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Abstract 
 

 

Machines, which contain heavy rotating objects like rolls, are always sensitive to 

vibrations. These vibrations can usually be limited by a conservative design approach, 

by carefully balancing the rolls and by applying high precise manufacturing 

techniques. More critical are machines, in which rolls are in direct rolling contact and 

a web-like thin material is fed through this contact. Such material manipulation is used 

for example in manufacturing of paper, thin foils and metal sheets or in rotary printing 

machines. In the first case the rolls today are covered by polymer materials in order to 

make the contact zone larger. This produces non-classical delay type resonances, 

when the roll cover is deformed in the contact zone, and this penetration profile is 

entering the contact zone again before complete recovery. This type of self-excited 

nonlinear vibration is difficult to control with purely traditional damping methods. 

Active damping methods bring more possibilities to adapt to different running 

conditions. The knowledge of existing delay-resonance cases calls for methods, 

actuators and control circuits, which have the required performance to move rolls of 

10 tons mass at frequency band 100 Hz and peak-amplitude level 0,01 mm. After 

closing out many other possibilities, piezoelectric actuators have been proposed to 

such damping task and the purpose of this thesis is to evaluate the feasibility of 

commercially available actuators in this service. 

 

Piezoelectric actuators are very promising for vibration control applications, because 

of their easy controllability, high performance in producing large magnitude forces in 

combination with small magnitude motion outputs in an extremely fast response time. 

The control is straightforward by simply variating the input voltage of the actuator. 

Classical damping approaches are bringing the possibility to utilize large control gains 

in a wide stability domain. When control voltage is generated based on the vibration 

data measured from the system, which is the case in active damping approach, a 

counter-force driven by the piezoactuator can be fed in the opposite phase to the 

vibrating system. It is also possible to build a passive vibration damper by connecting 

an electric circuit to the electrodes of the piezoelectric actuator in order to harvest the 
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electric energy originating from the oscillating mechanical part of the system. These 

electric circuits can consist of a resistor, an inductor and a capacitance in different 

serial or parallel layouts. In order to make such circuit adaptive one, sophisticated 

control electronics is needed to on-line modify the adjustable circuit parameters. 
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1. Introduction 
 

1.1 Background and motivation 
 

Rolling contact is a common solution in industrial web handling processes in the 

production of paper, steel and aluminium folia. A typical arrangement has two rolling 

cylinders, between which the web is fed to get the required surface manipulation 

during the short period the web is in the contact zone. As the metal-against-metal 

contacts are leading to too narrow contact zones and correspondingly to too short 

manipulation times for softer web materials like paper, non-metallic elastic covers 

have been introduced for at least one of the member rolls in the contact. The resulting 

broader contact nip brings better performance for the calendering and the coating 

processes by means of a longer web manipulation time allowing the mill to use higher 

running speeds. Typical lay-outs of calendering and coating units with covered rolls in 

the dry end sections of the paper production line are shown in Figure 1. 

 

 
Figure 1. Calendering (a) and coating (b) units with polymer covered rolls 

in paper production. 

 

At higher running speeds, however, instabilities in the rolling contact appear 

disturbing the production and thus cutting the annual output of the production line. 

Such instability is forcing the rolls in an oscillatory motion in the direction normal to 

the contact surface, which is finally marking the web by cross-directional stripes 

(Kustermann 2000). This phenomenon is a consequence of the well known property of 

the viscoelastic cover polymers to slowly recover after transient compression 
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deformations (Ward 1993, Vuoristo 2002). This unwanted phenomenon has been 

widely investigated, the result of which is a common agreement among the researcher 

society about the leading instability mechanism. A simple and exact rule is predicting 

the unstable and stable running speeds (Hermanski 1995), but the threshold speed, 

above which the phenomenon called as delay-resonance will be initialized in a 

particular system configuration is less clear, as it depends on the dynamic balance 

between the negative and positive damping energies fed to the system. Based on 

measurements (Salmenperä 2013), the response behaviour of nip systems is a complex 

one, because (1) the polymer cover brings a delay-effect, (2) long rolls behave like 

thin-walled elastic circular cylindrical shells and (3) the loading circuit is contributing 

to the motion as well. This is the reason why no clear dimensioning rules or stability 

charts have been published yet. Paper industry has a strong interest to overcome this 

difficulty, which in worst cases may reduce the production rate significantly. 

 

Academic research teams have been involved to the solution process of such cases, 

when they simultaneously appeared in the late 90’s at high speed production lines in 

several machine start-ups everywhere in the pulp and paper industry. As a result of an 

extensive research, a set of different approaches has been introduced to control nip 

oscillations. They can roughly be classified to passive, semi-active, active and smart 

approaches. Passive ways are based on a fixed set of mass, stiffness and damping 

parameters in the primary system, while in semi-active ways this parameter set of an 

additional secondary system can be tune and slide during the run. Smart approaches 

are based on an on-line identification of stable and unstable regions to find an 

acceptable running window. Some limitations and related difficulties are reducing the 

performance and the return of investment of these developments making it necessary 

to have a look to the last not completely investigated way, which is the active damping 

approach. 

 

The active fluid powered damping circuits have been successfully connected to the 

bearing housings of the rotating systems to stabilize whirling motion driven by 

unbalance forces. When unstable nip oscillations represent one or two decade higher 

frequency domains, the performance of rather slowly reacting fluid powered actuators 

is not enough for this application. This limitation has led to the investigation of an 
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approach, in which active control algorithms have been applied to drive a servo loop 

consisting of a secondary piezoelectric actuator installed parallel with the primary 

fluid power actuator pressing the rolls together. 

 

 

1.2 Objectives and related research questions 
 

The main objective of this thesis is to evaluate the feasibility of the piezoelectric 

actuators for active damping of nip oscillations in rolling contact. To reach this 

knowledge the following tasks have to be carried out: (1) a theoretical analysis, (2) 

build of a set-up and (3) a performance evaluation of the damping circuit. 

 

(1) The first objective is to reach the state-of-art level in the research field by means of 

theoretical and literature based analysis of piezoelectric damping circuits in various 

academic set-ups and industrial applications. Based on this knowledge, different 

system lay-outs to connect the piezoactuator mechanically and electrically to the 

existing roll press will be proposed. 

 

(2)  Based  on  the  theoretical  analysis,  a  design  of  the  actuator  circuit  will  be  

developed, fabricated and installed to the existing pilot roll press, whose response 

behaviour  exhibits  nip  oscillations  with  a  similar  character  of  a  typical  delay-

resonance case.  

 

(3) To evaluate the damping performance, the piezoelectric damping circuits will be 

analyzed by system level modelling and analysis and by measuring the response 

behaviour of the set-up added to the pilot roll press. 
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In order to reach the objectives, the following fundamental research questions related 

to the circuit, actuator and algorithm solutions have to be answered: 

 

(1) Which mechanical interfaces and circuit arrangements are able to compensate the 

oscillatory motion in an effective way ? 

 

(2) Which phenomena are controlling the transmission of external damping energy to 

the system ? 

 

(3) Which control principle brings a sufficient performance in damping the delay-

resonance oscillation ? 

 

By knowing that the original system under investigation is already a complicated 

arrangement of polymer covered rotating structures and fluid powered loading 

mechanisms, any additional sub-system will increase the complexity level of the entire 

system bringing also the difficulty to find stable enough control solution.  

 

 

1.3 Contributions 
 

The main purpose of this research work has been to develop a damping system based 

on piezoelectric actuators to control vibrations appearing in rolling contact situations 

in  the  paper  industry.  The  research  work  has  been  divided  to  theoretical  and  

experimental parts. The theoretical part includes a comprehensive review on 

piezoelectric damping methods in various academic and industrial applications. The 

most promising piezoelectric actuator circuits, including classical controllers and 

external RLC-circuits, have then been selected to deeper evaluation by means of 

computer  simulation  in  the  time and  frequency  domains.  The  results  of  this  analysis  

have then been utilized in the experimental part of the work consisting of design and 

build of the actuator interface on the top of an existing pilot roll press representing a 

design scaled to the half size of a corresponding industrial production unit. This 

hardware platform makes it possible to realize different active, semi-active and 

passive piezoelectric damping circuits, from which the one based on the direct 
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velocity feedback mode (the classical D-controller approach) has been finally chosen 

to the complete implementation and testing phases. 

 

The following original contributions were developed in the course of the work: 

 

(1) Development of two different circuit arrangements for active damping of nip 

oscillations of polymer covered rolls by parallel piezoactuators: (1) the classical 

controller approach, and (2) the passive RLC shunt circuit. 

 

(2) Design and implementation of the parallel piezoelectric actuator circuit for the 

pilot roll press. 

 

(3) Numerical and experimental evaluation of the performance of the active damping 

system in different circuit arrangements. 
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2. Theoretical background 
 

2.1 Vibration damping of rolling systems 
 

Rolling systems are sensitive to vibrations, because any imperfections in the contact 

interface or in the mass distribution of the rotating parts may easily excite the system 

to oscillations by means of a displacement or a force controlled input mechanism. 

When such disturbances have a great influence to the production rate of many 

industrial processes, the research activity for finding economical and technically 

working solutions has been both wide and deep. This chapter brings a review about 

what has already been done and reported, but also what research lines are still waiting 

to be opened and evaluated. 

 

 
2.1.1 Systems and phenomena 
 

There are many processes in the industry, where circular rotating components are 

pressed together in order to modify the web material thinner, smoother or to add a film 

or a coating. This review is limited to roll presses in the paper industry with particular 

interest to dry end sections in paper production and finishing lines. 

 

According  to  many  observations,  the  two  most  vibration  sensitive  variations  of  roll  

press are the coating unit and the calendering unit (Figure 1) (Bradford 1988, 

Emmanuel 1985, Parker 1665, Shelley 1997). 

 

A coating unit based on the film sizing principle (Lehtinen 2000) has one or two 

application boxes (Figure 1b), which by making use of a rotating rod are spreading the 

coating pasta on to the surface of one or on both of the two member cylinders to be 

fed to the nip zone and pressed on the surface of the paper web. To get enough time 

for the mass transfer of the coating into the web, one cylinder is polymer covered 

while the other cylinder is a hard one. This arrangement actually forces the harder 

cylinder to penetrate into the elastic cover of the soft cylinder. 
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A similar situation is present in the calendering process (Figure 1a) but with elevated 

temperature and one decade higher line load and peak pressure for effective polishing 

of the paper web (Jokio 1999). 

 

Soft nips became popular in the late nineties’ when significantly improving the nip 

manipulation process and making it possible to use higher running speeds. In contrast 

to many success stories, reports about difficult nip oscillation problems were also 

common after start-ups and speed-upgrades. The common nominator in these 

experiences was the unexpected and complex response of the polymer cover 

(Keskinen 1998). It looked like the speed of the line, the nip width, the time constant 

of the viscoelastic cover polymer and the eigenfrequencies of the roll stack were 

sliding to domains, where new-type of instabilities totally different from the classical 

resonance states, were appearing without a warning (Chinn 1999, Filipovic 1997, 

Sueoka 1993). 

 

Two dominating time constants can be identified in the cover deformation dynamics. 

The first is the pulse time controlling the duration time of the cover material particles 

passing the compression zone in the nip. The second one is the revolution time of the 

roll, which is controlling the frequency, how often each material particle of the cover 

is travelling through the nip. As polymer covers are made of viscoelastic materials, 

they respond to excitation in a complicated way. During the pulse time the cover 

material is under the effect of a displacement-controlled relaxation phase while the 

two decades longer revolution time (minus the pulse time) represents the free-

recovery period (Ward 1993). 

 

So far, as the rolling process is running smoothly in steady-state conditions, there is no 

source for oscillations. The stationary situation is disturbed, if for any external or 

internal reasons (Keskinen 2000), the rolls are forced to a relative translatory motion 

in the direction normal to the contact surface. A typical external excitation is the 

periodic thickness variation of the paper web entering the nip, a situation which 

appears in Figure 2a. 
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                                               a)                                                            b) 

 

Figure 2. Excitations forcing the rolls in nip oscillation: a) external web thickness 

variation and b) internal cover barrel profile, which can be also a consequence of 

a run at delay-resonance speed. 

 

The consequence of such motion is that the hard roll will mark the cover of the soft 

roll by a shape profile corresponding to the relative motion history. Following from 

the viscous property of the cover polymer, closer to the leaving edge of the nip, the 

deformation profile is higher, but closer to the entering edge, it is getting lower. This 

attenuation is driven by the recovery dynamics of the polymer. The more there is 

time-delay between two successive nip passes, the better the profile from the previous 

nip phase is cleaned before the next nip entry. On the other hand, if the roll revolution 

time is getting shorter, which is the case at higher running speeds, the more 

information from the previous nip history is brought to the nip again and again. This 

can finally initialize self-excited vibrations if two conditions are filled: (1) the speed is 

constant and above certain critical threshold speed and (2) the speed has such a value 

that an integer multiple of the running frequency f has an exact match with the natural 

frequency fo of the roll system in relative roll-against-roll oscillation mode, ofnf . 

This leads to a discrete spectrum of rotation frequencies, nff on , at which the 

system can be in delay-resonance. The corresponding speeds are called delay-

resonance speeds, because they are driven by the delay effect of the roll cover 

(Vinicki 2001, Yuan 2002). If the conditions for such nip vibrations are favourable 

over a sufficient long duration time, the roll cover finally gets a barrel profile (Figure 

2b), which in turn takes the role to be an internal excitation source at any new speed 

window the roll stack will be run (Salmenperä 2013). 

ve 
r1 

r2 

r1 

r2 
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The  vibration  modes  of  a  roll  system  are  similar  to  the  ones  of  a  system  with  two  

masses interconnected by a spring and supported to the fixed reference by two more 

springs.  The  lower  of  the  two modes  represents  the  synchronous  motion  of  the  rolls  

while the other higher one exhibits the unwanted non-synchronous roll-against-roll 

mode. For different roll masses and support springs these modes are more or less 

mixed ones. When the lower eigenfrequency is in the same scale with the rotation 

frequency, the web marking with a rather long wave length and a weak visibility has 

less interest as compared with the sharp stripe profile taking place at the higher 

frequency. 

 

If the nip oscillation can continue at delay-resonance state, the roll cover is finally 

marked by a barrel profile of parallel stripes (Kustermann 2000). Such profile has 

some permanent component also, which can not recover freely at any finite time. 

Because this marking is representing the eigenfrequency of the roll system, it then 

follows an interesting phenomenon. If the running speed is modified in the 

neighbourhood of the delay-resonance speed, the earlier marked profile takes an 

excitation role starting forced vibration at a modified frequency. When, 

simultaneously the system in the background still vibrates at the original 

eigenfrequency, the consequence of this interference is the beating response of the two 

interacting vibrations (Salmenperä 2013). If the running speed is then slide slowly 

back and fort in larger running window around the resonance speed, the permanent 

marking profile can be cleaned almost completely. 

 

If the paper finishing process is driven at speeds, where delay-resonances exist, the 

smoothness of the paper surface is lost, because the barrel profile of the roll cover and 

the steady oscillation is marking the web by cross-directional stripes. The only safe 

way to avoid this serious quality drop is to limit the running speed below the threshold 

speed. Because this is cutting the production rate, there has been strong pressure to 

find ways to solve the problem in the first stage theoretically and based on that 

knowledge in the second stage also technically. 
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2.1.2 Review of solution methods 
 

Damping  of  delay-resonances  in  rolling  systems  does  not  differ  too  much  from  the  

damping of classical resonances of passive resonators or rotor dynamic systems. The 

methodologies can be classified to the following categories: 

 

Passive damping methods 

Semi-active damping methods 

Active damping methods 

Soft computing and smart methods 

 

Passive damping methods 

 

Passive damping methods represent a fixed parameter design. This means that based 

on a computational vibration analysis, the system parameters will be fixed in the 

design phase, so that the rotational frequency of the rolls do not meet the natural 

frequency of the rolls in nip oscillation mode. This principle, which actually avoids 

imbalance and shape eccentricity driven resonances, does unfortunately not eliminate 

the possibility of delay-resonances, because they always appear, if any multiple of the 

rotation frequency has a match with the nip oscillation eigenfrequency, which in turn 

is the frequency of the delay-resonance (Yuan 2002). When these multiples can not be 

avoided within the economical production speed range, the only strategy is to add 

strong enough external damping and/or to go direction heavy design in order to push 

higher the threshold speed, at which the delay resonances appear. The effect of 

external dampers is very limited, because the amplitude level of displacements even in 

difficult delay resonances oscillations can be counted in units 10-5 m. The heavy 

design principle leads to a conservative and expensive dimensioning of the load 

carrying parts and foundations, which is increasing the infrastructure costs of the 

production lines. 
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Semi-active damping methods 

 

These methods are tailored for systems sensitive to delay-resonances. They are 

different  variations  from the  principle  to  add  a  classical  dynamic  mass  damper  (den  

Hartog 1947) on the top of the system. When the classical damper is normally tuned to 

a fixed eigenfrequency or to a fixed excitation speed, the situation in delay-resonance 

case in a roll press is much more challenging. The first problem is that the 

eigenfrequency is not constant, because it depends on the line load level, and on the 

temperature and age of the polymer cover (Salmenperä 2013). The second difficulty is 

the sliding of the running speed. When the delay-resonance is locked to the 

eigenfrequency of the nip oscillation mode, the most promising way is to make a 

tuning to exactly to that frequency. Automatic self-tuning algorithm is still needed to 

tackle the wandering phenomenon of the eigenfrequency. 

 

 

 

 

             a) 

 

 

 

 

 

             b) 

 

                                                                                                           c) 

 

Figure 3. An active vibration damper (a) and two tuned modifications of the semi-

active dynamic mass damper based on a travelling disk on a screwed shaft 

(Karhunen 2005) (b) and on adjustable gains in a piezoactuator driven secondary mass 

(Virtanen 2006) (c). 
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Practically  this  means  that  the  eigenfrequency  of  the  mass  damper  has  to  be  on-line  

fixed to the identified nip oscillation eigenfrequency. Such tuning can be done for 

instance by moving a concentrated mass on the span of a cantilever beam for 

modifying the eigenfrequency of this beam system to match the frequency of delay-

resonance illustrated in Figure 3b (Karhunen 2005). 

 

Another realization of the semi-active damper is based on the use of a piezoactuator as 

shown in Figure 3c. A concentrated secondary mass is suspended by such an actuator, 

the effective stiffness of which is modified by updating the proportional gain in the 

position control loop. This arrangement makes it possible to on-line tune the dynamic 

mass damper to exactly match the delay-resonance frequency. The tuning becomes 

less critical, if the derivative gain is used also to bring velocity feedback in the 

damping (Virtanen 2006). One more modification of the piezoceramic dynamic mass 

absorber is based on the on-line identification of the resonance frequency. The mass 

damper is then forced to vibrate harmonically in direction opposite to the oscillation 

of the bearing housing, on which it has been mounted. The amplitude of this counter-

oscillator is modified until the motion of the bearing housing is limited enough. 

 

Active damping methods 

 

Such damping principles require the use of high performance actuator circuits, whose 

frequency band is covering well the predicted delay-resonance frequencies. Many 

investigations show that the fluid power actuators, which are used as primary 

actuators for the nip loading purposes, are not fast enough to serve as vibration 

dampers (Virtanen 2006). In contrast to that, piezoceramic actuators driven by 

computer controlled voltage source, have the required performance on large frequency 

band covering easily nip oscillation spectrum (Colla 2008). Active dampers, like the 

one in Figure 3a, can be mounted between the non-moving reference and the bearing 

housing of the lower one of the member rolls so that the additional actuators are 

parallel  with  the  main  actuators  used  for  line  load  control  of  the  roll  nip.  Better  

performance is still obtained by installing the actuators between the bearing housings 

of the member rolls, which makes it possible to feed or absorb mechanical energy 

directly to and from the oscillatory system. 
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There are mainly four different approaches to apply the active vibration concept. The 

first approach is just to add strong damping by making the use of large derivative gain 

in  the  feedback  loop,  which  is  bringing  to  the  piezoactuator  the  role  of  an  artificial  

viscous damper (Preumont 1997). The control principle is actually to direct the 

relative speed between the bearing housings to be zero. Such velocity feedback can be 

updated to include artificial stiffness by means of an adjustable proportional gain. The 

control principle is then based on the compensation of the relative displacements 

between the bearing housing. Such PD controller can be further extended to include 

the acceleration gain and feedback delays bringing more possibilities in tuning the 

damper (Fuller 1996). When the roll system actually represents a multi-degree-of-

freedom system, the general approach is called the state variable control as it utilizes 

completely the observed system state. The fact that a piezoactuator is a transducer 

between mechanical and electrical sub-systems makes it possible to feed the 

mechanical vibration energy out from the system to be damped in an external 

electrical circuit by means of resisting elements. The third possibility is to process the 

frequency content of the relative motion and generate a counter movement to 

compensate that motion. Such approaches are, however, sensitive to instabilities as the 

measurement information is recorded under the effect of the controller itself. 

 

Finally, as a fourth approach, an RLC-circuit connected to the electrodes of the piezo-

actuator can be adjusted by a shunt to transform the mechanical motion of the actuator 

to the oscillatory current over the resistance (Preumont 1997, Hagood 1991). The 

solenoid and capacitor in the circuit bring some tuning possibilities to better adapt to 

the frequency band typical for delay-oscillations in nip. 

 

Soft computing and smart methods 

 

This approach is based on the knowledge that delay-resonance states exist when the 

multiple of the roll rotation frequency is matching with the eigenfrequency of nip 

oscillation.  This  rule  actually  generates  a  discrete  spectrum  of  corresponding  delay-

resonance speeds, on which there is a potential risk to fall in the resonance state. This 

knowledge can now be utilized in supervising the system to be run only at accepted 

narrow stable running windows between the successive avoidable unstable resonance 



 14 

speeds. As the spectrum depends on process parameters like line load, the 

eigenfrequency has to be on-line identified to correctly build the rule basis. This 

approach has been successfully implemented to the existing pilot roll press 

(Salmenperä 2013), where no other reasons are setting requirements for the running 

speed. In industrial production lines, however, the rule-based running speed setting 

may lead to conflicts as neighbouring sections in the same machine line can have 

individual resonance frequencies and individual speed constraints. 

 

 

2.2 Piezoelectric actuators in vibration control 

 

2.2.1 Introduction 
 

Piezoelectric actuators are used in particular industrial systems and applications 

representing demanding processes and high technology products. The main 

applications are in three different areas: 

 

Fast control of small motions in high precise manufacturing and injection processes 

Energy harvesting from vibration for power supply of electronic circuits and wireless 

sensors 

Damping of vibrations 

 

 

High precise applications 

 

This application area is important for car industry, as circular cylinder borings of 

engine blocks are replaced by oval-shaped chambers and piston cross-sections. The 

machining of such shapes can be done with machine tools equipped with piezoceramic 

tool movers on the top of the carriage chain. Fast opening of fuel injection valves in 

engines is one of the rare mass-production applications. Another example from high 

precise machining is the compensation motion of the tool to follow the cross-sectional 

whirling motion of long paper machine rolls during turning and grinding. 
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Energy harvesting 

 

The second area is becoming important, when wireless sensing and actuating systems 

are popular in network applications like in environmental monitoring. The energy to 

be caught is in most cases coming from the background noise making it random and 

broadband. A typical mechanism is to hang a concentrated mass on the top of a 

piezoceramic beam-like element, whose other end is fixed to the oscillating base 

structure. The resulting oscillatory motion is deforming the piezoelement generating a 

dynamic voltage over the material. Continuous elements are more common in micro 

scale than stacks, which are more typical structures in macro scale actuators. 

 

Damping of vibrations 

 

Vibration damping by piezoceramic elements is actually the same process as energy 

harvesting by piezoceramic transducers. The only difference is that the scale is larger 

and there is usually no need to store the energy or feed power back to the network. 

While academic research has focused to the vibration damping of continuous 

structures covered by bonded layers of piezoceramic materials (Moheimani 2006, 

Zhang 2004), the technical applications are more oriented to the use of linear actuators 

built of a multilayer stack. Industrial applications of piezoelectric dampers are not 

common, because the costs of control electronics and precise assembly interface are 

relatively high for mass production. Due to the high costs, piezoelectric damping is 

mainly used in high technology products like in wind turbine blades, in composite 

sport  gears,  in  satellites,  in  aircraft  structures,  in  defence  industry  and  in  chatter  

damping in machining processes. One of the most important applications is the 

damping of background noise and transient shocks disturbing the micro-scale 

positioning tasks in semiconductor industry. 
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2.2.2 Vibration damping by piezoelectric actuators 
 

A piezoelectric actuator is an excellent device for vibration control applications 

because of its large force generation, very short response time and easy controllability. 

Piezoelectric actuators in vibration damping applications can be controlled passively, 

semi-actively or actively. Some authors (Ahmadian 2001, Barrett 1995) review some 

control techniques for piezoelectric actuators that have been used in the 1980s and 

1990s. They divided control method into three categories: (1) methods that use 

passive electrical elements to shunt the piezoceramic element, (2) methods that 

employ an active control system to drive the piezoceramic element, and (3) hybrid and 

semi-active methods that combine the shunted and the active control techniques. 

 

Good overview of piezoelectric shunt damping circuits and their modelling is given in 

(Hagood 1991). Different control methods of piezoelectric materials in vibration 

damping applications are presented also (Niederberger 2005), a reference in which 

different passive and semi-active shunt circuits are used for vibration damping and 

noise control applications. 

 

Active vibration control using piezoelectric actuators has been successfully used 

(Barrett 1995, Simões 2007) to damp rotor-dynamic effects acting on the bearing 

housings. 

 

 

2.2.3 Damper interfaces and damping circuits 
 

Piezoelectric damping materials can be continuous material continuums or packed into 

a compact actuator structure. A typical layout in continuous structures is to bond a 

layer of piezoelectric material on upper and lower surfaces of a cantilever beam in 

order to utilize the large strains at the maximum distance from the neutral axis to 

produce enough compression or extension to the outermost piezoceramic layers, when 

the beam is bending during vibration (Clark 1998). Correspondingly this arrangement 

also brings largest bending moment for the layer when stressing it by voltage acting 

over the piezoceramic layer to produce a damping effect resisting the motion. 
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A stack actuator (see Figure 4) is built of a large number of circular thin plates in 

random orientations around the layer normal to produce in the normal direction large 

enough total displacement and force resultant (Fuller 1996). 

 

The damping principle can be passive or active one in both distributed and in stack 

actuator cases. The passive damping is based on external shunt circuits, which are 

connected to the electrodes of the actuating element (Law 1996, Clark 2000). If this 

circuit has a resisting element only, the damping property is distributed to broader 

frequency band. By adding an inductance and a capacitance to the circuit, one can 

make proper tuning by utilizing the resonance state of the RLC-circuit for maximizing 

the damping at the dominating frequency of the mechanical system, for instance by 

tuning to the lowest structural eigenfrequency. If the vibration peak is moving for any 

reason, a synthetic impedance device has to be used to adapt the resonance tuning to 

the changing structural vibration even in multi-modal vibration cases, which is a semi-

active extension of the use of shunt circuits (Adachi 2004, Wang 2002). 

 

In the actively controlled damping approach, a force in opposite phase to the vibration 

is fed into the system. The principle is to damp vibrations in structure by producing 

active counter-force with the piezoelectric actuator. Control of piezoelectric actuator 

is straightforward by direct compensation of the input voltage, which in turn can be 

generated from the vibration data measured from the system. In literature one can find 

simple, robust and effective controllers for active vibration damping applications 

(Fuller 1996, Clark 1998). 
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3. Piezoelectric damping of single degree of freedom system 
 

Case studies with a simple one degree of freedom model were done in order to 

monitor the system responses without and with different vibration damping methods 

by using the piezoelectric actuator. The model consists of a mass connected to a 

spring and a damper. In later cases a piezoelectric actuator was added to the system in 

parallel with a serial connection of an inductance, a resistance and a conductance. 

 

 

3.1 System equations of piezoelectric dampers 

 

3.1.1 State equations of a piezoceramic stack actuator 
 

The core of the piezoactuator is a multilayered stack of a piezoelectric ceramic 

material, which is brittle and can carry only compressive stresses. This is why the core 

is in a compressive pre-stress state inside a metallic cylinder, which correspondingly 

is in a tensional pre-stress state. This arrangement shown in Figure 4 makes it possible 

to use the piezoactuator in the pulling direction also. 

 

 

      
Figure 4. The structure of a stack type piezoactuator. 
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The quasi-static mechanical response of an open circuit piezoactuator is the one of a 

mechanical spring. If such an actuator is pulled by an external force F, it behaves like 

a parallel pair of springs with force-displacement law 

 

xKx)kk(F asp                                                    (1) 

 

where kp is the mechanical stiffness of the piezoceramic core, ks is the stiffness of the 

metallic casing and Ka the combined structural stiffness of the whole actuator. 

 

When the electrodes are connected to an external voltage source up, the core is getting 

a piezoelectric displacement and the actuator force is correspondingly modified to 

form  

 

pap33pa uxKudkxKF                                            (2) 

 

where the second term represents the piezoelectric interaction from the electrical 

system to the mechanical one with the piezoelectric coupling coefficient 33pdk . 

 

By knowing that the piezoactuator has a capacitance property Cp , an external voltage 

up creates a charge  

 

ppp uCq                                                             (3) 

 

Moreover, a mechanical extension is generating an additional charge to the 

piezoelectric core 

 

ppp uCxq                                                        (4) 

 

which is the piezoelectric interaction from the mechanical system to the electrical one 

(Adriaens 2000, Delibas 2005). 
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3.1.2 Active damping by classical control rules 
 

Consider now a system given in Figure 5, which has a mass-spring-damper system 

excited by an external dynamic force fe and actuated by a piezoelectric stack element, 

and which at the other end is fixed to the non-moving reference. 

 

 

 
 

Figure 5. One-degree-of-freedom oscillator connected to a piezoelectric 

stack actuator. 

 

The equation system governing the oscillatory motion of the mass and fluctuation of 

the charge in the piezoelement takes the form 

 

pea u)t(fx)Kk(xcxm                                             (5) 

ppp uCxq                                               (6) 

 

This system model is the basis for developing various active damping approaches. The 

simplest way is to apply one of the known classical control rules. By starting with the 

principle to utilize the velocity term only, the corresponding rule, which is well known 

in the classical control theory, is the D-control (Preumont 1997). It compensates the 

unwanted speed error by the actuator force 

 

)xx(Ku dDp                                                     (7) 

 

where KD is the derivative gain of the controller. 
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As typical for vibration damping purposes, the desired velocity is set to zero, 0xd , 

leading to simple so called “direct velocity feedback” rule 

 

xKu Dp                                                           (8) 

 

The dynamic equation of the oscillator gets now the form 

 

)t(fx)Kk(x)Kc(xm eaD                                      (9) 

 

from which one can see, that the velocity feedback is bringing an additional damping 

to the system, the effect of which can be adjusted by modifying the derivative gain 

factor.  So,  the  response  behaviour  is  exactly  the  same  as  the  one  of  a  passively  

damped oscillator. 

 

By adding to the control rule (7) a position dependent term and requiring also the 

desired oscillation displacement to be zero, the resulting PD control rule reads 

 

xKxKu DPp                                                   (10) 

 

The corresponding dynamic equation of the oscillator is then modified to form 

 

)t(fx)KKk(x)Kc(xm ePaD                              (11) 

 

As compared to the velocity feedback rule, the PD rule is bringing also some 

additional stiffness to the system (Genta 2009), which can be used for two different 

purposes: 
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a) One of the approaches in the classical adaptive control is gain scheduling, 

which allows one to adaptively modify the gains according to the different 

system or process states. 

 

b) In the semi-active damping approach one can oscillate or slide the gains in 

order to modify the damping and the location of the resonance frequency with 

respect to the excitation frequency. 

 

 

3.1.3 The use of piezoceramic stack actuator as a shaker 
 

If the external force is replaced by a time-dependent driving voltage ue, the model 

actually describes the situation, in which the piezoactuator is used for a shaker 

purpose (Figure 6). 

 

 

 
 

Figure 6. One-degree-of-freedom system under piezoceramic voltage driven 

shaking load. 

 

The corresponding dynamic equation takes a simple form 

 

)t(ux)Kk(xcxm ea                                          (12) 

 

This is a practical way to make structural and modal testing in cases, where the system 

parameters of the design are not known. 
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3.1.4 Piezoelectric damping by using RLC shunt circuit 
 

By adding to the previous model a shunt circuit with resistance, inductance and 

capacitance connected in series, a tuned passive damper is available (Law 1996). 

 

 
 

Figure 7. One-degree-of-freedom oscillator connected to a stack actuator and damped 

by an external serial RLC shunt circuit. 

 

The dynamic equation of motion gets now the form 

 

QH)t(fx)Kk(xcxm pea                                      (13) 

 

where the piezoelectro-mechanical force coefficient is given by 

 

pp CH                                                       (14) 

 

 

 
 

Figure 8. RLC shunt circuit connected to the piezoceramic element with 

internal capacitance Cp. 
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By applying the Kirchoff´s loop rule of voltages for a serial connection of a resistance, 

an inductance and a capacitance, the charge in the shunt circuit is governed by 

differential equation 

 

xHQ
C
1QRQL p
ex

                                             (15) 

 

The resonance frequency of this circuit is (Moheimani 2006) 

 

exLC
1                                                        (16) 

 

The tuning rule for most of the cases is to choose the circuit parameters L and Cex so 

that the resonance frequency of the circuit is exactly the same as the lowest 

eigenfrequency of the structure including the structural stiffness of the piezoactuator. 

 

In comparison to the case of classical controllers, where the motion response can be 

solved independently from one differential equation of motion, the shunt circuit case 

requires the simultaneous solution of two differential equations of motion and one 

differential equation for the electric charge. The coupling structure can be seen even 

better, when writing the system equations with respect to the state vector 

 

Q
x

u                                                         (16) 

 

in form 

 

nKuuCuM )t(f e                                             (17) 

 



 25 

where the combined mass-inductance, damping-resistance and stiffness-capacitance 

matrices are 

 

L0
0m

M ,  
R0
0c

C ,  
ex

p

pa

C
1H

HKk
K                         (18) 

 

with the unit loading vector 

 

0
1

n                                                         (19) 

 

 

3.2 Response analysis 
 

3.2.1 Analysis methods 
 

Computer analysis of piezoelectric damping systems can be done in time or in 

frequency domains. Time domain analysis is well argued, if the excitation includes 

process-specific features. If the response information is stored, a spectrum analysis 

can be done also later from the interesting quantities. More informative frequency 

response analysis can be used for evaluation of the resonance risk with respect to 

periodic known excitations, and for stochastic inputs, whose spectrum is known. 

 

Frequency response analysis in state vector space and in case of RLC shunt circuit has 

to be done in complex form, because the first order damping-resistance terms make 

phase shift between the excitation and the response. By writing the excitation in 

complex form 

 
ti

ee eF)t(f                                                      (20) 

 

the complex amplitude response can be obtained 
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nKCMU 12
e iF                                         (21) 

 

from which the magnitudes and phase shifts of the displacement oscillation and charge 

fluctuation can be evaluated. 

 

 

3.2.2 Evaluation of one-degree-of-freedom responses 
 

The effect of the structural stiffness of the stack actuator has been analyzed by 

applying the same harmonic excitation to a case study problem without and with the 

actuator. 

 

The  plots  of  the  amplitude  at  Figure  9  show  clearly,  that  additional  stiffness  of  the  

piezoactuator together with the stiffening effect of the proportional gain is shifting the 

resonance frequency from 25.2 Hz to 51.6 Hz. 
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a)                                                                      b) 

 

Figure 9. Frequency responses of the oscillation amplitude of the one-degree-of-

freedom system in two different cases: a) system without the actuator and b) system 

with the passive actuator. 
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In the second analysis a serial RLC shunt circuit has been added to damp the motion. 

A second peak representing the resonance frequency of the shunt circuit is now 

appearing at higher frequency band in the plot of Figure 10. 
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Figure 10. Frequency response of oscillation amplitude under the effect 

of RLC shunt circuit. 

 

The results of this simple test case show, that the classical controller can be used for 

moving the resonance far enough from the excitation frequency band, but the 

performance of shunt circuit is much better at broad frequency band. 
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4. Piezoelectric damping of rolling contact system 
 

4.1 System description 
 

Expectations to reach higher performance in damping of nip oscillations in paper 

industry have opened a new research line to use piezoelectric stack actuators in the 

vibration control of rolling systems. The existing pilot roll press has been completed 

for that particular research by a pair of piezoceramic stack actuators. A new high 

precision assembly interface allows stiff mounting of the actuators between the 

bearing units of the member rolls. The main parts of the nip loading mechanism of the 

pilot press are shown in Figure 11 and the whole system in Figure 12a. 
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Figure 11. The components and structural parts of the pilot roll press (Kivinen 2001) 

at the former Laboratory of Machine Dynamics at TUT frame (1), loading arm (2), 

lower hard roll (3), upper soft roll (4), support arm (5), loading cylinder (6), 

alternative loading cylinder (7), locking cylinder (8), loading mechanism (9) and 

load cell (10). 
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a)                                                                    b) 

 

Figure 12. Roll loading mechanism at the pilot roll press (a) and the assembly 

interface of the piezoelectric stack actuators (b). The visible part is the telescopic 

casing of the linear coupling. 

 

The installation of the piezoactuators between the bearing housings appears in Figure 

12b. When closing the roll nip, the lower roll is lifted by the horizontal hydraulic 

cylinder, which is turning the loading arm by a specific pushing mechanism producing 

one decade higher nip load than the cylinder itself. To get a correct line load, the nip 

load is sensed by using a load cell installed between the right end of the support arm 

of the upper covered roll and the frame. During the nip closing phase, the stack 

actuators between the roll bearings can slide freely while in the nip closed phase, this 

linear motion is locked by a stiff fluid powered coupling. 

 

 

4.2 Plant model of the roll press system 
 

The dynamic plant model consists of sub-system models for rolls, roll covers, roll 

loading mechanisms, hydraulic actuator circuits and piezoactuators. More detailed 

structural analysis models are based on distributed parameter models including shell 

flattening and beam bending effects, but at system level computations over longer 

process time periods they have to be replaced by simplified mass-spring models. 
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Figure 13. Model of the roll press a) in loading condition and b) in small 

oscillation situation. 

 

Such two-degree-of-freedom model is illustrated in Figure 13 first in loading 

condition (a) and in small amplitude oscillation situation (b). A detailed derivation of 

the dynamic equations of motion of the roll system is given elsewhere (Salmenperä 

2013). Due to the nonlinear character of the nip contact, a complete analysis needs 

simultaneous solution of the static nip deformation equations and the dynamic nip 

oscillation equations. The nonlinear nip force model 

 

caN b                                                    (22) 

 

is based on the elastic foundation model (Johnson 1985, Keskinen 2002) of a roll 

cover made of viscoelastic material following the Kelvin-Voigt material model with 

elastic modulus E and viscous modulus  . 

 

 



 31 

Model parameters 

 

1
h
E

3
4a                                                       (23) 

2
3b                                                                   (24) 

1
h

2c                                                        (25) 
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2

1
1 RR                                                 (26) 

 

depend on the cover thickness h length of the contact line  and on the radii R1, R2 of 

the contacting rolls. Nip compression 

 

zxx 12                                                      (27) 

 

depends on the relative position between the lower x2 and upper x1 rolls and on the 

thickness variation z of  the  paper  web  or  the  roll  cover.  It  has  been  shown  

(Salmenperä 2013) that the dynamic equations of motion governing the small 

amplitude nip oscillation get form 

 

zkzczk)xx(kxkx)kk(xcx)cc(xm nnTnT21n2n1n12n1n111  
  (28) 

zkzczk)xx(kx)kk(xkxcxcxm nnTnT12n2hn1n2n1n22  
       (29) 

 

The nip stiffness and damping 

 

ˆ
d

n
Fbk                                                        (30) 

ˆccn                                                         (31) 
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are functions of static nip compression 

 

1
a
F

ˆ

b1
d

                                                     (32) 

 

where Fd  is the desired nip load and the delay factor of the roll deformation recovery 

depends on the roll revolution time 

 

TE

e                                                        (33) 

 

Subscript ( T ) refers to the value of the quantity at the time point roll revolution time T 

earlier, which is the previous time point when the cover experienced nip compression. 

For instance TtzzT . The spring constant of the hydraulic loading mechanism is 

 

2p

p
2

h xrz
Ar

Bk
ˆ

                                                   (34) 

 

where B is the bulk modulus of oil, r the force magnification factor of the nip loading 

mechanism, Ap the piston area and zp the length of the oil chamber. 

 

A typical nip excitation is a sinusoidal thickness variation of the paper web with 

amplitude Z of form 

 

tsinZz                                                       (35) 

 

If the web has speed 11Rv and wave length  , this gets expression 

 

11R2                                                      (36) 
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The thickness variation has also gradient, which generates a normal velocity 

 

tZz cos                                                     (37) 

 

 

4.3 Damping of nip oscillations using classical controllers 
 

When the piezoactuators are connected between the bearing housings, the 

piezoelectro-mechanical interaction couples the relative roll motion to the charge 

fluctuation in the piezoelement. The reaction force of the actuator, positive in the 

pulling direction, is then 

 

p21pp u)xx(KF                                             (38) 

 

The charge in the piezoelement is contributed also by the relative nip motion 

 

pp21p uCxxq )(                                              (39) 

 

In velocity feedback based control the information is taken from the relative roll speed 

 

21 xxx                                                       (40) 

 

The corresponding D control rule reads  

 

)xx(Ku dDp                                                (41) 

 

A relevant principle when limiting nip oscillations, is to require the desired relative 

speed to vanish, 0xd , yielding control rule 

 

)xx(Ku 12Dp                                                   (42) 
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The actuator force then gets the form 

 

)xx(K)xx(KF 21D21ap                                       (43) 

 

bringing a contribution to the equations of motion 

 

zkzczk)xx(k
x)Kk(x)Kkk(x)Kc(x)Kcc(xm

nnTnT21n

2an1an12Dn1Dn111  

(44) 

zkzczk)xx(k
x)Kkk(x)Kk(x)Kc(x)Kc(xm

nnTnT12n

2ahn1an2Dn1Dn22  

(45) 

 

If a more general PD control is used, the control rule reads 

 

)xx(K)xx(Ku 12D12Pp                                     (46) 

 

and the actuator force then becomes 

 

)xx(K)xx)(KK(F 21D21Pap                             (47) 

 

The equations of motion are then updated 

 

zkzczk)xx(k
x)KKk(x)KKkk(x)Kc(x)Kcc(xm

nnTnT21n

2Pan1Pan12Dn1Dn111

(48) 

zkzczk)xx(k
x)KKkk(x)KKk(x)Kc(x)Kc(xm

nnTnT12n

2Pahn1Pan2Dn1Dn22

(49) 
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By writing this system in vector form 

 

nxkxkkxcxm )()( TnnnTnn zkzkzc                        (50) 

 

the terms generated by the piezoactuator can be seen from the system matrices 
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Like in the case of one-degree-of-freedom oscillator, the structural stiffness of the 

piezoactuator  and  the  control  gains  can  be  used  to  adjust  the  location  of  resonance  

frequencies and the overall damping of the nip oscillation. 

 

 

4.4 Damping of nip oscillations with passive RLC-circuit 
 

This connection brings again coupled differential equations for the mechanical and 

electrical sub-systems. The pulling force of the piezoactuator is now 

 

QH)xx(KF p21ap                                              (55) 

 

The voltage output generated by the extensional motion of the piezoelement is 

 

)xx(Hu 21pp                                                 (56) 
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By removing the terms related to the PD control and updating the equations with shunt 

circuit related terms, the equations of motion get form 

 

zkzczkxxk
QHxKkxKkkxcxccxm

nnTnT21n

p2an1an12n1n111

)(
)()()(

       (57) 

zkzczkxxk
QHxKkkxKkxcxcxm

nnTnT12n

p2ahn1an2n1n22

)(
)()(

          (58) 

 

By adding the voltage output term of the piezoelement, the charge equation reads 

 

0xHxHQ
C
1QRQL 2p1p                                     (59) 

 

For getting better insight to the coupling structure, the equations are written in state 

vector form 

 

NyKyKKyyCyM )zkzkzc( TnnnTnn                      (60) 

 

where the state and the unit load vectors are 
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The system matrices are 
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For tuning the eigenfrequency of the shunt circuit, one has to determine the structural 

eigenfrequencies of the two roll system. In the particular case, when the rolls have an 

equal mass, the non-damped natural frequencies can be computed from the expression 

 

22
2121

2 K4KKKK
M2
1                            (67) 

 

in which the following notations have been used 
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KkK h1                                                       (71) 
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From the two vibration modes, the lower one represents synchronous motion of the 

rolls, while the higher one is related to the non-synchronous roll-against-roll mode. 

This mode is relevant in the nip oscillation case and the RLC circuit should be tuned 

close enough to the corresponding frequency. 
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5. Computer simulation of rolling contact with piezoelectric damping 
 

5.1 Numerical solution of state equations in time and frequency domains 
 

State equations of rolling contact systems with polymer covers are delay differential 

equations. In time domain analysis the computational platform must provide directly, 

or allow the user to program codes, for handling the delayed information. If such 

subroutines or functions are available, the differential equation system can be 

integrated in the time domain like any problem including nonlinearities. 

 

The  frequency  response  analysis  differs  also  from  the  one  of  regular  differential  

systems. By writing the harmonic thickness variation in the complex form 

 
tiZe)t(z                                                       (72) 

 

and by recalling the definition (33) of delay factor , the complex amplitude response 

of the delay systems (50) or (60) can be solved 

 

nkkcmX 1
n

2
nn )(ik)(ciZ                    (73) 

 

in which the delay effect is controlled by the complex expression 

 

er T
T2iT

ee1)(                                              (74) 

 

with the polymer relaxation time Er  and the duration time Te of one excitation 

oscillation. 

 

If the ratio eTT  gets an integer value 

 

enTT                                                          (75) 
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factor (74) becomes real 

 

r

T

e1)(                                                    (76) 

 

and in this particular case, the shorter the rotation time is, the smaller is the effective 

nip stiffness due to the small values of this reduction factor, and in order to avoid 

instabilities the system needs artificial damping and stiffness by means of an 

additional actuator system. 

 

Figures 14a and 14b show the frequency responses of the original system without an 

additional damper. From the plots one can identify the wide resonance peak clusters, 

which are arising from the delay effect in the system. 
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a)                                                                       b) 

 

Figure 14. Frequency response of a) upper and b) lower roll without 

the additional damper. 
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5.2 Response of roll press damped with classical control rules 
 

Frequency and time domain plots of roll motions with D control based active vibration 

damper are presented below in Figures 15 and 16. Results show that the additional 

vibration damping system increases the stiffness of the system and brings damping to 

stabilize it. 
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a)                                                                       b) 

 

Figure 15. Frequency responses of upper (a) and lower roll (b) displacements with 

D control. 
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a)                                                                       b) 

 

Figure 16. Transient responses of a) upper and b) lower roll displacements with 

D control. 
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The control voltages and force produced by the piezoactuator during and after 

transient activation of the damper appear in Figures 17a and 17b. The limit-cycle 

oscillation of the actuator force stays below the maximum capacity the piezoelement 

can produce. 
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a)                                                                       b) 

 

Figure 17. Transient responses of control voltage (a) and actuator force (b) with 

D control. 

 

Frequency response plots of roll press system with active vibration damper by means 

of a classical PD controller are presented below in Figures 18a and 18b.  

 

0 50 100 150
10-10

10-9

10-8

10-7

10-6
Upper roll response

Frequency [Hz]

Am
pl

itu
de

 [m
]

0 50 100 150
10-10

10-9

10-8

10-7

10-6

10-5
Lower roll response

Frequency [Hz]

Am
pl

itu
de

 [m
]

 
a)                                                                       b) 

 

Figure 18. Frequency responses of upper (a) and lower roll (b) displacements with 

PD control. 
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The  stiffness  effect  of  proportional  gain  is  shifting  the  second resonance  to  a  higher  

frequency. The initial out-of-equilibrium transient motion of rolls (Figure 19) is 

stabilized effectively and the small radius of the limit-cycle oscillation after the 

attenuation phase shows excellent damping performance. Similar behaviour can be 

observed in the circuit response keeping the final voltage and actuator force 

fluctuations (Figure 20) in acceptable bounds as well. 
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a)                                                                       b) 

 

Figure 19. Time histories of a) upper and b) lower roll motions with PD control. 
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Figure 20. Transient responses of control voltage (a) and actuator force (b) with 

PD control. 
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5.3 System response using passive RLC-circuit 
 

Frequency  and  time  domain  plots  of  roll  motions  with  passive  shunt  damper  are  

presented below in Figures 21 and 22. The damping circuit components were tuned to 

produce the first natural frequency at 19.33 Hz. At this frequency the damping 

performance is excellent. This was achieved with inductance L = 25.12 H, resistance  

R = 200  and capacitance C = 2.7 F. 
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a)                                                                       b) 

 
Figure 21. Frequency responses of upper (a) and lower roll (b) motions with RLC 

shunt circuit tuned to the first natural frequency. 

 

0 5 10 15
-4

-3

-2

-1

0

1

2

3

4 x 10-3 Displacement of upper roll

Time [s]

D
is

pl
ac

em
en

t [
m

]

0 5 10 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2 x 10-3 Displacement of lower roll

Time [s]

D
is

pl
ac

em
en

t [
m

]

 
a)                                                                       b) 

 
Figure 22. Time histories of a) upper and b) lower roll motions with RLC shunt 

circuit tuned to the first natural frequency. 
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The electric charge in RLC circuit is plotted in Figure 23a. Also the total voltage over 

RLC circuit remains under the maximum applicable voltage of the actuator as shown 

in Figure 23b. 
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a)                                                                       b) 

 

Figure 23. Electric charge in the circuit (a) and voltage over the actuator electrodes 

(b) when tuned to the first natural frequency. 

 

The damping circuit components may also be tuned to the second natural frequency at 

117.8 Hz, at which the unwanted nip vibration in roll-against-roll mode takes place. 

Frequency and time domain plots of roll motions are presented below in Figures 24 

and 25. At this frequency the damping performance is excellent. This was achieved 

with inductance L = 0.27 H, resistance R = 200  and capacitance C = 10.8 F. 
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a)                                                                       b) 

 

Figure 24. Frequency responses of upper (a) and lower roll (b) motions with RLC 

shunt circuit tuned to the second natural frequency. 
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a)                                                                       b) 

 

Figure 25. Time histories of a) upper and b) lower roll motions with RLC shunt 

circuit tuned to the second natural frequency. 

 

The electric charge in RLC circuit is plotted in Figure 26a. Also the total voltage over 

RLC circuit remains under the maximum applicable voltage of the actuator as shown 

in Figure 26b. 
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Figure 26. Electric charge in the circuit (a) and voltage over the actuator electrodes 

(b) when tuned to the second natural frequency. 
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6. Experimental testing of piezoelectric damping system 
 

A realization of the piezoelectric damping system for a rolling contact system has 

been implemented in an existing pilot roll press. This system consists of two similar 

actuators,  one  for  each  end  of  the  roll  stack,  of  two  voltage  sources  with  related  

amplification electronics and a signal generator. The actuators are inside of a linear 

coupling making it possible to activate or deactivate the actuators during nip closing 

or opening operations. A set of separate tests have been carried out to identify the 

characteristic properties of the actuator set-up. This includes the evaluation of the 

force  and  motion  output  of  the  actuators,  modal  analysis  of  the  roll  stack  with  and  

without the actuators and finally the frequency response analysis of the roll stack for 

shaking excitation driven by the piezoactuators. 

 

 

6.1 Characterization of piezoelectric actuator in force and motion control 
 

In order to find out the characteristics of a piezoelectric actuator the free elongation or 

the stroke and the force generation of the actuator may be measured. The 

measurement arrangement is shown in Figure 27a. Two different control signal 

frequencies of 60 Hz and 125 Hz were used. 

 

             
a)                                                                        b) 

 

Figure 27. Measurement set-up to identify actuator motion (a) and 

force (b) characteristics. 
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The displacement results are shown in Figure 28. As mentioned earlier the nominal 

stroke provided by the manufacturer for the piezoelectric actuator used in experiments 

is 60 m. The displacement was obtained by integrating the acceleration signal 

measured with B&K 4375 sensor and B&K 2635 amplifier. The voltage source was 

adjusted so that the piezoactuator maximum nominal voltage of 1000 V is achieved, 

which corresponds to the output monitoring voltage 10 V. Results show that the 

nominal stroke of 60 m is achieved already with approximately 450 V, corresponding 

to the monitoring voltage 4.5 V. Also the hysteresis effect of the piezoelectric actuator 

is clearly visible. 
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                                   a)                                                                    b) 

 

Figure 28. Piezoelectric actuator strokes with 60 Hz and 125 Hz driving frequency. 

 

The force generation of the piezoelectric actuator was measured with control signal 

frequency of 125 Hz for two different amplitudes, 1.2 V and 1.4 V. The measurement 

arrangement is shown in Figure 27b. The actuator force was measured with a pin type 

force sensor, which is based on strain gage information. Sensor was placed in a lug 

attached to the actuator. The actuator was placed inside the casing, in which it will be 

installed into the pilot roll press. The voltage source was adjusted so that the 

maximum control voltage of 1000 V is achieved giving output monitoring voltage of 

10 V. The preload compression of 0.6 kN for the actuator was set to eliminate all gaps 

in test set-up. The measurement results are shown in Figures 29a and 29b. One 

problem related to piezoelectric actuators, which rose up in measurements, is the 
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flexibility of the supporting structure and attachments. As seen from the force – 

voltage curves the major part of the actuator stroke is lost in structural deformation. 

The nominal maximum force provided by the manufacturer for the piezoelectric 

actuator used in experiments is 12 kN whereas the measured force value is limited to 

approximately 0.6 kN. This indicates that the piezoelectric actuator reaches its 

maximum stroke and is not able to generate more force. The flexibility of the support 

structure can also be seen from the nonlinear shapes of the force - voltage hysteresis 

loops. 
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                                   a)                                                                    b) 

 

Figure 29. Piezoelectric actuator force with amplitudes a) 1.2 V (= 857 V) and 

b) 1.4 V (=1000 V). 

 

 

6.2 Modal analysis of the roll press with piezoelectric damper 
 

The influence of the dampers on the stiffness of the supporting structure of the rolls 

was studied by measuring the frequency response (FRF) of the system. The 

measurements were carried out by hammer tests with the piezoactuated dampers 

installed into the pilot roll press. In measurements the piezoelectric actuator stack was 

first free and then pre-loaded by 1 kN compressive force and simultaneously a 400 V 

signal  was  fed  into  the  actuators  to  generate  the  additional  stiffness  of  the  working  

piezoactuator vibration damper. The compressive line load between rolls was set to 15 
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kN/m and rolls were not rotating. Responses were measured from the bearing housings 

and  from  the  middle  of  both  rolls.  The  locations  of  the  excitation  and  the  response  

points are listed in Table 1. 

 

 

Table 1. Measurement points in modal testing. 

 

Point number Point location 
TE = tender end; DE = drive end 

1 TE lower roll casing end, hammer hit excitation 
2 TE lower roll bearing housing 
3 TE upper roll bearing housing 
4 DE lower roll bearing housing 
5 DE upper roll bearing housing 
6 Lower roll centre 
7 Upper roll centre 

 

 

In results the FRF graphs of each response point are shown. The measured parameter 

is mobility (velocity/force) in unit ms-1N-1. The measurement equipment was the LMS 

Scads III with Test.Lab software and transducers were ICP type Kistler 

accelerometers and force transducer. The results without the additional stiffness of the 

actuators are shown in Figures 30a, 31a, 32a, 33a, 34a, 35a and results with the 

additional stiffness of the actuators in Figures 30b, 31b, 32b, 33b, 34b, 35b. Summary 

of the modal frequencies and damping values are tabulated in Table 2. Results show 

that installation of the piezoactuated vibration damper does not have significant 

influence on the modal parameters of the pilot roll press. 
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                                    a)                                     b) 

 

Figure 30. Mobility of point 2 at TE lower roll bearing housing a) without and 

b) with the damper. 

 

 

                                    a)                                       b) 

 

Figure 31. Mobility of point 3 at TE upper roll bearing housing a) without and 

b) with the damper. 
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                                    a)                                      b) 

 

Figure 32. Mobility of point 4 at DE lower roll bearing housing a) without and 

b) with the damper. 

 

 

                                      a)                                       b) 

 

Figure 33. Mobility of point 5 at DE upper roll bearing housing a) without and 

b) with the damper. 
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                                       a)                                       b) 

 

Figure 34. Mobility of point 6 at lower roll centre a) without and b) with the damper. 

 

 

                                       a)                                     b) 

 

Figure 35. Mobility of point 7 at upper roll centre a) without and b) with the damper. 
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Table 2. Modal parameter comparison without and with additional stiffness of 

the damper. 

 

Without damper stiffness With damper stiffness 
Frequency (Hz) Damping (%) Frequency (Hz) Damping (%) 

35.4 1.9 35.9 2.7 
81.1 4.9 81.8 5.0 
95.6 0.9 96.5 0.8 
122.9 3.2 122.4 4.3 
140.2 3.7 145.5 2.9 
163.4 2.3 168.1 2.3 

(Barring frequency is approximately 122 Hz) 
 

 

6.3 Response of roll press to shaking input driven by piezoactuators 
 

After installing the piezoelectric vibration dampers the vibration response of the pilot 

roll press was studied also with peak hold spectrum and water fall spectrum 

measurements. In measurements both piezoelectric actuators were used as shakers and 

they were controlled by a signal generator. Peak hold spectra were measured in band 

width (piezoelectric actuator vibration frequency) of 80 Hz – 300 Hz, with 444 V of 

actuator driving voltage and control signal amplitude of 0.3 V and actuator pre-load of 

1 kN. Rolls rotational frequency was 0.5 Hz. Water fall spectra was measured in band 

width of 100 Hz – 150 Hz, with 500 V of actuator driving voltage and control signal 

amplitude 0.5 V and actuator pre load of 1 kN. Roll rotational frequency was 4 Hz. 

 

Peak hold measurement results are shown in Figure 36. The following resonance 

frequencies can be identified from the measurements: 86 Hz, 100 Hz, 124 Hz, 167 Hz, 

186 Hz 194 Hz, 223 Hz, 274 Hz. 
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                                   c) 

                                     b) 
 

                                     d) 

  

Figure 36. Peak hold displacement spectra of a) TE upper roll, b) TE lower roll, c) 

DE upper roll and d) DE lower roll. 

 

 

Water fall measurement results are shown in Figures 37 and 38. In water fall 

representation the barring frequency and some other resonance frequencies can be 

identified as well. 
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a) 

 

 

 
b)                                                                 

 

 

Figure 37. Waterfall spectra of bearing housing displacements at drive end in 

frequency band 100-150 Hz for a record of 50 s. 
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a) 

 

 

 
b) 

 

 

Figure 38. Waterfall spectra of bearing housing displacements at tender end in 

frequency band 100-150 Hz for a record of 50 s. 
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7. Performance analysis of piezoelectric actuators in damping of nip vibration 
 

A set of particular test cases have been carried out to evaluate the performance of the 

piezoelectric vibration damping circuit. In the first test case the damping circuit is 

open, in which situation the actuator is passively restricting the relative motion 

between the roll bearing housings by the structural stiffness of the piezoactuator itself. 

In the second case the damping circuit is active, bringing the contribution of the 

derivative gain in the D control (direct velocity feedback) scheme. In the third and 

fourth cases the point and cross receptances of the roll ends were evaluated by using 

the piezoactuators simultaneously in shaker and damper modes. 

 

 

7.1 Response to geometric errors in the case of damping circuit open 
 

After mounting the vibration damper between bearing housings the dead load of the 

piezoelectric actuators arising from manufacturing and installation errors of the pilot 

roll press was investigated. The actuator force was measured with load sensors in 

series with actuators. The rotational frequency of rolls was 0.5 Hz in all 

measurements. 

 

 

                                     a)                                      b) 

 

Figure 39. TE actuator force (a) and DE actuator force (b). 
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In Figure 39 the force variation of both ends is shown. The static preload of actuator 

was set to approximately 1.17 kN. The force variation originates mainly from the 

eccentricities of the rolls. Maximum peak-to-peak force in TE damper was 0.4 kN. 

 

 

7.2 Response to varying excitation amplitude in the case of damping circuit 
closed 
 

The actuator force generation and relative motion of bearing housings in both ends 

was studied for different excitation frequencies and constant amplitudes of the 

piezoelectric actuator. In measurements the rotational frequency was set again to 0.5 

Hz, actuator driving voltage to 444 V and control signal amplitude variation in the 

range from 0.3 to 1.0 V while excitation frequency was set to a fixed value of 80 Hz. 

Displacement was measured with LVDT sensor and the actuators were following an 

artificially generated shaking signal in a position control servo loop. 

 

In Figure 40 the force generation of tender end piezoelectric actuator is shown. The 

maximum peak-to-peak force is 1.3 kN. When the force measured without actuator 

control is subtracted, the net force produced by the actuator is about 0.9 kN. The 

maximum peak-to-peak displacement is 0.02 mm. When the compression by preload 

is subtracted, the net displacement generated by the actuator is 0.01 mm (maximum 

stroke of the actuator is 0.06 mm).  In  Figure  40c  is  shown  the  displacement  of  the  

lower TE bearing housing measured with the accelerometer. The maximum amplitude 

(absolute) is 0.0025 mm. 
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Figure 40. a) TE actuator force, b) TE relative displacement between bearing 

housings, c) TE lower bearing housing displacement and d) actuator control voltage 

from amplifier monitoring output. 

 

 

7.3 Response to varying excitation frequency in the case of damping circuit 
closed  
 

In Figure 41 the actuator force generation is shown. In the measurements, the actuator 

driving voltage was 444 V, amplitude of the control signal 0.7 V and the excitation 

frequency of the other actuator was slide in range from 60 Hz to 200 Hz. 
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Figure 41. a) TE actuator force, b) TE relative displacement between bearing 

housings and c) TE lower bearing housing absolute displacement. 

 

The results show that the excitation frequency does not have large influence on the 

actuator force and relative displacement of the bearing housings. 

 

 

7.4 Response of tender end to the excitation input at the drive end 
 

In this test the DE piezoelectric actuator was employed as a shaker with frequency of 

125 Hz and amplitude of the control signal 0.8 V, representing rather strong excitation. 
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damper. The relative acceleration without the damper is then compared in Figure 43 to 

the corresponding response with the damper. 

 

 
Figure 42. The TE lower and upper acceleration signals without the damper. 

 

 

                                      a)                                       b) 

 
Figure 43. Relative acceleration at TE a) without the damper and b) with the damper. 

 

 

The spectra of the same signals are shown in Figure 44. In the case of “damper turned 

on” the derivative gain KD was set to a value 0.03 which is quite near the instability 

border of the damper. 
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                                    a)                                                                   b) 
 

Figure 44. Spectra of the relative acceleration signal a) without damper and 

b) with damper. 

 

From the results one can observe that the vibration at the excited delay-resonance 

frequency 122 Hz of the pilot roll press with the damper circuit closed, is clearly lower 

than in the case in which the damper circuit is open. The output of these tests indicates 

that  the  damper  circuit  is  able  to  damp  the  relative  motion  response  of  the  rolls  by  

approximately 40 %, which is a very promising result. 
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8. Conclusions 
 

The problem to damp normal oscillations in rolling contact systems has earned 

considerable interest in the scientific community close to the pulp and paper industry. 

Non-classical delay-resonances appearing in new polymer-covered rolls have cut 

production rates in some cases so remarkable that a complete new research line has 

been opened to find economical solutions to overcome the difficult situation. This is 

why different approaches and solution strategies have been presented and realized 

during the last two decades. Although passive, semi-active and smart approaches have 

been successfully implemented to laboratory and mill scales, there is still one branch 

aside the mainstream of the research to be declared. This is the use of piezoelectric 

actuators in an actively controlled damping scheme. This area brings many 

possibilities and the main purpose of this thesis has been to find out, which methods 

are the feasible ones and how they should be implemented. 

 

 

8.1 Analysis of results 
 

A comprehensive literature review has been done on vibration and damping of rolling 

contact systems and on the use of piezoelectric actuators in various vibration damping 

and high precise motion control applications. Based on that work, the most promising 

methods found are the following ones: 

 

(1) Use of the piezoelectric actuators in the position control feedback loop to 

damp the nip oscillations in the classical D or PD control schemes. 

(2) Use of the piezoelectric actuators with an RLC shunt circuit to damp the nip 

oscillations based on the resonance tuning rules. 

 

A good reason to evaluate these alternative methods has been the similar basis to build 

the hardware by mechanically connecting the piezoactuators between the bearing units 

of the two member rolls in the roll stack. In case the rest part of the damping circuit is 

not working properly, another circuit arrangement can be realized with reasonable 

costs. The two alternative methods have been in first step evaluated by means of 
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computer simulations and based on the results the first damping circuit has been also 

built  and  implemented  under  the  D  control  scheme,  which  is  also  called  the  direct  

velocity feedback approach. 

 

The most important findings of the research work are the following ones: 

 

(1) One not surprising finding in the use of piezoactuators between two bodies in 

relative  vibratory  motion  is  the  additional  structural  stiffness  property  of  the  

ceramic core and the surrounding metallic casing. This brings some stiffening 

effect to the relative motion shifting the natural frequencies of the nip 

oscillation mode higher as well. Such stiffening is normally useful but leads in 

a rolling contact system to a secondary problem. The geometric imperfections, 

for instance shape eccentricity or shaft misalignment, are forcing the distance 

between the rotation centres of the roll  bearings to fluctuate,  which in turn is  

bringing a quasistatic component motion and corresponding oscillatory force 

to the piezoactuator when it tries to damp it. There are practically two 

possibilities to overcome this problem, which can lead to fatigue damage of 

the actuator. The first is to make an elastic enough fixing interface for the 

actuator. This additional motion, however, can use the very limited stroke 

capacity of the actuator leading to inefficient damping result. Another way is 

to identify the geometric motion and to compensate this slow error motion by 

means of a position tracking algorithm superimposed to the primary task to 

damp the nip oscillations at one decade higher frequency band. 

(2) The second finding in the first method alternative is, that not only the 

structural stiffness of the piezoactuator, but also the control gains are 

contributing to the cross-coupling stiffness and damping terms in the dynamic 

equations of motion of the member rolls. This has brought an excellent way to 

shift the nip oscillation frequency and to adjust the amount of external 

damping produced by the piezoelectric actuator circuit. Such adaptive tunings 

can be done even during the process run making it possible to slowly oscillate 

or in other way to modify the delay-resonance speeds for finding stable 

running windows. 
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(3) In the second method to use the RLC shunt circuit, the main finding was that a 

fixed tuning of the shunt circuit to the natural frequency of the nip system 

works in principle but the wandering of the frequency under changing process 

conditions like cover temperature, line load, cover material aging etc. requires 

an on-line identification system for resonance tracking and based on that also 

an on-line tuning procedure. 

 

One of the fundamental research questions is the required size of the piezoactuator to 

produce a sufficient damping result. A common misunderstanding in the vibration 

damping of heavy objects is the statement to use large powerful actuators. Many 

examples, for instance the classical dynamic mass damper, show that the counter-

effect, when applied at the right phase and early enough, can effectively, even with 

small actuators, eliminate the initialization of self-excited vibrations, in which 

category the delay-vibrations also belong. During this thesis work, a series of separate 

tests has been done, the output of which is that a compact size actuator can effectively 

work both in shaker and damper services on either ends of the roll stack. If the fixing 

interface of the stack actuator is stiff enough, the stroke capacity covers easily 

amplitudes typical for delay driven resonances. 

 

By referring to the research questions stated in chapter 1.2, the main output of this 

research work can be summarized in the following concluding statements: 

 

(1) The most effective solution for damping purposes is to install the piezoelectric 

actuators between the bearing housings at both ends of the member rolls to 

limit the relative normal motion between the rolls. Installation of the actuators 

parallel with the hydraulic loading actuators between the frame and the lower 

roll or parallel with the locking cylinder between the frame and the upper roll 

may lead to an unwanted situation, where only one of the rolls has a stabilized 

response. The damping of the relative motion requires a coupling mechanism, 

which allows a free linear motion of the rolls when closing or opening the nip 

contact while keeping the motion under the piezoelectric control in the locked 

mode. This hardware interface makes it possible to utilize the structural 

stiffness  of  the  piezoactuator  in  a  passive  way.  By  connecting  the  
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piezoactuator to an amplifier circuit, a family of different classical controllers, 

state controllers, counter-force generators or shunt circuits can be flexibly 

implemented in order to compensate the relative motion between the rolls. 

(2) Whirling motions related to imbalance forces and shaft misalignments, or 

lower harmonics related to the shape imperfections of the member rolls, lead 

to low frequency oscillatory motion. If the mounting interface is stiff, this 

motion is heavily loading the piezoactuators. If the interface is too soft, the 

overloading  of  the  actuators  can  be  avoided,  but  the  price  is  paid  in  the  

performance of the actuators in the damping of the nip oscillations at the 

frequency band related to the delay-resonances. These difficulties can be 

avoided by learning-based compensation of the static error sources. 

(3) From the family of classical controllers, direct velocity feedback (D control) is 

the easiest controller to be implemented. If the proportional part is added (PD 

control), a static compensation block is needed to manage the static error 

motions. When using external RLC shunt circuit, the tuning of the circuit 

parameters has to be done on-line to include the dependence of the delay-

frequency on the cover temperature and on the line-load level. 

 

 

8.2 Discussion 

 

Industrial actors have a great interest to invest in a stable enough system, which can be 

driven without disturbances at broad running speed area. The viscoelastic property of 

roll covers, however, is still present in many process sections and brings always a risk 

to high speed paper production lines. This risk can be met by two leading strategies. 

The first is to make robust and conservative design by means of over-dimensioning 

the rolls and by using stiff enough primary loading actuator circuits in order to shift 

the dominating nip oscillation frequency to higher frequency band. If such high cost 

investment is not possible, piezoelectric damping circuit is always available even as 

an additional hardware to fix a serious vibration problem in an existing production 

unit. The performance at high frequency band and a flexible connection to different 

controllers and electrical damping circuits makes it a competitive alternative among 
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other damping solutions although the required hardware implementation brings 

considerable infrastructure costs. 

 

 
8.3 Further developments 

 

The experimental part of this research work, which includes tedious preparations and 

modifications of the set-ups, has been done in a limited time-span. This situation 

forced the focus to the most promising damping strategies based on the classical 

controllers.  For  instance,  the  realization  of  the  RLC  circuit  and  the  active  vibration  

damping by generating counter-force effects, have been left for future work. The 

compensation of the static error motion by learning approach has also been left for 

further studies.  
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