

Tampereen teknillinen yliopisto. Julkaisu 1102
Tampere University of Technology. Publication 1102

Anna Ruokonen

Scenario-Driven Development of Service-Oriented
Systems

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB222,
at Tampere University of Technology, on the 14th of December 2012, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2012

ISBN 978-952-15-2975-7 (printed)
ISBN 978-952-15-2979-5 (PDF)
ISSN 1459-2045

Abstract

Service-oriented architecture (SOA) is a software architectural style, which
relies on reusable and composable services. In addition to software-orientation,
SOA includes a business viewpoint, so that business requirements can be
captured as high level business processes. Business processes can be imple-
mented, for example, as an orchestration of different service components.
Individual services participate in the overall execution of business processes
by providing elementary service activities. In addition to flexibility and ser-
vices reuse, bridging of business and information technology (IT) views is
one of the claimed benefits of SOA.

Development of service-based systems includes a range of different ac-
tivities. However, development of service-based systems is still lacking sys-
tematic and tool vendor independent practices and development methods.
In this thesis, a development process for a service provider, called Service
Product Development Process (SPDP), is presented. It consists of several
development phases and related activities. The input for SPDP includes
high level business process requirements. The result of the process is a new
service-based product to be added to the service provider’s product portfolio.

The purpose of this thesis is to study the applicability and the benefits
of applying a scenario-driven approach, a type of requirement-driven devel-
opment, for the development of service-based systems. Scenarios are used to
capture functional system requirements as simple message sequences given
as UML sequence diagrams. The scenario-driven approach is applied to dif-
ferent phases of SPDP including business process development, service spec-
ification, and service realization. The proposed scenario-driven approach is
not limited to the SPDP context. It is rather a general purpose framework
for development of service-based systems or products, called SceDA.

SceDA includes three independent scenario-based methods, which are tar-
geted to support different development phases of service-based systems. One
of the three methods is used for scenario-based business process development.
The other two methods are targeted at service development, in particular,
service specification and service realization. Service specification is supported

iii

by a method for automatically mining and re-documenting the development
rules as scenarios. To support service realization, a method for generating
source code for individual service and client applications has been developed.
Each method includes a description of the developed tool support and a case
study.

Case studies are used for constructing and evaluating the three scenario-
based methods developed. Each method is applied as a case study in the
context of development phases of SPDP. In the first case study, scenario-
driven business process development method is applied. Two other case
studies concern constructing and using scenarios for application development.
One case study utilizes the scenario mining method. In the other case study,
the code generation method is applied.

Keywords: SOA, Web service, business process, UML, model-driven
development, system requirements, development process for service-oriented
systems, scenario-based development, scenario synthesis, scenario mining

iv

Preface

First of all, I want to thank my supervisor Professor Tarja Systä for her sup-
port, guidance, and ideas. Special thanks to Professor Kai Koskimes and Jo-
hannes Koskinen for reading and commenting the thesis manuscript. I would
like to thank my colleagues and co-authors: Juanjuan Jiang, Johannes Kosk-
inen, Mika Siikarla, Imed Hammouda, Timo Kokko, Lasse Pajunen, Vilho
Räisänen, Mikko Hartikainen. In addition, I want to thank Alan Thomson
for proofreading the thesis. Thank you for the pre-examiners, Dr. Scott
Tilley and Dr. Juha Mykkänen, for reviewing the manuscript.

This work has been carried out in two research projects, EEWES (An
Engineering Environment for Web Services) during 2004-2006 and MoDES
(Tool Support for Model-Driven Engineering of Service Compositions) during
2007-2010. The projects have been funded by the Finnish Funding Agency for
Technology and Innovation (TEKES), Nokia Research Center, Nokia Siemens
Networks, Plenware, and Solita. In addition, this work has been funded by
Graduate School on Software Systems and Engineering (SoSE), The Nokia
Foundation, Ulla Tuomisen säätiö, and Finnish Foundation for Technology
Promotion.

Mika and Jomppa, thanks for being such good company when sharing the
room and plants for several years.

I want to thank all my friends. Special thanks to my cycling and running
mates, outdoors and indoors. Thank you for making all the social events to
promote health and fitness:) Thanks to my traveling mate Tanja for all the
many adventures. My MTB mechanics team, T&H, thank you for assembling
so many light-weight bike parts, building the wheels and so on. You are great!

I want to thank my son Aatos, Suvi, Kaitsu, and my parents for all the
support during these years. Special thanks to my mother for taking care of
Aatos while I’ve been traveling.

v

vi

Contents

Abstract iii

Preface v

Contents vii

List of Included Publications xiii

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research approach . 5

1.2.1 Research questions . 5
1.2.2 Research method . 6

1.3 Contributions . 9
1.4 Outline of the thesis . 10

2 Background 11
2.1 Requirements engineering . 11
2.2 SOA and service-oriented development 12
2.3 Web services and WS-BPEL 14
2.4 Model-driven engineering . 15
2.5 UML . 16

2.5.1 UML activity diagrams 16
2.5.2 UML sequence diagrams 17
2.5.3 UML profiles . 18

2.6 Scenario synthesis . 19
2.6.1 Scenario synthesis problem 20
2.6.2 Common issues . 21

2.7 Tools . 22

vii

2.7.1 Inari . 22
2.7.2 MAS . 23

II SOA and business process development 25

3 Development process for a service provider 27
3.1 SPDP overview . 27
3.2 Product specification . 28
3.3 Service identification . 29
3.4 New services specification . 29
3.5 Service realization . 29
3.6 Product realization . 30
3.7 Summary . 30

4 Scenario-based business process development 31
4.1 Method overview . 31
4.2 Scenario-based modeling . 32
4.3 Scenario synthesis and transformation into a process skeleton . 34
4.4 Process model refinement . 36
4.5 Generation of WS-BPEL descriptions 37

4.5.1 Process profile . 38
4.5.2 WSDL profile . 38
4.5.3 Workflow profile . 38
4.5.4 Example: Generation of a WS-BPEL description for

Loan Approval process 40
4.6 Implementation . 42

4.6.1 Sketch . 43
4.6.2 BPELGen . 45

4.7 Discussion . 47

5 Business process development - A case study 49
5.1 Case study introduction . 49

5.1.1 Problem statement and context 49
5.1.2 Case study design . 50

5.2 Business process development for Speech Guidance System . . 51
5.2.1 Gathering system requirements 51
5.2.2 Creation of initial business process model 53

5.3 Services identification for Speech Guidance System 55
5.4 Case study results and conclusions 58

5.4.1 Analysis . 58

viii

5.4.2 Conclusions . 58

III Service development 61

6 Scenario mining for service specification and re-documentation 63
6.1 Introduction . 63
6.2 Method overview . 64
6.3 Tracing and filtering the application traces 65
6.4 Merging the filtered traces into a state machine 67
6.5 Transforming the state machine into scenarios 68
6.6 Summary . 69
6.7 Limitations . 70

7 Scenario-based service realization 73
7.1 Introduction . 73
7.2 Method overview . 74
7.3 Inari pattern generation . 74
7.4 Code generation . 77
7.5 Discussion . 78

8 Scenario-based service development - Case studies 79
8.1 Mining design rules for JAX-WS API 79

8.1.1 Case study introduction 79
8.1.2 Tracing and filtering 80
8.1.3 Merging and constructing scenarios 81
8.1.4 Case study results and conclusions 83

8.2 Code generation for JAX-WS API based applications 85
8.2.1 Case study introduction 85
8.2.2 Constructing development scenarios 86
8.2.3 Pattern-based code generation 86
8.2.4 Case study results and conclusions 89

IV Related work and conclusions 91

9 Related research 93
9.1 Background of the scenario-driven development 93

9.1.1 Scenario synthesis . 93
9.1.2 Scenario-based approaches for constructing service com-

positions . 94
9.2 Business process development 94

ix

9.2.1 Process modeling using UML state and activity models 94
9.2.2 Process and decision mining 95
9.2.3 WS-BPEL generation from graph-based models 96

9.3 Service-oriented software development 96

10 Summary of the included publications 99

11 Conclusions 101
11.1 Thesis summary . 101
11.2 Research questions revisited 102
11.3 Future work . 104

Bibliography 105

x

List of Figures

1.1 The research approach . 8

2.1 A use case and a scenario . 12
2.2 SOA architectural layers [4] 14
2.3 UML Activity diagram . 17
2.4 A combined fragment . 18
2.5 A UML profile and a model of client-service architecture . . . 19
2.6 Transforming a scenario into a state machine 20
2.7 State machine synthesis . 22
2.8 An Inari pattern and bindings 23

3.1 The phases of the service-based product development process . 28

4.1 Model transformation steps of the scenario-based process de-
velopment . 33

4.2 Loan Approval scenarios . 34
4.3 A synthesized state machine 35
4.4 A WS-BPEL flavored activity model 37
4.5 Loan Approval process model 37
4.6 Process definition metamodel 38
4.7 WSDL definition metamodel 39
4.8 Workflow metamodel . 39
4.9 Process definitions for Loan Approval process 41
4.10 Generated WS-BPEL code . 42
4.11 Model-based business process development 46

5.1 Systems involved in Speech Guidance System 50
5.2 Print a container label (uc019) as a scenario 53
5.3 Sorting process state machine 54
5.4 Sorting process process model 55

6.1 Overview of the scenario mining method 64
6.2 Interacting entities . 65

xi

6.3 eService traces . 66
6.4 Filtered eService traces . 67
6.5 Merged eService traces . 68
6.6 Transforming into eService scenario 70

7.1 Overview of the code generation method 75
7.2 Translating a scenario into pattern roles 76
7.3 Applying eService pattern for code generation 78

8.1 A filtered trace . 81
8.2 State Machine for the DII Clients 82
8.3 A DII client development scenario 83
8.4 A client development scenario 87
8.5 A ClientApplication pattern 88

11.1 SceDA . 102

xii

List of Included Publications

[I] A. Ruokonen, V. Räisänen, M. Siikarla, K. Koskimies and T. Systä Variation Needs
in Service-Based Systems, The 6th IEEE European Conference on Web Services.
In The 6th IEEE European Conference on Web Services (ECOWS 2008), pp. 115
- 124, Dublin, Ireland, 2008.

[II] A. Ruokonen, T. Kokko, and T. Systä, Scenario-Driven Approach for Business
Process Development. International Journal of Business Process Integration and
Management (IJBPIM), vol. 6(2012) No 1, 20 pp.

[III] L. Pajunen, and A. Ruokonen, Modeling and Generating Mobile Business Processes.
In IEEE 2007 International Conference on Web Services (ICWS 2007), pp. 920-
927, Salt Lake City, Utah, USA, 2007.

[IV] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systä, Constructing Usage Scenarios
for API Redocumentation. In The 15th IEEE International Conference on Program
Comprehension (ICPC 2007), pp. 259 - 264, Banff, Alberta,Canada, 2007.

[V] J. Koskinen, A. Ruokonen, and T. Systä, A Pattern-Based Approach to Generate
Code from API Usage Scenarios. In Nordic Journal of Computing (NJC’06), vol.
13(2006), pp. 162- 179.

The permissions of the copyright holders of the original publications to reprint
them in this thesis are hereby acknowledged.

xiii

xiv

Part I

Introduction

1

Chapter 1

Introduction

In this chapter, the context and motivation for this study is explained. In
addition, research questions and research methods are presented. A summary
and an outline of the thesis are also presented.

1.1 Motivation

Service-Oriented Architecture (SOA) defines a software architectural style,
which is comprised of a set of services [43]. A service is a software component
providing a service interface for communication with other services. Further-
more, SOA is business-oriented, meaning that services are capable of sup-
porting execution of business activities. By executing such business activities
services contribute to so called business processes. SOA and service-based
systems have been suggested as a means of efficiently reusing and sharing
distributed capabilities within or between different organizations [42]. It is
also claimed that services, which can be composed into high level services and
business processes, are able to bridge the gap between business and IT [8].

The development of a service-based system can be started by defining
high level services and business processes, in a top-down approach, or from
the existing code base, called a bottom-up approach. Ideally, in a top-down
approach the required service and business processes are defined from the
business requirements without considering the existing code base. If possible,
existing services are reused in the business processes otherwise new services
need to be implemented. In a bottom-up approach, services are formed by
analyzing the existing code base. Service realization often includes use of
some wrapping techniques to create proper service interfaces. Practical cases
have shown that for a high-quality SOA project, a combination of the two
approaches is often the most successful [4].

3

However, SOA is still lacking systematic and tool vendor independent
development methods. In addition, different stakeholders even within the
same company, for example software architects and business analysts, might
have a different outlook on SOA [35]. In SOA, business process activities
are mapped with individual services, either to existing ones or to new ones.
That makes services identification an essential development activity. From a
software engineering point of view, that often includes reusing some existing
legacy code. From the business point of view, services identification should
be driven by long-term business needs instead of the existing code base.
Thus, G. Cotticchia proposes that a collaborative and iterative top-down
development method should be used [14].

In practice, the functional business requirements are often given as high
level use cases. Use cases can be expressed as scenarios consisting of a se-
quence of actions given as graphical and/or textual descriptions. One reason
for this is the intuitiveness of scenarios; they are easy to understand and con-
struct even for not-IT oriented people. Use of simple example-like scenarios
does not require use of control structures and state-oriented modeling. As
drawback, distinct scenarios do not capture the overall behavior of the system
under development. Usually, the process modeling is assumed to be done us-
ing some workflow or business process modeling language, such as WS-BPEL.
Thus, the functional requirements need to be rewritten in a form of business
process notation. To achieve an executable business process description, how-
ever, requires technical skills. In general, modeling of the business processes
is seen as one of the main challenges in adopting SOA [35]. In this thesis,
the aim is to provide support for automating creation of an initial business
process model from functional system requirements. The proposed solution
includes development of a scenario-based method and tool support.

At the implementation-level, service development often includes using
some existing APIs or software libraries. Exploiting existing software requires
knowledge of its correct utilization. In addition to textual descriptions, this
knowledge can be documented, for example, as typical usage and code exam-
ples in a developer guide or tutorial. In a similar fashion, rules for application
development, in general, can be given. In the context of this study, scenarios
are proposed as a means of capturing such development rules.

A reason for using scenarios for presenting system requirements and de-
velopment rules is that they are seen as intuitive and easy to use, especially
for people who are not IT-oriented. In most of the cases, however, construc-
tion and exploitation of the scenarios still remains as a manual task. In
this thesis, a systematic mechanism to construct and apply such scenarios
in development of service-based systems, including development of business
processes and individual services, is presented.

4

1.2 Research approach

In this section, the research approach, including the research questions and
methods, is presented.

1.2.1 Research questions

The main motivation for the study was to develop a method for sketching
and applying functional system requirements in the context of service-based
systems. The purpose of this thesis is to study how the scenario-driven ap-
proach can be applied to development of service-based systems. The aim is
to develop practical methods and tools to support the development process.
The developed methods include requirements engineering, model-driven en-
gineering, re-documentation, and code generation. The study includes use of
reverse-engineering and scenario synthesis techniques. However, exhaustive
reverse-engineering techniques and rigorous SOA challenges are not in the
focus of this thesis. Table 1.1, summarizes different themes discussed in the
thesis. The column headings refer to included publications.

Theme [I] [II] [III] [IV] [V]
Requirements-driven develop-
ment

x x

Model-driven engineering x x x x
Development process for service-
based systems

x

Scenario mining x
Scenario synthesis x x
Process/service development x x x x x
Re-documentation x
Tool support x x x x

Table 1.1: Themes of scenario-driven development acknowledged in the pub-
lications

The research questions studied are as follows:

RQ1 What activities are involved in a typical development process
for service-based systems, and what kind of methods and tool
support can be built to support the development activities?
(Publications [I, II, III, IV,V])

RQ2 How can the scenario-driven approach be applied to business
process development? (Publications [II, III])

5

RQ3 How can the scenario-driven approach be applied to services
specification and re-documentation? (Publication [IV])

RQ4 How can the scenario-driven approach be applied to realization
of individual services, i.e. service implementation? (Publica-
tion [V])

The research questions RQ1-RQ4 have been studied by applying a con-
structive research approach. The research method is presented in the next
section.

1.2.2 Research method

Constructive research aims at producing novel solutions to relevant and prac-
tical problems [28]. In this thesis, constructive research methods are applied
by constructing development methods and tool support as well as by con-
ducting case studies.

Constructive research starts from identifying the context and problems
to be studied [28]. Motivation for this thesis includes providing an intuitive
starting point for development of services systems. According to our experi-
ence and current practice, people tend to draw scenarios of system behavior
in order to understand, re-document or document complicated systems. Sce-
narios are structured and still understandable mechanisms for capturing re-
quirements. The needs originate partly from our experiences and partly from
our industrial partners’ and their end-users’ interests. The end-users, in par-
ticular, would benefit from easy sketching and composing of their business
processes. Moreover, scenario-based modeling could employ a light-weight
modeling approach for mobile users in the future. To emphasize, this is not
the current situation, but one of the motivating factors for this study.

A case study is an empirical method aimed at studying contemporary
phenomena in their natural context [77]. The primary objective of case
study research methodology is exploratory, i.e., finding out what is happen-
ing, seeking new insights and generating new ideas and hypotheses for new
research [55]. Research on software engineering is often aimed at investigat-
ing how software development is conducted by different stakeholders under
different conditions. Thus, the research questions involved are often suitable
for case study research. Conducting a case study should include the follow-
ing phases (1) Case study design and planning, (2) Collecting data, (3) Data
analysis, and (4) Reporting. In [55], Runeson et al. propose a structure for
case study reporting. In this study, the reports have the following structure
(modified from [55]).

6

• Case study introduction

– Problem statement and context

– Case study design

• Execution

• Case study results and conclusions

– Analysis

– Conclusions

The structure of the case study report is divided into three parts. The first
part includes the description of the target system, the problem statement,
and the case study design. The design includes the research questions and
describes the steps required to conduct the case study, including analysis of
the results. The case study design is presented independently of the target
system to enable repetition in a different context. In the second part, a
description of the actual case study execution is presented. The third part
includes analysis and interpretation of the results. In addition, a summary
of the case study conclusions is presented.

The overall research approach is presented in Figure 1.1. As shown in
the figure, the context of the research is development of service-based sys-
tems. The iterative research approach starts with identifying the different
development activities and related challenges. The next two steps include a
constructive study of how to apply the scenario-driven approach to the par-
ticular development phase. The study includes an initial hypothesis, which
is refined by conducting the case study. As a result, a description of the
applied scenario-based method is given. From this research process, three
methods have been developed. In addition, the development phases are iden-
tified and related activities are documented as a development process for the
service-based systems called SPDP. The complete outcome of the study is
the scenario-driven approach, SceDA, presented on the right of Figure 1.1.

RQ1 is addressed during the overall research process (Figure 1.1). RQ2,
RQ3, and RQ4 are studied by constructing scenario-based methods and ap-
plying case studies. In the context of each case study, the related research
question is refined into more specific sub-questions. In the following, the
methods developed and the case studies conducted are presented.

M1,CS1 Scenario-based method for business process development:
A case study for an industrial logistics provider on apply-
ing the scenario-based method for business process devel-
opment has been conducted. (RQ2)

7

Context: Development
of service-based

systems

Challenge:
Development activity

Solution: Applying the
scenario-driven

approach

Application: Case
study

Development
process

Method 3.

Outcome:
SceDA

Method 1.

Method 2.

Figure 1.1: The research approach

M2,CS2 Scenario mining method for service specification and re-
documentation: A case study on mining scenarios from
application traces is conducted. The case study includes
construction of development rules for application develop-
ment. (RQ3)

M3,CS3 Scenario-based method for service realization: A case study
using scenarios for generating application code is carried
out. (RQ4)

1.3 Contributions

This thesis consists of five publications and an introductory summary of
the publications. As a result of following the constructive research method,
answers to the research questions presented in Section 1.2 are given.

The study includes identification of typical development phases of service-
based systems. The outcome is documented as a development process called
SPDP. Three scenario-based methods, which can be applied in different de-
velopment phases of the service-based systems, have been developed. The
development process and the three methods constitute the scenario-driven
approach for development of service-based systems, called SceDA.

8

This thesis includes the following: (1) The scenario-based method for
business process development, (2) The scenario mining method for service
specification and re-documentation, (3) The scenario-based method for ser-
vice realization, (4) identification of the different development phases of
service-based systems, (5) examination of three case studies, (6) develop-
ment of tool support.

In addition, the scenario-based methods developed contribute to the de-
velopment process of services systems by promoting propagation of the re-
quirements and providing systematic methods for business process and ser-
vice development.

As a result of the study, a thesis statement can be formulated as follows:
Scenario-based methods can be applied in different development phases of
service-based systems, including business process and service development.
By providing a systematic approach the scenario-driven development pro-
motes requirement propagation and better integration of different phases of
the development process. In addition, scenario-based methods can be used to
improve system maintainability through a better understanding of the system
behavior and usage.

Besides the included publications, the author has co-authored the follow-
ing supporting publications:

• in [23], Hammouda et al. propose an approach and tool support to
apply a generative modeling mechanism. The approach is based on
capturing design rules as reusable patterns using the INARI tool,

• in [56], Ruokonen et al. present an approach and tool support for ensur-
ing consistency in model-driven development by enforcing requirements
propagation,

• in [29], Jiang et al. study variability needs and management in service-
oriented systems. The study provides pattern-based support for manag-
ing variability of service interfaces and specializing service frameworks,

• in [57], Ruokonen et al. study model-driven development of mobile
business processes. In the paper, requirements for adaptable and user-
centric mobile business processes have been studied.

1.4 Outline of the thesis

This thesis is divided into four parts. In the following section, a short sum-
mary of each of the parts is presented.

9

Part I is called Introduction. In Chapter 2 essential background technolo-
gies and tools are presented.

Part II, SOA and business process development, is covered in Chapters
3-5. In Chapter 3, a development process for a service provider is presented.
In Chapter 4, a scenario-based method for business process development is
defined. In Chapter 5, the proposed method is applied as an industrial case
study to support migration into a business process based system implemen-
tation.

Part III, Service development, is covered in Chapters 6-8. In Chapter 6,
a scenario mining method for services specification and re-documentation is
defined. In Chapter 7, a method and tool support for scenario-based service
realization is presented. In Chapter 8, the presented methods are applied to
two case studies. The case studies include mining of API rules as scenarios
and applying the constructed scenarios for generation of source code.

Part IV, Related work and conclusions, includes Chapters 9-11. In Chap-
ter 9, related research is discussed. In Chapter 10, a summary of the included
publications, including the authors contributions, is given. Finally, Chapter
11 concludes the study and provides ideas for future research.

10

Chapter 2

Background

This chapter include a short introduction to Service-Oriented Architecture
(SOA). In addition, established software development methods, which are
utilized in the thesis and which can be considered as originators for the
scenario-driven approach, are presented. Related background technologies,
the relevant parts of UML and scenario synthesis, are also presented, as well
as existing tools.

2.1 Requirements engineering

A software system is built for a particular purpose and specific needs. Still,
software systems have traditionally suffered from a mismatch between the
system and its operating environment needs [12]. For example, from busi-
ness point of view a service-oriented system might be understood in terms
of services, business tasks, and business processes, whereas from an IT point
of view the system is seen as a collection of programming concepts such
as software components and interfaces. The development method has been
traditionally driven by the programming paradigm rather than the environ-
mental requirements. This mismatch is one of the reasons which cause quality
problems in software systems. As a solution, requirements-driven develop-
ment has been proposed as a means to reduce the gap between the system
requirements and the system being developed [12].

System requirements should be presented in a structured way but should
still be understandable by the system users. For requirements modeling, use
cases are often employed. Use cases are described in terms of actors and the
system activities. An actor is an outside entity that interacts directly with
the system. Typically each use case focuses on some particular purpose that

11

the actor wants to achieve. The system is considered as a black box and its
internal behavior is ignored. [54]

Use cases can be refined with scenarios to specify the actual execution
sequences. For example, Figure 2.1 presents a simple use case and a scenario.
In this thesis, scenarios are used to model functional system requirements.
Related discussion on requirements propagation is included in Section 2.4.

pay

selectItem

login

pay

selectItem

login

Figure 2.1: A use case and a scenario

2.2 SOA and service-oriented development

Service-Oriented Architecture (SOA) is a business-driven IT architectural
style that supports integration of the reusable services into business tasks. A
business task typically satisfy a certain business rule or requirement. In SOA,
services are a means to bring needs and capabilities together. People and
organizations can offer capabilities as services by acting as service providers.
Entities with a need to make use of services are referred to as service con-
sumers. Services are promoted through a service description which contains
the information necessary to interact with the service. Service providers pub-
lish their service descriptions, for example, in a service registry. The service
consumers need to discover the proper services and use the service description
to invoke the actual service.

SOA aims at loosely coupled services. One of the main principals for SOA
is that the services should be reusable. Also, it should be possible to coor-
dinate and compose services to form new composite services and workflows.
Thus, the development of service-based systems often involves utilization of
existing systems or their parts [37, 61, 66].

W3C Web Services Architecture Working Group [75] defines SOA as fol-
lows:
Service Oriented Architecture is an architectural style whose goal is to achieve
loose coupling among interactive software agents. A service is a unit of work
done by a service provider to achieve the desired end results of a service con-

12

sumer. This definition of SOA is one of the most commonly used. Bieberstein
et al. defines SOA a framework for integrating business processes and sup-
porting IT infrastructure as secure, standardized components or services that
can be reused and combined to address changing business priorities [8].

As stated in the latter definition, one of the main aims of SOA is that it
bridges business and information technology oriented views, i.e. that business
requirements can comfortably be transformed into service workflows, so called
business processes. The description of a workflow of Web service activities
that together provide a certain business value, such as a business rule, is
called an orchestration or a choreography. A choreography is a description
of service interactions which define a meaningful conversation. Control of
the choreography is distributed throughout the participants. Contrary to
choreography, the control of an orchestration is owned by a single mediator
that manages the interaction between the participants. Furthermore, an
orchestration relates to the execution of specific business processes (i.e. the
process is the mediator), whereas a choreography is an externally observable
multi-party collaboration. Orchestrations can also have a normal service
interface such that they appear as services.

Functionality of a typical service-oriented system is often characterized
by high level business processes. Business processes interact with services,
which provide activities contributing to the business process. Services and
processes interact through their interfaces. Figure 2.2 illustrates a simplifi-
cation of SOA architecture including business processes, services, and com-
ponent layers. Service components are the actual service implementations
exposed as services. Services can be either atomic or realized as composi-
tions of several services, called composite services. Services can participate
in workflows to form meaningful business processes. Typically, business pro-
cesses and services form a hierarchy, such that higher level services make use
of lower level services. Services at the lowest level are fine grained provid-
ing resources and infrastructure services to be utilized by the other services.
High level services are coarse grained business services and they are used by
the business processes and end users. These service layers are also referred
as granularity layers. Service granularity refers to the service size and the
scope of functionality provided by an individual service. The services should
have the right granularity to accomplish a proper unit of work as well as to
enable service reusability and composability [36].

Service-oriented development contains several development steps. Service-
Oriented Modeling and Architecture (SOMA) by IBM [4, 5] has been devel-
oped to support and document service-oriented development in a form of
reference architecture. It defines different development steps including iden-

13

Figure 2.2: SOA architectural layers [4]

tification, specialization, and realization of services that can be used to form
composite services and business processes.

The term ”business process” can be understood in many ways. However,
in the context of this thesis it is defined as follows: A business process is
a service orchestration, which constitutes a meaningful workflow of business
task or activities.

2.3 Web services and WS-BPEL

Web services offer a way of implementing SOA. Web services can be built
using the following standards: Web service description language (WSDL)
[73] and Simple Object Access Protocol (SOAP) [74]. A WSDL description
defines a Web service interface including service operations, data and message
types, and bindings to a transportation protocol. The client uses the WSDL
description to invoke the service. SOAP is a message format for message
exchange used with Web services.

WS-BPEL is an XML-based business process language for defining ex-
ecutable Web service orchestrations. A WS-BPEL description defines the
logic for services interaction, so called invocation rules. Interaction between
Web services is enabled through their WSDL descriptions [73]. The WS-
BPEL process itself is also a Web service with a WSDL description. Thus,
it appears as a service and it can be a part of a composite service as well. A

14

WS-BPEL process can be run in a specific process engine, which is responsi-
ble for receiving invocation from external services as well as invoking other
services.

WS-BPEL is a rather complicated XML-based language. In practice,
use of some graphical workflow modeling notation, such as Business Process
Modeling Notation (BPMN) [48] or Unified Modeling Language (UML) [47]
activity diagrams is required. Various model transformation approaches and
tools have been proposed to transform such graphical descriptions into ex-
ecutable workflow descriptions [10, 27, 31, 32, 38]. With different modeling
tools, the amount of required technical details varies. The focus at business
process notation level should be on business requirement modeling rather
than on technical details.

2.4 Model-driven engineering

In Model-Driven Engineering (MDE) models are used as the most important
artifacts leading the software development processes [45]. Usually, new sys-
tem artifacts are produced through model transformations. The main idea
in MDE is to start with high level models without technical details. The
models are refined by adding more details and further transformed into more
detailed implementation-specific models. Usually, MDE is applied as an iter-
ative process and it includes, for example, model-to-model and model-to-code
transformations. Finally, the ultimate goal is to produce executable models,
code, or descriptions.

Model transformations are defined as mapping between source and target
elements. Such mappings are also called transformation rules. The model
transformations can include automatic, semi-automatic, and manual tasks.
Typically, interpretation of the models, is built in the transformations. Some
model transformation approaches also include user interaction [60, 72].

Model-Driven Architecture (MDA) is OMG’s approach for MDE [45]. It
emphasizes three types of abstraction levels for a model: computation inde-
pendent models (CIM), platform-independent models (PIM), and platform-
specific models (PSM). A CIM can also be referred to as a business or domain
model. It presents the expected system behavior, but hides all the techno-
logical and implementation-specific issues. A PIM is an abstract description
of the system, which is detailed enough to enable mapping to one or more
platform. For example, it can be defined as a set of required services without
technical details. A PSM refines the specification given in the PIM with par-
ticular platform-specific concepts. In model transformations, requirements
are propagated from higher abstraction levels into lower levels, namely from

15

CIM to PIM and from PIM to PSM. In our earlier work, we have studied con-
sistency and requirements propagation in MDA [56]. However, this study is
not restricted to the MDA approach, but we apply MDE, including modeling
and model transformations, at a more general level.

2.5 UML

Unified Modeling Language (UML) [47] is a standard general-purpose mod-
eling language developed for software engineering purposes. The standard is
created by the Object Management Group (OMG). UML combines different
modeling techniques, including class modeling, state modeling, object model-
ing, flow modeling, and component modeling. It can be used throughout the
software development life cycle to support modeling of different technologies.

UML is based on Meta Object Facility (MOF) [49]. MOF defines the com-
mon meta-model for UML, which enables model integration and exchange.
The MOF meta-model defines the UML elements and the structure of UML.

UML includes several diagrams types. Structural diagrams, such as class
diagrams, are targeted for capturing structural aspects of the system. Behav-
ioral diagrams are used for capturing the system behavior and interaction.
UML defines several diagram types for modeling system behavior, such as
use case diagrams, state machine diagrams, activity diagrams, and sequence
diagrams. From the point of view of this thesis, the most relevant diagram
types are presented in this section.

2.5.1 UML activity diagrams

UML activity diagrams are used to describe the workflow behavior of a sys-
tem, including system logic and business processes. The system behavior is
defined by activities performed by the different parties involved in the system.
UML activity models present the activity flow through the system described
in terms of activities, activity edges, and control nodes. Control flow edge
is used to pass control from one activity to another. Control nodes, which
include initial, final, join, merge, and decision nodes, are used to coordi-
nate the flows. UML activity diagrams are very close to UML state machine
diagrams, i.e. activities correspond to actions in state diagrams. [46]

Figure 2.3 presents a simple workflow as a UML activity diagram. It
consists of activities, control flows and control nodes. Control flows are pre-
sented as edges and activities are presented as by rounded rectangles. A
diamond indicates a decision node to support forking of the control flow.
Control flows are merged again in a join node, indicated by as a horizontal

16

gate. The workflow defines a mobile forecast service (getForecast) including
two alternative payment options, namely charge credit card (chargeCredit-
Card) or charge in a phone bill (chargeSim). As a result, the service sends
the forecast information to the customer (returnForecast).

chargeCreditCard

returnForecast

chargeSim

getForecast

Figure 2.3: UML Activity diagram

2.5.2 UML sequence diagrams

UML sequence diagrams [46] are used to present interactions between ob-
jects in a sequential order. To express behavioral system requirements as
scenarios, we use two types of UML sequence diagrams: (i) simple sequence
diagrams that only consist of participants and messages sent and received
between them, and (ii) sequence diagrams with control structures. Simple
sequence diagrams are a subset of UML sequence diagrams that consists only
of objects, shown as vertical lines called lifelines, and messages as horizontal
arrows from a sender object to a receiver object. In the context of this thesis,
they are called simple scenarios. Sequence diagrams that can contain control
structures are called scenarios.

In UML sequence diagrams, a message is presented as a simple message
fragment. The combination of fragments is called a CombinedFragment (see
Figure 2.4). There are several types of combined fragments, which can be
used to express control structures. For example, an optional fragment can be
optionally executed once, an alternative fragment includes two or more alter-
native execution paths, and a loop fragment can be executed multiple times.

17

The fragment type is specified by a special operator called InteractionOper-
ator. Different types of combined fragments are used to capture variations
occurring in the message exchange. The UML sequence diagram introduces
an InteractionOccurence element, which is a placeholder for another inter-
action sequence to be executed. It allows production of hierarchical and
structured interactions.

InteractionOccurence

object1 : Application

CombinedFragment
 (Alternative)

Fragment1

Lifeline1

Fragment2

Lifeline2

Interaction
Operator

Synchronous
Message

object2 : API

[if x]

[else]

ref

alt
operation1()1:

return2:

Figure 2.4: A combined fragment

2.5.3 UML profiles

UML is a general purpose modeling language. UML profiles provide a mech-
anism for adapting UML for a particular domain, platform, or method. UML
profiling mechanism can be used as a lightweight extension to the standard
UML. A profile defines a subset of UML model elements extended by stereo-
types and tagged values. In addition, a profile can express rules of “well-
formedness” for specifying the validity of the models. [46]

In particular, UML profiles can be used to support model-driven develop-
ment in a particular context, for example, for creating new model elements
as well as for validating existing design models [23].

Domain-specific UML profiles have been developed and published for sev-
eral purposes. For example, IBM has proposed the Draft UML 1.4 Profile for

18

Automated Business Processes with mapping to BPEL 1.0 [2]. The profile is
not complete but gives an idea of how to use UML for modeling executable
WS-BPEL based business processes [41].

A UML profile defines new class types as meta-classes. In addition, meta-
classes can be attached with constraints. For example, a profile for a sim-
ple client-service type of architecture could be defined by three stereotypes:
client, service, and use. As shown in Figure 2.5, the two former stereotypes
can be attached to UML classes and the latter is a particular case of UML
dependency between the two classes. At the bottom of the figure is a design
model, which follows the given UML profile.

Figure 2.5: A UML profile and a model of client-service architecture

2.6 Scenario synthesis

Scenarios are often used to model functional system requirements. Thus, a
scenario presents one desired interaction sequence throughout the system,
similar to an execution trace. In both cases, however, that is only a partial
view of the system behavior. To simulate the overall system behavior, the
scenarios need to be merged. This can be done with a state machine synthesis

19

approach. State machine synthesis from example traces has been widely
studied and several approaches exist (e.g. [9, 24, 67, 76, 78]). In this section,
the basic idea of the scenario synthesis is presented. The idea presented is
an interpretation of the scenario synthesis problem used in this study.

2.6.1 Scenario synthesis problem

A scenario is presented as an interaction consisting of participating objects
and messages sent and received between them (presenting service calls). For
instance, on the left of Figure 2.6, one possible scenario constructed for a
LoanManager process is presented. The process administers customers’ loan
requests and interacts with Customer, RiskAssesment, and Approver services.

Figure 2.6: Transforming a scenario into a state machine

A scenario can be interpreted as a sequence of message pairs (sent message,
received message). If either of the messages is missing, it is defined as NULL.
VOID presents the end of the scenario. For example, the LoanManager sce-
nario can be expressed by the following message sequence:
(NULL,requestLoan<1000)
(checkRisk,checkRisk high)
(approve,approve yes)
(requestLoan yes,VOID).

sent message is a message sent by the LoanManager object and received message
is a message received by the LoanManager object. Thus, the message se-

20

quence constructed is viewed from a certain angle, i.e. the LoanManager
object.

The message sequence defines one possible interaction trace. For example,
the expected behavior of the LoanManager is one of five possible scenarios,
each defining a decision on the loan request based on different criteria. To
construct the overall behavior, all the scenarios are synthesized into a state
machine. The construction of a state machine is done based on certain rules,
which might be different depending on the approach. In the context of this
thesis, each sent message (e.g. service call) is mapped to an action performed
in a given state and each received message (e.g. respond to a service call) is
mapped to an event that causes a state transition (i.e. fires a transition). On
the right of Figure 2.6, the corresponding state machine for the LoanManager
is shown. In the state machine, transitions without an attached event result
in automatic transitions (NULL). It means that no state action has occurred.

The idea of an iterative synthesis algorithm is that the first scenario pro-
duces an initial state machine, which is then extended to accept the other
scenarios one by one. In principle, a received message produces a new state
transition and a sent message produces a new state in the current state ma-
chine, as shown in Figure 2.6. However, the synthesis is based on state
merging, i.e. equivalent states are merged into one state based on, for ex-
ample, equal state actions. Thus, instead of adding a new state, an existing
state (if such a state exists) can be used as a target for a state transition. In
Figure 2.7, an example of merging two state machines is shown, i.e. states
(q1,q5), (q2,q6), and (q4,q7) result from the merging of the corresponding
states.

2.6.2 Common issues

The scenario synthesis relies on generalizations, which are a result of state
merging. The generalization might also produce complex and overlapping
loop structures. Identification of strongly connected components (SCC) [13]
is a common mechanism for analyzing such structures from a graph. In an
SCC, every vertex is reached from any other vertex in the SCC. Thus, con-
nected loops form a SCC. A Tarjan algorithm [64] is often used for detection
of SCCs. The algorithm uses a directed graph as input, and incorporates a
partition of the graph’s vertices into the SCCs. The basic idea is based on a
depth-first search. The SCCs form sub-trees of the search tree and the roots
of the sub-trees are the roots of strongly connected components.

The resulting state machine can be deterministic or non-deterministic.
Some synthesis algorithms always allows generation of deterministic state
machines. This is achieved by splitting states and thus separating two con-

21

Figure 2.7: State machine synthesis

flicting paths, if necessary. In the worst cases this may result in disconnected
state machines. In the context of this thesis, non-deterministic state ma-
chines are allowed.

A common problem in automatic state machine synthesizers is “over-
generalization”, i.e. the synthesis algorithms generalize information given in
scenarios so that the resulting state machine accepts additional behaviors
other than those represented in the scenarios. The over-generalization issue
is not tackled in the context of this study. However, there are synthesizers
which can avoid over-generalization, e.g., through interactive synthesis as
implemented in MAS (Minimally Adequate Synthesizer) [39, 40].

2.7 Tools

In this section, a brief introduction to the existing tools used in Part III is
given. Tools have been developed in the same research group as the study
presented in this thesis. In addition, the main rational for the tool selection
are given.

2.7.1 Inari

Inari is a pattern-oriented development environment built on top of Eclipse
IDE [16]. Inari has been initially developed for specializing Java frameworks.

22

In principle, it is meant for capturing architectural rules. Inari manages
different rule configurations and development concerns described as patterns
[22].

An Inari pattern is a structural configuration of elements. To allow specifi-
cation of patterns independently from any concrete systems, patterns consist
of roles rather than concrete elements. When a pattern is applied, one in-
stance of the pattern is bound to concrete model elements or code fragments.
Each role has an attached role type, which determines the kind of elements
that can be bound to the role instances. Supported role types include Java
and UML roles. On the left of Figure 2.8, an example of an Inari pattern
is shown. The pattern consists of three UML roles. Dashed lines indicate
bindings to concrete UML model elements shown on the right of Figure 2.8.

Inari pattern

UML
class
role

UML
operation

role

UML
attribute

role

MyClass

-MyAttribute

-MyOperation

bindings

Figure 2.8: An Inari pattern and bindings

The main general requirement for selecting Inari, or other similar tool, is
its ability to generate software artifacts based on input descriptions. In this
study, Inari is used to generate Java elements from UML sequence diagrams.
In addition, the tool should be able to handle different development options,
e.g., creation of alternative or optional elements.

2.7.2 MAS

MAS (Minimally Adequate Synthesizer) [39,40] is a command line tool devel-
oped for synthesizing application traces. MAS infers a state machine diagram
from simple message sequences following Angluin’s framework of a minimally
adequate teacher [3]. As an output MAS constructs a state machine descrip-
tion. Its input and output formats are textual descriptions.

MAS can be run either in an automatic or in an interactive mode. When
run in an automatic mode, MAS forms a minimal state machine with respect

23

to the number of states. In addition, the user can choose whether or not
only a deterministic state machine is produced. In some cases, state merging
results in over-generalizations. When run in interactive mode, MAS asks the
user whether or not certain generalizations should be made. This could be
used to avoid unwanted over-generalization. However, in the context of the
scenario-driven approach, MAS is only used in automatic mode. Thus, it can
be replaced by other similar state machine synthesizer tool.

24

Part II

SOA and business process
development

25

Chapter 3

Development process for a
service provider

In this chapter, a development process for a service provider is presented.
Different development phases related to building service-based products are
discussed. In addition, the development process provides a context for the
rest of the thesis.

The development process is covered in publication [I].

3.1 SPDP overview

Service Product Development Process (SPDP) is a development process for
a service provider. It is a result of exploring existing literature (e.g. [4, 5, 8,
50, 65]) and reviewing development processes of an industrial vendor. The
process is developed in collaboration with an industrial partner who is a
large provider of network and telecommunication based products. SPDP,
presented in Figure 3.1, aims at minimizing the development effort for new
service-based products developed according to the changing requirements and
market. In this thesis, the development phases which are specific to SOA-
based systems are presented. In the figure they are shown with solid rounded
rectangles. In terms of SPDP phases, the methods and the case studies pre-
sented in this thesis address Product specification, Service identification, New
services specification, Service realization, and Product realization phases. On
the New services specification phase high level composite services are fur-
ther decomposed into design of smaller service units. When the appropriate
service granularity level is reached the process proceeds into Service realiza-
tion phase. If the desired services already exists and they can be identified,
these two phases can be skipped. This defines the branching criteria for New

27

services specification and Product realization. In the following sections, the
main objectives and activities related to each of the development phases are
explained. Description of the required development activities is not exhaus-
tive, but it concentrates on those, which are relevant in the context of the
scenario-driven approach.

Product
specification

New services
specification

Services
identification

Service
realization

Product
realization

Services

initial
process
model

functional req.

service
interfaces

code base

initial process
model

WS-BPEL

scenarios

Java

initial
process
model

Testing

Business analysis
scenario
synthesis

scenario
mining

code
generation

process
refinement

service
identification

transfor-
mation

scenarios

code base

scenario
mining

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 4

SPDP

Figure 3.1: The phases of the service-based product development process

3.2 Product specification

In the business analysis phase new revenue opportunities are identified and
captured as business level product descriptions. For example, use cases can
be used to document the usage of new products and business ideas. In the
product specification phase the outcome of the business analysis phase is
refined with technical requirements and more detailed descriptions. At this
point, both functional and non-functional requirements should be defined.

In Chapter 4, we present a method for using scenarios to describe func-
tional business requirements. The scenarios are synthesized into the form of
an initial business process model. Thus, instead of considering of individual
use cases one model is created.

28

3.3 Service identification

In the services identification phase, the need for constituent services is defined
and the available existing services are analyzed. Some of the services might
already be available (e.g. they can be found from a service catalog), some
might be created by modifying or extending existing services, and some might
need to be developed from scratch. If development of new services is needed,
either from the scratch or based on existing ones, they must be specified and
implemented on New services specification and Service realization phases. In
addition to identification of service candidates, initial mapping of business
process activities and services is considered at this phase.

In the case study presented in Chapter 5, an initial process model is
used as a starting point for service identification. This is an example of
a top-down approach. For a bottom-up type of service identification, the
method presented in Chapter 6 can be used. It can applied for mining services
from existing system, such that the resulting model presents the operations
provided by the service interface.

3.4 New services specification

Service identification often leads to design and specification of new services.
There are several factors that affect the correct service granularity. On the
one hand, unnecessary remote calls can be avoided by careful interface design
(e.g. using a transfer object design pattern [1]). On the other hand, opera-
tions which take too long should be separated into several individual oper-
ations. To make error recovery easier and to avoid performance problems,
each operation should be self-contained and stateless. Also, data changes
should be performed as part of a single transaction. Finally, business suit-
ability is a major concern to achieve successful service design. At business
level, a good goal is to aim at operations which each complete one business
task. The smaller the services are, the more, potentially, reusable they are.

In this thesis, scenarios are used for services specification. The devel-
opment might include, for example, exploiting particular application type
specific development rules, such as, those specific to a service family.

3.5 Service realization

Service realization often involves use of APIs, third party services, or existing
legacy code. Thus, the system developed must follow certain development
rules implied by the existing code base or third party software. These de-

29

velopment rules are a type of requirements and they should be documented.
However, the documentation is not always available and some sort of reverse-
engineering might be needed.

In Chapter 6, a method for mining development rules from application
traces as scenarios is presented. The method is based on reverse-engineering
existing legacy systems. It can be applied, for example, to construct scenarios
for API or service usage. The scenarios so constructed can be used in the
service realization phase for generation of application code, as presented in
Chapter 7.

3.6 Product realization

In the product realization phase high-level service and business processes are
implemented. Initial business process models, especially those produced in
the product specification phase, are refined with technical details in order
to enable their transformation into executable business process descriptions.
Various model transformation techniques and tools have been proposed for
automatically transforming process models, given in BPMN or UML, into
executable WS-BPEL descriptions [10, 27, 31, 32].

The method presented in Chapter 4, includes refinement of an initial
business process model and transformation from a UML model into a WS-
BPEL description

3.7 Summary

In this chapter, a development process for service-based systems, called
SPDP, has been described. In addition, a summary on how the scenario-
driven approach can be applied in a particular development phase has been
given. Figure 3.1 presents a roadmap for the rest of the thesis, i.e. connec-
tions between the methods developed and the SPDP phases are presented.

30

Chapter 4

Scenario-based business process
development

In this chapter, a scenario-based method for business process development
is presented. It includes a systematic model-driven development chain from
functional requirements to executable WS-BPEL process descriptions. In
addition, the developed prototype implementation, Sketch and BPELGen
tools, is presented. As a running example through the chapter a simple loan
approval process is used.

These themes are covered in publications [II] and [III].

4.1 Method overview

Business process modeling includes several challenges. On the one hand, a
certain amount of technical details needs to be presented at the business
process modeling level to enable transformations into executable process de-
scriptions, such as WS-BPEL descriptions. On the other hand, the modeling
should emphasize the requirements capture rather than specification of the
detailed technical process models. In this section, a method that aims at pro-
viding an intuitive starting point for business process modeling is presented.
The modeller is expected to be a business-oriented person rather than an
IT-developer.

The underlying idea is that the modeller of the business process sketches
simple example sequences that show the required behavior of the business
process, to be implemented as a Web service orchestration. Services needed
for the orchestration can be already existing or they can be implemented in
the later development phases. The modeller is not expected to define the
more complicated technical details, such as different types of control struc-

31

tures, at this point. Furthermore, this set of simple scenarios does not need
to illustrate all the possible execution sequences throughout the process, but
it should rather concentrate on the main use cases. For instance, scenar-
ios describing exceptional behavior, such as error handling, may be omitted.
Such information can be defined later in the process refinement step, and
more importantly, by the IT-developers.

The simple scenarios, described with sent and received messages, are syn-
thesized into a merged process view illustrated as a UML state machine.
The synthesis algorithm concludes the control structures, e.g., branching and
merging of flows. The intermediate state machine model is further trans-
formed into a process model skeleton, a UML activity model, that supports
the business requirements as expressed in the input scenarios.

The process model skeleton created is further refined with WS-BPEL
specific elements including stereotypes and structural patterns. Refinement
cannot be fully automated and it still might require adding some technical
details manually. Finally, a model transformation tool can be used for gen-
erating executable WS-BPEL specifications from the refined process model.
The modeling method, including the transformation steps, are is described
in detail in subsections 4.2 - 4.5. The tool support developed is presented in
Section 4.6.

Figure 4.1 summarizes the manual activities (1. and 4.) and the au-
tomated model transformation steps (2., 3., and 5.) of the scenario-based
process development method. The input and output models are shown in
the arrows between the steps.

4.2 Scenario-based modeling

To gather the functional business process requirements, several sources of in-
formation can be used. Usually, the requirements can be gathered from the
specifications produced in the business analysis phase. In case of migration
into SOA, exploring of the existing system or interviewing the system devel-
opers might be needed. The requirements are modelled as simple scenarios
without control structures. At this point, error handling can be omitted, the
focus being on successful scenarios and the desired basic behavior. A basic
rule is that each of the main use cases is presented as a simple scenario.

The interaction can be started by the process itself or by an external party.
A simple scenario consists of sent message and received message messages.
The former means that the process sends a message and the latter means that
the process receives a message. A synchronous message can be modelled as
a sent and received message pair (operation and operation response).

32

S
e
q
u
e
n
c
e

d
ia

g
ra

m
s

5. Generation of
executable WS-

BPEL

State
machine

Activity
diagram

C
la

s
s

d
ia

g
ra

m

A
c
tiv

ity

d
ia

g
ra

m

1. Scenario-based
modeling (manual)

2. Process
synthesis

3. Transformation
into process

skeleton

4. Process
refinement
(manual)

Figure 4.1: Model transformation steps of the scenario-based process devel-
opment

As a running example, a simple Loan Approval example, used also in the
WS-BPEL specification [41], is used. It is a simple service to be implemented
as a business process, which handles customer loan requests. For decision
making, it utilizes external Web services, Risk Assessment and Approver.
The customers can send their loan requests to the Loan Manager service,
which then returns either a ”loan request approved” or a ”loan request re-
jected”message. The approval decision can be reached in two different ways,
depending on the amount requested and the risk associated with the cus-
tomer. Firstly if the customer requests a small loan (less than 1000) and
her personal risk is evaluated as low, the request is approved with no further
evaluation. Secondly if the customer asks for a big loan (more than 1000)
or her personal risk is evaluated as high, the request needs to be handled by
external approver. The external approver decides if the loan is to be granted
or not. The customer receives a return message according to the decision.

In the Loan Approval process, the participants are known in advance and
they are modelled with simple interfaces. The process behavior planned is
presented as five simple scenarios given in Figure 4.2.

33

<<process>>

 : LoanManager

 : Customer : Approver

approve()2:

requestLoan_yes()4:

requestLoan_>1000()1:

approve_yes()3:

 : RiskAssessment<<process>>

 : LoanManager

 : Customer : Approver

checkRisk_high()

checkRisk()

approve()

requestLoan_yes()

requestLoan_<1000()

approve_yes()

<<process>>

 : LoanManager

 : Customer : Approver

approve()

requestLoan_no()

requestLoan_>1000()

approve_no()

 : RiskAssessment<<process>>

 : LoanManager

 : Customer : Approver

checkRisk_high()

checkRisk()

approve()

requestLoan_no()

requestLoan_<1000()

approve_no()

 : RiskAssessment<<process>>

 : LoanManager

 : Customer

checkRisk_low()

checkRisk()

requestLoan_yes()

requestLoan_<1000()

Figure 4.2: Loan Approval scenarios

4.3 Scenario synthesis and transformation into

a process skeleton

The functional requirements are synthesized into a merged view presented as
a state machine. The synthesis follows the simple idea of merging the states
with equal state action (explained in Section 2.6), i.e. the process invokes a
specific operation. The resulting state machine for the Loan Approval process
is shown in Figure 4.3.

In some cases, the input scenarios can be in conflict. Typically, this
results in a non-deterministic state machine. However, a conflict might be
an accidental error or it might illustrate a deterministic choice, i.e. when the
conditional statements cannot be expressed by the simple scenarios. Thus, a
non-deterministic state machine is accepted as a result at this point.

WS-BPEL uses two ways of flow modeling: a structured block style and
a graph-oriented flow style. WS-BPEL does not, however, allow arbitrary
cycles, which can usually be presented in graph-based modeling notation.

34

requestLoan_yesdo /

q3

requestLoan_nodo /

q5

checkRiskdo /

q6

approvedo /

q2

NULLdo /

q1requestLoan_<1000

checkRisk_high

approve_yes

approve_no
checkRisk_low

requestLoan_>1000

Figure 4.3: A synthesized state machine

With a human designer such unsupported structures can be avoided, for
example, by using a limited subset of the modeling language and by providing
proper tool support. However, for example, automatic process mining and
synthesis approaches sometimes result in unstructured models, which do not
allow direct mapping into WS-BPEL processes. In WS-BPEL, loops are
presented as structured activities, which have only one incoming and one
outgoing control flow. In this work, WS-BPEL generation is restricted to
such cases where the previous rules on the control flows hold, i.e. the loop
has unambiguous start and final states.

Before transformation into a process model skeleton, the state machine
is validated to ensure that it contains no unstructured loops. This can be
done by identifying the SCCs (i.e. loops) occurring in a state machine. If
a SCC has several incoming or outgoing state transitions, the state machine
contains unstructured loops. Thus, it cannot be directly transformed into a
WS-BPEL description and a WS-BPEL flavored activity model cannot be
created. In such cases, the removal of unstructured loops remains a manual
task.

To transform a state machine into a WS-BPEL flavored activity model,
WS-BPEL specific transformation rules must be applied. These rules include
the use of WS-BPEL specific stereotypes and following “well-formedness”
rules defined as so called workflow patterns [68]. The workflow patterns
used, including fork, join, decision, and loop, support mapping into WS-
BPEL descriptions. Table 4.1 summarizes mapping from a state machine
into a WS-BPEL flavored activity model. WS-BPEL specific modeling rules

35

are given in detail in the form of a UML profile for WS-BPEL in Section 4.5.
As an example, the resulting WS-BPEL specific process skeleton, created
from the state machine, for the Loan Approval process is shown in Figure
4.4.

State machine Activity diagram Stereotype
a state transition a call behavior action (and

a control flow)
receive

a state action a call behavior action (and
a control flow)

invoke

a loop a structured activity node
with nested substructure

while

a start state an intial node -
a final state a flow final node -
several deterministic
outgoing transitions

a fork node -

several non-
deterministic outgoing
transitions

a decision node -

several incoming tran-
sitions

a join node -

a loop a structured activity node
with nested substructure

while

Table 4.1: Mapping from a state machine to a WS-BPEL flavored activity
diagram

4.4 Process model refinement

However, the input scenarios usually do not contain all the information
needed for creation of a complete process model. Thus, the process refine-
ment still involves some manual tasks. For example, in and out parameter
values are not usually presented in the scenarios. As shown in Figure 4.4,
they can be defined using input and output pins to receive and invoke ac-
tions. Also, copying process variables is not defined in the scenarios and
these activities must be added manually as Assign-copy activities.

In addition, a complete process model includes some static definitions,
which are not a part of the synthesized process skeleton. These issues are
discussed in the next section.

36

<<reply>>

requestLoan
no

<<reply>>

requestLoan

no

<<receive>>

requestLoan

<<invoke>>

approve

<<reply>>

requestLoan

yes<<reply>>

requestLoan

yes

<<invoke>>

checkRisk

<<reply>>

requestLoan
yes<<invoke>>

approve

<1000>1000

low

yesno yesno

high

Figure 4.4: A WS-BPEL flavored activity model

4.5 Generation of WS-BPEL descriptions

In this section, generation of WS-BPEL descriptions from UML activity and
class diagram based process models is discussed. A complete process model
consists of three parts: a static process definition (a class diagram), WSDL
definitions (a class diagram(s)), and a workflow model (activity diagram).
An example of a process model structure is shown in Figure 4.5. A UML
profile for WS-BPEL process models is presented in the next sections. The
profile rules are built in a prototype tool called BPELGen, which translates
the process model into XML-based WS-BPEL and WSDL descriptions.

Figure 4.5: Loan Approval process model

37

4.5.1 Process profile

Static parts of a process definition are placed in a UML package, stereotyped
as process. It includes a process class, a correlation class, partner link classes,
and partner classes. process is the main class, which defines the process
name, namespaces and the variables used. The correlationSet class defines
properties for identification of process instances. The partner and partner
link classes are used to define the process participants, i.e. the participating
services. A metamodel for a process definition is presented in Figure 4.6.

-properties

correlationSet

-partnerLink

partnerLink

-variable
-namespace

process

-partnerLink

partner

Figure 4.6: Process definition metamodel

4.5.2 WSDL profile

A WSDL package includes definitions of port types (i.e. service interfaces)
including their operations and messages. It also defines a service class and
namespaces. A service class defines the service name, location, binding and
port name. A metamodel for a WSDL description is presented in Figure
4.7. As shown in the figure, a WSDL model also includes WS-BPEL specific
extensions, which define the service as a participant in the process (i.e. part-
ner link type). A complete UML profile and validation support for WSDL
descriptions have been proposed, e.g., in [30]. In the context of this thesis,
only the elements necessary to generate WSDL and WS-BPEL descriptions
are modeled.

4.5.3 Workflow profile

A process flow is defined as a UML activity model. The supported set of UML
activity elements, to be used in a workflow model, is presented in Figure 4.8.

Mapping rules for the workflow elements, from an activity model into WS-
BPEL, are presented in Figure 4.8. The first column specifies a stereotype of

38

-portType
-role

partnerLinkType

-message

messageType

operation

-location
-binding
-port

service

portType

targetNS

soapNS

part

wsdl

Figure 4.7: WSDL definition metamodel

StructuredActivityNode

CallBehaviorAction

ActivityFinalNodeFlowFinalNodeDecisionNode

ControlNode

ActivityNode
ActivityEdge

ControlFlow

Constraint

InitialNode

Action

OutputPin

ForkNodeJoinNode

InputPin

Activity

Figure 4.8: Workflow metamodel

39

a UML element, if required. A short description as well as related constraints
are included in Table 4.2.

Table 4.2: UML to WS-BPEL mapping

Stereotype UML element Explanations WS-BPEL con-

struct

invoke Call behavior ac-
tion

Input pin for parameters and output
pin for return value

Invoke action

while Structured activity
node

Attached UML constraint defines the
while condition

While action

pick Structured activity
node

UML note defines value for ’create-
Instance’ attribute. Default value is
’yes’.

Pick action

onMessage Call behavior ac-
tion

Inside pick structured activity node.
Input pin defines input variable.

onMessage action

Decision node Outgoing control flow name defines the
case condition

Switch case struc-
ture

receive Call behavior ac-
tion

inputPin defines input variable value.
UML note defines value for ’create-
Instance’ attribute. Default value is
’yes’.

Receive action

Initial node Start of sequence Start of sequence
Activity final node End of while loop End of while loop

reply Call behavior ac-
tion

Follows synchronous invoke action.
Output pin defines output variable.

Reply action

Join node Merging of control flows Ends switch case
assign Call behavior ac-

tion
inputPin=from variable, output-
Pin=to variable

Assign copy

Flow final node End of process flow Ends the process
Control flow Only one incoming and outgoing con-

trol flow for each action is allowed
Sequence

Constraint Used to attach constraints E.g. while condi-
tion

Input pin Input variable inputVariable/
from variable

Output pin Output variable outputVariable/ to
variable

Fork node Splitting of a control flow Flow

According to the WS-BPEL specification a sequence consists of sequential
activities, such that only one outgoing and incoming control flow is allowed
to arrive and leave each basic and structured activity. Thus, such activity
sequences are supported in the workflow modeling.

4.5.4 Example: Generation of a WS-BPEL description
for Loan Approval process

The Loan Approval process includes four participants: the actual process
Loan Manager and external services Customer, Approver, and Risk Assess-

40

ment. The external services are presented as partners in the Loan Approval
process. In WS-BPEL processes, partners must be defined in separate files
using WSDL. It is assumed that the services already exist. Thus BPELGen
can be used to import existing WSDL descriptions into a UML class diagram.

A complete structure of the process model is shown in Figure 4.5. The
LoanApprover package includes the static process definition stereotyped as
process. The generated WSDL models for the external services are placed
in wsdl packages. The static process definition is presented in Figure 4.9.
Parts of the static information, such as a process name and namespaces,
must be defined manually in the process class. Process variables are usually
used for copying of request and response messages defined in WSDLs. Thus,
variables corresponding to the message types are created automatically in
the process package. Partner link definitions are also created as extensions
in the partners’ WSDLs.

<< process>>

LoanApproval

<<partnerLink>>−riskManagerPL : riskAssessmentPL

<<partner>>

RiskAssessment

<<partnerLinkType>>−riskManagerLinkType

<<partnerLink>>

riskAssessmentPL

<<partnerLink>>−approverPL : approverPL

<<partner>>

Approver

<<partnerLinkType>>−customerLinkType

<<partnerLink>>

customerPL

<<partnerLinkType>>−approverLinkType

<<partnerLink>>

approverPL

<<messageType>>

approveResponse

<<messageType>>

requestLoanResponse

<<messageType>>

requestLoanRequest

<<messageType>>

approveRequest

<<correlationSet>>

myCorrelationSet

<<messageType>>

checkRiskResponse

<<messageType>>

checkRiskRequest

<<variable>>−requestLoanResponse : requestLoanResponse
<<variable>>−requestLoanRequest : requestLoanRequest
<<variable>>−approveRequest : approveRequest
<<variable>>−approveResponse : approveResponse
<<variable>>−checkRiskRequest : checkRiskRequest
<<variable>>−checkRiskResponse : checkRiskResponse
−business=myBusinessNS
−targetNamespace=loanManagerNS
−schema=http //www w3c org/2001/mySchema
−name = LoanApproval

<<process>>

LoanManager

<<partnerLink>>−customerPL : customerPL

<<partner>>

 Customer

Figure 4.9: Process definitions for Loan Approval process

The listing in Figure 4.10 presents the WS-BPEL description generated
for the Loan Approval process. Detailed mapping rules are given in Sec-
tion 4.5.3. The WS-BPEL description begins with static definitions, such as
partner and variable descriptions, and continues with the workflow definition.

Loan Approval is a simple example, which illustrates the whole chain
of scenario-driven business process development. The functional process re-
quirements are presented as five input scenarios (Figure 4.2). The simple
scenarios are synthesized into a process model containing WS-BPEL specific
activities, stereotypes, and control structures (Figure 4.4). After the process
refinement step, executable WS-BPEL code is generated (Figure 4.10).

41

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

...

business="myBusinessNS" name="LoanApproval" targetNamespace="loanApprovalNS">

+<partnerLinks></partnerLinks>

<partners>

<partner name="Customer" partnerLink="customerPL"/>

<partner name="Approver" partnerLink="approverPL"/>

<partner name="RiskManager" partnerLink="riskManagerPL"/>

</partners>

<variables>

<variable messageType="approveRequest" name="approveRequest"/>

<variable messageType="approveResponse" name="approveResponse"/>

...

</variables>

+<correlationSets></correlationSets>

<sequence>

<receive createInstance="yes" operation="requestLoan" partnerLink="customerPL"

portType="LoanManager" variable="loanRequest"/>

<switch>

<case condition="loanRequest:amount<10000">

<sequence>

<invoke inputVariable="checkRiskRequest" operation="checkRisk"

outputVariable="checkRiskResponse"

partnerLink="riskAssessmentPL" portType="RiskAssessment"/>

<switch>

<case condition="risk=low">

<sequence>

<assign>

<copy>

<from variable="yes"/>

<to variable="decision"/>

</copy>

</assign>

</sequence>

</case>

<case condition="risk=high">

<sequence>

<invoke inputVariable="approveRequest" operation="approve"

outputVariable="approveResponse" partnerLink="approverPL"

portType="Approver"/>

</sequence>

...

</case>

</switch>

<reply name="decision" operation="requestLoan" partnerLink="customerPL"

portType="LoanManager" variable="decision"/>

</sequence>

</case>

+<case condition="loanRequest:amount>10000"></case>

<reply name="decision" operation="requestLoan" partnerLink="customerPL"

portType="LoanManager" variable="decision"/>

</sequence>

</process>

Figure 4.10: Generated WS-BPEL code

4.6 Implementation

To support the scenario-based business process development, two prototype
tools have been developed. Sketch is used for scenario synthesis and creation
of a process model skeleton, whereas BPELGen is used to generate WSDL
and WS-BPEL descriptions from UML models. Both the tools are imple-
mented as Eclipse [16] plug-ins and they use Eclipse UML2 model API [16].
Sketch is presented in publication [II] and BPELGen is discussed in publica-
tion [III].

42

4.6.1 Sketch

Input scenarios for Sketch are given as a simple UML sequence diagram
without control structures. The output models are a UML state machine
and activity model.

To create a process model skeleton, Sketch supports the following activi-
ties:

1. Import simple scenarios,

2. Create a state machine (intermediate),

3. Create a WS-BPEL flavored activity model.

The first activity imports the scenarios as a UML sequence diagram. The
second activity is used to synthesize the scenarios into a state machine. The
third activity produces the process skeleton as an activity model.

Algorithms

The main functionality of Sketch is described by the following algorithms.

A1: Scenario synthesis (Input: A sequence diagram, Output: A
state machine)
The synthesis algorithm implemented in Sketch is iterative; a first sce-
nario produces an initial state machine, which is extended to accept
the other scenarios one by one. The algorithm tries to map each mes-
sage sequence to the current state machine always starting from the
initial state of the current state machine. If the state machine already
contains a transition corresponding to a received message, no extension
to the current state machine is made and the execution continues from
the next received message. If the received message is not defined by
the current state machine, a new state transition is created in the state
machine. The next sent message determines whether the new transi-
tion ends up in an existing state machine state (if such a corresponding
state exists) or in a new state. In addition, each scenario produces
a final transition to the final state. As a result, a deterministic or
non-deterministic state machine is created.

A2: Loop handling (Input: A state machine, Output: A state ma-
chine)

43

Loop handling starts with a subtask called validate. It first uses the
Tarjan algorithm to identify all the loops occurring in the state ma-
chine. For each loop, it counts incoming and outgoing state transitions.
If more that one of each is found, the state machine contains unstruc-
tured loops and the algorithm stops. Otherwise, the algorithm detaches
the loops from the state machine. It utilizes detachOutgoingTransi-
tions and detachIncomingTransitions algorithms to detach incoming
and outgoing transitions from the loop. In addition, it eliminates the
loop structure by removing the transition from the loop end state to
the loop start state. As a result, the loop structure is replaced by a
super state with one incoming and one outgoing transition, an initial
and a final state, and the actual repeated sequence.

A3: Activity model creation (Input: A state machine, Output: An
activity diagram)

The transformation begins from an initial state of the state machine
with an empty activity model. For each state and transition in the
state machine, a corresponding activity and a control flow is created.
Automatic transitions and empty state actions are ignored in the trans-
formation, because they do not correspond to any particular action.

The transformation is divided into two subtasks, namely, handleState
and handleStateTransition. handleState is used to recursively create
an activity model from a state machine representation. Activities are
created as a child either for the activity model or for a structured ac-
tivity (i.e. loop). Each single state creates an invoke activity whereas a
super-state creates a structured activity. A handleStateTransition algo-
rithm is used to create a receive activity for each state transition. The
transition target is again handled by the handleState. While creating
the activities, the corresponding stereotypes are also created.

A4: Pattern detection (Input: An activity diagram, Output: An
activity diagram)

Pattern detection includes detection for decision, join, invoke-reply,
and loop structural workflow patterns. Algorithms are recursive such
that they are also ran for internal states of each structured activity (i.e.
loop).

detectJoin finds parallel deterministic incoming flows and creates a join
node to combine them. detectDecision finds parallel non-deterministic

44

outgoing transitions. To remove the non-determinism, it creates an
additional decision node with the corresponding branches. detectFork
algorithm is used to handle similar branching structures except for de-
terministic control flows.

invoke-reply pattern is implemented by simply traveling the activity
model to find a corresponding invoke-receive pair (presenting opera-
tion and operation response). Thus, the invoke-reply pair presents a
synchronous message with invocation and reply messages.

Sketch does not reuse the synthesis algorithm developed for MAS. The
main reason is that MAS uses a language recognition approach and handles
the input and output as strings. Whereas, Sketch is based on Eclipse UML2
models and model transformations, so a graph-based approach was chosen.
Details of the algorithms are presented in the publication [II].

Limitations

Sketch aims at a minimal state machine with respect to the number of states.
This means in practice that state merges are made whenever possible. That
is, states with equal state actions are merged. Sometimes this leads to over-
generalization. This means that the resulting process model accepts invo-
cations, which are not specified in the original scenarios. In the context of
process modeling, we do not see over-generalization as a major concern. In
addition, the synthesized model is not considered to be a final model, but it
is often used as an initial one for further refinement or analysis.

The algorithms implemented in the Sketch tool do not support removal of
unstructured loops. Hence, such state machines are not further transformed
into process model skeletons.

4.6.2 BPELGen

BPELGen is a prototype tool developed for generating WS-BPEL descrip-
tions from UML models. For collecting the requirements for the required
tool support, different practices and activities involved in the business pro-
cess modeling were analyzed. (a) Modeling an orchestration based on existing
WSDLs instead of starting the process modeling from the scratch. To sup-
port this setting, existing WSDLs can be imported and translated into a UML
model. In addition, information in WSDLs is used to create a process model
template. For example, WSDL operations and messages present a selection
of available process activities and frequently used variables. (b) If desired,
the process and WSDL models can also be constructed fully manually. (c)

45

In addition, scenario-based modeling and Sketch can be used to produce an
initial process model. As a final step, the process model is translated into
WSDL and WS-BPEL descriptions. An overview of the model-based business
process development is presented in Figure 4.11. The alternative modeling
options are presented as three choices (a, b, and c). Transformations imple-
mented in the BPELGen tool are discussed in detail in the publication [III].

BPELGen is a standalone tool, but it can be used together with Sketch
as they are both based on UML2 models. BPELGen supports the following
activities:

1. Import existing WSDL descriptions (optional),

2. Define the process model,

(a) Generate a process model template using imported WSDL de-
scriptions, or

(b) Define the process model manually, or

(c) Use scenario-based modeling and Sketch,

3. Export WSDL descriptions, and

4. Export WS-BPEL descriptions.

Figure 4.11: Model-based business process development

46

Transformations into WSDL and WS-BPEL descriptions are based on
the WS-BPEL profile presented in Section 4.5. Thus, an input for the model
transformation consists of UML class and activity diagrams. As an output,
BPELGen produces WSDL and WS-BPEL descriptions as separate XML
files.

4.7 Discussion

According to the proposed method, the functional requirements are automat-
ically synthesized into a process model skeleton. However, the process model
generated is not expected to be a final one. It usually requires some manual
refinement, usually by more IT-oriented people rather than by a business
modeller.

In some cases, automatic detection of WS-BPEL specific patterns may not
be an optimal, since alternative patterns may need to be applied, for example,
on how to handle different types of branching and flow synchronization. This
kind of variation could be provided by using interactive or configurable model
transformations. However, in our current implementation, only automatic
detection of simple structures is supported and the more advanced WS-BPEL
structures must be created manually during the process refinement phase if
necessary.

The method is targeted at construction of business processes that uti-
lize operation-centric Web services, which perform business activities. Based
on the case study results, it has only limited application in construction of
process models for resource-oriented and data-centric services, which concen-
trates on resources and data transfer rather than on operations. In practice,
this seems quite natural since WS-BPEL is targeted at operation-centric or-
chestrations.

47

48

Chapter 5

Business process development -
A case study

In this chapter, a case study of a scenario-driven business process develop-
ment is presented. The case study includes two parts. The first part covers
development of an initial process model. The initial process model defines the
process workflow, but is still lacking mapping to concrete services. The sec-
ond part continues the business process development using the initial process
model as a starting point for services identification. The target is identifica-
tion of services and reusable units from the existing legacy system.

In the case study, the scenario-based process development method, pre-
sented in Chapter 4, is used.

5.1 Case study introduction

The initial target of the case study is to provide the industrial software vendor
support for migration into business process based implementation. On the
other hand, the research target is to utilize scenario-driven business process
development in an industrial context.

5.1.1 Problem statement and context

The context for the case study is an operational legacy system called Speech
Guidance System developed by an industrial software vendor. The purpose
of the system is to provide better guidance and allocation of resources within
the sorting process of a large industrial logistics provider. When starting the
case study, the system had already been implemented, but it did not utilize
Web services or business process based technologies. In addition, the logic

49

for the sorting process was implemented in the user interface component.
The industrial vendor’s long term goal was to remove system logic from the
user interface component through migration into Web services and business
process based implementation. They thus wanted support for the migration
effort.

Speech Guidance System consists of five interacting systems illustrated in
Figure 5.1. The user interface component and configuration systems were
new operational systems implemented by the vendor while the other three
were existing systems that were integrated with the developed system.

Configuration
system

Printing
system

Tracking
system

Sortingsystem

UI
component

Figure 5.1: Systems involved in Speech Guidance System

In the specification, the system requirements were described as use cases
and the main scenario for each use case was further illustrated as a sequence
diagram. However, the description of the sorting process was spread over
several documents and interrelations between the different use cases were
unclear.

Speech Guidance System is a pure operation-centric system and it seemed
a good candidate for applying the scenario-driven approach. The logistics
provider also hosts a market place for their customers. It is rather a resource-
oriented system called Shopping cart. To gain more information, the scenario-
based method was also applied in the Shopping cart system as a sub-unit of
the main case study. The findings are discussed in analysis of the case study
results (Section 5.4.1).

5.1.2 Case study design

The vendor’s aim was to improve the maintainability of the system by remov-
ing the system logic from the user interface component by adding additional
business process layer. Thus, we agreed to the application of the scenario-
based method by collecting the scenarios from the requirements specification.

The initial process model is constructed based purely on the business
requirements without any knowledge of the underlying services and the legacy
system. Next, the focus is on finding proper services to match the initial

50

business process model. Finally, the findings are compared with the existing
component model. In addition, the results are evaluated during interviews
with the system developers and with project managers.

The purpose of the case study is to answer the following questions related
to scenario-driven process development:

RQ2.1 How can the scenario-driven approach be applied in business
process development in the industrial context?

RQ2.2 What are the possible limitations?

RQ2.3 How can the scenario-driven approach support migration into
business process based implementation? What are the achieved
benefits?

Conduction of the case study includes the following steps:

1. Collect functional system requirements from the requirements specifi-
cation.

2. Model the main use cases as simple scenarios.

3. Synthesize the scenarios and construct an initial process model.

4. Try to identify the service candidates from the legacy system.

5. Compare the findings with the existing component model or implemen-
tation, and interview the system developers concerning the results.

The case study execution is presented in the next sections.

5.2 Business process development for Speech

Guidance System

In this section, the construction of an initial process model is presented.

5.2.1 Gathering system requirements

Speech Guidance System specification of requirements defines the main use
cases for the sorting process. A prerequisite for sorting tasks is that the user
has logged into a sorting point. After each sorting task the user can logout
from the sorting point or start a new sorting task. The Speech Guidance

51

System instructs the user on the handling of containers and the placing of
the sorting items in the right containers.

The main use cases, presented below, were gathered from the specification
and modeled as simple scenarios.

Use cases for Speech Guidance System

1. uc006: Logout from the sorting point

2. uc007: Login to the sorting point

3. uc011: Move a sorting item to a container

4. uc014: Report exception

5. uc015: Remove a sorting item from a container

6. uc018: Close a container

7. uc019: Print a container label

8. uc020: Print a container label set

9. uc021: Combine two container units

Use cases uc011, uc014, uc015, and uc018 -uc021 are the main sorting
tasks, which form the sorting process. Use case uc007 is a precondition to
all the other use cases and a sorting process must end with logging out of the
sorting point, i.e. uc006. These pre and post conditions must be referenced
in each sorting task scenario.

Speech Guidance System has connections to the following external sys-
tems: sorting item tracking system (iTR), container label printing system
(CLPS), sorting machine, and sorting point data storage. These high level
components are present in the use cases. However, they do not necessarily
present the actual physical services necessary to be mapped to the business
process.

As an example of the use cases, “Print a container label” (uc019) is illus-
trated as a sequence diagram in Figure 5.2. The user first inputs the container
position, type, and identifier. The Speech Guidance System invokes CLPS
for printing. It receives a status code from CLPS and informs iTR. Finally,
Speech Guidance System sends the user an “end of printing”message and the
user can then continue with new sorting tasks.

As described in Section 4.3, scenarios were synthesized into a state ma-
chine. The resulting state machine is presented in Figure 5.3. The state ma-
chine is non-deterministic, as it has one non-deterministic branching point.
From setPosition return there are several automatic transitions that end up
in different states. In addition, the state machine contains one loop.

52

 : SortingProcess : CLPS : User : iTR

login_return()2:

setContainerLabel_return()6:

startNewTask_return()4:

setPosition_return()8:

setContainerType_return()10:

printContainerLabel()14:

katEvent()16:

logout_return()21:

setContainerID_return12:

endTask18:

printContainerLabel_return()15:

login()1:

setContainerLabel()5:

startNewTask()3:

setPosition()7:

setContainerType()9:

setContainerID()11:

logout()22:

startNewTask()19:

startNewTask_return20:

null13:

katEvent_return()17:

Figure 5.2: Print a container label (uc019) as a scenario

5.2.2 Creation of initial business process model

Before transforming the state machine into an activity diagram, loops must
be removed. The state machine contains one loop, which is detached and
replaced by a structured activity in the process model. The process model
generated from the state machine is presented in Figure 5.4.

The process model has several fork nodes, which represent deterministic
branching points. They are not interpreted as parallel executions, but just
the splitting of the control flow. The process model contains join nodes, which
present a merging point for several flows. Again, the join node does not im-
ply synchronization between the incoming branches. In addition, the process
model contains one decision node, which is the result of a non-deterministic
branching point (setPosition return in the state machine). Defining the eval-

53

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

setContainerLabelSet_returndo /

setContainerLabelSet_return

setContainerLabel_returndo /

setContainerLabel_return

setExceptionCode_returndo /

setExceptionCode_return

reportException_returndo /

reportException_return

setContainertype_returndo /

setContainertype_return

removeContainer_returndo /

removeContainer_return

setSortingItemID_returndo /

setSortingItemID_return

setSortingItemDetailsdo /

setSortingItemDetails

setContainerID_returndo /

setContainerID_return

startNewtask_returndo /

startNewtask_return

readBarCode_returndo /

readBarCode_return

setUnitReady_returndo /

setUnitReady_return

setPositiondo /

setPosition_return

printContainerLabeldo /

printContainerLabel

connect_returndo /

connect_return

linkToContainerdo /

linkToContainer

valReqistrationdo /

valReqistration

klkEvantdo /

klkEvent

logout_returndo /

logout_return

login_returndo /

login_return

katEventdo /

katEvent

endTaskdo /

endTask

startNewTask

setContainerLabelSet

removeContainer_return

setUnitReady

setContainerLabel

katEvent_return linkToContainer_return

setSortingItemID

setContainerID

setSortingPoint

connect

setPosition

setPosition

setPosition

logout

setContainerID

setPosition

setSortingItemDetails_return

setContainerID

klkEvent_return

setContainerType

valReqistration_return

printContainerLabel_return

logout

reportException

login

startNewTask

setSortingItemID

setExceptionCode

readBarCode

Figure 5.3: Sorting process state machine

uation criteria for the choices remains a manual task, as they cannot be
derived from the state machine.

The interviews discovered that the vendor’s approach have some similari-
ties to the scenario-driven method. The vendor had also started their design
process from the use cases and sequence diagrams, which they called dialogs.
However, as described in the following, their approach had several drawbacks
compared to the scenario-driven approach. It required unnecessary manual
work to update parallel diagrams. In addition, the vendor did not model
connections between the use cases. Moreover, they did not have tools to en-
able model-driven development and the diagrams were used as a specification
document for the developers. They had problems in discovering the overlaps
and dependencies between the different use cases, which led to architectural
changes to the design and implementation.

54

<<structured>>

loop

<<invoke>>

setSortingItemDetails

<<reply>>

setContainerLabelSet

<<receive>>

setContainerLabelSet

<<invoke>>

printContainerLabel

<<receive>>

printContainerLabel

<<receive>>

removeContainer <<receive>>

setContainerLabel

<<reply>>

removeContainer
<<reply>>

setContainerLabel

<<reply>>

setPosition

<<receive>>

setContainertype

<<reply>>

setContainerType

<<reply>>

setSortingItemID

<<receive>>

setSortingItemID

<<reply>>

reportExeption

<<reply>>

readBarCode

<<reply>>

connect

<<receive>>

startNewTask

<<receive>>

reportException

<<receive>>

connect

<<receive>>

unitReady

<<receive>>

readBarCode

<<receive>>

linkToContainer

<<receive>>

setPosition

<<receive>>

setContainerID

<<invoke>>

klkEvent

<<receive>>

klkEvent

<<invoke>>

endTask

<<receive>>

setSortingPoint

<<invoke>>

katEvent

<<receive>>

katEvent

<<invoke>>

valReqistration

<<receive>>

valReqistration

<<reply>>

setContainerID

<<reply>>

setExceptionCo
de

<<receive>>

setExceptionCo
de

<<reply>>

unitReady

<<reply>>

startNewtask

<<receive>>

logout

<<reply>>

logout

<<receive>>

logout

<<receive>>

login

<<reply>>

login

Figure 5.4: Sorting process process model

5.3 Services identification for Speech Guid-

ance System

The case study was continued to obtain mapping to initial service candidates,
which perform the business tasks to implement the constructed business pro-
cess model. The synthesized state model, created in Section 5.2, was used
as a starting point for service identification. It can be considered as an ini-

55

tial process model without binding to a specific process modeling notation,
namely, WS-BPEL.

So as to provide the vendor with proposed service mapping, the aim is
to identify those components, which are self-contained and enable or perform
some business functionality.

In the case study, simple heuristics, presented below as Rules 1-3, for iden-
tification of service candidates were used. Similar heuristics and approaches
have been used already in the literature [6, 20, 34]. The number of states
in the state machine was reduced by combining states. Thus, the resulting
state machine is an abstraction from the original one. More precisely, Rule
1 defines when two sequential states, A and B, will be combined.

Rule 1: Sequential activities States A and B are combined if A and
B are not initial or final states, there is a transition from A to B, B
has exactly one incoming transition, and A has exactly one outgoing
transition.

As a result, states A and B are replaced by one combined state. In a
business process A and B correspond to a sequence of activities. For example,
a business rule The user must login in the system which can be implemented
by three sequential activities: Set user name, Set password, and Confirm.
Thus, the activities are combined into one state.

A service decomposition is concluded by analyzing the state machine. In
other words, the (most of) potential low level services and their interfaces
are identified. Firstly, if a state has several incoming transitions, it refers to
potential reusable functionality, thus we propose that the activity considered
as a service candidate. Secondly, activities in a combined state might be
good candidates to form a service, since the activities are always executed in
sequence. Thus, the following states are selected as service candidates:

Rule 2: Reuse If a state (or combined state) is reached multiple times, this
implies a potential to reuse, thus it should be considered as a service
candidate.

Rule 3: A business rule/requirement In addition, state actions within
a combined state potentially provide one business task. Thus, they
should be grouped into one service candidate.

Depending on the service granularity, a service candidate might be com-
posed of a (sub)process instead of a single service. In the context of our case
study project, only service interfaces are considered. After identification of
the service candidates, each candidate should be considered separately.

56

After applying the presented rules, the state actions reportException and
setExceptionCode are combined into one state since they are done in a se-
quence without interruption by any other service. They can thus be executed
as one business task.

Table 5.1 presents states, which are reached many times. The first col-
umn shows the state name and the second column shows the number of
actual paths reaching the state. Due to the synthesis process, the number of
incoming transitions may not match to the number of actual paths defined
in the simple scenarios.

These state actions are thus proposed as a starting point for specification
of new services. In addition, the rest of the state actions in the state machine
are grouped within these service candidates as suggested.

State action Incoming
paths

Present
in scenar-
ios

Matching compo-
nent

login 1 8 UserCommand-
Manager

logout 2 8 UserCommand-
Manager

startNewTask 2 7 UserCommand-
Manager

endTask 5 7 UserCommand-
Manager

setPosition 4 4 ContainerPosition
printContainerLabel 2 2 PrintContainerLabel
setSortingItemID 2 2 SortingItem
setContainerID 3 4 Container
setSortingItemDetails 2 2 SortingItemManager

Table 5.1: Service candidates

The resulting components identified were compared with the Speech Guid-
ance System documentation. In the component model, the corresponding
components were identified. In Table 5.1, the last column indicates the ex-
isting component which provides the corresponding functionality. Apart from
UserCommandManager, each service action maps a single component. Thus,
our recommendation on service candidates seems to fit well with the current
implementation. The reason for grouping all the user tasks in the User-
CommandManager component is that a single service for managing the user
interaction is thus provided.

57

5.4 Case study results and conclusions

The case study results were discussed in two interviews with the industrial
software vendor. In this section, analysis on the results is presented.

5.4.1 Analysis

In the first interview, the resulting process model was discussed. According
to the interviews with the software vendor, the resulting process model seems
to be useful in the following ways: (1) it gives the missing definition for the
overall sorting process, including the critical components, (2) it can be used as
a model for guiding maintenance and development, and (3) it seems a good
starting point for WS-BPEL based process implementation. The vendors’
motivation for process-based implementation was to remove the business logic
from the user interface component. However, the resulting process model is
still lacking in mappings to concrete services.

We did not have a deep understanding, as intended, of the system while
applying the scenario-driven approach. Later comparison with the architec-
tural documentation and discussion with the system developers and architects
confirmed that the identified components could provide the key services in
the business process based implementation. The actual implementation of
the business process was not done in the scope of this case study.

The case study included a sub-unit of modeling requirements for the Shop-
ping cart system. The shopping cart functionality utilizes several low-level
data-oriented services each providing standard operations such as save, add,
and remove. After renaming the operations, to distinguish between different
services, the scenarios were synthesized into a state machine. The resulting
state machine contained several overlapping loops and lots of state merges
was done. It seemed obvious that the resulting model was not compatible
for direct mapping into a WS-BPEL description.

5.4.2 Conclusions

The aim of the case study was to provide a starting point for migration
into business process based implementation. The scenario-driven approach
was applied to construct an initial process model for the case study system.
According to the interviews, it seemed a good starting point for process-
based implementation. In addition, the system developers agreed that it can
be used for guiding the system development and improve maintainability.
(RQ2.1)

Service identification is an essential factor in successful SOA projects.

58

From the results of the case study, it can be concluded that the initial pro-
cess model can be used as a starting point for service identification. In the
case study system, the underling legacy system matches quite well with the
proposed service candidates. Furthermore, the analysis presented could be
useful when estimating the required migration effort, i.e. how much modifi-
cations on the existing system is needed. (RQ2.3)

For modeling of low level and/or data-oriented services, the scenario-
driven approach might not be an optimal starting point. Furthermore, syn-
thesis is likely to produce unstructured state machines, which do not allow
direct mapping into WS-BPEL. In addition, unwanted state merges are likely
to produce over-generalization and loss of information. In addition, as already
mentioned, rigorous SOA development and migration issues are not focus of
the study. (RQ2.2)

59

60

Part III

Service development

61

Chapter 6

Scenario mining for service
specification and
re-documentation

In this chapter, a method for mining scenarios from application traces. The
scenarios constructed can be exploited in development of service and client
applications and to support maintenance of existing applications.

Scenario mining is covered in the publication [IV].

6.1 Introduction

A successful effort for mining development rules should be able to differentiate
between application-specific and common parts from the execution trace.
For example, in the case of service families we should be able to distinguish
between varying application-specific parts and common family-specific parts.

Let us consider the eService service family that consists of simple Mul-
timedia Messaging Service (MMS) based services. The business goal is to
support development of a set of similar service-based products that use the
existing MMS platform. The user can invoke an application of the eService
family by sending an MMS message to the service. The eService family in-
cludes services, which allow the user to create and send a postcard or related
mail item from a picture taken with a mobile phone. It supports two alterna-
tive payment methods: charging on the user’s phone bill or on a credit card.
The method used must be chosen during development time. In addition to
MMS, the service family directly uses two external services: a credit card
service and a traditional mail service.

Actual reverse-engineering techniques are not in the focus of this study.

63

It is assumed that traces are gathered using some existing tracing or Web
services monitoring tools. In the following sections, a method for scenario
mining is presented. The eService family is used as a running example of
mining and constructing of scenarios for the service family.

6.2 Method overview

The method for scenario mining is based on tracing existing services systems
to discover common behavioral patterns, which suggest rules for applica-
tion development. Identifying the relevant information, and distinguishing it
from the typically large amount of uninteresting information included in the
traces, is a challenging task. When gathering trace information it is often
necessary to capture only one specific type of interaction. To achieve this
goal the traces are filtered and merged into a state machine. Then, common,
optional, and alternative message sequences are identified based on the state
machine. The resulting message fragments are visualized as scenarios using
UML sequence diagram notation with control structures. In the following de-
scription, scenarios, which present development or design rules rather than
system requirements, are called development scenarios. Figure 6.1 presents
an overview of the scenario mining method.

1. Tracing

Filtering
model

2. Filtering 3. Merging

Scenarios

4. Transforming

S
e
rv

ic
e

d
e
v
e
lo

p
m

e
n
t

C
o
d
e

g
e
n
e
ra

tio
n

Trace

State
machine

Legacy
system

S
e
rv

ic
e

id
e
n
tific

a
tio

n

Figure 6.1: Overview of the scenario mining method

Construction of development scenarios for an application includes the
following steps:

1. Tracing of applications that use the system.

2. Filtering the traces and categorizing participants into two groups (i.e.
the application classes and the system classes).

3. Merging the filtered traces into a state machine.

64

4. Transforming the state machine into development scenarios.

In the tracing step, traces are gathered from running existing applications.
In the filtering step, the traces are filtered so that only direct interaction
between application and system classes is saved. In the merging step, the
traces are synthesized into a state machine presenting the merged view of the
application behavior. Finally, the state machine is transformed into scenarios
that present development rules for the application.

The presented method is not restricted to client-service type of applica-
tions, but it can be applied to construct scenarios for any type of application
that interacts with the system. As shown in Figure 6.2, internal structure
of the system is ignored. The method presented can also be used in service
interface mining, i.e. incoming requests in the resulting scenario show the
public methods provided by the application.

SystemApplication

black box

Figure 6.2: Interacting entities

In the following sections, we explain the method in detail and introduce
the developed implementation.

6.3 Tracing and filtering the application traces

First, the execution traces are constructed using some tracing or monitoring
tool. Instrumented code can also be used. Typically, the resulting traces
contain large amounts of information and the interesting interaction occurs
only between particular parties, such as a service and its client applications.
So as to be able to limit the amount of trace information, those two parts
need to be identified and distinguished from the trace. A static UML class
model is used to to divide the classes in two categories: application classes
and other classes. It is called a filtering model. It includes two UML packages.
Classes belonging to the subject application are placed in one package and the
system classes are placed in the other package. Thus, the resulting filtering
model defines a structural model of the analyzed trace. The filtering model is
used to automatically remove all unnecessary method calls that do not occur
directly between the two parties specified in the filtering model. In addition,

65

all operation calls inside one group, for example subroutine calls inside the
application, are omitted.

During the filtering step, a sequence diagram for each trace is gener-
ated. In the sequence diagram, all method calls only occur between two
participants which correspond to application and system packages. The ac-
tual participants inside the packages, the message senders and receivers, are
saved to be used later for creating the actual development scenarios. By us-
ing that information the final scenarios are expanded to contain the original
participants.

For example, in Figure 6.3, traces gathered after running two different
existing eService applications are shown.

1. Tracing

Figure 6.3: eService traces

As shown in Figure 6.3, the eService traces include all the system interac-
tions. However, the interesting part of the trace is direct interaction with an
eService application. To filter out unnecessary information a filtering model
is constructed. It consists of two packages: eService and extServices. The
filtering model is presented on the left-hand side of Figure 6.4. In the filter-
ing step, all the classes interacting with eService (MMS, Mail, CreditCard,
Print) are replaced by one class, extServices. As a result of the filtering,
messages occurring between extServices classes are removed because they do
not directly involve the eService class. The filtered traces are shown on the
right-hand side of Figure 6.4.

66

Filtering model
Filtered traces

2. Filtering

Figure 6.4: Filtered eService traces

6.4 Merging the filtered traces into a state

machine

Usually, a single application trace shows only a partial view of the system
behavior. For example, the user’s choices might affect the program execution.
To get more accurate and complete information, the application traces need
to be merged. To synthesize the traces, the MAS tool, presented in Section
2.7.2, is used.

The input of a synthesis algorithm consists of participating objects and
messages between them. Each send method call is mapped to a state action
and each receive method call is mapped to a state transition. The result-
ing state machine is synthesized based on scenarios representing the system
execution traces. It thus represents the overall system behavior.

For example, to identify the common and varying message sequences for
the eService family, the filtered traces are first synthesized into a state ma-
chine. The resulting state machine is shown in Figure 6.5. The variation in
the execution traces results in a branching point in the state machine.

The size of the generated state machine depends on the length and similar-
ity of the input traces. Without generalizations, every synchronous method
call is translated to its own state having one outgoing transition (i.e. re-
turn of the call). During the generalization process, states calling the same
method are merged if possible.

67

3. Merging

Figure 6.5: Merged eService traces

6.5 Transforming the state machine into sce-

narios

In the final step, the development scenarios are constructed from the syn-
thesized state machine utilizing participant information given in the original
traces. In addition, common behavioral patterns are identified from the state
machine. The patterns include optional, alternative, and recurring message
sequences. These patterns are translated into UML combined fragments.

The model transformation is implemented using Atlas Transformation
Language (ATL) [17]. ATL is used to define mapping between state machine
and UML sequence diagram constructs. The transformation is implemented
by constructing a sequence of send and receive messages by navigating the
state machine diagram and applying predefined transformation rules. The
transformation rules are listed in Table 6.1. State machine constructs are
given in the left-hand column and corresponding UML sequence diagram
concepts are listed on the right-hand column. First of all, the transforma-
tion generates a Collaboration, an Interaction, two Classes (application and
system), two Properties referring to the generated Classes, and two Lifelines
representing the created Properties. For each state action, a sent Message
and a reply Message are created to represent a synchronous operation call.
A similar transformation is applied to state transitions. The messages gener-

68

ated are grouped inside combined fragments. For instance, multiple outgoing
transitions are grouped in alternative fragments.

State Machine UML2 Sequence Diagram

State Machine Collaboration, Interaction, Lifeline,
Class, Property

State action Message, Operation of Class

State transition Message, Operation of Class

Multiple outgoing transitions
from a State

Alternative CombinedFragment
(alt)

State which is unnecessary to
be passed through

Optional CombinedFragment (opt)

Loop structure Loop CombinedFragment (loop)

Table 6.1: Mapping between state machine and UML sequence diagram con-
structs

The final scenario is constructed based on the state machine by using the
original participant information found from the original traces. It is shown
in Figure 6.6.

Use of combined fragments enables grouping of sequence diagrams in a
compact structure. However, in practice a sequence diagram with more than
four or five levels of nested fragments cannot be easily understood. To reduce
the number of nested layers in the resulting development scenario, it was
decided to disconnect SCCs into separate loops.

An algorithm developed for removing the edges that connect loops into a
SCC contains three step. In step i, a depth-first search in a state machine is
performed to derive a depth-first spanning tree, where the edge x→y between
states x and y is marked as a sp-back edge if y = x or y is an ancestor of x in
the spanning tree [64]. sp-back edges result in loops and thus form a SCC.
In step ii, one of the sp-back edges that is connected to the largest number
of loops is chosen for removal. If there are several edges connecting to the
same amount of loops, the algorithm randomly chooses one of the edges to
be removed. Steps ii and iii are repeated until the state machine diagram no
longer contains nested loops. An example of running the algorithm is shown
in Section 8.1.3.

6.6 Summary

Application traces are filtered to remove unnecessary operation calls. The
resulting traces contain only direct communication between interested par-

69

4. Transforming

Figure 6.6: Transforming into eService scenario

ties, e.g., the client and the service. To construct the actual rules for their
communication, the filtered traces are merged and transformed into scenar-
ios.

The constructed scenarios present development rules for an application,
i.e. a sequence of mandatory and optional operation calls. They can be used
for guiding the development of future applications, for re-documentation,
and for comprehension purposes. In the following section, an approach and
tool support for applying the constructed scenarios for generating application
code is presented.

6.7 Limitations

In some cases, the scenarios constructed might also accept paths, which are
not shown in the original scenarios. This is the result of over-generalization
made by MAS, when run in fully automatic mode.

In case of connected loop structures, simplifying the development scenar-
ios is carried out by removing edges from the state machine. Thus, it means
that those invocations do not appear in the resulting scenarios. The infor-

70

mation on the removed edges is stored and can be used for later revising of
the scenario. Furthermore, SCCs can result in the over-generalization made
by MAS. Thus, the removed edges are not part of the original traces and no
harm is done.

However, in the context of our application we do not consider these two
issues to be a major problems. We recommend analyzing the resulting sce-
nario and revising it if needed. Moreover, if the proposed method is used for
interface mining the issues are irrelevant, the service interface can be con-
structed by collecting the state transitions (received messages) directly from
the synthesized state machine.

71

72

Chapter 7

Scenario-based service
realization

Usually, service realization includes utilization of existing APIs, libraries or
services. The use of existing software requires learning and knowledge about
the system to be used. For example, to build a Web service client with an
existing API, requires knowledge on which API calls are needed and in which
order they should be invoked.

As shown in the previous chapter, knowledge on system usage can be cap-
tured as development scenarios. In this chapter, a method and tool support
to exploit the development scenarios as reusable patterns to be used for code
generation is described.

This topic is covered in publication [V].

7.1 Introduction

Service realization requires following development regulations. On the one
hand, these rules arise from exploiting a certain API, library, or framework.
On the other hand, any integration needed with existing legacy system places
some requirements on the new services developed. For example, in a devel-
oper’s guide the API usage is typically described by giving a couple of exam-
ple applications and some example code fragments. The examples are often
sequential in their nature and they are suitable to be described as scenarios.

In Section 6.1, a development scenario for the eService family was con-
structed. The scenario defines the required service operations and the inter-
action supported by an eService application. In this chapter, the example
is continued by using the development scenario constructed for building an
eCard service. It allows creation of a postcard from a picture taken with a

73

mobile device. From the two alternative payment methods the first alterna-
tive, which charges the customer’s SIM card, is chosen. The development
scenario constructed is used as the basis for the implementation. The devel-
opment rules are defined as follows. In order to initialize a new eCard, the
service interface must provide a create method. For the payment it invokes
MMS service chargeSim operation. To put the eCard on delivery the ser-
vice invokes the deliver operation in Mail service. Finally, the eCard service
notifies the MMS service by invoking the delivered operation.

In the following sections, the application code generation based on the
development scenarios is discussed in detail. In addition, tool support that
can be used to manage variations, such as alternative and optional blocks, in
the development scenarios is proposed.

7.2 Method overview

Scenarios can be used to capture system requirements and development rules
as described in the previous sections. Next, a method for using scenarios for
the generation of application code is presented. To start with, the develop-
ment scenarios can be constructed manually or created with an automatic
scenario mining method such as the one described in Chapter 6. It is as-
sumed that the scenarios are presented as one UML sequence diagram that
can contain control structures such as combined fragments and nested in-
teractions. Control structures captures variation points in the scenarios, for
example, alternative and optional branches.

For the code generation, the scenarios are translated into generative Inari
(described in Section 2.7.1) patterns. The detailed configuration of an Inari
pattern is explained in the next section. A particular pattern can be applied
multiple times, for example, when developing several client applications for a
target API or service. Code generation is based on the creation of the default
Java elements associated with the pattern roles. As a result of applying a
pattern, a skeleton code for the application is generated. An overview of the
method is shown in Figure 7.1.

7.3 Inari pattern generation

Java-specific Inari patterns are defined as a configuration of Java class roles,
operation roles, and code fragment roles. Each role is associated with a car-
dinality, which specifies the number of concrete elements that can be bound
to a given role. The default cardinality value is one. Other possible cardi-

74

Figure 7.1: Overview of the code generation method

nalities are: ’?’ for optionality, ’+’ for at least one and ’*’ for zero or more
occurrences. Dependencies, defined between two roles, specify the order in
which the elements should be bound. The additional role type XOR presents
two alternative development options. While instantiating a pattern, pattern
roles are transformed into tasks. By performing the proposed tasks the user
can automatically create the default elements, namely Java code fragments.
The user can also choose to perform all the mandatory tasks automatically.
To enable traceability, the pattern also saves the role bindings to the concrete
elements.

For example, an Inari pattern created based on the eService family de-
velopment scenario is shown on the right of Figure 7.2. It consists of a Java
class role, a Java method role and six code fragment roles. In addition, a
branching point is presented as a XOR role in the pattern.

The following listing shows rules for transforming development scenarios
into Java roles including associated default Java elements:

1. As a starting point an empty Inari pattern is created.

2. For the application object a class role is created. The associated default
element is a Java class template and a main method.

3. For each sub-interaction, a method role is generated. The default ele-
ment is a private Java method with the same name as the interaction
name.

4. A send message fragment produces a method invocation in the code
template of the parent method role. The operation signature, as well as
the required parameters, are found from the static part of the sequence
diagram.

75

Figure 7.2: Translating a scenario into pattern roles

5. A receive message fragment produces a method role in the parent class
role. The default element is a public Java method with the same name
as the interaction name. The operation signature is created based on
the static part of the sequence diagram.

6. An interaction occurrence fragments (a reference to another interac-
tion) creates a method call in the parent role’s code template.

7. A combined fragment presents a control structure, which requires user
input and thus it generates a new task in the pattern. For the op-
tional and loop fragments, a new code fragment role is generated. The
optionality is translated into cardinality of 0..1 while the cardinality
for a loop is 0..*. An alternative fragment presents a branching point
and produces three new roles: a XOR role (a special role that allows
the user to choose between two tasks) and two operand roles for the
alternative tasks.

8. For each code fragment role an insertion tag (a place holder) is added
in the original code fragment of the parent role.

In addition to the above mentioned rules, a UML element can be associ-
ated with an alternative code fragment to be used as a default Java element.

76

This is done with a specific <code> tag defined in the element’s property
sheet provided by the UML editor.

7.4 Code generation

In Section 8.2, a case study to provide code generation for different applica-
tion clients using a specific programming API is discussed. In the following,
the basic code generation principles used in this study are discussed.

Each synchronous message produces a synchronous message invocation
(e.g., stub._setProperty(name, value)) and a create method creates a
new object (e.g., name = new QName(name, value)). Each message frag-
ment specifies possible parameter values for a send message and a return
value for a receive message. If a non-void return value is specified, a sub-
stitution is created accordingly. A static method invocation references the
corresponding class (e.g., Factory.getInstance()). In addition, each inter-
action (translated into a Java method) may introduce some local variables
and parameters.

For simple data types UML data types (String, Integer, Boolean and
Unlimited natural), which are built into the CASE-tool, is used. During the
code generation, they are mapped to corresponding Java primitive types.
Any complex data types, which are used in the interactions, must be defined
in the static part of the UML model to create the corresponding Java classes.

Code defined by the message fragments is placed as code templates in the
Java roles. Code templates are used to generate the actual Java code for the
application. When applying the generated pattern, a Java class including its
methods and code fragments are generated.

For example, code generation for a eService application include genera-
tion of the public interface and simple application logic. eService pattern,
shown on the left of Figure 7.3, can be used to create Java code for a service
application as described below. Unbound pattern roles appear to the user
as a “to-do” task list. The first task is to provide a Java class EService and
a public create method. On the right of Figure 7.3, the corresponding Java
code is shown. Next, the Inari user must select between two alternative pay-
ment options. If she selects the right branch, she must perform three tasks:
’Provide invocation chargeSim’, ’Provide invocation deliver ’ and ’Provide in-
vocation delivered ’. The generated stub code for the create method includes
insertion tags for code fragment roles appearing as child roles for the cre-
ate method role (e.g. #insertChargeSim). By performing the tasks, code
fragments for the method invocation are generated after the insertion tags.

77

Figure 7.3: Applying eService pattern for code generation

7.5 Discussion

The code generation rules might be slightly different depending on the ap-
plication context. The following three application types, at least, can be
distinguished: (i) application clients (only application logic, no call-backs),
(ii) interfaces (public methods), and (iii) services (public methods and ap-
plication logic). The first two types, an application client and interface, are
straightforward and can be considered as a simplification of the third appli-
cation type.

Inari patterns are used to capture design-time variation of a role configu-
ration. When applying the pattern, the variation points are fixed by the Inari
user. The presented code generation rules thus support only simple static in-
teractions between the application and the system. In the method presented,
support for dynamic interactions, i.e. creation of control statements, is not
considered.

78

Chapter 8

Scenario-based service
development - Case studies

In this chapter, two case studies on constructing and using scenarios for
application development is presented. The first case study utilizes the method
presented in Chapter 6. In the second case study, the method presented in
Chapter 7 is applied.

8.1 Mining design rules for JAX-WS API

In this section a case study on automated mining of scenarios from application
traces is presented. The case study utilizes the approach presented in Chapter
6 for mining design rules implied by JAX-WS API.

This case study is presented in detail in publication [IV].

8.1.1 Case study introduction

The purpose of this case study is to apply the scenario-driven approach for
re-documentation and specification of development rules.

Problem statement and context

Web service development usually exploits some existing frameworks or soft-
ware libraries. Use of existing services or APIs requires knowledge of the
system to be used.

Java Web Services Developer Pack (JWSDP) [63] is an example of a tool
package used to develop Web applications. It includes Java API for XML
Web Services (JAX-WS), which is a technology for building Web services and
clients that communicate using XML. It supports three kinds of stand-alone

79

Web service clients: Static Stub, Dynamic Proxy, and Dynamic Invocation
Interface (DII) clients.

An assignment in a graduate course ”Web service development techniques”
at the Tampere University of Technology include the building of three dif-
ferent JAX-WS client applications. Each client uses Google SOAP Search
API [21] that provides three operations for submitting queries to Google.
The client applications can make a typical Google search, to access cached
pages, and to query a Google’s spelling suggestion. In this case study, the
aim is to extract JAX-WS rules by tracing these applications.

Case study design

In this case study, the method described in Chapter 6 for mining develop-
ment scenarios is applied. The case study focuses on the following research
questions:

RQ3.1 How can development rules be captured as scenarios?

RQ3.2 How can scenarios be constructed automatically from appli-
cation traces?

Conduction of the case study includes the following steps:

1. Select the applications.

2. Construct the filtering model.

3. Gather and filter the traces.

4. Synthesize the traces and construct the scenarios.

5. Compare the resulting scenarios with the instructions found in a de-
velopment guide or tutorial. Alternatively, compare the results with
existing manually constructed scenarios.

Execution of the case study is presented in the following sections.

8.1.2 Tracing and filtering

To construct the development scenarios nine client applications utilizing
Google SOAP Search API Web service is used. The applications include
three implementations for each type of standalone clients, namely, Static
Stub, Dynamic Proxy and Dynamic Invocation Interface (DII) clients.

80

In the first step, Eclipse TPTP [18] is used to monitor the client applica-
tions and to produce three execution traces for each type of JAX-WS clients.
The produced traces include information on participating classes and a se-
quence of messages sent between them. Each trace concerns one type of API
usage. In this case study report, DII client, which is a fully dynamic Web
service client and requires no generated stub classes, is used to illustrate the
case study execution. A complete report can be found in publication [IV].

To construct a filtering model a case tool is used to reverse engineer the
source code classes into UML. The classes are organized into two packages.
The Application package includes all classes created by the application devel-
oper, and the API package contains reverse engineered JAX-WS API classes.
The traces are filtered using the filtering model as described in Section 6.3.
As a result the filtered traces include two participants: Application and API.
As an example, a part of one filtered trace for DII is shown in Figure 8.1.

DIIClient : Application JAX-WS : API

newInstance1:

createCall5:

QName3:

setTargetEndpointAddress7:

newInstance2:

<<return>>

createCall6:

<<return>>

<<return>>

Qname4:

setTargetEndpointAddress8:

<<return>>

Figure 8.1: A filtered trace

8.1.3 Merging and constructing scenarios

To identify common and application specific parts, the filtered traces are
merged into state machines as described in Section 6.4. The aim is to con-
struct intuitive scenarios. Thus, a state machine is constructed for each client
type separately instead of merging all the traces.

81

The scenario construction follows the guidelines presented in Section 6.5.
The state machine for DII clients includes SCCs, which need to be removed
using the Tarjan algorithm. For example, the edges q8→q2, q3→q2, and
q9→q2 in Figure 8.2 are sp-back edges that form loop1<q2, q6, q7, q8>,
loop2<q2, q3>, and loop3<q2, q10, q11, q9> containing a subloop <q9,
q2>. All the loops are connected with each other and therefore they form
an SCC. The algorithm removes transition q9→q2 on the first round. The
state machine still contains an SCC and the algorithm goes back to step ii
and chooses the edge q3→q2 to be deleted. After that, the state machine
contains no SCCs and the algorithm stops.

setTargetEndpointAddressdo /

q7

setOperationNamedo /

q10

setReturnTypedo /

q9

createServicedo /

q3

addParameterdo /

q11

setPropertydo /

q8

QNamedo /

q2

invokedo /

q12
newInstancedo /

q1

createCalldo /

q6

q0 q5

Figure 8.2: State Machine for the DII Clients

A development scenario constructed for DII client is presented in Figure
8.3. The scenario starts with a mandatory part in which a service object
is initialized. While transforming the state machine into a scenario, loops
are placed in separate sub-scenarios (shown as ref fragments in the figure).
Inside loop1, a call object and a method parameter are both created and
the target endpoint address is set. A nested loop fragment is used to set
properties defining a SOAP binding style. The invoked operation signature
is defined at runtime. It includes defining the operation name, parameters,
and the return type. In Figure 8.3, this is done in the second outermost alt
fragment in two alternative ways.

As an example of over-generalization during the state machine synthesis,
the diagram allows the passing the first operand without defining the return
type, which is defined inside opt fragment. In addition, the second operand
passes the operation name definition. After specifying the operation signa-
ture, the actual service invocation is done (invoke method in the figure).
Placing of the last message in the outermost alt fragment is due to a deleted

82

edge from the state machine (Figure 8.2 q3→q2). In addition, because of
over-generalization, the original state machine allowed the calling of a ser-
vice before invoking createService. To avoid this kind of misbehavior it is
possible to run MAS in an interactive mode and to mark the invalid paths.
Naturally, this would require some knowledge of the API.

Figure 8.3: A DII client development scenario

8.1.4 Case study results and conclusions

The result of comparing the scenario with existing scenarios constructed man-
ually based on the J2EE tutorial is presented below.

Analysis

As a result three scenarios were constructed, namely, for a Static Stub, Dy-
namic Proxy, and DII clients. The resulting scenarios were compared with

83

the existing scenarios, which were constructed manually based on the J2EE
tutorial. Scenarios for Static and Dynamic clients followed the guidelines
given in the tutorial. The DII scenario was not a complete match due to the
removal of overlapping loops. Otherwise, it captured the development rules.

In the filtering step, the number of message calls in traces were reduced
significantly. Furthermore, when the traces are synthesized into the final
development scenario, some of the calls are merged and recurring sequences
are collapsed into a loop fragment. Thus, the number of total calls can
be even less than in separate traces. The number of message calls while
conducting the case study is presented in Table 8.1.

Client type Traces Filtered traces Development scenarios

Static
4751 3

43052 3
6183 3

Dynamic
5926 5

96156 27
5932 5

DII
2287 16

112305 17
2295 16

Table 8.1: Number of method calls in different steps

Conclusions

A challenge when constructing development scenarios is the ability to rec-
ognize a type of interaction that determines the development rules we want
to capture. In addition, the resulting development scenarios should be able
to distinguish between application specific and common mandatory interac-
tion. To understand the overall picture, it is essential to keep the size of the
development scenarios as small as possible. In addition, the usage of sub-
interactions and control structures raise the abstraction level, which makes
the scenarios more structured and easier to comprehend. (RQ3.1)

In the case study, the scenario mining method is used for automatically
constructing the development scenarios. By using the filtering model, the
number of message calls in the traces is reduced significantly during the fil-
tering step. To identify optional and mandatory parts, the traces are merged.
In the final step, the state machine is transformed into a UML sequence di-
agram with control structures. (RQ3.2)

84

8.2 Code generation for JAX-WS API based

applications

In this section a case study on using scenarios for code generation is pre-
sented. The method presented in Chapter 7 is applied for Web service client
development with JAX-WS.

This case study is presented in detail in publication [V].

8.2.1 Case study introduction

The purpose of this case study is to apply the scenario-driven approach to
service realization.

Problem statement and context

JAX-WS supports three kinds of stand-alone clients: Static Stub, Dynamic
Proxy, and Dynamic Invocation Interface (DII) clients. Guidelines for client
development with JAX-WS are described in J2EE Tutorial [62]. The three
alternative application types are explained as textual descriptions, code ex-
amples, and application examples. The developer needs to become familiar
with this documentation. For beginners, instead of trying to understand
the JAX-WS API, the easiest way to get started is often to copy a sample
application and modify that to match their own purposes.

In this case study, JAX-WS API rules are captured as scenarios which
can be used to guide the application development. Instead of copy and paste
programming, the target is to directly apply the development rules for code
generation.

Case study design

As a starting point, a tutorial or developer guide is used to construct the
scenarios. If running applications are already available, the scenario mining
approach, defined in Section 6, can be used to construct the scenarios. This
case study is carried out following the method described in Chapter 7. The
case study focuses on the following research questions:

RQ4.1 How can scenarios be used in service realization?

RQ4.2 How to use scenarios to generate application stub code?

Conduction of the case study includes the following steps:

85

1. Construct a scenario which captures the desired design or development
rules.

2. Transform the scenario into a generative pattern.

3. Apply the pattern to generate application code.

4. Compare the resulting application code with the instructions and ex-
ample code found from a developer guide or tutorial. For evaluation,
estimate the amount of generated code versus the need for manual ef-
fort.

Execution of the case study is described below.

8.2.2 Constructing development scenarios

The development scenarios for each client type were constructed based on
examples given in J2EE tutorial. In this experiment, UML sequence diagrams
with control structures were used. One scenario with three alternative sub-
scenarios, one for each client type, was thus defined.

A structure for the defined scenario is shown in Figure 8.4. It consists of
one main scenario (ClientApplication), with three alternative sub-scenarios.
Each subscenario specifies one type of a client application: Static Stub, Dy-
namic Proxy, or DII client.

8.2.3 Pattern-based code generation

The development scenario is transformed into a generative pattern according
to the mapping presented in Section 7.3. The pattern is capable of capturing
alternative development scenarios. It can thus present development rules for
Static Stub, Dynamic Proxy, and DII types of clients. When applying the
pattern, the Inari user selects the desired client type. By completing the
proposed tasks, Java code (a Java class, methods, and attributes) for the
client is generated according to the API rules.

The code fragments associated with the pattern roles follow the code
generation principles described in Section 7.4. The following code listing
shows the code generated for a Static Stub client with basic authentication
and one service invocation. The insertion tags, which are placeholders for
the inserted code fragments, are shown between the code lines.

86

Figure 8.4: A client development scenario

87

Figure 8.5: A ClientApplication pattern

88

II public class MyStaticClient {

II //#insertStaticStub

III Stub stub;

II public static void main(String[] args) {

III private String endpointAddress = args[0];

II try {

IV stub = (Stub) (new MyHelloService_Impl().getHelloIFPort());

II //#insertProvideAuthentication

II //#insertBasicAuth

I,II basicAuth(args);

II //#insertCertificateAuth

I stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,

I endpointAddress);

IV HelloIF serviceIF = (HelloIF)stub;

II //#insertServiceInvocation

I serviceIF.sayHello("Duke");

II } catch (Exception ex) {

II ex.printStackTrace();

II }

II }

I,II public void basicAuth(String[] args) {

...

}

II }

The code lines constructed can be grouped as follows:

Group I) generated directly as specified in the interaction fragment,

Group II) defined or interpreted in the pattern generation procedure,

Group III) variable definitions, specified inside <code> tags in documenta-
tion field of each interaction diagram, and

Group IV) defined in the documentation field of a message or added man-
ually by the developer.

8.2.4 Case study results and conclusions

Analysis of the resulting application code is presented below.

Analysis

The composed Inari pattern captures the development of three alternative
JAX-WS client application types. In this case study, the pattern was applied
for creating a Static Stub client.

89

The resulting code is a “runnable” Java program. A major part of the
application code can be generated from the scenario information together
with the code generation rules implemented in the pattern creation procedure
(i.e. groups I and II in the code listing). As a limitation in the current
implementation, required variable declarations need to be defined explicitly
in the scenario’s property sheet or added manually in the generated Java
class. The same applies to object casting.

Conclusions

In the case study, scenarios were used for Java code generation. Scenarios
were transformed into generative patterns associated with Java code frag-
ments. By applying a pattern, the associated code was generated. (RQ4.1)

Generative patterns can be used to generate stub code from the scenarios.
The code generation can be used for generation of a simple application based
on the interactions specified in a scenario. The code generation, especially,
supports creation of public methods and method invocations. (RQ4.2)

90

Part IV

Related work and conclusions

91

Chapter 9

Related research

9.1 Background of the scenario-driven devel-

opment

9.1.1 Scenario synthesis

State machine synthesis from sample scenarios has been widely studied, e.g.
in [9, 24, 67, 76, 78]. An automatic method to generate UML statecharts
from a collection of UML sequence diagrams has been applied by Whittel et
al. [76]. Since the set of sequence diagrams is usually incomplete and does not
contain enough information for synthesizing appropriate statechart diagrams,
they express the additional information in a form of pre and post conditions,
expressed in Object Constraint Language (OCL). This additional information
is added to the sequence diagrams to guide the synthesis process. Damm
et al. have presented Life Sequence Charts (LSCs) [15], which have been
synthesized from state-based systems by Harel et al. [24]. In [9], Bontemps
et al. have also used LSCs as a basis for the behavior synthesis.

The well-known problem of over-generalization can be handled in various
ways. In [39,40], MAS handles this prior to or during the synthesis when run
in an interactive mode. The over-generalization problem has been acknowl-
edged (e.g. by Uchitel et al. [67]). In [67], Uchitel et al. call unexpected
interactions as “implied scenarios”. They have presented an algorithm which
synthesizes a behavior model as a labeled transition system (LTS), describing
the closest possible implementation based on basic and high-level Message
Sequence Charts (MSCs). In addition, they propose a technique for detecting
the implied scenarios. Another way to tackle the over-generalization prob-
lem is to run the scenarios against the existing behavior models to check the
correctness of either the initial scenarios or the behavior specification.

93

In [26], Harel et al. have presented an approach to execute and analyze
scenario-based behavior. The approach aims at helping the modeller to refine
and possibly correct the behavior specifications. Their so-called “Play-Out”
algorithm executes scenarios and keeps track of user and system events. The
algorithm is implemented in the Play-Engine tool [25].

9.1.2 Scenario-based approaches for constructing ser-
vice compositions

Some scenario-based approaches for defining simple Web service communi-
cation have been presented in the literature. In [11], Casella et al. have used
UML sequence diagrams to define agent communication. This approach only
supports simple message exchange. Messages produce only invoke and re-
ceive activities in a WS-BPEL description. The approach does not aim at
constructing any complicated WS-BPEL structures.

A template-based methodology for Web service compositions construction
has also been proposed by Karastoyanova et al. in [33]. They use coordi-
nation protocols to define Web service communications. A protocol contains
one coordination controller role, which is responsible for communication with
the workflow engine. Interactions are marked with a keyword, which defines
the type of activity. A coordination protocol defines a possible message se-
quence and thus it is quite close to sequence diagram notation, which is also
used in our approach.

The approaches presented in [11] and [33] do not include synthesis of dif-
ferent scenarios nor provide support for use of any control structures. Instead
of business process models, the approaches can be used to express simple in-
teraction and service compositions.

9.2 Business process development

9.2.1 Process modeling using UML state and activity
models

In [19], Evans et al. propose a unified superstructure for UML state machines
and activity diagrams. This means that they provide mapping between UML
state machine and activity constructs. The proposed approach is general pur-
pose and independent of any domain or application context. In our approach,
a direct transformation from a state machine into an activity model does not
provide a result compatible with WS-BPEL profile. Thus, in our approach
domain-specific mappings are defined, meaning that the resulting activity

94

diagram is created according to WS-BPEL profile rules and it is customized
with WS-BPEL specific stereotypes and structures. The resulting activity
model thus supports generation of WS-BPEL descriptions.

In some approaches, state machines have been used for modeling business
processes. State-oriented approaches have proven to be especially successful
for modeling high level human-driven workflows as described in [59] by Shi et
al.. They have also implemented a model transformation from state diagrams
to WS-BPEL. However, UML activity diagram notation provides many of
the workflow modeling constructs and is closer to BPMN. It is often used
for process modeling by IT professionals. Mainly for these reasons, activity
models are used for workflow modeling in this study.

9.2.2 Process and decision mining

As explained in [69, 71] by van der Aalst et al., business process mining
aims at the automatic construction of process models based on monitoring
existing systems. In process mining, the process behavior is identified from
the observed event log. The event log, i.e. the trace, defines the possible
execution paths, which are merged into a state machine presentation. In the
scenario-driven business process modeling method, it is not expected to have
existing and running services or processes already available. Still, process
mining has similar motivation to the scenario-driven method and similar
techniques are used.

In scenario mining, invisible tasks, which belong to a process model but
which cannot be found from the event log, must be usually constructed man-
ually. Similarly, in this study copying of process variables and evaluation
criteria for decision nodes must, for example, be created manually.

Decision mining aims at automatically detecting decision points, i.e. how
data dependencies affect the process flow. Decision mining approaches are
usually applied to initial process model, which might be a result of applying
some process mining algorithm. The effect of the data attributes values on
the process routing is studied in [52] by Rozinat et al.. In the study, decision
points are turned into a learning problem and machine learning techniques,
such as decision tree, have been applied to Petri net based models.

In [70], van der Aalst et al. decision mining techniques have been applied
for restructuring of WS-BPEL specifications into more structured and read-
able form. In the case of Sketch, detection of WS-BPEL specific patterns
can also be considered a type of restructuring.

Rozinat et al. have also applied process and decision mining techniques
for conformance checking as described in [53]. The approach aims at finding
inconsistencies between the event log and the corresponding process model.

95

9.2.3 WS-BPEL generation from graph-based models

Several transformation approaches to generate WS-BPEL code from graphi-
cal models like BPMN and UML activity models exist [10, 27, 31, 32, 38]. In
this thesis, the BPELGen tool to generate WS-BPEL descriptions from UML
activity and class models is presented. Also, a UML profile for WS-BPEL is
defined in detail in [51]. By following the profile, a UML model can be used
as a source for transformation into WS-BPEL. To enable the scenario-driven
approach, the BPELGen tool is integrated with the Sketch tool.

However, graph-based business process models are not automatically com-
patible with XML-based block-oriented WS-BPEL. The issue of handling un-
structured models has been studied earlier. In [7], L. Garciano-Banuelos uses
SQPR-tree decomposition techniques for translating BPMN models to WS-
BPEL code. In [58], C. Sandberg presents a tree-based calculation approach
for eliminating unstructured loops. Tree-based calculation produces several
distinct parallel branches in the process model. A drawback to this is that
some information might get lost or the result is not very intuitive. Espe-
cially, if some manual process refinement is needed readable process models
are highly valued. Thus, Sketch tool does not further transform unstructured
state machines.

9.3 Service-oriented software development

IBM has proposed a Service-Oriented Modeling and Architecture (SOMA)
[4, 5] framework for service-oriented development. It includes identification,
specialization, and realization of services to be used to form composite ser-
vices and business processes. However, SOMA describes an abstract frame-
work rather than a concrete method or tool support.

OMG has proposed a specification of Service oriented architecture Mod-
eling Language (SoaML) [50]. SoaML consists of an extension to UML to
support model-driven development of SOA. The specification does not pro-
pose any particular development method, but instead proposes a consistent
way of describing the service consumer and the provider concepts, as well
their interaction and the agreements between them. For specification, sev-
eral UML diagram types are used, including collaboration and sequence di-
agrams. SoaML supports modeling requirements for service-oriented archi-
tectures, including the system specification, the specification of individual
service interfaces, and the specification of service implementations. The ap-
proach supports the generation of derived artifacts based on a common meta-

96

model and a UML profile. Realization of this approach still remains to be
achieved by tool vendors.

In comparison to above mentioned approaches, the scenario-driven ap-
proach describes a concrete method and implementation. In addition to tool
support, it includes description of the conducted case studies.

A Domain Specific Language (DSL) is a language designed specifically to
express concepts in a specific domain. Applying DSLs in the context of SOA
have been studied [44]. In the scenario-driven approach domain concepts are
presented as stereotyped UML elements (process, WSDL, etc.). Compared to
DSLs, the scenario-driven approach is a lightweight approach utilized using
existing UML editors, UML2, and UML profiling mechanism. Thus, the
approach is not dependent on a specific DSL tool, but the modeling can be
done with any UML editor supporting the UML2 metamodel.

97

98

Chapter 10

Summary of the included
publications

This thesis includes five publications. In this chapter, the publications are
summarized and the author’s contribution to each of the publications is de-
fined.

[I] In the paper Variation Needs in Service-Based Systems, a development
process for a provider, called SPDP, is presented. SPDP provides a
framework for a new service-based products. In addition, variation
needs in the service-oriented development are discussed in the context
of the SPDP phases. As an example application, development for an
eCard product is presented. The author of this thesis is one of the
main authors of this paper. In particular, the author was responsible
for constructing the eCard service example.

[II] In the paper Scenario-Driven Approach for Business Process Develop-
ment, a scenario-driven approach for WS-BPEL based business process
development is presented. Here, simple scenarios are used to present
functional business requirements. They are synthesized into a state
machine, which is further transformed into a WS-BPEL specific work-
flow model. The resulting workflow model, given as a UML activity
model, enables mapping into WS-BPEL code. In the paper, a proto-
type tool, called Sketch, is presented. The Sketch tool supports the
scenario synthesis and construction of WS-BPEL compatible models.
The paper includes an industrial case study. The author of this thesis
is the main author of this paper, and she has developed the method in-
troduced in the paper, as well as designed and implemented the Sketch
tool, and conducted the case study. The second author, Timo Kokko,
has participated in planning the case study and analyzing the results.

99

[III] In the paper Modeling and Generating Mobile Business Processes, a
model-driven approach for modeling and generating WS-BPEL descrip-
tions for mobile business processes is presented. As a modeling nota-
tion, UML class and activity diagrams are used. The paper defines
rules for mapping UML models into WS-BPEL code, as well as devel-
oped tool support for generating WS-BPEL and WSDL descriptions
from UML models. The proposed method was developed in collabora-
tion by the author of this thesis and Lasse Pajunen. The author has
implemented a prototype tool called BPELGen. She is also the main
author of the paper. The work has been carried out at NRC. Lasse
Pajunen was the author’s supervisor and project manager at NRC.

[IV] In the paper Constructing Usage Scenarios for API Redocumentation,
an automatic approach for scenario mining from application traces is
presented. To focus on a particular type of interaction, a filtering model
is introduced. It is used to filter out uninteresting message exchange.
The author of this thesis has developed the proposed method with Jo-
hannes Koskinen and Juanjuan Jiang. The author was also responsible
for conducting the case study. In addition, she has developed part of
the tool support presented in the paper.

[V] In the paper A Pattern-Based Approach to Generate Code from API
Usage Scenarios, a scenario-based approach for code generation is pre-
sented. API rules, presented with usage scenarios, are transformed into
reusable generative patterns, which can be applied to generate appli-
cations stub code. The author has developed the approach presented
together with Johannes Koskinen. The author has implemented the
tool support presented in this paper, that is the transformation from
usage scenarios into generative Java patterns.

100

Chapter 11

Conclusions

In this chapter, a summary of the thesis contents is presented. In addition,
answers to the research questions are provided.

11.1 Thesis summary

One of the motivating factors for the study was to apply a simple method of
sketching and applying functional system requirements to the development
of service-based systems. The research interests in particular include a better
understanding and integration of the development phases by constructing sys-
tematic development methods. As a solution, the scenario-driven approach
for development of service-based systems has been proposed. Applicabil-
ity and benefits of the approach has been studied by applying constructive
research methods and conducting case studies.

In this thesis, the development process for service-based systems has been
studied. The results are summarized in a description of Service Product De-
velopment Process (SPDP). Furthermore, the scenario-driven development
approach for service-based systems, called SceDA, is developed. SceDA in-
cludes three independent scenario-based methods to support development
of service-based systems in different development phases. Each method is
presented with a practical application; a case study and description of the
developed tool support.

SceDA is presented in Figure 11.1. It includes the development process
and the scenario-based methods developed. The application of the methods
cover development of business processes as well as individual services. Busi-
ness analysis is considered as a prerequisite, that is essential for defining the
need for the building of a system or a product. Thus, business requirements

101

are considered as an input for SceDA. The output from the framework is a
service-based product or system.

Scenario-based service
specification

Method 1 / Case study 1

Method 2 / Case study 2
Method 3 / Case study 3

SceDA

Scenario-based business process development

Scenario-based service
realization

Input: business
requirements

Output: a
service-based
product/system

Figure 11.1: SceDA

In this thesis it has been shown that the scenario-driven approach can be
applied to different development phases. Furthermore, the approach not only
supports the particular development activity, but also provides better inte-
gration of the development activities and propagation of the requirements.

11.2 Research questions revisited

The research questions presented in Section 1.2 are revisited below. Answers
to these and a summary of the thesis contributions are included.

RQ1 What activities are involved in a typical development process
for service-based systems, and what kind of methods and tool
support can be built to support the development activities?

A1: A typical development process for service-based systems
is identified. The process consists of six service-level phases
summarized as a description of Service Product Development
Process (SPDP).

Due to the separate needs and challenges of different develop-
ment phases, we have described scenario-based methods M1,
M2, and M3, which address business processes development,

102

code generation, and mining of development rules and service
interfaces from existing systems. The methods presented cover
the different development phases, namely, product and service
specification, service identification, and realization of services
and processes. Each of the methods have been applied in a
case study, CS1, CS2, and CS3 respectively. In addition, tool
support for each method has been developed.

Through application of SceDA, better integration and consis-
tency of the development process can be achieved.

RQ2 How can the scenario-driven approach be applied to business
process development?

A2: In case study CS1, scenario-driven business process devel-
opment has been applied. The method developed, M1, enables
easy sketching of business process requiring no knowledge of
state-based design and control structures. Initially, functional
business process requirements are presented as simple scenar-
ios. Then, the scenarios are synthesized and transformed into
an initial business process model. Finally, the initial model
can be refined and transformed into a WS-BPEL description.

RQ3 How can the scenario-driven approach be applied to services
specification and re-documentation?

A3: Case study CS2 shows that scenarios can be used to cap-
ture development rules for services. The method developed,
M2, presents an automated method for mining development
and design rules from application traces.

To identify a certain type of interaction, the filtering model
introduced can be used to automatically remove unnecessary
information from application traces. Possible applications of
M2 include mining of service interfaces in order to support
service identification.

RQ4 How can the scenario-driven approach be applied to realiza-
tion of individual services, i.e. service implementation?

A4: The research question is studied in the context of case
study CS3. The method developed, M3, can be used to trans-

103

form the system development rules, given as scenarios, into
reusable and generative patterns. The patterns can be applied
in the service realization phase for generating stub code for
the application, or, alternatively, for service interfaces.

11.3 Future work

In the future, the author would like apply the scenario-driven approach in
the context of a particular development environment, for example to inte-
grate Sketch with some existing integrated development environment. The
author is especially interested in applying the scenario-driven approach in
cloud computing. In addition to end-user services, cloud computing involves
development and utilization of platforms and tools as service-based systems.
It is thus assumed that the typical development activities and challenges
differ from a traditional SOA project as well as the development methods.

The author is interested in conducting case studies in the cloud computing
environment to gather requirements for further development of the Sketch
tool and to acquire more information on the possible applications of the
scenario-driven approach. Further development of the approach and tools
would benefit on usability studies, better integration of the tools, and further
evaluation on industrial SOA projects.

104

Bibliography

[1] D. Alur, D. Malks, and J. Crupi. Core J2EE Patterns: Best Practices
and Design Strategies. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2001.

[2] J. Amsden, T. Gardner, C. Griffin, and S. Iyengar.
Draft UML 1.4 Profile for Automated Business Processes
with a mapping to BPEL 1.0. Version 1.1, April 2004.
http://www128.ibm.com/developerworks/rational/library/. Last
visited December 2011.

[3] D. Angluin. Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2):87–106, November 1987.

[4] A. Arsanjani. Service-Oriented Modeling and Architecture: How to
Identify, Specify and Realize Services for your SOA, 2004. On-line at
http://www.ibm.com/developerworks/. Last visited December 2011.

[5] A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam, and K. Channabasavaiah.
S3: A Service-Oriented Reference Architecture. It Professional, 9(3):10–
17, 2007.

[6] L. G. Azevedo, F. Santoro, F. Baião, J. Souza, K. Revoredo, V. Pereira,
and I. Herlain. A method for service identification from business pro-
cess models in a SOA approach. In Enterprise, Business-Process and
Information Systems Modeling, volume 29 of Lecture Notes in Business
Information Processing, pages 99–112. Springer Berlin Heidelberg, 2009.

[7] L. G. Banuelos. Translating BPMN models to BPEL code. In GraBaTs
2009: Graph-Based Tool Contest - Solutions To Case Studies, 2009.

[8] N. Bieberstein, R. G. Laird, K. Jones, and T. Mitra. Executing SOA:
A Practical Guide for the Service-Oriented Architect. IBM Press, 1st
edition, 2008.

105

[9] Y. Bontemps. Relating Inter-Agent and Intra-Agent Specifications (The
Case of Live Sequence Charts). 2005. PhD Thesis.

[10] Business Process Modeling Initiative, http://www.bpmi.org/. Business
Process Modeling Language, 2002. Last visited December 2011.

[11] G. Casella and V. Mascardi. From AUML to
WS-BPEL. In Tech. Rep. DISI-TR-06-01, 2006.
http://www.disi.unige.it/person/MascardiV/Download/DISI-TR-
06-01.pdf, last visited December 2011.

[12] J. Castro, M. Kolp, and J. Mylopoulos. A Requirements-Driven Devel-
opment Methodology. In Proceedings of the 13th International Confer-
ence on Advanced Information Systems Engineering (CAiSE ’01), pages
108–123, London, UK, 2001. Springer-Verlag.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press and McGraw-Hill, second edition, 2001.

[14] G. Coticchia. Seven Steps to a Successful SOA Implementation. Business
Integration Journal, 10(5):10–13, 2006.

[15] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design, 19(1):45–80, 2001.

[16] Eclipse, http://www.eclipse.org. Eclipse WWW site, 2011. Last visited
December 2011.

[17] The Eclipse Foundation, http://www.eclipse.org/m2m/atl/. Atlas
Transformation Language, 2007. Last visited December 2011.

[18] The Eclipse Foundation, http://www.eclipse.org/tptp/. The Eclipse
Test & Performance Tools Platform, 2011. Last visited December 2011.

[19] A. Evans, P. Sammut, J. S. Willans, A. Moore, and G. M. Rama. A Uni-
fied Superstructure for UML. Journal of Object Technology, 4(1):165–
182, 2005.

[20] N. Fareghzadeh. Service identification approach to SOA development.
In World Academy of Science, Engineering and Technology, volume 45,
pages 258–266. Springer Berlin Heidelberg, 2008.

[21] Google, http://code.google.com. Google APIs, 2011. Last visited De-
cember 2011.

106

[22] I. Hammouda. Model-driven Software Development - Volume II of Re-
search and Practice in Software Engineering, chapter A Tool Infrastruc-
ture for Model-Driven Development Using Aspectual Patterns, pages
139–178. Springer, 2005.

[23] I. Hammouda, A. Ruokonen, M. Siikarla, A. L. Santos, K. Koskimies,
and T. Systä. Design profiles: toward unified tool support for design
patterns and UML profiles. Softw. Pract. Exper., 39(4):331–354, March
2009.

[24] D. Harel and H. Kugler. Synthesizing State-Based Object Systems from
LSC Specifications. International Journal of Foundations of Computer
Science, 13(1):5–51, Febuary 2002.

[25] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2003.

[26] D. Harel and R. Marelly. Specifying and executing behavioral require-
ments: the play-in/play-out approach. Software and System Modeling,
2(2):82–107, 2003.

[27] IBM, alphaWorks, http://www.alphaworks.ibm.com/. Emerging Tech-
nologies Toolkit (ETTK), 2006. Last visited December 2011.

[28] P. Järvinen. On Research Methods. Tampereen yliopistopaino Oy, Tam-
pere, Finland, 2004.

[29] J. Jiang, A. Ruokonen, and T. Systä. Pattern-based Variability Manage-
ment in Web Service Development. In Proceedings of the Third European
Conference on Web Services, ECOWS ’05, pages 83–94, Washington,
DC, USA, 2005. IEEE Computer Society.

[30] J. Jiang and T. Systä. UML-Based Modeling and Validity Checking of
Web Service Descriptions. In Proceedings of 2005 IEEE International
Conference on Web Services, ICWS 2005, pages 453–460, July 2005.

[31] A. Kalnins, J. Barzdins, and E. Celms. Model Transformation Language
MOLA. In U. Aßmann, M. Aksit, and A. Rensink, editors, MDAFA, vol-
ume 3599 of Lecture Notes in Computer Science, pages 62–76. Springer,
2004.

[32] A. Kalnins and V. Vitolins. Use of UML and model transformations for
workflow process definitions. In Proceedings of Baltic DBIS 2006, pages
3–14, 2006.

107

[33] D. Karastoyanova and A. Buchmann. A Methodology for Development
and Execution of Web Service-based Business Processess. In Proceedings
of 1st Australian Workshop on Engineering Service-Oriented Systems,
Melbourne, 2004.

[34] K. Klose, R. Knackstedt, and D. Beverungen. Identification of services -
a stakeholder-based approach to SOA development and its application in
the area of production planning. In European Conference on Information
Systems (ECIS), pages 1802–1814. AIS, 2007.

[35] T. Kokko, J. Antikainen, and T. Systä. Adopting SOA - Experi-
ences from nine Finnish organizations. In CSMR’09: Proceedings of the
13th European Conference on Software Maintenance and Reengineering,
pages 129 – 138, London, UK, 2009. IEEE Computer Society.

[36] N. Kulkarni and V. Dwivedi. The role of service granularity in a suc-
cessful SOA realization - a case study. In Proceedings of the 2008 IEEE
Congress on Services - Part I, SERVICES ’08, pages 423–430, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[37] G. Lewis, E. Morris, L. O’Brien, D. Smith, and L. Wrage. SMART:
The Service-Oriented Migration and Reuse Technique. 2005. Technical
report CMU/SEI-2005-TN-029.

[38] C. Lohmann, J. Greenyer, J. Jiang, and T. Systä. Applying Triple
Graph Grammars for Pattern-Based Workflow Model Transformations.
In Proceedings of TOOLS 2007, JOT, pages 253–273, 2007.

[39] E. Mäkinen and T. Systä. Minimally adequate teacher designs software.
April 2000. Report A-2000-7.

[40] E. Mäkinen and T. Systä. Implementing minimally adequate synthesizer.
June 2000. Report A-2000-9.

[41] OASIS, http://www.oasis-open.org/. Web Services Business Process Ex-
ecution Language Version 2.0, 2005.

[42] OASIS, http://www.oasis-open.org/. Reference Model for Service Ori-
ented Architecture 1.0, 2006. Last visited December 2011.

[43] OASIS, http://www.oasis-open.org/. Organization for the Advancement
of Structured Information Standards, 2011. Last visited December 2011.

108

[44] E. Oberortner, U. Zdun, and S. Dustdar. Domain-specific languages for
service-oriented architectures: An explorative study. In Proceedings of
the 1st European Conference on Towards a Service-Based Internet, Ser-
viceWave ’08, pages 159–170, Berlin, Heidelberg, 2008. Springer-Verlag.

[45] Object Management Group, Inc. OMG Model Driven Architecture, Ver-
sion 1.0.1, 2003.

[46] Object Management Group, Inc. Unified Modeling Language: Super-
structure version 2.0 Final Adopted Specification ptc/03-08-02, August
2003.

[47] Object Management Group, Inc. Unified Modeling Language Specifica-
tion, Version 2.0., May 2005.

[48] Object Management Group, Inc., http://www.bpmn.org/. Business
Process Modeling Notation (BPMN) Specification Final Adopted Speci-
fication 06-02-01, 2006.

[49] Object Management Group, Inc. Meta Object Facility (MOF), Version
2.0., January 2006.

[50] Object Management Group, Inc. Service oriented architecture Modeling
Language (SoaML) - Specification for the UML Profile and Metamodel
for Services (UPMS), 2009. OMG Adopted Specification, Finalisation
Task Force Beta 2 (FTF Beta 2), ptc/2009-12-09.

[51] L. Pajunen and A. Ruokonen. Modeling and Generating Mobile Business
Processes. In IEEE International Conference on Web Services, 2007.
ICWS 2007, pages 920–927, July 2007.

[52] A. Rozinat and W. M. P. van der Aalst. Decision Mining in ProM.
Lecture Notes in Computer Science : Business Process Management,
Volume 4102, 2006, pages 420–425, 2006.

[53] A. Rozinat and W. M. P. van der Aalst. Conformance checking of pro-
cesses based on monitoring real behavior. Inf. Syst., 33(1):64–95, 2008.

[54] J. E. Rumbaugh. Getting Started: Using Use Cases to Capture Require-
ments. JOOP, 7(5):8–12, 1994.

[55] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009. 10.1007/s10664-008-9102-8.

109

[56] A. Ruokonen, I. Hammouda, and T. Mikkonen. Enforcing Consistency
of Model-Driven Architecture Using Meta-Designs. In European Con-
ference on MDA - Foundations and Applications: Workshop on Con-
sistency in Model Driven Engineering (C@MoDE 2005), pages 127–141,
Nuremberg, Germany, 2005.

[57] A. Ruokonen, L. Pajunen, and T. Systä. On Model-Driven Development
of Mobile Business Processes. In Proceedings of the 2008 Sixth Interna-
tional Conference on Software Engineering Research, Management and
Applications, SERA, pages 59–66, Washington, DC, USA, 2008. IEEE
Computer Society.

[58] C. Sandberg. Elimination of Unstructured Loops in Flow Analysis. In
WCET 2003 Workshop, pages 51–55, July 2003. Last visited December
2011.

[59] W. Shi, J. Wu, S. Zhou, L. Zhang, Y. Yin, and Z. Wu. Facilitating
the Flexible Modeling of Human-Driven Workflow in BPEL. In Pro-
ceedings of Advanced Information Networking and Applications - Work-
shops, 2008. AINAW 2008, pages 1615 – 1624, Gino-wan, Okinawa,
Japan, 2008. IEEE Computer Society.

[60] M. Siikarla. A Light-Weight Approach to Developing Interactive Model
Transformation. PhD thesis, Tampere University of Technology, Fin-
land, 2011.

[61] H. Sneed. Wrapping legacy software for reuse in a SOA. In Multikon-
ferenz Wirtschaftsinformatik (2006), volume 2, pages 345–360. Citeseer,
2006.

[62] Sun MicroSystems. The J2EE 1.4 Tutorial For Sun Java System Appli-
cation Server Platform Edition 8.2, 2006.

[63] Sun MicroSystems. Java Web Services Developer Pack (Java WSDP)
Version 2.0, 2006.

[64] R. Tarjan. Testing Flow Graph Reducibility. Journal of Computer and
System Sciences, 9(3):355–365, 1974.

[65] The TeleManagement Forum (TM Forum). Business Process Framework
(eTOM). Last visited December 2011.

[66] S. R. Tilley, D. B. Smith, and H. A. Müller. Migrating to SOA: ap-
proaches, challenges, and lessons learned. In J. W. Ng, C. Couturier,

110

H. A. Müller, and A. G. Ryman, editors, CASCON, pages 371–373.
ACM, 2010.

[67] S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behavioral Models
from Scenarios. IEEE Trans. Softw. Eng., 29(2):99–115, 2003.

[68] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51,
2003.

[69] W. M. P. van der Aalst. 06291 workshop report: Process mining, mon-
itoring processes and services. In F. Leymann, W. Reisig, S. R. Thatte,
and W. van der Aalst, editors, The Role of Business Processes in Ser-
vice Oriented Architectures, number 06291 in Dagstuhl Seminar Pro-
ceedings. Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl, Germany, 2006.

[70] W. M. P. van der Aalst and K. Bisgaard Lassen. Translating unstruc-
tured workflow processes to readable BPEL: Theory and implementa-
tion. Inf. Softw. Technol., 50(3):131–159, 2008.

[71] W. M. P. van der Aalst, H. A. Reijers, A. Weijters, B. van Dongen,
A. Alves de Medeiros, M. Song, and H. Verbeek. Business process min-
ing: An industrial application. Inf. Syst., 32(5):713–732, 2007.

[72] D. Varró. Model Transformation by Example. In O. Nierstrasz, J. Whit-
tle, D. Harel, and G. Reggio, editors, Model Driven Engineering Lan-
guages and Systems, volume 4199 of Lecture Notes in Computer Science,
pages 410–424. Springer Berlin / Heidelberg, 2006.

[73] W3C, http://www.w3.org/TR/wsdl. Web Services Description Lan-
guage (WSDL) 2.0, 2001. Last visited December 2011.

[74] W3C, http://www.w3.org/. Simple Object Access Protocol (SOAP) 1.2,
2007. Last visited December 2011.

[75] W3C, http://www.w3.org/. World Wide Web Consortium, 2011. Last
visited December 2011.

[76] J. Whittle and J. Schumann. Generating statechart designs from sce-
narios. In Proceedings of the 22nd international conference on Software
engineering, pages 314–323. ACM Press, 2000.

[77] R. Yin. Case study research: design and methods. Applied social research
methods series. Sage Publications, 2003.

111

[78] T. Ziadi, L. Hélouët, and J.-M. Jézéquel. Revisiting Statechart Synthe-
sis with an Algebraic Approach. In Proceedings of the 26th International
Conference on Software Engineering, ICSE ’04, pages 242–251, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

112

[I] A. Ruokonen, V. Räisänen, M. Siikarla, K. Koskimies and T. Systä, Varia-
tion Needs in Service-Based Systems, The 6th IEEE European Conference
on Web Services. In The 6th IEEE European Conference on Web Services
(ECOWS 2008), pp. 115 - 124, Dublin, Ireland, 2008. c©2008 IEEE

[II] A. Ruokonen, T. Kokko, and T. Systä, Scenario-Driven Approach for
Business Process Development. International Journal of Business Process
Integration and Management (IJBPIM), vol. 6(2012) No 1, pp. 77 - 96.
c©2012 Inderscience Publishers

[III] L. Pajunen, and A. Ruokonen, Modeling and Generating Mobile Busi-
ness Processes. In IEEE 2007 International Conference on Web Services
(ICWS 2007), pp. 920-927, Salt Lake City, Utah, USA, 2007. c©2007
IEEE

[IV] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systä, Constructing Usage
Scenarios for API Redocumentation. In The 15th IEEE International
Conference on Program Comprehension (ICPC 2007), pp. 259 - 264,
Banff, Alberta,Canada, 2007. c©2007 IEEE

[V] J. Koskinen, A. Ruokonen, and T. Systä, A Pattern-Based Approach to
Generate Code from API Usage Scenarios. In Nordic Journal of Com-
puting (NJC’06), vol. 13(2006), pp. 162 - 179. c©2006 Nordic Journal of
Computing

