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Abstract

Remotely sensed earth observation (EO) has revolutionized our understanding
of our dynamic environment. Hyperspectral remote sensing is, in many ways, the
ultimate optical remote sensing technology. Hyperspectral remote sensing is suited
especially well for environmental studies due to it’s capability to discriminate between
species and quantify the abundance of different materials and chemicals. In this
thesis remote sensing methods for hyperspectral data, applicable in environmental
monitoring of coastal environment are developed and tested.

The planning of hyperspectral flight campaign HYPEOS8 in South-West Finland
raised the need to validate and develop data processing methods for HYPEOS as well
as for future hyperspectral flight campaigns. The research presented in this thesis can
be largely considered as a response to this need. The study concentrates on four main
topics: wetlands mapping, benthic mapping, water quality and atmospheric correc-
tion. The study was done using airborne hyperspectral data and field spectroscopy
measurements.

The results of this study emphasize the importance of local calibration and vali-
dation of methods used. Water quality retrieval algorithms developed in local envi-
ronmental conditions outperformed those validated elsewhere. The results also show
that hyperspectral remote sensing of benthic cover types is limited to rather shallow
areas, indicating the need to use state of the art methodology in order to increase op-
erational depth range. The proposed atmospheric correction algorithm produced very
good results. The accuracy of model-based algorithm increases when Empirical-Line
(EL) correction using spectral field measurements was applied to spectra generated
by the model.

Keywords: Hyperspectral, wetlands mapping, benthic mapping, water quality, at-

mospheric correction
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Chapter 1
Introduction

Broadly defined, remote sensing is any technology employed to study the char-
acteristics of objects from a distance. The term is usually used in a more restricted
sense in which the observation is made from above the phenomena of interest, from a
sensor carried on an airborne or spaceborne platform, and the information is carried
by electromagnetic radiation (Rees, 2001). The apparatus currently used for remote
sensing can be divided into two groups: active and passive systems. The active sensors
generate and transmit a signal toward the target, and receive and record the returned
signal after its interaction with the target. The use of remote sensing in environmen-
tal applications has certain advantages and disadvantages compared to conventional
in situ measurements (Tuominen and Lipping, 2011). It should be pointed out that
remote sensing studies almost always involve some use of ground truth measurements
or observations. Thus remote sensing is not replacing conventional field studies; on
the contrary, it is extrapolating from them.

Remotely sensed earth observation (EO) has revolutionized our understanding
of our dynamic environment (de Leeuw et al., 2010). The employment of remotely
sensed EO techniques expanded in the 1970s when digital satellite borne imagery
became available. Remote sensing has provided major advances in understanding the
climate system and its changes, by quantifying the processes and states of the atmo-
sphere, land and oceans. A variety of ecological applications such as the prediction

of the distribution of species, studying the spatial variability in species richness and
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detecting natural and human-caused changes at scales ranging from individual land-
scapes up to that of the entire Earth, require data from broad spatial extents that
cannot be collected using field studies. Remote sensing methodology addresses these
needs (Kerr and Ostrovsky, 2003).

Hyperspectral imaging is a rather young scientific discipline. The first airborne
imaging spectrometer was flown in 1982, more than three decades ago (Vane et al.,
1984). Hyperspectral remote sensing is suited especially well for environmental studies
due to it’s capability to discriminate between species and quantify the abundance of
different materials and chemicals. In Finland the vast majority of the environment
is either forest of water areas, both of which can be studied using hyperspectral
imaging. The beginning of hyperspectral imaging in Finland is closely related to
the development of Airborne Imaging Spectrometer for Applications (AISA), built in
1992 (Mékisara et al., 1993). AISA was developed by the Technical Research Center
of Finland (VTT) and later matured into a commercial product manufactured by
Specim Ltd.

As a result of the geological studies, whose aim was to assist in geospatial munic-
ipal planning, the need for hyperspectral studies in Satakunta was raised. In 2004 a
large regional hyperspectral flight campaign HyperGeos was planned. This campaign,
planned to cover the whole Satakunta province, was coordinated by the Geological
Survey of Finland. Unfortunately the plan was not realized. However, the careful
planning of HyperGeos laid ground to a new flight campaign: in June 2008the hyper-
spectral flight campaign HYPEOS was conducted. The planning and implementation
of HYPEOS flight campaign in Satakunta raised the need to validate and develop data
processing methods for HYPEOS as well as for future hyperspectral flight campaigns.
The research presented in this thesis can be largely considered as a response to this
need. Hyperspectral remote sensing in coastal regions is more complex than in inland.
There are several issues that have to be considered. Due to the high absorption and
transmission of water bodies the reflected radiation level is much lower in water areas
compared to terrestrial (Gao et al., 2009). The interface between the atmosphere and
water (i.e. the water surface) has two effects on the radiation detected by a sensor

aimed at it; sun glints and refraction causing changes in radiation. Due to these
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reasons, atmospheric correction of coastal areas is challenging, especially at water
areas. Benthic mapping near estuaries is a difficult task. The attenuation of light in
turbid waters is high. The water quality parameters such as chlorophyl content and
turbidity can change rapidly.

This doctoral study is closely related to two environmental programs, the Finnish
Inventory Programme for the Underwater Marine Environment (VELMU) and Posiva
Ltd’s Environmental Research Programme. The marine environment in Finland is
threatened by various human-induced processes and activities, e.g., eutrophication,
harmful discharge of substances and climate change. In the VELMU programme,
both abiotic and biotic characteristics of the marine environment are inventoried. In-
ventories are conducted particularly to map the distribution of benthic habitats, and
the vascular plants, macro-algae, and fish species living in these habitats (Kallasvuo,
2010). Hyperspectral remote sensing has a potential to provide such potential. The
aim of the Posiva’s environmental research programme is to record as extensively as
possible the current state of the surface environment and, at the same time, to pro-
duce material that can assist in predicting the development of the environment over
a period spanning thousands of years (Pere et al., 2015). The research programme fo-
cuses, among others, on the fauna, flora and water system of the Olkiluoto island and
surrounding area. Hyperspectral remote sensing can provide cost efficiency and widen

the spatial coverage of such research by supplementing conventional field studies.

1.1 Objectives

The objectives of this thesis were largely influenced by the needs of collabora-
tive partners of the data analytics research group of the Pori Department of TUT.
The atmospheric correction of HYPEOS hyperspectral data is important to Posiva
Ltd. The data can be used as a baseline for future hyperspectral missions. Change
detection can not be implemented without state of the art atmospheric correction.
Posiva also had another interest related to hyperspectral imaging, namely, reed bed
inventories using remote sensing. Information revealing the environmental effects of

the non-organic turbidity in coastal areas is needed by the environmental adminis-
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tration for the Environmental Impact Analysis of projects that will increase the clay
induced turbidity. Centre for Maritime Studies of Turku University was looking for
new methods for providing such information. The Finnish Inventory Programme for
the Underwater Marine Environment (VELMU), designed to provide information for
the protection of the Baltic Sea, collects data on the diversity of underwater marine
biotopes and species. Finnish Environment Institute and South-Bothnia ELY Centre
were interested in the feasibility of remote sensing as a tool in VELMU.

The general objectives of this thesis were to validate and develop methods for
hyperspectral monitoring of coastal environment. One of the major disadvantages
related to remote sensing algorithms is that they tend to be site specific. This is
especially true when water areas are considered. Algorithm that works at oceans fails
at the coastal waters of the Baltic Sea. The specific objectives of this study are:

1. to develop algorithms for water quality parameter retrieval applicable in turbid

optically complex coastal waters of the Baltic Sea

2. to evaluate the applicability of hyperspectral imaging for benthic cover mapping

in turbid coastal waters and determine the most efficient methods to be used

3. to develop an atmospheric correction method that can produce reliable results

in challenging conditions of coastal regions, i.e, high amount of water vapor in
the lower atmosphere.

4. study the temporal and spatial spectral variability of reed beds and test the

discrimination between reed beds and other vegetation.



Chapter 2

Background and literature

overview

2.1 Hyperspectral imaging and sensors

Hyperspectral remote sensing is, in many ways, the ultimate optical remote sens-
ing technology. It allows to uniquely identify and map planetary surface materials
through the measurement of continuous, relatively high resolution spectrum of each
pixel in spatially high resolution images of the surface (MacDonald et al., 2009).
The advances in hyperspectral imaging in the past few decades have been remark-
able, but it is clear that the technology is not yet anywhere near complete. In the
literature the terms hyperspectral imaging, imaging spectroscopy, and imaging spec-
trometry are often used interchangeably. Even though some differences might exist, a
common framework for such definitions is the simultaneous acquisition of spatially co-
registered images in many narrow, spectrally contiguous bands, which are expressed
in calibrated radiance units (Schaepman, 2007). The original definition for imaging
spectrometry proposed by Goetz et al. (1985) is: "the acquisition of images in hun-
dreds of contiguous, registered, spectral bands such that for each pixel a radiance
spectrum can be derived". Although Goetz et al. (1985) defined the prerequisite of
hundreds of spectral bands, it can be argued that it is not the number of the measured

wavelength bands that qualifies a sensor as hyperspectral but rather the narrowness

5
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and contiguous nature of the measurements (Shippert, 2004). There is not a specific
number of bands required to qualify a sensor as hyperspectral, it largely depends on
the spectral characteristics of the materials under study.

The absorption features of natural materials in reflectance spectra are due to
specific chemical bonds in a solid, liquid, or gas. The variations in material compo-
sition often causes shifts in the position and shape of the absorption features in the
spectrum (Clark, 1999). The concept of spectral signatures is fundamental in hy-
perspectral imaging. If the reflectance values for a given material are plotted across
a range of wavelengths, the resulting curve is referred to as the spectral signature
of that material. Because the spectral signature is different, for each material, it is
possible to discriminate between materials based on the differences in their spectral
signatures (Pabich, 2002). Hyperspectral data can be analyzed with respect to spec-
tral signatures obtained from spectral libraries available or collected in the field. As
an example, the spectral signature of muscovite (mineral) is shown in Figure 2.1. In
order to demonstrate the difference between hyperspectral and multispectral imaging,
the bands of multispectral Landsat TM sensor are also indicated in the figure. It can
be seen that multispectral sensor is not able to record the strong absorption features
of the muscovite spectra. Some features are missed because of the gaps in spectral
coverage and some due to poor spectral resolution.

Hyperspectral imagery is acquired by the instruments called imaging spectrome-
ters. The most common operation principles of hyperspectral sensors are the push-
broom scanning (electronical) and the whiskbroom scanning (electro-mechanical) (Or-
tenberg, 2011). Pushbroom scanners use an array of line detectors located at the focal
plane of the image formed by sensor optics, which are moved along in the flight track
direction. Whiskbroom scanners use mirrors in order to scan a sweep from one edge
of the swath to the other.

There are several ways to acquire hyperspectral data. They can be categorized
into three groups according to where the sensor is located with respect to the Earth’s
surface: ground, airborne or spaceborne imaging. Field spectroscopy is the technique
used to measure reflectance properties of rocks, soils, vegetation and water bodies

in the natural environment, generally under solar illumination (Milton, 1987). It is
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Figure 2.1: The spectral signature of muscovite and the bands of the Landsat TM
Sensor

essential to measure the reflectance spectra of intact materials in the field, because
removal of the sample can easily destroy the sample’s surface properties. Further-
more, the laboratory measurements are impractical for many large natural surfaces.
The validation radiometric and atmospheric correction of remotely sensed data is an
important application where the data acquired using field spectrometers are essential
(Brook and Ben-Dor, 2011). Field spectroscopy is technically less challenging than
airborne imaging spectrometry, as the sensing instrument can remain fixed over the
target of interest for much longer, and the distance between the instrument and the

target is short (Milton et al., 2009).

The majority of past and current hyperspectral sensors are designed to be used
airborne. In the latest decades advances in hyperspectral sensor technology have been

remarkable. In the early 80s the first airborne sensor AIS (Airborne Imaging Spec-
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trometer) was introduced. The key technology of the hyperspectral sensors is the de-
tector technology. Although the first detectors of AIS contained only 32x32 elements,
they enabled the construction of an imaging spectrometer that covered the spectral
range of 1200-2400 nm (Vane et al., 1984). In the late 1980’s several commercial
hyperspectral imagers were introduced like CASI (Compact Airborne Spectrographic
Imager) and DAIS (Digital Airborne Imaging Spectrometer), for example (Nakashima
et al., 1989; Richter, 1996). The introduction of these sensors started the spread of
hyperspectral imaging towards commercial applications. The development of AVIRIS
(Airborne Visible/infrared Imaging Spectrometer) by the NASA Jet Propulsion Lab-
oratory is probably the most comprehensive research and development project related
to hyperspectral imaging. AVIRIS development was started in 1984 and the imager
first flew aboard a NASA ER-2 aircraft in 1987. Since then it has gone through major
upgrades as technology has advanced in detectors, electronics and computing (Goetz,
2009). In addition to sensors referred above, two instruments, AISA and HyMap,
have been deployed for commercial and scientific operations around the world. Both
sensors provide excellent signal-to-noise ratio (<500:1) and image quality. The total
setup needed for airborne hyperspectral acquisition can be quite complex. It typi-
cally consists of a sensor (optoelectronic unit), power supply, data accumulation and
control unit, vibration damping platform, operator display, GPS receiver, inertial
measurement unit, and data processing device (Ortenberg, 2011). Hyperspectral ac-
quisition systems are traditionally expensive, space consuming and heavy. One of the
biggest trends in remote sensing is the use of unmanned aerial vehicles (UAV). The

use of UAVs can provide low cost and flexible approaches to hyperspectral imaging.

2.2 Atmospheric Correction of Hyperspectral Data

In order to use hyperspectral imaging data for quantitative remote sensing of en-
vironment, the atmospheric effects must be removed. Over the years, atmospheric
correction algorithms have evolved from the simple empirical methods to more recent
methods based on rigorous radiative transfer modeling approaches. The objective of

atmospheric correction is to retrieve the surface reflectance (that characterizes the
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surface properties) from remotely sensed imagery by removing the atmospheric ef-
fects. The data after radiometric correction is given as radiance, i.e., the energy
reflected from a unit surface area (1W/m?). In atmospheric correction, the radiance
values are converted into reflectance data, expressing the fraction of radiation re-
flected from the surface. Atmospheric correction is a difficult procedure due to the
complex nature of atmosphere; the correction procedure must be done individually
for each flight line. Atmospheric correction should be done with utmost care because
it largely determines the usability of the final data. The use of most algorithms and
indices requires well calibrated reflectance data. Accurate change detection cannot
be accomplished without atmospheric correction because otherwise it is impossible to
determine whether the change occurred in the continuously varying atmosphere con-
ditions or in the target under study. Several methods for the atmospheric correction
have been proposed in the literature. Methods can be divided into three categories: 1)
empirical-based, 2) model-based methods and 3) combined methods. The empirical-
based methods rely on the scene information and do not use physical information as
the model-based methods do. The scene information means the information that is
embedded in the image, i.e., the radiance at certain location. Model-based correc-
tion approaches use methods in which the radiance at the sensor is modeled using
radiative transfer models and data from detailed atmospheric and sun information
archives. In the following, a short overview of combined methods is given as these

are most relevant from this thesis’ point of view.

2.2.1 Combined methods

Combined methods, also referred as hybrid methods use both radiative modeling
and empirical approaches for the derivation of surface reflectances from hyperspectral
imaging data. The surface reflectance spectra retrieved using radiative transfer mod-
els often contain residual atmospheric absorption and scattering effects (Gao et al.,
2009). The reflectance spectra may also contain artifacts due to errors in radiometric
and spectral calibrations. These errors can sometimes be corrected using combined

atmospheric correction methods. A combined Empirical Line (EL) and model-based
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method was first suggested by Clark et al. (1993). The combined method produced
better results than empirical- or model-based methods alone. The EL correction com-
plemented model-based method by correcting for fine details such as errors in solar
flux or radiance calibration, and could better correct for unusual path radiance due
to aerosols.

Uniform calibration ground targets needed in the EL method can be hard to find.
Goetz et al. (1998) proposed a technique that combines ground measurements of spec-
tral irradiance with existing radiative transfer model to derive the model equivalent
of an empirical line method correction without the need for uniform ground targets
of different reflectance. The method is based on determining atmospheric parameters
from the spectral irradiance measurements made at the earth’s surface which are fed
into the MODTRAN model to provide an at-sensor modeled radiance (Berk et al.,
1989).

Another combined correction method is EFFORT (the Empirical Flat Field Op-
timal Reflectance Transformation) that makes a linear adjustment to the data in
order to increase the accuracy of model-based atmospheric correction (Broadman,
1998). EFFORT has its roots in the EL method often used to correct data from
uncalibrated sensors using field measured spectra. The empirical gains and offsets
are applied to the data after a model-based atmospheric correction has been done us-
ing the ATEREM radiative transfer code. However, in this method gains and offsets
are not derived from field measurements. By using the data themselves EFFORT
generates "pseudo field" spectra by fitting each observed spectrum with a parametric
model of Legendre polynomials optionally augmented with real spectra. Gains and
offsets for every band are calculated by comparing the modelled spectra to the data
spectra.

Ben-Dor et al. (2004) presented a comprehensive study where atmospheric correc-
tion techniques were evaluated using model-based HATCH, EL and their combined
methods. The study utilized a synthetic data set that represented at-sensor radiance
data of the AVIRIS sensor in order to have well defined controlled conditions. It
was found that application of the EL to model-based corrected data was much more

effective than applying it to the original radiance data. The thematic analysis using
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a SAM classifier showed that the combination of EL and HATCH methods produces
best classification accuracy. The atmospheric features are stronger when spaceborne
data is used as the travel in the atmosphere is longer. Matsunaga et al. (2013) pro-
posed the use of combined Dark Pixel method and MODTRAN 5 code for correcting
hyperspectral spaceborne HISUI data.

2.2.2 Atmospheric correction of sea areas

The atmospheric correction methods presented in remote sensing literature are
primarily designed for remote sensing of land surfaces. However, these methods in
most cases are not directly applicable for hyperspectral remote sensing of sea areas.
The main reason is that sea surfaces are much darker than land surfaces. Due to the
high absorption and transmission of water bodies the reflected radiation level is much
lower compared to land areas (Gao et al., 2009). Another reason is that the reflection
from air/water interface is not Lambertian. Accurate modeling of atmospheric ab-
sorption and scattering effects and the specular sea surface reflection effects is required
in order to derive the so called "water leaving reflectance" from hyperspectral imaging
data. Water leaving reflectance is the reflectance resulting from scattering by water
bodies excluding contributions from specular reflection at the air-water interface.

Severe problems related to atmospheric correction of sea areas have been published
in several research papers. Reinart and Kutser (2006) concluded that model-based
algorithms cannot model some marine climates such as that prevailing at the Baltic
Sea area, for example. Kutser et al. (2011) concluded that spectral library approaches
of benthic mapping failed because of the problems related to atmospheric correction of
hyperspectral data. The sun glint effect is yet another contributing factor disturbing
atmospheric correction of sea areas. When water surface is not flat, the direct radiance
originating from the sun can be reflected from the crests or slopes of the waves (Kutser
et al., 2009). The reflected radiance does not contain any information about the water
constituents and benthic features. Sun glint effect is often a factor in wide field-of-
view acquisition of airborne or satellite data.

In the late 1990s Naval Research Laboratory presented a TAFKAA algorithm
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for atmospheric correction of hyperspectral remote sensing data of sea areas (Gao
et al., 2000). The algorithm uses lookup tables generated using a vector radiative
transfer code and a spectral matching technique. In this algorithm channels located
at wavelengths longer than 0.86 pum, where the water leaving reflectances are close to
zero, are used for the derivation of information on atmospheric aerosols. The aerosol
information is then extrapolated back to the visible range based on aerosol models in
order to retrieve the water leaving radiances. The proposed algorithm has produced
excellent results when tested using both satellite and airborne hyperspectral data.
After the presentation of TAFKAA, more model-based algorithms have been de-
veloped for hyperspectral remote sensing of sea areas. Adler-Golden and Acharya
(2005) developed a special version of the FLAASH code, which is applicable to hy-
perspectral and multispectral data, for retrieving coastal water properties and for
estimating bathymetry of shallow waters. Sterckx and Debruyn (2004) described a
code nicknamed WATCOR for remote sensing of coastal and lake waters. Both the
special version of FLAASH and WATCOR codes used MODTRAN-4 for radiative

transfer modeling.

2.3 Remote sensing of water quality

Even when some basic life forms can manage in polluted water, most organisms
require water that is relatively clean. The shortage of clean water is one of the major
threats to human life and health globally. The quality of surface waters is determined
by the type and the quantity of various suspended and dissolved substances (Koponen,
2006). The large amount of these substances correlates with poor water quality. Some
of the substances are of natural origin while others originate from human activities.

In traditional water quality monitoring, water samples are regularly collected from
the same sampling sites and analyzed for various water quality parameters such as
biological parameters (e.g. phytoplankton biomass) as well as physical and chemical
parameters (e.g. nutrients). Standardized sampling and measurement methods are
used so that the results are comparable.

Remote sensing is a suitable technique for large scale monitoring of inland and
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coastal water quality and its advantages have long been recognized. Remote sensing
provides a synoptic view of the spatial distribution of different biological, chemical
and physical variables of both the water column and, if visible, the substrate (Dekker
et al., 2011). Currently the following water quality parameters can be estimated using

optical remote sensing methods (Koponen, 2006):

— phytoplankton (chlorophyll a)

— suspended inorganic material (e.g. clay, sand and dust)
— colored dissolved organic matter (CDOM)

turbidity

— secchi depth
— temperature

— occurrence and extent of algal blooms.

Natural water bodies differ from each other substantially. The terminology and
rationale for Case 1 and Case 2 water classifications were established by Morel and
Prieur (1977) in their work on the bio-optical basis for ocean color variations. The re-
flectance spectra of Case 1 waters are largely dominated by: 1) living phytoplankton
cells; 2) organic tripton (detritus) particles from death and decay of phytoplankton
and the grazing products of zooplankton; and 3) the dissolved organic matter pro-
duced by phytoplankton metabolism as well as the decay of organic tripton (Schalles,
2006). Case 1 waters can range from very clear (oligotrophic) to very productive
(eutrophic) waters, depending on the phytoplankton concentration. Case 2 waters
are 'everything else’; i.e., waters where inorganic particles or dissolved organic matter
from land drainage contribute significantly to the reflectance spectra so that ab-
sorption by pigments is relatively less important in determining the total absorption
(Mobley, 1994). Roughly 98 % of the world’s oceans and coastal waters fall into the
Case 1 category, and almost all bio-optical research has been directed towards these
phytoplankton dominated waters. However, near shore and estuarine, Case 2 waters
are disproportionately important to human interests such as recreation, fisheries, and
military operations (Mobley, 1994).

Finland has a long coast line with the Baltic Sea. It can be difficult to define where
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the coastal area ends and where open sea starts. Outer islands of the Archipelago
can be used as limit, but, in some approaches, it is assumed that the whole Baltic
Sea belongs to Case 2 waters. In addition to sea areas, Finland has thousands of
lakes covering approximately 10 % of the total area. The water quality varies widely

according to the lake type (trophic state, humus content).

2.3.1 Hyperspectral remote sensing of turbidity, TSM, TSS
and CDOM

While chlorophyll content remains the most important water quality parameter in
coastal waters, there are other parameters such as: turbidity, total suspended matter
(T'SM), total suspended solids (TSS) and colored dissolved organic matter (CDOM)
which can be estimated using hyperspectral data.

Bhatti et al. (2010) demonstrated that simple band ratio algorithms can success-
fully be used to estimate turbidity, TSS and CDOM. The wavelengths to be used
were selected using regression analysis. Turbidity is an optical characteristic or prop-
erty of a liquid, which in general terms describes the clarity, or haziness of the liquid.
The first-derivative spectrum has been successfully used to estimate turbidity (Fraser,
1998). The derivatives of reflectance spectra at 429, 628 and 695 nm are significantly
correlated with turbidity over a wide range of water quality conditions. TSM is essen-
tially related to the total scattering of particles in the water column. The method of
partial least squares (PLS) regression was successfully applied to retrieving the TSM
(Xu et al., 2009). The results showed that the proposed method can outperform
traditional linear regression as well as the first-derivative and logarithmic models.

CDOM is an important component in coastal waters. CDOM can have significant
effects on biological activity in aquatic ecosystems by diminishing light penetration
and, consequently, influencing bacterial respiration. Yu et al. (2010) analyzed hy-
perspectral data using a functional linear model (FLM) in order to establish a rela-
tionship between the measured reflectance spectrum and CDOM concentration. One
advantage of using hyperspectral data in water quality monitoring, is that several

parameters can be retrieved simultaneously. For example, Pan et al. (2015) used
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hyperspectral CASI-1500 data and support vector regression to successfully retrieve

both turbidity and water depth from a shallow river.

2.3.2 Hyperspectral remote sensing of clay content

Suspended marine clay can have a significant effect on primary production in sev-
eral ways: (1) it increases the attenuation of light, hence reducing the light available
for photosynthesis in plants and (2) it may absorb certain nutrients (e.g. phosphate)
in the water column, making them less available for algal uptake. Gin et al. (2003)
studied the spectral profiles of suspended marine clay for the estimation of suspended
sediment concentration in tropical waters. The amount of inorganic suspended sedi-
ment was controlled by diluting marine clay in the measured water samples. It was
found that the dominant reflectance peak lays between 595 and 690 nm when inor-
ganic marine sediments (clay) are suspended in water. Another reflectance peak was
found in the infra red region at 814 nm. The regression analysis showed that the best
estimate of clay concentration can be obtained using the band ratio of 595/754 nm.

Remote sensing of water quality parameters in coastal waters is challenging. This
is mainly due to the complex interactions of the several optically active substances.
Gin et al. (2002) studied the effects of suspended marine clay on the reflectance spectra
of phytoplankton. The results showed clear correlation between clay concentration
and measured spectra, but the shape of the spectra was largely defined by the fresh
water phytoplankton. Based on the research referred above, it can be concluded
that the development of a clay retrieval algorithm, robust against the variation of

chlorophyll, can be very challenging.

2.4 Hyperspectral Benthic mapping

Europe’s marine environment is deteriorating rapidly and existing measures to
reverse the situation are clearly insufficient. The amounts of nutrients in the Baltic
Sea increased several times during the last century with severe ecological effect on

the biota. During the last few decades the perennial seaweed Fucus vesiculosus L.



16 Chapter 2: Background and literature overview

has rapidly declined in large parts of the Baltic Sea. Indirect effects of eutrophication
such as increased turbidity and sedimentation have generally been suggested as major
factors causing the decline. (Berger et al., 2004)

Benthic vegetation is an important part of the coastal zone ecosystem. It con-
tributes to the primary production in coastal areas in a fundamental way. Submerged
aquatic vegetation provides important habitats feeding, spawning and serving as nurs-
ery grounds for many fish and invertebrate species (Vahtmaée, 2009). Species compo-
sition of the benthic vegetation cover is a powerful indicator of environmental condi-
tions in both marine and fresh water ecosystems (Wolter et al., 2005). Macroalgae
species differ in their tolerance to environmental factors. Their presence or absence
and diversity have been used to assess the status of coastal systems. Health and
survival of these submerged plant communities in coastal waters depend on suitable
environmental conditions. The growth, survival and depth penetration of submerged
vegetation is directly related to light availability (Dennison, 1987).

On the other hand, knowing of bottom type (sand, clay, etc.) and/or water
depth in shallow coastal waters is important for several reasons (e.g. safe navigation,
recreation areas). Mapping shallow water bottom types by diving is time consuming
and expensive. Some coastal regions may be too dangerous for diving (due to swell) or
not accessible to hydrographical ships due to shallow water and/or dangerous bottom
topography (Vahtmée and Kutser, 2007).

There is an increasing need for reliable information on benthic cover types. Knowl-
edge on the distribution and quantity of benthic habitats is sparse if not absent. Map-
ping benthic algal cover using conventional methods can yield to very good accuracy
and high resolution (Werdell and Roesler, 2003). However, traditional in situ mea-
surements like diving, submerged video and grab sampling cannot cover large areas
without excessive costs. Even if the issue of the cost is ignored, insufficiency of man-
power and logistical problems would be unbearable. Mapping of benthic cover types
and their biophysical properties based on their optical properties has been carried
out successfully in optically clear waters (Phinn et al., 2005). Majority of the remote
sensing studies of submerged mapping have been carried out in clear ocean waters, so

the limits of the technique are still somewhat vague. Vahtmée et al. (2006) have pub-
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lished promising results where the feasibility of submerged remote sensing is tested
in challenging turbid waters of the Baltic Sea. The study is based on model-based
simulations, so some empirical validation would be needed. Mumby et al. (1999) stud-
ied the cost-effectiveness of different remote sensing techniques and the conventional
methods. The overall conclusion was that remote sensing is the most cost-effective

method available.

2.4.1 The effects of water column in benthic mapping

When light penetrates water, its intensity decreases exponentially as a function of
increasing depth. This phenomenon is known as attenuation and it exerts a profound
effect on remotely sensed data of aquatic environments (Green et al., 2000). The
magnitude of attenuation differs with the wavelength of electromagnetic radiation.
In benthic mapping the visible part of the spectrum is most commonly considered,
because the attenuation in the NIR region is so high. In the region of visible light, the
red part of the spectrum attenuates more rapidly than the shorter wavelength blue
part. As depth increases, the separability of benthic cover types by theirs wavelength
spectra declines. The spectral radiances recorded by a sensor are therefore dependent
both on the reflectance of the substrate and on depth. These two factors on the
signal create considerable confusion when attempting to use visual inspection or image
classification to map benthic cover types.

The exponential decay of light intensity with increasing depth results from two
phenomena: absorption and scattering. Absorption involves the conversion of electro-
magnetic energy into other forms such as heat or chemical energy (e.g. photosynthesis
in phytoplankton). Absorption itself is a fundamental process that determines the
shape and magnitude of the reflectance spectrum in the water, while absorption coef-
ficient accounts for the proportion of light lost due to absorption (Pegau et al., 1995).

The main absorbers in natural waters are (Holden and LeDrew, 2001):

— Water itself; water has weak absorption in the blue and green portions of elec-
tromagnetic spectrum but the absorption increases significantly for wavelengths

greater than 550 nm.
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— Yellow substance, or dissolved organic matter (DOM) resulting from decompo-
sition; yellow substance presents significant consequences for light absorption
in the blue end of the spectrum.

— Phytoplankton, absorbing strongly in the red region of the spectrum depending

on the total amount of photosynthetic pigments.

While light is mostly absorbed immediately in the water column, a significant
part of the photons is are still scattered before being absorbed. Since scatter does
not remove light but simply diverges light from its original path, it effectively im-
pedes the vertical penetration of light. This process of scattering is largely caused by
inorganic and organic particulate matter and increases with the suspended sediment
load (turbidity) of the water.

The most important characteristic of water column in benthic mapping is the
diffuse attenuation coefficient. The diffuse attenuation coefficient in water indicates
how strongly light intensity at a specified wavelength is attenuated within the water
column. A large attenuation coefficient means that the light is quickly attenuated
(weakened) as it passes through the water column. Attenuation coefficient is measured
using units of reciprocal length. This parameter, is directly related to the presence of
scattering particles in the water column, either organic or inorganic, is an indicator
of water clarity. Any increase in the concentration of optically active substances

increases the diffuse attenuation coefficient and may change its spectral composition.

2.4.2 Water column correction techniques

The most common difficulty related to remote sensing of submerged environment
is the confounding influence of variable depth on bottom reflectance (Green et al.,
2000). Removal of the influence of depth on bottom reflectance would require (1) a
measurement of depth for every pixel on the image, and (2) knowledge of the attenu-
ation characteristics of the water column. The attenuation characteristics are mainly
determined by the concentration of dissolved organic matter (Mumby et al., 1998).
Good digital depth maps are rarely available. Depth maps are mostly acquired for

marine safety purposes, which often restricts their use for benthic mapping purposes.
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There are new techniques such as LiDAR based bathymetry that can produce accu-
rate and high resolution depth maps (Tulldahl et al., 2011). Unfortunately, the use
of such techniques can be quite expensive. Mumby et al. (1998) reported only four
studies out of forty five (9 %) that attempted water column correction and concluded
that authors were generally unaware of such methods.

In order to avoid the need for accurate depth map, Lyzenga (1978) put forward
a simple image based approach to compensate for the effect of variable depth when
mapping bottom features (hereafter referred to as water column correction). Rather
than predicting the reflectance of the seabed, the method produces a depth invariant
bottom index from each pair of spectral bands.

The attractive aspect of this approach is that in situ or auxiliary data are not
required. Yet, it is only applicable where water properties are moderately constant
across an image. Lyzenga’s pioneering work has inspired many researchers to test
and develop the original method. Spitzer and Dirks (1987) used a two flow radia-
tive transfer model to predict the sensitivity of the Lyzenga’s model and concluded
that increased turbidity was a major limiting factor when using Lyzenga’s method.
Tassan (1996) proposed a modified Lyzenga’s method which is mathematically quite
complex. Lyzenga’s original method is not applicable if the suspended sediment con-
tent is higher in shallow waters compared to deep waters. Tassan’s study was based
on numerical simulations and requires field validation. Mumby et al. (1998) tested
Lyzenga’s method in coral reef mapping using CASI hyperspectral data. When com-
bined, depth compensation and contextual editing made a significant improvement
upon simple classification using original bands.

Some new methods, not directly based on Lyzenga’s original work have been
proposed as well. Armstrong et al. (2007) presented an approach where at-sensor
radiances are transformed into underwater reflectance factors. The transformation
was derived by using submerged black and white tarpaulins as underwater calibration
targets. Unlike Lyzenga’s approach to water column correction, the presented field
calibration methodology preserves the full dimensionality of the remote sensing data
in its original spectral space. In addition, no field data of image based estimates of the

spectral attenuation coefficients are required. The main limitation of this approach
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is the logistics of placing calibration targets of adequate size underwater and the
measurement of their reflectance properties during the overflight. Karpouzli et al.
(2003) proposed a method based on the variables of water depth, distance to and size
of mangrove beds, and distance to and size to towns. The method was developed
by using an extensive number of optical in situ water measurements and laboratory
analysis of water samples. Karpouzli et al. concluded that the results of studies
where single measurements of 'average’ attenuation have been used to depth correct
remotely sensed imagery should be interpreted with a high degree of caution. Both
methods referred above require a considerable amount of fieldwork.

In addition to rather simple methods described above, some more complex ap-
proaches have been presented. Cho et al. (2010) proposed an experimentally derived
algorithm for water column correction. The energy absorbed by water and scattered
from the water column was separated using reflectance measurements in an indoor wa-
ter tank with hypothetical surfaces that either reflect or absorb all the incoming light.
Using these experimental measurements, a hyperbolic tangent function was developed
to correct reflectance measured from a shallow water body for the water effects. This
experimentally derived algorithm can improve the quality of mapping seagrass beds
and invasive aquatics in shallow water bodies. Mishra et al. (2007) proposed a sophis-
ticated algorithm that accounts for variable depth and optical properties of water.
The hyperspectral data were used in band ratio algorithms to derive water depth and
water column optical properties (e.g., absorption and backscattering coefficients).
Mobley et al. (2005) proposed an approach based on spectrum-matching and look-
up-table methodology: first, a database of remote sensing reflectance spectra corre-
sponding to various water depths, bottom reflectance spectra and water-column IOPs
is constructed using a special version of the HydroLight radiative transfer numerical
model. Second, the measured spectrum for a particular image pixel is compared with
each spectrum in the database, and the closest match to the image spectrum is found
using a least-squares minimization. Zoffoli et al. (2014) evaluated a comprehensive
set of water column correction methods proposed in the literature using simulated
data. They concluded that the best method depends on the marine environment,

available input data and desired outcome or scientific application. There are a few
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software products for water column correction, although not commercially available.
Kobryn et al. (2013) used a WATCOR softwave module to water column correction
and successfully retrieved bathymetric data and sea floor reflectance over a large reef

site in north-western Australia.

2.5 Hyperspectral Mapping of Wetlands

The coastal wetlands are important as natural ecosystems offering wildlife habitat
and recreational areas, as well as functioning as important nutrient cycling environ-
ment for maintaining water quality (Schmidt and Skidmore, 2003). Wetlands are
also an excellent indicator for early signs of any physical or chemical degradation in
wetland environments (Dennison et al., 1993). The management of these environ-
ments, especially in response to human activities, requires information on the quality
and quantity of vegetation. Wetland plants and their properties are not as easily
detectable as terrestrial plants due to several reasons. First, the reflectance spec-
tra of wetland vegetation are often very similar and are combined with reflectance
spectra of the underlying soil, understory vegetation and atmospheric vapor (Adam
et al., 2010). Second, wetland vegetation exhibits high spectral and spatial variabil-
ity because of the steep environmental gradients and sharp demarcation between the
vegetation unit (Zomer et al., 2009). Hence, it is often difficult to identify the bound-
aries between vegetation community types, even in the field. Last, tidal changes cause
rapid variation in environmental factors such as salinity and water intake.

Several research publications have demonstrated the feasibility of hyperspectral re-
mote sensing in wetland vegetation mapping. Artigas and Yang (2005) discriminated
vegetation species in north-eastern New Jersey, USA, using field-collected hyperspec-
tral seasonal reflectance spectra of marsh species in coastal wetland. The results
indicated that NIR range and wavelengths 670-690 nm in the visible region can be
used to discriminate between the most marsh species. Wang et al. (2007) attempted
to map highly mixed vegetation in salt marshes in Venice, Italy. The use of CASI
hyperspectral data and Vegetation Community based Neural Network Classifier (VC-
NNC) produced classification accuracy higher than (91 %). Kamal and Phinn (2011)
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used CASI-2 hyperspectral data for Mangrove species mapping. The results demon-
strated that the object-based approach, combining a rule-based and nearest-neighbor
classification methods, produced best results (76 %) when compared to Spectral Angle
Mapper (SAM). Hunter et al. (2010) studied the mapping of macrophytic vegetation
in shallow lakes using the Compact Airborne Spectrographic Imager (CASI) data and
Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM) meth-
ods. The classification accuracy rose near 80% for both methods. Several seasonal
time-series spectral of common reed have been published as well (Gilmore et al., 2008;

Ouyang et al., 2013; Artigas and Yang, 2005).



Chapter 3

Remote Sensing of Coastal

Environment: Data and Methods

In this chapter the study sites and data acquisition methodology are described.

Finally, the methods used to process these data are presented.

3.1 Data

The data used in this study was collected using a variety of sensors. All the
employed data are hyperspectral, i.e., the spectra are continuous and the spectral
resolution is high. Both airborne and field measurements were used. All study sites
shown in Figure 3.1 are located in Satakunta region at the West Coast of Finland.
The data used in this doctoral study were obtained from the following measurements.

1. The spectral laboratory measurements of water samples were carried out in
Reposaari Environmental Research Centre in Pori. The reflected light from a water
surface at the wavelength range of 350-2500 nm was measured with a portable field
spectroradiometer FieldSpec Pro from Analytical Spectral Devises Inc. ASD; Boul-
der, Colorado, USA. The spectral resolution of the device is 3 nm between 350-1000
nm and 10 nm between 1000-2500 nm. At pre-processing, the spectrum is interpo-
lated to have a value at every nanometer. The total number of six water samples

with added clay were measured. The clay concentration in the prepared water sam-
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ples varied between 10.6 and 142 mg/l. A particular challenge for the measurement
was the illumination of the water sample in glass container. The container was illu-
minated with an Oriel research arc lamp source having a power consumption of 1000
W. The Oriel lamp is a laboratory equipment designed for spectral measurements
providing constant spectral characteristics. The oriel lamp is a heavy equipment and
it was not possible to mount it above the container to provide nadir angle of light.
The water sample had to be illuminated through glass, which caused the need to
develop a method that corrects the effect of glass. The arrangement of reflectance
measurements is shown in Figure 3.4. Measurements were carried out by the author
and Senior Researcher Viljo Kuosmanen from Geological Survey of Finland. These
data were used in [P1].

2. The HYPEOS flight campaign was carried out in July 2008. The main goal of
the hyperspectral data acquisition was to capture the hyperspectral baseline of the
environment around Olkiluoto repository site before the permission of the construc-
tion license. Baseline data is the reference used in change detection when the data
of future campaigns will be analyzed. The planning phase preceding the actual flight
campaign included calculation of flight lines, search and verification of sites used for
field measurements and co-timing of operations. The size of the imaged area is over
600 km?2. Half of the imagery covers coastal water areas. The rest of the data covers
rural forest and agricultural areas as well as urban area around the city of Rauma.
The start of the flight campaign and the selection of flights days were planned based
on the information provided by the commercial weather forecast service Foreca Ltd.
Despite of careful planning, the campaign suffered from severe cloud cover in many
days. The total number of recorded flight lines was 27, of which 23 flight lines were
recorded on 4th of July and 4 flight lines on 13th of July. The cloud cover on both
days was absent providing homogenous solar irradiation from ground surface. The
acquisition of 4 pre-planned flight lines was cancelled due to excessive cloud cover.
The flight altitude during the acquisition was 1.9 km leading to ground resolution of
2.5%2.5 m per pixel. The acquisition was done using Piper Pa23-250 aircraft carrying
an AISA dual imaging spectrometer. The AISA dual spectrometer collects reflected
solar radiation in 481 bands from 399 to 2452 nm wavelength. This includes the



Chapter 3: Remote Sensing of Coastal Environment: Data and Methods

25

fso-Ensken
Anttoora Ahlainan POMARKKU
PAMARK
3 ) Hi
S, Lamppi PansiEng
Tahkoluoto. Lampaluoto - g Poosjtvi
; mitiso
Poikeljarvi Ruokejarvi
Cepossen Kellahti
_inlahi
Mintyluoto “ MeriPori Noormarkku
Norrmark
Yyter Soormarkku Rud
Kylagaari Harjakangas
Prewidniahi Jawikyla J
Palsan
. PORI .
Faa Preiviiki -
- BJORNEBORG
. ' Pyhan
\asvedeniali + Kaasmarkku Ki
Metsdkulma
ULVILA
ULVSBY Loih
Hyviliots Niemenkyla :
Lattomeri Kivialho
Etaldn Pirskerf
Jarvikyld a
LUVIA Viikkald
somaa NAKKILA
2 Perinkyld Tattara H
Uskalinmaza
Matomaki
Kujvalahti Pinkga
Pujonkulma
Hiirijarvi
6 Sho s Lalhia
7 Linnamaa Irjanhe Harol:
Reksaar
EURAJOKI Panelia i
Nurmes EURAAMINNE > W
Sorkka Eurakos|
_Lapijoki T Kahala
RAUMA u. |
= otila
RAUMO e
Turajdrvi
Kortela Kolla Lappi EURA
Vasarainen RaivAAmER
R0t Unaj YliKieri
Kauklainen
LSkm ] Reila | Kulamaa e !
jrruntila . Kodiksami
Kodisjoki »a
Kajatsima Nihtia Mesyin
Nihde
RE Silo i
Pitkaluoto Santtio thode vl Mannila

Figure 3.1: Geographic location of data aquisition sites: 1) laboratory measurements
of water samples 2) area of HYPEOS flight campaign 3) spectral field measurements of
water quality parameters 4) spectral field measurements of benthic cover type samples
5) spectral time-series measurements of reed beds, Pori 6) spectral field measurements
of reed beds in Olkiluoto 7) spectral field measurements during HYPEOS 8) spectral
field measurements of Satakunta spectral library
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visible, near infrared and shortwave infrared regions of the electromagnetic spectrum.
The spectral resolution is 3.3 nm at Visible Near Infrared (VNIR) range and 12 nm at
Short Wave Infrared (SWIR) range. The HYPEO8 campaign was a joint effort of Aero
Media Ltd., University of Debrecen, Hungary, Poyry Environment Ltd., Geological
Survey of Finland, Luode Consulting Ltd., Tampere University of Technology, Pori,
and Posiva Ltd. These data were used in [P1] and [P5].

3. Spectral water-quality parameters were measured at the four sites in Reposaari
archipelago on 26th of May 2011. Spectral measurements on board a small boat are
challenging. Interfering factors like sun glint and reflections from the boat hull can
easily ruin acquired data. Two spectral parameters were measured at each site: the
optically deep water reflectance R and the water attenuation coefficient K. Optically
deep water reflectance was measured using a GER 1500 spectroradiometer (Spectra
Vista Corporation, Poughkeepsie, New York, U.S.A.) equipped with the optical fiber
extension. Reflectance was calculated as the ratio of radiance from the measured
object to the radiance from the reflectance standard, i.e., 99% Spectralon panel (Lab-
sphere, North Sutton, New Hampshire, U.S.A.). The spectral range of the instrument
is 300-1100 nm. Spectra were sampled with 1.5 nm intervals, and spectral resolution
of the GER 1500 instrument is 3 nm. The water attenuation coefficient K was mea-
sured using a white reference plate. The plate was set at a depth of 30 cm, and
the reflectance was measured. Then the reflectance of the wet reference plate was
measured again on board without the water column. Measurements were carried out
by the author and boatman Jukka Jussila from Reposaari Environmental Research
Centre. These data were used in [P2] and [P4].

4. The samples of benthic cover types were collected near Island Kalla, Eurajoki on
6th of July 2010. Benthic cover types for this study were selected based on an initial
submerged survey in the study site. Research divers explored the area using side-scan
sonar and underwater video. Specimens of typical green (Cladophora glomerata),
brown (Fucus vesiculosus), and red (Ceramium tenuicorne) benthic macroalgae were
selected. In addition to benthic vegetation, three typical bottom covers, i.e., sand,
clay, and reddish pebble, were selected. Divers collected samples and transported

them in water filled containers to mainland. Reflectance spectra of samples were
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measured using a GER 1500 spectroradiometer immediately after the transportation.
Measurements were carried out by the author and research divers Ari Ruuskanen and
Niko Nappu from Monivesi Ltd. These data were used in [P2] and [P4].

5. The spectral time-series measurements of three observed reed beds were car-
ried out at Hilskansaari Island, Pori between 12th of June and 3rd of October 2012.
Reflectance spectra of reed beds were measured using a portable GER 1500 spec-
troradiometer. The fiber optic light guide connected to the instrument was raised
above the reed bed by using a 6 meters long fiberglass pole. The end of the optical
fiber was placed above plant canopies at approximately 4 meters’ height from the
canopy. This arrangement provided a nadir view of the reed bed. The field-of-view
of the optical fiber is 25 degrees resulting in circular measurement area of 1.7 meters
in diameter. Three repeated measurements at each measurement point were taken
and the results were averaged. Each individual measurement was calibrated using
a reflectance standard. Measurements were carried out by the author and research
assistant Juha Stahlnacke. These data were used in [P3].

6. Spectral field measurements of reed beds in Olkiluoto were carried out in
summer 2012. Reflectance spectra of reed beds were measured using a GER 1500
spectroradiometer in the same manner as in Hilskansaari. These data were used in
[P3].

7. A field campaign was conducted during the airborne data acquisition of HYPEOS.
The purpose of the field campaign was to collect data for the validation and calibration
process of the hyperspectral data. Selected Reference (REF) and Pseudo Invariant
Feature (PIF) targets were measured using a ASD FieldSpec Pro portable spectrom-
eter. REF targets are spectrally homogenous tarpaulins laid to the ground during
the overflight. PIF targets are natural homogenous areas on the ground surface. The
distance of optical fiber from the target was approximately 1.5 meters resulting in cir-
cular measurement area of 0.7 meters in diameter. Measurements were carried out by
senior researcher Viljo Kuosmanen and geophysicist Jukka Laitinen from Geological
Survey of Finland. These data were used in [P5].

8. In summer 2009 a field campaign was arranged in order to collect a spectral

library from Satakunta Region. On 23rd of July measurements were carried out in
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Otanlahti area, Rauma using a ASD FieldSpec Pro spectrometer. Measurements were
made in the same manner as during the HYPEOS campaign. Measurements were
carried out by the author and senior researcher Viljo Kuosmanen from Geological

Survey of Finland. These data were used in [P5].

3.2 Methods

The methods applied in this doctoral thesis can be divided into the following

categories:

— methods for estimating the difference between two spectra and/or to classify
targets according to their spectral signature in [P2] and [P4]

— methods for generating simulated hyperspectral data in [P2] and [P4]

— methods for various corrections in [P1] and [P2] (such as the effect of glass

container, for example).

Below the most important algorithms and methods are briefly presented while more

detailed description of the methods are given in the respective papers.

3.2.1 Methods for estimating the difference between two spec-

tra
Spectral Angle Mapper (SAM)

SAM measure is defined by Kruse et al. (1993) as:

1 Y XiY

3.1
VI (X2 SN, (Y0 (3.1)

o = CoS

where « is the angle formed between the reference spectrum Y and the image spec-

trum X and N is the number of bands used.
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Euclidean Distance (ED)

Euclidean distance measure is defined by

ED(XY) =X -Y| = [} (X - Y)I*? (3.2)

=1
where X is the reference spectrum and Y is the image spectrum and N is the number

of bands used.
Spectral Correlation Mapper (SCM)

The SCM measure is defined by Carvalho and Meneses (2000) as:
YL (X = X)(Y - Y))

R = ~ — — (3.3)
VI (X - X2 2N, (Y, - Y)2
where X and Y are the means of corresponding spectra.
Spectral Information Divergence (SID)
The SID measure is defined by Chang (2000) as:
SID(X,Y)=DX]|Y)+ D(Y||X) (3.4)

where D(X]|Y) can be considered as directed divergence or cross-entropy from pixel
Y to pixel X [P4]. Thus D(X]|Y) quantifies the information in Y about X and,
D(Y||X) quantifies the information in X about Y. The algorithm was implemented
using an ENVTI (Exelis Inc., Boulder, Colorado) software package.

Jeffries-Matusita Distance (JM)

The Jeffries-Matusita distance (JM) is defined by Richards (2013) as:
JM;; =2(1 — e Pid) (3.5)

in which

1 C, +C; 1 C.+C;)/2
Bij = <(m,; — mj)T(#)_l(mi —m;)+-In G+ Cy)/2) (3.6)
8 2 2 Cil x |1Cj]
which is referred to as the Bhattacharyya distance. i and j are the two classes being

compared. C; is the covariance matrix of class i. m; is the mean vector of class 1.
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3.2.2 Methods for generating synthetic hyperspectral data

When the sea bottom is measured through the water column, the resulting re-
flectance R can be considered to two partial reflectances R, and R.,. R is the
reflectance of optically deep water, i.e., the depth is so large that bottom is no longer
visible and R}, is bottom reflectance without water column. In extreme cases, R = R,
when the depth is zero and R = R, when the depth reaches certain level. That level
is dependent on the attenuation of light in water. It has been shown by Maritorena
et al. (1994) that diffuse reflectance of shallow waters just below the water surface

can be calculated using the equation
R(0—,2) = Roo + (Ry — R )exp(—2K z) (3.7)

where z is the water depth and K is the diffuse attenuation coefficient of the water.
In order to simulate the bottom reflectance through the water column all variables
are known, except the attenuation coefficient K. The coefficient K was obtained by
measuring a white reference plate (Figure 3.2). The plate was set at a depth of 30
cm, and the reflectance was measured. Then the reflectance of the wet reference plate

was measured again on board without the water column.

optical fibre

reference plate

Figure 3.2: The arrangement of diffuse attenuation measurement

The coefficient K was solved using the equation
l R—Roo

n
K= (3.8)
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The simulation of benthic reflectance through water column using in situ field
measurements is illustrated in Figure 3.3. The simulated water depth varies between
0.01 m and 3.0 m at 0.01 m intervals. Four different water type classes were used: Q1,
Q2, Q3, and Q4, where Q1 represents the least turbid and Q4 the most turbid water.
(Classes are based on empirical spectral water quality measurements. The simulated
data are calculated using Equation 3.9. The simulated spectrum R is calculated
using deep water reflectance R and attenuation coefficient K corresponding to the

simulated water type.

deep water reflectance bottom reflectance attenuation coefficient

——red algae
40 ——brown algae
——green algae

Reflectance (%)
Reflectance (%)

Attenuation coefficient K
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Figure 3.3: Simulation of bottom reflectance through water column

3.2.3 Methods for correction of unwanted effects
Correction for the optical effect of glass container

Reflectance measurements of water samples in glass container need a specific cor-
rection for the removal of the optical effect of the container (Figure 3.4). The radiance
at water surface is dependent on the transmittance of glass. The correction coeffi-
cients were calculated using an empirical method where a white reference target was
measured inside and outside the empty container. The number of wavelength chan-
nels is 2151 being constant throughout the work. Therefore, indexing of the channels

has been omitted in the notation.
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optical fibre
"L | "

Figure 3.4: The arrangement of reflectance measurements of water samples

The measured reflectances are as follows:

T, = Reflectance of the empty container
P, = Reflectance of homogenous reference target in the same container

P, = Reflectance of homogenous reference target outside the container

Denoting the apparent reflectance as Ap, and the corrected reflectance as Ap;, it

follows:
Ay, = L (3.9)
Tp = C1 Pl Co .
CIP
Ap, = —P2 3.10
P 4 e (3.10)

where ¢; ~ 4.233 and ¢y &~ 3.994. The constants ¢; and ¢y were estimated by min-
imizing the total sum of the absolute difference Ar, —T,. The optical effect of the
glass container can be removed from the reflectance R,, of a water sample measured

in that container using the following relation:

_ aRy
T+
where Ag,, denotes the corrected reflectance.

Rw (311)
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Water column correction

Water column correction techniques are used for compensating the effects of vari-
able water depths. In this thesis a simple water column correction method was tested
in publications [P2] and [P4]. The advantage of the method is that it only requires
one water quality measurement. The method does not assume any knowledge about
the characteristics of the water column covering the underwater target. The correc-
tion is based on Equation 3.9, with water depth z taken to be half of the considered
depth range (e.g., assuming water depth in the range of 0.0 m to 3.0 m, z = 1.5
was chosen) and water quality assumed to be water type 1. This means that the
optically deep water reflectance and the diffuse attenuation coefficient measured at
site Q1 are used when a new reference spectrum is calculated. The use of water type
Q1 helps to preserve more features of the reference spectra compared to more turbid
waters. A new water column corrected reference spectrum for each benthic cover type
was calculated using Equation 3.9 and used in the classification instead of the original

measured spectra.

Sun glint correction

Sun glint, the specular reflection of light from water surfaces, is a serious con-
founding factor in remote sensing of water quality and benthos. Sun glint correction
was used in publication [P2]. Kutser et al. (2009) proposed a method that utilizes the
presence and depth of the oxygen absorption feature near 760 nm as an indicator of
glint contamination. The method is based on two assumptions. First, it is assumed
that there is no spectral absorption feature in the reflectance spectrum of natural
waters at 760 nm if reflected light does not contain glint. Second, the depth of the
oxygen absorption feature D at 760 nm is proportional to the amount of glint in the
spectrum. In this thesis a modified version of the proposed method was used. In
the original method it was assumed that pixels with D values close to zero do not
contain glint and the pixels with the highest D value contain mainly glint. Remote
sensing images can contain hundreds of thousands of pixels, and it is safe to assume

that in this large set there exist pixels with no glint as well as pixels resulting mainly
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from glint. However, in this study there are only 12 measured spectra that contain
significant amounts of glint, and none of them contains mainly glint or is totally glint
free. In sun glint correction it is assumed that the measured reflectance originates
from both the reflectance of water and the reflectance due to sun glint. Therefore,
if the depth D is proportional to the amount of glint, it is also proportional to the
reflectance of water. It is not well established whether this proportion is linear or

non-linear; however, linear correction seems to produce reasonable results.
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Figure 3.5: Graphical representation of the sun glint correction method. The correc-
tion is illustrated at the wavelength of 440 nm. M1 through M3 represent the three
measured spectra. For each spectrum the absorption depth D is calculated according
to Equation 3.14. Then the regression Equation 3.15 is solved for each wavelength
band, and the deglinted reflectance value at the corresponding wavelength is deter-
mined by the point where the regression line crosses the Y-axis (D = 0).

In our modified approach, the depth of the absorption feature was calculated to

be
_ Rys0 + Rrso
2

where D is the depth of the oxygen absorption feature and Rrs, R4 and Rrgg are

D — R (3.12)

reflectances at these particular wavelengths. Three measurements of deep water re-
flectance were used to scale the relationship between the reflectance R and absorption
depth D. For each band a linear regression was applied between R and D (Figure
3.5), using the equation

R=axD+b (3.13)
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The corrected value of R can be calculated by setting D=0
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Chapter 4
Results and discussion

In this chapter the main results concerning assessment of water quality (more
specifically, clay concentration), mapping of benthic cover and assessment of tem-
poral and spatial variability of reed bed spectra are presented. All the mentioned
applications deal with the analysis of hyperspectral field measurements in coastal ar-
eas. The results form the basis for successful interpretation of air- and spaceborne

hyperspectral remote sensing data.

4.1 Hyperspectral assessment of clay concentra-

tion in water

The aim of this study was to compare the performance of widely used band-ratio
measures with that of the Spectral Angle Mapper in water quality assessment appli-
cations. The question concerning the influence of the number of wavelength bands
on the accuracy and robustness of the assessment results was also addressed. The
difference of accuracy between SAM and band-ratio algorithms was insignificant, al-
though in favor of proposed SAM. The initial question was: how many bands should
be used in order to obtain best accuracy for retrieval algorithm. The result of the
correlation test indicated that no more than five bands should be used. The basic

problem in water quality retrieval applications is that when the measured property,
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in this case clay concentration, stays the same, the quantity of other optically active
substances can change, resulting in altered spectrum. The robustness of the algo-
rithm to the presence of organic suspension was evaluated using simulated reflectance
spectra representing water samples containing both clay and organic suspension.
The SAM algorithm outperforms band-ratio algorithms, but the differences are
quite moderate. The RMS error of the SAM algorithm increases from 14.1 to 32.2
when the concentration of organic suspension increases (Table 4.1). Schalles et al.
(2001) studied the influence of suspended clays on waters containing chlorophyll.
The published spectra were quite similar in shape than measured in this study. The
accuracy of the proposed SAM algorithm was better than that published by Gin et al.
(2003), however, the number of samples was only 6 in our study. It can be expected

that the accuracy decreases when the number of samples increases.

Table 4.1: RMSE values for the band-ratio and spectral angle algorithms calculated
using varying percentage of organic suspension.

Organic suspension 0 10 20 30 40 50 | %
RMSE Band-ratio 14.5 | 17.1 | 204 | 24.6 | 30.1 | 38.7 | %
RMSE Spectral angle | 14.1 | 14.8 | 17.4 | 20.8 | 25.3 | 32.2 | %

Noise is a major problem in water quality applications, mainly because the the
reflectance of water is low. Atmospheric and sun glint correction can also increase the
noise present in spectrum. The robustness of the algorithms against noise was tested
by adding random noise to the spectrum. The average RMSE for the spectral angle
algorithm was about 10% smaller compared to the band-ratio algorithm (Table 4.2).
This indicates the robustness of the spectral angle algorithm although the difference
between the algorithms was quite small.

The proposed algorithm was tested using real hyperspectral data recorded during
the HYPEO8 campaign (Figure 4.1). The test site is located at Eurajoki strait in
SouthWest Finland. Two rivers, Eurajoki and Lapinjoki, transport clay particles to
the test area. The produced clay concentration map could not be validated due to

lack of ground truth measurements, but the results are rational. In site A high clay
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concentration is due to river Eurajoki whereas in site B it’s due to river Lapinjoki.

Table 4.2: The relationship between the RMSE of the tested algorithms and signal
to noise ratio (SNR) of hyperspectral data.

SNR 100 | 30 10
RMSE Band-ratio | 1,61 | 4.89 | 16.25 | %
RMSE Spectral angle | 1.45 | 441 | 146 | %

Figure 4.1: Clay concentration map of Eurajoki strait and the geographic location of
the test site.

4.2 Hyperspectral classification of benthic cover

type in turbid waters

Though several research papers exploring the possibilities of benthic cover type
classification have been published, little emphasis has been given to comparison of the
performance of the various spectral classification methods. In many cases the classi-
fication method is chosen without testing. In paper [P4] four different classification

methods were tested with and without water column correction. The results showed
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significant differences in mapping accuracy among the tested classification methods.
The Spectral Correlation Mapper (SCM) clearly outperformed the others when water
column correction was not in use. The mapping accuracy of 75% obtained by SCM
is quite remarkable when compared to 41.4% of widely used Spectral Angle Mapper
(SAM) method. One possible explanation is that SAM can not distinguish between
positive and negative correlation and considers only the absolute value, whereas SCM
eliminates negative correlation (Kumar et al., 2011). Best accuracy was obtained us-
ing the ED classification when water column correction is used. All classification
methods except SCM seem to benefit from water column correction. When water
column correction was applied the Euclidean Distance (ED) method produced best
accuracy 84.5%. The differences between methods were lower than without water
column correction. In the literature the best method varies depending on the ap-
plication. Mapping methods like Spectral Angle Mapper, analysing the shape of the
spectra, work better in the case of the forward modeled spectral library (Kutser et al.,
2006). On the other hand, in some other benthic mapping applications Maximum
Likelihood Classification (MLC) has produced best results (Casal et al., 2011).

In paper [P2] the feasibility of benthic cover type mapping in turbid waters near
estuaries using hyperspectral remote sensing is studied. The major problem involved
in remote sensing of submerged cover types is that the water column affects the signal
received at the sensor depending on water depth and water quality. The influence of
the water column is demonstrated in Figure 4.2. The measured spectra of red, green
and brown algae are drawn using solid line and simulated spectra corresponding to
40 cm deep column of least turbid water (Q1) are drawn using dashed line. Features
like local maxima are diminished and reflectance level is decreased especially in the
Near Infra-Red (NIR) region. When the depth increases to certain level, the spectral
features of the bottom substrate are no longer visible.

Results showed that water quality varies significantly within the studied area.
The impact of this variation is clearly shown in the classification results. If the water
quality is Q4 (most turbid) meaningful results can not be expected in benthic mapping
applications. The classification accuracy is very much dependent on the cover type in

question. Classification of sand gave poor results whereas algae species were detected
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Figure 4.2: The spectra of red, green and brown algae. The simulated spectra of
these three algae corresponding to 40 cm deep column of least turbid water (Q1) are
drawn using dashed line

with greater certainty. This can be considered as a good thing, hence there are usually
much more interest in submerged vegetation than sand bottoms. Some macroalgae
species are used as an indicator of the ecological status of sea areas. The poor results
of sand are most likely due to flat spectrum, there are no spectral features that could
discriminate it from other substrates. The benthic mapping method can be considered
operational when the discrimination accuracy of cover types exceeds 80%. The ED
classifier together with simple water-column correction can almost fulfill this criterion

up to depths of 2 m when water quality is Q1.

4.3 Assessment of temporal and spatial variability

of reed bed spectra

The spatial and temporal variability of reed bed spectra was studied in paper
[P3]. Seasonal time-series studies can provide important information on spectral

variability. Given the dynamic character of vegetation cover, a snapshot in time is
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not nearly as revealing as a time sequence (Goetz, 2009). Seasonal variability of
the reflectance spectra of type ’old reed bed’, i.e., reed bed where dead stems are
present, is remarkable, when it is significantly smaller for type new reed bed’; i.e.,
reed bed where only live stems are present. When the measured seasonal spectra
were compared to those published in the literature, it was found that the shape of
the spectra is quite similar at same phenological stages as published by Ouyang et al.
(2013) and Artigas and Yang (2005). This applies for targets 1 and 2 representing
old reed beds. On the other hand, it was found that the shape and reflectance level of
target 3, representing 'new reed bed’; spectra is surprisingly similar to that published

by Gilmore et al. (2008) shown in Figure 4.3.
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Figure 4.3: Seasonal reed bed spectra measured at target 3 at Hilskansaari and at
Ragged Rock Creek, Connecticut River, U.S.A. by Gilmore et al. (2008)

In order to measure the separability of target and reference spectra, Euclidean
Distance (ED), JeffriesMatusita distance (JM) and Spectral Angle Mapper (SAM)
values were calculated between all targets and the moss spectra. When the seasonal
separability values for targets 1, 2 and 3 were studied, it was found that optimal time
window can be determined to discriminate the reed bed from surrounding vegetation,

but the time is dependent on reed bed type and separability measure.
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The vegetation type that most likely causes confusion in reed bed discrimination
is meadows. The determination of the boundary between reed bed and meadow is
difficult even in the field yet to mention remote sensing approaches. Meadows tends
to have large spectral within-class variability, hence meadow class contains several
species, i.e., grasses, weeds and flowers. Local variability of the vegetation and spectra
were studied in a small neighborhood for assessing the feasibility of discriminating
between the reed bed and the meadow. The mean reed bed and meadow spectra are
rather similar both in shape and reflectance level. The best separability is achieved
in the blue region of the visible part of spectrum. Separability values were calculated
between the mean spectra of the classes and the spectra of each target (both reed
bed and meadow) separately. 10 out of 11 targets had lower SAM value to the
mean spectrum of the corresponding class than that of the other class. The results

deteriorated when ED and JM-distance measures were used.
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Figure 4.4: Within-class variability of Reed and Grass classes

The within-class variability of both classes was calculated and compared to a few
references. The variability of reed (15.95) and meadow (24.62) was high compared to
that of grass (8.86) and savannah trees (5.57). The within-class variability of reed and
grass classes is demonstrated in Figure 4.4 by showing the spectra of both classes. For

both classes one particular measurement is contributing to the within-class variability
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more than others. Purely by chance it is measurement 2 in both cases. The within-
class variability of grass is lower mainly because the variability is significantly lower
in the blue region under 500 nm.

The spatial variability of reed bed spectra in Olkiluoto was studied using four
reed bed sites. The results on within-class spectral variability of reed bed at four test
sites within the Olkiluoto Island showed that while the reed spectra from the sites of
Kornamaa and Munakari were close to each other, the spectra measured in Satama
and Flutanpera differed significantly. This is at least partly due to the variation in
the density and height of live and dead reed stems among the four sites. Field studies
made in August 2012 showed that there is considerable variability in the ratio of live

and dead stems. The fraction of dead stems varied from 0 to 83 in percentage.



Chapter 5
Conclusions

The thesis contributes to its scientific field by testing and developing methods
for i) water quality monitoring ii) benthic mapping iii) wetlands mapping, and iv)
atmospheric correction. As such, the thesis contributes to research related to airborne
hyperspectral remote sensing and its applications to environmental monitoring and
mapping in Finland or elsewhere where the conditions are similar.

The vast majority of the methods used in water quality retrieval are based on
simple band ratio algorithms. Often only two bands are used. The results of P[1]
show that the use of more bands can lead to better results. The accuracy of the
proposed spectral angle algorithm was just slightly better compared to the band-
ratio algorithm, but it is more robust against the effects of other optically detectable
substances and noise. It can be concluded that there is a certain optimal number of
bands to be used, in this case it was five. Results also emphasized the importance of
local calibration of semi-empirical algorithms. The results obtained using locally cal-
ibrated algorithms were quite different from those obtained by algorithms calibrated
elsewhere.

The results of [P4] showed that the selection of the classification method in benthic
mapping has clear influence on classification accuracy reached. Results indicate that
depending on the selected water column correction and modeling methods, benthic
cover types can be discriminated either using a classifier based on spectral shape

or distance measures. The SCM classifier is rarely, if ever, used in benthic mapping
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applications. It might not outperform other classifiers in every case, but it is certainly
worth trying. The benthic mapping method can be considered operational when the
discrimination accuracy of cover types exceeds 80 %. The ED classifier together
with simple water column correction can almost fulfill this criterion up to depths of
2 m when water quality is least turbid in the test area. When turbidity increases,
depths slightly less than 1 m could be mapped with reasonable accuracy. It can be
concluded that the hyperspectral remote sensing of benthic cover types is limited
to rather shallow areas. The used test method has some limitations; it does not
account for correction errors related to real images or within-species variability of
benthic cover types. Even though the results showed quite limited operability of the
hyperspectral benthic mapping, it should not be rejected without further research.
The tested methods were quite simple. The use of the state of the art methodology
such as simultaneous water quality and depth retrieval, spectrum matching and look-
up-tables could increase the feasible depth range considerably.

The temporal variability of reed bed spectra was found to be significant. The main
challenge related to temporal variability is that there are two different types of reed
beds having different seasonal spectra. The optimal time of data acquisition depends
on the reed bed type. Careful timing of the data acquisition is needed. The spectral
within-class variability of both reed bed and meadow in local neighborhood was found
to be large when compared to references. Both classes have similar mean spectra,
however, 10 out of 11 targets had lower Spectral Angle Value to the mean spectrum of
the corresponding class than that of the other class. This gives a positive indication for
successful reed bed mapping. The results on within-class spectral variability of reed
bed at four test sites within the Olkiluoto Island showed that while the reed spectra
from the sites of Kornamaa and Munakari were close to each other, the spectra
measured in Satama and Flutanpera differed significantly. This is at least partly due
to the variation in the density and height of live and dead reed stems among the
four sites. It can be concluded that if features such as reed characteristics, temporal
variation and surrounding habitats are known and can be controlled, mapping of reed
beds is feasible based on their spectral properties; otherwise LiDAR data or textural

features would be needed.
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Hybrid atmospheric correction methods are rarely seen in scientific literature.
The overall conclusion of [P5] is that the accuracy of atmospheric correction can be
increased by using combined methods rather than a model based method alone. Even
in situations where the number of spectral ground truth measurements is limited,
the proposed method can improve atmospheric correction accuracy over the whole
acquisition area. The improvement is shown especially in certain wavelength regions

which are (950...1100 nm) and (2300...2500 nm).



48

Chapter 5: Conclusions




Chapter 6
Overview of Publications

In this chapter a brief overview of the publications is given, emphasizing the new

contribution of each publication.

6.1 Water quality monitoring [P1]

Clay induced turbidity is the major cause of complex changes in the ecosystem of
coastal water areas. The motivation of publication [P1] was to develop an accurate
and robust algorithm for the clay concentration retrieval using high spectral resolution
hyperspectral data. The study was based on controlled experiment and spectral
laboratory measurements. The accuracy of the proposed spectral angle algorithm
was just slightly better compared to the band ratio algorithm, but it is more robust
against the effects of other optically active substances and noise. Spectral angle
mapper (SAM) method is widely used in remote sensing applications, yet it is not

proposed for water quality retrieval in literature before this publication.

6.2 Benthic mapping [P2]| [P4]

The information on the underwater marine environment is needed both for the
planning of nature conservation and for the exploitation of natural resources. The

motivation of publications [P2] and [P4] was to estimate the feasibility of hyperspec-
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tral remote sensing in benthic mapping at the coastal areas of Finland. In publication
[P4] four different classification methods were tested using simulated data and spec-
tral in situ measurements. The influence of water column correction was evaluated
as well. The results showed significant differences in mapping accuracy among the
tested classification methods. The motivation of [P2] was to study the effects of water
depth and water quality on benthic cover type classification. The overall mapping
accuracy of SCM classification without water column correction reached 47.8 % when
the depth range 0.0-3.0 m was studied. The mapping accuracy increased to 66.0 %
using the ED classifier with water column correction. The majority of research pa-
pers addressing remote sensing of benthic cover types concentrate on optically clear,
shallow coastal and reef waters. A few comprehensive research papers exploring the
feasibility of benthic mapping in the Baltic Sea using remote sensing have been pub-
lished. In these two papers the hyperspectral benthic mapping in coastal Finland is

addressed first time in literature.

6.3 Wetlands mapping [P3]

Common reed (Phragmites Australis) has significantly spread on the Finnish coast
during the last decades. Reed beds are the second largest producer of biomass in
Olkiluoto Island. Quantitative information on the extent and amount of reed stands
is an integral part of the biosphere assessment related to long-term safety analysis of
nuclear fuel repository site currently under construction. Spectral field measurements
were used to study the temporal and spatial variability of spectral characteristics of
reed beds. It can be concluded that if features such as reed characteristics, temporal
variation and surrounding habitats are known and can be controlled, mapping of
reed beds is feasible based on their spectral properties; otherwise LiDAR data or
textural features would be needed. Time-series analysis of reed bed spectra in North
America and China have been publish, yet this is the first publication presenting
results measured in Europe, specifically in Finland. The analysis of local spatial

variability is a new contribution to the field as well.
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6.4 Atmospheric Correction [P5]

One of the major drawbacks of hyperspectral imaging is the need for complicated
correction procedures. Atmospheric correction can be very challenging, especially in
marine environment. The proposed method has two phases. In the first phase the
hyperspectral radiance data is corrected using the model-based ATCOR 4 software
followed by the second phase where the modeled reflectance data is corrected using
the Empirical-Line (EL) method. The average RMSE error of the PIF targets was
6.8 % when the reflectance was derived using the ATCOR 4 software. The average
RMSE error decreased to 1.8 % when the reflectance was derived using the proposed
combined method. Combined methods in atmospheric correction are rarely proposed
in the literature, yet the proposed method is not exactly a new one. The new con-
tribution of this paper is the use of Empirical-Line method on large geographic area
using only a two measurements of reference targets. The relationship between on-
board radiance and reflectance changes as a function of time. The acquisition of the
study are took several hours, yet only two measurements was enough to increase the

accuracy of model based method.
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ABSTRACT

Clay induced turbidity is the major cause of complex changes in the ecosystem of coastal water ar-
eas. The accuracy of the algorithms for the assessment of the clay concentration may suffer signifi-
cantly from the presence of other substances like Algal chlorophyll or dissolved organic matter, highly
influencing the optical properties of the water. The objective of this study was to develop an accurate
and robust algorithm for the clay concentration retrieval using high spectral resolution hyperspectral
data. In order to provide necessary information for the spectral analysis of the water samples, a con-
trolled experiment was arranged. Carefully weighted clay portions were diluted in water and reflec-
tance spectra were recorded using a field spectrometer. Traditionally simple algorithms are used to
estimate the remotely sensed water quality variables. In this paper a novel algorithm based on the
principle of spectral angle measure is presented. The accuracy of the proposed algorithm was just
slightly better compared to the band-ratio algorithm, but it is more robust against the effects of other
optically detectable substances and noise.

INTRODUCTION

Increasing water turbidity is one of the human-induced environmental changes in coastal areas. Hu-
man activity causes both organic (algal) and non-organic (clay) turbidity to rise in aquatic environ-
ments. Rivers and brooks transport clay particles to coastal waters from agricultural land; and other
human activities such as landfill activities, dredging, gravel take, ships turbines, building etc. may
cause non-organic turbidity to rise (1). The effects of increasing organic turbidity on the ecosystem
and biochemical cycles are complex. Especially the underwater biological diversity may be harmed
by increasing turbidity, e.g., Fucus vesiculosus is sensitive to the turbidity (2). It may also be possible
that clay turbidity influences the phytoplankton community structure. The planktonic food web may
change due to the increasing turbidity (3). Organic particles (alive or dead) enter the food web either
by grazing or via decomposition by micro-organisms. Clay particles cannot provide energy to the
grazers or bacteria. They may, however, contain nutrients and trace-elements that can be utilised by
phytoplankton or bacteria (4). In lakes, the clay-turbidity has been shown to have serious effects on
the food web and to prevent the improvement of the lake condition due to the restoration methods
(5). These effects can be assumed to take place in coastal marine environments as well.

Information revealing the environmental effects of the non-organic turbidity in coastal areas is badly
needed by the environmental administration for the Environmental Impact Analysis of projects that
will increase the clay induced turbidity. Remote sensing has already demonstrated its ability to pro-
vide water quality relevant data. Excellent work has been performed to extract the essential water
quality parameters such as chlorophyll content, turbidity and the total amount of suspended matter
(6,7,8). Yet, it appears that there is no standard algorithm for the estimation of suspended sedi-
ments in coastal waters (9). From the remote sensing perspective, the water environment can be
divided into two categories: Case 1 and Case 2. Case 1 refers to phytoplankton dominated waters
(e.g. open oceans) whereas case 2 refers to coastal waters which contain re-suspended sediments,
terrigenous particles and dissolved organic matter (yellow substances) (10). Remote sensing in the
coastal zone has generally been far less successful than in other areas, such as open oceans or
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terrestrial environment (11). This is mainly due to complex interactions of the three optically detect-
able substances: algal chlorophyll, suspended sediments and dissolved organic substances. These
substances have significant impact on the water quality. Each substance has its own reflectance and
absorption trends complicating the derivation of the clay concentration estimation algorithms based
on the remotely sensed data.

Several studies have been conducted to address the impact of the suspended sediments on the
spectral signature of the surface waters (12,13,14,15). Researchers have usually addressed the
general trends in the spectral responses of water samples with varying concentrations of organic and
inorganic suspension. Quibell (1992) showed that the addition of the particulates generally increases
the reflectance at the wavelengths longer than 550nm (16). Gin et al. (2003) proposed a band ratio
algorithm Rsgs/R7s4 for the estimation of the marine clay concentration. The algorithm produced rather
good results with the coefficient of determination r* varying from 0.53 to 0.86 according to the particle
size of the marine clay.

Case 2 water quality retrieval algorithms traditionally use simple band-ratio or band- difference tech-
niques. However, promising techniques utilising more information have been introduced in recent
years. Gitelson et al. (2008) presented a three-band NIR-Red algorithm producing excellent results in
chlorophyll-a concentration retrieval in turbid case 2 waters (17). Cococcioni et al. (2004) presented
an approach to case 2 water quality retrieval based on the use of fuzzy logic (18). The proposed
method produced promising results for the estimation of concentrations of optically active constitu-
ents of case 2 seawater. Doerffer & Schiller (2007) proposed the use of neural network in order to
overcome the problems related to the complex nature of case 2 waters in water quality retrieval (19).

It is quite likely that the derivation of a general algorithm for the clay concentration estimation to be
used globally is not feasible. This is mainly due to the different clay types and different particle sizes.
In addition, the concentrations of the other optically detectable substances than clay vary too much in
the coastal water areas around the world. Yet, an algorithm developed for a smaller geographic re-
gion such as the Baltic Sea can be used as a valuable tool in the studies of the clay’s re-suspension
and biological effects. In this study, a controlled experiment was conducted to measure the reflec-
tance spectra of seawater samples with varying clay concentration. The purpose of the spectral
analysis was to develop a robust and accurate algorithm for the clay concentration estimation for the
coastal water areas of the Baltic Sea using high resolution hyperspectral data.

METHODS
Test data

Reflectance spectra of seawater samples of varying clay concentrations were measured in a labora-
tory environment. The seawater was collected from board of a boat at an offshore location where
both the organic and the non-organic suspension is very low. Total Suspended Matter (TSM) of the
collected water was 5 mg/l and it can be assumed that the matter was mainly organic.

Marine clay was collected from the seaside of the town Pori in South-West Finland (61°36.842'N
21°26.765'E). The small portions of clay were carefully weighted using a precision laboratory scale.
The spectral measurements were carried out in a glass container filled with 24 centimetres of sea-
water. The small portions of clay were ground into powder and diluted in the seawater in the con-
tainer. The reflectance spectrum of each water sample was recorded using an ASD FS-2500 port-
able spectrometer. A total number of six water samples with added clay were measured. The clay
concentration in the prepared water samples varied between 10.6 and 142 mg/l. The clay concentra-
tion values are typically in that range at the coast of the Baltic Sea. A black sheet painted with black
Synthal paint was positioned under the container in order to ensure that the bottom reflectance does
not influence the measured reflectance of the water sample. The Synthal paint has a very low reflec-
tance throughout the measured wavelength range. The measured reflectance of the paint is under
0.03 in the range 350 to 2500 nm.

The container was illuminated with an Oriel research arc lamp source having a power consumption
of 1000 W. The Oriel lamp is a laboratory equipment designed for spectral measurements providing
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constant spectral characteristics. The Oriel lighting source was operated with a voltage stabiliser unit
which ensured a constant illumination of the measured water sample. Black sheets were installed
around the container in order to block out all stray light from other sources. It was necessary to illu-
minate the measured water sample through the glass because the straight mirror reflection from the
water sample had to be avoided. In order to verify the absence of bottom effects the reflectance
spectrum of the empty container bottom was measured. The measured reflectance was very low
throughout the measured wavelength range. Reflectance peaks and absorption points of the bottom
spectrum could not be observed in the water sample spectra. Hence it is safe to assume that there
were no reflections from the bottom involved in water sample measurements. The arrangement of
reflectance measurements is shown in Figure 1.

Oriel arc lamp
Optical fibre
container
spectrometer
] ||
Black Synthal platform

Figure 1: The arrangement of reflectance measurements.

Reflectance measurements of water samples in glass containers need a specific correction for the
removal of the optical effect of the container. The correction coefficients were calculated using an
empirical method where a white reference target was measured inside and outside the empty con-
tainer. The number of wavelength channels is 2151 and is constant throughout the work. Therefore,
indexing of the channels has been omitted in the notation.

The measured reflectances are as follows:
T, = Reflectance of the empty container
P, = Homogenous reference target in the same container
P; = Homogenous reference target outside the container
Denoting the apparent reflectance T, as A7, and the corrected reflectance P; as Ap; it follows:

Pp
Ay =02, (1)
i
¢, P
Pi:_T P (2)
p+Co

where ¢, =4.233 and ¢, = 3.994.

The constants ¢; and ¢, were estimated by minimising the total sum of the absolute difference
A7, - T, The optical effect of the glass container can be removed from the reflectance R, of a water
sample measured in that container using the following relation:

A~ ¢, R,
Rw ~
Tp+c2

®)

where Agr, denotes the corrected reflectance.
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Algorithms

A linear regression is perhaps the most often used empirical method in the remote sensing of water
quality. The use of channel ratios in the regression algorithm has been found to be suitable for the re-
trieval of many water quality parameters (20). Quite often the wavelength channels are called ocean
colour bands in the literature addressing the remote sensing of water quality, so the ocean colour band
ratio algorithms are as essential as the band ratio algorithms. The use of band-ratio algorithms for the
estimation of the clay concentration has been proposed in the literature and therefore, they are used for
a comparison in the evaluation of the spectral angle method proposed in this paper(8). The general
form of a band ratio algorithm used in the assessment of clay concentration C is:

R
C=a_t+b (4)

2

where R; and R, are the remotely sensed reflectances at predefined wavelengths and a and b are
empirically determined regression parameters. High spectral resolution imaging spectrometers such
as AISA dual can provide information on as many as 481 wavelength channels. When the simple
band-ratio algorithms are calculated based on such data the majority of the information is not utilised.
The use of more than two wavelength channels can lead to more robust and accurate algorithms.

Spectral Angle Mapper (SAM) is a spectral classification method that uses an n-dimensional angle to
match remotely sensed pixels to a reference spectrum. The algorithm determines the similarity be-
tween two spectra by calculating the angle between the spectra, treating them as vectors in a space
with a dimensionality equal to the number of bands (21). A small angle means close match to the
reference spectrum. The spectral angle « can be expressed as:

nb
Dt
nb 11721 nb 12
Se) (8
i=1 i=1

where nb is the number of bands, t is the target spectrum and ris the reference spectrum. The spec-
tral angle between the target and the reference spectra in the case of a two-band image is shown in
Figure 2.

a =cos™

target
spectra

Band 2

reference
spectra

—

Band 1

Figure 2: The spectral angle between target and reference spectra shown in the case of a two-band
image.

The feasibility of the SAM method in clay concentration retrieval is not self-evident, the method has
some shortcomings. When using the spectral angle method, a normalisation of spectra is carried out.
Only the shape of these spectra, and not their brightness, is taken into account. Furthermore, SAM
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does not distinguish between negative correlation and positive correlation as it uses absolute values.
In order to overcome the limitations of the SAM method, improved spectral methods such as Spectral
Correlation Mapper (SCM) and Spectral Multiple Correlation Mapper (SMCM) have been proposed
(22,23,24). The main difference between these methods concerns the criteria of similarity used for
comparing the spectra. SCM and SMCM offer some benefits in certain situations but in this kind of
application where the whole spectrum is not employed there is no clear advantage when compared
to SAM. The only essential requirement for a spectrum-dependent variable in this application is a
strong correlation between the variable and clay concentration.

In the proposed algorithm the spectrum of the water sample without added clay suspension was
used as the reference. The spectral angle between the measured water sample spectrum and the
reference spectrum representing water with a very low organic and non-organic suspension was
calculated. The clay concentration C was calculated using the following equation:

C=a'a+b' (6)

where « is the spectral angle between the reference and the measured spectra and a' and b' are
empirically determined regression parameters. In this paper this equation is referred to as the spec-
tral angle algorithm. It is quite usual that all the available wavelength bands are not used in the spec-
tral angle based classification. It is very likely that some of the wavelength bands do not contain in-
formation relevant to the clay concentration of the water. There are several methods for dimensional-
ity reduction of hyperspectral data presented in the literature such as feature selection, Principal
Component Analysis (PCA) and Minimum Noise Fraction (MNF) (25). The PCA and MNF compo-
nents are always image dependent and therefore cannot be used in general algorithms. The wave-
length bands used in the algorithm proposed in this paper were chosen depending on the correlation
analysis. The band combination that produces the strongest correlation between the spectral angle «
and the clay concentration C leads to the highest retrieval accuracy when using Eq. (6).

A very desirable property of a clay concentration estimation algorithm would be its robustness, i.e.,
insensitiveness to the presence of other substances than clay. An organic suspension is often pre-
sent in case 2 waters. Therefore, the robustness of algorithms to withstand organic suspensions was
tested. In our study the spectra of the combined clay and organic suspension were obtained by simu-
lation. The simulated reflectance spectra of the combined suspension were calculated as a linear
combination of the measured spectrum of a water sample with added clay and the spectrum of a
water sample with strong organic suspension. Water samples with a strong organic suspension were
manufactured by diluting green algae in water with very low suspension.
The simulated reflectance spectrum R was calculated using the following equation:
100-P P

R =R 00 o100 (7)
where R; is the spectrum of the water sample with added clay, R, is the spectrum of the water sam-
ple with the organic suspension and P is the percentage of the water with organic suspension in the
mix. Rs is the simulated spectrum of the water sample containing both suspensions, i.e, clay and
organic. An example of R; is shown in Figure 3. R. is the measured spectrum of the water sample
with a clay concentration of 67.4 mg/l and R, the measured spectrum of the water sample with or-
ganic suspension. The percentage of the water with organic suspension in the simulated spectrum is
20%. Hence, 20% of the simulated reflectance spectrum R; is determined by R, and 80 % is deter-
mined by R.. The reflectance peak around 715 nm and absorption around 680 nm due to chlorophyll
can clearly be seen in the reflectance spectrum of the water sample with organic suspension. This
indicates a significant chlorophyll concentration although the exact value could not be measured. The
Total Suspended Matter (TSM) of seawater used as a reference (with very low suspension) was 5
mg/l before the addition of clay, so there is a small amount of organic suspension; however, this
amount is very small compared to the amount of added clay or the amount of organic suspension in
the water sample represented by the green line.




EARSeL eProceedings 9, 2/2010 36

0.1

0.08

Reflectance
o
[
[n3]

o
o
=

0.02

400 500 600 700 800 00 1000 1100 1200
Wavelength (nm)

Figure 3: The reflectance spectrum of water sample with added clay R (blue), the spectrum of water
sample with organic suspension R, (green) and simulated water sample with combined clay and or-
ganic suspension R; (red).

In many cases hyperspectral data have noisy channels due to the poor alignment of the hyperspec-
tral sensor or other factors related to signal quality (26). In the worst cases channels containing ex-
cessive noise have to be excluded from the dataset before processing the hyperspectral data. Gen-
erally, the signal-to-noise ratio of satellite-borne hyperspectral sensors is rather poor (27). It is impor-
tant that an algorithm used to retrieve clay concentration is not sensitive to noise. The sensitivity of
algorithms to noise was evaluated by generating simulated reflectance spectra where random noise
was added to the measured reflectance of water samples with the known clay concentration. The
simulated reflectance spectra were calculated using the following equation:

N
SNR

where R, denotes the spectrum of a water sample with added clay, N is a random noise signal which
has the same mean value as R; and SNR is the signal-to-noise ratio of R;.

R =R, + ®)

RESULTS

The measured reflectance spectra of the water samples containing varying amounts of the added
clay are shown in Figure 3. Ten repeated measurements were used to calculate the spectra for each
water sample. Original measurements covered the wavelength range from 350 to 2500 nm, but the
range above 1150 nm was excluded in this study because the reflectance of the water at that range
is close to zero. All the measured reflectance spectra have two local maxima and one local minimum.
The reflectance maxima are centred at the wavelengths 590 and 815 nm. The local reflectance min-
imum is centred at the wavelength 760 nm. The increase of the reflectance around 815 nm seems to
have a quite linear relationship with the clay concentration of the water, but the increase of reflec-
tance around 590 nm saturates when the clay concentration becomes higher. The decrease of the
reflectance at 760 nm also saturates at higher clay concentrations.

In order to determine the best wavelength channels to be used in a band-ratio based algorithm, the
correlation between clay concentration and hyperspectral band ratio was calculated for all possible
wavelength combinations. The band ratio Ryqe/Rsss produced the best result with the coefficient of
determination r* = 0.941. The band ratio Rses/R7s4 proposed in the literature had a weaker correlation
giving the coefficient of determination ? = 0.519. The correlation between R;s;and the clay concen-
tration is not strong. This is most likely because the type or particle size of the added clay was differ-
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ent in the measurements described in this paper compared to the referenced paper. The regression
parameters a and b in Eq. (4) were determined and the clay concentration C in milligram per litre was
calculated with the following equation:

R
C = 8702/ +(-6498) 9)

585

0.1 .
— 142 0 mg/l
— 89,4 mgll
0.08 —&7.4 mgll
— 44 8 mgl/l

8 o086 — 248 mg/l
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0.02 4 -
D 1 1 1 1 Y 1 -
400 300 600 700 800 900 1000 1100

Wavelength (nm)

Figure 4: Reflectance spectra of water samples containing varying amounts of added clay.

Not all wavelength bands contain information relevant for clay concentration. Therefore, only a small
number of bands was selected to be used in the spectral angle calculation. Band selection was done
using a correlation analysis. The correlation between the spectral angle and the clay concentration
was calculated for all possible band combinations. The correlation was calculated using different
numbers of wavelength bands in order to determine how many bands should be used in the spectral
angle calculation. The correlation between the spectral angle and the clay concentration is not an
adequate criterion for the band selection without restrictions. There are band combinations that pro-
vide a good correlation between the spectral angle and the clay concentration, but the change in the
spectral angle is very small with respect to the change in the clay concentration. This makes the al-
gorithms based on such band combinations very sensitive to noise and other possible interferences.
Therefore, additional restrictions were imposed on a band selection: the spectral angle correspond-
ing to the lowest clay concentration 10.6 mg/lI cannot be higher than 10% of the spectral angle corre-
sponding to the highest clay concentration 142 mg/l. The best obtained coefficients of determination
7 using a different number of wavelength bands are shown in Table 1.

Table 1: Results of correlation analysis using different number of wavelength bands.

Number of bands 4 5 6 7 8 9 10
7 0.932 0.967 0.962 0.954 0.944 0.933 0.922

The strongest correlation was obtained using five wavelength bands. Only a certain number of bands
correlate strongly with the clay concentration. When more bands are used, bands with a weaker cor-
relation decrease the correlation between spectral angle and the clay concentration. The correlation
weakens gradually when more than 5 bands are employed, but the weakening is not dramatic. The
wavelengths that produced the strongest correlation were: 437, 637, 685, 749 and 952 nm. The re-
gression parameters a' and b' in Eq. (6) were determined and the clay concentration C in mg/l was
calculated using the following equation:
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2 [37)

where t denotes the remotely sensed target spectrum, r denotes the reference spectrum of the water
sample without clay suspension, and i = {437,637,685,749,952}. The root mean square error (RMSE)
of the clay concentration estimate was calculated according to:

N
RMSE:\/ﬁZ(C/v,i —Crsi )2 (11)

i=1

C =643.7 -cos™

+73.9 (10)

where N is the number of measurements at different clay concentrations, C,, ; is the measured in
vivo clay concentration and Cgg; is the estimated clay concentration. RMSE values calculated for

the band-ratio and spectral angle algorithms measurements at different concentrations are shown in
Table 2.

Table 2: The percentage of RMSE error of the mean clay concentration for band-ratio and spectral
angle algorithm.

Algorithm | Band-ratio | Spectral angle
RMSE 14.5% 14.1%

The RMSE was slightly lower for the spectral angle algorithm as was expected on the basis of the
correlation analysis.

The sensitivity of the algorithm to the presence of organic suspension was evaluated using simulated
reflectance spectra representing water samples containing both the clay and the organic suspension.
RMSE values for both presented algorithms corresponding to the varying percentage of organic sus-
pension are shown in Table 3.

Table 3: RMSE values for the band ratio and spectral angle algorithms calculated using varying per-
centage of organic suspension.

Organic suspension 0% 10% 20% 30% 40% 50%
RMSE (Band-ratio) 14.5% 17.1% 20.4% 24.6% 30.1% 38.7%
RMSE(Spectral angle) 14.1% 14.8% 17.4% 20.8% 25.3% 32.2%

As can be seen from Table 3, RMSE values are significantly lower (about 15%) for the spectral angle
algorithm. When the simulated water sample contained equal volumes of water with different sus-
pension, i.e., clay and organic, the RMSE for the spectral angle algorithm was 32.2%. The result
indicates that the spectral angle algorithm can provide reasonable results even when other optically
detectable substances than clay are present in the water area under study.

In order to evaluate the sensitivity of the algorithms to noise, random noise was added to the reflec-
tance spectra and the RMSE caused purely by the noise was measured. In order to get statistically
representative RMSE values this process was repeated 10,000 times and the average RMSE for all
measurements was calculated. The relationship between the RMSE of the algorithms and the SNR
of the hyperspectral data is shown in Table 4.

The average RMSE for the spectral angle algorithm was about 10% smaller compared to the band-
ratio algorithm. This indicates the robustness of the spectral angle algorithm although the difference
between the algorithms was quite small.
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Table 4: The relationship between the RMSE of algorithms and SNR of hyperspectral data.

SNR 100 30 10
RMSE(Band-Ratio) 1.61% | 4.89% | 16.25%
RMSE(Spectral angle) 1.45% | 4.41% | 14.6%

CONCLUSIONS

In this paper a spectral angle based algorithm for clay concentration retrieval is presented. The pro-
posed algorithm was tested using reflectance spectra of water samples with added clay suspension.
A controlled experiment was arranged in the laboratory environment in order to record the necessary
reflectance spectra. The band-ratio algorithm proposed earlier in the literature was compared against
the band-ratio algorithm using optimal wavelength bands. The algorithm using optimal wavelength
bands produced significantly better results, which demonstrates the need for a local calibration when
developing an algorithm. The optimal number of wavelength bands used in the SAM algorithm was
quite small, indicating that only a few bands have a very strong correlation to the clay concentration.
The correlation decreases quite slowly when the number of bands increases from the optimal value.

The difference in the retrieval accuracy between the SAM and band-ratio algorithms was small, al-
though in favour of the SAM algorithm. The results clearly demonstrate the robustness of the pro-
posed SAM algorithm. The retrieval error caused by the presence of organic suspension in the water
sample is smaller using the SAM algorithm when compared to the band-ratio algorithm. The retrieval
error caused by the presence of noise in the measured spectrum was also smaller.

The results of this study clearly show the potential of the spectral angle algorithm, but more research
should be done in order to understand the optical properties of optically detectable substances in
case 2 seawater areas. Future work will contain controlled experiments where water samples with
combined suspension are prepared and the reflectance spectra are recorded. A comprehensive
spectral library would provide necessary information on the mixed suspension water spectra, which
would make it possible to derive more accurate algorithms for the estimation of clay concentration.
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ABSTRACT N

Tuominen, J. and Lipping, T., 0000. Feasibility of benthic cover-type mapping in turbid waters near estuaries using
hyperspectral remote sensing. Journal of Coastal Research, 00(0), 000-000. Coconut Creek (Florida), ISSN 0749-0208.

In this study the feasibility of benthic cover-type mapping in turbid waters near estuaries using hyperspectral remote
sensing is explored. The majority of research papers addressing remote sensing of benthic cover types concentrate on
optically clear, shallow coastal and reef waters. In order to study the effects of water depth and water quality on benthic
cover-type classification, a synthetic data set was generated. Synthetic spectra were calculated using in situ optical
measurements of water quality and spectra of different bottom types. The data set was classified using the spectral
correlation mapper (SCM) and the Euclidean distance (ED) classifier. A simple water-column correction method was also
tested. The overall mapping accuracy of SCM classification without water-column correction reached 47.8% when the
depth range 0.0-3.0 m was studied. The mapping accuracy increased to 66.0% using the ED classifier with water-column
correction. When water quality was changed from least turbid to most turbid, the overall accuracy decreased to 50.4%.

ADDITIONAL INDEX WORDS: Baltic Sea, water-column correction.

INTRODUCTION

Increasing water turbidity is one of the human-induced
environmental changes in coastal areas. Maritime spatial
planning is a key instrument for implementing the European
Union’s Integrated Maritime Policy (Meiner, 2010). At present
authorities are often forced to carry out spatial planning of
marine areas based on insufficient or incomplete data. Reliable
information on benthic habitats is urgently needed in many
marine areas. The Finnish Inventory Programme for the
Underwater Marine Environment (VELMU), designed to
provide information for the protection of the Baltic Sea, collects
data on the diversity of underwater marine biotopes and
species (Kohonen, 2003). One of the main goals of the research
programme is to maintain and increase diversity in the marine
environment. The protection programme is difficult to imple-
ment, as knowledge of the underwater marine environment
and its state in general is insufficient.

Benthic algal cover and trends in changes of algal cover could
be used as indicators of biological state in coastal areas (Juanes
et al., 2008; Kutser, Miller, and Jupp, 2006). Such indicators
are valuable tools when the protection and preservation of
marine environments is planned. Maritime spatial planning
requires data covering large areas; traditional in situ mea-
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surements taken by diving, submerged video, and grab
sampling cannot cover such large areas without excessive
costs. Remote sensing based submerged mapping has been
shown to be more cost-effective than in situ measurements
(Mumby et al., 1999). Classification of benthic cover types has
been suggested in several research papers, as it is a spatially
comprehensive method (Dekker et al., 2001).

Mapping of benthic cover types based on remote-sensing
data has been carried out successfully in optically clear,
shallow coastal and reef waters (Dekker et al., 2001; Kutser
and Jupp, 2002). Louchard et al. (2003) showed that hyper-
spectral classification of benthic cover types can produce
satisfactory results in the clear coastal waters of the
Bahamas. Bertels et al. (2008) used airborne hyperspectral
data in coral reef mapping, yielding desirable classification
accuracy even in depths above 10 m. Turbid waters, however,
are far more challenging for remote-sensing techniques
(Phinn et al., 2005). The limited exchange of marine waters
of the North Sea through narrow channels and large
discharge from rivers significantly influence the optical
properties of the Baltic Sea (Darecki and Stramski, 2004).
Colored dissolved organic matter (CDOM) is the major light
absorber in these waters (Kowalczuk et al., 2005). CDOM in
coastal environments generally has a terrestrial origin and is
transported to the ocean via rivers. The highest concentra-
tions of CDOM are found in coastal margins of oceans and in
semienclosed seas, where direct sources of terrestrial organic
matter are found.
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A few comprehensive research papers exploring the feasibil-
ity of benthic mapping in the Baltic Sea using remote sensing
have been published. The feasibility of multi- and hyper-
spectral remote sensing was studied using model-based
simulations. The modelling results indicate that to some extent
it is possible to map the macroalgal species in turbid waters of
the Baltic Sea using multispectral satellite sensors. However,
the depths at which the macroalgae can be detected are often
shallower than the maximum depths to which the studied
species grow (Kutser, Vahtméie, and Martin, 2006). The
modelling results of the hyperspectral method indicate that
the feasibility of mapping benthic macroalgal cover in CDOM-
dominated environments such as the Baltic Sea is not much
lower than in clear waters (Vahtmée et al., 2006). In addition to
studies based on model-based simulations, some empirical
studies on benthic mapping in the Baltic Sea have been
published. Kutser et al. (2011) used airborne hyperspectral
data to classify benthic cover types on the coast of Estonia. The
results were promising; however, the need for more satisfactory
atmospheric correction of the data was pointed out. Vahtméae
and Kutser (2007) published a study assessing the suitability of
high-spatial-resolution multispectral and medium-spatial-res-
olution hyperspectral data for mapping benthic macroalgal
cover in shallow coastal waters of the Baltic Sea. Results of the
study indicate that the use of multispectral satellite data with
high spatial resolution is preferable to hyperspectral medium-
resolution data in mapping benthic macroalgal cover in areas
where the spatial heterogeneity is very high.

The water near the coastline of Finland is largely
influenced by discharge from numerous rivers. In the case
of large rivers, this influence can cover wide areas near the
coastline. In summer 2008 an airborne hyperspectral cam-
paign was carried out in SW Finland. The data acquisition
covered the SW coastline using an AISA dual sensor.
Unfortunately benthic field survey data was not collected
during the flight campaign, so the usability of the data in
benthic mapping could not be evaluated. Such missions are
planned in the future. The objective of our study was to
determine whether such hyperspectral flights could be used
for benthic mapping in these challenging conditions. The
maximum depth at which reasonably accurate classification
can be performed was estimated, as well as the influence of
water type on the accuracy of classification. Studies using
hyperspectral flight campaigns with simultaneous in situ
submerged measurements are often hard to carry out, both in
terms of excessive cost and the considerable amount of work
related to field measurements. In this study simulated data
were used instead of remote-sensing imagery. Synthetic data
generated using empirical spectral and water-quality mea-
surements were used to determine classification accuracy of
benthic mapping. The reflectance spectra of typical benthic
cover types in the study site were measured using a handheld
spectroradiometer. In order to calculate the effect of the
water column on bottom reflectance, several spectral water-
quality measurements were performed. The optically deep
water reflectance was measured and the water attenuation
coefficient assessed at four locations of different turbidity. A
simulated data set was generated using these spectral in situ
measurements.

MATERIALS AND METHODS

Study Area

The study area is located on the coast of the city of Pori in SW
Finland (Figure 1). The river Kokeméenjoki flows from inland
into the large estuary of Kolpanlahti. The average flow in the
river Kokeméenjoki is 260 m%/s, and flow rates exceeding 500
m?%/s are not exceptional. The discharge from a smaller river,
Kristiskerinjoki, also contributes to increased turbidity in the
study area, but not at the same scale as the Kokeméaenjoki.
From the estuary, water flows towards the open sea via three
narrow outlets. A Landsat ETM+ image covering the study
area was acquired on 6 June 2011, ten days after spectral
water-quality measurements were taken (Figure 2). Increased
turbidity due to discharge from rivers can be seen as brownish
colour. Clearer-water bodies appear as dark blue areas.
According to remotely sensed estimates provided by the
Finnish Environment Institute, turbidity near in situ mea-
surement sites typically varies from 3 to 5 Formazin Turbidity
Unit (FNU). The Landsat image is shown in order to illustrate
the variation of turbidity in the study area; it was not used in
the classification process.

In Situ Measurements of Benthic Reflectance Data
Benthic cover types for this study were selected based on an
initial submerged survey in the study site. Research divers
explored the area using side-scan sonar and underwater video.
Specimens of typical green (Cladophora glomerata), brown
(Fucus vesiculosus), and red (Ceramium tenuicorne) benthic
macroalgae were selected. In addition to benthic vegetation,
three typical bottom covers, i.e. sand, clay, and reddish pebble,
were selected. Reflectance spectra of benthic cover types were
measured using a handheld GER 1500 spectroradiometer
(Spectra Vista Corporation, Poughkeepsie, New York,
U.S.A.). The spectral range of the instrument is 300-1100 nm.
Spectra were sampled with 1.5 nm intervals, and spectral
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Figure 1. The geographic location of the study area. The sites of in situ
spectral water-quality measurements are labelled according to water type
(Q1 through Q4). Water type Q1 represents the least turbid and Q4 the most
turbid water.
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Figure 2. Enhanced Landsat satellite image (channels 3, 2, and 1) of the
study area. (Color for this figure is available in the online version of this
paper.)

resolution of the GER1500 instrument was 3 nm. Reflectance
was calculated as the ratio of radiance from the measured
object to the radiance from the reflectance standard, i.e. 99%
Spectralon panel (Labsphere, North Sutton, New Hampshire,
U.S.A.). Samples of each studied cover type were collected into
water-filled plastic containers. Reflectance measurements of
wet samples were carried out on the shore immediately after
landing of the boat. Three reflectance spectra of each sample
were measured, and the average spectrum of each cover type
was used in the following data-generation and classification
procedures.

In Situ Measurements of Spectral Water-Quality
Parameters

Spectral water-quality parameters were measured at the
four sites indicated in Figure 1 on 26 May 2011. Two spectral
parameters were measured at each site—the optically deep
water reflectance R.. and the water attenuation coefficient K.
The sites were selected by the following criteria:

(1) Depth must be at least 6 m in order to ensure the
measurement of deep water reflectance. Deep water
reflectance R. means that the bottom albedo has no
influence on the reflectance value.

(2) Increased turbidity caused by the river must be present.

(38) The location of the site must provide some shelter from
the waves to allow spectral measurements aboard a small
boat.

Optically deep water reflectance was measured using a GER
1500 spectroradiometer equipped with the optical fibre exten-
sion. The side of the boat was covered with a black low-
reflectance sheet in order to prevent interfering reflections
from the boat. The water attenuation coefficient K was
measured using a white reference plate. The plate was set at
a depth of 30 cm, and the reflectance was measured. Then the

reflectance of the wet reference plate was measured again on
board without the water column.

It has been shown by Maritorena, Morel, and Gentili (1994)
that the diffuse reflectance of shallow waters just below the
water surface can be calculated using the equation

R(0—,z) = R + (Rp — R)exp(—2Kz), (1)

where z is the water depth, R, is bottom reflectance, R.. is
reflectance of optically deep water, and K is the diffuse
attenuation coefficient of the water. In this case R is the
reflectance of the reference plate at the depth of 30 cm and R, is
the reflectance of the reference plate measured without the
water column; the depth z and deepwater reflectance R.. are
known. Hence the only unknown variable in Equation (1) is the
water attenuation coefficient K, which can be solved using the
equation

K= ln@ﬁ) : (2)

Three reflectance spectra of each water type were measured
and average spectra were calculated for the assessment of both
R.. (without the reference plate) and K (obtained from the
measurement with the reference plate at 30 cm using Equation
[2]). In this study the diffuse attenuation coefficient was
measured at a depth range of 0.0-0.3 m, and it is assumed that
the obtained value is valid for the depth range of 0.0-3.0 m.
This assumption might not be completely correct, but the
approach provides a reasonable estimate of the attenuation
coefficient. Although vertical attenuation coefficients are
bound to change with depth, in many cases the exponential
decrease of downwelling irradiance in the euphotic zone
appears to be satisfactorily given by a single value of K (Gons,
Ebert, and Kromkamp, 1998). The water at the measurement
sites is quite well mixed. Thus the vertical structure of inherent
optical properties (IOPs) is quite homogenous. The underwater
radiance distribution is altered not only by the absorbing and
scattering properties of the water column (IOPs), but also by
angular distribution of light incident on the sea surface (Siegel
and Dickey, 1987). This angular distribution of light can
slightly alter the vertical structure of the diffuse attenuation
coefficient near the surface.

Sun-Glint Correction

The sun-glint correction was accomplished through a
modification of the method presented by Kutser, Vahtmae,
and Praks (2009). The method is based on two assumptions:
First, it is assumed that there is no spectral absorption feature
in the reflectance spectrum of natural waters at 760 nm if
reflected light does not contain glint. Second, the depth of the
oxygen absorption feature at 760 nm is proportional to the
amount of glint in the spectrum. The depth of the absorption
feature was calculated to be

[R(750) + R(780)]
2

where D is the depth of the oxygen absorption feature and

R(750), R(760), and R(780) are reflectances at these particular

wavelengths. Kutser, Vahtmée, and Praks (2009) used corre-

sponding wavelengths selected from available AISA channels:

D= — R(764), (3)
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739 nm, 760 nm, and 860 nm. In this study optimal channels
were chosen from high—spectral-resolution data. In the original
method it was assumed that pixels with D values close to zero
do not contain glint and the pixels with the highest D value
contain mainly glint. Remote-sensing images can contain
hundreds of thousands of pixels, and it is safe to assume that
in this large set there exist pixels with no glint as well as pixels
resulting mainly from glint. However, in this study there are
only 12 measured spectra that contain significant amounts of
glint, and none of them contains mainly glint or is totally glint
free. In sun-glint correction it is assumed that the measured
reflectance originates from both the reflectance of water and
the reflectance due to sun glint. Therefore, if the depth D is
proportional to the amount of glint, it is also proportional to the
reflectance of water. It is not well established whether this
proportion is linear or nonlinear; however, linear correction
seems to produce reasonable results. In our modified approach,
three measurements of deep water reflectance were used to
scale the relationship between the reflectance R and absorption
depth D. For each band a linear regression was applied
between R and D (Figure 3), using the equation

R=axD+b (4)
The corrected value of R can be calculated by setting D = 0.

Generation of Synthetic Data

In order to study the mapping accuracy of benthic cover-type
classification, a synthetic data set was generated. The whole
data set contains 7200 simulated spectra, 1200 spectra for each
cover type representing the situations of varying water quality
and water-column height. The simulated water depth varies

W 1(560)
deglinted reflectance R{560)

M3(440) @

Reflectance (%)
I

deqglinted reflectance R{440)

0 0.05 0.1 0.15 0.2
Absorption depth D

Figure 3. Graphical representation of the glint correction method. The
correction is illustrated at two wavelengths, 440 nm and 560 nm. M1 through
M3 represent the three measured spectra. For each spectrum the absorption
depth D is calculated according to Equation (3). Then the regression equation
(Equation [4]) is solved for each wavelength band, and the deglinted
reflectance value at the corresponding wavelength is determined by the point
where the regression line crosses the axis (D = 0).

between 0.01 m and 3.0 m at 0.01 m intervals. Four different
water-type classes were studied: Q1, Q2, Q3, and Q4, where Q1
represents the least turbid and Q4 the most turbid water.
Classes are based on empirical spectral water-quality mea-
surements. The data set is modelled using Equation (1). The
simulated spectrum R is calculated using deep water reflec-
tance R.. and attenuation coefficient K corresponding to the
simulated water type.

Water-Column Correction

The major problem involved in remote sensing of submerged
cover types is that the water column affects the signal received
at the sensor depending on the water depth and water quality.
In the water-column—correction approach, methods accounting
for the effects of water depth and turbidity variation are
employed. Mumby et al. (1998) reported only 4 studies out of 45
(9%) that attempted water-column correction and concluded
that authors are generally unaware of such methods. Several
methods for water-column correction have been proposed. Good
results have been achieved by a technique that creates a single
depth-invariant band from each pair of visible spectral bands
(Lyzenga, 1978, 1981). In this method, the exponential
attenuation of the water column is first linearized for each
band followed by calculation of the ratio of the attenuation
coefficients for each pair of bands. However, the method
assumes that the water column is uniform over the scene and
the signatures of optically deep water pixels are needed to
perform the transformations. Several improvements to the
Lyzenga method have been since proposed; however, those
methods need tuning for particular conditions or make
assumptions that are valid only in certain locations.

Recently Armstrong et al. (2007) presented an approach in
which at-sensor radiances were transformed into underwater
reflectance factors. Transformation was derived using sub-
merged black and white tarpaulins as underwater calibration
targets. Karpouzli et al. (2003) proposed a method based on the
variables of water depth, distance to and size of mangrove beds,
and distance to and size of towns. The method was developed by
using an extensive number of optical in situ water measure-
ments and laboratory analysis of water samples. This and the
Armstrong et al. (2007) method require a considerable amount
of fieldwork. Mishra et al. (2007) have proposed a method
where the depth and water properties are derived from
hyperspectral data itself;, however, calibration of the method
requires extensive in situ measurements. There are some
methods that allow the retrieval of water depth and bottom
type simultaneously. Mobley et al. (2005) proposed an approach
based on spectrum-matching and look-up-table methodology:
First, a database of remote-sensing reflectance spectra corre-
sponding to various water depths, bottom reflectance spectra,
and water-column IOPs is constructed using a special version
of the HydroLight radiative transfer numerical model. Second,
the measured spectrum for a particular image pixel is
compared with each spectrum in the database, and the closest
match to the image spectrum is found using a least-squares
minimization. Kutser, Miller, and Jupp (2006) presented a
method that uses spectral libraries created with forward
modelling from the sea bottom to the top of the atmosphere.
A hyperspectral library of radiance at satellite altitude was
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simulated using a spectral library of benthic substrates, a
HydroLight radiative transfer model, and an in-house atmo-
spheric model.

In this study a simple water-column—correction method was
tested. The advantage of the method is that it only requires one
water-quality measurement. The method does not assume any
knowledge about the characteristics of the water column
covering the underwater target. The correction is based on
Equation (1), with water depth z taken to be half of the
considered depth range (e.g. assuming water depth in the range
of 0.0 m to 3.0 m, z=1.5 was chosen) and water quality assumed
to be water type Q1. This means that the optically deep water
reflectance and the diffuse attenuation coefficient measured at
site Q1 are used when a new reference spectrum is calculated.
The use of water type Q1 helps to preserve more features of the
reference spectra compared to more turbid waters. A new
water-column—corrected reference spectrum for each benthic
cover type was calculated using Equation (1) and used in the
classification instead of the original measured spectra.

Classification of Synthetic Data

The assessment of classification accuracy was performed
using simulated data instead of real images. Studies exploring
benthic cover-type mapping have usually been done using the
maximum likelihood classifier or the spectral angle mapper
(SAM). Tuominen and Lipping (2012) tested the accuracy of
classification methods in benthic mapping. Four classification
methods were tested with and without water-column correc-
tion:

(1) Euclidean distance (ED) classifier

(2) SAM classifier

(3) Spectral correlation mapper (SCM) classifier
(4) Spectral information divergence (SID) classifier

SAM is a method for directly comparing image spectra to a
known spectrum (usually determined in a laboratory or in the
field with a spectrometer). This method treats both spectra (the
questioned and known) as vectors and calculates the spectral
angle between them (Kruse et al. 1993). The SID classifier
represents a theoretic approach to hyperspectral classification,
comparing the similarity between two pixels by measuring the
probabilistic discrepancy between two corresponding spectral
signatures (Chang 2000).

The SCM measure is defined by Carvalho and Meneses
(2000) as

h YX-X¥-Y)
VX XY (Y- V)

where X is the image spectrum, Y is the reference spectrum,
and X and Y are means of the corresponding spectrum vectors.
The Euclidean distance measure is defined as

(5)

L

05
ED(s;s;) = ||s;,sil|= [Z(s’l - sil)Z} , (6)

=1

where s, is the reference spectrum and s; is the image
spectrum.
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Figure 4. Average reflectance spectra of the studied benthic vegetation
types.

Complete details and results of classifier assessment can be
found in Tuominen and Lipping (2012). Based on these results,
the SCM and ED classifiers were chosen for this study. The
whole data set, containing 7200 spectra, was classified using
the SCM classification. Water-column correction was not
employed, i.e. the original spectra of the benthic cover type
classes shown in Figures 4 and 5 were used as reference
spectra. Each spectrum of the simulated data set was assigned
to one of the six classes according to correlation criteria R. The
same simulated data set was classified using the ED classifier
with water-column correction. Each spectrum of the simulated
data set was assigned to one of the six classes according to
minimum distance criteria. Classification of synthetic data was

Reflectance (%)

2 1 1 1
400 500 600 700 800
Wavelength (nm}

Figure 5. Reflectance spectra of studied nonvegetation benthic cover types.
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followed by the assessment of mapping accuracy. The depth
ranges under study were 0.0~1.0 m, 0.0-2.0 m, and 0.0-3.0 m.

RESULTS AND DISCUSSION

Three reflectance spectra of each algae sample were
measured and the average spectrum of each cover type was
used in the following data-generation and classification
procedures (Figure 4). All measured vegetation types have
high reflectance in the near-infrared part of the spectrum. The
green algae have a more gentle red-edge slope compared to the
other algae. The reflectance of green algae is higher than that
of the two other algae types in the visible part of the spectrum.
Red and green algae have very similar spectra in the near-
infrared range. Brown algae have a double peak in reflectance
spectra near 590 nm and 640 nm. Red algae have slightly
increased reflectance near 590 nm and a stronger peak near
650 nm. Green algae have local reflectance maxima near 580
nm. The most distinctive difference between red and brown
algae is the reflectance peak of brown algae near 590 nm. In
addition to higher reflectance, the spectrum of the green algae
also differs from those of the other two in shape—there are no
clear reflectance peaks in the visible part of the spectrum. The
measured spectra of green and brown algae are similar to those
measured at other parts of the Baltic Sea (Kutser, Vahtmae,
and Metsédmaa, 2006). However, the spectra of red algae differ
from that measured by Kutser et al., most likely due to the use
of different species of red algae: Furcellaria lumbricalis seems
to have a very similar double-peak spectrum to the brown
algae, while Ceramium tenuicorne has only one reflectance
peak near 650 nm.

In general, the measured nonvegetation spectra resemble
each other in shape (Figure 5). Sand and clay have higher
reflectance spectra than the algae in the visible range. The
reflectances of sand and clay are very similar in shape. Pebble
has a steeper slope around 575 nm, and its reflectance
decreases above 750 nm compared with sand spectra. The
reflectance of clay increases slowly when the wavelength
lengthens from 400 nm to around 600 nm and remains almost
constant above 600 nm.

When the measurements of optically deep reflectances were
compared to published results measured at the Baltic Sea and
spectra obtained using bio-optical modelling, it was obvious
that the measured spectra contain a significant amount of sun
and sky glint (Ficek, Zapadka, and Dera, 2011; Vahtmé&e et al.,
2006). Three repeated measurements of the same target have
considerable variation in the blue green part of the spectrum
(Figure 6). The reflectance in the blue part of the spectrum
should be considerably lower in CDOM-dominant coastal
waters of the Baltic Sea. The oxygen absorption feature near
760 nm is clearly visible in the first measurement. The depth of
the absorption feature is lower in the second and third
measurements. The sun-glint correction based on the absorp-
tion depth removes most of the glint, but reflectance in the blue
and near-infrared parts of the spectrum should still be
somewhat lower. This indicates that there is probably some
sky glint left in the spectra.

In general, sun-glint—corrected optically deep reflectances
are quite similar in shape (Figure 7). All measured spectra
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Figure 6. Three measurements of optically deep water reflectance at site Q4
and the sun-glint—corrected spectrum used in the generation of synthetic
data.

have a reflectance peak near 570 nm. Water type Q4 has higher
reflectance in the blue-red part of the spectrum compared with
the other water types, whereas Q1 has higher reflectance in the
blue part of the spectrum. Although there seems to be some
amount of sun and sky glint left in the spectra, they can be
considered useable in this study. Such glint-induced distortion
is often present in real remote-sensing images as well.

The diffuse attenuation coefficient was calculated using the
spectral measurements of the submerged reference plate
(Figure 8). All measured water types have an attenuation
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Figure 7. Average reflectance spectra of the sun-glint—corrected optically
deep water reflectances.
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Figure 8. Attenuation coefficients of the measured water types.

minimum near 570 nm. Attenuation increases when the
wavelength gets shorter in the blue range of the visible part
of the spectrum. All water types have attenuation maxima near
770 nm. The attenuation of water type Q1 is slightly higher
when compared with that of clear lakes in South Finland
(Reinart et al., 2003). The attenuation of water type Q4 is
slightly lower than in moderate lakes. Jerlov (1976) has
formally classified oceanic water types according to their
optical attenuation properties using nine categories. The
attenuation of water type Q1 is close to that of Jerlov’s category
9, representing the most turbid waters. The attenuations of
types Q2, Q3, and Q4 exceed that of Jerlov’s category 9.

The water-quality measurements as well as the measured
spectra of benthic cover types were used to generate a
simulated data set. The confounding effect of the variable
water column is clearly visible in the simulated spectra (Figure
9). The spectral features of brown algae are just barely visible
when the depth of the water column is 90 cm.

Accuracy for each class together with the overall accuracy of
the SCM classifier without water-column correction is present-
ed in Table 1. The overall mapping accuracy varies according to
water quality. At a depth range of 0.0-3.0 m, the best overall
accuracy, 47.8%, is achieved when the water quality is Q1, and
the accuracy deteriorates to 33.7% at water quality Q4. This
result can be expected when the attenuation characteristics of
the water classes are considered (see Figure 8). The classifica-
tion of red alga shows better accuracy compared with the other
alga types. The mapping accuracy of sand is very modest,
varying from 8.9% to 5.3%, according to the water quality
(depth range 0.0-3.0 m). The random classification of six
classes would produce a mapping accuracy of 9.09% for each
class.

Table 2 presents the confusion matrix of the SCM classifier
without water-column correction using water type Q1 and
depth range 0.0-3.0 m. The most noticeable detail in the
confusion matrix is the huge amount of commission errors in
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Figure 9. Simulated reflectance spectra representing the spectrum of brown

algae through water columns of various heights. The simulated water type is

Q1.

the clay class. The classes of red and green algae were mixed to
each other, as were the classes of green and brown algae. Green
algae, pebble, and sand were commonly classified as clay.

The mapping accuracy for each class as well as the overall
accuracy of the ED classifier with water-column correction is
presented in Table 3. As with the SCM classifier, this method
was evaluated using three different water depth ranges; the
overall mapping accuracy varies according to water quality. At
a depth range of 0.0-3.0 m, the best overall accuracy, 66.0%, is
achieved when water quality is Q1, and accuracy deteriorates
to 50.4% when the water quality is Q4. Two classes, those of red
and brown algae, have better classification accuracy compared
to other classes. The overall mapping accuracies are better
than those obtained without water-column correction. The
variation of mapping accuracy between classes is modest when
compared to the results obtained without water-column
correction.

Table 4 presents the confusion matrix of ED classification
with water-column correction using water quality Q1 and
depth range 0.0-3.0. Two classes, red and brown algae, are
misclassified as pebble whereas green algae are misclassified
as clay. The poor classification accuracy of sand is mostly due to
the large number of omission errors. The amount of omission
errors in the pebble class is quite small, but the amount of
commission errors deteriorates the classification accuracy.

Results showed that water quality varies significantly within
the studied area. The impact of this variation is clearly shown
in the classification results. The benthic mapping method can
be considered operational when the discrimination accuracy of
cover types exceeds 80%. The ED classifier together with
simple water-column correction can almost fulfil this criterion
up to depths of 2 m when water quality is Q1. When turbidity
increases and water quality is Q4, depths slightly less than 1 m
could be mapped with such accuracy. Vahtmae et al. (2006)
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Table 1. Mapping accuracy of the SCM classifier without water-column correction. All data other than depth are presented in percentages.

Quality Depth Range (m) Red Algae Green Algae Brown Algae Pebble Sand Clay Overall
Q1 0.0-1.0 100.0 100.0 100.0 70.0 29.0 58.5 83.2
0.0-2.0 100.0 47.6 53.0 35.0 14.5 374 62.1
0.0-3.0 72.0 24.2 35.3 23.3 8.9 32.1 47.8
Q2 0.0-1.0 100.0 87.0 85.0 55.0 19.5 50.5 77.3
0.0-2.0 84.0 32.6 42,5 27.5 10.8 34.2 53.8
0.0-3.0 59.8 19.3 28.3 18.3 74 28.7 41.4
Q3 0.0-1.0 100.0 70.7 70.0 44.0 16.7 44.6 71.0
0.0-2.0 65.5 23.7 35.0 22.0 9.1 31.6 46.4
0.0-3.0 43.7 17.5 23.3 14.7 6.3 25.1 36.5
Q4 0.0-1.0 100.0 57.6 61.0 37.0 14.3 40.5 65.8
0.0-2.0 55.0 20.5 30.5 18.5 7.8 29.2 42.2
0.0-3.0 37.0 16.2 20.3 12.3 5.3 23.4 33.7
Table 2. Confusion matrix of the SCM classifier without water-column correction.
True/Result Red Algae Green Algae Brown Algae Pebble Sand Clay
Red algae 216 84 0 0 0 0
Green algae 0 140 0 0 0 160
Brown algae 0 194 106 0 0 0
Pebble 0 0 0 70 26 204
Sand 0 0 0 0 29 217
Clay 0 0 0 0 0 300
Table 3. Mapping accuracy of the ED classifier with water-column correction. All data other than depth are presented in percentages.
Quality Depth Range (m) Red Algae Green Algae Brown Algae Pebble Sand Clay Overall
Q1 0.0-1.0 100.0 90.0 100.0 100.0 75.4 84.2 95.3
0.0-2.0 85.0 61.5 80.0 84.3 37.8 48.5 76.5
0.0-3.0 76.0 48.0 69.1 53.0 29.1 34.9 66.0
Q2 0.0-1.0 96.0 75.0 90.0 87.7 58.9 74.1 88.5
0.0-2.0 71.0 52.4 67.0 60.2 39.2 44.8 69.5
0.0-3.0 63.3 42.6 58.4 44.0 26.0 27.4 58.6
Q3 0.0-1.0 83.0 65.0 78.0 72.0 52.9 64.7 81.3
0.0-2.0 61.0 46.5 58.0 52.1 30.4 394 63.7
0.0-3.0 54.3 38.1 50.7 38.65 24.0 25.4 53.7
Q4 0.0-1.0 74.0 59.0 71.0 64.5 48.4 59.5 76.7
0.0-2.0 54.5 42.2 52.5 47.8 28.4 35.5 59.8
0.0-3.0 48.3 34.7 45.9 34.8 22.8 24.7 50.4
Table 4. Confusion matrix of ED classification with water-column correction.
True/Result Red Algae Green Algae Brown Algae Pebble Sand Clay
Red algae 228 0 0 72 0 0
Green algae 0 203 0 0 0 97
Brown algae 0 0 212 88 0 0
Pebble 0 25 7 254 14
Sand 0 76 0 0 114 110
Clay 0 22 0 23 78 177

indicated that the depth at which sandy bottom can be detected
in CDOM-rich estuaries is quite limited (1-3 m). This result is
well in coherence with the findings of our study.

Karpouzli et al. (2003) concluded that the results of studies in
which single measurements of “average” attenuation are used
to depth-correct remotely sensed imagery should be interpreted
with a high degree of caution. One water-quality measurement
is certainly not enough to provide reasonable coverage. Yet the
results of this study showed that mapping accuracy can be
improved even when a simple correction technique using only

one water-quality measurement is employed. In addition to
improved accuracy, water-column correction considerably
decreased the variation in accuracy between classes.

CONCLUSIONS
In this study the feasibility of benthic cover-type mapping in
turbid waters near estuaries using hyperspectral remote
sensing was explored. The analysis of measured benthic
spectra showed that differences between cover types can be
quite subtle; however, they can be discriminated from each
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other. The study was based on the analysis of a simulated data
set generated using in situ measurements of benthic cover
types and water-quality parameters. Benthic mapping meth-
ods and studies should always be validated using real images.
Unfortunately the excessive cost of an airborne hyperspectral
flight campaign together with related fieldwork prevented this,
and simulations were used instead. Therefore the current
study should be regarded as a promising early investigation
that must be followed up with validation using real images.
Results indicate that hyperspectral remote sensing could
provide usable results in areas near outer islands further
away from the coastline, as well as in coastal areas which are
not in the immediate vicinity of the river mouth. In highly
CDOM-rich brown estuarine waters, feasible depths are so
modest that the use of remote sensing—based mapping is hardly
meaningful. The results also show that water quality can vary
significantly within a quite small geographic area near an
estuary. A water-column correction method that accounts for
variation in water quality would very likely provide better
results than the simple method used in this study.
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Abstract: Reed beds are the second largest producer of biomass in Olkiluoto Island. Quantitative
information on the extent and amount of reed stands is an integral part of the biosphere assessment
related to long-term safety analysis of nuclear fuel repository site currently under construction. The
major challenge in reed bed mapping is discrimination between reed and other green vegetation.
Spectral field measurements were used to study the temporal and spatial variability of spectral
characteristics of reed beds. Feasibility of discriminating reed beds from other vegetation based
on hyperspectral measurements was studied as well. Results indicate that there is large temporal
variation of reed bed spectra and the optimal time for data acquisition differs for old and new
reed bed types. Comparing spectral characteristics of the reed bed and meadow classes in a local
neighborhood indicated that the classes have high within-class spectral variability and similar mean
spectra, however, 10 out of 11 targets had lower angle to the mean spectrum of the corresponding
class than that of the other class when Spectral Angle Mapper (SAM) was used. Comparing the
spectral characteristics of reed beds at four test sites within the Olkiluoto Island indicated that while
some of the sites had similar spectra, the difference between others was remarkable. This is partly
explained by different density and height of dead and live reed stems at the four sites.

Keywords: reed beds; spectral variability; remote sensing

1. Introduction

Common reed (Phragmites Australis), a native helophyte in coastal areas of the Baltic Sea, has
significantly spread on the Finnish coast during the last decades raising ecological issues and concerns
due to the important role it plays in the ecosystem dynamics of shallow coastal areas [1]. In addition
to biodiversity there are other ecological and economic issues such as water protection, bioenergy,
construction, farming and landscape. Reed beds have proven to be effective in the treatment of waste
waters such as domestic sewage and industrial discharge containing heavy metal wastes [2]. Reed
biomass can be used as an energy source in three ways, namely by combustion, biogas production
and biofuel production [3]. There are currently studies aiming to develop economical and sustainable
methods to harvest reed for bioenergy production in Finland. Reed can be used as a soil conditioner in
agriculture thus substituting the use of fertilizers [4].

Recent developments in sensor technology and data processing methods have led to an increase
in the use hyperspectral imagery for environmental applications. High spectral and spatial resolution
imagery provides researchers the potential to map vegetation at species’ level, provided the plant
species under study are spectrally distinct [5]. Species discrimination using remote sensing is based
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on the assumption that each species is characterized by a set of unique biophysical features and
biochemical composition that control the variability in its spectral signature [6].

The fundamental problem in vegetation discrimination using remote sensing is that there is
an overall qualitative similarity in the spectral reflectance of green plant species. Furthermore, the
assumption that individual plant species have unique spectral signatures may be wrong. Price [7]
has argued that several species may actually have quantitatively similar spectra due to the spectral
signature variation present within a species.

The capability of discriminating plant species using hyperspectral imagery has been demonstrated
in many studies. Clark ef al. [8] successfully discriminated tropical rain forest tree species. Schmidt and
Skidmore [9] studied the discrimination of vegetation types in coastal wetlands. Thenkabail [10] used
hyperspectral data to discriminate agricultural crops. Vahtmaée et al. [11] demonstrated the feasibility of
hyperspectral remote sensing for mapping benthic microalgae cover. The remote sensing of wetlands
does, to some extent, differ from remote sensing based mapping of other terrestrial features. Differences
exist because wetlands occupy a unique interface between aquatic and terrestrial ecosystems [12].
In addition, the reflectance spectra of wetland vegetation canopies are often very similar and are
combined with reflectance spectra of underlying soil [13]. The frequent and rapid changes of water
depth and salinity add to the complexity of analyzing wetland environment using remote sensing.

The use of remote sensing in reed bed discrimination has been studied in several publications.
Pengra et al. [14] evaluated the use of the spaceborne Hyperion sensor. The classification of reed
beds showed good overall accuracy of 81.4%. It was found, however, that the small size and spatial
arrangement of Phragmites stands was less than optimal considering Hyperion’s spatial resolution
of 30 m. Lopez et al. [15] studied the discrimination of Phragmites using airborne hyperspectral data
collected by the Probe-1 sensor. The study produced Phragmites maps showing an estimated accuracy
of 80%. Onojeghuo and Blackburn [16] proposed the use of airborne hyperspectral and LiDAR data
in reed bed discrimination. A comprehensive set of methods such as Principal Component Analysis
(PCA), Spectrally Segmented PCA (SSPCA) and Minimum Noise Fraction (MNF) were applied to the
hyperspectral data and combined with LiDAR derived measures including those based on texture
analysis. A significant improvement (+11%) in the accuracy of reed bed delineation was achieved
when a LiDAR-derived Canopy Height Map (CHM) was used together with the optimal SSPCA data
set. Stratoulias et al. [17] used airborne AISA Eagle data in order to derive narrow band spectral
indices used to characterize reed beds’ ecological status. Seasonal time-series studies can provide
important information on spectral variability. Given the dynamic character of vegetation cover, a
snapshot in time is not nearly as revealing as a time sequence [18]. Ouyang et al. [19] studied the
spectral characteristics of Phragmites and two other wetland species using time-series analysis. The
results showed that differences among saltmarsh communities’ spectral characteristics were affected
by their phenological stages. Artigas and Yang [20] published a field-collected seasonal time-series
of Phragmites spectra. The measured spectra were used to determine the vigor gradient of plants
in marshlands.

Several measures have been proposed to quantify spectral similarity or separability of targets [21],
Euclidean Distance (ED) being probably the most well-known measure used. Spectral Angle Mapper
(SAM) is another well-established similarity measure in remote sensing applications. SAM is related
to Pearson’s Correlation Coefficient, sometimes also called Spectral Correlation Mapper (SCM) in
remote sensing literature. An advantage of Pearson’s Correlation Coefficient over SAM is its ability
to distinguish between negative and positive correlation. Spectral Information Divergence (SID)
classifier represents an information theoretic approach to hyperspectral classification. SID compares the
similarity between two spectra by measuring the probabilistic discrepancy between two corresponding
spectral signatures. In principle, the similarity between two spectra has two components: similarity in
absolute level of reflectance and similarity in spectral shape. In this study, both of these components of
similarity are assessed using the Euclidean Distance and Spectral Angle measures. Jeffries-Matusita
distance (JM) was used as a statistical separability measure.
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Reed beds cover significant part of the shoreline of the Olkiluoto Island. Reed can be found on
gyttja, clay, till or stone bottoms [22]. The extent and vitality of the reed beds varies significantly,
depending on the soil type and degree of shelter [22]. A repository site for spent nuclear fuel is
currently under construction in Olkiluoto. The disposal is planned to begin in 2022. The results of
reed bed studies will be used as input data to the biosphere assessment exercise for the safety analysis
of the spent nuclear fuel repository at Olkiluoto [23]. Common reed is a major producer of biomass
among wetland species in Olkiluoto and it has significant potential to store and transport radionuclides.
Therefore, quantitative information on the extent and biomass of reed stands is an integral part of
long-term biosphere assessment. The overall aim of this study is to determine temporal and spatial
spectral variability of reed beds in the Olkiluoto Island. More specifically, the objectives of this study
are: (1) to characterize the spectral properties of the dominant wetland species Phragmites Australis in
different phenological stages and to identify the most suitable time to discriminate it from other green
vegetation; (2) to study the spatial variability of reed spectra and evaluate the effects of this variability
on reed bed mapping; and (3) to suggest promising methods to be used in reed bed mapping.

2. Data and Methods

2.1. Study Area

The main study area is located at the Olkiluoto Island (61°14'23.126"’N, 21° 28'55.58"E) in
southwest Finland (Figure 1). The surface area of Olkiluoto is 12 square kilometers and it is separated
from the continent by a narrow strait [22]. Because of long shoreline, coastal ecosystems form a
significant part of its nature [22]. The temporal changes in the environment in the coastal zone are
rapid because the surrounding sea areas are shallow. The general eutrophication of the Baltic Sea is
contributing to these changes by increasing the amount of organic matter in the shallow bays. Another
important factor is the post-glacial land uplift [24].
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Figure 1. Overview of the study sites Olkiluoto (left) and Hilskansaari (right).

There are currently two operational nuclear reactors on the island, Olkiluoto 1 and Olkiluoto 2,
while a third reactor, Olkiluoto 3, is under construction. In addition, a decision has been made on
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the construction of a spent nuclear fuel repository on the island. Another study site, Hilskansaari
Island, is located 40 km north of Olkiluoto (Figure 1). The phenological phases of reed beds and the
weather conditions at Hilskansaari are similar to those in Olkiluoto. However, due to the effects of the
Kokemaéenjoki river, the water around Hilskansaari is more turbid and of less salinity. Hilskansaari was
chosen as a separate study site in order to broaden the range of underlying environmental conditions
and because it was more convenient for multi-temporal measurements as access to Olkiluoto is limited.

2.2. Spectral Field Measurements

All spectral field measurements of reed beds and other vegetation were carried out in the same
manner. Reflectance spectra of reed beds were measured using a portable GER 1500 spectroradiometer
(Spectra Vista Corporation, Poughkeepsie, NY, USA). The spectral range of the instrument is
300-1100 nm. Spectra were sampled at 1.5 nm intervals, and spectral resolution of the GER 1500
instrument is 3 nm. Reflectance was calculated as the ratio of radiance from the measured object to
the radiance from the reflectance standard, i.e., a 99% Spectralon panel. The fiber optic light guide
connected to the instrument was raised above the reed bed using a six-meter long fiberglass pole. The
end of the optical fiber was placed above plant canopies at a distance of approximately four meters
from the canopy. This arrangement provided a nadir view of the reed bed. The field-of-view of the
optical fiber is 25 degrees, resulting in circular measurement area of 1.7 meters in diameter. Three
repeated measurements at each measurement point were taken and the results were averaged. Each
individual measurement was calibrated using a reflectance standard.

The partial spectra of reed beds, described in Section 3.5, were measured using a GER1500
instrument equipped with 2.4-meter-long optical fiber. The material under study was spread on a
dark plate on the ground. The end of the fiber was approximately 15 centimeters above the sample.
The samples of dead stems, dead inflorescence and live leafs were measured at site Pier, Olkiluoto,
on 27 July 2012. The sample of live inflorescence was measured at site Kornamaa, Olkiluoto, on
14 August 2012.

In order to provide reference for the within-class variability studies, spectral field measurements
made on 17 August 2010 near Olkiluoto were used. The target was a well-kept grass field in Otanlahti,
Rauma. The reflected light from grass canopy at the wavelength range of 350-2500 was measured using
a portable field spectroradiometer FieldSpec Pro from Analytical Spectral Devices Inc. ASD (Boulder,
CO, USA). The spectral resolution of the device is 3 nm between 350-1000 nm and 10 nm between 1000
and 2500 nm. A total of 7 measurements were made along a straight line using three-meter intervals.
The instrument was equipped with a 1.4-meter-long fiber optic light guide. The end of the optical fiber
was placed above grass canopy at a distance of approximately 1.2 meters. This arrangement provided
a nadir view of the grass field. The field-of-view of the optical fiber is 25 degrees resulting in circular
measurement area of 0.5 meters in diameter.

The information related to spectral field measurements used in this study, including date of
acquisition, air temperature, relative humidity and water height, is presented in Table 1. The section of
the paper describing the respective spectra is also indicated in the table.
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Table 1. Spectral field measurements used in this study. The water height is given in centimeters using
a Finnish N2000 system. The temperature, humidity and water height data are the courtesy of Finnish
Meteorological Institute.

Relative Water

. 3 o
Date Location Target Section  Sensor  T(°c) Humidity Heigth Stage
12 June 2012 Hilskansaari 1,2and 3 3.1,3.2 GER1500 18 60% 10 Vegetative growth
21 June 2012 Hilskansaari 1,2and 3 3.1,32 GER1500 14 48% 12 Vegetative growth
29 June2012 Hilskansaari 1,2and 3 3.1,32 GER1500 19 40% 17 Vegetative growth
9 July 2012 Hilskansaari 1,2and 3 31,32  GER1500 18 94% 8 Vegetative growth
18 July 2012 Hilskansaari 1,2and 3 31,32  GER1500 19 49% 29 Vegetative growth
20 July 2012 Olkiluoto Haircap Moss 3.2 GER1500 19 56% 31
20 July 2012 Olkiluoto Pier 4 Meadows 3.3 GER1500 19 56% 31
27 July 2012 On},l%:fto' 3 partial spectra 35 GER1500 18 88% 21 Vegetative growth
27 July 2012 Olkdluoto,  Reed bed (1=7) 33 GERI500 18 88% 21 Vegetative growth
10 August 2012 Hilskansaari 1,2and 3 31,32 GER1500 16 48% 20 Flowering
14 August 2012 Kornamaa partial spectra 35 GER1500 21 50% 8 Flowering
14 August 2012 Romamad,  Reedbeds(n=3) 34  GERIS00 21 50% 8 Flowering
unakari
15 August 2012 Fl‘slz‘;‘f;m' Reedbeds (1 =3) 34,35 GER1500 23 53% 6 Flowering
5 September 2012 Hilskansaari 1,2and 3 3.1,32 GER1500 16 59% 34 Flowering
25 September 2012 Hilskansaari 1,2and 3 3.1,3.2 GER1500 9 66% 31 Withering
3 October 2012 Hilskansaari 1,2and 3 3.1,3.2 GER1500 13 49% 37 Dormancy
Rauma, . _ . o,
17 August 2010 Otanlahti Grass field (n =7) 3.3 FieldSpec 20 53%

2.3. Description of Study Sites

Common reed begins to grow once the greatest threat of frost has passed in the spring. This
happens typically at the beginning of May in southwest Finland. Stems can grow up to 5 centimeters a
day if the growing conditions are optimal and the plant will reach its maximum height and density
by the end of July. Flowering takes place typically in August. The leaves and stems die along with
first frosts in autumn. Although dead, the strong stems will remain erect throughout the winter. In
Finland, moving ice often cuts some of the stems. While common reed produces seeds, its primary
method of reproduction is vegetative via a vast underground rhizome network [25]. The spectral
characteristics of the reed bed are largely influenced by the phenological stage of reeds [26]. Time-series
field measurements provided the means to study these changes.

The water at both study sites, Olkiluoto and Hilskansaari, is brackish meaning that it is a mixture
of seawater and freshwater from a river. Field survey showed that there are two basic types of reed
beds in Olkiluoto and Hilskansaari. In this paper, they are called “old reed bed” and “new reed
bed”. By new reed bed we mean stands where there are no dead stems erect and new live stems are
reproduced (Figure 2). By old reed bed we mean stands where dead stems are erect and new live
stems are emerging amongst the dead stems. Three targets were chosen for time series measurements.
Targets 1 and 2 represent old reed bed and target 3 represents new reed bed. In order to study the
temporal variability of reed beds during the growth period, a field campaign was carried out where
the spectra of the three targets were measured at nine time instances throughout the phenological cycle
(see the measurement dates indicated in Figure 3). The measurement intervals were not exactly even
due to adverse weather conditions.
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Figure 2. Old reed bed of target 2 (a) and new reed bed of target 3 (b). The photographs are taken on

12 June 2012.
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Figure 3. The measured spectra of targets 1, 2 and 3 during the growth period. The measurement dates
are shown in the legend. (a) Target 1; (b) Target 2; (c) Target 3.

Several factors such as height, density, soil type, nutrition and wetness may contribute to the
spectral variability of reed beds [26]. Spatial variability was studied at two scales: within a small
local neighborhood as well as all over the Olkiluoto Island. The measurements used to evaluate local
variability were made at site Pier located at the south coast of Olkiluoto (Figure 1). The site was chosen
because visually homogenous reed bed was found there and the pier provided a good platform for
measurement setup. Measurements were taken along 40 meters long line parallel to the pier. The
distance between the targets was 5 meters, roughly corresponding to the spatial resolution commonly
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used in airborne hyperspectral data acquisition. Out of the 8 targets, one target was discarded due to
excessive interference in measured spectra. The measured reed bed was visually homogenous and
the characteristics of targets such as height, water depth and density were similar. The spectral field
measurements were performed on 27 July 2012. In addition, 4 randomly selected meadow targets
representing green vegetation in the neighborhood of the Pier site were measured in the immediate
vicinity of the reed beds.

In summer 2012, an extensive field survey of wetland vegetation was carried out in Olkiluoto.
As a part of that field campaign, reed bed spectra were measured at four different sites: Flutanperd,
Munakari, Kornamaa and Satama (see Figure 1). Three targets were measured at each site. The
distance between the targets within a site ranges from 20 to 30 meters. These measurements provided
information on the spatial variability of reed beds at different locations of the Olkiluoto Island. The
spectral field measurements were performed on 14 and 15 August 2012. The height and density of reed
beds at each target were measured as well (Table 2). The measurements were done using a half-meter
frame. Reed stems are enclosed inside the square frame and all stems inside are cut near the base. Live
and dead stems are then counted and measured separately.

Table 2. The average density (pcs/m?) and height (cm) of live and dead stems at Olkiluoto sites. Each
value is the average of three measurement points.

Density Live Height Live Density Dead Height Dead

Flutanpera 65.33 201.3 10.67 72.22
Munakari 32.00 240.4 12.00 136.2
Kornamaa 53.33 186.3 4.000 97.00

Satama 56.00 197.3 33.33 146.6

2.4. Airborne Hyperspectral Data

The HYPEOS flight campaign was carried out in July 2008. The total number of recorded flight
lines was 27, of which 23 flight lines were recorded on 4 July 2008 and 4 flight lines 13 July 2008. The
acquisition of Olkiluoto Island took place on 4 July 2008. The cloud cover on both days was absent
providing homogenous solar irradiation from ground surface. The flight altitude during the acquisition
was 1.9 km leading to ground resolution of 2.5 m x 2.5 m per pixel. The acquisition was done using
Piper Pa23-250 aircraft carrying an AISA dual imaging spectrometer. The AISA dual spectrometer
collects reflected solar radiation in 481 bands from 399 to 2452 nm wavelength. This includes the
visible, near infrared and shortwave infrared regions of the electromagnetic spectrum. The spectral
resolution is 3.3 nm at VNIR range and 12 nm at SWIR range.

2.5. Methods

The Euclidean distance between two vectors X and Y with N, bands and is defined as:

de =/, M (2 — i) (1)
and the SAM measure is defined in [27] as:
a =cos ! D S 2)
S X)X (Y)?

where « is the angle formed between reference spectrum, X is the image spectrum and Y is the
reference spectrum.

Calculation of between and within-class variability for classes {X;}, k = 1...n, and {Y},
k =1...ny, where ny and n, denote the number of spectra in the respective classes, is performed as
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follows. Let ., and p, denote the mean spectra of classes {X} and {Y}}, respectively, and let p denote
the mean over all spectra. The between-class variability S;, can then be expressed as

Sb:;[(uxH)T(uxH)JF(FLyH)T(HyH)] 3)

and the within-class variability Sy, for class {Xj} can be expressed as:

1
Swzi

b= 2k (X)X~ ). @

The Jeffries—Matusita distance (JM) is defined in [28] as:

1 T(Ci-i-Cj)_l 1 ’(Ci-i-Cj)/Z’
o= (wi -y i—m) + =In [ B929L (5)
8 (ﬂ ”J) 2 (ﬂ ”J) 2 n ‘le 9 |C]'|
IMjj = 4/2(1 —e™%) (6)

where i and j = the two classes being compared. ¢; = the covariance matrix of signature i. y; = the mean
vector of signature i. In = the natural logarithmic function. |¢;| = the determinant of ¢;.

Continuum removal is sometimes used to isolate and analyze features in reflectance spectra.
Continuum removal is a normalization technique that allows comparison of individual absorption
features from a common baseline. Continuum is a convex hull over the top of the spectrum, using
straight-line segments that connect local spectral maxima [29]. Continuum is removed by dividing the
reflectance value R at each wavelength by the reflectance level of the continuum R.. The first and last
spectral data values are on the hull and therefore the values of the first and last bands in the continuum
removed spectra are equal to 1 while all the other values remain between 0 and 1. Continuum removed
spectra were calculated using the ENVI software package [30].

3. Results

3.1. Temporal Variability of Reed Bed Spectrum

Temporal variability of reed bed reflectance spectrum is illustrated in Figure 3. Seasonal variability
of the reflectance spectrum of target 1 is remarkable (Figure 3). At the beginning of the growth period
the spectrum is smooth although there is a gentle slope at the red edge region. Reflectance increases
steadily as the wavelength increases. At the end of June the characteristic features of green vegetation,
i.e., the gentle local maximum near 560 nm and the slope at the red edge region, become visible in the
spectrum. In July these features become more distinct; the slope at the red edge becomes steeper and
the maximum near 560 nm becomes stronger. In August the shape of the spectrum shows the form
commonly associated with healthy and vigorous vegetation. The red edge is steeper and the reflectance
is generally higher than earlier in the season. In addition, there is a weak local maximum near 640 nm.
In late September, signs of senescence are visible in the spectrum; the red edge becomes gentler and
the local maximum near 560 nm has disappeared. At the beginning of October, the spectrum is smooth
without distinctive features. The seasonal spectra of target 2 show similar trends as those of target 1.

The seasonal spectral variability is significantly smaller in target 3 compared to targets 1 and 2
(Figure 3). The red edge is clearly visible in all measured spectra. The local maximum near 560 nm can
be seen except in those measurements made in the autumn season. The spectral features of healthy
vegetation are most distinctive in the spectrum measured on 5 September 2012, although the spectrum
measured on 10 August 2012 is quite similar. The symptoms of senescence in late season are not as
clear as in the spectra of targets 2 and 3; the red edge is still clearly visible.
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3.2. Discrimination of Reed Beds from Reference Spectrum at Different Phases of the Phenological Cycle

In order to evaluate the feasibility of discriminating reed beds from other vegetation, field studies
were performed and remote sensing data were analyzed in the neighborhoods of the reed beds in
Olkiluoto Island. The datasets were analyzed by layering them using the ArcMap software. Datasets
included very high resolution true and false color aerial photographs (2007 and 2009), hyperspectral
data (2008) and reed bed maps (2007). Reed bed maps were produced by following the reed bed border
on foot or by boat and tracking the route using a portable DGPS device. The reed bed borders were
studied by switching the layers while following the reed bed map in ArcMap. The studies indicated
that even though it is fairly easy to separate reed beds from other surfaces in the neighborhood such as
water and rocks, the real difficulty lies in the discrimination between reed and other green vegetation.
In order to determine the optimal time window for discriminating reed beds from surrounding
vegetation, the reflectance spectrum of haircap moss (Polytrichum juniperinum) was selected from the
spectral library as a reference. Haircap moss is commonly found near reed beds in Olkiluoto and its
color is almost consistent during the observation period (Figure 4). The spectral library was collected
in Olkiluoto on 20 and 26 July 2012.

haircap moss
60 target’] ...........................................
- - - target2
— - —target3
50 T .
_ 40| )
) !
8
2 30
[y ]
°
7]
© 20
14
10] -
e
0 ! . ! )
400 500 600 800 900 1000

700
Wavelength [nm]

Figure 4. The reference spectrum of haircap moss and the spectra of targets 1-3 measured on 18
July 2012.

In order to measure the separability of target and reference spectra, Euclidean Distance (ED),
Jeffries—-Matusita distance (JM) and Spectral Angle Mapper (SAM) value were calculated between all
targets and the moss spectra (Tables 3-5 respectively) As can be expected on the basis of the spectra
shown in Figure 3, the seasonal variability of the ED values is remarkable. The overall trend of the
ED values is quite similar for targets 1 and 2, except on 3 October 2012 when there is a significant
difference. The best separability of old reed bed from moss is obtained on 12 June 2012. The best
separability of new reed bed is obtained on 5 September 2012. As in the case of ED values, the seasonal
variability of the SAM values is remarkable. The overall trend of the SAM values is quite similar for
targets 1 and 2. The best separability of old reed bed is obtained on 3 October 2012 while the best
separability of new reed bed is obtained on 12 June 2012. The seasonal trends were quite similar when
Jeffries—-Matusita distance (JM) were used compared to those given by ED measure.

Table 3. The Euclidean Distance (ED) values between the reference spectrum and target spectra during
the growth period.

ED 12.06 21.06 29.06 09.07 18.07 10.08 05.09 25.09 03.10

targetl/moss 177.1 171.9 152.1 124.6 104.9 156.4 64.2 57.1 202.1
target2/moss 167.3 155.6 141.6 118.1 87.1 104.8 54.3 79.8 108.7
target3/moss 156.6 199.8 227.6 244.8 254.2 284.6 3221 177.7 185.2
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Table 4. The Spectral Angle Mapper (SAM) values between the reference spectrum and target spectra
during the growth period.

Radians 12.06 21.06 29.06 09.07 18.07 10.08 05.09 25.09 03.10

targetl/moss 0.1824 0.1825 0.1282  0.096  0.0935 0.0791 0.0901 0.1500 0.2007
target2/moss 0.1733 0.1737  0.1219 0.0991 0.1038 0.0777 0.1195 0.2000 0.2157
target3/moss 0.1546 0.1408 0.1355 0.1337 0.1330 0.0941 0.0839 0.1062 0.0732

Table 5. The Jeffries-Matusita (JM)-distance values between the reference spectrum and target spectra
during the growth period.

JM-Dist.  12.06 21.06 29.06 09.07 18.07 10.08 05.09 25.09 03.10

targetl 0.394 0.371 0.268 0.157 0.096 0.099 0.041 0.027 0.513
target2 0.350 0.302 0.226 0.139 0.053 0.048 0.029 0.066 0.139
target3 0.089 0.142 0.176 0.197 0.209 0.247 0.293 0.122 0.132

The results show that optimal date for best separability is largely dependent on the used
separability measure and the phase of phenological cycle (Table 6). The optimal dates were the
same when ED or JM-distance was used as separability measure.

Table 6. The optimal date to separate reed beds from other vegetation.

Measure/Reed Bed Type Old New
Euclidean distance 12.06 05.09
Spectral angle mapper 03.10 12.06
JM-distance 12.06 05.09

3.3. Local Spatial Variability of Reed Bed Spectra and Separation from Meadow

The mean and standard deviation of the reed bed and meadow class reflectance spectra are shown
in Figure 5. The mean reed bed and meadow spectra are rather similar both in shape and reflectance
level. The most noticeable common features are the slope at the red edge and local reflectance
maximum near 560 nm. The most remarkable difference in reflectance level occurs in the blue region

of visible light. The standard deviation of meadow class is higher than that of the reed bed above
wavelengths of 500 nm.

60

N W S [
(=] (=] (=] (=]

Reflectance [%]

—-
(=]
T

700 800 900 1000
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Figure 5. Mean and standard deviation of the reflectance spectra of meadow (blue) and reed bed (red)
classes. The standard deviation is presented using dashed lines.
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In order to study the feasibility of discriminating between the reed bed and the meadow class, ED,
SAM and JM-distance values were calculated between the mean spectra of the classes and the spectra
of each target (both reed bed and meadow) separately (Tables 7-9 respectively). When ED measure
was used, four reed spectra and one meadow spectrum were closer to the spectra of other class than
its own. The use of JM-distance showed slightly poorer results, five reed spectra and one meadow
spectrum were closer to the spectra of the other class. The use of SAM measure produced different
results, only one of the meadow targets (M4) was closer to the reed class to the meadow class.

Table 7. The Euclidean distance (ED) values between the individual targets and the mean spectra of
the two classes. R1-R2 and R4-R8 represent reed bed targets and M1-M4 represents meadow targets.

ED R1 R2 R4 R5 Re6 R7 RS M1 M2 M3 M4

Reed 2424 15.0 1166 750 108.0 1449 108.0 131.0 119.7 243.7 136.9
Meadows  216.9 67.7 111.7 1173 1093 1377 99.7 1257 71.6 2258 153.6

Table 8. The SAM values between the individual targets and the mean spectra of the two classes.
R1-R2 and R4-R8 represent reed bed targets and M1-M4 represents meadow targets.

R R1 R2 R4 R5 Ré6 R7 R8 M1 M2 M3 M4

Reed 0.0692  0.0233 0.0298 0.0889 0.0086 0.0153 0.0447 0.1508 0.1343 0.0738 0.072
Meadows 0.0208  0.0985 0.0843 0.1693 0.0929 0.0821 0.0778 0.0804 0.0631 0.0723 0.0500

Table 9. The JM-distance values between the individual targets and the mean spectra of the two classes.
R1-R2 and R4-R8 represent reed bed targets and M1-M4 represents meadow targets.

o4 R1 R2 R4 R5 R6 R7 R8 M1 M2 M3 M4

Reed 0.1082 0.0018 0.0289 0.0112 0.0243 0.0426 0.0251 0.0301 0.0384 0.1003 0.0450
Meadow 0.0673  0.0128 0.0162 0.0315 0.0164 0.0260 0.0126 0.0276 0.0104 0.0665 0.0629

The spectral features of the reed bed and meadow targets were also studied using the continuum
removal (CR) method (Figure 6). The method allows comparison of individual absorption features
from a common baseline. The main features of the continuum removed reed bed class spectra are
located in the red edge region (680 to 750 nm) and near 560 nm. The steepness and position of the red
edge are quite similar for all the reed targets. The depth of the feature near 560 nm is similar for all
targets except R1, where it is deeper. It can be seen that high within-class variability is largely due
to target R1. The feature at 760 nm is related to oxygen in the atmosphere. The origin of the feature
near 840 nm is unknown, it cannot be found from other spectra measured at other reed bed sites in
Olkiluoto. A small common feature is found near 950 nm. The main features of meadow class CR
spectra are the same as for the reed bed class. Higher within-class variability of the meadow class
is distinct and the variability is clearly higher in the visible region below red-edge. Two CR spectra,
those of targets 1 and 4 clearly differ from typical CR spectra of green vegetation. Target 1 has a strong
feature near 440 nm, whereas target 4 has a gentle local maximum near 640 nm. These are most likely
due to changes in floral cover of the target.
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Figure 6. Continuum removed spectra of reed bed and meadow classes.

Within-class variability calculated for the reed and meadow classes are shown in Table 10. The
within-class variability of the reed class was somewhat lower (15.95) compared to that of the meadow
class (24.62).

Table 10. Within-class variability Sy, of reed and meadow classes.

Class Sw
Reed bed 15.95
Meadow 24.62

Savannah trees * 5.574
Grass field ** 8.857

* Published figure in reference [31]. ** Calculated using field measurements made in summer 2010
near Olkiluoto.

3.4. Spatial Variability of Reed Bed Spectra in Olkiluoto Island

In Figure 7, reed bed reflectance spectra at the four test sites at the Olkiluoto Island are shown.
The shape of the measured reed spectra is quite similar in the visible region of the spectrum; however,
differences in the near infrared region were remarkable. The measured spectra were quite convergent
at sites Munakari and Kornamaa, while the spectra at Flutanpera and Satama differed from those.

Between-class variability was calculated between each pair of the reed bed sites (Table 11). Each
site was considered to form a separate class. The results show that between-class variability ranges
from 3.85 to 114.02 the variability between Munakari and Kornamaa being the lowest. The variability
between Flutanpera and those two sites is significantly higher and especially high with respect to
Satama. When the JM-distance was used the results were highly consistent with those calculated using
ED measure (Table 12.).
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Figure 7. The reed bed reflectance spectra at the four test sites in Olkiluoto Island.

Table 11. The calculated between-class variability between reed sites.

Flutanpera Munakari Kornamaa Satama
Flutanpera 17.97 37.58 114.02
Munakari 17.97 3.85 42.01
Kornamaa 37.58 3.85 22.06
Satama 114.02 42.01 22.06

Table 12. The calculated JM-distances between reed sites.

Flutanpera Munakari Kornamaa Satama
Flutanpera 0.0615 0.1328 0.3718
Munakari 0.0615 0.0160 0.1850
Kornamaa 0.1328 0.0160 0.1106
Satama 0.3718 0.01850 0.1106

In order to study the spectral variability of reed beds at Olkiluoto and Hilskansaari, the
within-class variability for both locations was calculated. Since all measurements in Olkiluoto were
made in July and August, measurements at other times were excluded from the Hilskansaari data.
Variability in Hilskansaari was calculated using nine samples, while 19 samples were used in the case
of Olkiluoto. The within-class variability of the reed bed spectra at the two sites was similar: 69.81
for Hilskansaari and 64.40 for Olkiluoto. The between-class variability of these two sites was 33.20,
meaning that within-class variability is more significant.

3.5. Partial Spectra of Reed Beds

In dense reed bed the spectrum is a mixture of several partial spectra such as live leafs, live
inflorescence, dead stems and dead inflorescence (Figure 8). Each component of reed has specific
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spectral features while the dead components are featureless (Figure 9). The spectrum of live leafs has
typical features of healthy and vigorous green vegetation. Live inflorescence has gentle local maximum
near 650 nm and the slope is less steep compared to live leaf.

Figure 8. Samples of measured reed components: (a) live leafs; (b) live inflorescence; (c) dead stems;

and (d) dead inflorescence.
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Figure 9. The partial spectra of reed bed.

3.6. Reed Bed Discrimination Using Airborne Hyperspectral Data

In order to study the effects of within-class variability in Olkiluoto on actual mapping results
of reed beds, mapping of site Kornamaa was tested using an airborne hyperspectral data collected
in summer 2008 and using SAM classification method. The classification results using the mean
spectrum of Kornamaa are shown in Figure 10. The reed map produced in 2007 was used as ground
truth (described in Section 3.2). The test area was classified into two classes; reed bed and other.
Five different target spectra were used in SAM-classification: the mean spectra of sites Kornamaa,
Munakari, Flutanpera and Satama as well as the mean reed bed spectrum of Olkiluoto. The results
of agreement accuracy were modest albeit the overall accuracy values were good (Table 13.). The

best accuracy was obtained when the mean spectrum of Kornamaa was used followed by the mean
spectrum of Olkiluoto.
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Figure 10. The classification results using the mean spectrum of Kornamaa.

Table 13. Classification accuracy of reed beds at site Kornamaa.

Target Spectra Agreement Accurary Overall Accuracy
Kornamaa 48.0% 93.1%
Munakari 31.3% 90.8%
Flutanpera 31.8% 90.2%

Satama 30.6% 89.2%
Olkiluoto 37.1% 90.9%

4. Discussion

Several seasonal time-series spectra of Phragmites have been published in the literature. Seasonal
spectra are dependent on local conditions, but spectral features reflecting phenological stages should
be found in time-series spectra anywhere. The seasonal spectra of targets 1 and 2 are quite consistent
with those published by Ouyang et al. [19]. The shape of the spectra is quite similar at the beginning
and the end of the season as well as in the “full vigor” state. The growth period is naturally somewhat
shorter in Finland than in Dongtan, China. The seasonal spectra of target 3 differ from those in [19] at
the beginning and end of the season. The seasonal spectra of targets 1 and 2 show similar trends as
those found in time-series spectra of Phragmites measured in New Jersey Meadowlands [20]. When
seasonal spectra were compared to those published by Gilmore et al. [26], the situation was quite
the opposite: the published spectra were very similar to those of target 3 in our study. The results
show that the optimal time for data acquisition is dependent on classification method to be used.
For distance based classifier optimal time for old reed bed is in the middle of June when it is the
beginning of September for new reed bed. Optimal times are different when shape based classifier is
used; beginning of October for old reed bed and the middle of June for new reed bed. The separability
of old reed bed is almost as high in the middle of June as in October. Acquisition in the middle of June
could give good results for both reed bed types.

The seasonal spectral changes of targets 1, 2 and 3 are largely determined by two variables: density
of the reed bed and the ratio of dead and live biomass. Density defines if the soil or water is visible.
Dark soil and water have low reflectance, which lowers the mixed spectra. Dead biomass has low
and flat spectrum, whereas live biomass has distinct features of green vegetation. In the beginning of
season old reed beds have only a small fraction on live biomass and the soil is partly visible because
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of low density. The spectrum is low and flat and therefore separable from moss. In the beginning of
October old reed beds are full of dead biomass, resulting similar flat spectrum and high separability
from green vegetation. The spectra of moss show signs of moderate chlorophyll content, modest local
maximum near 560 nm and gentle red-edge. Target 3 is in “full vigor” state on 5 September 2012, the
reflectance in green and NIR region is at the season’s highest level and therefore the separability from
moss is optimal.

The within-class variability of reed is somewhat lower than that of the meadow class (see Table 8).
This can be expected as the meadow class contains several species, i.¢., grasses, weeds and flowers.
The well-kept grass field was visually very homogenous; however, the spectral variability obtained
for this class is higher than could be expected. This is most likely due the structural changes in grass.
Results indicate that a single target (R1) significantly contributes to the within-class variability of the
reed class. Debba et al. [31] studied the spectral within-class variability of different savannah trees.
The average variability of seven tree species was lower than that of reed in this study. The published
reflectance spectra of tree species showed that the within-class variability of some species (Combretum
apiculatum, Terminalia sericia) was at the same level as obtained here for reed, although the average
variability over all species was lower. Based on the analysis of the mean and standard deviation of the
spectra obtained for the reed and meadow classes (see Figure 5) it is fair to argue that the two classes
are extremely difficult to discriminate due to high within-class variability of both classes as well as
spectral similarity of the classes. Several published studies have proposed fusion of hyperspectral and
LiDAR data in wetlands mapping applications [16]. LIDAR can complement the spectral information
of optical imagery and thus improve classification results. As the height of reed beds clearly differs
from that of meadows, such approach could be highly beneficial. In addition, using textural features
together with spectral information has been shown to enhance the classification accuracy of remotely
sensed data [32].

Spectral variability of reed beds within the Olkiluoto Island is significant (see Figure 7).
Zomer et al. [33] studied the reflectance spectra of dominant wetland species. The measured results
of common reed (Phragmites Australis) showed similar shape and high variability as in Figure 7. This
suggests that high spectral variability could be common characteristics for reed beds. In order to study
spectral variability between reed sites, each site was assigned to a separate class and between-class
variability was calculated for each pair of sites. Surprisingly the between-class variability of sites
Munakari and Kornamaa (3.85) was lower than local spatial inter-class variability of reed bed at
site Pier (15.95). The between-class variability of these two sites was also lower than the variability
between spectrally similar Savannah trees [31]. The highest variability was measured between sites
Flutanperd and Satama. This is likely due to remarkable reflectance differences in the NIR region
shown in Figure 7. This can be explained by the characteristics of reed beds presented in Table 2. The
density and height of dead reed stems is clearly higher at Satama than at Flutanpera. The effects of
spectral variability to reed bed discrimination within Olkiluoto Island were studied using airborne
hyperspectral data. The accuracy of classification was measured using mean spectra of reed bed sites as
a target spectra. Overall accuracy was good, mainly because the other class was much larger than reed
bed class, i.e., the relative amount of commission errors stays low. The results of agreement accuracy
were modest. This is most likely due to two factors: unfavorable time to separate reed beds from
other vegetation and variety of reed bed types present, i.e., old, new and dry reed beds. Conventional
remote sensing schemes use one reference spectrum for each species. The results suggest that the use
of multiple-endmember approach might be beneficial, agreement accuracy increases when dedicated
spectrum is used for reed bed site instead of using one spectrum for the whole island.

The spectrum of reed bed is largely determined by the density of reed stems and the ratio of live
and dead biomass. The reed bed spectra may also include background contributions from water, soil,
understory vegetation and shade depending on the density and structure of reed stems. Live leafs have
typical spectrum of healthy green vegetation, i.e., steep red edge and reflectance peak near 560 nm
while the spectrum of dead stems is flat and the reflectance level is low (Figure 9). The reflectance of a
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dead stem is higher in the NIR region when compared to autumn spectra of targets 1 and 2. This is
most likely due to shadows between stems or visible soil/water or both. The spectrum of type “old
reed bed” varies depending on the ratio of live and dead stems. Field studies made in August 2012
showed that there is considerable variability in the ratio of live and dead stems. The fraction of dead
stems varied from 0 to 83%. The most obvious reason for high spectral variability within Olkiluoto
Island is the changes in the ratio of live and dead stems.

5. Conclusions

The temporal and spatial variability of reed bed spectra was evaluated in this study. The temporal
variability of reed bed spectra was found to be significant. The main challenge related to temporal
variability is that there are two different types of reed beds having different seasonal spectra. The
optimal time of data acquisition depends on the reed bed type. When this is combined with the fact
that usually the phenological state of the other vegetation has to be considered as well, careful timing
of the data acquisition is needed. The spectral within-class variability of both reed bed and meadow
in local neighborhood was found to be large when compared to references. Both classes have similar
mean spectra, however, all the targets except R1 had lower spectral angle to the mean spectrum of
the corresponding class than that of the other class. This gives a positive indication for successful
reed bed mapping. The results on within-class spectral variability of reed bed at four test sites within
the Olkiluoto Island showed that while the reed spectra from the sites of Kornamaa and Munakari
were close to each other, the spectra measured at Satama and Flutanperd differed significantly. This
is at least partly due to the variation in the density and height of live and dead reed stems among
the four sites. It can be concluded that if features such as reed characteristics, temporal variation and
surrounding habitats are known and can be controlled, mapping of reed beds is feasible based on their
spectral properties; otherwise LiDAR data or textural features would be needed.

In this study, the optimal times to separate reed beds from other vegetation was determined.
Depending on the reed bed types present and classification method to be used, it might be beneficial
to use multi-temporal classification, i.e., use several dataset collected at different times. High spectral
within-species variability measured advocates the use of multiple-endmember methods. The test using
airborne hyperspectral data further supports this conclusion. Scaling from spectral field measurements
to airborne/satellite data brings with it new challenges. Poor spatial resolution can lead to significant
amount of mixed pixels confusing the classification process. Modest signal-to-noise ratio of satellite
sensors can further increase this confusion. The spectral resolution of spaceborne multispectral
sensors might be too low to differentiate to subtle differences between reed beds and other wetland
vegetation. The study using spectral field measurements showed poor separability between reed
beds and meadows when distance and statistical measures where used although better results were
obtained using a SAM-measure. The errors in geometric, radiometric and atmospheric correction
related to air- and spaceborne sensors can deteriorate this subtle separability. This study provides a
sound basis for future research of reed bed discrimination using air- and spaceborne data.
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ASSESSMENT OF HYPERSPECTRAL CLASSIFICATION METHODS FOR BENTHIC
COVER TYPE MAPPING

Jyrki Tuominen, Tarmo Lipping

Tampere University of Technology, Pohjoisranta 11, Pori, Finland

ABSTRACT

Though several research papers exploring the possibilities of
benthic cover type classification have been published, little
emphasis has been given to comparison of the performance
of the various spectral classification methods. In this study
four different classification methods were tested with and
without water column correction. The comparison of the
methods was done using a simulated data set. The data set
was generated using spectral in situ measurements. The
results showed significant differences in mapping accuracy
among the tested classification methods. The best overall
mapping accuracy (75.0%) without water column correction
was achieved using SCM classification while the ED
classification produced best results (84.5%) when the
correction was applied.

Index Terms— hyperspectral, classification, benthic
mapping, water column

1. INTRODUCTION

Sustainable management of coastal environments requires
regular collection of accurate information on recognized
ecosystem health indicators. Benthic algal cover and trends
in changes of algal cover can be used as indicators of
biological state in coastal areas [1]. Such indicators are
valuable tools when the protection and preservation of
marine environments is planned. Mapping of benthic cover
types based on remote sensing data has been carried out
successfully in optically clear, shallow coastal and reef
waters [2]. Research papers addressing benthic cover
mapping have typically explored modeling methods and
water column correction techniques. The suitability of
different classification methods has not gained much
attention. The Spectral Angle Mapper (SAM) method has
been proposed in several papers [3]. Casal et al. have
demonstrated that in some cases of benthic mapping
Maximum Likelihood Classifier (MLC) has some
advantages over SAM [4]. The objective of our study was to
evaluate the suitability of different classifiers for benthic
cover type mapping. In this study we utilized simulated
data which was generated using empirical spectral and water
quality measurements.

2. DATA AND METHODS
2.1. In situ measurements of benthic reflectance

The study area is located at the coast of the city of Pori in
South-West Finland. Reflectance spectra of benthic cover
types were measured using handheld GERI1500
spectroradiometer. Benthic cover types for this study were
selected based on the initial submerged survey in the study
site. Specimens of the typical green (Fucus vesiculosus),
brown (Ectocarpus siliculosus) and red (Ceramium
tenuicorne) benthic macroalgae were selected. In addition to
benthic vegetation, three typical bottom covers, i.e., sand,
clay and reddish pebble were measured. The measured
spectra of studied benthic cover types is shown in Fig 1.
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Fig 1. Reflectance spectra of studied benthic cover types.

2.2. In situ measurements of water quality

Spectral water quality parameters were measured at the four
different sites on 26™ of May 2011. Two spectral parameters
were measured at each site; the optically deep water
reflectance R, and the water attenuation coefficient K. The
water attenuation coefficient K was measured using white
reference plate. It has been shown by Maritorena et al. [5]



that the diffuse reflectance of shallow waters just below the
water surface can be calculated using the following
equation:

R(0—,z) = R, + (R, — Ry, )exp(—2K2z) (1)

where z is the water depth, R, is bottom reflectance, R, is
reflectance of optically deep water, and K is diffuse
attenuation coefficient of the water. Coefficient K can be
calculated by using equation 1.

2.3. Generation of synthetic data

In order to study the mapping accuracy of each
classification method, a synthetic data set was generated.
The data set contains 800 simulated spectra for each cover
type representing different depth and water quality
conditions. The whole data set contains a total of 4800
simulated spectra. The depth varies between 0.01 and 2.0
meters. Four different water type classes are considered:
QIl, Q2, Q3 and Q4, where Q1 represents the least turbid
and Q4 the most turbid water. Classes are based on
empirical spectral water quality measurements. The data set
is modeled using Equation 1. The simulated spectrum R is
calculated using deep water reflectance R,, and attenuation
coefficient K corresponding to water type which is
simulated. In fig 2. three simulated spectra of green algae
are shown as well as the measured spectrum without water
column. The simulated water type is Q1 and the water depth
varies from 20 to 60 cm.
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Fig 2. Simulated reflectance spectra representing the
spectrum of green algae through water column.

2.4. Water column correction

The major problem involved with remote sensing of
submerged cover types is that the water column affects the
signal received at the sensor depending on the water depth

and water quality. In the water column correction approach,
methods accounting for the effects of water depth and
turbidity variation are employed. The most well-known
correction technique is Lynzenga’s method that creates a
single depth-invariant band from each pair of visible
spectral bands [9]. However, the method assumes that the
water column is uniform over the scene and the signatures
of optically deep water pixels are needed, which often
prevents its use. The fundamental problem in water column
correction is that the depth and attenuation properties of
water are often unknown. Mishra et al. have proposed a
method where the depth and water properties are derived
from hyperspectral data itself [10]. However, the calibration
of the method requires extensive in sifu measurements. In
this study classification using simple water column
correction method was tested. The method is based on an
assumption that there is 1 meter type Q1 water above the
bottom i.e. the water depth is half of the studied depth range.
A new reference spectrum for each benthic cover type is
calculated using equation 1. which are then used in
classification instead of original measured spectra. The
advantage of the used method is that it only needs one water
quality measurement.

2.5. Classification methods

In this study four classification methods were tested:
Euclidean Distance (ED) classifier

Spectral Angle Mapper (SAM) classifier

Spectral Correlation Mapper (SCM) classifier
Spectral Information Divergence (SID) classifier

el S

ED method was chosen as a classical reference to more
sophisticated methods. SAM is well established
classification method for hyperspectral data commonly used
in benthic cover mapping. SCM is an improved version of
the SAM classifier with the distinction that it can measure
negative correlation whereas SAM can’t. SID classifier
represents an information theoretic approach to
hyperspectral classification. SID compares the similarity
between two pixels by measuring the probabilistic
discrepancy between two corresponding spectral signatures.

Euclidean distance measure is defined by

ED(s;,s) = lls; — sill = [Xizi(sr = s2)?1°° (2)

where s, is the reference spectrum and s; is the image
spectrum. SAM measure is defined in [6] as:
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where «is the angle formed between reference spectrum
and image spectrum, X is the image spectrum and Y is the
reference spectrum. The SCM measure is defined in [7] as:

LX-X)H(¥-Y)

— 4)
[Ex-x?w-n2

where X and Y are the means of corresponding spectrum
vectors. The SID measure is defined in [8] as:

R =

SID(r,77) = D(rillry) + D(x;l|m) 5)
where
D@;lIr) = Eier Dy (lIr) = oy (L) = 1,(17))  (6)
and
D(illn) = Xie pDu(rill) = Bl () — 1GD) - (D)

derived from the probabilities vectors p = (py, Pz, -» PL)T
and q=(q1,9, --,q,)T for the spectral signatures of
vectors, s; and s;, where py = sy /X, Sy and g =
sik/Yiy sy and (1) = —logq, and similarly ;(r) =
—logp;.

3. RESULTS

Classification of synthetic data was followed by the
assessment of mapping accuracy. Accuracy for each class
together with the overall accuracy of tested classification
methods without water column correction is presented in
Table 1. The depth range under study was 0.0-2.0 m.

The best mapping accuracy was obtained using the
SCM classifier. There was very little difference between the
SAM and the SID methods. The classification of sand class
produced very poor results for all tested methods. The
mapping accuracy for each class together with the overall
accuracy of tested classification methods using water
column correction is presented in Table 2. In this case the
best accuracy was obtained using the ED classification. All
classification methods except SCM seem to benefit from
water column correction.

4. CONCLUSIONS

The overall conclusion of this study is that the selection of
classification method can have significant effect on the
mapping accuracy. The use of the water column correction
and the selection of correction method can determine which
classification method should be used. Therefore several
classification methods should always be tested to ensure
best possible results. Karpouzli et al. concluded that the

results of studies where single measurements of ‘average’
attenuation have been used to depth-correct remotely sensed
imagery should be interpreted with a high degree of caution
[11]. Yet, the results of this study showed that mapping
accuracy can be improved even when a simple correction
technique using only one water quality measurement is
employed.
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Table 1. The mapping accuracy of the classification methods without water column correction.

water |method red algae brown algae green algae pebble sand clay Overall
Q1 ED 30.5 35.9 28.5 26.6 18.0 38.4 47.9
SAM 35.5 17.5 31.9 20.0 13.9 32.9 41.4
SCM 100 75.5 80.3 59.0 16.0 44 .4 75.0
SID 27.5 16.8 29.4 20.0 14.8 33.0 39.9
Q2 ED 25.5 32.2 24.0 24.1 15.0 32.4 43.2
SAM 29.5 13.9 27.7 17.0 11.0 30.7 37.2
SCM 100 64.0 75.8 45.0 12.9 40.8 70.3
SID 23.0 13.3 25.6 17.0 12.8 30.2 35.9
Q3 ED 22.0 29.3 20.5 21.9 13.0 30.1 40.0
SAM 25.0 12.1 24.4 14.5 9.7 28.3 34.2
SCM 100 56.5 93.0 33.5 10.5 34.8 66.8
SID 19.5 11.7 23.0 15.0 11.0 27.9 33.2
Q4 ED 20.0 28.05 18.5 21.1 12.0 29.2 38.4
SAM 21.5 10.7 21.9 13.0 8.0 26.7 31.8
SCM 100.0 43.5 80.0 24.5 8.7 30.0 59.6
SID 17.0 12.1 21.0 15.6 9.8 26.1 31.3

Table 2. The mapping accuracy when water column correction is applied.

water |method red algae brown algae green algae pebble sand clay Overall
Q1 ED 82.5 85.1 80.0 83.3 55.6 57.4 84.5
SAM 63.2 76.2 51.5 57.4 32.9 48.6 69.9
SCM 100.0 60.0 74.0 61.7 31.2 46.4 75.0
SID 64.8 79.8 55.0 59.0 34.7 47.3 71.3
Q2 ED 69.5 68.7 67.0 68.2 48.8 56.0 77.1
SAM 53.6 47.5 42.1 48.9 29.5 39.2 59.9
SCM 100 40.5 75.5 51.5 27.7 37.8 69.0
SID 54.2 49.7 46.0 50.2 30.8 38.6 61.2
Q3 ED 60.5 58.0 58.1 62.6 43.9 55.0 72.1
SAM 46.5 31.6 37.9 42.9 27.4 35.4 53.3
SCM 100 26.5 76.0 43.4 25.0 33.9 64.7
SID 46.7 33.6 41.4 43.5 28.1 34.6 54.2
Q4 ED 54.5 54.6 52.0 58.9 40.9 51.6 68.7
SAM 41.4 23.5 33.9 38.4 24.4 32.4 48.5
SCM 91.0 9.0 61.6 37.0 22.0 31.5 57.2

SID 40.9 24.8 38.2 38.5 26.4 31.7 49.2




Chapter 11

Publication P5

Tuominen, J. and Lipping, T. (2011). Atmospheric correction of hyperspectral data
using combined empirical and model based method. In Proceedings of 7th FEARSeL
Imaging Spectroscopy Workshop, Edinburgh, Scotland

115



116 Chapter 11: Publication P5
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ABSTRACT:

Atmospheric correction is a difficult procedure due to the complex nature of the atmosphere and yet it should be done with utmost
care because it largely determines the usability of the final data. Atmospheric correction is usually done using either empirical or
model based method. In this paper a combined method proposed. The proposed method has two phases. In the first phase
hyperspectral radiance data is corrected using the model-based ATCOR 4 software. In the second phase the modelled reflectance
data is corrected using Empirical-Line (EL) method. The accuracy of the method was tested using Pseudo Invariant Feature (PIF)
targets. The average RMSE error of the PIF targets was 6.8% when the reflectance was derived using ATCOR 4 software. The
average RMSE error of the PIF targets was 1.8% when the reflectance was derived using the combined method proposed in this
paper. The proposed method produced better results especially in the wavelength regions 950-1100nm and 2300-2500nm.

1. INTRODUCTION

The objective of atmospheric correction is to retrieve the
surface reflectance (that characterizes the surface properties)
from remotely sensed imagery by removing the atmospheric
effects. In atmospheric correction, the radiance values are
converted into reflectance data, measuring the fraction of
radiation reflected from the surface. Atmospheric correction is
a difficult procedure due to the complex nature of the
atmosphere; the correction procedure usually must be done
individually for each flight line.

Atmospheric correction should be done with utmost care
because it largely determines the usability of the final data.
The application of most algorithms and indices requires well
calibrated reflectance data. Accurate change detection cannot
be accomplished without atmospheric correction because
otherwise it is impossible to determine whether the change
occurred in the continuously varying atmosphere conditions or
in the target under study.

Several methods for the atmospheric correction have been
proposed in the literature. They can be divided into two
categories: (1) empirical and (2) model-based methods. The
empirical methods rely on the scene information and do not use
any physical model as the model-based methods do. The scene

information means the information that is embedded in the
image, i.e., the radiance at certain location. There are
empirical-based methods that rely on the raw scene data
without ground reference information whereas some methods
rely on the raw scene data together with ground reference
information. There are two common approaches that do not use
the ground reference information, the Internal Apparent
Relative Reflectance (IARR) method (Kruse et al., 1985) and
the Flat Field (FF) method (Roberts et al., 1986). In both
methods, the spectral data of each pixel is divided by a
reference spectrum. In the FF method the reference spectrum is
from a homogenous bright target and in the IARR method an
average scene spectrum is used as the reference spectrum. The
drawback of these methods is that they are prone to artefacts
and strongly dependent on the landscape of the target (Ben-Dor
etal., 2004).

Most recent addition to empirical methods that do not use
ground reference information is the Quick Atmospheric
Correction (QUAC) method. The QUAC is based on the
empirical finding that the average reflectance of a collection of
diverse material spectra, such as the end-member spectra in a
scene, is essentially scene-independent (Bernstain et al.,



2005). The use of QUAC has some restrictions, e.g., there
must be a certain minimum amount of land area in the scene.
The most widely used empirical method is the Empirical Line
(EL) approach (Conel et al., 1987). The EL approach requires
field measurements of reflectance spectra for at least one
bright target and one dark target. The imaging spectrometer
data over the surface targets are linearly regressed against the
field-measured reflectance spectra to derive the gain and offset
curves. The curves are then applied to the whole image for the
derivation of surface reflectances for the entire scene. This
method produces spectra that are most comparable to
reflectance spectra measured in the field. However, if changes
occur in the atmospheric conditions outside the area for which
ground data is available, which is often the case the spectral
reflectance data will contain atmospheric features.

Model-based correction approaches use methods in which the
radiance at the sensor is modelled using radiative transfer
models and the data from detailed atmospheric and sun
information archives (e.g., MODTRAN, HITRAN2000). In this
procedure, field measurements are not required and only the
basic information such as the site location and elevation, flight
altitude, sensor model, local visibility and acquisition times are
required. Several model-based methods dedicated to retrieving
reflectance information from hyperspectral data have been
developed, such as ATREM (Gao et al., 1993), ATCOR
(Richter, 1996), FLAASH (Adler-Golden et al., 1998),
HATCH (Qu et al., 2000) and ACORN (Kruse, 2004). All the
methods are quite similar in their basics and operation.
ATCOR, FLAASH and ACORN are based on the use of
MODTRAN 4 radiative transfer code.

The use of combined methods in which model and empirical
methods are used together have been proposed in few papers.
Clark et al. (1993) suggested the use of hybrid EL and model
based method which produced better results than EL or model
based methods alone. Ben-Dor et al. (2004) showed that
combined EL and model based method produces good results
when tested using synthetic imaging spectroscopy data.
Despite the promising research results combined methods are
very rarely used in the processing of hyperspectral data. The
purpose of this study was to determine whether combined
methods offers any advantages compared to model based
methods.

2. DATA AND METHODS
2.1 Testarea

The location of the test area is in west coast of Finland
covering the city of Rauma and partially the county of
Eurajoki. The geographic location is shown in Fig.1.
Landscape of the area is quite complex containing rural, urban
and marine areas. All land areas are located near the sea. The

size of the test area is 750 km2. A detailed map of the test area
demonstrating the flight lines is shown in Fig.2.
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Figure 2. A map demonstrating the flight lines over the test
area.

2.2 Test data

This study utilized data from AISA Dual airborne
hyperspectral scanner recorded at 4™ of July 2008. During the
acquisition the cloud cover was nonexistent. The AISA dual
spectrometer collects reflected solar radiation in 481 bands
covering the wavelengths from 399 to 2452 nm. This includes
the visible, near infrared and short-wave infrared regions of the
electromagnetic spectrum. The ground resolution of one pixel



was 2.5*2.5 meters. The acquisition of the test area lasted over
5 hours.

2.3 Method

The proposed method has two phases. In the first phase
hyperspectral radiance data is corrected using model-based
ATCOR 4 software. In the second phase the modelled
reflectance data is corrected using Empirical-Line (EL)
method. The method is illustrated in Fig.3.

Radiance data

v

ATCOR g— Physical data
Modelled Reflectance
Empirical Line -— Reference targets

Y

Surface Reflectance
Figure 3. Description of the combined correction method.

An integral part of ATCOR 4 is a large database containing the
results of radiative transfer calculations based on the
MODTRANS code. While ATCOR 4 uses MODTRAN code to
calculate the database of atmospheric look-up tables (LUT),
the correctness of the LUT’s is the responsibility of ATCOR 4.
The use of ATCOR 4 is quite straightforward. Program takes
the radiance data and physical parameters as the input and
returns modelled reflectance data.

The EL method requires field measurements of reflectance
spectra. Targets can be specially made reference targets or
natural homogenous areas on the ground. The imaging
spectrometer data over the surface targets are linearly
regressed against the field-measured reflectance spectra in
order to calculate the gain and offset values for each
wavelength channel. The gain and offset values are then
applied to the whole image for the derivation of
surface reflectance for the entire scene. In general EL method
is used to transform radiance data in to surface reflectance but
in this combined correction method the modelled reflectance
was transformed in to surface reflectance. In this study two
specially made tarpaulins sized 15*15m was used as REF
targets. Tarpaulins were laid in to the ground during the over
flight. The reflectance spectra of both tarpaulins was measured
during the over flight. The principle of empirical line
correction in combined method is shown in Fig.4.

Eright REF

Surface Reflectance R

Dark REF

Modelled Reflectance Rm

Figure 4. The principle of empirical line in combined
correction method.

3. RESULTS

The proposed method was tested using 6 different Pseudo
Invariant Feature (PIF) targets. PIF targets are natural
homogenous areas on the ground surface. The spectra of each
PIF target was measured during the over flight using ASD
FieldSpec FR portable field spectrometer. The corrected and
ground truth spectra of 3 different PIF targets are shown in Fig
5, Fig 6. and Fig 7. It can be seen that combined method
(ATCOR+EL) produces better results compared to model-
based ATCOR. The proposed method produced better results
especially in the wavelength regions 950-1100nm and 2300-
2500nm. The RMSE errors were calculated for each PIF target.
The average RMSE error of the PIF targets was 6.8% when the
reflectance was derived using ATCOR 4 software. The average
RMSE error of the PIF targets was 1.8% when the reflectance
was derived using the combined method proposed in this

paper.
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Figure 5. The corrected and ground truth spectra of PIF1
(reddish sand field)
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Figure 6. The corrected and ground truth spectra of PIF2
(synthetic stadium pavement)
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Figure 7. The corrected and ground truth spectra of PIF3 (dark

gravel)

4. CONCLUSIONS

A method combining both model- and empirical methods is
presented in this paper. Test results indicated that proposed
method can produce better results that model based ATCOR
alone. The test data presented a complex marine dominated
atmosphere. Model based correction methods can fail with this
kind of atmosphere. The overall conclusion of this paper is that
more accurate results can be produced using combined
correction methods compared to model based methods used
alone. Even in situations when there is limited number of
spectral ground truth measurements, the proposed method can
improve atmospheric correction accuracy over the whole
acquisition area.
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