TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Eeva Jarvenpaa

Capability-based Adaptation of Production Systems in a
Changing Environment

aoint

=

Tampereen teknillinen yliopisto. Julkaisu 1082
Tampere University of Technology. Publication 1082

Eeva Jarvenpaa

Capability-based Adaptation of Production Systems in a
Changing Environment

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Festia Building, Auditorium Pieni Sali 1,
at Tampere University of Technology, on the 19" of November 2012, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2012

ISBN 978-952-15-2928-3 (printed)
ISBN 978-952-15-2940-5 (PDF)
ISSN 1459-2045

ABSTRACT

Today’s production systems have to cope with volatile production environments characterized by
frequently changing customer requirements, an increasing number of product variants, small batch
sizes, short product life-cycles, the rapid emergence of new technical solutions and increasing
regulatory requirements aimed at sustainable manufacturing. These constantly changing
requirements call for adaptive and rapidly responding production systems that can adjust to the
required changes in processing functions, production capacity and the distribution of the orders. This
adaptation is required on the physical, logical and parametric levels.

Such adaptivity cannot be achieved without intelligent methodologies, information models and tools
to facilitate the adaptation planning and reactive adaptation of the systems. In industry it has been
recognized that, because of the often expensive and inefficient adaptation process, companies rarely
decide to adapt their production lines. This is mainly due to a lack of sufficient information and
documentation about the capabilities of the current system and its lifecycle, as well as a lack of
detailed methods for planning the adaptation, which makes it impossible to accurately estimate its
scale and cost. Currently, the adaptation of production systems is in practice a human driven process,
which relies strongly on the expertise and tacit knowledge of the system integrators or the end-user
of the system.

This thesis develops a capability-based, computer-aided adaptation methodology, which supports
both the human-controlled adaptation planning and the dynamic reactive adaptation of production
systems. The methodology consists of three main elements. The first element is the adaptation
schema, which illustrates the activities and information flows involved in the overall adaptation
planning process and the resources used to support the planning. The adaptation schema forms the
backbone of the methodology, guiding the use of other developed elements during both the
adaptation planning and reactive adaptation. The second element, which is actually the core of the
developed methodology, is the formal ontological resource description used to describe the
resources based on their capabilities. The overall resource description utilizes a capability model,
which divides the capabilities into simple and combined capabilities. The resources are assigned the
simple capabilities they possess. When multiple resources are co-operating, their combined
capability can be reasoned out based on the associations defined in the capability model. The
adaptation methodology is based on the capability-based matching of product requirements and
available system capabilities in the context of the adaptation process. Thus, the third main element
developed in this thesis is the framework and rules for performing this capability matching. The
approach allows automatic information filtering and the generation of system configuration
scenarios for the given requirements, thus facilitating the rapid allocation of resources and the
adaptation of systems. Human intelligence is used to validate the automatically-generated scenarios
and to select the best one, based on the desired criteria.

Based on these results, an approach to evaluating the compatibility of an existing production system
with different product requirements has been formulated. This approach evaluates the impact any
changes in these requirements may have on the production system. The impact of the changes is
illustrated in the form of compatibility graphs, which enable comparison between different product
scenarios in terms of the effort required to implement the system adaptation, and the extent to
which the current system can be utilized to meet the new requirements. It thus aids in making
decisions regarding product and production strategies and adaptation.

PREFACE

When | started my doctoral studies five years ago, | had no idea of the challenging journey | was
about to take. During that journey, there have been moments when | felt hopeless and the
completion of the thesis project seemed more like utopian dream than a realistically attainable goal.
However, in the end | managed to pull everything together and the results of all that hard work are
laid before you here. The project has been a true learning experience, teaching me not only about
the topic | studied and how to become a researcher, but also about myself as a person. | could never
have reached this point alone, and therefore | want to express my sincere gratitude to all those
people who have stood by me and helped and motivated me along the way.

First, | want to thank all my present and former colleagues in the Department of Production
Engineering of Tampere University of Technology for the friendly and instructive discussions around
and beyond the thesis topic. In particular, | am grateful to my team leader, Dr. Minna Lanz, who has
guided me throughout the whole journey, as well as to the present and former team members, Pasi
Luostarinen, Fernando Garcia, Roberto Rodriguez and Timo Kallela, who patiently discussed my ideas
with me and performed the programming tasks needed in order to validate them. Riku, Nikke, Timo,
Asser, and all the rest of you who sit around the department’s coffee table, thank you for putting up
with my moments of anxiety and for sharing many pleasant chats with me. | could never have
managed this without you all!

| wish to express my special thanks to my supervisor, Professor Reijo Tuokko, for giving me the
freedom to choose my own research path and for his encouragement and inspiring words as | trod
my chosen path. | am also very grateful to my external evaluators, Professor Michel Cotsaftis from
Ecole Centrale d’Electronique, France and Professor Tullio Tolio from Politecnico di Milano, Italy for
their highly valuable comments and suggestions, which have helped me to improve the quality of this
work. | would also like to thank Adrian Benfield for reviewing the language of the thesis.

| have been fortunate enough to carry out my doctoral research as a graduate school student in the
Graduate School of Concurrent Engineering led by Professor Erno Keskinen. | am most fortunate to
have been given this opportunity and regard it as a major enabling factor in the success of this work.
During the graduate school seminars | was able to develop my scientific thinking, obtain valuable
peer-support from the other students and to meet people who will remain friends for the rest of my
life.

My special thanks and hugs go to my family, my mother, sister, brother, grandma, auntie and cousin,
for always being proud of me and letting me to be myself and to forget the researcher identity every
now and then. Thanks are also due to my friends for their support throughout the project, and
especially for those moments when they succeeded in making me forget the whole thesis. Finally, |
wish to express my love and gratitude to my beloved Henkka for being there for me, supporting me
in the stressful writing phase of this thesis and for sharing many enjoyable moments with me.

Tampere, 5" of October 2012

Eeva Jarvenpaa

ABBREVIATIONS AND ACRONYMS

ABAS
ADT

Al

BMS
CAD
CAM
CAReP
CARP
CE

CIP
CNC
CoBASA
CO2PE!
CSM
DB
DeMO Tool
DFMA
DIN
DiMS
DL
DMS
DOF
DP

DSL
EAS

EU
EUPASS
FBS
FMEA
FMS
FoV
FP6

FR
FrMs
GA

GUI
HMS
ICT

ID
IDEFO
ISO

KB
KIPPcolla

Actor-based Assembly System

Axiomatic Design Theory

Artificial Intelligence

Bionic Manufacturing System

Computer Aided Design

Computer Aided Manufacturing

Computer Aided Reuse Planning

Computer Aided Reconfiguration Planning
Concurrent Engineering

Common Industrial Protocol

Computer Numerical Control

Coalition Based Approach for Shopfloor Agility
Cooperative Effort on Process Emissions in Manufacturing -initiative
Competitive Sustainable Manufacturing
Database

Decision Making and Ordering Tool

Design for Manufacturing and Assembly
Deutches Institut fur Normung (German Institute for Standardization)
Distributed Manufacturing System
Description Logics

Dedicated Manufacturing System

Degrees of Freedom

Design Parameter

Domain Specific Language

Evolvable Assembly System

European Union

Evolvable Ultra-Precision Assembly SystemS —project
Function-Behavior-Structure Framework
Failure Mode Effect Analysis

Flexible Manufacturing System

Field of View

Framework Programme 6

Functional Requirement

Fractal Manufacturing System

Genetic Algorithm

Graphical User Interface

Holonic Manufacturing System

Information and Communications Technology
Identifier

Integrated DEFinition for Function Modelling
International Organization for Standardization
Knowledge Base

Knowledge Intensive Product and Production Management from Concept to Re-cycle

in Virtual Collaborative Environment —project

MAS
MES
MPMS
MSDL
MTBF
MTTR
NIST
OWL
PiSA

PNG
Pro-FMA
RDF
RMS
RPC
SADT
SIARAS
SOA
SOAP
SO-EAS
STEP
SPARQL
TS

TUT

Ul
UML
UMRM
URL
usB
VDI
VRML
WLAN
X3D
XML

Multi-agent System

Manufacturing Execution System

Multiple Part Manufacturing System
Manufacturing Service Description Language
Mean Time between Failure

Mean Time to Repair

National Institute of Standards and Technology
Web Ontology Language

Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-
Machine Cooperation —project

Portable Network Graphics

Feature recognition tool

Resource Description Framework
Reconfigurable Manufacturing System

Remote Procedure Call

Structured Analysis and Design Technique
Skill-based Inspection and Assembly for Reconfigurable Automation Systems -project
Service Oriented Architecture

Simple Open Access Protocol

Self-Organizing Evolvable Assembly System
Standard for Exchange of Product model data
SPARQL Protocol and RDF Query Language
Tabu Search

Tampere University of Technology

User Interface

Universal Modelling Language

Unified Manufacturing Resource Model
Uniform Resource Locator

Universal Serial Bus

Verein Deutscher Ingenieure (Association of German Engineers)
Virtual Reality Modelling Language

Wireless Local Area Network

eXtensive 3D, successor of VRML format
eXtensive Mark-up Language

TABLE OF CONTENTS

F e R I O LT PP T PU PR [
PREFAGCE ...ttt ettt ettt ekt e ook b bt e oo oa kbt e e e ok b bt e e s eh b bt e e e e b be e e e e aabbe e e s arbe e e e ii
ABBREVIATIONS AND ACRONYIMSottt ettt sttt e e et e e e e e nbe e e e e anbeeas iii
TABLE OF CONTENTS ..ttt ettt ettt ettt e+ttt e ekttt e e ekt e e e e e kbt e e e e eabb e e e e enbbe e e e e sbeeaeaannreaeeas v
L. INTRODUCGTION. .. cetii ittt ettt ettt et e e e skttt e e e kbe e e e e kbb e e e e anbb e e e e eabbe e e e aanbneeeeannbeeeeannes 1
1.1. Industrial challenges and MOtiVatioNccoviiiiiiii e 1
1.2. Scientific and technical ChalleNGeSoooiiiiiiii e 3

2. RESEARCH DESCRIPTIONciiiiiiiiiiitiie ettt ettt ettt e e ekt e e e s embb e e e e estbe e e e annbeeaeaanbneeeeas 6
2.1. Introduction to the research ProbIeM ..o e 6
2.2. Formulation of the research objectives and qUESLIONScccveriieiiii i 7
2.3, Research methodolOgycccueoiirii e 10
2.4, Limitations and aSSUMPLIONSeeiuiieiiireiieeeiieesieeesieeeeieeesie e et eeeeeeesneeeesneeeaneeeesneeeenes 12
2.5, TRESIS OULIINE ..o 13

3. LITERATURE REVIEWV ...ttt ettt ettt e e st e e e e bt e e e e e nnbae e e 14
3.1, Production SYStem ParadigmsS..........ceeeiuereiiieaiieeeiee ettt e eeeesee e e e et e e snae e 14
3.1.1. Traditional production system paradigmscccceeerieeiiireniee e see e 14
3.1.2. Adaptive production systems and adaptationccccoeveeriiiiiie e 15
3.1.3. Complex Adaptive Systems and Systems Intelligenceccccceereeiieene e, 17
3.1.4. Emerging evolutionary system paradigms in productionccceeeeevieeiieennnnne 19
3.1.5. Static versus Changing SYSTEIMSeiiuireiiie it eee et eeeesneee e 22

3.2. Traditional system design and physical adaptationccccooooeiriir i 23
3.3. Existing approaches to production system adaptationccccooeeeiiieniiieniie e 27
3.3.1. Reconfiguration planning frameworks..............ccoiiiieriee i 28
3.3.2. Artificial Intelligence-based approaches to reconfiguration planning.......................... 31
3.3.3. Knowledge-based approaches to reconfiguration planningc.cccceveeeeieennnne. 32
3.3.4. Capability-based approaches to adaptationcccceevieieiiii e 35
3.3.5. Agent-based and holonic approaches to adaptation...............cccoeeveiiieiiie e 38
3.3.6. Conclusions about the existing approaches to adaptation..............cccccceeveeiiieennnnnne 41

3.4. Information models supporting adaptationcccooir e 42
3.4.1. Ontological approaches to describing reSOUICES...........eeviireiiieiiiee e 43
3.4.2. Resource desCription laNQUAGEScoiueieiiie ittt et 49
3.4.3. Object-oriented approaches to resource description............cccceevveeiiieeiiiee e e, 50
3.4.4. Conclusions about the existing approaches to resource description.............cc.c.cuv...... 52

4. PROPOSED METHODOLOGY FOR ADAPTATIONoiiiiiiiieiiiiiee ettt 54

\'

4.1. Definition of requirements for the information modelsccccoooi i, 55

4.2. Resource description based on capabilities.c.coviiieiii i 57
4.2.1. Introduction to Capabilitiescooiii e 59
4.2.2. Capability MOUEL..........oo et 61
4.2.3. Capability aSSOCIAtIONScccuieiiiiieiiie e eee et ee e ee et e et e e snee e e e e e eneeeennaeeas 62
4.2.4. Capability PAramMETerS.oi et 65

4.3. Components of the overall resource desCription............ccevererieeiiie e 69
4.3.1. Business and lifeCyCle ProPertiS.........oo i uiriiiieiie et 70
4.3.2. INterface deSCIIPTION.c..ei ettt e et e e e e e eneeeenneee s 72

4.4. Framework for capability-based matching of product requirements and system capabilities

... 73
4.4.1. Capability taXONOMYccuoiiiiie et e ettt e e e eeeneeeennneeas 75
4.4.2. Definition of the product reqUIrEMENTS...........ceiiiriii et 76
4.4.3. High-level capability Mappingccoceeeiiieiiieeie et 77
4.4.4. The rule-base for capability matchingcccoooiiiiiiiiii e 79
4.45. Detailed capability MatChing.........coooiiiiiii i 82

4.5. Information formalization to support production system adaptation - Implementation.....85
45.1. The formalization of the capabilities in the Core Ontologyccccoovveiiiiieeiiieeen. 86
45.2. Formalization of resources in the Core ONtology..........cocveiiriiiei i 88
45.3. Connection between products, processes, capabilities and systems...............ccccccee... 94
45.4. Spatial and temporal representation and reasoning allowed by the ontology

AEFINITIONS. ... 96

O ST Vo F= Vo | = o] g ST =T o - TSRS 98
4.6.1. Overall view of the adaptation ProCESSoeiiiieiiie e 98
4.6.2. Activity diagrams for production system adaptation schema...............cccevievinnnne. 101

4.7. Evaluating the impact 0f Changeooiiiri e 104
4.7.1. Compatibility domain approach - Evaluating the compatibility, effort and utilization

.. 105
4.7.2. Discussion of the compatibility domain approachccccoeveeviienie i, 111
5. VALIDATION OF THE RESULTS — CASE STUDIES ...ttt 113

5.1, Modular ICT-ArChITECIUIEciiiiie e 113
5.1.1. Capability EAITOrcveeiiieece ettt et 114
5.1.2. Information flows between the different software modulescccccooieiirnennns 116

5.2. Dynamic operation environment — adaptation by reactionc..ccccceeevveiiiee e, 121
5.2.1. Hardware in the dynamic operation environment.............ccccoovveeiieeecieeccee e, 121
5.2.2. Process flow during the Case SCENArIOcocviiiiiiiiii e 122

vi

5.2.3. DiscusSion Of the deMONSIIAtIONcoieeeeeeeee ettt e e eees 127

5.3. Microfactory system —adaptation by planningccccceeiieiin e 127
5.3.1. Definition of system capabilities...........ccoeeriiiiiiieiie e 128
5.3.2. Definition of the product reqUIremMeNTS...........ocoviiiiiiiii e 130
5.3.3. Matching the product requirements against the system capabilities........................ 132
5.3.4. Adaptation scenarios with the TUT-microfactoryccccovoeiiie i eniee e, 137

B. DISCUSSION ...ttt ettt ekttt e e ekt e e e e sbb e e e e aabb e e e e eabb e e e e ennbneeeennnneas 146

6.1. Evaluation of the proposed Methodologycccooiiieiiiieiiie e 146

6.2, CONIIDULIONS ...t nne e 152

6.3, FULUIE WOTK ... ittt b e e e nneennne s 154

7. CONCLUSIONS. ...ttt ettt e ekt e e ekt e e ekt et e e e asbb e e e e anbbe e e e enbneeeennnneas 157
REFERENCES ...ttt ettt ettt e ettt e e ettt e e ek b bt e e e st b e e e e aabb e e e e e bbe e e e e bbb e e e e annbeaeaas 159
APPENDICES.......c ettt ettt e e e ettt a2 ekt e e e bbbt e e ek b e e e e e eabb e e e e annb e e e e anbeeaeennes 169

Vii

1. INTRODUCTION

1.1. Industrial challenges and motivation

Nowadays manufacturing companies have to cope with several critical issues, such as frequently
changing customer requirements, short product lifecycles, an increasing number of product variants,
small batch sizes, varying volumes, stringent quality requirements, the rapid emergence of new
technical solutions and increasing regulatory requirements aimed at sustainable manufacturing.
Customers demand customized products at the price of mass-produced ones, and with fast delivery.
Reporting on a study of German industry carried out by Wildemann in 2009, Z&h et al. (2011) pointed
out that the number of product variants increased by between 500% and 700% between 1980 and
2002. Yet, over the same period, the production volumes remained the same, or even decreased to
85% of their original values (Z&h et al. 2011). This turbulent production environment calls for agile,
adaptive and rapidly responding production systems that can adjust to the required changes in
production capacity, processing functions and the distribution of orders. As defined by Koren and
Shpitalni (2010), the responsiveness of a production system refers to the speed at which the system
can meet changing business goals and produce new product models. They also stated that while
responsiveness is not yet regarded as being as important as cost and quality, it is fast becoming a
new strategic goal for manufacturing enterprises (Koren & Shpitalni 2010).

The Europe-wide strategic goal of Competitive Sustainable Manufacturing (CSM) calls for the re-use
and adaptivity of production systems. Sustainable development consists of three structural pillars,
namely society, environment, and economy. It involves operational aspects, such as the consumption
of resources, the environmental impact and economic performance of the operations, the products,
the workforce, social justice, community development, and so on (Jovane et al. 2009). The
adaptation, and thus the re-use, of production systems can have a positive economic and ecological
impact through the higher utilization of the resources of the existing system itself. Adaptation
prolongs the lifetime of production systems and allows the potential of the existing resources to be
utilized more effectively. Thus, it supports the sustainability paradigm, both from the economic and
ecological perspectives.

Figure 1 compares the lifecycle of consumer goods with the lifetime of major components in the
production system. It shows that resources and production systems can last much longer than the
products they produce. This fact clearly indicates the potential for adaptation, and the consequent
re-use of the production systems. The potential advantages of adaptation, such as savings in
investment costs and production loss during the changeover of the product, faster ramp-up, and
faster response to the customer requirements are clearly recognized within industry. However, in
many cases, in the automotive industry, for example, the most common practice when the car model
changes is still to disassemble the whole assembly line and build a new one from scratch.

Basic equipment Conveying

>20 years systems
Household appliance >20 years &
ca. 4-8 years L=} Q\;Fﬁ:‘i}a ~)
h. ' (-1
%‘ Automobile r Small electric . = Controls/ 2
—| ca 4-6years a appliance Robotics PLCs £
c % o8 3-D.yjeals &19/¥§ars Linear ca. 10 years 2
2 ' (m systems = o : =
z (e <5 [®pE Hiigy Gripper | &
= , years 4.5 5
5 - -5 years {8
: @ C /@ (3
s 3] - W" z'!‘. =
o] Al ¢ &
3 m 3
= =

Figure 1. Product lifecycle versus system component lifecycle, modified from (Slama 2002).

Any change in the product or production requirements usually leads to changes in the production
system that has to meet these requirements. These changes can be accommodated through the
system’s built-in flexibility or through reconfiguration. It is inevitable that changes incur costs and
take time. Therefore, it would be beneficial not only to be able to adapt the existing system to the
new requirements, but also to be able to estimate the scale of the required change (adaptation).
This would then give an indication of the capital investment needed, other costs, and the timescale,
which information could then be used to choose and prioritize between different product scenarios
which require change.

Based on research carried out during the FP6 European Integrated Project called PiSA (Flexible
Assembly Systems Through Workplace-Sharing and Time-Sharing Human-Machine Cooperation) by
Fleschutz et al. (2008; 2009) and Harms et al. (2008; 2009) it was noted that companies rarely decide
to reconfigure their assembly lines. The survey of selected European end-user companies and system
integrators, which was conducted during the project, showed that both the producers and users of
assembly equipment had little experience of the process of re-using existing equipment. Further
problems were caused by inadequacies in the design and preparation of the production equipment, a
lack of life-cycle data and monitoring concepts, insufficient information management and no holistic
planning concepts for the adaptation and re-use of existing production facilities (Fleschutz et al.
2008; Harms et al. 2009.) Without up-to-date information about the capabilities and lifecycle of
existing resources, it is practically impossible to estimate the scale and cost of any needed
adaptation.

A cost analysis of two real re-use cases in the PiSA-project showed that the potential for cost
reduction through the re-use of production components and systems was between 30 and 80 %.
However, accurate cost estimates are difficult to make. For example, the value of an old system can
only be approximated based on the effort required to remanufacture or retool it, and this is difficult
to predict without the benefit of experience. Because there is no clear financial evaluation of the
impact of re-use, any calculations depend strongly on vague assumptions. According to the
interviews carried out during the project, the main cost drivers in the re-use of an assembly system
are the adaptation processes needed to meet the required functional capabilities. Risks involved in
the re-use of existing equipment arise through the accumulation of unforeseen adaptation
processes. (Fleschutz et al. 2008.)

In order to ensure the economic and technical success of adapting an existing production system,
information and knowledge management is essential. The information needed to evaluate the
compatibility of the existing system with the new product requirements, the required modifications
and consequently the effort and expense of the adaptation, is based on extensive knowledge from
different sources in various fields of expertise. These are, for example, product design, process
planning, system design and integration, operation and maintenance, as well as usage history and
prior adaptation experiences. The management of such information in industry is not currently
sufficient to generate reliable plans for adaptation, let alone dynamic reactive adaptation. What
makes the management of this information difficult is its rapidly evolving nature. Another problem is
the poor interoperability between the systems used to create, save, manage and utilize this
information. Thirdly, traditional hierarchical information management, decision making and
operation control systems are based on traditional stand-alone concepts that are optimized towards
achieving their goals in static environments in which behaviour can be predicted. However,
nowadays a production environment is anything but static. These traditional systems, designed for
mass production, cannot cope with frequently changing orders and production volumes, or the
production of customized solutions on batch size one.

1.2. Scientific and technical challenges

According to Rahimifard and Weston (2009), in order to be agile and adaptive, the production system
needs to be able to meet the changing market requirements in terms of product characteristics and
quantities. To do this, the production system needs an inherent ability to facilitate continual and
timely change in its structure and in its functional operations. Structure refers to the way in which
the functional building blocks of a production system are assembled to form a holistic, interoperable
system, while the term function describes the abilities of the building blocks or the production
system as a whole to realize a defined purpose. (Rahimifard & Weston 2009.)

Different manufacturing paradigms have been proposed in recent years to overcome the challenges
relating to responsiveness and adaptivity. Flexible manufacturing systems (FMS) are designed to
meet a wide variety of requirements without any physical modifications to the system structure
(Koren 2006; Terkaj et al. 2009a). Reconfigurable manufacturing systems (RMS) also aim to meet
these requirements by offering the rapid adjustment of production capacity and functionality in
response to new circumstances, through rearrangement or change in both the system’s structure
and the hardware and software components (EIMaraghy 2006; EIMaraghy 2009; Koren et al. 1999;
Mehrabi et al. 2000). Agent-based and holonic systems take a more dynamic approach to dealing
with the changeability requirements through the provision of self-organizing capabilities. Agents and
holons are generally characterised as distributed, autonomous entities capable of intelligent
behaviour and interaction with both their environment and other agents in order to achieve a
particular goal (Monostori et al. 2006).

Most research into adaptive systems has focused on static adaptation, in which physical changes are
made to the system “offline” when the system is not running. The agent-based and holonic
approaches are often aimed at dynamic adaptation, in which logical or parametric changes happen
“online”, while the system is running. Whereas static adaptation is usually based on planning, either
by a human expert or through automatic planning methods, dynamic adaptation requires self-
organizing capabilities from the system, because the system needs to react to changes in its
environment. As stated by Westkamper (2006), self-organization, self-optimization, target-

3

orientation and self-control are all characteristic features of the future structures of factories and
production networks. The realization of these requirements calls for new methods and solutions that
would drastically reduce the time and effort put into planning and implementing the alterations in a
factory, such as plug and play interfaces, modern information and communication technologies,
simulations and new planning methods. (Westkdmper 2006.) Regardless of whether the adaptation is
static or dynamic, or whether it occurs on a physical, logical or parametric level, intelligent methods
and tools are needed to support the adaptation. In this dissertation the word ‘adaptation’ is used to
cover all these different levels, which will be discussed in more detail in Chapter 3.1.2.

Previous research on reconfigurable and adaptive systems has concentrated on hardware and
control technologies, as well as the physical structure of such systems (Bi & Zhang 2001a,b; A. I.
Dashchenko 2006; EIMaraghy 2009; Martinez Lastra 2004; inter alia). Significant steps towards
modular assembly equipment and standardized hardware and control interfaces have been made by,
for example, the European Union-funded project called EUPASS (Evolvable Ultra-Precision Assembly
SystemS) (EUPASS 2009). According to Ferreira et al. (2010), the modular architecture paradigm for
new production systems, which focuses on the clear functional decoupling of equipment module
functionalities and the use of standardized interfaces to promote interchangeability, presents the
possibility for developing automated adaptation methods. However, the standardization of hardware
and software interfaces is not in itself enough to enable the rapid adaptation of a production system.
Efficient methodologies, tools and information models are needed to support humans in the
adaptation planning process, and also to enable reactive adaptation to take place while the system is
running. These methodologies should also take into consideration the fact that most of the systems
on today’s factory floors are still not modular and they lack standardized interfaces. However, it is
still desirable that they can produce different products in different volumes, and that production in a
changing environment can be planned and controlled. Regardless of whether the system is
characterized as “reconfigurable” or not, it will still have to undergo some changes during its lifetime.

Most of the proposed methods in the field of physical adaptation design have focused on structural
configurations at the single machine level (Bi & Zhang 2001b; O.A. Dashchenko 2006; Jang et al.
2008; Moon 2006; Tang 2005; inter alia), while the systems themselves have usually been designed
intuitively (Bi et al. 2008). There are no holistic integrated methodologies which simultaneously take
into account the old production system, its layout, the reference system architecture (i.e. the type of
system that can be implemented), new product requirements, resource capabilities, resource history,
the lifecycle and condition of the equipment, and of course economy and efficiency. As noted in, for
example, both the PiSA and EUPASS projects (Fleschutz et al. 2008; Harms et al. 2009; Ferreira et al.
2010), the adaptation planning of production systems today is, in reality, a human driven process,
which relies strongly on the expertise and tacit knowledge of the system integrators or the end-user
of the system. Even though this process may result in feasible system configurations, it seldom
follows a systematic approach to planning the adaptation, which means that the solutions are
neither replicable nor transparent. Such a time-consuming planning process may produce expensive
plans, making frequent system adaptations unfeasible.

To conclude this introduction to the scientific and technical challenges involved in adaptation, and to
encapsulate the driving force behind this thesis, it can be stated that there are three main reasons
why the adaptation of production systems, both static and dynamic, has been so rare to date. These
are: 1) the lack of extensive methodologies and tools to plan the adaptation at the whole production
system level; 2) the lack of adequate information models and tools for gathering and managing

4

information, in order to support both the adaptation planning and reactive adaptation. For example,
information about the capabilities and lifecycle of current systems is lacking from existing models; 3)
the lack of distributed, decentralized, modular ICT and control architectures which support the self-
organizing capabilities of the systems. This thesis contributes to the first two points, while the case
studies used in the work also provide an insight into the third point.

2. RESEARCH DESCRIPTION

2.1. Introduction to the research problem

Chapter 1.2 discussed the scientific and technical problems which hinder the adaptation of
production systems in the industry today. As was stated, a proficient mechanical design and an
intelligent control system design are not enough in themselves to support the efficient adaptation of
production systems in a changing environment. An intelligent methodology, including tools and
information models, is needed to support both rapid adaptation planning controlled by human
experts and the dynamic reactive adaptation of the systems.

This thesis aims to provide solutions for the following two problems as stated in Chapter 1.2:

Problem 1: Lack of extensive methodologies and tools to plan the adaptation on the production
system level;
Problem 2: Lack of sufficient information models, as well as tools for information capture and

management, to support the adaptation planning and reactive adaptation.

Two types of change stimuli for the production system have to be considered. These are: lifecycle
dynamics relating to long-term changes, such as new installations or the replacement of old
equipment (static); and, run-time dynamics relating to short-term changes which need to be solved
while the system is running, such as re-routing and re-scheduling (dynamic). So, both of these
approaches to adaptation, and any combination of the two, should be supported by the new
methodology:

1. Static adaptation - Adaptation happening “offline” when the system is not running. Static
adaptation needs planning, either by humans or through automatic planning methods.

2. Dynamic adaptation - Adaptation happening “online” when the system is running. Dynamic
adaptation requires the system to have self-organizing capabilities, in other words, the
system needs to autonomously react to any changes in its environment.

In the context of production system adaptation, resource models represent the key factor. Based on
the literature review presented in Chapter 0, a critical factor for the computer-aided adaptation of a
production system is efficient resource models, which provide the information needed for
equipment selection and system integration. It is obvious that a digital representation of the
capabilities of a system and its components would significantly ease the design of the system and its
integration, adaptation and operation. It would allow an automatic procedure to find suitable system
components and to build alternative scenarios during the early phases of adaptation planning. This
requires a formalized representation of the functional capabilities of the resources, along with any
other relevant properties they may have. However, presenting the simple capabilities of individual
resources is not enough when adapting complete production systems. Therefore, what is also
needed is a way to describe the combined capabilities of multiple co-operating resources.

The adaptation planning problem deals with the different levels of a system simultaneously, as
shown in Figure 2a. When adapting a production system for a new requirement, it is preferable to
view the system (and its capabilities) from the top, rather than to consider each individual resource
in the system separately. For example, there may be stations that could be utilized as they are

without any physical changes. However, in order to identify them, a formal description of the
combined capabilities of the station composed of multiple devices is needed. According to Ueda et
al. (2001), the design of production systems follows emergent synthesis, wherein the local
interactions between the artifacts of the system dictate the global behaviour through bottom-up
development to achieve the purpose of the whole system. On the other hand, the global behaviour
results in new constraints on the behaviour of the elements in the system (Ueda et al. 2001). Due to
these local interactions, the combined behavior of resources is something other than the sum of the
behavior of each individual resource. Consider, for example, the problem illustrated in Figure 2b.

:_""""""""""""""""-: Robot unit with:
! 1
: Cell Cell Cell ! * Assembly robot with certain payload, workspace,
: 1 12 13 i velocity, accuracy, repeatability...
! 1
! Line Production system 1 O Vacuum gripper with certain dimensions, weight,
ittt eietetutuiiataiieai suction force, number of cups, vacuum cup
: ! diameter...
' Station Station Station ! . .
i 11 12 13 et »> What are the combined capabilities of these
1 - . .
! i devices or can they even be combined? What is
! .
‘Celtl Production system their payload? What about accuracy or
T Tt Tt TS workspace?
e s s N !
' Device Device Device !
! 11 12 13 '
L\ \ < J H
1
Station________________ Production systemn!
mTToIoITTTTTo o TTToTo oo o-moToooooy
e e s R !
i (| Element Element Element |) !
1
A 11 2 = i VB
! .
1 Device Production system: Robot (EEYOtET
a) PR Produclonsyser)

Figure 2. a) Partonomy of different system levels. b) Example of the combined capability problem.

Several approaches and models to describe the resources exist, as will be discussed in Chapters 3.3
and 3.4. However, these approaches don’t support such modelling of resource combinations and
their combined capabilities, at least not in sufficient detail. This is a considerable problem for
adaptation planning. Therefore, much of the emphasis in this work is on solving this capability-based
resource description problem. As stated in Chapter 1.2, many earlier adaptation methods have
concentrated on structural configurations at the single machine level. This thesis aims to concentrate
on the whole system level. Therefore, the desired granularity in the resource description is from the
line to the device level, rather than going down to the level of the individual elements.

2.2. Formulation of the research objectives and questions

The high-level objective of the thesis: Development of a methodology to support computer-aided
adaptation of production systems in a changing environment.

In the context of this work, the term ‘production system’ refers to discrete manufacturing and
assembly systems. The term ‘changing environment’ refers to a production environment which is
characterised by changing requirements in terms of product variants, changing product models,
fluctuating volumes, changing characteristics (capabilities) of the production system components and
the integration of new technologies. The aim is to reduce the planning work traditionally done by
humans by developing computerized solutions, especially for information management, handling,
and filtering. In particular, the aim is to facilitate the creation of feasible adaptation solution

7

scenarios and hence to reduce the need for manual planning work. The term ‘feasible’ here refers to
a situation where the system is compatible with the requirements, but not necessarily optimal. The
methodology concentrates on evaluating the changes the system needs in terms of hardware. The
cost and investment calculations are beyond the scope of this thesis. However, once these hardware
changes are identified, this would also provide a foundation for estimating the investment needed.

Based on the literature survey a following ‘working statement’ was adopted as a premise for this
work to guide the development of the methodology:

The adaptation of production systems to changing requirements, both static, human-centric
adaptation as well as dynamic reactive adaptation, can be eased by a formal capability-based
resource description and framework and rules for matching the resource capabilities against
product requirements in the context of the adaptation process.

The backbone for such an adaptation methodology is a suitable model (schema) that can capture all
the relevant aspects of the adaptation process, including the activities, the information and process
flows during the adaptation planning, and reactive adaptation. The main focus of the work is on the
development of a formal resource description model, which will enable the automatic matching of
product requirements with system capabilities and is, therefore, the most fundamental element of
the methodology. In addition, a framework and rules are needed to enable this matching. In order to
complement the methodology, it is also desirable to have an approach to evaluating the impact of
the changes in product requirements on the production system under various product scenarios.
Figure 3 represents an overview of the problem definition of this thesis with the two supported
viewpoints.

CURRENT SYSTEM ADAPTED SYSTEM

ﬁ\lew physical system \

Requirement
change

Current physical system
> . \ -
configuration ——N

Production system

adaptation \STATIC ADAPTATION
methodology

ﬁurrent locigal system | Adaptation schema l ﬂew logical system \
configuration configuration

[reo2 | (=
D = Resource @D [res

O e Jlred -

{Res 1 | description

Framework and
rules for capability-
based matching

N

N

Approach for
evaluting impact of
change

A}

QNAMIC ADAPTATION /

WAMIC ADAPTATION

Figure 3. Problem definition overview.

The high-level objective presented at the beginning of this chapter is divided into the following sub-
objectives:

Sub-objective 1: Adaptation schema

The first sub-objective is to define an adaptation schema, which illustrates the overall adaptation
planning process and activities, as well as the information requirements and flows to support both
human-controlled adaptation planning and reactive adaptation.

Sub-objective 2: Resource description model based on capabilities

The second, yet the most important of these sub-objectives, is to develop a resource description
model which can capture the relevant resource characteristics, and support both the adaptation
planning and the reactive adaptation of the production systems. The resource description model
should enable the automatic matching of product requirements and resource capabilities and
provide the basis for further automatic reasoning. It should also enable the description and
management of the capabilities of multiple co-operating resources.

Sub-objective 3: Framework and rules for capability-based matching in adaptation
The third sub-objective is to define a framework and rules for matching the product requirements
against the system capabilities during adaptation planning and reactive adaptation.

Sub-objective 4: Preliminary approach to evaluating the impact of change

The fourth sub-objective is to devise a preliminary approach to evaluating the impact of the changes
in the product requirements on the production system. This approach should be based on the results
of the implementation of the previous three sub-objectives.

Based on the above objectives, the following associated research questions were formulated:

Research question 1: How should the overall adaptation planning process be presented?

What method can be used to present the overall adaptation planning process? What are the steps in
the adaptation planning process? What kind of information resources are needed during the
adaptation planning? How is the information created and what is the information flow between the
different activities?

Research question 2: How should the resource information be presented so that it allows the
automatic matching of product requirements against resource capabilities?

What kind of resource characteristics need to be included in the resource model to support
adaptation planning and reactive adaptation? How should the capabilities of the resources be
modelled? How should the combined capabilities of multiple co-operating resources be represented?
How should the link between the simple and combined capabilities be managed?

Research question 3: How should the resource capabilities be matched with the product
requirements during adaptation planning and reactive adaptation?

What is the process and what steps need to be taken when matching the product requirements to
the resource capabilities in the adaptation context? What kind of rules are needed for this matching?

Research question 4: How can the impact of changes in the product requirements on the
production system be evaluated?

How should the solutions developed for the previous research questions be utilized for such an
evaluation? How should different product scenarios which require change be compared?

2.3. Research methodology

Instead of trying to describe and understand the reality behind the current situation, the aim of this
work is to solve a practical problem and thus improve the current situation. Therefore, the research
methodology has been adopted from design science. In this thesis, Design Research Methodology
(DRM) (Blessing & Chakrabarti 2009) is utilized as the basic framework for clarifying the research
problem, formulating the proposed solution and analysing the results. The DRM is divided into the
following stages and respective means and outcomes:
1) Research Clarification (RC)
At this stage, the goals of the research are formulated through an analysis of the relevant
literature.
2) Descriptive Study | (DS-1)
At this stage, there is an extended analysis and review of the literature and empirical data may
be collected to gain a deeper understanding of the research problem and influential factors.
3) Prescriptive Study (PS)
At this stage, all the experience, knowledge and assumptions about the problem are synthesized
into a proposed solution.
4) Descriptive Study Il (PS-11)
At this stage, the proposed solution is analysed and evaluated against the defined goals using
empirical data.

According to Blessing & Chakrabarti (2009), DRM shouldn’t be interpreted as a set of stages and
supporting methods to be executed rigidly and linearly. Instead, it should be used flexibly and should
allow multiple iterations. For example, Descriptive Study | provides the means to further clarify the
research problem from its initial formulation.

In order to develop a solution proposal, the classical method of knowledge-based system
development is utilised. It consists of the following phases (Buchanan & Duda 1983):

o Identification: identifying the characteristics of the problem and setting goals;

o Conceptualization: making the key concepts and their relations explicit;

e Formalization: presenting the identified concepts in formal language;

e Implementation: presenting the knowledge from the previous step in a system shell;

e Testing: utilizing sample cases to test the system and identify any weaknesses;

e Revision: revising the previous steps based on the test results.

Utilizing these two above-mentioned methodological frameworks, the objectives of the thesis were
approached using the following steps and associated research methods. The steps are divided into
three categories: awareness of the problem and understanding the topic; development of the
proposed solution; evaluation and conclusions.

Awareness of the problem and understanding the topic (RC, DS-1)

Step 1: Identifying the research problem and objectives

The research started with an extensive literature survey, focusing mainly on manufacturing- and
production-related journals and refereed conference articles and compilations. Bibliometric
methods, such as citation analysis and co-citation coupling were used to assemble the relevant
literature. The main goal of the survey was to outline the theoretical framework and requirements

10

for the study, and to recognize the state of the art in the field. The objectives for the research were
defined based on the literature survey.

The development of a proposed solution (PS)

Step 2: Adaptation schema definition
Based on the understanding gained from the previous step, it was recognised that a fundamental

enabler for efficient adaptation is an understanding of the activities and information flows which
characterize the adaptation process. Therefore, the actual development work started by defining the
initial adaptation schema that illustrate the activities, information flows, resources and controls used
during adaptation planning and reactive adaptation. This forms the backbone of the adaptation
methodology. The schema was defined based on the literature and the author’s own experience.
Several iterations were made after steps 3 and 4 before the final adaptation schema was formulated
with IDEFO (Integrated DEFinition for Function Modelling) activity diagrams.

Step 3: Development of a resource description model based on capabilities
The third step developed an ontological resource description model which describes both the

resources and their capabilities, and the combined capabilities of multiple co-operating resources.
The work started by defining the requirements for the resource description model, and then tackling
the resource description problem using a case-based methodology, utilizing the TUT-machining
laboratory and the TUT-micro-factory environments as cases in point. Together, these two case
environments provided a relatively broad view of different production resources and processes,
thereby facilitating the development of a generally applicable model. Datasheets of the resources
were used as primary information about the resource characteristics when generating the model.
The existing Core Ontology by Lanz (2010) was used as a basis for the knowledge modelling, and in
this thesis, this was reinforced with information about the resource capabilities. In order to tackle the
combined capability problem, the upper level capabilities (combined capabilities) were divided into
lower level capabilities (simple capabilities) using the functional decomposition method. The
capabilities of the two case environments (and other similar ones) were included in the instantiated
capability model, containing currently over 90 capability instances. A Capability Editor tool was
developed to allow the capabilities to be modelled to the Core Ontology.

Step 4: Development of framework and rules for capability-based matching
The fourth step started with a definition of the overall framework for matching the product

requirements against the production system capabilities. After that, the capability taxonomy was
defined to enable the high-level mapping of resources and product requirements. Several existing
process descriptions and standards were used as a basis for the development of the taxonomy. The
rules and rule base were developed on a conceptual level in order to facilitate detailed capability
matching. The development of the rule base began by defining what kind of rules are needed, how
they should be organized and how they can be used in the adaptation planning and the reactive
adaptation, after which a number of rules were written and implemented. In order to take into
account the specific nature of adaptation, the rule base consists not only of rules relating to
capability matching, but also adaptation-related rules and guidelines, which may be used as part of
the capability matching and in the selection of the final configuration. Again, the case-based
approach was used in the development of these rules.

11

Evaluation and conclusions (DS-11)

Step 5: Validation of the developed methodology with realistic case studies
In the fifth step, the developed adaptation methodology and the models and concepts contained

therein were validated with realistic case studies. The first case, implemented in the TUT-machining
laboratory, represents a holonic production environment where the adaptation takes place
dynamically through reaction and self-organization. The second case study, modelled in the TUT-
micro-factory, represents a more traditional production system where the adaptation is based on
human-controlled planning. The resulting resource description was tested and validated by
describing the capabilities of these two case environments, which consisted of real production
resources. Altogether about 65 individual resources were described with the model. A number of the
capability-matching rules were also implemented to validate the capability-matching framework.

Step 6: Evaluation of the proposed methodology
In the final step, the methodology which had been developed was evaluated against defined
objectives, and the conclusions of the study were formulated.

2.4. Limitations and assumptions

As the broad focus of this thesis touches on a number of different research areas, certain limitations
and assumptions need to be stated. Firstly, in the scope of this thesis, the product is assumed to be a
known input, even though it is undeniable that there is an iterative, multi-directional and dynamic
relation between products, processes and production systems. This thesis starts with the assumption
that the product is defined, and no modifications are made to the product based on the system
specifications. Naturally, the feedback loop from production to the product designer’s table is crucial,
but product design itself is not considered in this thesis. Nor does the methodology developed in this
thesis consider the production control side.

Secondly, the aim is not to develop an optimal resource description covering all the possible resource
characteristics, but to develop a resource model which provides enough expressiveness to meet the
requirements of the two case studies. For example, the developed resource description is not
intended to model the kinematics of the machines, because there are multiple other models
available for modelling those, such as virtual simulation models. Thirdly, the framework and rules
which were developed for capability matching are not intended to completely replace human
expertise from this reasoning phase. Instead, the approach developed here is intended to support
human expertise through the automatic generation of scenarios whose feasibility can be assessed by
the human expert in order to make an informed final decision.

Fourthly, the aim of the adaptation methodology is not to optimize the adaptation plans, but to find
feasible solutions. The thesis concentrates on the adaptation of systems in a changing environment
where the system itself, and the requirements placed on it, are constantly changing and cannot be
foreseen. Optimizing this kind of system is not practical for two reasons. Firstly, all the information
that would be needed to obtain a reliable solution may not be available. Secondly, in a changing
environment, the solution that is optimal at one point in time may already be obsolete at the next
point.

Finally, it has to be noted that although the literature review carried out for this thesis aims to
summarize the research activities of other researchers investigating similar research questions, it

12

must be accepted that there may be other implementations and methods published in unrecognised
conferences or poorly indexed publications which have not been considered here.

2.5. Thesis outline

The thesis is structured as shown in Figure 4.

()

INTRODUCTION
Background and importance of the study
L Chapter 1 y

(RESEARCH OBJECTIVES
Objectives of the research, research questions and methodology, limitations

Chapter 2

) BACKGROUND AND STATE OF THEART)
Production system paradigms, existing approaches supporting adaptation

Chapter 3

PROPOSED APPROACH
Developed methodology for supporting adaptation of production systems

Chapter 4

VALIDATION OF THE RESULTS
Use of the methodology in a modular ICT environment, case studies

Chapter 5

DISCUSSION

Evaluation of the proposed methodology, contributions and future work
Chapter 6

CONCLUSIONS

Concluding remarks of the work
Chapter 7

Figure 4. Outline of the thesis.

Chapter 1 presents the introduction to the research topic by discussing the challenges related to
production system adaptation from both the industrial, and the scientific and technological
viewpoints. Chapter 2 states the research objectives and questions. It also discusses the selected
research methodology and the limitations and assumptions of the research. The literature and state-
of-the-art review is covered in Chapter 3. It reviews existing and emerging production system
paradigms and the current approaches to production system adaptation, and their limitations. The
developed methodology for computer-aided production system adaptation, including the proposed
solutions for the sub-objectives, is presented in Chapter 4. Chapter 5 describes the implementation
of the developed methodology in a modular ICT-environment. The main focus of this chapter is to
validate the results in the context of two practical case studies, representing two different aspects of
adaptation, namely static human-controlled adaptation planning and dynamic reactive adaptation. In
Chapter 6, the developed methodology is evaluated against the set objectives, and there is a
discussion of the contribution this research has made to the problem, and the direction for further
study. Finally, the conclusions of the study are presented in Chapter 7.

13

3. LITERATURE REVIEW

In recent years, much research has been initiated in the area of novel production paradigms and
approaches that can cope with the changing requirements and conditions in the production sector.
Three main research directions can be identified: 1) new production system paradigms around
adaptive manufacturing; 2) the development of modular system components with standardized
interfaces; 3) enhancing the flexibility and adaptivity of production environments through the use of
intelligent, autonomous, real-time control-systems. What have been less thoroughly researched are
methodologies which facilitate adaptation planning and dynamic reactive adaptation. These are the
main points of interest in this literature review.

There are a lot of different methods for production system design. However, most of these methods
focus on the design of a new production system, while relatively few researchers have studied how
an existing production system can be adapted in order to meet changes in the requirements for the
system. Methodologies for generating structural (re-)configurations at the single machine level do
exist, but proper extensive methodologies and tools for the adaptation of complete production
systems are not so well established.

This section aims to furnish the background to the development of the adaptation methodology by
surveying the ‘state of the art’ in the field. First, different production system paradigms will be
discussed in Chapter 3.1. Chapter 3.2 discusses traditional approaches to system design and
reconfiguration as an extension of traditional system design. Chapter 3.3 then reviews the existing
approaches of a number of researchers to production system adaptation, and finally, in Chapter 3.4,
the information models supporting adaptation are reviewed.

3.1. Production system paradigms

This chapter aims to provide a theoretical framework for the study. First some traditional production
system paradigms are briefly discussed, followed by a discussion of adaptive production systems,
adaptation and related terminology. After that, complex adaptive systems and systems intelligence
will be discussed, followed by the emerging evolutionary system approaches, which utilize the theory
of complex systems. Finally, this chapter will finish by comparing static and changing systems based
on the theory presented in the previous chapters, and lay down the foundation for the developments
followed in this thesis.

3.1.1. Traditional production system paradigms

The three major types of traditionally-recognized manufacturing systems are dedicated, flexible and
reconfigurable manufacturing systems. The characteristics of these system types are discussed
briefly below.

Dedicated manufacturing systems (DMS)

Dedicated manufacturing systems are based on inexpensive, fixed automation that produces a
company’s core products or parts at high volumes and over long periods of time. These dedicated
systems are usually designed to produce a single part at a high production rate, which is achieved by
utilizing multiple tools simultaneously. (Koren & Shpitalni 2010.) Dedicated systems are tailored to

14

certain static production requirements and thus their performance is robust and the initial capital
cost is low (Landers et al. 2006).

Flexible manufacturing systems (FMS)

Flexible manufacturing systems are designed to produce a variety of products with a changeable mix
on the same system with short change-over times. They are very often comprised of general-purpose
CNC-machines and other programmable forms of automation. The production rate of a flexible
system is low compared to that of a dedicated system. Furthermore, due to the combination of high
equipment costs and low productivity, the cost per part of using FMS is relatively high. (Koren 2006;
Koren & Shpitalni 2010.) According to Landers et al. (2006) flexible manufacturing systems are not
tailored to any specific requirement, but are designed to accommodate a wide range of changes in
production requirements, and therefore they often contain excess capability, which results in
unnecessary cost for the customers. In other words, the flexibility is built into the system and the
capabilities of the system are pre-determined. For example, in the case of a multifunctional gripper,
the gripper has got multiple fingers that are used or not, depending on the shape of the product to
be handled. Furthermore, the capability limits of flexible systems are fixed and therefore they cannot
cope with unforeseen requirements, which may exceed their built-in flexibility.

Reconfigurable manufacturing systems (RMS)

Reconfigurable manufacturing systems (RMS) aim to combine the high throughput of dedicated
systems and the flexibility of flexible manufacturing systems. Instead of providing the general
flexibility with built-in high functionality of FMS, reconfigurable systems aim to provide customized
flexibility. (Koren & Shpitalni 2010.) The objective of RMS is to offer rapid adjustment of production
capacity and functionality, in response to new circumstances, through the change or rearrangement
of both its structure and its hardware and software components (Koren et al. 1999; Mehrabi et al.
2000). These components can be, for example, machines and conveyors in whole systems,
mechanisms in individual machines, new sensors, or new control-algorithm software. The new
circumstances requiring changes could be, for example, changing product demands, the production
of a new product on an existing system, or the integration of new process technology into existing
manufacturing systems (EIMaraghy 2006). As noted in the survey by Terkaj et al. (2009a), many
systems simultaneously incorporate the characteristics of both flexible and reconfigurable systems.

Koren (2006) and Koren & Shpitalni (2010) stated that in order to achieve exact flexibility in response
to fluctuation in demand, the following key characteristics must be taken into consideration when
designing an RMS: modularity (components are modular), integrability (interfaces for rapid
integration), customization (flexibility limited to part family), scalability (design for capacity changes),
convertibility (design for functionality changes) and diagnosability (design for easy diagnosis). These
are seen as the enablers for reconfiguration. Wiendahl et al. (2007) pointed out that, especially in the
case of assembly systems, two more enablers should be added to this list. The first is mobility, which
is important for reconfiguring single stations or modules in an assembly system, or even for moving
the whole system to another location. The second enabler is the ability to upgrade or downgrade the
degree of automation. (Wiendahl et al. 2007.)

3.1.2. Adaptive production systems and adaptation

Wiendahl and Heger (2004) identified five types of changeability for manufacturing systems:
reconfigurability, changeoverability, flexibility, transformability and agility. Later, Wiendahl et al.

15

(2007) used changeability as a general term to characterise the ability of a system to economically
accomplish early and foresighted adjustment of a factory’s structures and processes at all levels in
response to the change stimulus. Based on the literature around flexible, reconfigurable and
adaptive manufacturing (EIMaraghy 2009; EIMaraghy 2006; Koren 2006; Mehrabi et al. 2000; Tolio &
Valente 2006; inter alia), it is difficult to completely differentiate these concepts. Flexibility is often
referred to as the ability to adapt to different requirements without physical changes to the system,
whereas reconfigurability refers to the ability to change system components when new requirements
arise (EIMaraghy 2006). However, these definitions can be used only if the boundary of the system is
clearly defined. Tolio and Valente (2006) stated that, depending on the boundary, the type of the
changeability can be interpreted as reconfigurability or as flexibility and therefore, it is not possible
to define general statements for these characteristics. EIMaraghy (2006) divided a manufacturing
system’s reconfigurability into both physical and logical reconfiguration, touching on both definitions
of flexibility and reconfigurability. Terkaj et al. (2009a) presented a framework for classifying these
different flexibility-related forms and dimensions.

In order to avoid misunderstandings caused by the multiple definitions of reconfigurability, flexibility
and so on, the term ‘adaptation’ is used in this work to cover both physical adaptation
(reconfiguration) and logical adaptation, as seen in Figure 5. Besides those two types of adaptation,
parametric adaptation is also included in this definition of the term. Such a definition is more
relevant to the goal of this thesis, which is to support the adaptation of production systems in a
changing environment without restricting itself to reconfigurable or flexible systems. Later in this
thesis, the word “reconfiguration” may be used to specifically refer to physical adaptation.

PRODUCTION SYSTEM

ADAPTATION
[| e e e e] —— 1
I PHYSICAL I : LOGICAL PARAMETRIC :
: ADAPTATION I I ADAPTATION ADAPTATION
(hard) (soft) (soft) |
| y |
I y
yout Machines | Re- Re- I
I (Add/remove/ (Add/remove) I routing planning Changing I
| rearrange I | machine I
| devices) I I settings I
Re- Re-
: I\I/Iachine : : scheduling programming I
elements
(Substitute) | I
I I |
I sTATIC | |_ STATIC OR DYNAMIC]

Figure 5. Production system adaptivity, modified from (EIMaraghy 2006).

As Figure 5 shows, there are three basic types of adaptation which affect the configuration of the
production system. According to Brehmer and Wang (1999) the configuration of a system refers to
those aspects of a system that remain in a temporarily fixed state during a given time frame. Those
fixed aspects may include three elements: a complete list of constituent components; the attributes
and properties of each component; and the relationships between the components, e.g. spatial,
temporal, functional, logical, etc. (Brehmer & Wang 1999). The three types of adaptation shown in
Figure 5 are:

16

Type 1: Physical adaptation
e Physical adaptation means that physical changes are made to the system, such as changing
the layout of the system, adding or removing machines or machine elements.
e Adapting the available capabilities.
Type 2: Logical adaptation
o During logical adaptation, no physical changes are made to the system, as any changes occur
on a logical level. These can be achieved, for example, by changing the process sequence and
re-routing or re-scheduling production.
o Adapting the utilization of available capabilities.
Type 3: Parametric adaptation
e Parametric adaptation doesn’t include any physical or structural changes either, but refers to
changing the adjustable machine parameters, such as the speed of a conveyor line.
e Adapting the behavior of available capabilities.

These three types of adaptation are not usually independent of each other. For example, physical
changes in the production system often cause logical changes to the old configuration. However, the
change requirement is usually only targeted to one type of adaptation at a time, so that any other
types of changes follow naturally from the initial adaptation.

Adaptation can also be divided into static and dynamic adaptation. Static adaptation refers to changes
in the system configuration during downtime of the system. Dynamic adaptation is the changes in the
system configuration while the production system is in operation. These dynamic changes can involve
either logical or parametric adaptation. Dynamic adaptation allows the production system to react to
changes in its environment in real-time, for example, to recover from disturbances in the production
line, and to self-organize itself to balance the production flow. While physical adaptation is usually
done at the static level, both logical and parametric adaptation can be either dynamic or static. This
means that logical and parametric changes can be executed either while the system is running or
during its downtime.

3.1.3. Complex Adaptive Systems and Systems Intelligence

In recent years, production system research has started to adopt ideas from complex systems.
According to Bourgine & Johanson (2006), complex adaptive systems are non-linear systems with
many strongly-coupled degrees of freedoms. They are composed of multiple, interacting
autonomous units, such as agents, actors or individuals having adaptive capabilities. The adaptive
capability is manifested by the ability of these multiple-component systems to learn and evolve
based on internal and external dynamic interactions. The components and organizational structures
are able to react to their environment and feedback, and adapt their functions to novel conditions
and tasks. (Bourgine & Johnson 2006.) According to Fryer (2010), the control of complex adaptive
systems is highly dispersed and decentralized and they are characterized by constant, self-organizing
behavior in order to find the best fit with the operating environment.

Complex systems are characterized by emergent phenomena that cannot be easily construed
through a knowledge of their components alone. Complex systems usually consist of at least two
different levels: the macro-level and the micro-level. Whereas the macro-level is concerned with the
system as a whole, the micro-level views the system in terms of its local components. In multi-level
complex systems, the higher-level system processes and behavior result from lower-level co-

17

operative emergence, caused by interaction between the components. Similarly, lower-level system
processes may be influenced, constrained or even determined by higher-level interactions. Due to
the emergence resulting from communication and interaction between the components, the
behavior and capability of the whole system is not just a straight-forward aggregate of the local
components’ behaviors and capabilities. (Ueda et al. 2001; Bourgine & Johnson 2006; Lanz et al.
2012.)

The concept of system intelligence is closely related to complex systems. Saarinen and Haméldinen
(2004) define system intelligence as “intelligent behaviour in the context of complex systems
involving interaction and feedback”. Any object with system intelligence can successfully and
productively interact with the holistic feedback mechanisms of its environment. The object perceives
itself as part of the whole, and takes into account the influence of the whole upon itself as well as its
own influence upon the whole. The intelligent actions of the object are enabled by observing its own
interdependence with its feedback-intensive environment. (Saarinen & Hamalainen 2004.)

Saarinen and Hamaldinen (2010) summarized the key features of the “systems” of system
intelligence (i.e. complex systems) collected from the relevant literature (Jervis 1998; Senge 1990;
Ramage & Shipp 2009; Jackson 2003):

o The behaviour of the system displays features that cannot be obtained by summing up the
behaviours of the isolated components, in other words the system can display emergence.

o The system has the ability to self-organize its components in order to create a new structure
and, consequently, new behavior.

e In order to determine the overall behavior of the system, the relationships and interaction
between parts, giving rise to patterns, regularities and complexity, are more important than
an analysis of the properties of the individual parts in isolation.

e The systems are dynamic, showing changing states and behaviors during their lifecycle.
These changes are often conceptualized in terms of functions or goals. Due to the non-
linearity of the system, a change in one component may have an unanticipated effect on
other components, and on the behavior of the system as a whole.

e The boundaries of these systems are re-definable, flexible and dependent on one’s
perspective, and are artificially created by humans for the sake of clarity and sanity.

Based on the Systems Intelligence approach, system adaptation is only possible through learning.
Learning, on the other hand, requires observation and feedback (Bourgine & Johnson 2006). For an
adaptive production system, feedback loops and an understanding of the feedback are essential.
However, in the case of static adaptation, the feedback and its processing don’t need to happen in
real time. The learning within a production system can occur at either at the human or the system
level, and this learning can result in adaptivity for any of the types presented in Figure 5, above.

Complex Systems science is closely related to the same phenomena in nature and society. Even
though production systems cannot compete in complexity with the social or natural interactions of
man or nature, they do have some characteristics of complex systems. Production systems are
composed of numerous, individual and cooperating resources, which are connected to each other and
have multi-lateral interactions. The global capability of the complete system is determined by the
emergence of the combined capabilities from the capabilities of its individual resources. If we consider
a production system as an ecosystem in which machines, people and computers co-operate, the
complexity is clearly visible. Today’s markets, which the production systems need to serve, are highly

18

dynamic and unpredictable. The systems need to adapt themselves to these changing requirements.
For this reason, it is seen that the study of complex systems could shed light on the current research
into production systems. However, because the methods for solving the problems of complex systems
are not yet mature enough, in this thesis the problem is treated rather as complicated than complex.
On the other hand, this work will result an information model, which aids a system in becoming self-
organising; one of the characteristics of complex systems.

3.1.4. Emerging evolutionary system paradigms in production

In order to cope with today’s dynamic operating environment, and the resulting changes in
requirements, several system paradigms which mimic the characteristics of natural and complex
adaptive systems, such as different self-x capabilities, have been initiated. Some of these approaches
will be discussed in the following chapters.

Fractal Factory

The fractal factory concept of Warnecke (1993) postulates that a manufacturing company is
composed of small components, or fractal entities. As summarized by Tharumarajah et al. (1998), the
three core internal features of fractals include: 1) self-organization, which implies freedom for the
fractals to organize and execute tasks and to choose their own methods for solving problems, which
include self-optimization enabling improvements in the process; 2) dynamics, whereby the fractals
can adapt to influences from the environment without any formal organizational structure; 3) self-
similarity, which can be understood to mean similarities in the goals for the various fractals, which
conform to the objectives of each unit.

Bionic Manufacturing Systems

The bionic manufacturing systems (BMS) approach takes its inspiration from biological systems and
proposes concepts for future manufacturing systems. Based on biologically inspired ideas, such as
self-growth, self-organization, adaptation and evolution, BMS aims to deal with non-predeterministic
changes in manufacturing environments. (Ueda et al. 1997; Ueda 2007.) As stated by Tharumarajah
et al. (1998), a biological system is characterized by spontaneous autonomous behavior and social
harmony within hierarchically ordered relationships. An example of a biological system is a cell,
which is the basic unit from which the other parts of a biological system are composed. Cells can
have different capabilities from each other, and they are capable of multiple operations. Translated
into the manufacturing world, a manufacturing unit can be seen as a cell, as a building block for
hierarchical control structures such as workstations, manufacturing cells, factories, business units or
even production networks. In this kind of structure, the layers in the hierarchy support each other.
The components in the system communicate and inform each other about their decisions.
(Tharumarajah et al. 1998.)

Agent-based and holonic systems

According to Monostori et al. (2006) agent-based computation has revolutionized the building of
intelligent and decentralized systems. The agent technologies are well suited for manufacturing
domains where there are problems with uncertainty and temporal dynamics, information sharing
and distributed operation, or the coordination and cooperation of autonomous entities. Agents are
generally characterised as distributed, autonomous entities capable of intelligent behaviour, and

19

interaction with their environment and other agents, in order to achieve a particular goal. Multi-
agent systems are formed by a network of agents that interact and communicate with each other in
a language which provides them with a common syntax and semantics. Depending on the context, an
agent can be a human, an organization, a machine, a piece of software or any other actor in the
system. According to a review of agent applications in the manufacturing domain, conducted by
Monostori et al. (2006), agent-based approaches have been applied to engineering design, process
planning, production planning and resource allocation, production scheduling and control, process
control, monitoring and diagnosis, enterprise organization and integration, production in networks,
and assembly and lifecycle management. (Monostori et al. 2006.)

Differing from the fully heterarchical agent-based systems, a holonic approach represents a
transition between fully hierarchical and heterarchical systems (Monostori et al. 2006). The holonic
concept was originally developed by the philosopher Arthur Koestler in order to explain the evolution
of biological and social systems. The word “holon” is a combination of the Greek word “holos”,
meaning whole, and the Greek suffix “on”, meaning particle or part. Therefore the term holon means
something that is itself both a whole, and part of a greater whole. (Koestler 1967.) Translated into
the manufacturing world, the concept behind a Holonic Manufacturing System (HMS) views the
manufacturing system as one entity consisting of autonomous modules (holons) with distributed
control. These holons are able to fulfill their own goals based on their own assessment of a situation,
combined with their individual local knowledge, while simultaneously communicating and co-
operating with other holons in order to meet the higher-level global goals. The holonic system is
open. It has no explicit control system, but thanks to cooperation (common interfaces and
negotiation) the holons may form a temporal, or permanent, federation, known as a holarchy. Thus,
a holonic organization tries to combine the responsiveness and robustness of decentralized,
network-like organizations with the stability and efficiency of hierarchical control architectures. The
objective of holonic manufacturing systems has long been to transfer the benefits that holonic
organizations provide for living organisms and societies to manufacturing, i.e., stability in the face of
disturbances, adaptivity and flexibility in the face of change, and the efficient use of the available
resources through self-organizational ability. (Giret & Botti 2004; Monostori et al. 2006.)

The following two examples of agent-based and holonic approaches involve utilizing the concepts of
complex systems and system intelligence. The first is the Evolvable Assembly System (EAS) approach,
which was proposed in 2002 and developed during the EUPASS project. The second approach, the
Distributed Manufacturing System (DiMS) is at this stage more a conceptual framework than an
actual implementation.

Evolvable Assembly System (EAS)

The aim of the EAS is to cope with unpredictable and changing production requirements by building
evolvable capabilities into the production system. As stated by Onori et al. (2010), evolvability is not
only the ability of system components to adapt to changing requirements, but also a characteristic,
which assists the processes in becoming more self-x, which can stand for self-evolvable, self-
reconfigurable, self-tuning, self-diagnosing and so on. The theoretical background behind the EAS
concept is associated with systems theory and complex systems, such as complexity theory, artificial
life, autonomic computing, agents, self-organization and emergence. (Onori et al. 2010.) EAS is
characterized by distributed, multi-agent-based control, along with embedded intelligence at the
component level, intelligent process-oriented modules with well-defined interfaces, reconfigurable
modules with fine granularity, and open architecture. The technical and architectural aspects of EAS

20

development are supported by a methodological framework which includes the EAS Reference
Architecture describing the essential features of an evolvable assembly system. It specify the
characteristics a system should have in order to be an evolvable system; Emplacement and Blue Print
concept, which allows the description of a module’s characteristics; the Skill concept, which
represents the functional skills of the modules; and the EAS Ontology and knowledge model, which
provides common concepts for different stakeholders and defines the relations between different
concepts. (Semere et al. 2008; Onori et al. 2011.)

Distributed Manufacturing System (DiMS) framework

The DiMS (Distributed Manufacturing System) framework, developed by Nylund et al. (2008) and
Salminen et al. (2009) at TUT is based on a holonic architecture in which the holons are independently
communicating entities. In DiIMS, the production environment is seen as dynamic and evolving, i.e. it’s
an open complex system, where the communication and decision making is based on the negotiation
process between these entities. According to Nylund et al. (2011), the DiMS framework is a
development method which supports manufacturing companies in decisions about how to improve
their ability to adapt to changing requirements right from the earliest, conceptual, phases. It utilizes
several different manufacturing paradigms, including holonic manufacturing systems (HMS), fractal
manufacturing systems (FrMS), biological manufacturing systems (BMS), emergent synthesis, and
service oriented architecture (SOA). (Nylund et al. 2011.)

Fealures Demand

Process | Business

Damain

Communication Capability

Digital

Information
Knowladga

Real Virtual
Phiysical Model

Communication .-~~~

Production
Damain

NN

(a) Manufacturing Entity (b) Manufacturing System (c) Manufacturing Levels

Figure 6. General representation of the DiMS system entity, structure and levels (Nylund et al. 2011).

As seen in Figure 6, the DiMS structure can be explained from three viewpoints: the internal structure
of manufacturing entities; the total manufacturing system including the manufacturing entities and
their related domains; and, the different fractal structuring levels of manufacturing. The entities have
internal structures consisting of digital, virtual, and real parts. (Nylund et al. 2011.) The proposed
structure is loosely based on the Product-Resource-Order-Staff (PROSA) reference architecture by Van
Brussel et al. (1998), which describes a manufacturing system with three types of basic holons:
resource holons, product holons and order holons. In the DiMS framework, the products represent
what is offered to customers, the orders explain what the customers are actually ordering, and the
resources are entities in the manufacturing system. The entities are connected with the process,
production, and business domains. The process domain encompasses the manufacturing capabilities
while the production domain is responsible for ensuring that there are enough resources to
manufacture orders within given delivery times and in the required quantities. The business domain is
responsible for markets. (Nylund et al. 2011.) DiMS is still largely only a conceptual framework.

21

However, there have been initial, partial implementations of it as described in Lanz et al. (2010b) and
Jarvenpéd et al. (2011b; 2012a).

3.1.5. Static versus changing systems

This chapter compares static and evolving systems in terms of the theory presented in the previous
chapters, wherein lies the reason why this thesis is not aimed at building an optimization or expert
system for the adaptation planning problem. The fundamental reason for this is that this thesis is
dealing with changing and unpredictable environments and systems, rather than with predictable
ones. Optimization models and methodologies for analysing and optimizing deterministic systems
can be found. In these kinds of systems the goal is known, the system is known and there is no
randomness in the system, i.e. the deterministic model will always produce the same output from a
given starting condition or initial state.

Traditionally, system design has operated under the assumption that the system is static and closed
to external inputs. Current design and planning systems don’t support any other method. However,
real world systems, such as production systems, are not static and deterministic closed-world
systems, but rather need to evolve in response to unpredictable, external inputs. Therefore the
problem should be approached from a stochastic, or open-system viewpoint, as is suggested by the
evolutionary system paradigms presented in Chapter 3.1.4. Table 1 summarizes the characteristics of
static closed-world systems and changing open-world systems with information collected and
adapted from the multiple sources discussed in Chapter 3.1.4.

Table 1. Comparison between static closed and dynamic open systems.

Characteristics of a static closed system Characteristics of a changing open system
e Environment the system (ob)serves is e Environment the system (ob)serves changes
assumed to be static. unpredictably.
e The systemis a closed world systemand | ¢ The system is an open world system, which accepts input
doesn’t take input from outside world. from the outside world.
e Because the environment is static, the e The system adapts in response to the inputs in order to
system can be optimized. survive in its environment.
e The system is hierarchical and extremely | ¢ The system, as well as the environment, requires feedback
rigid. from actions.
e Only pre-defined interactions between e The system structure is not rigid, but adaptive.
the system parts exist. e Interrelated system elements work towards a common
e The behavior of the system is goal; there are multiple causes, effects and interactions.
predictable. e Due to multiple interactions and random factors coming
from the environment, the behavior of the system can not
be predicted.

This thesis concentrates on the adaptation of systems in a turbulent environment where the system
itself and the requirements placed upon it change unpredictably. Optimizing this kind of system is
not feasible because of the three main issues discussed below.

The first difficulty, when working with industrial problems, is that any definition of the cost function,
or a precise problem statement, is inextricably linked with the design process. In many cases, the
designer’s preferences cannot be articulated accurately or may not even be known. The adaptation
planning problem, like most industrial problems, is not a single-objective optimization problem, but
has multiple, often conflicting, objectives. Multi-objective optimization refers to the process of

22

systematically optimizing a number of objective functions simultaneously. The primary goal of multi-
objective optimization is to model a decision maker’s preferences (ordering or prioritising objectives
and goals). (Marler & Arora 2004.) With this kind of multiple-objective optimisation problem, it is
difficult to talk about the optimum, since there is no common agreement on what the optimum is.
The adaptation planning problem has a complicated structure precisely because of its multiple
components, including the selection of devices, maximization of the use of existing system
components, system availability, scheduling, efficiency, cost, and so on. A criterion which is valued in
a specific situation may change from case to case, and new criteria may emerge. It is therefore
impossible to formulate a generic and reusable objective function.

Secondly, this thesis deals with dynamic, changing environments, in which not only the environment
but also the system are both constantly changing. A solution that is optimal at one point in time may
already be obsolete at the next point, because the prevailing conditions have changed. As can be
seen from Table 1, it is, in practice, impossible to optimize these kinds of dynamic open systems,
simply because their behavior is not predictable. Therefore, there is no point in wasting time trying
to define highly accurate objective functions and problem statements, if they can’t provide the
correct solutions anyway.

Thirdly, it is highly probable that all the information required for a reliable solution is not available.
Adaptation planning needs information from a variety of dispersed sources, and such information is
often insufficient. The planning process has to make do with the information that is available.
Consequently, it is not feasible to try to build an expert system which can make adaptation decisions
automatically. An expert system is a knowledge-based system designed to encapsulate the
accumulated human expertise in a particular, specialized domain, which is to say that it mimics the
capabilities of human experts (Hopgood 2001). Expert systems can only treat problems within
narrow limits, rather than more broadly relevant and realistic issues. Another important issue is that
expert systems are no use if the data they are working with is incorrect, or even merely inaccurate,
as this may result in misleading solutions (Slack et al. 2004). Adaptation planning requires
information from multiple sources and is usually highly dependent on the context from which it
emanates. The context-information cannot yet be handled by the current, computerized, information
management systems. In summary, building an expert system is not feasible because it would need
to make decisions based on information which doesn’t exist, which would lead to highly unreliable
solutions.

3.2. Traditional system design and physical adaptation

According to Koren et al. (1999), reconfiguration, i.e. physical adaptation, is a natural extension of
modular system design, with the primary difference that it needs to take the existing system into
consideration. Unlike traditional system design, in reconfiguration design the system has already
been built and only needs a few modifications. It is not economically viable to design the new system
from scratch, even though the new system would probably be better optimised for the new
application. This is especially true when batch sizes are small (or even single units). Therefore,
traditional methods need to be modified before they can be used for reconfiguration design.

Mehrabi et al. (2000) indicated that there are two levels in the reconfiguration design problem, the
system level and the machine level. First, the reconfigurable system is designed at the system level.
The product features are related to the required processing units and layout. In other words, it is the

23

properties of the product that define what kind of processes and operations are required, and,
therefore, what kinds of machine types are needed. In the light of these system level specifications,
the optimal design for the machines is defined in detail at the machine level. (Mehrabi et al. 2000.) Bi
et al. (2008) stated that there are basically two methods for designing a new configuration for an
existing system. The first approach is to design a new system solution from scratch, and then to
compare it with the existing system in order to establish what changes are required. This is not a very
practical method, however, because it can lead to major, yet unnecessary changes. The second
approach is to start with the original specification for the existing system, and to change that until it
meets the new requirements. (Bi et al. 2008.)

Which methodology is used for configuration and reconfiguration depends on the ‘coupling’ nature
of the system. Systems can be classified as uncoupled, loosely-coupled or strongly-coupled. In
uncoupled systems, one physical module satisfies one functional requirement. In strongly-coupled
systems, one physical module doesn’t solely satisfy one functional requirement, but rather, all the
design variables have to be considered together before deciding whether the proposed configuration
fulfils its requirements. (Bi et al. 2008.)

The algorithmic design approach, proposed by Pahl and Beitz (1996), defines a procedure that needs
to be carried out during the design process. Pahl and Beitz divided the system design process into
four main phases: planning and clarifying the task, conceptual design, embodiment design and detail
design. They stated that both ‘problem decomposition and synthesis’ approaches and ‘hierarchical
design’ approaches are aimed at dealing with the inherent complexity in large system engineering.
Their approach is to decompose the overall design problem into sub-problems until a satisfactory
level of simplicity and clarity has been reached. At this level, sub-solution alternatives can be
defined. If these solutions are found to satisfy the original problem definitions, they are combined
until the full system has been defined. (Pahl & Beitz 1996.) At this point, the system solution has to
be validated against the original problem.

According to Avgoustinov (2007), in reality it is very rare for a solution to match the problem exactly.
While the decomposition stage constitutes the analysis phase of problem-solving, combining the
solutions and matching them to the original problem constitute the synthesis phase, as shown in
Figure 7 (Avgoustinov 2007).

Sub-problems

N
Problem/ — \
Task Decomposition ‘4
N A
N
N Analysis
N .
Matching N Matching
N
~N
N
Synthesis N
11
8o) e 5
N
Sub-solutions N

Solution
Figure 7. Problem solving by decomposition.

24

According to Avgoustinov (2007), the sizes of the sub-solutions indicate their granularity. Clearly, a
coarse-grained solution would be put together faster but match the problem less closely than a fine-
grained solution. (Avgoustinov 2007.) In terms of production system design, this means that the
more finely-grained the modules are, the better the solution will match the original production
system design problem. However, finely-grained modules would drastically increase the time needed
for the design phase, as well as the complexity of the design process as a whole. It would also
probably result in greater changes to the production system during any subsequent adaptation
phase. Therefore, when starting adaptation planning, it is preferable to view the system as a whole
entity, from the top, than to consider each individual resource on the system, especially if the
optimality of the system is not crucial.

Suh (1998) presented an Axiomatic Design Theory (ADT) for engineering system design. The
axiomatic design approach defines domain models and rules, which are used to generate a new
design. The axiomatic design method focuses on the generation of functional requirements (FRs) and
the selection of design parameters (DPs) to fulfil the requirements. The FR’s and DP’s are connected
by means of design matrices, as shown in Equation (1). The binary elements of the design matrix,
expressed as X’s and 0’s, indicate the presence or absence of a relationship between a DP and its
associated FR. (Suh 1998.)

FR,) [X 0 o0](DP
FR,'=[X X 0 [{DP, 1)
FR,| |X 0 X|/DP,

The two axioms, i.e. the Independence and Information Axioms, are used to select the best set of
possible design parameters. The first axiom states that when multiple FRs exist, the design solution
must be such that each FR can be satisfied without affecting the other FRs. Once this objective has
been achieved, the design matrix will be diagonal, as each DP will affect only its associated FR, and
there will be no coupling between the off-diagonal elements. The information axiom states that
simpler designs are better. (Suh 1998.)

Bi and Zhang (2001a) proposed a general strategy for determining the configuration of a modular
system based on ADT. They noted that the function-means diagram used in traditional, modularity-
based design is the same as the FR-DP diagram used in ADT. If a given modular architecture satisfies
the Independence Axiom, i.e. one physical module satisfies one functional requirement, and if the
functional decomposition is consistent with the modular architecture, the determination of a
modular configuration can be organized hierarchically. (Bi & Zhang 2001a.) Nevertheless, with
complex production systems there is rarely a one-to-one correspondence between the FRs and the
DPs. Figure 8 shows an FR-DP diagram for modular robots, in which a number of ‘many-to-one’ and
‘many-to-many’ connections between FRs and DPs can be seen.

25

Environment
Identification

Force (Torque) |«

Dynamics
Requirements

Task
Requirement

FRs Kinematics

Requirements

Collision
Avoidance

Objective
Manipulating

I

DPs Sensors&
Communication

Modular Robotic
System Robotic
Configuration

Gripper Wrist Modules

< » The Connection between FRs and DPs

Figure 8. Coupled design of modular robotic configuration (Bi & Zhang 2001a).

The lowest granularity level considered in this thesis problem is at the device level, meaning that the
devices are not divided into smaller elements, such as joints. For example, a production system may
consist of many different types of devices, such as machine tools, robots, grippers, feeders,
conveyors, and so on, which themselves, when divided into elements, are complex and thus strongly-
coupled. However, the complete system itself can be seen as loosely-coupled, because each
component in the system corresponds to one main functional requirement (e.g. feeder to feed, robot
to pick and place, conveyor to transfer), yet all those components together affect the overall
performance of the production system. According to Bi et al. (2008), multiple methods can be
applied to loosely-coupled modular system design problems, such as feature-based methods
(Perremans 1996), modular-based methods (Tsai & Wang 1999), the combinatorial synthesis method
(Levin 2002), entity-based methods (Hong & Hong 1998) and case-based methods (Watson 1999).

Rampersad (1994) developed a method that simultaneously considers the design of products,
processes and systems, as opposed to most other methods, which use product design and processes
as information sources, rather than actively changing them. Vos (2001) proposed an assembly system
development method based on modular assembly equipment. First, he developed a method for
module specification. Second, a configuration method for module selection was created. He
identified the matching of process requirements with the capabilities of the modules as one of the
most critical problems, and used operations as a basis for the matching. (Vos 2001.)

The work of De Lit and Delchambre (2003) concentrated on assembly line design. They divided the
assembly line design into the following categories, which have here been adapted with small
modifications to cover both the assembly and manufacturing domains:

e Manufacturing and assembly planning — Manufacturing and assembly plan shows how the
product can be manufactured or assembled, specifying the order of the operations that have to
be carried out in order to produce the final product.

e Resource planning — Resource planning aims to select an appropriate means of production in
order to perform the operations defined in the previous phase, while meeting the production

26

volumes set by marketing. The resource planning aims to attribute operations to workstations
(WSs) and select resources that will perform the different operations and tasks.

¢ Line balancing — Line balancing aims to balance the workload between stations.

e Line layout — The line layout design deals with the precise design of the manufacturing or
assembly line, and defines the exact location of the resources on the line.

Lohse (2006) stated that, especially for the design of assembly systems, the decomposition process
involves a simultaneous detailing of the assembly process and grouping the necessary process steps
into equipment requirements. The ability to achieve the required set of assembly process steps is the
first criterion for equipment selection. Only then are the specific behaviors of the various alternative
solutions taken into consideration in order to optimize the performance of the overall system. Again,
the combined process capabilities of the chosen equipment solutions drive the synthesis and
validation. (Lohse 2006.)

Resource planning and equipment selection plays an important role in both the original system
configuration and its reconfiguration. Over the last few years, methods based on object-oriented
technology have emerged for selecting the tools and machines in the system design. For example,
Usher and Fernandes (1999) proposed a systematic method for identifying and ranking tool
alternatives based on the production costs and time. They developed production time and cost
factors to rank selected tools, and used the object-oriented approach to handle a large number of
alternative tool sets. (Usher & Fernandes 1999.) Grabowik and Knosala (2003) presented a method
for representing knowledge in computer-aided production planning. Their approach introduced an
object-oriented method that presents the design features as individual objects within a hierarchical
class structure. They applied the proposed method on an expert system that searches through the
knowledge base to find technical solutions, e.g. machine tools for particular applications. (Grabowik
& Knosala 2003.)

Rekiek et al. (2002) recognized that most automated methods in assembly system design
concentrate on balancing the assembly line and assigning the tasks to the workstations. These
methods consider the equipment as a given, and do not consider any alternative equipment. They
found a few methods for tackling the resource planning problem, but the drawback with these is that
they assume that all the alternative types of equipment are capable of performing the required
assembly operations, and merely try to optimize the selection according to certain criteria such as
cost or cycle-time. (Rekiek et al. 2002.) They don’t consider the process requirements dictated by the
product, and are therefore unsuitable for the type of adaptation planning under consideration in this
study. This thesis particularly concentrates on the selection of suitable resources, rather than
balancing them, and therefore the existing approaches are not of much use. More recent approaches
to resource selection in the adaptation context are presented in Chapters 3.3 and 3.4.

3.3. Existing approaches to production system adaptation

This chapter reviews a number of existing methodologies that support adaptation from different
viewpoints. The first three sections are purely related to reconfiguration. They are divided into
generic frameworks for reconfiguration planning, artificial intelligence-based approaches for
reconfiguration planning, and knowledge-based approaches for reconfiguration planning. The two
following sections also touch on the parametric and logical aspects of adaptation and are divided into
capability-based approaches to adaptation and agent-based approaches to adaptation. In this study,

27

the existing approaches are analysed in terms of how much they have to contribute to the original
research problem. Finally, their shortcomings are summarised in Chapter 3.3.6, which justifies the
need for new research. For the sake of clarity, the terminology of the original references is used
when referring to these approaches, and so, in most cases, the word “reconfiguration” is used
instead of “physical adaptation”.

3.3.1. Reconfiguration planning frameworks

Deif and ElMaraghy (2006) presented an open, mixed architecture both for the design of
reconfigurable manufacturing systems, and for controlling this design process. The architecture,
shown in Figure 9, is divided into three layers. The first layer is dedicated to capturing the market
demand, while the second concentrates on generating and selecting the best configuration that
satisfies this demand. The third layer is concerned with the actual physical arrangements of the
selected configuration. Each design layer is controlled by different performance measurements that
reflect the strategic objectives of the reconfigurable manufacturing system. Even though the
methodology presented here concentrates on the design of the initial configuration, the
reconfiguration planning is also taken into account. (Deif & EIMaraghy 2006.) The architecture gives a
comprehensive explanation of the reconfiguration process and visualizes the different areas that
need to be developed in such systems. It gives an overall view of the RMS design process, but doesn’t
provide detailed means for performing the individual design steps. The methodology is not aimed at
automating any of the steps in the reconfiguration planning process, and therefore lacks the models
and mechanisms which would enable automatic reasoning.

28

Capture marketdemand Cgtpgtatejlralegy
v Time (responsiveness)
Cost
Capacity Scalability Functionality Quality Level
Schedule or Policy Adaptability Policy Scalability Time
A4
Design Parameters 2 1st Layer Control:
Capacity Levels ‘ ‘ Functionality Levels Cost
| Time
¥
Manufacturing System Configuration Generation 2nd Layer Cpntrol:
Reconfiguration
Configuration 1 Configuration 2 Configuration 3 constraints:
Hard config Hard config Hard config Space
Soft config Soft config Soft config | Cost))
Human config Human config Human config DP satisfaction
- - - - - Performance
Manufacturing System Configuration Selection Measurements:
- A - - - Time
Manufacturing System Reconfiguration Planning Throughput
Hard Config Soft Config Human Config Sgrillt?;xit
Layout Reprogram Add/Remove I<— Reco% fi uZation
M/Cadd/remove Reschedule Reallocate N gurat
smoothnessindex
M/Celement Re-plan
Material handling Reroute
1
¥
Component-Level Configuration/Reconfiguration 3rd Layer Control:
Hard Config SoftConfig Human Config Performance
M/C installation M/Cprogram Task allocation Measurements:
Partsinstallation installation Work sheets > | Time
Toolsinstallation Scheduling Training Cost
Material handling
Time
v Throughput
Physical Implementation Quality
- < | Customerfeedback
| Ramp H Production M Marketdemand | L) | (satisfaction)

Figure 9. Reconfigurable manufacturing system design architecture (Deif & EIMaraghy 2006).

Tracht & Hogreve (2011) presented two planning procedures that ease the decision-making task of a
human designer during both the design phase and the reconfiguration phase of modular assembly
lines. These procedures list the decision steps in a structured and logical order at a very high level.
They defined three possible scenarios in which reconfiguration can occur. These are: reconfiguration
due to a change in the product variant type; reconfiguration due to either an increase or decrease in
demand; and, reconfiguration due to the introduction of a new product. The suggested planning
phases and decision steps for reconfiguring a modular assembly system are presented in Figure 10.
(Tracht & Hogreve 2011.) The architecture visualizes the different steps that need to be taken when
reconfiguring a modular assembly line in response to different change stimuli. Like the method of
Deif & EIMaraghy (2006) discussed earlier, although it gives an overall view of the reconfiguration
design process, it doesn’t go into detail about how to accomplish the individual steps and nor is it
targeted at automating any part of this planning process.

29

I: Variant change (short-term) Il: Capacity expansion (mid-term) Ill: Product change (long-term)
la: Compare old and new assembly | Ila: Define new target cycle time | Illa: Catalogue existing modules and
operations I assembly devices
I . ¢ .
: Ilb1: Identify lIb2: Revise :
Ib: Keep, switch or exchange modules under- clustering Illb: Revise data preparation and
and assembly deyices on different perfarming | B: Clustering clustering
levels of modularity stations 5 A: Data preparation
- l + B: Clustering
le: Adjust and reprogramme system : -
components llc1: Parallelize llc2: Rebuild ‘l
station(s) stations
I I Illc: Select modules and assembly
¥ devices from catalogue
| Iid: Select new system layout
1 [1lid: Execute review and compilation
lle: Combine and reprogramme system E: Review
components
F: Compilation

Figure 10. Decision steps of the reconfiguration process for variant change, capacity expansion and product
change (Tracht & Hogreve 2011).

Koren & Shpitalni (2010) presented a mathematical method for designing reconfigurable
manufacturing systems. Their method takes the required manufacturing operations, their duration,
and the desired production volume as inputs, and delivers the structure of the manufacturing system
layout as output. The method assumes that all the machines are identical and that all the
manufacturing operations required by the product can be accomplished equally well by any machine.
Basically, the method delivers feasible, structural layout configurations consisting of the number of
machines, the number of stages and the number of machines required for each stage based on the
desired cycle time. (Koren & Shpitalni 2010.) The method does not consider the different
characteristics of the machines, but assumes that the same operations take the same manufacturing
time on all the machines. Neither does it consider the functional processing requirements set by the
product, but assumes that all the operations can be accomplished with the given machines.
Capability matching is not part of this methodology.

Reinhart and Meling (2011) presented a methodology supporting the operational planning of
reconfiguration measures for automated production systems. This methodology consists of four
building blocks: 1) a process model, consisting of four phases with specific goals and activities which
guide the development process; 2) a model of interoperability, which attempts to describe the
interoperability (i.e. interfaces) of the automated components at the technical and functional levels;
3) an evaluation model, which is used for rating the alternative concepts during the planning phase in
terms of monetary and non-monetary aspects; 4) a solution library, which supports the reuse of
existing coupling concepts consisting of the technical concept and the monetary and non-monetary
effects. (Reinhart & Meling 2011.) The methodology provides a holistic approach to reconfiguration
by integrating multiple aspects, such as coupling system components, their interfaces and monetary
considerations under one methodology. Mainly it concentrates on the interfaces and the
interoperation between different system components. The evaluation of the cost focuses on the
costs of making the components interoperable. As with the previously discussed approaches, this
approach does not make a comparison between the production task in question and the capability of
the system, but simply assumes the task can be completed with the given resources, i.e. capability
matching is outside of its scope.

30

3.3.2. Artificial Intelligence-based approaches to reconfiguration planning

According to Bi & Zhang (2001b) the reconfiguration planning of production systems is a multi-
objective and complex design problem including both discrete (e.g. type of machine) and continuous
(e.g. length, speed, location of the machine) variables and complex constraints. Discrete variables
generate a search space with discontinuities and non-linearities. Conventional mathematical
optimization technigues are hardly able to solve this type of NP hard problem in polynomial time. (Bi
& Zhang, 2001b.) Therefore, methods that apply heuristics are seen as potential solutions to the
reconfiguration planning problem. Artificial Intelligence (Al) -based methods have recently been
widely applied to solve many kinds of combinatorial optimization and planning problems. Genetic
algorithms (GA), in particular, have attracted researchers working on system design (Gen & Cheng
1997; Ho 2005; Tang 2005). According to Bi and Zhang (2001) genetic algorithms are attractive for
reconfiguration planning problems, because GAs can easily handle mixed discrete/continuous
variables. A few researchers have used GAs for the reconfiguration planning problem, and some of
their work is discussed briefly below.

Tang (2005) treated reconfiguration planning as a “classical” planning problem, and as such it usually
has three simple inputs: 1) the initial state of the world that the object resides in; 2) the goal that is
desired; 3) the possible actions that can be performed. The planner’s output is a sequence of actions
that, when executed in the initial state of the world, will achieve the goal. The reconfiguration
planning problem can be seen as a path-planning problem for finding the shortest and cheapest path
from the initial state to the desired state. Tang developed a methodology for designing and
reconfiguring a Multiple Part Manufacturing System (MPMS) focusing on metal cutting. He presented
a Computer Aided Reconfiguration Planning (CARP) framework using a hybrid plan-generation
method based on A* algorithm and GA. The basic input to a CARP system includes the manually
constructed description of the reconfigurable object, its current state, and the new performance goal
to be achieved. Based upon these inputs, the CARP system will output a series of reconfiguration
actions in a specified sequence in order to achieve the desired change in system performance. (Tang
2005.) The methodology concentrated on creating structural reconfigurations at the single machine
level, but did not consider the whole production system consisting of multiple machines.

Ho (2005) applied motion genes to reconfigure flexible assembly line systems. He encoded and
evolved conveyor components by linear and angular conveying motions. Genetic mating was used to
generate alternative conveyor system layouts that satisfied specific production requirements, and
the best of these was selected on the basis of ‘the survival the fittest’. (Ho 2005.) This approach only
concentrated on generating feasible conveyor layouts, and ignored all the other system components.

Youssef & EIMaraghy (2007) presented an RMS Configuration Selection Approach considering the
arrangement of machines, the selection of equipment and the assignment of operations. The
approach consists of two phases. In the first phase, near-optimal alternative configurations for each
possible demand scenario over the considered configuration periods are selected. The approach uses
a constraint satisfaction procedure, real-coded Genetic Algorithms (GAs) and Tabu Search (TS) for the
continuous optimization of capital cost and system availability. In the second phase, integer-coded
GAs and TS are used to determine which of the alternatives produced in the first phase would
optimize the smoothness of the transition within the planning horizon. A stochastic model of the
smoothness of the reconfiguration across all the configuration periods within the planning horizon,

31

according to the anticipated demand scenarios, is used for this. The criteria for system analysis are
cost and availability. (Youssef & EIMaraghy 2007.)

The above-mentioned GA-based approaches require that the system is encoded into a gene and
chromosome structure, and that the objective is presented as a mathematical function. Therefore,
they can only provide solutions to relatively narrow problems, for which the objective function and
the system encoding can be formulated with relative ease. This type of Al-based approach can’t cope
with the extensive and dynamic nature of the problem presented in this thesis. In this problem, the
system itself, the demands placed on it, and the environment are constantly changing, so the time-
consuming formulation of problems using these mathematical elements is not feasible.

3.3.3. Knowledge-based approaches to reconfiguration planning

Travaini et al. (2002) presented a knowledge-based methodology and tool for assembly line
reconfiguration. Their approach is concerned with three fundamental models: a model to describe
the features and functionality of the assembly line; a model to describe the features of product
component assembly; and, a model that produces all the assembly sequences. An important part of
the methodology is a rule-base which is supposed to compare new products facing the existing
assembly lines. These models, and the rule-base, are supposed to analyse the configuration of the
assembly system and the product components, and to propose and evaluate new reconfiguration
solutions. As input, the methodology uses both the information collected from product component
and assembly line data bases, and the information provided by automatic tools for gripper selection
and sequence generation. It analyses the reconfiguration strategies, pointing out similarities and
differences between the requirements for the new assembly process and the available structures of
the existing assembly line. The product component data is compared with the assembly line data,
and the assembly operations are allocated to the various stations on the line according to the rules.
The different assembly line options are evaluated using a reconfiguration index. (Travaini et al. 2002.)
This method covers the whole reconfiguration planning process from product analysis to the
selection of the configuration, and also provides the information models and rules required to
perform the reasoning activities. However, based on the description of the approach, it is not clear if
the information structure supports automatic manipulation and reasoning with the information. The
method is based on a manual comparison between the new requirements and the old assembly
system with the given rules. Furthermore, it doesn’t consider lifecycle information, or the interfaces
of the resources.

Hirani et al. (2006) presented a methodology for the knowledge-enriched specification of the
requirements for reconfiguring an assembly system. The methodology involves the elicitation of user
requirements and their subsequent conversion into system requirements. The knowledge inputs
from the system user and system integrator are considered. Each part of the methodology is
underpinned by specialist knowledge of the products to be assembled, the assembly processes and
methods needed, and the capabilities that need to be delivered for system integration and
reconfiguration. The key elements in this methodology are the mapping, and its rules, which
translate the user requirements into system requirements, and then into task and assembly module
requirements. Once the system requirements are defined, these are compared to the specification of
the existing assembly system while changes to the process elements are defined using a matching
algorithm in order to derive the reconfiguration needs. (Hirani et al. 2006.)

32

Ratchev et al. (2007) continued this work by presenting a knowledge-based methodology for forming
customizable, reconfigurable assembly cells. Their approach is based on matching user requirements
to existing supplier knowledge in terms of design rules and principles, the modules offered by
different vendors, new emerging technologies, and their own and their competitors’ existing
products. Using this approach, the decision-making involves an analysis of the requirements, the
generation of assembly processing alternatives, and the evaluation and selection of the assembly
modules and cells. (Ratchev et al. 2007.) Both of the above-mentioned studies are aimed at providing
means and guidelines for the design and reconfiguration of an assembly system through close
interaction between the customers, suppliers and the system integrators. In addition, they provide
the required information in a formal, computer-interpretable format. They use matching algorithms
to enable the automatic comparison of the new system requirements against the old system
capabilities and the capabilities of the resources saved on the knowledge base. These methods
support automatic reasoning, but their intention is not to automatize the reconfiguration planning.
Furthermore, they don’t deal with how to create new resource combinations to compensate for
missing capability requirements during the reconfiguration planning and nor do the models deal with
the resources’ lifecycle information.

Von Euler-Chelpin and Kjellberg (2007) looked into the possibility of feeding the resource operation
knowledge gained from the runtime environment back into the manufacturing system
reconfiguration activities. Their approach didn’t consider the reconfiguration process itself, but
concentrated only on capturing and presenting the condition and maintenance-related information
of the existing resources in order to support the reconfiguration process. They divided the capability
of the manufacturing system into designed (theoretical) and actual capabilities. The actual capability
depends on the restrictions arising from the process, the environment, and the wear on the
resources and is measured during runtime. This shows whether the resource, in a certain context,
can meet the demands and requirements posed by the product design. The context is described by
the current configuration and the surrounding environment at the point when the data is captured.
(von Euler-Chelpin & Kjellberg 2007.)

Harms et al. (2008) developed a framework for production system re-use, consisting of methods,
tools and business process reference models. The core element of the framework is the knowledge-
based approach to Computer Aided Reuse Planning (CAReP). CAReP facilitates and organizes the
exchange of information between experts and information systems, enabling the logical
interpretation of information. The tool is an expert system which provides the user with the
knowledge utilised in the re-use planning process. CAReP aims to help the planner to decide whether
to re-use a particular item of equipment based on the effort and risk involved, and company-
strategic criteria. Indeed, CAReP produces system specifications and project plans for re-use, which
encompass all the necessary adaptation, maintenance and modification processes, (see Figure 11). In
the adaptation domain, CAReP provides rule-based solutions for assessing the interdependencies
between adaptation processes and functional capabilities (e.g. the welding force of a welding gun) as
well as the costs of a particular adaptation process. Using the rule-base, it's possible to generate a
specification for the adaptation process for the given resource. (Harms et al. 2008.)

33

STEP 1 STEP 2 STEP 3

Determime Search for available equipmaent Check Completerness and rel i-}billl}' of life cycle
Assembly types and eccurences documentation and determing inspection processes
Task
Requirement [X300 X300 1 Inspection
i No: 12) Plan
— P
e - . IOCES5Es JY-
i | B— - Costs <
Spat Welding - - Risk of failure J
List of types and Selected g i
oceurences of Occurence |..|’e Cyele Inspection of
welding guns Documentation of electrical functions
X300 No: 12
Mo type or STEP 4 +
occurence found Match réquiremants
and actual characteristics
4 Result
STEP 6 STEP 5 L
Determine modification measures, Determine Maintenance measure, &} &
steps and costs steps and Costs .
Equipment with
Muodification Maintenance no adaptation processes
Action Plan Action Plan l
- Processes - Processes
- Costs - Costs o
Exchange Repair electrode Equipment needs
pneumatic cylinder MAiRtENCnce (NOCesses
%}r
|
Equipment needs

modification processes

Figure 11. CAReP — Reuse options generation procedure (Harms et al. 2008).

Harms et al. (2008) use ontologies to represent the conceptual procedure and the information in a
computer-based application. They extend the ‘product, process, equipment’ ontology of Lohse
(2006) with an adaptation process and an equipment domain. They also expand the conceptual
equipment definition with the failure mode concept, which includes the concepts of failure cause
and effect, failure identification, and action for containment, all of which are based on a failure mode
and effects analysis (FMEA). (Harms et al. 2008.) CAReP works at the device level rather than the
system level. It evaluates the re-use and reconfiguration options for one device at a time and is
therefore not suitable for planning the reconfiguration of complete systems. It is a rule-based expert
system, where all the possible adaptation actions (including their prices) and resulting functional
capabilities have to be pre-programmed into the system, which makes it feasible for only relatively
static production environments. Therefore it doesn’t provide a solution for the problem outlined in
this thesis.

Minhas & Berger (2011) presented a concept for reconfiguring production set-ups to enable versatile
production in automotive factories. Their approach starts with comparing the features of the new
product with the features available in the database. The aim is to find any matches between the new
case and the old cases stored in the technology data catalogue using heuristic algorithms. If a similar
case is found, the process and the related parameters used for the previous case are used for the
new case. The catalogue stores the application and case-specific knowledge in an ontological
framework. An axiomatic optimizer utilizes axiomatic design methodology to select and optimize the
design parameters of the resources based on production goals (cost, time, quality and environmental
impact). The tasks are sequenced and assigned based on the ease of reconfiguration, i.e. the
minimum values for time, cost and environmental impact for every change. The aim of this

34

methodology is to enable the comprehensive re-use of existing knowledge resources and experience.
(Minhas & Berger 2011.) This approach doesn’t consider the capabilities of the resources during the
reconfiguration design process. Instead, the selection of the resources is based solely on the previous
products which have similar features. The description of this approach reveals that interface analysis
is not part of the concept. Neither does it consider the lifecycle of the resources, which is regarded as
an essential input for adaptation planning.

3.3.4. Capability-based approaches to adaptation

This chapter presents adaptation planning approaches which utilize descriptions of the resource
capability as a basis for their reasoning. In this section, the word “skill” is used interchangeably with
the word “capability” as the policy in this research is to use the original terminology for each
reference when discussing them.

Timm et al. (2003; 2006) proposed an ontology-based capability management approach for multi-
agent-based manufacturing systems in order to shorten the gap between process planning and
production control. The task requirements and the capabilities of the resources are specified using
ontologies. The approach is based on the decisions of the resource agents as to whether they can
fulfil the capability requirements or not. This approach represents the capabilities based on 1st order
logic. Within these predicates, the concept terms denote types of capability. The concept terms are
organized in taxonomic hierarchies within the ontology, thus allowing for subsumption inference in
order to obtain a more flexible and “fuzzy” match-making between the problem descriptions and the
capabilities. The problem is specified using statements, which describe pre- and post-conditions. The
agent’s capabilities are determined by its set of available plans, which describe its ability to transform
a state which supports its pre-condition into a state supporting its post-condition. They used the
cobac* algorithm as a conflict measure, based on the evaluation of proximity and distance in the
ontology, i.e. its taxonomic relation. STEP-NC is used to give a structured representation of the
manufacturing task. (Timm & Woelk 2003; Timm et al. 2006.)

Their approach allows the process planning to occur dynamically, based on the availability of, and
disturbances on, the manufacturing line and therefore it supports dynamic adaptation (e.g.re-routing
or re-scheduling). Timm et al. (2006) mention combined and complex capabilities which are formed
by coalitions of resource agents. However, it appears that they use those terms with different
meanings than the ones used in this thesis. If all the manufacturing steps cannot be performed by
one machine, then more machines will be needed to perform the sequence of required
manufacturing steps to produce the product. In this approach, these machines will then form the
combined capability. However, they do not specify how these combinations of capabilities are
handled in the ontology. In addition, it is not specified what kind of information is included in the
capability definition or whether they incorporate any parameters. The creation of new combinations
of devices, including matching their interfaces, is also neglected in this approach.

In the SIARAS project (Skill-based Inspection and Assembly for Reconfigurable Automation Systems)
an intelligent system, called the skill server, was built to support automatic and semi-automatic
reconfiguration of production processes. As the basis for its reasoning, the skill server needs both the
available knowledge about the production technology (i.e. generic knowledge of the system and its
skills and possible tasks), and the workpiece to be produced and its related tasks. The ontology
expressed in OWL is used to model this knowledge. The skills are modelled as a taxonomy following

35

standards like DIN 8580 and VDI 2860. Each device has a set of skills which are regarded as instances
of the taxonomy skills. Atomic skills are defined as skills which cannot be broken down into any
further activities. For example, gripping would not be an atomic skill because it includes lower-level
operations like, ‘move until the proximity sensor is active’, ‘enable the valve until the touch sensor
has been enabled’ and so on. Atomic skills can be directly linked to the tasks. The ontology is used to
reason whether skills match particular tasks or whether devices have those skills. However, the skill
server’s reasoning is not based on the ontological representation of the knowledge alone, as specific
knowledge of the domain is also needed. This knowledge is put into utility functions, which are
plugged into the skill server core. The utility functions can be either device-specific (e.g. for setting up
a certain sensor) or application specific (e.g. path planning for an industrial robot) or they are meant
to solve any other kind of problem. (Bengel 2007.)

According to Malec et al (2007) the reconfiguration approach of SIARAS is based on the user
modifying the current process description in some way (parameter change, task exchange). After
validating and accepting the user input, the skill server analyses the new process regarding its
feasibility (do the devices provide all the skills required for the updated task), accuracy, robustness,
reliability, timing, power consumption, collision avoidance, cost, and so on. In the final phase of
reconfiguration, they use the mechanism of ontology-based compilation in order to create
configurations, and to facilitate a smooth transition from a generic process representation to a
device-specific code. (Malec et al. 2007.)

The SIARAS approach does not meet the objective of this thesis because it uses the skill descriptions
to control production and programme the system. Therefore, the skills have been defined on a
detailed action level. With regard to adaptation, their approach doesn’t take the lifecycle of the
resources into account in the skill description. Another drawback is that the skill definitions don’t
include the parametric properties of the skills, but the properties are assigned to the devices rather
than to the skills. The name of the property instance is used to indicate the parameter value of the
property, such as “Electrical interface_connectorM12-4Pins” (SIARAS 2008). This makes it difficult to
compare similar skills in different types of devices. In the SIARAS approach the devices are classified
in a hierarchical class structure. These are then associated with the relevant skills and properties, e.g.
devices belonging to the gripper category will have gripper skills and devices belonging to the sensor
category will inherit the sensor functions. However, this may not be the most optimal way to assign
the skills, because it is not certain that all the same types of devices really have the same skills. Also,
multifunctional devices often have more skills than are assigned to the device category they most
closely fit into.

Smale and Ratchev (2009) proposed a capability-based approach for multiple assembly system
reconfiguration. Their work comprises a reconfiguration methodology supported by a capability
model and a capability taxonomy. The capability model combines the roles of the requirements
definition, the capability definition and the capability comparison and delivers aggregated capability
sets. The capability taxonomy is suited to both equipment specification and requirement definition
and its main purpose is to allow the capabilities to be defined with terminology that is common to
both equipment suppliers and product manufacturers. The capability taxonomy has been built based
on six capability classes, which are representative of the majority of processes associated with
manufacturing and assembly, namely: motion; join; retain; measure; feed; and work. The product
requirements are converted into required capabilities through the use of a Process Flow Template
and the Capability Taxonomy within the Capability Identification Process. The Process Flow Template

36

is based upon the principle that assembly requires two parts to be fetched and maintained together.
Therefore, the core assembly processes are “Moving Part x” and “Joining Parts x and y”. Using this
principle as the basis for the definition of the required capabilities, a number of rules can be applied.
Figure 12 shows the rules and the capability identification process. (Smale & Ratchev 2009.)

LHBs RHBs
PFO1 PF02
Pt1 P11
Feature - Rule Fedin & " Placed onto
Left hand Boxes (LHB) Are Feeding Processes oriented conveyor
Right Hand Boxes (RHB) | Are Joining Processes
connected o an LHB v
All other RHBs Can be any of Moton, Join, P:g PFO04
Aeasire or Wor - P2
. f".'[a_a:\uru_.m Work Fc::l:r:?eg Joined to Pt1
Horizontal arrows Are Motion Processes
connecting LHBs to RHBs
WVertical arrows connecting | Are Conveying Processes '
RHBs 10 RHBs
Motion processes Preceded by a Retaining 2 4
epee {ErnniE fume PFO1 PF02
process (gripping type) Pt1 R P
Conveying processes Preceded by a Retaining Fedin & Placed onto
- . , = oriented conveyor
process (fixuring type) 3 - 3
Retaining processes Followed by a joining T
. 2 4
process PF03 PFO4
P2 R P12
Fedin & Placed onto
oriented Conveyor
3 3

1
v

Figure 12. The rules applied to the Capability Flow Diagram and an example of the Capability Identification
Process (Smale & Ratchev 2009).

After making the Capability Flow Diagram for the product, the Capability Taxonomy and associated
guidelines are applied to define each individual capability. The output is a numerical value which is
then logged within the relevant set. The final step is to perform a comparison of the existing and
required capability sets with a Comparison Matrix. (Smale & Ratchev 2009.) The reconfiguration
methodology presented in (Smale & Ratchev 2010) is based on a known set of products. Finding the
proper production sequence, i.e the order in which products are produced, is an integral part of the
methodology. The production sequence is achieved through adopting a product-centered approach
and identifying the commonalities between each of the products. The configuration analysis is first
performed for each product independently, at which stage the capabilities to remove, retain,
investigate and procure are identified. This is done by comparing the existing capabilities with the
required ones using the capability matrix. After this, the sequence analysis is performed. (Smale &
Ratchev 2010.)

This methodology (Smale & Ratchev 2009; Smale & Ratchev 2010) supports reconfiguration planning
by providing a means to compare the product requirement with the existing resource capabilities,
using the capability taxonomy and rules. However, although it is intended to computerize the
methodology in the future, at present the definition and matching of capabilities is done manually,
and therefore requires a lot of effort. There are a few reasons why this approach doesn’t support the
objective of this thesis. Firstly, the available system components are treated as individual items and
their interfaces, co-operation and layout are not taken into consideration. In addition, this approach
does not consider the capability parameters, the combined capabilities of multiple devices or the

37

lifecycle information and current status of the devices. The approach can be extended from the
device level to the unit and station levels, but it doesn’t examine how to derive the unit or station
level capability. In other words, it relies on a human expert to make the definition and comparison of
the capabilities. Also, because the reconfiguration methodology is based on a known set of products,
and optimization of the production sequence based on minimum downtime and changes, it can’t
handle an unpredictable environment in which the future product requirements are unknown.

3.3.5. Agent-based and holonic approaches to adaptation

Most of the agent-based and holonic approaches presented in this chapter also utilize some sort of
capability description and are therefore of special interest here. The reason for not including these
approaches in the previous chapter is that their focus is more on controlling the production, rather
than planning the adaptation. Therefore they differ slightly from the approaches presented in the
previous chapter.

Actor-based Assembly Systems (ABAS) mechatronic reference architecture, developed by Martinez
Lastra (2004) in his dissertation, aims to meet the requirements of flexible, adaptive and
reconfigurable assembly systems. In ABAS, the reconfigurable systems are built by autonomous
mechatronic devices, called actors, which deploy auction- and negotiation-based multi-agent control
in order to collaborate towards a common goal, i.e. the accomplishment of assembly tasks. These
assembly tasks are complex functions, which are generated from a combination of simpler activities
called assembly operations, which are the individual goals of the actors. The actors’ functionality is
mapped to these atomic assembly operations. Each of these actors provides one specific service
(operation) to the society. (Martinez Lastra 2004; Martinez Lastra et al. 2009.) The approach is
targeted purely at agent-based shop floor control. From the viewpoint of this thesis, it is interesting
because it deals with atomic assembly operations which subsequently form higher level assembly
processes once the actors have been combined into clusters. However, as the description of the
operations (skills) doesn’t define the parameters of these skills, this approach is not suitable for
detailed resource selection.

Al-Safi and Vyatkin (2007) proposed an ontology-based reconfiguration agent that attempts to
reconfigure the manufacturing system without human intervention after detecting changes in either
the requirements or the manufacturing environment. It creates a new reconfiguration by analyzing
the new requirements and using the ontological knowledge model to infer facts about the
environment, and is thus able to deduce whether the current environment can handle the given
manufacturing requirements or not. The reconfiguration agent consists of four main components,
namely, a requirement analyser, a floor analyser, a knowledge modeller and a decision engine. The
decision engine decides whether the requested operations exist in the current manufacturing
system, and whether they are connected with logistic operations, and then proposes new
configuration based on this. If the requirements are not satisfied, it lists the missing operations. (Al-
Safi & Vyatkin, 2007.) This approach does support automatic adaptation in that it compares the new
requirements against the existing system. However, it only takes into account those machines which
are currently in use. Although it checks whether the current environment is able to perform the new
required operations, it doesn’t try to search for the missing technology from resource libraries, or to
create new combinations of the existing machines. The reasoning between the requirements and
resources is based on pre-defined operations which it is known that the resource can perform, and

38

therefore the approach doesn’t consider the properties and capabilities of the resources in sufficient
detail.

Barata et al. (2008) presented a multi-agent-based control architecture for a shop floor system
(CoBaSa) which supports fast re-engineering and plug and play capabilities. In their approach, each
manufacturing component is agentified in order to enhance its adaptability and interaction
competences so that it can respond to different requests. These agents, each of which represents
one manufacturing component, can be aggregated through the Broker Agent GUI to form a coalition
of agents. This coalition coordinates higher-level processes (complex skills) based on the skills
available among its members. The Broker Agent GUI works as an interface between the agent system
and the human expert, through which the expert can choose which components and associated skills
they want to aggregate in order to provide a possible new complex skill. (Barata 2006; Barata et al.
2008.) According to Candido and Barata (2007), the ontology is used to identify which basic skills are
necessary to provide complex skills. After gathering the coalition members’ skills, the Coalition
Leader Agent searches the ontology for any complex skills that could possibly be supported with the
basic skills. The Pallet Agent contains the information about the order in which the skills need to be
executed in order to assemble the product. (Candido & Barata 2007.)

For this thesis, the CoBaSa is interesting because it deals with the skills and complex skills of multiple
co-operating agents. Unfortunately, it has not been reported in detail how the skill information is
handled in CoBaSa, such as how it deals with the skill parameters in the ontology. Based on the
example presented in Barata et al. (2008) they use the skill concept name to indicate the properties
of the skill (e.g. Drill_Small_Skill, Drill_Large_Skill, Drill_Special_Skill). None of the reasoning seems to
be based on the technical properties of the devices as the skills don’t actually have any parameters;
just the concept name. The CoBaSa architecture is intended to provide agility at shop floor control
level. Therefore, it is targeted more at operational control than at planning an adaptation.

Frei (2010) applied the CoBaSa in Self-Organizing Evolvable Assembly Systems (SO-EAS). However,
because the coalitions of agents in the original CoBaSa architecture was static, and formed manually
by the user, she developed mechanisms for dynamic coalitions in order to overcome this limitation. A
chemical reaction model was utilized for this. (Frei 2010.) SO-EAS are systems which are capable of
self-organization while the assembly system is being created, and self-management during the
production time. They are composed of modules with local intelligence and self-knowledge, able to
self-organize to form suitable dynamic coalitions and shop-floor layouts, which fulfil the generic
assembly plan provided by the user. This is done based on the rules for self-organization. During
production, the production modules self-manage themselves while executing the assembly tasks
based on the policies for self-management. (Frei et al. 2010.) Several rules are applied for the
formation of the dynamic coalitions based on the chemical reaction model. These include rules for
interface compatibility, composition pattern, the creation of composite skills, task coalition matching,
layout creation, transport linking and transforming the generic assembly plan into a layout-specific
assembly plan. (Frei 2010; Frei & Di Marzo Serugendo 2011.)

As stated by Frei et al. (2009), ontologies and the complementary XML representation of the
resources is used to guide the creation of composite skills from simple ones. The XML-file attached to
each resource agent specifies what other capabilities are needed with that specific resource. Also, as
discussed with the CoBaSa approach, the skill definitions don’t include parameter values. Instead,
each skill with different parameters is saved separately in the resource information with the skill

39

name indicating the skill parameter, e.g. Drill20 and Drill30 for drilling holes of 20 or 30 mm. This kind
of approach to handling the skills inhibits the reusability of the skills between different resource
types, in addition to which it means that there is a huge amount of information which has to be
handled when dealing with resources having numerous skills.

Ferreira et al. (2010) presented a multi-agent architecture for the requirement-driven
reconfiguration of modular assembly systems. Their approach was driven by a set of requirements
which addressed the specific needs of precision, modular assembly systems, and catered for both the
physical and logical constraints of the modules as well as their joint emergent behaviour. The agent
architecture consists of a Requirement agent, an Equipment Module agent, a Physical agent, an
Assembly Process agent, an Assembly Process broker and an Equipment broker. This architecture
aims to assess the effort required for reconfiguration, as well as to provide solutions from the
existing modules when the product or process requirements change. (Ferreira et al., 2010.) The
strength of the proposed method is that it is able to consider different manufacturing capabilities
capable of fulfilling the same requirement, and to assess them according to the cost of the
reconfiguration. However, the paper does not specify how much of this reasoning can be
automatized and how much is left for human expertise. Neither does it specify how the information
about the agents is presented.

Zah et al. (2010; 2011) presented a holistic approach to cognitive job control of production systems.
Their approach is based on so-called smart products, which store the knowledge about the
production process and its current state. The cognition is implemented by RFID tags attached to the
products. Their multi-agent-based approach concentrates on product-based production planning and
shop floor control, and enables the plans to be adapted dynamically. The product-specific operation
times are measured and stored on the smart product during the runtime. This product-specific data
can be used for learning and updating the overall planning data, and improving future plans. (Zah et
al. 2010; Z&h et al. 2011.) Z&h et al. (2010) use a holistic data model, consisting of product-, process-
and resource-related data, represented in an XML structure. In order to present both the process
requirements and the resource capabilities in terms of feasible operations, they use the DIN8580
standard and VDI2860 guidelines. In their approach, the production sequences are presented in a
graph-based model. The capability profiles of the resources represent the executable production of
every single resource. These are used to allocate the production steps to the resources. (Zah et al.
2010.) According to Zah et al. (2011) the neutral building-block-based description of working
processes facilitates the flexible configuration of the work plan, the consideration of potential
alternative sequences in order processing, the easy modification of single building blocks and the
integration of additional working processes.

The capability profile used in the cognitive factory (Zah et al. 2010; Zah et al. 2011) directly indicates
the operations the machine is able to execute, i.e. the product manufacturing steps have a clear
correspondence with certain resources. This approach does not involve reasoning about the
capabilities, or matching them against the product requirements. This kind of approach is efficient
for applications where the set of possible products is fixed, but their production volumes and orders
vary. This enables the possible product-operation-resource combinations to be predetermined, and
the planning and control can thus concentrate on routing the product according to resource
availability and economic parameters. However, it is not suitable for adaptation planning and
reactive adaptation in an unpredictable environment.

40

3.3.6. Conclusions about the existing approaches to adaptation

Chapters 3.3.1 to 3.3.5 summarised the different approaches taken by a number of researchers to
support the adaptation of production systems. The strengths and weaknesses of each approach for
solving the research problem of this thesis were briefly discussed. The review doesn’t claim to be
complete, and it has to be recognised that there may be other approaches which have not been
discussed above. However, the review was extensive enough to show that there are a wide range of
different approaches to adaptation planning and the reactive adaptation of production systems.
Despite the significant amount of research carried out in this area, none of the existing approaches
are in themselves able to solve the problem of this thesis.

Youssef and EIMaraghy (2007) presented a literature review of the various approaches to systems
configuration selection. They identified some gaps in the existing approaches, which also directly
relate to the adaptation problem. Firstly, most of the work done treats the configuration problem
from one particular perspective, i.e. the physical arrangement of the machines, or it deals with
configuration as a parameter without defining it. What is lacking is the automatic generation of
feasible alternative configurations for different demand scenarios. Secondly, most of the previous
work only focuses on the cost and economic benefits in order to evaluate performance, but it doesn’t
consider other system evaluation criteria. (Youssef & EIMaraghy 2007.) Table 2 summarises the main
limitations of the existing approaches to adaptation in terms of this thesis problem.

Table 2. Limitations of the existing adaptation approaches.

Limited coverage

The approaches usually consider only a certain small part of the overall problem. They
may, for example, concentrate on finding the best possible structural configuration at
the single machine level, or on finding the best layout to optimize the throughput or to
minimize the costs. In other words they don’t support all the aspects of adaptation that
are seen as relevant in this work. These include the ability to support physical, logical
and parametric adaptation, the consideration of the old system layout and its
components, the new product requirements, the capabilities of the system components,
the lifecycle information of the system and its components, and lastly, the possibility of
incorporating different user-defined criteria into the reasoning process.

Lack of suitable resource identification and selection

Most of the approaches don’t consider the matching of product requirements with
resources having suitable capabilities. The suitable resource options are either pre-
defined or the features that can be manufactured with the machines are already
described, eliminating the reasoning. The emphasis is then on the optimization of the
configuration based on some user-defined criteria, rather than finding the right
resources for the given requirement. Simply put, the suitable resource identification is
beyond the scope of most approaches.

Lack of suitable resource models

The previous point highlights the lack of suitable resource models, which would allow
the matching of product requirements against resource capabilities. Most of those
approaches that do utilize some sort of capability description don’t incorporate the
capability parameters into the description or are not able to deal with the combined
capabilities of multiple resources.

Lack of automatic generation of feasible configurations

41

Automatic generation of feasible alternative configurations for different demand
scenarios is missing. The approaches reviewed don’t deal with finding or generating new
resource combinations for the new requirements. This, again, is due to the lack of
suitable models for describing the resources and their capabilities.

Static resource descriptions lacking the lifecycle aspect

Those approaches which do utilize resource descriptions as a basis for adaptation deal
with static resource descriptions. This means that the capabilities of the resources are
not updated dynamically based on the gathered lifecycle information. The lifecycle or
resource condition information is therefore not used as a basis for decisions about re-
use or adaptation. This is a serious problem, because the resource behaviour is often
strongly dependent on the resource lifecycle and usage history.

Lack of interface considerations

Most of the reviewed approaches don’t put any emphasis on the interfaces and
compatibility of the resources while making the configuration decisions.

Inability to evaluate the magnitude of needed change

Very few approaches try to evaluate the magnitude of the change the production
system needs to undergo when the product requirements change. This would be
important in order to be able to estimate the effort and cost of the required adaptation.
Those approaches which do estimate the costs are based on pre-defined information of
the price of certain adaptation actions. These “expert systems” cannot deal with
unpredicted situations and are therefore very limited in their scope.

In a rapidly changing production environment the creation of a new production system configuration
has to be based on rapid match-making between the requirements and offerings. If neither the
requirements nor the offerings are pre-known, it is not possible to pre-define their direct
relationships. Nevertheless, this was the procedure followed in most of the reviewed approaches,
which thus eliminated match-making between the requirements and the offerings. Therefore, such
approaches can’t solve the problem of the adaptation of systems in a constantly changing
environment. Nevertheless, a few approaches did base the adaptation on this match-making, this
being enabled by the descriptions of the resource capabilities. Using a process-oriented definition of
capabilities, it is possible to make a match between the process requirements and the resource
capabilities (i.e. requirements and offerings). The ability to describe the capabilities of resources is
seen as an important enabler for successful adaptation. Therefore, it is emphasised strongly in this
work.

3.4. Information models supporting adaptation

As discussed above, resource capability modelling forms an essential part of this thesis and therefore
attention has been paid to reviewing the existing approaches to describing resources. The aim of
bringing automation to the design and adaptation of a production system requires a structured
knowledge representation of the resource properties and its constraints. The manufacturing
resource information and the capability descriptions are regarded as the basis for various
manufacturing activities, including process planning, resource allocation, system and facility design,
controlling the operations and planning the adaptation of a system. If these descriptions are formal

42

and expressive enough, they enable automatic computerized methods to find suitable system
components, and to test alternative scenarios in the early phases of the design.

As stated by Vichare et al. (2009), the standardised representation of information in the
manufacturing business has traditionally focused on the products themselves, with information
relating to their design, geometry and the processes required for their manufacture. What are
lacking are standardized information models which represent the manufacturing equipment used to
produce such products. Resource data models and tools for different system components exist, but
they are either vendor-specific or very limited in their scope. This is an important omission, because
that is the information which is required when the production systems are actually built. (Vichare et
al. 2009.)

Recently, manufacturing resource modelling has been attempted by several researchers using
different methods, having different purposes, from different viewpoints and at different levels of
detail. The representation of machine tools, in particular, has been widely studied; see, for example,
(Hedlind et al. 2010a; Hedlind et al. 2010b; Kjellberg et al. 2009b). These representations are often
based on the ISO 10303 standard, also known as STEP. Tolio et al. (2010) listed some standards that
are used to describe machine tools and cutting tools, such as ISO 13399, entitled ““Cutting tool data
representation and exchange”, ISO 10303 — IAR 105 on the kinematic modelling of manufacturing
resources, and the standard ASME B5.59, which defines information models and formats for
describing machine tools for milling and turning based on XML data format. However, as stated by
Tolio et al. (2010) available standards dealing with manufacturing resources often do not consider
their integration in the plant, neglecting the understanding of the production system as a whole. As
the goal of this thesis is to provide a more generic resource description, which is able to describe a
multitude of different types of resources, those approaches aimed purely at machine tool
representation are not discussed in any further detail here.

The following section presents a few interesting reference solutions for describing resources and
their capabilities, and for matching the product requirements with suitable resources. First,
ontological approaches to describing resources are discussed, followed by the resource description
languages and then object-oriented approaches. The section concludes with a summary of the
limitations of the existing approaches to resource description.

3.4.1. Ontological approaches to describing resources

Ontologies play an important role in knowledge-based modelling. They provide a standardized way
to present knowledge from different domains and from heterogeneous knowledge sources.
Ontologies are developed to support the exchange of meaningful information across autonomous
entities that can organize and use the information heterogeneously. According to Gruber (1993), “an
ontology is a formal, explicit specification of a shared conceptualization”. The conceptualization is
applied to a limited domain, such as the product, process and system domains. The conceptualization
aims to break down the different terms and entities of this domain into well-defined and distinctive
concepts. The concepts are expressed in a formal way in order to allow computers to use them. The
concepts have to be explicit in order to avoid inconsistencies and ambiguities in meaning. This can be
achieved by using non-ambiguous classifications, relations or metrics. Lastly, the conceptualization
has to be shared and agreed upon by the different user groups in order to provide a common means

43

of communication and frame of reference. (Gruber 1993.) Below, a few approaches which utilize
ontologies to describe resources and their related domains will be introduced.

Core Ontology — an ontology representing product — process — system information

Research done in the FP6 IP-PiSA project by Lanz et al. (2008) and Lanz (2010) resulted in the Core
Ontology, common knowledge representation (KR) and semantics, which connect the product,
process and system domains under one reference model. The main goal in this development was to
include the meaning in the model and to enable different design tools to interoperate across the
design domains. The structure of the representation was formed according to the requirements set
by the knowledge management and integration challenges of different design tools. (Lanz 2010; Lanz
etal. 2008.)

ann v26 Protégé 3.3.1 (file:/Users/minni/Documents/PROJEKTIT/CoreOntology/ pisaon]
Fle Edit Project QWL Code JTools Window Help o om.,man‘ Operation®
o e ~ \
of = B v A 1L > 4 ~ ™~ b
OEE B E i el ar {s0peration O -RasCperation” hashetionpActionf
= - - 1 - o 7
4 Metadata (coreOnto.owl) OWLClasses | WM Properties = 4 Individuals = = Forms —
T T _of Task al’lu'.TJ'.lr_@T_;\- oF Asgtion | HasAction™
=) - e -~
® 26 " Far Activity 7 —
frasTaskxAsTaskor- ~—
e ve JFeE O —
Property Process [ProcessGisProcess® ‘\
rdfs:comment — \
“*|s|ie)r-.rm-,:m—r::m;:’sa hfas Task ™
Operation e / |
Task 7T

Functionality

ParameterPort ool oo g Y

ParamPair

v @ skl
ControlSkill
ProcessSkill

¥ W ActivitySeqNest calvaluesFre \ EMadeOf

Activity

¥ W ActivitySeqPrevious IMNvaluesF
Activity

Raw

ey e | ool Process
o 77 | Domain

b i Feature
LifecyelePhase

v M isPerformedCnProduct (allval
Product
M precedenceActivity (multiple A

¥ W requiresCapability (alligiesFrol

I requiresResource {multiple Resc)

» @ Assembly
Par

Rz

Domain

paro

Figure 13. Core Ontology (Lanz 2010).

The Core Ontology, presented in Figure 13, formalizes the representation of knowledge between the
product, process, and system domains utilizing fractal systems theory as a guiding principle. The
product model consists of classes for products, assemblies and parts, going into the level of
geometrical features, such as primitives (e.g. box, cylinder, cone), edges, faces and face extendeds.
The non-geometric features, such as dimensions, coordinates, material and surface information, are
also included in the product domain. The process domain has a straightforward approach to
representing the process levels. The system domain was created to represent the production facility
and resource information. This model allows resource connections to parts, assemblies and products
via the activity class. The ontology is saved into a Knowledge Base (KB) which is described in detail in
(Lanz 2010.) The original version of the Core Ontology doesn’t provide any means for describing the

44

capabilities, lifecycle information or interfaces of the resources. So, during the course of this thesis
project, it has been extended to better suit the requirements of production system adaptation
planning and reactive adaptation. These extensions are discussed in Chapter 4, and more specifically
in Chapter 4.5.

Function-behaviour-structure framework

Several approaches have been reported, (Lohse 2006; Kitamura et al. 2006; inter alia), for the
ontological definition of a device’s or module’s capabilities based on the function-behaviour-
structure (FBS) framework. The FBS framework was originally developed by Gero (1990) and is
illustrated in Figure 14, below. The main focus in FBS is on understanding the functional capability of
devices based on their behaviour and structure.

Pl > 5 — 3> D
l Y
B =€ —» &,

Figure 2, Model of Design as a Process,

Bf. = Set of expected behaviors

B, = 5et of actual behaviors D = Design description
F = Set of functions 5 = Structure

— = Transformation

--- = Occasional transformation

<—= = Comparison

Figure 14. The function-behaviour-structure framework (Gero 1990).

Kitamura et al. (2006; 2010) developed an ontological framework for modelling the functional
knowledge of devices. They stated that functional knowledge reflects part of the designer’s intention
(design rationale). How the function is recognized depends on the system, the environment, the
situation or the use, as opposed to objective data, such as shape and structure. The distinction
between function and behavior, used by Kitamura et al., originated from research into qualitative
reasoning. The term “behavior”, when applied to a device, represents temporal changes of the
physical quantities of some physical entity (operand) other than the device. Behavior is objective and
independent of the context (which includes the designer’s intention), the user’s aims and the system
in which the entity is embedded. The term “function”, on the other hand, is related to the intention
of a designer or a user, and is hence context-dependent. A behavior can perform different functions
depending on the context. Moreover, a function can be performed (realized) by different behaviors.
Simply put, function answers the question “what to achieve”, whereas behavior describes “how to
achieve”. (Kitamura et al. 2006; Kitamura & Mizoguchi 2010.)

Kitamura et al. (2006) discussed functions as a role. By role they meant the concept that an entity
plays in a specific context. A function can be defined as a role played by behavior in a teleological
context. The teleological context for an engineering system, in turn, can be determined according to
the designer’s or user’s intention. (Kitamura et al. 2006.) The difference between Kitamura’s
function-behavior approach and the traditional function-behavior-structure paradigm as applied by,
for example, Lohse et al. (2006b) is that Kitamura’s behavior does not describe the internal behavior

45

of the resource arising from its structure. Kitamura et al. don’t go to the structure level when
describing resources.

Separating “what to achieve?” from “how to achieve?” is seen as beneficial to adaptation planning,
and particularly for dynamic reactive adaptation. If these two can be separated, the product
requirement can just state “what?” leaving more freedom for the resource selection based on the
resource’s availability, or other criteria.

A Matchmaking Methodology for Supply Chain Deployment in Distributed Manufacturing
Environments

The work performed at NIST (National Institute of Standards and Technology) by Ameri and Dutta
(2008) aims to connect the buyers and sellers of manufacturing services in web-based e-commerce
environments. The matching is based on their semantic similarities in terms of manufacturing
capabilities. The proposed matchmaking algorithm operates in Manufacturing Service Description
Language (MSDL), which is an ontology for the formal representation of manufacturing services. The
work uses a graph-matching approach, since the MSDL descriptions can be represented as directed,
labelled trees. The fundamental concepts underlying MSDL are supplier, service and resource. The
relationships between these concepts can be seen in Figure 15a. Manufacturing services are an
important part of the methodology and are formally defined using the MfgService class. Any instance
of the MfgService class has at least one manufacturing process, and is typically characterized by an
array of manufacturing capabilities. An MfgService is enabled by certain manufacturing resources,
i.e., machines, tools, fixtures, etc. Figure 15b presents an example of subclasses of the MfgCapability
class for describing the machining capabilities of a service. (Ameri & Dutta 2008.)

Supplier

Provides '\ pl =
\ ";‘-b uTol

'
" - e
L Surface e,
c % ***® averageRoughness
e unit

i"*® materialName

Service <+ Resource
Enables ™o materialGrade

Figure 15. a) Relationships between supplier, service and resource; b) Example of MfgCapability subclasses
(Ameri & Dutta 2008).

MSDL enables a uniform treatment of knowledge from suppliers and demanders by modelling them
both as generic concepts which need to be matched. Supply and demand are instances of
advertisement and query, respectively, which are both represented through service and supplier
classes. Accordingly, machine agents can use their internal reasoning mechanisms to determine the
semantic similarity between the instances of advertisement and query, based on their formal
descriptions and taxonomies. (Ameri & Dutta 2008.) The underlying problem to be solved in this
approach is somewhat similar to the problem presented in this thesis. Supplier corresponds to the
resource, and demander to the product requirement. The approach is based on matching the existing
capabilities with the required ones, but again, MSDL doesn’'t consider how to combine the

46

capabilities of multiple co-operating resources. Actually, it only describes the combined capabilities,
because it describes the capabilities of a supplier as a whole, but fails to specify each individual
resource which is involved in the manufacturing operations.

EUPASS - Equipment ontology and skill concept

During the EUPASS-project, briefly discussed above in Chapter 3.1.4, the EUPASS ontology for
modelling evolvable, modular, ultra-precision assembly systems was developed. The ontology was
divided into three sub-domains, namely Product, Equipment and Assembling Process. In the EUPASS
approach, the Skill concept is used to bridge the gap between processes and equipment in the
ontology. The skills are divided into basic skills and complex skills. The basic skills are the most
fundamental skills, whereas the complex skills are combinations of various simple skills. (Lohse et al.
2008.)

Lohse et al. (2006a) presented an ontological equipment model which was intended to support the
effective design of reconfigurable assembly systems. The ontology follows the function-behaviour-
structure framework and includes a separate formalism for the specification of a module’s capability
and interfacing requirements. The equipment ontology is used to represent the functionality and
behavior of the equipment arising from its structure. For example, the functionality of a robot is
described by dividing the robot structure into links and joints, and describing the behavior of each
link and joint separately. The connectivity between different equipment components is handled
through interface ports. Figure 16 presents an overview of the equipment ontology concept and the
relation between function concepts and equipment concepts. (Lohse et al. 2006a.)

Object - CbjectStructure
nponents:
Intertace System
Cell
InterfacePort
Workstation
Unit
hasBehaviours™ hasRetationss n
nasFunciors> Device
Behaviour
|] ———_I" Function Connection Component sa]_ Element
¥ ¢4
hasSubbehavicurs® 1 I
a) hasSublunctions”
System
rasFunctions »» 1 Call
asFunctions » 1 i
PerformTask rasFunctions >= 1——1 Workstation
i nasFunctions < 1 i
Function PerformOperation “—\MxFumliOﬂ; >u 1 Unit
hagFunctions < 1
PerdormAction ‘Qﬁur\u&om i Device
rasFunctions < 1
Element

b)
Figure 16. a) Equipment module ontology concept overview, b) Relation between function concepts and
equipment concepts (Lohse et al. 2006a).

47

Lohse et al. (2006b) divide the assembly processes into three hierarchical levels, namely task,
operation and action. They use rule-based activity decomposition patterns to recognize the overall
function from the set of lower-level functions. The activity decomposition patterns refer to the
methodology by which the assembly process is specified through stepped increases in the level of
detail from tasks, through operations up to actions. The process decomposition patterns define the
required sub-activities for a specific type of activity and include their temporal and logical
constraints. This definition results in an AND/OR graph-like structure that links higher-level activity
types to lower-level ones. (Lohse et al. 2006b.)

Process Domain Equipment Domain
Activity Skill <> MEquipment |
Type 9, Emplacement o> | Emplacement |
& O as_Profiles [1..n]
\ JZ& specialises (1) ' v
7, Skill o‘ Equipment
; Constraint I Profile
s B\ BV . e
&
e %
%%
implements (1]
Control Port
EUPASS Skill
= activity Type: Class :
Par:mneler D - composedOf: Instance(} N r~EUPASS
0 & - hasPorts: Instance(} 3 (e e
s - implements: Instance(} L L ca UL T
<
&7 -
&
composed_Of [0..n)
Composition/Aggregation Standard/Speciaksation EUPASS Concept
Relationship Relationship (Process Domain) :]
Attribute EUPASS Concept |
Relationship (non Process Doman) ~ — ~

Figure 17. EUPASS Skill Definition Overview (Lohse et al. 2008).

Figure 17 shows an overview of the EUPASS Skill concept and its relationships to other associated
concepts within the process domain. The boundary conditions, or rather the way a skill can interact
with its environment, are defined through Control and Parameter ports. They both have input and
output ports and variables, which are identified and described by the Emplacement and Blue Print
discussed in the next chapter, but their value changes during the operation of the module. The
Control Ports take part in the control flow, or in enabling the skill, and they govern the sequential
behavior between skills. Each skill has to have at least one input or ‘begin’ control port and one
output or ‘finished’ control port. The sequential control behavior can be defined by mapping the
input and output control ports to each other. The Parameter Ports govern the exchange of
parameters between skills. For example, if the aligning skill needs to position something based on a
position determined by a measurement skill, then the measurement skill needs to have a position
parameter output port and the aligning skill needs to have a position parameter input port which can
be mapped to each other. (Lohse et al. 2008.)

The EUPASS approach recognizes the problem that individual items of equipment are not usually able
to execute the required task alone, and therefore combinations of devices providing complementary
skills are needed. For example, in order to move items a robot, which provides the moving skill,
needs to be combined with a gripper, which provides the holding skill. Unfortunately, the EUPASS
documentation doesn’t provide details on how their approach deals with the emergence of the
atomic skills into complex ones, or how they present the complex skills within the ontology model. As

48

far as one can tell, the skill information doesn’t include parameters, and therefore the problem of
combined capabilities is still unsolved.

3.4.2. Resource description languages

The EUPASS Approach — The Emplacement and Blue Print concept

The Concept of the Digital Manufacturing Module Description, i.e. the Emplacement concept, was
developed by Siltala et al. (2008) to give a standardized description of the EUPASS modules which
comprise an assembly system. The aim of these descriptions is to aid in both the design and
commissioning of assembly systems and the design of each individual module, and they are intended
to be utilized by anyone dealing with the assembly system (e.g. the module providers, the system
integrators or the end users). The key terms in the Emplacement concept are Emplacement, Profile
and Blue Print. They aim to provide a digital representation of the production modules and include
essential information like mechatronics, interfaces, skills, technical and business properties, CAD
models, datasheets and so on. XML (eXtensible Markup Language) is used as a format for the
Emplacement and Blue Print languages. (Siltala et al. 2008.)

Emplacement is a generic description of the features and general requirements of a module for an
assembly system. It is a collection of interface and property specifications for particular modules.
Examples of Emplacements are a gripper, a manipulator and a feeder. Each Emplacement contains
one or more Profiles. The Profile is a technical, schematic and detailed description of a module. It
defines the detailed set of features and requirements that makes one module interconnected and
interchangeable with another. A Profile is a representation of one kind of physical module and it can
be instanced by physical hardware. Examples of profiles are a vacuum gripper, a 2-finger force-
feedback gripper and a 3-DOF Cartesian manipulator. Blue Print (file) is an electronic specification of
an actual, existing process module. The Blue Print file content needs to correspond to the Profile and
Emplacement specification, of which the Blue Print is an instance. In addition to these, there is also a
History Container file. While the Blue Print file is the same for all instances of the module, the History
Container contains relevant information about the specific instance of the module, and is updated
during the lifecycle of the module. (Siltala et al. 2008; Siltala et al. 2009; Siltala & Tuokko 2010.)

The Emplacement concept can be used as an information source to support various planning and
control activities, including planning the adaptation of production systems. The concept includes the
history information and the skills of the resources, which play a crucial role in enabling the planning
for re-use and adaptation. The incorporation of the interface definitions in the model supports the
integration of resources in different configurations. However, again, modelling the combined skills is
not part of the concept.

Unified Manufacturing Resource Model (UMRM)

Vichare et al. (2009) developed a Unified Manufacturing Resource Model (UMRM) to represent
manufacturing equipment, in particular CNC machining systems. It aims to capture information
related to the manufacturing facility and its capabilities, and to provide support for the automation of
decision-making in process planning. The model represents the machine resource and also its
additional auxiliary devices, such as the workpiece and cutting tool changing mechanisms, bar
feeders, fixtures, conveyors, pallet/gantry systems and robotic arms. UMRM is STEP-NC compliant
and it follows the EXPRESS-G data modelling methodology. (Vichare et al. 2009.)

49

UMRM is based on modelling kinematic chains of machines. With UMRM, any machine tool or
auxiliary device in the CNC machine can be considered as an assembly of various mechanical machine
elements with different kinematic joints to facilitate constrained movements, and thus can perform
the desired manufacturing operations. The UMRM’s entity, the mechanical_machine_element, is an
abstract representation of any mechanical machine element in the CNC machining system. The
kinematic_joint is used to represent possible kinematic links between two machine elements. The
kinematic properties of the movements are represented with the entity axis. When several axes are
attached to a mechanical machine element, this represents a machine element capable of moving in
different directions in order to perform the intended manufacturing operations. For example, a
robotic arm assembly can be modelled in this manner to represent both its movement and the
workspace configuration. These entities are presented in Figure 18. (Vichare et al. 2009.)

its _placement 1
F 64 axis 2_placement _3d | | table p——' (ABS)general_machine_alement | | (ABS)tool _and _maierial_handling_ devices |
raf_ joint 1
trander_placement p====== .
lecccccc e]
its_trans_placement E !
1 - ¥ 1
its_axes S [0: ?]E ! I.."i'P."l‘l“.“.."ﬂ'i?’.[E‘;_].l
axis P----E P a1 (ABS) audliary _device
LR its _machining _tool S [0:7]
Kinemat " {ABS) mechanical [-CI machining _tool | | robot p—
i in i ¥ I IC, Ir) L, v pEsssssssss
kinematic_pair _type S [07] | o machine_elment
framate pair peeeed” || [e wotpes] = P
. 7 T T its_workpiece S [7]
(]] [
------------------ 1its_sh
6 6 kinematic_ joint 5 [0:7] '\-----920--(1 shape_representation | | {ABS)iod _holding cluncnlsg
|Iom:|r pair | | higher_pair | |usnr defined_pair |
its_id
B PO
max_travel_range (ABS Jaxis its_direction
> X r ----- S
length_measume _ramw
max_travel_range

T

!

I —d

: rolary_ axis min_travel_range plane_angle_measun
i

linsar_rapid

spead_measun

max_spead

rotary _drive

7 linear_feed

............... —

rot_spead_measun

rotary feed

Figure 18. UMRM entities mechanical_machine_element, kinematic_joint and axis (Vichare et al. 2009).

The UMRM is based on modelling the kinematic chains and therefore, in this regard, it works at a very
detailed level. The UMRM is mainly meant for modelling the CNC machine resources, whose process
capability depends strongly on the different axes attached to the machine element. Compared to, for
example, an assembly system composed of multiple individual devices (without the devices being
divided into elements like joints and axes), this kind of modelling is not adequate. The UMRM is not
able to capture the combined capability of multiple co-operating resources. It is a static model, which
describes the behavior of one resource at time. Therefore, it doesn’t provide a feasible solution to
the resource description problem presented in this thesis.

3.4.3. Object-oriented approaches to resource description

Maropoulos et al. (2003) presented an object-oriented resource model which was developed to
support dynamic, aggregate planning of manufacturing operations within production networks
during the early stages of product design. Aggregate planning aims to measure a product’s
manufacturability and to evaluate alternative design configurations and manufacturing scenarios

50

through the allocation of multiple parts to remote facilities within the supply network. This resource
model is based on a library of two sets of classes: resources, meaning the physical entities; and
resource types, indicating the process-related capability of the resource. These resource types (e.g.
handling, transport, machining) are associated to the individual resources. For all the resources,
several properties are given, such as location, set-up times for parts and batches, cost rates,
utilization, quality, etc. Each resource type has a different set of operating parameters, ranging from
the maximum depth of cut to the tool speeds and feed rates. These resource keys are exactly the
same as for processes, enabling direct mapping between processes and resources (see example in
Figure 19). (Maropoulos et al. 2003.) Central to the aggregate process model classes are the
algorithms, which estimate the Quality, Cost and Delivery performance based on the feature
characteristics of the product model and the operation parameters of the resource, in order to
facilitate resource selection for a given product (Maropoulos et al. 2002).

EackryXi R Factory

Name: “Facoryx”

Location
MiTurnfrea Cel =
[|

|
I B_Labour R Maghing R Magding
e Tuon MC_Cuting_Mech_Dril MC_Cuting_Mech_Mil

Max_axial_feed_rak = 2 mm'min
Max_axial_ DOC=05m
Max_wnal_speed = 3000 rpm
Max_bol_radius=0.04 m
Taol_approadh_directon = z-dir

blax_axial_feed_rake = 2 mm'min
Max_Z_DOC=04m
Max_feed_raie = 1.5 mfmin
Max_ipol_speed = 4000 rpm
Max_lool_radus=0.1m

2k 3k $E 3k 3k

=@ B I R R

+ Actessor methods [+ Apcessor methods

Figure 19. Example of resource model (Maropoulos et al. 2003).

Even though the model presented by Maropoulos et al. (2003) is able to describe the process-related
capabilities of resources, it has a few drawbacks when applied to the problem in this thesis. It is
based on the traditional classification of resources. In other words, the resources are divided into
types based on their assumed common functionality. It doesn’t support modelling the combined
capabilities of resources and it doesn’t include the lifecycle information or interface descriptions in
the model.

Colledani et al. (2009) presented a conceptual framework for the integrated modelling of product,
process and production system data. The aim of their work was to provide a common data structure
as a reference for different methodologies and tools used during manufacturing system design. The
framework was developed as an object-oriented model using UML (Unified Modelling Language) and
translated into a relational database. The data framework was enriched with the evolutionary
concept, which allows for the consideration of possible changes to the system (i.e. reconfigurations)
as well as to the products and processes. The product information was presented in the classes of
Workpiece, Machining Feature, Scenario Node and Production Problem. The data related to the
manufacturing system were detailed by the classes of System, Selected System, Hyperplane,
Machine, Carrier, Load/unload Station, Physical Pallet, Tool, Tool Carrier and Performance

51

Evaluation. The process was described with the classes of Machining Operation, Machining
Workingstep, Workplan, Pallet, Setup Face and Setup WP. Several attributes were given for each of
these classes. The dynamics of the manufacturing system configuration are represented by the
“previous system” attribute, which links a given system with its previous configuration. (Colledani et
al. 2009.)

The above-mentioned approach by Colledani et al. (2009) gives a very comprehensive and
straightforward way to describe the properties of the resources, as in the catalogues and the
selected process parameters. The approach is not meant to describe the capabilities or combined
capabilities of resources. The relational database approach gives a concrete way to save the
information generated during the system design process in a structured way, but it doesn’t provide a
basis for reasoning in order to extend the knowledge. While the ontologies allow new information to
be added to the model relatively easily, the databases are very stiff and the use cases (requirements)
need to be known before implementing the system. Ontologies allow more flexibility to extend the
model. Therefore the relational database approach is not feasible for the problem presented in this
thesis.

3.4.4. Conclusions about the existing approaches to resource description

The preceding chapters introduced and discussed some of the existing approaches to resource
description. At the same time, their contributions and limitations in terms of supporting the resource
description problem in this thesis were briefly discussed. Although not exhaustive, the review did
highlight some aspects of the information models that need to be developed further in order to
better support production systems in changing environments and to allow for the automatic
generation of different configuration scenarios.

Usually, different classification systems are used to describe production systems. Traditionally, the
manufacturing processes have been divided into subtractive, additive and transformative processes
and the resources have been classified into groups based either on their common properties or the
functions (processes) they perform (e.g. milling machine, lathe, robot, conveyor, etc.). This division
has traditionally been good enough to classify the machinery. However, the emerging new hybrid
technologies of today combine many types of processes into one device. Therefore, describing
resources solely by the traditional means of classification has many limitations. If the resource is only
allowed to be a member of one class, then a multifunctional device needs to be forced into the most
appropriate class, even though it might have functionalities which belong to a number of different
classes. One example of this kind of machine is the multifunctional universal CNC lathe, which is able
to perform turning, milling and drilling. Also, depending on the context, the same device may be used
to perform different activities (take a different role), e.g. the same device may be used to screw or
drill, depending on the tool attached to it. Describing the resources through classification doesn’t
support the easy formulation of functional combinations either, as it must be based on pre-defined
rules for matching resource types. Therefore, the traditional classification of resources is not
expressive enough for the problem at hand.

Many of the approaches reviewed here have tried to overcome the limitation discussed above, in
which the resource’s functionalities are assumed to be purely based on the resource type, by
incorporating the capability or skill definition into the resource description. Based on the process-
oriented capability definition, it is possible to make a match between the process requirements and

52

the resource capabilities. However, with regard to the current thesis problem, there are two main
limitations to the existing information models. These are summarized in Table 3.

Table 3. Limitations of the existing resource description approaches.

Lack of ability to model combined capabilities

Even though the problem of combined capabilities (or complex skills) was mentioned in a
few of the reviewed approaches, no solution to the problem was defined in detail. These
approaches defined the logical relationships between the simple and complex skills, but
didn’t incorporate the parameter information into the capability definition. Therefore,
they didn’t consider how to combine the parameters of the simple skills in order to derive
the parameters of the complex skills. Therefore, it appears that the problem of describing
combined capabilities of multiple co-operating resources still remains unsolved.

Lack of lifecycle information of resources

Most of the reviewed approaches didn’t include lifecycle information of the resources in
the resource description. They were mainly static resource models, describing the
nominal capability of the resources rather than their actual, current capability. While the
resource is being used, its condition and capability may vary and therefore it would be
beneficial to take this lifecycle information into account in the resource description. With
regard to the adaptation problem, it is crucial to know the current capability of the
resource in order to be able to more accurately estimate, e.g. its reusability or its ability
to cope with the new requirements.

Based on the review, ontologies seem to be a feasible way of representing knowledge for describing
the knowledge elements needed when dealing with the problem of production system adaptation.
Ontologies allow new information to be added to the model relatively freely, and this eliminates the
necessity of knowing all the use cases before constructing the ontology. Compared with, for example,
relational databases, ontologies allow more flexibility for extending the model and adding new use
cases when needed.

53

4. PROPOSED METHODOLOGY FOR ADAPTATION

This chapter presents the computer-aided adaptation methodology which was developed for this
research and introduces the solutions to each of the defined sub-objectives. Figure 20 reiterates the
problem definition and supplements this with the solution elements, which will be discussed in this
chapter.

User-defined

CURRENT SYSTEM e ADAPTED SYSTEM
Current physical system New.physi'cal system \
configuration \ configuration S

] 5 Production system | Z

R |7 adaptation ~

S methodology ’
STATIC ADAPTATION STATIC ADAPTATION)
| Adaptation schema I

- A -
Current locigal system - f New logical system
configuration ramework tor configuration

capability matching

Resource Rule-base

description

Capability
taxonomy

v

Approach for evalua-

ting impact of change -
DYNAMIC ADAPTATION QYNAMIC ADAPTATION)

Figure 20. Problem definition and solution overview.

The core of this adaptation methodology lies in the capability-based matching of product
requirements and system capabilities in the context of the adaptation process. The computerized
matching of available resources against product requirements requires a formalized and structured
representation of the functional capabilities, properties and constraints of the resources. A formal
information model that is able to describe the existing system, as well as to formalize the elements
that can be added to or removed from the adapted system is required. A description of the products
and processes is also required as input for the adaptation planning. The last requirement is, of
course, a schema to guide the adaptation process and indicate the required activities and
information flows that are needed during the adaptation planning and for dynamic reactive
adaptation.

The requirements for the information models are introduced in Chapter 4.1. After that, the
capability-based resource description and the components of the overall resource description are
introduced in Chapters 4.2 and 4.3 respectively. Chapter 4.4 presents the framework and rules for
the capability-based matching of product requirements and system capabilities. Chapter 4.5
introduces the actual implementation of the formalized resource and capability model. The
adaptation schema, which forms the backbone for the adaptation methodology and guides the use

54

of the other elements and information resources in the adaptation process, is introduced in Chapter
4.6. Finally, Chapter 4.7 discusses an approach to evaluating the impact of product requirement
changes on the production system. This approach is based on the other results obtained during this
work and presented in the earlier chapters.

4.1. Definition of requirements for the information models

The following elements — product (order), process and resource — need to be formally modelled in
order to support the adaptation of production systems based on the automatic matching of product
requirements against the production system capabilities. In practice, detailed product and process
modelling are beyond the scope of this thesis and have been tackled by another researcher (Garcia et
al. 2011). However, as they are crucial input data for the capability matching, this work has set some
requirements for these, which will also be described below. Table 4 below lists the requirements for
these three information models.

Table 4. Elements to be formally modeled and their requirements.

Element Requirements and characteristics
Product & The product and order model needs to capture the product design, quality
Order requirements and production volume.

If a single part is to be manufactured, the product model needs to describe the
workpiece in terms of its geometrical dimensions and features (e.g. face, pocket,
hole, slot, etc.) that need to be accomplished. The features define the technological
requirements for the resources.

If a product is to be assembled, the product model needs to present the parts, their
relations and liaisons, and the assembly features.

Process The process model should define the manufacturing and assembly processes so that
(capability it can capture all the relevant requirements needed to define suitable production
requirement) | systems and devices.

The resource selection needs to consider both technical and temporal constraints.
Technical constraints are directly derived from the features and liaisons that need to
be established, i.e. from the product model. Temporal constraints are defined by the
order in which the activities need to be performed. Therefore, the process model
should describe the required activities and their temporal and logical order
relationships.

The processes need to be modelled from the product perspective, i.e. what needs to
be done to the product in order it to transform into a finished product (e.g. grasp
product, move product). The resource perspective (e.g. open fingers, close fingers),
even though important from the production control point of view, is not required
here.

The required activities should be formally expressed in terms that are closely related
to the formalism used to describe the available resource capabilities.

The process model should enable the modelling of processes at different abstraction
levels (function vs. behaviour) depending on the situation.

Resource The resource model needs to be able to describe the characteristics of single
resources as well as complete production systems.

The resource description has to support at least the following three activities: 1)
selection of suitable system components, i.e. devices; 2) combination of the selected

55

components into suitable production system solutions; 3) evaluation of alternative
system configurations.

The focus in the resource model has to be on describing the functional capabilities of
the resources. In order to enable effective selection of suitable resources for a given
requirement, the resource model also needs to include the parameter values by
which the resource performs the functions.

The capabilities need to be defined so that they can be synthesized into higher level
capabilities (combined capabilities) when two or more resources are combined into
one functional configuration. The capability model should also enable the integration
of the resources into those combinations with the required functionality.

There needs to be a definable relationship between the process definition and the
resource capability specification.

The resource model should contain a clear definition of the connectivity constraints
between individual resources. In other words, the interface description, which
supports decisions about the compatibility of two resources, needs to be included in
the resource model.

The system description needs to describe the location of the equipment in the
resulting configuration in order to enable spatial reasoning about the existing
resource functionalities.

The resource model is intended to be used in the context of the adaptation process.
This means that the resources involved in the process are not brand new, but each is
in its own lifecycle state. Therefore, the model must take the lifecycle of the
resources into account. The behaviour of the resources is constantly changing and
thus the representation of the resources cannot be static. It needs to be updateable
in order to stay valid and fit for its purpose.

For the problem at hand — the production system adaptation planning problem — the actuality is an
important trait for the models. According to Avgoustinov (2007), the actuality refers to the time-
dependent accuracy of the model, meaning that if the modelled object changes over time, its model
should be updated in order to remain relevant and fulfil its purpose. The actuality may change in two
situations. On the one hand, it can “expire” if the object being modelled is changed or new
information about it becomes available. On the other hand, new scientific discoveries can also make
a model outdated and require its actualization. (Avgoustinov 2007.)

In changing environments like a production environment, it is important to work with up-to-date
information in order to be able to make informed decisions. In this thesis, the resource model
actuality is of supreme interest. During their individual lifecycles, resources are described by many
different models. Some of the models can be considered static, like the resource structure and
designed nominal capability. Models that describe how individual resources are used, for example
factory layout, can also be static, but only for a limited period of time. Models describing the
behaviour or performance of individual resources are dynamic due to wear, maintenance, repair or
other changes to the resources, and thus need to be updated during their lifetime. These aspects
need to be considered while developing the resource description.

56

4.2. Resource description based on capabilities

Each device in the production environment has certain properties and behaviors. Some of these
properties and behaviors allow the device to perform certain processes. The properties of the devices
have certain ranges and the functionality of the devices is restricted by certain constraints. These can
be, for example, environmental constraints like the maximum permitted humidity and temperature of
the operating environment, or technical properties, such as the maximum torque of a spindle or the
velocity range of a moving axis. Automatic matching of available devices against product requirements
requires formalized and structured representations of the functional properties and constraints of the
devices.

As was pointed out earlier, most of the approaches to resource description tend to classify the
resources into groups based on their common properties, or the functions they provide (e.g. milling
machines, lathes, robots and so on). Unfortunately this kind of classification limits the expressiveness
of the representation. To overcome this limitation, instead of classifying devices, in this thesis the
functional capabilities of the devices are classified. This way, one device may have multiple capabilities
which can be used in different contexts. Furthermore, new capabilities may be discovered during the
resource lifecycle and these can be assigned to the device when, and if, they emerge. For the
capability classification, the capability taxonomy has to be constructed so that it allows reasoning
between different levels of abstraction.

There are multiple definitions for the word “capability” in the literature, and often the word “skill” is
used instead. Holmstrém (2006) defined a manufacturing capability as follows, “A manufacturing
system’s capability is the inherent ability of the manufacturing system to perform change in the
properties of a material in order to produce tangible products.” With regard to this thesis there are
two shortcomings in this definition. Firstly, it doesn’t include assembly systems. Secondly, it doesn’t
consider those capabilities which don’t change the properties of the material, but which exist in the
production system and are definitely needed in order to be able to change the properties of the
material. For example, visual sensing itself doesn’t change the properties of the material, but it may
be needed in order to be able to pick up the material and assemble it into a product. Therefore the
definition of capability is extended to:

Capability is the inherent ability of a resource or system to perform change in the properties of
materials, parts or assemblies, or to perform activities which may be required to change the
properties of materials, parts or assemblies, in order to produce tangible products.

It needs to be noted that intangible services also require capabilities. However, because this thesis
concentrates on discrete production systems, these are excluded from the definition.

In order to help the reader with the remainder of the text, Table 5 summarises the capability-related
concepts which are used in the following chapters. A more detailed explanation of each term is given
in the relevant chapters.

57

Table 5. Definitions of capability-related terms.

Term

Definition

Capability

Capability is the inherent ability of a resource or system to perform change in the
properties of materials, parts or assemblies, or to perform activities which may be
required to change the properties of material, parts or assemblies, in order to produce
tangible products. A capability is a functionality of a resource, such as “milling”,
“drilling”, “screwing” and so on.

Simple &
combined
capability

Capabilities are divided into simple and combined capabilities. Combined capabilities
are upper level capabilities, which can be divided by functional decomposition into
simple, lower level capabilities. Combined capabilities are combinations of other
(simple or combined) capabilities.

Capability
concept
name

Capabilities are characterized by their name and their parameters. The capability
concept name indicates the natural name of the capability, such as “moving”.

Capability
parameter

Capability parameters describe the characteristics of a capability, e.g. the “moving”
capability is characterized by “velocity” and “acceleration” parameters. They help to
distinguish between different resources which have similar capabilities.

Strong
capability

Strong capabilities are capabilities that fit into the original definition of capability. They
are functionalities of resources.

Weak
capability

Weak capabilities don’t fit into the original definition of capability, because they don’t
provide any functionality. They are properties of the resources, which don’t naturally
relate to any other simple capabilities, for instance, “basicDevicelnfo”, which describes
the size and weight of the resource.

Capability
model

A capability model is used for modelling and managing the combined capabilities
formed by combinations of simple capabilities. In the model, the simple and combined
capabilities are linked by capability associations. The instantiated capability model
consists of the pool of capabilities that may exist in the production system and their
parameters.

Capability
association

Capability associations are links between simple and combined capabilities. There are
two types of capability associations, inputs and outputs. The simple capabilities
provide output associations while the combined capabilities require input associations.

Capability
assignment

Capability assignment is used in the ontology to assign resource-specific capabilities to
the resources. Capability assignment contains the resource-specific parameter values
for the capabilities.

Capability
taxonomy

The capability taxonomy categorizes the capabilities in a hierarchical structure. The
taxonomy is used to enable mapping between product requirements and resource
capabilities at different levels of detail and allow subsumption-based reasoning about
the capabilities.

The resource description approach defined in this thesis is based on ontological modelling. The Core
Ontology defined by Lanz (2010) and introduced in Chapter 3.4.1 is used as a basis for describing the
product, process and system-related information. It allows the basic descriptions relating to the
resources to be formalized. In the scope of this work, the Core Ontology has been extended so that it
describes the capabilities of the resources, the resource interfaces and the lifecycle information
relating to the resources.

The introduction to capabilities and their modelling is first given in Chapter 4.2.1. After that, the
capability model is described in Chapter 4.2.2, followed by the description of the capability
associations and the capability parameters in Chapters 4.2.3 and 4.2.4, respectively. These capability
associations and parameters are integral components of the capability model.

58

4.2.1. Introduction to capabilities

In the approach proposed here, capabilities are functionalities of resources, such as “drilling”,
“milling”, “*moving”, “grasping” and so on. This functionality determines the capability concept name.
Capabilities have parameters, which present the technical properties and constraints of resources,
such as “speed”, “torque”, “payload”, and so on. In other words the concept name of the capability
indicates the operational functionality of the resource, whereas the capability parameters determine
the range and constraints of the capability. For example, the capability with the concept name
“moving” has the parameters “velocity” and “acceleration”. The capability parameters allow the
determination of which resource has the capability that best fits the given product or production

requirement.

Capabilities are divided into simple capabilities and combined capabilities. Combined capabilities are
combinations of other capabilities, usually formed by a combination of devices, such as a robot and a
gripper. A combined capability can consist of two or more simple capabilities, other combined
capabilities or a collection of simple and combined capabilities. Figure 21 is a UML-diagram showing
the relations between the capability-related terms.

Capability concept name

isa

Competence [Capability

is described by Capability parameter
0..*

isa is composed of
1.*
Simple capability is composed of -— Combined capability
+2..%

Figure 21. UML diagram of capability and related terms.

Competences are human capabilities. Because human capabilities are a vaguer concept than device
capabilities they are assigned their own class. The properties of human competences cannot usually
be easily measured, predicted and stated. Two persons can have the same education or training, but
it doesn’'t mean that they will perform the same task with the same level of performance.
Experience, personality, physical shape and mental aspects affect their performance. Machines are
easier to handle in this sense. In a wider context the word ‘competence’ also refers to the ability of
an organization to perform processes and offer services at a certain level of performance. Even
though this thesis concentrates on device capabilities, the same capability model is also intended to
model human competences.

Chapter 3.4.1 discussed the ‘function-behavior-structure’ modeling framework by Gero (1990), and
applied by Lohse et al. (2006a) and Kitamura et al. (2006; 2010). Function represents “what to
achieve?”, whereas behavior describes “how to achieve?”. The function represents the intention of
the designer, i.e. what he or she wants to achieve. The behavior represents different manufacturing
methods (capabilities) that can be used to achieve the required function. For example, the required
function may be “joining”, which can be achieved by several different behaviors, such as “welding”,
“gluing”, “screwing”, “riveting” and so on. The structure determines the behavior of the resource. As
with Kitamura et al. (2006; 2010), the approach taken in this thesis aims to describe the function and

behaviour of the resources but exclude the structure level from the capability definition. The

59

structure needs to be incorporated into the model if the model is intended to be used for
programming and controlling the resources, or generating, for example, the tool paths. Therefore,
given the objectives of this thesis, structure modelling is not needed.

Function Behavior DEYICE Station Cell '_-'"e_

Whatto = How to achieve? Having a Combination of = Combination = Combination of

achieve? = (Way of function behavior as a devices of stations cells
achievement) capability

Screw
driver | Screwing
Screwing has-capability part-of station
is-a part-of
part-of
has-capabilit
Rk part-of . ..
|J ™ Is-a o Gluing Gluing | rart-of \/' Joining
oinin *‘ uin, }%-‘ ; . —
g g machine station cell
part-of

is-a

Welding has-capability partof 7 Welding

station
Welding
machine

Figure 22. Relation between function, behavior and resources at different system levels.

Figure 22 shows the relation of the function-behavior framewaork by Kitamura et al. (2006; 2010) and
the resource description approach taken in this thesis. In the proposed approach, the individual
devices have capabilities, which correspond to behaviors in Kitamura’s approach. The functions can
be achieved by several different capabilities (behavior). The devices have capabilities (behaviors)
which may be used to perform different kinds of functions. For example the “spinningTool” capability
(possessed e.g. by a screw driver) can be used to perform either drilling or screwing depending on
the attached tool. This means that it can be used both for the “material removing” and the “joining”
functions.

It is desirable to link the functions and behaviours in order to enable the targeting of the
requirements at different levels of detail. For example, the designer may want to predetermine the
manufacturing method as early as the product design phase, which means that the required
capability (behaviour) is fixed. On the other hand, the designer may be using the DFMA (Design for
Manufacturing and Assembly) methodology, which takes the existing manufacturing and assembly
technologies into account when designing the product. In this case, they may just specify that, for
example, some sort of joining is required, then check the available resources capable of joining with
different behaviours, and then make the detailed product design based on the available joining
method. In the case of dynamic adaptation, the product can be dynamically routed based on the
availability of the suitable behaviours (capabilities) which can provide the required function, leaving
more freedom for resource selection. In the case of assembly processes, the required method is
more often fixed by the product design than in manufacturing operations. For example, material
removing of similar features can be performed by multiple different methods (capabilities).

60

4.2.2. Capability model

The fundamental requirement for the capability model is to be able to manage the combined
capabilities of multiple co-operating resources, which can be derived from the capabilities of the
individual resources involved in the combination. Therefore, the combined capabilities need to be
divided into simple capabilities in a way which, firstly, supports the description of the individual
resource capabilities and their emergence into combined capabilities; and secondly, supports the
selection of the resources and resource combinations for a given product requirement. Basically
there are two levels in the combined capability problem:
1) At the higher level, the division of the combined capabilities into simple ones and their
relations need to be defined;
2) At a more detailed level, the parameters of the combined capabilities, based on the
parameters of the individual capabilities, need to be reasoned out.

The proposed capability model aims for capability modularization and reusability of the capabilities
among different types of resources. Generally, in modularization, the interactions between the
involved components are to be minimized (Lehtonen 2007). In the case of capabilities, the division
aims to minimise the dependencies between the capability parameters, so that the parameters fit
naturally under one capability concept name. The capability modelling is based on the functional
decomposition of upper level combined capabilities into simple capabilities and the assignation of
these lower-level, simple capabilities to the devices in a modular way.

The systematic design approach of Pahl & Beitz (1996) provides a fundamental relationship between
function and function decomposition. Function decomposition represents how a function is achieved
through a set of sub-functions, which are finer-grained functions. (Pahl & Beitz 1996.) Similarly, the
combined capabilities are achieved from finer-grained simple capabilities. Functional decomposition
allows the definition of is_part_of relations between the simple and combined capabilities. The
simple capabilities answer the questions, ‘What is the purpose of each resource in the combination
and what function is the resource providing for the overall system?’ When multiple devices are
combined, the simple capabilities form combined capabilities. The upper part of Figure 23b illustrates
an example of such a division with a transportation capability; in this case with a robot unit consisting
of a robot and gripper. The robot alone only has the ability to move its joints within a workspace.
However, when combined with a suitable gripper, together they are able to transport pieces from
one place to another.

61

combinedCapability_1 Combined capability: Transporting

Resource_1 | simpleCapability_1 Robot Moving

+ +

G
Resource_2 | simpleCapability_2 Gripper H(’;":;li)rllfglgl

capabilityAssociatio
| capabilityAssociation_1 | | capabilityAssociation_2 |

capabilityAssociation

| movingAssociation | | holdingAssociation I

Figure 23. a) Model for combined capabilities; b) Sample of the instantiated capability model.

In the ontology, the combined capabilities are modelled using capability associations as links
between the simple and combined capabilities. In the resource ontology, the devices are assigned
the simple capabilities they possess. Based on the defined capability associations, the device
combinations contributing to a certain combined capability can be identified and queried. Of course,
the devices also need to have matching interfaces to be able to co-operate. Figure 23a represents
the model for defining the combined capabilities. The same capability model can be used in different
domains. Definition of the domain-specific capabilities, as well as the input and output associations
for creating combined capabilities, require expert knowledge of the domain. For example, in the
context of this research, production engineering knowledge is required for the definition of the
capabilities used in the case studies. Figure 23b presents an example of the instantiation of the
model in the production domain.

The instantiated capability model, stored in the Knowledge Base (introduced in Chapter 5.1), defines
the generic capabilities, i.e. a pool of capabilities that can exist on the factory floor and can be
assigned to the resources. When these generic capabilities are assigned to the resources, they
become resource-specific when filled with resource-specific parameter values. The capability model
can be freely extended with new capability instances when new capabilities emerge in the system,
for example, when new technologies are acquired. In the next two chapters the capability
associations and capability parameters will be discussed in detail.

4.2.3. Capability associations

As described in the previous chapter, and in Figure 23, the capability associations are the key to
managing and presenting the combined capabilities within the ontology model. Here, the use of
these capability associations will be discussed in more detail.

The principles of the capability model seen in Figure 23a are:

e Resources have simple capabilities, which provide some capability associations as their outputs.

e Combined capabilities require some capability associations as their inputs, e.g. in order for the
“combinedCapability_1” to emerge, both capabilityAssociation_1 and capabilityAssociation_2
have to be satisfied.

62

o Different simple capabilities can provide the same capability association as their output, as is the
case with “simpleCapability_2” and “simpleCapability_3” in Figure 23a.

e When a device or combination of devices has capabilities, which provide output for all the
required capability associations (capabilityAssociation 1 and capabilityAssociation_2) the
combined capability (“combinedCapability_1") emerges.

o The capability model can have multiple levels, for example the “combinedCapability 1" may
provide an input association for some other combined capability. In this case the combined
capability is treated as a simple capability from the upper level capability’s point of view.

An illustration of instantiating the capability model is shown in Figure 23b with the transporting

capability example. In order to transport an item the system needs to be able to move within some

workspace and to hold the item. Therefore the system needs both “moving” and “holding”

capabilities. Holding can be implemented either by gravity (e.g. conveyor belt) or by grasping (e.g.

gripper). The principles in this specific case are:

* A*transporting” capability requires movingAssociation and holdingAssociation as input.

» The movingAssociation means that some sort of moving capability is required.

» The holdingAssociation means that some sort of holding capability is needed (holding by gravity
or grasping).

* A*movingWorkspace” capability provides movingAssociation as its output.

» “grasping” and “holding” capabilities provide holdingAssociation as their output.

* When a device or combination of devices has both “movingWorkspace” and “grasping” or
“holding” capabilities, it has the “transporting” capability. Examples of this kind of device are
either a combination of a robot and a gripper, or a conveyor alone.

Instead of building direct is_part_of relations between capabilities into the ontology, capability
associations provide a way to present alternative capabilities which provide a common input for a
certain combined capability (e.g. holding and grasping). The capability model can be extended freely
upwards and downwards and new capabilities and capability associations can be added as they are
learned. The capability model allows the capabilities to be modelled at different levels of abstraction.
Figure 24 shows an example of “milling” and “turning” capabilities. In the case of “milling”, the
“millingTool” capability is further divided into “toolHolding” and “millingCutter” capabilities, whereas
in the case of “turning” the “turningTool” capability is assumed to incorporate also the “toolHolding”
and “turningTool” capabilities. Another example of increasing the detail level is the finger gripper,
whose capability may be either “fingerGrasping”, or the grasping can be further divided into
“openFingers” and “closeFingers” capabilities. More detailed division is only needed if the capability
descriptions are used for programming or real-time control of the system. Any decision about the
desired level of abstraction should be made while building the related capability instances, because it
will affect the selection of the suitable capability parameters for each of the capabilities involved.

63

Combined capability: Milling

Machining Spinning
center tool

+

Milling cutter

Milling
tool

Tool holder

I+I_’

Capability

\CapabilityAssociatior

| fixturing# |

innit 1A T |
/I millingToolAssociation I\
N\
hasOutputAssociation
spinningTool | millingTool | | fixturing I
_—— "\

| toolHoldingAccociation I

| millingCutterAssociation I

[millingcutter | [toolHolding |

b)

Combined capability: Turning
Spinning
Lathe workpiece
{ +
Turning
Lathe tool sl
| turning | Capability

haslInputAssociation

spinningWorkpiece
Association

WIiWAssociation

| turningToolAccosiation |

asOutputAssociation
spinningWorkpiece

5

Figure 24. Modelling capabilities at different levels of abstractions, a) milling; b) turning.

64

Figure 25 shows more examples of the instantiated capabilities and their associations. The figure is
automatically generated from the newly developed Capability Editor software tool, which will be
discussed in Chapter 5.1.1. Due to the limitations of space, the figure is not complete, but extracted
from a larger graph which shows all the capability instances and their associations. For example, the
movingAssociation is an input association for many more combined capabilities than those shown in
the figure. In the figure, the rectangles represent the capability associations, whereas the oval shapes
represent the capabilities. The figure should be read from top to bottom. The arrows from a
capability towards an association indicate the needed input associations for the combined capability,
whereas the arrows from an association towards a capability indicate that the capability provides this
association as its output.

releasingAssociation transportingAssociation forceApplyingAssociation

forceApplying

holdingAssociation movingAssociation

transporting

rotatingAssociation graspingAssociation

magneticGrasping vacuumGrasping fingerGrasping movingWorkspace

vacuumCreationAssociation vacuumCupAssociation fingerAssociation fingerGripperAssociation

Figure 25. Small extract of the instantiated capability model.

4

The rest of the instantiated capabilities and their combinations through associations can be found in
Appendices 1, 2 and 3. Because of the graph’s size, it has been divided into smaller sections in order
to make it more comprehensible. Currently, the instantiated capability model includes capabilities
recognized in the use cases in the TUT-machining laboratory and the TUT-microfactory
environments. These environments will be further discussed in Chapter 5. Currently, about 90
capability instances with more than 50 input and output associations are included in the capability
model. This number also includes weak capabilities. If needed, there is a table in which all these
capabilities are listed and explained, along with their parameters, in a material bank on the internet®.

4.2.4. Capability parameters

Capability parameters describe the characteristics of a capability. In the capability model, the
capability parameters have been defined based on the most common parameters given in the tool
and machine providers’ catalogs. Of course, not all the providers give the same information and not all
the possible parameters found from the catalogs are included in the capability parameters. The aim
was to restrict the parameters to the ones most commonly given, but to make them rich enough to
allow the matching of product requirements against resource capabilities in the defined use cases. The
capability model is extendable, and therefore new parameters can be added if necessary. Adding new
parameters doesn’t affect the structure of the capability model, but rather the rules that are used for
the capability matching. If not all the parameters are available for a given device when filling in its
capability information, a default value -1 can be given, to indicate that this parameter should not be
taken into account in the reasoning process. In this case, the human expert needs to check the validity
of the reasoning results.

The capabilities are modularized so that the redundancy and interdependencies between the
parameters of the simple capabilities is minimized. This means that the parameters are assigned to

L http://kippcolla.serv.fi/~eeval
65

the simple capabilities which they most naturally fit into. This fitting is based on production
engineering domain knowledge. Also the assignment of the same parameters for multiple different
capabilities is minimized. It is recognized that this “natural fit” is not so realistic in all the cases. For
example, machine vision systems are so complicated that it is difficult to decide which simple
capability a certain parameter belongs to. Therefore, some artificial simplifications are made during
the creation of the instantiated capability model. Furthermore, for much the same reason, two
logically different types of capabilities are defined:

Strong capabilities

e Strong capabilities are those resource characteristics which directly provide some kind of
functionality, such as “moving”, “grasping” or “releasing”. Those resource properties and
constraints which are naturally directly related to some simple functional capability are given
as capability parameters.

o Combined capabilities are always strong capabilities. Only strong capabilities contribute to
the forming of combined capabilities and therefore only they can provide the output
associations or require input associations.

Weak capabilities

o Weak capabilities don’t fit into the definition of capability as given in Chapter 4.2. They are
those properties and constraints of resources that do not naturally directly relate to any
simple functional capability, but which provide important input information when selecting
resources for a specific application. In practice, they are additional parameters which
supplement the strong capabilities to aid in the decision making, such as “basicDevicelnfo”
(containing parameters for describing the device dimensions and weight). Even though they
don’t fit into the logical definition of capability, weak capabilities are treated in the ontology
model in the same way as strong ones. This reflects their importance in resource selection.

e Some parameters are common to multiple different capabilities and resources. For example,
there may be a restriction on the minimum or maximum size of an item that can be
processed with different resources. Instead of assigning these parameters separately to each
capability they may restrict, it is easier to have one weak capability (in this case
“minltemSize” or “maxitemSize”) that can be assigned to all the relevant resources.

e Sometimes, weak capabilities are needed to make a detailed match between product
requirement and resource capabilities. For example, the strong capability
“movingWorkspace” (indicating the resource has a capability to move within a workspace)
can be supplemented with the “degreesOfFreedom” and “workspaceType” weak capabilities.

o As weak capabilities don’t provide any functionality, they don’t contribute to forming any
combined capabilities. Therefore, they don’t provide any output associations or require any
input associations. Hence, they don’t appear in the graphs showing the associations between
the capabilities found in Appendices 1, 2 and 3.

Table 6 and Table 7 show examples of typical resource characteristics given in the resource provider
catalogs and their allocation to the simple capabilities in our capability model. Two separate use cases
are considered: robot and gripper, and milling machine with related tools. The shaded columns show
the typical parameters of the devices, while the white columns indicate which simple capability this
parameter is attached to.

66

Table 6. Typical resource parameters and their link to the simple capabilities — Case robot and gripper.

Attached to Vacuum gripper Attached to Finger gripper Attached to

Robot params capability params capability params capability
dimensions basicDevicelnfo Gripper Gripper
weight basicDevicelnfo dimensions basicDevicelnfo dimensions basicDevicelnfo
workspace (type) workspaceType weight basicDevicelnfo weight basicDevicelnfo
DOF degreesOfFreedom Suction capacity vacuumCreation |grasping force fingerGripper
workspace (volume) |workspaceType Vacuum pressure vacuumCreation |[stroke fingerGripper
payload payload Number of cups vacuumCreation |payload fingerGripper
velocity (in direction) [movingWorkspace Vacuum cups opening/closing time |fingerGripper
acceleration movingWorkspace dimensions basicDevicelnfo accuracy fingerGripper
accuracy movingWorkspace weight basicDevicelnfo repeatability fingerGripper
repeatability movingWorkspace vacuum cup diameter |vacuumCup number of fingers fingerGripper
force (in direction) forceApplying vacuum cup volume |vacuumCup type fingerGripper
working conditions
(max/min
temperature, environmentProperties |holding force vacuumCup Fingers

Tolerance finger

Type finger

Table 7. Typical resource parameters and their relations to the capabilities — Case milling machine and tools.

Milling machine Attached to Attached to Attached to

params capability Milling tool params |capability Fixture params capability

Drive power spinningTool Milling cutter Dimensions basicDevicelnfo

Spindle speed range spinningTool Dimensions basicDevicelnfo Weight basicDevicelnfo

Rapid traverse speed movingWorkspace |Weight basicDevicelnfo Max spread fixturing

Max spindle torque spinningTool Tool type millingCutter Min spread fixturing

Cross travel X workspaceBox Insert shape millingCutter Max item weight |fixturing
Position of

Vertical travel Y workspaceBox Cutting edge angle millingCutter workpiece fixturing
Number of

Longitudinal travel Z workspaceBox Cutting edge length [millingCutter workpieces fixturing
Max/min workpiece |itemMaxSize/item

Degrees of freedom DOF Diameter of tool millingCutter size MinSize

Accuracy movingWorkspace |Version millingCutter

Repeatability movingWorkspace [Nose radius millingCutter

Distance between
spindle center and table |millingProperties Number of teeth millingCutter
Distance between
spindle nose and pallet |millingProperties Suitable materials millingCutter

Spindle diameter millingProperties Tool entry (min/max) |millingCutter
Holder interface

Spindle length millingProperties diameter millingCutter

Payload (product + payload Tool holder

Max workpiece size itemMaxSize Dimensions basicDevicelnfo

Size basicDevicelnfo Weight basicDevicelnfo

Weight basicDevicelnfo Tool diameter toolHolding

Workpiece positioning

accuracy indexing Tool entry (min/max) |toolHolding

Number of tools toolChanging Effective length toolHolding

Tool changing time toolChanging

While Tables 6 and 7 present the parameters from the device point of view, Table 8 shows a few
examples of the capabilities and their parameters from the capability model’s point of view. The
shaded columns show the name of the capability concept and its related parameters. The white
columns give their definitions for them. The rest of the instantiated capabilities (currently around 90

67

capability instances) in the capability model and their parameters can be found from the internet

page’ .

Table 8. Capabilities and their parameters — Examples: “movingWorkspace”, “vacuumCreation” and
“vacuumCup”.

movingWorkspace

The device has an
ability to move
within its workspace

vacuumCreation

The device has an ability to
create vacuum, e.g. ejector.
Here itis assumed that the
interfacing part to the
vacuum cups or other kind of
tipsisincluded.

vacuumCup

The device can actas a
vacuum cup in grasping

Parameters

Description

Parameters

Description

Parameters

Description

SPEED_X

Speed in x-axis

SUCTION_CAPACITY_MAX

Maximum suction capacity of the
device (I/min)

HOLDING_FORCE

Theoretical holding force of
the vacuum cup in a default
pressure-0,6 bar

Maximum vacuum pressure that

SPEED_Y Speed in y-axis VACUUM_PRESSURE_MAX |can be created with the device. |DIAMETER Diameter of the cup
Number of vacuum cups in the
SPEED_Z Speed in z-axis NUMBER_OF_CUPS gripper VOLUME Volume of the cup
Acceleration of the
ACCELERATION moving capability WEIGHT Weight of the vacuum cup

Repeatability of the
movement
Accuracy of the
movement

REPEATABILITY

ACCURACY

Table 8 presents the simple capabilities which lead to the emergence of the combined capability
“transporting”. A robot typically has the “movingWorkspace” capability, whereas a gripper’s
“vacuumGrasping” capability can be enabled by the “vacuumCreation” and “vacuumCup” capabilities.
In addition to those capabilities, other capabilities may also be assigned to the resources. For example,
in the case of a robot and gripper, they both have at least the “basicDevicelnfo”, and the robot has
“payload”, “degreesOfFreedom” and “workspaceType” capabilities. Based on the parameters of the
simple capabilities assigned to the resources, it is possible to make a match between the product
requirements and the resource capabilities. Often, this matchmaking requires some adjustment of the
parameters, which is why the combined capability rules for combining capability parameters have
been defined. For example, the maximum weight of the product that can be transported by the robot
and the vacuum gripper is estimated as follows:

Robot payload minus gripper weight (gripper includes vacuum creator and vacuum cups) OR
Gripper payload calculated based on the holding force and amount of vacuum cups in the
gripper. The lower value has priority.

The parameters for the combined capabilities are reasoned according to the properties of the
devices involved in the combination. In other words, they are based on the parameters of their
simple capabilities. In addition to those simple capabilities that enable the emergence of combined
capabilities at the capability concept name level, there are other simple capabilities assigned to the
device which may be taken into account in the detailed matchmaking. For instance, in the above
example the weak capability “basicDevicelnfo” is needed in order to know the weight of the gripper
and to be able to subtract it from the robot payload. With the capability model alone, it is only
possible to merge the capability concept names. Detailed-level reasoning with capability parameters
and capability matching is enabled by the rule-base discussed in Chapter 4.4.4.

2 http://kippcolla.serv.fi/~eeva/
68

4.3. Components of the overall resource description

The overall resource description utilizes the capability model discussed in the previous chapter for
describing the resources and their functionality. In addition to the capability information containing
the capability concept name and the capability parameters, the collected lifecycle information,
business information and interface description are also part of the overall resource description, as
shown in Figure 26. The capabilities have a reference to the capability taxonomy described in
Chapter 4.4.1. The capability taxonomy includes only functional, i.e. strong, capabilities, and
therefore only the strong capabilities refer to the taxonomy.

description
P Capability refers to | Capability

concept name taxonom
Business E y
properties +

Capability
parameters

Lifecycle
properties

Measured
values from the
factory floor

Figure 26. Components of the resource description.

As has been said, a production environment is constantly changing, and the condition and
capabilities of the resources evolve during their individual lifecycles and usages. Therefore, the
description of the resource has to be updated over time. For this reason, devices have two separate,
but linked representations within the ontology: device blue prints and individual devices. The device
blue print describes the capabilities and properties of one type of device, as given in the suppliers’
catalogs. This is the nominal capability of the device. The individual devices are presented in a
separate class which refers to the blue print device, yet presents the actual capabilities of the
particular, individual resource which exists on the factory floor. The individual devices have actual
capabilities, which are affected by the lifecycle of each individual device and updated according to
measured values from the factory floor. For example, if the measured accuracy of the machine
differs from the value defined in the nominal capability, this updated value can be given in the actual
capability definition. Maintenance and service operations or adaptations done to the resource can
also change its capability. Figure 27 shows the relations between the device blue prints and the
individual devices, and their associated information elements.

69

*

Device BluePrint | 1 Individual device

refers to 7 has
1 lws 1/ 1 \ Measured values

0..*
1 has

Business properties 1 is update Sed on 1.*

Lifecycle properties

Nominal capability

1 1%

1
W Actual capability

is updated based on,

1

Figure 27. Device blue prints and individual devices.

If there are a number of similar machines on the factory floor, these individual devices will all have a
reference to the same device blue print. This device blue print defines the nominal capability of these
devices. If there are no measured values or other evidence of the actual capability of an individual
device available, the capability of the individual device is assumed to be the nominal capability of the
referenced device blue print. This is the case, for example, when a brand new device is taken into
use. This approach means the capability definitions can be reused, and allows for the accuracy of the
definition to be enhanced as more data becomes available.

4.3.1. Business and lifecycle properties

Business properties is included as part of the overall resource description in order to provide more
information to support resource selection. This static business information is given as a set of
parameters for the device blue prints. These parameters relate mainly to the costs of acquiring and
using the devices. Table 9 explains the parameters included in the business properties. The business
properties, as well as the lifecycle properties, are put into the ontology in the same way as the
capabilities. Logically, they are very similar to the weak capabilities.

Table 9. Business properties — Description of the parameters.

Parameters Description

RENTAL_COST Cost of renting the device

PURCHASE_COST Cost of purchasing the device

SUPERVISING_OPERATORS Number of operators needed to supervise or operate the device

AVERAGE_LIFETIME_IN_TIME Estimated average lifetime of the device in time

AVERAGE_LIFETIME_IN_CYCLES | Estimated average lifetime of the device in operation cycles

SETUP_TIME Average time needed for setting up the device for a new process
INSTALLATION_TIME Average time needed to install the device in a new configuration
CONSUMABLE_COST Estimated cost of consumables (e.g. oil) needed to run the device
ENERGY_CONSUMPTION Estimated energy consumption of the device in operation.
PRODUCTION_CAPACITY Estimated production capacity of the device

70

As shown in Figure 27, the representation of the individual devices includes the collected and
measured lifecycle information of the device, which can be used in the planning process for re-use
and adaptation. In practice, the raw lifecycle and operational data is collected on a separate resource
database and, at certain intervals, the filtered and relevant key figures, such as Mean Time Between
Failure (MTBF), Mean Time to Repair (MTTR), maintenance costs and operation time, can be saved as
part of the overall resource description. The lifecycle properties contain most of the parameters from
the business properties and other relevant parameters, and these are updated during the individual
device’s lifecycle based on the values obtained from the factory floor. These dynamic lifecycle
properties are assigned to the individual devices and are therefore resource-specific. Table 10
explains the parameters of the lifecycle properties.

Table 10. Lifecycle properties — Description of the parameters.

Parameters

Description

PURCHASE_COST

Cost of purchasing the individual device

RENTAL_COST

Cost of renting the individual device

INSTALLATION_TIME

Average time needed to install the individual device into a new
configuration

SETUP_TIME Average set-up time of the individual device
MTBF Mean time between failures of the individual device
MTTR Mean time to repair the individual device

MAINTENANCE_COST

Average maintenance cost of the individual device

MAINTENANCE_TIME

Average time needed for maintenance of the individual device

SERVICE_INTERVAL

Average interval for service operations for the individual device

SERVICE_TIME

Average time needed for service operations

PROCESS_SCRAP

Average scrap produced by the individual device

CONSUMABLE_COST Cost of the consumables (e.g. oil) needed to run the individual device

ENERGY_CONSUMPTION Average energy consumption of the individual device in operation.

PRODUCTION_CAPACITY Average production capacity of the individual device

OPERATING_TIME Time the individual device has been in operation

OPERATING_CYCLES

Amount of operation cycles the individual device has been operating

Figure 28 shows the relevant lifecycle aspects which affect the capability of the resource and the
selection of a suitable resource for a certain application. The resource database is constantly
recording the runtime data of the resources on the factory floor, such as the operational values. The
information on how a specific resource or system performed in a specific process, while processing a
specific product, can later on be used for the resource selection for similar products. The resource’s
condition, its remaining lifetime and consequently its capability will vary depending on the
applications it has been used for, the environments it has been used in, the processes it has
performed and the process parameters which have been used. Different statistical methods from the
area of maintenance research could be used to estimate these parameters. It is planned to handle
this context-specific historical information with a role engine, whose development is beyond the

71

scope of this study. However, the role engine will be briefly discussed in Chapter 6.3, under Future
Work.

RESOURCE USAGE MEASUREMENTS ON
DESCRIPTION FACTORY FLOOR &

LIFECYCLE DATA

Praeees context Collected runtime data:
Operational values,
Interface CAPABILITY performance measures,
description Capab"ity is described perfqrms refers status, MTBF

by

Resource

Condition (maintenance,
repairs, MTTR)

Adaptations to the resource
(e.g. changes of
components and tools)

Capability
parameters

Lifecycle
properties

E eSS concept name
properties +

Process
history

Figure 28. Relevant lifecycle aspects affecting the resource capability and the selection of resources for a
specific application.

4.3.2. Interface description

The interface description is seen as a crucial part of the overall resource description. It is needed to
enable the automatic creation of resource combinations when searching for resources having
suitable capabilities for the given product order. Standardized interface descriptions have been
widely studied in, for example, the EUPASS project (Siltala et al. 2008). Therefore, it is unnecessary to
develop a detailed interface description for this thesis. The interface description, which is adapted
from the EUPASS interface definitions and integrated into the Core Ontology, can be seen in Figure
29. It is simplified, but provides enough expressiveness for the resource compatibility matching
process.

INTERFACE

Mechanical Name: string

Standard/type: string /D Description: string
Gender: Male/Female/Neutral

Purpose: Base/End-effector/Other
Position: float

Orientation: float

Link to CAD model: string

+hasSpecialization

Energy

hasSpecialization
\
N

0..4 Control ;]

Electrical

Fluidic

Voltage: float -
Current type: AC/DC Tube size: float
Communication protocol Transfer protocol Power: float Volume flow: float
Pin configuration Pressure: float

/2

Pneumatic Hydraulic

Figure 29. Resource interface description.

72

Some explanations of the interface description:

o The purpose of the mechanical interface always has to be defined. It can be either:
“Mounting to the base”, “End-effector mounting” or “Attaching to other devices”.

o Interfaces nearly always have some sort of physical part, and therefore all the interfaces are
defined through mechanical interfaces. By using the “hasSpecialization” property, the
mechanical interface can refer to control or energy interfaces. The connector of the interface
is specified by the mechanical interface standard definition. This definition of the mechanical
interface supports the position and orientation definition for the energy and control
interfaces.

o The communication protocol defines which communication protocol is used in the control
interface. The communication protocols describe the set of rules to be used in
communication exchange. They have their own syntax, semantics and synchronization rules.
Common protocols are, for example, Modbus, Profibus and CIP (Common Industrial
Protocol). The communication protocol operates over one or more physical layers, which are
specified by the Transfer protocol. Typical examples of the transfer protocols are RS485, USB,
Ethernet, fiber, WLAN.

For the devices, several interfaces can be defined according to their purpose. The interfaces are given
either as input or output interfaces in order to facilitate the device compatibility checking. Input
interfaces are those which need to be attached in order for the device to become functional. For
example, a tool has an input interface for a tool holder. A tool holder, on the other hand, has an
output interface for a tool and an input interface for the machine (e.g. milling or turning machine).

4.4. Framework for capability-based matching of product requirements
and system capabilities

The core of this adaptation methodology lies in the capability-based matching of product
requirements and system capabilities. Figure 30 presents the framework for this capability-based
matching. As defined in Chapter 4.1, the required processes should be expressed in such a way that
they are closely related to the formalism that describes the available resource capabilities, and vice
versa. The capability taxonomy has been developed for this purpose, as shown in Figure 30. The
matching is performed according to the capability taxonomy and capability matching rules which
connect the product and resource domains to each other. The taxonomy, included in the Core
Ontology, is used to make a crude search that maps the resources with the required capabilities at a
high level. The detailed reasoning with the capability parameters and combined capabilities is based
on rule-based reasoning, as will be explained in the following chapters.

73

PRODUCT Capability taxonomy RESOURCE
REQU'REMENTS refer to refer to CAPABILITIES

Manufacturing or EXISTING

assen.|bl-y process Capability based matching SYSTEM
description of product requirements | Combined capabilities

and resources E—
r\'_
I Simple capabilities

Capability descriptions

Processes

High level mapping based
on capability model and

il
<l

Sub taxonomy
processes DEVICE Capability descriptions
____________ LIBRARY
Detailed product requirements Detailed matching witha \K
(feature properties and process capability matcing rules
parameters) | Combined capabilities |

Feasible configuration
generation

Adaptation rules

Figure 30. Simple framework for matching the product requirements with the resource capabilities and forming
a feasible system configuration under the adaptation rules, modified from (Jarvenpaé et al. 2011a).

The capability-based matching follows the principles of Service Oriented Architecture (SOA). In SOA,
the services need to be described to the other parties in the system in a way which allows the
matching of the provider’s description of its offerings and the requestor’s description of its needs.
This entails the services being described through their functional (what can they do?), behavioral
(how is the functionality achieved?) and non-functional (constraints of the previous two) aspects. The
resource description and capability model facilitate the description of the behavior, whereas the
capability taxonomy allows the capabilities to be linked to the related function. The non-functional
aspects are handled through the capability parameters and, in some cases, the weak capabilities.

Figure 31 shows the concept of the SOA-based matching of the products and resources. The product
can be seen as a service requestor, whereas the order (including the product requirements) is seen
as a service request. Resources are service providers, which provide the services through their
capabilities. The role of the service broker is taken by the ontology, which describes the product
requirements and resource capabilities, the capability model, and the rule-base, thus facilitating the
matching between the order and the offerings.

Product Service
request
‘(\r"o OR re,
0\\)@‘9\-\ QUGSt/h
1\ § Ontology (describing
.) products and resources)
Function Beha\/.u.)r Capability model
is-achieved-by | (Capability) Rule-base
has
Resource

Figure 31. SOA-based architecture for product-resource matching.

74

Depending on the order, if the manufacturing/assembly plan is predefined, certain behaviors
(capabilities) may be directly requested. If these are not detailed, higher level functions may be
requested. This means that the request can be targeted at different levels in the capability
taxonomy, as discussed in the next chapter. If the request is targeted at functions, then all the
devices having the capabilities which can achieve that function will be offered. Functionality is the
most essential aspect of the service, whereas the non-functional properties merely constrain the
selection of the service, given that the functionally suitable candidates have been identified.

Chapter 4.4.1 will first introduce the formed capability taxonomy, followed by a discussion about
how the product requirements are defined in Chapter 4.4.2. The high level capability mapping is then
discussed in Chapter 4.4.3. The rule-base and the detailed capability matching carried out based on
the rules are discussed in Chapters 4.4.4 and 4.4.5 respectively.

4.4.1. Capability taxonomy

The capability model itself neither separates nor links the behavior and function discussed in Chapter
4.2.1. It is the capability taxonomy which makes the link between these two. As stated by Kitamura
et al. (2006), a general function decomposition tree includes possible alternative ways of function
achievement in an ‘OR’ relationship for a specific goal function. The generic ways of achieving a
function are, in turn, organized in ‘is-a’ relations, according to their principles. (Kitamura et al. 2006.)
The capability taxonomy defines these alternative ways of achieving a function in a hierarchical tree
defining the general — specific (is_a) relations between the capabilities at different levels of detalil,
i.e. functions and behaviors. This hierarchy supports flexible, subsumption-based mapping of the
required functions and provided capabilities.

The taxonomy defines the possible functional capabilities that can be requested by the products. The
main purpose of the taxonomy is to provide the link between the processes and the capabilities, and
thus to map the product requirements and resource capabilities at the concept name level.
Classification of the capabilities into the form of a taxonomy enables the fast discovery of candidate
capabilities. However, the class of a capability gives only a rough picture of what it actually can do. To
really know what the capability means, it needs to be extended with the parameter information, as
was done in the capability model.

75

‘ Producon ‘

‘ Manufacturing ‘ ‘ Logistics ‘ ‘Preparation‘ ‘ Assembly ‘ ‘ Qualifying ‘ Finalizing
/
Discrete Continuous Joining
manufacturing manufacturing
7 AN
- - ‘ Fitting ‘ ‘ Gluing ‘ ‘ Fastening ‘ ‘ Welding
‘ Non-shaping ‘ ‘ Shaping ‘ /\
- erial/ }erial Elastifz Pmti? ‘ Screwing ‘ ‘ Riveting
removing adding ﬁfm deforming

‘ Pressing ‘ ‘ Snapping ‘ Metal Plastic
Punching | | Machining Laser - welding || welding
Casting

cutting ‘ Bending H Twisting ‘

‘ Milling H Turning‘ ‘ Drilling ‘

Figure 32. A small part of the production capability taxonomy included in the ontology.

Figure 32 presents a small part of the implemented capability taxonomy as an example. The full
taxonomy can be found in Appendix 4. It is adapted from multiple existing taxonomies and process
categories, which include the EUPASS processes (Lohse et al. 2008), the production taxonomy used in
the CO2PE! -initiative (CO2PE! 2010), the Wikipedia manufacturing taxonomy (Wikipedia 2011), and
the German standard DIN 8580, which provides a classification of manufacturing methods. The
EUPASS process ontology (Lohse et al. 2008) has been utilized in particular for the assembly, logistic,
preparation and finalization parts of the taxonomy, while the others have influenced mainly the
manufacturing side.

The taxonomy is implemented with the possible case applications in mind and adapted to include
everything that is needed in the case studies. It doesn’t aim to cover the full production area or claim
to be complete. The definition of a more complete taxonomy would require the wide participation of
the production community, and would still not satisfy every participant’s requirements. The
taxonomy built for this thesis is defined to be expressive enough for real system design tasks and for
demonstrating the proposed adaptation and capability-matching methodology. The taxonomy is
static while it is being used. However, it can be easily extended based on emerging needs, for
example, when applying the methodology to different domains or when new capabilities are needed.

The taxonomy is built into the Core Ontology, in order to allow direct relations between the process
descriptions and the taxonomy, as well as between the resource capabilities and the taxonomy. The
hierarchy between the taxonomy instances is created using a hasParentNodelnTaxonomy relation, by
which the lower level capability categories are subsumed into the upper level categories.

4.4.2. Definition of the product requirements

Product requirements are those product characteristics or features which require a set of processes
to be performed in order for the product to be transformed towards the finished product. These
processes are executed by the devices and combinations of devices possessing adequate functional
capabilities. The product requirements can be expressed in terms of the required capabilities and

76

their temporal and logical order. In the proposed approach, the product requirements are expressed
in the form of a pre-process plan, generated by a tool called Pro-FMA Extended (Garcia et al., 2011),
which will be introduced in more detail in Chapter 5.1.2. The pre-process plan describes the required
capabilities at a generic level, such as “material removing”. Each of the process steps in the pre-
process plan has a reference to a certain level in the capability taxonomy. The pre-process plan is
linked to the product information and the activities in the pre-process plan are linked to a specific
feature, or part information, in the ontology. This way, the specific characteristics of a product or
part, such as size, weight, geometry and so on, can be used as an input for the reasoning when
searching for suitable resources. They have a significant effect on, for example, gripper selection and
feeding methods.

4.4.3. High-level capability mapping

Together with the developed capability model, the capability taxonomy integrated into the Core
Ontology allows mapping between the product requirements and the resource capabilities at the
capability concept name level. As discussed in the previous chapter, the activities in the pre-process
plan for the product refer to specific levels in the capability taxonomy. Naturally, the capability
instances also refer to a certain level in the capability taxonomy, thus enabling the link between
products requesting the capabilities and the resources providing the capabilities.

The taxonomy level to which the pre-process plan refers depends on how detailed the available
information is regarding the required or desired processing methods. For example, the product
designer may have defined that a specific joining method, such as riveting, should be used to join two
parts together. Alternatively, they may have only defined that some sort of joining method is
required, leaving the possibility for the joining method to be determined based on the capabilities
available on the factory floor. In the former case, the product requirement is targeted at the
particular method in the capability taxonomy, whereas in the latter case the requirement is targeted
at the joining level in the taxonomy. The pre-process plan defined by the Pro-FMA Extended software
always expresses the activities at a very generic level.

The capability taxonomy enables the capabilities of the resources to be connected with the
capabilities required by the product at different levels of detail. It allows different devices that are
able to perform the same function (e.g. “material removing”) using different behaviors (e.g.
“milling”, “turning”, “drilling”, etc.) to be searched for. The parameters of the capabilities will then
determine if the suggested device is able to fulfil the given requirements. For example, if the
requirement is [material removing, hole of diameter 20mm and depth 50mm, aluminium], the
parameters of the capabilities which are a subset of the material removing capability (e.g. “milling”,
“turning” and “drilling”) will then express which device combination is able to provide the required
removal of material within the required parameters. Capability matching rules, discussed in the next
section, will be used to match the parameters.

As the devices are assigned the simple capabilities they possess, based on the defined capability
associations in the capability model, the device combinations which contribute to a certain combined
capability can be identified and queried with SPARQL RDF query language. In the same way, it is
possible to reason out the capabilities that the resource combinations have. Figure 33 illustrates how
the capability associations (inputs and outputs) are used to make a match between the capabilities
existing with the current resources and the required capabilities at the concept name level. By using

77

the associations, it is possible to answer, for instance, the following questions: “Which devices need
to be combined in order to achieve a certain combined capability? “What combined capabilities can a
certain combination of devices have?”

Provided capabilities Required capabilities
(existing resources) (productrequirements)

List of the output associations that
the existing capabilities (of
combinatios of devices) provide

List of the input associations of the
required combined capabilities

— s P
heck that all the required
EE— inputs are found from the D —
provided outputs
—> L <———
—
% B

Figure 33. Matching of capability output and input associations (Jarvenpaé et al. 2012a).

Figure 34 gives a practical example of the input and output association matching. The input and
output associations are written in italics (e.g. spinningTool). The white rectangles represent the
resources which possess those capabilities that provide the shown associations. As seen in this figure,
the combined capabilities are formed by climbing hierarchically from lower level combinations to
upper ones, e.g. the tool holder and threading cutter combination is viewed as a threading tool on the
next level.

Milling machine + tool holder + threading cutter Threading

Milling

A spinningTool
machine

spinningTool

toolHolding threadingTool
Tool holder toolHolding . -
s Threading | threadingTool
threadingCutter

- tool
Threading
cutter

Threading

threadingCutter
—

T

Match Match

Figure 34. Example for matching the capability input and output associations (Jarvenpéa et al. 2012a).

The example shows that, based on the capability taxonomy and the capability model, it is possible to
map the product requirements with the resource capabilities at the concept name level. This is called
high-level capability mapping. The capability associations only provide a means to manage the
combined capabilities at the capability concept name level, not at the parameter level. Therefore, in
order to make a detailed match between the required and provided capabilities, more intelligent
reasoning is required. For this purpose, rule-based reasoning is applied, as discussed in the following
two chapters.

78

4.4.4. The rule-base for capability matching

As stated in the previous chapter, the detailed capability matching, which considers the capability
parameters, is based on rule-based reasoning. For this, three types of rules are needed, comprising:
1) Rules for defining how the capability and product feature information are applied in different
domains when matching the product requirements with the resource capabilities;
2) Rules for reasoning out the parameters of the combined capabilities;
3) Rules indicating how adaptation guidelines and other criteria, such as availability and
scheduling, device condition and lifecycle, and user and company-specific criteria, are used in
the final selection of resources and generating the final configuration.

These domain expert rules, combined capability rules and adaptation rules, as well as their use in the
capability matching, will be discussed in this chapter, and a few examples of the rules will be given in
pseudo code. The example rules have been constructed to serve the demonstrations in the TUT-
machining laboratory and the TUT-microfactory environments, discussed in the case study chapter
(Chapter 5). The rules have been defined to cover these (and similar) use cases. This chapter presents
only some examples of the rules, while the rest can be found in Appendix 5.

Domain expert rules

Domain expert rules include rules which define how the product feature and resource capability
information are applied in different domains when matching the product requirements with suitable
resources. The domain expert rules are divided into two categories. First, there are detailed
capability definition rules for defining which capability should be used to fulfil a certain type of
product requirement from the pre-process plan. The second types of rules are detailed capability
matching rules for defining whether the available capabilities are suitable for the order at the
capability parameter level. These latter rules take into account, e.g. in the machining process
domain, how the achieved feature depends on the tool shape and type (e.g. in the milling process,
what kind of roundings and chamfers can be achieved with certain types and shapes of tools). By
using these domain expert rules it is possible, for example, to first detect that the “milling” capability
should be used, and then to compare whether the available “milling” capabilities have the
parameters needed in order to produce the required feature. One domain expert rule is, for
example, “In milling, the nose radius of the cutter has to be same as the required rounding inside the
machined pocket”. More examples of the domain expert rules written in pseudo code can be found
in Figure 35. The defined rules are definitely not comprehensive, but can be extended gradually. The
focus here is not on defining all the possible domain-specific rules in detail, but to demonstrate the
concept of how to use these rules and capability definitions in the design and adaptation of a
production system.

79

DOMAIN EXPERT RULES DOMAIN EXPERT RULES \
Detailed capability definition Detailed capability matching /

IF feature.hasCapabilityTaxonomy (“MaterialRemoving”) AND | Rules for using the drilling capability

feature.hasFeatureType S“h°.!e")AAND,, IF feature.getParam(“diameter”) = dri7787t.getParam(“hole_diameter”)
feature.hasFeatureType(“cylindrical”) AND AND
THB‘F{eature.getParameter(diameter”) <= 40.0 feature.getParam(“depth”) <= dril787t.getParam(“max_drilling_depth”)
e - “ . . i AND
RETURN [Capabilities.find(“dri77ing")] feature.getParam(“bottomshape”) = dri77Bit.getParam(“shape_bottom”)
e . “« . : i AND
IF :eature.aascapam11tyTa§En$m’):(MaterialRemoving”) AND feature.getMaterial() IN dri77B7t.suitableMaterials() AND
eature. asFeatureType(“ el) AND - product.getInitialProduct().size().isInside(Ffixturing.maxItemsize())
feature.hasFeatureType(“cylindrical”) AND THEN
feature.getParameter(“diameter”) > 40.0 RETURN TRUE
THEN
RETURN [Capabilities.find(“dri777ng”), : . -
capabilities.find(“boring’)] Rules for using milling capability

millingMachine = resource.hascapability(“spinningTool”)
IF feature.hasCapabilityTaxonomy (“MaterialRemoving”) AND | IF product.getInitialProduct().size().isInside

product.getInitialProduct.hasshape(“cylindrical”) AND (millingMachine. 7temMaxsize()) AND

feature.hasFeatureType(“cylindrical”) AND product.getMaterial () IN millingCutter.suitableMaterials() AND

(feature.hasFeatureType(“groove”) OR feature.getParam(“insideRounding™) =
feature.hasFeatureType(“pad”) OR millingcutter.getParam(“nose_radius”) AND
feature.hasFeatureType(“chamfer”) OR feature.getparam(“tolerance™ >=
feature.hasFeatureType(“rounding”)) movingWorkspace.getParam(“repeatability”) AND

RETURN [Capabilities.find(“turning”),
Capabilities.find(“m7i777ng”)]
THEN

\ RETURN TRUE __/

Figure 35 . Examples of the domain expert rules. The capability concept names are written in italics.

In some rules, not only in domain expert rules, but also in others, some variable names are defined at
the beginning of the rule. This is done in order to be able to separate different devices which have
the same capabilities, but different roles in the device combinations. For example “itemMaxSize” is a
common capability used to indicate the maximum item size that the device can handle and it can
relate to almost any functional capability. In the device combination under analysis, there may be
multiple devices having this same capability. Defining the variable name at the beginning of the rule
allows the capabilities of the correct device to be referred to.

Combined capability rules

Combined capability rules are needed when combining resources and analyzing their emergent
capabilities. A combined capability is not simply the sum of the individual capabilities it is composed
of. These rules are also divided into two groups: combining parameters and combining interfaces
rules (see Figure 36). The former determine how the parameters of the combined capabilities can be
formed from the parameters of the individual capabilities, whereas the latter are meant to check
whether the interfaces between the devices to be combined are compatible. One rule is, for
example, “When a robot and gripper are combined, the payload of the combination is the robot
payload minus the gripper weight or gripper payload, provided this is smaller than the previous
difference”. Other rules relate, for example, to accuracy and the workspace of the combination of
devices. The aim of the combined capability rules is not to provide detailed analysis of, e.g. the
workspace or the kinematics of the device, but to enable the modelling of scenarios for potentially
suitable device combinations. For kinematics and detailed workspace definitions, virtual simulation
tools should be used to validate the results obtained from the reasoning based on the digital
information.

80

— COMBINED CAPABILITY RULES COMBINED CAPABILITY RULES

~— Combining parameters Combining interf;
Milling tool length (holder + tool) Milling tool (holder + tool)
millingCutter = resource.hasCapability(“m777ingcutter”) IF toolHolding.getParam(“tool_attach_diameter_type”) !=
Max_length_of_the _tool = toolHolding.getParam(“effective_length”) + millingCutter.getParam(“holder_attach_diameter_type™)
millingCutter.BasicDeviceInfo.getParam(“length”) - AND
MAX(tooHolding.getParam(“tool_entry_min”), toolHolding.getParam(“tool_attach_diameter_min”) <=
millingcutter.getParam(“min_entry”)) millingcutter.getParam(“holder_attach_diameter”) AND
Min_length_of_the_tool = toolHolding.getParam(“effective_length”) + toolHolding.getParam(“tool_attach_diameter_max”) >=
millingCutter.BasicDeviceInfo.getParam(“length”) - millingcutter.getParam(“holder_attach_diameter”)
MIN(toolHolding.getParam(“tool_entry_max”), THEN

millingcutter.getParam(“max_entry”)) RETURN TRUE
current_length_of_the_tool = toolHolding.getParam(“effective_length”)

+ millingcutter.getParam(“current_entry”) Machine + tool holder

machine = resource.hasCapability(“spinningworkpiece”) OR!

Payload of robot and vacuum gripper combination resource.hasCapability (“spinningTool")

robot = resource.hasCapability(“movingworkspace™) toolHolder = resource.hascCapability(“toolHolding™)
vacuumGripper = resource.hasCapability(“vacuumGrasping”)

Conbined payload of [robot v va.lcuuTGr"ipper'] = IF machine.hasoutputInterface(“X”) AND
MIN(robot.payJoad.getParam(“weight”) - toolHolder.hasInputInterface (“X”)
gripper.basicDeviceInfo.getParam(“weight”), THEN

(1/9,81 x vacuumcup.getParam(“holding_force”) x RETURN TRUE

vacuumcreation.getParam(“number_of_cups”))

Figure 36. Examples of the combined capability rules.

It has to be noted that in many cases the combined capability rules developed here produce highly
simplified and crude results. This is due to the problem that many of the properties of the combined
capabilities emerge as a behavior of the machine as a whole in a certain context, and they cannot be
decomposed into the properties of the various components. For example, reasoning out the
combined accuracy of a machining center and its attached tool is a complex problem, because it is
affected by multiple factors other than those included in the resource description. For instance, the
accuracy and repeatability of machine tools are limited by geometric errors of all the components,
kinematic errors, load-induced errors, thermal errors, dynamic errors, calibration errors and
computational errors. The geometric accuracy of a machine tool is determined by the errors that
exist in the machine tool from its basic design, the inaccuracies built-in during assembly and from the
components used in the machine. There are other sources of error too, such as the cutting force, the
humidity, the competence of the operator, tool wear and so on. An experienced operator is usually
able to compensate for most of these errors. Therefore, in the case of machining operations, the
repeatability of the machine is usually a more important parameter than its accuracy. As this
example indicates, some properties cannot be traced back to any specific property of the individual
components but emerges in a very complex way. For determining this, a comprehensive model of the
whole machine, its control and the manufacturing process should be constructed, which is beyond
the scope of this work. Another difficulty in defining the accuracy of a machine tool is that usually
neither the tool holder nor the tool tolerances, are available in the catalogues.

Adaptation and configuration rules

The third type of rules no longer relate directly to capability matching, but to what happens after the
devices possessing the adequate capabilities have been found, or if no match has been found. The
adaptation rules include rules defining how other criteria, such as resource availability and
scheduling information, device condition and lifecycle, as well as user- and company-specific criteria
relating to, for example, costs or eco-efficiency, are used in the final resource selection and
generation of the configuration. There are three types of defined adaptation rules. The generic
guidelines are used to define the type of adaptation needed when the requirement changes
(physical, logical or parametric), whereas the rules for generating a new combination define the
principles for generating new resource combinations if the existing ones don’t provide the required
capabilities. If multiple resources or resource combinations provide the required capabilities, other

81

criteria should be applied to select a suitable configuration for the given situation. The context-
specific rules have been defined for such situations. These are usually given by the user in a specific
case and are therefore dynamic in their nature. One user-defined adaptation rule could be, for
example, “If the amount of ordered items is 20 or more, use the fastest machine for manufacturing
the product. Otherwise, use the cheapest option.” More examples of adaptation rules are shown in
Figure 37.

< ADAPTATION RULES ADAPTATION RULES —————__
Genericguidelines Context specific rules given by the user —
IF (requiredcCapability.ExistsIn.currentSystem.findCapabilities() AND IF order.getParam(“number_of_ordered_items”) >= X
matchParameters(currentSystem.capability.find(capabilityParameters), THEN
requiredParameters)) = true RETURN resource.hasProperty(“fastest”)
THEN
Use the current system and apply needed logical and parametric
adaptation actions IF order.getParam(“number_of_ordered_items”) < X
ELSE THEN
Perform physical adaptation actions (reconfiguration) RETURN resource.hasProperty(“cheapest™)
ADAPTATION RULES
New combination generation IF Reliability of the resource is specially valued
THEN
RETURN

IF feature.hasCapabilityTaxonomy (“7wrning”) AND
currentSystem. hasCapability(“turning”) AND
matchParameters(currentSystem.capability.find(capabilityParameters),
requiredParameters) = false

THEN
Create new combinations of the
resource. hasCapability(“spinningworkpiece”) and other

Mcapabi Tity(“turningTooT”)

MAX(resource.hasLifecycleProperty(“MTBF”))

IF Environmental sustainability is specially
valued
THEN
RETURN
MIN(resource.hasProperty(“energy_consumption”))

Figure 37. Examples of the adaptation and configuration rules.

The adaptation relies strongly on the context-specific information. As the computerized management
of the context-specific information is still not mature enough, the adaptation rules are mainly used
by humans as tools for reasoning. The demonstration environment constructed here is a human-
machine environment, which assumes a high degree of human involvement. Particularly in the
adaptation phase, human intelligence is required to perform the context-specific reasoning, such as
being able to recognize the cheapest production resource for a given order. In order to reliably
ascertain which resource is the cheapest in a specific context, multiple parameters need to be
considered (e.g. energy consumption, resource and consumable consumption, the human resources
needed, the maintenance actions required and so on). Then, optimization algorithms based on those
parameters have to be formulated. Naturally, an in-depth process knowledge is also required for this
purpose, and the development of such an algorithm is beyond the scope of this work.

4.4.5. Detailed capability matching

The detailed capability matching is done based on the rules included in the rule-base introduced in
the previous chapter. This chapter is devoted to explaining how the rules are applied during the
detailed capability matching. The starting point here is the pre-process plan, in which only the
generic capability requirements such as “MaterialRemoving” are defined. Figure 38 represents the
framework for capability matching in the developed ICT-architecture. This ICT-architecture will be
discussed in Chapter 5.1.

82

Pro- FMAExtended Capabilig\ ;Ea}?nomy

> - i .

CE .

5 :
? Wardocorg Gores] [Fepemon] (o) [Gowies] [moees]
' Product’s pre-process plan phases - — ———d
refer to the capability taxonomy Shaping | [[Non-shapeg g Faening | | Gung | | wedng

Product

Product requirements : ’ ’ stg | [eensing] [T]
(Features and related pre- Rulesforcompanson
process plan) — \
e
! . WM WG
X oV
M) Rule-base for capability N\h
Products W W matching Generic
’ N\P\ capabilities refer
Current resources Comparison of feature to the capability
and resource properties against taxonomy
o nbinatlons capability parameters
based on the rules

Resource specific
capability refers to

Resource has

resource specific a generic capability
capability
é
Resource Capability Editor Capability Editor
Resource specific Generic capabilities
capabilities

Figure 38. Matching the product requirements against the system capabilities (Jarvenpaa et al. 2012b).

The task of interpreting and applying the rules belongs to the rule inference engine. According to
Hopgood (2001) the application of rules can be broken down as follows: 1) selecting rules to examine
— these are all the available rules; 2) determining which of these are applicable — these are the
triggered rules; 3) selecting which rule to execute.

In order to limit the number of rules that have to be triggered in each capability matching case, the
rules are first classified according to their purpose and then they are linked to the capability
taxonomy level to which they relate, see Figure 39. This means that if the product requirement
relates to the “milling” capability, the rule engine will trigger only those rules that are linked to
“Milling” in the capability taxonomy. In Figure 39, the white boxes with dashed outlines indicate the
taxonomy levels to which the rules are linked. The figure gives a simplified representation, meaning
that only a limited number of examples of rule types are shown. The generic guidelines and context-
specific rules for adaptation are not capability related, and do not therefore have any links to the
taxonomy.

83

Domain expert rules
Combined capability rules
_LDetailed capability Detailed capabili —
{:1.’ definition matching i} {3} Combining Combining §77
. MaterialRemoving | .'r@,]h;;":] parameters interfaces
__::__:__:__:__:__:_ ___-_-_____-_ /
- MatenaIAddmg i i Turmng E \% Tool I_ef'?t_h___l Tool f_hPl_d_e[_
___________________ :
-------------- I Milling 1 Millin
I Markmg ! i Dnllmg E ~ ___-_____g____l ! Lmiing |
—.——_—_—_—_—____ _::::::_ — (B B | I I
| Manipulation | i Fixturing | ! ?TIHQQ;J ! E_)r_m_"lg__‘
l'/iésEFn'hﬂnE | | Transporting | Workspace | Threaing |
=77 [I |
e, oo ! { Machining | Holder + machine
| Manipulation | -_rﬁﬁnﬁﬁ__u
Adaptation rules Payioad ' E_’T"_'”_@’__‘
A I I ettt
Generic guidelines ew combination Context speciﬁc ! | Machining 1 '_TP[T’IQ__'
4 6 § generation rues M || | oo Toooo
Logical and parametric || Y- -——==- | '_"f?']'glﬂ'f’t_'?”_ _'
adaptation | Miling | User defined rules T°°_':'_r'fb_°_t _____
| Turning 1 - ACEU_@C_V ______ '_Nla_n_'p_u_lzit?ﬂ_l
Physical adaptation | SN Rules for applying 1 | Machining |
| Driling | user given criteria Loooooosool I:l
L=ssesslil - Manipulation !
Fixtuing | []] | e
| Transparting {
::::i __
[l Taxonomy level under which the rules are categorised :

Figure 39. Categorisation of the rules (Jarvenpaa et al. 2012b).

The numbering in Figure 39 indicates the sequence in which the rules are applied when a new order
enters the system. The order is sent in the form of a pre-process plan, which indicates the features to
be manufactured and their link to the capability taxonomy. The pre-process plan may define, for
example, that some sort of “material removing” capability is required. When an order is sent to the
system, the capability matching proceeds as follows by utilizing the rules:

1. The detailed capability is first defined based on the given taxonomy level, feature
information and the domain expert rules for detailed capability definition. If the pre-
process plan referred to “MaterialRemoving” in the capability taxonomy, only the domain
expert rules linked with “MaterialRemoving” will be triggered. The rules are checked one by
one until a match is found. The reasoning may conclude that, for example, a “drilling”
capability is required.

2. After the detailed capability requirements have been defined, and the capabilities of the
existing system which match the capability requirements at the concept name level have
been identified, these provided and requested capabilities need to be compared at the
parameter level. This happens with the domain expert rules for detailed capability
matching.

3. The detailed capability matching (phase 2) often needs input from phase three, where the
parameters of the individual device capabilities are combined to derive the parameters of
the combined capabilities. These combined capability rules for combining the parameters
are implemented, for example, to reason out the workspace, payload or accuracy of a
resource combination. Different rules belonging to the same rule category may also need
input from each other. For example, in order to evaluate the workspace, the tool length

84

needs to be known. These rules are triggered when called for by the detailed capability
matching rules or other combining parameters rules.

4. Based on the matching results from phases 2 and 3 and the generic guidelines in the
adaptation rules category, the need for logical and parametric adaptation or physical
adaptation will be defined.

5. If all the required capabilities were found in the current system, no physical adaptation is
required and multiple alternative resources can satisfy the order, so context specific
adaptation rules are applied to select the most suitable resource configuration for the given
order.

6. If all the required capabilities were not available in the current system, physical adaptation
actions need to be performed. This means that new combinations of resources need to be
generated. For this, the new combination generation rules will be applied. These rules aim
to utilize the existing devices on the factory floor (e.g. a lathe) and combine them with new
resources (e.g. cutting tools) in order to change the system’s capability to match the given
order. If the existing devices on the factory floor can not provide suitable capabilities when
combined with other devices, completely new combinations, built from devices not currently
existing on the factory floor, will be created. These rules are also linked to the capability
taxonomy, and depending on which new capability is needed, only the relevant rules will be
triggered.

7. In order to form new combinations of devices having simple capabilities which could form
the required combined capabilities, the interface compatibility of the devices needs to be
ensured. The combined capability rules for combining the interfaces will be utilized to
achieve this. After this, the detailed match of the new device combination to the
requirements will be checked, as was done in phase 2.

8. Finally, if more than one new combination of suitable devices was found, context specific
adaptation rules will be used in order to select the most desirable combination for the given
situation.

The presented rules and associated matching procedures provide a valuable aid for selecting
appropriate solutions from a large amount of input data. For example, a large factory with thousands
of resources represents a huge solution space, for which manual handling in the context of such
capability matching is cumbersome. With the approach presented here, it is possible to explore the
large solution space and rapidly filter out the unsuitable resources, leaving only the possible
resources and resource combinations for the given requirement. Therefore it eases and speeds up
the adaptation planning, and facilitates the reactive adaptation.

4.5. Information formalization to support production system adaptation -
Implementation

In the proposed approach, ontological modelling is used to formalize the representation of the
resources, capabilities and system configurations. The Core Ontology defined by Lanz (2010) is used
as a basis for describing the product-, process- and system-related information. The knowledge
representation can be interpreted by both humans and machines. The ontology has been built with

85

the Protégé OWL-DL tool. OWL-DL is based on description logics and it allows the domain concepts to
be largely defined according to a predefined formalism. (Stanford Center for Biomedical Informatics
Research 2012.)

For this study, the Core Ontology has been updated and extended to better answer the problem at
hand, in other words to better fulfil the requirements set by the adaptation of production systems in
a changing environment. A new domain, capability, has been defined to connect the process and
system domains. Capabilities can be seen as an intermediate step between systems and processes.
Systems utilize their capabilities to execute processes. The following chapters first present the
formalization of the capability and production system information in the Core Ontology. After this,
the formalization of the connection between the product, process and system information is
discussed. The work done during the course of this thesis has also slightly affected the product and
process domains in the Core Ontology, but these are not discussed here. Finally the chapter ends
with a discussion of the spatial and temporal reasoning enabled by the ontology definitions.

45.1. The formalization of the capabilities in the Core Ontology

This chapter will explain the structure of the capability definition in the Core Ontology, its sub-
classes, their parameters and the relationships between the classes. The CapabilityDefinition class,
displayed in Figure 40, contains the sub-classes needed for managing the simple and combined
capabilities of resources. As the theory and concepts behind the capability modelling has already
been thoroughly discussed in the previous chapters, the theory needs no further explanation here.
Instead, the emphasis is placed on presenting the structure of the knowledge formalization.

CapabilityDefinition

xa

CapabilityAssigment

hasCapability

hasInputAssociation™ ﬁasOulputAssucialion* sInputéssociationF orCapability™

isa

Capability AssingmentUpdated

ﬁ Capability

Capability

fisa

fisa isOutputAssociationF orCapability™®

CapabilityAssociation

isOutputAssociationF orCapability* JisInputAssociationF orCapability™

Competence

hasCapability Taxonomy*

has Capability Taxonomy™*
V

Capability Taxonomy)hasparemN odelnTaxonomy™*

Figure 40. Class CapabilityDefinition and its sub-classes.

Capability
The capability class defines the pool of generic capabilities that can exist in a production system,
including the simple and combined capabilities. Both the strong and weak capabilities are defined in

86

this class. In the current implementation, the business and lifecycle properties are also given as
capabilities. The names of the capability instances represent the capability concept name as
discussed in Chapter 4.2.1. Table 11 explains the relevant properties of the instances belonging to
the Capability class. A few default properties, namely description (giving the description of the entity)
and name (defining the name of the entity), have been excluded from the tables in order to save
space.

Table 11. Properties of the Capability class.

Property name HDescription

CapabilityParameter contains a list of parameters that a certain capability can have.

capabilityParameter i S .
pability The parameter values are defined when the capability is assigned to a resource.

This property is used to indicate if the defined capability is a normal capability or if it is

capabilityType
pabilityTyp used to describe the business or lifecycle properties.

This property links the capabilities with the capability taxonomy, allowing the mapping
of product requirements against resource capabilities. The reference to the
CapabilityTaxonomy is only defined for the capability instances representing strong
capabilities.

hasCapabilityTaxonomy

This property indicates which capability associations are needed as an input in order
hasInputAssociation to enable the current capability to emerge (e.g. moving and holding associations are
needed as an input for transporting).

This property indicates which output associations the current capability provides for

hasOutputAssociation . s L . . .
P the combined capabilities as their input (e.g. moving provides input for transporting).

CapabilityAssociation

The CapabilityAssociation class contains the association instances which are used to create links
between capabilities, enabling the formulation of combined capabilities from simple capabilities. The
associations can be either input or output associations. For example, simple capabilities provide
output associations for combined capabilities as their input association, and vice versa. Table 12
shows the properties of the CapabilityAssociation class. These properties are the inverse of
hasOutputAssociation and haslnputAssociation properties. They help the manual management of the
capability information in the Protégé.

Table 12. Properties of the CapabilityAssociation class.
‘Property name HDescription ‘

‘isInputAssociationForCapabiIity HThis property indicates for which combined capability this is an input.‘

‘isOutputAssociationForCapabiIityHThis property indicates for which capability this is an output. ‘

CapabilityTaxonomy

The CapabilityTaxonomy class contains the hierarchical categorization of the possible functional
capabilities. Capabilities and Processes refer to certain levels in the CapabilityTaxonomy enabling the
product requirements to be mapped with the device capabilities at different levels of detail. Table 13
shows the properties of the CapabilityTaxonomy class.

87

Table 13. Properties of the CapabilityTaxonomy class.

Property name HDescription

The hasParentNodelnTaxonomy property defines the parent node for the current
taxonomy node. It is used to create the hierarchy between different detail-level
capabilities (functions vs. behaviours) and therefore to build the taxonomy, e.g.
milling hasParentNodelnTaxonomy machining.

hasParentNodelnTaxonomy

Competence
The Competence class is meant for storing the capabilities of a human or organization. This class is
under construction and beyond the scope of this work.

CapabilityAssignment

The CapabilityAssignment class defines the resource-specific capabilities and their parameter values.
CapabilityAssignments are individual instantiations of the generic capabilities in the Capability class
defining the resource-specific capabilities. Table 14 shows the properties of the CapabilityAssignment
class.

Table 14. Properties of the CapabilityAssignment class.

Property name HDescription

This property refers to the generic capability that this CapabilityAssignment is an

hasCapabilit . .
P y instantiation of.

This property allows the assignment of parameters for the entity. It refers to key -
hasParams value pairs.

CapabilityAssignmentUpdated

The CapabilityAssignmentUpdated class is similar to the CapabilityAssignment class, but it is meant
for storing the updated capability information during the individual device’s lifecycle. It has the same
properties as the CapabilityAssignment class shown in Table 14. The lifecycle properties can be
assigned through this class.

4.5.2. Formalization of resources in the Core Ontology

This chapter will explain the structure of the resource definitions in the Core Ontology, its sub-
classes, their parameters and the relationships between the classes. Figure 41 shows the ontology
structure for representing the resource information. Those sub-classes of the ontology which are not
used or developed in the context of this thesis, will not be discussed here. For more information
about them, please refer to Lanz (2010).

88

RS
isLocatedIn* sResource* isa
f]

153

hasArea® fisa isa
isa Area

fhasLines* isa

hasCellsOrStations™

hasCellsOrStations™

recedenceOf) Device | Hurman ‘ Software
hasIndividualDeviceOrDeviceCombination™® isa A
hasIndividualDeviceOrDeviceCombi [D asIndividualDeviceOrDeviceCombination* isa
hasIndividualDeviceOrDeviceCombination™® isa
= IndividualDevice
hasDeviceBlueprint
isa 1sa ia ‘ 1s isa isa
I StorageDevice ControlDevice I Fixture I SimpleDevice ‘ MovingDevice ModifyingDevice

Figure 41. Class Resource and its sub-classes.

Resource

The class Resource refers to any physical or virtual resource, such as a human, a device or software,
or a facility area that is used for manufacturing or assembling a product element or providing a
certain service. Table 15 shows the properties of the Resource class.

Table 15. Properties of the Resource class
‘Property nameHDescription ‘

IMGModelUrl |IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.

‘isLocatedIn HThis property indicates the place where the entity is located. ‘

Device

The Device class includes any machines, equipment and tools used to manufacture or assemble a
product element. Devices can be either catalogue devices (blue prints) or actual individual devices
and combinations of them. Figure 42 shows the class Device and its sub-classes and Table 16 explains
its properties.

89

Device

isa

isa | DeviceCombination | hasIndividualDeviceOrDeviceCombination®

isa ’As IndividualDeviceOrDeviceCombination™®

IndividualDevice

/asDeviceBluepn'm

DewiceBlueprint

isa isa /s;a \ka isa isa

SimpleDevice MovingDevice ModifyingDevice StorageDevice ControlDevice Fixture

Figure 42. Class Device and its sub-classes.

Table 16. Properties of Device class.
‘Property name HDescription ‘

‘deviceID HThe devicelD is a unique identifier of a device. ‘

‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object. ‘

This property indicates the place where the entity is located. It can be, e.g. a certain cell or

isLocatedin .
workstation.

DeviceBlueprint

The DeviceBlueprint class contains the catalogue information of different device types. The
DeviceBlueprint has the subclasses ControlDevice, Fixture, ModifyingDevice, MovingDevice,
StorageDevice and SimpleDevice, as defined by Lanz (2010), which all inherit the parameters of the
DeviceBlueprint class. Basically the division is only meant for humans and it helps to manage the
device information in the ontology. Table 17 shows the properties of the DeviceBlueprint class.

Table 17. Properties of the DeviceBlueprint class.

‘Property name HDescription
‘deviceID HThe devicelD is a unique identifier of a device.
‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object.

This property indicates the place where the entity is located. As the DeviceBlueprint
isLocatedIn instances are not real physical resources, they should only be located in catalogues.
Currently, the ontology doesn’t restrict this.

The output interface is the interface the device provides for other devices to connect

outputinterface . .
P to, e.g. a tool holder provides an output interface for a tool.

The Input interface is the interface the device use to connect to other devices, e.g. a

inputinterface . . o) .
P tool holder has an input interface, which is used to connect it to the machine.

hasCapabiIityAssigmentHThis property links the resources and their capabilities.

90

IndividualDevice

The InvidualDevice class is meant for saving the instances of the actual individual devices existing on
the factory floor. The individual devices have reference to the DeviceBlueprint, based on which their

nominal capability can be kn

own. The updated capability information during the individual device

lifecycle, i.e. the actual -capability, is assigned to these instances by the
hasCapabilityAssignmentUpdated property. Table 18 shows the properties of the IndividualDevice

class.

Table 18. Properties of the IndividualDevice class.
‘Property name HDescription ‘
‘deviceID HThe DevicelD is a unique identifier of a device. ‘
‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object. ‘

hasDeviceBlueprint

HasDeviceBlueprint links the individual device to the blueprint (i.e. to the
catalogue information).

isLocatedin

This property indicates the place where the entity is located, e.g. in a certain
cell or station.

‘hasPosition

HThis property defines the position of the entity. ‘

‘hasOrientation

HThis property defines the orientation of the entity. ‘

hasCapabilityAssigmentUpdated

This property links the resources and their updated capabilities during the
individual device’s lifecycle.

DeviceCombination

The DeviceCombination class includes combinations of multiple individual devices or other device
combinations. Table 19 shows the properties of the DeviceCombination class.

Table 19. Properties of the DeviceCombination class.

‘Parameter name HDescription ‘

‘deviceID HThe Devic

elD is a unique identifier of a device. ‘

‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object. ‘

OrDeviceCombination|/included i

hasIndividualDevice |/This property defines the individual devices and other device combinations that are

n the current device combination.

‘isLocatedIn HThis property indicates the place where the entity is located, e.g. a certain cell or station.‘

Enterprise
The Enterprise class refers to
class for other facility-related

the company or facility where the operations take place. It is a parent
classes. It answers the question “where”. The Enterprise class structure

is directly adopted from the work of Lanz (2010), but the properties are slightly modified. The
relations between the cells and stations have been added in this work. Figure 43 shows the structure
of the Enterprise class and its sub-classes, whereas in Table 20 the properties of the Enterprise class
are explained. This clearly illustrates the restrictions of OWL, which doesn’t allow the representation
of the is_part_of relation. Therefore, the lines, cells and stations are modelled with a relation is_a
enterprise, even though logically they should be part_of.

91

Enterprise

isa

Factory

Kl‘as:\rea ’

Area

hasLi sa

Line

%‘:ﬂ.\'()l‘stnﬁons |

Cell =

)connectedToDprecedenceOf!

=

hasCellsOrStations™

precedenceOf"

precedenceOf!

Figure 43. Class Enterprise.

Itis intended in the future to break up this hierarchical line-cell-station structure, because it is highly
dependent on the company’s or user’s naming policies. Some may call a cell a station, and vice versa.
This representation restricts the allowable system architecture. For the purpose of the adaptation
problem, it would be enough to be able to present the combinations of resources and their relative
locations in the factory layout.

Table 20. Properties of the Enterprise class.
‘Property nameHDescription

‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object. ‘

‘isLocatedIn HThis property indicates the place where the entity is located.

‘hasResource HThe hasResource property defines the resources that belong to the given entity.

Factory
The class Factory refers to a complete factory where the manufacturing or assembly takes place. Its
properties are shown in Table 21.

Table 21. Properties of the Factory class.
‘Property nameHDescription

‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object.

‘hasResource HThe hasResource property defines the resources that belong to the given entity.

|
|
‘isLocatedIn HThis property indicates the place where the entity is located. ‘
|
|

‘hasArea HThis property defines the areas that are located in the factory.

Area
The class Area refers to a place where the assembly or manufacturing takes place. Its properties are
shown in Table 22.

92

Table 22. Properties of the Area class.

‘Property nameHDescription

‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object.

‘isLocatedIn HThis property indicates the place where the entity is located.

‘hasResource HThe hasResource property defines the resources that belong to the given entity.

‘hasLines HThis property indicates the lines that are located in the area.

Line

The class Line refers to the production line where the manufacturing or assembly takes place. A line

can consist of multiple cells and/or stations. Table 23 shows the properties of the class Line.

Table 23. Properties of the Line class.

‘Propertyname HDescription

‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object.
‘isLocatedIn HThis property indicates the place where the entity is located.
‘hasResource HThe hasResource property defines the resources that belong to the given entity

‘hasCeIIsOrStations"This property defines the cells or stations that are included in the line.

‘hasOrientation HThis property defines the orientation of the entity.

‘hasPosition HThis property defines the position of the entity.

Cell

The class Cell refers to the cell where the manufacturing or assembly takes place. A cell can be either
a product-oriented or process-oriented cell. A process-oriented cell may consist of multiple machines
providing similar process capabilities. In contrast, a product-oriented cell consists of resources
targeted to manufacture certain entities of the product (e.g. sub-assemblies). The properties of the

class Cell are shown in Table 24.

Table 24. Properties of the Cell class.

‘Propertyname HDescription

‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object. ‘
‘isLocatedIn HThis property indicates the place where the entity is located. ‘
‘hasResource HThe hasResource property defines the resources that belong to the given entity. ‘
adiacentTo This property indicates which entities are adjacent to (close to, next to) the current entity,
) but not physically connected.

‘connectedTo HThis property indicates the entities which are physically connected to the current entity. ‘
‘precedenceOf HThis property defines which entity precedes the current entity in the layout. ‘
‘hasStation HThis property indicates which stations include the given cell. ‘
‘hasPosition HThis property defines the position of the entity. ‘

‘hasOrientation HThis property defines the orientation of the entity.

93

Station

The Station class refers to a station where the manufacturing or assembly takes place. A station
refers to one unit in the system, where certain operations can be completed. A cell can contain
multiple stations. The properties of the class Station are shown in Table 25.

Table 25. Properties of the Station class.

‘Property name HDescription ‘
‘IMGModeIUrI HIMGModeIUrI defines the URL for the picture (e.g. .png) of the given object. ‘
‘isLocatedIn HThis property indicates the place where the entity is located. ‘
‘hasResource HThe hasResource property defines the resources that belong to the given entity. ‘
adiacentTo This property indicates which entities are adjacent to (close to, next to) the current
) entity, but not physically connected.

‘connectedTo HThis property indicates the entities which are physically connected to the current entity. ‘
‘precededBy HThis property defines which entity precedes the current entity in the layout. ‘

hasindividualDevice
OrDeviceCombination

This property defines the individual devices and device combinations that form the
station.

‘hasPosition

HThis property defines the position of the entity. ‘

‘hasOrientation

HThis property defines the orientation of the entity. ‘

The spatial relations of cells and stations, namely adjacentTo, connectedTo, and precededBy allow

spatial reasoning wi

th the digital information. Based on this, it is possible to know in which order the

capabilities exist in the system, e.g. in the case of an assembly line where the product flows through

multiple stations.

4.5.3. Connection between products, processes, capabilities and systems

The formalization of the product information and related processes was done by Lanz (2010) and will
therefore not be discussed in detail in this thesis. However, a simplified illustration of the relations
between product, process, capability and resource information is shown in Figure 44.

94

DeviceCombination | hasIndividualDeviceOrDeviceCombination*

hasIndividualDeviceOrDeviceCombination™

IndividualDevice

WCeBluepﬁm

CapabilityDefinition hasCapabilityAssignmentUpdated* | DewiceBlueprint

isa isa ﬁsCapabﬂityAs sigment™®

isa | CapabilityAssingmentUpdated CapabilityAssigment

\§s0apabmty hasCapability

Capability

isa

4
hasInputAssociation™ /s‘lnputAssutiationF orCapability* /isOutputAssociationF orCapability™

fisa sOutputAssociation®

CapabilityAssociation

. - o N\ . . hasCapability Taxonomy™
isInputAssociationF orCapability™ JisOutputAssociationF orCapability™

Competence

hasCapability Taxonomy™*

reqw'.resCa!%—"

[e>dependencyO

Capability Taxonomy | hasParentNodeln Taxonomy*

Process

isPerformedOnProductElementorFeature® | ProductElement

Mﬁm’e*‘

GeometricFeature | DhasFeature*

Figure 44. Relations between products, processes, capabilities and devices.

In the proposed capability matching approach, the product requirements and system capabilities are
the core concepts, while processes serve as a sort of a middleware between those two. Related to
Service Oriented Architecture (SOA), the processes can be considered as services. Products require
services (processes) and systems provide services (processes). Processes have basically only two
parameters: the time it takes to complete (duration) and their place in the process graph. Everything
else can be modelled through the capabilities. This is a completely new way to model the problem.
The pre-process plan is modelled in the process domain of the Core Ontology. The properties of the
Process class are shown in Table 26.

95

Table 26. Properties of the Process class.

Property name HDescription

A process requires one or more capabilities. Capabilities can be defined at different
requiresCapability levels of detail (e.g. “material removing* vs. “milling”). This property is used to make
the reference to the correct level on the capability taxonomy.

hasSetup HA process may need some set-up activities before it can take place.

isPerformedOn Processes are performed on ProductElement or any subclass of ProductElement or
ProductElementOrFeature|{they can be performed on GeometricFeature.

A process requires one or many resources. This property can be either pre-defined,
requiresResource or the proper resources can be reasoned out by the capability matching. In the
latter case (and in the approach taken in this thesis) this property will be left empty.

Dependency defines the order in which processes occur. A process can have
dependencyOf multiple dependencies, e.g. processes 1, 2, 3 and 4 must be completed before
process 5 can occur.

‘hasDuration HThis property defines the duration of the process.

‘hasProcess HA process can have multiple sub-processes.

45.4. Spatial and temporal representation and reasoning allowed by the ontology
definitions

There are certain restrictions that limit the cooperative capability of the resource entities. These are
their spatial relationship and technological compatibility. If the resources are far away from each
other they are not able to cooperate, or if they don’t have compatible interfaces they cannot be
combined. Therefore, an important restriction which limits the capability of a combination of devices
is their spatial relationship. Resources which are not spatially related cannot cooperate, e.g. a robot
on the factory floor and a gripper in store.

When matching the product requirements with the capabilities of the existing system, it is important
to know the temporal order of the required capabilities, as well as the temporal order of the provided
capabilities. Therefore, some way to describe the layout of the system is needed, in order to know in
which order the capabilities appear in the system. This is not crucial in cell-type manufacturing
environments, where the product doesn’t need to have a predefined track. On the other hand, in the
case of line-type production systems, where the product is moving through the line from one station
to the next, this is important.

The spatial and temporal reasoning of the existing resources, capabilities, and needed process
activities is enabled by the common relations used in the Core Ontology and summarized in Table 27.

96

Table 27. Spatial and temporal relations used in the Core Ontology.

Relations | Description

Spatial relations

is_located_in Indicates the factory or other higher level resource element where this specific resource
element is located.

adjacent_to Indicates the system components that are adjacent to this specific resource element, but
not physically connected.

connected_to Indicates the system components that are physically connected to this specific resource
element.

preceded_by Indicates the system component that directly precedes this specific resource element.
This is used in the system description to indicate the order of the stations or cells in the
line layout.

Temporal relations

dependency_of Used in a process description to indicate the dependency between the activities, i.e.
which activities have to be performed before a specific activity can take place.

The product requirements, defined according to the product features and rule-based reasoning,
contain the required capabilities, their parameters and their temporal order. Every activity in the pre-
process plan, except the first one, has a predecessor, which is defined by the temporal
dependency_of relation. For each activity, a reference to the capability taxonomy is defined, and in
this way the chain of required capabilities can be expressed. If two capabilities have the same
predecessor, they should or can be executed in parallel.

In addition to determining the resources’ ability to cooperate, the spatial relations between the
resources on a production line layout also determines the temporal relations between the existing
capabilities. These can then be compared with the temporal order of the capabilities required by the
product.

In addition to those common relations shown in Table 27, the spatial and temporal reasoning is
supported by the following properties. The DeviceCombination class holds the information about the
combinations of devices. These combinations contain the information about physically connected
individual resources. The device combinations can also contain other device combinations.
Therefore, the connectivity of the individual resources can be reasoned based on the
DeviceCombination class. The DeviceCombination doesn’t, however, specify the relative location of
the resources in the combinations. Station class holds the information about which individual devices
or device combinations belong to a station. In the case of line-type production, the spatial relation of
the stations (connected_to, adjacent to, preceded_by) indicates the sequence in which the
capabilities occur on the line. In the case of cell type production, the spatial relation of the cells and
stations does not restrict the order of processes, assuming that the logistics between the cells and
stations is performed manually or by other flexible transportation methods.

In principle, the spatial representation of distance can be either expressed on some “absolute” scale
or provide some kind of relative measurement. Because the detailed geo-spatial reasoning is beyond
the scope of this thesis, the presented relations between the resource and process entities provides
sufficient information for the capability reasoning. Should more detailed representation be needed in
the future, the Core Ontology allows the detailed position and orientation of the resources on the
factory floor to be saved.

97

4.6. Adaptation schema

A fundamental enabler for efficient adaptation planning and reactive adaptation is an understanding
of the activities and information flows that characterize the process. Therefore, activity models
representing the adaptation schema have been developed. The adaptation schema aims to capture
the overall adaptation process and activities as well as the information flows, controls and resources
required during the adaptation planning and reactive adaptation. It defines how the other
components of the developed methodology, namely the resource model, taxonomy and rules for
capability matching, are used during the adaptation process.

The definition of the schema has been an iterative process. First, before starting the development of
the resource description and capability model and the rule-base for capability matching, an initial
sketch of the schema was formulated. After the resource description model and the rule framework
had been developed, a final version of the adaptation schema was drawn up in the form of IDEFO
(Integration DEFinition for Function Modelling) activity diagrams. Even though the adaptation
schema definition was defined as Sub-objective 1 in the problem definition chapter, it is here
presented as third, after the other components of the adaptation methodology. This is mainly due to
the iterative nature of its development. The schema also neatly brings together and summarizes the
different concepts developed and discussed in the previous chapters, and puts them into a context
forming the backbone of the developed adaptation methodology. The following chapters will first
discuss the overall view of the adaptation process, followed by the detailed definition of the
adaptation schema through the IDEFO activity diagrams.

4.6.1. Overall view of the adaptation process

Below, some general aspects which are important for the adaptation of production systems will be
discussed. These have affected the development of each component of the adaptation methodology,
especially the adaptation schema. As is known, changes always incur costs and take time. Therefore,
when the requirements targeted at a system change, it is important to try to minimize the changes
needed by the system. Consequently, the possibility for logical or parametric adaptation should be
evaluated first. The physical adaptation is done only if the current system is not able to accomplish
the needed tasks by changing the process parameters of the devices, changing the routing, or
changing the programs of the devices. If the needed capabilities exist in the current system, no
physical adaptation is needed, but the adaptation is based on allocation and scheduling of suitable
resources based on the order information as well as context-specific and user-given criteria. If
physical adaptation is required, the adaptation distance, i.e. the magnitude of needed changes,
should be minimized by maximizing the number of cells and stations that remain; maximizing the
number of cells and stations that remain in their original location; and maximizing the number of
devices that remain.

Bi et al. (2008) stated that when reconfiguring an existing production system it is necessary to
understand the requirements according to which the original system was designed, and to find out
where there are changes to those requirements. In other words, the original design decisions that led
to the specification of the existing system should be understood. This indicates that the adaptation
could rely on a comparison between the old product and the new one, or the process plan of the old
product and the process plan of the new one and through identifying the differences between them,
in order to reason out the changes required for the system. The adaptation methodology and

98

schema developed during the course of this thesis work don’t adopt that approach, but rely on
comparing the existing system specification with the new requirements, mainly for the following
three reasons.

Firstly, the systems, processes and products often go through some changes during their lifecycle.
Change in one domain often also causes changes to the other domains. For example, the production
system changes from its original specification during its operation time, because of, for example,
maintenance, service, malfunctions, etc. These may affect the processes, which may no longer fully
correspond with the original process description. However, these changes are not always reflected in
the models used to describe those domains. Due to this iterative process, the links between the
original design decisions and the system are no longer useable, so the models should be frequently
updated in order to keep the links between product specification and the current system valid. In a
frequently changing environment, this updating would be a burdensome task. Therefore the
approach presented in this thesis proposes to keep the system description updated and compare it
with the new product requirements.

Secondly, the current design and information systems are not able to preserve the designer’s
intentions. This means that the reasons behind certain design decisions are lost when the model
leaves the designer’s table, as was recognized by Jarvenpéa et al. (2010). Therefore all the links
between the original product and the original system specifications may not be understood by
anyone other than its original designer.

Thirdly, this thesis also aims to support dynamic adaptation which occurs while the system is running,
such as the dynamic routing of the orders based on the available capabilities and product
requirements. In this kind of situation it is more important to know the requirements of the current
product, rather than its differences to the previous one. In the case of multiple resources with
different capabilities that can produce the same feature, the aim is not to use the same resource that
was used with the previous product, but to use whichever one is available and has a suitable
capability. Therefore, comparing the system specification to the requirements, rather than
comparing the new and previous product (or their process plans) is seen as a more feasible
approach.

The simplified adaptation schema is illustrated in Figure 45. The simplified schema is modelled in the
form of a simple flowchart and is fully incorporated into the activity diagrams that form the full
detailed schema, discussed in the next chapter. The adaptation is based on a comparison of the new
order requirements with the capabilities of the current production system. The comparison is first
performed at the capability concept name level, and the match is subsequently evaluated at the
parameter level. Any missing technology is first searched for from the company’s own device libraries
and then from the system providers’ libraries. Different configurations are generated with matching
devices and compared against user-defined criteria and other adaptation constraints. Finally, the
best scenario for the given situation is selected. The change in the order requirements can be caused
either by the change in the product requirement, e.g. a new product model or variant, or other
changes in the order properties, such as a faster production time.

Particularly in the final phases of the adaptation planning, human-machine interaction is normative.
Computer power is used to manage and filter a vast amount of information to create different
solution scenarios, while human intelligence is needed to validate these and select the desired one.

99

Product
requirement
change

Analyze the product features and define the required
functions and their sequence (pre-process plan)

v

Based on feature properties, define the required
capabilities in detail

v

Compare the capability requirements with the device
combinations of the current system at capability concept
name level

Do they match?

YES
v

Compare the capability requirements with the device

Other order
requirement
change

combinations of the current system at parameter level

Are there device combinations matching to the

requirements?

NO (or not for all)

Compare the capability requirements with the capabilities of
the individual devices comprising the current system

e there devices matching to the

YES

requirements?

NO (or not for all)

Identify missing capabilities and search for them from the

YES

A

Save to the proposal
list

resource library (first own, then system providers)

Generate configuration scenarios of the system with the

Ate critical lifecycle and business paramete
(cost, condition, availability,..) met?

device combinations and individual devices saved to the

proposal list.

A

Compare the scenarios based on user defined criteria and
generic adaptation guidelines and select the most feasible
one

YES |

Delete from the
list

Figure 45. Simplified adaptation schema.

100

As seen in Figure 45, the approach taken here is reactive, rather than proactive. The system is
adapted when the external requirements change, and the evolution of the market is assumed to be
unknown and cannot therefore be used as additional information to guide the adaptation process.
This means that the system is only adapted according to the requirements of the next product. If
more information (even uncertain) of the future becomes available, this should be taken into
account during the adaptation planning, in order to enable some level of flexibility for the future
scenarios to be incorporated into the new system configuration. Terkaj et al. (2009b) have touched
this topic with their stochastic programming approach, which aims to support the design of
manufacturing system architectures whose level of flexibility is focused on specific production
requirements.

4.6.2. Activity diagrams for production system adaptation schema

An activity model captures activities and the corresponding information flows between the activities.
In the case of production system adaptation planning, the activity model is a tool to formally model
and analyse the activities that are needed during adaptation planning and reactive adaptation, and
the information flows and resources that are necessary to perform those activities. The activity
diagrams are modelled using IDEF0O-language, which is a textual and graphical modelling language for
system analysis and specification. It is designed to model the decisions, actions and activities of an
organization or system. IDEFO was derived from a well-established graphical language, a Structured
Analysis and Design Technique (SADT), which was published by NIST in 1993. (Knowledge Based
Systems Inc. 2010.)

|

Controls
(Information which represents the
rules under which the activity must

operate)
Input Activit
(Information A y Output
needed to (Functlo_n or (Information——»
perform the operation produced by
activity) performed bY the activity)
human or machine)

T

Resources
(Static information resources
needed to perform the task)

|

Figure 46. Elements in IDEFO-diagrams (Knowledge Based Systems Inc. 2010).

Figure 46 presents the elements of IDEFO-diagrams and how they are used in this thesis. Resources,
in this context, represent static information resources that the activity may use selectively depending
on the needs of the specific situation. These may be tools, information models, software, methods
and so on. The word ‘static’ indicates here that the resource is not modified by the activity it takes
part in and it remains unchanged over a certain time interval, depending on the resource. Each
activity box may be decomposed into its sub-activities in another more detailed diagram. The
description of the activities of a system can easily be refined into yet greater detail until the model is
as descriptive as is necessary for the decision-making task at hand. (Knowledge Based Systems Inc.
2010.)

In the scope of this thesis all the activities are presented down to the 2nd level of detail. However,

101

most of them could be further detailed. The activities are limited on the digital and virtual knowledge
levels, meaning that the physical implementation is beyond the scope of these diagrams. In order to
ensure the readability of the activity diagrams, they are placed in the appendices (6 - 9)., The
explanations of the used terms indicating the inputs, outputs, controls and resources in the diagrams,
can also be found in Appendix 10. This section confines itself to a brief discussion of the activities.

Top level activities

Node AO: Overall adaptation schema

Al - Definition of product requirements
During this activity, the product requirements affecting the production system design and the
requirements for adaptation will be defined.

A2 — Matching product requirements with existing capabilities
This activity concentrates on matching the requirements set by the product with the capabilities
provided by the existing system and its components.

A3 - Creating an adaptation plan for the current system

This activity aims to specify how the current system needs to be changed in order to meet the new
requirements. The changes can be either physical, logical or parametric.

2" level activities

Node A1l: Definition of product requirements

A1l - Feature recognition
During this activity the features are recognized and classified from the product model.

A12 — Analysis of the features
This activity aims to identify the features that affect the process selection and the sequence of the
process activities.

A13 - Definition of pre-process plan

During this activity a preliminary process plan for the manufacture of the product is created based on
the identified manufacturing features. The pre-process plan defines the required activities at a high
level, e.g. “joining” or “material removing”.

Al4 - Definition of required manufacturing capabilities

During this activity the required manufacturing capabilities, including the capability parameters, are
specified in more detail based on the required activities in the pre-process plan and the feature
properties.

Node A2: Matching product requirements with existing capabilities

A21 — Comparing the requirements with the capabilities of the current device combinations at the
concept name level

102

This activity aims to compare the required capabilities with the capabilities possessed by the
combinations of devices in the current system at the capability concept name level. The idea is to see
if there already exist device combinations, for example workstations, that are able to fulfil the given
requirement without any changes.

A22 — Comparing the requirements with the current device combinations at the parameter level

During this activity, the detailed match between the required and provided capabilities is evaluated.
This means that the capabilities matching the requirements at the capability concept name level are
compared with the requirements at the capability parameter level. This matching is done, as specified
by the capability matching framework, according to the rules in the rule-base and the feature
properties.

A23 - Identifying missing capabilities in current device combinations
The purpose of this activity is to define those capability requirements that cannot be fulfilled by the
device combinations in the current system.

A24 — Comparing requirements with the capabilities of individual devices in the current system

This activity aims to compare the required capabilities with the capabilities of individual devices
existing in the current system. The idea is to see if there are suitable devices in the current system that
have capabilities that match with the required simple capabilities and could be used to form new
device combinations.

Node A3: Creating an adaptation plan for the current system

A31 - Evaluating the needed adaptation type
This activity aims to specify what kind of adaptation is required in order to obtain the required
capabilities. The adaptation can be either physical, logical or parametric.

A32 — Searching for devices from device libraries

The aim of this activity is to search for devices that possess the capabilities missing from the current
system. The search is first targeted at the company’s own device libraries and, if there is no match, the
search can be targeted at the system providers’ or rental warehouses’ libraries.

A33 - Generating system configuration scenarios

During this activity different configuration scenarios of the suitable devices and device combinations
fulfilling the capability requirements are generated. These configuration scenarios represent different
options for adapting the system at the physical, logical or parametric levels.

A34 — Selecting the most suitable configuration

This activity aims to identify the most suitable system configuration for the given situation based on
the capabilities and availability of the devices, as well as different user-defined and context-specific
criteria. After the selection has been made, the actual adaptation actions can take place.

As discussed earlier, the adaptation schema supports both human-centric adaptation planning and
dynamic adaptation. In dynamic adaptation, the adaptation is based on the reaction of the system. For
example, in the holonic world the autonomous entities make the planning “online”, while the system

103

is running. Therefore the application of the schema may vary depending on the situation. This means
that, for example, not all the inputs and resources shown in the diagrams may be used in every case.

4.7. Evaluating the impact of change

Change in the order requirements usually leads to changes in the system that tries to meet these
requirements. One thing is evident: changes incur costs and take time. Therefore, it is important to
be able to estimate the impact of the change, in order to facilitate the estimation of the effort and
cost needed to accommodate the changes. It would also help in choosing and prioritizing between
different product scenarios requiring changes. Eckert et al. (2004) studied the impact of engineering
design changes on the overall product design. They stated that in complex products with closely
linked parts, changes to one part of the system often cause changes to another part, which in turn
can propagate further change. Similarly, these product changes can impact on the production system
components, which can in turn affect other system components. A change that may initially seem
small and simple can cause complex modifications to other parts of the system.

The Venn diagrams in Figure 47 shows an example of the requirements for manufacturing different
products (A1 & A2 are variants of the same product, while B is a completely different product). When
shifting from the manufacture of one product to another, the size of the common requirements
zone, or actually the area left out from the common requirements zone, gives an indication of the
size of the needed change to the system. For example, it can be assumed that the larger the
requirement area of product B which does not intersect with the requirement area of product Al,
the larger is the size of the needed change to the system. This relation is not, however, directly
proportional. It is close if the system has been originally designed and optimized for the product Al,
has no supplementary capabilities, and has not undergone any changes from its original specification,
as discussed in Chapter 4.6.1. In this kind of situation the requirement area of the product Al can be
considered to represent the capabilities of the current system. However, if the system has more
capabilities than are needed to manufacture the product Al (e.g. a flexible system), it may be able to
manufacture the next product without any physical changes, even if the product requirements have
changed.

Common Common
requirements requirements

Product A1 Prod/uct e Product A1

\

Product B
v

Figure 47. Change in the product requirements causes change to the requirements targeted to the system.

The work conducted during this thesis project, and presented in the previous chapters, makes it
possible to recognize the needed adaptation to the system when the product requirements change.
Therefore, with this approach, it is possible to evaluate the impact of change from the hardware
point of view. Although the developed methodology concentrates only on defining the required
changes to the system hardware, it also opens up the possibility to roughly estimate the time and
money that need to be invested by providing the required input information in terms of new

104

capabilities that need to be added to the system. Therefore, it facilitates further calculations and
decision-making regarding adaptation.

The following chapters present the preliminary concept and formulation of a compatibility domain
approach, for estimating the impact of changes in the product requirements on the existing
production system. The compatibility domain approach examines the topic from three aspects: the
compatibility of the existing system to the new requirements; the relative effort entailed in making
the needed modifications to the system; the utilization (re-usability) of the existing system for the
new requirements. As the objective was to think up a preliminary approach to evaluating the impact
of change, only very simple and coarse formulations of the compatibility, effort and utilization
estimation were made, to illustrate, on a conceptual level, how the accomplishments achieved
during this thesis contribute to such an analysis.

4.7.1. Compatibility domain approach - Evaluating the compatibility, effort and
utilization

As stated earlier, the compatibility domain approach aims to investigate the impact of changes from
three different perspectives, namely compatibility, effort and utilization. The meanings of these
terms are specified in Table 28. A graphical representation will be given for each of these
perspectives. These will be discussed in the following paragraphs.

Table 28. Terms used in the compatibility domain graphs.

Term Definition

Compatibility Defines what proportion of the product’s capability requirements (in %) can be satisfied by
the current system.

Requirement Presents the change in the product requirements targeted at the system (i.e. the capability

change requirements).

Utilization Defines what proportion of the current system’s capabilities (in %) can be utilized for
producing the new product.

Effort Defines the relative amount of new capabilities (compared to the existing system

capabilities) that must be added to the current system in order to be able to produce the
new product. It only considers the effort of making the system compatible with the new
requirements, not removing the unused capabilities.

Compatibility

Compatibility aims to present how compatible the current system is with the new product
requirements in terms of its capabilities. It represents the relative amount of the given product
requirements that can be satisfied with the existing system in its current configuration. The
configuration consists of physical, logical and parametric aspects. The term “compatibility” doesn’t
refer to an optimal solution for the given requirement, but to an intersection, where the
requirements and capabilities match and the system can continue its operation. If the system can
satisfy all the capability requirements, the compatibility is 100%. If the needed capabilities exist in
the current system, but just a few parameters or programs need to be adjusted, the compatibility is
near 100 %, assuming the required parameters are in the range of the existing capability parameters.
If physical changes to the system are required, the compatibility will be lower. The capability
parameters may have a certain range, or they may be fixed. For example, in the case of “drillBit” the
drilled hole will have only one possible diameter, whereas the drill itself is usually able to hold and

105

spin different sizes of drill bits and screwing heads. In other words the “spinningTool” capability
parameters have a certain range that the capability can handle.

In order to roughly estimate the compatibility of the existing system to the given new requirements,
and to get quantitative values for comparison, the following factors defined in Table 29 are
considered.

Table 29. Factors used for evaluating the compatibility of the production system to the requirements.

Factor Definition

ReqgCaps(x) Number of capabilities required by the product x (1 capability = 1 point)

ExistCaps(x,y) Number of existing capabilities in system y that fulfil some of the capability requirements
of product x and are useable in the given situation (1 capability = 1 point)

AllSystemCaps(y) Number of all the capabilities that exist in system y (1 capability = 1 point)

PhysicModifCaps Number of existing capabilities in system y that can be modified by small physical
(xy) changes to be compatible with the requirements of product ¥, i.e. changing the simple
capabilities it is composed of. These include only small changes, like changing the tool in
the lathe. If the main device in the combination (lathe) needs to be changed, this won’t
apply. (1 capability = 0.5 points)

ParamModifCaps Number of existing capabilities in system y that can be modified by parametric or logical
(x,y) changes to be compatible with the requirements of product x, e.g. changing the speed of
the robot. (1 capability = 0.75 points)

NewReqCaps(x,y) Number of capabilities required by product x that don’t exist in the system y (1 capability
=1 point)

The “PhysicModifCaps” and “ParamModifCaps” are included in the formula in order to enable small
adaptation actions, such as changing a tool or program to be taken into account. The coefficients 0.5
and 0.75 are adopted for capabilities requiring small physical changes or parametric changes,
respectively, in order to take into account, at a high-level, the fact that such capability modifications
are less cumbersome than large physical adaptations, like changing complete machines. In other
words, they aim to give a very much simplified, rough estimate of the ease of the adaptation action
in question. Other than that, the formula doesn’t distinguish the different capabilities that need to be
adapted, but they all have the same value, regardless of their importance, size, price or any other
parameter. Therefore all the changes have the same value in the graph, even though, in reality, some
changes are more difficult, time consuming and costly than others. Because these are impossible to
estimate without real measured values and experiences, as noted in the industrial reconfiguration
and re-use scenarios, the proposed compatibility domain approach only takes into account the ratio
between the amount of required and provided capabilities. If more educated evaluations about the
relative size of the required capability adaptation are available, other coefficients than 1, 0.75 and
0.5 can be used in the formulas.

The compatibility of system y for the product x is calculated by the following formula:

ExistCaps(x,y) + 0.5 * PhysicModifCaps(x,y) + 0.75 * ParamModif Caps(x,y)
ReqCaps(x)

100 %
(2)

Compatibility(x,y) =

In the “compatibility — requirement change” graph, the x-axis represents the change in the product
requirements targeted at the production system. The propagation of the changes is taken into
account as discussed in the “magnitude of the required change to the system” -section. In the Venn
diagrams, seen in Figure 47, the requirement change is represented by those areas which are outside
the intersection of the two compared product requirements. The requirement change between two

106

subsequent products, product A and B, is calculated as shown by the formulas (3), (4) and (5). It is
assumed that the current system vy is fully compatible with product A and no supplementary
capabilities exist (ReqCaps(A) = AllSystemCaps(y)).

Capability requirements of product A, which are different from the capability requirements of
product B:

ReqCaps(A)not(B) = ReqCaps(4) — (ExistCaps(B,y) + 0.5« PhysicModif Caps(B,y) +
0.75 * ParamModif Caps(B,y)) (3)

New capability requirements of product B, which are different from the requirements of product A:
ReqCaps(B)not(A) = NewReqCaps(B,y)
= ReqCaps(B) — (ExistCaps(B,y) + 0.5 x PhysicModif Caps(B,y) +
0.75 * ParamModif Caps(B,y)) (4)
Requirement change between product A and B:
Requirement change(A, B) = ReqCaps(A)not(B) + ReqCaps(B)not(A)

= ReqCaps(A) —2 = (ExistCaps(B,y) + 0.5 x PhysicModif Cap(B,y) +
0.75 * ParamModif Caps(B,y)) + ReqCaps(B) (5)

H

)

]

X
1

Compatibility

Requirement change

Figure 48. Conceptual view of the compatibility versus requirement change.

Figure 48 shows an example of a “compatibility — requirement change” graph. The graph represents
a conceptual view of the compatibility of the system to the requirements as changes in the
requirements grow. The graph assumes that the system is fully compatible with the requirements set
by product Al, and that it has no extra capabilities, i.e. the system was originally developed for
product Al. In principle, the compatibility graph is a descending curve when the subsequent products
are relatively similar, i.e. having similar amounts of required capabilities. However, the shape of the
curve should not be generalised as it is easy to come up with special cases which won't fit this
descending curve.

The greater the compatibility, the more requirements can be satisfied with the current system and
the fewer the changes which are needed to the existing system. However, again, this comparison is
valid only with very similar products, i.e. products having similar amounts of required capabilities. For
example, two products may have the same compatibility, but completely different effort to modify
the system to be able to produce the whole part. This is the case, for example, when product B has
20 required capabilities, of which 10 are satisfied, versus product C, with 2 required capabilities of
which 1 is satisfied. In both cases the compatibility is 50%, but the first one needs much more

107

adaptation effort to be actually able to produce the product (10 new capabilities to be acquired for
product B versus 1 capability for product C). The “compatibility — requirement change” graph is
therefore only able to analyze what proportion of the product requirements can be satisfied in
different cases, but not the actual effort of adapting the system to be fully compatible with the
product requirements.

If the new product has fewer requirements, none of which are additional to those needed for the
original product, and the remaining requirements have similar capability parameters, the system is
definitely able to cope with those new requirements. Therefore the requirement change can be
considered to be negative and the compatibility of the system is 100 %. However, it needs to be
noted that even if the compatibility of the system is 100 %, it may not be the most optimal way to
produce the product. For example, if the production volume of this new, simpler product is high, it
may not be cost efficient to occupy the whole system with excess capability in order to manufacture
that product.

Magnitude of the required change to the system (effort)

The previous graph, Figure 48, doesn’t indicate the effort needed to adapt the system to the new
requirements. Another graph needs to be drawn for this. The relative effort of an adaptation is here
estimated as the relation between the missing capabilities (capabilities to be acquired) and all the
existing capabilities in the system. In other words the effort is defined purely based on the new
capabilities that need to be added to the system, and no other factors, such as ramp-up time and
cost, are taken into account. The formulation of effort enables the comparison of different product
scenarios based on the required adaptation effort. An example of this can be seen in Figure 49,
where the product scenarios are drawn on the graph according to their compatibility and effort. This
example is based on the data presented in Chapter 5.3.4. The graph clearly shows that compatibility
doesn’t necessarily indicate the needed effort as discussed above (see products E and G).

Effort of making the current system y compatible with the new capability requirements of product B:

Effort(B,y) = Yewheacaps®) , 4 a9, (6)

AllSystemCaps(y)

100 A&fi
90] x F
80
70 X
60
50 o
40
30
20
10 G
0 N

X O

N

m

Compatibility

\ 4

N\
0 10 20 30 40 50 60 70 80
Effort

Figure 49. Compatibility versus effort — example.

108

The procedure and complexity of an adaptation are not only strongly dependent on the type of
change in the requirements, but also on the architecture of the system (e.g. line-type production or
production cells). The magnitude of the required change to the existing system is also highly
dependent on the differences between the characteristics of the previous and the new product. For
example, if new kinds of processes are required, some new technology needs to be added to the
system (assuming the system was originally designed for the previous product). If the required
processes don’t change, but the parameters are different, the current system may be able to meet
these new requirements simply by changing some of the parameters.

The type, architecture and degree of automation of the current system also affect the magnitude of
the needed adaptation. For example, dealing with machining systems or automatic assembly systems
are two completely different issues. For instance, if the product dimensions change, in machining it
may just mean that the amount of material to be removed changes and the tools may remain the
same. Or, perhaps just the tool needs to be changed. As long as the billet size doesn’t exceed the
maximum size that can be machined with the machine, the product can usually be manufactured
with only small modifications to the system. In the case of an assembly system, changes in the
dimensions and geometry of the product and parts may have a strong impact on the system. The
feeders may need to be changed, the pallets and grippers may need to be redesigned, the robot
reprogrammed and so on. Therefore, when formulating the graphs and defining the new
requirements, the propagation of the changes to the system requirements have to be taken into
account. The value of new requirements cannot, therefore, be defined purely by the differences in
the product characteristics, but the current system architecture also needs to be taken into account.
For example, if a new process is required in addition to the old ones, new technology needs to be
integrated into the existing system. Depending on the system architecture, this may result in more or
less other requirements being placed on the system, which affects the overall magnitude of the
required change. By determining the changes in requirements in terms of the existing system, the
propagation of these changes can be taken into account.

The system architecture also has another kind of effect on the process and magnitude of the
adaptation. For example, if the production volume changes, the current system needs to be
evaluated based on the new target cycle time, assuming that increasing the number of work shifts is
not an option. In the case of a line-type layout, underperforming stations need to be identified and
possibly replaced in order to balance the line and achieve the desired cycle time. The whole line may
need to be reorganized and tasks re-allocated, causing significant changes to the system. In contrast,
in cell type production it is easier to add new resources to the underperforming cells, or to use more
shifts in the slower cells and make buffers.

The “compatibility — effort” graph indicates the relative magnitude of change needed to the system
and therefore gives some indication of the costs of the adaptation. However, it still cannot be
regarded as an accurate estimate, because the effort, cost and time needed for the adaptation is
affected by many other parameters as well. For example, the number of required changes may be
similar in two completely different cases, one requiring the replacement of devices, and the other
requiring the addition of new devices. In the latter case, it is also likely that there is a requirement for
additional space, which may need to be acquired. Therefore, in the latter case, the effort and cost
incurred by the change may be greater. Thus, the “compatibility — effort” graph doesn’t alone
provide enough information for estimating the effort and costs of changes. It is also important to
consider whether all those changes can be implemented with in-house resources, or whether new

109

resources need to be acquired. This drastically affects the cost of the change, and probably also the
time needed to accomplish it. Also the ramp-up may differ from system to system, and this is not
considered here.

Even though it might seem slightly inconsistent that the effort is determined without considering the
unused capabilities, there is a reason for this. The approach taken in this thesis aims to serve
situations where the next order (the product to be produced and the required quantity) is unknown.
Therefore, it is not necessarily wise to remove the unused capabilities from the system, because they
may be needed for the next order. This is especially the case when the order sizes are small.
Basically, the cost of occupying the unneeded capabilities depends on the lot size, the product
manufacturing time, the situation, the order book and so on. How long will the system be occupied?
What products need to be produced next? Do they need the capabilities that are about to be
removed from the system? Could the unneeded devices be used in other stations at the same time?
The incorporation of such factors into the method should be considered in the future in order to
allow the knowledge or assumptions regarding future product scenarios to be taken into account
during the adaptation planning.

Utilization of the current system

Utilization of the current system shows how much of the current system can be utilized (re-used) to
produce the new product.

Utilization of the current system y for producing product B is calculated as follows:

ExistCaps(B,y) + 0.5 * PhysicModifCaps(B,y) +0.75 x ParamModifCaps(B,y) 0
+* 100%

Utilization(B,y) = AliSystemcCaps(y) 0

Based on the previous results, a “compatibility versus system utilization” graph can be drawn, as
shown in Figure 50. It allows the simultaneous estimation of how much of the product requirements
can be satisfied with the current system, and how much of the current system’s capabilities can be
re-used without any modifications, in different product scenarios. Considering the system utilization
is especially important if large volumes are produced. For example, it would be wasteful to occupy
the whole system for a long period of time if only a few of the system’s capabilities are being utilized.
On the other hand, the profitability of the currently unneeded flexibility depends on the future
product scenarios.

1004
)
= 1 2
3
g 5
£
o
(@]

3 4

50 100

System utilization %

Figure 50. Compatibility versus system utilization.

110

The product scenarios analysed with this graph can be compared based on the four quadrants drawn

on the graph:

1) Those product scenarios falling into quadrant 1 have strong compatibility with the current
system, but the system has a lot of capabilities that are not utilized. Therefore these scenarios
may be costly.

2) Products in quadrant 2 have strong compatibility with the current system and most of the system
capabilities are utilized. This gives a rough indication that these products are the most feasible
ones.

3) Product scenarios falling into quadrant 3 exhibit both weak compatibility and weak utilization
and therefore they don’t show much potential for re-using and adapting the existing system.

4) Product scenarios falling into quadrant 4 have weak compatibility with the existing system, but
the system utilization would be strong. This indicates that the existing system could be extended
to meet the new requirements by adding new resources.

A practical example of utilizing the compatibility domain approach can be found in Chapter 5.3.4.

4.7.2. Discussion of the compatibility domain approach

There are many different methodologies available for evaluating the impact of changes. In general
though, these view the topic from the product development perspective, and evaluate the effects of
engineering changes during the product’s lifecycle or the propagation of changes within the product
structure, as in Eckert et al. (2004). Other viewpoints taken by researchers are, for example, the
impact of engineering changes on material planning, cf. Wanstrém and Jonsson (2006), the impact on
costs, cf. Oduguwa et al. (2006) and the impact on the design process, cf. Terwiesch and Loch (1999).
Attempts have also been made to evaluate and control the impact of product design changes on the
production system using, for example, Design for Assembly (DFA) and Design for Manufacturing
(DFM) methodologies (Boothroyd et al. 2002). Tolio et al. (2010) presented an extensive review of
approaches which try to tackle the co-evolution of products, processes and systems from different
perspectives. The compatibility domain approach presented here concentrates particularly on
evaluating the impact of changes in the product and order requirements on the production system in
terms of the new capabilities that need to be added to the system. It is not intended to replace the
existing approaches, but to complement them by viewing the problem from a different angle.
Investment decisions are not covered by this approach, yet the compatibility domain approach does
provide valuable input data for such decisions. This is because it is only after the impact of change
has been evaluated that the time, cost and resources can be allocated (Eckert et al. 2004).

The compatibility domain approach viewed the impact of changes from three viewpoints, namely
compatibility, effort and utilization. The first views the problem more from the product perspective,
whereas the latter two view it from the system perspective. The last two diagrams facilitate the
comparison of different product scenarios in regard to the needed adaptation effort and the re-
usability of the system.

This compatibility domain approach utilizes the resource capability descriptions and the capability
matching framework presented earlier in this thesis, in order to identify those resources or points in
the system where adaptation activities are needed. Changes in these resources may again cause
changes in other resources — something which was not directly caused by the original product
requirement change, but is a kind of “waterfall effect”, typical of interrelated system components.

111

This propagation of changes has been studied in the literature, especially by Eckert et al. (2004), from
the product design perspective. It would also be very interesting to see an extensive research study
of this important topic from the production system perspective. Due to the breadth of the topic,
there is no detailed analysis of the issue in this study. Here, the emphasis has rather been on finding
the intersection where the product requirements and the current system capabilities match, and
evaluating any differences. When there are relatively few changes, it is easy to do this reasoning
manually, but when there are thousands of changes, it becomes a cumbersome task. Therefore the
capability-matching approach developed here is a valuable tool for rapidly evaluating the magnitude
of changes needed to the system.

It is important to note the following restrictions to the presented compatibility domain approach:

Restriction 1:

The values given by the formulas (2), (6) and (7) of compatibility, effort and utilization by no means
represent absolute values for these three concepts. Instead they provide an estimate of the relative
effects of change, and are intended to facilitate a rough comparison between different product
scenarios. They help to evaluate the effect of different product decisions on a system within a
product family. In order to evaluate the real effort and cost of the required adaptation, the nature of
the specific adaptation activities needs to be considered. Currently, this approach evaluates only the
relative amount of the required adaptation activities, differentiated through both the large and small
physical changes, as well as the logical and parametric adaptation actions. The required effort is
defined based on the new capabilities that need to be added to the system, and no other factors,
such as system ramp-up time and cost, are taken into account at present.

Restriction 2:

One major issue at the start of the compatibility formulation is the granularity (i.e. level of detail) of
the representation of the required and existing capabilities. It is important that the granularity of the
capabilities is similar in the scenarios under comparison, in order to ensure the validity of the
comparison.

Restriction 3:
The validity of the comparison of different product scenarios with the “compatibility — requirement
change” graph depends on the similarity of the compared products.

Restriction 4:

The application of the compatibility domain approach, presented in the case study chapter, is fully
controlled by humans, and therefore highly subjective. Therefore, even though the graphs give
guantitative estimates of the compatibility, effort and utilization, the input information used to draw
the graphs is highly qualitative. Therefore, the estimates are more qualitative than quantitative.

112

5. VALIDATION OF THE RESULTS - CASE STUDIES

Two case studies demonstrating the validity of the developed adaptation methodology were carried
out. These case studies cover both the dynamic and static adaptations, as discussed in the problem
description in Chapter 2.2.

Case 1: Holonic production system — Dynamic adaptation based on reaction

This case study was carried out as part of a wider demonstration of the Tekes-funded KIPPcolla
(Knowledge Intensive Product and Production Management from Concept to Re-cycle in a Virtual
Collaborative Environment) and CSM-hotel (Competitive Sustainable Manufacturing Hotel) projects.
The implementation consists of modular ICT-architecture and hardware implemented in the TUT
machining laboratory. This represents an open production environment where the adaptation takes
place during the runtime of the system by reaction. It is a manufacturing system where the
production is not predetermined, for example, the product models and volumes are constantly
changing and the system needs to adapt itself “on the fly”. The product can be produced with
multiple alternative resources and the orders are routed based on resource availability and other
relevant parameters. Thus, the adaptation actions of this system relate mainly to finding suitable
capabilities from the current system and routing the orders to the available and capable resources
based on the reactive self-organizing abilities of the system. The demonstration was the result of the
work of multiple researchers. The resource description, capability model and capability-matching
framework — the contributions from this thesis work — form an essential part of the demonstration.

Case 2: TUT microfactory — Static adaptation based on planning

This case study was developed purely for the purpose of this thesis in order to illustrate the use of
the developed methodology and capability matching rules for the adaptation planning of more static
systems. In this case, the adaptation takes place “offline” while the system is not running and it is
based on human-controlled planning. This case represents a “traditional” production line, which is
relatively stable in the short term with regard to product models and volumes. It is fairly similar, for
example, to automotive assembly lines where often only one product is produced on the line and the
process plan is predetermined, which means that the product has a predetermined track on the line.

The following chapters will present these two case studies. First, though, the implementation of the
modular ICT-architecture supporting these case studies will be discussed. While the case studies
validate the adaptation methodology, especially the capability model and the resource description,
with regard to their usability to industrial use cases, the ICT-architecture, and in particular the
Capability Editor tool, validate the resource description and capability model with regard to their
applicability to a formal representation.

5.1. Modular ICT-Architecture

The modular software system architecture was designed to serve the holonic production
environment, and is therefore discussed here mainly from that perspective. However, it also
supports more traditional human-centric planning, where the different software modules are used to
aid humans in the different phases of the adaptation planning process. The software system
architecture, illustrated in Figure 51, has several different interoperating software modules, each
providing one or two essential functions for the overall system. The architecture follows the dynamic

113

modularization principles, being designed in such a way that each of the modules can be replaced
with a new module, if needed, without disrupting the whole system. The interoperability of the
modules is mainly based on the shared information model and common knowledge representation,
the Core Ontology, and modular services. Each of these modules requires specific domain-related
information and by processing this information they provide a set of services for the overall system.
(Jarvenpéi et al. 2011b; Jarvenpad et al. 2012a; Lanz et al. 2011; Lanz et al. 2012.)

Ul/Control Holon
(scheduler unit)

Ul/Controk-Holon t Query for Recipe
send Order

Process Hoon =
Orders™ Orders®® Orders®**

MachineDB
P Resource
behavior log

XML-RPC

ResourceKB
Measured values A Device Blueprints RDF/OWL (DL)
(F mean, F max, AE Eespf Individual Devices Digital Part XML-RPC
mean, AE max, g max, T EEEF"
and g sdev, T process - SOAP
time) Validation

Not Visible to users

Simulation Decision Making and
Ordering Tool (Main Ul)
Figure 51. Modular software system architecture, modified from (Lanz et al. 2012).

CapabilityEditor KB Client ProFMA Extended

One essential software module in the ICT-architecture is the Capability Editor, which is designed for
assigning capabilities to resources and adding new capabilities and resources to the Knowledge Base.
As it plays an important role in this thesis in that it validates the developed resource description and
capability model, its use will be discussed in the next section in more detail. Later, the other modules
forming the modular ICT-architecture will be briefly introduced.

5.1.1. Capability Editor

Unlike the traditional approaches to resource description, the properties of the devices are given as
the parameters of the capabilities the devices provide, rather than as properties of the devices
themselves. Adopting this new approach requires a change of mind-set, but the resource description
task can be simplified using a wizard tool that guides the human through the properties-filling
process, or it can be done automatically from standard resource descriptions.

114

In order to ease the process of adding devices and capabilities to the Knowledge Base (KB), a Java-
based Capability Editor was developed. It is not a wizard, but it provides a more user-friendly
approach to adding the capabilities and new resource descriptions to the KB, compared with the
Protégé ontology editor. The Capability Editor allows a user to add new devices to the ontology and
assign them capabilities and capability parameters. It also allows new capabilities to be added to the
ontology and enables associations to be created between the simple and combined capabilities.
Basically, the editor complies fully with the logic of the capability description discussed in Chapter
4.2. Two use cases for the Capability Editor are described below, namely adding new resources and
new capabilities to the KB.

Adding new resources to the Knowledge Base

The Capability Editor allows the user to add new instances of resources to the Knowledge Base. In
the Capability Editor, the user can specify the name and type of the resource and describe its
mechanical, control and energy -related interfaces. The main task when describing the resources is to
assign them capabilities. The user will select the pre-defined, simple generic capabilities from the
Capability Editor’s capability pool and will then define the resource specific parameters for the
capability, making the capabilities unique to each resource. If a suitable generic capability is not pre-
defined in the capability pool, a new capability has to be first defined, and then assigned to the
resource (see the other use case). Figure 52 shows the user interface of the Capability Editor for
adding resources to the KB. In the ParameterAssignments box, the resource specific instances of the
generic capabilities are created and values are given to the parameters.

|%| CoreOntoSkillTool oo e S
File Help
Skills | Devices | Taxonomy
F-200iB_ParallelRobot A~
Fixture 1_makino Instance |gilden _alpha500_MachiningCent: er
HB_X-10_ScanHead Type
SPI_OEM_CompactFiberLaserModule =
driling_DFT250R2WD32M ParameterAssigments
driling_SD203A-2.0-7-4R1 =i [[

- gildemeister_Workspace K Val
driling_SD203A-6.8-25-8R 1 gidemeister_BasicInfo =/ .
e e oidemeiter_Spimingioripiece A oo
finn-power_LP6_SheetMetalCutting_machine gidemeister_positioning |POWER 127.0
fixture_demoProduct [TORQUE_MAX 127.0

- gildemeister_TurningProperties L +
fixture_forLaser SPEED_MIN 0.0

- gildemeister_maxBilletSize £ !
fixture_forMachiningSpindle aild MilingProperties [TORQUE_MIN 0.0
gidemeister_CTX_alpha500_MachiningCente gildemeister_ToolChanging (SPEED_MAX |6000.0
holder_3.200-690 gildemeister_DOF
holder_HSK63AEM 16080M gildemeister_moving
holder_HSK63AEM32110M gildemeister_fixturingBillet
holder_HSKE3AER25100M gildemeister_spinningRotaryTools
holder_HSK63AH 160ER 32
holder_HSK63ASM27060M
holder_I5040_01.02.20 Assosiated Skill spinningWorkpiece
holder_Typ.0.5.941.103-087_552 =
holder_Typ.0.5.941.203-087_519 Input Interaces Output Interfaces
lholder _VDIE 1M3032 -
huka_125_2Tj_robot DIN69880_30mm
linos_optics -

< n » L
New Device] ew Interface

Figure 52. Capability Editor — Adding resources and their capabilities to the Knowledge Base.

Adding new generic capabilities to the Knowledge base

If suitable generic capabilities are not pre-defined in the KB, the user needs to first define them with
the Capability Editor. A definition of the generic capabilities includes a definition of the capability
concept name and the capability parameters. In addition, the associations between the simple and
combined capabilities are created, as discussed in Chapter 4.2.3. Furthermore, in the case of the
strong capabilities, a link to the capability taxonomy will be created. Figure 53 shows the user
interface for adding capabilities with the Capability Editor.

115

7 ~
| 4] CoreOntoSkillTool [=|®] = T |[£] CoreOntoskilTool (2] &]
File Help File Help

Skills Devices]Taxmomy Skills | Devices | Taxonomy

lordering - milling -

payload Instance name | transporting milingCutter Instance name \movingWorkspace

pickingUp 3 — millingProperties =

T Transpor! Select Taxonom! Select

unching axonomy T ting milingTool Yy

releasing Desaription Description

;Zt:xI;oHoldmg Actor can transport items. This includes - z::;:: Actor has a workspace where it can do work 4
screwingHead all the moving and conveying of items. = ickingUp and move. g
spinningRotaryTools AN punching il
spinningTool releasing

spinningWorkpiece Input Associations Output Associations Parameters rotaryToolHolding Input Associati Output Associati S

storaging movingAssociation transportingAssociation screwing imovingAssociation REPEATABILITY
threading holdingAssodiation screwingHead ACCURACY
threadingCutter spinningRotaryTools SPEED_Z
threadingTool spinningTool | SPEED_Y

toolChanging spinningWorkpiece 3 SPEED_X

toolHolding L storaging ACCELERATION

i threading

trayChanging threadingCutter

trayFeeding threadingTool

traySupporting toolChanging

turning toolHolding

turningProperties transporting

turningTool trayChanging

—m Create Assosiation Reset Apply —m Create Assosiation Reset Apply

A -

Figure 53. Capability Editor — Adding new capabilities to the Knowledge Base.

5.1.2. Information flows between the different software modules

Figure 54 is a simplified representation of the information flows between the software modules
which form the ICT-architecture. The communication between the Knowledge Base and the modules
is done with RDF and XML messages (depending on the situation) using SOAP. The communication
between the DeMO tool, Ul/control holon and the machine Uls is done using XML-RPC calls. In what
follows, the roles of the different software modules in the dynamic operation environment will be
discussed one by one. As the Capability Editor was already introduced in the previous chapter, it is
excluded here.

116

Machine Ul Simulation tool
] Ul/Control holon

Dis:jributing U/ControlHolon I Creating
bl | simulation
available
N machines ‘ User
. MachineJ E; g w E—
Machine — history -y ‘S .
DB aving the hé
simulation ’ .
Updating Sending Saving User’s hard drive
,,,,,,,,,,,,,,, resource - — — — — — — ——— . order to simulation ‘
information : factory floor LTRL Running simulation
|
. l DeMO Tool
KB Client !)
O T kaewitee bl :

€ KB) Features;
v Pre-process - - 4—‘
= <+—Content of KB—— — plan; —> = Making order
[Factory 3
— resources
Content of KBJ T A
Capabilities;)
Resources; Features; Pre-
Capability process plan
taxonomy Features;
Capability editor Pre-ﬁfocess Pro-FMAExtended
plan; _— -
: Capabilities | o mmm— User
R o o
User Results e .

ilities; Rule-base VRML/X3D
Capabilities; e

Resources; .
User Capability taxonomy Ad?:f'g:‘rilafﬁe;;”re
User

Figure 54. Modular ICT-architecture and simplified representation of the information flows during the operation
of the dynamic operation environment.

KB and KB Client

The Knowledge Base (KB) developed in an earlier work by Lanz (2010) and Lanz et al. (2010) was
designed to be a system where the data can be stored and retrieved by different applications ranging
from the product and process design to the simulation. The following tools and technologies were
used to facilitate the approach: an Apache Tomcat web server, an Apache axis 2 web service engine,
a Jena semantic web framework, a Pellet reasoner, and a Postgre database. In the KB, the
information related to the products, the processes and the systems and their capabilities is saved in
the form of a formal ontology, the Core Ontology, modelled with a Protégé ontology editor. As an
important part of the overall ICT-architecture, the KB stores the information created by the other
software modules, a Pro-FMA Extended, a Capability Editor and a DeMO Tool. (Lanz 2010; Lanz et al.
2010.)

Pro-FMA Extended

The Pro-FMA Extended (Professional Feature Modelling and Analysis Tool Extended), developed by
Garcia et al. (2011) is used to define the product requirements from the product model given in
VRML or X3D format. It is an extended version of Pro-FMA (Garcia et al. 2010), which focuses on

117

analysis of the product features, the re-creation of any lost geometric features and the addition of
extra information needed for other process steps. Pro-FMA Extended is dedicated to both the
recognition and analysis of the features, and the creation of the pre-process plan (see Figure 55). The
pre-process plan is a generic recipe for how to manufacture a part or a product. Each feature
contains its characteristics: shape, type, geometric dimensions, material and tolerance. The pre-
process plan can be created using these basic elements. Basically it is an ordered graph of generic
activities referring to specific levels on the capability taxonomy stored in the KB. (Garcia et al. 2011.)

ey

=-Hinge1_Part1_Ax3d
=-(0) Cylinder - Pad
(1) Chamfer - Pad
(2) Chamfer - Pad
(3) Cylindrical - Hole

/ (4) Cylindrical - Hole
l_rJ:\—} (6) Chamfer - Pad
N (7) Chamfer - Pad
=7 Feature
™ Analysis
L AV
-
¥ Unfold
Feature Analysis | Pre Process Plan | Unfolding
Pre-Process || Feature Info FaceExtended = 8 Face Extended Data
Blan Number = 5 13-1] Gircle Type: Circle
Ki Type =Pad [18-0] Part of Chamfer Area = 572.555mm2
L} Base Shape = Cylinder [19-0] Part of Chamfer Radius = 13.5mm
h Sub-features = 2 [16-0] Part of Cylinder Diameter = 27mm
[17-0] Part of Cylfjs ola| x
[21-0] Part of Chef=

[22-0] Part of Chg =-Hinge1_Part1_Ax3d
[20-0] Circle - =-(0) Cyiinder - Pad

(1) Chamfer - Pad

(2) Chamfer - Pad
Q,‘—'_7 Feature

(3) Cyiindrical - Hole
2 .’ Analysis
Qur-- -

Missing Data
v Tolerance +03 -00

7| Material Aluminium

7| Special none

4) Cyliindrical - Hole
finishing oy

= (5) Cylinder - Pad
(6) Chamfer - Pad
(7) Chamfer - Pad -

> Displaying 3D model
> Openring a X3 fl format
>Program Stating

Matesial_Tr

® Cyiinder
Box
Sheet Metal
Other Diameter 4 mm

Height 60 mm

‘> Gpenning a X3D fie format
>Program Startina

Figure 55. Pro-FMA Extended — Feature analysis and creation of the pre-process plan, modified from (Garcia et
al. 2011).

DeMO Tool

The DeMO Tool (Decision Making and Ordering Tool) is meant for sending orders to the holonic
manufacturing system and for viewing and analyzing the virtual manufacturing results. The part-
ordering feature in the DeMO Tool contains controls for ordering product or individual feature
manufacturing from the factory floor. The user can either let the holonic framework automatically
route the product to a resource that has the required capability or choose the desired resource for
manufacturing the product manually. The feature and resource information is obtained from the
Knowledge Base. The order is sent to the factory floor through web services. With the DeMO Tool, it
is also possible to run pre-created simulations of the processes and view the statistics, in order to
evaluate and validate different production scenarios before placing the orders.

118

The different manufacturing stations which exist on the factory floor and are defined in the KB can be
viewed through the DeMO tool. When selecting one station, this tool shows the individual machines
and tools comprising the station. It also shows the capabilities and combined capabilities of the
selected resources. Figure 56 shows the DeMO Tool GUI for viewing the resources. The red
rectangles and the arrow show how the resources and their capability information are illustrated
using this tool. In Figure 57, the lower-level device combinations and their capabilities are displayed.
This resource information, originally developed by the Capability Editor, is extracted from the KB to
the DeMO Tool. Based on the capability associations defined in the capability model, the DeMO tool
is able to determine the combined capabilities of the combinations of individual devices having
simple capabilities. This proves that the resource and capability information presented with the
formal ontology can be utilized and understood by multiple different tools.

- .
a5 DeMO Tool _— - - (el

et

- ProFMA-hinge1_Part1.x3d
“(0) Cylinder - Pad

“(5) Cylinder - Pad
- (4) OddShape - Hole

~(3) OddShape - Hole
~(2) Chamfer - Pad
" (1) Chamfer - Pad

| o
G

Sheet Data .

Feature Info
Number = 2

Type =Pad
Shape = Chamfer
Sub-features = 0

| KB Systems
| /1P address
http://kippcolla.serv.fi/d

>
. Port E]

. 0=
| TUT-MachiningLaboratory -

. . OFFiine
System evices Capabilities
| |
[F] Display Image +~operator_1 H B
' o threading
() Show Only Makino_Station ming_SDJCL2020K11_1 driling
suitable resources DMG_Station ming_PCLNL2020K12_1
ring_SDJCL2020K11_b_1
ming_LH100.2020.33_1 [
OR DERI NG: Idemeister_CTX_alpha500_1 Parameters
rill_RotatingToolHolder_combinatio Paramet Value
© MANUAL iill_ToolHolder_combination_1 p: <
o AUTOMATIC \ [+ ThreadingTool_RotatingToolHolder.
ORDERING | |
< n »

Figure 56. DeMO Tool — Viewing the resources on the factory floor.

119

Devices Capabilities Devices Capabilities

operator_1 d gToo operator_1

-I-DMG_combination_1 - DMG_combination_1 f\ basicDevicelnfo
turning_SDJCL2020K11_1 turning_SDJCL2020K11_1
turning_PCLNL2020K12_1 turning_PCLNL2020K12_1
turning_SDJCL2020K11_b_1 tuming_SDJCL2020K11_b_1
= =c= turning_LH100.2020.33_1

turning_LH100.2020.33_1 [| gildemeister_CTX_alpha500_1
gildemeister_CTX_alpha500_1 +- Drill_RotatingToolHolder_combingti

Parameter Value

4 “TOLERANCE_HOLE

+- Drill_RotatingToolHolder_combinatio
- Drill_ToolHolder_combination_1
holder_VDIETM3032_1
drilling_DFT250R2WD32M_1

Parameter Value —- Drill_ToolHolder_combination_1

/l

hald D M30
drilling_DFT250R2WD32M_1
™ Rotat Holder_|

*
»

Figure 57. DeMO Tool - Viewing the capabilities of the device combinations and individual devices.

Resource KB and Machine DB

The resource KB includes the information related to the resources and their capabilities. It forms a
library of resources, including the individual devices on the factory floor, as well as the device
blueprints representing available resources provided by the system providers. The resource
descriptions are instances in the ontology. As the resource entities change during their lifecycle and
usage, the resource description need to be updated over time. The Machine DB is meant for storing
the real-time information relating to the resource’s behavior and measured values from the factory
floor. This raw data is filtered and relevant lifecycle key values, such as Mean Time Between Failure
(MTBF), Mean Time to Repair (MTTR), maintenance costs and time, and operating time will be
calculated and saved in the resource KB, as discussed in Chapter 4.3.1. This information can be used
in the planning process for re-use and adaptation. The capability information of the individual
resources is also updated based on the measured values from the factory floor.

Rule-base

The rule-base is developed as a store for the rules used in the capability matching as discussed in
Chapter 4.4.4, in which a detailed description of the rules were given. The rules include domain
expert rules, combined capability rules and adaptation rules (shown in pseudo code in Appendix 5).
An extensive Python framework has been developed for writing the rules and for retrieving the
information relating to the product requirements and resource capabilities from the Knowledge
Base. The rules are saved as links to the ontology under the correct rule class, and refer to the
capability taxonomy as discussed in Chapter 4.4.5, but the rules themselves are saved in a separate
location, from where they can be called upon when needed. The implementation of the rule-base is
an on-going project of another researcher. At this stage, only some of the rules, mainly those under
the categories of “detailed capability definition” and “detailed capability matching” have been
implemented, in order to validate the concept and to test the capability-matching.

Ul/Control holon

The Ul/Control holon manages the process flow and the distribution of the tasks to each
manufacturing or assembly station. The Ul/Control holon is the interface through which the other
tools can communicate with the holonic manufacturing system. Through the Control Holon, users
can pass requests to the holarchy. These requests are formally defined and documented. The Control

120

Holon has an XML-RPC interface that any Ul can use to control the holon. The Control Holon can
communicate with the resource Uls, and therefore it knows the status of each resource and can
distribute the orders to the resources based on their capabilities and availability. (Jarvenpaa et al.
2011b)

5.2. Dynamic operation environment - adaptation by reaction

In a dynamic environment, the scheduling and dispatching of orders cannot be approached in a static
way. The control of the internal material flow in the production system should also be managed in a
dynamic way. In this case study, these dynamics are achieved through holonic self-organization. As
discussed earlier, the holonic operating environment represents a dynamic system, where the
adaptation takes place “online” by reaction.

The dynamic operation environment was developed in order to demonstrate the results of the
KIPPcolla and CSM-hotel projects. The environment consists of the hardware in the TUT machining
laboratory and the modular ICT-architecture discussed in the previous chapter. The build
environment utilizes a holonic manufacturing paradigm and integrates existing technologies resulting
from different projects into one operational environment.

The main characteristic of the developed holonic system is that the status of the production system
and the desired goal (defined as order connected to product model) are known, but the steps for
reaching the goal, in this case the routing of the parts on the factory floor, are not predefined. The
holonic system adheres to a service-oriented architecture (SOA), where the resources provide
services through their capabilities. When an order enters the holonic framework, the system will only
search for those resources which can by themselves, or with some other resource, satisfy the
requested service. The holons will then negotiate to determine the best resource for the given
situation, or the part is directed to the first available resource combination that has the capabilities
needed to produce the part or a specific feature. The holon implementation is based on a peer-to-
peer network, where the holons are able to join and leave the holarchies freely and other holons can
see which ones are currently online, i.e. which capabilities are available in the system. (Jarvenpad et
al. 2012a.)

The next chapter introduces the hardware of the dynamic operation environment. Following that,
the procedures and activities arising during the case scenario will be discussed.

5.2.1. Hardware in the dynamic operation environment

The hardware part of the environment consists of several manufacturing resources and work pieces
as physical manufacturing entities, the real parts (see Figure 58). Each of them has their
corresponding computer models and simulation environments as their digital and virtual parts. Each
machine on the factory floor also has its holon representation, which presents that specific machine
in a digital world and retrieves the capability information from the Knowledge Base.

The physical resources in the research environment, offering different manufacturing capabilities,
are:

e Machine tools (a lathe and a machining centre) for machining operations;

e Robots for material handling and robotized machining operations;

121

e Laser devices for marking and surface treatment;
e Anautomated storage for storing blank parts and finished work pieces;
o A punch press, existing only virtually, for the punching of sheet-metal parts.

RESOURCE
@' CAPABILITIES

MAKINO A55
PRODUCT

REQUIREMENTS

SPI Fiber
laser + HB

' Fanuc
F200iB +
Suhner
Bex35

Finn-Power

Figure 58. Resources on the factory floor and manufactured products (Jarvenpaa et al. 2012a).

The work pieces are fairly simple, being cuboid, cylindrical, or flat in shape. They have several
features with parameters that can be altered, such as part dimensions (width, length, and depth),
number of holes, corner radiuses and chamfers, sheet thickness and the material and tolerance
requirements of the finished products. These features determine the product requirements for
which suitable capabilities need to be found.

5.2.2. Process flow during the case scenario

This section will explain, step by step, the actions taken when a new product enters production in the
dynamic operation environment. Figure 54 gave an overall view of the information flows in the
operation environment. Figure 59 presents the simplified flow of the activities and reasoning process
in the environment. This process description is divided into activities on the digital, virtual and real
levels. The digital level refers to digital information saved in the ontology, the virtual level, on the
other hand, means the simulation world. The real level refers to the actual, physical, production
environment.

122

Product features Required
(Type, dimensions, capabilities
materials, Define (Conceptname,
tolerances) parameters)
Adaptationrules &user \Look for
definedcriteria Com
i ah pare ;
(Machine condition, with Matchmg resources
preferred machines, S —— | (Matching capability
cost/speed/sustainability conceptname and
requirements, ...) parameters)
Select ‘ Suitable resources ‘

Feedback N

Simulation
(Testing the selections Check
made in digital world availability

invirtual world)

Feedback

Scheduling '
(Resource availability
on the factory floor)

Figure 59. Process flow in the holonic manufacturing system framework (Jarvenpaa et al. 2011b).

Table 30 presents the actions taken during the case scenario and their level of execution. In the
following text, each of these activities will be discussed in detail. A case product, shown in Figure 60,
is used as an example to illustrate the case scenario.

Table 30. Activities in the case scenario.

Levels Activities
Digital level 1. Definition of the product features
2. Definition of the pre-process plan
3. Matching the capability requirements and resources
4. Applying the adaptation rules and user-given criteria for the resource selection
Virtual level 5. Test manufacturing by simulation
Real level 6. Checking the availability of resources and routing the order
7. Collecting the history information

1. Definition of the product features

The product model is first sent in VRML or X3D format to the Pro-FMA Extended software, which will
recognize the features that need to be manufactured. It recognizes the shape, type and dimensions
of the feature. The user can manually enter the material and tolerance information, as well as special
finishing requirements for the features.

2. Definition of the pre-process plan

Based on the recognized features, the Pro-FMA Extended defines a pre-process plan for the
manufacture of the part/product. The pre-process plan is created based on the rules embedded in
the software (Garcia et al. 2011). This is created without any knowledge of the currently available
resources on the factory floor. Therefore, instead of defining that, e.g. a “milling” or “turning”

123

capability is needed, only very high-level generic capability requirements, e.g. “material removing”,
are defined in the pre-process plan. This allows multiple machine options for manufacturing a certain
feature, and thus allows the product to be dynamically routed to, for instance, the first available
machine. The pre-process plan is then sent to the Knowledge Base, where the steps of the pre-
process plan are linked with the capability taxonomy. Figure 60 shows the pre-process plan of the
product used in this case scenario. The two holes are illustrated as the example features and
associated pre-process plan steps.

~
al ProFMA (=)

Feature Tree | Faces I tabPage6

--hinge1_Part1.x3d
=-(0) Cylinder - Pad
(1) Chamfer - Pad
2) Chamfer - Pad

--(5) Cylinder -
= 6) Cone -
= (6) :
== (8) Chamfer - Pad
'L’Ts/ Featurg (9) Chamfer - Pad
™ Analysis
e/
<
Unfold Feature Analysis | Pre Process Plan | Unfolding
e
: - MaterialR |
Bl Pre-Process R
mm Plan

MaterialR

Knowledge Sy

-
\ l Base Manipulat — MaterialR
ion emoving

IR
R

: R ——
emoving

MaterialR
emoving

5 —— .
emoving ion

— A —
ion

]

Manipulat ‘

MaterialR

- MalerivalR -
emoving

Information of process_3
Type: MaterialRemoving
Position: Cylinder
FeatureID: 5
Resoruces:

<

> Pre Process Plan added and displayed!!!
> Displaying 3D model

> Openning a X3D file format

>Proaram Starting .

Figure 60. Pre-process plan of the case product.

The pre-process plan, together with the feature recognition data, defines the capability requirements
for the manufacture of the part/product in the following way. The generic process names used in the
pre-process plan refer to certain capabilities in the capability taxonomy. Each step in the graph
represents one generic capability requirement. The parameters relating to the product features, e.g.

type, size and material remain on the product side of the ontology. These parameters determine the
detailed capability requirements.

3. Matching the capability requirements and resources

The matching of the required capabilities and suitable resources is done based on the capability
taxonomy and the rule-base. Both the pre-process plan and the resource-specific capabilities have a
reference to the capability taxonomy, allowing high-level capability mapping. The detailed matching
is done based on the rules in the rule-base. The capability matching holon (i.e. a program that uses
the capability matching rules) obtains the capabilities of each device taking part in the device
combinations from the KB. Based on the rules, it uses the capability information and compares the

124

capability parameters to the product requirements presented as the pre-process plan and its related
feature information. This capability matching procedure was discussed in detail in Chapter 4.4. In
Figure 61, the actual results from the capability matching program are shown. The red rectangle
indicates the drilling processes from Figure 60.

@ I YT N - - X
File Edit View Bookmarks Settings Help
btk@aasi:~, grog PyKb> python2 match.py ProfFMA-2012-523-1526-26827-99D5D852C7F63EC-hingel_Partl. x3d
part name: hingel_partl.x3d M
Process: ProFMA-2012-523-1526-26827-99D5D852C7F63EC_MaterialrRemoving_1,
Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-0
matched rules: DE_DCD: TurningRuleOl, MillingRuleOl; DE_DCM: TurningRule, MillingRule
matched machines: pMG_station, Makino_station
Process: ProFMA-2012-523-1526-26827- 99050852(7F63EC_Mater1a1Remov1ng_
Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-3
matched rules DE_ DCD Dr1111ngRu1e01 DE_DCM: DrﬂhngRu]e

Process ProFMA 2012 523 1526 26827~ 99DSDSSZC7F63EC_Mater1a’IRemovmg_
Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-5

matched rules: DE_DCD: DrillingrRule0l; DE_DCM: Drillingrule

matched machines: Makino_station, Suhner_machining_station, DMG_Station

Process: ProFMA-2012-523-1526-26827- 99050852c7F63€cmater1a]Remov1ng 4,
Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-4

matched rules: DE_DCD: DrillingrRule0l; DE_DCM: DrillingRule

matched mach'ines Makino_ Statwn Suhner mach1n1ng_stat1on DMG_station

Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-6
matched rules: DE_DCD: DrillingrRule0l; DE_DCM: Drillingrule
matched machines: Makino_station, Suhner_machining_station, DMG_Station

Process: ProrFMA-2012-523-1526-26827- 99050852c7F63£c_Mater1a1Remov1ng_

Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-1
matched rules: DE_DCD: TurningRule0l, MillingrRule0l; DE_DCM: TurningRule, MillingrRule
matched machines: bMG_station, Makino_station

Process: ProFMA-2012-523-1526-26827- -99D5D852C7F63EC_MaterialRemoving_7,

Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-7
matched rules: DE_DCD: TurningRuleOl, MillingRuleOl; DE_DCM: TurningRule, MillingRule
matched machines: DMG_station, Makino_station

Process: ProFMA-2012-523-1526- 26827 -99D5D852C7F63EC_MaterialrRemoving_8,

Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-2
matched rules: DE_DCD: TurningRule0l, MillingrRuleOl; DE_DCM: TurningRule, MillingrRule
matched machines: DMG_Station, Makino_sStation

Process: ProFMA-2012-523-1526-26827- -99D5D852C7F63EC_MaterialrRemoving_9,

Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-8
matched rules: DE_DCD: TurningRuleOl, MillingRuleOl; DE_DCM: TurningRule, Millingrule
matched machines: pMG_station, Makino_station

Process: ProFMA-2012-523-1526-26827-99D5D852C7F63EC_MaterialRemoving_10,

Feature: ProFMA-2012-523-1526-26827-99D5D852C7F63EC-Feature-9

matched rules: DE_DCD: TurningRuleOl, MillingrRule0l; DE_DCM: TurningRule, MillingRule

matched machines: bMG_Station, Makino_sStation
btk@aasi:~/prog/PyKb> I[16:16:28] =
tdb : emacs = PyKb : tmux btk:zsh pisaonto : emacs

Figure 61.View from the capability matching program.

During the case scenario the matching is performed as follows:

1)

First the domain expert rules for detailed capability definition are used to define what
capabilities are actually useable for that specific “MaterialRemoving” process. The rules having
reference to “MaterialRemoving” in the capability taxonomy are checked one by one until a
match is found (i.e. the rule returns the value TRUE). These rules are indicated in the figure with
the prefix “DE_DCD”. For example, in the case of the hole feature shown in Figure 60, these rules
will indicate that a “drilling” capability is needed. In this way, all the resources which don’t have
the “drilling” capability are filtered out.

After the required capabilities have been defined on the detail level, then the domain expert
rules for detailed capability matching are used to define if the resources which really match with
the requirements on the parameter level actually exist. The selected rules are indicated in the
figure with the prefix “DE_DCM”. These rules will compare the feature properties with the
capability parameters. For example, in the case of the hole feature, the detailed capability
matching rule which is specified with the taxonomy level “Drilling” will be triggered. This rule
compares all the resources that have the “drilling” capability to the required features at the
parameter level and returns all the matching resources.

125

Figure 61 shows the applied rules and the resources which were found to match. Table 31 shows
those rules that were applied in the matching phases illustrated with the red rectangle. All the other
rules can be found in Appendix 5.

Table 31. Rules applied for the hole features of the case product.

Rule acronym | Rule

DE_DCD IF feature_hasCapabilityTaxonomy(“MaterialRemoving”) AND

DfTIIingRuleOl feature.hasFeatureType (“hole’) AND
feature.hasFeatureType(“cylindrical’) AND
feature.getParameter(“diameter™) <= 40.0

THEN
RETURN [Capabilities.find(*“drilling’)]

DE DCM IF feature.getParam(“diameter”) = drillBit.getParam(“hole_diameter”) AND
DfTIIingRule feature.getParam(“depth”) <= drillBit.getParam(“max_drilling_depth”) AND
feature.getParam(“bottomShape™) = drillBit.getParam(“shape_bottom’) AND
feature.getMaterial () IN drillBit.suitableMaterials() AND
product.getinitialProduct() .size().islInside(Ffixturing.minltemsize()-
fixturing.maxltemSize())

THEN

RETURN TRUE

As can be seen from Figure 61, three resource options for the drilling process steps can be found: the
Suhner_machining_Station, the DMG_Station and the Makino_Station. For the other steps, only two
resource options, the DMG_Station and the Makino_Station, are returned. This is because the
Suhner_machining_Station is currently only equipped with the drilling tool, whereas the
DMG_Station and Makino_Station have automatic tool changing systems and multiple tools that they
can use for drilling, milling and turning.

4. Applying adaptation rules and user-given criteria for the resource selection

The DeMO Tool is used to place the order and send it to the factory floor, as well as to select the
preferred resources and apply the user-defined criteria. First, the product to be ordered is selected.
The analysed feature information related to that specific product is retrieved from the Knowledge
Base. Based on the detailed capability matching done in the previous phase, the DeMO Tool can
show the user the resources whose capabilities match the requirement. Should the user want to
manually select the resource to be used, this view allows the user to evaluate the capabilities of the
existing resources and to send the order to a specific machine. For example, in this case scenario the
DeMO tool would suggest both the DMG_Station, as shown in Figure 56, and the Makino_station.
Otherwise the holonic framework makes the decision automatically, taking into account the
availability, adaptation rules and the user-given criteria. The user-given criteria can relate to, for
example, sustainable performance metrics, such as energy consumption, waste generation and costs,
or machine condition, speed, and so on.

5. Test manufacturing by simulation

With the DeMO tool, it is possible to run pre-created simulations of the processes and view the
statistics before placing the orders. Because it is very difficult to determine some capabilities
accurately on a digital level, such as the workspace and reach of a device combination, virtual
simulations may be required to validate the feasibility of the found capabilities.

6. Checking the availability of resources and routing the order

When the order is placed by the user, the Ul/Control holon will check the availability and status of
the suitable resources on the factory floor by negotiating with the machine Uls. The information
about the machine status is then communicated back to the DeMO Tool. Next the order is routed to

126

the first available and suitable manufacturing resource, taking into consideration the adaptation
rules and the user-given criteria.

7. Collecting the history information

The machine database saves the resource behavior log information, including the status of the
resources, completed orders, measured operational values, and so on. This information may later be
used for decision making.

5.2.3. Discussion of the demonstration

The resource description, the capability model, and the capability matching framework comprising
the capability taxonomy and the rules, all play a crucial role in the demonstration, enabling the
resource holons to advertise their capabilities, orders to express their required capabilities, and
finally a match to be made between these factors. At present, the rule-base is not yet fully
implemented as part of the dynamic operation environment so some simplifications still exist in the
current status of the demonstration. Only a few rules have been implemented, so the orders that can
be sent to the system are limited.

Descriptions of all the involved hardware resources were created for the demonstration. The
capabilities of these resources were included in the instantiated capability model. Furthermore, rules
were created to enable the matching of product requirements and resource capabilities in the
context of the use cases in question. These rules can be found in Appendix 5. The fact that it was
possible to create these rules which compare the product and the resource information saved in the
ontology, and provide feasible matches, proves that the resource description and capability model
are expressive enough for such use cases. In addition, even though the rule-base is still under
construction, the implemented rules prove that automatic matching is possible.

The demonstration shows that the capability taxonomy and the rules help to automatically filter the
information and allow suitable solutions to be found from the vast amount of input information.
Based on the resource and capability descriptions, it was possible to filter out those device
combinations which didn’t provide the suitable capabilities. In large factories with thousands of
resources, for example, this automatic filtering can provide remarkable savings in time.

5.3. Microfactory system - adaptation by planning

The second case study aims to describe how the developed capability-based adaptation methodology
is applied and how the capability matching rules are used in a static adaptation context. In this thesis,
the microfactory system represents a static system where the adaptation takes place “offline”, based
on human-centric planning. In the microfactory environment, modularization and standardized
interfaces are used as enablers for the adaptation. In the case study presented in this chapter, the
process plan is predefined before sending the order and starting the production. Therefore, the
reasoning can start with a more detailed process plan than in the previous case study. The main task
in the following case study is to evaluate if the existing TUT-microfactory system has the capabilities
to cope with the requirements set by the product assembly. First, the existing system capabilities are
presented, followed by a definition of the product requirements. After that, the matching of the
product requirements against the system capabilities based on the capability matching rules will be
explained in detail. Finally, a few case scenarios of changing requirements, their compatibility with

127

the existing system and the adaptation actions required for the system will be discussed in order to
demonstrate the use of the compatibility domain approach.

5.3.1. Definition of system capabilities

The existing system consists of a TUT-microfactory module, a cartesian manipulator, a screwdriver
unit, a feeding system, a belt conveyor and a machine vision system with 2 camera units, as shown in
Figure 62.

Machine vision
system with 2
camera units

Cartesian
manipulator
Screwdriver
unit
TUT-Microfactory
module
Belt
conveyor

Feeding system

Figure 62. Existing TUT-microfactory system.

Figure 63 shows the capabilities of the existing microfactory system. Only the capabilities and
capability parameters relevant to this case are displayed in the figure in order to maintain its
readability. All the capabilities are saved to the ontology through the Capability Editor tool. The
devices are grouped in their natural combinations, e.g. the camera unit consists of camera and
optics, whereas the machine vision system consists of the camera unit, a PC and ambient lighting.
The same grouping is also used for the description of the system in the ontology. The arrows indicate
to which combined capability the simple capabilities of the devices contribute.

128

Resources Capability concept names Capability parameters

—» TUT-Microfactory module |C_cn: attachmentFrame C_cp: Dimensions L200, W300, H220mm

C_cn: screwing, pickigUp, transporting,

Screwing robot Inserting

C_cn: movingWorkspace;
Cartesian manipulator | degreesOfFreedom; workspaceBox;
payload; forceApplying

C_cp:Speed: x,y 100, z 10mm/s, Accuracy 0,3mm;
DoF translate x,y,z; Workspace: L200,WW120,
H100mm; payload 0,1kg; force: 10 N -z-direction

Microdrive screw | ¢n: - C cp: -
driver unit - o
C_cp: Torque 0,03-0,1Nm, speed 350-700rpm, tool

diameter max 2mm; max item size D2mm, L10mm

Screw driver C_cn: spinningTool, itemMaxSize

C_cp: Screw size M1.6, type Torx; holding force
0,05N

Screwing head C_cn: screwingHead, magneticGrasping

Feeding system i
C_cn: plateFeeding

C_cp: Tray dimensions W51, L51, H10, Number of

— Tray feeder C_cn: traySupporting trays 1, payload 0,2kg

C_cp: Max number of parts 40, feed rate 5/s; Item

Feeding plate C_cn: feedingPlate, itemMaxSize max size D1,6, L10mm

C_cp: Payload 1kg; Speed x 100mm/s; ltem max
size L100, W100mm; DoF translate x; Workspace
L200, W110

C_cn: holding, movingWorkspace ->
— Belt conveyor transporting, itemMaxSize,

degreesOfFreedom, workspaceBox
. . C_cn: objectRecognition, positioning,
Machine vision system orienting
Lighting C_cn: illuminating C_c;_): wave length 550nm, intensity 58W, type:
ambient light
Camera unit 1 C_cn: visualSensing
pEye camera 1 C_cn: imageCapturing S C_cp: Detector size (x,y) 6,4 x 4,8mm, resolution
D

(x,y) 1024x1280, Colour, Frame rate 15 fps
C_cp: Current working distance 255mm, focal
length 12,5mm

Optics 1 C_cn: lightReflecting

Camera unit 1 C_cn: visualSensing

C_cp:Detector size (x,y) 6,4 x 4,8mm, resolution
(x,y) 1024x1280, Colour, Frame rate 25 fps

C_cp: Current working distance 250mm, focal
length 25mm

WEye camera 2 C_cn: imageCapturing

Optics 2 C_cn: lightReflecting

C_cn: imageProcessing,
orientationRecognition,
positionRecognition

PC + machine vision
sw

C_cp: Algorithm type: template matching, algorithm
accuracy 1 pix; positioning accuracy 0.5mm

Figure 63. Capabilities of the existing TUT-microfactory system.

The system architecture of the TUT-microfactory concept places some constraints on the possible
layout and configuration of the modules. In the TUT-microfactory concept, the microfactory frame is
needed to contain the process module and auxiliary devices. The frame modules can be organized in
different topologies. One process module can be attached on top of the frame module, the control
module can be attached on top of the process module and auxiliary devices, feeders and other
devices can be freely placed on the edges of the frame, or inside the frame if there is enough space.
For the case study, one pre-condition is that the product should be produced with the TUT-
microfactory. Therefore, the constraints set by the system architecture need to be considered in the
capability matching.

129

5.3.2. Definition of the product requirements

The case product is a cell phone and the needed process is to attach four screws to the cell phone
body, as shown in Figure 64. The product requirements are shown in the graph in Figure 65. On the
left-hand side is the user-defined process plan and on the right-hand side are the product
characteristics, which affect the required capabilities in each process phase. The steps in the process
plan have a direct link to the capability taxonomy, which allows the mapping between the product
requirements and existing system capabilities at the concept name level.

Additionally, the requirements, which are more project and user-preference related rather than
product related, such as the required speed for transporting the phone and the desired type of feed,
are shown in the figure. As discussed earlier, the selected system architecture, i.e. the TUT-
microfactory architecture, places additional requirements and constraints on the required
capabilities. For example, as the width of the TUT-microfactory module is known, then the
transporting distance of the cell phone from one side of the module to the other is pre-defined.
Some of these requirements are set by the selection of other devices in the system. For instance, the
required fields of view of the camera units are not only determined by the product size, but also by
the means of transportation and feed for the product and parts. In other words, the selection of
some devices propagates some further new requirements. Examples of these kinds of requirements
are included in the case example and are also shown in Figure 65.

97 mm

40 mm 47mm

52 mm

Figure 64. Case product — cell phone with four screws.

130

C = Capability

: pP = Product related parameters
Screwmg 4 screws to a cell phone rP = Other parameter requirements

Required capabilities
and their parameters

C: Transporting
Transport the phone to the pP: Weight 0,1kg, Dimensions L 97mm, W 47mm, H 8mm
working area

rP: Speed 50mm/s, Transporting area length: 200mm

A

C: Feeding
Feed screws pP: Screw size: M1,6, L 4mm, weight 0,002kg

rP: Feed rate: min 1part/s, feeding type: bulk feeding

" C: Object detection, positioning and orientating
De_teCt the position and pP: Screw size: M1,6, L 4mm, weight 0,002kg
orientation of a screw rP: FoW width: 45mm, FoW height 45mm

¢ C: Moving
Pick up a screw Move above the screw pP: -

rP: Speed 50mm/s
i C: Grasping
Grasp the screw pP: Screw size: M1,6, L 4mm, weight 0,002kg, material: metal
rP: -

C: Object detection and positioning

Detect empty hole and its pP: Hole dimensions: D 1.5mm
rP: FoW width: 120mm, FoW height 90mm

position
| t th ti t ¢ C: Transporting
nsertthe screw to an emply Transport the screw above pP: Screw size: M1,6, L 4mm, weight 0,002kg
hole the hole rP: Speed 50mm/s

i C: Inserting

Insert the screw to the hole pP: Screw size: M1,6, L 4mm, weight 0,002kg
rP: Accuracy: 0,8mm

C: Screwing
Fasten the screw pP: Screw size: M1,6, L 4mm, weight 0,002kg, type: torx
rP: Torque: 5Ncm

A

Move back on top of the
feeder and picking up a new
screw

Transport the product to the
next station

Figure 65. Pre-defined process plan and related capability requirements.

131

5.3.3. Matching the product requirements against the system capabilities

Based on the description of the product requirements, the existing system capabilities, the capability
taxonomy and the rules for the detailed capability matching, it is possible to reason out if the existing
system has all the required capabilities needed to perform the screwing operations. Figure 66 shows
all the capabilities that are assigned to the resources forming the current TUT-microfactory system
for flexible screwing. The list also shows the combined capabilities that are formed from the simple
ones. The list is created by the Capability Editor, which is able to combine the simple capabilities into
combined ones based on the defined capability associations in the capability model. The combined
capabilities that are relevant for the case product are marked with the red rectangles. The high-level
capability mapping, which is done based on the capability taxonomy, shows that all the required
capabilities at the concept name level can be found from the existing system. Next, the detailed
capability matching needs to be performed based on the rules in the rule-base. In the following
paragraphs, the reasoning procedures are explained step-by-step.

2] L
ICombination name | TUT_FlexibleScrewing_Station

Combine

degrees0OfFreedom ®

orientationRecognition
itemMax5ize
itemMinSize

placing

spinningTool

holding

traySupporting

payload
transporting
forceApplying
releasing
orienting
basicDevicelnfo
cbjectRecognition]
imageCapturing

m

lightReflecting
magneticGrasping

workspaceBox
visualSensing
|screwing
ozitionin
imageProcessing

|inserting|

feedingPlate
movingWorkspace
screwingHead
illuminating
positionRecognition

-

Figure 66. Capability Editor displaying all the capabilities of the resources forming the TUT-Flexible screwing
station. The combined capabilities needed in the case are shown inside the red rectangles.

1) Transport the phone to the working area

The high-level capability mapping detects two devices (combinations) from the system which have
the “transporting” capability. These are the belt conveyor and the screwing robot. The detailed
matching first checks whether the product size and weight are suitable for the current devices, and

132

secondly it checks if the workspace of the device and the speed of the transporting capability
matches the requirement. The rules used for the matching are shown below.

RULE 1a: Is the product size suitable for the device?

conveyor = resource.hasCapability(“movingWorkspace”) AND (“holding™)

IF product.getParam(“weight”) <= holding.getParam(“payload”) AND
product.getParam(“length”) <= conveyor. itemMaxSize.getParam(“length’) AND
product.getParam(“width”) <= conveyor. itemMaxSize.getParam(“width’) AND
product.getParam(“height”) <= conveyor. itemMaxSize.getParam(“height)

THEN
RETURN TRUE

RULE 1b: Are the workspace and speed requirements met?

IF product.transportingArea(“length”) <= workspaceBox.getParam(“length”) AND
product.transportingSpeed(“speed”) <= movingWorkspace.getParam(‘“speed_x’")
THEN
RETURN TRUE

When these rules are applied to the presented case, i.e. filled with the parameter values shown in
Figure 63 and Figure 64, it reveals that the belt conveyor capabilities match the requirements. Only
the rules for the conveyor are shown here. However, similar reasoning with the screwing robot is
shown later in this example, in RULES 3a and 3b. Those rules would immediately reveal that the
screwing robot is not a suitable device combination for transporting the cell phone, because of the
size, weight and material of the product.

2) Feed screws

Based on the high-level capability mapping, one device combination in the current system has the
capability “plateFeeding”. This is the feeding system. The user has specified that the screws should
be fed by a bulk feeding method in order to ease the manual handling of the screws. According to the
capability taxonomy, the “plateFeeding” is a specialization of “bulkFeeding” and therefore fulfils the
requirement. Because plate feeding is a method which doesn’t provide the parts in a certain position
and orientation, the machine vision system, or another system providing *“objectRecognition”,
“positioning” and “orienting” capabilities is required to be able to detect the parts that can be picked
up from the feeder. As shown in Figure 63 and Figure 66, these capabilities are also available in the
system. The rules for detailed capability matching are now used to find out if the existing feeding
system is able to feed the screws. First, it needs to be checked if the part size is suitable for the
feeder (RULE 2a). Secondly, it is checked that the other requirements are fulfilled (RULES 2b and 2c).

RULE 2a: Is the screw size suitable for the feeder?

plate = resource.hasCapability(“feedingPlate™)

IF product.getParam(“diameter”) <= plate. itemMaxSize.getParam(“diameter’) AND
product.getParam(“length”) <= plate. itemMaxSize.getParam(“length’) AND
THEN
RETURN TRUE

The number of parts that can be poured into the feeder needs to be defined based on the payload of
the feeder and the defined maximum amount of parts on the plate. The screws of the case product
are stored in little plastic bags containing 40 screws. It would be convenient to pour the whole

133

contents of the bag into the feeder. The rules that are needed to define whether that requirement
can be satisfied are shown below.

RULE 2b: Payload of the feeder

Payload_of_plate_feeder [feeder + plate] = traySupporting.getParam(“payload”) —
(traySupporting.getParam(“number_of_trays™) * plate.basicDevicelnfo.getParam(“weight’))

RULE 2c: Can the feeder handle the required number of screws?

IF Desired_amount_of products_in_feeder <= MIN(fFeedingPlate.getParam(“number_of parts™),
feederPayload/product.getParam(“weight’))

THEN
RETURN TRUE

The matching shows that the current feeding system is able to feed the screws, and the requirement
for the amount of screws in the feeder is just satisfied. However, the position and orientation of the
screws also need to be detected in order to feed the parts in a specified position and orientation. The
high-level mapping finds that the machine vision system consisting of two cameras has the
capabilities of “object detection”, “positioning” and “orienting”. The physical arrangement of the
machines, acquired from the virtual model, defines the position of the camera units in relation to the
feeder and conveyor. Camera unit 1 is above the conveyor and Camera unit 2 is above the feeder.
The working distances of the cameras are pre-defined based on the current installation.

The field of view (FoV) of the camera system is calculated based on the working distance of the
camera, the detector size (CCD width x CCD length) and the focal length of the optics as shown in the
formulas below.

Working Distance*CCD width
Focal Length

FoV width = 8)

Working Distance*CCD height

FoV height =
Focal Length

RULE 2d: Field of view (workspace) of camera system

FoV_width = (lightReflecting.getParam(“current_working_distance™) *
imageCapturing.getParam(“detector_size_x)) / lightReflecting.getParam(“focal_length™)

FoV_height = (lightReflecting.getParam(“current_working_distance™) *
imageCapturing.getParam(“detector_size_y)) / lightReflecting.getParam(“focal_length™)

Based on the formulas (8) and (9) above, the field of view (W x H) of the camera systems are:
- Cameraunit1 FoV: 130 x 98 mm
- Cameraunit 2 FoV: 60 x 48 mm

RULE 2e: Is the camera system field of view enough for the required application?

IF desired_view_height <= FoV_height AND
Desired_view_width <= FoV_width

THEN
RETURN TRUE

134

The desired field of view is defined after the feeding plate has been selected. Based on the plate size,
the desired FoV is 45 x 45 mm. Camera unit 2 does have a bigger FoV, so it is suitable. The next thing
that needs to be checked is whether the resolution of the camera is enough for the application. The
minimum required detector resolution is calculated with the Nyquist principle based on the field of
view and the smallest detectable feature, as shown in the formula (10). However, generally it is
suggested that the resolution should be better than that suggested by the formula, possibly 2 to 5
times better than that.

.. , Field of view
Minimum detector resolution = 2 x —cidof view (10)
Smallest feature

RULE 2f: Does the camera system have enough resolution for detecting the screws?

IF product.getSmallestParam.size() >= 2 * FoV_width /
imageCapturing.getParam(“x_resolution’) AND
product.getSmal lesParam.size() >= 2 * FoV_height /
imageCapturing.getParam(“y_resolution’)

THEN
RETURN TRUE

As the screws to be detected are 1.6 mm, the minimum detector resolution is 75 x 60 pixels, but
preferably 375 x 300 pixels. The detailed capability matching shows that the camera resolution goes
well beyond the required resolution.

3) Pick up ascrew
The high-level mapping finds one device combination having the “pickingUp” capability. This is the
screwing robot consisting of the cartesian manipulator and the screwdriver unit. The detailed
capability matching needs to check if the screws can be grasped with the current device combination.

RULE 3a: Combined payload of robot + screw driver

robot = resource.hasCapability(“movingWorkspace™)
screwdriver = resource.hasCapability(“spinningTool’™)
screwinghead = resource.hasCapability(“screwingHead”)

Combined_payload_of[robot + screwdriver] = MIN(robot.payload.getParam(“weight”) -
screwdriver.basicDevicelnfo.getParam(“weight”) —

screwinghead. basicDevicelnfo.getParam(“weight’)),

1/9,81 * magneticGrasping-getParam(“holding_force™))

RULE 3b: Can the screw be picked up by the device combination?

IF providedCapability = “magneticGrasping” AND
product.getParam(“material”) = metal AND
product.getParam(“weight”) <= Combined payload of [robot + screwdriver] AND
product.getParam(“diameter”) <= screwdriver.maxltemSize.getParam(“diameter”) AND
product.getParam(“length”) <= screwdriver.maxltemSize.getParam(“length”) AND
THEN
RETURN TRUE

135

RULE 3c: Is the speed requirement met?

IF process.getParam(“speed_x’") <= movingWorkspace.getParam(“speed_x’’) AND
process.getParam(“speed_y) <= movingWorkspace.getParam(“speed_y”) AND
process.getParam(“speed_z) <= movingWorkspace.getParam(“speed_z"")

THEN
RETURN TRUE

Based on the detailed capability matching, the robot-screwdriver combination is able to pick up the
screw and move at the desired speed.

4) Inserting the screws into an empty hole
Because the transportation of the cell phone on the belt conveyor doesn’t position and orient the
product on the line, the positions of the holes are not known. Therefore, a method to detect the
empty hole and its position has to be available. As discussed earlier in the ‘feeding’ paragraph, the
machine vision system has these capabilities. The detailed-level matching considering the field of
view and resolution requirements is carried out as was done earlier. Camera unit 1 is able to fulfil the
given requirements.

However, the required accuracy for the inserting operation has also been defined. The accuracy of
this operation is determined firstly, by the accuracy of the robot, and secondly, by the accuracy of
the machine-vision hole positioning. The accuracy of the machine vision depends not only on the
resolution of the camera, but also on the accuracy of the machine vision software, which again is
dependent on the type of algorithm. Roughly, it can be said that, for example, a circle-fitting
algorithm has 1/3 pixel accuracy, whereas a pattern-matching algorithm has 1 pixel accuracy. Once
the detector resolution and the field of view is known, the spatial resolution of the camera unit
indicating the distance on the object surface per one pixel can be calculated. In this case, the spatial
resolution of the camera is 0,127 mm/pix and the pattern-matching algorithm has 1 pixel accuracy.
However, the rule of thumb says that the recommended resolution should be 4-10 times better than
the camera accuracy. Therefore, the positioning accuracy of the camera system can be estimated as
0,5 mm. It has to be noted that this is just a rough estimate and is affected by a number of factors
which need to be measured in order to get more realistic values. Therefore, the accuracy is already
given in the resource capability description and not reasoned according to the rules.

RULE 4a: Is the accuracy of the inserting capability (robot + machine vision system) enough?

IF process.getParam(“required_accuracy”) >= (movingWorkspace.getParam(‘“accuracy”) +
positionRecognition.getParam(“accuracy’))

THEN
RETURN TRUE

The rule shows that the combined accuracy of the machine vision system and the screwdriver robot
is, in the waorst case scenario, 0,8 mm. This was the original requirement, which means that the
accuracy requirements are fulfilled.

5) Fasten the screw
The high-level capability mapping finds one device combination, namely the screwing robot
consisting of the screwdriver unit and the Cartesian manipulator, which has the capability

136

“screwing”. The detailed matching based on the capability matching rules needs to check whether
the screw type and size, as well as the required torque, are suitable for the existing screwdriver.

RULE 5a: Can the screws be screwed with the available screw driver?

IF screw.getParam(‘““type”) = screwingHead.getParam(‘““type’) AND
screw.getParam(““size”) <= screwingHead.getParam(‘“‘screw_size_max’) AND
screw.getParam(““size”) >= screwingHead.getParam(‘“‘screw_size_min’) AND
screw.getParam(“torque”) <= spinningTool.getParam(“max_torque”) AND
screw.getParam(““torque”) >= spinningTool.getParam(“max_torque’)

THEN
RETURN TRUE

The matching shows that the screws can be fastened with the existing screw driver. However, the
screw driver is only suitable for one size of screws. If the screw size changes, it will immediately
require physical adaptation to the system. This will be discussed in the following chapter.

The capability matching actions discussed in the previous examples can be done automatically, based
on the rules in the rule-base. However, the results need to be validated by the human designer,
because multiple simplifications have been made in the rules. In particular, the machine vision
system has multiple parameters which affect the result of the positioning accuracy. It is impossible to
take all of these into consideration in the automatic matching, and therefore human expertize really
is required. Thus, in this thesis, only the most relevant parameters of the vision systems are
considered in the rule-base.

5.3.4. Adaptation scenarios with the TUT-microfactory

As explained in Chapter 5.3.3, the current TUT-microfactory for flexible screwing was capable of
fulfilling the requirements set by the cell phone screwing requirement. In other words, the system
was fully compatible with the requirements of the product. This chapter will analyse what kind of
adaptation actions are required to the existing system in the case of different change stimuli, and
how the compatibility, adaptation effort and utilization evolve with the changing requirements. The
following paragraphs discuss a few scenarios in which the requirements targeted at the production
system change. The original cell phone scenario is referred to as “product A”, and the subsequent
scenarios are named “product B”, “product C” and so on. Three different change stimuli will be
considered: change in the product design; change of product; and change in the order requirement.
In addition to those changes coming from the product and order side, eventually changes in the
behaviour of the system itself will also be considered.

Change in the product design

This section considers changes in the product design. Three different scenarios are viewed: change in
the hole locations — Product B; change in the screw size — Product C; and change in the accuracy
requirement — Product D. The following table, Table 32, presents first of all the components of the
current system and its capabilities. Secondly, it displays the capability requirements of the different
product scenarios, from A to D, at the capability concept name level. The numbering behind the
required capabilities indicates the existing capability that fulfils the requirement. Required
capabilities which don’t exist in the current system or which need some change are written in italics
and underlined. Figure 67 will then display the capability requirements of the product scenarios B, C
and D compared to product A in the form of Venn diagrams. The figure shows the common

137

requirements zone, which represent similar capability requirements in the two products under
comparison. The size of this zone is determined by the factors discussed earlier in Chapter 4.7.1.

Table 32. Existing system capabilities and capability requirements of products A, B, C and D.

System Capabilities Product A Product B Product C Product D
requirements | requirements | requirements | requirements
TUT-microfactory attachmentFrame Module frame (1) Module frame (1) Module frame (1) Module frame (1)

frame

Screwing robot

@

screwing (2),
pickingUp (3),
transporting (4),

Transporting (7)

Bulk feeding (6)

Transporting (7)

Bulk feeding (6)

Transporting (7)

Bulk feeding (6)

Transporting (7)

Bulk feeding (6)

inserting (5) PickingUp (3) PickingUp (3) PickingUp (3) PickingUp (3)
(ObjectRecognition (ObjectRecognition | (ObjectRecognition (ObjectRecognition
Feeding system plateFeeding (6) (10), (10), (10), (10),
Orienting (12), Orienting (12), Orienting (12), Orienting (12),
Belt conveyor transporting (7) Positioning(11)) Positioning(11)) Positioning(11)) Positioning(11))
Machine vision objectRecognition Inserting (5) (Object | Inserting (5) (Object | Inserting (5) (Object | Inserting (5) (Object
system 1 (8), positioning (9) recognition (8), recognition (8), recognition (8), recognition

Positioning (9),

Positioning (9),

Positioning (9),

Positioning (9),

Machine vision objectRecognition Transporting(4)) Transporting(4)) Transporting(4)) Transporting (4))
system 2 (10), positioning
(11), orienting (12) Screwing (2) Screwing (2) Screwing Screwing (2)
(physicModif 2)
Common Common regir:axc;?\ts
requirements requirements Product A
Product A Product B Product A Product C \ Product D

0.5

(]

D

Figure 67. Common requirement zone of the product scenarios B, C and D with product A.

Change in the hole locations — Product B

In this scenario, the distance between the screw holes changes from 52mm to 70mm. Change in the
hole locations doesn’t cause any changes to the required capabilities at the concept name level, but
the workspace size requirements for the “transporting” and “objectRecognition” capabilities change.
However, if the product size remains the same, the change in the hole locations doesn’t affect the
system. This is because the original requirements for the workspace were defined based on the
dimensions of the phone and the conveyor, as the position and orientation of the product on the
conveyor were not fixed. Therefore, it can be said that even if the product design changes slightly, in
practice the requirements targeted at the systems don’t change in this case. The robot workspace
covers the whole conveyor area, and the machine vision workspace was defined based on the outer
dimensions of the cell phone. Both workspaces are therefore sufficient to cover any changes in the
hole locations. The system is fully compatible with the new requirements.

Compatibility, effort and utilization of the existing system for the product B
ReqCaps = 12; ExistCaps = 12; AllSystemCaps = 12
- Compatibility = 100 %; Effort = 0; Utilization = 100 %

138

Change in the screw size — Product C

In this case scenario, the screw size changes from M1.6 to M2. When changing the screw size, the
capabilities remain the same at the concept name level. Only the screw size parameter is changed.
The current screwdriver is suitable for screwing size M1.6 screws, but only that size screw. If the
screw size changes, a new screwing head need to be attached to the screwdriver. The following rule
is used to define whether the new screwing head is suitable for the given screwdriver.

RULE 6a: Attaching screw driver + screwing head

screwdriver = resource.hasCapability(“spinningTool’™)
screwinghead = resource.hasCapability(“screwingHead”)

IF (spinningTool.getParam(“diameter_max’) >=
screwingHead. basicDevicelnfo.getParam(“diameter’))
THEN
RETURN TRUE

If the screwdriver head is not compatible with the screwdriver, for example in this case if the
screwing head is for bigger screws than M2, the whole screwdriver needs to be changed. Small
changes in the product design can in this case be handled with relatively small changes in the system.
However, this example well illustrates that when certain border constraints of the capabilities are
crossed, the magnitude of the adaptation can grow significantly due to the propagation of the
changes. In this example case, as long as the required screw size is between M1 and M2, the system
can be adapted by just changing the screwdriver head. If bigger screws are used, the whole
screwdriver needs to be replaced. And again, these changes may be propagated to the robot if, for
example, the new screwdriver is not compatible with the robot interface.

Compatibility of the existing system with the product C
ReqCaps = 12; ExistCaps = 11; PhysModifCaps = 1; AllSystemCaps = 12
- Compatibility = 95.8 %; Effort = 4.2 %; Utilization = 95.8 %

Change in the accuracy requirement — Product D

For the original product, product A, the required accuracy of the screw insertion was set quite low. It
was 0.8 mm, which meant that some amount of misplacements occurred and that those were
tolerated. The current system barely fulfilled this accuracy requirement. In this product scenario, no
misplacements are tolerated, and therefore the accuracy of the inserting operation needs to be
increased to 0.4 mm.

The change in the accuracy requirement doesn’t affect the required capabilities at the concept name
level, but the accuracy parameter of the inserting capability is changed. Based on the rules used in
Chapter 5.3.3, the accuracy of the insertion depends on both the accuracy of the robot and the
accuracy of the machine vision system. The accuracy of the insertion can then be increased by
replacing the robot with a more accurate one, replacing the camera with one with better resolution
or using a different type of machine vision algorithm which is more accurate. It is also possible to
bring the camera closer to the measured object, in order to increase the pixels/millimetre ratio, or to
change the optics with a greater focal length, again to decrease the field of view to increase the
pixels/millimetre ratio. However, if the product size remains the same, it is not safe to decrease the
field of view and therefore the two last options are not useable. So, basically, the options are to
either change the robot, the camera, or the machine vision algorithm. In this case, the fastest and

139

cheapest option is probably to change the camera, because cameras with better resolution are easily
available at reasonable prices. Merely changing the algorithm probably wouldn’t increase the
accuracy enough.

Compatibility of the existing system with the product D
ReqCaps = 12; ExistCaps = 11; AllSystemCaps = 12
- Compatibility = 91.7 %; Effort = 8.3 %; Utilization = 91.7 %

Change of product

In this category, three different product change scenarios are considered: new different parts added
to the product — Product E; screws replaced with new parts — Product F; a completely different
product — Product G. Their capability requirements are shown in Table 33 and the differences
between their capability requirements and those of product A are shown in the Venn diagrams in
Figure 68. It is known that a change in the product to be manufactured will most probably lead to a
requirement for new capabilities for the system. This means that physical adaptation is required. In
this presented case study, the user has given high priority to the re-use of old equipment. This means
that any changes to the system should be implemented so that as much as possible of the existing
system is retained.

Table 33. Existing system capabilities and capability requirements of products E, F and G.

System Capabilities Product E Product F Product G
requirements requirements requirements
TUT-microfactory attachmentFrame (1) | Module Frame (1) Module Frame (1) Heating material
frame
Transporting (7) Transporting (7) Injecting material
Screwing robot screwing (2),
pickingUp (3), Bulk feeding (6) Feeding (physicModfi 6) Molding
transporting (4),
inserting (5) PickingUp (3) Disensing glue (Transporting Cooling
(ObjectRecognition (10), (4), ObjectRecognition (8),
Feeding system plateFeeding (6) Orienting (12), Positioning (9)) Opening the mould
Positioning(11))
Belt conveyor transporting (7) PickingUp Releasing the part
Inserting (5) (Object
Machine vision objectRecognition recognition (8), Positioning Inserting (5) Transporting
system 1 (8), positioning (9) (9), Transporting (4))
Machine vision objectRecognition Screwing (2)
system 2 (10), positioning (11),
orienting (12) Module frame
Transporting
Disensing glue (Transporting,
ObjectRecognition
Positioning)
Feeding
Picking up
Inserting

140

Common Common
requirements requirements Product A Product G

Product A
Product E | | proguct A

\ Product F

E F G

Figure 68. Common requirement zones of product scenarios E, F and G with product A.

New different parts added to the product — Product E

Product E is similar to product A, except that at the end of the process two of the screws need to be
covered with small plastic parts, which are glued over the screws. This means that the old capabilities
of the system are still needed, but new “gluing” and “feeding” capabilities need to be added.
Furthermore, the current system’s grasping capability doesn’t match the requirement for grasping
the plastic part, and therefore additional “picking” up and “inserting” capabilities are needed.
Because of the small size of the TUT-microfactory module, not all of this can be included in the same
module. This means that the existing system can still be used as a whole, but a new module with the
required equipment should be added. Altogether, the required extra capabilities are: transporting
the product to another module; detecting the screws and their position in the phone; dispensing glue
onto the screw; feeding the plastic parts; picking up the plastic part, and inserting the plastic part
into the screw hole.

Compatibility of the existing system with the product E
ReqCaps = 21, ExistCaps = 12; AllSystemCaps = 12
- Compatibility = 57.1 %; Effort = 75 %,; Utilization = 100 %

Here, it is assumed that the feeding of the plastic parts is handled with dedicated trays and no new
machine vision system is required to recognize the parts and their position and orientation.

Screws replaced with new parts — Product F

Product F is assembled with snaps, so screws are no longer needed. Instead, the plastic parts need to
be glued and inserted into the screw holes to cover them. Therefore, the ”screwing” capability is no
longer needed but a new capability, “gluing” needs to be added to the system. In addition, the
feeding of the plastic parts needs to be handled. As the user-defined criterion was that the existing
system should be used as much as possible, the screwdriver unit will be replaced with a dispenser
unit and attached to the Cartesian robot. The robot also needs to be equipped with a gripper for
grasping the plastic parts. For feeding the parts, the same tray feeder can be used merely by
changing the tray or plate suitable for the plastic parts.

Compatibility of the existing system with the product F
ReqCaps = 9; ExistCaps = 6; PhysModifCaps = 1; AllSystemCaps = 12
- Compatibility = 72.2 %; Effort = 20.8 %,; Utilization = 54.2 %

141

Completely different product — Product G

In this scenario, the requirement is to manufacture the cell phone covers. From the system’s point of
view, this is a completely different product. It requires completely new capabilities, such as injection
molding, and none of the existing capabilities are useable for this new requirement. Therefore, it can
be said that the current system has zero compatibility with the new requirement.

Compatibility of the existing system with the product G
ReqCaps = 7; ExistCaps = 0; AlISystemCaps = 12
- Compatibility = 0 %; Effort = 58.3 %; Utilization =0

Change in the order requirements

In the order requirement category, two different scenarios are considered. These are: fewer
capability requirements — Product H; and change in the production volume — Product I. Their
capability requirements are shown in Table 34 and the differences with the capability requirements
of product A are shown in Figure 69.

Table 34. Existing system capabilities and capability requirements of products H and .

System Capabilities Product H Product |
requirements requirements
TUT-microfactory frame attachmentFrame (1) Module frame (1) Module frame (1)
Screwing robot screwing (2), Transporting (7) Transporting (paramModif 7)
pickingUp (3), transporting (4),
inserting (5) ObjectRecognition (8) Bulk feeding (6)
Feeding system plateFeeding (6) PickingUp (3)
(ObjectRecognition
Belt conveyor transporting (7) Orienting (12), Positioning(11))
Machine vision system 1 objectRecognition (8), Inserting (5) (Object recognition
positioning (9) (8), Positioning (9),
Transporting (paramModif 4))
Machine vision system 2 objectRecognition (10),
positioning (11), orienting (12) Screwing (2)
Common Common
requirements requirements
Product A Product H Product\:ﬁ\ Product |
H |

Figure 69. Common requirement zone of product scenarios H and | with the product A.

Fewer capability requirements — Product H
In this scenario, the screws have already been screwed to the cell phone in the previous process
phase. Now the order requirement is only to check that all four screws are in their correct place. No
new capabilities are needed, and most of the existing capabilities are no longer used.

142

Compatibility of the existing system with the product H
ReqCaps = 3; ExistCaps = 3; AlISystemCaps = 12
- Compatibility = 100 %; Effort = 0 %; Utilization 25 %

Increase in production volume — Product |

In this scenario the production volume grows so that 30% more products should be produced in the
same time that was originally used for producing product A. This means that a new cycle time for the
product needs to be defined and the current system’s ability to cope with this cycle time
requirement needs to be evaluated. In case A, the system was not running at its full speed. Both the
robot and conveyor speeds could be increased by half. However, how fast the robot can move with
the screwdriver can only be discovered by testing. Due to the weak accuracy of the inserting
operation, the misplacement of the screws consumed a lot of extra time to accomplish the process.
Therefore, by increasing the accuracy of the insertion, the production volume can be increased.
Three adaptation actions, one physical and two parametric, are needed to achieve the required new
production volume. These are: changing the camera, and adapting the speed of the conveyor and the
robot.

Compatibility of the existing system with the product |
ReqCaps = 12; ExistCaps = 9; ParamModifCaps = 2; AllSystemCaps = 12
- Compatibility = 87.5 %; Effort = 12.5 %,; Utilization = 87.5 %

Change in the behaviour of some system component

As discussed earlier in this thesis, the capabilities (behaviour) of the devices may change during their
individual lifecycles. In this case scenario it is noted that the accuracy of the robot has been
decreased from 0.3mm to 0.6mm. This new updated capability information is assigned to the robot.
Now it is noted that the capability no longer satisfies the given accuracy requirement for the
inserting capability. This means that either the robot or the camera needs to be replaced to increase
the accuracy. However, such a drastic change in the robot’s accuracy indicates that bigger problems
may be coming. Therefore, it may be wiser to replace the robot with a new one. This example
illustrates that changes in the resource capability may affect the compatibility of the resource to the
given requirement and therefore require adaptation actions; in this case changing the robot.

Compatibility of the changed system (system z) with the original product A
ReqCaps = 12; ExistCaps = 11; AllSystemCaps = 12
- Compatibility = 91.7 %; Effort = 8.3 %; Utilization =91.7 %

In this case the effort indicates the effort of changing the system back to be again compatible with
the requirements of product A.

Compatibility domain graphs of the product scenarios

Figure 70 shows the “compatibility — requirement change” graph of the previous scenarios defined
according to the formulas (2) and (5) presented in Chapter 4.7.1. In practice, the compatibility shows
what percentage of the product requirements can be satisfied with the existing system without any
adaptation actions for each product scenario. In other words, it illustrates the relative size of the

143

intersection between the product requirements and the system capabilities where the operation of
the system can continue without modifications. Very different products, such as product G, are not
really comparable with the others. It was included in the figure to show what happens if all the
requirements targeted to the system change. In such cases, the compatibility falls to zero. Product H
had fewer requirements than the original product, and no new capability requirements. This is a
special case and is therefore drawn on the negative side of the x-axis. Even though, within this case
set, the result is a descending graph as the magnitude of the change in requirements grows, this is
not always the case, as discussed in Chapter 4.7.1.

106

| 8

. 1 .

1 . H Y

- 80 ! - '

] . 1 N

i Zz Do _

! 560 — !

1 = . 1 . 1

i 5§ oy i

: £ a0t i i

i o oo ! i

i o . i

i 20 S i

i . i

. 1 . 1 N

1 N 1 . 1

i 0 — i >
10 1 8 6 4 2 o ' 2 ' 4 6 8 20

H ABC D I F

Requirement change

Figure 70. Change in the compatibility within the different product scenarios.

In order to compare the relative effort of the needed adaptation between different product
scenarios, the “compatibility — effort” graph was drawn, as shown in Figure 71. This graph clearly
shows that the compatibility itself doesn’t reveal much about the effort needed to modify the system
when comparing very different products, i.e. products having different amounts of capability
requirements. Examples of this are the products F, E and G, whose amounts of required capabilities
differ notably.

AB,
100 x:b(D,' i
90 X

X

(o]
o
m

~
o

m

o

o

Compatibility
B g (2]

w
o

= N
o O

o
o X G
4

0 10 20 30 40 50
Effort

Figure 71. Compatibility versus effort.

144

Finally, the “compatibility — utilization” graph was drawn to be able to compare the product scenarios
based on their compatibility and the re-usability of the existing system. The criteria for the analysis
was discussed in Chapter 4.7.1. The scenarios falling into the upper right corner represent “good
cases”, for which the compatibility is good and most of the system capabilities can be utilized. On the
other hand, the scenarios in the lower left hand corner represent the “worst cases”, for which no
capability requirements can be satisfied with the current system and therefore the current system
cannot be utilized. Scenario H represents a case where all the required capabilities exist in the current
system, but only small number of all the capabilities offered by the system are used. The rest of the
capabilities are “wasted”. In contrast, scenario E represents a case where all the offered capabilities
can be utilized, but more capabilities need to be acquired in order to satisfy all the requirements.

H CA, B
Dz
100 ;4 3 i X
X
90 X
80 E
> 10 X E
3 60 X
< 50
o
€ 40
(@)
© 30
20
10 ¢
0 X >
0 10 20 30 40 50 60 70 80 90 100
Utilization

Figure 72. Compatibility versus utilization.

As was discussed in Chapter 4.7.2, the compatibility domain approach is highly subjective and
dependent on the context. The input information used to draw the graphs, e.g. the number of
required, provided and matching capabilities, depends on the level of granularity used for the
capabilities. The evaluation of the propagation of the changes in the system, and again the
evaluation of the needed new capabilities, is based on human reasoning, and is therefore highly
subjective. Thus, even though the graphs give quantitative estimates of the compatibility, effort and
utilization, the estimates should be considered more as qualitative than quantitative analyses. They
don’t provide absolute values for the impact of the changes, but they do enable relative comparisons
between similar cases.

145

6. DISCUSSION

6.1. Evaluation of the proposed methodology

The objective of this thesis, defined in Chapter 2.2 was: “to develop a methodology to support
computer-aided adaptation of production systems in a changing environment”. This high-level
objective was divided into four sub-objectives: 1) definition of an adaptation schema; 2)
development of a resource description model based on capabilities; 3) development of framework
and rules for matching the product requirements against resource capabilities; 4) creation of a
preliminary approach to evaluating the impact of changes in product requirements on the production
system. This chapter is devoted to describing and analysing how well the objectives set for this thesis
were achieved. It can be stated at the outset that, on the whole, each of these objectives was
satisfied. In the following sections, the solutions for these objectives are analysed one by one, and
the recognized limitations are discussed. After that, there are some general remarks about the
developed methodology as a whole.

Sub-objective 1: Definition of the adaptation schema
The adaptation schema was developed and modelled in the form of activity diagrams using the

IDEFO-modelling language. The schema provides a comprehensive explanation of the adaptation
process by clarifying the activities, information flows and required resources during the adaptation
planning and reactive adaptation process. The schema provides the backbone for the whole
adaptation methodology and guides the use of the other elements, which have been developed,
during the adaptation planning and reactive adaptation.

The adaptation schema was intended to support both human-centric adaptation planning and
dynamic reactive adaptation. This is satisfied, because the schema does not constrain “who” or
“what” should perform the reasoning steps. Neither does it compel the reasoner to go through all
the adaptation steps or use all the indicated resources. For example, in the case of dynamic
adaptation in the holonic system demonstration, no physical adaptation is required and therefore
some activities from the schema can be dismissed. On the other hand, all the information resources
indicated in the schema may not be always available. The accuracy of the result is therefore highly
affected by the availability and quality of the input information. Particularly in the case of automatic
reasoning, the unavailable or faulty input information can produce misleading results. Therefore,
human involvement in the final decision making is assumed. This will be discussed in more detail
later, in the general remarks.

Even though the schema contains more inputs, information resources and controls than have
actually been applied in the case examples, the level of detail of the activities is the same as in the
implementation. This means that the resource description and capability matching framework are
designed so that they support all the activity steps included in the schema. As discussed earlier in
Chapter 4.6.2, each of the activities could be further decomposed into lower, more detailed-level
activities. Currently, the adaptation schema doesn’t go into the level of detail whereby the systems
could be evaluated in terms of their ability to answer, for example, the volume and cycle-time
requirements or to calculate the cost of acquiring and operating those resources. Some of the
information needed for that kind of reasoning is included in the resource description which enables a
human expert to assess these aspects. However, new algorithms and rules should be developed in
order to automate such reasoning.

146

Sub-objective 2: Development of a resource description model based on capabilities

The overall resource description and capability model were developed in order to describe the
resource capabilities and characteristics so that they facilitate the selection of suitable resources for
a given product requirement. The ontologies were utilized to provide formal computer-interpretable
models and to enable the computerized filtering, handling and management of the resource
information. The objective with the resource model was to be able to describe the combined
capabilities of multiple co-operating resources. The capability model which was developed allows this
to happen at the capability concept name level, whereas the combined capability rules enable this at
the parameter level.

The resource description was intended to be used in the context of the adaptation process.
Therefore, it was important to incorporate the lifecycle aspect into the resource description. As
discussed earlier, the production environment is constantly evolving and the behaviour and
properties of the components constituting the overall system change during their individual
lifecycles. Without up-to-date information about the system, it is difficult to make decisions
regarding its adaptation, or at the very least, the decisions won’t be based on trustworthy evidence.
In order to provide more reliable resource information, the proposed resource description approach
has two representations of the resource, one presenting its nominal capability and other presenting
its actual, updated capability.

At present, the capability model covers the capability instances needed in the case studies (and
similar environments), i.e. capabilities existing in the TUT-machining laboratory and the TUT-
microfactory environment. The developed capability model is freely extendable and new capabilities
can be added to the model when needed. It is general enough to be applied to various different
domains. Even though it wasn’t within the scope of this thesis, the model could also be used for
modelling human competences.

The developed capability description approach differs from existing semantic resource description
approaches from its very inception. From the outset, it was defined so that it would support
combined capability modelling and the re-usability of the capabilities for different kinds of resources.
This has strongly affected the structure of the capability model, especially in terms of the allocation
of the parameters to the specific individual capabilities. The properties of the resources are
distributed under a number of separate simple capabilities, which may initially cause a little
confusion when describing the resources with this model. Such confusion can be illustrated with the
following example for describing a milling machine’s capabilities. The milling machine’s properties
given in the suppliers’ catalogue cannot be assigned directly to the machine, but need to be divided
into multiple separate simple capabilities. As the milling machine’s main function is to spin the tool in
order to cut material, its main capability is “spinningTool”. However, not all the machine’s properties
can be assigned to this main capability, because, for example, a screwdriver also has that
"spinningTool” capability, yet it definitely doesn’t have all the same properties as a milling machine.
Therefore, other capabilities also have to be assigned to the milling machine, such as
“movingWorkspace” and “degreesOfFreedom”. This may not be the most intuitive approach when
assigning the capabilities. However, if all the properties were to be assigned in one group for one
capability, it would resemble traditional resource description approaches, and would lose its
expressiveness and its ability to model combined capabilities.

147

So, the resource description approach proposed here differs from traditional resource description
approaches, as they don’t usually have enough expressiveness to describe multifunctional resources.
While the traditional approaches tend to classify the resources into groups based on their properties
and functionality (e.g. milling machine, lathe, conveyor, etc.), the approach used here classifies the
capabilities and assigns those to the resources. In this way, one resource can have multiple
capabilities to be used in different contexts, and new capabilities can be assigned to the resource as
they emerge. Another advantage of describing the resources based on their capabilities, rather than
based on their type, is that one doesn’t need to assume, for example, that a milling machine has all
the capabilities of a normal milling machine, but merely to assign the capabilities relevant to that
specific resource. This modular capability-modelling approach therefore provides more
expressiveness and flexibility for describing different kinds of resources. The modular approach for
assigning the capabilities to the resources also provides significant support for adaptation planning.
Describing each resource in the system based on its simple capabilities, rather than describing the
complete system as a whole, makes it easier to change and replace components in the system.

One final comment, which actually relates to both sub-objectives 2 and 3, needs to be stated. The
technical accuracy of the capability descriptions developed here, and of the rules, could probably be
improved through greater expertise and experience with the technology and processes used as
examples. A wide range of different processes were covered, although at times the author lacked any
in-depth technical knowledge of them. Despite consultation with experts about the processes, it
must be acknowledged that there may still be room for improvement, especially with regard to
assigning the parameters to the simple capabilities and in developing the capability matching rules.
However, as the original goal was not to develop a perfect resource description and rules, but rather
to develop a concept and a framework for describing and matching the capabilities to support
adaptation, this deficiency may be regarded as acceptable.

Sub-objective 3: Development of a framework and rules for matching the product requirements
against resource capabilities

A conceptual framework for matching the product requirements against the system capabilities was
successfully created. Its main elements are the capability taxonomy, which enables mapping
between the product requirements and the system’s capabilities at the capability concept name
level, and the capability matching rules, which facilitate the detailed matching. As with the capability
model, the rules were designed to serve two case environments, the TUT-machining laboratory and
the TUT-microfactory. If applied to a different environment, new rules would need to be
implemented.

The main goal of the rules was to show that the information saved with the formal resource
description and capability model can be used for automatized capability-matching and for generating
different configuration scenarios. The capability matching rules prove that such a resource
description can be used to match the product requirements with suitable resources. The fact that it
was possible to create rules that compare the product and resource information saved in the
ontology, and provide feasible matches, proves that the resource description and capability model
provide enough expressiveness for such use cases. Therefore, the rules which were developed for
these cases validate the developed resource description and capability model, and just as
importantly, prove that automatic matching is possible.

148

At this point in time, only part of the rule-base is implemented as part of the modular ICT-
environment. This is mainly due to a shortage of programming resources. However, the rule-base is
under way, and new funding has been applied for in order to get it properly implemented and
integrated into the fully working, modular ICT-environment. Because of the incomplete
implementation of the rule-base, it is not yet possible to test how well the capability matching works
in practice in more complicated cases; for example, how long would the reasoning procedures take.
Nevertheless, as the actual implementation of the rule-base was not defined as the goal of this
thesis, the fact that it is at present incomplete does not reflect on the validity of the thesis.

Although the developed rule-base does enable automatic reasoning, human intervention is still
required. It should be remembered that the goal of the developed adaptation methodology was not
to make everything automatic, but to keep humans involved in the decision making and control loop.
In practise, this means validation of the automatically generated scenarios and selection of the most
desirable solution based on the user-specific criteria. The capability model and combined capability
rules which are proposed here cannot provide perfect descriptions of the real capabilities of the
system. It is recognized that the definition of the combined capabilities in detail at the parameter
level is very difficult with the digital models. For example, the detailed definition of a workspace of a
combination of multiple resources, even the relatively simple robot + gripper combination, requires
complicated spatial reasoning with mathematical models, and this was beyond the scope of this
thesis. This problem is due to the fact that many of the properties emerge as a behaviour of the
system as a whole in a specific context, and they cannot be decomposed to the properties of the
various components. For instance, in the case of a machining operation, the surface finish may
depend on chattering which in turn depends on multiple factors, such as the structure of the
machine, the control of the machine, the characteristics of the tool, the parameters of the specific
operation, the characteristics of the material, and so on. Therefore the only way to predict chattering
would be to have a comprehensive model of the machine, its control, and the manufacturing
process, since the behaviour cannot be traced back to its components. This was beyond the scope of
this thesis. Another example of a parameter, which is difficult to define in detail, is the accuracy of a
machine tool, as discussed already in Chapter 4.4.4.

Therefore, from a logical point of view, the proposed approach can be used for determining those
properties of combined capabilities which can be traced back to the simple capabilities, i.e. to the
individual components of the system. It is not suitable for determining those properties of combined
capabilities which cannot be decomposed to the properties of the various components, as
exemplified above. It is precisely because this problem was already recognized in the early phases of
the research that so much emphasis was placed on involving human expertise in the final decision
making. Therefore, certain simplifications in the combined capability rules were also permissible.
However, the rule-base can be extended incrementally, which will eventually lead to ever more
accurate and realistic reasoning results, which will require less human intervention.

When matching the resource capabilities with the product and order requirements, there may not
always be a one-to-one match. For example, a specified manufacturing volume may be achieved by
using only one fast machine or two slower machines. If a certain accuracy is required, a feasible result
may be obtained by using inaccurate devices and improved quality detection at the end of the
process. As it stands, the automatic capability matching is not able to take this kind of fact into
account. To do so would mean that the compatibility of the devices would have to be evaluated using
some kind of fuzzy logic rules. These would allow those kinds of resources whose properties don’t all

149

have a 100% match with the requirements to be added to the proposal list. And of course, a human
expert could also make these fuzzy compatibility evaluations. The current approach doesn’t allow
this, because the capability matching dismisses those capabilities which don’t completely fulfil the
requirements.

Finally, there is one limitation in the current capability matching framework which needs to be
recognized. The capability matching and the capability model do not take into consideration the
effect of the human worker operating the resource. For example, a well trained and experienced
operator may be able to manufacture the same product much faster and with better quality than an
inexperienced operator working with a similar machine. The accuracy of machining operations, in
particular, can easily be affected by the professional skills of the operator. As the human aspect can
significantly affect the capability performance that can be achieved, this aspect should be integrated
into the methodology in the future. As with the previous point, this aspect would also require some
sort of fuzzy reasoning.

Sub-objective 4: Creation of a preliminary approach to evaluating the impact of changes in product
requirements on the production system

A compatibility domain approach was created, in order to estimate the impact of product
requirement changes on the existing production system. The compatibility domain approach
examines the topic from three aspects: the compatibility of the existing system to the new
requirements; the relative effort entailed in making the needed modifications to the system; and, the
utilization (re-usability) of the existing system for the new requirements. The compatibility domain
approach utilizes the resource capability descriptions and the capability matching framework, in
order to identify whether, and if so how many, new capabilities need to be added to the existing
system when the product requirements change. The compatibility domain approach offers a valuable
aid to decision making, when comparing different product scenarios which require change. It
rationalizes the decision making, because it allows easier identification and allocation of the needed
changes to the system, and therefore also opens up the possibility for more realistic evaluation of
the costs of adaptation.

The restrictions of the compatibility domain approach were already discussed in Chapter 4.7.2 and
are not repeated in detail here. Nevertheless, it must be acknowledged that the approach is just a
preliminary, highly simplified concept and has multiple restrictions. The validity of the comparison of
different product scenarios depends strongly on the similarity of the compared products. In order to
evaluate the real effort and cost of the required adaptation, the nature of the specific adaptation
activities needs to be considered. In its present state, the compatibility domain approach estimates
the effort purely based on the number of new capabilities that need to be added to the system, and
the system ramp-up, for example, is not considered. This is a significant omission, because ramp-up
is one of the biggest costs when a change is introduced to a system. In complicated cases, the system
ramp-up may require months to be completed, and during the ramp-up phase either the production
rate or the production quality (or both) may be much lower than the required targets. Therefore, the
incorporation of this aspect into the methodology should definitely be considered in the future.
Having said that, at this point these flaws in the method are acceptable, because the original goal
was to think up a preliminary approach to how the developed resource description and capability-
matching framework could be used to facilitate decision making in terms of the impact of change.

150

GENERAL REMARKS ON THE DEVELOPED METHODOLOGY

The developed methodology supporting computer-aided adaptation of production systems should
not be directly compared to other available methodologies, because their viewpoint and scope are so
different. A wide range of different methodologies supporting adaptation were presented in Chapter
3.3, and their limitations were discussed there. The starting point for this work was to try to
overcome some of those limitations. As the goals were different, they cannot be directly compared
with each other. One clear advantage of the resource description approach developed here, in
comparison to the other available ones, is that it provides a solution for managing the combined
capabilities of multiple co-operating resources. Previous, apparently similar, approaches haven’t
dealt with the parameters, but only with the skill (capability) names. Dealing with just the capability
concept names doesn’t provide enough information to select resources from multiple options, all
having the same capability concept name. This limitation was overcome with this approach. Another
advantage of this work is that it provides a holistic, integrated approach which supports adaptation
from multiple viewpoints, all combined into one methodology.

The computer-aided adaptation methodology developed in this work is characterized by strong
human involvement, especially in the final decision making. This is seen as important, particularly
because of the volatile quality of the available input information. Even though humans are not able
to make informed decisions without good input information, they still have more intelligence than a
computer when it comes to spotting obvious mistakes that may exist in the input information, or that
may occur during the reasoning procedures. The intelligence of the developed methodology lies in
the fact that it utilises an efficient combination of human intelligence and computer processing
power. The methodology aims to utilize computers for the tasks which they are good at, such as
handling, processing and filtering large amounts of data. Humans, on the other hand, are responsible
for making the intelligent decisions. The holonic demonstration presented a case where the
“intelligent decision making” is done by the *“holons”, which can be either physical resources,
software modules, or humans. The holons utilize their ability to negotiate with each other and to
make decisions based on the acquired information. Algorithms (rules) are still needed by the holons
to reason with that information. The intelligence of these holons (or the quality of the results they
provide) can be increased by learning from experience. This learning is facilitated by collecting the
usage history of the resources.

It has to be noted that the quality of the results produced by the developed adaptation methodology
depends strongly on the available information resources. In order to make a match between product
requirements and system capabilities, valid information about both of them has to be available for
the reasoning. As in all reasoning, the quality of the result of the reasoning depends not only on the
quality of the algorithm, but also depends strongly on the quality of the input information. If the
description of the product requirements or system capabilities has errors or missing information, it
will lead to a flawed reasoning result. As the creation of a resource description for an individual
resource is a manual task, human errors may naturally occur. The descriptions of the product
requirements were not in the scope of this thesis, but their role in the capability-matching must not
be underestimated.

The adaptation approach taken in this thesis is reactive rather than proactive. The adaptation takes
place after external changes are noted. Terkaj et al. (2009a) distinguished between planned changes
and unplanned changes. Planned changes happen as a result of conscious managerial actions,

151

whereas unplanned changes occur independently of the intentions of the company (Terkaj et al.
2009a). In the presented adaptation schema, the production environment is considered as dynamic
and unpredictable, without any knowledge of the future. Only the unplanned changes which require
adaptation are considered. However, if there is some known information about the future, then
some degree of flexibility in the system could prove extremely beneficial. According to Terkaj et al.
(2009a) flexibility tries to create a position in which the system is able to accommodate external
changes without modifying its structure. In many cases, this is much more beneficial than adopting
continuous reconfigurations. (Terkaj et al. 2009a.) In order to enhance the developed adaptation
approach so that it is better suited for a real industrial context it should be extended so that it would
include considerations of the future, if such information about the future, even uncertain, is
available. The adaptation plans could then be created from a more strategic perspective, taking
future requirements and possible scenarios into account, and thus trying to minimize the required
changes to the system in the future. This means that the system could be adapted taking into
account its flexibility for future situations, which are known or can be assumed.

The capability-based resource description and the framework for capability matching developed in
this work support all the levels of adaptivity, namely physical, logical and parametric. Therefore, they
can be used to support both reconfiguration and flexibility aspects. They allow the evaluation of the
robustness of the existing system for possible future requirements, and identification of the
adaptation needs for different product scenarios. Thus, if planned changes or external changes which
can be forecast are taken into consideration during adaptation planning, it would require these
aspects to be incorporated into the adaptation schema.

6.2. Contributions

This study resulted in a holistic, integrated adaptation methodology for production systems. The
developed, capability-based adaptation methodology supports multiple aspects of production system
adaptation, namely physical, logical and parametric adaptation in both static, human-controlled
adaptation planning and dynamic, reactive adaptation contexts, as shown by the case studies. The
methodology consists of the following novel elements:

1) Knowledge representation for describing production resources, their capabilities, and the
combined capabilities of multiple co-operating resources;

2) A framework and rules for matching the resource capabilities with the capability
requirements set by the product characteristics in the context of adaptation planning and the
reactive adaptation process;

3) Adaptation schema defining the use of the resource description and the capability matching
rules, as well as other information resources, as part of the overall adaptation process.

4) A preliminary approach to evaluating the impact of changes in the product requirements on
the production system.

The core of the developed adaptation methodology, and therefore the main contribution of this
thesis, is the formal resource description and capability model. These, together with the developed
capability taxonomy and rule-base, support at least the following activities:

e Describing the capabilities of individual resources;

e Combining simple capabilities into higher-level, combined capabilities;

e Reasoning out the combined capability of multiple co-operating resources;

e Automatic matching of product requirements and resource capabilities;

152

e Finding resource combinations to fulfil a given product requirement;

o Checking whether the current system is able to fulfil a given requirement;

e Making sure that all the needed components exist in the system (combined capabilities);

e Showing the parameter range of the available capabilities, allowing decisions to be made
about the parametric adaptation;

o Showing the available capabilities on the factory floor and their locations, thus providing the
necessary information for the logical adaptation (e.g. re-routing).

As a result of the above, this approach allows the automatic generation of system configuration
scenarios based on the given requirements. It also supports the rapid allocation of resources and the
adaptation of systems. In addition to generating adaptation plans, the developed methodology
allows the possibility of evaluating the robustness of the existing production system to possible
changes. From the information management point of view, it supports automatic filtering of
information and finding suitable solution proposals from a large search space, thus reducing the
manual information-processing required during adaptation planning. In a small workshop with only a
few resources, management of the resource information is not a problem. In large factories and
production networks, automatic management and filtering of this information has substantial
potential for reducing the amount of manual work, and thus reducing the time used for planning
activities. In addition to providing a means for automatic reasoning, the developed resource
description also provides additional information for human experts to carry out various planning
activities relating to process planning and resource selection.

The capability description of the resources is a major element when searching for suitable candidate
resources for different applications. Therefore, the developed resource description and the model
for managing the combined capabilities of multiple co-operating resources support both the original
system design and the adaptation phases. They are especially useful for adaptation, because they
allow the adaptation planning to start by viewing the existing system as a whole entity, without
having to consider each individual item of equipment comprising the system. The updateable
resource description approach contributes towards better quality input information for making
decisions during adaptation planning and reactive adaptation. The resource description and
capability model also provide support for the original design of the system. During the original
system design, they allow the search for those resources which together fulfil the capability
requirements, thus obviating the need to break the capability requirements down into their most
atomic elements.

Even though it was not one of the original goals of the thesis, the resource description model, the
capability taxonomy and the capability matching rules can also be used to support DFMA (Design for
Manufacturing and Assembly) and CE (Concurrent Engineering) methodologies. The main point in
these methodologies is to consider simultaneously the product design, the process and the system
where the product will be manufactured, and to try to design the product so that that it is easy to
manufacture and assemble. With the help of the approach developed here, the product designer can
take the existing system and available in-house devices into account when designing a product. For
example, he/she may first draw the high-level process description and then search for the available
technologies for, for example, fastening. The result may be that, for example, a riveting capability
already exists on the factory floor. The designer then needs to evaluate whether riveting could be a
suitable method for fastening the parts for that specific product.

153

Dynamic production environments put pressure on production systems to themselves become
dynamic. Dynamic adaptation to changing requirements requires reactivity, which in turn calls for
self-organising abilities from the system. In order for the system to be able to self-configure itself,
the components comprising the system need to know and be able to describe to others what they
are, and what they can do in the system. In other words, they need to be able to express their own
capabilities. The developed resource description, capability model, capability taxonomy and
capability matching framework and rules make a significant contribution towards such self-organizing
systems. They give the entities an ability to describe themselves, advertise their capabilities, and to
form combinations with other entities. They also enable the orders to express the capabilities they
need, and finally to make a match between them. Therefore, assuming the entities are also able to
negotiate with each other, they may autonomously organize the production based on the available
capabilities.

Last but not least, the work developed in this thesis contributes significantly to evaluating the impact
of changes in product requirements on a production system. This approach evaluated three aspects:
1) the current system’s compatibility with different product requirements; 2) the relative adaptation
effort (magnitude of change) needed to modify the system to be compatible with the requirements;
3) the utilization (re-usability) of the current system in the new product scenarios. These aspects
were illustrated in the form of graphs, which allow the comparison of different product scenarios in
terms of the impact that the required changes will have on the system. Even though the evaluation
was rather simplified and crude, it is a first step towards quantifying the needed adaptation to the
system. It allows rough comparisons to be made between different product scenarios requiring
adaptation, and possibly the selection between different products and production strategies. The
ability to evaluate how well the current production system fulfils the new product requirements, and
the number and type of modifications that need to be made to the system, opens up the possibility
of evaluating the investment needed to achieve the adaptation. This is very important when making
decisions about whether the current system should be adapted, or a new one should be built from
scratch.

6.3. Future work

This chapter discusses some future work and additional ideas and concepts which would further
enhance the developed methodology. Many ideas for enhancement were already discussed in
conjunction with the evaluation of the proposed methodology in Chapter 6.1 and are not repeated
here in detail. These included, for example, consideration of the evolution of future requirements as
part of the adaptation planning, consideration of the human factor for achievable resource
capabilities, consideration of the ramp-up time and cost when evaluating the impact of change. The
first and most urgent future task should be to finalize the implementation of the rule-base. Once that
is done, the capability-matching can and will be tested with multiple different product scenarios.
Based on the results of these tests, the resource description and rules will be further developed in
order to increase the accuracy of the matching results. The following paragraphs introduce some
other visions for future developments.

As discussed earlier, simulation can be used to validate the scenarios generated by the automatic
reasoning methods. In particular, simulations should be used to analyse the combined workspace,
reachability and possible collisions that might occur when multiple resources are cooperating. As
creating simulation models manually is a time consuming task, automatic simulation generation

154

would greatly enhance the developed methodology by significantly reducing the time needed to
create the simulations, thus making them more feasible. The developed resource description
supports the description of the position and orientation of the resources on the factory floor.
Furthermore, the position and orientation of device interfaces are presented in the resource
ontology as vectors. The simulation software could automatically attach the interface to the device
model according to the saved vector information. Based on these interfaces, and the positional
information about the devices on the factory floor, these could be loaded into the simulation world,
allowing the system layout to be formed automatically. The matching of device interfaces could first
be done based on the digital resource description. The simulation could then validate whether they
really do match, e.g. that two conveyors are of the same height and able to co-operate. For example,
the 3DCreate simulation software from Visual Components (Visual Components 2012) has an
extensive library of robots and other system components from various manufacturers, in which the
kinematics and functionality are pre-programmed. The resource description could be extended to
include the Denavit-Hartenberg parameters (Wikipedia 2012) of the robots, and that information
could be introduced into the simulation software, in order to facilitate a kinematic analysis of the
system.

The methodology doesn’t consider how the programs are generated for the machines. In order to
route the product to a certain machine, it needs to have a program for performing the required
activity. In the current implementation of the demonstration, the programs are pre-programmed for
each machine. This is not, of course, a very adaptive approach. In the future, automatic generation of
the tool paths and other machine programs could be integrated to form part of the dynamic
operation environment framework. This can be done by integrating CAM (Computer Aided
Manufacturing) software as part of the modular ICT-architecture. It would significantly enhance the
proposed methodology and make it more useable in the dynamic adaptation context.

The creation of the resource description should be simplified. In its current form, the user needs to
select suitable capabilities for the resources from the capability listing. Basically, he/she needs to
know what kind of capabilities should be assigned to different types of resources. The Capability
Editor could be enhanced so that it would suggest to the users the possible capabilities based on the
capabilities of similar type of machines. This could mean the generation of some kind of resource
description template, which would give hints of what kind of capabilities should probably be added.

The collection and use of the history data can increase the intelligence of the developed
methodology by enabling learning from experience. However, the raw data is not useful without the
context information, i.e. in what kind of applications the resource has been used. The condition of
the resource largely depends on its usage history. In order to be able to estimate the condition and
remaining lifetime of the resource, it is important to know the applications where it has been used
and on what kind of process parameters it has been operating. The production system resources can
take different roles based on their capabilities and the context in which they are used. For instance, a
screwdriver can be used for screwing, while it takes the “screwdriver” role. It may also be used for
drilling taking the “drill” role. In extreme cases it may even be used for hammering, when it takes the
“hammering-tool” role. Naturally, the resource’s performance will differ depending on the roles and
contexts in which it is being used. The history data should be managed by the role engine, so that it
can be associated with the specific roles that were used while collecting the data. In this way, the
content and context information could be combined, enabling new knowledge to emerge. This
knowledge can then be utilized towards a more successful adaptation. The information on how the

155

resource behaved in a specific context, and in a specific role, could be later used for resource
selection for similar applications. The role engine should be developed in order to manage this kind
of history information.

156

7. CONCLUSIONS

The operational and business environment changes rapidly. Adaptation, both static and dynamic, is
expected at all levels of operation, not only on single production facilities, but throughout distributed
factories and logistic networks. As a result of this increasing process complexity, caused by the
challenges discussed in Chapter 1.1, companies have to shift from traditional static optimization of
production processes and systems to the adaptation of their systems and the dynamic distribution of
the orders. Today’s production systems can be regarded as having some characteristics of a Natural
System. In such a system, the environment evolves over time and the system itself has to evolve
during its lifecycle in order to survive in its environment. Optimization, in such a constantly changing
environment, is no longer feasible, or even possible. It is of primary importance to find feasible
solutions fast, in order to be able to adapt rapidly to the changing requirements. This new operating
environment requires that real-time information about the production system and its components,
the production process and the individual products is integrated into process, production and
adaptation planning and control.

Based on the extensive literature survey, it can be stated that the ability to cope with a rapidly
changing production environment and changing requirements can be enhanced in four
complementary ways: 1) the development of adaptive hardware, for example modular system
components with standardized plug-and-play interfaces, which allow the easy integration and
exchange of system components; 2) the development of adaptive, self-configurable control systems;
3) the development of new methodologies and algorithms which guide and support the adaptation
planning process at the whole system level; 4) the development of novel information models and
information management systems to provide accurate, up-to-date information for adaptation
purposes. The objective of this thesis was to provide solutions for the last two of these, (3 & 4).

The research carried out during this thesis produced a computer-aided, capability-based adaptation
methodology consisting of four main elements: 1) an adaptation schema (the methodology’s
backbone) indicating the activities and information flows during the adaptation planning process; 2)
a formal model for describing resources and their capabilities; 3) a framework and rules for
capability-based matching of product requirements and system capabilities; 4) a preliminary
approach to evaluating the impact of changes in product requirements on a production system.
These form a comprehensive framework, which tries to address all the facets of the adaptation
problem. The emphasis of the work was placed on the development of the resource description and
capability model to support the adaptation of a production system. Resource information is regarded
as the most important information when making adaptation decisions.

As stated already in the introductory chapter, information which enables adaptation planning and
supports adaptation decisions must be gathered from multiple sources. It must be obtained from the
experts involved in the processes, such as system integrators, operators and maintenance providers,
and from the information systems in which the information is either generated, stored or processed,
such as control and monitoring systems, MES (Manufacturing Execution System) or ERP (Enterprise
Resource Planning) and simulation systems. Therefore, multiple sources and contributors for the
information must be allowed for. This thesis has culminated in a formal, computer-interpretable
model for describing resources and their capabilities. As shown in Chapter 5, the use of a common
ontology allows the resource information to be understood and contributed to by many entities, and
therefore supports the interoperability of the information across multiple software modules and

157

contributors. Together with the development of semantic knowledge management technologies and
monitoring systems, it enhances the real-time information management relating to resources’
characteristics, status and lifecycle. The lack of this information was identified as one of the main
barriers to adaptation in industry today, often forcing new systems to be built from scratch when the
production requirements change.

As stated earlier, adaptation is expected to take place not only at the single production system level,
but also over distributed factories and logistic networks. This capability model is not restricted to
describing production resources in single factories, even though that was the environment for the
case studies in this thesis. Instead, the model can also be applied to distributed environments. The
capability model could, for example, be used for finding suitable capabilities from a whole supply
chain and for dynamically distributing orders within a whole supplier network based on the available
capabilities.

During the study, the initial assumption that humans cannot be removed from the adaptation
planning process was confirmed. In order to operate in a changing and complex environment, where
the quantity and quality of the input information varies case by case, human intelligence should not
be replaced by computers. Instead, both should be utilized in appropriate situations. Computers are
good at handling, processing and filtering large amounts of data, whereas humans are capable of
making intelligent decisions, which often require tacit, experience-based knowledge not managed by
computers. Therefore, this thesis proposed a computer-aided, capability-based adaptation
methodology in which the computer’s processing power is used to generate alternative configuration
scenarios for the given product requirements from a large amount of resource information. The
human expert can then use his/her intelligence to check the feasibility of the proposed scenarios and
to select the best one based on the specified criteria.

The discussion in Chapter 6 evaluated the strengths and limitations of the proposed methodology
from multiple perspectives. It gave a thorough description of how each of the developed elements
contributes towards the easier adaptation of production systems in a changing environment. In
summary, it can be stated that the developed methodology supports adaptation planning and
reactive adaptation in the following ways. The adaptation schema provides understanding of the
adaptation planning process, its activities and related information flows, and the needed resources,
and how these interact with each other. The formal resource model and capability-matching
framework facilitate automatic filtering and reasoning with a vast amount of information and the
generation of alternative solution scenarios. As a result, less manual information handling and
reasoning is required. The resource model provides up-to-date information about the resources to
facilitate more reliable adaptation plans. In addition, tools to manage the resource information and
input it for the reasoning activities are provided. The developed compatibility domain approach
facilitates the comparison between different product concepts in regard to the effort needed to
adapt an existing system to new requirements. Consequently, compared to the current manual
adaptation practices, less human effort is needed in the adaptation planning process, the adaptation
scenarios can be created faster taking all the existing resources into account, and the decisions may
be made based on more reliable input data. All of this can result in cost and time savings in the
adaptation planning process. Savings can also be expected on the investment side, because the
developed methodology encourages adapting and re-using the existing system.

158

REFERENCES

Al-Safi, Y. & Vyatkin, V., 2007. An ontology-based reconfiguration agent for intelligent mechatronic systems. In:
Marik, V., Vyatkin, V. & Colombo, A. (eds.), Holonic and Multi-Agent Systems for Manufacturing. Springer-
Verlag, pp. 114-126, ISBN 978-3-540-74478-8.

Ameri, F. & Dutta, D., 2008. A Matchmaking Methodology for Supply Chain Deployment in Distributed
Manufacturing Environments. Journal of Computing and Information Science in Engineering, 8(1), p.9,
ISSN 1530-9827.

Avgoustinov, N., 2007. Modelling in mechanical engineering and mechatronics: towards autonomous intelligent
software models, Springer Verlag, p. 226, ISBN 978-1-84628-908-8.

Barata, J., 2006. The Cobasa Architecture as an Answer to Shop Floor Agility. In: Kordic, V., Lazinica, A. &
Merdan, M. (eds.), Manufacturing the Future. InTech, pp. 31-76, ISBN 3-86611-198-3.

Barata, J., Camarinhamatos, L. & Candido, G., 2008. A multiagent-based control system applied to an
educational shop floor. Robotics and Computer-Integrated Manufacturing, 24(5), pp.597-605, ISSN 0736-
5845.

Bengel, M., 2007. Modelling objects for skill-based reconfigurable machines. In Innovative production machines
and systems, 3" I*PROMS Virtual International Conference 2007, p. 13, ISBN 1-904445-52-7.

Bi, Z.M. & Zhang, W.J., 2001a. Modularity technology in manufacturing: taxonomy and issues. The International
Journal of Advanced Manufacturing Technology, 18(5), pp. 381-390, ISSN 0268-3768.

Bi, Z.M. & Zhang, W.J., 2001b. Concurrent optimal design of modular robotic configuration. Journal of Robotic
Systems, 18(2), pp. 77-87, ISSN 0741-2223.

Bi, ZM., Lang, S.Y.T., Shen, W. & Wang, L., 2008. Reconfigurable manufacturing systems: the state of the art.
International Journal of Production Research, 46(4), pp. 967-992, ISSN 0020-7543.

Blessing, L.T.M. & Chakrabarti, A., 2009. DRM, a Design Research Methodology. London: Springer London, p.
397, ISBN 978-1-84882-586-4.

Boothroyd, G., Dewhurst, P. & Knight, W., 2002. Product Design for Manufacture and Assembly. 2nd edition,
CRC Press, p. 720, ISBN 082470584X.

Bourgine, P. & Johnson, J. (Eds.), 2006. Living roadmap for complex systems science, Report. ONCE-CS, Open
Network of Centres of Excellence in Complex Systems, 71p.

Brehmer, N. & Wang, C., 1999. Reconfigurable manufacturing systems and environment consciousness. In
Proceedings of EcoDesign '99, First international symposium on environmentally conscious design and
inverse manufacturing, pp. 463-468, ISBN 0-7695-0007-2.

Buchanan, B.G. & Duda, R.O., 1983. Principles of rule-based expert systems. Advances in Computers, 22, pp.
163-216, ISBN 0-12-012122-0.

Candido, G. & Barata, J., 2007. A multiagent control system for shop floor assembly. In: Marik, A., Vyatkin, V. &
Colombo, V. (eds.), Holonic and Multi-Agent Systems for Manufacturing. Heidelberg: Springer, pp. 293-
302, ISBN 3-540-74478-9.

CO2PE!, 2010. CO2PE! - Taxonomy. Available at: http://www.mech.kuleuven.be/co2pe!/taxonomy.php
[Accessed February 5, 2011].

159

Colledani, M., Terkaj, W. & Tolio, T., 2009. Product-Process-System Information Formalization. In: Tolio, T. (ed.),
Desing of Flexible Production Systems - Methodologies and Tools. Springer Berlin Heidelberg, pp. 63-86,
ISBN 978-3-540-85413-5.

Dashchenko, A.l. (ed.), 2006. Reconfigurable Manufacturing Systems and Transformable Factories. Springer
Verlag Berlin Heidelberg, p. 789, ISBN 3-540-29391-4.

Dashchenko, O. A., 2006. Computer Supported Decision Making System that Generates and Optimizes Layouts
of Reconfigurable Manufacturing Equipment at the Early Stage of Design. In: Dashchenko, A.l. (Ed.).
Reconfigurable Manufacturing Systems and Transformable Factories, Springer, pp. 295-325, ISBN 3-540-
29391-4.

Deif, A.M. & EIMaraghy, W.H., 2006. A Systematic Design Approach for Reconfigurable Manufacturing Systems.
In: EIMaraghy, H.A. & EImaraghy, W.H. (eds.), Advances in Design. Springer, pp. 219-228, ISBN 1-84628-
004-4.

Eckert, C., Clarkson, P.J. & Zanker, W., 2004. Change and customisation in complex engineering domains.
Research in Engineering Design, 15(1), pp. 1-21, ISSN 0934-9839.

EIMaraghy, H. A., 2006. Flexible and reconfigurable manufacturing systems paradigms. International Journal of
Flexible Manufacturing Systems, 17(4), pp. 261-276, ISSN 0920-6299.

EIMaraghy, H.A. (ed.), 2009. Changeable and Reconfigurable Manufacturing Systems. London: Springer London,
p. 405, ISBN 978-1-84882-066-1.

EUPASS, 2009. EASE - Evolvable assembly system environment. Available at:
http://titanic.uninova.pt/~eupass/index.php?option=com_content&view=category&layout=blog&id=44&
Itemid=28 [Accessed September 30, 2010].

Ferreira, P., Lohse, N. & Ratchev, S., 2010. Multi-agent Architecture for Reconfiguration of Precision Modular
Assembly Systems. In: Ratchev, S. (ed.), Precision Assembly Technologies and Systems. Springer, pp. 247-
254, ISBN 3-642-11597-7.

Fleschutz, T., Harms, R., Seliger, G., Bottero, F. & Rusina, F., 2008. Evaluaton of the Reconfiguration and Reuse
of Assemlby Equipment. In Proceedings of 2nd CIRP Conference on Assembly Technology and Systems
(CATS2008). Toronto.

Fleschutz, T., Harms, R. & Seliger, G., 2009. Valuation of Assembly Equipment Reuse with Real Options. In 20th
Annual Conference of the Production and Operations Management Society.

Frei, R., Ferreira, B., Di Marzo Serugendo, G. & Barata, J., 2009. An architecture for self-managing evolvable
assembly systems. In IEEE International Conference on Systems, Man and Cybernetics. San Antonio,
Texas, pp. 2707-2712, ISSN 1062-922X.

Frei, R., Di Marzo Serugendo, G., Pereira, N., Belo, J. & Barata, J., 2010. Implementing self-organisation and self-
management in evolvable assembly systems. In 2010 IEEE International Symposium on Industrial
Electronics. IEEE, pp. 3527-3532, ISBN 978-1-4244-6390-9.

Frei, R., 2010. Self-organization in evolvable assembly systems. PhD thesis. University of Lisbon., p. 273,.

Frei, R. & Di Marzo Serugendo, G., 2011. Self-Organizing Assembly Systems. Systems, Man, and Cybernetics,
41(6), pp. 885-897, ISSN 1094-6977.

Fryer, P., 2010. A brief description of Complex Adaptive Systems and Complexity Theory. Available at:
http://www.trojanmice.com/articles/complexadaptivesystems.htm [Accessed May 25, 2010].

160

Garcia, F., Lanz, M, Luostarinen, P. & Andersson, P.H., 2010. Feature-based unfolding algorithm for sheet metal
products. In 5th Americas International Conference on Production Research, ICPR 2010. p. 5, ISBN 978-
958-44-7045-4.

Garcia, F., Lanz, M., Jarvenpaé, E. & Tuokko, R., 2011. Process planning based on feature recognition method. In
IEEE International Symposium on Assembly and Manufacturing (ISAM), p. 5, ISBN 978-1-61284-342-1.

Gen, M. & Cheng, R., 1997. Genetic Algorithms & Engineering Design, New York: John Wiley & Sons, Inc., p. 411,
ISBN 0-471-12741-8.

Gero, J.S., 1990. Design prototypes: a knowledge representation schema for design. Al magazine, 11(4), pp. 26-
36.

Giret, A. & Botti, V., 2004. Holons and agents. Journal of Intelligent Manufacturing, 15(5), pp. 645-659, ISSN
0956-5515.

Grabowik, C. & Knosala, R., 2003. The method of knowledge representation for a CAPP system. Journal of
Materials Processing Technology, 133(1-2), pp. 90-98, ISSN 0924-0136.

Gruber, T., 1993. A translation approach to portable ontology specifications. Knowledge acquisition, 5(2), pp.
199-220.

Harms, R., Fleschutz, T. & Seliger, G., 2008. Knowledge Based Approach to Assembly System Reuse. In ASME
2008 9th Biennial Conference on Engineering Systems Design and Analysis, pp. 295-302, ISBN 978-0-7918-
4835-7.

Harms, R., Fleschutz, T. & Seliger, G., 2009. Evaluation and Planning of Assembly Equipment Applying
Knowledge Based Systems. In 20th Annual Conference of the Production and Operations Management
Society.

Hedlind, M, Lundgren, M & Lundholm, T., 2010. Model based machining descriptions. In CIRP Intelligent
Computation in Manufacturing Engineering, 4 p., ISBN 978-88-95028-65-1.

Hedlind, M., Lundgren, M. & Archenti, A., 2010. Manufacturing resource modelling for model driven operation
planning. In CIRP 2nd International Conference on Process Machine Interactions, Canada, 10p, ISBN 978-
0-9866331-0-2.

Hirani, H., Ratchev, S., Lohse, N. & Valtchanov, G., 2006. Methodology for knowledge enriched requirements
specification for assembly system reconfiguration. Assembly Automation, 26(4), pp. 307-314, ISSN 0144-
5154.

Ho, J.K.L., 2005. A proposed approach for reconfiguration of flexible assembly line systems by motion genes.
International Journal of Production Research, 43(9), pp. 1729-1749, ISSN 0020-7543.

Holmstrém, P., 2006. Modelling Manufacturing Systems Capability. Lic. thesis. Royal Institute of Technology,
Stocholm, Sweden., p. 73, ISSN 1650-1888.

Hong, N.K. & Hong, S., 1998. Entity-based models for computer-aided design systems. Journal of computing in
civil engineering, pp. 30-41, ISSN 0887-3801.

Hopgood, A.A., 2001. Intelligent Systems for Engineers and Scientists, p. 461, ISBN 0849304563.

Jackson, M.C., 2003. Systems thinking: Creative holism for managers, Wiley, Chichester, UK, p. 376, ISBN
0470845228.

161

Jang, S.-H., Jung, Y.-M., Hwang, H.-Y., Choi, Y.-H. & Park, J.-K. 2008. Development of Reconfigurable Micro
Machine Tool for Microfactory. International Conference on Smart Manufacturing Application, pp. 190-
195, ISBN 978-89-950038-8-6.

Jervis, R., 1998. System effects: Complexity in political and social life, University Press, Princeton, p. 328, ISBN
9781400822409.

Jovane, F., Westkamper, E. & Williams, D., 2009. The ManuFuture Road — Towards Competitve and Sustainable
High-Adding-Value Manufacturing, Springer, p. 261, ISBN 978-3-540-77011-4.

Jarvenpéa, E., Lanz, M., M., J. & Tuokko, R., 2010. Studying the Information Sources and Flows in a Company —
Support for the Development of New Intelligent Systems. In Flexible Automation and Intelligent
Manufacturing, FAIM 2010. California. p. 8.

Jarvenpéa, E., Luostarinen, P., Lanz, M., & Tuokko, R., 2011a. Presenting capabilities of resources and resource
combinations to support production system adaptation. In IEEE International Symposium on Assembly
and Manufacturing (ISAM), p. 6, ISBN 978-1-61284-342-1.

Jarvenpéa, E., Luostarinen, P., Lanz, M., Garcia, F. & Tuokko, R., 2011b. Dynamic operation environment —
Towards intelligent adaptive production systems. In IEEE International Symposium on Assembly and
Manufacturing (ISAM), p. 6, ISBN 978-1-61284-342-1.

Jarvenpéa, E., Luostarinen, P., Lanz, M. & Tuokko, R., 2012a. Adaptation of Manufacturing Systems in Dynamic
Environment Based on Capability Description Method. In F. Abdul Aziz (ed.), Manufacturing System.
InTech, p. 26, ISBN 978-953-51-0530-5.

Jarvenpéa, E., Luostarinen, P., Lanz, M. & Tuokko, R. 2012b. Development of a Rule-base for Matching Product
Requirements against Resource Capabilities in an Adaptive Production System. In Flexible Automation
and Intelligent Manufacturing, FAIM 2012, Helsinki, Finland, p. 8.

Kitamura, Y., Koji, Y. & Mizoguchi, R., 2006. An ontological model of device function: industrial deployment and
lessons learned. Applied Ontology, 1(3-3), pp. 237-262, ISNN 1570-5838.

Kitamura, Y. & Mizoguchi, R., 2010. Characterizing functions based on ontological models from an engineering
point of view. In Proceeding of the 6th international conference on Formal Ontology in Information
Systems (FOIS 2010). IOS Press, pp. 301-314, ISBN 978-1-60750-534-1.

Kjellberg, T., von Euler-Chelpin, A., Hedlind, M., Lundgren, M., Sivard, G. & Chen, D., 2009. The machine tool
model—A core part of the digital factory. CIRP Annals - Manufacturing Technology, 58(1), pp. 425-428,
ISSN 0007-8506.

Knowledge Based Systems Inc., 2010. IDEFO Function Modeling Method. Available at:
http://www.idef.com/IDEF0.htm [Accessed November 1, 2010].

Koestler, A., 1967. The Ghost in the Machine, Arkana Books, London.

Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G. & Van Brussel, H., 1999. Reconfigurable
Manufacturing Systems. CIRP Annals - Manufacturing Technology, 48(2), pp. 527-540, ISSN 0007-8506.

Koren, Y., 2006. General RMS Characteristics, Comparison with Dedicated and Flexible Systems. In:
Dashchenko, A.l. (ed.), Reconfigurable Manufacturing Systems and Transformable Factories. Springer, pp.
27-46, ISBN 3-540-29391-4.

Koren, Y. & Shpitalni, M., 2010. Design of reconfigurable manufacturing systems. Journal of Manufacturing
Systems, 29(4), pp. 130-141, ISBN 0278-6125.

162

Landers, R.G., Ruan, J. & Liou, F., 2006. Reconfigurable Manufacturing Equipment. In A. I. Daschenko, ed.
Reconfigurable Manufacturing Systems and Transformable Factories. Sringer, pp. 79-110, ISBN 3-540-
29391-4.

Lanz, M., Kallela, T., Velez, G. & Tuokko, R., 2008. Product, process and system ontologies and knowledge base
for managing knowledge between different clients. In 2008 IEEE International Conference on Distributed
Human-Machine Systems, pp. 508-513, ISBN 978-80-01-04028-7.

Lanz, M., Rodriguez, R., Luostarinen, P. & Tuokko, R., 2010a. Neutral interface for assembly and manufacturing
related knowledge exchange in heterogeneous design environment. In: Ratchev, S. (ed.), Precision
Assembly Technologies and Systems. Springer, pp. 21-29, ISBN 978-3-642-11597-4.

Lanz, M, Nylund, H & Ranta, A., 2010b. Set-up and first steps on capturing of realistic resource characteristics of
an intelligent manufacturing environment. In Proceedings of the 20th International Conference on Flexible
Automation and Intelligent Manufacturing, FAIM 2010. pp. 1028-1036.

Lanz, M., 2010. Logical and Semantic Foundations of Knowledge Representation for Assembly and
Manufacturing Processes. PhD thesis. Tampere University of Technology, p. 138, ISBN 97895215239309.

Lanz, M, Jarvenpé4, E, Luostarinen, P, Tenhunen, A., Tuokko, R & Rodriguez, R, 2011. Formalizing Connections
between Products , Processes and Resources — Towards Semantic Knowledge Management System. In
The 4th International Swedish Production Symposium SPS11. Lund, pp. 425-431.

Lanz, M., Jarvenpad, E., Garcia, F., Luostarinen, P. & Tuokko, R., 2012. Towards Adaptive Manufacturing
Systems - Knowledge and Knowledge Management Systems. In Abdul Aziz, F. (ed.), Manufacturing
System. InTech, p. 18, ISBN 978-953-51-0530-5.

Lehtonen, T., 2007. Designing Modular Product Architecture in the New Product Development. PhD thesis.
Tampere University of Technology, p. 220, ISBN 9789521518980.

Levin, M., 2002. Towards combinatorial analysis, adaptation, and planning of human-computer systems.
Applied Intelligence, 16, pp. 235-247, ISSN 0924-669X.

De Lit, P. & Delchambre, A., 2003. Integrated design of a product family and its assembly system, Kluwer
Academich Publishers, p. 281, ISBN 1-4020-7437-9.

Lohse, N., 2006. Towards an ontology framework for the integrated design of modular assembly systems. PhD
thesis. University of Nottingham, p. 245, ISBN 0387312765.

Lohse, N., Hirani, H. & Ratchev, S., 2006a. Equipment ontology for modular reconfigurable assembly systems.
International Journal of Flexible Manufacturing Systems, 17(4), pp. 301-314, ISSN 0920-6299.

Lohse, N., Schéfer, C. & Ratchev, S., 2006b. Towards an Integrated Assembly Process Decomposition and
Modular Equipment Configuration. In: Ratchev, S. (ed.), Precision Assembly Technologies for Mini and
Micro Products, Springer, pp. 215-225, ISBN 978-0-387-31276-7.

Lohse, N., Maraldo, T. & Barata, J., 2008. EUPASS std-0007: Assembling Process Ontology Specification. 38 p.

Malec, J., Nilsson, A., Nilsson, K. & Nowaczyk, S., 2007. Knowledge-based reconfiguration of automation
systems. In 3rd Annual IEEE Conference on Automation Science and Engineering, pp. 170-175, ISBN 978-
1-4244-1154-2.

Marler, R.T. & Arora, J.S., 2004. Survey of multi-objective optimization methods for engineering. Structural and
Multidisciplinary Optimization, 26(6), pp. 369-395, ISSN 1615-147X.

163

Maropoulos, P.G., McKay, K.R. & Bramall, D.G., 2002. Resource-Aware Aggregate Planning for the Distributed
Manufacturing Enterprise. CIRP Annals - Manufacturing Technology, 51(1), pp. 363-366, ISSN 0007-8506.

Maropoulos, P G, Bramall, D G, McKay, K R, Rogers, B. & Chapman, P., 2003. An aggregate resource model for
the provision of dynamic “resource-aware” planning. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, 217(10), pp. 1471-1480, ISSN 0954-4054.

Martinez Lastra, J.L., 2004. Reference Mechatronic Architecture for Actor-based Assembly Systems. PhD thesis.
Tampere University of Technology, p. 112, ISBN 952-15-1210-5.

Martines Lastra, J.L., Insaurralde, C. & Colombo, A., 2009. Agent-based control for desktop assembly factories.
In: Wang, L. & Nee, A. Y. C. (eds.), Collaborative design and planning for digital manufacturing. Springer,
pp. 265-291, ISBN 978-1-84882-286-3.

Mehrabi, M.G., Ulsoy, A.G. & Koren, Y., 2000. Reconfigurable manufacturing systems: key to future
manufacturing. Journal of Intelligent Manufacturing, 11(4), pp. 403-419, ISSN 0956-5515.

Minhas, S. & Berger, U., 2011. A reconfiguration concept to enable versatile production in the automotive
factories. In: EIMaraghy, H.A. (ed.), Enabling Manufacturing Competitiveness and Economic Sustainability.
Springer, pp. 352-357, ISBN 978-3-642-23860-4.

Monostori, L., Vancza, J. & Kumara, S.R.T., 2006. Agent-Based Systems for Manufacturing. CIRP Annals -
Manufacturing Technology, 55(2), pp. 697-720, ISSN 0007-8506.

Moon, Y.M., 2006. Reconfigurable Machine Tool Design. In: Dashchenko, A.l. (Ed.). Reconfigurable
Manufacturing Systems and Transformable Factories, Springer, pp. 111-139, ISBN 3-540-29391-4.

Nylund, H., Salminen, K. & Andersson, P., 2008. Digital Virtual Holons — An Approach to Digital Manufacturing
Systems. In: Mitsuishi, M., Ueda, K. & Kumura, F. (eds.), Manufacturing Systems and Technologies for the
New Frontier. Springer, pp. 103-106, ISBN 978-1-84800-266-1.

Nylund, H, Salminen, K & Andersson, PH, 2011. Framework for Distributed Manufacturing Systems. In
ElMaraghy, H.A. (ed.), Enabling Manufacturing Competitiveness and Economic Sustainability. Springer,
pp. 172-177, ISBN 978-3-642-23860-4.

Oduguwa, P. a, Roy, R. & Sackett, P.J., 2006. Cost impact analysis of requirement changes in the automotive
industry: a case study. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of
Engineering Manufacture, 220(9), pp. 1509-1525, ISBN 0954-4054.

Onori, M, Neves, P., Akillioglu, H. & Maffei, A., 2011. Dealing with the unpredictable: An Evolvable Robotic
Assembly Cell. In; EIMaraghy, H.A. (ed.), Enabling Manufacturing Competitiveness and Economic
Sustainability. Springer, pp. 160-165, ISBN 978-3-642-23860-4.

Onori, M., Semere, D. & Lindberg, B., 2010. Evolvable systems: an approach to self-X production. In: Huang, G.,
Mak, K. & Maropoulos, P. (eds.), Proceedings of the 6th CIRP-Sponsored International Conference on
Digital Enterprise Technology. Springer Berlin / Heidelberg, pp. 789-802, ISBN 978-3-642-10429-9.

Pahl, G. & Beitz, W., 1996. Engineering Design - A Systematic Approach 2nd edition., Springer-Verlag,
Berlin/Heidelberg, p. 544, ISBN 3540199179.

Perremans, P., 1996. Feature-based description of modular fixturing elements: The key to an expert system for
the automatic design of the physical fixture. Advances in Engineering Software, 25(1), pp. 19-27, ISSN
09659978.

164

Rahimifard, A. & Weston, R.H., 2009. A resource-based modelling approach to support responsive
manufacturing systems. The International Journal of Advanced Manufacturing Technology, 45(11-12), pp.
1197-1214, I1SSN 0268-3768.

Ramage, M. & Shipp, K., 2009. Systems Thinkers, Springer Verlag, London, p. 316, ISBN 1848825242.

Rampersad, H.K., 1994. Integrated and Simultaneous Design for Robotic Assembly, Chichester: John Wiley &
Sons Ltd., p. 212, ISBN 0471954667.

Ratchev, S., Hirani, H. & Bonney, M., 2007. Knowledge based formation of re-configurable assembly cells.
Journal of Intelligent Manufacturing, 18(3), pp. 401-409, ISSN 0956-5515.

Reinhart, G & Meling, F., 2011. Methodology for the Support of Reconfiguration Processes in the Automotive
Body Shop. In: EIMaraghy, H.A. (ed.), Enabling Manufacturing Competitiveness and Economic
Sustainability. Springer, pp. 358-363, ISBN 978-3-642-23860-4.

Rekiek, B., Delchambre, A. & Dolgui, A., 2002. Assembly line design: a survey. Proceedings of the 15" IFAC
World Congress.

SIARAS, 2008. SIARAS: Skill-based Inspection and Assembly for Reconfigurable Automation Systems, Report. 17
p.

Saarinen, E. & Hdmal&inen, R.P., 2004. Systems intelligence: Connecting engineering thinking with human
sensitivity. In: Himalainen, R.P. & Saarinen, E. (eds.), Systems intelligence: Discovering a hidden
competence in human action and organizational life. Helsinki University of Technology, Systems Analysis
Laboratory, Research Reports A88, pp. 9-38, ISBN 951-22-7168-0.

Saarinen, E. & Hdmal&inen, R.P., 2010. The Originality of Systems Intelligence. In: Hima&ldinen, R.P. & Saarinen,
E. (eds.), Essays on Systems Intelligence. Aalto University, School of Science and Technology, Systems
Analysis Laboratory, pp. 9-26.

Salminen, K., Nylund, H. & Andersson, P.H., 2009. Role based self-adaptation of a robot DiMS based on system
intelligence approach. In 19th International Conference on Flexible Automation and Intelligent
Manufacturing, (FAIM), pp. 964-970, ISBN 978-0-9562303-2-4.

Semere, D., Onori, M., Maffei, A. & Adamietz, R., 2008. Evolvable assembly systems: coping with variations
through evolution. Assembly Automation, 28(2), pp. 126-133, ISSN 0144-5154.

Senge, P.M., 1990. The fifth discipline, Doubleday, New York, p. 424, ISBN 0385260954.

Siltala, N., Hoffmann, A., Gengenbach, U., Traivani, E. & Vollmer, H., 2008. EUPASS std-0004: Emplacement
Specification and Guideline. 61 p.

Siltala, N., Hofmann, A., Tuokko, R. & Bretthauer, G., 2009. Emplacement and blue print - An approach to
handle and describe modules for evolvable assembly systems. In 9th IFAC Symposium on Robot Control,
SYROCO '09. pp. 183-188.

Siltala, N. & Tuokko, R., 2010. Emplacement and Blue Print—Electronic Module Description Supporting Evolvable
Assembly Systems Design, Deployment and Execution. In: Huang, G.Q., Mak, K.L. & Maropoulos, P.G.
(eds.), Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology.
Berlin, Heidelberg: Springer, pp. 773-788, ISBN 978-3-642-10429-9.

Slack, N., Chambers, S. & Johnston, R., 2004. Operations Management 4th ed., Prentice Hall, p. 794, ISBN 0-
273-67906-6.

165

Slama,S., 2002. The importance of modularity — Batch-size flexible assembly systems. Product Life Cycle
Management & Easier Automation, Paterspand, Turnhout, Belgium.

Smale, D. & Ratchev, 2009. A Capability Model and Taxonomy for Multiple Assembly System Reconfigurations.
In B. Natalia (ed.), In 13th IFAC Symposium on Information Control Problems in Manufacturing. Moscow,
pp. 1923-1928.

Smale, D. & Ratchev, S., 2010. Application of a Reconfiguration Methodology for Multiple Assembly System
Reconfigurations. In: Ratchev, S. (ed.), Precision Assembly Technologies and Systems. Springer Boston, pp.
239-246, ISBN 978-3-642-11597-4.

Stanford Center for Biomedical Informatics Research, 2012. Protégé ontology editor. Available at:
http://protege.stanford.edu/ [Accessed March 1, 2012].

Suh, N.P., 1998. Engineering Design Axiomatic Design Theory for Systems. Research in Engineering Design, 10,
pp. 189-209, ISSN 0934-9839.

Tang, L., 2005. Design and Reconfiguration of RMS for Part Family. PhD thesis. University of Michigan, p. 164.

Terkaj, W., Tolio, T. & Valente, A. 2009a. A Review on Manufacturing Flexibility. In: Tolio, T. (ed.), Desing of
Flexible Production Systems - Methodologies and Tools. Springer Berlin Heidelberg, pp. 41-61, ISBN 978-3-
540-85413-5.

Terkaj, W., Tolio, T. & Valente, A. 2009b. Design of Focused Flexibility Manufacturing Systems (FFMSs). In: Tolio,
T. (ed.), Desing of Flexible Production Systems - Methodologies and Tools. Springer Berlin Heidelberg, pp.
137-190, ISBN 978-3-540-85413-5.

Terwiesch, C. & Loch, C.H., 1999. Managing the Process of Engineering Change Orders: The Case of the Climate
Control System in Automobile Development. Journal of Product Innovation Management, 16(2), pp. 160-
172, ISSN 0737-6782.

Tharumarajah, A., Wells, A.J. & Nemes, L., 1998. Comparison of emerging manufacturing concepts. IEEE
International Conference on Systems, Man, and Cybernetics, 1998, 1, pp. 325-331, ISSN 1062-922X.

Timm, 1. & Woelk, P.-O., 2003. Ontology-based capability management for distributed problem solving in the
manufacturing domain. In: Schillo, M., Klusch, M., Miiller, J. & Tianfield, H. (eds.), Multiagent System
Technologies. Springer Berlin / Heidelberg, pp. 168-179, ISBN 978-3-540-20124-3.

Timm, 1.J., Scholz, T. & Herzog, O., 2006. Capability-based emerging organization of autonomous agents for
flexible production control. Advanced Engineering Informatics, 20(3), pp. 247-259, ISSN 1474-0346.

Tolio, T. & Valente, A., 2006. An Approach to Design the Flexibility Degree in Flexible Manufacturing Systems. In
16th Int. Conf. on Flexible Automation and Intelligent Manufacturing, FAIM 2006, June 26 — 28. Limerick,
pp. 1229-1236.

Tolio, T, Ceglarek, D., EIMaraghy, H.A., Fischer, A., Hu, S., Laperriere, L., Newman, S. & Vancza, J. (2010).
SPECIES - Co-evolution of Products, Processes and Production Systems. CIRP ANNALS — Manufacturing
Technology, 59(2), p. 672-693, ISSN 0007-8506.

Tracht, K. & Hogreve, S., 2011. Decision Making During Design and Reconfiguration of Modular Assembly Lines.
In: EIMaraghy, H.A. (ed.), Enabling Manufacturing Competitiveness and Economic Sustainability.
Springer, pp. 105-110, ISBN 978-3-642-23860-4.

Travaini, E., Pedrazzoli, P., Rinaldi, R. & Boér, C.R., 2002. Methodological Approach and Reconfiguration Tool for
Assembly Systems. CIRP Annals - Manufacturing Technology, 51(1), pp. 9-13, ISSN 00078506.

166

Tsai, Y.-T. & Wang, K.-S., 1999. The development of modular-based design in considering technology
complexity. European Journal of Operational Research, 119(3), pp. 692-703, ISSN 0377-2217.

Ueda, K., Vaario, J. & Ohkura, K., 1997. Modelling of biological manufacturing systems for dynamic
reconfiguration. CIRP Annals-Manufacturing Technology, 46(1), pp. 343-346, ISSN 0007-8506.

Ueda, K, Markus, A., Monostori, L., Kals, H. & Arai, T., 2001. Emergent Synthesis Methodologies for
Manufacturing. CIRP Annals - Manufacturing Technology, 50(2), pp. 535-551, ISSN 0007-8506.

Ueda, K., 2007. Emergent Synthesis Approaches to Biological Manufacturing Systems. In: Cunha, P. &
Marapoulos, P. (eds.), Digital Enterprise Technology. Elsevier, pp. 25-34, ISBN 978-0-387-49864-5.

Usher, J. & Fernandes, K., 1999. An object-oriented application of tool selection in dynamic process planning.
International Journal of Production Research, 37(13), pp. 2879-2894, ISSN 0020-7543.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. & Peeters, P., 1998. Reference architecture for holonic
manufacturing systems: PROSA. Computers in Industry, 37(3), pp. 255-274, ISSN 0166-3615.

Vichare, P., Nassehi, A., Kumar, S. & Newman, S.T., 2009. A Unified Manufacturing Resource Model for
representing CNC machining systems. Robotics and Computer-Integrated Manufacturing, 25(6), pp. 999-
1007, ISSN 0736-5845.

Visual Components, 2012. 3DCreate simulation software. Available at:
http://www.visualcomponents.com/Products/3DCreate [Accessed February 1, 2012].

von Euler-Chelpin, A. & Kjellberg, T., 2007. Capturing resource operation knowledge from runtime data for
production support and feedback to development. In Cunha, P. & Maropoulos, P. (eds.), Digital Enterprise
Technology. Springer US, pp. 519-526, ISBN 978-0-387-49864-5.

Vos, J.A.W.M., 2001. Module and System Design in Flexibly Automated Assembly. PhD thesis. Delft University of
Technology, p. 198.

Warnecke, H.J., 1993. The Fractal Company: A Revolution in Corporate Culture, Springer, p. 228, ISBN
354056537X.

Watson, 1., 1999. Case-based reasoning is a methodology not a technology. Knowledge-Based Systems, 12(5-6),
pp. 303-308, ISSN 0950-7051.

Westkamper, E., 2006. Factory Transformability: Adapting the Structures of Manufacturing. In Daschenko, A.l.
(ed.), Reconfigurable Manufacturing Systems and Transformable Factories. Springer Berlin / Heidelberg,
pp. 371-381, ISBN 3-540-29391-4.

Wiendahl, H., EIMaraghy, H., Nyhuis, P., Zah, M., Duffie, N. & Brieke, M., 2007. Changeable Manufacturing -
Classification, Design and Operation. CIRP Annals - Manufacturing Technology, 56(2), pp. 783-809, ISSN
0007-8506.

Wiendahl, H.P. & Heger,, C.L., 2004. Justifying Changeability. A Methodical Approach to Achieving Cost
Effectiveness. Journal for Manufacturing Science and Production, 6(1-2), pp. 33-40, ISSN 0793-6648.

Wikipedia, 2012. Denavit-Hartenberg parameters. Available at:
http://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters [Accessed September 1, 2010].

Wikipedia, 2011. List of manufacturing processes. Available at:
http://en.wikipedia.org/wiki/List_of_manufacturing_processes [Accessed February 5, 2011].

167

Wildemann, H., 2009. Variant Management: Guidelines for the Reduction, Control and Avoidance of Complexity
in Products and Processes (German Title: Variantenmanagement: Leitfaden zur Komplexitatsreduzierung,
-beherrschung und -vermeidung in Produkt und Prozess), TCW Transfer Centre for Production Logistics
and Technology Management, Miinchen.

Wénstrom, C. & Jonsson, P., 2006. The impact of engineering changes on materials planning. Journal of
Manufacturing Technology Management, 17(5), pp. 561-584, ISSN 1741-038X.

Youssef, A.M.A. & EIMaraghy, H. A., 2007. Optimal configuration selection for Reconfigurable Manufacturing
Systems. International Journal of Flexible Manufacturing Systems, 19(2), pp. 67-106, ISSN 0920-6299.

Zah, M.F., Reinhart, G., Ostgathe, M., Geiger, F. & Lau, C., 2010. A holistic approach for the cognitive control of
production systems. Advanced Engineering Informatics, 24(3), pp. 300-307, ISSN 1474-0346.

Z&h, M., Ostgathe, M, Geiger, F & Reinhart, G, 2011. Adaptive Job Control in the Cognitive Factory. In:

ElMaraghy, H.A. (ed.), Enabling Manufacturing Competitiveness and Economic Sustainability. Springer,
pp. 10-17, ISBN 978-3-642-23860-4.

168

APPENDICES

Appendix 1: Capability model — Part 1: Feeding & object recognition

Appendix 2: Capability model — Part 2: Gluing, pick&place, inserting

Appendix 3: Capability model — Part 3: Machining & lasering

Appendix 4: Capability taxonomy

Appendix 5: Example rules in the rule-base

Appendix 6: Adaptation schema — Node A0, Overall adaptation schema

Appendix 7: Adaptation schema — Node A1, Definition of product requirements

Appendix 8: Adaptation schema — Node A2, Matching product requirements with existing capabilities
Appendix 9: Adaptation schema — Node A4, Creating an adaptation plan for the current system

Appendix 10: Adaptation schema — Description of the terms used in the schema diagrams

169

& Object recognition

ing

Feed

uonns 0 Juontsod

sunydeHaseun

SWRFI S

uonenossysumydeHaseun UOTJRID 0SS VS UTRUTIIN]TY

UONRIIO:

VAU ST

SuIssad0IJaseun

SWSUISTENSIA

UONRIOSSUONIIS 022 Juonisod

$s2001ga5eun

UONRIOSSYSUISUR SIeNSIA

VORI 0SS YUONIIS 099 JUONRJUSLIO

Aexpsupaay

suproddngaquy

uonn5023 q3lqo

aquIsmpaay

Sumuatio

ade5mpaay

suroddngadey

uonenossysumoddnglen

lity model - Part 1

UONLIOSSYARLLSUIPaaY

uonenossysmroddngaquy

UOHRDOSSY2qNLSUIPIY

uonenossysmroddngade)

Capab

Appendix 1

Supaa gAen

Smpaa Jaquy

Supaa Jade)

UONRIOSSYHUIPAY

uonenossysumonisod

sumonisod

UONRISOSSYSUPUILIO

UOPNIS 093 JUONLJUILIO

170

Appendix 2: Capability model - Part 2: Gluing, pick&place, inserting

aaedsyjro p\Sumaowr

Jddunasug

T

uonenossyddinpsuy

ORI 0SS YIS uonenossydnpumnoea

UOPLNOSSyuonearHumnoes

UONLIOSSFHUAOWT

aarsaypysmsuadsip

UOHRII 0SS aAISpySuIsuadsip

sudsernesug

UONRI 0SS SWP[OY uonenossysmdsers

sukddyaaiox

sugrodsuen

Surseaar

uonenossysmAddyastoy uonenossysumiodsuen UONRII 0SS SIS

uoneanddyaarsaype

uonenossyuoneanddyaasaype ORI 0SS YHURI2SUT

dpsunyord

surdsernonausewr

UONLIOSSEUME)0r

suddngy

171

ing

& laser

ining

Appendix 3: Capability model - Part 3: mach

PLaHBUIMAIS

UOnRI_UIDHWEIIISE]

SumoagaJuIeaqIase]

ORI 0SS TUONRIIUI) JaSL] ORI 0SS YHUNIIF JIeaqIase]

ORI 0SS YHUNIIEI SIS L]

asardhyro p Surmmds

sanradorgsunyrewr SIS 0IJI25e]

sanradorgsuyno

UOTJRID 0SS SURL IR

UONRI 0SS YBUISSII0IJIaSe] UONRI OSSN

ORI 0SS YHULIYXT

SwpjogIooLArejor

SWPIOH[00) e

IPpnDSWpeany

UONRIOSSYSWP[OH[00 L A1e)ox

TONEI 0SS YIRS _

l; UONLI 0SS YSUIP[OH]00) 7I

UONRIOSSVILP _

UONEI 0SSV IRNN)SUWPLaN])

oo stmmu

$[00 L Arejogsummnnds oo summmnds

oo LSumIp

doedsypro pSumaour

[ooLSupearny

UONEI 0SSO0 LSUmLI) 7I

UONLIIOSSV]OOLSMMAIIS 7I _ ner

VUG

7I_ et ...q._oo.u.m:_:_:; ir:ous_oomwf._oobm_a_::_w g:oua_oommf,w_iiﬁ_m

x; UONLI 0SSO0 LSUMup _ I; uoner

SV : ner vIooLSupeany

172

Appendix 4: Capability taxonomy

Production

Manufacturing

DiscreteManufacturing

Shaping
Material Adding
Casting
Moulding
LaserAdding
Material removing
Punching
Machining
Milling
Turning
Drilling
Boring
Threading
Grooving
Laser cutting
Grinding
Material conserving
Forming
Bending
Pressing
Non-shaping
Surface finishing
Coating
Painting
Heat treatment
Marking

LaserMarking

StampMarking

Printing

Writing

InkMarking

Labelling

ContinuousManufacturing

Assembling

Joining

DeformingFixating

Elastic deforming

Pressing

Snapping

Shrinking

Wedging

Clipping

Plastic deforming

Bending

Twisting

Clinching

Crimping

Folding

173

Fastening

Riveting

Screwing

Sewing

Spring fastening

Stapling

Taping

Nailing

Clamping

Self sticking

Gluing

Adhesive curing

UV curing

Thermal curing

Soldering

Dip soldering

Furnace soldering

Induction soldering

Iron soldering

Resistance soldering

Torch soldering

Welding

Cold welding

Metal welding

Arc welding

Laser welding

Resistance welding

Plastic welding

Friction welding

Heated air welding

Ultrasonic welding

Logistic

Manipulation

Picking up

Grasping

FingerGrasping

VacuumGrasping

Holding

Arranging

Placing

Mating

Inserting

Orienting

Positioning

Transporting

Flipping

Buffering

Storing

Routing

Feeding

BulkFeeding

Plate feeding (flexible tray)

Sword feeding

Vibratory feeding

Bowl feeding

Flexible feeding

Tube feeding

Tape feeding

Tray feeding (dedicated tray)

174

Preparation

Loading

Fixturing

Adhesive application

Adhesive dispensing

Adhesive printing |

Self adhesive tape application

Solder paste application

Solder paste dispensing

Solder paste screen printing

Unpacking
Cleaning
Qualifying
Identification
Scanning
RF scanning
Laser scanning
Vision reading
Dotcode reading
Barcode reading
Image capturing
Inspection
Testing
Measuring
Finalization
Marking
Writing
Ink marking
Stamp marking
Printing
Labelling
Laser marking
Packaging
Wrapping
Boxing
Bagging
Sealing
Encapsulating
Coating
Cleaning
Unloading

175

Appendix 5: Example rules in the rule-base

DOMAIN EXPERT RULES

Detailed capability definition

Taxonomy: MaterialRemoving

IF feature._hasCapabilityTaxonomy(“MaterialRemoving”) AND
feature.hasFeatureType (“hole’) AND
feature.hasFeatureType(“cylindrical’) AND
feature.getParameter(“diameter™) <= 40.0

THEN

RETURN [Capabilities.find(*“drilling’)]

IF feature._hasCapabilityTaxonomy(“MaterialRemoving”) AND
feature.hasFeatureType(“hole’) AND
feature.hasFeatureType(“cylindrical’) AND
feature.getParameter(“diameter™) > 40.0

THEN
RETURN [Capabilities.find(“drilling”), Capabilities.find(“boring”’)]

IF feature._hasCapabilityTaxonomy(“MaterialRemoving”) AND
product.getinitialProduct.hasShape(“cylindrical’) AND
feature.hasFeatureType(“cylindrical’) AND
(feature.hasFeatureType(“groove”) OR

feature.hasFeatureType(“pad”) OR
feature.hasFeatureType(“chamfer”) OR
feature.hasFeatureType(“rounding”))

THEN

RETURN [Capabilities.find(“turning”), Capabilities.find(“milling”)]

IF feature._hasCapabilityTaxonomy(“MaterialRemoving”) AND
(feature.hasFeatureType(“groove”) OR
feature.hasFeatureType(“pocket’)) OR
(product._getlnitialProduct.hasShape(“box’) AND
feature.hasFeatureType(“cylindrical”) AND
(feature.hasFeatureType(“groove”) OR
feature.hasFeatureType(“pad’)))
THEN
RETURN [Capabilities.find(“milling’)]

IF feature._hasCapabilityTaxonomy(“MaterialRemoving”) AND
feature.hasFeatureType(“thruHole’) AND
feature.getParam(“thickness”) <= 3.0

THEN
RETURN [Capabilities.find(“/laserCutting”), Capabilities.find(“punching’)]

Taxonomy: MaterialAdding

IF feature._hasCapabilityTaxonomy(“MaterialAdding™)
THEN
RETURN CapabilityTaxonomy.find(“MaterialAdding”) .findCapabilities()

Taxonomy: Marking

IF feature._hasCapabilityTaxonomy(“Marking’)
THEN
RETURN CapabilityTaxonomy.find(“Marking™) .findCapabilities()

Detailed capability matching

Taxonomy: Drilling

IF feature.getParam(“diameter™) = drillBit.getParam(“hole_diameter”) AND
feature.getParam(“depth”) <= drillBit.getParam(“max_drilling_depth”) AND
feature.getParam(“bottomShape™) = drillBit.getParam(“shape_bottom’) AND
feature.getMaterial() IN drillBit.suitableMaterials() AND
product.getinitialProduct() .size().islInside(Ffixturing.minltemsize()-
fixturing.maxltemSize())

THEN

RETURN TRUE

Taxonomy: Threading

IF feature.hasCapabilityTaxonomy(“Threading”) AND

176

feature.getParam(“threadAngle™) = threadingCutter.getParam(“thread_angle’)

teature.getParam(“threadingStandard™) = threadingCutter.getParam(‘““thread_standard™)
THEN

RETURN TRUE

Taxonomy: Fixturing

fixture = resource.hasCapability(“fixturing”)

IF ((product.getinitialProduct().getParam(“length”) OR
product.getintialProduct() .getParam(“width™)) <= Ffixturing.getParam(“max_spread’”)) AND
(product.getinitialProduct() .getParam(“length”) OR

product.getintialProduct() .getParam(“width™)) >= fixturing.getParam(“min_spread’”)) AND

product.getinitialProduct().getParam(“weight™) <=
fixturing.getParam(“max_item_weight’™)) OR
(product._getlnitialProduct().size().islnside(fixture. itemMinSize() —
fixture.itemMaxSize()) AND
product.getinitialProduct() .getParam(“weight™) <=
fixture. 1temMaxSize.getParam(“weight™))

THEN

RETURN TRUE

Taxonomy: Turning

lathe = resource.hasCapability(“spinningWorkpiece’)

IF product._getlnitialProduct().size().islInside(lathe. itemMaxSize()) AND
product.getinitialProduct() .getParam(“diameter”) <=
turningProperties.getParam(“max_turning_diameter”) AND
feature.getParam(“length™) <= turningProperties.getParam(“max_turning_length”) AND
product.getMaterial() IN turningTool.suitableMaterials() AND
feature.hasFeatureType(“type”) = turningTool.getParam(“type”) AND
feature.getParam(“insideRounding”) >= turningTool.getParam(“nose_radius”) AND
feature.getParam(“angleTowardsMaterial™) <= (180 — turningTool.getParam(“insert_shape”)
— turningTool .getParam(“cutting_edge_angle)) AND
((feature.getParam(“angleBetweenFaceAndPad”) <= 90 AND

feature.getParam(“angleBetweenFaceAndPad) >=
turningTool.getParam(“cutting_edge_angle”)) OR
(feature.getParam(“angleBetweenFaceAndPad™) > 90 AND
turningTool .getParam(“cutting_edge_angle”) >= (180 - “angleBetweenFaceAndPad’)) AND
feature.getParam(“tolerance™) >= movingWorkspace.getParam(“repeatability”)
THEN
RETURN TRUE

Taxonomy: Milling

millingMachine = resource.hasCapability(“spinningTool’™)

IF product.getlnitialProduct().size().islInside(millingMachine. itemMaxSize()) AND
product.getMaterial() IN millingCutter.suitableMaterials() AND
feature.getParam(“insideRounding”) = millingCutter.getParam(“nose_radius”) AND
feature.getParam(“tolerance”) >= movingWorkspace.getParam(“repeatability”) AND
(((feature.hasFeatureType(“pocket”) OR feature.hasFeatureType(“‘groove’)) AND
feature.getParam(“width”) >= millingCutter.getParam(“tool_diameter”) OR

(NOT (feature.hasFeatureType(“pocket”) OR NOT(feature.hasFeatureType(‘““‘groove”))) AND

((feature.getParam(“outsideRounding™) != 0 AND
millingCutter.getParam(“type”) = “rounding” AND
feature.getParam(“outsideRounding”) = millingCutter.getParam(“nose_radius”)) OR
feature.getParam(“outsideRounding”™) = 0) AND

((feature._hasFeatureType(“chamfer’) AND
feature.getParam(“chamferAngle”) = millingCutter.getParam(“cutting_edge_angle”)) OR

NOT (feature .hasFeatureType(“chamfer’))

THEN
RETURN TRUE

Taxonomy: LaserMarking

laserScanner = resource.hasCapability(“laserScanning”)

IF feature.getParam(“length”) <= laserScanner.movingWorkspace.getParam(“length”) AND
feature.getParam(“width) <= laserScanner.movingWorkspace.getParam(“width’)

THEN
RETURN TRUE

Taxonomy: Screwing

IF screw.getParam(“type”) = screwingHead.getParam(‘““type”) AND
screw.getParam(“size”) <= screwingHead.getParam(‘“‘screw_size_max’) AND
screw.getParam(““size”) >= screwingHead.getParam(‘““screw_size_min”) AND
screw.getParam(““torque”) <= spinningTool.getParam(“max_torque”) AND
screw.getParam(““torque”) >= spinningTool.getParam(“max_torque’)

THEN
RETURN TRUE

177

Taxonomy: VacuumGrasping

IF product._getParam(“weight”) <= Combined_payload_of[robot + vacuumGripper] AND
findResource.hasCapabi lity(“vacuumCup’™)

THEN
RETURN TRUE

IF product.getParam(“weight”) <= Combined_payload_of[robot + vacuumGripper] AND
findResource.hasCapability(“shapedTip”) AND
product.size().islnside(shapedTip())

THEN

RETURN TRUE

Taxonomy: MagneticGrasping

Magnetic grasping by screwdriver
IF providedCapability = “magneticGrasping” AND
product.getParam(“material”) = metal AND
product.getParam(“weight”) <= Combined_payload_of[robot + screwdriver] AND
product.getParam(“diameter”) <= screwdriver.maxltemSize_getParam(“diameter”) AND
product.getParam(“length”) <= screwdriver.maxltemSize.getParam(“length”) AND
THEN
RETURN TRUE

Taxonomy: Transporting

conveyor = resource.hasCapability(“movingWorkspace”) AND (“holding™)

IF product.getParam(“weight”) <= holding.getParam(“payload”) AND
product.getParam(“length”) <= conveyor. itemMaxSize.getParam(“length’) AND
product.getParam(“width”) <= conveyor. itemMaxSize.getParam(“width’) AND
product.getParam(“height”) <= conveyor. itemMaxSize.getParam(“height)

THEN
RETURN TRUE

NOTE: If other than directly product related parameters are known, e.g. required speed of the transporting
capability or required transporting area, the following rules can be applied.

With conveyor
IF product.transportingArea(“length”) <= workspaceBox.getParam(“length”) AND

process.transportingSpeed(“speed”) <= movingWorkspace.getParam(“speed_x"")
THEN
RETURN TRUE

With robot + gripper

IF process.getParam(“speed_x’") <= movingWorkspace.getParam(“speed_x’’) AND
process.getParam(“speed_y) <= movingWorkspace.getParam(“speed_y”) AND
process.getParam(“speed_z) <= movingWorkspace.getParam(“speed_z”) AND
process.getWorkspace.size() -islnside.Combined_workspace[robot + gripper]

THEN
RETURN TRUE

Taxonomy: PlateFeeding

plate = resource.hasCapability(“feedingPlate™)

IF product.getParam(“diameter™) <= plate. itemMaxSize.getParam(“diameter’) AND
product.getParam(“length”) <= plate. itemMaxSize.getParam(“length’”) AND

THEN

RETURN TRUE

Taxonomy: ImageCapturing

IF product.getSmallestParam.size() >= 2 * FoV width /
imageCapturing.getParam(“x_resolution’) AND
product.getSmal lesParam.size() >= 2 * FoV height /
imageCapturing.getParam(“y_resolution’)

THEN
RETURN TRUE

COMBINED CAPABILITY RULES
Combining parameters

Tool length (tool + tool holder)
Taxonomy: Milling

178

millingCutter = resource.hasCapability(“millingCutter?™)

Max_length_of _the _tool =
toolHolder.getParam(“effective_length) + millingCutter.BasicDevicelnfo.getParam(“length™)
— MAX(toolHolder.getParam(“tool_entry _min”), millingCutter.getParam(“min_entry’))

Min_length_of the_tool =
toolHolder.getParam(“effective_length) + millingCutter.BasicDevicelnfo.getParam(“length™)
— MIN(toolHolder.getParam(“tool_entry max™), millingCutter.getParam(“max_entry’))

Current_length_of_the_tool =
toolHolder.getParam(“effective_length) + millingCutter.getParam(“current_entry’)

Taxonomy: Drilling

drillBit = resource.hasCapability(“drillBit")

Max_length_of _the _tool =
toolHolder.getParam(“effective_length) + drillBit.BasicDevicelnfo.getParam(“length™) —
MAX(toolHolder.getParam(“tool_entry min”), drillBit.getParam(“min_entry’))

Min_length_of the_tool =
toolHolder.getParam(“effective_length) + drillBit.BasicDevicelnfo.getParam(“length™) —
MIN(C toolHolder.getParam(“tool_entry _max™), drillBit.getParam(“max_entry’))

Current_length_of_the_tool =
toolHolder.getParam(“effective_length™) + drillBit.getParam(“current_entry”)

Workspace

Taxonomy: Machining

Workspace in horizontal machining centers

Vertical reach of the tool
Lowest_spot_in_the_initial_product_where_can_be_machined =
millingProperties.getParam(“distance_spindle_table_top_min”) —
fixturing.getParam(fixturing_position_z)
Highest_spot_in_the_initial_product_where_can_be_machined =
millingProperties.getParam(“distance_spindle_table_top_max™) —
fixturing.getParam(“fixturing_position_z”)

Horizontal reach of the tool

Minimum_distance_between_pallet_center_and_tool =
millingProperties.getParam(“distance_spindle_pallet_center_min”) — Max_length_of_the_tool
Maximun_distance_between_pallet_center_and_tool =
millingProperties.getParam(“distance_spindle_pallet_center_max”) — Min_length_of_the_tool
Current_maximum_distance_between_pallet_center_and_tool =
millingProperties.getParam(“distance_spindle_pallet_center_max”) —
Current_length_of_the_tool

Taxonomy: ObjectRecognition

FoV_width = (lightReflecting.getParam(“current_working_distance™) *
imageCapturing.getParam(“detector_size_x)) / lightReflecting.getParam(“focal_length_min’)

FoV_height = (lightReflecting.getParam(“current_working_distance™) *
imageCapturing.getParam(“detector_size_y)) / lightReflecting.getParam(“focal_length_min’)

Payload

Taxonomy: Machining

Payload of machining center
millingMachine = resource.hasCapability(“spinningTool’”)
fixture = resource.hasCapability(“Ffixturing”)

Combined_payload_of[millingMachine + fixture] =
MIN(millingMachine. payload.getParam(“weight”) - Ffixture.basicDevicelnfo.getParam(“weight™),
fixturing.getParam(“max_item_weight’))

Taxonomy: Manipulation

Payload of robot + finger gripper

robot = resource.hasCapability(“movingWorkspace™)
gripper = resource.hasCapability(“fingerGripper?”)
finger = resource.hasCapability(“finger™)

Combined_payload_of[robot + fingerGripper + fingers] = MIN(robot.payload.getParam(“weight™)
— gripper.basicDevicelnfo.getParam(“weight”) — fingerGripper.getParam(“number_of_fingers”)
* finger.basicDevicelnfo.getParam(“weight™),

fingerGripper.getParam(“payload™))

Payload of robot + vacuum gripper

179

robot = resource.hasCapability(“movingWorkspace™)
vacuumCreator = resource.hasCapability(“vacuumCreation™)

Combined_payload_of[robot + vacuumGripper] = MIN(robot.payload.getParam(“weight”) —
vacuumCreator . basicDevicelnfo.getParam(“weight) -vacuumCreation.getParam(“number_of_cups’™)
* vacuumCup.getParam(“weight’)),

1/9,81 * vacuumCup. getParam(“holdlng force™) * vacuumCreation.getParam(“number_of_cups’))

Payload of robot + screwdriver

robot = resource.hasCapability(“movingWorkspace™)
screwdriver = resource.hasCapability(“spinningTool’™)
screwinghead = resource.hasCapability(“screwingHead”)

Combined_payload_of[robot + screwdriver] = MIN(robot.payload.getParam(“weight”) -
screwdriver.basicDevicelnfo.getParam(“weight”) —

screwinghead. basicDevicelnfo.getParam(“weight™)),

1/9,81 * magneticGrasping.getParam(“holding_force™))

Taxonomy: TrayFeeding, PlateFeeding

Payload of the plate feeder
trayFeeder = resource.hasCapability(“traySupporting™)
plate = resource.hasCapability(“feedingPlate™)

Combined_payload_of[feeder + plate] = traySupporting.getParam(“payload) —
(traySupporting.getParam(“number_of_trays™) * plate.basicDevicelnfo.getParam(“weight’))

Accuracy

Taxonomy: Manipulation

Placing and inserting accuracy of robot and 2-finger gripper
Combined_accuracy[robot + 2-finger gripper] = movingWorkspace.getParam(‘“accuracy’) +
2*finger.getParam(“tolerance™) + 2*fingerGripper.getParam(‘“accuracy’)

Taxonomy: Machining

Machining accuracy [machine + fixture]
machine = resource.hasCapability(“spinningWorkpiece™) OR
resource .hasCapability(“spinningTool’™)

Machining_accuracy[machine + Ffixture] = movingWorkspace.getParam(“accuracy”) +
fixturing.getParam(“tolerance™)

Combining interfaces

Tool + Tool holder

Taxonomy: Milling

IF toolHolding.getParam(“tool_attach_diameter_type™) I=
millingCutter.getParam(“holder_attach_diameter_type”) AND
toolHolding.getParam(“tool_attach_diameter_min”) <=
millingCutter._getParam(“holder_attach_diameter”) AND
toolHolding.getParam(“tool_attach_diameter_max”) >=
millingCutter.getParam(“holder_attach_diameter”)

THEN

RETURN TRUE

Taxonomy: Drilling

IF toolHolding.getParam(“tool_attach_diameter_type™) I=
drillBit_getParam(“holder_attach_diameter_type”) AND
toolHolding.getParam(“tool_attach_diameter min”) <=
drillBit._getParam(“holder_attach_diameter’™) AND
toolHolding.getParam(““tool_attach_diameter_max™) >=
drillBit.getParam(“holder_attach_diameter”™)

THEN

RETURN TRUE

Taxonomy: Threading

IF toolHolding.getParam(“tool_attach_diameter_type™) I=
threadingCutter_getParam(“holder_attach_diameter type™) AND
toolHolding.getParam(“tool_attach_diameter_min”) <=
threadingCutter.getParam(“holder_attach_diameter™) AND
toolHolding.getParam(“tool_attach_diameter_max™) >=
threadingCutter_getParam(“holder_attach_diameter™)

THEN

RETURN TRUE

180

Taxonomy: Screwing

screwdriver = resource.hasCapability(“spinningTool’™)
screwinghead = resource.hasCapability(“screwingHead”)

IF (spinningTool.getParam(“diameter_max’) >=
screwingHead. basicDevicelnfo.getParam(“diameter’)) OR
(screwdriver.Outputinterface() = screwingHead. Inputlnterface())
THEN
RETURN TRUE

Machine + tool holder
Taxonomy: Machining

machine = resource.hasCapability(“spinningWorkpiece”) OR
resource .hasCapability(“spinningTool’™)
toolHolder = resource.hasCapability(“toolHolding™)

IF machine_hasOutputlnterface(“X”) = toolHolder._haslnputlnterface(*“X")

THEN
RETURN TRUE

r—
ADAPTATION RULES
Generic guidelines

IF requiredCapability.Existsln.currentSystem.findCapabilities() AND
matchParameters(currentSystem.capability.find(capabilityParameters),
requiredCapability(requiredParameters)) = true

THEN
Use the current system and apply needed logical and parametric adaptation actions

ELSE
Perform physical adaptation actions (reconfiguration)

IF Physical adaptation of the existing system is needed

THEN
Minimize the adaptation distance and create new combinations of the existing resources
and resources in storage

New combination generation
Taxonomy: Turning

IF feature._hasCapabilityTaxonomy (“Turning”) AND currentSystem.hasCapability(“turning”) AND
matchParameters(currentSystem.capability.find(capabilityParameters),
requiredCapability(requiredParameters)) = false

THEN
Create new combinations of the resource.hasCapability(“spinningWorkpiece”) and other
resource.hasCapability(“turningTool’™)

Taxonomy: Screwing

IF feature._hasCapabilityTaxonomy (“Screwing”) AND
currentSystem._hasCapability(“screwing”) AND
matchParameters(currentSystem.capability.find(capabilityParameters),
requiredCapability(requiredParameters)) = false

THEN
Create new combinations of the resource.hasCapability(“spinningTool”) and other
resource.hasCapabi lity(“screwingHead”)

Taxonomy: TrayFeeding, PlateFeeding

IF process._hasCapabilityTaxonomy (“PlatefFeeding”) AND
currentSystem._hasCapability(“platefFeeding”) AND
matchParameters(currentSystem.capability.find(capabilityParameters),
requiredCapability(requiredParameters)) = false

THEN
Create new combinations of the resource.hasCapability(“traySupporting”) and other
resource.hasCapability(“feedingPlate™)

Context specific rules
User defined rules

IF order.getParam(“number_of _ordered_items™) >= User given value
THEN
RETURN resource.hasProperty(“fastest”)

181

IF order.getParam(“number_of_ordered_items”) < User given value
THEN
RETURN resource.hasProperty(“cheapest’)

20

ules for applying user given criteria

IF Reliability of the resource is specially valued
THEN
RETURN MAX(resource.hasLifecycleProperty(“MTBF))

IF Environmental sustainability is specially valued
THEN
RETURN MIN(resource.hasProperty(“energy_consumption’))

182

hema

10N sc

hema - Node AOQ, Overall adaptat

1on sc

Adaptati

Appendix 6

[Elele]

Alliqedes
e1ep aoualsel POUIWOD suondiiosap
180D % Wil : Awouoxey 50IN0SaY abpa|mou abpajmou
$801A8P JO UoljeuLIojul Alngeden ssaooud |elialely
a|0Aoay| g ssauisng aseqg-any Jnuep |00}
uonubooal
ﬁ ainjead
a|npayos
Allliqejieae
290Inosay
a1ewss
1800 Uoljeldepy !
. H ey M __elUaIo
sjuswalinbal — walsAs “ paulsp Jasn
uoneidepy < .
juaLINo sy} oy e
ue|d uoneydepe uonduosep
ue Buneal) vy v v 3 weyshs
uoneinByuoo v wauny
waishs pajos|ag 1
saniqedeo e1ep joEW
Bunsixe yum |«
wycmc._m.__s_um._ sjuswalinbal
onpoud Buiyore |y Ayeno
pue souels|o]
A, A, A4 A,
A
sjuswalinbal
saniligedes L sjuswalnbal e poep
Buiyoyew 1o isi “ 1onpoud .
aousnbas
Wa)sAs JUSLINO UO SS0IASP [eNnPIAIPUI Aungedes jo uoniuyag
% SUOIJBUIJUIOD 01ASP 3|qelNS |apow
sjuswalinbal Ayjgedesn quelg
|apow
10npold
Isplo
- Jonpold
cho_mv%mwccmm. SUIBSUOD seulepinb SjUIRASUOD SeoepSUl
’ uolonpold uoneidepy [B9I18AU4 CellClg] wym_%_wyw_m_oo MMDM&MMM

183

f product requirements

Inition o

Appendix 7: Adaptation schema - Node A1, Def

suawsaJinbal

Anngeded AH
aouanbas AH

Anngeded

(uonuyap

Augedes pajrelap) abpamouy ssasoid abpajmouy 1001 uomubooal
so|n1 padxa urewoq Auiouoxes Anigeded buunoenuen [eusren ainead
1aplo
% ﬁ % 19npoid
Vv <
<« sjuswaiinbal
sanijiqeded < Aupenb pue asuessjol
Buunioejnuew |«
paJinbai «
jouoniuged F =S
sjuawaiinbal
Buunixi4
A v
eV sjuawalinbai
. [euarey
ue|d ssaooud |
-a1d Jo uoniuyaq
Japow
quelg
ueld v
ssao0.d-ald 424
Salnjes) «
salnjea} <
Buumoeynueyy | Y40 sisAjeuy
-«
% A
v
V uoniubooal |epow
salnjea} ainyea4 19npold
paziubooay
Sjurensuod spJepuels
ubisag aoueIa0 L

184

Appendix 8: Adaptation schema - Node A2, Matching product requirements with

ities

existing capab

(Buiyorew (s1e10Wesed
Amngedeo pairelop) japow Aujgedes uondosap Buiuigwoo)
S99IASP 1O LoTeW oI soIn! 1iath® UELIOg (L aoualadwoo sans Anqedes Awouoxe)
29Koay1| 9 ssauisng _ : paulquod ® 90naQ eI Aungede)
Iqedes ﬁ v h
Buissiw AH
joisi vev
E@uw\mw jualind ayl
Ul S8JIASP [enpPIAIpUI
% Jo seniqedes ~
sonqedeo ay1 yum sjuswaiinbal
BuyoTeW 4O 1S Burredwoo)
1 1 gev
WwdIsAs Jualind uo suoljeuiquiod
S3JIASP [eNPIAIpUl S|geINS senyqedes 3JIASP JUBLIND
BuISSIA ui saniiqedes
Buissiw BuiAynuap)
v
44
[oA9] Je1owrered
Te suolTeuIgWOo9
921ABP JUBLIND B}
yIm sluswaiinbal
semjqedes Burredwo) 3
Buiyorew Jo 1siq A4

2

P

walsAs Jualnd
U0 SUOIRUIGWIOD 3DIASP 3|gelNS sawreu
1daou0d
Aniqeded
Buiyorey

[9A9] aweu 1dasuod
e suoljeuIquod 32IA3P
U319 Jo sanljiqeded
Yum sjuswalinbal
Burredwo)

¢’

.

|

sjurelsuod

Sluresisuod
150D 73 awIL p

ubisaqg

uonduosap
wasAs
JUIEhie)

sjuawalinbal
Anjigqeded

185

ion plan for the

daptat

ing an a

hema - Node A3, Creat

10N sc

Adaptati

Appendix 9

current system

S991A9p S90IASD moMHME (ouoads (uonessuab uofduosep uonduossap
| ! | sa|n i 1l
JO UOIEWIO)Ul JO UOIJELLIOJU 150D ﬁxwhﬂmwwwqh UOIEUIqUIOD MBU) Ayqedeo _muowc:_\:ﬁwm%o 201A8p 201A0p (Buiyoyew (sauapinb ousuab)
sjohoay sseuisng Q BwI| : se|ni uojejdepy psuiquon paulquiod onfojejeny asnoy-u| Aungedeo pojiejop) so|n1 uoleldepy
’ sa|n1 padxa urewoq
E}Ep
oyIEN
sajewjsa
1s09 uoljejdepy eus|Io
paulep Jasn
A,
1234
sjuswalinbal uoneinBluoo eInpayas
uonejdepy DI sigeunsisow | / Aulgejieae
! |qeuns y 20In0saYy
oy bunoseg |7
L L uonduosap
A
uoleinbyuoo v h eSS eHno
wiojsAs ceY wio)sAs
pajosles N JUSLIND UO SVIABP
Solleusos [enpiapul o|qeng
uoneinBbyuod : waishs
Emyw>w JUa11N92 UO suoljeuIquod
Buneisuso 921A3p |qEUNS
y 2 y A, A, A, v A,
cev sousnbas Ajqeden
p wo_a,%ow sallelqI| 991A8P g
uoljelnBluoo saljiqedes
wojsAg WoJ4 S80IASP Loy - Buiyorew jo jsi
1o} Buiyoless
2 (oupweled
C . . -
sobueyo |eoisAyd alinboe 0} _mm_mo_ _mo_Qw\va
Inoyym s|qissod saniiqeded edfy uopeidepe »
papaau Buissiw Jo 51
ay) Bunenjea
H Juswalinbal
Ayngeded
SjUlEes}SU0D SJUIEN}SUOD sounepinG SJUIENSU0D sjuleljsuoo
js00 oWl uofonpoid vonEIdEpy ettt eosAyd ubiseq

LT

186

Appendix 10: Adaptation schema - Description of the terms used in the IDEFO-

diagrams

Table 35. Description of the inputs, outputs, controls and resources used in the adaptation schema IDEFO-

diagrams in alphabetical order.

TERM

EXPLANATION

Adaptation cost
estimate

Estimation of the total cost of adapting the production system, including layout, devices and
tooling, installation, programming, training, etc.

Adaptation
requirements

Adaptation requirements define how the current system needs to be modified in order to
meet the new requirements. These changes include the needed physical changes, such as
adding devices, logical changes, such as changing the product routing, or parametric
changes, such as changing the processing parameters of the machines.

Adaptation
guidelines

Context and domain specific guidelines that guide the adaptation planning process. The
guidelines are defined by the company policies, philosophy and way of doing things. They
may guide, for example, to what extent devices should be re-used and how the trade-off
between new, efficient but expensive equipment and old, cheap but slow equipment should
be handled.

Adaptation rules

Adaptation rules are divided into three categories: generic guidelines, new combination
generation, and context-specific rules. The generic guidelines provide rules for determining
which type of adaptation is required, namely physical, logical or parametric. The new
combination generation rules guide the generation of new combinations from existing and
acquired devices. The context specific rules define how the context or user specific criteria is
applied when making the selection between different configuration scenarios.

Blank model The blank model describes the original shape and dimensions of the part (billet) to be
processed.

Business Business information includes information relating to the costs of acquiring and using the

information of specific devices.

devices

Capabilities Capabilities which can be obtained without making any physical changes to the current

possible without
physical changes

system. This means that only logical or parametric changes need to be made.

Capability
requirements

Capability requirements are functional requirements for resources and are set by the
product characteristics. These are the specific capabilities required for the production of a
particular product with the required quality and volume. Capability requirements include the
requirement for the functional capability (e.g. “moving”, “grasping”, “drilling”) as well as the
capability parameter requirements (e.g. “velocity” of the “moving” capability). Capability
requirements can include both simple and combined capabilities and can be defined at
different taxonomy levels. This means that the functional requirement can be defined as e.g.
“material removing”, or with more detail e.g. “milling” or “turning”.

Capabilities to

Indicates the capabilities which do not exist in the current production system and can not be

acquire obtained by making logical or parametric adaptations to the system. Therefore, these
capabilities needs to be acquired from outside the current system. The missing capabilities
may be found from the company’s own device pool, or otherwise they may need to be
imported from outside.

Capability The order in which the capabilities should take place during the production process in order

sequence to manufacture or assemble the product. For example, in the case of assembly, it means the
sequence in which the assembly operation-related capabilities should be performed.

Capability A taxonomy of existing and possible capabilities. The taxonomy allows the linking of

taxonomy capabilities at different abstraction levels and the search for devices which provide similar

187

functions (e.g. joining) with different behaviors (e.g. welding, gluing, riveting). Both the
product requirements and device capabilities refer to this taxonomy, enabling the mapping
of the capabilities at different abstraction levels.

Catalogue device
descriptions

Information about devices that can be ordered from the equipment and system providers.

Combined A model, and its instances, indicating which simple capabilities are needed in order to
capability model | achieve combined capabilities.
Combined Combined capability rules are divided into two categories: Combining parameters and

capability rules

Combining interfaces rules. The first ones are used to combine the parameters of simple
capabilities in order to derive the parameters of the combined capabilities, which consist of
these simple capabilities. The latter rules are used to check that the devices have compatible
interfaces, when creating new device combinations.

Competence A description of the competences possessed by the human resources of the factory. This

description includes both standard competences and special competences and includes the ability to
perform specific fabrication, assembly, and inspection operations and/or the ability to
achieve certain levels of quality in performing the operations.

Current system A description of the existing production system including both the machine resources

description (devices) and human resources. It also describes the layout of the current system.

Design Constraints on the production system designs imposed by corporate policy, layout, system

constraints reference architecture, technology used, ergonomics, or the paradigm which is followed.

Device A technical description of the production device resources which may be available for

description manufacturing a product. The devices include, for example, fabrication machines (turning,

milling, punching,...); assembly machines (robots, conveyors, grippers, ...); inspection
machines; material handling and transport devices; tools (milling and turning cutters, drill
bits, holders...); and fixtures. The resource description of the devices covers the following
important aspects: the capability of the device, including the capability concept name and
parameters, interfaces and business and lifecycle information.

Device interfaces

A description of the device interfaces, including mechanical, energy and communication
interfaces. They allow the matching of devices with other devices having compatible
interfaces.

Domain expert
rules

Domain expert rules are divided into two categories: detailed capability definition; and,
detailed capability matching rules. The first ones are used to define the detailed capability
requirements from the pre-process plan, whereas the latter ones enable a detailed match
between the required and provided capabilities to be made.

Feature
recognition tool

The feature recognition tool is able to recognize and classify features from the 3D product
model. With the tool, it is possible to analyze what kind of manufacturing and assembly
processes are required during the production of the product.

Fixturing
requirements

The fixturing requirements specify the requirements concerning the billet set-up and
fixturing.

In-house device
descriptions

A resource description of the devices that exist in the factory, either on the current system
layout or in storage.

Lifecycle This includes information about the usage, maintenance history and condition of the devices.
information of It also includes data collected from the factory floor, e.g. MTBF and operational values.
devices

List of matching | Alist of all the capability requirements that can be satisfied, including descriptions of the
capabilities devices that provide those capabilities.

List of missing A list of capabilities that are missing from the current system and need to be obtained by
capabilities either physical, logical or parametric adaptation actions.

List of suitable A list of devices whose capabilities match the current requirements.

devices

188

Manufacturing

The principal features of the product or part, which affect processing decisions.

features

Manufacturing General knowledge of the manufacturing processes which could be used to make a given

process component or subsystem, and the limitations imposed by such processes.

knowledge

Market data Estimates of the total volume of the product which could be sold, its market life, and the
production rate required to meet the projected market opportunity. In a dynamic market
environment there may not be reliable estimates available.

Matching A list of capabilities matching the requirements at the capability concept name level. The

capability concept name level match is found with the help of the capability taxonomy.

concept names

Material Information about the characteristics of raw materials, such as structural, chemical, thermal

knowledge and electrical properties. This includes engineering knowledge about the material behavior
with different processes and process parameters. It helps to define suitable manufacturing
and assembly methods for the product.

Material Special requirements concerning the production processes and process parameters set by

requirements the specific material characteristics.

Missing Those required capabilities which do not have a match in device combinations on the current

capabilities system (e.g. on current workstations). This indicates that the combined capabilities need to
be divided into simple capabilities and a match should be searched for from the individual
devices’ capabilities.

Physical The dimensional constraints set by the facility space and other devices on the factory floor.

constraints

Pre-process plan

A preliminary definition of the manufacturing and assembly process based on the identified
manufacturing features. The pre-process plan is a generic recipe of how to produce the
product and it only defines the required functions on high level, e.g. “joining” or “material
removing”.

Production
constraints

The requirements and limitations on facility adaptation which are derived from ongoing
production management considerations, including current and future production
commitments.

Product model

This is a computer-interpretable representation of the product and its assembly structure. It
typically includes a 3D CAD-model of the product and its components, their geometry,
dimensions, materials, tolerances and surface finishes.

Product order

The quantities of parts or products to be produced and their nominal delivery dates.

Recognized The principal features affecting processing decisions, identified from the product model.

features These include, for example, the shape, type and dimensions of the feature.

Resource The resource availability indicates the current and planned levels of utilization of the

availability resources in the production facility. This shows whether the resource is currently allocated to
another production task or if it is freely available. It also includes information about the
resource state. Such information could include: busy on other job, idle, broken, down for
maintenance, etc.

Resource Technical descriptions of the production resources which may be available for the

descriptions

production of the product. The resources include both machine (device) and human
resources. In other graphs the resource descriptions are further divided into device
description, competence description, current system description, in-house device description
and catalogue device description.

Resource The expected schedule of availability of resources for production tasks.
schedule
Rule-base The rule-base contains the Domain expert rules, Combined capability rules and Adaptation

rules that are used for the automatic matching of product requirements and system

189

capabilities during the adaptation planning.

Selected system
configuration

The selected system configuration is the system configuration that is seen as feasible for the
given production problem in the specific context. The selection is based on the capabilities
and availability of the system and different user-defined criteria, such as costs, speed or
energy efficiency as well as different company and domain-specific constraints and the
condition of the resources.

Suitable
individual
devices on
current system

Those individual devices on the current system that possess capabilities matching the
capability requirements.

Suitable device
combinations on

The combinations of devices on the current system that possess capabilities matching the
capability requirements. These combinations can be, for example, complete workstations or

current system cells.

System Different system configuration scenarios matching the capability requirements set by the
configuration product order.

scenarios

Time & Cost The limitations imposed by product planning, and other corporate decisions regarding the
constraints acceptable manufacturing costs and time-to-market for a product.

Time & cost Standardized data that specify estimated times and costs for standard operations and can be

reference data

used in the preliminary cost estimates.

Tolerance and

The requirements for part tolerances and quality.

quality

requirements

Tolerance These are the industrial or corporate standard engineering tolerances, tolerancing
standards techniques and limitations.

User defined The various user-defined criteria that are used to compare different production system
criteria configuration scenarios against each other. These criteria may relate, for example, to costs,

speed or energy efficiency.

190

