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Abstract

In the present thesis, we will focus on a less studied aspect of Thomas-Fermi theory: the
highly non-trivial scaling relations following from it. The main objective of this thesis
is to introduce this scaling approach, not as a method to solve the many-body problem,
but as an efficient way of organizing the information contained in its solution in order
to extract yet more — sometimes non-trivial — information. To this goal we apply the
scaling approach to a wide range of system, from nanostructures (quantum dots) to atoms
and atomic ions.

Our main findings can be summarized as follows: (i) the obtainment of scaling relations
for the correlation energy of quantum dots and atomic ions, respectively. This allows us
to extend our scaling approach to complex quantities that are beyond mean-field methods;
(ii) the obtainment of scaling relations for the chemical potentials and addition energies
of two-dimensional quantum dots, which allows us to compare our results to experimental
data; and (iii) the obtainment of scaling relations for the ground-state energy, chemical
potentials, and addition energies of three-dimensional quantum dots, which allows us to
explore the dimensionality effects on the scaling relations.

In all cases, we not only showed the functional form of the scaling relations, but we also
provided explicit analytical expressions for the scaled quantities. Such expressions are not
simple by-products of the approach, but approximations that can be used for estimating
relevant quantities with practically no computational cost. Furthermore, the obtained
scaling relation may serve as a starting point for the improvement of more elaborated
theories, for example, in the optimization of density functionals within density functional
theory.

The above results are reported in four publications which constitute the basis of the
thesis.
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1 Introduction

“ .. if we are out after exact solutions, no bodies at all is
already too many!”

G. E. Brown

1.1 Many-body problems.

The so-called many-body problem (MBP) has a rich history. It has attracted attention of
many scientists, from the philosophical speculations on “how many angels can dance on
the head of a pin?” in the middle ages [1] to Kepler’s two-body problem in 17th-century
Newtonian mechanics and from the early developments in quantum theory to today’s
attempts to use artificial intelligence in the design of new materials [2]. The MBP remains
among the most fascinating, challenging and, at the same time, difficult problems in
physics. A short explanation of these three characteristics, its appealing features, and its
high level of difficulty, will provide us with a concise introduction to the MBP.

Why is the MBP so important?

As scientists, our goal is to understand and, within the frame of our possibilities, to
control the nature around us. The importance of the many-body problem is given by the
fact that almost any real physical system is composed of a set of interacting particles (or
subsystems). It is easy to find examples: nucleons in a nucleus interacting by nuclear
forces, electrons in an atom or in a metal interacting by Coulomb forces, and even
individuals in a group interacting by complex human interactions in social sciences (see
Fig. 1.1).
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Figure 1.1: “More is different” is a phrase often used to refer to the emergence of new

phenomena [4].

Why is the MBP so interesting?

The most important and striking feature of many-body systems is that the collective
behavior of its elements give rise the so-called emergent phenomena. That is, if interactions
between the subsystems are not considered, most of the observed characteristics of the
system are not observed. In that case, the system is just the sum of its parts, and we
would be able to describe the whole universe in a simple “reductionist” manner. However,
nature does not work that way, and “new phenomena emerge within complex assemblies
of particles which can not be anticipated from an a priori knowledge of the microscopic
laws of nature” [3]. In a top-bottom approach (see Fig. 1.1), a reduction to simpler
fundamental laws is possible, for example, molecular biology is based on the laws of
chemistry, which in turn is based on the laws of physics. In a bottom-top approach
this reductionism is not possible and the laws of physics are not enough to describe, for
example, psychology. Thus, interactions are essential, and in fact the many-body problem
may be defined as the study of the effects of interaction between bodies on the behavior of
a many-body system. This was summarized by Prof. P.W. Anderson in a single sentence:
“More is different” [4].

Why is the MBP so difficult?

From the classical point of view, we need to solve IV differential equations to describe the
motion of N classical particles. We can easily estimate how difficult the problem becomes
when our system contains N =~ 1023 particles, i.e., a mol of substance. This implies a huge
level of complexity, intractable even with the help of massive computational facilities.
The development of new theoretical approaches to tackle such apparently unmanageable
large systems is the basis of many-body physics.

In the introduction to his book, Prof. R. Mattuck warns by referring to the intrinsic
complexity of the MBP [5]:
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“It might be noted here, for the benefit of those interested in exact solutions, that
there is an alternative formulation of the many-body problem, i.e., how many bodies
are required before we have a problem? ... this can be answered by a look at history.
In eighteenth-century Newtonian mechanics, the three-body problem was insoluble.
With the birth of general relativity around 1910 and quantum electrodynamics in 1930,
the two- and one-body problems became insoluble. And within modern quantum field
theory, the problem of zero bodies (vacuum) is insoluble.

So, if we are out after exact solutions, no bodies at all is already too many!”

We think we cannot find a more illustrative explanation.

It is impossible to offer a comprehensive review of the MBP in a few-pages introduction of
a thesis. The interested reader is advised to have a look at some of the excellent available
monographies [5—13].

1.2 Electronic structure problem: theory and methods.

It should be clear that the MBP is not restricted to condensed matter, nuclear, or atomic
physics, but it is a nultidisciplinary field that involves areas like quantum field theory,
complex analysis, quantum and statistical mechanics, and many others. The MBP deals
rather with general models and methods that can be applied to a wide range of many-body
systems.

In this thesis we focus on a particular class of MBP, the so-called many electron problem
or, the electronic structure problem. By solving the electronic structure problem, as its
name indicates, we aim at understanding the structure of matter. In other words, we want
to describe the behavior of atoms, molecules, and condensed matter, which is governed by
the quantum statistical mechanics for electrons and nuclei interacting via the Coulomb
potential. The essential information is contained in the following Hamiltonian:

A h2 Zje
H= - RZV?_ZH—RI Z|r1—rJ

Z[ZJG
- ZVI + = Z (1.1)
I;éj R —Ry|’

where electron coordinates r; and masses m. are denoted by lowercase subscripts and
nuclear coordinates Ry, charges Z;, and masses M are denoted by uppercase subscripts
(see Fig. 1.2 for a simplified scheme). Other terms, such as the external electric and
magnetic fields or relativistic corrections can be included in Eq. (1.1) when needed.

Some simplification of Eq. (1.1) is achieved with the use atomic units, which are defined
such that i = m. = e = 4w /g = 1. The unit of length in this system is the Bohr radius
(~ 0.0529 nm) and the energy unit is the Hartree (= 2 Rydberg ~ 27.21 eV) or the
equivalent in temperature of 315.8 K.

Further simplification of Eq. (1.1) is achieved by neglecting the excitations of the systems
of nuclei, in other words, the term corresponding to the nuclear kinetic energy, proportional
to the inverse mass of the nuclei 1/My can be regarded as small. Ignoring this term



4 CHAPTER 1. INTRODUCTION

>N |

I,J = nuclei

i, j = electrons
x A
Figure 1.2: Schematics of simple molecular coordinate system. I and J denote nuclei, and @
and j denote electrons.

to concentrate on the electronic problem with fixed nuclei is often called the Born-
Oppenheimer (adiabatic) approximation [14]. This approximation has proven to be a very
important important tool, for example, in quantum chemistry practically all computations
of molecular wave functions for relatively large molecules make use of it. Once we have
neglected the kinetic energy of the nuclei and fixed their positions, the last term in
Eq. (1.1), corresponding to the interaction of nuclei with each other, is a constant, and
can be added to the zero of energy. Finally, the Hamiltonian containing the essential
information for the theory of a system of interacting electrons consists of the first three
terms of Eq. (1.1), i.e., the kinetic energy of the electrons, the electron-nucleus interaction,
and the electron-electron interaction. In a more compact notation:

A A

H=T.+V., + V.. (1.2)

The first and last terms of Eq. (1.1) are universal for all problems. The second term
contains information specific to the particular system under study. It can be interpreted as
a potential that affects equally all electrons, and it is often called as the electron-external
potential interaction term and denoted by Veys.

Solving the many-electron problem essentially means determining the electronic structure
of the corresponding system, thus, determining the probability distribution of electrons.
The electronic structure is determined by solving the Schrédinger equation associated
with the electronic Hamiltonian

HV = EV. (1.3)

There is a large number of approximations and techniques to deal with this Hamiltonian.
The simplest ab initio electronic structure approach is the Hartree-Fock (HF) method [15—
18], in which the Coulombic electron-electron repulsion is taken into account in an
averaged way (often called the mean-field approximation. HF is a variational method,
and therefore the obtained approximate energies, expressed in terms of the system’s wave
function, are always equal to or greater than the exact energy. Many electronic-structure
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methods begin with a HF calculation and subsequently correct for the missing electronic
correlation. Among those methods we can mention Moller-Plesset perturbation theory
(MP) [19] and coupled cluster (CC) approaches. The most accurate method available, the
full configuration interaction (CI), aims at the exact solution of the Schrodinger equation
Eq.(1.3). Unfortunately, this method is numerically very demanding — the required
computation scales exponentially with the number of electrons in the system — and its
application is limited to very small systems.

Quantum Monte Carlo (QMC) methods [20—24], in its variational, diffusion, and Green’s
functions versions, avoids the HF variational overestimation. These methods work with
an explicitly correlated wave function and evaluate integrals numerically using a Monte
Carlo integration. Such calculations can be very time consuming, but they have been
shown to reach high accuracy.

Density-functional theory (DFT) provides an alternative approach to electronic structure
problem. In DFT methods the total energy is expressed in terms of the total electron
density, rather than the wave function [25, 26]. A very intuitive version of this theory was
developed independently by Thomas and Fermi in the late 20’s [27, 28]. The basis of what
we know as modern density-functional theory was developed by Hohenberg and Kohn [29],
who gave a rigoruos proof that the ground-state electronic energy is determined completely
by the electron density. However, they did not provide any advice on how to do this in
practice. This was provided later by the Kohn-Sham formulation of DFT [30], which
introduces a set of non-interacting fictitious orbitals. From the computational point of
view, KS-based DFT is relatively easy to implement, an advantage that makes it the most
widely used method nowadays. It is also possible to “join forces” and use the so-called
hybrid HF-DFT methods in which the exchange energy functional is calculated similarly
to the HF method. There are several of these hybrid functionals available, but probably
the most frequently used is the B3-LYP, which incorporates Becke’s three-parameter
exchange functional (B3) [31—33] with the Lee, Yang, and Parr correlation functional
(LYP) [34].

As we have seen, there is no universal approach to solve the electronic structure prob-
lem [35]. In some cases, we might require the so-called chemical accuracy, i.e., an accuracy
in the energy differences much smaller than the ambient temperature, 300 K ~ 0.026
eV ~ 9.5 x 107% a.u. In other cases, it might be enough to calculate our magnitudes
within an error window of, say 0.1 eV. In other words, the final method-of-choice is
determined by a balanced analysis of the nature of the problem, the required accuracy,
and the availability of computational resources. This is precisely what makes the theory
of electronic structure such a vast and active area of research. A complete review of its
many methods and techniques is not only a hard task, but also out of the scope of this
thesis. There is an abundant bibliography on the subject which can be consulted for more
details [18, 20, 25, 26, 36—42].

1.3 Objectives and structure of the thesis

All electronic structure methods have a certain level of success, but all of them have their
own limitations. Thomas-Fermi theory is not an exception to this rule.

On one hand, Thomas-Fermi theory suffers from many deficiencies, probably the most
serious defect is its incapability to predict bonding between atoms [43—-45], so that
molecules and solids cannot be considered in this theory. The main source of error comes
from the approximation to the kinetic energy. Another shortcoming is the over-simplified
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description of the electron-electron interactions, which are treated classically and so do
not take quantum phenomena — such as the exchange interaction — into account (see
Appendix A).

On the other hand, Thomas-Fermi theory has been also successfully applied in many areas
of Physics, from nuclear physics [46—48] to plasma physics [49, 50] and cosmology. Thomas-
Fermi theory has proven to be a valuable tool for the qualitative understanding of atoms
and molecules [51-53]. For semiconductor quantum dots [54—57], which are a kind of
artificial atoms with many possibilities for fundamental research and technical applications,
Thomas-Fermi theory was shown to agree qualitatively and even quantitatively with a
more elaborated approach such as DFT [59, 60], being asymptotically exact in the limit
of large electron numbers [61].

From the computational point of view, Thomas-Fermi theory with minor corrections is
able to reproduce the ground-state energy of electrons in a quadratic potential [62] at
the same level of accuracy of other semiclassical or semianalytic approaches like large-D
expansions [63] or two-point Padé approximants [64].

In the present Thesis, we focus on a less studied aspect of Thomas-Fermi
theory: the highly non-trivial scaling relations following from it. The main
objective of this thesis is to introduce a scaling approach, not as a method to solve the
MBP, but as an efficient way of organizing the information contained in its solution, in
order to extract yet more — and sometimes non-trivial — information. To this goal we
apply the scaling approach to a wide range of systems, from nanostructures (quantum
dots) to atoms and atomic ions. Thus, the individual objectives of this thesis can be
summarized as follows:

¢ To obtain scaling relations for the correlation energy of quantum dots and atomic
ions. This allows us to extend our scaling approach to magnitudes that are beyond
the mean-field approach.

o To obtain scaling relations for the chemical potentials and addition energies of two-
dimensional quantum dots. This allows us to compare our results to experimental
data.

e To obtain scaling relations for the ground-state energy, chemical potentials and
addition energies of three-dimensional quantum dots. This allows us to explore the
dimensionality effects on the scaling relations.

In terms of contributions, we show that

o it is possible to successfully apply the scaling approach to a wide range of systems;

e it is possible to obtain scaling relations for several magnitudes of interest and that
such scaling relations are universal for a given class a systems;

e it is possible to experimentally verify the validity of some of the scaling relations;

e it is possible to provide explicit, analytical expressions for the scaled magnitudes
and;

o the above expressions are not simple by-products of the approach, but rather useful
approximations that can be used for estimating relevant magnitudes with practically
no computational cost.
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The thesis is divided into four chapters. The contents of each chapter is approximately as
follows. Chapter 1 — the present chapter — is an introduction to the topic. The back-
ground and motivation for the study are given, as well as the objectives and contributions
of the thesis. In Chapter 2 we put the scaling approach in context and explain what
we mean by scaling in this thesis. The scaling approach is introduced by considering an
example, i.e., the case of two-dimensional parabolic quantum dots. In Chapter 3 we
show how we extended the application of the scaling approach to other systems -and
magnitudes. We give a detailed exposition of the studied systems and the main results.
Finally, in Chapter 4 we summarize the obtained results and briefly outline some of the
research lines along which the work can be continued. Some appendices can be found at
the end of the document. There we provide additional information that — in our opinion
— can be ignored in the first reading.






2 Scaling — in context

2.1 Scaling hypothesis in physics

The term scaling may mean very different things in physics. However, it is commonly
associated to the field of critical phenomena [65] and renormalization [66, 67]. Within
this frame, we find the so-called scaling hypothesis [68, 69]. The general principles behind
this approach have proved very useful in interpreting a large number of — apparently
different — phenomena, and its predictions have been verified by both, experimental work
and numerical calculations.

According to H. Stanley [70], we can classify the scaling hypothesis in two categories
of predictions. The first category is a set of relations, sometimes called scaling laws,
that serve to relate the various critical-point exponents. The second category is a sort
of data collapse, which is perhaps best explained in terms of a simple, hypothetical,
example. Let us suppose that we may write the “equation of state” of a given system as a
functional relationship of the form M = M (X,Y’), where M is the magnitude of interest
and X, Y are system parameters. Since M = M(X,Y) is a function of two variables, it
can be represented graphically as M vs. X for a sequence of different values of Y, (or,
alternatively, as M vs. Y for a sequence of different values of X). The scaling hypothesis
predicts that all the curves of this family will “collapsed” onto a single curve provided we
consider not M vs. X, but rather a scaled M (that is, M divided by X to some power)
vs a scaled Y (similarly, Y divided by X to some different power)®.

The scaling approach we discuss in this thesis is connected to the second category. Again,
for the sake of concreteness, we will use an example to help ourselves to explain what we

I This is an oversimplification. In the classic example of a uniaxial ferromagnet, M = M(H,¢) is a
functional representation of the equation of state, where M is the order parameter, H is the magnetic
field, and € = (T — T.)/T. is the reduced temperature (T, being the critical temperature). See, e.g.,
Ref. [71].
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mean by scaling in this thesis. The following exposition is based on a previous work by
the author [72].

2.2 An example: Scaling in the ground-state energy of
two-dimensional quantum dots.

We start with the Hamiltonian of a two-dimensional parabolic quantum dot charged with
N electrons. In oscillator units, the Hamiltonian can be written as

% ;Z(pz+r 4834 (2.1)

r
i<j Y

The only approximations made in writing Eq. (2.1) are the effective-mass description of
electrons, the inclusion of an effective low-frequency dielectric constant, €, to model the
medium, and the description of confinement by means of a harmonic-oscillator potential.
These approximations are very common and well sustained [57, 58]. The coupling constant

ECoul 62m1/2
B = = 37575 (2.2)
hw dmewl/2h3/

is the ratio of Coulomb and harmonic-oscillator characteristic energies.

The fact that the number of electrons may enter the energy in a scaled combination with
B is, however, not trivial. Let us write the Thomas-Fermi energy functional [61] for the
present problem:

hw /dr{ap + p(r 2/2}+[3//drd ,20)p(x) ) (2.3)

where p(r) is the (surface) density at point r, and « is a numerical constant (see Ap-
pendix A). The above functional should be extremized under the constraint

N = /p(r)dr, (2.4)

i.e., constant number of particles. Now, it is easy to realize that we can scale r and p(r)
in such a way that the left-hand side of Eq. (2.4) becomes one, and a factor N3/ is
extracted from the right-hand side of Eq. (2.3). As a result, we get the following relation
for the ground-state energy in the Thomas-Fermi approximation:

Eyo/(hw) = N*/2f, (N'/43). (2.5)

Notice that the scaled Thomas-Fermi equations depend on a single parameter, z = N/43,
which combines in a particular way the coupling constant and the number of electrons.

A remarkable characteristic of the scaling relation in Eq. (2.5) is the fact that, although it
was suggested by a simple Thomas-Fermi approach, it is still valid when we calculate the
ground-state energies with more elaborated theoretical and computational approaches.
Thus, the universality of the relation in Eq. (2.7) was verified numerically in Ref. [72].
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In that case, extensive configuration interaction calculations (at the single-and-doubles
level) for charged quantum dots with 20 < N < 90 were performed. In Fig. 2.1 we show
VMC results for the ground-state energies of 2DQD’s before (upper panel) and after
(lower panel) the scaling process. The data corresponds to systems with N =2...90 (see
Table.1 in the next section?).

It is also possible to provide an analytical expression for f,s; based on two-point Padé
approximants [64] in the large-N limit. It shows that the scaling predicted by Thomas-
Fermi theory is quite general and compatible with true quantum effects.

Let us recall the definition of the P, 3 Padé approximant for the ground-state energy,
given in Ref. [64], which interpolates between the 5 — 0 (perturbation theory) and
B — oo (Wigner “crystal”) expansions:

P18+ p252/3(Q252/3 + ¢30)
L+ qiBY3 + q28%/3 + g3

Py3(B) = po + (2.6)

We use the large-N asymptotic expressions for the coefficients [64], which lead to the
following estimation for the ground-state energy:

By 2 0.698 2415240 42.175 207 .
hwN3/2 7 3 T 142149 21/3 415 22/3 £2.175 2 :

This expression may be used as a fast and — in many cases — sufficiently accurate
approximation for the ground-state of 2DQD’s. As we will see in the next chapters, it will
also be the starting point for additional scaling relations. Furthermore, Eq. (2.5) shows
the possibility of having two different systems that differ in both /N and 3, but have the
same ground-state energy.

2.3 Universality — in context

The term universality is probably harder to define than the previously considered scaling.
From the historical point of view, it has its roots in the field of statistical mechanics,
specifically in the study of phase transitions. However, if we define “universal behavior”,
as a set of properties of a physical system that arises irrespective of the internal details
of the system, it is easy to understand why the concept of universality has gone beyond
the original statistical definition. In other words, universal behavior is everywhere in
nature [73].

Today, the concept of universality has gone beyond the precise statistical mechanics
definition to simply refer to properties of a system or an object that can be deduced from
a small, finite set of global parameters, without requiring local knowledge of the system.
This is precisely the meaning of “universality” in this thesis.

In order to put the concept in context, let us look again at the previous example of the
two-dimensional parabolic quantum dot. We refer to Eq. (2.5) as a universal scaling
relation. The scaled character of Eq. (2.5) was already explained: the scaled ground-state
energy does not depend on the particle number N nor on the confinement strength

2Notice that while the energies in Fig. 2.1 are expressed in atomic units, the scaling relation in
Eq. (2.5) and its derivation are expressed in meV. The goal is to show that the scaling properties are
independent of the system of units we use.
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Figure 2.1: Variational monte carlo results for the ground-state energies of two-dimensional
quantum dots before (upper panel) and after (lower panel) the scaling. In the scaled representation,
the solid line represents the function fs(z) of Eq. (2.7), where z = N'/*/(hw'/?). The data
corresponds to systems with N =2...90 (see Table. 3.1 in the next section).

independently, but it depends on a single parameter, z = N'/48, which combines in a
particular way both parameters. The universal character of Eq. (2.5), on the other hand,
refers to the fact it is valid for all two-dimensional parabolic quantum dots regardless, for
example, the material they are made of.



3 Results and discussion

3.1 Electronic correlation problem

The electronic correlation is a major frontier in quantum chemistry nowadays. Its relevance
is such that it is often said that the correlation problem is “The many-body problem at
the heart of chemistry” [74].

The correlation effects are known to be important, for example, in the calculation of
potential energy curves, the study of molecular excitation processes, and in the theory of
electron-molecule scattering. The energy associated with the electron correlation is often
called correlation energy and it represents a very small fraction (usually of the order of a
few percent) of the total ground-state energy of a system. However, this small fraction
is of the same order of magnitude as most energies of chemical interest. Therefore, the
development of techniques to determine the effects of electronic correlation is a vital task
in order to have a quantitative understanding of the experimental results. There has been
significant progress in this field over the years, and particularly in recent years, alongside
the increase of computational capabilities [75].

In the context of Hartree-Fock-based methods, the correlation energy, E., is defined as
the difference between the exact non-relativistic ground-state energy of the system, Egs,
and the Hartree-Fock energy, Fyr, obtained in the limit that the basis set approaches
completeness:

E.=E4 — Fnr. (3.1)

Notice that the Hartree-Fock energy is an upper bound to the exact energy, which makes
the correlation energy negative by definition [18].

In the context of density-functional methods, the correlation energy is still defined as the
difference between the total ground-state energy and the sum of kinetic, external, Hartree
(classical Coulomb) and exchange energies. However, the exchange functional in DFT is

13
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local and generally not the same as Eyp. Secondly, the KS kinetic energy is not exactly
the same as the true kinetic energy. Therefore, in the context of DFT, the correlation
energy differs from that defined in Eq. (3.1). However, these differences are minimal for
most of systems and therefore neglected in practice.

3.1.1 The correlation energy of two-dimensional quantum dots.

In Publication I, we focus on the standard, quasi-two-dimensional (quasi-2D), isotropic
harmonic oscillator model of an artificial atom. In spite of its simplicity, the model has
been shown to predict very well the electronic properties of both vertical and lateral
single quantum dots at the GaAs/AlGaAs interface [57, 58, 76, 77]. The model is defined
by an external potential Ve, (r) = mw?r?/2, and it can be essentially characterized by
two parameters, the number of confined electrons N and the confinement energy hw.

In the previous chapter, we briefly showed that the total energy of such an artificial atom
with 20 < N < 90 electrons obeys the scaling relation suggested by Thomas-Fermi (TF)
theory:

Egs(N, B)

N N3/2f (2). (3.2)

The variable z = N'/43 combines in a particular way the number of electrons N and the
coupling constant 8 (the ratio between Coulomb and oscillator energies).

The function fys is universal in the sense that it depends only on z, and not explicitly
on the system parameters. This result is not very surprising as the TF theory is known
to predict well the total energies of large electronic systems. In Publication I, we
move a step further and examine whether a scaling a la Thomas-Fermi, with different
exponents, holds also for the correlation energy, E.. We perform extensive calculations
for By, of QDs with 6 < N < 90 and find a unique scaling relation for F.. The fact that
FE, scales is completely unexpected because, by definition, the electronic correlation is
beyond mean-field properties [78—89]. As our second main result, we find that the ratio
|Ec/Egs| scales in a universal way.

3.1.1.1 Numerical results

In order to validate our numerical values for E., we performed extensive calculations
by means of standard many-electron methods including HF, DFT in the local-density
approximation (LDA) [90, 91], variational quantum Monte Carlo (VMC) [92—-96], and
full configuration interaction (FCI) methods [97]. We have used our own numerical codes
with all the methods, but some HF and LDA results shown have been calculated with
the OCTOPUS code [98, 99]. A brief description of the computational methods can be
found in Appendix B.

GaAs parameters, m = 0.067 mg and ¢ = 12.8 [100] are used throughout the work. Thus,
the effective atomic units (a.u.), i.e., the effective Hartree energies and effective Bohr radii
correspond to Ef = (m*/mg)/(¢/e0)*En ~ 11.13meV and aj, = (g/e0)/(m*/mo)ag =~
10.11 nm, respectively.

The results for the ground-state energy are shown in Table. 3.1 below. The fact that
the correlation energy is only a few percent (< 6%) of the total ground-state energy,
reaching the largest relative values for the smallest systems in the strong-coupling regime,
is visualized in Fig. 3.1. It shows the relative correlation energy, defined as
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Figure 3.1: Relative correlation energies as a function of the confinement energy w (log-
scale). Symbols are the results from the variational monte carlo and local density approximation
calculations. Lines are to guide the eye. The gray shaded region corresponds to typical
experimental setups for GaAs quantum dots. Figure adopted from Publication I.

E.
Egs

: (3.3)

x(z) = ’

as a function of the confinement strength. The gray area corresponds to the typical
experimental regime when considering laterally or vertically confined GaAs QDs. One
can see that the correlation energy is largest at small particle numbers and with weak
confinements

3.1.1.2 Scaling of the correlation energy

In order to find the scaling relation, we first assume that the correlation energy has a
particular scaling with respect to N. Thus, we suggest an ansatz of the form

T = N7 R(NVA) (3.4)

Next, we fit our data for N and /3 to the anzatz by varying the scaling exponent o. The
minimum deviation is obtained with o & 3/4, and thus we set o to this value. For the
function f., a two-parameter fit of the form az” leads to

E

ﬁ = —0.0668 1. (3.5)
w

The scaled correlation energies (based on VMC ground-state energies) are shown in Fig. 3.2
along with the function f.(z). It can be seen that the quality of the obtained analytical
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Table 3.1: Hartree-Fock, local density approximation, and variational monte carlo ground-state

energies of the quantum dots considered in Publication I.

N w [au] EHF [a.u.] ELDA [a.u.] EVMC [a u]
6 0.25 7.38845 7.0114 6.99496(8)
0.5 12.2713 11.838 11.8022(1)
1 20.7192 20.252 20.1821(2)
10 136.853 136.61 136.172(3)
100 1120.32 1121.4 1119.55(0)
12 0.138564 16.1967 15.485 15.4946(1)
0.25 24.5034 23.648 23.6548(5)
0.5 40.2161 39.217 39.2110(9)
1 66.9113 65.805 65.7680(12)
10 416.192 415.27 414.759(8)
100 3248.39 3249.3 3246.84(3)
20 0.091268 29.2580 28.135 28.1690(4)
0.124230 36.1435 34.902 34.9413(4)
0.178885 46.4969 45.102 45.1461(6)
0.25 58.6937 57.157 57.2088(11)
0.5 95.7327 93.927 93.9838(13)
1 158.004 155.98 156.030(1)
10 947.406 945.44 944.969(14)
100 7151.40 7151.7 7148.77(7)
30 0.111780 67.1794 65.274 65.3545(9)
0.152145 82.9708 80.876 80.9676(12)
0.219089 106.689 104.35 104.463(1)
0.5 189.938 187.09 187.2425(8)
1 311.860 308.65 308.832(2)
2 519.252 515.80 515.976(2)
3 705.213 701.68 701.782(20)
10 1822.68 1819.3 1819.01(3)
42 0.132260 133.470 130.54 130.687(2)
0.180021 164.821 161.61 161.793(2)
0.259230 211.875 208.32 208.536(3)
0.5 334.802 330.78 330.952(4)
1 547.683 543.03 543.381(10)
2 907.564 902.50 902.923(15)
3 1228.57 1223.4 1223.84(2)
10 3139.90 3134.7 3134.96(4)
56 0.152721 239.599 235.37 235.846(5)
0.2078699 295.850 291.24 291.892(6)
0.75 722.112 716.70 716.563(14)
1 885.850 879.88 880.073(16)
2 1462.56 1455.7 1456.39(2)
3 1974.82 1967.7 1968.42(2)
10 5001.92 4994.6 4995.34(7)
72 2 2218.71 2210.8 2210.78(3)
3 2989.61 2980.8 2981.51(4)
10 7516.12 7506.3 7508.14(12)
90 3 4320.50 4308.5 4310.5(1)
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Figure 3.2: Scaled correlation energies as a function of the variable z = SN'/4. Symbols
correspond to VMC results and the solid curve represents the function f. Eq. (3.5).

expression for f. is very good in the whole range of z, from the strong-confinement limit
(weak correlations, 5 — 0) to the weak-confinement limit (strong correlations, 8 — oo,
the so-called Wigner phase [101]). The mean deviation of the function f.(z) from the
data is of about 5%.

We point out that Eq. (3.5) can be straightforwardly rewritten in such a way that the
dependence of E. on the system parameters (say, N and w) becomes explicit:

E.(N,w) = —0.0668 N!-1275.,0-245 (3.6)

where E. is given in a.u.

The scaling relation in Eq. (3.5) is also corroborated by independent calculations for
small and medium-size QDs, including open-shell systems. In particular, we consider the
diffusion Monte Carlo (DMC) results by Pederiva et al. [102] and very recent coupled-
cluster singles-doubles (CCSD) calculations by Waltersson et al. [103]. Both sets of results
agree with our scaling relation, as shown in Fig. 3.3.

In addition, we consider values of E,. for QD’s with N = 6,12 and 20 and confinement
potentials between 3.11 and 11.1 meV obtained from different coupled-cluster methods
and reported in Ref. [104]. These results are in agreement with our scaling relation, as
can be seen in Table. 3.2 below.

Another interesting quantity to consider is the relative fraction of the correlation energy
with respect to the total ground-state energy, y, defined in Eq. (3.3). In Publication I
we show that x also follows a similar scaling relation as a function of the parameter z.
Indeed, by substituting in Eq. (3.3) E. and Eys by Eq. (3.5) and Eq. (2.7) respectively,
we obtain
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Figure 3.3: Scaled correlation energies as a function of the variable z = BN'/%. Results
from diffusion Monte Carlo (DMC) [102] calculations for N = 2,...,13 and coupled-cluster
singles—doubles (CCSD) calculations [103] for N = 2,6,12 are compared against the scaling
function f..

Table 3.2: Comparison between our results for E. (based on variational monte carlo (VMC)
ground-state energies) and those of Ref. [104], based on coupled cluster singles and doubles(triples)
(CCSD(T)) ground-state energies. All the energies in the table are in a.u.

N w [a.u] E. (Ref. [104]) E. (this work, VMC) E. in Eq. (3.6)

6 0.5 -0.383 -0.476 -0.425
1.0 -0.520 -0.548 -0.504
12 05 -0.969 -1.029 -0.929
1.0 -1.112 -1.181 -1.110
20 05 -1.676 -1.810 -1.652
1.0 -1.915 -2.069 -1.957
XNV = f(z) = 22, (37)
q(2)
where
p(z) = 0.187 2158 +0.402 211 +0.280 227 4 0.407 2278 (3.8)
and

q(2) =2 +4.298 2'/3 +3 22/3 1 6.444 2 + 4.5 23 4 6.525 2°/3. (3.9)
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Table 3.3: Same as Table 3.2 for the relative correlation energy, x.

N w [a.u] x (Ref. [104]) X (this work, VMC) x in Eq. (3.7)
6 0.5 0.022 0.040 0.031
1.0 0.026 0.027 0.021
12 0.5 0.025 0.026 0.022
1.0 0.017 0.018 0.016
20 0.5 0.018 0.019 0.018
1.0 0.012 0.013 0.012

The computed values of x are shown in Fig. 6 of Publication I together with the
obtained analytic expression. There, It can be seen that Eq. (3.7) works remarkably well
for large systems. This is because the expression used for approximating the ground-state
energy in Eq. (3.3) performs better for systems with large N, in particular for N > 20. In
Table 3.3 we show an additional comparison with an independent numerical calculation,
i.e., coupled-cluster results in Ref. [104].

The results for y can be used to study the role of correlations beyond the mean-field
theory. Furthermore, Eq. (3.7) allows us to identify “isocorrelated” systems, i.e., systems
that apparently differ in terms of the particle number and external confinement, but show
the same “degree of correlation”.

3.1.2 The correlation energy of atomic ions

In real (three-dimensional) atoms, TF theory predicts for the total energy the following
dependence [52, 53, 105, 106]:

Eo(N,Z) ~ N3, (N/Z), (3.10)

where N and Z are the electronic and nuclear charges, respectively. The correlation
energy also shows a scaling a la TF with

E.(N,Z) ~ N®{.(N/Z). (3.11)

The coefficient «, according to suggestions from a large number of studies [107-117], is
near 4/3.

In Publication IT we review simple models that describe the behavior of the correlation
energy of atomic systems as a function of basic atomic parameters.! We find that (i)
most of works focus on the correlation energy of neutral atoms and, (ii) the few works on
ions only consider singly charged ions, but rarely doubly or highly charged ions. Thus,
we address the question of the existence of a scaling relation similar to Eq.( 3.11) that
works for both neutral atoms and atomic ions, and is still as simple as possible.

We assume that the correlation energy follows a scaling relation of the form
E.N,Z)=Z“f.(Z/N), (3.12)

where we use the combination Z/N instead of N/Z. This choice responds only to aesthetic
criteria: since most of the available data correspond to the cationic domain (Z > N)

1For a more extensive review, including historical details, see S. McCarthy’s PhD thesis [117].
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we prefer to see the scaling behavior in an “extended domain”, i.e., 0 < Z/N < oco. All
the results can be easily recovered in terms of N/Z. As we mentioned above, this is
reminiscent to the scaling of the total energy for ions and neutral atoms [105].

To find the parameter o and the function f,. in Eq. (3.12), we analyze the results for
the correlation energy reported in Ref. [118—120], which have been used as a benchmark
by many authors. The results are obtained by removing the relativistic contribution
from measured ground-state energies and therefore they are often considered as ezact.
We use the values of the correlation energy of all the systems with 7 < N < 18 and
N — 1< Z <28 in Ref. [120], for which the scaling behavior is apparent. In addition, we
include the results of He-like ions (N =2, N < Z < 28) reported in Ref. [118]. In total,
we consider more than 200 systems (see Fig. 3.3) that we label as Chal996 later on in
the paper.

By minimizing the root mean square deviation of the data as a function of « we find that
the minimum deviation is obtained for o & 1.32 (as visualized in Fig. 1 of Publication
IT). This is very close to the expected value 4/3 [see Eq. (3.12)], which we adopt as
our value in the following. For the function f., on the other hand, we first introduce a
two-parameter form f. = 7(%)5. One of these parameters can be removed by using the
known case of the simplest hydride anion 'H™ (with Z =1 and N = 2) as a constraint.
For this system E.('H™) ~ 0.039751 (Ref. [121]), leading to v = E.(*H~)/2’. Finally,
the parameter ¢ is found through fitting, and the scaling relation becomes

_ s 00165663

E.(N,Z) (Z/N)W'

(3.13)

We point out that the limit Z/N — oo correctly leads to zero correlation. On the other
hand, the limit Z/N — 0 is never reached, because it is beyond the instability threshold
given by Z. < N — 1.

In Fig. 3.4 we show the sign-reversed scaled correlation energy according to Eq. (3.13) as
a function of Z/N (solid line) together with the data in Refs. [118-120] (symbols). The
overall agreement between our scaling relation and the data is obvious due to the fitting
procedure, but the excellent agreement through a wide range of Z/N is surprising in view
of the simple form of Eq. (3.13). Let us recall that at Z/N ~ 1 the systems are close to
the instability threshold that characterizes the anionic domain (Z < N). On the other
hand, in the cationic domain (Z > N) TF theory is better valid [122]. This explains why
the largest deviations from the scaling in Fig. 3.4 occur around the vertical line of neutral
atoms (Z/N =1).

Further corroboration of the scaling relation in Eq. (3.13) was carried out by considering
additional independent results for the correlation energy obtained with different methods.
The sets of data included in the analysis are:

1. Results of Ref. [120] extrapolated to highly charged cations by Fraga et al. [123]. The
set includes data of positive ions with N =23 and 7 < N < 18, with Z =29...36
in all the cases.

2. Quantum Monte Carlo (QMC) calculations for both positive an negative singly
charged ions from Li through Ar [124].

3. Fadeev-random phase approximation calculations [125] (Bar2012) for light atoms
and ions up to Ar, which includes He, Be?", Be, Ne, Mg?", Mg, and Ar'*+.
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Figure 3.4: Sign-reversed scaled correlation energies for atomic ions with N =2,1 < Z <20
[118] and 7T < N < 18, N —1 < Z < 28 [120]. The solid line represents the function f.(Z/N) and
the vertical gray line indicates the position of neutral atoms.

4. He isoelectronic series (2 < Z < 10) computed by Katriel et al. [126].
5. Virial-constrained effective Hamiltonian (VCEH) results for singly-charged ions

(3 < Z < 55) and doubly-charged ions (4 < Z < 30) [115].

The results are shown in Fig. 3 of Publication II. There, we can find the same trend
as in Fig. 3.4, i.e., the overall qualitative agreement is very good, which supports the idea
of the scaling.

In addition, the following numerical results for the neutral atoms are also considered.

1. Results of McCarthy and Thakkar for 2 < Z < 55 [127] (McC2011).

2. Results of McCarthy and Thakkar for 18 < Z < 36 [128] (McC2012).

3. VCEH results of Clementi and Corongiu for 2 < Z < 55 [115] (C1e1997).

4. Variational QMC results for 3 < Z < 36 and Z = 54 in Ref. [129] (Bue2006).

5. Variational QMC results for 19 < Z < 54 in Refs. [130, 131] tabulated in [127]
(Bue2007-08).

6. results from Ref. [132] for 2 < Z < 18 (Mos1997).

The results are shown in Fig. 3.5. Again, we find an overall qualitative agreement, but the
closer we get to the anionic domain (Z/N < 1) the larger are the deviations. The local
deviations in the data from the scaling relation are due to the shell structure and other fine
details not captured by TF theory, which is the basis of our scaling relation. For example,
in the small-N regime, local extrema in the data sets match with the position of noble
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Figure 3.5: Sign-reversed correlation energies of neutral atoms as a function of the electron
number N (symbols) computed by different methods (see text). The horizontal solid line shows
our scaling relation in Eq. (3.13), i.e., fo(Z/N =1) = 0.0165663. The vertical gray lines indicate
the positions of noble atoms with filled shells.

atoms. The maximum deviation in the considered range of NV is, however, rather moderate
and indicates that Eq. (3.13) can be used to obtain estimations for the correlation energy
of atomic systems.

3.1.3 Bounds from linear algebra

In this section we present results that have not yet been published. We investigate
another direct link between linear algebra and electronic structure theory by exploring
the usefulness of the Gershgorin theorem [133—-135] in the estimation of the correlation
energies of many-particle systems. We focus on a particular class of systems, two-
dimensional quantum dots and perform extensive numerical calculations. We find the the
so-called Gershgorin radii constitute natural bounds for the correlation energy though —
unfortunately — very loose bounds. The results imply that, in the first approximation,
and in practice, Gershgorin theorem is not useful for estimating the correlation energy of
these systems. However, this conclusion applies only to two-dimensional quantum dots,
and the situation might differ in different classes of systems. This possibility is left as an
open question.

3.1.3.1 Gershgorin theorem

The calculation of the eigenvalues of arbitrary matrices is a routine activity in today’s
science. However, it is a fundamentally complex problem and, in most of cases, a very
demanding one from the computational point of view. Therefore, to obtain good estimates
of the eigenvalues is of vital importance. The most crude estimate of the eigenvalues of a
matrix is given by the inequality p(A4) < ||A4||, where

p(A) = max |A| with X € o(A), (3.14)
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is known as the spectral radius of A. This estimate, although useful in many cases, is not
very accurate in terms of the location of the eigenvalues of A. Gersgorin’s theorem goes
further in this direction. Let us recall:

Theorem 3.1.1 (Gershgorin) Let A = a;; be an arbitrary n x n matric and let us
define the circles Z; by

where
T, = Z |ai7j| (316)
i#j
with 1 <1 <n. Then
re o (3.17)
i=1

for every eigenvalue \ of A. Furthermore, if S is the union set of m circles which are
disjoint from the other n — m circles, then S contains exactly m eigenvalues of A.

Now, let us analyze the structure of the full-CI matrix but, with taking into account the
definition of the correlation energy in Eq. (3.1). In Fig. 3.6 we show its general structure.
Notice that the matrix is Hermitian. Therefore, only the upper triangle is shown.

[®o)  |S) D) ) Q)
(D] [ Ey 0 [®HD 0 0
(S| [SHS [SHD [SHT 0
(D IDHD [DHT [DHQ
(T JTHT [THQ
(@ JQHQ

Figure 3.6: Structure of the full-CI matrix. Singly, doubly, triply, and highly excited determi-
nants are denoted as |S), |D), |T), etc.

It is easy to realize that, (i) if we use a Hartree-Fock basis, that is, |®¢) = [HF) and (ii)
we apply the Gershgorin Theorem to the first eigenvalue of the CI matrix (See Fig. 3.6),
then we can associate the correlation energy E. to the first Gershgorin radius. That is

Dim(D)
|Ee| < Z Dy, (3.18)
j=1
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where we use the shorthand notation D and Dim(D) to denote the submatrix [ doHD
and its dimension, respectively. The sum in Eq. (3.18) runs over all elements of the
submatrix D. Let us recall that, in a scheme of Full configurations interaction, there is no
mixture of HF with excitations higher than |D), which means that the higher excitation
sectors (|T), |@Q), etc), contain only null elements.

According to Eq. (3.18), the Gershgorin radii are natural (mathematical) bounds for
the correlation energy. However, it cannot be said — a priori — how tight these bounds
are. Therefore, our next step is to determine if there is any relation between the two
magnitudes, i.e., between the Gershgorin radii and the correlation energy.

3.1.3.2 Numerical results

In order to evaluate the quality of the above bounds, we consider a concrete model
system. We compute the correlation energies and the Gershgorin radii of two-dimensional
parabolic quantum dots with different number of electrons and different confinements
strengths, (see Chapter 2 for a definition of these systems).

For these systems, the values of E. can be easily calculated by using Eq. (3.6), which was
numerically validated with variational monte carlo results, showing deviations of less than
5% with respect to the numerical (VMC) data (see Publication I). For the numerical
calculations of the Gershgorin radii, Rg, we use our own implementation of a truncated
CI scheme (up to (2p2h) excitations, or single and doubles) [72].

The starting point is the Hartree-Fock solution of the problem. Then a basis of functions
made up from

(i) the Hartree-Fock state, |HF),
(ii) one-particle one-hole (1plh) excitations, that is |ou) = el e, |HF), and
(iii) two-particle two-hole (2p2h) excitations, i.e. |op, u)) = eLeLe#e,\|HF>.

They are used in order to diagonalize the Hamiltonian. Notice that o < p are single-
particle states above the Fermi level, and p < A are states below the Fermi level. In
the Hilbert subspace with the same quantum numbers of the Hartree-Fock state, the
electronic Hamiltonian takes the form

 (Bar 0 D
H=| 0 A B (3.19)
Dt Bt C

where Eyp = (HF|H|HF) is the Hartree-Fock energy, Ay o0n = (op/|Hlop) is the
Tamm-Dankoff matrix, Dur spurn = (HF\Iﬂop, UA), Boryt gpur = (0',u’\f[|0p, uA), and
Co'p' ! N yopur = (U’p’,u’)\’|ﬁ|ap,,u)\>. D! and B! are, respectively, the transposes of
matrices D and B. The explicit matrix elements are given in Appendix B.

In sectors with quantum numbers others than the Hartree-Fock state, the first row and
column of matrix (B.4) should be dropped. An energy cutoff of 3 fiw in the excitation
energy is used to control the dimension of the Hamiltonian matrix. The estimated error
in the ground-state energy is below 0.2%.

We compute the Gershgorin radii of dots with N = 2,6,12,20,30,42,56,72 and 90
electrons, and confinement strengths iw = 10, 20, 30,40 and 50 meV. GaAs parameters,



3.1. ELECTRONIC CORRELATION PROBLEM 25

1000 - T —— — -
F & p=10meV ]
L B0 e =20meV ]
44 =30 meV
® =40 meV
A—A =50 meV
100 | B
gy = ]
> r 3
[0) r ]
E | f
3]
L
101 B
4 L L Ly
1 10 100
T —— —
1x10° | E
1x10*L e
o F ]
o r ]
1x10°} 1
1x10°¢ 1
C 1 L1 11 1 1 1 L1 |
1 10 100
0.04 T T T T T
' C ®80=10meV i
B @ =20meV
. 4 ©=30meV
\\ © =40 meV
L = >~ A4 ©=50meV E
o [ ]
o
—_  0.008
3] L |
L
0.0018 L L L L L
1 10 100

Figure 3.7: (a) Correlation energies resulting from Eq. 3.6, (b) Gershgorin radii and (c) the
ratio E./R¢ as a function of the number of electrons in the dot, N.
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Figure 3.8: Approximate scaling relation of the ratio between the Gershgorin radii and the
correlation energies as a function of z = %. Notice the effect of the basis truncation in the

deviations observed for large-N systems.

m = 0.067 mo and € = 12.8, are used in the calculations. Notice that all the systems
considered here are closed-shell quantum dots with ground-state angular momentum and
spin quantum numbers L = S = 0. As a reference, we also compute the correlation
energies of these systems by using Eq. 3.6.

The correlation energies calculated according to Eq. (3.6) are shown in Fig. (3.7)(a) while
the computed Gershgorin radii are shown in Fig. (3.7)(b). We find almost the same
qualitative trend, i.e., in a logarithmic scale, the values of both E. and Rg show a linear
dependence on the particle number. In the case of Rg, we observe a deviation from the
linear behavior in the large- N region. These deviations can be explained as the effects of
the truncation of the basis in our CI scheme.

The main difference is quantitative: the Gershgorin radii are about three orders of
magnitude larger than the corresponding values of the correlation energy. This is visible
in Fig. (3.7)(c), where we show the ratios E./R¢ as a function of the particle number.
The effect of the truncation of the basis is also apparent. Notice that the deviation from
the linear behavior is accentuated for larger systems. Thus, in the first approximation,
the Gershgorin theorem is not useful — in practice — for estimating the correlation energy
of these systems.

Even though the Gershgorin radii do not constitute a reasonably tight bound for the
correlation energies of the systems considered, we show that both magnitudes may be
related by some kind of “scaling law” of the type reported in this thesis. To this end, we
assume a relation of the form

E.
L~ WURNPR fo(2), (3.20)
G
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where ar and i are numerical constants. From our numerical data we find that, in a

logarithmic scale, the scaled ratio gg is a linear function of z. That is

E./Rq
8 <wN4/3 ) ~aln(z) + b, (3.21)

where a = 2.55 and b = 0.55 are obtained from a fit to the small-V systems (see Fig. 3.8).
The expression in Eq. (3.21), after some algebra, can be written in a very simplified form

E.=K Rg, (3.22)

where the coefficient K is a function of N and w:

[N

K(w,N)=¢"w!™% Ni~3, (3.23)
The scaling law we show in Fig. 3.8 was found “empirically”, but this does not mean
that a rigorous proof of a relation between Rg and E,. is impossible. In a similar way,
improved values of all numerical parameters can be achieved by including more numerical
data. This is among the many possibilities of continuing the present work.

The results shown so far are a part of an ongoing project. Let us stress again that, our
conclusion here applies only to two-dimensional parabolic quantum dots, and the the
situation might vary in a different class of systems. In our opinion, further explorations
are needed.
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3.2 Chemical potentials and addition energies of
two-dimensional quantum dots

In Publication IIT we derive universal scaling relations for the chemical potential and
the addition energy of a single semiconductor QD. As a starting point we employ the
previously found nontrivial scaling relation for the total energy of a 2D quantum dot, see
Eq. (2.5). We elaborate this relation further to obtain parametrized expressions for the
chemical potential and addition energy, which — in the same sense as Eq. (2.5) — are
universal functions that depend only on a single parameter.

The remarkable benefit in scaling relations for the chemical potential and the addition
energies is the possibility to directly test them against experimental data. Let us recall
that, in typical QD transport experiments, the dot is separated from the leads by tunneling
barriers that lead to the Coulomb blockade (CB). The so-called CB oscillations in the
conductance then reflect the energetic properties of the QD [136—138]; in particular,
the CB peak position corresponds to the chemical potential for a particular number of
electrons N. A multitude of physical effects in the QD can be extracted from the CB
measurements [139].

In Publication IIT we also test the obtained scaling relations for three separate
experiments including both vertical [140] and lateral [141] few-electron quantum dots, as
well as large quantum dots with about 100 electrons [142, 143]. In all cases we find very
good agreement between the theory and experiment. Moreover, for the latter experimental
set up [142, 143] we are able to predict the previously unknown number of electrons in
the CB measurement. Thus, our scheme can be applied to extract information from a QD
device, which in turn serves further experimental examinations on the electronic structure
of these nanodevices.

3.2.1 Scaling relations for the chemical potential and addition
energy

The starting point is the previously found scaling relation for the ground-state energy of
a 2DQD’s, Eq. (2.5). Next, we proceed with the scaling of the electrochemical potential
defined as

H(N) = Eyy(N) = Ego(N = 1). (3.24)

From Eq. (2.5) we thus obtain

9 d
po~ o Bes(N) = [th3/2fgs(z) : (3.25)
or,
g3 z 0 B 46
AoNLZ §f98(z) + Z@fgs(z) = fu(2). (3.26)

By approximating f,s(z) with Eq. (2.7) in Eq. (3.43) we can express f,(z) as the quotient
of two polynomials,
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S OF 2u(2) (3.27)
hwN1/2 ! qu(z)’

where

pu(z) = 0.475624 + 2.044232'/3 + 3.623422/3 4 5.393532 +
6.626152Y/% + 5.527572°/% 4 5.335522 + 2.2988527/3 +
1.666672%/° (3.28)
and
gu(2) = (0.45977 4 0.98804621/3 4 0.6896552%/° + 2)2. (3.29)

In a similar way, we can proceed with the addition energy defined as

AN)=p(N+1) = p(N) =Ey(N+1) —2E4(N) + Eg(N —1). (3.30)

We can now find an expression

0 0
A~ Sop(N) = o [woNY2f,(2)] (3.31)
or
A 0
FONIZ %fu(z) + Z@f"(z) = fa(?). (3.32)

The function fa(z) can be also expressed in terms of two polynomials, that is fa(z) =
ra(z)/sa(z), where

ra(z) = 0.109339 + 0.704908z'/3 + 2.0068722/3 + 4.00233z +
6.650692%/3 + 8.848022°/3 + 10.182522 + 9.9705827/3 +
7.7323525/% 4 5.503562° + 2.29885219/3 4 1.1111121/3 (3.33)

and

sa(z) = (0.45977 + 0.9880462/3 + 0.6896552%/° + 2)3. (3.34)
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Figure 3.9: Experimental data for addition energies of a vertical quantum dot at different
magnetic fields (lines with markers) [140] in comparison with the theoretical prediction based
on scaling relations (thick solid line). The inset in the upper panel shows the obtained relation
between N and the confinement strength hw. Figure adopted from Publication III.

3.2.2 Comparison with experiments

As mentioned above, in Publication ITII we test the obtained scaling relations against
experimental data. Three separate experiments are considered, which include both vertical
and lateral QD’s. In the following, we briefly describe two of these comparisons.

In the first case (vertical quantum dots), we consider experimental results from Kouwen-
hoven et al. [140] that reported addition energies for quantum dots with N =1...41 at
different values of the external magnetic field. The data is shown in Fig. 3.9 both in a
conventional fashion (in terms of the particle number N) and in a scaled fashion (in terms
of the scaled parameter z), i.e., Egs. (3.32-3.34). The thick line without markers shows
the result from the scaling relation [Eq. (3.32)], where we use the known dependence of
the harmonic confinement on the number of electrons, fw = kN~1/* (Refs. [144, 145]).
Here k is a free parameter for which we have found an optimal value & = 6.4 through
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Figure 3.10: Experimental data [141] for chemical potentials in a few-electron lateral quantum
dot for B = 0 (circles) in comparison with the theoretical prediction based on scaling relations
(solid line). The inset in the upper panel shows the dependence of the confinement strength on
the number of electrons. Figure adopted from Publication ITI.

fitting. We point out, however, that this is the only external parameter that essentially
determines the energy scale.

The oscillatory behavior observed in A is related to shell structure effects. For example,
the peaks at N = 2,6, 12 correspond to “magic numbers” with closed shells. [146].
Naturally, our scaling result cannot predict the specific peaks in A, but the overall trend.
In general terms, Fig. 3.9 demonstrates excellent agreement between experiment and
theory though the whole range of N.

As the magnetic field is increased the degeneracy of the energy levels in the QD is reduced
and, consequently, A(N) becomes smoother. In this situation, our theoretical predictions
coincides with the experimental results with very good accuracy. The inset of Fig. 3.9
shows the obtained relation between N and the confinement strength fw. Thus, in order
to proceed with electronic-structure calculations (through, e.g., quantum Monte Carlo
or density-functional theory) on the same device, iw should be chosen according to this
relation for particular N. Such an approach could lead to quantitative agreement with
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the experimental data regarding the shell structure.

As a second example, we consider experimental data on lateral quantum dots containing
a few electrons [141]. In these experiments, precise values of N are not known, and the
errors in the estimations have the same order of magnitude as N itself, i.e., (N ~ 10). As
we show below the scaling relations can be used to obtain this information.

The original experimental data (see Fig. 4.25 in Ref. [141]) contains the conductivity o
(in units of e?/h) as a function of the gate Vg and source-drain Vsp voltages (in Volts),
a pattern known as the Coulomb-diamond landscape. Plotting ¢ as a function of Vg
along the line Vgp = 0 yields a sequence of sharp peaks, where every peak corresponds
to N — N + 1. On the other hand, the position of every peak (in Vi) corresponds to
1, which is transformed from V to eV according to u = Vi ag + C. Here, the value of
the so-called gate lever arm is ag &~ 0.0456, which can be computed from the slopes of
the lines corresponding to opposite sides of a diamond. C' is a numerical constant to be
determined.

To estimate the minimum number of electrons N, in the experimental conductance
data, we vary N (as an input parameter) and simultaneously determine the values of k
and C that lead to the best fit with the total data according to the scaling relation for u
[Eq. (3.43)]. If the input N is not close to the actual number of electrons, any values for
k and C do not lead to reasonable fitting. However, the procedure eventually leads to the
optimal value for NV that corresponds to an apparent minimum in the root-mean-square
deviation.

In this particular case we find & = 4.95 and C = 828.59 that yield Ny, = 5 (at
Vo = —17.75 V) and Npax = 11 (at Vg = —17.44 V). The corresponding confinement
strengths range from 3.31 to 2.72 meV (see the inset in Fig. 3.10).

Let us emphasize that in the procedure described in Publication III the number of
electrons (and the confinement strength) in the measurements are found without any a
priori knowledge or estimation of these magnitudes. However, the found ranges agree
very well with the assessment based on device characteristics and other experimental
constraints [141-143, 147].
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3.3 Dimensionality effects

In recent works, we have shown the existence of universal scaling relations for (i) the ground-
state energy (see Chapter 2 and Ref. [72]), (ii) the correlation energy in Publication I,
and (iii) chemical potentials and addition energies in Publication III of 2D parabolic
quantum dots. Previous studies on the energy scaling in three-dimensional systems have
mainly focused on atoms and atomic ions. For example, the scaling properties of the
ground-state energy is considered in Refs. [51-53, 148], while scaling relations for the
ionization and correlation energies were proposed in Ref. [149] and Publication IT,
respectively. However, we could not find references on scaling properties of the energetics
of three-dimensional nanostructures.

In Publication IV we explore the effects of the dimensionality in the scaling relations
and turned our attention to the energies of the three-dimensional, many-electron Hooke
atom. Here, a Hooke atom is defined as a system of IV interacting electrons confined
in a three-dimensional harmonic potential, vex(r) = w?r?/2, where w is the oscillator
strength (in atomic units). Thus, in Publication IV we bridge the gap by considering
scaling relations in a realistic 3D model that has general applicability for several classes of
physical systems. For example, the present model have proven rather useful in the study
of Coulomb crystals observed in laboratory experiments with ultracold ion plasmas [150].
In addition, model semiconductor quantum dots with spherical symmetry has been also
used to model dye-functionalized nanoparticles [151, 152], which constitute a class of
nanosystems with great perspectives in a number of biological and medical, as well as in
optoelectronic applications [153, 154].

3.3.1 Scaling relation for the ground-state energy

Following the procedure carried out in 2D systems in Ref. [72], the Thomas-Fermi (TF)
energy functional [52, 53] (in units of w) can be written as

ETF /dr ap(r)?/3 + p(r) 2/2 +ﬁ//drdr’p plr |) (3.35)

where « is a numerical constant and 3 = w~'/2 is the ratio of the Coulomb and harmonic-
oscillator characteristic energies. Notice that we are using atomic units. We rescale the
radial coordinate r and the density p(r) in such a way that the right hand side of the
normalization condition

/p(r)dr =N (3.36)
becomes equal to one. This leads to the scaling relation

Eys
N4/3

= fys(BNY?) = f4s(2), (3.37)

where fgs is a universal function depending on z = (N /w)Y/? — a particular combination
of the system parameters. As demonstrated below, the scaling relation in Eq. (3.37) is
numerically consistent with both previous results in the literature as well as with our
calculations.
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3.3.1.1 Numerical results and the Padé approximant

In order to corroborate the scaling property in Eq. (3.37), we carry out a large set of
calculations within DFT and path integral Monte Carlo [156-161] (PIMC) methods. In
the DFT we apply the OCTOPUS software package [98, 99, 166—168] using the Perdew-
Burke-Ernzerhof [169, 170] (PBE) exchange-correlation functional. The PIMC method is
used to obtain highly accurate many-electron reference data for the ground state. Since
PIMC is a finite-temperature approach we have chosen a simulation temperature that
accurately describes the ground state, i.e., T/Ty = 0.025 for all simulations. In order to
ensure high accuracy and an upper bound estimate we have extrapolated our PIMC values
to zero time-step limit from the energetics of six different time steps. Fermi statistics is
incorporated by the use of the so-called free particle nodes within the fixed-node PIMC
formalism [161].

In the DFT calculations we consider the following combinations for the confinement
strength and the number of electrons:

o {w=0.1; N = 8,20, 58,132,438, 1502},
o {w=0.5; N = 106,198,398, 1490}, and

e {w=1; N = 106,198, 440, 790, 1100}.

With these combinations of w and N we cover a wide range of values for the scaling
variable z in Eq. (3.37), including the important large-N limit. Additionally, for each
system we also compute the ground-state energies {N; — 1,w; } used in the calculations
for the electrochemical potentials as defined in section 3.2. The results are summarized
in Table 3.4.

An analytical expression for fys(2) in Eq. (3.37) can be found with Padé approximants in
the large-N limit. We interpolate the strong-confinement limit with weak correlations as

By

— i lime o Do 4 bsz + ..., (3.38)

and the weak-confinement limit with strong correlations as

Egs .= 2 Qg
wN4/3 lim, y00o X (CLQ —+ ﬁ) 4+ ... s (339)

where z = 1/3N1/6 = ;1/3 [62, 155]. Now, the P o approximant, for example, can be
written as

1
P35 =10 N 3.40
3,2 0 + apx ( 1+q1x+q2x2>’ ( )

where q; = b3/ag > 0 and ¢a = as/(bg — ap) > 0 with by = (3*/3)/4 and ap = 9/10 [62].
The other two coefficients, ag and b3, are determined numerically from a two-parameter fit
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Table 3.4: PBE results for ground-state energies, E4s, of the Hooke atoms considered in
Publication IV. All the energies in the table are in a.u.

w [a.u] N Ey (N —1) [au] Ey(N) [a.u] Eg(N +1) [au]
0.1 8 4.5373 5.6943 6.9442
20 24.9454 27.2493 29.6349
58 159.7225 164.4592 169.2648
132 645.8338 654.2067 662.6245
438 4847.5736 4866.1847 4884.8247
1502 38042.6317 38084.3867 38126.1603
0.5 106 1336.1520 1357.9069 1379.7803
198 3801.6637 3833.8784 3866.2058
398 12160.2008 12212.2963 12264.4754
1490 110171.0642 110294.9379 110418.8671
1.0 106 2161.1398 2195.0023 2229.1112
198 6111.6908 6163.0147 6214.4995
440 23068.8154 23154.1667 23239.6510
790 61079.7766 61211.1809 61342.6872
1100 105960.2887 106120.6721 106281.1566

to our main data set, i.e., a combination of the PBE results for “intermediate” confinements
(w=0.5,1.0) and PIMC results for {w = 0.5;2 < N <9, N = 40}. From the numerical
fit, our scaling relation for the ground-state energy reads

E,s 34/3 (2.651 x 107 7)z 4 0.619724/3

WNAB ~ T4 T 14 (2.946 x 10-7)21/3 4 0.688522/3

which, after neglecting the low-order coefficients, leads to

Egs 15714 1.08172%/3 4 0.92%/3
wN4/3 1.452 + 1.022/3

(3.41)

Figure 3.11 shows the DFT (PBE) and PIMC results for the scaled E,s (symbols) together
with the function fg, (solid line) in Eq. (3.41). We can see that the scaling behavior
is apparent and consistent across the parameter ranges of w and N. Let us stress that
the subset of systems with w = 0.1 was not used for the fitting but as “control cases”.
In terms of the variable z, the control region is twice the size of the fitting region (see
Fig. 3.11), going from z ~ 10 to z ~ 125, i.e., deep into the strong correlation regime.

Figure 3.12 shows additional DFT results for £, together with the function fy, in
Eq. (3.41). We consider the local density approximation (LDA) results reported in
Ref. [162]. The systems considered in this case are

e {w=0.1; N =8,20,58, 100, 132, 438,800, 1200, 1500},

e {w=0.5; N = 100,200,400, 800, 1206, 1490}, and



36 CHAPTER 3. RESULTS AND DISCUSSION

25 T \
r control region
20
g |
vZ 15 fitting region
\8/ i
~
o 10+ —
w” - 1@
L gs 4
/ o PBE (0=1.0a.u.)
5 4 PBE (w=0.5a.u.)||
v PBE (0=0.1au)
L ¢ PIMC (0=0.5a.u.)| -
0 ‘ \ \ \ \ \ \
0 20 40 60 80 100 120

V4

Figure 3.11: Density-functional (PBE) and Path integral monte carlo (PIMC) results for the
scaled ground-state energies of Hooke atoms as a function of z = (N/w)/? (symbols). The
solid line represents the function fys(z) of Eq. (2.6). The fitting region contains systems with
w = 1.0 and w = 0.5. The control region contains systems with w = 0.1. Figure adopted from
Publication I'V.

o {w=1; N =100, 200, 440, 800, 1200, 1500}.

With these combinations of w and N we cover a similar range of values for the scaling
variable z in Eq. (3.37) as for the PBE calculations. These numerical results agree
remarkably well with the scaling relation.

The inset of Fig. 3.12 shows additional numerical results from three independent calcula-
tions:

o coupled-cluster results of Yakobi et al.. [163] (w =0.5,2 < N < 60),

o diffusion Monte Carlo (DMC) results for few-particle systems {w = 0.5,2 < N < 9}
of Wilkens [164] and,

e DMC results from Amovilli and March [165] for 4-electron systems and
w = 0.5,0.04,0.034, 0.028, 0.024, 0.020, 0.014, 0.010.

All additional data sets fit very well with the proposed scaling.

In order to assess the accuracy of our scaling relation we analyze the relative error of some
of our numerical results with respect to ground-state energies resulting from Eq. (3.41).
The relative errors of PIMC results for {w = 0.1; N = 8,20} are shown in the upper
panel Fig. 3.13 together with some PBE results. The lower panel of Fig. 3.13 shows
the corresponding LDA results. The large-N limits are estimated by extrapolating from
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Figure 3.12: Density-functional (LDA) results (symbols) for the scaled ground-state energies of
Hooke atoms with varying confinement strengths up to N = 1500 in comparison with the scaling
function fgs(z) (solid line) of Eq. (3.41). Inset: Additional numerical results from Refs. [163—165].
Figure adopted from Publication IV.

numerical fits, assuming that the dependence of relative error on N follows simple power
laws. The values are similar in all cases, meaning that the accuracy of ground-state
energies calculated with Eq. (3.41) is surprisingly good even at very weak confinements.
Equally surprising is the fact that, in contrast to the two-dimensional case [64], in 3D
the coefficient coming from the Thomas-Fermi theory, i.e., as in Eq. (3.39), agrees with
the scaling relation even for small N. We find that for V > 500 the relative error is
always below 1%. In fact, the accuracy of the obtained scaling relation is so high that, in
principle, it could be used not only to predict total energies of arbitrary Hooke atoms, e.g.,
in the large-N limit, but also as a benchmark to assess the convergence of first-principles
calculations.

To find the limits for the applicability of the scaling relation at very strong electron-
electron correlations, we have compared the scaling against PIMC results for small NV
and small w. In this regime the Coulomb interaction dominates over the other energy
components and the system can be characterized by Wigner crystallization. In practice,
we find that the computed ground-state energies deviate from the scaling in Eq. (3.41)
for N =8 and 0.01 > w > 0.001, which means that a different value of as in Eq. (3.39) is
required to describe the Wigner regime. It is noteworthy, however, that these values for
w are much smaller than what has been estimated for semiconductor quantum dots, for
example, where the confinement strengths are typically around w > 0.1 [145].
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Figure 3.13: Upper panel: Relative error of numerical PBE calculations with respect to

ground-state energies resulting from Eq. (3.41). Lower panel: Same for LDA calculations. Hooke
atoms with varying confinement strengths and particle numbers up to N = 1500 are considered
(see the main text for details). Figure adopted from Publication IV.

3.3.2 Scaling relations for the chemical potentials and addition
energies

Next, we proceed with the scaling of the electrochemical potential defined as p(N) =
Eys(N)—E4s(N —1). The scaling relations for 2D systems have proven to be rather useful
in the interpretation of Coulomb blockade experiments (see Section 3.2 and Publication
IIT). The behavior of chemical potentials — when measured or calculated from the first
principles — also gives useful information of the shell structure of the system.

From Eq. (3.37) we obtain

D

o (3.42)

0
1~ N wN4/3fgs(z)

0

or,

b = ful2).
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Figure 3.14: Scaled chemical potentials (PBE results) of Hooke atoms as a function of z. The
solid line represents the function f, in Eq. (3.44). Inset: Results from additional coupled-cluster
(singles and doubles) calculations of systems with {N = 18,58} and confinement strengths
ranging from 0.1 to 25.0 a.u. [163]. Figure adopted from Publication IV.

By approximating fys(z) with Eq. (3.41) in Eq. (3.37) we can express f,(z) as

_3.0423 + 4.18932%/3 + 4.056532%/3 + 1.52°
(14524 + 1.22/3)° '

fu(2)

Following the same reasoning, we can proceed with the addition energy defined as
Ap(N) = p(N) — p(N —1) = Egs(N + 1) —2E45(N) 4+ Egs(N — 1). We can now find an
expression

o 0 1/3
Ap o~ NP T aN [WN fu(z)} (3.44)
or,
A
r,_y;/g = fau(2)- (3.45)

Function fa,(z) can also be expressed in terms of two polynomials, i.e., fa,(z) =
r(z)/s(z), where

r(z) = 1.4723 4 3.04232%/3 + 5.89162%/% 4 (3.46)
+  4.25692% +1.02%°

and
3
s(z) = (1.4524 + 1.022/3) . (3.47)

Figure 3.14 shows the scaled values of p as a function of z, computed from our PBE results.
No fitting process is performed in this case. Similarly to the previous results for the total
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Figure 3.15: Addition energies of few-particle Hooke atoms as a function of zN (symbols). The
results correspond to the local-density approximation (LDA) within density-functional theory,
variational quantum Monte Carlo (VMC), and diffusion Monte Carlo (DMC). The solid line
represents the function Ap(N,w = 0.5) in Eq. (3.48). Figure adopted from Publication IV.

energy, we find excellent agreement between the scaling relation in Eq. (3.44) and the
calculated values of p. The additional numerical results calculated within coupled-cluster
(singles and doubles) method [163] correspond to the chemical potentials of systems with
N =18,58 and w = 0.1,0.5,1.0,2.0,5.0,10.0, 25.0 for both N. This additional data set
also agrees very well with the scaling relation (inset of Fig. 3.14).

In the case of the addition energies Ay in Fig. 3.15, we add three data sets for small
electron numbers and w = 0.5. The data sets correspond to the LDA, variational Monte
Carlo (VMC), and DMC calculations for {w = 0.5,2 < N < 9} [164]. The solid line in
Fig. 3.15 corresponds to

-3
Ap(N,w = 0.5) = v(N) (1.1528N2/3 + 1.0N)
with

v(N) = 0.3682+ 0.9583N'/? 4 2.3381N?/3 (3.48)
+  2.1285N + 0.6299N*/3,

1/2

obtained from fa,(z) by explicitly substituting z = (N/w)'/# and setting w = 0.5.

The agreement for the addition energies is good except for two outliers at N = 2 and
N = 8, where all the reference results show large peaks. These values correspond to
completely filled shells, which are known to be energetically very stable [145]. The effects
of the shell structure are beyond the reach of our model based on the Thomas-Fermi
approach, where the kinetic energy is an explicit orbital-free functional of the density. We
expect, however, that fa,(z) performs much better in the large-N limit, where jumps in
the additional energy are less pronounced. This situation was already observed in the 2D
case (see Publication III).



4 Summary and outlook

4.1 Summary

As mentioned above, in this thesis we consider a less studied aspect of Thomas-Fermi
theory: the highly non-trivial scaling relations following from it. The objective of the
thesis was to introduce what we call scaling approach, as an efficient strategy to organize
the information already available in order to extract yet more information from the
many-body problem. To this goal we apply the scaling approach to a wide range of
system, from nanostructures (quantum dots) to atoms and atomic ions.

The thesis is largely based on the results reported in four publications. Thus, the main
contribution of our studies can be summarized as follows:

e In Publication I we have performed extensive numerical calculations for semi-
conductor quantum dots and found an unexpected universal scaling relation for
the correlation energy, which resembles the scaling for the ground-state energy
coming from Thomas-Fermi theories. A universal scaling relation for the fraction
of the total energy associated with the correlations was also obtained. Such an
expression provides information on the degree of correlation of the system and the
accuracy of the Hatree-Fock estimation, even without any calculations. The results
are independent of the material parameters (effective mass, dielectric constant)
since they are contained in the scaling variable.

¢ In Publication II we have found a simple scaling relation for the correlation energy
of atomic ions including neutral atoms. The relation has been found by applying
an ansatz based on Thomas-Fermi theory and numerical fitting to an accurate set
of data, together with an exact constraint for the H~ hydride anion. The obtained
scaling relation has been tested against a large set of data for the correlation energy
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obtained using a variety of methods. The overall agreement is good for both ions
and neutral atoms.

Our relation can thus provide useful estimates for the correlation energies of heavy
elements and their corresponding ions, for which there are no available data in
the literature. However, in the absence of further data one needs to be cautious
when applying the present approximation, because the correlation energy is a subtle
quantity.

In Publication III we have derived universal scaling relations for the measurable
Coulomb blockade properties of semiconductor quantum dots, in particular for
the chemical potential and addition energy that correspond to the conductance
peak positions and their mutual differences. Our first starting point has been the
conventional effective mass approximation and the harmonic confinement model for
electrons in the semiconductor (here GaAs) material. Secondly, we have used Padé
approximants in the scaled variables suggested by Thomas-Fermi theory in order to
find an expression for the chemical potential and addition energy that depend only
on a universal function.

In our numerical tests of the scaling relations, we have found excellent agreement with
three separate sets of experimental data including few-electron vertical and lateral
quantum dots, as well as large (N ~ 100) quantum dots. The relations are shown
to be valid for both chemical potentials and addition energies and independent of
the external magnetic field. In the few-electron regime the agreement even improves
with the magnetic field. This is due to the reduction of the peaks as the degeneracies
are lifted. It should be noted that as a fundamental disadvantage of the present
scaling relations based on the Thomas-Fermi approximation, the orbital (shell
structure) properties are not taken into account. We also show that the derived
scaling relations can be used in an iterative fashion to find out the exact number of
electrons (with a small error bar) in the quantum dot. The obtained values agree
well with the qualitative assessment based on experimental considerations.

Our scaling relations can be readily applied to semiconductor quantum dot physics
as a tool to extract the characteristics of the sample, first and foremost to find a
realistic value for the confining strength for the modeling, as well as for the number
of confined electrons.

In Publication IV we have used the Thomas-Fermi approach to derive scaling
relations for several energetic quantities of many-electron Hooke atoms, i.e., three-
dimensional harmonic electron droplets consisting of N > 2 interacting electrons.
The analytic scaling relations have been supplemented by density-functional results
to determine the parameter values in the scaling. The obtained full expressions
for the total energy, electrochemical potential, and addition energy have then
been compared to additional results obtained with alternative methods such as
coupled-cluster calculations and variational, diffusion, and path-integral Monte Carlo
methods. In most cases, excellent numerical agreement has been found throughout
a large regime of parameter values, excluding extremely weak confinements (strong
correlations).

The obtained scaling relations are useful to assess energetic quantities of very large
harmonically confined systems that are beyond the reach of current electronic
structure methods. Moreover, the accuracy of the scaling provides a way to assess
the accuracy of the convergence obtained within a first-principles method.
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In addition, we presented some unpublished results from an ongoing project:

We have analyzed the structure of the full configurations interaction matrix on the
light of a very simple — yet not widely known — theorem from linear algebra, i.e., the
Gershgorin theorem. A direct application of the theorem allows us to conclude that the
so-called Gershgorin radii constitute natural bounds for the correlation energy, as long as
a Hartree-Fock basis is used.

To estimate the quality of such bounds we have considered a well studied model system
and performed extensive numerical calculations for both Gershgorin radii and correlation
energies of two-dimensional parabolic quantum dots. We have found that the computed
Gershgorin radii are of the order of 10° times higher than the corresponding correlation
energies, which means that, in a first approximation, the Gershgorin theorem is not useful
in practice to estimate the correlation energy of these systems. However, we stress that
this conclusion applies only to two-dimensional quantum dots. The situation might be
different if a different class of systems is considered.

Even though the Gershgorin radii do not constitute a reasonable bound for the correlation
energies of the systems considered, we have shown that both magnitudes may be related
by some kind of a scaling law. The scaling law we presented in this thesis was found
“empirically”; but this does not mean that a rigorous proof of a relation between Gershgorin
radii and correlation energies is impossible. The search for that proof may be a possibility
of continuing the present work in collaboration with mathematicians.

4.2 Some perspectives and comments

Given the general character of the scaling properties, they may have direct implications for
the developments of density functionals for the exchange and correlation, the improvement
of orbital-free functionals [171], or as a starting point for approximations in self-consistent
orbital-free methods. Some results may also supplement the recently formulated DFT for
strictly correlated electrons and related approaches [172].

The present work can be continued in different directions. For example, in the case of
nanostructures, we may study how the scaling relations are affected by anharmonicity
effects in the external potential.

A straightforward continuation of this work would be to explore the possibility of obtaining
a scaling relation for the energetic properties of molecules. Notice that all the model
systems we considered in this thesis are characterized by a central symmetry of the
external potential. The situation in molecules is way more complex and therefore very
challenging, but — at the same time — quite motivating. Research along this line is on
progress.






A Notes on Thomas-Fermi theory

Thomas-Fermi Theory is used as a starting point in many of the projects discussed in
this thesis. Therefore we complement the main chapters with some brief notes on the
subject. A thorough account of the historical perspective as well as rigorous expositions
can be found in any of the several articles and books available [51—53]. In these notes,
we will approximately follow Kohanof’s exposition [39].

In their original work Thomas and Fermi proposed an expression for the total electronic
energy where the kinetic, exchange, and correlation contributions were taken from the
homogeneous electron gas, for which good approximations were known. The idea was to
construct the same quantities for the inhomogeneous system as

Ealp(r)] = p(r)ea[p(r)]dr, (A.1)

where €, [p(r)] is the energy density of contribution « (kinetic, exchange, and correlation),
calculated locally at the value assumed by the density at every point in space. This was
the first time that the local-density approximation, or LDA, was proposed. In the above
expression the square brackets indicate a functional dependence of the energy and energy
density on the electronic density. For a homogeneous electron gas! the electronic density
is related to the Fermi energy er by [8, 173, 174]

1 /2m)\%/?
o =5z (G3) 4 (A2)

and the kinetic energy is T' = 3p(r)er/5, so that the TF kinetic energy density is

IDimensionality considerations affect the values of the numerical constants, including the exponents
in the density.
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h2
tor) = 5%(3#)2’/3&/%). (A.3)

Therefore, the LDA kinetic energy is written as

Trelp(w)] = Cic [ o7/ (x)d, (A.4)

with Ck = 2(372)%? = 2.871 a.u. Thus, the simplest (i.e., no exchange, no correlation)
Thomas-Fermi functional reads

Brelo)] = Cuc [ o4 w)dr + [ ple)vusi(r)de (A.5)
L[ [ p)e(r)
+ 2 // r—r'|
This form of the TF functional serves as starting point for most of the derivations in this

thesis.

The electronic exchange can be introduced into this picture in this same local spirit by
considering Slater’s expression for the homogeneous electron gas [175, 176]:

Bxlpl)] = ~Cx [ p/*(x)ar, (A.6)

with Ox = 2(3/7)Y/® = 0.739 a.u. When the exchange is treated at this level of
approximation, the theory is called Thomas-Fermi-Dirac (TFD).

Correlation can also be easily included by using any local approximation to the homoge-
neous electron gas, for instance the one proposed by Wigner already in 1938 [177]:

p*/3(r)

Eolp(r)] = —0.056 / vt (A7)

where all the numerical constants are given in atomic units.

By replacing the above approximations into the general expression for the energy of an
inhomogeneous electronic system given we obtain TFD energy expression:

Ereplp(r)] = Ck / /3 (x)dr + / P (0)dr (A8)
L[ [ o))
T 5// |r — 1’|

4/3(1')
— O [ PP ()d —0.056/p—
X/p (x)dr 0.079 + p'/3(x)

The second term accounts for the electron- external potential interaction, usually the
classical electrostatic energy of attraction between the nuclei and the electrons, where
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Vegt(r) is the static Coulomb potential arising from the nuclei. The third term represents
the electron-electron interactions of the system, and in this case it is approximated by
the classical Coulomb repulsion between the electrons, known as the Hartree energy.

It can be seen that the only dependence of Ergp on the electronic variables is set through
the electronic density. In that sense it is said that it is a functional of the density.
Assuming intuitively some variational principle, we can search for the density p(r) that
minimizes Errp[p(r)], subject to the constraint that the total integrated charge is equal
to the number of electrons, [ p(r)dr = N. Since the variation is not carried out with
respect to a parameter but a function, i.e., the density p(r), the minimization assumes
the form of the search for a function in three-dimensional space that makes the energy
stationary with respect to any kind of density variations.






B Notes on Computational methods

In Publication I, extensive numerical calculations for charged quantum dots are per-
formed. We follow standard procedures, which include variational Monte Carlo (VMC),
density-functional theory (DFT) particularly with the local-density approximation version
(LDA), and both full (FCI) and truncated (2p2h CI) configuration interaction methods.

The LDA scheme is employed mainly to verify the performance of VMC in systems with
large particle numbers, whereas the FCI (exact diagonalization) scheme is employed,
with the same objective, in the cases of small particle numbers. Additionally, we use a
truncated 2p2h CI scheme in order to determine how much correlation is captured by it.
Although some of the numerical results are not shown in the final version of the paper,
the generalities of the implementations are briefly explained below.

B.1 Hartree-Fock scheme

In our calculations we express the HF orbitals in the basis of Fock-Darwin states [57],
QO(X(F) = ZQm@(ﬂXu (Bl)

where y; are the spin functions. The expansion coefficients C,; and the energy €, can be
obtained by solving the following eigenvalue problem (HF equations):

ZBEFCQJ‘ = €o¢0ai7 (BQ)
J

where EEF are the matrix elements of the HF self-consistent Hamiltonian in the chosen
basis,
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N 1
hEF = 61‘51']' + ﬁint Z Z [<Z,U|;‘j,’0>

u<Ey wyv

N
- <Zau|;|vvj>]cuucuv- (B3)

In Eq. (B.3) the first term is diagonal, €; denotes the single-particle oscillator energy
€; = hw(2k; +|I] + 1), and the second term accounts for direct and exchange Coulomb
interaction between the electrons in the QD. The index p runs over the electron occupied
HF orbitals, £; denotes the Fermi level in the conduction band, and Bin: = (Aw)S.

The HF equations in Eq. (B.2) are solved iteratively. Twenty oscillator shells (420 oscillator
states) are used in the calculations.

B.2 2p2h Configuration interaction scheme

In the truncated 2p2h configuration interaction scheme, the starting point is the Hartree-
Fock solution of the problem [72], as described above. Then, a basis of functions made
up from

(i) the Hartree-Fock state, |HF),
(ii) one-particle one-hole (1plh) excitations, that is |ou) = el e, |HF), and
(iii) two-particle two-hole (2p2h) excitations, i.e. |op, u)) = efele,ex[HF).

They are used in order to diagonalize the Hamiltonian. Notice that o < p are single-
particle states above the Fermi level, and u < A are states below the Fermi level.

In the Hilbert subspace with the same quantum numbers of the Hartree-Fock state, the
electronic Hamiltonian takes the form

~ (Bar 0 D
H=| 0 A B (B.4)
Dt Bt C

where Egp = (HF|H|HF) is the Hartree-Fock energy, Ay, o, = (o/p/|H|op) is the
Tamm-Dankoft matrix, Dup oppr = (HF\EHJp, UA), Bory gpur = <0’,u’\ﬁ|crp, uA), and
Cotprinroppr = (0'p's ! N|H|op, uX). D' and B' are, respectively, the transposes of
matrices D and B. In sectors with quantum numbers others than the Hartree-Fock state,
the first row and column of matrix (B.4) should be dropped. Explicit matrix elements
are given at the end of this Appendix.

The ground-state energy, Ey, in this case, is estimated as the lowest energy state in each
of the computed 2p2h-intraband spectra.

The dimension of the Hamiltonian matrix is controlled by using an energy cutoff in
the excitation energy. The latter is expressed in terms of the confinement energy. The
energy spectra is obtained by exact diagonalization of matrices with dimensions of about
10* — 10°. Several computations of the energy spectra of different systems are carried out
in order to check the convergence of E4s (and consequently, of Ecop) with the energy
cutoff.
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B.2.1 Explicit 2p2h/CI matrix elements

In Eq. (B.4), Eyr is the Hartree-Fock total energy:
1 e n 0)
B = 3 ST+ ST RN P 8 (B.5)
p<pr k,1,S-

where pp is the Fermi level, Eff) is the Hartree-Fock energy of the electron state p, 5,(3)3

is the energy of 2D oscillator states, characterized by the quantum numbers k (radlal
number), ! (angular momentum), and S, (spin projection). Hence,

e = B + hw(2k +[I| +1). (B.6)

The state p is expanded in oscillator states as follows:

= R s |k,1,S.). (B.7)
k,l,S.

In the studied closed-shell dots, I and S, are good quantum numbers of |u), and the
above sum runs only over k.

On the other hand, in Eq. (B.4) A is the Tamm-Dankoff matrix

Avin = (Baw + ) = of0)) SopBupe + 8" 1 freclilo), (BS)
where the antisymmetrized Coulomb matrix elements are defined as

<‘7/aﬂ|1/7'ee|ﬂla‘7> = <‘7/aﬂ|1/7’66‘ﬂ/,0> - <U,7N|1/Tee|‘7a Nl>- (B.9)

Coulomb matrix elements (o/, u|1/rec|p’, o) are computed in terms of matrix elements
among oscillator states by using the expansion (B.7).

Finally, matrices D, B and C are explicitly written as:

DHF,O’pM/\ = 5<Ma)‘|1/Tee|b76>~ (BlO)

Baopn = B8 AL/rec W2 p) 0ot (i, AL el 1)
N reel 50 + (Lol GRON} . (BAD)
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B.3 Full configuration interaction scheme (exact
diagonalization)

Using the eigenfunctions of the single particle problem, the Hamiltonian can be written
in second the quantized form as

H= Zeuczgczo + 5znt Z Uljk)mclo— ;glcma’ckaa (B13)

ijkmoo’

where €;; are the diagonal one-body energies and v;jrn, are the two-body Coulomb
interaction elements.

We consider the 120 lowest single-particle eigenstates (15 oscillator shells), and truncate
the many-body basis by allowing excitations only to configurations with limited non-
interacting energy, given by the first term in Eq. (B.13). The interacting Hamiltonian is
then diagonalized by using the Lanczos algorithm.

The CI method leads to a converging ground state energy as a function of the basis energy
cutoff. It performs comparably to VMC in the six-particle case proving the validity of
the VMC results for the energies. A sample of these results can be seen in Fig. B.1 for
the case of hw = 2.78 meV. When the number of particles is increased, the CI basis size
grows exponentially. Thus, larger systems are studied by means of the VMC method.

B.4 Density-functional theory (local-density approximation)

Our density-functional calculations employ the local-density approximation, where the
correlation part is parametrized according to the form of Attaccalite et al. [90]. We
employ a Bessel function basis [91]. The system dimension, grid spacing, and the number
of basis functions are chosen carefully to guarantee numerical convergence of the energies.
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Figure B.1: Convergence of full configuration interaction (FCI) energies for a quantum dot
with N = 64 and w = 0.25 a.u. as a function of the non-interacting energy cutoff for the
many-body configuration included in the basis [178] (lines are to guide the eye). When the
basis is sufficiently large the variational monte carlo (VMC) and local-density approximation
(LDA) results coincide with the FCI result. The difference from the Hartree-Fock result (higher
in energy) corresponds to the correlation energy (gray shaded region). Figure adopted from
Publication I.

B.5 Variational monte carlo

In the variational Monte Carlo [92] calculations we use wave functions of the Slater-
Jastrow type [93] that have been shown to be accurate for quantum dots [95]. The Slater
part, corresponding to a non-interacting system, is the product of two determinants: one
for spin-up, an a second for spin-down particles. The Jastrow factor is of the form

Qg;.0;Tij
exp[J] = exp Z ﬁ s (B14)
l>j 04,03 1)

where r;; = |r; — r;| and the constants a,, -, are fixed by the cusp conditions. In two
dimensions they are

o 1/3 0; =0y
e (B.15)

This leaves us with the two variational 3,, ,, parameters, one for parallel and the other
for antiparallel spins. We optimize these parameters by minimizing the variational energy
with the stochastic gradient approximation [94].
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