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ABSTRACT

Today’s production systems have to cope with volatile production environments characterized by 
frequently changing customer requirements, an increasing number of product variants, small batch 
sizes, short product life-cycles, the rapid emergence of new technical solutions and increasing 
regulatory requirements aimed at sustainable manufacturing. These constantly changing 
requirements call for adaptive and rapidly responding production systems that can adjust to the 
required changes in processing functions, production capacity and the distribution of the orders. This 
adaptation is required on the physical, logical and parametric levels.   

Such adaptivity cannot be achieved without intelligent methodologies, information models and tools 
to facilitate the adaptation planning and reactive adaptation of the systems. In industry it has been 
recognized that, because of the often expensive and inefficient adaptation process, companies rarely 
decide to adapt their production lines. This is mainly due to a lack of sufficient information and 
documentation about the capabilities of the current system and its lifecycle, as well as a lack of 
detailed methods for planning the adaptation, which makes it impossible to accurately estimate its 
scale and cost. Currently, the adaptation of production systems is in practice a human driven process, 
which relies strongly on the expertise and tacit knowledge of the system integrators or the end-user 
of the system.  

This thesis develops a capability-based, computer-aided adaptation methodology, which supports 
both the human-controlled adaptation planning and the dynamic reactive adaptation of production 
systems. The methodology consists of three main elements. The first element is the adaptation 
schema, which illustrates the activities and information flows involved in the overall adaptation 
planning process and the resources used to support the planning. The adaptation schema forms the 
backbone of the methodology, guiding the use of other developed elements during both the 
adaptation planning and reactive adaptation. The second element, which is actually the core of the 
developed methodology, is the formal ontological resource description used to describe the 
resources based on their capabilities. The overall resource description utilizes a capability model, 
which divides the capabilities into simple and combined capabilities. The resources are assigned the 
simple capabilities they possess. When multiple resources are co-operating, their combined 
capability can be reasoned out based on the associations defined in the capability model. The 
adaptation methodology is based on the capability-based matching of product requirements and 
available system capabilities in the context of the adaptation process. Thus, the third main element 
developed in this thesis is the framework and rules for performing this capability matching. The 
approach allows automatic information filtering and the generation of system configuration 
scenarios for the given requirements, thus facilitating the rapid allocation of resources and the 
adaptation of systems. Human intelligence is used to validate the automatically-generated scenarios 
and to select the best one, based on the desired criteria.  

Based on these results, an approach to evaluating the compatibility of an existing production system 
with different product requirements has been formulated. This approach evaluates the impact any 
changes in these requirements may have on the production system. The impact of the changes is 
illustrated in the form of compatibility graphs, which enable comparison between different product 
scenarios  in  terms  of  the  effort  required  to  implement  the  system  adaptation,  and  the  extent  to  
which the current system can be utilized to meet the new requirements. It thus aids in making 
decisions regarding product and production strategies and adaptation.   
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1. INTRODUCTION

1.1. Industrial challenges and motivation

Nowadays manufacturing companies have to cope with several critical issues, such as frequently 
changing customer requirements, short product lifecycles, an increasing number of product variants, 
small batch sizes, varying volumes, stringent quality requirements, the rapid emergence of new 
technical solutions and increasing regulatory requirements aimed at sustainable manufacturing. 
Customers demand customized products at the price of mass-produced ones, and with fast delivery. 
Reporting on a study of German industry carried out by Wildemann in 2009, Zäh et al. (2011) pointed 
out that the number of product variants increased by between 500% and 700% between 1980 and 
2002. Yet, over the same period, the production volumes remained the same, or even decreased to 
85% of their original values (Zäh et al. 2011). This turbulent production environment calls for agile, 
adaptive and rapidly responding production systems that can adjust to the required changes in 
production capacity, processing functions and the distribution of orders. As defined by Koren and 
Shpitalni (2010), the responsiveness of a production system refers to the speed at which the system 
can meet changing business goals and produce new product models. They also stated that while 
responsiveness is not yet regarded as being as important as cost and quality, it is fast becoming a 
new strategic goal for manufacturing enterprises (Koren & Shpitalni 2010).  

The Europe-wide strategic goal of Competitive Sustainable Manufacturing (CSM) calls for the re-use 
and adaptivity of production systems. Sustainable development consists of three structural pillars, 
namely society, environment, and economy. It involves operational aspects, such as the consumption  
of resources, the environmental impact and economic performance of the operations, the products, 
the  workforce,  social  justice,  community  development,  and  so  on  (Jovane  et  al.  2009).  The  
adaptation, and thus the re-use, of production systems can have a positive economic and ecological 
impact through the higher utilization of the resources of the existing system itself. Adaptation 
prolongs the lifetime of production systems and allows the potential of the existing resources to be 
utilized more effectively. Thus, it supports the sustainability paradigm, both from the economic and 
ecological perspectives.  

Figure 1 compares the lifecycle of consumer goods with the lifetime of major components in the 
production system. It shows that resources and production systems can last much longer than the 
products they produce. This fact clearly indicates the potential for adaptation, and the consequent 
re-use of the production systems. The potential advantages of adaptation, such as savings in 
investment costs and production loss during the changeover of the product, faster ramp-up, and 
faster response to the customer requirements are clearly recognized within industry. However, in 
many cases, in the automotive industry, for example, the most common practice when the car model 
changes is still to disassemble the whole assembly line and build a new one from scratch.   
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Figure 1. Product lifecycle versus system component lifecycle, modified from (Slama 2002). 

Any change in the product or production requirements usually leads to changes in the production 
system that has to meet these requirements. These changes can be accommodated through the 
system’s built-in flexibility or through reconfiguration. It is inevitable that changes incur costs and 
take time. Therefore, it  would be beneficial not only to be able to adapt the existing system to the 
new requirements, but also to be able to estimate the scale of the required change (adaptation).  
This would then give an indication of the capital investment needed, other costs, and the timescale, 
which information could then be used to choose and prioritize between different product scenarios 
which require change.  

Based on research carried out during the FP6 European Integrated Project called PiSA (Flexible 
Assembly Systems Through Workplace-Sharing and Time-Sharing Human-Machine Cooperation) by 
Fleschutz et al. (2008; 2009) and Harms et al. (2008; 2009) it was noted that companies rarely decide 
to reconfigure their assembly lines. The survey of selected European end-user companies and system 
integrators, which was conducted during the project, showed that both the producers and users of 
assembly equipment had little experience of the process of re-using existing equipment. Further 
problems were caused by inadequacies in the design and preparation of the production equipment, a 
lack of life-cycle data and monitoring concepts, insufficient information management and no holistic 
planning concepts for the adaptation and re-use of existing production facilities (Fleschutz et al. 
2008; Harms et al. 2009.) Without up-to-date information about the capabilities and lifecycle of 
existing  resources,  it  is  practically  impossible  to  estimate  the  scale  and  cost  of  any  needed  
adaptation. 

A cost analysis of two real re-use cases in the PiSA-project showed that the potential for cost 
reduction through the re-use of production components and systems was between 30 and 80 %. 
However, accurate cost estimates are difficult to make. For example, the value of an old system can 
only be approximated based on the effort required to remanufacture or retool it, and this is difficult 
to predict without the benefit of experience. Because there is no clear financial evaluation of the 
impact of re-use, any calculations depend strongly on vague assumptions. According to the 
interviews carried out during the project, the main cost drivers in the re-use of an assembly system 
are the adaptation processes needed to meet the required functional capabilities. Risks involved in 
the re-use of existing equipment arise through the accumulation of unforeseen adaptation 
processes. (Fleschutz et al. 2008.) 
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In order to ensure the economic and technical success of adapting an existing production system, 
information and knowledge management is essential. The information needed to evaluate the 
compatibility of the existing system with the new product requirements, the required modifications 
and consequently the effort and expense of the adaptation, is based on extensive knowledge from 
different sources in various fields of expertise. These are, for example, product design, process 
planning, system design and integration, operation and maintenance, as well as usage history and 
prior adaptation experiences. The management of such information in industry is not currently 
sufficient to generate reliable plans for adaptation, let alone dynamic reactive adaptation. What 
makes the management of this information difficult is its rapidly evolving nature. Another problem is 
the poor interoperability between the systems used to create, save, manage and utilize this 
information. Thirdly, traditional hierarchical information management, decision making and 
operation control systems are based on traditional stand-alone concepts that are optimized towards 
achieving their goals in static environments in which behaviour can be predicted. However, 
nowadays a production environment is anything but static. These traditional systems, designed for 
mass production, cannot cope with frequently changing orders and production volumes, or the 
production of customized solutions on batch size one.  

1.2. Scientific and technical challenges

According to Rahimifard and Weston (2009), in order to be agile and adaptive, the production system 
needs to be able to meet the changing market requirements in terms of product characteristics and 
quantities. To do this, the production system needs an inherent ability to facilitate continual and 
timely change in its structure and in its functional operations. Structure refers to the way in which 
the functional building blocks of a production system are assembled to form a holistic, interoperable 
system, while the term function describes the abilities of the building blocks or the production 
system as a whole to realize a defined purpose. (Rahimifard & Weston 2009.) 

Different manufacturing paradigms have been proposed in recent years to overcome the challenges 
relating to responsiveness and adaptivity. Flexible manufacturing systems (FMS) are designed to 
meet a wide variety of requirements without any physical modifications to the system structure 
(Koren 2006; Terkaj et al. 2009a). Reconfigurable manufacturing systems (RMS) also aim to meet 
these requirements by offering the rapid adjustment of production capacity and functionality in 
response to new circumstances, through rearrangement or change in both the system’s structure 
and the hardware and software components (ElMaraghy 2006; ElMaraghy 2009; Koren et al.  1999; 
Mehrabi et al. 2000). Agent-based and holonic systems take a more dynamic approach to dealing 
with the changeability requirements through the provision of self-organizing capabilities. Agents and 
holons are generally characterised as distributed, autonomous entities capable of intelligent 
behaviour and interaction with both their environment and other agents in order to achieve a 
particular goal (Monostori et al. 2006).  

Most research into adaptive systems has focused on static adaptation, in which physical changes are 
made to the system “offline” when the system is not running. The agent-based and holonic 
approaches are often aimed at dynamic adaptation, in which logical or parametric changes happen 
“online”, while the system is running. Whereas static adaptation is usually based on planning, either 
by a human expert or through automatic planning methods, dynamic adaptation requires self-
organizing capabilities from the system, because the system needs to react to changes in its 
environment. As stated by Westkämper (2006), self-organization, self-optimization, target-
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orientation and self-control are all characteristic features of the future structures of factories and 
production networks. The realization of these requirements calls for new methods and solutions that 
would drastically reduce the time and effort put into planning and implementing the alterations in a 
factory, such as plug and play interfaces, modern information and communication technologies, 
simulations and new planning methods. (Westkämper 2006.) Regardless of whether the adaptation is 
static or dynamic, or whether it occurs on a physical, logical or parametric level, intelligent methods 
and tools are needed to support the adaptation. In this dissertation the word ‘adaptation’ is used to 
cover all these different levels, which will be discussed in more detail in Chapter 3.1.2.  

Previous research on reconfigurable and adaptive systems has concentrated on hardware and 
control  technologies,  as  well  as  the  physical  structure  of  such  systems  (Bi  &  Zhang  2001a,b;  A.  I.  
Dashchenko 2006; ElMaraghy 2009; Martinez Lastra 2004; inter alia). Significant steps towards 
modular assembly equipment and standardized hardware and control interfaces have been made by, 
for example, the European Union-funded project called EUPASS (Evolvable Ultra-Precision Assembly 
SystemS) (EUPASS 2009). According to Ferreira et al. (2010), the modular architecture paradigm for 
new production systems, which focuses on the clear functional decoupling of equipment module 
functionalities and the use of standardized interfaces to promote interchangeability, presents the 
possibility for developing automated adaptation methods. However, the standardization of hardware 
and software interfaces is not in itself enough to enable the rapid adaptation of a production system. 
Efficient methodologies, tools and information models are needed to support humans in the 
adaptation planning process, and also to enable reactive adaptation to take place while the system is 
running. These methodologies should also take into consideration the fact that most of the systems 
on today’s factory floors are still not modular and they lack standardized interfaces. However, it is 
still desirable that they can produce different products in different volumes, and that production in a 
changing environment can be planned and controlled. Regardless of whether the system is 
characterized as “reconfigurable” or not, it will still have to undergo some changes during its lifetime.  

Most of the proposed methods in the field of physical adaptation design have focused on structural 
configurations  at  the  single  machine  level  (Bi  &  Zhang  2001b;  O.A.  Dashchenko  2006;  Jang  et  al.  
2008; Moon 2006; Tang 2005; inter alia), while the systems themselves have usually been designed 
intuitively (Bi et al. 2008). There are no holistic integrated methodologies which simultaneously take 
into account the old production system, its layout, the reference system architecture (i.e. the type of 
system that can be implemented), new product requirements, resource capabilities, resource history, 
the lifecycle and condition of the equipment, and of course economy and efficiency. As noted in, for 
example, both the PiSA and EUPASS projects (Fleschutz et al. 2008; Harms et al. 2009; Ferreira et al. 
2010), the adaptation planning of production systems today is, in reality,  a human driven process, 
which relies strongly on the expertise and tacit knowledge of the system integrators or the end-user 
of the system. Even though this process may result in feasible system configurations, it seldom 
follows a systematic approach to planning the adaptation, which means that the solutions are 
neither replicable nor transparent. Such a time-consuming planning process may produce expensive 
plans, making frequent system adaptations unfeasible.  

To conclude this introduction to the scientific and technical challenges involved in adaptation, and to 
encapsulate the driving force behind this thesis, it can be stated that there are three main reasons 
why the adaptation of production systems, both static and dynamic, has been so rare to date. These 
are: 1) the lack of extensive methodologies and tools to plan the adaptation at the whole production 
system level; 2) the lack of adequate information models and tools for gathering and managing 
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information, in order to support both the adaptation planning and reactive adaptation. For example, 
information about the capabilities and lifecycle of current systems is lacking from existing models; 3) 
the lack of distributed, decentralized, modular ICT and control architectures which support the self-
organizing capabilities of the systems. This thesis contributes to the first two points, while the case 
studies used in the work also provide an insight into the third point. 
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2. RESEARCH DESCRIPTION

2.1. Introduction to the research problem

Chapter 1.2 discussed the scientific and technical problems which hinder the adaptation of 
production systems in the industry today. As was stated, a proficient mechanical design and an 
intelligent control system design are not enough in themselves to support the efficient adaptation of 
production systems in a changing environment. An intelligent methodology, including tools and 
information models, is needed to support both rapid adaptation planning controlled by human 
experts and the dynamic reactive adaptation of the systems.  

This thesis aims to provide solutions for the following two problems as stated in Chapter 1.2:  

Problem 1:  Lack of extensive methodologies and tools to plan the adaptation on the production 
system level;  

Problem 2: Lack of sufficient information models, as well as tools for information capture and 
management, to support the adaptation planning and reactive adaptation.  

Two types  of  change stimuli  for  the production system have to  be considered.  These are:  lifecycle  
dynamics relating to long-term changes, such as new installations or the replacement of old 
equipment (static); and, run-time dynamics relating to short-term changes which need to be solved 
while the system is running, such as re-routing and re-scheduling (dynamic). So, both of these 
approaches to adaptation, and any combination of the two, should be supported by the new 
methodology: 

1. Static adaptation - Adaptation happening “offline” when the system is not running. Static 
adaptation needs planning, either by humans or through automatic planning methods. 

2. Dynamic adaptation - Adaptation happening “online” when the system is running. Dynamic 
adaptation requires the system to have self-organizing capabilities, in other words, the 
system needs to autonomously react to any changes in its environment.  

In the context of production system adaptation, resource models represent the key factor. Based on 
the literature review presented in Chapter 0, a critical factor for the computer-aided adaptation of a 
production system is efficient resource models, which provide the information needed for 
equipment selection and system integration. It is obvious that a digital representation of the 
capabilities of a system and its components would significantly ease the design of the system and its 
integration, adaptation and operation. It would allow an automatic procedure to find suitable system 
components and to build alternative scenarios during the early phases of adaptation planning. This 
requires a formalized representation of the functional capabilities of the resources, along with any 
other relevant properties they may have. However, presenting the simple capabilities of individual 
resources is not enough when adapting complete production systems. Therefore, what is also 
needed is a way to describe the combined capabilities of multiple co-operating resources.  

The adaptation planning problem deals with the different levels of a system simultaneously, as 
shown in Figure 2a. When adapting a production system for a new requirement, it is preferable to 
view the system (and its capabilities) from the top, rather than to consider each individual resource 
in  the  system  separately.  For  example,  there  may  be  stations  that  could  be  utilized  as  they  are  
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without any physical changes. However, in order to identify them, a formal description of the 
combined capabilities of the station composed of multiple devices is needed. According to Ueda et 
al. (2001), the design of production systems follows emergent synthesis, wherein the local 
interactions between the artifacts of the system dictate the global behaviour through bottom-up 
development to achieve the purpose of the whole system. On the other hand, the global behaviour 
results in new constraints on the behaviour of the elements in the system (Ueda et al. 2001). Due to 
these local interactions, the combined behavior of resources is something other than the sum of the 
behavior of each individual resource. Consider, for example, the problem illustrated in Figure 2b.  

a)        b)  
Figure 2. a) Partonomy of different system levels. b) Example of the combined capability problem. 

Several approaches and models to describe the resources exist, as will be discussed in Chapters 3.3 
and 3.4. However, these approaches don’t support such modelling of resource combinations and 
their combined capabilities, at least not in sufficient detail. This is a considerable problem for 
adaptation planning. Therefore, much of the emphasis in this work is on solving this capability-based 
resource description problem. As stated in Chapter 1.2, many earlier adaptation methods have 
concentrated on structural configurations at the single machine level. This thesis aims to concentrate 
on the whole system level. Therefore, the desired granularity in the resource description is from the 
line to the device level, rather than going down to the level of the individual elements.  

2.2. Formulation of the research objectives and questions

The high-level objective of the thesis: Development of a methodology to support computer-aided 
adaptation of production systems in a changing environment. 

In  the  context  of  this  work,  the  term  ‘production  system’  refers  to  discrete  manufacturing  and  
assembly systems. The term ‘changing environment’ refers to a production environment which is 
characterised by changing requirements in terms of product variants, changing product models, 
fluctuating volumes, changing characteristics (capabilities) of the production system components and 
the integration of new technologies. The aim is to reduce the planning work traditionally done by 
humans by developing computerized solutions, especially for information management, handling, 
and filtering. In particular, the aim is to facilitate the creation of feasible adaptation solution 
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scenarios and hence to reduce the need for manual planning work. The term ‘feasible’ here refers to 
a situation where the system is compatible with the requirements, but not necessarily optimal. The 
methodology concentrates on evaluating the changes the system needs in terms of hardware. The 
cost and investment calculations are beyond the scope of this thesis. However, once these hardware 
changes are identified, this would also provide a foundation for estimating the investment needed.  

Based on the literature survey a following ‘working statement’ was adopted as a premise for this 
work to guide the development of the methodology: 

The adaptation of production systems to changing requirements, both static, human-centric 
adaptation as well as dynamic reactive adaptation, can be eased by a formal capability-based 
resource description and framework and rules for matching the resource capabilities against 
product requirements in the context of the adaptation process.  

The backbone for such an adaptation methodology is a suitable model (schema) that can capture all 
the relevant aspects of the adaptation process, including the activities, the information and process 
flows during the adaptation planning, and reactive adaptation. The main focus of the work is on the 
development of a formal resource description model, which will enable the automatic matching of 
product requirements with system capabilities and is, therefore, the most fundamental element of 
the methodology. In addition, a framework and rules are needed to enable this matching. In order to 
complement the methodology, it is also desirable to have an approach to evaluating the impact of 
the changes in product requirements on the production system under various product scenarios. 
Figure 3 represents an overview of the problem definition of this thesis with the two supported 
viewpoints. 

 
Figure 3. Problem definition overview. 

 



9 
 

The high-level objective presented at the beginning of this chapter is divided into the following sub-
objectives: 

Sub-objective 1: Adaptation schema 
The first sub-objective is to define an adaptation schema, which illustrates the overall adaptation 
planning process and activities, as well as the information requirements and flows to support both 
human-controlled adaptation planning and reactive adaptation.  

Sub-objective 2: Resource description model based on capabilities 
The second, yet the most important of these sub-objectives, is to develop a resource description 
model which can capture the relevant resource characteristics, and support both the adaptation 
planning and the reactive adaptation of the production systems. The resource description model 
should enable the automatic matching of product requirements and resource capabilities and 
provide the basis for further automatic reasoning. It should also enable the description and 
management of the capabilities of multiple co-operating resources.  

Sub-objective 3: Framework and rules for capability-based matching in adaptation 
The third sub-objective is to define a framework and rules for matching the product requirements 
against the system capabilities during adaptation planning and reactive adaptation.  

Sub-objective 4: Preliminary approach to evaluating the impact of change 
The fourth sub-objective is to devise a preliminary approach to evaluating the impact of the changes 
in the product requirements on the production system. This approach should be based on the results 
of the implementation of the previous three sub-objectives.  

Based on the above objectives, the following associated research questions were formulated: 

Research question 1: How should the overall adaptation planning process be presented? 
What method can be used to present the overall adaptation planning process? What are the steps in 
the adaptation planning process? What kind of information resources are needed during the 
adaptation planning? How is the information created and what is the information flow between the 
different activities?  

Research question 2: How should the resource information be presented so that it allows the 
automatic matching of product requirements against resource capabilities? 
What kind of resource characteristics need to be included in the resource model to support 
adaptation planning and reactive adaptation? How should the capabilities of the resources be 
modelled? How should the combined capabilities of multiple co-operating resources be represented? 
How should the link between the simple and combined capabilities be managed? 

Research question 3: How should the resource capabilities be matched with the product 
requirements during adaptation planning and reactive adaptation? 
What is the process and what steps need to be taken when matching the product requirements to 
the resource capabilities in the adaptation context? What kind of rules are needed for this matching?  

Research question 4: How can the impact of changes in the product requirements on the 
production system be evaluated? 
How should the solutions developed for the previous research questions be utilized for such an 
evaluation? How should different product scenarios which require change be compared? 
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2.3. Research methodology

Instead of trying to describe and understand the reality behind the current situation, the aim of this 
work is to solve a practical problem and thus improve the current situation. Therefore, the research 
methodology has been adopted from design science. In this thesis, Design Research Methodology 
(DRM) (Blessing & Chakrabarti 2009) is utilized as the basic framework for clarifying the research 
problem, formulating the proposed solution and analysing the results. The DRM is divided into the 
following stages and respective means and outcomes: 
1) Research Clarification (RC) 

At this stage, the goals of the research are formulated through an analysis of the relevant 
literature.  

2) Descriptive Study I (DS-I) 
At this stage, there is an extended analysis and review of the literature and empirical data may 
be collected to gain a deeper understanding of the research problem and influential factors.  

3) Prescriptive Study (PS) 
At this stage, all the experience, knowledge and assumptions about the problem are synthesized 
into a proposed solution.  

4) Descriptive Study II (PS-II) 
At this stage, the proposed solution is analysed and evaluated against the defined goals using 
empirical data.  

According to Blessing & Chakrabarti (2009), DRM shouldn’t be interpreted as a set of stages and 
supporting methods to be executed rigidly and linearly. Instead, it should be used flexibly and should 
allow multiple iterations. For example, Descriptive Study I provides the means to further clarify the 
research problem from its initial formulation.  

In order to develop a solution proposal, the classical method of knowledge-based system 
development is utilised. It consists of the following phases (Buchanan & Duda 1983):  
 Identification: identifying the characteristics of the problem and setting goals;  
 Conceptualization: making the key concepts and their relations explicit;  
 Formalization: presenting the identified concepts in formal language;  
 Implementation: presenting the knowledge from the previous step in a system shell;  
 Testing: utilizing sample cases to test the system and identify any weaknesses; 
 Revision: revising the previous steps based on the test results.  

Utilizing these two above-mentioned methodological frameworks, the objectives of the thesis were 
approached using the following steps and associated research methods. The steps are divided into 
three categories: awareness of the problem and understanding the topic; development of the 
proposed solution; evaluation and conclusions.  

Awareness of the problem and understanding the topic (RC, DS-I) 

Step 1: Identifying the research problem and objectives  
The research started with an extensive literature survey, focusing mainly on manufacturing- and 
production-related journals and refereed conference articles and compilations. Bibliometric 
methods, such as citation analysis and co-citation coupling were used to assemble the relevant 
literature. The main goal of the survey was to outline the theoretical framework and requirements 
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for the study, and to recognize the state of the art in the field. The objectives for the research were 
defined based on the literature survey.  

The development of a proposed solution (PS) 

Step 2: Adaptation schema definition  
Based on the understanding gained from the previous step, it was recognised that a fundamental 
enabler for efficient adaptation is an understanding of the activities and information flows which 
characterize the adaptation process. Therefore, the actual development work started by defining the 
initial adaptation schema that illustrate the activities, information flows, resources and controls used 
during adaptation planning and reactive adaptation.  This forms the backbone of the adaptation 
methodology. The schema was defined based on the literature and the author’s own experience. 
Several iterations were made after steps 3 and 4 before the final adaptation schema was formulated 
with IDEF0 (Integrated DEFinition for Function Modelling) activity diagrams.  

Step 3: Development of a resource description model based on capabilities  
The third step developed an ontological resource description model which describes both the 
resources and their capabilities, and the combined capabilities of multiple co-operating resources. 
The work started by defining the requirements for the resource description model, and then tackling 
the resource description problem using a case-based methodology, utilizing the TUT-machining 
laboratory and the TUT-micro-factory environments as cases in point. Together, these two case 
environments provided a relatively broad view of different production resources and processes, 
thereby facilitating the development of a generally applicable model. Datasheets of the resources 
were used as primary information about the resource characteristics when generating the model. 
The existing Core Ontology by Lanz (2010) was used as a basis for the knowledge modelling, and in 
this thesis, this was reinforced with information about the resource capabilities. In order to tackle the 
combined capability problem, the upper level capabilities (combined capabilities) were divided into 
lower level capabilities (simple capabilities) using the functional decomposition method. The 
capabilities of the two case environments (and other similar ones) were included in the instantiated 
capability model, containing currently over 90 capability instances. A Capability Editor tool was 
developed to allow the capabilities to be modelled to the Core Ontology. 

Step 4: Development of framework and rules for capability-based matching  
The fourth step started with a definition of the overall framework for matching the product 
requirements against the production system capabilities. After that, the capability taxonomy was 
defined to enable the high-level mapping of resources and product requirements. Several existing 
process descriptions and standards were used as a basis for the development of the taxonomy. The 
rules and rule base were developed on a conceptual level in order to facilitate detailed capability 
matching.  The development of the rule base began by defining what kind of rules are needed, how 
they should be organized and how they can be used in the adaptation planning and the reactive 
adaptation, after which a number of rules were written and implemented. In order to take into 
account the specific nature of adaptation, the rule base consists not only of rules relating to 
capability matching, but also adaptation-related rules and guidelines, which may be used as part of 
the capability matching and in the selection of the final configuration. Again, the case-based 
approach was used in the development of these rules.  
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Evaluation and conclusions (DS-II) 

Step 5: Validation of the developed methodology with realistic case studies 
In the fifth step, the developed adaptation methodology and the models and concepts contained 
therein were validated with realistic case studies. The first case, implemented in the TUT-machining 
laboratory, represents a holonic production environment where the adaptation takes place 
dynamically through reaction and self-organization. The second case study, modelled in the TUT-
micro-factory, represents a more traditional production system where the adaptation is based on 
human-controlled planning. The resulting resource description was tested and validated by 
describing the capabilities of these two case environments, which consisted of real production 
resources. Altogether about 65 individual resources were described with the model. A number of the 
capability-matching rules were also implemented to validate the capability-matching framework.  

Step 6: Evaluation of the proposed methodology  
In the final step, the methodology which had been developed was evaluated against defined 
objectives, and the conclusions of the study were formulated.  

2.4. Limitations and assumptions

As the broad focus of this thesis touches on a number of different research areas, certain limitations 
and assumptions need to be stated. Firstly, in the scope of this thesis, the product is assumed to be a 
known input, even though it is undeniable that there is an iterative, multi-directional and dynamic 
relation between products, processes and production systems. This thesis starts with the assumption 
that the product is defined, and no modifications are made to the product based on the system 
specifications. Naturally, the feedback loop from production to the product designer’s table is crucial, 
but product design itself is not considered in this thesis. Nor does the methodology developed in this 
thesis consider the production control side.  

Secondly, the aim is not to develop an optimal resource description covering all the possible resource 
characteristics, but to develop a resource model which provides enough expressiveness to meet the 
requirements of the two case studies. For example, the developed resource description is not 
intended to model the kinematics of the machines, because there are multiple other models 
available for modelling those, such as virtual simulation models. Thirdly, the framework and rules 
which were developed for capability matching are not intended to completely replace human 
expertise from this reasoning phase. Instead, the approach developed here is intended to support 
human expertise through the automatic generation of scenarios whose feasibility can be assessed by 
the human expert in order to make an informed final decision.  

Fourthly, the aim of the adaptation methodology is not to optimize the adaptation plans, but to find 
feasible solutions. The thesis concentrates on the adaptation of systems in a changing environment 
where the system itself, and the requirements placed on it, are constantly changing and cannot be 
foreseen. Optimizing this kind of system is not practical for two reasons. Firstly, all the information 
that would be needed to obtain a reliable solution may not be available. Secondly, in a changing 
environment, the solution that is optimal at one point in time may already be obsolete at the next 
point.  

Finally,  it  has  to  be  noted  that  although  the  literature  review  carried  out  for  this  thesis  aims  to  
summarize the research activities of other researchers investigating similar research questions, it 
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must be accepted that there may be other implementations and methods published in unrecognised 
conferences or poorly indexed publications which have not been considered here. 

2.5. Thesis outline

The thesis is structured as shown in Figure 4. 

 
Figure 4. Outline of the thesis.  

Chapter 1 presents the introduction to the research topic by discussing the challenges related to 
production system adaptation from both the industrial, and the scientific and technological 
viewpoints. Chapter 2 states the research objectives and questions. It also discusses the selected 
research methodology and the limitations and assumptions of the research.  The literature and state-
of-the-art review is covered in Chapter 3. It reviews existing and emerging production system 
paradigms and the current approaches to production system adaptation, and their limitations. The 
developed methodology for computer-aided production system adaptation, including the proposed 
solutions for the sub-objectives, is presented in Chapter 4. Chapter 5 describes the implementation 
of the developed methodology in a modular ICT-environment. The main focus of this chapter is to 
validate the results in the context of two practical case studies, representing two different aspects of 
adaptation, namely static human-controlled adaptation planning and dynamic reactive adaptation. In 
Chapter 6, the developed methodology is evaluated against the set objectives, and there is a 
discussion of the contribution this research has made to the problem, and the direction for further 
study. Finally, the conclusions of the study are presented in Chapter 7.
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3. LITERATURE REVIEW

In recent years, much research has been initiated in the area of novel production paradigms and 
approaches that can cope with the changing requirements and conditions in the production sector.  
Three main research directions can be identified: 1) new production system paradigms around 
adaptive manufacturing; 2) the development of modular system components with standardized 
interfaces; 3) enhancing the flexibility and adaptivity of production environments through the use of 
intelligent, autonomous, real-time control-systems. What have been less thoroughly researched are 
methodologies which facilitate adaptation planning and dynamic reactive adaptation. These are the 
main points of interest in this literature review.  

There are a lot of different methods for production system design. However, most of these methods 
focus on the design of a new production system, while relatively few researchers have studied how 
an existing production system can be adapted in order to meet changes in the requirements for the 
system. Methodologies for generating structural (re-)configurations at the single machine level do 
exist, but proper extensive methodologies and tools for the adaptation of complete production 
systems are not so well established.   

This section aims to furnish the background to the development of the adaptation methodology by 
surveying the ‘state of the art’ in the field. First, different production system paradigms will be 
discussed in Chapter 3.1. Chapter 3.2 discusses traditional approaches to system design and 
reconfiguration as an extension of traditional system design. Chapter 3.3 then reviews the existing 
approaches of a number of researchers to production system adaptation, and finally, in Chapter 3.4, 
the information models supporting adaptation are reviewed.  

3.1. Production system paradigms

This chapter aims to provide a theoretical framework for the study. First some traditional production 
system paradigms are briefly discussed, followed by a discussion of adaptive production systems, 
adaptation and related terminology. After that, complex adaptive systems and systems intelligence 
will be discussed, followed by the emerging evolutionary system approaches, which utilize the theory 
of complex systems. Finally, this chapter will finish by comparing static and changing systems based 
on the theory presented in the previous chapters, and lay down the foundation for the developments 
followed in this thesis.   

3.1.1. Traditional production system paradigms

The three major types of traditionally-recognized manufacturing systems are dedicated, flexible and 
reconfigurable manufacturing systems. The characteristics of these system types are discussed 
briefly below.  

Dedicated manufacturing systems (DMS) 
Dedicated manufacturing systems are based on inexpensive, fixed automation that produces a 
company’s core products or parts at high volumes and over long periods of time. These dedicated 
systems are usually designed to produce a single part at a high production rate, which is achieved by 
utilizing multiple tools simultaneously. (Koren & Shpitalni 2010.) Dedicated systems are tailored to 
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certain static production requirements and thus their performance is robust and the initial capital 
cost is low (Landers et al. 2006).  

Flexible manufacturing systems (FMS) 
Flexible manufacturing systems are designed to produce a variety of products with a changeable mix 
on the same system with short change-over times. They are very often comprised of general-purpose 
CNC-machines and other programmable forms of automation. The production rate of a flexible 
system is low compared to that of a dedicated system. Furthermore, due to the combination of high 
equipment costs and low productivity, the cost per part of using FMS is relatively high. (Koren 2006; 
Koren & Shpitalni 2010.) According to Landers et al. (2006) flexible manufacturing systems are not 
tailored to any specific requirement, but are designed to accommodate a wide range of changes in 
production requirements, and therefore they often contain excess capability, which results in 
unnecessary cost for the customers. In other words, the flexibility is built into the system and the 
capabilities of the system are pre-determined. For example, in the case of a multifunctional gripper, 
the gripper has got multiple fingers that are used or not, depending on the shape of the product to 
be handled. Furthermore, the capability limits of flexible systems are fixed and therefore they cannot 
cope with unforeseen requirements, which may exceed their built-in flexibility.  

Reconfigurable manufacturing systems (RMS) 
Reconfigurable manufacturing systems (RMS) aim to combine the high throughput of dedicated 
systems and the flexibility of flexible manufacturing systems. Instead of providing the general 
flexibility with built-in high functionality of FMS, reconfigurable systems aim to provide customized 
flexibility.  (Koren & Shpitalni 2010.) The objective of RMS is to offer rapid adjustment of production 
capacity and functionality, in response to new circumstances, through the change or rearrangement 
of both its structure and its hardware and software components (Koren et al.  1999; Mehrabi et al.  
2000). These components can be, for example, machines and conveyors in whole systems, 
mechanisms in individual machines, new sensors, or new control-algorithm software. The new 
circumstances requiring changes could be, for example, changing product demands, the production 
of a new product on an existing system, or the integration of new process technology into existing 
manufacturing systems (ElMaraghy 2006). As noted in the survey by Terkaj et al. (2009a), many 
systems simultaneously incorporate the characteristics of both flexible and reconfigurable systems.  

Koren (2006) and Koren & Shpitalni (2010) stated that in order to achieve exact flexibility in response 
to fluctuation in demand, the following key characteristics must be taken into consideration when 
designing an RMS: modularity (components are modular), integrability (interfaces for rapid 
integration), customization (flexibility limited to part family), scalability (design for capacity changes), 
convertibility (design for functionality changes) and diagnosability (design for easy diagnosis). These 
are seen as the enablers for reconfiguration. Wiendahl et al. (2007) pointed out that, especially in the 
case of assembly systems, two more enablers should be added to this list. The first is mobility, which 
is important for reconfiguring single stations or modules in an assembly system, or even for moving 
the whole system to another location. The second enabler is the ability to upgrade or downgrade the 
degree of automation. (Wiendahl et al. 2007.) 

3.1.2. Adaptive production systems and adaptation

Wiendahl and Heger (2004) identified five types of changeability for manufacturing systems: 
reconfigurability, changeoverability, flexibility, transformability and agility. Later, Wiendahl et al. 
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(2007) used changeability as a general term to characterise the ability of a system to economically 
accomplish early and foresighted adjustment of a factory’s structures and processes at all levels in 
response to the change stimulus. Based on the literature around flexible, reconfigurable and 
adaptive manufacturing (ElMaraghy 2009; ElMaraghy 2006; Koren 2006; Mehrabi et al. 2000; Tolio & 
Valente 2006; inter alia), it is difficult to completely differentiate these concepts. Flexibility is often 
referred to as the ability to adapt to different requirements without physical changes to the system, 
whereas reconfigurability refers to the ability to change system components when new requirements 
arise (ElMaraghy 2006).  However, these definitions can be used only if the boundary of the system is 
clearly defined. Tolio and Valente (2006) stated that, depending on the boundary, the type of the 
changeability can be interpreted as reconfigurability or as flexibility and therefore, it is not possible 
to define general statements for these characteristics. ElMaraghy (2006) divided a manufacturing 
system’s reconfigurability into both physical and logical reconfiguration, touching on both definitions 
of flexibility and reconfigurability. Terkaj et al. (2009a) presented a framework for classifying these 
different flexibility-related forms and dimensions.  

In order to avoid misunderstandings caused by the multiple definitions of reconfigurability, flexibility 
and so on, the term ‘adaptation’ is used in this work to cover both physical adaptation 
(reconfiguration) and logical adaptation, as seen in Figure 5. Besides those two types of adaptation, 
parametric adaptation is also included in this definition of the term. Such a definition is more 
relevant to the goal of this thesis, which is to support the adaptation of production systems in a 
changing environment without restricting itself to reconfigurable or flexible systems. Later in this 
thesis, the word “reconfiguration” may be used to specifically refer to physical adaptation.  

 
Figure 5. Production system adaptivity, modified from (ElMaraghy 2006).  

As Figure 5 shows, there are three basic types of adaptation which affect the configuration of the 
production system. According to Brehmer and Wang (1999) the configuration of a system refers to 
those aspects of a system that remain in a temporarily fixed state during a given time frame. Those 
fixed aspects may include three elements: a complete list of constituent components; the attributes 
and properties of each component; and the relationships between the components, e.g. spatial, 
temporal, functional, logical,  etc. (Brehmer & Wang 1999). The three types of adaptation shown in 
Figure 5 are: 
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Type 1: Physical adaptation 
 Physical adaptation means that physical changes are made to the system, such as changing 

the layout of the system, adding or removing machines or machine elements.  
 Adapting the available capabilities. 

Type 2: Logical adaptation 
 During logical adaptation, no physical changes are made to the system, as any changes occur 

on a logical level. These can be achieved, for example, by changing the process sequence and 
re-routing or re-scheduling production. 

 Adapting the utilization of available capabilities. 
Type 3: Parametric adaptation 

 Parametric adaptation doesn’t include any physical or structural changes either, but refers to 
changing the adjustable machine parameters, such as the speed of a conveyor line.  

 Adapting the behavior of available capabilities.  

These three types of adaptation are not usually independent of each other. For example, physical 
changes in the production system often cause logical changes to the old configuration. However, the 
change requirement is usually only targeted to one type of adaptation at a time, so that any other 
types of changes follow naturally from the initial adaptation.  

Adaptation can also be divided into static and dynamic adaptation. Static adaptation refers to changes 
in the system configuration during downtime of the system. Dynamic adaptation is the changes in the 
system configuration while the production system is in operation. These dynamic changes can involve 
either logical or parametric adaptation. Dynamic adaptation allows the production system to react to 
changes in its environment in real-time, for example, to recover from disturbances in the production 
line, and to self-organize itself to balance the production flow. While physical adaptation is usually 
done at the static level, both logical and parametric adaptation can be either dynamic or static. This 
means  that  logical  and  parametric  changes  can  be  executed  either  while  the  system  is  running  or  
during its downtime. 

3.1.3. Complex Adaptive Systems and Systems Intelligence

In recent years, production system research has started to adopt ideas from complex systems. 
According to Bourgine & Johanson (2006), complex adaptive systems are non-linear systems with 
many strongly-coupled degrees of freedoms. They are composed of multiple, interacting 
autonomous units, such as agents, actors or individuals having adaptive capabilities. The adaptive 
capability is manifested by the ability of these multiple-component systems to learn and evolve 
based on internal and external dynamic interactions. The components and organizational structures 
are able to react to their environment and feedback, and adapt their functions to novel conditions 
and  tasks.  (Bourgine  &  Johnson  2006.)  According  to  Fryer  (2010),  the  control  of  complex  adaptive  
systems is highly dispersed and decentralized and they are characterized by constant, self-organizing 
behavior in order to find the best fit with the operating environment. 

Complex systems are characterized by emergent phenomena that cannot be easily construed 
through  a  knowledge  of  their  components  alone.  Complex  systems  usually  consist  of  at  least  two  
different levels: the macro-level and the micro-level. Whereas the macro-level is concerned with the 
system as a whole, the micro-level views the system in terms of its local components. In multi-level 
complex systems, the higher-level system processes and behavior result from lower-level co-
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operative emergence, caused by interaction between the components. Similarly, lower-level system 
processes may be influenced, constrained or even determined by higher-level interactions. Due to 
the emergence resulting from communication and interaction between the components, the 
behavior and capability of the whole system is not just a straight-forward aggregate of the local 
components’  behaviors  and  capabilities.  (Ueda  et  al.  2001;  Bourgine  &  Johnson  2006;  Lanz  et  al.  
2012.) 

The concept of system intelligence is closely related to complex systems. Saarinen and Hämäläinen 
(2004) define system intelligence as “intelligent behaviour in the context of complex systems 
involving interaction and feedback”. Any object with system intelligence can successfully and 
productively interact with the holistic feedback mechanisms of its environment. The object perceives 
itself as part of the whole, and takes into account the influence of the whole upon itself as well as its 
own influence upon the whole. The intelligent actions of the object are enabled by observing its own 
interdependence with its feedback-intensive environment. (Saarinen & Hämäläinen 2004.) 

Saarinen and Hämäläinen (2010) summarized the key features of the “systems” of system 
intelligence (i.e. complex systems) collected from the relevant literature (Jervis 1998; Senge 1990; 
Ramage & Shipp 2009; Jackson 2003): 

 The behaviour of the system displays features that cannot be obtained by summing up the 
behaviours of the isolated components, in other words the system can display emergence. 

 The system has the ability to self-organize its components in order to create a new structure 
and, consequently, new behavior. 

 In order to determine the overall behavior of the system, the relationships and interaction 
between parts, giving rise to patterns, regularities and complexity, are more important than 
an analysis of the properties of the individual parts in isolation. 

 The systems are dynamic, showing changing states and behaviors during their lifecycle. 
These changes are often conceptualized in terms of functions or goals. Due to the non-
linearity of the system, a change in one component may have an unanticipated effect on 
other components, and on the behavior of the system as a whole. 

 The boundaries of these systems are re-definable, flexible and dependent on one’s 
perspective, and are artificially created by humans for the sake of clarity and sanity. 

Based on the Systems Intelligence approach, system adaptation is only possible through learning. 
Learning, on the other hand, requires observation and feedback (Bourgine & Johnson 2006). For an 
adaptive production system, feedback loops and an understanding of the feedback are essential. 
However, in the case of static adaptation, the feedback and its processing don’t need to happen in 
real time.  The learning within a production system can occur at either at the human or the system 
level, and this learning can result in adaptivity for any of the types presented in Figure 5, above.    

Complex Systems science is closely related to the same phenomena in nature and society. Even 
though production systems cannot compete in complexity with the social or natural interactions of 
man or nature, they do have some characteristics of complex systems. Production systems are 
composed of numerous, individual and cooperating resources, which are connected to each other and 
have multi-lateral interactions. The global capability of the complete system is determined by the 
emergence of the combined capabilities from the capabilities of its individual resources. If we consider 
a production system as an ecosystem in which machines, people and computers co-operate, the 
complexity is clearly visible. Today’s markets, which the production systems need to serve, are highly 



19 
 

dynamic and unpredictable. The systems need to adapt themselves to these changing requirements. 
For this reason, it is seen that the study of complex systems could shed light on the current research 
into production systems. However, because the methods for solving the problems of complex systems 
are not yet mature enough, in this thesis the problem is treated rather as complicated than complex. 
On the other hand, this work will result an information model, which aids a system in becoming self-
organising; one of the characteristics of complex systems. 

3.1.4. Emerging evolutionary system paradigms in production

In order to cope with today’s dynamic operating environment, and the resulting changes in 
requirements, several system paradigms which mimic the characteristics of natural and complex 
adaptive systems, such as different self-x capabilities, have been initiated. Some of these approaches 
will be discussed in the following chapters.  

Fractal Factory 

The fractal factory concept of Warnecke (1993) postulates that a manufacturing company is 
composed of small components, or fractal entities. As summarized by Tharumarajah et al. (1998), the 
three core internal features of fractals include: 1) self-organization, which implies freedom for the 
fractals to organize and execute tasks and to choose their own methods for solving problems, which 
include self-optimization enabling improvements in the process; 2) dynamics, whereby the fractals 
can adapt to influences from the environment without any formal organizational structure; 3) self-
similarity, which can be understood to mean similarities in the goals for the various  fractals, which 
conform to the objectives of each unit.  

Bionic Manufacturing Systems 

The bionic manufacturing systems (BMS) approach takes its inspiration from biological systems and 
proposes concepts for future manufacturing systems. Based on biologically inspired ideas, such as 
self-growth, self-organization, adaptation and evolution, BMS aims to deal with non-predeterministic 
changes in manufacturing environments. (Ueda et al. 1997; Ueda 2007.) As stated by Tharumarajah 
et al. (1998), a biological system is characterized by spontaneous autonomous behavior and social 
harmony within hierarchically ordered relationships. An example of a biological system is a cell, 
which  is  the  basic  unit  from  which  the  other  parts  of  a  biological  system  are  composed.  Cells  can  
have different capabilities from each other, and they are capable of multiple operations. Translated 
into the manufacturing world, a manufacturing unit can be seen as a cell, as a building block for 
hierarchical control structures such as workstations, manufacturing cells, factories, business units or 
even production networks. In this kind of structure, the layers in the hierarchy support each other. 
The components in the system communicate and inform each other about their decisions. 
(Tharumarajah et al. 1998.) 

Agent-based and holonic systems 

According to Monostori et al. (2006) agent-based computation has revolutionized the building of 
intelligent and decentralized systems. The agent technologies are well suited for manufacturing 
domains where there are problems with uncertainty and temporal dynamics, information sharing 
and distributed operation, or the coordination and cooperation of autonomous entities. Agents are 
generally characterised as distributed, autonomous entities capable of intelligent behaviour, and 
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interaction with their environment and other agents, in order to achieve a particular goal. Multi-
agent systems are formed by a network of agents that interact and communicate with each other in 
a language which provides them with a common syntax and semantics. Depending on the context, an 
agent  can  be  a  human,  an  organization,  a  machine,  a  piece  of  software  or  any  other  actor  in  the  
system. According to a review of agent applications in the manufacturing domain, conducted by 
Monostori et al. (2006), agent-based approaches have been applied to engineering design, process 
planning, production planning and resource allocation, production scheduling and control, process 
control, monitoring and diagnosis, enterprise organization and integration, production in networks, 
and assembly and lifecycle management.  (Monostori et al. 2006.) 

Differing from the fully heterarchical agent-based systems, a holonic approach represents a 
transition between fully hierarchical and heterarchical systems (Monostori et al. 2006). The holonic 
concept was originally developed by the philosopher Arthur Koestler in order to explain the evolution 
of  biological  and  social  systems.  The  word  “holon”  is  a  combination  of  the  Greek  word  “holos”,  
meaning whole, and the Greek suffix “on”, meaning particle or part. Therefore the term holon means 
something that is itself both a whole, and part of a greater whole. (Koestler 1967.) Translated into 
the manufacturing world, the concept behind a Holonic Manufacturing System (HMS) views the 
manufacturing system as one entity consisting of autonomous modules (holons) with distributed 
control. These holons are able to fulfill their own goals based on their own assessment of a situation, 
combined with their individual local knowledge, while simultaneously communicating and co-
operating with other holons in order to meet the higher-level global goals. The holonic system is 
open.  It  has  no  explicit  control  system,  but  thanks  to  cooperation  (common  interfaces  and  
negotiation) the holons may form a temporal, or permanent, federation, known as a holarchy. Thus, 
a holonic organization tries to combine the responsiveness and robustness of decentralized, 
network-like organizations with the stability and efficiency of hierarchical control architectures. The 
objective of holonic manufacturing systems has long been to transfer the benefits that holonic 
organizations provide for living organisms and societies to manufacturing, i.e., stability in the face of 
disturbances, adaptivity and flexibility in the face of change, and the efficient use of the available 
resources through self-organizational ability. (Giret & Botti 2004; Monostori et al. 2006.) 

The following two examples of agent-based and holonic approaches involve utilizing the concepts of 
complex systems and system intelligence. The first is the Evolvable Assembly System (EAS) approach, 
which was proposed in 2002 and developed during the EUPASS project. The second approach, the 
Distributed Manufacturing System (DiMS) is at this stage more a conceptual framework than an 
actual implementation.  

Evolvable Assembly System (EAS) 
The aim of the EAS is to cope with unpredictable and changing production requirements by building 
evolvable capabilities into the production system. As stated by Onori et al. (2010), evolvability is not 
only the ability of system components to adapt to changing requirements, but also a characteristic, 
which assists the processes in becoming more self-x, which can stand for self-evolvable, self-
reconfigurable, self-tuning, self-diagnosing and so on. The theoretical background behind the EAS 
concept is associated with systems theory and complex systems, such as complexity theory, artificial 
life,  autonomic  computing,  agents,  self-organization  and  emergence.  (Onori  et  al.  2010.)  EAS  is  
characterized by distributed, multi-agent-based control, along with embedded intelligence at the 
component level, intelligent process-oriented modules with well-defined interfaces, reconfigurable 
modules with fine granularity, and open architecture. The technical and architectural aspects of EAS 
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development are supported by a methodological framework which includes the EAS Reference 
Architecture describing the essential features of an evolvable assembly system. It specify the 
characteristics a system should have in order to be an evolvable system; Emplacement and Blue Print 
concept, which allows the description of a module’s characteristics; the Skill concept, which 
represents the functional skills of the modules; and the EAS Ontology and knowledge model, which 
provides common concepts for different stakeholders and defines the relations between different 
concepts. (Semere et al. 2008; Onori et al. 2011.) 
  
Distributed Manufacturing System (DiMS) framework 
The DiMS (Distributed Manufacturing System) framework, developed by Nylund et al. (2008) and 
Salminen et al. (2009) at TUT is based on a holonic architecture in which the holons are independently 
communicating entities. In DiMS, the production environment is seen as dynamic and evolving, i.e. it’s 
an open complex system, where the communication and decision making is based on the negotiation 
process  between  these  entities.  According  to  Nylund  et  al.  (2011),  the  DiMS  framework  is  a  
development method which supports manufacturing companies in decisions about how to improve 
their ability to adapt to changing requirements right from the earliest, conceptual, phases. It utilizes 
several different manufacturing paradigms, including holonic manufacturing systems (HMS), fractal 
manufacturing systems (FrMS), biological manufacturing systems (BMS), emergent synthesis, and 
service oriented architecture (SOA). (Nylund et al. 2011.) 
 

 
Figure 6. General representation of the DiMS system entity, structure and levels (Nylund et al. 2011). 

As seen in Figure 6, the DiMS structure can be explained from three viewpoints: the internal structure 
of manufacturing entities; the total manufacturing system including the manufacturing entities and 
their related domains; and, the different fractal structuring levels of manufacturing. The entities have 
internal structures consisting of digital, virtual, and real parts. (Nylund et al. 2011.) The proposed 
structure is loosely based on the Product-Resource-Order-Staff (PROSA) reference architecture by Van 
Brussel et al. (1998), which describes a manufacturing system with three types of basic holons: 
resource holons, product holons and order holons. In the DiMS framework, the products represent 
what  is  offered to  customers,  the orders  explain  what  the customers  are  actually  ordering,  and the 
resources are entities in the manufacturing system. The entities are connected with the process, 
production, and business domains. The process domain encompasses the manufacturing capabilities 
while the production domain is responsible for ensuring that there are enough resources to 
manufacture orders within given delivery times and in the required quantities.  The business domain is 
responsible  for  markets.  (Nylund  et  al.  2011.)  DiMS  is  still  largely  only  a  conceptual  framework.  
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However, there have been initial, partial implementations of it as described in Lanz et al. (2010b) and 
Järvenpää et al. (2011b; 2012a). 

3.1.5. Static versus changing systems

This chapter compares static and evolving systems in terms of the theory presented in the previous 
chapters, wherein lies the reason why this thesis is not aimed at building an optimization or expert 
system for the adaptation planning problem. The fundamental reason for this is that this thesis is 
dealing with changing and unpredictable environments and systems, rather than with predictable 
ones. Optimization models and methodologies for analysing and optimizing deterministic systems 
can be found. In these kinds of systems the goal is known, the system is known and there is no 
randomness in the system, i.e. the deterministic model will always produce the same output from a 
given starting condition or initial state.  

Traditionally, system design has operated under the assumption that the system is static and closed 
to external inputs. Current design and planning systems don’t support any other method. However, 
real world systems, such as production systems, are not static and deterministic closed-world 
systems, but rather need to evolve in response to unpredictable, external inputs. Therefore the 
problem should be approached from a stochastic, or open-system viewpoint, as is suggested by the 
evolutionary system paradigms presented in Chapter 3.1.4. Table 1 summarizes the characteristics of 
static closed-world systems and changing open-world systems with information collected and 
adapted from the multiple sources discussed in Chapter 3.1.4.  

Table 1. Comparison between static closed and dynamic open systems.  
Characteristics of a static closed system Characteristics of a changing open system 
 Environment the system (ob)serves is 

assumed to be static.  
 The system is a closed world system and 

doesn’t take input from outside world. 
 Because the environment is static, the 

system can be optimized. 
 The system is hierarchical and extremely 

rigid. 
 Only pre-defined interactions between 

the system parts exist. 
 The behavior of the system is 

predictable.  
 

 Environment the system (ob)serves changes 
unpredictably. 

 The system is an open world system, which accepts input 
from the outside world.  

 The system adapts in response to the inputs in order to 
survive in its environment. 

 The system, as well as the environment, requires feedback 
from actions. 

 The system structure is not rigid, but adaptive. 
 Interrelated system elements work towards a common 

goal; there are multiple causes, effects and interactions. 
 Due to multiple interactions and random factors coming 

from the environment, the behavior of the system can not 
be predicted. 

 

This thesis concentrates on the adaptation of systems in a turbulent environment where the system 
itself and the requirements placed upon it change unpredictably. Optimizing this kind of system is 
not feasible because of the three main issues discussed below.  

The first difficulty, when working with industrial problems, is that any definition of the cost function, 
or a precise problem statement, is inextricably linked with the design process. In many cases, the 
designer’s preferences cannot be articulated accurately or may not even be known. The adaptation 
planning problem, like most industrial problems, is not a single-objective optimization problem, but 
has multiple, often conflicting, objectives. Multi-objective optimization refers to the process of 
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systematically optimizing a number of objective functions simultaneously. The primary goal of multi-
objective optimization is to model a decision maker’s preferences (ordering or prioritising objectives 
and goals). (Marler & Arora 2004.) With this kind of multiple-objective optimisation problem, it is 
difficult to talk about the optimum, since there is no common agreement on what the optimum is. 
The adaptation planning problem has a complicated structure precisely because of its multiple 
components, including the selection of devices, maximization of the use of existing system 
components, system availability, scheduling, efficiency, cost, and so on. A criterion which is valued in 
a specific situation may change from case to case, and new criteria may emerge. It is therefore 
impossible to formulate a generic and reusable objective function.   

Secondly, this thesis deals with dynamic, changing environments, in which not only the environment 
but also the system are both constantly changing. A solution that is optimal at one point in time may 
already be obsolete at the next point, because the prevailing conditions have changed. As can be 
seen  from  Table  1,  it  is,  in  practice,  impossible  to  optimize  these  kinds  of  dynamic  open  systems,  
simply because their behavior is not predictable. Therefore, there is no point in wasting time trying 
to define highly accurate objective functions and problem statements, if they can’t provide the 
correct solutions anyway.  

Thirdly, it is highly probable that all the information required for a reliable solution is not available. 
Adaptation planning needs information from a variety of dispersed sources, and such information is 
often insufficient. The planning process has to make do with the information that is available. 
Consequently, it is not feasible to try to build an expert system which can make adaptation decisions 
automatically. An expert system is a knowledge-based system designed to encapsulate the 
accumulated human expertise in a particular, specialized domain, which is to say that it mimics the 
capabilities of human experts (Hopgood 2001). Expert systems can only treat problems within 
narrow limits, rather than more broadly relevant and realistic issues.  Another important issue is that 
expert systems are no use if the data they are working with is incorrect, or even merely inaccurate, 
as this may result in misleading solutions (Slack et al. 2004). Adaptation planning requires 
information from multiple sources and is usually highly dependent on the context from which it 
emanates. The context-information cannot yet be handled by the current, computerized, information 
management systems. In summary, building an expert system is not feasible because it would need 
to make decisions based on information which doesn’t exist, which would lead to highly unreliable 
solutions.  

3.2. Traditional system design and physical adaptation

According to Koren et al. (1999), reconfiguration, i.e. physical adaptation, is a natural extension of 
modular system design, with the primary difference that it needs to take the existing system into 
consideration. Unlike traditional system design, in reconfiguration design the system has already 
been built and only needs a few modifications. It is not economically viable to design the new system 
from scratch, even though the new system would probably be better optimised for the new 
application. This is especially true when batch sizes are small (or even single units). Therefore, 
traditional methods need to be modified before they can be used for reconfiguration design.  

Mehrabi et al. (2000) indicated that there are two levels in the reconfiguration design problem, the 
system level and the machine level. First, the reconfigurable system is designed at the system level. 
The product features are related to the required processing units and layout. In other words, it is the 
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properties of the product that define what kind of processes and operations are required, and, 
therefore, what kinds of machine types are needed. In the light of these system level specifications, 
the optimal design for the machines is defined in detail at the machine level. (Mehrabi et al. 2000.) Bi 
et  al.  (2008)  stated that  there are  basically  two methods for  designing a  new configuration for  an 
existing system. The first approach is to design a new system solution from scratch, and then to 
compare it with the existing system in order to establish what changes are required. This is not a very 
practical method, however, because it can lead to major, yet unnecessary changes. The second 
approach is to start with the original specification for the existing system, and to change that until it 
meets the new requirements. (Bi et al. 2008.)  

Which methodology is used for configuration and reconfiguration depends on the ‘coupling’ nature 
of the system. Systems can be classified as uncoupled, loosely-coupled or strongly-coupled. In 
uncoupled systems, one physical module satisfies one functional requirement. In strongly-coupled 
systems, one physical module doesn’t solely satisfy one functional requirement, but rather, all the 
design variables have to be considered together before deciding whether the proposed configuration 
fulfils its requirements. (Bi et al. 2008.)  

The algorithmic design approach, proposed by Pahl and Beitz (1996), defines a procedure that needs 
to be carried out during the design process. Pahl and Beitz divided the system design process into 
four main phases: planning and clarifying the task, conceptual design, embodiment design and detail 
design. They stated that both ‘problem decomposition and synthesis’ approaches and ‘hierarchical 
design’ approaches are aimed at dealing with the inherent complexity in large system engineering. 
Their approach is to decompose the overall design problem into sub-problems until a satisfactory 
level of simplicity and clarity has been reached.  At this level, sub-solution alternatives can be 
defined. If these solutions are found to satisfy the original problem definitions, they are combined 
until the full system has been defined. (Pahl & Beitz 1996.) At this point, the system solution has to 
be validated against the original problem.  

According to Avgoustinov (2007), in reality it is very rare for a solution to match the problem exactly. 
While the decomposition stage constitutes the analysis phase of problem-solving, combining the 
solutions and matching them to the original problem constitute the synthesis phase, as shown in  
Figure 7 (Avgoustinov 2007). 

 
Figure 7. Problem solving by decomposition.  
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According to Avgoustinov (2007), the sizes of the sub-solutions indicate their granularity. Clearly, a 
coarse-grained solution would be put together faster but match the problem less closely than a fine-
grained solution. (Avgoustinov 2007.) In terms of production system design, this means that the 
more finely-grained the modules are, the better the solution will match the original production 
system design problem. However, finely-grained modules would drastically increase the time needed 
for  the  design  phase,  as  well  as  the  complexity  of  the  design  process  as  a  whole.  It  would  also  
probably result in greater changes to the production system during any subsequent adaptation 
phase. Therefore, when starting adaptation planning, it is preferable to view the system as a whole 
entity, from the top, than to consider each individual resource on the system, especially if the 
optimality of the system is not crucial.  

Suh  (1998)  presented  an  Axiomatic  Design  Theory  (ADT)  for  engineering  system  design.  The  
axiomatic design approach defines domain models and rules, which are used to generate a new 
design. The axiomatic design method focuses on the generation of functional requirements (FRs) and 
the selection of design parameters (DPs) to fulfil the requirements. The FR’s and DP’s are connected 
by means of design matrices, as shown in Equation (1). The binary elements of the design matrix, 
expressed as  X’s  and 0’s,  indicate  the presence or  absence of  a  relationship  between a  DP and its  
associated FR. (Suh 1998.) 
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The two axioms, i.e. the Independence and Information Axioms, are used to select the best set of 
possible design parameters. The first axiom states that when multiple FRs exist, the design solution 
must be such that each FR can be satisfied without affecting the other FRs. Once this objective has 
been achieved, the design matrix will be diagonal, as each DP will affect only its associated FR, and 
there will be no coupling between the off-diagonal elements. The information axiom states that 
simpler designs are better. (Suh 1998.) 

Bi and Zhang (2001a) proposed a general strategy for determining the configuration of a modular 
system based on ADT. They noted that the function-means diagram used in traditional, modularity-
based design is the same as the FR-DP diagram used in ADT. If a given modular architecture satisfies 
the Independence Axiom, i.e. one physical module satisfies one functional requirement, and if the 
functional decomposition is consistent with the modular architecture, the determination of a 
modular configuration can be organized hierarchically. (Bi & Zhang 2001a.) Nevertheless, with 
complex production systems there is rarely a one-to-one correspondence between the FRs and the 
DPs. Figure 8 shows an FR-DP diagram for modular robots, in which a number of ‘many-to-one’ and 
‘many-to-many’ connections between FRs and DPs can be seen.  
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Figure 8. Coupled design of modular robotic configuration (Bi &  Zhang 2001a). 

The lowest granularity level considered in this thesis problem is at the device level, meaning that the 
devices are not divided into smaller elements, such as joints. For example, a production system may 
consist of many different types of devices, such as machine tools, robots, grippers, feeders, 
conveyors, and so on, which themselves, when divided into elements, are complex and thus strongly-
coupled. However, the complete system itself can be seen as loosely-coupled, because each 
component in the system corresponds to one main functional requirement (e.g. feeder to feed, robot 
to pick and place, conveyor to transfer), yet all those components together affect the overall 
performance of the production system. According to Bi et al. (2008), multiple methods can be 
applied to loosely-coupled modular system design problems, such as feature-based methods 
(Perremans 1996), modular-based methods (Tsai & Wang 1999), the combinatorial synthesis method 
(Levin 2002), entity-based methods (Hong & Hong 1998) and case-based methods (Watson 1999).  

Rampersad (1994) developed a method that simultaneously considers the design of products, 
processes and systems, as opposed to most other methods, which use product design and processes 
as information sources, rather than actively changing them. Vos (2001) proposed an assembly system 
development method based on modular assembly equipment. First, he developed a method for 
module specification. Second, a configuration method for module selection was created. He 
identified the matching of process requirements with the capabilities of the modules as one of the 
most critical problems, and used operations as a basis for the matching. (Vos 2001.) 

The work of De Lit and Delchambre (2003) concentrated on assembly line design. They divided the 
assembly line design into the following categories, which have here been adapted with small 
modifications to cover both the assembly and manufacturing domains: 
 Manufacturing and assembly planning – Manufacturing and assembly plan shows how the 

product can be manufactured or assembled, specifying the order of the operations that have to 
be carried out in order to produce the final product. 

 Resource planning – Resource planning aims to select an appropriate means of production in 
order to perform the operations defined in the previous phase, while meeting the production 
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volumes set by marketing. The resource planning aims to attribute operations to workstations 
(WSs) and select resources that will perform the different operations and tasks.  

 Line balancing – Line balancing aims to balance the workload between stations.  
 Line layout – The line layout design deals with the precise design of the manufacturing or 

assembly line, and defines the exact location of the resources on the line.  

Lohse (2006) stated that, especially for the design of assembly systems, the decomposition process 
involves a simultaneous detailing of the assembly process and grouping the necessary process steps 
into equipment requirements. The ability to achieve the required set of assembly process steps is the 
first criterion for equipment selection. Only then are the specific behaviors of the various alternative 
solutions taken into consideration in order to optimize the performance of the overall system. Again, 
the combined process capabilities of the chosen equipment solutions drive the synthesis and 
validation. (Lohse 2006.) 

Resource planning and equipment selection plays an important role in both the original system 
configuration and its reconfiguration. Over the last few years, methods based on object-oriented 
technology have emerged for selecting the tools and machines in the system design. For example, 
Usher and Fernandes (1999) proposed a systematic method for identifying and ranking tool 
alternatives based on the production costs and time. They developed production time and cost 
factors to rank selected tools, and used the object-oriented approach to handle a large number of 
alternative tool sets. (Usher & Fernandes 1999.) Grabowik and Knosala (2003) presented a method 
for representing knowledge in computer-aided production planning. Their approach introduced an 
object-oriented method that presents the design features as individual objects within a hierarchical 
class structure. They applied the proposed method on an expert system that searches through the 
knowledge base to find technical solutions, e.g. machine tools for particular applications. (Grabowik 
& Knosala 2003.)  

Rekiek et al. (2002) recognized that most automated methods in assembly system design 
concentrate on balancing the assembly line and assigning the tasks to the workstations. These 
methods consider the equipment as a given, and do not consider any alternative equipment. They 
found a few methods for tackling the resource planning problem, but the drawback with these is that 
they assume that all the alternative types of equipment are capable of performing the required 
assembly  operations,  and merely  try  to  optimize the selection according to  certain  criteria  such as  
cost or cycle-time. (Rekiek et al. 2002.) They don’t consider the process requirements dictated by the 
product, and are therefore unsuitable for the type of adaptation planning under consideration in this 
study. This thesis particularly concentrates on the selection of suitable resources, rather than 
balancing them, and therefore the existing approaches are not of much use. More recent approaches 
to resource selection in the adaptation context are presented in Chapters 3.3 and 3.4. 

3.3. Existing approaches to production system adaptation

This chapter reviews a number of existing methodologies that support adaptation from different 
viewpoints. The first three sections are purely related to reconfiguration. They are divided into 
generic frameworks for reconfiguration planning, artificial intelligence-based approaches for 
reconfiguration planning, and knowledge-based approaches for reconfiguration planning. The two 
following sections also touch on the parametric and logical aspects of adaptation and are divided into 
capability-based approaches to adaptation and agent-based approaches to adaptation. In this study, 
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the existing approaches are analysed in terms of how much they have to contribute to the original 
research problem. Finally, their shortcomings are summarised in Chapter 3.3.6, which justifies the 
need for new research. For the sake of clarity, the terminology of the original references is used 
when referring to these approaches, and so, in most cases, the word “reconfiguration” is used 
instead of “physical adaptation”.  

3.3.1. Reconfiguration planning frameworks

Deif and ElMaraghy (2006) presented an open, mixed architecture both for the design of 
reconfigurable manufacturing systems, and for controlling this design process. The architecture, 
shown in  Figure 9,  is  divided into three layers.  The first  layer  is  dedicated to  capturing the market  
demand, while the second concentrates on generating and selecting the best configuration that 
satisfies this demand. The third layer is concerned with the actual physical arrangements of the 
selected configuration. Each design layer is controlled by different performance measurements that 
reflect the strategic objectives of the reconfigurable manufacturing system. Even though the 
methodology presented here concentrates on the design of the initial configuration, the 
reconfiguration planning is also taken into account. (Deif & ElMaraghy 2006.) The architecture gives a 
comprehensive explanation of the reconfiguration process and visualizes the different areas that 
need to be developed in such systems. It gives an overall view of the RMS design process, but doesn’t 
provide detailed means for performing the individual design steps. The methodology is not aimed at 
automating any of the steps in the reconfiguration planning process, and therefore lacks the models 
and mechanisms which would enable automatic reasoning. 
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Figure 9. Reconfigurable manufacturing system design architecture (Deif & ElMaraghy 2006). 

Tracht & Hogreve (2011) presented two planning procedures that ease the decision-making task of a 
human designer during both the design phase and the reconfiguration phase of modular assembly 
lines. These procedures list the decision steps in a structured and logical order at a very high level. 
They defined three possible scenarios in which reconfiguration can occur. These are: reconfiguration 
due to a change in the product variant type; reconfiguration due to either an increase or decrease in 
demand; and, reconfiguration due to the introduction of a new product. The suggested planning 
phases and decision steps for reconfiguring a modular assembly system are presented in Figure 10. 
(Tracht & Hogreve 2011.) The architecture visualizes the different steps that need to be taken when 
reconfiguring a modular assembly line in response to different change stimuli. Like the method of 
Deif & ElMaraghy (2006) discussed earlier, although it gives an overall view of the reconfiguration 
design process, it doesn’t go into detail about how to accomplish the individual steps and nor is it 
targeted at automating any part of this planning process.  
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Figure 10. Decision steps of the reconfiguration process for variant change, capacity expansion and product 

change (Tracht & Hogreve 2011). 

Koren & Shpitalni (2010) presented a mathematical method for designing reconfigurable 
manufacturing systems. Their method takes the required manufacturing operations, their duration, 
and the desired production volume as inputs, and delivers the structure of the manufacturing system 
layout as output. The method assumes that all the machines are identical and that all the 
manufacturing operations required by the product can be accomplished equally well by any machine. 
Basically, the method delivers feasible, structural layout configurations consisting of the number of 
machines, the number of stages and the number of machines required for each stage based on the 
desired cycle time. (Koren & Shpitalni 2010.) The method does not consider the different 
characteristics of the machines, but assumes that the same operations take the same manufacturing 
time on all the machines. Neither does it consider the functional processing requirements set by the 
product, but assumes that all the operations can be accomplished with the given machines. 
Capability matching is not part of this methodology.  

Reinhart and Meling (2011) presented a methodology supporting the operational planning of 
reconfiguration measures for automated production systems. This methodology consists of four 
building blocks: 1) a process model, consisting of four phases with specific goals and activities which 
guide the development process; 2) a model of interoperability, which attempts  to describe the 
interoperability (i.e. interfaces) of the automated components at the technical and functional levels; 
3) an evaluation model, which is used for rating the alternative concepts during the planning phase in 
terms of monetary and non-monetary aspects; 4) a solution library, which supports the reuse of 
existing coupling concepts consisting of the technical concept and the monetary and non-monetary 
effects. (Reinhart & Meling 2011.) The methodology provides a holistic approach to reconfiguration 
by integrating multiple aspects, such as coupling system components, their interfaces and monetary 
considerations under one methodology. Mainly it concentrates on the interfaces and the 
interoperation between different system components. The evaluation of the cost focuses on the 
costs of making the components interoperable. As with the previously discussed approaches, this 
approach does not make a comparison between the production task in question and the capability of 
the system, but simply assumes the task can be completed with the given resources, i.e. capability 
matching is outside of its scope.  
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3.3.2. Artificial Intelligence-based approaches to reconfiguration planning

According to Bi & Zhang (2001b) the reconfiguration planning of production systems is a multi-
objective and complex design problem including both discrete (e.g. type of machine) and continuous 
(e.g. length, speed, location of the machine) variables and complex constraints. Discrete variables 
generate a search space with discontinuities and non-linearities. Conventional mathematical 
optimization techniques are hardly able to solve this type of NP hard problem in polynomial time. (Bi 
& Zhang, 2001b.) Therefore, methods that apply heuristics are seen as potential solutions to the 
reconfiguration planning problem. Artificial Intelligence (AI) -based methods have recently been 
widely applied to solve many kinds of combinatorial optimization and planning problems. Genetic 
algorithms (GA), in particular, have attracted researchers working on system design (Gen & Cheng 
1997;  Ho 2005;  Tang 2005).  According to  Bi  and Zhang (2001)  genetic  algorithms are  attractive  for  
reconfiguration planning problems, because GAs can easily handle mixed discrete/continuous 
variables. A few researchers have used GAs for the reconfiguration planning problem, and some of 
their work is discussed briefly below.  

Tang (2005) treated reconfiguration planning as a “classical” planning problem, and as such it usually 
has three simple inputs: 1) the initial state of the world that the object resides in; 2) the goal that is 
desired; 3) the possible actions that can be performed. The planner’s output is a sequence of actions 
that,  when  executed  in  the  initial  state  of  the  world,  will  achieve  the  goal.  The  reconfiguration  
planning problem can be seen as a path-planning problem for finding the shortest and cheapest path 
from the initial state to the desired state. Tang developed a methodology for designing and 
reconfiguring a Multiple Part Manufacturing System (MPMS) focusing on metal cutting. He presented 
a Computer Aided Reconfiguration Planning (CARP) framework using a hybrid plan-generation 
method based on A* algorithm and GA. The basic input to a CARP system includes the manually 
constructed description of the reconfigurable object, its current state, and the new performance goal 
to be achieved. Based upon these inputs, the CARP system will output a series of reconfiguration 
actions in a specified sequence in order to achieve the desired change in system performance. (Tang 
2005.) The methodology concentrated on creating structural reconfigurations at the single machine 
level, but did not consider the whole production system consisting of multiple machines.  

Ho (2005) applied motion genes to reconfigure flexible assembly line systems. He encoded and 
evolved conveyor components by linear and angular conveying motions. Genetic mating was used to 
generate alternative conveyor system layouts that satisfied specific production requirements, and 
the best of these was selected on the basis of ‘the survival the fittest’. (Ho 2005.) This approach only 
concentrated on generating feasible conveyor layouts, and ignored all the other system components.  

Youssef & ElMaraghy (2007) presented an RMS Configuration Selection Approach considering the 
arrangement of machines, the selection of equipment and the assignment of operations. The 
approach consists of two phases. In the first phase, near-optimal alternative configurations for each 
possible demand scenario over the considered configuration periods are selected. The approach uses 
a constraint satisfaction procedure, real-coded Genetic Algorithms (GAs) and Tabu Search (TS) for the 
continuous optimization of capital cost and system availability. In the second phase, integer-coded 
GAs and TS are used to determine which of the alternatives produced in the first phase would 
optimize the smoothness of the transition within the planning horizon. A stochastic model of the 
smoothness of the reconfiguration across all the configuration periods within the planning horizon, 
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according to the anticipated demand scenarios, is used for this. The criteria for system analysis are 
cost and availability. (Youssef & ElMaraghy 2007.) 

The above-mentioned GA-based approaches require that the system is encoded into a gene and 
chromosome structure, and that the objective is presented as a mathematical function. Therefore, 
they can only provide solutions to relatively narrow problems, for which the objective function and 
the system encoding can be formulated with relative ease. This type of AI-based approach can’t cope 
with the extensive and dynamic nature of the problem presented in this thesis. In this problem, the 
system itself, the demands placed on it, and the environment are constantly changing, so the time-
consuming formulation of problems using these mathematical elements is not feasible.  

3.3.3. Knowledge-based approaches to reconfiguration planning

Travaini et al. (2002) presented a knowledge-based methodology and tool for assembly line 
reconfiguration. Their approach is concerned with three fundamental models: a model to describe 
the features and functionality of the assembly line; a model to describe the features of product 
component assembly; and, a model that produces all the assembly sequences. An important part of 
the methodology is a rule-base which is supposed to compare new products facing the existing 
assembly lines. These models, and the rule-base, are supposed to analyse the configuration of the 
assembly system and the product components, and to propose and evaluate new reconfiguration 
solutions. As input, the methodology uses both the information collected from product component 
and assembly line data bases, and the information provided by automatic tools for gripper selection 
and sequence generation. It analyses the reconfiguration strategies, pointing out similarities and 
differences between the requirements for the new assembly process and the available structures of 
the existing assembly line. The product component data is compared with the assembly line data, 
and the assembly operations are allocated to the various stations on the line according to the rules. 
The different assembly line options are evaluated using a reconfiguration index. (Travaini et al. 2002.) 
This method covers the whole reconfiguration planning process from product analysis to the 
selection of the configuration, and also provides the information models and rules required to 
perform the reasoning activities. However, based on the description of the approach, it is not clear if 
the information structure supports automatic manipulation and reasoning with the information. The 
method is based on a manual comparison between the new requirements and the old assembly 
system with the given rules. Furthermore, it doesn’t consider lifecycle information, or the interfaces 
of the resources.   

Hirani et al. (2006) presented a methodology for the knowledge-enriched specification of the 
requirements for reconfiguring an assembly system. The methodology involves the elicitation of user 
requirements and their subsequent conversion into system requirements. The knowledge inputs 
from  the  system  user  and  system  integrator  are  considered.  Each  part  of  the  methodology  is  
underpinned by specialist knowledge of the products to be assembled, the assembly processes and 
methods needed, and the capabilities that need to be delivered for system integration and 
reconfiguration. The key elements in this methodology are the mapping, and its rules, which 
translate the user requirements into system requirements, and then into task and assembly module 
requirements. Once the system requirements are defined, these are compared to the specification of 
the existing assembly system while changes to the process elements are defined using a matching 
algorithm in order to derive the reconfiguration needs. (Hirani et al. 2006.)  
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Ratchev et al. (2007) continued this work by presenting a knowledge-based methodology for forming 
customizable, reconfigurable assembly cells. Their approach is based on matching user requirements 
to existing supplier knowledge in terms of design rules and principles, the modules offered by 
different vendors, new emerging technologies, and their own and their competitors’ existing 
products. Using this approach, the decision-making involves an analysis of the requirements, the 
generation of assembly processing alternatives, and the evaluation and selection of the assembly 
modules and cells. (Ratchev et al. 2007.) Both of the above-mentioned studies are aimed at providing 
means and guidelines for the design and reconfiguration of an assembly system through close 
interaction between the customers, suppliers and the system integrators. In addition, they provide 
the required information in a formal, computer-interpretable format. They use matching algorithms 
to enable the automatic comparison of the new system requirements against the old system 
capabilities and the capabilities of the resources saved on the knowledge base. These methods 
support automatic reasoning, but their intention is not to automatize the reconfiguration planning. 
Furthermore, they don’t deal with how to create new resource combinations to compensate for 
missing capability requirements during the reconfiguration planning and nor do the models deal with 
the resources’ lifecycle information.   

Von Euler-Chelpin and Kjellberg (2007) looked into the possibility of feeding the resource operation 
knowledge gained from the runtime environment back into the manufacturing system 
reconfiguration activities. Their approach didn’t consider the reconfiguration process itself, but 
concentrated only on capturing and presenting the condition and maintenance-related information 
of the existing resources in order to support the reconfiguration process.  They divided the capability 
of the manufacturing system into designed (theoretical) and actual capabilities. The actual capability 
depends on the restrictions arising from the process, the environment, and the wear on the 
resources and is measured during runtime. This shows whether the resource, in a certain context, 
can meet the demands and requirements posed by the product design. The context is described by 
the current configuration and the surrounding environment at the point when the data is captured. 
(von Euler-Chelpin & Kjellberg 2007.) 

Harms et al. (2008) developed a framework for production system re-use, consisting of methods, 
tools and business process reference models. The core element of the framework is the knowledge-
based approach to Computer Aided Reuse Planning (CAReP). CAReP facilitates and organizes the 
exchange of information between experts and information systems, enabling the logical 
interpretation of information. The tool is an expert system which provides the user with the 
knowledge utilised in the re-use planning process. CAReP aims to help the planner to decide whether 
to re-use a particular item of equipment based on the effort and risk involved, and company-
strategic criteria. Indeed, CAReP produces system specifications and project plans for re-use, which 
encompass all the necessary adaptation, maintenance and modification processes, (see Figure 11). In 
the adaptation domain, CAReP provides rule-based solutions for assessing the interdependencies 
between adaptation processes and functional capabilities (e.g. the welding force of a welding gun) as 
well as the costs of a particular adaptation process. Using the rule-base, it’s possible to generate a 
specification for the adaptation process for the given resource. (Harms et al. 2008.) 
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Figure 11. CAReP – Reuse options generation procedure (Harms et al. 2008). 

Harms et al. (2008) use ontologies to represent the conceptual procedure and the information in a 
computer-based application. They extend the ‘product, process, equipment’ ontology of Lohse 
(2006) with an adaptation process and an equipment domain. They also expand the conceptual 
equipment definition with the failure mode concept, which includes the concepts of failure cause 
and effect, failure identification, and action for containment, all of which are based on a failure mode 
and  effects  analysis  (FMEA).  (Harms  et  al.  2008.)  CAReP  works  at  the  device  level  rather  than  the  
system level. It evaluates the re-use and reconfiguration options for one device at a time and is 
therefore not suitable for planning the reconfiguration of complete systems. It is a rule-based expert 
system, where all the possible adaptation actions (including their prices) and resulting functional 
capabilities have to be pre-programmed into the system, which makes it feasible for only relatively 
static production environments. Therefore it doesn’t provide a solution for the problem outlined in 
this thesis.  

Minhas & Berger (2011) presented a concept for reconfiguring production set-ups to enable versatile 
production in automotive factories. Their approach starts with comparing the features of the new 
product with the features available in the database. The aim is to find any matches between the new 
case and the old cases stored in the technology data catalogue using heuristic algorithms. If a similar 
case is found, the process and the related parameters used for the previous case are used for the 
new case. The catalogue stores the application and case-specific knowledge in an ontological 
framework. An axiomatic optimizer utilizes axiomatic design methodology to select and optimize the 
design parameters of the resources based on production goals (cost, time, quality and environmental 
impact). The tasks are sequenced and assigned based on the ease of reconfiguration, i.e. the 
minimum  values  for  time,  cost  and  environmental  impact  for  every  change.  The  aim  of  this  
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methodology is to enable the comprehensive re-use of existing knowledge resources and experience. 
(Minhas & Berger 2011.) This approach doesn’t consider the capabilities of the resources during the 
reconfiguration design process. Instead, the selection of the resources is based solely on the previous 
products which have similar features. The description of this approach reveals that interface analysis 
is not part of the concept. Neither does it consider the lifecycle of the resources, which is regarded as 
an essential input for adaptation planning.  

3.3.4. Capability-based approaches to adaptation

This chapter presents adaptation planning approaches which utilize descriptions of the resource 
capability as a basis for their reasoning. In this section, the word “skill” is used interchangeably with 
the  word  “capability”  as  the  policy  in  this  research  is  to  use  the  original  terminology  for  each  
reference when discussing them.  

Timm et al. (2003; 2006) proposed an ontology-based capability management approach for multi-
agent-based manufacturing systems in order to shorten the gap between process planning and 
production control.  The task requirements and the capabilities of the resources are specified using 
ontologies. The approach is based on the decisions of the resource agents as to whether they can 
fulfil the capability requirements or not. This approach represents the capabilities based on 1st order 
logic. Within these predicates, the concept terms denote types of capability. The concept terms are 
organized in taxonomic hierarchies within the ontology, thus allowing for subsumption inference in 
order to obtain a more flexible and “fuzzy” match-making between the problem descriptions and the 
capabilities. The problem is specified using statements, which describe pre- and post-conditions. The 
agent’s capabilities are determined by its set of available plans, which describe its ability to transform 
a state which supports its pre-condition into a state supporting its post-condition. They used the 
cobac* algorithm as a conflict measure, based on the evaluation of proximity and distance in the 
ontology,  i.e.  its  taxonomic  relation.  STEP-NC  is  used  to  give  a  structured  representation  of  the  
manufacturing task. (Timm & Woelk 2003; Timm et al. 2006.) 

Their approach allows the process planning to occur dynamically, based on the availability of, and 
disturbances on, the manufacturing line and therefore it supports dynamic adaptation (e.g.re-routing 
or re-scheduling). Timm et al. (2006) mention combined and complex capabilities which are formed 
by coalitions of resource agents. However, it appears that they use those terms with different 
meanings than the ones used in this thesis. If all the manufacturing steps cannot be performed by 
one machine, then more machines will be needed to perform the sequence of required 
manufacturing steps to produce the product. In this approach, these machines will then form the 
combined capability. However, they do not specify how these combinations of capabilities are 
handled in the ontology. In addition, it is not specified what kind of information is included in the 
capability definition or whether they incorporate any parameters. The creation of new combinations 
of devices, including matching their interfaces, is also neglected in this approach.  

In the SIARAS project (Skill-based Inspection and Assembly for Reconfigurable Automation Systems) 
an intelligent system, called the skill server, was built to support automatic and semi-automatic 
reconfiguration of production processes. As the basis for its reasoning, the skill server needs both the 
available knowledge about the production technology (i.e. generic knowledge of the system and its 
skills and possible tasks), and the workpiece to be produced and its related tasks. The ontology 
expressed in OWL is used to model this knowledge. The skills are modelled as a taxonomy following 
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standards like DIN 8580 and VDI 2860. Each device has a set of skills which are regarded as instances 
of  the  taxonomy  skills.  Atomic  skills  are  defined  as  skills  which  cannot  be  broken  down  into  any  
further activities. For example, gripping would not be an atomic skill because it includes lower-level 
operations like, ‘move until the proximity sensor is active’, ‘enable the valve until the touch sensor 
has been enabled’ and so on. Atomic skills can be directly linked to the tasks. The ontology is used to 
reason whether skills match particular tasks or whether devices have those skills. However, the skill 
server’s reasoning is not based on the ontological representation of the knowledge alone, as specific 
knowledge of the domain is also needed. This knowledge is put into utility functions, which are 
plugged into the skill server core. The utility functions can be either device-specific (e.g. for setting up 
a certain sensor) or application specific (e.g. path planning for an industrial robot) or they are meant 
to solve any other kind of problem. (Bengel 2007.) 

According to Malec et al (2007) the reconfiguration approach of SIARAS is based on the user 
modifying the current process description in some way (parameter change, task exchange). After 
validating and accepting the user input, the skill server analyses the new process regarding its 
feasibility (do the devices provide all the skills required for the updated task), accuracy, robustness, 
reliability, timing, power consumption, collision avoidance, cost, and so on. In the final phase of 
reconfiguration, they use the mechanism of ontology-based compilation in order to create 
configurations, and to facilitate a smooth transition from a generic process representation to a 
device-specific code.  (Malec et al. 2007.)  

The SIARAS approach does not meet the objective of this thesis because it uses the skill descriptions 
to control production and programme the system. Therefore, the skills have been defined on a 
detailed action level. With regard to adaptation, their approach doesn’t take the lifecycle of the 
resources into account in the skill description. Another drawback is that the skill definitions don’t 
include the parametric properties of the skills, but the properties are assigned to the devices rather 
than to the skills. The name of the property instance is used to indicate the parameter value of the 
property, such as “Electrical interface_connectorM12-4Pins” (SIARAS 2008). This makes it difficult to 
compare similar skills in different types of devices. In the SIARAS approach the devices are classified 
in a hierarchical class structure. These are then associated with the relevant skills and properties, e.g. 
devices belonging to the gripper category will have gripper skills and devices belonging to the sensor 
category will inherit the sensor functions. However, this may not be the most optimal way to assign 
the skills, because it is not certain that all the same types of devices really have the same skills. Also, 
multifunctional devices often have more skills than are assigned to the device category they most 
closely fit into.   

Smale and Ratchev (2009) proposed a capability-based approach for multiple assembly system 
reconfiguration. Their work comprises a reconfiguration methodology supported by a capability 
model and a capability taxonomy. The capability model combines the roles of the requirements 
definition, the capability definition and the capability comparison and delivers aggregated capability 
sets. The capability taxonomy is suited to both equipment specification and requirement definition 
and its main purpose is to allow the capabilities to be defined with terminology that is common to 
both equipment suppliers and product manufacturers. The capability taxonomy has been built based 
on six capability classes, which are representative of the majority of processes associated with 
manufacturing and assembly, namely: motion; join; retain; measure; feed; and work. The product 
requirements are converted into required capabilities through the use of a Process Flow Template 
and the Capability Taxonomy within the Capability Identification Process. The Process Flow Template 



37 
 

is based upon the principle that assembly requires two parts to be fetched and maintained together. 
Therefore, the core assembly processes are “Moving Part x” and “Joining Parts x and y”. Using this 
principle as the basis for the definition of the required capabilities, a number of rules can be applied. 
Figure 12 shows the rules and the capability identification process. (Smale & Ratchev 2009.)  

 

 
 

 

Figure 12. The rules applied to the Capability Flow Diagram and an example of the Capability Identification 
Process (Smale & Ratchev 2009). 

After making the Capability Flow Diagram for the product, the Capability Taxonomy and associated 
guidelines are applied to define each individual capability. The output is a numerical value which is 
then logged within the relevant set. The final step is to perform a comparison of the existing and 
required capability sets with a Comparison Matrix. (Smale & Ratchev 2009.) The reconfiguration 
methodology presented in (Smale & Ratchev 2010) is based on a known set of products. Finding the 
proper production sequence, i.e the order in which products are produced, is an integral part of the 
methodology. The production sequence is achieved through adopting a product-centered approach 
and identifying the commonalities between each of the products. The configuration analysis is first 
performed for each product independently, at which stage the capabilities to remove, retain, 
investigate and procure are identified. This is done by comparing the existing capabilities with the 
required ones using the capability matrix. After this, the sequence analysis is performed. (Smale & 
Ratchev 2010.)  

This methodology (Smale & Ratchev 2009; Smale & Ratchev 2010) supports reconfiguration planning 
by providing a means to compare the product requirement with the existing resource capabilities, 
using the capability taxonomy and rules. However, although it is intended to computerize the 
methodology in the future, at present the definition and matching of capabilities is done manually, 
and therefore requires a lot of effort. There are a few reasons why this approach doesn’t support the 
objective of this thesis. Firstly, the available system components are treated as individual items and 
their interfaces, co-operation and layout are not taken into consideration. In addition, this approach 
does not consider the capability parameters, the combined capabilities of multiple devices or the 
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lifecycle information and current status of the devices. The approach can be extended from the 
device level to the unit and station levels, but it doesn’t examine how to derive the unit or station 
level capability. In other words, it relies on a human expert to make the definition and comparison of 
the capabilities. Also, because the reconfiguration methodology is based on a known set of products, 
and optimization of the production sequence based on minimum downtime and changes, it can’t 
handle an unpredictable environment in which the future product requirements are unknown.  

3.3.5. Agent-based and holonic approaches to adaptation

Most of the agent-based and holonic approaches presented in this chapter also utilize some sort of 
capability description and are therefore of special interest here. The reason for not including these 
approaches in the previous chapter is that their focus is more on controlling the production, rather 
than planning the adaptation. Therefore they differ slightly from the approaches presented in the 
previous chapter.  

Actor-based Assembly Systems (ABAS) mechatronic reference architecture, developed by Martinez 
Lastra (2004) in his dissertation, aims to meet the requirements of flexible, adaptive and 
reconfigurable assembly systems. In ABAS, the reconfigurable systems are built by autonomous 
mechatronic devices, called actors, which deploy auction- and negotiation-based multi-agent control 
in order to collaborate towards a common goal, i.e. the accomplishment of assembly tasks. These 
assembly tasks are complex functions, which are generated from a combination of simpler activities 
called assembly operations, which are the individual goals of the actors. The actors’ functionality is 
mapped to these atomic assembly operations. Each of these actors provides one specific service 
(operation)  to  the  society.  (Martinez  Lastra  2004;  Martinez  Lastra  et  al.  2009.)  The  approach  is  
targeted purely at agent-based shop floor control. From the viewpoint of this thesis, it is interesting 
because it deals with atomic assembly operations which subsequently form higher level assembly 
processes  once  the  actors  have  been  combined  into  clusters.  However,  as  the  description  of  the  
operations (skills) doesn’t define the parameters of these skills, this approach is not suitable for 
detailed resource selection.  

Al-Safi and Vyatkin (2007) proposed an ontology-based reconfiguration agent that attempts to 
reconfigure the manufacturing system without human intervention after detecting changes in either 
the requirements or the manufacturing environment. It creates a new reconfiguration by analyzing 
the new requirements and using the ontological knowledge model to infer facts about the 
environment, and is thus able to deduce whether the current environment can handle the given 
manufacturing requirements or not. The reconfiguration agent consists of four main components, 
namely, a requirement analyser, a floor analyser, a knowledge modeller and a decision engine. The 
decision engine decides whether the requested operations exist in the current manufacturing 
system, and whether they are connected with logistic operations, and then proposes new 
configuration based on this. If the requirements are not satisfied, it lists the missing operations. (Al-
Safi & Vyatkin, 2007.)  This approach does support automatic adaptation in that it compares the new 
requirements against the existing system. However, it only takes into account those machines which 
are currently in use. Although it checks whether the current environment is able to perform the new 
required operations, it doesn’t try to search for the missing technology from resource libraries, or to 
create new combinations of the existing machines. The reasoning between the requirements and 
resources is based on pre-defined operations which it is known that the resource can perform, and 
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therefore the approach doesn’t consider the properties and capabilities of the resources in sufficient 
detail.   

Barata et al. (2008) presented a multi-agent-based control architecture for a shop floor system 
(CoBaSa) which supports fast re-engineering and plug and play capabilities. In their approach, each 
manufacturing component is agentified in order to enhance its adaptability and interaction 
competences so that it can respond to different requests. These agents, each of which represents 
one manufacturing component, can be aggregated through the Broker Agent GUI to form a coalition 
of agents. This coalition coordinates higher-level processes (complex skills) based on the skills 
available among its members. The Broker Agent GUI works as an interface between the agent system 
and the human expert, through which the expert can choose which components and associated skills 
they want to aggregate in order to provide a possible new complex skill. (Barata 2006; Barata et al. 
2008.) According to Cândido and Barata (2007), the ontology is used to identify which basic skills are 
necessary to provide complex skills. After gathering the coalition members’ skills, the Coalition 
Leader Agent searches the ontology for any complex skills that could possibly be supported with the 
basic skills. The Pallet Agent contains the information about the order in which the skills need to be 
executed in order to assemble the product. (Cândido & Barata 2007.) 

For this thesis, the CoBaSa is interesting because it deals with the skills and complex skills of multiple 
co-operating agents. Unfortunately, it has not been reported in detail how the skill information is 
handled in CoBaSa, such as how it deals with the skill parameters in the ontology. Based on the 
example presented in Barata et al. (2008) they use the skill concept name to indicate the properties 
of the skill (e.g. Drill_Small_Skill, Drill_Large_Skill, Drill_Special_Skill). None of the reasoning seems to 
be based on the technical properties of the devices as the skills don’t actually have any parameters; 
just the concept name. The CoBaSa architecture is intended to provide agility at shop floor control 
level. Therefore, it is targeted more at operational control than at planning an adaptation.  

Frei  (2010)  applied  the  CoBaSa  in  Self-Organizing  Evolvable  Assembly  Systems  (SO-EAS).  However,  
because the coalitions of agents in the original CoBaSa architecture was static, and formed manually 
by the user, she developed mechanisms for dynamic coalitions in order to overcome this limitation. A 
chemical reaction model was utilized for this. (Frei 2010.) SO-EAS are systems which are capable of 
self-organization while the assembly system is being created, and self-management during the 
production time. They are composed of modules with local intelligence and self-knowledge, able to 
self-organize to form suitable dynamic coalitions and shop-floor layouts, which fulfil the generic 
assembly plan provided by the user. This is done based on the rules for self-organization. During 
production, the production modules self-manage themselves while executing the assembly tasks 
based  on  the  policies  for  self-management.  (Frei  et  al.  2010.)  Several  rules  are  applied  for  the  
formation of the dynamic coalitions based on the chemical reaction model. These include rules for 
interface compatibility, composition pattern, the creation of composite skills, task coalition matching, 
layout creation, transport linking and transforming the generic assembly plan into a layout-specific 
assembly plan. (Frei 2010; Frei & Di Marzo Serugendo 2011.) 

As  stated  by  Frei  et  al.  (2009),  ontologies  and  the  complementary  XML  representation  of  the  
resources is used to guide the creation of composite skills from simple ones. The XML-file attached to 
each resource agent specifies what other capabilities are needed with that specific resource. Also, as 
discussed with the CoBaSa approach, the skill definitions don’t include parameter values. Instead, 
each skill with different parameters is saved separately in the resource information with the skill 
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name indicating the skill parameter, e.g. Drill20 and Drill30 for drilling holes of 20 or 30 mm. This kind 
of approach to handling the skills inhibits the reusability of the skills between different resource 
types, in addition to which it means that there is a huge amount of information which has to be 
handled when dealing with resources having numerous skills.  

Ferreira et al. (2010) presented a multi-agent architecture for the requirement-driven 
reconfiguration of modular assembly systems. Their approach was driven by a set of requirements 
which addressed the specific needs of precision, modular assembly systems, and catered for both the 
physical and logical constraints of the modules as well as their joint emergent behaviour. The agent 
architecture consists of a Requirement agent, an Equipment Module agent, a Physical agent, an 
Assembly Process agent, an Assembly Process broker and an Equipment broker. This architecture 
aims to assess the effort required for reconfiguration, as well as to provide solutions from the 
existing modules when the product or process requirements change. (Ferreira et al., 2010.) The 
strength of the proposed method is that it is able to consider different manufacturing capabilities 
capable of fulfilling the same requirement, and to assess them according to the cost of the 
reconfiguration. However, the paper does not specify how much of this reasoning can be 
automatized and how much is left for human expertise. Neither does it specify how the information 
about the agents is presented.  

Zäh et al. (2010; 2011) presented a holistic approach to cognitive job control of production systems. 
Their  approach  is  based  on  so-called  smart  products,  which  store  the  knowledge  about  the  
production process and its current state. The cognition is implemented by RFID tags attached to the 
products. Their multi-agent-based approach concentrates on product-based production planning and 
shop floor control, and enables the plans to be adapted dynamically. The product-specific operation 
times are measured and stored on the smart product during the runtime. This product-specific data 
can be used for learning and updating the overall planning data, and improving future plans. (Zäh et 
al. 2010; Zäh et al. 2011.) Zäh et al. (2010) use a holistic data model, consisting of product-, process- 
and resource-related data, represented in an XML structure. In order to present both the process 
requirements and the resource capabilities in terms of feasible operations, they use the DIN8580 
standard and VDI2860 guidelines. In their approach, the production sequences are presented in a 
graph-based model. The capability profiles of the resources represent the executable production of 
every single resource. These are used to allocate the production steps to the resources. (Zäh et al.  
2010.) According to Zäh et al. (2011) the neutral building-block-based description of working 
processes facilitates the flexible configuration of the work plan, the consideration of potential 
alternative sequences in order processing, the easy modification of single building blocks and the 
integration of additional working processes.  

The capability profile used in the cognitive factory (Zäh et al. 2010; Zäh et al. 2011) directly indicates 
the operations the machine is able to execute, i.e. the product manufacturing steps have a clear 
correspondence with certain resources. This approach does not involve reasoning about the 
capabilities, or matching them against the product requirements. This kind of approach is efficient 
for applications where the set of possible products is fixed, but their production volumes and orders 
vary. This enables the possible product-operation-resource combinations to be predetermined, and 
the planning and control can thus concentrate on routing the product according to resource 
availability and economic parameters. However, it is not suitable for adaptation planning and 
reactive adaptation in an unpredictable environment.  
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3.3.6. Conclusions about the existing approaches to adaptation

Chapters 3.3.1 to 3.3.5 summarised the different approaches taken by a number of researchers to 
support the adaptation of production systems. The strengths and weaknesses of each approach for 
solving the research problem of this thesis were briefly discussed. The review doesn’t claim to be 
complete, and it has to be recognised that there may be other approaches which have not been 
discussed above. However, the review was extensive enough to show that there are a wide range of 
different approaches to adaptation planning and the reactive adaptation of production systems. 
Despite the significant amount of research carried out in this area, none of the existing approaches 
are in themselves able to solve the problem of this thesis.  

Youssef and ElMaraghy (2007) presented a literature review of the various approaches to systems 
configuration selection. They identified some gaps in the existing approaches, which also directly 
relate to the adaptation problem. Firstly, most of the work done treats the configuration problem 
from  one  particular  perspective,  i.e.  the  physical  arrangement  of  the  machines,  or  it  deals  with  
configuration as a parameter without defining it. What is lacking is the automatic generation of 
feasible alternative configurations for different demand scenarios. Secondly, most of the previous 
work only focuses on the cost and economic benefits in order to evaluate performance, but it doesn’t 
consider other system evaluation criteria. (Youssef & ElMaraghy 2007.) Table 2 summarises the main 
limitations of the existing approaches to adaptation in terms of this thesis problem. 

Table 2. Limitations of the existing adaptation approaches.  
Limited coverage 
 The approaches usually consider only a certain small part of the overall problem. They 

may, for example, concentrate on finding the best possible structural configuration at 
the single machine level, or on finding the best layout to optimize the throughput or to 
minimize the costs. In other words they don’t support all the aspects of adaptation that 
are seen as relevant in this work. These include the ability to support physical, logical 
and parametric adaptation, the consideration of the old system layout and its 
components, the new product requirements, the capabilities of the system components, 
the lifecycle information of the system and its components, and lastly, the possibility of 
incorporating different user-defined criteria into the reasoning process.   

Lack of suitable resource identification and selection 
 Most of the approaches don’t consider the matching of product requirements with 

resources having suitable capabilities. The suitable resource options are either pre-
defined or the features that can be manufactured with the machines are already 
described, eliminating the reasoning. The emphasis is then on the optimization of the 
configuration based on some user-defined criteria, rather than finding the right 
resources for the given requirement.  Simply put, the suitable resource identification is 
beyond the scope of most approaches.  

Lack of suitable resource models 
 The previous point highlights the lack of suitable resource models, which would allow 

the matching of product requirements against resource capabilities. Most of those 
approaches that do utilize some sort of capability description don’t incorporate the 
capability parameters into the description or are not able to deal with the combined 
capabilities of multiple resources.  

Lack of automatic generation of feasible configurations 
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 Automatic generation of feasible alternative configurations for different demand 
scenarios is missing. The approaches reviewed don’t deal with finding or generating new 
resource combinations for the new requirements. This, again, is due to the lack of 
suitable models for describing the resources and their capabilities.  

Static resource descriptions lacking the lifecycle aspect 
 Those approaches which do utilize resource descriptions as a basis for adaptation deal 

with static resource descriptions. This means that the capabilities of the resources are 
not updated dynamically based on the gathered lifecycle information. The lifecycle or 
resource condition information is therefore not used as a basis for decisions about re-
use or adaptation. This is a serious problem, because the resource behaviour is often 
strongly dependent on the resource lifecycle and usage history.   

Lack of interface considerations 
 Most of the reviewed approaches don’t put any emphasis on the interfaces and 

compatibility of the resources while making the configuration decisions.  
Inability to evaluate the magnitude of needed change 
 Very few approaches try to evaluate the magnitude of the change the production 

system needs to undergo when the product requirements change. This would be 
important in order to be able to estimate the effort and cost of the required adaptation. 
Those approaches which do estimate the costs are based on pre-defined information of 
the price of certain adaptation actions. These “expert systems” cannot deal with 
unpredicted situations and are therefore very limited in their scope.  

 

In a rapidly changing production environment the creation of a new production system configuration 
has to be based on rapid match-making between the requirements and offerings. If neither the 
requirements nor the offerings are pre-known, it is not possible to pre-define their direct 
relationships. Nevertheless, this was the procedure followed in most of the reviewed approaches, 
which thus eliminated match-making between the requirements and the offerings. Therefore, such 
approaches can’t solve the problem of the adaptation of systems in a constantly changing 
environment. Nevertheless, a few approaches did base the adaptation on this match-making, this 
being enabled by the descriptions of the resource capabilities. Using a process-oriented definition of 
capabilities, it is possible to make a match between the process requirements and the resource 
capabilities (i.e. requirements and offerings). The ability to describe the capabilities of resources is 
seen as an important enabler for successful adaptation. Therefore, it is emphasised strongly in this 
work.  

3.4. Information models supporting adaptation

As discussed above, resource capability modelling forms an essential part of this thesis and therefore 
attention has been paid to reviewing the existing approaches to describing resources. The aim of 
bringing automation to the design and adaptation of a production system requires a structured 
knowledge representation of the resource properties and its constraints. The manufacturing 
resource information and the capability descriptions are regarded as the basis for various 
manufacturing activities, including process planning, resource allocation, system and facility design, 
controlling the operations and planning the adaptation of a system. If these descriptions are formal 
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and expressive enough, they enable automatic computerized methods to find suitable system 
components, and to test alternative scenarios in the early phases of the design.  

As stated by Vichare et al. (2009), the standardised representation of information in the 
manufacturing business has traditionally focused on the products themselves, with information 
relating to their design, geometry and the processes required for their manufacture. What are 
lacking are standardized information models which represent the manufacturing equipment used to 
produce such products. Resource data models and tools for different system components exist, but 
they are either vendor-specific or very limited in their scope. This is an important omission, because 
that is the information which is required when the production systems are actually built. (Vichare et 
al. 2009.)  

Recently, manufacturing resource modelling has been attempted by several researchers using 
different methods, having different purposes, from different viewpoints and at different levels of 
detail. The representation of machine tools, in particular, has been widely studied; see, for example, 
(Hedlind et al. 2010a; Hedlind et al. 2010b; Kjellberg et al. 2009b). These representations are often 
based on the ISO 10303 standard, also known as STEP. Tolio et al. (2010) listed some standards that 
are used to describe machine tools and cutting tools, such as ISO 13399, entitled ‘‘Cutting tool data 
representation and exchange’’, ISO 10303 – IAR 105 on the kinematic modelling of manufacturing 
resources, and the standard ASME B5.59, which defines information models and formats for 
describing machine tools for milling and turning based on XML data format. However, as stated by 
Tolio et al. (2010) available standards dealing with manufacturing resources often do not consider 
their integration in the plant, neglecting the understanding of the production system as a whole. As 
the goal of this thesis is to provide a more generic resource description, which is able to describe a 
multitude of different types of resources, those approaches aimed purely at machine tool 
representation are not discussed in any further detail here.  

The following section presents a few interesting reference solutions for describing resources and 
their capabilities, and for matching the product requirements with suitable resources. First, 
ontological approaches to describing resources are discussed, followed by the resource description 
languages and then object-oriented approaches. The section concludes with a summary of the 
limitations of the existing approaches to resource description.  

3.4.1. Ontological approaches to describing resources

Ontologies play an important role in knowledge-based modelling. They provide a standardized way 
to present knowledge from different domains and from heterogeneous knowledge sources. 
Ontologies are developed to support the exchange of meaningful information across autonomous 
entities that can organize and use the information heterogeneously. According to Gruber (1993), “an 
ontology is a formal, explicit specification of a shared conceptualization”. The conceptualization is 
applied to a limited domain, such as the product, process and system domains. The conceptualization 
aims to break down the different terms and entities of this domain into well-defined and distinctive 
concepts. The concepts are expressed in a formal way in order to allow computers to use them. The 
concepts have to be explicit in order to avoid inconsistencies and ambiguities in meaning. This can be 
achieved by using non-ambiguous classifications, relations or metrics. Lastly, the conceptualization 
has to be shared and agreed upon by the different user groups in order to provide a common means 
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of communication and frame of reference. (Gruber 1993.) Below, a few approaches which utilize 
ontologies to describe resources and their related domains will be introduced. 

Core Ontology – an ontology representing product – process – system information 

Research done in the FP6 IP-PiSA project by Lanz et al.  (2008) and Lanz (2010) resulted in the Core 
Ontology, common knowledge representation (KR) and semantics, which connect the product, 
process and system domains under one reference model. The main goal in this development was to 
include the meaning in the model and to enable different design tools to interoperate across the 
design domains. The structure of the representation was formed according to the requirements set 
by the knowledge management and integration challenges of different design tools. (Lanz 2010; Lanz 
et al. 2008.) 
 

 
Figure 13. Core Ontology (Lanz 2010). 

The Core Ontology, presented in Figure 13, formalizes the representation of knowledge between the 
product, process, and system domains utilizing fractal systems theory as a guiding principle. The 
product  model  consists  of  classes  for  products,  assemblies  and  parts,  going  into  the  level  of  
geometrical features, such as primitives (e.g.  box, cylinder, cone), edges, faces and face extendeds. 
The non-geometric features, such as dimensions, coordinates, material and surface information, are 
also included in the product domain. The process domain has a straightforward approach to 
representing the process levels. The system domain was created to represent the production facility 
and resource information. This model allows resource connections to parts, assemblies and products 
via the activity class. The ontology is saved into a Knowledge Base (KB) which is described in detail in 
(Lanz 2010.) The original version of the Core Ontology doesn’t provide any means for describing the 
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capabilities, lifecycle information or interfaces of the resources. So, during the course of this thesis 
project, it has been extended to better suit the requirements of production system adaptation 
planning and reactive adaptation. These extensions are discussed in Chapter 4, and more specifically 
in Chapter 4.5. 

Function-behaviour-structure framework 

Several  approaches  have  been  reported,  (Lohse  2006;  Kitamura  et  al.  2006;  inter  alia),  for  the  
ontological definition of a device’s or module’s capabilities based on the function-behaviour-
structure  (FBS)  framework.  The  FBS  framework  was  originally  developed  by  Gero  (1990)  and  is  
illustrated in Figure 14, below. The main focus in FBS is on understanding the functional capability of 
devices based on their behaviour and structure.  

 

Figure 14. The function-behaviour-structure framework (Gero 1990).  

Kitamura  et  al.  (2006;  2010)  developed  an  ontological  framework  for  modelling  the  functional  
knowledge of devices. They stated that functional knowledge reflects part of the designer’s intention 
(design rationale). How the function is recognized depends on the system, the environment, the 
situation or the use, as opposed to objective data, such as shape and structure. The distinction 
between function and behavior, used by Kitamura et al., originated from research into qualitative 
reasoning. The term “behavior”, when applied to a device, represents temporal changes of the 
physical quantities of some physical entity (operand) other than the device. Behavior is objective and 
independent of the context (which includes the designer’s intention), the user’s aims and the system 
in which the entity is embedded. The term “function”, on the other hand, is related to the intention 
of a designer or a user, and is hence context-dependent.  A behavior can perform different functions 
depending on the context. Moreover, a function can be performed (realized) by different behaviors. 
Simply put, function answers the question “what to achieve”, whereas behavior describes “how to 
achieve”. (Kitamura et al. 2006; Kitamura & Mizoguchi 2010.)  

Kitamura et al.  (2006) discussed functions as a role. By role they meant the concept that an entity 
plays in a specific context. A function can be defined as a role played by behavior in a teleological 
context. The teleological context for an engineering system, in turn, can be determined according to 
the designer’s or user’s intention. (Kitamura et al. 2006.) The difference between Kitamura’s 
function-behavior approach and the traditional function-behavior-structure paradigm as applied by, 
for example, Lohse et al. (2006b) is that Kitamura’s behavior does not describe the internal behavior 
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of  the  resource  arising  from  its  structure.  Kitamura  et  al.  don’t  go  to  the  structure  level  when  
describing resources.  

Separating “what to achieve?” from “how to achieve?” is seen as beneficial to adaptation planning, 
and particularly for dynamic reactive adaptation. If these two can be separated, the product 
requirement can just state “what?” leaving more freedom for the resource selection based on the 
resource’s availability, or other criteria.  

A Matchmaking Methodology for Supply Chain Deployment in Distributed Manufacturing 
Environments 

The work performed at NIST (National Institute of Standards and Technology) by Ameri and Dutta 
(2008) aims to connect the buyers and sellers of manufacturing services in web-based e-commerce 
environments. The matching is based on their semantic similarities in terms of manufacturing 
capabilities. The proposed matchmaking algorithm operates in Manufacturing Service Description 
Language (MSDL), which is an ontology for the formal representation of manufacturing services. The 
work uses a graph-matching approach, since the MSDL descriptions can be represented as directed, 
labelled trees. The fundamental concepts underlying MSDL are supplier, service and resource. The 
relationships between these concepts can be seen in Figure 15a. Manufacturing services are an 
important part of the methodology and are formally defined using the MfgService class. Any instance 
of the MfgService class has at least one manufacturing process, and is typically characterized by an 
array of manufacturing capabilities. An MfgService  is  enabled  by  certain manufacturing resources, 
i.e., machines, tools, fixtures, etc. Figure 15b presents an example of subclasses of the MfgCapability 
class for describing the machining capabilities of a service. (Ameri & Dutta 2008.) 

  
Figure 15. a) Relationships between supplier, service and resource; b) Example of MfgCapability subclasses 

(Ameri & Dutta 2008). 

MSDL enables a uniform treatment of knowledge from suppliers and demanders by modelling them 
both as generic concepts which need to be matched. Supply and demand are instances of 
advertisement and query, respectively, which are both represented through service and supplier 
classes. Accordingly, machine agents can use their internal reasoning mechanisms to determine the 
semantic similarity between the instances of advertisement and query, based on their formal 
descriptions and taxonomies. (Ameri & Dutta 2008.) The underlying problem to be solved in this 
approach is somewhat similar to the problem presented in this thesis. Supplier corresponds to the 
resource, and demander to the product requirement. The approach is based on matching the existing 
capabilities with the required ones, but again, MSDL doesn’t consider how to combine the 
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capabilities of multiple co-operating resources. Actually, it only describes the combined capabilities, 
because it describes the capabilities of a supplier as a whole, but fails to specify each individual 
resource which is involved in the manufacturing operations. 

EUPASS – Equipment ontology and skill concept 

During the EUPASS-project, briefly discussed above in Chapter 3.1.4, the EUPASS ontology for 
modelling evolvable, modular, ultra-precision assembly systems was developed. The ontology was 
divided into three sub-domains, namely Product, Equipment and Assembling Process.  In the EUPASS 
approach, the Skill concept is used to bridge the gap between processes and equipment in the 
ontology. The skills are divided into basic skills and complex skills. The basic skills are the most 
fundamental skills, whereas the complex skills are combinations of various simple skills. (Lohse et al. 
2008.)   

Lohse et al. (2006a) presented an ontological equipment model which was intended to support the 
effective design of reconfigurable assembly systems. The ontology follows the function-behaviour-
structure framework and includes a separate formalism for the specification of a module’s capability 
and interfacing requirements. The equipment ontology is used to represent the functionality and 
behavior of the equipment arising from its structure. For example, the functionality of a robot is 
described by dividing the robot structure into links and joints, and describing the behavior of each 
link and joint separately. The connectivity between different equipment components is handled 
through interface ports. Figure 16 presents an overview of the equipment ontology concept and the 
relation between function concepts and equipment concepts. (Lohse et al. 2006a.) 

a)  

b)  
Figure 16. a) Equipment module ontology concept overview, b) Relation between function concepts and 

equipment concepts (Lohse et al. 2006a). 
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Lohse et al. (2006b) divide the assembly processes into three hierarchical levels, namely task, 
operation and action. They use rule-based activity decomposition patterns to recognize the overall 
function from the set of lower-level functions. The activity decomposition patterns refer to the 
methodology by which the assembly process is specified through stepped increases in the level of 
detail from tasks, through operations up to actions. The process decomposition patterns define the 
required sub-activities for a specific type of activity and include their temporal and logical 
constraints. This definition results in an AND/OR graph-like structure that links higher-level activity 
types to lower-level ones. (Lohse et al. 2006b.)  

 
Figure 17. EUPASS Skill Definition Overview (Lohse et al. 2008). 

Figure  17  shows  an  overview  of  the  EUPASS  Skill  concept  and  its  relationships  to  other  associated  
concepts within the process domain. The boundary conditions, or rather the way a skill can interact 
with its environment, are defined through Control and Parameter ports. They both have input and 
output ports and variables, which are identified and described by the Emplacement and Blue Print 
discussed in the next chapter, but their value changes during the operation of the module. The 
Control Ports take part in the control flow, or in enabling the skill, and they govern the sequential 
behavior  between  skills.  Each  skill  has  to  have  at  least  one  input  or  ‘begin’  control  port  and  one  
output or ‘finished’ control port. The sequential control behavior can be defined by mapping the 
input and output control ports to each other. The Parameter Ports govern the exchange of 
parameters between skills. For example, if the aligning skill needs to position something based on a 
position determined by a measurement skill, then the measurement skill needs to have a position 
parameter output port and the aligning skill needs to have a position parameter input port which can 
be mapped to each other. (Lohse et al. 2008.) 

The EUPASS approach recognizes the problem that individual items of equipment are not usually able 
to execute the required task alone, and therefore combinations of devices providing complementary 
skills  are  needed.  For  example,  in  order  to  move  items  a  robot,  which  provides  the  moving  skill,  
needs to be combined with a gripper, which provides the holding skill. Unfortunately, the EUPASS 
documentation doesn’t provide details on how their approach deals with the emergence of the 
atomic skills into complex ones, or how they present the complex skills within the ontology model. As 
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far as one can tell, the skill information doesn’t include parameters, and therefore the problem of 
combined capabilities is still unsolved. 

3.4.2. Resource description languages

The EUPASS Approach – The Emplacement and Blue Print concept 

The Concept of the Digital Manufacturing Module Description, i.e. the Emplacement concept, was 
developed  by  Siltala  et  al.  (2008)  to  give  a  standardized  description  of  the  EUPASS  modules  which  
comprise an assembly system. The aim of these descriptions is to aid in both the design and 
commissioning of assembly systems and the design of each individual module, and they are intended 
to be utilized by anyone dealing with the assembly system (e.g. the module providers, the system 
integrators or the end users). The key terms in the Emplacement concept are Emplacement, Profile 
and Blue Print. They aim to provide a digital representation of the production modules and include 
essential information like mechatronics, interfaces, skills, technical and business properties, CAD 
models, datasheets and so on. XML (eXtensible Markup Language) is used as a format for the 
Emplacement and Blue Print languages. (Siltala et al. 2008.)  

Emplacement is a generic description of the features and general requirements of a module for an 
assembly system. It is a collection of interface and property specifications for particular modules. 
Examples of Emplacements are a gripper, a manipulator and a feeder. Each Emplacement contains 
one or  more Profiles.  The Profile  is  a  technical,  schematic  and detailed description of  a  module.  It  
defines the detailed set of features and requirements that makes one module interconnected and 
interchangeable with another. A Profile is a representation of one kind of physical module and it can 
be instanced by physical hardware. Examples of profiles are a vacuum gripper, a 2-finger force-
feedback gripper and a 3-DOF Cartesian manipulator. Blue Print (file) is an electronic specification of 
an actual, existing process module. The Blue Print file content needs to correspond to the Profile and 
Emplacement specification, of which the Blue Print is an instance.  In addition to these, there is also a 
History Container file. While the Blue Print file is the same for all instances of the module, the History 
Container contains relevant information about the specific instance of the module, and is updated 
during the lifecycle of the module. (Siltala et al. 2008; Siltala et al. 2009; Siltala & Tuokko 2010.) 

The Emplacement concept can be used as an information source to support various planning and 
control activities, including planning the adaptation of production systems. The concept includes the 
history information and the skills of the resources, which play a crucial role in enabling the planning 
for re-use and adaptation. The incorporation of the interface definitions in the model supports the 
integration of resources in different configurations. However, again, modelling the combined skills is 
not part of the concept.  

Unified Manufacturing Resource Model (UMRM) 

Vichare et al. (2009) developed a Unified Manufacturing Resource Model (UMRM) to represent 
manufacturing equipment, in particular CNC machining systems. It aims to capture information 
related to the manufacturing facility and its capabilities, and to provide support for the automation of 
decision-making in process planning. The model represents the machine resource and also its 
additional auxiliary devices, such as the workpiece and cutting tool changing mechanisms, bar 
feeders, fixtures, conveyors, pallet/gantry systems and robotic arms. UMRM is STEP-NC compliant 
and it follows the EXPRESS-G data modelling methodology.  (Vichare et al. 2009.) 
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UMRM  is  based  on  modelling  kinematic  chains  of  machines.  With  UMRM,  any  machine  tool  or  
auxiliary device in the CNC machine can be considered as an assembly of various mechanical machine 
elements with different kinematic joints to facilitate constrained movements, and thus can perform 
the desired manufacturing operations. The UMRM’s entity, the mechanical_machine_element, is an 
abstract representation of any mechanical machine element in the CNC machining system. The 
kinematic_joint is used to represent possible kinematic links between two machine elements. The 
kinematic properties of the movements are represented with the entity axis. When several axes are 
attached to a mechanical machine element, this represents a machine element capable of moving in 
different directions in order to perform the intended manufacturing operations. For example, a 
robotic arm assembly can be modelled in this manner to represent both its movement and the 
workspace configuration. These entities are presented in Figure 18. (Vichare et al. 2009.)  

 
Figure 18. UMRM entities mechanical_machine_element, kinematic_joint and axis (Vichare et al. 2009). 

The UMRM is based on modelling the kinematic chains and therefore, in this regard, it works at a very 
detailed level. The UMRM is mainly meant for modelling the CNC machine resources, whose process 
capability depends strongly on the different axes attached to the machine element. Compared to, for 
example, an assembly system composed of multiple individual devices (without the devices being 
divided into elements like joints and axes), this kind of modelling is not adequate. The UMRM is not 
able to capture the combined capability of multiple co-operating resources. It is a static model, which 
describes the behavior of one resource at time. Therefore, it doesn’t provide a feasible solution to 
the resource description problem presented in this thesis.  

3.4.3. Object-oriented approaches to resource description

Maropoulos et al. (2003) presented an object-oriented resource model which was developed to 
support dynamic, aggregate planning of manufacturing operations within production networks 
during the early stages of product design. Aggregate planning aims to measure a product’s 
manufacturability and to evaluate alternative design configurations and manufacturing scenarios 
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through the allocation of multiple parts to remote facilities within the supply network. This resource 
model is based on a library of two sets of classes: resources, meaning the physical entities; and 
resource types, indicating the process-related capability of the resource. These resource types (e.g. 
handling, transport, machining) are associated to the individual resources. For all the resources, 
several properties are given, such as location, set-up times for parts and batches, cost rates, 
utilization, quality, etc. Each resource type has a different set of operating parameters, ranging from 
the maximum depth of cut to the tool speeds and feed rates. These resource keys are exactly the 
same as for processes, enabling direct mapping between processes and resources (see example in 
Figure  19).  (Maropoulos  et  al.  2003.)  Central  to  the  aggregate  process  model  classes  are  the  
algorithms, which estimate the Quality, Cost and Delivery performance based on the feature 
characteristics of the product model and the operation parameters of the resource, in order to 
facilitate resource selection for a given product (Maropoulos et al. 2002). 

 
Figure 19. Example of resource model (Maropoulos et al. 2003). 

Even though the model presented by Maropoulos et al. (2003) is able to describe the process-related 
capabilities of resources, it has a few drawbacks when applied to the problem in this thesis. It is 
based on the traditional classification of resources. In other words, the resources are divided into 
types based on their assumed common functionality. It doesn’t support modelling the combined 
capabilities of resources and it doesn’t include the lifecycle information or interface descriptions in 
the model.  

Colledani et al. (2009) presented a conceptual framework for the integrated modelling of product, 
process and production system data. The aim of their work was to provide a common data structure 
as a reference for different methodologies and tools used during manufacturing system design. The 
framework was developed as an object-oriented model using UML (Unified Modelling Language) and 
translated into a relational database. The data framework was enriched with the evolutionary 
concept, which allows for the consideration of possible changes to the system (i.e. reconfigurations) 
as well as to the products and processes. The product information was presented in the classes of 
Workpiece, Machining Feature, Scenario Node and Production Problem. The data related to the 
manufacturing system were detailed by the classes of System, Selected System, Hyperplane, 
Machine, Carrier, Load/unload Station, Physical Pallet, Tool, Tool Carrier and Performance 
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Evaluation. The process was described with the classes of Machining Operation, Machining 
Workingstep, Workplan, Pallet, Setup Face and Setup WP. Several attributes were given for each of 
these classes. The dynamics of the manufacturing system configuration are represented by the 
“previous system” attribute, which links a given system with its previous configuration. (Colledani et 
al. 2009.) 

The above-mentioned approach by Colledani et al. (2009) gives a very comprehensive and 
straightforward way to describe the properties of the resources, as in the catalogues and the 
selected process parameters. The approach is not meant to describe the capabilities or combined 
capabilities of resources. The relational database approach gives a concrete way to save the 
information generated during the system design process in a structured way, but it doesn’t provide a 
basis for reasoning in order to extend the knowledge.  While the ontologies allow new information to 
be added to the model relatively easily, the databases are very stiff and the use cases (requirements) 
need to be known before implementing the system. Ontologies allow more flexibility to extend the 
model. Therefore the relational database approach is not feasible for the problem presented in this 
thesis.  

3.4.4. Conclusions about the existing approaches to resource description

The preceding chapters introduced and discussed some of the existing approaches to resource 
description. At the same time, their contributions and limitations in terms of supporting the resource 
description problem in this thesis were briefly discussed. Although not exhaustive, the review did 
highlight some aspects of the information models that need to be developed further in order to 
better support production systems in changing environments and to allow for the automatic 
generation of different configuration scenarios.  

Usually, different classification systems are used to describe production systems. Traditionally, the 
manufacturing processes have been divided into subtractive, additive and transformative processes 
and the resources have been classified into groups based either on their common properties or the 
functions (processes) they perform (e.g. milling machine, lathe, robot, conveyor, etc.). This division 
has traditionally been good enough to classify the machinery. However, the emerging new hybrid 
technologies of today combine many types of processes into one device. Therefore, describing 
resources solely by the traditional means of classification has many limitations. If the resource is only 
allowed to be a member of one class, then a multifunctional device needs to be forced into the most 
appropriate class, even though it might have functionalities which belong to a number of different 
classes. One example of this kind of machine is the multifunctional universal CNC lathe, which is able 
to perform turning, milling and drilling. Also, depending on the context, the same device may be used 
to perform different activities (take a different role), e.g. the same device may be used to screw or 
drill, depending on the tool attached to it. Describing the resources through classification doesn’t 
support the easy formulation of functional combinations either, as it must be based on pre-defined 
rules for matching resource types. Therefore, the traditional classification of resources is not 
expressive enough for the problem at hand.  

Many of the approaches reviewed here have tried to overcome the limitation discussed above, in 
which the resource’s functionalities are assumed to be purely based on the resource type, by 
incorporating the capability or skill definition into the resource description. Based on the process-
oriented capability definition, it is possible to make a match between the process requirements and 
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the resource capabilities. However, with regard to the current thesis problem, there are two main 
limitations to the existing information models. These are summarized in Table 3. 

Table 3. Limitations of the existing resource description approaches. 
Lack of ability to model combined capabilities 
 Even though the problem of combined capabilities (or complex skills) was mentioned in a 

few of the reviewed approaches, no solution to the problem was defined in detail. These 
approaches defined the logical relationships between the simple and complex skills, but 
didn’t incorporate the parameter information into the capability definition. Therefore, 
they didn’t consider how to combine the parameters of the simple skills in order to derive 
the parameters of the complex skills. Therefore, it appears that the problem of describing 
combined capabilities of multiple co-operating resources still remains unsolved.   

Lack of lifecycle information of resources 
 Most of the reviewed approaches didn’t include lifecycle information of the resources in 

the resource description. They were mainly static resource models, describing the 
nominal capability of the resources rather than their actual, current capability. While the 
resource is being used, its condition and capability may vary and therefore it would be 
beneficial to take this lifecycle information into account in the resource description. With 
regard to the adaptation problem, it is crucial to know the current capability of the 
resource in order to be able to more accurately estimate, e.g. its reusability or its ability 
to cope with the new requirements.  

 

Based on the review, ontologies seem to be a feasible way of representing knowledge for describing 
the knowledge elements needed when dealing with the problem of production system adaptation. 
Ontologies allow new information to be added to the model relatively freely, and this eliminates the 
necessity of knowing all the use cases before constructing the ontology. Compared with, for example, 
relational databases, ontologies allow more flexibility for extending the model and adding new use 
cases when needed. 
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4. PROPOSED METHODOLOGY FOR ADAPTATION

This chapter presents the computer-aided adaptation methodology which was developed for this 
research and introduces the solutions to each of the defined sub-objectives. Figure 20 reiterates the 
problem definition and supplements this with the solution elements, which will be discussed in this 
chapter. 

 
Figure 20. Problem definition and solution overview.  

The core of this adaptation methodology lies in the capability-based matching of product 
requirements and system capabilities in the context of the adaptation process. The computerized 
matching of available resources against product requirements requires a formalized and structured 
representation of the functional capabilities, properties and constraints of the resources. A formal 
information model that is able to describe the existing system, as well as to formalize the elements 
that can be added to or removed from the adapted system is required. A description of the products 
and processes is also required as input for the adaptation planning. The last requirement is, of 
course, a schema to guide the adaptation process and indicate the required activities and 
information flows that are needed during the adaptation planning and for dynamic reactive 
adaptation.  

The requirements for the information models are introduced in Chapter 4.1. After that, the 
capability-based resource description and the components of the overall resource description are 
introduced in Chapters 4.2 and 4.3 respectively.  Chapter 4.4 presents the framework and rules for 
the capability-based matching of product requirements and system capabilities. Chapter 4.5 
introduces the actual implementation of the formalized resource and capability model. The 
adaptation schema, which forms the backbone for the adaptation methodology and guides the use 
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of the other elements and information resources in the adaptation process, is introduced in Chapter 
4.6. Finally, Chapter 4.7 discusses an approach to evaluating the impact of product requirement 
changes on the production system. This approach is based on the other results obtained during this 
work and presented in the earlier chapters.   

4.1. Definition of requirements for the information models

The following elements – product (order), process and resource – need to be formally modelled in 
order to support the adaptation of production systems based on the automatic matching of product 
requirements against the production system capabilities. In practice, detailed product and process 
modelling are beyond the scope of this thesis and have been tackled by another researcher (Garcia et 
al. 2011). However, as they are crucial input data for the capability matching, this work has set some 
requirements for these, which will also be described below. Table 4 below lists the requirements for 
these three information models.  

Table 4. Elements to be formally modeled and their requirements.  
Element Requirements and characteristics  
Product & 
Order  

The product and order model needs to capture the product design, quality 
requirements and production volume.  

If a single part is to be manufactured, the product model needs to describe the 
workpiece in terms of its geometrical dimensions and features (e.g. face, pocket, 
hole, slot, etc.) that need to be accomplished. The features define the technological 
requirements for the resources.  

If a product is to be assembled, the product model needs to present the parts, their 
relations and liaisons, and the assembly features. 

Process 
(capability 
requirement) 

The process model should define the manufacturing and assembly processes so that 
it can capture all the relevant requirements needed to define suitable production 
systems and devices. 

The resource selection needs to consider both technical and temporal constraints. 
Technical constraints are directly derived from the features and liaisons that need to 
be established, i.e. from the product model. Temporal constraints are defined by the 
order in which the activities need to be performed. Therefore, the process model 
should describe the required activities and their temporal and logical order 
relationships. 

The processes need to be modelled from the product perspective, i.e. what needs to 
be done to the product in order it to transform into a finished product (e.g. grasp 
product, move product). The resource perspective (e.g. open fingers, close fingers), 
even though important from the production control point of view, is not required 
here.  

The required activities should be formally expressed in terms that are closely related 
to the formalism used to describe the available resource capabilities.  

The process model should enable the modelling of processes at different abstraction 
levels (function vs. behaviour) depending on the situation.  

Resource The resource model needs to be able to describe the characteristics of single 
resources as well as complete production systems.   

The  resource  description  has  to  support  at  least  the  following  three  activities:  1)  
selection of suitable system components, i.e. devices; 2) combination of the selected 
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components into suitable production system solutions; 3) evaluation of alternative 
system configurations. 

The focus in the resource model has to be on describing the functional capabilities of 
the resources. In order to enable effective selection of suitable resources for a given 
requirement, the resource model also needs to include the parameter values by 
which the resource performs the functions.  

The capabilities need to be defined so that they can be synthesized into higher level 
capabilities (combined capabilities) when two or more resources are combined into 
one functional configuration. The capability model should also enable the integration 
of the resources into those combinations with the required functionality.  

There needs to be a definable relationship between the process definition and the 
resource capability specification. 

The resource model should contain a clear definition of the connectivity constraints 
between individual resources. In other words, the interface description, which 
supports decisions about the compatibility of two resources, needs to be included in 
the resource model.  

The system description needs to describe the location of the equipment in the 
resulting configuration in order to enable spatial reasoning about the existing 
resource functionalities.  

The resource model is intended to be used in the context of the adaptation process. 
This means that the resources involved in the process are not brand new, but each is 
in its own lifecycle state. Therefore, the model must take the lifecycle of the 
resources into account. The behaviour of the resources is constantly changing and 
thus the representation of the resources cannot be static. It needs to be updateable 
in order to stay valid and fit for its purpose.  

 

For the problem at hand – the production system adaptation planning problem – the actuality is an 
important  trait  for  the  models.  According  to  Avgoustinov  (2007),  the  actuality  refers  to  the  time-
dependent accuracy of the model, meaning that if the modelled object changes over time, its model 
should be updated in order to remain relevant and fulfil its purpose. The actuality may change in two 
situations. On the one hand, it can “expire” if the object being modelled is changed or new 
information about it becomes available. On the other hand, new scientific discoveries can also make 
a model outdated and require its actualization. (Avgoustinov 2007.) 

In changing environments like a production environment, it is important to work with up-to-date 
information in order to be able to make informed decisions. In this thesis, the resource model 
actuality is of supreme interest. During their individual lifecycles, resources are described by many 
different  models.  Some  of  the  models  can  be  considered  static,  like  the  resource  structure  and  
designed nominal capability. Models that describe how individual resources are used, for example 
factory  layout,  can  also  be  static,  but  only  for  a  limited  period  of  time.  Models  describing  the  
behaviour or performance of individual resources are dynamic due to wear, maintenance, repair or 
other changes to the resources, and thus need to be updated during their lifetime. These aspects 
need to be considered while developing the resource description.   
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4.2. Resource description based on capabilities

Each  device  in  the  production  environment  has  certain  properties  and  behaviors.  Some  of  these  
properties and behaviors allow the device to perform certain processes. The properties of the devices 
have certain ranges and the functionality of the devices is restricted by certain constraints. These can 
be, for example, environmental constraints like the maximum permitted humidity and temperature of 
the operating environment, or technical properties, such as the maximum torque of a spindle or the 
velocity range of a moving axis. Automatic matching of available devices against product requirements 
requires formalized and structured representations of the functional properties and constraints of the 
devices.  

As  was  pointed  out  earlier,  most  of  the  approaches  to  resource  description  tend  to  classify  the  
resources into groups based on their common properties, or the functions they provide (e.g. milling 
machines, lathes, robots and so on). Unfortunately this kind of classification limits the expressiveness 
of the representation. To overcome this limitation, instead of classifying devices, in this thesis the 
functional capabilities of the devices are classified. This way, one device may have multiple capabilities 
which can be used in different contexts. Furthermore, new capabilities may be discovered during the 
resource lifecycle and these can be assigned to the device when, and if, they emerge. For the 
capability classification, the capability taxonomy has to be constructed so that it allows reasoning 
between different levels of abstraction.  

There are multiple definitions for the word “capability” in the literature, and often the word “skill” is 
used instead. Holmström (2006) defined a manufacturing capability as follows, “A manufacturing 
system’s capability is the inherent ability of the manufacturing system to perform change in the 
properties of a material in order to produce tangible products.” With regard to this thesis there are 
two shortcomings in this definition. Firstly, it doesn’t include assembly systems. Secondly, it doesn’t 
consider those capabilities which don’t change the properties of the material,  but which exist in the 
production  system  and  are  definitely  needed  in  order  to  be  able  to  change  the  properties  of  the  
material.  For example, visual sensing itself doesn’t change the properties of the material,  but it may 
be needed in order to be able to pick up the material and assemble it into a product. Therefore the 
definition of capability is extended to:  

Capability is the inherent ability of a resource or system to perform change in the properties of 
materials, parts or assemblies, or to perform activities which may be required to change the 

properties of materials, parts or assemblies, in order to produce tangible products. 

It needs to be noted that intangible services also require capabilities. However, because this thesis 
concentrates on discrete production systems, these are excluded from the definition.  

In order to help the reader with the remainder of the text, Table 5 summarises the capability-related 
concepts which are used in the following chapters. A more detailed explanation of each term is given 
in the relevant chapters.  
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Table 5. Definitions of capability-related terms.  
Term Definition 
Capability 
 

Capability is the inherent  ability  of  a  resource  or  system  to  perform  change  in  the  
properties of materials, parts or assemblies, or to perform activities which may be 
required to change the properties of material, parts or assemblies, in order to produce 
tangible products. A capability is a functionality of a resource, such as “milling”, 
“drilling”, “screwing” and so on.  

Simple & 
combined 
capability 

Capabilities are divided into simple and combined capabilities. Combined capabilities 
are upper level capabilities, which can be divided by functional decomposition into 
simple, lower level capabilities. Combined capabilities are combinations of other 
(simple or combined) capabilities.  

Capability 
concept 
name 

Capabilities are characterized by their name and their parameters. The capability 
concept name indicates the natural name of the capability, such as “moving”. 

Capability 
parameter 

Capability parameters describe the characteristics of a capability, e.g. the “moving” 
capability is characterized by “velocity” and “acceleration” parameters.  They  help  to  
distinguish between different resources which have similar capabilities.  

Strong 
capability 

Strong capabilities are capabilities that fit into the original definition of capability. They 
are functionalities of resources.  

Weak 
capability 

Weak capabilities don’t fit into the original definition of capability, because they don’t 
provide any functionality. They are properties of the resources, which don’t naturally 
relate to any other simple capabilities, for instance, “basicDeviceInfo”, which describes 
the size and weight of the resource.  

Capability 
model 

A  capability model is used for modelling and managing the combined capabilities 
formed by combinations of simple capabilities. In the model, the simple and combined 
capabilities are linked by capability associations. The instantiated capability model 
consists of the pool of capabilities that may exist in the production system and their 
parameters.  

Capability 
association 

Capability associations are links between simple and combined capabilities. There are 
two types of capability associations, inputs and outputs. The simple capabilities 
provide output associations while the combined capabilities require input associations.  

Capability 
assignment 

Capability assignment is used in the ontology to assign resource-specific capabilities to 
the resources. Capability assignment contains the resource-specific parameter values 
for the capabilities.  

Capability 
taxonomy 

The capability taxonomy categorizes the capabilities in a hierarchical structure. The 
taxonomy is used to enable mapping between product requirements and resource 
capabilities at different levels of detail and allow subsumption-based reasoning about 
the capabilities.  

 

The resource description approach defined in this thesis is based on ontological modelling. The Core 
Ontology defined by Lanz (2010) and introduced in Chapter 3.4.1 is used as a basis for describing the 
product, process and system-related information. It allows the basic descriptions relating to the 
resources to be formalized. In the scope of this work, the Core Ontology has been extended so that it 
describes the capabilities of the resources, the resource interfaces and the lifecycle information 
relating to the resources.  

The introduction to capabilities and their modelling is first given in Chapter 4.2.1. After that, the 
capability model is described in Chapter 4.2.2, followed by the description of the capability 
associations and the capability parameters in Chapters 4.2.3 and 4.2.4, respectively.  These capability 
associations and parameters are integral components of the capability model.  
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4.2.1. Introduction to capabilities

In the approach proposed here, capabilities are functionalities of resources, such as “drilling”, 
“milling”, “moving”, “grasping” and so on. This functionality determines the capability concept name. 
Capabilities have parameters, which present the technical properties and constraints of resources, 
such as “speed”, “torque”, “payload”, and so on. In other words the concept name of the capability 
indicates the operational functionality of the resource, whereas the capability parameters determine 
the range and constraints of the capability. For example, the capability with the concept name 
“moving” has the parameters “velocity” and “acceleration”. The capability parameters allow the 
determination of which resource has the capability that best fits the given product or production 
requirement.  

Capabilities are divided into simple capabilities and combined capabilities. Combined capabilities are 
combinations of other capabilities, usually formed by a combination of devices, such as a robot and a 
gripper. A combined capability can consist of two or more simple capabilities, other combined 
capabilities or a collection of simple and combined capabilities. Figure 21 is a UML-diagram showing 
the relations between the capability-related terms. 

Figure 21. UML diagram of capability and related terms. 

Competences are human capabilities. Because human capabilities are a vaguer concept than device 
capabilities they are assigned their own class. The properties of human competences cannot usually 
be easily measured, predicted and stated. Two persons can have the same education or training, but 
it  doesn’t  mean  that  they  will  perform  the  same  task  with  the  same  level  of  performance.  
Experience, personality, physical shape and mental aspects affect their performance. Machines are 
easier to handle in this sense. In a wider context the word ‘competence’ also refers to the ability of 
an organization to perform processes and offer services at a certain level of performance. Even 
though this thesis concentrates on device capabilities, the same capability model is also intended to 
model human competences. 

Chapter 3.4.1 discussed the ‘function-behavior-structure’ modeling framework by Gero (1990), and 
applied  by  Lohse  et  al.  (2006a)  and  Kitamura  et  al.  (2006;  2010).  Function  represents  “what  to  
achieve?”, whereas behavior describes “how to achieve?”. The function represents the intention of 
the designer, i.e. what he or she wants to achieve. The behavior represents different manufacturing 
methods (capabilities) that can be used to achieve the required function. For example, the required 
function may be “joining”, which can be achieved by several different behaviors, such as “welding”, 
“gluing”, “screwing”, “riveting” and so on. The structure determines the behavior of the resource. As 
with Kitamura et al. (2006; 2010), the approach taken in this thesis aims to describe the function and 
behaviour of the resources but exclude the structure level from the capability definition. The 
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structure needs to be incorporated into the model if the model is intended to be used for 
programming and controlling the resources, or generating, for example, the tool paths. Therefore, 
given the objectives of this thesis, structure modelling is not needed.  

 
Figure 22. Relation between function, behavior and resources at different system levels. 

Figure 22 shows the relation of the function-behavior framework by Kitamura et al. (2006; 2010) and 
the resource description approach taken in this thesis. In the proposed approach, the individual 
devices have capabilities, which correspond to behaviors in Kitamura’s approach. The functions can 
be achieved by several different capabilities (behavior). The devices have capabilities (behaviors) 
which may be used to perform different kinds of functions. For example the “spinningTool” capability 
(possessed e.g. by a screw driver) can be used to perform either drilling or screwing depending on 
the attached tool. This means that it can be used both for the “material removing” and the “joining” 
functions. 

It is desirable to link the functions and behaviours in order to enable the targeting of the 
requirements at different levels of detail. For example, the designer may want to predetermine the 
manufacturing method as early as the product design phase, which means that the required 
capability (behaviour) is fixed. On the other hand, the designer may be using the DFMA (Design for 
Manufacturing and Assembly) methodology, which takes the existing manufacturing and assembly 
technologies into account when designing the product. In this case, they may just specify that, for 
example, some sort of joining is required, then check the available resources capable of joining with 
different behaviours, and then make the detailed product design based on the available joining 
method. In the case of dynamic adaptation, the product can be dynamically routed based on the 
availability of the suitable behaviours (capabilities) which can provide the required function, leaving 
more  freedom  for  resource  selection.  In  the  case  of  assembly  processes,  the  required  method  is  
more often fixed by the product design than in manufacturing operations. For example, material 
removing of similar features can be performed by multiple different methods (capabilities).  
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4.2.2. Capability model

The fundamental requirement for the capability model is to be able to manage the combined 
capabilities of multiple co-operating resources, which can be derived from the capabilities of the 
individual resources involved in the combination. Therefore, the combined capabilities need to be 
divided into simple capabilities in a way which, firstly, supports the description of the individual 
resource capabilities and their emergence into combined capabilities; and secondly, supports the 
selection of the resources and resource combinations for a given product requirement. Basically 
there are two levels in the combined capability problem:  

1) At the higher level, the division of the combined capabilities into simple ones and their 
relations need to be defined;  

2) At a more detailed level, the parameters of the combined capabilities, based on the 
parameters of the individual capabilities, need to be reasoned out.   

The proposed capability model aims for capability modularization and reusability of the capabilities 
among different types of resources. Generally, in modularization, the interactions between the 
involved components are to be minimized (Lehtonen 2007). In the case of capabilities, the division 
aims to minimise the dependencies between the capability parameters, so that the parameters fit 
naturally under one capability concept name. The capability modelling is based on the functional 
decomposition of upper level combined capabilities into simple capabilities and the assignation of 
these lower-level, simple capabilities to the devices in a modular way. 

The systematic design approach of Pahl & Beitz (1996) provides a fundamental relationship between 
function and function decomposition. Function decomposition represents how a function is achieved 
through a set of sub-functions, which are finer-grained functions. (Pahl & Beitz 1996.) Similarly, the 
combined capabilities are achieved from finer-grained simple capabilities. Functional decomposition 
allows the definition of is_part_of relations between the simple and combined capabilities. The 
simple capabilities answer the questions, ‘What is the purpose of each resource in the combination 
and what function is the resource providing for the overall system?’ When multiple devices are 
combined, the simple capabilities form combined capabilities. The upper part of Figure 23b illustrates 
an example of such a division with a transportation capability; in this case with a robot unit consisting 
of  a  robot  and gripper.  The robot  alone only  has  the ability  to  move its  joints  within  a  workspace.  
However, when combined with a suitable gripper, together they are able to transport pieces from 
one place to another.  
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Figure 23. a) Model for combined capabilities; b) Sample of the instantiated capability model. 

In the ontology, the combined capabilities are modelled using capability associations as links 
between the simple and combined capabilities. In the resource ontology, the devices are assigned 
the simple capabilities they possess. Based on the defined capability associations, the device 
combinations contributing to a certain combined capability can be identified and queried. Of course, 
the devices also need to have matching interfaces to be able to co-operate. Figure 23a represents 
the model for defining the combined capabilities. The same capability model can be used in different 
domains. Definition of the domain-specific capabilities, as well as the input and output associations 
for creating combined capabilities, require expert knowledge of the domain. For example, in the 
context of this research, production engineering knowledge is required for the definition of the 
capabilities used in the case studies. Figure 23b presents an example of the instantiation of the 
model in the production domain.  

The instantiated capability model, stored in the Knowledge Base (introduced in Chapter 5.1), defines 
the  generic  capabilities,  i.e.  a  pool  of  capabilities  that  can  exist  on  the  factory  floor  and  can  be  
assigned to the resources. When these generic capabilities are assigned to the resources, they 
become resource-specific when filled with resource-specific parameter values. The capability model 
can be freely extended with new capability instances when new capabilities emerge in the system, 
for example, when new technologies are acquired. In the next two chapters the capability 
associations and capability parameters will be discussed in detail.  

4.2.3. Capability associations

As described in the previous chapter, and in Figure 23, the capability associations are the key to 
managing and presenting the combined capabilities within the ontology model. Here, the use of 
these capability associations will be discussed in more detail.  

The principles of the capability model seen in Figure 23a are:  
 Resources have simple capabilities, which provide some capability associations as their outputs.  
 Combined capabilities require some capability associations as their inputs, e.g. in order for the 

“combinedCapability_1” to emerge, both capabilityAssociation_1 and capabilityAssociation_2 
have to be satisfied.  
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 Different simple capabilities can provide the same capability association as their output, as is the 
case with “simpleCapability_2” and “simpleCapability_3” in Figure 23a.  

 When a device or combination of devices has capabilities, which provide output for all the 
required capability associations (capabilityAssociation_1 and capabilityAssociation_2) the 
combined capability (“combinedCapability_1”) emerges.  

 The capability model can have multiple levels, for example the “combinedCapability_1” may 
provide an input association for some other combined capability. In this case the combined 
capability is treated as a simple capability from the upper level capability’s point of view.  
 

An illustration of instantiating the capability model is shown in Figure 23b with the transporting 
capability example. In order to transport an item the system needs to be able to move within some 
workspace and to hold the item. Therefore the system needs both “moving” and “holding” 
capabilities. Holding can be implemented either by gravity (e.g. conveyor belt) or by grasping (e.g. 
gripper). The principles in this specific case are:  
• A “transporting” capability requires movingAssociation and holdingAssociation as input. 
• The movingAssociation means that some sort of moving capability is required.  
• The holdingAssociation means that some sort of holding capability is needed (holding by gravity 

or grasping). 
• A “movingWorkspace” capability provides movingAssociation as its output.  
• “grasping” and “holding” capabilities provide holdingAssociation as their output.  
• When a device or combination of devices has both “movingWorkspace” and “grasping” or 

“holding” capabilities, it has the “transporting” capability. Examples of this kind of device are 
either a combination of a robot and a gripper, or a conveyor alone.  
 

Instead of building direct is_part_of relations between capabilities into the ontology, capability 
associations provide a way to present alternative capabilities which provide a common input for a 
certain combined capability (e.g. holding and grasping). The capability model can be extended freely 
upwards and downwards and new capabilities and capability associations can be added as they are 
learned. The capability model allows the capabilities to be modelled at different levels of abstraction. 
Figure 24 shows an example of “milling” and “turning” capabilities. In the case of “milling”, the 
“millingTool” capability is further divided into “toolHolding” and “millingCutter” capabilities, whereas 
in the case of “turning” the “turningTool” capability is assumed to incorporate also the “toolHolding” 
and “turningTool” capabilities. Another example of increasing the detail level is the finger gripper, 
whose capability may be either “fingerGrasping”, or the grasping can be further divided into 
“openFingers” and “closeFingers” capabilities. More detailed division is only needed if the capability 
descriptions are used for programming or real-time control of the system. Any decision about the 
desired level of abstraction should be made while building the related capability instances, because it 
will affect the selection of the suitable capability parameters for each of the capabilities involved. 
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Figure 24. Modelling capabilities at different levels of abstractions, a) milling; b) turning. 

Figure 25 shows more examples of the instantiated capabilities and their associations. The figure is 
automatically generated from the newly developed Capability Editor software tool, which will be 
discussed in Chapter 5.1.1. Due to the limitations of space, the figure is not complete, but extracted 
from a larger graph which shows all the capability instances and their associations. For example, the 
movingAssociation is an input association for many more combined capabilities than those shown in 
the figure. In the figure, the rectangles represent the capability associations, whereas the oval shapes 
represent  the  capabilities.  The  figure  should  be  read  from  top  to  bottom.  The  arrows  from  a  
capability towards an association indicate the needed input associations for the combined capability, 
whereas the arrows from an association towards a capability indicate that the capability provides this 
association as its output.  
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Figure 25. Small extract of the instantiated capability model. 

The rest of the instantiated capabilities and their combinations through associations can be found in 
Appendices 1, 2 and 3. Because of the graph’s size, it has been divided into smaller sections in order 
to make it more comprehensible. Currently, the instantiated capability model includes capabilities 
recognized in the use cases in the TUT-machining laboratory and the TUT-microfactory 
environments. These environments will be further discussed in Chapter 5. Currently, about 90 
capability instances with more than 50 input and output associations are included in the capability 
model. This number also includes weak capabilities. If needed, there is a table in which all these 
capabilities are listed and explained, along with their parameters, in a material bank on the internet1. 

4.2.4. Capability parameters

Capability parameters describe the characteristics of a capability. In the capability model, the 
capability parameters have been defined based on the most common parameters given in the tool 
and machine providers’ catalogs. Of course, not all the providers give the same information and not all 
the possible parameters found from the catalogs are included in the capability parameters. The aim 
was to restrict the parameters to the ones most commonly given, but to make them rich enough to 
allow the matching of product requirements against resource capabilities in the defined use cases. The 
capability model is extendable, and therefore new parameters can be added if necessary. Adding new 
parameters doesn’t affect the structure of the capability model, but rather the rules that are used for 
the capability  matching.  If  not  all  the parameters  are  available  for  a  given device  when filling  in  its  
capability information, a default value -1 can be given, to indicate that this parameter should not be 
taken into account in the reasoning process. In this case, the human expert needs to check the validity 
of the reasoning results.  

The capabilities are modularized so that the redundancy and interdependencies between the 
parameters of the simple capabilities is minimized. This means that the parameters are assigned to 
                                                             
1 http://kippcolla.serv.fi/~eeva/ 
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the simple capabilities which they most naturally fit into. This fitting is based on production 
engineering domain knowledge. Also the assignment of the same parameters for multiple different 
capabilities is minimized. It is recognized that this “natural fit” is not so realistic in all  the cases. For 
example, machine vision systems are so complicated that it is difficult to decide which simple 
capability a certain parameter belongs to. Therefore, some artificial simplifications are made during 
the creation of the instantiated capability model. Furthermore, for much the same reason, two 
logically different types of capabilities are defined:  

Strong capabilities  
 Strong capabilities are those resource characteristics which directly provide some kind of 

functionality, such as “moving”, “grasping” or “releasing”. Those resource properties and 
constraints which are naturally directly related to some simple functional capability are given 
as capability parameters.  

 Combined capabilities are always strong capabilities. Only strong capabilities contribute to 
the forming of combined capabilities and therefore only they can provide the output 
associations or require input associations.  

 
Weak capabilities  

 Weak capabilities don’t fit into the definition of capability as given in Chapter 4.2. They are 
those properties and constraints of resources that do not naturally directly relate to any 
simple functional capability, but which provide important input information when selecting 
resources for a specific application. In practice, they are additional parameters which 
supplement the strong capabilities to aid in the decision making, such as “basicDeviceInfo” 
(containing parameters for describing the device dimensions and weight). Even though they 
don’t fit into the logical definition of capability, weak capabilities are treated in the ontology 
model in the same way as strong ones. This reflects their importance in resource selection.   

 Some parameters are common to multiple different capabilities and resources. For example, 
there  may  be  a  restriction  on  the  minimum  or  maximum  size  of  an  item  that  can  be  
processed with different resources. Instead of assigning these parameters separately to each 
capability they may restrict, it is easier to have one weak capability (in this case 
“minItemSize” or “maxItemSize”) that can be assigned to all the relevant resources.   

 Sometimes, weak capabilities are needed to make a detailed match between product 
requirement and resource capabilities. For example, the strong capability 
“movingWorkspace” (indicating the resource has a capability to move within a workspace) 
can be supplemented with the “degreesOfFreedom” and “workspaceType” weak capabilities.  

 As weak capabilities don’t provide any functionality, they don’t contribute to forming any 
combined capabilities. Therefore, they don’t provide any output associations or require any 
input associations. Hence, they don’t appear in the graphs showing the associations between 
the capabilities found in Appendices 1, 2 and 3. 
 

Table 6 and Table 7 show examples of typical resource characteristics given in the resource provider 
catalogs and their allocation to the simple capabilities in our capability model. Two separate use cases 
are considered: robot and gripper, and milling machine with related tools. The shaded columns show 
the typical parameters of the devices, while the white columns indicate which simple capability this 
parameter is attached to.   
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Table 6. Typical resource parameters and their link to the simple capabilities – Case robot and gripper.  

 

 

Table 7. Typical resource parameters and their relations to the capabilities – Case milling machine and tools.  

 

While  Tables  6  and  7  present  the  parameters  from  the  device  point  of  view,  Table  8  shows  a  few  
examples  of  the  capabilities  and  their  parameters  from  the  capability  model’s  point  of  view.  The  
shaded columns show the name of the capability concept and its related parameters. The white 
columns give their definitions for them. The rest of the instantiated capabilities (currently around 90 
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capability instances) in the capability model and their parameters can be found from the internet 
page2 . 

Table 8. Capabilities and their parameters – Examples: “movingWorkspace”, “vacuumCreation” and 
“vacuumCup”. 

 

Table 8 presents the simple capabilities which lead to the emergence of the combined capability 
“transporting”. A robot typically has the “movingWorkspace” capability, whereas a gripper’s 
“vacuumGrasping” capability can be enabled by the “vacuumCreation” and “vacuumCup” capabilities. 
In addition to those capabilities, other capabilities may also be assigned to the resources. For example, 
in the case of a robot and gripper, they both have at least the “basicDeviceInfo”, and the robot has 
“payload”, “degreesOfFreedom” and “workspaceType” capabilities. Based on the parameters of the 
simple  capabilities  assigned  to  the  resources,  it  is  possible  to  make  a  match  between  the  product  
requirements and the resource capabilities. Often, this matchmaking requires some adjustment of the 
parameters, which is why the combined capability rules for combining capability parameters have 
been defined. For example, the maximum weight of the product that can be transported by the robot 
and the vacuum gripper is estimated as follows: 

Robot payload minus gripper weight (gripper includes vacuum creator and vacuum cups) OR 
Gripper payload calculated based on the holding force and amount of vacuum cups in the 
gripper. The lower value has priority.  
 

The parameters for the combined capabilities are reasoned according to the properties of the 
devices involved in the combination. In other words, they are based on the parameters of their 
simple capabilities. In addition to those simple capabilities that enable the emergence of combined 
capabilities at the capability concept name level, there are other simple capabilities assigned to the 
device which may be taken into account in the detailed matchmaking. For instance, in the above 
example the weak capability “basicDeviceInfo” is needed in order to know the weight of the gripper 
and  to  be  able  to  subtract  it  from  the  robot  payload.  With  the  capability  model  alone,  it  is  only  
possible to merge the capability concept names. Detailed-level reasoning with capability parameters 
and capability matching is enabled by the rule-base discussed in Chapter 4.4.4.  

                                                             
2 http://kippcolla.serv.fi/~eeva/ 
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4.3. Components of the overall resource description

The overall resource description utilizes the capability model discussed in the previous chapter for 
describing the resources and their functionality. In addition to the capability information containing 
the capability concept name and the capability parameters, the collected lifecycle information, 
business information and interface description are also part of the overall resource description, as 
shown in Figure 26. The capabilities have a reference to the capability taxonomy described in 
Chapter 4.4.1. The capability taxonomy includes only functional, i.e. strong, capabilities, and 
therefore only the strong capabilities refer to the taxonomy.  

 
Figure 26. Components of the resource description.  

As has been said, a production environment is constantly changing, and the condition and 
capabilities of the resources evolve during their individual lifecycles and usages. Therefore, the 
description of the resource has to be updated over time. For this reason, devices have two separate, 
but linked representations within the ontology: device blue prints and individual devices. The device 
blue print describes the capabilities and properties of one type of device, as given in the suppliers’ 
catalogs. This is the nominal capability of the device. The individual devices are presented in a 
separate class which refers to the blue print device, yet presents the actual capabilities of the 
particular, individual resource which exists on the factory floor. The individual devices have actual 
capabilities, which are affected by the lifecycle of each individual device and updated according to 
measured values from the factory floor. For example, if the measured accuracy of the machine 
differs from the value defined in the nominal capability, this updated value can be given in the actual 
capability definition. Maintenance and service operations or adaptations done to the resource can 
also change its capability. Figure 27 shows the relations between the device blue prints and the 
individual devices, and their associated information elements. 
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Figure 27. Device blue prints and individual devices. 

If there are a number of similar machines on the factory floor, these individual devices will all have a 
reference to the same device blue print. This device blue print defines the nominal capability of these 
devices. If there are no measured values or other evidence of the actual capability of an individual 
device available, the capability of the individual device is assumed to be the nominal capability of the 
referenced device blue print. This is the case, for example, when a brand new device is taken into 
use.  This approach means the capability definitions can be reused, and allows for the accuracy of the 
definition to be enhanced as more data becomes available.   

4.3.1. Business and lifecycle properties

Business properties is included as part of the overall resource description in order to provide more 
information to support resource selection. This static business information is given as a set of 
parameters for the device blue prints. These parameters relate mainly to the costs of acquiring and 
using the devices. Table 9 explains the parameters included in the business properties. The business 
properties,  as  well  as  the  lifecycle  properties,  are  put  into  the  ontology  in  the  same  way  as  the  
capabilities. Logically, they are very similar to the weak capabilities.  

Table 9. Business properties – Description of the parameters.  

Parameters Description 

RENTAL_COST Cost of renting the device 

PURCHASE_COST Cost of purchasing the device 

SUPERVISING_OPERATORS Number of operators needed to supervise or operate the device 

AVERAGE_LIFETIME_IN_TIME Estimated average lifetime of the device in time 

AVERAGE_LIFETIME_IN_CYCLES Estimated average lifetime of the device in operation cycles 

SETUP_TIME Average time needed for setting up the device for a new process 

INSTALLATION_TIME Average time needed to install the device in a new configuration 

CONSUMABLE_COST Estimated cost of consumables (e.g. oil) needed to run the device 

ENERGY_CONSUMPTION Estimated energy consumption of the device in operation.  

PRODUCTION_CAPACITY Estimated production capacity of the device 
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As shown in Figure 27, the representation of the individual devices includes the collected and 
measured lifecycle information of the device, which can be used in the planning process for re-use 
and adaptation. In practice, the raw lifecycle and operational data is collected on a separate resource 
database and, at certain intervals, the filtered and relevant key figures, such as Mean Time Between 
Failure (MTBF), Mean Time to Repair (MTTR), maintenance costs and operation time, can be saved as 
part of the overall resource description. The lifecycle properties contain most of the parameters from 
the business properties and other relevant parameters, and these are updated during the individual 
device’s lifecycle based on the values obtained from the factory floor. These dynamic lifecycle 
properties are assigned to the individual devices and are therefore resource-specific. Table 10 
explains the parameters of the lifecycle properties.  

Table 10. Lifecycle properties – Description of the parameters. 

Parameters Description 

PURCHASE_COST Cost of purchasing the individual device 

RENTAL_COST Cost of renting the individual device 

INSTALLATION_TIME 
Average time needed to install the individual device into a new 
configuration 

SETUP_TIME Average set-up time of the individual device  

MTBF Mean time between failures of the individual device 

MTTR Mean time to repair the individual device 

MAINTENANCE_COST Average maintenance cost of the individual device 

MAINTENANCE_TIME Average time needed for maintenance of the individual device 

SERVICE_INTERVAL Average interval for service operations for the individual device 

SERVICE_TIME Average time needed for service operations 

PROCESS_SCRAP Average scrap produced by the individual device 

CONSUMABLE_COST Cost of the consumables (e.g. oil) needed to run the individual device 

ENERGY_CONSUMPTION Average energy consumption of the individual device in operation.  

PRODUCTION_CAPACITY Average production capacity of the individual device 

OPERATING_TIME Time the individual device has been in operation 

OPERATING_CYCLES Amount of operation cycles the individual device has been operating 
 

Figure 28 shows the relevant lifecycle aspects which affect the capability of the resource and the 
selection of a suitable resource for a certain application. The resource database is constantly 
recording the runtime data of the resources on the factory floor, such as the operational values. The 
information on how a specific resource or system performed in a specific process, while processing a 
specific product, can later on be used for the resource selection for similar products. The resource’s 
condition, its remaining lifetime and consequently its capability will vary depending on the 
applications it has been used for, the environments it has been used in, the processes it has 
performed and the process parameters which have been used. Different statistical methods from the 
area of maintenance research could be used to estimate these parameters. It is planned to handle 
this context-specific historical information with a role engine, whose development is beyond the 
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scope of this study. However, the role engine will be briefly discussed in Chapter 6.3, under Future 
Work.  

 
Figure 28. Relevant lifecycle aspects affecting the resource capability and the selection of resources for a 

specific application.  

4.3.2. Interface description

The interface description is seen as a crucial part of the overall resource description. It is needed to 
enable the automatic creation of resource combinations when searching for resources having 
suitable capabilities for the given product order. Standardized interface descriptions have been 
widely studied in, for example, the EUPASS project (Siltala et al. 2008). Therefore, it is unnecessary to 
develop a detailed interface description for this thesis. The interface description, which is adapted 
from the EUPASS interface definitions and integrated into the Core Ontology, can be seen in Figure 
29. It is simplified, but provides enough expressiveness for the resource compatibility matching 
process.  

 
Figure 29. Resource interface description. 
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Some explanations of the interface description: 
 The purpose of the mechanical interface always has to be defined. It can be either: 

“Mounting to the base”, “End-effector mounting” or “Attaching to other devices”.  
 Interfaces nearly always have some sort of physical part, and therefore all the interfaces are 

defined through mechanical interfaces. By using the “hasSpecialization” property, the 
mechanical interface can refer to control or energy interfaces. The connector of the interface 
is specified by the mechanical interface standard definition. This definition of the mechanical 
interface supports the position and orientation definition for the energy and control 
interfaces.  

 The communication protocol defines which communication protocol is used in the control 
interface. The communication protocols describe the set of rules to be used in 
communication exchange. They have their own syntax, semantics and synchronization rules. 
Common protocols are, for example, Modbus, Profibus and CIP (Common Industrial 
Protocol). The communication protocol operates over one or more physical layers, which are 
specified by the Transfer protocol. Typical examples of the transfer protocols are RS485, USB, 
Ethernet, fiber, WLAN.   

For the devices, several interfaces can be defined according to their purpose. The interfaces are given 
either as input or output interfaces in order to facilitate the device compatibility checking. Input 
interfaces  are  those  which  need  to  be  attached  in  order  for  the  device  to  become  functional.  For  
example,  a  tool  has  an  input  interface  for  a  tool  holder.  A  tool  holder,  on  the  other  hand,  has  an  
output interface for a tool and an input interface for the machine (e.g. milling or turning machine).  

4.4. Framework for capability-based matching of product requirements
and system capabilities

The core of this adaptation methodology lies in the capability-based matching of product 
requirements and system capabilities. Figure 30 presents the framework for this capability-based 
matching. As defined in Chapter 4.1, the required processes should be expressed in such a way that 
they are closely related to the formalism that describes the available resource capabilities, and vice 
versa. The capability taxonomy has been developed for this purpose, as shown in Figure 30. The 
matching is performed according to the capability taxonomy and capability matching rules which 
connect the product and resource domains to each other. The taxonomy, included in the Core 
Ontology, is used to make a crude search that maps the resources with the required capabilities at a 
high level. The detailed reasoning with the capability parameters and combined capabilities is based 
on rule-based reasoning, as will be explained in the following chapters.  
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Figure 30. Simple framework for matching the product requirements with the resource capabilities and forming 

a feasible system configuration under the adaptation rules, modified from (Järvenpää et al. 2011a). 

The capability-based matching follows the principles of Service Oriented Architecture (SOA). In SOA, 
the  services  need  to  be  described  to  the  other  parties  in  the  system  in  a  way  which  allows  the  
matching of the provider’s description of its offerings and the requestor’s description of its needs. 
This entails the services being described through their functional (what can they do?), behavioral 
(how is the functionality achieved?) and non-functional (constraints of the previous two) aspects. The 
resource description and capability model facilitate the description of the behavior, whereas the 
capability taxonomy allows the capabilities to be linked to the related function. The non-functional 
aspects are handled through the capability parameters and, in some cases, the weak capabilities.  

Figure 31 shows the concept of the SOA-based matching of the products and resources. The product 
can be seen as a service requestor, whereas the order (including the product requirements) is seen 
as a service request. Resources are service providers, which provide the services through their 
capabilities. The role of the service broker is taken by the ontology, which describes the product 
requirements and resource capabilities, the capability model, and the rule-base, thus facilitating the 
matching between the order and the offerings.  

 
Figure 31. SOA-based architecture for product-resource matching. 
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Depending on the order, if the manufacturing/assembly plan is predefined, certain behaviors 
(capabilities) may be directly requested. If these are not detailed, higher level functions may be 
requested. This means that the request can be targeted at different levels in the capability 
taxonomy, as discussed in the next chapter. If the request is targeted at functions, then all the 
devices having the capabilities which can achieve that function will be offered. Functionality is the 
most essential aspect of the service, whereas the non-functional properties merely constrain the 
selection of the service, given that the functionally suitable candidates have been identified. 

Chapter 4.4.1 will first introduce the formed capability taxonomy, followed by a discussion about 
how the product requirements are defined in Chapter 4.4.2. The high level capability mapping is then 
discussed in Chapter 4.4.3. The rule-base and the detailed capability matching carried out based on 
the rules are discussed in Chapters 4.4.4 and 4.4.5 respectively.  

4.4.1. Capability taxonomy

The capability model itself neither separates nor links the behavior and function discussed in Chapter 
4.2.1. It is the capability taxonomy which makes the link between these two. As stated by Kitamura 
et al. (2006), a general function decomposition tree includes possible alternative ways of function 
achievement in an ‘OR’ relationship for a specific goal function. The generic ways of achieving a 
function are, in turn, organized in ‘is-a’ relations, according to their principles. (Kitamura et al. 2006.) 
The capability taxonomy defines these alternative ways of achieving a function in a hierarchical tree 
defining the general – specific (is_a) relations between the capabilities at different levels of detail, 
i.e. functions and behaviors. This hierarchy supports flexible, subsumption-based mapping of the 
required functions and provided capabilities.  

The taxonomy defines the possible functional capabilities that can be requested by the products. The 
main purpose of the taxonomy is to provide the link between the processes and the capabilities, and 
thus to map the product requirements and resource capabilities at the concept name level. 
Classification of the capabilities into the form of a taxonomy enables the fast discovery of candidate 
capabilities. However, the class of a capability gives only a rough picture of what it actually can do. To 
really know what the capability means, it needs to be extended with the parameter information, as 
was done in the capability model.  
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Figure 32. A small part of the production capability taxonomy included in the ontology. 

Figure  32  presents  a  small  part  of  the  implemented  capability  taxonomy  as  an  example.  The  full  
taxonomy can be found in Appendix 4. It is adapted from multiple existing taxonomies and process 
categories, which include the EUPASS processes (Lohse et al. 2008), the production taxonomy used in 
the CO2PE! -initiative (CO2PE! 2010), the Wikipedia manufacturing taxonomy (Wikipedia 2011), and 
the German standard DIN 8580, which provides a classification of manufacturing methods. The 
EUPASS process ontology (Lohse et al. 2008) has been utilized in particular for the assembly, logistic, 
preparation and finalization parts of the taxonomy, while the others have influenced mainly the 
manufacturing side.  

The taxonomy is implemented with the possible case applications in mind and adapted to include 
everything that is needed in the case studies. It doesn’t aim to cover the full production area or claim 
to be complete. The definition of a more complete taxonomy would require the wide participation of 
the production community, and would still not satisfy every participant’s requirements. The 
taxonomy built for this thesis is defined to be expressive enough for real system design tasks and for 
demonstrating the proposed adaptation and capability-matching methodology. The taxonomy is 
static  while  it  is  being  used.  However,  it  can  be  easily  extended  based  on  emerging  needs,  for  
example, when applying the methodology to different domains or when new capabilities are needed.  

The taxonomy is built into the Core Ontology, in order to allow direct relations between the process 
descriptions and the taxonomy, as well as between the resource capabilities and the taxonomy. The 
hierarchy between the taxonomy instances is created using a hasParentNodeInTaxonomy relation, by 
which the lower level capability categories are subsumed into the upper level categories.  

4.4.2. Definition of the product requirements

Product requirements are those product characteristics or features which require a set of processes 
to be performed in order for the product to be transformed towards the finished product. These 
processes are executed by the devices and combinations of devices possessing adequate functional 
capabilities. The product requirements can be expressed in terms of the required capabilities and 
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their temporal and logical order. In the proposed approach, the product requirements are expressed 
in the form of a pre-process plan, generated by a tool called Pro-FMA Extended (Garcia et al., 2011), 
which will be introduced in more detail in Chapter 5.1.2. The pre-process plan describes the required 
capabilities at a generic level, such as “material removing”. Each of the process steps in the pre-
process  plan has  a  reference to  a  certain  level  in  the capability  taxonomy.  The pre-process  plan is  
linked to the product information and the activities in the pre-process plan are linked to a specific 
feature,  or  part  information,  in  the  ontology.  This  way,  the  specific  characteristics  of  a  product  or  
part, such as size, weight, geometry and so on, can be used as an input for the reasoning when 
searching for suitable resources. They have a significant effect on, for example, gripper selection and 
feeding methods.  

4.4.3. High-level capability mapping

Together with the developed capability model, the capability taxonomy integrated into the Core 
Ontology allows mapping between the product requirements and the resource capabilities at the 
capability concept name level. As discussed in the previous chapter, the activities in the pre-process 
plan for the product refer to specific levels in the capability taxonomy. Naturally, the capability 
instances also refer to a certain level in the capability taxonomy, thus enabling the link between 
products requesting the capabilities and the resources providing the capabilities.  

The taxonomy level to which the pre-process plan refers depends on how detailed the available 
information is regarding the required or desired processing methods. For example, the product 
designer may have defined that a specific joining method, such as riveting, should be used to join two 
parts together. Alternatively, they may have only defined that some sort of joining method is 
required, leaving the possibility for the joining method to be determined based on the capabilities 
available  on  the  factory  floor.  In  the  former  case,  the  product  requirement  is  targeted  at  the  
particular method in the capability taxonomy, whereas in the latter case the requirement is targeted 
at the joining level in the taxonomy. The pre-process plan defined by the Pro-FMA Extended software 
always expresses the activities at a very generic level.  

The capability taxonomy enables the capabilities of the resources to be connected with the 
capabilities required by the product at different levels of detail. It allows different devices that are 
able  to  perform  the  same  function  (e.g.  “material  removing”)  using  different  behaviors  (e.g.  
“milling”, “turning”, “drilling”, etc.) to be searched for. The parameters of the capabilities will then 
determine if the suggested device is able to fulfil the given requirements. For example, if the 
requirement is [material removing, hole of diameter 20mm and depth 50mm, aluminium], the 
parameters of the capabilities which are a subset of the material removing capability (e.g. “milling”, 
“turning” and “drilling”) will then express which device combination is able to provide the required 
removal of material within the required parameters. Capability matching rules, discussed in the next 
section, will be used to match the parameters.  

As the devices are assigned the simple capabilities they possess, based on the defined capability 
associations in the capability model, the device combinations which contribute to a certain combined 
capability can be identified and queried with SPARQL RDF query language. In the same way, it is 
possible to reason out the capabilities that the resource combinations have. Figure 33 illustrates how 
the capability associations (inputs and outputs) are used to make a match between the capabilities 
existing with the current resources and the required capabilities at the concept name level. By using 
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the associations, it is possible to answer, for instance, the following questions: “Which devices need 
to be combined in order to achieve a certain combined capability? “What combined capabilities can a 
certain combination of devices have?”  

 
Figure 33. Matching of capability output and input associations (Järvenpää et al. 2012a). 

Figure 34 gives a practical example of the input and output association matching. The input and 
output associations are written in italics (e.g. spinningTool). The white rectangles represent the 
resources which possess those capabilities that provide the shown associations. As seen in this figure, 
the  combined  capabilities  are  formed  by  climbing  hierarchically  from  lower  level  combinations  to  
upper ones, e.g. the tool holder and threading cutter combination is viewed as a threading tool on the 
next level.  

 
Figure 34. Example for matching the capability input and output associations (Järvenpää et al. 2012a). 

The example shows that, based on the capability taxonomy and the capability model, it is possible to 
map the product requirements with the resource capabilities at the concept name level. This is called 
high-level capability mapping. The capability associations only provide a means to manage the 
combined capabilities at the capability concept name level, not at the parameter level. Therefore, in 
order to make a detailed match between the required and provided capabilities, more intelligent 
reasoning is required. For this purpose, rule-based reasoning is applied, as discussed in the following 
two chapters.  
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4.4.4. The rule-base for capability matching

As stated in the previous chapter, the detailed capability matching, which considers the capability 
parameters, is based on rule-based reasoning. For this, three types of rules are needed, comprising:  

1) Rules for defining how the capability and product feature information are applied in different 
domains when matching the product requirements with the resource capabilities;  

2) Rules for reasoning out the parameters of the combined capabilities;  
3) Rules indicating how adaptation guidelines and other criteria, such as availability and 

scheduling, device condition and lifecycle, and user and company-specific criteria, are used in 
the final selection of resources and generating the final configuration. 

 
These domain expert rules, combined capability rules and adaptation rules, as well as their use in the 
capability matching, will be discussed in this chapter, and a few examples of the rules will be given in 
pseudo code. The example rules have been constructed to serve the demonstrations in the TUT-
machining laboratory and the TUT-microfactory environments, discussed in the case study chapter 
(Chapter 5). The rules have been defined to cover these (and similar) use cases. This chapter presents 
only some examples of the rules, while the rest can be found in Appendix 5. 

Domain expert rules 
Domain expert rules include rules which define how the product feature and resource capability 
information are applied in different domains when matching the product requirements with suitable 
resources. The domain expert rules are divided into two categories. First, there are detailed 
capability definition rules for defining which capability should be used to fulfil a certain type of 
product requirement from the pre-process plan. The second types of rules are detailed capability 
matching rules for defining whether the available capabilities are suitable for the order at the 
capability parameter level. These latter rules take into account, e.g. in the machining process 
domain, how the achieved feature depends on the tool shape and type (e.g. in the milling process, 
what kind of roundings and chamfers can be achieved with certain types and shapes of tools). By 
using these domain expert rules it is possible, for example, to first detect that the “milling” capability 
should be used, and then to compare whether the available “milling” capabilities have the 
parameters needed in order to produce the required feature. One domain expert rule is, for 
example, “In milling, the nose radius of the cutter has to be same as the required rounding inside the 
machined pocket”. More examples of the domain expert rules written in pseudo code can be found 
in Figure 35. The defined rules are definitely not comprehensive, but can be extended gradually. The 
focus here is not on defining all the possible domain-specific rules in detail, but to demonstrate the 
concept of how to use these rules and capability definitions in the design and adaptation of a 
production system. 
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Figure 35 . Examples of the domain expert rules. The capability concept names are written in italics. 

In some rules, not only in domain expert rules, but also in others, some variable names are defined at 
the beginning of the rule. This is done in order to be able to separate different devices which have 
the same capabilities, but different roles in the device combinations. For example “itemMaxSize” is a 
common capability used to indicate the maximum item size that the device can handle and it can 
relate to almost any functional capability. In the device combination under analysis, there may be 
multiple devices having this same capability. Defining the variable name at the beginning of the rule 
allows the capabilities of the correct device to be referred to.    

Combined capability rules 
Combined capability rules are needed when combining resources and analyzing their emergent 
capabilities. A combined capability is not simply the sum of the individual capabilities it is composed 
of. These rules are also divided into two groups: combining parameters and combining interfaces 
rules (see Figure 36). The former determine how the parameters of the combined capabilities can be 
formed from the parameters of the individual capabilities, whereas the latter are meant to check 
whether the interfaces between the devices to be combined are compatible. One rule is, for 
example, “When a robot and gripper are combined, the payload of the combination is the robot 
payload minus the gripper weight or gripper payload, provided this is smaller than the previous 
difference”. Other rules relate, for example, to accuracy and the workspace of the combination of 
devices. The aim of the combined capability rules is not to provide detailed analysis of, e.g. the 
workspace or the kinematics of the device, but to enable the modelling of scenarios for potentially 
suitable device combinations. For kinematics and detailed workspace definitions, virtual simulation 
tools should be used to validate the results obtained from the reasoning based on the digital 
information.  
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Figure 36. Examples of the combined capability rules. 

It has to be noted that in many cases the combined capability rules developed here produce highly 
simplified and crude results. This is due to the problem that many of the properties of the combined 
capabilities emerge as a behavior of the machine as a whole in a certain context, and they cannot be 
decomposed into the properties of the various components. For example, reasoning out the 
combined accuracy of a machining center and its attached tool is a complex problem, because it is 
affected by multiple factors other than those included in the resource description. For instance, the 
accuracy and repeatability of machine tools are limited by geometric errors of all the components, 
kinematic errors, load-induced errors, thermal errors, dynamic errors, calibration errors and 
computational errors. The geometric accuracy of a machine tool is determined by the errors that 
exist in the machine tool from its basic design, the inaccuracies built-in during assembly and from the 
components used in the machine. There are other sources of error too, such as the cutting force, the 
humidity, the competence of the operator, tool wear and so on. An experienced operator is usually 
able  to  compensate  for  most  of  these  errors.  Therefore,  in  the  case  of  machining  operations,  the  
repeatability of the machine is usually a more important parameter than its accuracy. As this 
example indicates, some properties cannot be traced back to any specific property of the individual 
components but emerges in a very complex way. For determining this, a comprehensive model of the 
whole machine, its control and the manufacturing process should be constructed, which is beyond 
the scope of this work. Another difficulty in defining the accuracy of a machine tool is that usually 
neither the tool holder nor the tool tolerances, are available in the catalogues.  

Adaptation and configuration rules 
The third type of rules no longer relate directly to capability matching, but to what happens after the 
devices possessing the adequate capabilities have been found, or if no match has been found. The 
adaptation rules include rules defining how other criteria, such as resource availability and 
scheduling information, device condition and lifecycle, as well as user- and company-specific criteria 
relating  to,  for  example,  costs  or  eco-efficiency,  are  used  in  the  final  resource  selection  and  
generation of the configuration. There are three types of defined adaptation rules. The generic 
guidelines are used to define the type of adaptation needed when the requirement changes 
(physical, logical or parametric), whereas the rules for generating a new combination define the 
principles for generating new resource combinations if the existing ones don’t provide the required 
capabilities. If multiple resources or resource combinations provide the required capabilities, other 
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criteria should be applied to select a suitable configuration for the given situation. The context-
specific rules have been defined for such situations. These are usually given by the user in a specific 
case and are therefore dynamic in their nature.  One user-defined adaptation rule could be, for 
example, “If the amount of ordered items is 20 or more, use the fastest machine for manufacturing 
the product. Otherwise, use the cheapest option.” More examples of adaptation rules are shown in 
Figure 37. 

 
Figure 37. Examples of the adaptation and configuration rules. 

The adaptation relies strongly on the context-specific information. As the computerized management 
of the context-specific information is still not mature enough, the adaptation rules are mainly used 
by humans as tools for reasoning. The demonstration environment constructed here is a human-
machine environment, which assumes a high degree of human involvement. Particularly in the 
adaptation phase, human intelligence is required to perform the context-specific reasoning, such as 
being able to recognize the cheapest production resource for a given order. In order to reliably 
ascertain which resource is the cheapest in a specific context, multiple parameters need to be 
considered (e.g. energy consumption, resource and consumable consumption, the human resources 
needed, the maintenance actions required and so on). Then, optimization algorithms based on those 
parameters have to be formulated. Naturally, an in-depth process knowledge is also required for this 
purpose, and the development of such an algorithm is beyond the scope of this work.  

4.4.5. Detailed capability matching

The detailed capability matching is done based on the rules included in the rule-base introduced in 
the previous chapter. This chapter is devoted to explaining how the rules are applied during the 
detailed capability matching. The starting point here is the pre-process plan, in which only the 
generic capability requirements such as “MaterialRemoving” are defined. Figure 38 represents the 
framework for capability matching in the developed ICT-architecture. This ICT-architecture will be 
discussed in Chapter 5.1.  
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Figure 38. Matching the product requirements against the system capabilities (Järvenpää et al. 2012b). 

The task of interpreting and applying the rules belongs to the rule inference engine. According to 
Hopgood (2001) the application of rules can be broken down as follows: 1) selecting rules to examine 
—  these  are  all  the  available  rules;  2)  determining  which  of  these  are  applicable  —  these  are  the  
triggered rules; 3) selecting which rule to execute. 

In order to limit the number of rules that have to be triggered in each capability matching case, the 
rules are first classified according to their purpose and then they are linked to the capability 
taxonomy level to which they relate, see Figure 39. This means that if the product requirement 
relates  to  the  “milling”  capability,  the  rule  engine  will  trigger  only  those  rules  that  are  linked  to  
“Milling” in the capability taxonomy. In Figure 39, the white boxes with dashed outlines indicate the 
taxonomy levels to which the rules are linked. The figure gives a simplified representation, meaning 
that only a limited number of examples of rule types are shown. The generic guidelines and context-
specific rules for adaptation are not capability related, and do not therefore have any links to the 
taxonomy.  
 



84 
 

 
Figure 39. Categorisation of the rules (Järvenpää et al. 2012b).  

The numbering in Figure 39 indicates the sequence in which the rules are applied when a new order 
enters the system. The order is sent in the form of a pre-process plan, which indicates the features to 
be manufactured and their link to the capability taxonomy. The pre-process plan may define, for 
example, that some sort of “material removing” capability is required. When an order is sent to the 
system, the capability matching proceeds as follows by utilizing the rules: 

1. The detailed capability is first defined based on the given taxonomy level, feature 
information and the domain expert rules for detailed capability definition.  If  the  pre-
process plan referred to “MaterialRemoving” in the capability taxonomy, only the domain 
expert rules linked with “MaterialRemoving” will be triggered. The rules are checked one by 
one  until  a  match  is  found.  The  reasoning  may  conclude  that,  for  example,  a  “drilling” 
capability is required.  

2. After the detailed capability requirements have been defined, and the capabilities of the 
existing system which match the capability requirements at the concept name level have 
been identified, these provided and requested capabilities need to be compared at the 
parameter level. This happens with the domain expert rules for detailed capability 
matching.  

3. The detailed capability matching (phase 2) often needs input from phase three, where the 
parameters of the individual device capabilities are combined to derive the parameters of 
the combined capabilities. These combined capability rules for combining the parameters 
are implemented, for example, to reason out the workspace, payload or accuracy of a 
resource combination. Different rules belonging to the same rule category may also need 
input  from  each  other.  For  example,  in  order  to  evaluate  the  workspace,  the  tool  length  
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needs to be known. These rules are triggered when called for by the detailed capability 
matching rules or other combining parameters rules.  

4. Based on the matching results from phases 2 and 3 and the generic guidelines in the 
adaptation rules category, the need for logical and parametric adaptation or physical 
adaptation will be defined.  

5. If all the required capabilities were found in the current system, no physical adaptation is 
required and multiple alternative resources can satisfy the order, so context specific 
adaptation rules are applied to select the most suitable resource configuration for the given 
order.   

6. If all the required capabilities were not available in the current system, physical adaptation 
actions need to be performed. This means that new combinations of resources need to be 
generated. For this, the new combination generation rules will be applied. These rules aim 
to utilize the existing devices on the factory floor (e.g. a lathe) and combine them with new 
resources (e.g. cutting tools) in order to change the system’s capability to match the given 
order. If the existing devices on the factory floor can not provide suitable capabilities when 
combined with other devices, completely new combinations, built from devices not currently 
existing  on  the  factory  floor,  will  be  created.  These  rules  are  also  linked  to  the  capability  
taxonomy, and depending on which new capability is needed, only the relevant rules will be 
triggered.  

7. In order to form new combinations of devices having simple capabilities which could form 
the required combined capabilities, the interface compatibility of the devices needs to be 
ensured. The combined capability rules for combining the interfaces will be utilized to 
achieve this. After this, the detailed match of the new device combination to the 
requirements will be checked, as was done in phase 2.  

8. Finally, if more than one new combination of suitable devices was found, context specific 
adaptation rules will be used in order to select the most desirable combination for the given 
situation.  

The presented rules and associated matching procedures provide a valuable aid for selecting 
appropriate solutions from a large amount of input data. For example, a large factory with thousands 
of resources represents a huge solution space, for which manual handling in the context of such 
capability matching is cumbersome. With the approach presented here, it is possible to explore the 
large solution space and rapidly filter out the unsuitable resources, leaving only the possible 
resources and resource combinations for the given requirement. Therefore it eases and speeds up 
the adaptation planning, and facilitates the reactive adaptation.    

4.5. Information formalization to support production system adaptation
Implementation

In the proposed approach, ontological modelling is used to formalize the representation of the 
resources, capabilities and system configurations. The Core Ontology defined by Lanz (2010) is used 
as a basis for describing the product-, process- and system-related information. The knowledge 
representation can be interpreted by both humans and machines. The ontology has been built with 
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the Protégé OWL-DL tool. OWL-DL is based on description logics and it allows the domain concepts to 
be largely defined according to a predefined formalism. (Stanford Center for Biomedical Informatics 
Research 2012.) 

For this study, the Core Ontology has been updated and extended to better answer the problem at 
hand, in other words to better fulfil the requirements set by the adaptation of production systems in 
a changing environment. A new domain, capability, has been defined to connect the process and 
system domains. Capabilities can be seen as an intermediate step between systems and processes. 
Systems utilize their capabilities to execute processes. The following chapters first present the 
formalization of the capability and production system information in the Core Ontology. After this, 
the formalization of the connection between the product, process and system information is 
discussed. The work done during the course of this thesis has also slightly affected the product and 
process domains in the Core Ontology, but these are not discussed here. Finally the chapter ends 
with a discussion of the spatial and temporal reasoning enabled by the ontology definitions.  

4.5.1. The formalization of the capabilities in the Core Ontology

This chapter will explain the structure of the capability definition in the Core Ontology, its sub-
classes, their parameters and the relationships between the classes. The CapabilityDefinition class, 
displayed in Figure 40, contains the sub-classes needed for managing the simple and combined 
capabilities of resources. As the theory and concepts behind the capability modelling has already 
been thoroughly discussed in the previous chapters, the theory needs no further explanation here. 
Instead, the emphasis is placed on presenting the structure of the knowledge formalization.  

 
Figure 40. Class CapabilityDefinition and its sub-classes. 

Capability 
The capability class defines the pool of generic capabilities that can exist in a production system, 
including the simple and combined capabilities. Both the strong and weak capabilities are defined in 
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this class. In the current implementation, the business and lifecycle properties are also given as 
capabilities. The names of the capability instances represent the capability concept name as 
discussed in Chapter 4.2.1. Table 11 explains the relevant properties of the instances belonging to 
the Capability class. A few default properties, namely description (giving the description of the entity) 
and name (defining the name of the entity), have been excluded from the tables in order to save 
space.  

Table 11. Properties of the Capability class.  
Property name  Description  

capabilityParameter  
CapabilityParameter contains a list of parameters that a certain capability can have. 
The parameter values are defined when the capability is assigned to a resource.  

capabilityType 
This property is used to indicate if the defined capability is a normal capability or if it is 
used to describe the business or lifecycle properties.  

hasCapabilityTaxonomy 

This property links the capabilities with the capability taxonomy, allowing the mapping 
of product requirements against resource capabilities. The reference to the 
CapabilityTaxonomy is only defined for the capability instances representing strong 
capabilities. 

hasInputAssociation  
This property indicates which capability associations are needed as an input in order 
to enable the current capability to emerge (e.g. moving and holding associations are 
needed as an input for transporting).  

hasOutputAssociation  
This property indicates which output associations the current capability provides for 
the combined capabilities as their input (e.g. moving provides input for transporting).  

 
CapabilityAssociation 
The CapabilityAssociation class contains the association instances which are used to create links 
between capabilities, enabling the formulation of combined capabilities from simple capabilities. The 
associations can be either input or output associations. For example, simple capabilities provide 
output associations for combined capabilities as their input association, and vice versa. Table 12 
shows the properties of the CapabilityAssociation class. These properties are the inverse of 
hasOutputAssociation and hasInputAssociation properties. They help the manual management of the 
capability information in the Protégé.  
 

Table 12. Properties of the CapabilityAssociation class.  
Property name  Description  

isInputAssociationForCapability This property indicates for which combined capability this is an input. 

isOutputAssociationForCapability This property indicates for which capability this is an output.  

 
CapabilityTaxonomy 
The CapabilityTaxonomy class contains the hierarchical categorization of the possible functional 
capabilities. Capabilities and Processes refer to certain levels in the CapabilityTaxonomy enabling the 
product requirements to be mapped with the device capabilities at different levels of detail. Table 13 
shows the properties of the CapabilityTaxonomy class.  
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Table 13. Properties of the CapabilityTaxonomy class.  
Property name  Description  

hasParentNodeInTaxonomy 

The hasParentNodeInTaxonomy property defines the parent node for the current 
taxonomy node. It is used to create the hierarchy between different detail-level 
capabilities (functions vs. behaviours) and therefore to build the taxonomy, e.g. 
milling hasParentNodeInTaxonomy machining.  

 

Competence 
The Competence class is meant for storing the capabilities of a human or organization. This class is 
under construction and beyond the scope of this work.  
 
CapabilityAssignment 
The CapabilityAssignment class defines the resource-specific capabilities and their parameter values. 
CapabilityAssignments are individual instantiations of the generic capabilities in the Capability class 
defining the resource-specific capabilities. Table 14 shows the properties of the CapabilityAssignment 
class.  
 

Table 14. Properties of the CapabilityAssignment class.  
Property name  Description  

hasCapability  
This property refers to the generic capability that this CapabilityAssignment is an 
instantiation of.  

 
hasParams 

This property allows the assignment of parameters for the entity. It refers to key - 
value pairs. 

 

CapabilityAssignmentUpdated 
The CapabilityAssignmentUpdated class is similar to the CapabilityAssignment class, but it is meant 
for storing the updated capability information during the individual device’s lifecycle. It has the same 
properties as the CapabilityAssignment class shown in Table 14. The lifecycle properties can be 
assigned through this class.  

4.5.2. Formalization of resources in the Core Ontology

This chapter will explain the structure of the resource definitions in the Core Ontology, its sub-
classes, their parameters and the relationships between the classes. Figure 41 shows the ontology 
structure for representing the resource information. Those sub-classes of the ontology which are not 
used or developed in the context of this thesis, will not be discussed here. For more information 
about them, please refer to Lanz (2010).   
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Figure 41. Class Resource and its sub-classes. 

Resource 
The class Resource refers to any physical or virtual resource, such as a human, a device or software, 
or a facility area that is used for manufacturing or assembling a product element or providing a 
certain service. Table 15 shows the properties of the Resource class.  
 

Table 15. Properties of the Resource class 
Property name Description  

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object. 

isLocatedIn  This property indicates the place where the entity is located.  

 
Device 
The Device class includes any machines, equipment and tools used to manufacture or assemble a 
product element. Devices can be either catalogue devices (blue prints) or actual individual devices 
and combinations of them. Figure 42 shows the class Device and its sub-classes and Table 16 explains 
its properties.  
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Figure 42. Class Device and its sub-classes. 

Table 16. Properties of Device class. 
Property name  Description  

deviceID The deviceID is a unique identifier of a device. 

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object. 

isLocatedIn  
This property indicates the place where the entity is located. It can be, e.g. a certain cell or 
workstation.  

 
DeviceBlueprint 
The DeviceBlueprint class contains the catalogue information of different device types. The 
DeviceBlueprint has the subclasses ControlDevice, Fixture, ModifyingDevice, MovingDevice, 
StorageDevice and SimpleDevice, as defined by Lanz (2010), which all inherit the parameters of the 
DeviceBlueprint class. Basically the division is only meant for humans and it helps to manage the 
device information in the ontology. Table 17 shows the properties of the DeviceBlueprint class.  
 

Table 17. Properties of the DeviceBlueprint class.  
Property name  Description  

deviceID The deviceID is a unique identifier of a device. 

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.  

isLocatedIn  
This property indicates the place where the entity is located. As the DeviceBlueprint 
instances are not real physical resources, they should only be located in catalogues. 
Currently, the ontology doesn’t restrict this.  

outputInterface  
The output interface is the interface the device provides for other devices to connect 
to, e.g. a tool holder provides an output interface for a tool.  

inputInterface  
The Input interface is the interface the device use to connect to other devices, e.g. a 
tool holder has an input interface, which is used to connect it to the machine.  

hasCapabilityAssigment This property links the resources and their capabilities.  
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IndividualDevice 
The InvidualDevice class is meant for saving the instances of the actual individual devices existing on 
the factory floor. The individual devices have reference to the DeviceBlueprint, based on which their 
nominal capability can be known. The updated capability information during the individual device 
lifecycle, i.e. the actual capability, is assigned to these instances by the 
hasCapabilityAssignmentUpdated property. Table 18 shows the properties of the IndividualDevice 
class. 
 

Table 18. Properties of the IndividualDevice class. 
Property name  Description  

deviceID The DeviceID is a unique identifier of a device. 

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.  

hasDeviceBlueprint  
HasDeviceBlueprint links the individual device to the blueprint (i.e. to the 
catalogue information).  

isLocatedIn  
This property indicates the place where the entity is located, e.g. in a certain 
cell or station.  

hasPosition This property defines the position of the entity.  

hasOrientation This property defines the orientation of the entity. 

hasCapabilityAssigmentUpdated 
This property links the resources and their updated capabilities during the 
individual device’s lifecycle.  

 
DeviceCombination 
The DeviceCombination class includes combinations of multiple individual devices or other device 
combinations. Table 19 shows the properties of the DeviceCombination class.  
 

Table 19. Properties of the DeviceCombination class. 
Parameter name  Description  

deviceID The DeviceID is a unique identifier of a device. 

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.  

hasIndividualDevice 
OrDeviceCombination 

This property defines the individual devices and other device combinations that are 
included in the current device combination.  

isLocatedIn  This property indicates the place where the entity is located, e.g. a certain cell or station. 

 
Enterprise 
The Enterprise class refers to the company or facility where the operations take place. It is a parent 
class for other facility-related classes. It answers the question “where”. The Enterprise class structure 
is directly adopted from the work of Lanz (2010), but the properties are slightly modified. The 
relations between the cells and stations have been added in this work. Figure 43 shows the structure 
of the Enterprise class and its sub-classes, whereas in Table 20 the properties of the Enterprise class 
are explained. This clearly illustrates the restrictions of OWL, which doesn’t allow the representation 
of the is_part_of relation. Therefore, the lines, cells and stations are modelled with a relation is_a 
enterprise, even though logically they should be part_of.  
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Figure 43. Class Enterprise. 

It is intended in the future to break up this hierarchical line-cell-station structure, because it is highly 
dependent on the company’s or user’s naming policies. Some may call a cell a station, and vice versa. 
This representation restricts the allowable system architecture. For the purpose of the adaptation 
problem, it would be enough to be able to present the combinations of resources and their relative 
locations in the factory layout.  

Table 20. Properties of the Enterprise class.  
Property name Description  

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.  

isLocatedIn  This property indicates the place where the entity is located.  

hasResource  The hasResource property defines the resources that belong to the given entity. 

 
Factory 
The class Factory refers to a complete factory where the manufacturing or assembly takes place. Its 
properties are shown in Table 21.  
 

Table 21. Properties of the Factory class. 
Property name Description  

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.  

isLocatedIn  This property indicates the place where the entity is located.  

hasResource  The hasResource property defines the resources that belong to the given entity. 

hasArea  This property defines the areas that are located in the factory.  

 
Area 
The class Area refers to a place where the assembly or manufacturing takes place. Its properties are 
shown in Table 22. 



93 
 

Table 22. Properties of the Area class.  
Property name Description  

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.  

isLocatedIn  This property indicates the place where the entity is located.  

hasResource  The hasResource property defines the resources that belong to the given entity. 

hasLines  This property indicates the lines that are located in the area.  

 
Line 
The class Line refers to the production line where the manufacturing or assembly takes place. A line 
can consist of multiple cells and/or stations. Table 23 shows the properties of the class Line.  
 

Table 23. Properties of the Line class.  
Property name  Description  

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.  

isLocatedIn  This property indicates the place where the entity is located.  

hasResource  The hasResource property defines the resources that belong to the given entity. 

hasCellsOrStations This property defines the cells or stations that are included in the line.  

hasOrientation This property defines the orientation of the entity. 

hasPosition This property defines the position of the entity. 

 
Cell 
The class Cell refers to the cell where the manufacturing or assembly takes place. A cell can be either 
a product-oriented or process-oriented cell. A process-oriented cell may consist of multiple machines 
providing similar process capabilities. In contrast, a product-oriented cell consists of resources 
targeted to manufacture certain entities of the product (e.g. sub-assemblies). The properties of the 
class Cell are shown in Table 24. 
 

Table 24. Properties of the Cell class.  
Property name  Description  

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.  

isLocatedIn  This property indicates the place where the entity is located.  

hasResource  The hasResource property defines the resources that belong to the given entity.  

adjacentTo 
This property indicates which entities are adjacent to (close to, next to) the current entity, 
but not physically connected. 

connectedTo This property indicates the entities which are physically connected to the current entity.  

precedenceOf This property defines which entity precedes the current entity in the layout. 

hasStation  This property indicates which stations include the given cell.  

hasPosition This property defines the position of the entity. 

hasOrientation This property defines the orientation of the entity. 
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Station 
The Station class refers to a station where the manufacturing or assembly takes place. A station 
refers  to  one  unit  in  the  system,  where  certain  operations  can  be  completed.  A  cell  can  contain  
multiple stations. The properties of the class Station are shown in Table 25. 
 

Table 25. Properties of the Station class. 
Property name  Description  

IMGModelUrl  IMGModelUrl defines the URL for the picture (e.g. .png) of the given object.  

isLocatedIn  This property indicates the place where the entity is located.  

hasResource  The hasResource property defines the resources that belong to the given entity.  

adjacentTo 
This property indicates which entities are adjacent to (close to, next to) the current 
entity, but not physically connected. 

connectedTo This property indicates the entities which are physically connected to the current entity. 

precededBy This property defines which entity precedes the current entity in the layout. 

hasIndividualDevice 
OrDeviceCombination 

This property defines the individual devices and device combinations that form the 
station.  

hasPosition This property defines the position of the entity. 

hasOrientation This property defines the orientation of the entity. 

 
The spatial relations of cells and stations, namely adjacentTo, connectedTo, and precededBy allow 
spatial reasoning with the digital information. Based on this, it is possible to know in which order the 
capabilities exist in the system, e.g. in the case of an assembly line where the product flows through 
multiple stations.  

4.5.3. Connection between products, processes, capabilities and systems

The formalization of the product information and related processes was done by Lanz (2010) and will 
therefore not be discussed in detail in this thesis. However, a simplified illustration of the relations 
between product, process, capability and resource information is shown in Figure 44. 
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Figure 44. Relations between products, processes, capabilities and devices. 

In the proposed capability matching approach, the product requirements and system capabilities are 
the core concepts, while processes serve as a sort of a middleware between those two. Related to 
Service Oriented Architecture (SOA), the processes can be considered as services. Products require 
services (processes) and systems provide services (processes). Processes have basically only two 
parameters: the time it takes to complete (duration) and their place in the process graph. Everything 
else can be modelled through the capabilities. This is a completely new way to model the problem. 
The pre-process plan is modelled in the process domain of the Core Ontology. The properties of the 
Process class are shown in Table 26.  
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Table 26. Properties of the Process class. 
Property name  Description  

requiresCapability  
A process requires one or more capabilities. Capabilities can be defined at different 
levels of detail (e.g. “material removing“ vs. “milling”). This property is used to make 
the reference to the correct level on the capability taxonomy.  

hasSetup  A process may need some set-up activities before it can take place.  

isPerformedOn 
ProductElementOrFeature 

Processes are performed on ProductElement or any subclass of ProductElement or 
they can be performed on GeometricFeature.  

requiresResource  
A process requires one or many resources. This property can be either pre-defined, 
or the proper resources can be reasoned out by the capability matching. In the 
latter case (and in the approach taken in this thesis) this property will be left empty.  

dependencyOf  
Dependency defines the order in which processes occur. A process can have 
multiple dependencies, e.g. processes 1, 2, 3 and 4 must be completed before 
process 5 can occur.  

hasDuration  This property defines the duration of the process.   

hasProcess  A process can have multiple sub-processes.  

 

4.5.4. Spatial and temporal representation and reasoning allowed by the ontology
definitions

There are certain restrictions that limit the cooperative capability of the resource entities. These are 
their spatial relationship and technological compatibility. If the resources are far away from each 
other they are not able to cooperate, or if they don’t have compatible interfaces they cannot be 
combined. Therefore, an important restriction which limits the capability of a combination of devices 
is their spatial relationship. Resources which are not spatially related cannot cooperate, e.g. a robot 
on the factory floor and a gripper in store. 

When matching the product requirements with the capabilities of the existing system, it is important 
to know the temporal order of the required capabilities, as well as the temporal order of the provided 
capabilities. Therefore, some way to describe the layout of the system is needed, in order to know in 
which order the capabilities appear in the system. This is not crucial in cell-type manufacturing 
environments, where the product doesn’t need to have a predefined track. On the other hand, in the 
case of line-type production systems, where the product is moving through the line from one station 
to the next, this is important.  

The spatial and temporal reasoning of the existing resources, capabilities, and needed process 
activities is enabled by the common relations used in the Core Ontology and summarized in Table 27. 



97 
 

Table 27. Spatial and temporal relations used in the Core Ontology.  
Relations Description 
Spatial relations 
is_located_in Indicates the factory or other higher level resource element where this specific resource 

element is located.  
adjacent_to Indicates the system components that are adjacent to this specific resource element, but 

not physically connected. 
connected_to Indicates the system components that are physically connected to this specific resource 

element.  
preceded_by  Indicates the system component that directly precedes this specific resource element.  

This is used in the system description to indicate the order of the stations or cells in the 
line layout. 

Temporal relations 
dependency_of Used in a process description to indicate the dependency between the activities, i.e. 

which activities have to be performed before a specific activity can take place.  
 

The product requirements, defined according to the product features and rule-based reasoning, 
contain the required capabilities, their parameters and their temporal order. Every activity in the pre-
process plan, except the first one, has a predecessor, which is defined by the temporal 
dependency_of relation. For each activity, a reference to the capability taxonomy is defined, and in 
this way the chain of required capabilities can be expressed. If two capabilities have the same 
predecessor, they should or can be executed in parallel.  

In addition to determining the resources’ ability to cooperate, the spatial relations between the 
resources on a production line layout also determines the temporal relations between the existing 
capabilities. These can then be compared with the temporal order of the capabilities required by the 
product.   

In addition to those common relations shown in Table 27, the spatial and temporal reasoning is 
supported by the following properties. The DeviceCombination class holds the information about the 
combinations of devices. These combinations contain the information about physically connected 
individual resources. The device combinations can also contain other device combinations. 
Therefore, the connectivity of the individual resources can be reasoned based on the 
DeviceCombination class. The DeviceCombination doesn’t, however, specify the relative location of 
the resources in the combinations. Station class holds the information about which individual devices 
or device combinations belong to a station. In the case of line-type production, the spatial relation of 
the stations (connected_to, adjacent_to, preceded_by) indicates the sequence in which the 
capabilities occur on the line. In the case of cell type production, the spatial relation of the cells and 
stations does not restrict the order of processes, assuming that the logistics between the cells and 
stations is performed manually or by other flexible transportation methods.  

In principle, the spatial representation of distance can be either expressed on some “absolute” scale 
or provide some kind of relative measurement. Because the detailed geo-spatial reasoning is beyond 
the scope of this thesis, the presented relations between the resource and process entities provides 
sufficient information for the capability reasoning. Should more detailed representation be needed in 
the future, the Core Ontology allows the detailed position and orientation of the resources on the 
factory floor to be saved.   
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4.6. Adaptation schema

A fundamental enabler for efficient adaptation planning and reactive adaptation is an understanding 
of the activities and information flows that characterize the process. Therefore, activity models 
representing the adaptation schema have been developed. The adaptation schema aims to capture 
the overall adaptation process and activities as well as the information flows, controls and resources 
required during the adaptation planning and reactive adaptation. It defines how the other 
components of the developed methodology, namely the resource model, taxonomy and rules for 
capability matching, are used during the adaptation process. 

The definition of the schema has been an iterative process. First, before starting the development of 
the resource description and capability model and the rule-base for capability matching, an initial 
sketch of the schema was formulated. After the resource description model and the rule framework 
had been developed, a final version of the adaptation schema was drawn up in the form of IDEF0 
(Integration DEFinition for Function Modelling) activity diagrams. Even though the adaptation 
schema definition was defined as Sub-objective 1 in the problem definition chapter, it is here 
presented as third, after the other components of the adaptation methodology. This is mainly due to 
the iterative nature of its development. The schema also neatly brings together and summarizes the 
different concepts developed and discussed in the previous chapters, and puts them into a context 
forming the backbone of the developed adaptation methodology. The following chapters will first 
discuss the overall view of the adaptation process, followed by the detailed definition of the 
adaptation schema through the IDEF0 activity diagrams.  

4.6.1. Overall view of the adaptation process

Below, some general aspects which are important for the adaptation of production systems will be 
discussed. These have affected the development of each component of the adaptation methodology, 
especially the adaptation schema. As is known, changes always incur costs and take time. Therefore, 
when the requirements targeted at a system change, it is important to try to minimize the changes 
needed by the system. Consequently, the possibility for logical or parametric adaptation should be 
evaluated first. The physical adaptation is done only if the current system is not able to accomplish 
the needed tasks by changing the process parameters of the devices, changing the routing, or 
changing the programs of the devices. If the needed capabilities exist in the current system, no 
physical adaptation is needed, but the adaptation is based on allocation and scheduling of suitable 
resources based on the order information as well as context-specific and user-given criteria. If 
physical adaptation is required, the adaptation distance, i.e. the magnitude of needed changes, 
should be minimized by maximizing the number of cells and stations that remain; maximizing the 
number of cells and stations that remain in their original location; and maximizing the number of 
devices that remain.  

Bi  et  al.  (2008)  stated  that  when  reconfiguring  an  existing  production  system  it  is  necessary  to  
understand the requirements according to which the original system was designed, and to find out 
where there are changes to those requirements. In other words, the original design decisions that led 
to the specification of the existing system should be understood. This indicates that the adaptation 
could rely on a comparison between the old product and the new one, or the process plan of the old 
product and the process plan of the new one and through identifying the differences between them, 
in order to reason out the changes required for the system. The adaptation methodology and 
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schema developed during the course of this thesis work don’t adopt that approach, but rely on 
comparing the existing system specification with the new requirements, mainly for the following 
three reasons.  

Firstly, the systems, processes and products often go through some changes during their lifecycle. 
Change in one domain often also causes changes to the other domains. For example, the production 
system changes from its original specification during its operation time, because of, for example, 
maintenance, service, malfunctions, etc. These may affect the processes, which may no longer fully 
correspond with the original process description. However, these changes are not always reflected in 
the models used to describe those domains. Due to this iterative process, the links between the 
original design decisions and the system are no longer useable, so the models should be frequently 
updated in order to keep the links between product specification and the current system valid. In a 
frequently changing environment, this updating would be a burdensome task. Therefore the 
approach presented in this thesis proposes to keep the system description updated and compare it 
with the new product requirements.  

Secondly, the current design and information systems are not able to preserve the designer’s 
intentions. This means that the reasons behind certain design decisions are lost when the model 
leaves the designer’s table, as was recognized by Järvenpää et al. (2010). Therefore all the links 
between the original product and the original system specifications may not be understood by 
anyone other than its original designer.  

Thirdly, this thesis also aims to support dynamic adaptation which occurs while the system is running, 
such as the dynamic routing of the orders based on the available capabilities and product 
requirements. In this kind of situation it is more important to know the requirements of the current 
product, rather than its differences to the previous one. In the case of multiple resources with 
different capabilities that can produce the same feature, the aim is not to use the same resource that 
was used with the previous product, but to use whichever one is available and has a suitable 
capability. Therefore, comparing the system specification to the requirements, rather than 
comparing the new and previous product (or their process plans) is seen as a more feasible 
approach.  

The simplified adaptation schema is illustrated in Figure 45. The simplified schema is modelled in the 
form  of  a  simple  flowchart  and  is  fully  incorporated  into  the  activity  diagrams  that  form  the  full  
detailed schema, discussed in the next chapter. The adaptation is based on a comparison of the new 
order requirements with the capabilities of the current production system. The comparison is first 
performed at the capability concept name level, and the match is subsequently evaluated at the 
parameter level. Any missing technology is first searched for from the company’s own device libraries 
and then from the system providers’ libraries. Different configurations are generated with matching 
devices and compared against user-defined criteria and other adaptation constraints. Finally, the 
best scenario for the given situation is selected. The change in the order requirements can be caused 
either by the change in the product requirement, e.g. a new product model or variant, or other 
changes in the order properties, such as a faster production time.  

Particularly in the final phases of the adaptation planning, human-machine interaction is normative. 
Computer power is used to manage and filter a vast amount of information to create different 
solution scenarios, while human intelligence is needed to validate these and select the desired one.   
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Figure 45. Simplified adaptation schema. 
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As  seen  in  Figure  45,  the  approach  taken  here  is  reactive,  rather  than  proactive.  The  system  is  
adapted when the external requirements change, and the evolution of the market is assumed to be 
unknown and cannot therefore be used as additional information to guide the adaptation process. 
This means that the system is only adapted according to the requirements of the next product. If 
more information (even uncertain) of the future becomes available, this should be taken into 
account during the adaptation planning, in order to enable some level of flexibility for the future 
scenarios to be incorporated into the new system configuration. Terkaj et al. (2009b) have touched 
this topic with their stochastic programming approach, which aims to support the design of 
manufacturing system architectures whose level of flexibility is focused on specific production 
requirements.  

4.6.2. Activity diagrams for production system adaptation schema

An activity model captures activities and the corresponding information flows between the activities.  
In the case of production system adaptation planning, the activity model is a tool to formally model 
and analyse the activities that are needed during adaptation planning and reactive adaptation, and 
the information flows and resources that are necessary to perform those activities. The activity 
diagrams are modelled using IDEF0-language, which is a textual and graphical modelling language for 
system analysis and specification. It is designed to model the decisions, actions and activities of an 
organization or system. IDEF0 was derived from a well-established graphical language, a Structured 
Analysis and Design Technique (SADT), which was published by NIST in 1993. (Knowledge Based 
Systems Inc. 2010.)  

 
Figure 46. Elements in IDEF0-diagrams (Knowledge Based Systems Inc. 2010).  

Figure 46 presents the elements of IDEF0-diagrams and how they are used in this thesis. Resources, 
in this context, represent static information resources that the activity may use selectively depending 
on the needs of the specific situation. These may be tools, information models, software, methods 
and so on. The word ‘static’ indicates here that the resource is not modified by the activity it takes 
part in and it remains unchanged over a certain time interval, depending on the resource. Each 
activity box may be decomposed into its sub-activities in another more detailed diagram. The 
description of the activities of a system can easily be refined into yet greater detail until the model is 
as descriptive as is necessary for the decision-making task at hand. (Knowledge Based Systems Inc. 
2010.)  

In the scope of this thesis all  the activities are presented down to the 2nd level of detail.  However, 
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most of them could be further detailed. The activities are limited on the digital and virtual knowledge 
levels, meaning that the physical implementation is beyond the scope of these diagrams. In order to 
ensure the readability of the activity diagrams, they are placed in the appendices (6 - 9)., The 
explanations of the used terms indicating the inputs, outputs, controls and resources in the diagrams, 
can also be found in Appendix 10. This section confines itself to a brief discussion of the activities.  

 
Top level activities 

Node A0: Overall adaptation schema 

A1 – Definition of product requirements 
During this activity, the product requirements affecting the production system design and the 
requirements for adaptation will be defined.  
 
A2 – Matching product requirements with existing capabilities 
This activity concentrates on matching the requirements set by the product with the capabilities 
provided by the existing system and its components.  
 
A3 – Creating an adaptation plan for the current system 
This activity aims to specify how the current system needs to be changed in order to meet the new 
requirements. The changes can be either physical, logical or parametric.  
 

2nd level activities 

Node A1: Definition of product requirements 

A11 – Feature recognition 
During this activity the features are recognized and classified from the product model.  
 
A12 – Analysis of the features 
This  activity  aims to  identify  the features  that  affect  the process  selection and the sequence of  the 
process activities.  
 
A13 – Definition of pre-process plan 
During this activity a preliminary process plan for the manufacture of the product is created based on 
the identified manufacturing features. The pre-process plan defines the required activities at a high 
level, e.g. “joining” or “material removing”. 
 
A14 – Definition of required manufacturing capabilities 
During this activity the required manufacturing capabilities, including the capability parameters, are 
specified in more detail based on the required activities in the pre-process plan and the feature 
properties.  
 
Node A2: Matching product requirements with existing capabilities 

A21 – Comparing the requirements with the capabilities of the current device combinations at the 
concept name level 
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This activity aims to compare the required capabilities with the capabilities possessed by the 
combinations of devices in the current system at the capability concept name level. The idea is to see 
if there already exist device combinations, for example workstations, that are able to fulfil the given 
requirement without any changes.  
 
A22 – Comparing the requirements with the current device combinations at the parameter level 
During this activity, the detailed match between the required and provided capabilities is evaluated. 
This means that the capabilities matching the requirements at the capability concept name level are 
compared with the requirements at the capability parameter level. This matching is done, as specified 
by the capability matching framework, according to the rules in the rule-base and the feature 
properties.  
 
A23 – Identifying missing capabilities in current device combinations 
The purpose of this activity is to define those capability requirements that cannot be fulfilled by the 
device combinations in the current system. 
 
A24 – Comparing requirements with the capabilities of individual devices in the current system 
This activity aims to compare the required capabilities with the capabilities of individual devices 
existing in the current system. The idea is to see if there are suitable devices in the current system that 
have  capabilities  that  match  with  the  required  simple  capabilities  and  could  be  used  to  form  new  
device combinations.  
 
Node A3: Creating an adaptation plan for the current system 

A31 – Evaluating the needed adaptation type 
This activity aims to specify what kind of adaptation is required in order to obtain the required 
capabilities. The adaptation can be either physical, logical or parametric.  
 
A32 – Searching for devices from device libraries 
The aim of this activity is to search for devices that possess the capabilities missing from the current 
system. The search is first targeted at the company’s own device libraries and, if there is no match, the 
search can be targeted at the system providers’ or rental warehouses’ libraries.  
 
A33 – Generating system configuration scenarios 
During this activity different configuration scenarios of the suitable devices and device combinations 
fulfilling the capability requirements are generated. These configuration scenarios represent different 
options for adapting the system at the physical, logical or parametric levels.  
 
A34 – Selecting the most suitable configuration 
This activity aims to identify the most suitable system configuration for the given situation based on 
the capabilities and availability of the devices, as well as different user-defined and context-specific 
criteria. After the selection has been made, the actual adaptation actions can take place.  
 
As discussed earlier, the adaptation schema supports both human-centric adaptation planning and 
dynamic adaptation. In dynamic adaptation, the adaptation is based on the reaction of the system. For 
example, in the holonic world the autonomous entities make the planning “online”, while the system 
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is running. Therefore the application of the schema may vary depending on the situation. This means 
that, for example, not all the inputs and resources shown in the diagrams may be used in every case.  

4.7. Evaluating the impact of change

Change in the order requirements usually leads to changes in the system that tries to meet these 
requirements. One thing is evident: changes incur costs and take time. Therefore, it is important to 
be able to estimate the impact of the change, in order to facilitate the estimation of the effort and 
cost needed to accommodate the changes. It would also help in choosing and prioritizing between 
different product scenarios requiring changes. Eckert et al. (2004) studied the impact of engineering 
design changes on the overall product design. They stated that in complex products with closely 
linked parts, changes to one part of the system often cause changes to another part, which in turn 
can propagate further change. Similarly, these product changes can impact on the production system 
components, which can in turn affect other system components. A change that may initially seem 
small and simple can cause complex modifications to other parts of the system. 

The Venn diagrams in Figure 47 shows an example of the requirements for manufacturing different 
products (A1 & A2 are variants of the same product, while B is a completely different product). When 
shifting from the manufacture of one product to another, the size of the common requirements 
zone, or actually the area left out from the common requirements zone, gives an indication of the 
size  of  the  needed  change  to  the  system.  For  example,  it  can  be  assumed  that  the  larger  the  
requirement area of product B which does not intersect with the requirement area of product A1, 
the larger is the size of the needed change to the system. This relation is not, however, directly 
proportional. It is close if the system has been originally designed and optimized for the product A1, 
has no supplementary capabilities, and has not undergone any changes from its original specification, 
as discussed in Chapter 4.6.1. In this kind of situation the requirement area of the product A1 can be 
considered to represent the capabilities of the current system. However, if the system has more 
capabilities than are needed to manufacture the product A1 (e.g. a flexible system), it may be able to 
manufacture the next product without any physical changes, even if the product requirements have 
changed.  

 
Figure 47. Change in the product requirements causes change to the requirements targeted to the system. 

The work conducted during this thesis project, and presented in the previous chapters, makes it 
possible to recognize the needed adaptation to the system when the product requirements change. 
Therefore, with this approach, it is possible to evaluate the impact of change from the hardware 
point of view. Although the developed methodology concentrates only on defining the required 
changes to the system hardware, it also opens up the possibility to roughly estimate the time and 
money that need to be invested by providing the required input information in terms of new 
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capabilities that need to be added to the system. Therefore, it facilitates further calculations and 
decision-making regarding adaptation. 

The following chapters present the preliminary concept and formulation of a compatibility domain 
approach, for estimating the impact of changes in the product requirements on the existing 
production system. The compatibility domain approach examines the topic from three aspects: the 
compatibility of the existing system to the new requirements; the relative effort entailed in making 
the needed modifications to the system; the utilization (re-usability) of the existing system for the 
new requirements. As the objective was to think up a preliminary approach to evaluating the impact 
of change, only very simple and coarse formulations of the compatibility, effort and utilization 
estimation were made, to illustrate, on a conceptual level, how the accomplishments achieved 
during this thesis contribute to such an analysis.  

4.7.1. Compatibility domain approach Evaluating the compatibility, effort and
utilization

As stated earlier, the compatibility domain approach aims to investigate the impact of changes from 
three different perspectives, namely compatibility, effort and utilization. The meanings of these 
terms are specified in Table 28. A graphical representation will be given for each of these 
perspectives. These will be discussed in the following paragraphs.  

Table 28. Terms used in the compatibility domain graphs.  
Term Definition 
Compatibility Defines what proportion of the product’s capability requirements (in %) can be satisfied by 

the current system. 
Requirement 
change 

Presents the change in the product requirements targeted at the system (i.e. the capability 
requirements).  

Utilization Defines what proportion of the current system’s capabilities (in  %)  can  be  utilized  for  
producing the new product. 

Effort Defines the relative amount of new capabilities (compared to the existing system 
capabilities) that must be added to the current system in order to be able to produce the 
new product. It only considers the effort of making the system compatible with the new 
requirements, not removing the unused capabilities.  

 
Compatibility 

Compatibility aims to present how compatible the current system is with the new product 
requirements in terms of its capabilities. It represents the relative amount of the given product 
requirements that can be satisfied with the existing system in its current configuration. The 
configuration consists of physical, logical and parametric aspects. The term “compatibility” doesn’t 
refer  to  an  optimal  solution  for  the  given  requirement,  but  to  an  intersection,  where  the  
requirements and capabilities match and the system can continue its operation. If the system can 
satisfy all the capability requirements, the compatibility is 100%. If the needed capabilities exist in 
the current system, but just a few parameters or programs need to be adjusted, the compatibility is 
near 100 %, assuming the required parameters are in the range of the existing capability parameters. 
If physical changes to the system are required, the compatibility will be lower. The capability 
parameters may have a certain range, or they may be fixed. For example, in the case of “drillBit” the 
drilled hole will have only one possible diameter, whereas the drill itself is usually able to hold and 
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spin different sizes of drill bits and screwing heads. In other words the “spinningTool” capability 
parameters have a certain range that the capability can handle.  

In order to roughly estimate the compatibility of the existing system to the given new requirements, 
and  to  get  quantitative  values  for  comparison,  the  following  factors  defined  in  Table  29  are  
considered. 
 

Table 29. Factors used for evaluating the compatibility of the production system to the requirements.  
Factor Definition 
ReqCaps(x) Number of capabilities required by the product x (1 capability = 1 point) 
ExistCaps(x,y) Number of existing capabilities in system y that fulfil some of the capability requirements 

of product x and are useable in the given situation (1 capability = 1 point) 
AllSystemCaps(y) Number of all the capabilities that exist in system y (1 capability = 1 point) 
PhysicModifCaps 
(x,y) 

Number  of  existing capabilities in system y that can be modified by small physical 
changes to be compatible with the requirements of product x, i.e. changing the simple 
capabilities it is composed of. These include only small changes, like changing the tool in 
the lathe. If the main device in the combination (lathe) needs to be changed, this won’t 
apply. (1 capability = 0.5 points) 

ParamModifCaps 
(x,y) 

Number of existing capabilities in system y that can be modified by parametric or logical 
changes to be compatible with the requirements of product x, e.g. changing the speed of 
the robot. (1 capability = 0.75 points) 

NewReqCaps(x,y) Number of capabilities required by product x that don’t exist in the system y (1 capability 
= 1 point) 

 
The “PhysicModifCaps” and “ParamModifCaps” are included in the formula in order to enable small 
adaptation actions, such as changing a tool or program to be taken into account. The coefficients 0.5 
and 0.75 are adopted for capabilities requiring small physical changes or parametric changes, 
respectively, in order to take into account, at a high-level, the fact that such capability modifications 
are less cumbersome than large physical adaptations, like changing complete machines. In other 
words, they aim to give a very much simplified, rough estimate of the ease of the adaptation action 
in question. Other than that, the formula doesn’t distinguish the different capabilities that need to be 
adapted, but they all have the same value, regardless of their importance, size, price or any other 
parameter. Therefore all the changes have the same value in the graph, even though, in reality, some 
changes are more difficult, time consuming and costly than others. Because these are impossible to 
estimate without real measured values and experiences, as noted in the industrial reconfiguration 
and re-use scenarios, the proposed compatibility domain approach only takes into account the ratio 
between the amount of required and provided capabilities. If more educated evaluations about the 
relative size of the required capability adaptation are available, other coefficients than 1, 0.75 and 
0.5 can be used in the formulas.  

The compatibility of system y for the product x is calculated by the following formula: 
 

( , ) = ( , ) . ( , ) . ( , )
( )

100 %
             (2) 

 
In the “compatibility – requirement change” graph, the x-axis represents the change in the product 
requirements targeted at the production system. The propagation of the changes is taken into 
account as discussed in the “magnitude of the required change to the system” -section. In the Venn 
diagrams, seen in Figure 47, the requirement change is represented by those areas which are outside 
the intersection of the two compared product requirements. The requirement change between two 
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subsequent products, product A and B, is calculated as shown by the formulas (3), (4) and (5). It is 
assumed that the current system y is fully compatible with product A and no supplementary 
capabilities exist (ReqCaps(A) = AllSystemCaps(y)).  
 
Capability requirements of product A, which are different from the capability requirements of 
product B:  
 

( ) ( ) = ( ) ( ( , ) + 0.5 ( , ) +
0.75 ( , ))       (3) 

 
New capability requirements of product B, which are different from the requirements of product A: 
 

( ) ( ) = ( , )  
= ( ) ( ( , ) + 0.5 ( , ) +

0.75 ( , ))        (4) 
 
Requirement change between product A and B: 
 

( , ) = ( ) ( ) + ( ) ( ) 
= ( ) ( , ) + 0.5 ( , ) +

0.75 ( , ) + ( )                      (5) 
 

 
Figure 48. Conceptual view of the compatibility versus requirement change.  

Figure 48 shows an example of a “compatibility – requirement change” graph. The graph represents 
a conceptual view of the compatibility of the system to the requirements as changes in the 
requirements grow. The graph assumes that the system is fully compatible with the requirements set 
by  product  A1,  and  that  it  has  no  extra  capabilities,  i.e.  the  system  was  originally  developed  for  
product A1. In principle, the compatibility graph is a descending curve when the subsequent products 
are relatively similar, i.e. having similar amounts of required capabilities. However, the shape of the 
curve  should  not  be  generalised  as  it  is  easy  to  come  up  with  special  cases  which  won’t  fit  this  
descending curve.  

The greater the compatibility, the more requirements can be satisfied with the current system and 
the fewer the changes which are needed to the existing system. However, again, this comparison is 
valid only with very similar products, i.e. products having similar amounts of required capabilities. For 
example, two products may have the same compatibility, but completely different effort to modify 
the system to be able to produce the whole part. This is the case, for example, when product B has 
20 required capabilities, of which 10 are satisfied, versus product C, with 2 required capabilities of 
which 1 is satisfied. In both cases the compatibility is 50%, but the first one needs much more 
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adaptation effort to be actually able to produce the product (10 new capabilities to be acquired for 
product B versus 1 capability for product C). The “compatibility – requirement change” graph is 
therefore only able to analyze what proportion of the product requirements can be satisfied in 
different cases, but not the actual effort of adapting the system to be fully compatible with the 
product requirements.  

If the new product has fewer requirements, none of which are additional to those needed for the 
original product, and the remaining requirements have similar capability parameters, the system is 
definitely able to cope with those new requirements. Therefore the requirement change can be 
considered  to  be  negative  and  the  compatibility  of  the  system  is  100  %.  However,  it  needs  to  be  
noted that even if the compatibility of the system is 100 %, it may not be the most optimal way to 
produce the product. For example, if the production volume of this new, simpler product is high, it 
may not be cost efficient to occupy the whole system with excess capability in order to manufacture 
that product.  

Magnitude of the required change to the system (effort) 

The previous graph, Figure 48, doesn’t indicate the effort needed to adapt the system to the new 
requirements. Another graph needs to be drawn for this. The relative effort of an adaptation is here 
estimated as the relation between the missing capabilities (capabilities to be acquired) and all the 
existing capabilities in the system. In other words the effort is defined purely based on the new 
capabilities that need to be added to the system, and no other factors, such as ramp-up time and 
cost, are taken into account. The formulation of effort enables the comparison of different product 
scenarios based on the required adaptation effort. An example of this can be seen in Figure 49, 
where the product scenarios are drawn on the graph according to their compatibility and effort. This 
example is based on the data presented in Chapter 5.3.4. The graph clearly shows that compatibility 
doesn’t necessarily indicate the needed effort as discussed above (see products E and G).  

Effort of making the current system y compatible with the new capability requirements of product B: 
 

( , ) = ( , )
( ) 100%          (6) 

 

  
Figure 49. Compatibility versus effort – example.  
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The procedure and complexity of an adaptation are not only strongly dependent on the type of 
change in the requirements, but also on the architecture of the system (e.g. line-type production or 
production cells). The magnitude of the required change to the existing system is also highly 
dependent on the differences between the characteristics of the previous and the new product. For 
example, if new kinds of processes are required, some new technology needs to be added to the 
system (assuming the system was originally designed for the previous product). If the required 
processes don’t change, but the parameters are different, the current system may be able to meet 
these new requirements simply by changing some of the parameters.   

The type, architecture and degree of automation of the current system also affect the magnitude of 
the needed adaptation. For example, dealing with machining systems or automatic assembly systems 
are two completely different issues. For instance, if the product dimensions change, in machining it 
may just  mean that  the amount  of  material  to  be removed changes  and the tools  may remain the 
same. Or, perhaps just the tool needs to be changed. As long as the billet size doesn’t exceed the 
maximum size that can be machined with the machine, the product can usually be manufactured 
with only small modifications to the system. In the case of an assembly system, changes in the 
dimensions and geometry of the product and parts may have a strong impact on the system. The 
feeders may need to be changed, the pallets and grippers may need to be redesigned, the robot 
reprogrammed and so on. Therefore, when formulating the graphs and defining the new 
requirements, the propagation of the changes to the system requirements have to be taken into 
account. The value of new requirements cannot, therefore, be defined purely by the differences in 
the product characteristics, but the current system architecture also needs to be taken into account. 
For example, if a new process is required in addition to the old ones, new technology needs to be 
integrated into the existing system. Depending on the system architecture, this may result in more or 
less other requirements being placed on the system, which affects the overall magnitude of the 
required change. By determining the changes in requirements in terms of the existing system, the 
propagation of these changes can be taken into account.  

The system architecture also has another kind of effect on the process and magnitude of the 
adaptation. For example, if the production volume changes, the current system needs to be 
evaluated based on the new target cycle time, assuming that increasing the number of work shifts is 
not an option. In the case of a line-type layout, underperforming stations need to be identified and 
possibly replaced in order to balance the line and achieve the desired cycle time. The whole line may 
need to be reorganized and tasks re-allocated, causing significant changes to the system. In contrast, 
in cell type production it is easier to add new resources to the underperforming cells, or to use more 
shifts in the slower cells and make buffers.  

The “compatibility – effort” graph indicates the relative magnitude of change needed to the system 
and  therefore  gives  some  indication  of  the  costs  of  the  adaptation.  However,  it  still  cannot  be  
regarded as an accurate estimate, because the effort, cost and time needed for the adaptation is 
affected by many other parameters as well. For example, the number of required changes may be 
similar in two completely different cases, one requiring the replacement of devices, and the other 
requiring the addition of new devices. In the latter case, it is also likely that there is a requirement for 
additional space, which may need to be acquired. Therefore, in the latter case, the effort and cost 
incurred by the change may be greater. Thus, the “compatibility – effort” graph doesn’t alone 
provide enough information for estimating the effort and costs of changes. It is also important to 
consider whether all those changes can be implemented with in-house resources, or whether new 
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resources need to be acquired. This drastically affects the cost of the change, and probably also the 
time needed to  accomplish  it.  Also  the ramp-up may differ  from system to system,  and this  is  not  
considered here. 

Even though it might seem slightly inconsistent that the effort is determined without considering the 
unused capabilities, there is a reason for this. The approach taken in this thesis aims to serve 
situations where the next order (the product to be produced and the required quantity) is unknown. 
Therefore, it is not necessarily wise to remove the unused capabilities from the system, because they 
may  be  needed  for  the  next  order.  This  is  especially  the  case  when  the  order  sizes  are  small.  
Basically, the cost of occupying the unneeded capabilities depends on the lot size, the product 
manufacturing time, the situation, the order book and so on. How long will the system be occupied? 
What products need to be produced next? Do they need the capabilities that are about to be 
removed from the system? Could the unneeded devices be used in other stations at the same time? 
The incorporation of such factors into the method should be considered in the future in order to 
allow the knowledge or assumptions regarding future product scenarios to be taken into account 
during the adaptation planning.  

Utilization of the current system 

Utilization of the current system shows how much of the current system can be utilized (re-used) to 
produce the new product.  

Utilization of the current system y for producing product B is calculated as follows: 

( ) ( ) ( ) ( )
( ) 100%    (7) 

Based on the previous results, a “compatibility versus system utilization” graph can be drawn, as 
shown in Figure 50. It allows the simultaneous estimation of how much of the product requirements 
can be satisfied with the current system, and how much of the current system’s capabilities can be 
re-used without any modifications, in different product scenarios. Considering the system utilization 
is especially important if large volumes are produced. For example, it would be wasteful to occupy 
the whole system for a long period of time if only a few of the system’s capabilities are being utilized. 
On the other hand, the profitability of the currently unneeded flexibility depends on the future 
product scenarios.  

 
Figure 50. Compatibility versus system utilization. 
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The product scenarios analysed with this graph can be compared based on the four quadrants drawn 
on the graph: 
1) Those product scenarios falling into quadrant 1 have strong compatibility with the current 

system, but the system has a lot of capabilities that are not utilized. Therefore these scenarios 
may be costly.   

2) Products in quadrant 2 have strong compatibility with the current system and most of the system 
capabilities are utilized. This gives a rough indication that these products are the most feasible 
ones.  

3) Product scenarios falling into quadrant 3 exhibit both weak compatibility and weak utilization 
and therefore they don’t show much potential for re-using and adapting the existing system.  

4) Product scenarios falling into quadrant 4 have weak compatibility with the existing system, but 
the system utilization would be strong. This indicates that the existing system could be extended 
to meet the new requirements by adding new resources.  

A practical example of utilizing the compatibility domain approach can be found in Chapter 5.3.4.  

4.7.2. Discussion of the compatibility domain approach

There are many different methodologies available for evaluating the impact of changes. In general 
though, these view the topic from the product development perspective, and evaluate the effects of 
engineering changes during the product’s lifecycle or the propagation of changes within the product 
structure,  as  in  Eckert  et  al.  (2004).  Other  viewpoints  taken  by  researchers  are,  for  example,  the  
impact of engineering changes on material planning, cf. Wanström and Jonsson (2006), the impact on 
costs, cf. Oduguwa et al. (2006) and the impact on the design process, cf. Terwiesch and Loch (1999). 
Attempts have also been made to evaluate and control the impact of product design changes on the 
production system using, for example, Design for Assembly (DFA) and Design for Manufacturing 
(DFM) methodologies  (Boothroyd et  al.  2002).  Tolio  et  al.  (2010)  presented an extensive review of  
approaches which try to tackle the co-evolution of products, processes and systems from different 
perspectives. The compatibility domain approach presented here concentrates particularly on 
evaluating the impact of changes in the product and order requirements on the production system in 
terms of the new capabilities that need to be added to the system. It is not intended to replace the 
existing approaches, but to complement them by viewing the problem from a different angle. 
Investment decisions are not covered by this approach, yet the compatibility domain approach does 
provide valuable input data for such decisions. This is because it is only after the impact of change 
has been evaluated that the time, cost and resources can be allocated (Eckert et al. 2004).  

The compatibility domain approach viewed the impact of changes from three viewpoints, namely 
compatibility, effort and utilization. The first views the problem more from the product perspective, 
whereas  the  latter  two  view  it  from  the  system  perspective.  The  last  two  diagrams  facilitate  the  
comparison of different product scenarios in regard to the needed adaptation effort and the re-
usability of the system.  

This compatibility domain approach utilizes the resource capability descriptions and the capability 
matching framework presented earlier in this thesis, in order to identify those resources or points in 
the system where adaptation activities are needed. Changes in these resources may again cause 
changes in other resources – something which was not directly caused by the original product 
requirement change, but is a kind of “waterfall effect”, typical of interrelated system components. 
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This propagation of changes has been studied in the literature, especially by Eckert et al. (2004), from 
the product design perspective. It would also be very interesting to see an extensive research study 
of this important topic from the production system perspective. Due to the breadth of the topic, 
there is no detailed analysis of the issue in this study. Here, the emphasis has rather been on finding 
the intersection where the product requirements and the current system capabilities match, and 
evaluating any differences. When there are relatively few changes, it is easy to do this reasoning 
manually, but when there are thousands of changes, it becomes a cumbersome task. Therefore the 
capability-matching approach developed here is a valuable tool for rapidly evaluating the magnitude 
of changes needed to the system.  

It is important to note the following restrictions to the presented compatibility domain approach: 

Restriction 1:  
The values given by the formulas (2), (6) and (7) of compatibility, effort and utilization by no means 
represent absolute values for these three concepts. Instead they provide an estimate of the relative 
effects of change, and are intended to facilitate a rough comparison between different product 
scenarios.  They  help  to  evaluate  the  effect  of  different  product  decisions  on  a  system  within  a  
product family. In order to evaluate the real effort and cost of the required adaptation, the nature of 
the specific adaptation activities needs to be considered. Currently, this approach evaluates only the 
relative amount of the required adaptation activities, differentiated through both the large and small 
physical changes, as well as the logical and parametric adaptation actions. The required effort is 
defined based on the new capabilities that need to be added to the system, and no other factors, 
such as system ramp-up time and cost, are taken into account at present.  

Restriction 2:  
One major issue at the start of the compatibility formulation is the granularity (i.e. level of detail) of 
the representation of the required and existing capabilities. It is important that the granularity of the 
capabilities is similar in the scenarios under comparison, in order to ensure the validity of the 
comparison.   

Restriction 3:  
The validity of the comparison of different product scenarios with the “compatibility – requirement 
change” graph depends on the similarity of the compared products.   

Restriction 4: 
The application of the compatibility domain approach, presented in the case study chapter, is fully 
controlled by humans, and therefore highly subjective. Therefore, even though the graphs give 
quantitative estimates of the compatibility, effort and utilization, the input information used to draw 
the graphs is highly qualitative. Therefore, the estimates are more qualitative than quantitative. 
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5. VALIDATION OF THE RESULTS CASE STUDIES

Two case studies demonstrating the validity of the developed adaptation methodology were carried 
out. These case studies cover both the dynamic and static adaptations, as discussed in the problem 
description in Chapter 2.2.  

Case 1: Holonic production system – Dynamic adaptation based on reaction 
This case study was carried out as part of a wider demonstration of the Tekes-funded KIPPcolla 
(Knowledge Intensive Product and Production Management from Concept to Re-cycle in a Virtual 
Collaborative Environment) and CSM-hotel (Competitive Sustainable Manufacturing Hotel) projects. 
The implementation consists of modular ICT-architecture and hardware implemented in the TUT 
machining laboratory. This represents an open production environment where the adaptation takes 
place during the runtime of the system by reaction. It is a manufacturing system where the 
production is not predetermined, for example, the product models and volumes are constantly 
changing and the system needs to adapt itself “on the fly”. The product can be produced with 
multiple alternative resources and the orders are routed based on resource availability and other 
relevant parameters. Thus, the adaptation actions of this system relate mainly to finding suitable 
capabilities from the current system and routing the orders to the available and capable resources 
based on the reactive self-organizing abilities of the system. The demonstration was the result of the 
work of multiple researchers. The resource description, capability model and capability-matching 
framework – the contributions from this thesis work – form an essential part of the demonstration. 
 
Case 2: TUT microfactory – Static adaptation based on planning 
This case study was developed purely for the purpose of this thesis in order to illustrate the use of 
the developed methodology and capability matching rules for the adaptation planning of more static 
systems. In this case, the adaptation takes place “offline” while the system is not running and it is 
based on human-controlled planning. This case represents a “traditional” production line, which is 
relatively stable in the short term with regard to product models and volumes. It is fairly similar, for 
example, to automotive assembly lines where often only one product is produced on the line and the 
process plan is predetermined, which means that the product has a predetermined track on the line. 

The following chapters will present these two case studies. First, though, the implementation of the 
modular ICT-architecture supporting these case studies will be discussed. While the case studies 
validate the adaptation methodology, especially the capability model and the resource description, 
with regard to their usability to industrial use cases, the ICT-architecture, and in particular the 
Capability Editor tool, validate the resource description and capability model with regard to their 
applicability to a formal representation.  

5.1. Modular ICT-Architecture

The modular software system architecture was designed to serve the holonic production 
environment, and is therefore discussed here mainly from that perspective. However, it also 
supports more traditional human-centric planning, where the different software modules are used to 
aid humans in the different phases of the adaptation planning process. The software system 
architecture, illustrated in Figure 51, has several different interoperating software modules, each 
providing one or two essential functions for the overall system. The architecture follows the dynamic 
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modularization principles, being designed in such a way that each of the modules can be replaced 
with a new module, if needed, without disrupting the whole system. The interoperability of the 
modules is mainly based on the shared information model and common knowledge representation, 
the Core Ontology, and modular services. Each of these modules requires specific domain-related 
information and by processing this information they provide a set of services for the overall system. 
(Järvenpää et al. 2011b; Järvenpää et al. 2012a; Lanz et al. 2011; Lanz et al. 2012.) 

 

 
Figure 51. Modular software system architecture, modified from (Lanz et al. 2012). 

One essential software module in the ICT-architecture is the Capability Editor, which is designed for 
assigning capabilities to resources and adding new capabilities and resources to the Knowledge Base. 
As it plays an important role in this thesis in that it validates the developed resource description and 
capability model, its use will be discussed in the next section in more detail. Later, the other modules 
forming the modular ICT-architecture will be briefly introduced.  

5.1.1. Capability Editor

Unlike the traditional approaches to resource description, the properties of the devices are given as 
the parameters of the capabilities the devices provide, rather than as properties of the devices 
themselves. Adopting this new approach requires a change of mind-set, but the resource description 
task can be simplified using a wizard tool that guides the human through the properties-filling 
process, or it can be done automatically from standard resource descriptions.   
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In order to ease the process of adding devices and capabilities to the Knowledge Base (KB), a Java-
based Capability Editor was developed.  It is not a wizard, but it provides a more user-friendly 
approach to adding the capabilities and new resource descriptions to the KB, compared with the 
Protégé ontology editor. The Capability Editor allows a user to add new devices to the ontology and 
assign them capabilities and capability parameters. It also allows new capabilities to be added to the 
ontology and enables associations to be created between the simple and combined capabilities. 
Basically, the editor complies fully with the logic of the capability description discussed in Chapter 
4.2. Two use cases for the Capability Editor are described below, namely adding new resources and 
new capabilities to the KB.  

Adding new resources to the Knowledge Base 
The Capability Editor allows the user to add new instances of resources to the Knowledge Base. In 
the Capability Editor, the user can specify the name and type of the resource and describe its 
mechanical, control and energy -related interfaces. The main task when describing the resources is to 
assign them capabilities. The user will select the pre-defined, simple generic capabilities from the 
Capability Editor’s capability pool and will then define the resource specific parameters for the 
capability, making the capabilities unique to each resource. If a suitable generic capability is not pre-
defined in the capability pool, a new capability has to be first defined, and then assigned to the 
resource  (see  the  other  use  case).  Figure  52  shows  the  user  interface  of  the  Capability  Editor  for  
adding resources to the KB. In the ParameterAssignments box, the resource specific instances of the 
generic capabilities are created and values are given to the parameters.  

 
Figure 52. Capability Editor – Adding resources and their capabilities to the Knowledge Base. 

Adding new generic capabilities to the Knowledge base 
If suitable generic capabilities are not pre-defined in the KB, the user needs to first define them with 
the Capability Editor. A definition of the generic capabilities includes a definition of the capability 
concept name and the capability parameters. In addition, the associations between the simple and 
combined capabilities are created, as discussed in Chapter 4.2.3. Furthermore, in the case of the 
strong capabilities, a link to the capability taxonomy will be created. Figure 53 shows the user 
interface for adding capabilities with the Capability Editor.  
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Figure 53. Capability Editor – Adding new capabilities to the Knowledge Base.  

5.1.2. Information flows between the different software modules

Figure 54 is a simplified representation of the information flows between the software modules 
which form the ICT-architecture. The communication between the Knowledge Base and the modules 
is done with RDF and XML messages (depending on the situation) using SOAP. The communication 
between the DeMO tool, UI/control holon and the machine UIs is done using XML-RPC calls. In what 
follows, the roles of the different software modules in the dynamic operation environment will be 
discussed one by one. As the Capability Editor was already introduced in the previous chapter, it is 
excluded here.  
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Figure 54. Modular ICT-architecture and simplified representation of the information flows during the operation 

of the dynamic operation environment.  

KB and KB Client 
The  Knowledge  Base  (KB)  developed  in  an  earlier  work  by  Lanz  (2010)  and  Lanz  et  al.  (2010)  was  
designed to be a system where the data can be stored and retrieved by different applications ranging 
from the product and process design to the simulation. The following tools and technologies were 
used to facilitate the approach: an Apache Tomcat web server, an Apache axis 2 web service engine, 
a Jena semantic web framework, a Pellet reasoner, and a Postgre database. In the KB, the 
information related to the products, the processes and the systems and their capabilities is saved in 
the form of  a  formal  ontology,  the Core Ontology,  modelled with  a  Protégé ontology editor.  As  an 
important part of the overall ICT-architecture, the KB stores the information created by the other 
software modules, a Pro-FMA Extended, a Capability Editor and a DeMO Tool. (Lanz 2010; Lanz et al. 
2010.) 
 
Pro-FMA Extended 
The Pro-FMA Extended (Professional Feature Modelling and Analysis Tool Extended), developed by 
Garcia et al. (2011) is used to define the product requirements from the product model given in 
VRML  or  X3D  format.  It  is  an  extended  version  of  Pro-FMA  (Garcia  et  al.  2010),  which  focuses  on  
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analysis of the product features, the re-creation of any lost geometric features and the addition of 
extra information needed for other process steps. Pro-FMA Extended is dedicated to both the 
recognition and analysis of the features, and the creation of the pre-process plan (see Figure 55). The 
pre-process plan is a generic recipe for how to manufacture a part or a product. Each feature 
contains its characteristics: shape, type, geometric dimensions, material and tolerance. The pre-
process plan can be created using these basic elements. Basically it is an ordered graph of generic 
activities referring to specific levels on the capability taxonomy stored in the KB. (Garcia et al. 2011.)  
 

 
Figure 55. Pro-FMA Extended – Feature analysis and creation of the pre-process plan, modified from (Garcia et 

al. 2011). 

DeMO Tool 
The  DeMO  Tool  (Decision  Making  and  Ordering  Tool)  is  meant  for  sending  orders  to  the  holonic  
manufacturing system and for viewing and analyzing the virtual manufacturing results. The part-
ordering feature in the DeMO Tool contains controls for ordering product or individual feature 
manufacturing from the factory floor. The user can either let the holonic framework automatically 
route the product to a resource that has the required capability or choose the desired resource for 
manufacturing the product manually. The feature and resource information is obtained from the 
Knowledge Base. The order is sent to the factory floor through web services. With the DeMO Tool, it 
is also possible to run pre-created simulations of the processes and view the statistics, in order to 
evaluate and validate different production scenarios before placing the orders.   
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The different manufacturing stations which exist on the factory floor and are defined in the KB can be 
viewed through the DeMO tool. When selecting one station, this tool shows the individual machines 
and tools comprising the station. It also shows the capabilities and combined capabilities of the 
selected resources. Figure 56 shows the DeMO Tool GUI for viewing the resources. The red 
rectangles and the arrow show how the resources and their capability information are illustrated 
using this tool. In Figure 57, the lower-level device combinations and their capabilities are displayed. 
This resource information, originally developed by the Capability Editor, is extracted from the KB to 
the DeMO Tool. Based on the capability associations defined in the capability model, the DeMO tool 
is able to determine the combined capabilities of the combinations of individual devices having 
simple capabilities. This proves that the resource and capability information presented with the 
formal ontology can be utilized and understood by multiple different tools.   
 

 
Figure 56. DeMO Tool – Viewing the resources on the factory floor.  
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Figure 57. DeMO Tool – Viewing the capabilities of the device combinations and individual devices. 

Resource KB and Machine DB 
The resource KB includes the information related to the resources and their capabilities. It forms a 
library of resources, including the individual devices on the factory floor, as well as the device 
blueprints representing available resources provided by the system providers. The resource 
descriptions are instances in the ontology. As the resource entities change during their lifecycle and 
usage, the resource description need to be updated over time. The Machine DB is meant for storing 
the real-time information relating to the resource’s behavior and measured values from the factory 
floor. This raw data is filtered and relevant lifecycle key values, such as Mean Time Between Failure 
(MTBF),  Mean  Time  to  Repair  (MTTR),  maintenance  costs  and  time,  and  operating  time  will  be  
calculated and saved in the resource KB, as discussed in Chapter 4.3.1. This information can be used 
in the planning process for re-use and adaptation. The capability information of the individual 
resources is also updated based on the measured values from the factory floor.  
 
Rule-base 
The rule-base is developed as a store for the rules used in the capability matching as discussed in 
Chapter 4.4.4, in which a detailed description of the rules were given. The rules include domain 
expert rules, combined capability rules and adaptation rules (shown in pseudo code in Appendix 5). 
An extensive Python framework has been developed for writing the rules and for retrieving the 
information relating to the product requirements and resource capabilities from the Knowledge 
Base.  The  rules  are  saved  as  links  to  the  ontology  under  the  correct  rule  class,  and  refer  to  the  
capability taxonomy as discussed in Chapter 4.4.5, but the rules themselves are saved in a separate 
location, from where they can be called upon when needed. The implementation of the rule-base is 
an on-going project of another researcher. At this stage, only some of the rules, mainly those under 
the categories of “detailed capability definition” and “detailed capability matching” have been 
implemented, in order to validate the concept and to test the capability-matching.  
 
UI/Control holon 
The UI/Control holon manages the process flow and the distribution of the tasks to each 
manufacturing or assembly station. The UI/Control holon is the interface through which the other 
tools can communicate with the holonic manufacturing system. Through the Control Holon, users 
can pass requests to the holarchy. These requests are formally defined and documented. The Control 
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Holon  has  an  XML-RPC  interface  that  any  UI  can  use  to  control  the  holon.  The  Control  Holon  can  
communicate  with  the  resource  UIs,  and  therefore  it  knows  the  status  of  each  resource  and  can  
distribute the orders to the resources based on their capabilities and availability. (Järvenpää et al. 
2011b) 

5.2. Dynamic operation environment adaptation by reaction

In a dynamic environment, the scheduling and dispatching of orders cannot be approached in a static 
way. The control of the internal material flow in the production system should also be managed in a 
dynamic way. In this case study, these dynamics are achieved through holonic self-organization. As 
discussed earlier, the holonic operating environment represents a dynamic system, where the 
adaptation takes place “online” by reaction.  

The dynamic operation environment was developed in order to demonstrate the results of the 
KIPPcolla and CSM-hotel projects. The environment consists of the hardware in the TUT machining 
laboratory and the modular ICT-architecture discussed in the previous chapter. The build 
environment utilizes a holonic manufacturing paradigm and integrates existing technologies resulting 
from different projects into one operational environment.  

The main characteristic of the developed holonic system is that the status of the production system 
and the desired goal (defined as order connected to product model) are known, but the steps for 
reaching the goal, in this case the routing of the parts on the factory floor, are not predefined. The 
holonic system adheres to a service-oriented architecture (SOA), where the resources provide 
services through their capabilities. When an order enters the holonic framework, the system will only 
search for those resources which can by themselves, or with some other resource, satisfy the 
requested service. The holons will then negotiate to determine the best resource for the given 
situation, or the part is directed to the first available resource combination that has the capabilities 
needed to produce the part or a specific feature. The holon implementation is based on a peer-to-
peer network, where the holons are able to join and leave the holarchies freely and other holons can 
see which ones are currently online, i.e. which capabilities are available in the system. (Järvenpää et 
al. 2012a.) 

The next chapter introduces the hardware of the dynamic operation environment. Following that, 
the procedures and activities arising during the case scenario will be discussed.  

5.2.1. Hardware in the dynamic operation environment

The hardware part of the environment consists of several manufacturing resources and work pieces 
as physical manufacturing entities, the real parts (see Figure 58). Each of them has their 
corresponding computer models and simulation environments as their digital and virtual parts. Each 
machine on the factory floor also has its holon representation, which presents that specific machine 
in a digital world and retrieves the capability information from the Knowledge Base.  

The physical resources in the research environment, offering different manufacturing capabilities, 
are: 

 Machine tools (a lathe and a machining centre) for machining operations;  
 Robots for material handling and robotized machining operations; 
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 Laser devices for marking and surface treatment; 
 An automated storage for storing blank parts and finished work pieces; 
 A punch press, existing only virtually, for the punching of sheet-metal parts.  

 

 
Figure 58. Resources on the factory floor and manufactured products (Järvenpää et al. 2012a).  

The  work  pieces  are  fairly  simple,  being  cuboid,  cylindrical,  or  flat  in  shape.  They  have  several  
features with parameters that can be altered, such as part dimensions (width, length, and depth), 
number of holes, corner radiuses and chamfers, sheet thickness and the material and tolerance 
requirements of the finished products. These features determine the product requirements for 
which suitable capabilities need to be found.  

5.2.2. Process flow during the case scenario

This section will explain, step by step, the actions taken when a new product enters production in the 
dynamic operation environment. Figure 54 gave an overall view of the information flows in the 
operation environment. Figure 59 presents the simplified flow of the activities and reasoning process 
in the environment. This process description is divided into activities on the digital, virtual and real 
levels. The digital level refers to digital information saved in the ontology, the virtual level, on the 
other hand, means the simulation world. The real level refers to the actual, physical, production 
environment.  
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Figure 59. Process flow in the holonic manufacturing system framework (Järvenpää et al. 2011b).  

Table 30 presents the actions taken during the case scenario and their level of execution. In the 
following text, each of these activities will be discussed in detail. A case product, shown in Figure 60, 
is used as an example to illustrate the case scenario.  

Table 30. Activities in the case scenario.  
Levels Activities 
Digital level 1. Definition of the product features 

2. Definition of the pre-process plan 
3. Matching the capability requirements and resources 
4. Applying the adaptation rules and user-given criteria for the resource selection 

Virtual level 5. Test manufacturing by simulation 
Real level 6. Checking the availability of resources and routing the order 

7. Collecting the history information 
 

1. Definition of the product features 
The product model is first sent in VRML or X3D format to the Pro-FMA Extended software, which will 
recognize the features that need to be manufactured. It recognizes the shape, type and dimensions 
of the feature. The user can manually enter the material and tolerance information, as well as special 
finishing requirements for the features.  

2. Definition of the pre-process plan 
Based on the recognized features, the Pro-FMA Extended defines a pre-process plan for the 
manufacture of the part/product. The pre-process plan is created based on the rules embedded in 
the software (Garcia et al. 2011). This is created without any knowledge of the currently available 
resources on the factory floor. Therefore, instead of defining that, e.g. a “milling” or “turning” 
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capability is needed, only very high-level generic capability requirements, e.g. “material removing”, 
are defined in the pre-process plan. This allows multiple machine options for manufacturing a certain 
feature, and thus allows the product to be dynamically routed to, for instance, the first available 
machine. The pre-process plan is then sent to the Knowledge Base, where the steps of the pre-
process plan are linked with the capability taxonomy. Figure 60 shows the pre-process plan of the 
product used in this case scenario. The two holes are illustrated as the example features and 
associated pre-process plan steps. 

 
Figure 60. Pre-process plan of the case product. 

The pre-process plan, together with the feature recognition data, defines the capability requirements 
for the manufacture of the part/product in the following way. The generic process names used in the 
pre-process plan refer to certain capabilities in the capability taxonomy. Each step in the graph 
represents one generic capability requirement. The parameters relating to the product features, e.g. 
type, size and material remain on the product side of the ontology. These parameters determine the 
detailed capability requirements.  

3. Matching the capability requirements and resources 
The matching of the required capabilities and suitable resources is done based on the capability 
taxonomy and the rule-base. Both the pre-process plan and the resource-specific capabilities have a 
reference to the capability taxonomy, allowing high-level capability mapping. The detailed matching 
is done based on the rules in the rule-base. The capability matching holon (i.e. a program that uses 
the capability matching rules) obtains the capabilities of each device taking part in the device 
combinations from the KB. Based on the rules, it uses the capability information and compares the 
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capability parameters to the product requirements presented as the pre-process plan and its related 
feature information. This capability matching procedure was discussed in detail in Chapter 4.4. In 
Figure 61, the actual results from the capability matching program are shown. The red rectangle 
indicates the drilling processes from Figure 60.  

 
Figure 61.View from the capability matching program.  

During the case scenario the matching is performed as follows: 
1) First the domain expert rules for detailed capability definition are used to define what 

capabilities are actually useable for that specific “MaterialRemoving” process. The rules having 
reference to “MaterialRemoving” in the capability taxonomy are checked one by one until a 
match is found (i.e. the rule returns the value TRUE). These rules are indicated in the figure with 
the prefix “DE_DCD”. For example, in the case of the hole feature shown in Figure 60, these rules 
will indicate that a “drilling” capability is needed. In this way, all the resources which don’t have 
the “drilling” capability are filtered out.  

2) After the required capabilities have been defined on the detail level, then the domain expert 
rules for detailed capability matching are used to define if the resources which really match with 
the requirements on the parameter level actually exist. The selected rules are indicated in the 
figure  with  the  prefix  “DE_DCM”. These rules will compare the feature properties with the 
capability parameters. For example, in the case of the hole feature, the detailed capability 
matching rule which is specified with the taxonomy level “Drilling” will be triggered. This rule 
compares all the resources that have the “drilling” capability to the required features at the 
parameter level and returns all the matching resources.  
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Figure 61 shows the applied rules and the resources which were found to match. Table 31 shows 
those rules that were applied in the matching phases illustrated with the red rectangle. All the other 
rules can be found in Appendix 5.  

Table 31. Rules applied for the hole features of the case product.  
Rule acronym Rule 
 
DE_DCD 
DrillingRule01 

 
IF feature.hasCapabilityTaxonomy(“MaterialRemoving”) AND 
   feature.hasFeatureType (“hole”) AND 
   feature.hasFeatureType(“cylindrical”) AND 
   feature.getParameter(“diameter”) <= 40.0 
THEN 
  RETURN [Capabilities.find(“drilling”)] 
 

 
DE_DCM 
DrillingRule 
 

 
IF feature.getParam(“diameter”) = drillBit.getParam(“hole_diameter”) AND 
   feature.getParam(“depth”) <= drillBit.getParam(“max_drilling_depth”) AND 
   feature.getParam(“bottomShape”) = drillBit.getParam(“shape_bottom”) AND 
   feature.getMaterial() IN  drillBit.suitableMaterials() AND 
   product.getInitialProduct().size().isInside(fixturing.minItemsize()-  
   fixturing.maxItemSize()) 
THEN 
  RETURN TRUE 
 

 

As can be seen from Figure 61, three resource options for the drilling process steps can be found: the 
Suhner_machining_Station, the DMG_Station and the Makino_Station. For the other steps, only two 
resource options, the DMG_Station and the Makino_Station, are returned. This is because the 
Suhner_machining_Station is currently only equipped with the drilling tool, whereas the 
DMG_Station and Makino_Station have automatic tool changing systems and multiple tools that they 
can use for drilling, milling and turning.  

4. Applying adaptation rules and user-given criteria for the resource selection 
The DeMO Tool  is  used to  place the order  and send it  to  the factory  floor,  as  well  as  to  select  the 
preferred resources and apply the user-defined criteria. First, the product to be ordered is selected. 
The analysed feature information related to that specific product is retrieved from the Knowledge 
Base. Based on the detailed capability matching done in the previous phase, the DeMO Tool can 
show the user the resources whose capabilities match the requirement. Should the user want to 
manually select the resource to be used, this view allows the user to evaluate the capabilities of the 
existing resources and to send the order to a specific machine. For example, in this case scenario the 
DeMO tool would suggest both the DMG_Station, as shown in Figure 56, and the Makino_station. 
Otherwise the holonic framework makes the decision automatically, taking into account the 
availability, adaptation rules and the user-given criteria. The user-given criteria can relate to, for 
example, sustainable performance metrics, such as energy consumption, waste generation and costs, 
or machine condition, speed, and so on.  

5. Test manufacturing by simulation 
With  the  DeMO  tool,  it  is  possible  to  run  pre-created  simulations  of  the  processes  and  view  the  
statistics before placing the orders. Because it is very difficult to determine some capabilities 
accurately on a digital level, such as the workspace and reach of a device combination, virtual 
simulations may be required to validate the feasibility of the found capabilities.  

6. Checking the availability of resources and routing the order 
When the order is placed by the user, the UI/Control holon will check the availability and status of 
the suitable resources on the factory floor by negotiating with the machine UIs. The information 
about the machine status is then communicated back to the DeMO Tool. Next the order is routed to 
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the first available and suitable manufacturing resource, taking into consideration the adaptation 
rules and the user-given criteria.  

7. Collecting the history information 
The machine database saves the resource behavior log information, including the status of the 
resources, completed orders, measured operational values, and so on. This information may later be 
used for decision making.  

5.2.3. Discussion of the demonstration

The resource description, the capability model, and the capability matching framework comprising 
the capability taxonomy and the rules, all play a crucial role in the demonstration, enabling the 
resource holons to advertise their capabilities, orders to express their required capabilities, and 
finally  a  match  to  be  made  between  these  factors.  At  present,  the  rule-base  is  not  yet  fully  
implemented as part of the dynamic operation environment so some simplifications still exist in the 
current status of the demonstration. Only a few rules have been implemented, so the orders that can 
be sent to the system are limited.  

Descriptions  of  all  the  involved  hardware  resources  were  created  for  the  demonstration.  The  
capabilities of these resources were included in the instantiated capability model. Furthermore, rules 
were created to enable the matching of product requirements and resource capabilities in the 
context of the use cases in question. These rules can be found in Appendix 5. The fact that it was 
possible to create these rules which compare the product and the resource information saved in the 
ontology, and provide feasible matches, proves that the resource description and capability model 
are expressive enough for such use cases. In addition, even though the rule-base is still under 
construction, the implemented rules prove that automatic matching is possible.  

The demonstration shows that the capability taxonomy and the rules help to automatically filter the 
information and allow suitable solutions to be found from the vast amount of input information. 
Based on the resource and capability descriptions, it was possible to filter out those device 
combinations which didn’t provide the suitable capabilities. In large factories with thousands of 
resources, for example, this automatic filtering can provide remarkable savings in time. 

5.3. Microfactory system adaptation by planning

The second case study aims to describe how the developed capability-based adaptation methodology 
is applied and how the capability matching rules are used in a static adaptation context. In this thesis, 
the microfactory system represents a static system where the adaptation takes place “offline”, based 
on human-centric planning. In the microfactory environment, modularization and standardized 
interfaces are used as enablers for the adaptation. In the case study presented in this chapter, the 
process plan is predefined before sending the order and starting the production. Therefore, the 
reasoning can start with a more detailed process plan than in the previous case study. The main task 
in the following case study is to evaluate if the existing TUT-microfactory system has the capabilities 
to cope with the requirements set by the product assembly. First, the existing system capabilities are 
presented, followed by a definition of the product requirements. After that, the matching of the 
product requirements against the system capabilities based on the capability matching rules will be 
explained in detail. Finally, a few case scenarios of changing requirements, their compatibility with 
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the existing system and the adaptation actions required for the system will be discussed in order to 
demonstrate the use of the compatibility domain approach.  

5.3.1. Definition of system capabilities

The existing system consists of a TUT-microfactory module, a cartesian manipulator, a screwdriver 
unit, a feeding system, a belt conveyor and a machine vision system with 2 camera units, as shown in 
Figure 62. 

 

Figure 62. Existing TUT-microfactory system. 

Figure 63 shows the capabilities of the existing microfactory system. Only the capabilities and 
capability parameters relevant to this case are displayed in the figure in order to maintain its 
readability. All the capabilities are saved to the ontology through the Capability Editor tool. The 
devices are grouped in their natural combinations, e.g. the camera unit consists of camera and 
optics, whereas the machine vision system consists of the camera unit, a PC and ambient lighting. 
The same grouping is also used for the description of the system in the ontology. The arrows indicate 
to which combined capability the simple capabilities of the devices contribute. 
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Figure 63. Capabilities of the existing TUT-microfactory system. 

The system architecture of the TUT-microfactory concept places some constraints on the possible 
layout and configuration of the modules. In the TUT-microfactory concept, the microfactory frame is 
needed to contain the process module and auxiliary devices. The frame modules can be organized in 
different topologies. One process module can be attached on top of the frame module, the control 
module can be attached on top of the process module and auxiliary devices, feeders and other 
devices can be freely placed on the edges of the frame, or inside the frame if there is enough space. 
For the case study, one pre-condition is that the product should be produced with the TUT-
microfactory. Therefore, the constraints set by the system architecture need to be considered in the 
capability matching.  
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5.3.2. Definition of the product requirements

The case product is a cell phone and the needed process is to attach four screws to the cell phone 
body, as shown in Figure 64. The product requirements are shown in the graph in Figure 65. On the 
left-hand side is the user-defined process plan and on the right-hand side are the product 
characteristics, which affect the required capabilities in each process phase. The steps in the process 
plan have a direct link to the capability taxonomy, which allows the mapping between the product 
requirements and existing system capabilities at the concept name level.  

Additionally, the requirements, which are more project and user-preference related rather than 
product related, such as the required speed for transporting the phone and the desired type of feed, 
are shown in the figure. As discussed earlier, the selected system architecture, i.e. the TUT-
microfactory architecture, places additional requirements and constraints on the required 
capabilities. For example, as the width of the TUT-microfactory module is known, then the 
transporting distance of the cell phone from one side of the module to the other is pre-defined. 
Some of these requirements are set by the selection of other devices in the system. For instance, the 
required fields of view of the camera units are not only determined by the product size, but also by 
the means of transportation and feed for the product and parts. In other words, the selection of 
some devices propagates some further new requirements. Examples of these kinds of requirements 
are included in the case example and are also shown in Figure 65.  

 
Figure 64. Case product – cell phone with four screws. 
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Figure 65. Pre-defined process plan and related capability requirements.  

 

Transport the phone to the 
working area

Pick up a screw

Detect the position and 
orientation of a screw

Move above the screw

Grasp the screw

Insert the screw to an empty 
hole

Detect empty hole and its 
position

Transport the screw above 
the hole

Insert the screw to the hole

Fasten the screw

Move back on top of the 
feeder and picking up a new 

screw

Transport the product to the 
next station

Feed screws

Required capabilities 
and their parameters

C: Transporting
pP: Weight 0,1kg, Dimensions L 97mm, W 47mm, H 8mm
rP: Speed 50mm/s, Transporting area length: 200mm

C: Grasping
pP: Screw size: M1,6, L 4mm, weight 0,002kg, material: metal
rP: -

C: Inserting
pP: Screw size: M1,6, L 4mm, weight 0,002kg
rP: Accuracy: 0,8mm

C: Screwing
pP: Screw size: M1,6, L 4mm, weight 0,002kg, type: torx
rP: Torque: 5Ncm

C = Capability
pP = Product related parameters
rP = Other parameter requirements

C: Feeding
pP: Screw size: M1,6, L 4mm, weight 0,002kg
rP: Feed rate: min 1part/s, feeding type: bulk feeding

C: Moving
pP: -
rP: Speed 50mm/s

C: Object detection, positioning and orientating
pP: Screw size: M1,6, L 4mm, weight 0,002kg
rP: FoW width: 45mm, FoW height 45mm 

C: Object detection and positioning
pP: Hole dimensions: D 1.5mm
rP: FoW width: 120mm, FoW height 90mm 

C: Transporting
pP: Screw size: M1,6, L 4mm, weight 0,002kg
rP: Speed 50mm/s

Screwing 4 screws to a cell phone
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5.3.3. Matching the product requirements against the system capabilities

Based on the description of the product requirements, the existing system capabilities, the capability 
taxonomy and the rules for the detailed capability matching, it is possible to reason out if the existing 
system has all the required capabilities needed to perform the screwing operations. Figure 66 shows 
all the capabilities that are assigned to the resources forming the current TUT-microfactory system 
for flexible screwing. The list also shows the combined capabilities that are formed from the simple 
ones. The list is created by the Capability Editor, which is able to combine the simple capabilities into 
combined ones based on the defined capability associations in the capability model. The combined 
capabilities that are relevant for the case product are marked with the red rectangles. The high-level 
capability mapping, which is done based on the capability taxonomy, shows that all the required 
capabilities  at  the  concept  name  level  can  be  found  from  the  existing  system.  Next,  the  detailed  
capability matching needs to be performed based on the rules in the rule-base. In the following 
paragraphs, the reasoning procedures are explained step-by-step.  

 
Figure 66. Capability Editor displaying all the capabilities of the resources forming the TUT-Flexible screwing 

station. The combined capabilities needed in the case are shown inside the red rectangles.  

1) Transport the phone to the working area 
The high-level capability mapping detects two devices (combinations) from the system which have 
the “transporting” capability. These are the belt conveyor and the screwing robot. The detailed 
matching first checks whether the product size and weight are suitable for the current devices, and 
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secondly it checks if the workspace of the device and the speed of the transporting capability 
matches the requirement. The rules used for the matching are shown below.  

RULE 1a: Is the product size suitable for the device? 

 

RULE 1b: Are the workspace and speed requirements met? 

 

When these rules are applied to the presented case, i.e. filled with the parameter values shown in 
Figure 63 and Figure 64, it reveals that the belt conveyor capabilities match the requirements. Only 
the rules for the conveyor are shown here. However, similar reasoning with the screwing robot is 
shown  later  in  this  example,  in  RULES  3a  and  3b.  Those  rules  would  immediately  reveal  that  the  
screwing robot is not a suitable device combination for transporting the cell phone, because of the 
size, weight and material of the product.  

2) Feed screws 
Based on the high-level capability mapping, one device combination in the current system has the 
capability “plateFeeding”. This is the feeding system. The user has specified that the screws should 
be fed by a bulk feeding method in order to ease the manual handling of the screws. According to the 
capability taxonomy, the “plateFeeding” is a specialization of “bulkFeeding” and therefore fulfils the 
requirement. Because plate feeding is a method which doesn’t provide the parts in a certain position 
and orientation, the machine vision system, or another system providing “objectRecognition”, 
“positioning” and “orienting” capabilities is required to be able to detect the parts that can be picked 
up from the feeder. As shown in Figure 63 and Figure 66, these capabilities are also available in the 
system. The rules for detailed capability matching are now used to find out if the existing feeding 
system  is  able  to  feed  the  screws.  First,  it  needs  to  be  checked  if  the  part  size  is  suitable  for  the  
feeder (RULE 2a). Secondly, it is checked that the other requirements are fulfilled (RULES 2b and 2c).  

RULE 2a: Is the screw size suitable for the feeder?  

 
The number of parts that can be poured into the feeder needs to be defined based on the payload of 
the feeder and the defined maximum amount of parts on the plate. The screws of the case product 
are stored in little plastic bags containing 40 screws. It would be convenient to pour the whole 

conveyor = resource.hasCapability(“movingWorkspace”) AND (“holding”) 
 
IF product.getParam(“weight”) <= holding.getParam(“payload”) AND 
   product.getParam(“length”) <= conveyor.itemMaxSize.getParam(“length”) AND 
   product.getParam(“width”) <= conveyor.itemMaxSize.getParam(“width”) AND 
   product.getParam(“height”) <= conveyor.itemMaxSize.getParam(“height) 
THEN 
   RETURN TRUE 

IF product.transportingArea(“length”) <= workspaceBox.getParam(“length”) AND 
   product.transportingSpeed(“speed”) <= movingWorkspace.getParam(“speed_x”) 
THEN 
   RETURN TRUE 

plate = resource.hasCapability(“feedingPlate”) 
 
IF product.getParam(“diameter”) <= plate.itemMaxSize.getParam(“diameter”) AND 
   product.getParam(“length”) <= plate.itemMaxSize.getParam(“length”) AND 
THEN 
   RETURN TRUE 
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contents of the bag into the feeder. The rules that are needed to define whether that requirement 
can be satisfied are shown below.  
 
RULE 2b: Payload of the feeder 

 
RULE 2c: Can the feeder handle the required number of screws? 

 

The matching shows that the current feeding system is able to feed the screws, and the requirement 
for the amount of screws in the feeder is just satisfied. However, the position and orientation of the 
screws also need to be detected in order to feed the parts in a specified position and orientation. The 
high-level mapping finds that the machine vision system consisting of two cameras has the 
capabilities of “object detection”, “positioning” and “orienting”. The physical arrangement of the 
machines, acquired from the virtual model, defines the position of the camera units in relation to the 
feeder and conveyor. Camera unit 1 is above the conveyor and Camera unit 2 is above the feeder. 
The working distances of the cameras are pre-defined based on the current installation.  
 
The  field  of  view  (FoV)  of  the  camera  system  is  calculated  based  on  the  working  distance  of  the  
camera, the detector size (CCD width x CCD length) and the focal length of the optics as shown in the 
formulas below.  
 

                                              =                   (8) 

 

                                  =                   (9) 

 

RULE 2d: Field of view (workspace) of camera system  

 
Based on the formulas (8) and (9) above, the field of view (W x H) of the camera systems are: 

- Camera unit 1 FoV: 130 x 98 mm 
- Camera unit 2 FoV: 60 x 48 mm 

 
RULE 2e: Is the camera system field of view enough for the required application? 

 

Payload_of_plate_feeder [feeder + plate] = traySupporting.getParam(“payload”) – 
(traySupporting.getParam(“number_of_trays”) * plate.basicDeviceInfo.getParam(“weight”)) 

IF Desired_amount_of_products_in_feeder <= MIN(feedingPlate.getParam(“number_of_parts”),   
   feederPayload/product.getParam(“weight”)) 
THEN 
   RETURN TRUE 

FoV_width = (lightReflecting.getParam(“current_working_distance”) * 
imageCapturing.getParam(“detector_size_x”)) / lightReflecting.getParam(“focal_length”) 

FoV_height = (lightReflecting.getParam(“current_working_distance”) * 
imageCapturing.getParam(“detector_size_y”)) / lightReflecting.getParam(“focal_length”) 

IF desired_view_height <= FoV_height AND 
   Desired_view_width <= FoV_width 
THEN 
   RETURN TRUE 
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The desired field of view is defined after the feeding plate has been selected. Based on the plate size, 
the desired FoV is 45 x 45 mm. Camera unit 2 does have a bigger FoV, so it is suitable. The next thing 
that needs to be checked is whether the resolution of the camera is enough for the application. The 
minimum required detector resolution is calculated with the Nyquist principle based on the field of 
view and the smallest detectable feature, as shown in the formula (10). However, generally it is 
suggested that the resolution should be better than that suggested by the formula, possibly 2 to 5 
times better than that. 

= 2      (10) 

 
RULE 2f: Does the camera system have enough resolution for detecting the screws? 

 

As  the  screws  to  be  detected  are  1.6  mm,  the  minimum  detector  resolution  is  75  x  60  pixels,  but  
preferably 375 x 300 pixels. The detailed capability matching shows that the camera resolution goes 
well beyond the required resolution.  

3) Pick up a screw 
The high-level mapping finds one device combination having the “pickingUp” capability. This is the 
screwing robot consisting of the cartesian manipulator and the screwdriver unit.  The detailed 
capability matching needs to check if the screws can be grasped with the current device combination.  

RULE 3a: Combined payload of robot + screw driver 

 
RULE 3b: Can the screw be picked up by the device combination? 

 

 
 
 
 

IF providedCapability = “magneticGrasping” AND 
   product.getParam(“material”) = metal AND 
   product.getParam(“weight”) <= Combined payload of [robot + screwdriver] AND 
   product.getParam(“diameter”) <= screwdriver.maxItemSize.getParam(“diameter”) AND 
   product.getParam(“length”) <= screwdriver.maxItemSize.getParam(“length”) AND 
THEN 
   RETURN TRUE 

robot = resource.hasCapability(“movingWorkspace”) 
screwdriver = resource.hasCapability(“spinningTool”) 
screwinghead = resource.hasCapability(“screwingHead”) 

 
Combined_payload_of[robot + screwdriver] = MIN(robot.payload.getParam(“weight”) - 
screwdriver.basicDeviceInfo.getParam(“weight”) –  
screwinghead.basicDeviceInfo.getParam(“weight”)), 
1/9,81 * magneticGrasping.getParam(“holding_force”)) 

IF product.getSmallestParam.size() >= 2 * FoV_width /  
   imageCapturing.getParam(“x_resolution”) AND 
   product.getSmallesParam.size() >= 2 * FoV_height /     
   imageCapturing.getParam(“y_resolution”) 
THEN 
   RETURN TRUE 
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RULE 3c: Is the speed requirement met? 

 

Based on the detailed capability matching, the robot-screwdriver combination is able to pick up the 
screw and move at the desired speed.  

4) Inserting the screws into an empty hole 
Because the transportation of the cell phone on the belt conveyor doesn’t position and orient the 
product on the line, the positions of the holes are not known. Therefore, a method to detect the 
empty hole and its position has to be available. As discussed earlier in the ‘feeding’ paragraph, the 
machine vision system has these capabilities. The detailed-level matching considering the field of 
view and resolution requirements is carried out as was done earlier. Camera unit 1 is able to fulfil the 
given requirements. 

However, the required accuracy for the inserting operation has also been defined. The accuracy of 
this operation is determined firstly, by the accuracy of the robot, and secondly, by the accuracy of 
the machine-vision hole positioning. The accuracy of the machine vision depends not only on the 
resolution  of  the  camera,  but  also  on  the  accuracy  of  the  machine  vision  software,  which  again  is  
dependent on the type of algorithm. Roughly, it can be said that, for example, a circle-fitting 
algorithm has 1/3 pixel accuracy, whereas a pattern-matching algorithm has 1 pixel accuracy. Once 
the detector resolution and the field of view is known, the spatial resolution of the camera unit 
indicating the distance on the object surface per one pixel can be calculated. In this case, the spatial 
resolution of the camera is 0,127 mm/pix and the pattern-matching algorithm has 1 pixel accuracy. 
However, the rule of thumb says that the recommended resolution should be 4-10 times better than 
the camera accuracy. Therefore, the positioning accuracy of the camera system can be estimated as 
0,5 mm. It has to be noted that this is just a rough estimate and is affected by a number of factors 
which need to be measured in order to get more realistic values. Therefore, the accuracy is already 
given in the resource capability description and not reasoned according to the rules.  
 
RULE 4a: Is the accuracy of the inserting capability (robot + machine vision system) enough? 

 

The rule shows that the combined accuracy of the machine vision system and the screwdriver robot 
is,  in  the  worst  case  scenario,  0,8  mm.  This  was  the  original  requirement,  which  means  that  the  
accuracy requirements are fulfilled.  

 

5) Fasten the screw 
The high-level capability mapping finds one device combination, namely the screwing robot 
consisting of the screwdriver unit and the Cartesian manipulator, which has the capability 

IF process.getParam(“speed_x”) <= movingWorkspace.getParam(“speed_x”) AND 
   process.getParam(“speed_y) <= movingWorkspace.getParam(“speed_y”) AND 
   process.getParam(“speed_z) <= movingWorkspace.getParam(“speed_z”)  
THEN 
   RETURN TRUE 

IF process.getParam(“required_accuracy”) >= (movingWorkspace.getParam(“accuracy”) +  
   positionRecognition.getParam(“accuracy”)) 
THEN 
   RETURN TRUE 



137 
 

“screwing”. The detailed matching based on the capability matching rules needs to check whether 
the screw type and size, as well as the required torque, are suitable for the existing screwdriver.  

 
RULE 5a: Can the screws be screwed with the available screw driver? 

 

The matching shows that the screws can be fastened with the existing screw driver. However, the 
screw driver is only suitable for one size of screws. If the screw size changes, it will immediately 
require physical adaptation to the system. This will be discussed in the following chapter.  

The capability matching actions discussed in the previous examples can be done automatically, based 
on the rules in the rule-base. However, the results need to be validated by the human designer, 
because multiple simplifications have been made in the rules. In particular, the machine vision 
system has multiple parameters which affect the result of the positioning accuracy. It is impossible to 
take all of these into consideration in the automatic matching, and therefore human expertize really 
is required. Thus, in this thesis, only the most relevant parameters of the vision systems are 
considered in the rule-base.  

5.3.4. Adaptation scenarios with the TUT-microfactory

As  explained  in  Chapter  5.3.3,  the  current  TUT-microfactory  for  flexible  screwing  was  capable  of  
fulfilling the requirements set by the cell phone screwing requirement. In other words, the system 
was fully compatible with the requirements of the product. This chapter will analyse what kind of 
adaptation actions are required to the existing system in the case of different change stimuli, and 
how the compatibility, adaptation effort and utilization evolve with the changing requirements. The 
following paragraphs discuss a few scenarios in which the requirements targeted at the production 
system change. The original cell phone scenario is referred to as “product A”, and the subsequent 
scenarios are named “product B”, “product C” and so on. Three different change stimuli will be 
considered: change in the product design; change of product; and change in the order requirement. 
In addition to those changes coming from the product and order side, eventually changes in the 
behaviour of the system itself will also be considered.  

Change in the product design 

This section considers changes in the product design. Three different scenarios are viewed: change in 
the hole locations – Product B; change in the screw size – Product C; and change in the accuracy 
requirement – Product D. The following table, Table 32, presents first of all the components of the 
current system and its capabilities. Secondly, it displays the capability requirements of the different 
product scenarios, from A to D, at the capability concept name level. The numbering behind the 
required capabilities indicates the existing capability that fulfils the requirement. Required 
capabilities which don’t exist in the current system or which need some change are written in italics 
and underlined. Figure 67 will then display the capability requirements of the product scenarios B, C 
and D compared to product A in the form of Venn diagrams. The figure shows the common 

IF screw.getParam(“type”) =  screwingHead.getParam(“type”) AND 
   screw.getParam(“size”) <= screwingHead.getParam(“screw_size_max”) AND 
   screw.getParam(“size”) >= screwingHead.getParam(“screw_size_min”) AND 
   screw.getParam(“torque”) <= spinningTool.getParam(“max_torque”) AND 
   screw.getParam(“torque”) >= spinningTool.getParam(“max_torque”) 
THEN 
   RETURN TRUE 
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requirements zone, which represent similar capability requirements in the two products under 
comparison. The size of this zone is determined by the factors discussed earlier in Chapter 4.7.1.  

Table 32. Existing system capabilities and capability requirements of products A, B, C and D.  
System Capabilities Product A 

requirements 
Product B 
requirements 

Product C 
requirements 

Product D  
requirements 

TUT-microfactory 
frame 
 
Screwing robot 
 
 
 
 
Feeding system 
 
Belt conveyor 
 
Machine vision 
system 1 
 
Machine vision 
system 2 

attachmentFrame 
(1) 
 
screwing (2),  
pickingUp (3),  
transporting (4), 
inserting (5) 
 
plateFeeding (6) 
 
transporting (7) 
 
objectRecognition 
(8), positioning (9) 
 
objectRecognition 
(10), positioning 
(11), orienting (12) 

Module frame (1) 
 
Transporting (7) 
 
Bulk feeding (6) 
 
PickingUp (3) 
(ObjectRecognition 
(10), 
Orienting (12), 
Positioning(11)) 
 
Inserting (5) (Object 
recognition (8), 
Positioning (9), 
Transporting(4)) 
 
Screwing (2) 

Module frame (1) 
 
Transporting (7) 
 
Bulk feeding (6) 
 
PickingUp (3) 
(ObjectRecognition 
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Figure 67. Common requirement zone of the product scenarios B, C and D with product A. 

Change in the hole locations – Product B 
In this scenario, the distance between the screw holes changes from 52mm to 70mm. Change in the 
hole locations doesn’t cause any changes to the required capabilities at the concept name level, but 
the workspace size requirements for the “transporting” and “objectRecognition” capabilities change. 
However, if the product size remains the same, the change in the hole locations doesn’t affect the 
system. This is because the original requirements for the workspace were defined based on the 
dimensions of the phone and the conveyor, as the position and orientation of the product on the 
conveyor were not fixed. Therefore, it can be said that even if the product design changes slightly, in 
practice the requirements targeted at the systems don’t change in this case. The robot workspace 
covers the whole conveyor area, and the machine vision workspace was defined based on the outer 
dimensions of the cell phone. Both workspaces are therefore sufficient to cover any changes in the 
hole locations. The system is fully compatible with the new requirements.  

Compatibility, effort and utilization of the existing system for the product B 
ReqCaps = 12; ExistCaps = 12; AllSystemCaps = 12 
  Compatibility = 100 %; Effort = 0; Utilization = 100 % 
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Change in the screw size – Product C 
In this case scenario, the screw size changes from M1.6 to M2. When changing the screw size, the 
capabilities remain the same at the concept name level. Only the screw size parameter is changed. 
The  current  screwdriver  is  suitable  for  screwing  size  M1.6  screws,  but  only  that  size  screw.  If  the  
screw size changes, a new screwing head need to be attached to the screwdriver. The following rule 
is used to define whether the new screwing head is suitable for the given screwdriver.   

RULE 6a: Attaching screw driver + screwing head 

 

If  the  screwdriver  head  is  not  compatible  with  the  screwdriver,  for  example  in  this  case  if  the  
screwing  head  is  for  bigger  screws  than  M2,  the  whole  screwdriver  needs  to  be  changed.  Small  
changes in the product design can in this case be handled with relatively small changes in the system. 
However, this example well illustrates that when certain border constraints of the capabilities are 
crossed, the magnitude of the adaptation can grow significantly due to the propagation of the 
changes. In this example case, as long as the required screw size is between M1 and M2, the system 
can be adapted by just changing the screwdriver head. If bigger screws are used, the whole 
screwdriver needs to be replaced. And again, these changes may be propagated to the robot if, for 
example, the new screwdriver is not compatible with the robot interface.  

Compatibility of the existing system with the product C 
ReqCaps = 12; ExistCaps = 11; PhysModifCaps = 1; AllSystemCaps = 12 
  Compatibility = 95.8 %; Effort = 4.2 %; Utilization = 95.8 % 
 
Change in the accuracy requirement – Product D 
For the original product, product A, the required accuracy of the screw insertion was set quite low. It 
was 0.8 mm, which meant that some amount of misplacements occurred and that those were 
tolerated. The current system barely fulfilled this accuracy requirement. In this product scenario, no 
misplacements are tolerated, and therefore the accuracy of the inserting operation needs to be 
increased to 0.4 mm.  

The change in the accuracy requirement doesn’t affect the required capabilities at the concept name 
level, but the accuracy parameter of the inserting capability is changed. Based on the rules used in 
Chapter 5.3.3, the accuracy of the insertion depends on both the accuracy of the robot and the 
accuracy of the machine vision system. The accuracy of the insertion can then be increased by 
replacing the robot with a more accurate one, replacing the camera with one with better resolution 
or  using a  different  type of  machine vision algorithm which is  more accurate.  It  is  also  possible  to  
bring the camera closer to the measured object, in order to increase the pixels/millimetre ratio, or to 
change the optics with a greater focal length, again to decrease the field of view to increase the 
pixels/millimetre ratio. However, if the product size remains the same, it is not safe to decrease the 
field  of  view  and  therefore  the  two  last  options  are  not  useable.  So,  basically,  the  options  are  to  
either change the robot, the camera, or the machine vision algorithm. In this case, the fastest and 

screwdriver = resource.hasCapability(“spinningTool”) 
screwinghead = resource.hasCapability(“screwingHead”) 
 
IF (spinningTool.getParam(“diameter_max”) >=     
    screwingHead.basicDeviceInfo.getParam(“diameter”)) 
THEN 
  RETURN TRUE 
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cheapest option is probably to change the camera, because cameras with better resolution are easily 
available at reasonable prices. Merely changing the algorithm probably wouldn’t increase the 
accuracy enough.  

Compatibility of the existing system with the product D 
ReqCaps = 12; ExistCaps = 11; AllSystemCaps = 12 
  Compatibility = 91.7 %; Effort = 8.3 %; Utilization = 91.7 % 
 

Change of product  

In this category, three different product change scenarios are considered: new different parts added 
to  the  product  –  Product  E;  screws  replaced  with  new  parts  –  Product  F;  a  completely  different  
product – Product G. Their capability requirements are shown in Table 33 and the differences 
between their capability requirements and those of product A are shown in the Venn diagrams in 
Figure 68. It is known that a change in the product to be manufactured will most probably lead to a 
requirement for new capabilities for the system. This means that physical adaptation is required. In 
this presented case study, the user has given high priority to the re-use of old equipment. This means 
that any changes to the system should be implemented so that as much as possible of the existing 
system is retained.  

Table 33. Existing system capabilities and capability requirements of products E, F and G.  
System Capabilities Product E 

requirements 
Product F 
requirements 

Product G 
requirements 

TUT-microfactory 
frame 
 
Screwing robot 
 
 
 
 
Feeding system 
 
Belt conveyor 
 
Machine vision 
system 1 
 
Machine vision 
system 2 

attachmentFrame (1) 
 
 
screwing (2),  
pickingUp (3),  
transporting (4), 
inserting (5) 
 
plateFeeding (6) 
 
transporting (7) 
 
objectRecognition 
(8), positioning (9) 
 
objectRecognition 
(10), positioning (11), 
orienting (12) 

Module Frame (1) 
 
Transporting (7) 
 
Bulk feeding (6) 
 
PickingUp (3) 
(ObjectRecognition (10), 
Orienting (12), 
Positioning(11)) 
 
Inserting (5) (Object 
recognition (8), Positioning 
(9), Transporting (4)) 
 
Screwing (2)  
 
Module frame 
 
Transporting 
 
Disensing glue (Transporting, 
ObjectRecognition, 
Positioning) 
 
Feeding 
 
Picking up 
 
Inserting 

Module Frame (1) 
 
Transporting (7) 
 
Feeding (physicModfi 6) 
 
Disensing glue (Transporting 
(4), ObjectRecognition (8), 
Positioning (9)) 
 
PickingUp  
 
Inserting (5) 
 

Heating material 
 
Injecting material 
 
Molding 
 
Cooling 
 
Opening the mould 
 
Releasing the part 
 
Transporting 
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Figure 68. Common requirement zones of product scenarios E, F and G with product A. 

New different parts added to the product – Product E 
Product E is similar to product A, except that at the end of the process two of the screws need to be 
covered with small plastic parts, which are glued over the screws. This means that the old capabilities 
of the system are still needed, but new “gluing” and “feeding” capabilities need to be added. 
Furthermore, the current system’s grasping capability doesn’t match the requirement for grasping 
the plastic part, and therefore additional “picking” up and “inserting” capabilities are needed. 
Because of the small size of the TUT-microfactory module, not all of this can be included in the same 
module. This means that the existing system can still be used as a whole, but a new module with the 
required equipment should be added. Altogether, the required extra capabilities are: transporting 
the product to another module; detecting the screws and their position in the phone; dispensing glue 
onto the screw; feeding the plastic parts; picking up the plastic part, and inserting the plastic part 
into the screw hole.  

Compatibility of the existing system with the product E 
ReqCaps = 21; ExistCaps = 12; AllSystemCaps = 12 
  Compatibility = 57.1 %; Effort = 75 %; Utilization = 100 % 

Here, it is assumed that the feeding of the plastic parts is handled with dedicated trays and no new 
machine vision system is required to recognize the parts and their position and orientation.  

Screws replaced with new parts – Product F 
Product F is assembled with snaps, so screws are no longer needed. Instead, the plastic parts need to 
be glued and inserted into the screw holes to cover them. Therefore, the ”screwing” capability is no 
longer needed but a new capability, “gluing” needs to be added to the system. In addition, the 
feeding of the plastic parts needs to be handled. As the user-defined criterion was that the existing 
system should be used as much as possible, the screwdriver unit will be replaced with a dispenser 
unit and attached to the Cartesian robot. The robot also needs to be equipped with a gripper for 
grasping the plastic parts. For feeding the parts, the same tray feeder can be used merely by 
changing the tray or plate suitable for the plastic parts.  

Compatibility of the existing system with the product F 
ReqCaps = 9; ExistCaps = 6; PhysModifCaps = 1; AllSystemCaps = 12 

 Compatibility = 72.2 %; Effort = 20.8 %; Utilization = 54.2 % 
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Completely different product – Product G 
In this scenario, the requirement is to manufacture the cell phone covers. From the system’s point of 
view, this is a completely different product. It requires completely new capabilities, such as injection 
molding, and none of the existing capabilities are useable for this new requirement.  Therefore, it can 
be said that the current system has zero compatibility with the new requirement.  

Compatibility of the existing system with the product G 
ReqCaps = 7; ExistCaps = 0; AllSystemCaps = 12  

 Compatibility = 0 %; Effort = 58.3 %; Utilization = 0 
 
 
Change in the order requirements 

In the order requirement category, two different scenarios are considered. These are: fewer 
capability requirements – Product H; and change in the production volume – Product I. Their 
capability requirements are shown in Table 34 and the differences with the capability requirements 
of product A are shown in Figure 69. 

Table 34. Existing system capabilities and capability requirements of products H and I.  
System Capabilities Product H 

requirements 
Product I 
requirements 

TUT-microfactory frame 
 
Screwing robot 
 
 
 
Feeding system 
 
Belt conveyor 
 
Machine vision system 1 
 
 
Machine vision system 2 

attachmentFrame (1) 
 
screwing (2),  
pickingUp (3),  transporting (4), 
inserting (5) 
 
plateFeeding (6) 
 
transporting (7) 
 
objectRecognition (8), 
positioning (9) 
 
objectRecognition (10), 
positioning (11), orienting (12) 

Module frame (1) 
 
Transporting ( 7) 
 
ObjectRecognition (8) 
 

Module frame (1) 
 
Transporting (paramModif 7) 
 
Bulk feeding (6) 
 
PickingUp (3) 
(ObjectRecognition, 
Orienting (12), Positioning(11)) 
 
Inserting (5) (Object recognition 
(8), Positioning (9), 
Transporting (paramModif 4)) 
 
Screwing (2) 

 
 

 
Figure 69. Common requirement zone of product scenarios H and I with the product A.  

Fewer capability requirements – Product H 
In this scenario, the screws have already been screwed to the cell phone in the previous process 
phase. Now the order requirement is only to check that all four screws are in their correct place. No 
new capabilities are needed, and most of the existing capabilities are no longer used.  
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Compatibility of the existing system with the product H 
ReqCaps = 3; ExistCaps = 3; AllSystemCaps = 12  

 Compatibility = 100 %; Effort = 0 %; Utilization 25 % 
 
Increase in production volume – Product I 
In this scenario the production volume grows so that 30% more products should be produced in the 
same time that was originally used for producing product A. This means that a new cycle time for the 
product needs to be defined and the current system’s ability to cope with this cycle time 
requirement needs to be evaluated. In case A, the system was not running at its full speed. Both the 
robot and conveyor speeds could be increased by half. However, how fast the robot can move with 
the  screwdriver  can  only  be  discovered  by  testing.  Due  to  the  weak  accuracy  of  the  inserting  
operation, the misplacement of the screws consumed a lot of extra time to accomplish the process. 
Therefore, by increasing the accuracy of the insertion, the production volume can be increased. 
Three adaptation actions, one physical and two parametric, are needed to achieve the required new 
production volume. These are: changing the camera, and adapting the speed of the conveyor and the 
robot.  

Compatibility of the existing system with the product I 
ReqCaps = 12; ExistCaps = 9; ParamModifCaps = 2; AllSystemCaps = 12 

 Compatibility = 87.5 %; Effort = 12.5 %; Utilization = 87.5 % 
 

Change in the behaviour of some system component 

As discussed earlier in this thesis, the capabilities (behaviour) of the devices may change during their 
individual lifecycles. In this case scenario it is noted that the accuracy of the robot has been 
decreased from 0.3mm to 0.6mm. This new updated capability information is assigned to the robot. 
Now it is noted that the capability no longer satisfies the given accuracy requirement for the 
inserting capability. This means that either the robot or the camera needs to be replaced to increase 
the accuracy. However, such a drastic change in the robot’s accuracy indicates that bigger problems 
may  be  coming.  Therefore,  it  may  be  wiser  to  replace  the  robot  with  a  new  one.  This  example  
illustrates that changes in the resource capability may affect the compatibility of the resource to the 
given requirement and therefore require adaptation actions; in this case changing the robot.  

Compatibility of the changed system (system z) with the original product A 
ReqCaps = 12; ExistCaps = 11; AllSystemCaps = 12 

 Compatibility = 91.7 %; Effort = 8.3 %; Utilization = 91.7 % 
 
In this case the effort indicates the effort of changing the system back to be again compatible with 
the requirements of product A.  

 
Compatibility domain graphs of the product scenarios 

Figure 70 shows the “compatibility – requirement change” graph of the previous scenarios defined 
according to the formulas (2) and (5) presented in Chapter 4.7.1. In practice, the compatibility shows 
what percentage of the product requirements can be satisfied with the existing system without any 
adaptation  actions  for  each  product  scenario.  In  other  words,  it  illustrates  the  relative  size  of  the  
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intersection between the product requirements and the system capabilities where the operation of 
the system can continue without modifications. Very different products, such as product G, are not 
really comparable with the others. It was included in the figure to show what happens if all the 
requirements targeted to the system change. In such cases, the compatibility falls to zero. Product H 
had fewer requirements than the original product, and no new capability requirements. This is a 
special case and is therefore drawn on the negative side of the x-axis. Even though, within this case 
set, the result is a descending graph as the magnitude of the change in requirements grows, this is 
not always the case, as discussed in Chapter 4.7.1.  

 
Figure 70. Change in the compatibility within the different product scenarios. 

In order to compare the relative effort of the needed adaptation between different product 
scenarios, the “compatibility – effort” graph was drawn, as shown in Figure 71. This graph clearly 
shows that the compatibility itself doesn’t reveal much about the effort needed to modify the system 
when comparing very different products, i.e. products having different amounts of capability 
requirements. Examples of this are the products F, E and G, whose amounts of required capabilities 
differ notably.   

 
Figure 71. Compatibility versus effort. 
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Finally, the “compatibility – utilization” graph was drawn to be able to compare the product scenarios 
based on their compatibility and the re-usability of the existing system. The criteria for the analysis 
was discussed in Chapter 4.7.1. The scenarios falling into the upper right corner represent “good 
cases”, for which the compatibility is good and most of the system capabilities can be utilized. On the 
other hand, the scenarios in the lower left hand corner represent the “worst cases”, for which no 
capability requirements can be satisfied with the current system and therefore the current system 
cannot be utilized. Scenario H represents a case where all the required capabilities exist in the current 
system, but only small number of all the capabilities offered by the system are used. The rest of the 
capabilities are “wasted”. In contrast, scenario E represents a case where all the offered capabilities 
can be utilized, but more capabilities need to be acquired in order to satisfy all the requirements.  

 

 
Figure 72. Compatibility versus utilization.  

As was discussed in Chapter 4.7.2, the compatibility domain approach is highly subjective and 
dependent on the context. The input information used to draw the graphs, e.g. the number of 
required, provided and matching capabilities, depends on the level of granularity used for the 
capabilities. The evaluation of the propagation of the changes in the system, and again the 
evaluation of the needed new capabilities, is based on human reasoning, and is therefore highly 
subjective. Thus, even though the graphs give quantitative estimates of the compatibility, effort and 
utilization, the estimates should be considered more as qualitative than quantitative analyses. They 
don’t provide absolute values for the impact of the changes, but they do enable relative comparisons 
between similar cases.  
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6. DISCUSSION

6.1. Evaluation of the proposed methodology

The objective of this thesis, defined in Chapter 2.2 was: “to develop a methodology to support 
computer-aided adaptation of production systems in a changing environment”. This high-level 
objective was divided into four sub-objectives: 1) definition of an adaptation schema; 2) 
development of a resource description model based on capabilities; 3) development of framework 
and rules for matching the product requirements against resource capabilities; 4) creation of a 
preliminary approach to evaluating the impact of changes in product requirements on the production 
system. This chapter is devoted to describing and analysing how well the objectives set for this thesis 
were achieved. It can be stated at the outset that, on the whole, each of these objectives was 
satisfied. In the following sections, the solutions for these objectives are analysed one by one, and 
the recognized limitations are discussed. After that, there are some general remarks about the 
developed methodology as a whole.  

Sub-objective 1: Definition of the adaptation schema 
The adaptation schema was developed and modelled in the form of activity diagrams using the 
IDEF0-modelling language. The schema provides a comprehensive explanation of the adaptation 
process by clarifying the activities, information flows and required resources during the adaptation 
planning and reactive adaptation process. The schema provides the backbone for the whole 
adaptation methodology and guides the use of the other elements, which have been developed, 
during the adaptation planning and reactive adaptation.   

The adaptation schema was intended to support both human-centric adaptation planning and 
dynamic reactive adaptation. This is satisfied, because the schema does not constrain “who” or 
“what” should perform the reasoning steps. Neither does it compel the reasoner to go through all 
the adaptation steps or use all the indicated resources. For example, in the case of dynamic 
adaptation in the holonic system demonstration, no physical adaptation is required and therefore 
some activities from the schema can be dismissed. On the other hand, all the information resources 
indicated in the schema may not be always available. The accuracy of the result is therefore highly 
affected by the availability and quality of the input information. Particularly in the case of automatic 
reasoning, the unavailable or faulty input information can produce misleading results. Therefore, 
human involvement in the final decision making is assumed. This will be discussed in more detail 
later, in the general remarks. 

Even though the schema contains more inputs, information resources and controls than have 
actually been applied in the case examples, the level of detail of the activities is the same as in the 
implementation. This means that the resource description and capability matching framework are 
designed so that they support all the activity steps included in the schema. As discussed earlier in 
Chapter 4.6.2, each of the activities could be further decomposed into lower, more detailed-level 
activities. Currently, the adaptation schema doesn’t go into the level of detail whereby the systems 
could  be  evaluated  in  terms  of  their  ability  to  answer,  for  example,  the  volume  and  cycle-time  
requirements or to calculate the cost of acquiring and operating those resources. Some of the 
information needed for that kind of reasoning is included in the resource description which enables a 
human expert to assess these aspects. However, new algorithms and rules should be developed in 
order to automate such reasoning.  



147 
 

Sub-objective 2: Development of a resource description model based on capabilities 
The overall resource description and capability model were developed in order to describe the 
resource capabilities and characteristics so that they facilitate the selection of suitable resources for 
a given product requirement. The ontologies were utilized to provide formal computer-interpretable 
models and to enable the computerized filtering, handling and management of the resource 
information. The objective with the resource model was to be able to describe the combined 
capabilities of multiple co-operating resources. The capability model which was developed allows this 
to happen at the capability concept name level, whereas the combined capability rules enable this at 
the parameter level.  

The resource description was intended to be used in the context of the adaptation process. 
Therefore,  it  was  important  to  incorporate  the  lifecycle  aspect  into  the  resource  description.  As  
discussed earlier, the production environment is constantly evolving and the behaviour and 
properties of the components constituting the overall system change during their individual 
lifecycles. Without up-to-date information about the system, it is difficult to make decisions 
regarding its adaptation, or at the very least, the decisions won’t be based on trustworthy evidence. 
In order to provide more reliable resource information, the proposed resource description approach 
has two representations of the resource, one presenting its nominal capability and other presenting 
its actual, updated capability.   

At present, the capability model covers the capability instances needed in the case studies (and 
similar environments), i.e. capabilities existing in the TUT-machining laboratory and the TUT-
microfactory environment. The developed capability model is freely extendable and new capabilities 
can be added to the model when needed. It is general enough to be applied to various different 
domains. Even though it wasn’t within the scope of this thesis, the model could also be used for 
modelling human competences.  

The developed capability description approach differs from existing semantic resource description 
approaches from its very inception. From the outset, it was defined so that it would support 
combined capability modelling and the re-usability of the capabilities for different kinds of resources. 
This has strongly affected the structure of the capability model, especially in terms of the allocation 
of the parameters to the specific individual capabilities. The properties of the resources are 
distributed under a number of separate simple capabilities, which may initially cause a little 
confusion when describing the resources with this model. Such confusion can be illustrated with the 
following example for describing a milling machine’s capabilities. The milling machine’s properties 
given in the suppliers’ catalogue cannot be assigned directly to the machine, but need to be divided 
into multiple separate simple capabilities. As the milling machine’s main function is to spin the tool in 
order to cut material, its main capability is “spinningTool”. However, not all the machine’s properties 
can be assigned to this main capability, because, for example, a screwdriver also has that 
”spinningTool” capability, yet it definitely doesn’t have all the same properties as a milling machine. 
Therefore,  other  capabilities  also  have  to  be  assigned  to  the  milling  machine,  such  as  
“movingWorkspace” and “degreesOfFreedom”. This may not be the most intuitive approach when 
assigning the capabilities.  However,  if  all  the properties  were to  be assigned in  one group for  one 
capability, it would resemble traditional resource description approaches, and would lose its 
expressiveness and its ability to model combined capabilities.  
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So, the resource description approach proposed here differs from traditional resource description 
approaches, as they don’t usually have enough expressiveness to describe multifunctional resources.  
While the traditional approaches tend to classify the resources into groups based on their properties 
and functionality (e.g. milling machine, lathe, conveyor, etc.), the approach used here classifies the 
capabilities and assigns those to the resources. In this way, one resource can have multiple 
capabilities to be used in different contexts, and new capabilities can be assigned to the resource as 
they emerge. Another advantage of describing the resources based on their capabilities, rather than 
based on their type, is that one doesn’t need to assume, for example, that a milling machine has all 
the capabilities of a normal milling machine, but merely to assign the capabilities relevant to that 
specific resource. This modular capability-modelling approach therefore provides more 
expressiveness and flexibility for describing different kinds of resources. The modular approach for 
assigning the capabilities to the resources also provides significant support for adaptation planning. 
Describing each resource in the system based on its simple capabilities, rather than describing the 
complete system as a whole, makes it easier to change and replace components in the system.  

One final comment, which actually relates to both sub-objectives 2 and 3, needs to be stated. The 
technical accuracy of the capability descriptions developed here, and of the rules, could probably be 
improved through greater expertise and experience with the technology and processes used as 
examples. A wide range of different processes were covered, although at times the author lacked any 
in-depth technical knowledge of them. Despite consultation with experts about the processes, it 
must  be  acknowledged  that  there  may  still  be  room  for  improvement,  especially  with  regard  to  
assigning the parameters to the simple capabilities and in developing the capability matching rules. 
However, as the original goal was not to develop a perfect resource description and rules, but rather 
to develop a concept and a framework for describing and matching the capabilities to support 
adaptation, this deficiency may be regarded as acceptable.  

Sub-objective 3: Development of a framework and rules for matching the product requirements 
against resource capabilities 
A conceptual framework for matching the product requirements against the system capabilities was 
successfully created. Its main elements are the capability taxonomy, which enables mapping 
between the product requirements and the system’s capabilities at the capability concept name 
level, and the capability matching rules, which facilitate the detailed matching. As with the capability 
model, the rules were designed to serve two case environments, the TUT-machining laboratory and 
the TUT-microfactory. If applied to a different environment, new rules would need to be 
implemented.  

The main goal of the rules was to show that the information saved with the formal resource 
description and capability model can be used for automatized capability-matching and for generating 
different configuration scenarios. The capability matching rules prove that such a resource 
description can be used to match the product requirements with suitable resources. The fact that it 
was possible to create rules that compare the product and resource information saved in the 
ontology, and provide feasible matches, proves that the resource description and capability model 
provide enough expressiveness for such use cases. Therefore, the rules which were developed for 
these cases validate the developed resource description and capability model, and just as 
importantly, prove that automatic matching is possible.  
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At  this  point  in  time,  only  part  of  the  rule-base  is  implemented  as  part  of  the  modular  ICT-
environment. This is mainly due to a shortage of programming resources. However, the rule-base is 
under way, and new funding has been applied for in order to get it properly implemented and 
integrated into the fully working, modular ICT-environment. Because of the incomplete 
implementation of the rule-base, it is not yet possible to test how well the capability matching works 
in practice in more complicated cases; for example, how long would the reasoning procedures take. 
Nevertheless, as the actual implementation of the rule-base was not defined as the goal of this 
thesis, the fact that it is at present incomplete does not reflect on the validity of the thesis.   

Although the developed rule-base does enable automatic reasoning, human intervention is still 
required. It should be remembered that the goal of the developed adaptation methodology was not 
to make everything automatic, but to keep humans involved in the decision making and control loop. 
In practise, this means validation of the automatically generated scenarios and selection of the most 
desirable solution based on the user-specific criteria.  The capability model and combined capability 
rules which are proposed here cannot provide perfect descriptions of the real capabilities of the 
system. It is recognized that the definition of the combined capabilities in detail at the parameter 
level is very difficult with the digital models. For example, the detailed definition of a workspace of a 
combination of multiple resources, even the relatively simple robot + gripper combination, requires 
complicated spatial reasoning with mathematical models, and this was beyond the scope of this 
thesis.  This  problem  is  due  to  the  fact  that  many  of  the  properties  emerge  as  a  behaviour  of  the  
system as  a  whole  in  a  specific  context,  and they cannot  be decomposed to  the properties  of  the 
various components. For instance, in the case of a machining operation, the surface finish may 
depend on chattering which in turn depends on multiple factors, such as the structure of the 
machine, the control of the machine, the characteristics of the tool, the parameters of the specific 
operation, the characteristics of the material, and so on. Therefore the only way to predict chattering 
would be to have a comprehensive model of the machine, its control, and the manufacturing 
process, since the behaviour cannot be traced back to its components. This was beyond the scope of 
this thesis. Another example of a parameter, which is difficult to define in detail, is the accuracy of a 
machine tool, as discussed already in Chapter 4.4.4.  

Therefore, from a logical point of view, the proposed approach can be used for determining those 
properties of combined capabilities which can be traced back to the simple capabilities, i.e. to the 
individual components of the system. It is not suitable for determining those properties of combined 
capabilities which cannot be decomposed to the properties of the various components, as 
exemplified above. It is precisely because this problem was already recognized in the early phases of 
the research that so much emphasis was placed on involving human expertise in the final decision 
making. Therefore, certain simplifications in the combined capability rules were also permissible. 
However, the rule-base can be extended incrementally, which will eventually lead to ever more 
accurate and realistic reasoning results, which will require less human intervention.  

When matching the resource capabilities with the product and order requirements, there may not 
always be a one-to-one match. For example, a specified manufacturing volume may be achieved by 
using only one fast machine or two slower machines. If a certain accuracy is required, a feasible result 
may be obtained by using inaccurate devices and improved quality detection at the end of the 
process.  As  it  stands,  the  automatic  capability  matching  is  not  able  to  take  this  kind  of  fact  into  
account. To do so would mean that the compatibility of the devices would have to be evaluated using 
some kind of fuzzy logic rules. These would allow those kinds of resources whose properties don’t all 
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have a 100% match with the requirements to be added to the proposal list. And of course, a human 
expert could also make these fuzzy compatibility evaluations. The current approach doesn’t allow 
this, because the capability matching dismisses those capabilities which don’t completely fulfil the 
requirements.  

Finally, there is one limitation in the current capability matching framework which needs to be 
recognized. The capability matching and the capability model do not take into consideration the 
effect of the human worker operating the resource. For example, a well trained and experienced 
operator may be able to manufacture the same product much faster and with better quality than an 
inexperienced operator working with a similar machine. The accuracy of machining operations, in 
particular, can easily be affected by the professional skills of the operator. As the human aspect can 
significantly affect the capability performance that can be achieved, this aspect should be integrated 
into the methodology in the future. As with the previous point, this aspect would also require some 
sort of fuzzy reasoning.  

Sub-objective 4: Creation of a preliminary approach to evaluating the impact of changes in product 
requirements on the production system 
A compatibility domain approach was created, in order to estimate the impact of product 
requirement changes on the existing production system. The compatibility domain approach 
examines  the  topic  from  three  aspects:  the  compatibility  of  the  existing  system  to  the  new  
requirements; the relative effort entailed in making the needed modifications to the system; and, the 
utilization (re-usability) of the existing system for the new requirements. The compatibility domain 
approach utilizes the resource capability descriptions and the capability matching framework, in 
order to identify whether, and if so how many, new capabilities need to be added to the existing 
system when the product requirements change. The compatibility domain approach offers a valuable 
aid to decision making, when comparing different product scenarios which require change. It 
rationalizes the decision making, because it allows easier identification and allocation of the needed 
changes to the system, and therefore also opens up the possibility for more realistic evaluation of 
the costs of adaptation. 

The restrictions of the compatibility domain approach were already discussed in Chapter 4.7.2 and 
are not repeated in detail here. Nevertheless, it must be acknowledged that the approach is just a 
preliminary, highly simplified concept and has multiple restrictions. The validity of the comparison of 
different product scenarios depends strongly on the similarity of the compared products. In order to 
evaluate the real effort and cost of the required adaptation, the nature of the specific adaptation 
activities needs to be considered. In its present state, the compatibility domain approach estimates 
the effort purely based on the number of new capabilities that need to be added to the system, and 
the system ramp-up, for example, is not considered. This is a significant omission, because ramp-up 
is one of the biggest costs when a change is introduced to a system. In complicated cases, the system 
ramp-up may require months to be completed, and during the ramp-up phase either the production 
rate or the production quality (or both) may be much lower than the required targets. Therefore, the 
incorporation of this aspect into the methodology should definitely be considered in the future. 
Having said that, at this point these flaws in the method are acceptable, because the original goal 
was to think up a preliminary approach to how the developed resource description and capability-
matching framework could be used to facilitate decision making in terms of the impact of change.  
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GENERAL REMARKS ON THE DEVELOPED METHODOLOGY 

The developed methodology supporting computer-aided adaptation of production systems should 
not be directly compared to other available methodologies, because their viewpoint and scope are so 
different. A wide range of different methodologies supporting adaptation were presented in Chapter 
3.3,  and  their  limitations  were  discussed  there.  The  starting  point  for  this  work  was  to  try  to  
overcome some of those limitations. As the goals were different, they cannot be directly compared 
with each other. One clear advantage of the resource description approach developed here, in 
comparison to the other available ones, is that it provides a solution for managing the combined 
capabilities of multiple co-operating resources. Previous, apparently similar, approaches haven’t 
dealt with the parameters, but only with the skill (capability) names. Dealing with just the capability 
concept names doesn’t provide enough information to select resources from multiple options, all 
having the same capability concept name. This limitation was overcome with this approach. Another 
advantage of this work is that it provides a holistic, integrated approach which supports adaptation 
from multiple viewpoints, all combined into one methodology.  

The computer-aided adaptation methodology developed in this work is characterized by strong 
human involvement, especially in the final decision making. This is seen as important, particularly 
because of the volatile quality of the available input information. Even though humans are not able 
to make informed decisions without good input information, they still have more intelligence than a 
computer when it comes to spotting obvious mistakes that may exist in the input information, or that 
may occur during the reasoning procedures. The intelligence of the developed methodology lies in 
the fact that it utilises an efficient combination of human intelligence and computer processing 
power.  The  methodology  aims  to  utilize  computers  for  the  tasks  which  they  are  good  at,  such  as  
handling, processing and filtering large amounts of data. Humans, on the other hand, are responsible 
for making the intelligent decisions. The holonic demonstration presented a case where the 
“intelligent decision making” is done by the “holons”, which can be either physical resources, 
software modules, or humans. The holons utilize their ability to negotiate with each other and to 
make decisions based on the acquired information. Algorithms (rules) are still needed by the holons 
to reason with that information. The intelligence of these holons (or the quality of the results they 
provide) can be increased by learning from experience. This learning is facilitated by collecting the 
usage history of the resources.   

It has to be noted that the quality of the results produced by the developed adaptation methodology 
depends strongly on the available information resources. In order to make a match between product 
requirements and system capabilities, valid information about both of them has to be available for 
the reasoning. As in all reasoning, the quality of the result of the reasoning depends not only on the 
quality of the algorithm, but also depends strongly on the quality of the input information. If the 
description of the product requirements or system capabilities has errors or missing information, it 
will  lead  to  a  flawed  reasoning  result.  As  the  creation  of  a  resource  description  for  an  individual  
resource is a manual task, human errors may naturally occur. The descriptions of the product 
requirements were not in the scope of this thesis, but their role in the capability-matching must not 
be underestimated.  

The adaptation approach taken in this thesis is reactive rather than proactive. The adaptation takes 
place after external changes are noted. Terkaj et al. (2009a) distinguished between planned changes 
and unplanned changes. Planned changes happen as a result of conscious managerial actions, 
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whereas unplanned changes occur independently of the intentions of the company (Terkaj et al. 
2009a). In the presented adaptation schema, the production environment is considered as dynamic 
and unpredictable, without any knowledge of the future. Only the unplanned changes which require 
adaptation are considered. However, if there is some known information about the future, then 
some degree of flexibility in the system could prove extremely beneficial. According to Terkaj et al. 
(2009a)  flexibility  tries  to  create  a  position  in  which  the  system  is  able  to  accommodate  external  
changes without modifying its structure. In many cases, this is much more beneficial than adopting 
continuous reconfigurations. (Terkaj et al. 2009a.) In order to enhance the developed adaptation 
approach so that it is better suited for a real industrial context it should be extended so that it would 
include considerations of the future, if such information about the future, even uncertain, is 
available. The adaptation plans could then be created from a more strategic perspective, taking 
future requirements and possible scenarios into account, and thus trying to minimize the required 
changes to the system in the future. This means that the system could be adapted taking into 
account its flexibility for future situations, which are known or can be assumed. 

The capability-based resource description and the framework for capability matching developed in 
this work support all the levels of adaptivity, namely physical, logical and parametric. Therefore, they 
can be used to support both reconfiguration and flexibility aspects. They allow the evaluation of the 
robustness of the existing system for possible future requirements, and identification of the 
adaptation needs for different product scenarios. Thus, if planned changes or external changes which 
can be forecast are taken into consideration during adaptation planning, it would require these 
aspects to be incorporated into the adaptation schema.       

6.2. Contributions

This study resulted in a holistic, integrated adaptation methodology for production systems. The 
developed, capability-based adaptation methodology supports multiple aspects of production system 
adaptation, namely physical, logical and parametric adaptation in both static, human-controlled 
adaptation planning and dynamic, reactive adaptation contexts, as shown by the case studies. The 
methodology consists of the following novel elements:  

1) Knowledge representation for describing production resources, their capabilities, and the 
combined capabilities of multiple co-operating resources;  

2) A framework and rules for matching the resource capabilities with the capability 
requirements set by the product characteristics in the context of adaptation planning and the 
reactive adaptation process;  

3) Adaptation schema defining the use of the resource description and the capability matching 
rules, as well as other information resources, as part of the overall adaptation process.   

4) A preliminary approach to evaluating the impact of changes in the product requirements on 
the production system. 

The core of the developed adaptation methodology, and therefore the main contribution of this 
thesis, is the formal resource description and capability model. These, together with the developed 
capability taxonomy and rule-base, support at least the following activities:  

 Describing the capabilities of individual resources;  
 Combining simple capabilities into higher-level, combined capabilities;  
 Reasoning out the combined capability of multiple co-operating resources;  
 Automatic matching of product requirements and resource capabilities;  
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 Finding resource combinations to fulfil a given product requirement;  
 Checking whether the current system is able to fulfil a given requirement;  
 Making sure that all the needed components exist in the system (combined capabilities);  
 Showing the parameter range of the available capabilities, allowing decisions to be made 

about the parametric adaptation;  
 Showing the available capabilities on the factory floor and their locations, thus providing the 

necessary information for the logical adaptation (e.g. re-routing).  

As a result of the above, this approach allows the automatic generation of system configuration 
scenarios based on the given requirements. It also supports the rapid allocation of resources and the 
adaptation of systems. In addition to generating adaptation plans, the developed methodology 
allows the possibility of evaluating the robustness of the existing production system to possible 
changes. From the information management point of view, it supports automatic filtering of 
information and finding suitable solution proposals from a large search space, thus reducing the 
manual information-processing required during adaptation planning. In a small workshop with only a 
few resources, management of the resource information is not a problem. In large factories and 
production networks, automatic management and filtering of this information has substantial 
potential for reducing the amount of manual work, and thus reducing the time used for planning 
activities. In addition to providing a means for automatic reasoning, the developed resource 
description also provides additional information for human experts to carry out various planning 
activities relating to process planning and resource selection. 

The capability description of the resources is a major element when searching for suitable candidate 
resources for different applications. Therefore, the developed resource description and the model 
for managing the combined capabilities of multiple co-operating resources support both the original 
system design and the adaptation phases. They are especially useful for adaptation, because they 
allow  the  adaptation  planning  to  start  by  viewing  the  existing  system  as  a  whole  entity,  without  
having to consider each individual item of equipment comprising the system. The updateable 
resource description approach contributes towards better quality input information for making 
decisions during adaptation planning and reactive adaptation. The resource description and 
capability model also provide support for the original design of the system. During the original 
system design, they allow the search for those resources which together fulfil the capability 
requirements, thus obviating the need to break the capability requirements down into their most 
atomic elements.  

Even though it was not one of the original goals of the thesis, the resource description model, the 
capability taxonomy and the capability matching rules can also be used to support DFMA (Design for 
Manufacturing and Assembly) and CE (Concurrent Engineering) methodologies. The main point in 
these methodologies is to consider simultaneously the product design, the process and the system 
where the product will be manufactured, and to try to design the product so that that it is easy to 
manufacture and assemble. With the help of the approach developed here, the product designer can 
take the existing system and available in-house devices into account when designing a product. For 
example, he/she may first draw the high-level process description and then search for the available 
technologies for, for example, fastening. The result may be that, for example, a riveting capability 
already exists on the factory floor. The designer then needs to evaluate whether riveting could be a 
suitable method for fastening the parts for that specific product.  
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Dynamic production environments put pressure on production systems to themselves become 
dynamic. Dynamic adaptation to changing requirements requires reactivity, which in turn calls for 
self-organising abilities from the system. In order for the system to be able to self-configure itself, 
the components comprising the system need to know and be able to describe to others what they 
are, and what they can do in the system. In other words, they need to be able to express their own 
capabilities. The developed resource description, capability model, capability taxonomy and 
capability matching framework and rules make a significant contribution towards such self-organizing 
systems. They give the entities an ability to describe themselves, advertise their capabilities, and to 
form combinations with other entities. They also enable the orders to express the capabilities they 
need, and finally to make a match between them. Therefore, assuming the entities are also able to 
negotiate with each other, they may autonomously organize the production based on the available 
capabilities.  

Last but not least, the work developed in this thesis contributes significantly to evaluating the impact 
of changes in product requirements on a production system. This approach evaluated three aspects: 
1) the current system’s compatibility with different product requirements; 2) the relative adaptation 
effort (magnitude of change) needed to modify the system to be compatible with the requirements; 
3) the utilization (re-usability) of the current system in the new product scenarios. These aspects 
were illustrated in the form of graphs, which allow the comparison of different product scenarios in 
terms of the impact that the required changes will have on the system. Even though the evaluation 
was rather simplified and crude, it is a first step towards quantifying the needed adaptation to the 
system. It allows rough comparisons to be made between different product scenarios requiring 
adaptation, and possibly the selection between different products and production strategies. The 
ability to evaluate how well the current production system fulfils the new product requirements, and 
the number and type of modifications that need to be made to the system, opens up the possibility 
of evaluating the investment needed to achieve the adaptation. This is very important when making 
decisions about whether the current system should be adapted, or a new one should be built from 
scratch.   

6.3. Future work

This chapter discusses some future work and additional ideas and concepts which would further 
enhance the developed methodology. Many ideas for enhancement were already discussed in 
conjunction with the evaluation of the proposed methodology in Chapter 6.1 and are not repeated 
here in detail. These included, for example, consideration of the evolution of future requirements as 
part of the adaptation planning, consideration of the human factor for achievable resource 
capabilities, consideration of the ramp-up time and cost when evaluating the impact of change. The 
first and most urgent future task should be to finalize the implementation of the rule-base. Once that 
is done, the capability-matching can and will be tested with multiple different product scenarios. 
Based on the results of these tests, the resource description and rules will be further developed in 
order to increase the accuracy of the matching results. The following paragraphs introduce some 
other visions for future developments.  

As discussed earlier, simulation can be used to validate the scenarios generated by the automatic 
reasoning methods. In particular, simulations should be used to analyse the combined workspace, 
reachability and possible collisions that might occur when multiple resources are cooperating. As 
creating simulation models manually is a time consuming task, automatic simulation generation 
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would greatly enhance the developed methodology by significantly reducing the time needed to 
create the simulations, thus making them more feasible. The developed resource description 
supports the description of the position and orientation of the resources on the factory floor. 
Furthermore, the position and orientation of device interfaces are presented in the resource 
ontology as vectors. The simulation software could automatically attach the interface to the device 
model according to the saved vector information. Based on these interfaces, and the positional 
information about the devices on the factory floor, these could be loaded into the simulation world, 
allowing the system layout to be formed automatically. The matching of device interfaces could first 
be done based on the digital resource description. The simulation could then validate whether they 
really do match, e.g. that two conveyors are of the same height and able to co-operate. For example, 
the 3DCreate simulation software from Visual Components (Visual Components 2012) has an 
extensive library of robots and other system components from various manufacturers, in which the 
kinematics and functionality are pre-programmed. The resource description could be extended to 
include the Denavit-Hartenberg parameters (Wikipedia 2012) of the robots, and that information 
could be introduced into the simulation software, in order to facilitate a kinematic analysis of the 
system. 

The methodology doesn’t consider how the programs are generated for the machines. In order to 
route the product to a certain machine, it needs to have a program for performing the required 
activity. In the current implementation of the demonstration, the programs are pre-programmed for 
each machine. This is not, of course, a very adaptive approach. In the future, automatic generation of 
the tool paths and other machine programs could be integrated to form part of the dynamic 
operation environment framework. This can be done by integrating CAM (Computer Aided 
Manufacturing) software as part of the modular ICT-architecture. It would significantly enhance the 
proposed methodology and make it more useable in the dynamic adaptation context.  

The creation of the resource description should be simplified. In its current form, the user needs to 
select suitable capabilities for the resources from the capability listing. Basically, he/she needs to 
know what kind of capabilities should be assigned to different types of resources. The Capability 
Editor could be enhanced so that it would suggest to the users the possible capabilities based on the 
capabilities of similar type of machines. This could mean the generation of some kind of resource 
description template, which would give hints of what kind of capabilities should probably be added.   

The collection and use of the history data can increase the intelligence of the developed 
methodology by enabling learning from experience. However, the raw data is not useful without the 
context information, i.e. in what kind of applications the resource has been used. The condition of 
the resource largely depends on its usage history. In order to be able to estimate the condition and 
remaining lifetime of the resource, it is important to know the applications where it has been used 
and on what kind of process parameters it has been operating. The production system resources can 
take different roles based on their capabilities and the context in which they are used. For instance, a 
screwdriver can be used for screwing, while it takes the “screwdriver” role. It may also be used for 
drilling taking the “drill” role. In extreme cases it may even be used for hammering, when it takes the 
“hammering-tool” role. Naturally, the resource’s performance will differ depending on the roles and 
contexts in which it is being used. The history data should be managed by the role engine, so that it 
can be associated with  the specific  roles  that  were used while  collecting  the data.  In  this  way,  the 
content and context information could be combined, enabling new knowledge to emerge. This 
knowledge can then be utilized towards a more successful adaptation. The information on how the 



156 
 

resource  behaved  in  a  specific  context,  and  in  a  specific  role,  could  be  later  used  for  resource  
selection for similar applications. The role engine should be developed in order to manage this kind 
of history information.  
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7. CONCLUSIONS

The operational and business environment changes rapidly. Adaptation, both static and dynamic, is 
expected at all levels of operation, not only on single production facilities, but throughout distributed 
factories and logistic networks.  As a result of this increasing process complexity, caused by the 
challenges discussed in Chapter 1.1, companies have to shift from traditional static optimization of 
production processes and systems to the adaptation of their systems and the dynamic distribution of 
the orders. Today’s production systems can be regarded as having some characteristics of a Natural 
System.  In  such  a  system,  the  environment  evolves  over  time  and  the  system  itself  has  to  evolve  
during its lifecycle in order to survive in its environment. Optimization, in such a constantly changing 
environment, is no longer feasible, or even possible. It is of primary importance to find feasible 
solutions fast, in order to be able to adapt rapidly to the changing requirements. This new operating 
environment requires that real-time information about the production system and its components, 
the production process and the individual products is integrated into process, production and 
adaptation planning and control.   

Based on the extensive literature survey, it can be stated that the ability to cope with a rapidly 
changing production environment and changing requirements can be enhanced in four 
complementary ways: 1) the development of adaptive hardware, for example modular system 
components with standardized plug-and-play interfaces, which allow the easy integration and 
exchange of system components; 2) the development of adaptive, self-configurable control systems; 
3) the development of new methodologies and algorithms which guide and support the adaptation 
planning process at the whole system level; 4) the development of novel information models and 
information management systems to provide accurate, up-to-date information for adaptation 
purposes. The objective of this thesis was to provide solutions for the last two of these, (3 & 4).   

The research carried out during this thesis produced a computer-aided, capability-based adaptation 
methodology consisting of four main elements: 1) an adaptation schema (the methodology’s 
backbone) indicating the activities and information flows during the adaptation planning process; 2) 
a formal model for describing resources and their capabilities; 3) a framework and rules for 
capability-based matching of product requirements and system capabilities; 4) a preliminary 
approach to evaluating the impact of changes in product requirements on a production system. 
These form a comprehensive framework, which tries to address all the facets of the adaptation 
problem. The emphasis of the work was placed on the development of the resource description and 
capability model to support the adaptation of a production system. Resource information is regarded 
as the most important information when making adaptation decisions.  

As stated already in the introductory chapter, information which enables adaptation planning and 
supports adaptation decisions must be gathered from multiple sources. It must be obtained from the 
experts involved in the processes, such as system integrators, operators and maintenance providers, 
and from the information systems in which the information is either generated, stored or processed, 
such as control and monitoring systems, MES (Manufacturing Execution System) or ERP (Enterprise 
Resource Planning) and simulation systems. Therefore, multiple sources and contributors for the 
information must be allowed for. This thesis has culminated in a formal, computer-interpretable 
model for describing resources and their capabilities. As shown in Chapter 5, the use of a common 
ontology allows the resource information to be understood and contributed to by many entities, and 
therefore supports the interoperability of the information across multiple software modules and 
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contributors. Together with the development of semantic knowledge management technologies and 
monitoring systems, it enhances the real-time information management relating to resources’ 
characteristics, status and lifecycle. The lack of this information was identified as one of the main 
barriers to adaptation in industry today, often forcing new systems to be built from scratch when the 
production requirements change.  

As stated earlier, adaptation is expected to take place not only at the single production system level, 
but also over distributed factories and logistic networks. This capability model is not restricted to 
describing production resources in single factories, even though that was the environment for the 
case studies in this thesis. Instead, the model can also be applied to distributed environments. The 
capability model could, for example, be used for finding suitable capabilities from a whole supply 
chain and for dynamically distributing orders within a whole supplier network based on the available 
capabilities.   

During the study, the initial assumption that humans cannot be removed from the adaptation 
planning process was confirmed. In order to operate in a changing and complex environment, where 
the quantity and quality of the input information varies case by case, human intelligence should not 
be replaced by computers. Instead, both should be utilized in appropriate situations. Computers are 
good at handling, processing and filtering large amounts of data, whereas humans are capable of 
making intelligent decisions, which often require tacit, experience-based knowledge not managed by 
computers. Therefore, this thesis proposed a computer-aided, capability-based adaptation 
methodology in which the computer’s processing power is used to generate alternative configuration 
scenarios for the given product requirements from a large amount of resource information. The 
human expert can then use his/her intelligence to check the feasibility of the proposed scenarios and 
to select the best one based on the specified criteria. 

The discussion in Chapter 6 evaluated the strengths and limitations of the proposed methodology 
from multiple perspectives. It gave a thorough description of how each of the developed elements 
contributes towards the easier adaptation of production systems in a changing environment. In 
summary, it can be stated that the developed methodology supports adaptation planning and 
reactive adaptation in the following ways. The adaptation schema provides understanding of the 
adaptation planning process, its activities and related information flows, and the needed resources, 
and how these interact with each other. The formal resource model and capability-matching 
framework facilitate automatic filtering and reasoning with a vast amount of information and the 
generation of alternative solution scenarios. As a result, less manual information handling and 
reasoning is required. The resource model provides up-to-date information about the resources to 
facilitate more reliable adaptation plans. In addition, tools to manage the resource information and 
input it for the reasoning activities are provided. The developed compatibility domain approach 
facilitates the comparison between different product concepts in regard to the effort needed to 
adapt an existing system to new requirements. Consequently, compared to the current manual 
adaptation practices, less human effort is needed in the adaptation planning process, the adaptation 
scenarios can be created faster taking all the existing resources into account, and the decisions may 
be made based on more reliable input data. All of this can result in cost and time savings in the 
adaptation planning process. Savings can also be expected on the investment side, because the 
developed methodology encourages adapting and re-using the existing system.  
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Appendix 1: Capability model Part 1: Feeding Object recognition
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Appendix 2: Capability model Part 2: Gluing, pick&place, inserting
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Appendix 3: Capability model Part 3: machining lasering
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Appendix 4: Capability taxonomy

Production
Manufacturing

DiscreteManufacturing
Shaping

MaterialAdding
Casting
Moulding
LaserAdding

Material removing
Punching
Machining

Mill ing
Turning

Dril ling
Boring
Threading
Grooving

Laser cutting

Grinding

Material conserving

Forming

Bending

Pressing
Non-shaping

Surface finishing

Coating

Painting

Heat treatment

Marking

LaserMarking

StampMarking

Printing

Writing

InkMarking

Labelling

ContinuousManufacturing

Assembling
Joining

DeformingFixating
Elastic deforming

Pressing
Snapping
Shrinking
Wedging
Cl ipping

Plastic deforming
Bending
Twisting
Cl inching
Crimping
Folding



174 
 

Fastening
Riveting
Screwing
Sewing
Spring fastening
Stapling
Taping
Nailing
Clamping

Self  sticking
Gluing
Adhesive curing

UV curing
Thermal curing

Soldering
Dip soldering
Furnace soldering
Induction soldering
Iron soldering
Resistance soldering
Torch soldering

Welding
Cold welding
Metal welding

Arc welding
Laser welding
Resistance welding

Plastic welding
Friction welding
Heated air welding
Ultrasonic welding

Logistic

Manipulation
Picking up

Grasping
FingerGrasping
VacuumGrasping

Holding
Arranging

Placing
Mating
Inserting
Orienting
Positioning

Transporting
Flipping

Buffering
Storing
Routing
Feeding

BulkFeeding
Plate feeding (flexible tray)
Sword feeding
Vibratory feeding
Bowl feeding
Flexible feeding

Tube feeding
Tape feeding
Tray feeding (dedicated tray)
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Preparation

Loading
Fixturing
Adhesive application

Adhesive dispensing
Adhesive printing
Self adhesive tape application

Solder paste application
Solder paste dispensing
Solder paste screen printing

Unpacking
Cleaning

Qual ifying

Identi fication
Scanning 

RF scanning
Laser scanning

Vision reading
Dotcode reading
Barcode reading

Image capturing
Inspection 
Testing
Measuring

Finalization

Marking
Writing
Ink marking
Stamp marking
Printing
Label ling 
Laser marking

Packaging
Wrapping
Boxing
Bagging
Sealing
Encapsulating

Coating
Cleaning
Unloading
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Appendix 5: Example rules in the rule-base

DOMAIN EXPERT RULES 
Detailed capability definition 
Taxonomy: MaterialRemoving 
  

IF feature.hasCapabilityTaxonomy(“MaterialRemoving”) AND 
   feature.hasFeatureType (“hole”) AND 
   feature.hasFeatureType(“cylindrical”) AND 
   feature.getParameter(“diameter”) <= 40.0 
THEN 
  RETURN [Capabilities.find(“drilling”)] 
 
 
IF feature.hasCapabilityTaxonomy(“MaterialRemoving”) AND  
   feature.hasFeatureType(“hole”) AND 
   feature.hasFeatureType(“cylindrical”) AND 
   feature.getParameter(“diameter”) > 40.0 
THEN 
   RETURN [Capabilities.find(“drilling”), Capabilities.find(“boring”)] 
 
 
IF feature.hasCapabilityTaxonomy(“MaterialRemoving”) AND  
   product.getInitialProduct.hasShape(“cylindrical”) AND 
   feature.hasFeatureType(“cylindrical”) AND 
   (feature.hasFeatureType(“groove”) OR 
    feature.hasFeatureType(“pad”) OR 
    feature.hasFeatureType(“chamfer”) OR 
    feature.hasFeatureType(“rounding”)) 
THEN 
  RETURN [Capabilities.find(“turning”), Capabilities.find(“milling”)] 
 
 
IF feature.hasCapabilityTaxonomy(“MaterialRemoving”) AND  
   (feature.hasFeatureType(“groove”) OR 
    feature.hasFeatureType(“pocket”)) OR 
    (product.getInitialProduct.hasShape(“box”) AND 
     feature.hasFeatureType(“cylindrical”) AND 
     (feature.hasFeatureType(“groove”) OR 
      feature.hasFeatureType(“pad”))) 
THEN  
  RETURN [Capabilities.find(“milling”)] 
 
 
 
IF feature.hasCapabilityTaxonomy(“MaterialRemoving”) AND 
   feature.hasFeatureType(“thruHole”) AND 
   feature.getParam(“thickness”) <= 3.0 
THEN 
  RETURN [Capabilities.find(“laserCutting”), Capabilities.find(“punching”)] 

 
Taxonomy: MaterialAdding 
  

IF feature.hasCapabilityTaxonomy(“MaterialAdding”) 
THEN 
  RETURN CapabilityTaxonomy.find(“MaterialAdding”).findCapabilities() 
 

Taxonomy: Marking 
  

IF feature.hasCapabilityTaxonomy(“Marking”)  
THEN 
  RETURN CapabilityTaxonomy.find(“Marking”).findCapabilities() 
 

Detailed capability matching 
Taxonomy: Drilling 
  

IF feature.getParam(“diameter”) = drillBit.getParam(“hole_diameter”) AND 
   feature.getParam(“depth”) <= drillBit.getParam(“max_drilling_depth”) AND 
   feature.getParam(“bottomShape”) = drillBit.getParam(“shape_bottom”) AND 
   feature.getMaterial() IN  drillBit.suitableMaterials() AND 
   product.getInitialProduct().size().isInside(fixturing.minItemsize()-  
   fixturing.maxItemSize()) 
THEN 
  RETURN TRUE 
 

Taxonomy: Threading 
  

IF feature.hasCapabilityTaxonomy(“Threading”) AND 
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   feature.getParam(“threadAngle”) = threadingCutter.getParam(“thread_angle”) 
   teature.getParam(“threadingStandard”) = threadingCutter.getParam(“thread_standard”) 
THEN 
  RETURN TRUE 
 

Taxonomy: Fixturing 
  

fixture = resource.hasCapability(“fixturing”) 
 
IF ((product.getInitialProduct().getParam(“length”) OR    
    product.getIntialProduct().getParam(“width”)) <= fixturing.getParam(“max_spread”)) AND 
    (product.getInitialProduct().getParam(“length”) OR    
     product.getIntialProduct().getParam(“width”)) >= fixturing.getParam(“min_spread”)) AND 
    product.getInitialProduct().getParam(“weight”) <=    
    fixturing.getParam(“max_item_weight”)) OR 
   (product.getInitialProduct().size().isInside(fixture.itemMinSize() –    
    fixture.itemMaxSize()) AND 
    product.getInitialProduct().getParam(“weight”) <=    
    fixture.itemMaxSize.getParam(“weight”)) 
THEN 
  RETURN TRUE 
 

Taxonomy: Turning 
  

lathe = resource.hasCapability(“spinningWorkpiece”) 
 
IF product.getInitialProduct().size().isInside(lathe.itemMaxSize()) AND 
   product.getInitialProduct().getParam(“diameter”) <=    
   turningProperties.getParam(“max_turning_diameter”) AND  
   feature.getParam(“length”) <= turningProperties.getParam(“max_turning_length”) AND 
   product.getMaterial() IN turningTool.suitableMaterials() AND 
   feature.hasFeatureType(“type”) = turningTool.getParam(“type”) AND 
   feature.getParam(“insideRounding”) >= turningTool.getParam(“nose_radius”) AND 
   feature.getParam(“angleTowardsMaterial”) <= (180 – turningTool.getParam(“insert_shape”)   
   – turningTool.getParam(“cutting_edge_angle”)) AND 
   ((feature.getParam(“angleBetweenFaceAndPad”) <= 90 AND 
     feature.getParam(“angleBetweenFaceAndPad”) >=  
     turningTool.getParam(“cutting_edge_angle”)) OR 
    (feature.getParam(“angleBetweenFaceAndPad”) > 90 AND  
     turningTool.getParam(“cutting_edge_angle”) >= (180 – “angleBetweenFaceAndPad”)) AND 
  feature.getParam(“tolerance”) >= movingWorkspace.getParam(“repeatability”) 
THEN 
  RETURN TRUE 
 

Taxonomy: Milling 
  

millingMachine = resource.hasCapability(“spinningTool”) 
 
IF product.getInitialProduct().size().isInside(millingMachine.itemMaxSize()) AND 
   product.getMaterial() IN millingCutter.suitableMaterials() AND 
   feature.getParam(“insideRounding”) = millingCutter.getParam(“nose_radius”) AND 
   feature.getParam(“tolerance”) >= movingWorkspace.getParam(“repeatability”) AND 
   (((feature.hasFeatureType(“pocket”) OR feature.hasFeatureType(“groove”)) AND 
      feature.getParam(“width”) >= millingCutter.getParam(“tool_diameter”) OR 
    (NOT(feature.hasFeatureType(“pocket”) OR NOT(feature.hasFeatureType(“groove”))) AND     
   ((feature.getParam(“outsideRounding”) != 0 AND  
     millingCutter.getParam(“type”) = “rounding” AND    
     feature.getParam(“outsideRounding”) = millingCutter.getParam(“nose_radius”)) OR 
     feature.getParam(“outsideRounding”) = 0) AND 
   ((feature.hasFeatureType(“chamfer”) AND  
     feature.getParam(“chamferAngle”) = millingCutter.getParam(“cutting_edge_angle”)) OR  
    NOT(feature.hasFeatureType(“chamfer”)) 
THEN 
  RETURN TRUE 
 

Taxonomy: LaserMarking 
  

laserScanner = resource.hasCapability(“laserScanning”) 
 
IF feature.getParam(“length”) <= laserScanner.movingWorkspace.getParam(“length”) AND 
   feature.getParam(“width) <= laserScanner.movingWorkspace.getParam(“width”) 
THEN 
  RETURN TRUE 
 

Taxonomy: Screwing 
  

IF screw.getParam(“type”) =  screwingHead.getParam(“type”) AND 
   screw.getParam(“size”) <= screwingHead.getParam(“screw_size_max”) AND 
   screw.getParam(“size”) >= screwingHead.getParam(“screw_size_min”) AND 
   screw.getParam(“torque”) <= spinningTool.getParam(“max_torque”) AND 
   screw.getParam(“torque”) >= spinningTool.getParam(“max_torque”) 
THEN 
   RETURN TRUE 
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Taxonomy: VacuumGrasping 
  

IF product.getParam(“weight”) <= Combined_payload_of[robot + vacuumGripper] AND 
   findResource.hasCapability(“vacuumCup”) 
THEN 
  RETURN TRUE 
 
 
IF product.getParam(“weight”) <= Combined_payload_of[robot + vacuumGripper] AND 
   findResource.hasCapability(“shapedTip”) AND 
   product.size().isInside(shapedTip()) 
THEN 
  RETURN TRUE 
 

Taxonomy: MagneticGrasping 
  

Magnetic grasping by screwdriver 
IF providedCapability = “magneticGrasping” AND 
   product.getParam(“material”) = metal AND 
   product.getParam(“weight”) <= Combined_payload_of[robot + screwdriver] AND 
   product.getParam(“diameter”) <= screwdriver.maxItemSize.getParam(“diameter”) AND 
   product.getParam(“length”) <= screwdriver.maxItemSize.getParam(“length”) AND 
THEN 
   RETURN TRUE 
 

Taxonomy: Transporting 
  

conveyor = resource.hasCapability(“movingWorkspace”) AND (“holding”) 
 
IF product.getParam(“weight”) <= holding.getParam(“payload”) AND 
   product.getParam(“length”) <= conveyor.itemMaxSize.getParam(“length”) AND 
   product.getParam(“width”) <= conveyor.itemMaxSize.getParam(“width”) AND 
   product.getParam(“height”) <= conveyor.itemMaxSize.getParam(“height) 
THEN 
   RETURN TRUE 

 
NOTE: If other than directly product related parameters are known, e.g. required speed of the transporting 
capability or required transporting area, the following rules can be applied.  
 
With conveyor 
IF product.transportingArea(“length”) <= workspaceBox.getParam(“length”) AND 
   process.transportingSpeed(“speed”) <= movingWorkspace.getParam(“speed_x”) 
THEN 
   RETURN TRUE 
 
 
With robot + gripper 
IF process.getParam(“speed_x”) <= movingWorkspace.getParam(“speed_x”) AND 
   process.getParam(“speed_y) <= movingWorkspace.getParam(“speed_y”) AND 
   process.getParam(“speed_z) <= movingWorkspace.getParam(“speed_z”) AND 
   process.getWorkspace.size().isInside.Combined_workspace[robot + gripper] 
THEN 
   RETURN TRUE 
 

Taxonomy: PlateFeeding 
  

plate = resource.hasCapability(“feedingPlate”) 
 
IF product.getParam(“diameter”) <= plate.itemMaxSize.getParam(“diameter”) AND 
   product.getParam(“length”) <= plate.itemMaxSize.getParam(“length”) AND 
THEN 
   RETURN TRUE 
 

Taxonomy: ImageCapturing 
  

IF product.getSmallestParam.size() >= 2 * FoV width /  
   imageCapturing.getParam(“x_resolution”) AND 
   product.getSmallesParam.size() >= 2 * FoV height /     
   imageCapturing.getParam(“y_resolution”) 
THEN 
   RETURN TRUE 
 

  

COMBINED CAPABILITY RULES 
Combining parameters 
Tool length (tool + tool holder) 
Taxonomy: Milling 
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millingCutter = resource.hasCapability(“millingCutter”) 
 
Max_length_of_the _tool =  
toolHolder.getParam(“effective_length”) + millingCutter.BasicDeviceInfo.getParam(“length”) 
– MAX(toolHolder.getParam(“tool_entry_min”), millingCutter.getParam(“min_entry”)) 
 
Min_length_of_the_tool =  
toolHolder.getParam(“effective_length”) + millingCutter.BasicDeviceInfo.getParam(“length”) 
– MIN(toolHolder.getParam(“tool_entry_max”), millingCutter.getParam(“max_entry”)) 
 
Current_length_of_the_tool = 
toolHolder.getParam(“effective_length”) + millingCutter.getParam(“current_entry”) 
 

Taxonomy: Drilling 
  

drillBit = resource.hasCapability(“drillBit”) 
 
Max_length_of_the _tool = 
toolHolder.getParam(“effective_length”) + drillBit.BasicDeviceInfo.getParam(“length”) – 
MAX(toolHolder.getParam(“tool_entry_min”), drillBit.getParam(“min_entry”)) 
  
Min_length_of_the_tool = 
toolHolder.getParam(“effective_length”) + drillBit.BasicDeviceInfo.getParam(“length”) – 
MIN( toolHolder.getParam(“tool_entry_max”), drillBit.getParam(“max_entry”)) 
 
Current_length_of_the_tool = 
toolHolder.getParam(“effective_length”) + drillBit.getParam(“current_entry”) 
 

Workspace 
Taxonomy: Machining 
 Workspace in horizontal machining centers 

 
Vertical reach of the tool   
Lowest_spot_in_the_initial_product_where_can_be_machined = 
millingProperties.getParam(“distance_spindle_table_top_min”) – 
fixturing.getParam(fixturing_position_z) 
Highest_spot_in_the_initial_product_where_can_be_machined = 
millingProperties.getParam(“distance_spindle_table_top_max”) – 
fixturing.getParam(“fixturing_position_z”) 
 
Horizontal reach of the tool 
Minimum_distance_between_pallet_center_and_tool = 
millingProperties.getParam(“distance_spindle_pallet_center_min”) – Max_length_of_the_tool  
Maximun_distance_between_pallet_center_and_tool = 
millingProperties.getParam(“distance_spindle_pallet_center_max”) – Min_length_of_the_tool 
Current_maximum_distance_between_pallet_center_and_tool = 
millingProperties.getParam(“distance_spindle_pallet_center_max”) – 
Current_length_of_the_tool 
 

Taxonomy: ObjectRecognition 
  

FoV_width = (lightReflecting.getParam(“current_working_distance”) * 
imageCapturing.getParam(“detector_size_x”)) / lightReflecting.getParam(“focal_length_min”) 
 
FoV_height = (lightReflecting.getParam(“current_working_distance”) * 
imageCapturing.getParam(“detector_size_y”)) / lightReflecting.getParam(“focal_length_min”) 
 

Payload 
Taxonomy: Machining 
  

Payload of machining center 
millingMachine = resource.hasCapability(“spinningTool”) 
fixture = resource.hasCapability(“fixturing”) 
 
Combined_payload_of[millingMachine + fixture] = 
MIN(millingMachine.payload.getParam(“weight”) - fixture.basicDeviceInfo.getParam(“weight”), 
fixturing.getParam(“max_item_weight”)) 
 

Taxonomy: Manipulation 
  

Payload of robot + finger gripper 
robot = resource.hasCapability(“movingWorkspace”) 
gripper = resource.hasCapability(“fingerGripper”) 
finger = resource.hasCapability(“finger”) 
 
Combined_payload_of[robot + fingerGripper + fingers] = MIN(robot.payload.getParam(“weight”) 
– gripper.basicDeviceInfo.getParam(“weight”) – fingerGripper.getParam(“number_of_fingers”) 
* finger.basicDeviceInfo.getParam(“weight”), 
fingerGripper.getParam(“payload”)) 
 
Payload of robot + vacuum gripper 
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robot = resource.hasCapability(“movingWorkspace”) 
vacuumCreator = resource.hasCapability(“vacuumCreation”) 
 
Combined_payload_of[robot + vacuumGripper] = MIN(robot.payload.getParam(“weight”) – 
vacuumCreator.basicDeviceInfo.getParam(“weight”) -vacuumCreation.getParam(“number_of_cups”) 
* vacuumCup.getParam(“weight”)), 
1/9,81 * vacuumCup.getParam(“holding_force”) * vacuumCreation.getParam(“number_of_cups”)) 
 
Payload of robot + screwdriver 
robot = resource.hasCapability(“movingWorkspace”) 
screwdriver = resource.hasCapability(“spinningTool”) 
screwinghead = resource.hasCapability(“screwingHead”) 
 
Combined_payload_of[robot + screwdriver] = MIN(robot.payload.getParam(“weight”) - 
screwdriver.basicDeviceInfo.getParam(“weight”) –  
screwinghead.basicDeviceInfo.getParam(“weight”)), 
1/9,81 * magneticGrasping.getParam(“holding_force”)) 
 

Taxonomy: TrayFeeding, PlateFeeding 
  

Payload of the plate feeder 
trayFeeder = resource.hasCapability(“traySupporting”) 
plate = resource.hasCapability(“feedingPlate”) 
 
Combined_payload_of[feeder + plate] = traySupporting.getParam(“payload) – 
(traySupporting.getParam(“number_of_trays”) * plate.basicDeviceInfo.getParam(“weight”)) 
 

Accuracy 
Taxonomy: Manipulation 
  

Placing and inserting accuracy of robot and 2-finger gripper 
Combined_accuracy[robot + 2-finger gripper] = movingWorkspace.getParam(“accuracy”) + 
2*finger.getParam(“tolerance”) + 2*fingerGripper.getParam(“accuracy”) 
 
 

Taxonomy: Machining 
  

Machining accuracy [machine + fixture] 
machine = resource.hasCapability(“spinningWorkpiece”) OR 
resource.hasCapability(“spinningTool”) 
 
Machining_accuracy[machine + fixture] = movingWorkspace.getParam(“accuracy”) + 
fixturing.getParam(“tolerance”) 
 

Combining interfaces 
Tool + Tool holder 
Taxonomy: Milling 
  

IF toolHolding.getParam(“tool_attach_diameter_type”) !=   
   millingCutter.getParam(“holder_attach_diameter_type”) AND 
   toolHolding.getParam(“tool_attach_diameter_min”) <=   
   millingCutter.getParam(“holder_attach_diameter”) AND 
   toolHolding.getParam(“tool_attach_diameter_max”) >=  
   millingCutter.getParam(“holder_attach_diameter”) 
THEN 
  RETURN TRUE 
 

Taxonomy: Drilling 
  

IF toolHolding.getParam(“tool_attach_diameter_type”) !=  
   drillBit.getParam(“holder_attach_diameter_type”) AND 
   toolHolding.getParam(“tool_attach_diameter_min”) <=   
   drillBit.getParam(“holder_attach_diameter”) AND 
   toolHolding.getParam(“tool_attach_diameter_max”) >=  
   drillBit.getParam(“holder_attach_diameter”) 
THEN 
  RETURN TRUE 
 

Taxonomy: Threading 
  

IF toolHolding.getParam(“tool_attach_diameter_type”) !=   
   threadingCutter.getParam(“holder_attach_diameter_type”) AND 
   toolHolding.getParam(“tool_attach_diameter_min”) <=    
   threadingCutter.getParam(“holder_attach_diameter”) AND 
   toolHolding.getParam(“tool_attach_diameter_max”) >=  
   threadingCutter.getParam(“holder_attach_diameter”) 
THEN 
  RETURN TRUE 
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Taxonomy: Screwing 
  

screwdriver = resource.hasCapability(“spinningTool”) 
screwinghead = resource.hasCapability(“screwingHead”) 
 
IF (spinningTool.getParam(“diameter_max”) >=     
   screwingHead.basicDeviceInfo.getParam(“diameter”)) OR 
   (screwdriver.OutputInterface() = screwingHead.InputInterface()) 
THEN 
  RETURN TRUE 
 

Machine + tool holder 
Taxonomy: Machining 
  

machine = resource.hasCapability(“spinningWorkpiece”) OR 
resource.hasCapability(“spinningTool”) 
toolHolder = resource.hasCapability(“toolHolding”) 
 
IF machine.hasOutputInterface(“X”) = toolHolder.hasInputInterface(“X”) 
THEN 
  RETURN TRUE 
 

  

ADAPTATION RULES 
Generic guidelines 
  

IF requiredCapability.ExistsIn.currentSystem.findCapabilities() AND 
   matchParameters(currentSystem.capability.find(capabilityParameters),   
   requiredCapability(requiredParameters)) = true 
THEN 
   Use the current system and apply needed logical and parametric adaptation actions 
ELSE 
   Perform physical adaptation actions (reconfiguration) 
 

 
IF Physical adaptation of the existing system is needed 
THEN 
  Minimize the adaptation distance and create new combinations of the existing resources  
  and resources in storage 
 

New combination generation 

Taxonomy: Turning 
  

IF feature.hasCapabilityTaxonomy (“Turning”) AND currentSystem.hasCapability(“turning”) AND 
   matchParameters(currentSystem.capability.find(capabilityParameters),    
   requiredCapability(requiredParameters)) = false 
THEN 
   Create new combinations of the resource.hasCapability(“spinningWorkpiece”) and other  
   resource.hasCapability(“turningTool”) 
 

Taxonomy: Screwing 
  

IF feature.hasCapabilityTaxonomy (“Screwing”) AND  
   currentSystem.hasCapability(“screwing”) AND 
   matchParameters(currentSystem.capability.find(capabilityParameters),    
   requiredCapability(requiredParameters)) = false 
THEN 
   Create new combinations of the resource.hasCapability(“spinningTool”) and other  
   resource.hasCapability(“screwingHead”) 
 

Taxonomy: TrayFeeding, PlateFeeding 
  

IF process.hasCapabilityTaxonomy (“PlateFeeding”) AND  
   currentSystem.hasCapability(“plateFeeding”) AND 
   matchParameters(currentSystem.capability.find(capabilityParameters),    
   requiredCapability(requiredParameters)) = false 
THEN 
   Create new combinations of the resource.hasCapability(“traySupporting”) and other  
   resource.hasCapability(“feedingPlate”) 
 

Context specific rules 
User defined rules 
  

IF order.getParam(“number_of_ordered_items”) >= User given value 
THEN 
   RETURN resource.hasProperty(“fastest”)   
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IF order.getParam(“number_of_ordered_items”) < User given value 
THEN 
  RETURN resource.hasProperty(“cheapest”) 
 

Rules for applying user given criteria 
  

IF Reliability of the resource is specially valued 
THEN 
  RETURN MAX(resource.hasLifecycleProperty(“MTBF”)) 
 
 
IF Environmental sustainability is specially valued 
THEN 
  RETURN MIN(resource.hasProperty(“energy_consumption”)) 
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Appendix 6: Adaptation schema Node A0, Overall adaptation schema
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Appendix 7: Adaptation schema Node A1, Definition of product requirements
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Appendix 8: Adaptation schema Node A2, Matching product requirements with
existing capabilities

A2
1

C
om

pa
rin

g 
re

qu
ire

m
en

ts
 w

ith
 

ca
pa

bi
lit

ie
s 

of
 c

ur
re

nt
 

de
vi

ce
 c

om
bi

na
tio

ns
 a

t 
co

nc
ep

t n
am

e 
le

ve
l

A2
2

C
om

pa
rin

g 
re

qu
ire

m
en

ts
 w

ith
 

th
e 

cu
rre

nt
 d

ev
ic

e 
co

m
bi

na
tio

ns
 a

t 
pa

ra
m

et
er

 le
ve

l

A2
4

C
om

pa
rin

g 
re

qu
ire

m
en

ts
 w

ith
 th

e 
ca

pa
bi

lit
ie

s 
of

 
in

di
vi

du
al

 d
ev

ic
es

 in
 

th
e 

cu
rre

nt
 s

ys
te

m

C
ap

ab
ili

ty
 

re
qu

ire
m

en
ts

M
at

ch
in

g 
ca

pa
bi

lit
y 

co
nc

ep
t 

na
m

es

Li
st

 o
f m

at
ch

in
g 

ca
pa

bi
lit

ie
s

Su
ita

bl
e 

de
vi

ce
 c

om
bi

na
tio

ns
 o

n 
cu

rr
en

t s
ys

te
m

A2
3

Id
en

tif
iy

in
g 

m
is

si
ng

 
ca

pa
bi

lit
ie

s 
in

 
cu

rre
nt

 d
ev

ic
e 

co
m

bi
na

tio
ns

M
is

si
ng

 
ca

pa
bi

lit
ie

s
S

ui
ta

bl
e 

in
di

vi
du

al
 d

ev
ic

es
 

on
 c

ur
re

nt
 s

ys
te

m

Li
st

 o
f m

at
ch

in
g 

ca
pa

bi
lit

ie
s

C
ur

re
nt

 
sy

st
em

 
de

sc
rip

tio
n

D
es

ig
n 

co
ns

tra
in

ts

D
ev

ic
e 

& 
co

m
pe

te
nc

e 
de

sc
rip

tio
n

C
ap

ab
ilit

y 
ta

xo
no

m
y

C
om

bi
ne

d 
ca

pa
bi

lit
y 

m
od

el
D

om
ai

n 
ex

pe
rt 

ru
le

s 
(d

et
ai

le
d 

ca
pa

bi
lit

y 
m

at
ch

in
g)

C
om

bi
ne

d 
ca

pa
bi

lit
y 

ru
le

s 
(c

om
bi

ni
ng

 
pa

ra
m

et
er

s)

Li
st

 o
f 

m
is

si
ng

 
ca

pa
bi

lil
iti

es

Ti
m

e 
&

 C
os

t 
co

ns
tra

in
ts

B
us

in
es

s 
&

 li
fe

cy
cl

e 
in

fo
rm

at
io

n 
of

 d
ev

ic
es



186 
 

Appendix 9: Adaptation schema Node A3, Creating an adaptation plan for the
current system
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Appendix 10: Adaptation schema Description of the terms used in the IDEF0-
diagrams

Table 35. Description of the inputs, outputs, controls and resources used in the adaptation schema IDEF0-
diagrams in alphabetical order.  

TERM EXPLANATION 

Adaptation cost 
estimate 

Estimation of the total cost of adapting the production system, including layout, devices and 
tooling, installation, programming, training, etc.  

Adaptation 
requirements 
 

Adaptation requirements define how the current system needs to be modified in order to 
meet the new requirements. These changes include the needed physical changes, such as 
adding devices, logical changes, such as changing the product routing, or parametric 
changes, such as changing the processing parameters of the machines.  

Adaptation 
guidelines 
 

Context and domain specific guidelines that guide the adaptation planning process. The 
guidelines are defined by the company policies, philosophy and way of doing things. They 
may guide, for example, to what extent devices should be re-used and how the trade-off 
between new, efficient but expensive equipment and old, cheap but slow equipment should 
be handled.  

Adaptation rules Adaptation rules are divided into three categories: generic guidelines, new combination 
generation, and context-specific rules. The generic guidelines provide rules for determining 
which type of adaptation is required, namely physical, logical or parametric. The new 
combination generation rules guide the generation of new combinations from existing and 
acquired devices. The context specific rules define how the context or user specific criteria is 
applied when making the selection between different configuration scenarios.  

Blank model The blank model describes the original shape and dimensions of the part (billet) to be 
processed.  

Business 
information of 
devices 

Business information includes information relating to the costs of acquiring and using the 
specific devices.  

Capabilities 
possible without 
physical changes 

Capabilities which can be obtained without making any physical changes to the current 
system. This means that only logical or parametric changes need to be made.  

Capability 
requirements  

Capability requirements are functional requirements for resources and are set by the 
product characteristics. These are the specific capabilities required for the production of a 
particular product with the required quality and volume. Capability requirements include the 
requirement for the functional capability (e.g. “moving”, “grasping”, “drilling”) as well as the 
capability parameter requirements (e.g. “velocity” of the “moving” capability). Capability 
requirements can include both simple and combined capabilities and can be defined at 
different taxonomy levels. This means that the functional requirement can be defined as e.g. 
“material removing”, or with more detail e.g. “milling” or “turning”. 

Capabilities to 
acquire 
 

Indicates the capabilities which do not exist in the current production system and can not be 
obtained by making logical or parametric adaptations to the system. Therefore, these 
capabilities needs to be acquired from outside the current system. The missing capabilities 
may be found from the company’s own device pool, or otherwise they may need to be 
imported from outside.  

Capability 
sequence 
 

The order in which the capabilities should take place during the production process in order 
to manufacture or assemble the product. For example, in the case of assembly, it means the 
sequence in which the assembly operation-related capabilities should be performed.  

Capability 
taxonomy 

A taxonomy of existing and possible capabilities. The taxonomy allows the linking of 
capabilities at different abstraction levels and the search for devices which provide similar 
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functions (e.g. joining) with different behaviors (e.g. welding, gluing, riveting). Both the 
product requirements and device capabilities refer to this taxonomy, enabling the mapping 
of the capabilities at different abstraction levels.   

Catalogue device 
descriptions 

Information about devices that can be ordered from the equipment and system providers.  

Combined 
capability model 

A model, and its instances, indicating which simple capabilities are needed in order to 
achieve combined capabilities.  

Combined 
capability rules 

Combined capability rules are divided into two categories: Combining parameters and 
Combining interfaces rules. The first ones are used to combine the parameters of simple 
capabilities in order to derive the parameters of the combined capabilities, which consist of 
these simple capabilities. The latter rules are used to check that the devices have compatible 
interfaces, when creating new device combinations.  

Competence 
description 

A description of the competences possessed by the human resources of the factory. This 
includes both standard competences and special competences and includes the ability to 
perform specific fabrication, assembly, and inspection operations and/or the ability to 
achieve certain levels of quality in performing the operations. 

Current system 
description 

A description of the existing production system including both the machine resources 
(devices) and human resources. It also describes the layout of the current system.  

Design 
constraints 

Constraints on the production system designs imposed by corporate policy, layout, system 
reference architecture, technology used, ergonomics, or the paradigm which is followed.  

Device 
description 
 

A technical description of the production device resources which may be available for 
manufacturing a product. The devices include, for example, fabrication machines (turning, 
milling, punching,…); assembly machines (robots, conveyors, grippers, …); inspection 
machines; material handling and transport devices; tools (milling and turning cutters, drill 
bits, holders…); and fixtures.  The resource description of the devices covers the following 
important aspects: the capability of the device, including the capability concept name and 
parameters, interfaces and business and lifecycle information.  

Device interfaces A description of the device interfaces, including mechanical, energy and communication 
interfaces. They allow the matching of devices with other devices having compatible 
interfaces.  

Domain expert 
rules 

Domain expert rules are divided into two categories: detailed capability definition; and, 
detailed capability matching rules. The first ones are used to define the detailed capability 
requirements from the pre-process plan, whereas the latter ones enable a detailed match 
between the required and provided capabilities to be made.  

Feature 
recognition tool 
 

The feature recognition tool is able to recognize and classify features from the 3D product 
model. With the tool, it is possible to analyze what kind of manufacturing and assembly 
processes are required during the production of the product.  

Fixturing 
requirements 

The fixturing requirements specify the requirements concerning the billet set-up and 
fixturing.  

In-house device 
descriptions 

A resource description of the devices that exist in the factory, either on the current system 
layout or in storage.  

Lifecycle 
information of 
devices 

This includes information about the usage, maintenance history and condition of the devices. 
It also includes data collected from the factory floor, e.g. MTBF and operational values. 
 

List of matching 
capabilities 

A list of all the capability requirements that can be satisfied, including descriptions of the 
devices that provide those capabilities.  

List of missing 
capabilities 

A list of capabilities that are missing from the current system and need to be obtained by 
either physical, logical or parametric adaptation actions.  

List of suitable 
devices 

A list of devices whose capabilities match the current requirements.  
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Manufacturing 
features 

The principal features of the product or part, which affect processing decisions.   

Manufacturing 
process 
knowledge 

General knowledge of the manufacturing processes which could be used to make a given 
component or subsystem, and the limitations imposed by such processes. 

Market data Estimates of the total volume of the product which could be sold, its market life, and the 
production rate required to meet the projected market opportunity. In a dynamic market 
environment there may not be reliable estimates available.  

Matching 
capability 
concept names 

A list of capabilities matching the requirements at the capability concept name level. The 
concept name level match is found with the help of the capability taxonomy.  

Material 
knowledge 

Information about the characteristics of raw materials, such as structural, chemical, thermal 
and electrical properties. This includes engineering knowledge about the material behavior 
with different processes and process parameters. It helps to define suitable manufacturing 
and assembly methods for the product. 

Material 
requirements 

Special requirements concerning the production processes and process parameters set by 
the specific material characteristics.  

Missing 
capabilities 

Those required capabilities which do not have a match in device combinations on the current 
system (e.g. on current workstations). This indicates that the combined capabilities need to 
be divided into simple capabilities and a match should be searched for from the individual 
devices’ capabilities. 

Physical 
constraints 

The dimensional constraints set by the facility space and other devices on the factory floor.  

Pre-process plan A preliminary definition of the manufacturing and assembly process based on the identified 
manufacturing features. The pre-process plan is a generic recipe of how to produce the 
product and it only defines the required functions on high level, e.g. “joining” or “material 
removing”.  

Production 
constraints 

The requirements and limitations on facility adaptation which are derived from ongoing 
production management considerations, including current and future production 
commitments.   

Product model 
 

This is a computer-interpretable representation of the product and its assembly structure. It 
typically includes a 3D CAD-model of the product and its components, their geometry, 
dimensions, materials, tolerances and surface finishes. 

Product order The quantities of parts or products to be produced and their nominal delivery dates. 
Recognized 
features 

The principal features affecting processing decisions, identified from the product model. 
These include, for example, the shape, type and dimensions of the feature.   

Resource 
availability 
 

The resource availability indicates the current and planned levels of utilization of the 
resources in the production facility. This shows whether the resource is currently allocated to 
another production task or if it is freely available. It also includes information about the 
resource state. Such information could include: busy on other job, idle, broken, down for 
maintenance, etc.  

Resource 
descriptions 

Technical descriptions of the production resources which may be available for the 
production of the product. The resources include both machine (device) and human 
resources. In other graphs the resource descriptions are further divided into device 
description, competence description, current system description, in-house device description 
and catalogue device description.  

Resource 
schedule 

The expected schedule of availability of resources for production tasks.   

Rule-base The rule-base contains the Domain expert rules, Combined capability rules and Adaptation 
rules that are used for the automatic matching of product requirements and system 
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capabilities during the adaptation planning.  
Selected system 
configuration 
 

The selected system configuration is the system configuration that is seen as feasible for the 
given production problem in the specific context. The selection is based on the capabilities 
and availability of the system and different user-defined criteria, such as costs, speed or 
energy efficiency as well as different company and domain-specific constraints and the 
condition of the resources.  

Suitable 
individual 
devices on 
current system 

Those individual devices on the current system that possess capabilities matching the 
capability requirements.  

Suitable device 
combinations on 
current system 

The combinations of devices on the current system that possess capabilities matching the 
capability requirements. These combinations can be, for example, complete workstations or 
cells.  

System 
configuration 
scenarios 

Different system configuration scenarios matching the capability requirements set by the 
product order.   

Time & Cost 
constraints 

The limitations imposed by product planning, and other corporate decisions regarding the 
acceptable manufacturing costs and time-to-market for a product. 

Time & cost 
reference data 

Standardized data that specify estimated times and costs for standard operations and can be 
used in the preliminary cost estimates. 

Tolerance and 
quality 
requirements 

The requirements for part tolerances and quality. 

Tolerance 
standards 

These are the industrial or corporate standard engineering tolerances, tolerancing 
techniques and limitations. 

User defined 
criteria 

The various user-defined criteria that are used to compare different production system 
configuration scenarios against each other.  These criteria may relate, for example, to costs, 
speed or energy efficiency. 

 




