4)
is already as simple to discretize as the linearized version of Equation 4.7, as
explained in section 4.3. It is thus also possible to use an alternative method
where only the velocity self-advection term is dropped, which should work better
than the fully linearized version in situations where the depth changes rapidly.

4.4 The Wave Equation 47

Figure 4.2: An example of the difference between linearized (left) and full SWE
(right). The whirlpool is not created in the linearized version. From [P2].

Dropping the velocity advection step removes some interesting phenomena, such
as whirlpools. An example of such a difference can be seen in Figure 4.2.

Several versions of the linearized SWE method were implemented by the author.
Most of them used the conservation law form of the depth equation (4.4), and only
needed to drop the velocity advection term. These implementations were used for
the water simulation in [P2] and in experiments related to [P3].

The main research question of [P2] was whether the difference affects the user
experience. No statistically significant difference was found in any of the categories
measured (valence, flow, presence, realism) [P2].

The findings of [P2] may be due to the difference being altogether indiscernible,
the users being indifferent to the changes, or the statistical power of our test being
too small to notice any effect. Our methods cannot differentiate between the two
first cases, but if either of them is true, it is reasonable to say that the advection
step had no significant effect on the quality of user experience. However, there
is more to be said about the third case than what fit in the short paper, so let
us supplement the publication here. First of all, box plots of the average effects
of advection to different impacts per user are presented in Figures 4.3 and 4.4
for the games and the videos, respectively. The data is approximately normally
distributed, though there are a few more outliers than expected. Removing them
did not affect the conclusions.

Additionally, we ran some simple simulations to further estimate the statistical
power of our tests. Our target was to find the minimum effect size needed for
the rate of false negatives to be under 0.2 for each impact, which gives a 1:4 ratio
between type I (false positive) and type II (false negative) errors. For this purpose,
we repeatedly drew simulated data with our sample size from a multivariate normal
distribution with the parameters estimated from our data, but artificially inserting

48 Heightfield water simulation

T
—
15F | B
I
I
1 I
! +
0.5 + | B
I I ‘
T
-0.5 | —= — 1 .
I
+
1 L * i
+
_15k]
_2 - + .|
. . . .
Valence Flow Presence Realism

Figure 4.3: Distributions of advection effect, averaged over 3 levels, on mea-
sured impacts per subject in the games of [P2]. Advection effect is the differ-
ence of the measurement with and without advection. The scale is units of the
impact scale (1 to 9 for valence, 1 to 7 in the others). The whiskers are drawn
at the last non-outlier data point. Outliers are more than 1.5 box widths away
from the box (25th to 75th percentile), which translates to approximately 0.7%
of normally distributed data points.

0.8f |
|
0.6 |
|
|

0.4

0.2f i
1 T |

L L L L
Valence Flow Presence Realism

Figure 4.4: The distributions of advection effect, averaged over the six videos
used in [P2] (see Fig. 4.3).

4.5 The Pipe Method 49

AX

Figure 4.5: The variables of the pipe method in a Az-spaced grid of 3 x 3 sim-
ulation cells. The depths are stored at cell centers and the flows at the faces
between them. In our model, each (non-border) cell is connected to four bidi-
rectional pipes.

effects of various sizes. The same ANOVA tests as in the study were then conducted
for the simulated data and the rate of false negatives counted (10 000 repetitions
per run). The simulations were repeated until the search resulted in the desired
false negative ratio.

The least powerful of the tests was the one for valence in the games, where an
effect of about 0.3 points on the 9-step SAM scale was required before the desired
false negative rate was reached. The other required effect sizes were estimated
to be between 0.1 and 0.2 points of the respective scales of each impact. This is
admittedly not a full-blown, careful power analysis, and it is dangerous to read
too much into such numbers, because no objective meaning can be assigned to a
unit of valence or other psychological impacts based on self-reported data. Despite
that, it should at least give some approximate information on the size of the effect
that could have gone unnoticed in the study.

4.5 The Pipe Method

A different approach that, however, leads to a method similar to the wave equation,
is to think of the heightfield water as a group of adjacent water columns, and start
from the hydrostatic equation (4.1). In the original formulation due to O’Brien
and Hodgins [49], the columns were thought to be connected by virtual pipes,

50 Heightfield water simulation

which leads to the name pipe method. There are several variations of the method,
and we again briefly describe one of the approaches.

In the model, each pair of neighbors is connected by a pipe. The original formula-
tion by O’Brien and Hodgins also had two unidirectional pipes between each pair
of neighbors, but it is enough to use a single bidirectional pipe instead. The von
Neumann neighborhood (the four neighbors sharing a common edge with the cell)
is usually enough, but some authors also used the Moore neighborhood (which also
includes the four cornering cells).

The structure is a staggered grid, but instead of storing velocity in between the
cells, as in previously introduced methods, the flow @ (cubic meters of water per
second) is stored. This turns out to make the implementation of our coupling
algorithm simpler [P4]. Each pipe is thought to span the interval of the two cell
centers, thus having a length of Ax.

Fach flow @ is updated by the following formula, derived by O’Brien and Hodgins
using the hydrostatic pressure and Newton’s law [49]:

Q+= AA%AhAt, (4.11)

where A is the cross-section of the pipe, and Ah is the surface height difference
between the two columns connected by the pipe, e.g., Ahx+%,y =hgq1y — hay.

Because the depth must not become negative, the pipe method now employs a
limiting step, where the total outflow of water during a time step is calculated. If
this would exceed the depth in the cell, all outflows are scaled before the depth
update so that the remaining depth will become exactly zero.

Additionally, the flows Q) are optionally scaled by some time-step dependent mul-
tiplier u(At) < 1 to improve stability. This issue was already discussed in more
depth in Section 3.2.2.

The water depth is then updated by summing the total flow in all four pipes
connected to each cell, dividing by the horizontal area of the cell, (Az)2, to convert
volume change into depth change, and applying Euler integration:

d+= —At(%—xQ)Q, (4.12)

where the sum is over all four pipes connected to the cell, such that the outgoing
flows have a positive sign.

4.5 The Pipe Method 51

Figure 4.6: An example scene simulated using the pipe method on a 1024 x 1024
grid. From [P1].

Many implementations do not mention whether they use a constant A or let it vary
based on the common interface of the two water columns. We calculate the cross-
section as A = dAx, where d is the upwind depth as in Equation 4.5. We have also
found out that artificially varying A leads to an approximate method for modeling
viscosity (larger values make the water more lively). Exposing this parameter to
creative game developers could provide opportunities for some fascinating non-
realistic gameplay.

Another useful addition here is to limit the spreading of water uphill by taking
the geometry of the situation into account. The basic idea is to only allow flow
when the water surface is above the terrain at the dry target cell. There is really
no one correct way to do this. The terrain can be considered to be formed from
column-like steps, or the average of the two surrounding terrain height and surface
values can be used, or the variables can be evaluated at upwind/downwind cells.
This blocking can also be done for the velocity step, for the depth step, or both.
Combined with the other parameters of the method the user has a lot of freedom
to tweak how spreading wavefronts will look like. One example of taking this into
account in the SWE context can be found from [10]. Also, our blocking methods
in [P3,P4] are based on a generalization of this idea.

52 Heightfield water simulation

It is often claimed that the pipe method is equal to solving the wave equation, and
thus only has a vertical velocity and is only suited for modeling local oscillations
of the surface and not the global flow of a river or advecting floating objects.
Because of this, some authors recommend to use SWE instead. See e.g., [10,34,62].
However, the pipe method stores the flow, which serves a very similar purpose as
the velocity in SWE, to store the momentum gathered in previous simulation steps
(similarly, some of the wave equation solvers use the two last heights instead, but
the flow can be calculated from those). We have not noticed a significant visual
difference between the pipe method and the linearized SWE, which was in turn
found to have no statistically significant difference for various measures of user
experience, when compared to the full SWE in [P2].

Indeed, it is trivial to calculate the velocity field from the flow. Since () represents
the volume of water that passes through a pipe per second, and the pipe cross-
section is dAz, the velocity v = Q/(dAx) (u is used for velocity here, though
the pipe might as well be aligned to the y-axis). If the velocity at a grid point
is required, it can be interpolated from the velocities at the pipe locations (which
is a very cheap operation for GPU texture memory). This calculation was used
by [42] for erosion simulation. We have also often advected floating bodies using
variants of the pipe method with a quality that should be quite satisfying for most
games. See, e.g., the floating objects in [P4].

The pipe method has been extended and applied in various ways. Mould and Yang
generalized the model to multiple layers to combat vertical isotropy [43]. A single
layer is usually sufficient, but this idea was used in [P3,P4], which used a two-layer
pipe method to let water flow both over and under a body in the water. Holmberg
and Wiinsche also use the column-based approach and aim to model turbulent
water with an added particle system [24]. The advent of programmable GPUs
made the pipe method somewhat popular, because very large areas could now
be simulated in real time using a GPU implementation [40,42,P1]. The method
was also extended for modeling hydraulic terrain erosion [42,64]. A variant of
the model was also used by Colossal Order for their game Cities: Skylines. An
example scene simulated on a heightfield terrain using the pipe method can be
seen in Figure 4.6.

4.6 Pipe Method on the GPU

As an example of the double buffering based GPU implementation described in
Section 3.2.3, let us consider our implementation of the pipe method.

4.6 Pipe Method on the GPU 53

Let the grid be nxm. We allocate two n xm x 4 arrays of 32-bit floating point type
in the texture memory. The four values per cell are terrain height, water depth, and
a flow value for both of the two dimensions. Depending on the hardware, these can
be a single 4-channel texture or several textures with fewer channels, whichever is
more efficient. The indexing is staggered so that position (4, j) contains the terrain
height and depth of the cell (7,7) and the flows in the pipes leading to (i 4 1, j)
and (7,7 + 1). Thus accessing the four pipes connected to a cell requires access to
information stored in the cell itself and its top and left neighbors. We use 32-bit
floating point numbers, because in our experience, 16-bit (half precision) values
are not accurate enough, and using double precision is unnecessary.

Now the following processing kernels are executed repeatedly:

1. Flow update: read terrain, depth, and old flow. Calculate the new flow
according to Eq. 4.11 and apply the limiting described below the equation.

2. Depth update: read the new flow and old depth, write the new depth ac-
cording to Eq. 4.12, adding any water from sources (e.g., rain).

In each cell, the limiting step in the flow update kernel requires all four updated
flows from the surrounding cells. To avoid adding another kernel, we need to recal-
culate the flow values in the up” and "left” pipes of each cell even though the new
flows are only written for the "down” and ”right” pipes. This does not guarantee
that velocities are only limited when necessary, but the method is conservative,
i.e., it errs on the side of limiting the velocities too much in order to never produce
a negative depth.

After each kernel, the role of the buffers is changed. Since the update rules only
affect a single channel, if a single 4-channel texture is used, the kernels need to
copy the previous values of the channels that are not updated, after which the
roles of the buffers are switched. If single-channeled textures are used, it is enough
to only switch the roles of the two copies of the updated buffer. This procedure
is completely parallel with no need for synchronization inside a kernel. Each
cycle takes the simulation forward one time step. The method naturally produces
two most recent depth and velocity values to the GPU memory, from which the
visualization can interpolate to produce a smooth animation of, e.g., 60 Hz.

Since each kernel consists of only few calculations, our implementations of these
methods have always been limited by the memory bandwidth instead of process-
ing. To get a rough idea, let us briefly analyze the worst-case texture reads per
cell, assuming that each value is stored in a four-channel 32-bit texture. In real
life, these calculations are naturally complicated by cache arrangements, memory

54 Heightfield water simulation

transaction granularity, and many other implementation details. For this calcu-
lation we assume the 128 bit memory transaction granularity that we had in our
test hardware. This coincides with the cell data structure size.

The flow shader updates two pipes leading from (i,7) to (i + 1,7) and (i,5 + 1),
but due to the limitation step described above, it needs information on the whole
neighborhood of five cells (640 bits, or five memory reads). The depth update
writes the new depth at (7, 7), and thus needs information on the cell itself and the
flow in the four pipes connected to it. Two of those pipes are stored in the same
128 bits as the depth information itself, so it only needs to read the data of cells
(i—1,7) and i,7 — 1) (384 bits). Since the time step is typically 25 ms, using, for
example, a 1024 x 1024 grid of data, this translates to 40 Gib/s of memory traffic.

As the information is used in 3-5 cells per pass in a quite regular and localized
pattern, in practice some of the bandwidth could be saved by caching. Actual
measurements show the global memory bandwidth usage of our method to be
about 28 Gib/s for this grid size with the NVIDIA Quadro 1000M GPU. For
comparison, the specifications of a high-end desktop GPU, NVIDIA GTX Titan,
list its memory bandwidth at 2149 Gib/s [48].

The coupling methods described in [P3,P4] have also been designed to follow this
same execution model, with additional kernels for rigid body coupling added in
the mix. The coupling methods were designed to minimize the number of kernels
and the amount of data that needs to be read for each update, and the phases were
planned to avoid random write access. Precise timings and some other details of
our implementations are presented in the publications [P1-P4].

4.7 Visualizing Heightfield Water

Finally, for completeness’ sake, we shortly describe the main features of the water
visualization that we used, though it it is not the focus of this thesis. The necessary
computer graphics background has been left out of the thesis, but any standard
textbook on the topic should suffice to understand the following.

In our implementation, the terrain and possible rigid bodies are drawn first. The
water surface heightfield h(zx,y) is then drawn by creating a single triangle mesh as
in Figure 4.1, i.e., an n X m simulation grid translates to 2(n —1)(m — 1) triangles.
Since all calculations are done on the GPU, the heightfield data is readily available
with. We also want to decouple the simulation step from the rendering frequency,
so the drawn heightfield is interpolated from the last two simulation results to

4.7 Visualizing Heightfield Water 55

create a smooth 60 Hz animation even though the simulation frequency is typically
much lower.

Triangle normals are needed for lighting. The normals are calculated per pixel by
evaluating h(x,y) at the four points (z + Az, y + Ay) using the hardware interpo-
lation available for texture memory. The normal is then perturbed according to
two normal map textures with alternating weights. The textures are stretched by
the flow velocity and reset when their weight is zero, exactly as described in [75].

The lighting is based on dividing the light to reflected and refracted portions
according to Schlick’s approximation [58]. The refracted portion is not actually
refracted, but instead the color of the background (terrain or a rigid body pre-
viously rendered) is mixed with a blue-grayish water color. The mixing weights
and transparency are based on the distance to the background, which is calculated
from the depth buffer. The reflected portion uses the standard cube map reflection
from a skybox.

The two most important further enhancement would probably be adding foam
textures and using tessellation hardware to control the number of triangles.

For images and videos of the method in action, see the included publications and
the videos associated with them (e.g., http://downloads.hindawi.com/journals/
ijcgt/2014/580154.f1.avi, which is the supplementary material for [P4]).

56

Heightfield water simulation

Chapter 5

Rigid-Body Coupling

5.1 Background

As was discussed in Chapter 2, coupling the water simulation with the rigid body
simulation is very important both from the believability and the gameplay points of
view. To recap, the interaction between water and bodies is two-way: water causes
drag and buoyancy forces on the bodies (water-to-body coupling), and on the other
hand, rigid bodies provide dynamic border conditions to the water (body-to-water
coupling).

Realistic coupling is a challenging problem that is very important for achieving
the quality required in, e.g., movie special effects. It has therefore been studied
by many researchers interested in the full 3D methods, especially since the early
2000s. Both Lagrangian and Eulerian methods have their own problems, but very
convincing results have been achieved by offline methods using either approach.
During the previous few years, convincing new real-time Lagrangian methods have
also been demonstrated [39]. However, this chapter concentrates on the Eulerian,
and especially heightfield, approaches that are more relevant to the thesis.

Some sophisticated coupling methods take both coupling directions into account
simultaneously (strong coupling, e.g., [56]). It is, however, more feasible in real-
time methods to employ so-called weak coupling, where the water and rigid body
simulations are stepped forward in time alternatingly.

58 Rigid-Body Coupling

5.2 Object-to-Water Coupling

In fluid simulation, we are typically concerned with completely solid obstacles:
water and the object are not allowed to coexist in the same place. This means
that at no boundary point is water allowed to flow inside the body. In the Eulerian
context, the early approach of Foster and Metaxas was to voxelize the obstacles
into the simulation grid, so each cell was marked either as water, solid, or free. The
results were used as boundary conditions for the fluid simulation [17]. However,
for moving obstacles the velocity of the obstacle should be taken into account.
This is often formulated as the no-stick condition [6]:

u-n=u,-n, (5.1)

where u is fluid velocity at the point, n is the body normal at the boundary,
and uy is the body velocity at the point. It makes the velocities equal in the
normal direction, but does not restrict tangential velocities in any way. In reality,
the equality should be an inequality (allowing separation), but traditional methods
are only able to solve the condition as an equality. Pressure is typically used as the
variable that enforces the no-stick condition. On each time step, a pressure solving
step finds such pressure values that cause velocities to agree with the condition.
This approach was brought to computer graphics by Takahashi et al. [67], though it
was known in the field of computational fluid dynamics at least since the 1960s [3].
More complex border conditions become relevant when viscosity is modeled [6, pp.
107-124], but they fall outside of the scope of this thesis.

There are many options for representing the moving obstacles themselves. For
rigid bodies, the boundaries of the object can be represented by simplified im-
plicit surfaces (say, a sphere around the object), or a triangle mesh. However,
in fluid simulation, another common approach is to model the bodies as particles
connected by constraints, such as springs [19,56], which also allows generalization
to deformable bodies [21].

One of the most obvious problems in the voxelization approach is that boundaries
unaligned with the grid are handled poorly. Grid artifacts become visible, and
even worse, a very small movement of the body can suddenly change a whole cell
to completely blocked, causing disturbing artifacts. There are yet other problems
with the approach. For example, water will flow through very thin objects (e.g.,
cloth) that do not completely fill a grid cell.

There are two main approaches to combat the problems with voxelization. Some
authors use an irregular grid near the objects (e.g., [16,28]), but this is not feasible
in real time. Another option, based on the immersed boundary method [53], is to

5.2 Object-to-Water Coupling 59

Figure 5.1: Sub-grid details captured by the fractional cell approach used by
Batty et al. for gas simulation [2].

average the solid properties in each cell. Batty et al. calculate the fraction of
the cell that is obstructed, and calculate fluid mass and other properties based
on it. They also pose the pressure solving step as a kinetic energy minimization
problem. Besides getting rid of the grid-related artifacts, their approach produces
sub-grid details as seen in Figure 5.1. They are also able to efficiently generalize
the no-stick condition to an inequality, which allows water to flow outward from
the boundary, removing another common artifact of water crawling along walls [2].
Very thin objects can be handled using ray casting [21].

The heightfield methods were derived from the full 3D equations by some as-
sumptions that allowed us to use mostly the same techniques as in 3D by simply
dropping a dimension. However, the pressure term is not included in the model
anymore, because the hydrostatic pressure is assumed. Therefore we cannot di-
rectly use pressure as something that couples the fluid and the objects as in the
methods described above.

More importantly, the whole idea of treating each grid cell as having a simple
fraction of solid material cannot be used in a heightfield simulation, since the fluid
is simulated in a 2D domain, while the bodies exist necessarily in a 3D domain.
Water might flow over a low barrier or under a floating body. There might even
be an arbitrary number of complex bodies on top of each other, with water in each
gap between them. Clearly, the heightfield assumption is broken. Typically, the
approaches taken in the heightfield context, then, are much simpler than in full
3D simulations, and do not even try to enforce the no-stick condition.

60 Rigid-Body Coupling

Figure 5.2: A visual comparison of the difference between a traditional method
(left, [72]) and a blocking method (right, [P4]). From [P4].

In some cases, the object-to-water effects can simply be ignored or replaced with
visual effects, such as some non-simulated waves, based on the object movements,
e.g., to create a ship wake. This is often sufficient for very small and /or light objects
that do not have a large effect on the water. This approach is common especially in
the methods designed for open-water scenes. In such scenes dense objects simply
sink to the bottomless ocean and floating objects have no significant effect on the
flows in the ocean besides creating some surface waves. Wave particles [82] and
the iWave system [70] are examples of such an approach.

A simple heightfield body-to-water coupling method was proposed by O’Brien and
Hodgins. They allow the objects to apply an external force to the surface [49].
The force pushes the surface down, causing waves to emanate to the surroundings.
They also applied a particle system to model the splashes caused by an object
hitting the surface. Such a system could be, and has often been, added to augment
almost any heightfield method.

Thiirey et al. introduced a more advanced method that keeps track of the sub-
merged height of the body in each cell [72]. Some proportion of the changes of this
height are propagated to the fluid, creating waves. The method allows an object
to drop into the water, cause waves, submerge, and finally be pulled back up again
to cause more waves. However, it does not prevent water flowing through objects.
For example, if a house lies on a dry surface and a flood wave approaches, it will
simply flow through the house almost unaffected. In other words, in this and all
other traditional methods, the water surface goes through the objects, with both
substances coexisting in the same place.

As explained in chapter 2, it would be interesting from the gameplay perspective
to really affect where the water flows by interactively controlling rigid bodies. This

5.3 Water-to-Object Coupling 61

motivated us to create a fast and simple object-to-water coupling method based
on not letting water inside the bodies [P3].

The key idea was to only allow a single, continuous solid vertical interval per
cell. This approach has its limitations, but is still surprisingly applicable in many
practical cases. After this assumption, the water can be divided into two layers,
one above and one below the possible solid. Bodies can then truly block flow on
exactly the vertical extent they cover, but water is also able to flow over or under
them. This allows various new scenarios, such as building dams out of rigid bodies,
without sacrificing as much performance as moving to a fully 3D simulation would.
The difference to the traditional approach is illustrated by Figure 5.2. However,
our original method [P3] is not able to implement water-to-object coupling, has
some rendering problems, and utilizes some ad hoc solutions.

The work in [P4] is a continuation of [P3], providing several object-to-water cou-
pling improvements. Many ad hoc solutions are removed by a more sophisticated
handling of flow blocking. It is also shown how the method could be generalized to
a multi-layer model, where the assumption of vertically contiguous blockers could
be relaxed, though this was not implemented due to the performance cost. The
method was combined with a more traditional object-to-water coupling method
of [72] in a single scene: floating objects are simulated using one method and heavy
objects using another.

5.3 Water-to-Object Coupling

Water affects the objects via pressure and viscous stress. The viscosity-induced
forces are rather complex and are typically not solved realistically even in the offline
methods [6, p. 13]. Therefore some simplifications are made, and the coupling can
be divided into three components: buoyancy, drag, and lift.

Buoyancy is caused by the difference of the lifting forces by the pressure under
the body and the sinking forces by the pressure over the body. If the hydrostatic
pressure profile of equation 4.1 is assumed, this difference can also be expressed as
Archimedes’ law: the buoyancy force is equal to the weight of the water that the
body has displaced. For a floating body, this implies some kind of a virtual level
inside the body, where the surface would be if the body did not exist.

Buoyancy is obviously very important for games, because many interesting game
objects need to float. The simplest possible model would be to only apply a vertical
force at the center of mass, but it is also desirable to model the torque caused by

62 Rigid-Body Coupling

different buoyancy at different points in the object, for example, to model a ship
that is rocking or even capsizing. The problem is that simply summing the forces
in a coarse grid easily causes an unstable situation, where the body starts to spin.
This can be limited by some artificial dampening, for example, scaling the angular
velocity of a body during each time step with a multiplier that gets smaller as the
object gets more submerged. A more detailed calculation is also possible, but the
performance cost might be prohibitive.

To find out the buoyancy force in 3D methods, the pressure can simply be summed
over each cell which has both a water and a solid. In heightfield methods, pressure
is typically not modeled at all and this approach is not available. Archimedes’
law is usually used instead. In most methods, this is very straightforward to
implement. The weight of the displaced water in a cell is simply based on the
submerged volume: Fyyoyancy = pg(Ax)?max(0, min(s, zy) — z_), where z, is the
top and z_ is the bottom of the body’s extents at that cell (see e.g., [72]). Instead
of per cell, this can also be done per mesh triangle (breaking large triangles to as
many as necessary), increasing upwards force if the normal points downwards and
decreasing otherwise [10, 82].

Drag is required to make a body follow the flow, since it forces the velocity of
the object to equalize with the flow velocity, which also has interesting game-
play possibilities. Lift has less apparent significance, and is sometimes ignored in
simple heightfield simulations. Both of these forces are more complex to model
than buoyancy, and they are taken into account in various ways depending on the
method.

Stokes’ law, assuming laminar flow, states that for a small spherical object in a
fluid, the viscous resistance force is linearly proportional to the relative velocity
between the object and the water, and to the radius of the sphere. A simple model
then, is to calculate the vertical extent of the body that is underwater in each cell,
and multiply it by the velocity difference and some user-defined (i.e., arbitrary)
constant [72]. Again, another option is to calculate the forces triangle by triangle
based on the velocity differences and triangle normals [10,82].

In [P3] and [P4], unlike in other heightfield-based coupling methods, bodies actu-
ally displace the water. Because of this, information on where the surface would be
located without the body is not readily available, and thus the displaced volume
cannot be directly calculated. In other words, if buoyancy would be calculated
in the usual way based on the difference of the bottom of the body and the sur-
face, the result would always be zero for a floating body, because the surface is
just below the body. Therefore the method introduced in [P3] only implemented
object-to-water coupling. An additional problem is that due to the limited reso-

5.4 State of Coupling in Heightfield Methods 63

z z nterpolated surface
— . gg,f 3"’ through surface pf upper layer
— surfade) \] A
. — 1 1 — . 7Z ‘‘‘‘‘‘‘‘‘‘ —— T
air | —— air e T
ater rff f
: d surface o
\c')vssgta/r//'— 5 N lower layer
overlap [| ~
X »X
Traditional methods Our approach

Figure 5.3: Left: in traditional methods (e.g. [72]), the water surface goes
through a floating body. Buoyancy is simple to calculate, but water flows
through the bodies, which leads to very limited body-to-water coupling. Right:
in our approach [P4], two layers are used and the flow is calculated by not
letting water flow through the body. The final surface is robustly interpolated
for drawing and to calculate buoyancy.

lution of the grid, the rendered surface tends to curve down already around the
bodies, which looks very unnatural.

Further work in [P4] solved the mentioned issues by introducing a robust method
for interpolating the displaced surface from the surrounding area. Buoyancy can
then be calculated in the standard way, and the interpolated surface can also be
used for drawing. An alternative approach could be to directly keep track of the
pressure under the body, but our experiments showed the result of the simpler
interpolation to be just as good. Figure 5.3 compares the traditional approach to
that introduced in [P4].

5.4 State of Coupling in Heightfield Methods

There seems to currently be no single method for achieving believable results in
both water-to-object and object-to-water coupling in a heightfield water simula-
tion. The usual methods of, e.g., [10,72] work very well for small floating objects,
if the water flow mostly consists of small waves. On the other hand, if a large and
heavy object should push the water out from an area or block the flow completely,
these methods leave much to be desired.

In contrast, the blocking-based method of [P4] is applicable in the latter situations.
We find the results acceptable in most cases, but the method is far from perfect.
The main limitation is due to the problematic voxelization of the solids to the

64 Rigid-Body Coupling

grid. This causes especially bad spatial aliasing when the method is used to handle
floating objects in a steady flow, as analyzed further in the publication.

As mentioned above, the voxelization issue has been thoroughly researched in the
fully 3D case. The most promising solution is applying a fractional method similar
to [2] or [70]. However, due to the 2D fluid simulation being coupled to a 3D rigid
body simulation, the previous methods are not directly applicable, and further
work is needed to find a solution. Additionally, the handling of the blocking is
not yet very physical. For example, instead of the no-stick condition, we use a
simplified condition where the body velocity is not taken into account.

The two approaches can be combined by selecting which method to use on a case-
by-case basis, but this is only a workaround. While we doubt that the traditional
methods can be extended to handle situations like building dams, we are confident
that further work on the blocking approach will be able to make the method more
generally applicable in games.

Another viable option for the future might be using a hybrid method, where the
water around objects is simulated using particles, and a heightfield is used for the
rest of the world. This combination could achieve the best of both worlds with
robust interaction between water, smoke, rigid and non-rigid bodies as in [39], but
still retains the possibility of including large amounts of water. The main hurdle
would be how to seamlessly and robustly couple the two water simulations. This
approach would not necessarily introduce much complexity, because it is already
a good idea to include a particle system in a heightfield simulation to represent
splashes and other truly 3D effects.

Chapter 6

Comparison of Water
Simulation Methods

6.1 Background

We have now seen an assortment of methods that could be used for modeling
water behavior in digital 3D games. This chapter summarizes the most impor-
tant differences between some of the methods using the criteria set in Chapter 2:
performance, simplicity, visual quality, richness of behavior, and coupling.

The methods included in this comparison have been introduced in Chapters 3
and 4. Fully 3D methods include the 3D Eulerian method, and the family of 3D
Lagrangian-based methods (e.g., SPH, FLIP, position-based fluids). The latter
family is mostly considered a single method in this chapter. The tall cell method
can be considered a hybrid of 2D and 3D. The rest of the methods are based on
heightfields: the pipe method, SWE, 2D LBM, wave particles, FFT, iWave, and
2D SPH.

While there have been some survey articles dealing with water simulation meth-
ods [14, 25, 26, 52, 68], we are not aware of a comprehensive comparison of the
methods from a games’ point of view. The comparison in most categories is nec-
essarily subjective until more data and comparable reference implementations be-
come available. However, many of the differences in, e.g., performance or classes
of behavior modeled are large enough to make our comparison useful at least as a
starting point to guide the reader when selecting a technique to use.

66 Comparison of Water Simulation Methods

In the computer graphics community, it is customary to create standard reference
scenes rendered, e.g., with an offline ray tracer, to which the real-time results can
then be compared. To our knowledge, there is no such systematic work in the field
of real-time water simulation. Each researcher has simply created some varying
scenes of their own. Floating semi-complex objects, such as the Stanford bunnies
are often shown in various scenes.

In the field of computational fluid dynamics, there exist more rigorous scenarios
even with analytical solutions to compare to, e.g., several kinds of dam break
scenes, but these have not been systematically adapted in the computer graphics
literature. Most methods have no publicly available reference implementations that
could be used as the basis of comparison. Also, because in games believability is
more important than strict realism, user studies would be very informative. Sadly,
the only such study in the field so far seems to be [P2].

This chapter is based on our earlier work in [P1], with a more thorough selection of
candidate methods, refined comparison criteria, and several other improvements.

6.2 Performance

Some timings of a few different water simulation implementations were presented
in [P1]. Revised and expanded results are collected into Table 6.1. The results are
based on comparing reported statistics instead of implementing the methods in a
single software and hardware environment. They at least provide an approximate
comparison.

Many authors report the performance of their method as simulation frames cal-
culated per second (fps), i.e., the reciprocal of the time a single simulation step
takes (which is called timing in Table 6.1).

The fps measure is typically used when comparing the smoothness of game visuals,
so it may seem like a natural measure of a simulation method aimed to provide a
smooth animation. However, the fps figure is not enough for comparing simulation
methods, because the maximal stable time steps greatly vary between methods.
If the time step is small, water will seem to flow very slowly. For example, from
Table 6.1 we find out that the time step of a certain 2D SPH implementation is 2
ms, while the time step of our pipe model implementation is 25 ms. Imagine that
the resulting frames from these simulations were simply shown to the viewer at,
say, 60 fps. Our pipe simulation would progress 60 Hz * 25 ms = 1.5 seconds per

6.2 Performance 67

Method Theory Cells At timing | rtke
Pipe model [P1] O(n?) 65k 25 ms | 0.55 ms | 3000
SWE [10] O(n?) 122k | 20 ms | 2.2 ms | 1100
2D LBM [51] O(n?) 16k | 16 ms | 0.35 ms | 730
Wave particles [82] | O(n* +m) | 65k/100k ? 6 ms ?
FFT [69,77] O(n*logn) 65k ? 10 ms ?
iWave [70] O(n?)* — — — —
3D Lagrangian [39] O(m)* 100k 4ms | 43 ms | 100
Tall cells [11] O(n?)* 16k [33ms| 33ms | 16
2D SPH [62] O(m)* 128k 2ms | 50 ms 5
3D Eulerian [2] O(n?)* 0.4k ? 500 ms | 7

Table 6.1: Comparison of the performance of some methods. ”Theory” is the
asymptotic speed of the method with a given horizontal resolution of n cells,
and/or m particles (* marks a significantly large constant multiplier). Cells is
the number of horizontal cells or particles as appropriate. Timing is the time
used to advance the simulation a single step. rtkc or "real-time kilocells” is
the number of cells that can be simulated in real time (1000s). ’?’ signifies
missing data and =" means that no particular implementation was selected for
this comparison. Partially based on [P1]

second (i.e., faster than real-time), while the SPH simulation would only advance
120 ms per second.

It is also trivial to interpolate as many extra frames as needed from two last
states of the simulation. In our experience, for a relatively calm scene, simulation
steps of hundreds of milliseconds or even several seconds can provide good-looking
animations if a simple interpolation of the water surface between two last calculated
simulation steps is used. Therefore, the simulation time steps are not usually
limited by the need to get a smooth animation (i.e., a high fps figure) but by
stability.

Another factor that makes the comparison difficult is that all of the methods
compared do not necessarily use the same grid scale. Many authors do not even
mention the scale used. To understand why the scale is important, consider the
CFL condition (see Section 3.2.2): The smaller the scale, the smaller time steps
are required. Thus simulating, e.g., a 100 x 100 heightfield in real time takes much
more computing power if it represents an area of 1 m x 1 m than 100 m x 100 m.
Intuitively, in a small scale, the gravity force is large compared to the cell size,
which quickly causes large velocities (measured in cells per second).

68 Comparison of Water Simulation Methods

Luckily, for virtual terrains, there is no need to have a grid denser than a few tens
of centimeters to a few meters, because details smaller than that do not affect the
big picture, and can thus be created purely visually (e.g., normal maps, FFT).
On the other hand, in most game worlds the resolution cannot be allowed above a
few meters if human-sized features are to be modeled. It therefore makes sense to
compare the methods aimed at roughly a horizontal resolution of one meters. Thus
the size of the modeled area is thus almost directly proportional to the number of
cells the method is able to handle.

To help compare different methods, we introduced a measure called rtkc, or "real-
time kilocells” in [P1]. It is defined as the number of cells (in thousands to make
the figure more accessible) that can be simulated in real-time, i.e., the ratio of the
time step to the timing. For a person implementing a game, this measure directly
gives an idea of how large a terrain can be simulated in real time, and should make
the performance of different methods much more comparable than using a simple
fps figure. For example, assuming a grid resolution of 1 m, the rtkc value of 3000
for our pipe model implementation means that roughly an area of 3 km? can be
simulated in real time on the hardware where the figure was measured.

There are still several problems remaining with the comparison. Performance
depends on the processing power, memory bandwidth, and other hardware details
in a complex way. Hardware differences thus cannot be ruled out, since most of
the implementations are research prototypes that are not publicly available, so
each timing is measured with whatever hardware the research team happened to
use. Another issue is the varying grid size, because the fixed costs of the methods
can be quite large and become significant when using small grids, which makes
the comparison unfair if different grid sizes are used. The grid size can also affect
cache efficiency. For this reason, we have tried to select similar grid sizes for the
comparison within the data provided by the authors.

According to [P1], the pipe method is at least an order of magnitude faster than the
other methods. However, when comparing with the SWE implementation of [10],
the cost of the particle system was also included. Here we only compare to the
time reported for the heightfield simulation part, which gives more even results
(a difference of 3x, though this does not take hardware differences into account).
Both the SWE and the linearized SWE (which is equal to the pipe method in
performance) are implemented in the same context in [P2]. We found that the
full SWE only adds 38 % to the execution time. We concur that while the pipe
method is definitely faster than the SWE and the difference may be significant for
some games, it is probably not a decisive difference.

Both the tall cells method [11] and SPH/SWE hybrid of [62] are certainly much
slower than the 2D Eulerian heightfield methods, though in an asymptotic sense

6.2 Performance 69

there is no difference [P1]. Particle-based methods (SPH/SWE and SPH) seem to
suffer from short time steps and needing more particles than grid-based methods
need cells to reach a comparable result, but the relative performance gets better as
the dry area increases. As the hardware continues to improve, these methods are
becoming more and more viable. One should also remember that the SPH/SWE
implementation in our comparison was published in 2011 [62], and research on SPH
and related methods has progressed considerably after that [26]. For example, the
position-based approach could possibly be transferred to the SWE context.

Wave particles, LBM, and FFT-based methods were not included in the compari-
son of [P1]. We shall briefly address the performance of those methods below.

Yuksel et al. provide some data on the performance of their method implemented
on an NVIDIA GeForce 7900 GPU [82]. Because their method concentrates on
the waves created by objects interacting with water, the performance is mostly
dependent on the triangle count of the objects. It is therefore difficult to compare
to the other methods, where the grid size or particle count dominates the com-
plexity. Additionally, their heightfield rendering step timing apparently includes
both building the heightfield from the particles and actually rendering the result,
which differs from the approach of [P1], where rendering times were ignored. Time
step and heightfield scale are also not given, which makes performance compari-
son impossible. As an example, with a heightfield resolution of 512 x 128, up to
100 000 wave particles, and a single boat, the whole method takes about 6 ms.
They demonstrate coupling with a large number of objects in real-time.

Tubbs and Tsai implemented the SWE using 2D LBM on the GPU [74]. As an
example somewhat comparable to the scenarios in [P1], they provide a partial dam
break scenario with a 2001 x 2001 grid with a 0.1 m spacing. Calculating a single
time step takes about 9 ms using an NVIDIA Tesla C1060 computing processor
(comparable in performance to a relatively typical current desktop GPU). Since
the LBM method is partially iterative, the time step is not given, but from their
extended partial dam break scenario, an average time step of about 5 ms can be
inferred. With these values, a rough estimate of the performance of this method
would be about 2000 rtke, using the terminology of [P1]. Ojeda and Susin imple-
mented a similar scenario using LBM on the GPU [51]. Their LBM simulation
runs several times iteratively during each time step of 16 ms. This took 0.35 ms
for a 128 x 128 grid. The hardware was NVIDIA GTX 280. Based on these two
implementations, the method seems to perform approximately as well as the pipe
method or Eulerian SWE simulations despite the small time steps. However, the
comparison does not take into account that faster hardware was used for the LBM
simulation than for our SWE and pipe simulations.

70 Comparison of Water Simulation Methods

For the FFT method, the slowest part is probably the n x n inverse FFT [69].
As the inverse FFT has a time complexity of O(n?logn), we estimate that the
method should be maybe an order of magnitude slower than the pipe method or
SWE for large areas. We refer to an implementation by Wang et al. [77]. They also
include a particle system besides the FFT, and there is unfortunately not enough
information to deduce how fast the pure FFT system would be. From the data
provided, we estimate that their 256 x 256 result could be created in about 10 ms.
There is no information on the time step.

The iWave method, on the other hand, is based on continuously applying a con-
volution kernel, which needs some tens of coefficients [70]. This probably results
in a performance somewhat comparable to the FFT implementation. We are not
aware of a comparable GPU implementation of the method.

For the fully 3D methods (Lagrangian and Eulerian), their O(n?) time complexity
makes them very slow for large areas. Comparison between them is an ongoing
debate in the movie effects world [26]. SPH has the large advantage of only having
to simulate areas where water is present, which allows it to already be used in
games for small-scale effects. For comparison, we have selected a relatively fast
Eulerian simulation [2] and the very fast and promising position-based Lagrangian
approach [39]. Both of the methods include coupling.

For the Lagrangian methods it should be noted that the rtkc figure is not directly
comparable to the grid-based methods, since filling a 3D area with water requires
considerably more particles than the number of cells used in a heightfield method.
However, the figure for the position-based fluid suggests that if this new develop-
ment could be combined with the 2D SPH approach, the performance might be
competitive with the Eulerian heightfield methods.

6.3 Simplicity

The pipe method (or the linearized SWE) is, without a doubt, the simplest of the
methods in this comparison. A non-parallel implementation can be created using
only a few lines of code by an unsophisticated programmer, and versions of it were
already used decades ago by the hobbyist demoscene programmers. The method
is also an excellent fit to the GPU, making the implementation relatively easy.

We added the semi-Lagrangian advection to reach the full SWE in [P2], resulting
in approximately a 70% increase in the number of lines in the simulation code.
The advection is relatively simple to implement even on the GPU, but more com-

6.4 Visual Quality 71

plex than the pipe method itself. Neither the pipe method nor SWE require any
advanced data structures, since simple 2D arrays are all that is needed.

A basic version of 2D SPH is also easy to understand and implement. In practice,
the neighbor search requires some kind of an acceleration structure, which can
be somewhat complex to implement efficiently on the GPU. Solenthaler et al. do
not mention using an acceleration structure [62]. The performance figures might
improve considerably with such an addition. LBM, FFT, wave particles, and iWave
all have their complexities, but seem relatively straightforward to implement also

on the GPU.

The tall cells method and the full 3D Eulerian method need to solve a large sparse
linear system for the pressure. This can be done in linear time with iterative solvers
such as preconditioned conjugate gradient, or multigrid methods [4]. These solvers
are clearly more complex to implement efficiently (especially on the GPU) than
what is needed by the methods mentioned previously. Some GPU implementations
are available for the task of solving sparse linear systems [44,46], but they are not
necessarily optimized for the special case of a certain water simulation method.

6.4 Visual Quality

From the images produced by most of the methods included in this comparison
in Figures 6.1 through 6.8 it is easy to note that the different visualizations make
comparing the simulation methods themselves difficult. The issue of fair compari-
son is thus even more difficult than in the other categories, because implementation
details, such as the utilization of textures painted by artists or different additional
effects such as foam modeling, play such a huge role in the results. It is also
typical to add small-scale details using, e.g., advected textures [75] or FFT [72].
Differences in the detail system might well be more important than the simulation
method to the visual quality.

Another issue is the varying scenes, since one method might be well suited for a
certain scale or type of water motion, where another is not. Since objective criteria
are hard to set, more empirical work using user studies is called for.

The full 3D approaches can both create scenes that are virtually indistinguishable
from reality, as seen in recent movies. Of the more limited methods, the tall cells
method of [10] is clearly the most believable, since unlike the heightfield methods,
it is able to retain most of the interesting 3D behavior near the surface.

72 Comparison of Water Simulation Methods

Figure 6.1: Full 3D Eulerian sim- Figure 6.2: Tall cell based simula-
ulation with physics coupling on tion with additional visual effects
a 100 x 150 x 100 grid (not real- including particles and foam on a
time) [56]. 128 x 34 x 128 grid [11].

Figure 6.3: SWE with a particle sys- Figure 6.4: 2D LBM simulation
tem and additional details created with a coupled particle system on
using FFT on a 256 x 256 grid [10]. a 128 x 128 grid [51].

Figure 6.5: Wave particles with Figure 6.6: FFT ocean with particle
100k particles [82]. splashes [77].

Figure 6.7: 3D Lagrangian simu- Figure 6.8: 2D SPH with 100k par-
lation (position based fluids) with ticles [62].
128k particles [39].

6.5 Richness of Behavior 73

Of the methods that produce a heightfield, the FFT method has also been used
in movie effects. It captures many intricate phenomena, such as wave dispersion,
and can create seascapes that are hard to distinguish from reality [69]. 2D LBM
and the Eulerian SWE are both used also in CFD, and can be very true to reality
in the shallow water cases [10,74].

The SPH/SWE method is difficult to compare to the others, since the visualization
technique is different from that of the Eulerian methods [62]. However, since it is
a heightfield method, the result quality is closer to SWE than tall cells.

Our work in [P2] aimed to provide a fair comparison of the visual quality between
the SWE and its linearized version. The implementations, visualizations, scenes,
and simulation parameters were identical and the comparison was done with actual
users and a playable game in addition to just videos. The study found no statisti-
cally significant difference between the user experience created by the methods as
measured by the self-reported experiences of valence, flow, presence, and realism.
A supplementary power analysis to this study was presented in Section 4.4. It
should also be noted that only a single simulation resolution and a single type of
a game were used in our study. We still conclude that while there may be some
loss of quality caused by the linearization, it may not be as obvious a problem for
games as sometimes thought to be [P2].

6.5 Richness of Behavior

Some methods limit the classes of water behavior that can be modeled, e.g., be-
cause of simplifying assumptions. Possibly the largest such difference takes place
when limiting to a heightfield surface, which precludes modeling situations where
the water surface is not a function of horizontal location. Such cases include,
e.g., waterfalls, breaking waves, splashes, and air bubbles. Many of these can be
added back using a particle system (e.g., [10,49,72]) or a generalized heightfield
(e.g., [82]), but this brings a need of coupling the two simulations and/or makes
the overall system more complicated.

Many of the methods also do not try to solve the complete NSE. Practically all of
the methods being compared drop the viscosity term, even though the problem is
usually too much (numerical) viscosity instead of too little.

Another simplification is the assumption of very large water depth in the FFT,
iWave and wave particle methods, which makes these methods incompatible with
terrain. Even if border conditions are set so that waves are reflected from the

74 Comparison of Water Simulation Methods

shores, this is a far cry from dynamically varying the flooded area or the ability
of a lake to get filled until it overflows from the lowest point. This is a major
drawback, considering many of the gameplay categories discussed in Chapter 2.
On the other hand, LBM, SPH, and methods based on SWE typically handle these
cases well. On the other hand, SWE does not model dispersion correctly for deep
water, which causes non-convincing ocean waves [6, p. 187].

The wave equation based methods further simplify the situation by dropping the
advection terms, which removes vortices and other complex behavior [30]. How-
ever, according to [P2], the difference might not affect the user experience ad-
versely.

Regarding the gameplay perspective, it is noteworthy that it is possible to imple-
ment all of the gameplay categories outlined in Chapter 2 with the simple pipe
method augmented by a particle system and a coupling method such as that in-
troduced in [P4].

6.6 Coupling

As was seen in Chapter 5, interaction with moving bodies is difficult to implement
in all heightfield methods. Even a simple submerged body breaks the assumption
of the water always being vertically continuous.

A method for handling floating bodies with some kinds of reactive waves has
been proposed for all methods considered in this chapter. These solutions are on
an acceptable level for many games. However, when a stronger object-to-water
coupling is needed, all current solutions have problems.

3D SPH researchers have, in general, demonstrated several excellent and robust
coupling methods, usually based on sampling the rigid bodies as groups of par-
ticles. The coupling for 2D SPH in [62] also seems to function rather well, even
implementing a dam made out of logs, for example. On the other hand, in Eulerian
methods the fixed grid resolution often causes problems such as aliasing [6,P4]. Our
work in [P3,P4] should be applicable to SWE almost as well as the pipe method,
but is not yet on the level of the SPH-based coupling where the interaction with
moving bodies can be truly dynamic.

6.7 Summary 75

Perform. Simplic. Visual Richness Coupling
Pipe [P1,P2] + + + + - T i
SWE [10,72,P2] + + + - + +
LBM [74] + + + - + +
FFT/iWave [69] - + + + . -
Wave particles [82] + + + _ _ _
Tall cells [11] + - 4o+ + .
SPH/SWE [62] - — — + 4+
Full 3D Lagrangian - + + + + + + 4+
Full 3D Eulerian - - -— + 4+ + + +

Table 6.2: A qualitative comparison of different large-area water simulation
methods for 3D games, comparing performance, simplicity, visual aspects,
richness of behavior and coupling with objects.

6.7 Summary

After all this discussion, which simulation method should a game programmer
choose for their game? Naturally, the answer depends on the requirements. First
of all, not all games with water need any kind of simulation. Even a static 2D
plane with visual trickery might well be sufficient to create a convincing illusion. If
water is to play a more important role in the game, it might be worth considering
using the computational resources for a more dynamic solution.

The strengths and weaknesses of the methods have been collected into Table 6.2,
which tries to answer Research Question 1 of the thesis, as posed in Section 1.2.
To more easily interpret the table, consider the following questions:

o Are you making a 2D game? SPH and related particle methods work well
for 2D games, since they provide the possibility of almost unlimited water
topology changes unlike most other 2D methods, and the number of particles
needed is typically low enough even for mobile devices. The rest of the
questions assume a 3D game.

e How large is the area and what is the amount of water? For very small 3D
grids, such as 323, a full 3D solver might be fast enough, and will provide the
best results. For small amounts of water, such as a leaking pipe or a player-
operated firehose, 3D particle methods (e.g., SPH) are recommended. For
larger areas such as whole rivers and lakes, heightfield methods are typically
needed to get acceptable performance. The tall cell method is an in-between

76

Comparison of Water Simulation Methods

case that provides great quality without the need for a full 3D simulation.
However, it is probably still too slow for most games for now.

Are you planning to implement the method yourself with a limited time bud-
get? The pipe method is simple to implement, even on the GPU, yet provides
most of the interactive possibilities. We recommend the description of Mei
et al. as a starting point [42]. It is then easy to expand to the full SWE
by adding semi-Lagrangian advection, if more physical accuracy is desired.
For this we refer the reader to Chentanez and Miiller [10]. SPH is another
method that is easy to start with, but is suited to different situations. LBM
is also rather simple, but there seems to be less literature available on im-
plementing it for computer graphics or games applications than for SWE.
Each of these is also relatively straightforward to implement on a GPU.

What kind of a visual quality is needed? The full 3D methods are naturally
in a class of their own in this regard. The tall cell method also preserves
the important surface details while not being all too heavy for resources,
though it is currently constrained to smallish areas or tech demos that are
allowed to reserve a whole top end GPU just for the water. A cheaper option
in terms of performance might be to use a heightfield method as the base
solution, but also implement a particle system for splashes and other effects
as in, e.g., [72]. A lot can also be achieved by simple visual tricks, such as
advecting normal and foam textures as in [75]. SWE is more physically-
based than the pipe method, but the difference is small both in terms of
performance and visual quality [P2].

Are you modeling an ocean, or rivers and lakes? Do you need the area cov-
ered by water to be dynamic? Most of the heightfield methods are designed
either for deep or shallow water. FFT, iWave, and wave particles can model
the wave dispersion in oceans. These methods are based on an assumption
of a zero water level with deep water under it, and cannot thus handle dy-
namic spreading over an uneven terrain. On the other hand, pipe, LBM,
SWE, and SPH work best when applied to shallow water. All of these meth-
ods are based on a model with depth included, and can thus have a depth
equal to zero to model dynamic changes between dry and wet areas as the
water flows over uneven terrain.

What kind of gameplay and interaction is needed? If we consider the game-
play effects listed in Chapter 2, most of the categories can be handled by all
of the methods to some extent. In all of the methods, a velocity field can be
calculated and used for advecting objects and water properties. Buoyancy
is also handled by all of the methods. Being useful or harmful at a location,
and adding or removing water becomes much more interesting from a game-
play point of view if the area covered by water is dynamic (see the previous
question). Forces can be applied in all of the methods (except pure FFT)

6.7 Summary 77

at least to cause some reactionary waves. Again, the methods with dynamic
flow have an upper hand for most of the gameplay categories. Finally, han-
dling interaction with rigid bodies by seeing them as dynamic borders for
the water is by far the most developed for the full 3D methods, but solutions
also exist for the 2D SPH [62] and the pipe method [P3,P4].

In short, full 3D methods are the best in most ways other than performance. It is
an eternal battle whether one should use an Eulerian or a Lagrangian approach,
or some combination thereof. For most games, one of the Lagrangian methods
is probably the best option. However, it is only feasible for small amounts of
water. Of the cheaper methods, the ocean methods (FFT /iWave, wave particles)
are great for a static ocean with beautiful and believable waves, but offer limited
interaction possibilities.

Considering the fast heightfield methods, 2D SPH has the best interaction espe-
cially with rigid bodies, but offers somewhat disappointing performance due to the
small time steps required. However, if the point-based approach could be incor-
porated to this 2D approach, it could become competitive again. Pipe, SWE, and
LBM work well for large amounts of dynamic water flowing across a terrain. It
would be interesting future work to compare the properties of the SWE and LBM
methods. For now, the choice between them seems more like a matter of taste
than anything else.

Most of the heightfield methods can be augmented with a particle simulation for
splashes [49], breaking waves [72], and other effects (e.g., foam [71]). As the particle
methods are simple to implement and already included in many physics engines,
it is recommended to take advantage of them as a simple way to mitigate the
limitations of heightfields, as in, e.g., [10] for SWE and [51] for LBM.

78

Comparison of Water Simulation Methods

Chapter 7

Conclusion

This thesis has explored the application of water simulation techniques for large-
scale terrains with a focus on the interactive role of water, but not forgetting its
more typical, purely aesthetic role. The main application is to enrich gameplay,
but any virtual environment that needs more interactive water could benefit from
the methods discussed.

In Chapter 2, water was seen to help enable spatial presence in games both by
creating a visually believable environment and richer interaction. Water is also
a complex and interesting element that provides many opportunities for novel
game mechanics, enabling emergent and dynamic gameplay systems, which are
immediately understandable but hard to master. Both of these should help achieve
flow and therefore media enjoyment.

In most games interactive water would be just a small part of the game, with both
development and computer resources spread thin over dozens of different features.
Considering this, some game developers view, perhaps justifiably, water simulation
as hard to understand and computationally too expensive for games. Additionally,
players expect a very high visual fidelity from current games. It is difficult to find
a method that is able to provide the results developers are looking for with the
limited resources available.

The performance issue has been somewhat alleviated by the advent of the modern
programmable GPUs. Compared to CPU programming, however, GPUs are still
more difficult to use due to the increased parallelism and less advanced tools. More
software suites similar to the now widely available, easy-to-use rigid body simu-

80 Conclusion

lation libraries will be needed before large-scale dynamic water can truly become
commonplace in games.

For simulating small amounts of water, recent developments in the position-based
Lagrangian methods are very promising [39]. However, since the number of par-
ticles still needs to scale in three dimensions, no matter how much the hardware
advances, heightfield methods will always be able to represent larger areas than
fully 3D methods.

To answer the visual quality requirements, it is useful to notice that the visual
details need not affect the water flow in a large scale, and they can thus be created
using spectral or other non-simulation-based methods. However, even the best
visual effects become meaningless if the immersion is broken when the player tries
to interact with the game environment. While spectral methods can create very
convincing visuals, they typically function much worse whenever interactivity is
required.

In [P1], we found the pipe method to be the fastest and simplest of the heightfield
methods. Despite its simplicity, it is able to model the flow in a way that is
sufficient for all our gameplay categories described in Chapter 2. The visual details
lost by it can be added back using a particle system where needed. Additionally, a
user study showed that the user experience induced by a linearized method did not
differ statistically significantly from that achieved by a more complex simulation
that used the full shallow water equations [P2]. We therefore recommend game
developers interested in adding large-scale flowing water to their game to at least
experiment with the pipe method.

For interactivity, it is important to model how water flows over the terrain, and
give the player an ability to affect the flow, either by modifying the terrain or via
interaction with rigid bodies. Interaction with changing terrain is very possible
even with the pipe method, as demonstrated by, e.g., our prototype game in [P2]
or Clities: Skylines.

However, coupling with rigid bodies is more challenging, because heightfield sim-
ulation happens in a 2D grid, but the rigid bodies are 3D objects. The traditional
methods are based on letting the water flow through bodies, which works well for
small objects floating on a large and calm body of water, but restricts the usage
of the methods to such scenarios.

This thesis introduced novel heightfield coupling methods that aim for richer inter-
action, concentrating especially on the body-to-water effects [P3,P4]. The methods
are based on redirecting the flow around the bodies. The proposed solution allows,

81

for example, building completely dynamic dams. However, future work is needed
to solve the grid aliasing issues and reaching more physically-based results.

An alternative avenue for the future is to combine the particle-based simulations
with the heightfields, since the particle-based methods currently boast the best
two-way coupling results. Ideally, such a hybrid method could use particles near
the camera and any interacting objects, but fall back to a faster Eulerian height-
field simulation wherever possible. This would require solving the challenge of
seamlessly coupling the two approaches. Further research into this area is needed.

We observed that there is a lack of empirical research in the field of real-time water
simulation. There are very few comparisons of different simulation methods, or
discussion on which metrics should be used for such comparisons. Indeed, not all
publications report even the most basic necessary information, such as the time
step or scale of the simulation. Because the visual quality or believability of the
methods cannot be objectively measured, user studies are also called for.

This work tries to do its part of this empirical work. We introduced a mea-
sure called real-time kilocells to compare the performance of different grid-based
methods, and used it to compare the performance of some methods. In another
empirical dimension, possibly the first user study in the field was presented in [P2].

Much more empirical work is still needed, for example to create and use standard
test scenarios for real-time water simulation. Different methods should be com-
pared in the same environment using a similar visualization. For example, there
is very little information on how LBM-based methods compare to SWE both in
performance and believability of the results.

Despite the large amount of future work still needed to further these topics,
this thesis argues that GPU-based heightfield water simulation is already mature
enough to be used as the basis of several kinds of new game mechanics, facilitating
the birth of possible new game genres in the near future. Implementing the sim-
plest water simulation methods such as the pipe method should not be a major
undertaking even for the smaller companies.

82

Conclusion

Ludography

Angry Birds (2009). Rovio.

Assassin’s Creed III (2012). Ubisoft Montreal / Ubisoft.
Battlefield 4 (2013). EA Digital Illusions CE / Electronic Arts.
Cities: Skylines (2015). Colossal Order / Paradox Interactive.
Counter-Strike (2000). Valve.

Crysis (2007). Crytek / Electronic Arts.

Doom (1993). Id Software.

F.E.A.R. (2005). Monolith Productions / Vivendi.

From Dust (2011). Ubisoft Montpellier / Ubisoft.

Gone Home (2013). The Fullbright Company.

Grand Theft Auto series (1997-2014). Rockstar Games.
HALO 3 (2007). Bungie / Microsoft Game Studios.

Just Cause 2 (2010). Avalanche Studios / Eidos Interactive.
Liquidsketch (2012). Neukom, Tobias.

Minecraft (2011). Mojang.

84 Ludography

Munin (2014). Gojira / Daedalic Entertainment.

Resistance 2 (2008). Insomniac Games / Sony Computer Entertainment.
Spintires (2014). Oovee Game Studios.

Sprinkle (2011). Mediocre Games.

Ultima Underworld: The Stygian Abyss (1992). Blue Sky Productions / Origin.

Uncharted 3: Drake’s Deception (2011). Naughty Dog / Sony Computer Enter-
tainment.

Walking Dead, the (2012). Telltale Games.

Where’s My Water (2011). Creature Feep / Disney Mobile.

Bibliography

1]

Florian Bagar, Daniel Scherzer, and Michael Wimmer. A layered particle-
based fluid model for real-time rendering of water. Computer Graphics Forum,
29(4), 2010.

Christopher Batty, Florence Bertails, and Robert Bridson. A fast variational
framework for accurate solid-fluid coupling. ACM Transactions on Graphics
(TOG), 26(3), 2007.

David J Benson. Computational methods in Lagrangian and Eulerian hy-
drocodes. Computer methods in Applied mechanics and Engineering, 99(2),
1992.

Jeff Bolz, lan Farmer, Eitan Grinspun, and Peter Schréder. Sparse matrix
solvers on the GPU: conjugate gradients and multigrid. ACM Transactions
on Graphics (TOG), 22(3), 2003.

J Brackbill and H Ruppel. FLIP: A method for adaptively zoned, particle-in-
cell calculations of fluid flows in two dimensions. Journal of Computational
Physics, 65(2), 1986.

Robert Bridson. Fluid Simulation for Computer Graphics. A K Peters/CRC
Press, 2008.

Robert Bridson, Jim Houriham, and Marcus Nordenstam. Curl-noise for
procedural fluid flow. ACM Transactions on Graphics (TOG), 26(3), 2007.

Jerome S Bruner and Leo Postman. On the perception of incongruity: A
paradigm. Journal of personality, 18(2), 1949.

John Charles Butcher. The numerical analysis of ordinary differential equa-
tions: Runge-Kutta and general linear methods. Wiley-Interscience, 1987.

Nuttapong Chentanez and Matthias Miiller. Real-time simulation of
large bodies of water with small scale details. In 2010 ACM SIG-
GRAPH /Eurographics Symposium on Computer Animation, SCA ’10. Eu-
rographics Association, 2010.

86

BIBLIOGRAPHY

[11]

[12]

[23]

[24]

Nuttapong Chentanez and Matthias Miiller. Real-time eulerian water simula-
tion using a restricted tall cell grid. ACM Transactions on Graphics (TOG),
30(4), 2011.

Richard Courant, Kurt Friedrichs, and Hans Lewy. Uber die partiellen Dif-
ferenzengleichungen der mathematischen Physik. Mathematische Annalen,
100(1), 1928.

Isabella Selega Csikszentmihalyi. Optimal experience: Psychological studies
of flow in consciousness. Cambridge University Press, 1992.

Emmanuelle Darles, Benoit Crespin, Djamchid Ghazanfarpour, and Jean-
Christophe Gonzato. A survey of ocean simulation and rendering techniques
in computer graphics. Computer Graphics Forum, 30(1), 2011.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of
smoke. In 28th annual conference on Computer graphics and interactive tech-

niques, SIGGRAPH ’01. ACM, 2001.

Bryan Feldman, James O’Brien, and Bryan Klingner. Animating gases with
hybrid meshes. ACM Transactions on Graphics (TOG), 24(3), 2005.

Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical
models and image processing, 58(5), 1996.

gamesgames.com. Dolphin jumping games. http://www.gamesgames.com/
games/dolphin-jumping. Accessed: Feb 5, 2015.

Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler. Simulating fluid-
solid interaction. Graphics Interface, 2003, 2003.

M. Gongzalez Ochoa. Water technology of Uncharted. Presentation in Game
Developers’ Conference 2012.

Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. Cou-
pling water and smoke to thin deformable and rigid shells. ACM Transactions
on Graphics (TOG), 24(3), 2005.

Francis H Harlow, J Eddie Welch, et al. Numerical calculation of time-
dependent viscous incompressible flow of fluid with free surface. Physics of
fluids, 8(12), 1965.

Alan Hevner, Salvatore March, Jinsoo Park, and Sudha Ram. Design science
in information systems research. MIS quarterly, 28(1), 2004.

Nathan Holmberg and Burkhard C Wiinsche. Efficient modeling and render-
ing of turbulent water over natural terrain. In 2nd international conference on

Computer graphics and interactive techniques in Australasia and South Fast
Asia. ACM, 2004.

BIBLIOGRAPHY 87

[25]

[26]

Andres Iglesias. Computer graphics for water modeling and rendering: a
survey. Future generation computer systems, 20(8), 2004.

Markus Thmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and
Matthias Teschner. SPH fluids in computer graphics. In Eurographics 2014-
State of the Art Reports. The Eurographics Association, 2014.

Clay Mathematics Institution. Millennium problems: Navier-stokes
equation. http://www.claymath.org/millenium-problems/navier,E2/
80%93stokes-equation. Accessed Oct 3, 2014.

Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. Effi-
cient simulation of large bodies of water by coupling two and three dimensional
techniques. ACM Transactions on Graphics (TOG), 25(3), 2006.

Jesper Juul. A clash between game and narrative. Master’s thesis, University
of Copenhagen, 1999.

Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer
graphics. In 17th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’90. ACM, 1990.

Tadhg Kelly. The seven constants of game design, part two. http:
//techcrunch.com/2014/07/27/constants-of-game-design-2/. Accessed
Feb 5, 2015.

Theodore Kim, Nils Thiirey, Doug James, and Markus Gross. Wavelet tur-
bulence for fluid simulation. ACM Transactions on Graphics (TOG), 27(3),
2008.

Herbert Krugman. The impact of television advertising: Learning without
involvement. Public opinion quarterly, 29(3), 1965.

Hyokwang Lee and Soonhung Han. Solving the shallow water equations using
2D SPH particles for interactive applications. The Visual Computer, 26(6-8),
2010.

Randall LeVeque. Finite volume methods for hyperbolic problems, volume 31.
Cambridge University Press, 2002.

Matthew Lombard and Theresa Ditton. At the heart of it all: The concept
of presence. Journal of Computer-Mediated Communication, 3(2), 1997.

Matthew Lombard, Robert Reich, Maria Grabe, Cheryl Bracken, and Theresa
Ditton. Presence and television. Human Communication Research, 26(1),
2000.

88

BIBLIOGRAPHY

[38]

[39]

[40]

[41]

[42]

[50]

[51]

Miles Macklin and Matthias Miiller. Position based fluids. ACM Transactions
on Graphics (TOG), 32(4), 2013.

Miles Macklin, Matthias Miiller, Nuttapong Chentanez, and Tae-Yong Kim.
Unified particle physics for real-time applications. ACM Transactions on

Graphics (TOG), 33(4), 2014.

Marcelo M. Maes, Tadahiro Fujimoto, and Norishige Chiba. Efficient anima-
tion of water flow on irregular terrains. In Computer graphics and interactive
techniques in Australasia and Southeast Asia, GRAPHITE '06. ACM, 2006.

Maria Malik, Teng Li, Umar Sharif, Rabia Shahid, Tarek El-Ghazawi, and
Greg Newby. Productivity of GPUs under different programming paradigms.
Concurrency and computation: practice and experience, 24(2), 2012.

Xing Mei, Philippe Decaudin, and Bao-Gang Hu. Fast hydraulic erosion
simulation and visualization on GPU. In 15th Pacific Conference on Computer
Graphics and Applications, PG 07, 2007.

David Mould and Yee-Hong Yang. Modeling water for computer graphics.
Computers and Graphics, 21(6), 1997.

Eike Mueller, Xu Guo, Robert Scheichl, and Sinan Shi. Matrix-free GPU
implementation of a preconditioned conjugate gradient solver for anisotropic
elliptic PDEs. CoRR, abs/1302.7193, 2013.

Thomas Novak, Donna Hoffman, and Yiu-Fai Yung. Measuring the customer
experience in online environments: A structural modeling approach. Market-
ing science, 19(1), 2000.

NVIDIA cuSPARSE library. https://developer.nvidia.com/cusparse.
Accessed Oct 24, 2014.

NVIDIA FlameWorks. https://developer.nvidia.com/flameworks. Ac-
cessed Aug 22, 2014.

NVIDIA GeForce GTX Titan specifications. http://www.geforce.com/
hardware/desktop-gpus/geforce-gtx-titan/specifications. Accessed
Aug 28, 2014.

James O’Brien and Jessica Hodgins. Dynamic simulation of splashing fluids.
In Computer Animation ’95, 1995.

Jesus Ojeda. Efficient algorithms for the realistic simulation of fluids. PhD
thesis, FIB, 2013.

Jesus Ojeda and Anton Susin. Enhanced lattice Boltzmann shallow waters
for real-time fluid simulations. In Eurographics 2013-Short Papers. The Eu-
rographics Association, 2013.

BIBLIOGRAPHY 89

[52]

[53]
[54]

John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kriiger,
Aaron E Lefohn, and Timothy J Purcell. A survey of general-purpose com-
putation on graphics hardware. Computer graphics forum, 26(1), 2007.

Charles S Peskin. The immersed boundary method. Acta numerica, 11, 2002.

Nick Rasmussen, Doug Enright, Duc Nguyen, Sebastian Marino, Nigel Sum-
ner, Willi Geiger, Samir Hoon, and Ron Fedkiw. Directable photorealistic
liquids. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, SCA’04, 2004.

Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald Fedkiw.
Smoke simulation for large scale phenomena. ACM Transactions on Graphics
(TOG), 22(3), 2003.

Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and
Ronald Fedkiw. Two-way coupling of fluids to rigid and deformable solids
and shells. ACM Transactions on Graphics (TOG), 27(3), 2008.

Katie Salen and Eric Zimmerman. Rules of play: Game design fundamentals.
MIT press, 2004.

Christophe Schlick. An inexpensive BRDF model for physically-based ren-
dering. Computer graphics forum, 13(3), 1994.

Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek
Rossignac. An unconditionally stable maccormack method. Journal of Sci-
entific Computing, 35(2-3), 2008.

Mike Seymour. Assassins creed III: The tech behind (or
beneath) the action. http://www.fxguide.com/featured/
assassins-creed-iii-the-tech-behind-or-beneath-the-action/.
Accessed: May 14, 2014.

Miguel Sicart. Defining game mechanics. Game Studies, 8(2), 2008.

B. Solenthaler, P. Bucher, N. Chentanez, M. Miiller, and M. Gross. SPH
based shallow water simulation. In Workshop in Virtual Reality Interactions
and Physical Simulation, VRIPHYS’11, 2011.

Jos Stam. Stable fluids. In 26th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’99. ACM, 1999.

O-Benes Stava, B Brisbin, and M Kfivének. J.: Interactive terrain modeling
using hydraulic erosion. In Eurographics Symposium on Computer Animation
2008 (SCA’08), 2008.

90

BIBLIOGRAPHY

[65]

[66]
[67]

[68]

[69]

[72]

73]

Jonathan Steuer. Defining virtual reality: Dimensions determining telepres-
ence. Journal of communication, 42(4), 1992.

Penny Sweetser. Emergence in games. Cengage Learning, 2008.

Tsunemi Takahashi, Heihachi Ueki, Atsushi Kunimatsu, and Hiroko Fujii.
The simulation of fluid-rigid body interaction. In ACM SIGGRAPH 2002
conference abstracts and applications. ACM, 2002.

Jie Tan and XuBo Yang. Physically-based fluid animation: A survey. Science
in China Series F: Information Sciences, 52(5), 2009.

Jerry Tessendorf. Simulating ocean water. Simulating Nature: Realistic and
Interactive Techniques. SIGGRAPH 2001 course notes, 2001.

Jerry Tessendorf. Interactive water surfaces. In Game Programming Gems 4.
Charles River Media, 2004.

N. Thiirey, F. Sadlo, S. Schirm, M. Miiller-Fischer, and M. Gross. Real-time
simulations of bubbles and foam within a shallow water framework. In 2007
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA
'07, 2007.

Nils Thiirey, Matthias Miiller-Fischer, Simon Schirm, and Markus Gross.
Real-time breaking waves for shallow water simulations. In 15th Pacific Con-
ference on. Computer Graphics and Applications, PG ’07, 2007.

Nils Thiirey, Ulrich Riide, and Marc Stamminger. Animation of open water
phenomena with coupled shallow water and free surface simulations. In 2006
ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA
'06, 2006.

Kevin R Tubbs and Frank T-C Tsai. GPU accelerated lattice Boltzmann
model for shallow water flow and mass transport. International Journal for
Numerical Methods in Engineering, 86(3), 2011.

Alex Vlachos. Water flow in Portal 2. In ACM SIGGRAPH 2010 courses,
SIGGRAPH ’10. ACM, 2010.

Chuck Walbourn. Living without D3DX. http://blogs.msdn.com/b/
chuckw/archive/2013/08/21/1iving-without-d3dx.aspx. Accessed Oct
24, 2014.

Chin-Chih Wang, Jia-Xiang Wu, Chao-En Yen, Pangfeng Liu, and Chuen-
Liang Chen. Ocean wave simulation in real-time using GPU. In International
Computer Symposium, ICS 2010, 2010.

BIBLIOGRAPHY 91

[78]

[81]

[82]

[83]

David Weibel and Bartholoméaus Wissmath. Immersion in computer games:
The role of spatial presence and flow. International Journal of Computer
Games Technology, 2011, 2011.

Werner Wirth, Tilo Hartmann, Saskia Bocking, Peter Vorderer, Christoph
Klimmt, Holger Schramm, Timo Saari, Jari Laarni, Niklas Ravaja, Fe-
liz Ribeiro Gouveia, et al. A process model of the formation of spatial presence
experiences. Media Psychology, 9(3), 2007.

Bob Witmer and Michael Singer. Measuring presence in virtual environments:
A presence questionnaire. Presence: Teleoperators and virtual environments,

7(3), 1998.

Mark Wolf. Space in the video game. In The medium of the video game.
University of Texas Press, 2001.

Cem Yuksel, Donald H. House, and John Keyser. Wave particles. ACM
Transactions on Graphics (TOG), 26(3), 2007.

Jian Guo Zhou. Lattice Boltzmann methods for shallow water flows. Springer,
2004.

[84] Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM Trans-

actions on Graphics (TOG), 24(3), 2005.

