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Abstract

Personal positioning is a dynamic estimation problem where the abil-
ity to assess the quality of the positioning service is as important as
obtaining accurate position estimates. When estimating the position
of a person, as opposed to e.g. an airplane, the type of motion can
change at any time as a pedestrian can board a bus, or a cyclist can
board a train. Also the changing surroundings in urban navigation
influence the observation noise as tall buildings blocking the line of
sight to satellites are full of reflecting surfaces.

First we investigate classic robust estimation methods applied to the
positioning problem, but then we focus on the Bayesian framework,
as its generality allows us to take into account the abrupt changes in
the state-space system. Gaussian mixture distributions and Markov
chain indicator processes are used to model the changing systems.
We evaluate the resulting systems mainly with sequential Monte
Carlo methods, as this approach gives us an approximative joint pos-
terior distribution of the errors and the state. We propose a general
framework for the Bayesian receiver autonomous integrity monitor-
ing in urban navigation based on the posterior probabilities.

We also use the Bayesian framework to solve the explicit effect of
the sensor errors in a nominal system that estimates the state with
the assumption of no changes in the models. We use the estimated
cumulated effect of the errors in the time series to determine whether
error is present in the system at any time. Finally, a variational Bayes
algorithm is developed for detecting changes in the system noise
covariances.
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CHAPTER 1
Introduction

This thesis consists of an introduction and six articles published in
scientific conferences and journals, and one technical report. The
purpose of this introductory chapter is not to repeat the derivations
or results given in the publications [P1]–[P7], but rather to give a short
unified background, and summarise the contribution in context.

The main contributions are:

P1: The performance of robust static and dynamic estimation
methods in positioning problem with range and pseudorange
measurements is investigated using simulated and real data.
The publication demonstrates the need for robust estimators
as even with a small amount of bad observations, robust meth-
ods perform better than the traditional methods.

P2: A Bayesian model comparison approach for detection and iden-
tification of additive biases in range measurement is presented.
The introduced Bayesian method has a more straightforward
interpretation of the results than the traditional RAIM/FDE.
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P3: A Bayesian quality monitoring approach for dynamic systems
based on Gaussian mixture filter is introduced. The proposed
method can handle multiple outliers and its integrity monitor-
ing is based on the estimation error instead of the presence of
observation biases. Also, a fast novel merging method of the
Gaussian mixture components is presented.

P4: A hierarchical approach for modeling varying environments in
positioning systems is discussed, and an algorithm for solving
the resulting problem is provided. The simulations show that
the technique can be used to approximate the uncertainty
parameter, in addition to providing performance comparable
to optimal methods.

P5: A Bayesian framework for receiver autonomous integrity mon-
itoring in urban navigation based on Bayesian filtering of the
joint distribution of state and observation biases is introduced.
The method is applicable to more general problems than the
traditional integrity monitoring techniques. Also, because the
integrity is determined by monitoring the probabilities of the
large state errors, the integrity results are easily interpretable.

P6: A novel Bayesian fault diagnosis method for linear systems with
observations contaminated with additive errors is developed.
The method performs better than the standard detection-
identification-adaptation method, with the expense of more
computation power.

P7: A variational Bayes method for approximative batch estima-
tion of linear of state-space systems with changes in the state
transition or observation noise covariance is discussed and a
heuristic online version of the method is provided. Both of the
methods perform well against the standard methods.

The author’s role in the shared publications:

• Publication P2: Based on the initial idea of the co-author, the
author developed the method, wrote the computer code and
the manuscript.

• Publications P4 and P6: The author came up with the main
ideas, wrote the computer code and the manuscript.
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• Publication P7: Based on the initial idea of the co-author, the
author developed the methods, wrote the computer code and
the manuscript.
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1 Background

Personal positioning is a research area with a huge amount of differ-
ent applications such as locating emergency callers, various map-
services and location-aware gaming. Therefore different positioning
methods have been researched intensively and will be researched in
the near future as, with technological advancements, more people
are carrying devices with the capability to solve its position coordin-
ates using measurements from various sources. Currently the most
popular positioning methods are based on the Global Positioning
System (GPS) [39], [52], but there are many other sources providing
signals that can be used for positioning. In addition to other satellite
based positioning systems such as Glonass, Compass and Galileo,
other sources providing data that could be used for positioning in-
clude cellular networks [48], [29], [42] and WLAN networks [41], [47].
Among the devices with the positioning capability, the mobile phone
is possibly the most pervasive, and nowadays many phone models
are integrated with various positioning services.

There is a vast number of scientific publications about the methods
for positioning and several international conferences dedicated to
the topic. Mathematically the positioning problem is formulated as
a nonlinear filtering problem in which a positioning estimate is com-
puted using noisy observations and a model for the receiver motion
[63], [2]. An important part of the problem is to choose a realistic a
model for the underlying system that is as simple as possible so that
the problem would be feasible to solve in an environment where the
computational resources are limited.

There is a large number of proposed techniques for the positioning
problem which solve the problem very well under certain circum-
stances. Bayesian statistics provide a consistent and a theoretic-
ally optimal framework for solving the filtering problem recursively
[33],[18], although in practice we are often required to use approxim-
ative methods [8], [19], [6], [P5].

Many of the measurements used in positioning systems are based on
radio signals. These signals are sometimes affected by the surround-
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ing environments as the signals can be reflected and attenuated
e.g. when the receiver is in a building, or in an urban canyon. A well-
known effect of the signal distortion is the multipath effect that is a
main source of error in satellite positioning [39], [65], [23], [46], [66],
[49]. It is difficult for the receiver to detect whether the signals are
affected or not [68], but if these effects are not taken into account
in the system models, the accuracy of the position estimates can be
severely degraded.

Therefore it is of the utmost importance to develop methods that
are able to provide as good as possible position service in situations
where the signal quality may be degraded. A first possible approach
for this is to develop estimation methods that perform well when
observations contain outliers, i.e. severely degraded observations
[51], [56], [43], [P1]. A second approach is to construct models that
describe how the signals are degraded, e.g. they contain an additive
bias [24],[32], [P3], [P5], or the observation noise can be described
more accurately with the t-distribution than with a Gaussian [69], [1].
A third approach is to perform statistical tests to check whether there
is evidence that supports a hypothesis that the underlying nominal
assumptions may be wrong [7], [9], [26], [P6].

In addition, it is often not sufficient to solve only for the position
coordinates, but it is important to provide an estimate of the quality
of the service. In the case of poor quality of service we may be able
to switch to a backup position system based on e.g. accelerometers
or gyroscopes. In GPS, the methods used to monitor the quality, or
the integrity, of the positioning service are traditionally referred to
as receiver autonomous integrity monitoring (RAIM) [14], [30],[54].
The main application of RAIM has been in safety-critical aviation
navigation [39]. However, the requirements for aviation are very dif-
ferent from those for personal urban navigation. In this thesis we
investigate the Bayesian approach to provide quality monitoring ser-
vice in addition to the position estimates for the personal positioning
problem where the observations may, or may not, be contaminated
with additive errors.
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2 Problem statement

We consider the problem of estimating the state (position, velocity,
acceleration, etc.) of a mobile set (MS) using noisy observations, pos-
sibly contaminated with additive failure components. The problem
is described by a discrete-time state-space model

xk+1 = Fk xk +wk (1)

yk = hk (xk )+ sk + vk (2)

x0 �N
�
x0|0, P0|0
�

, (3)

where x � N (E(x ),V(x )) means that x is a Gaussian vector-valued
random variable with mean E(x ) and variance-covariance matrix
V(x ). We use notation xk |k :=E(xk | y1:k ) where y1:k := [y1, . . . , yk ] for
the conditional mean. Analogous notation is used for the covariance
V(xk | y1:k ). Throughout this work we assume that the state xk ∈�nx

evolves according to the linear state transition model (1) with the
state transition matrix Fk ∈ �nx×nx and the additive process noise
wk ∈�nx that is assumed to be Gaussian

wk �N (0,Qk ) . (4)

The observations yk ∈ �n y are described with the function hk (·) of
the state, and the additive Gaussian noise component

vk �N (0, Rk ) . (5)

In addition, we assume that the observation may be contaminated
with the additive sensor error component sk . The stochastic pro-
cesses wk and vk are assumed to be mutually independent white
noise processes and independent of the initial state x0 with the prior
distribution (3).
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2.1 Failure models

To to complete the specification of the statistical model (1)–(3) we
need to model the additive failure components sk . Let

hk (·) =




hk ,1(·)
...

hk ,m (·)


 , (6)

where hk ,1(·), . . . , hk ,m (·) is a partition of the observations such that
the additive errors have a compatible partition

sk =




sk ,1
...

sk ,m


 , (7)

where sk ,1, . . . , sk ,m are mutually independent. This kind of model
would be natural for a situation in which we have pseudorange obser-
vations from several satellites, and depending whether the individual
signals between the satellites and the receiver is unobstructed or
not, there may be an additional error component present. Of course,
we would have to assume that the visibility to one satellite is inde-
pendent of the visibility to any other satellite. To model the presence
of the sensor errors in the observations at time k , we use indicator
variables λk ,l ∈ {0, 1} so that

sk ,l =λk ,l rk ,l , (8)

where rk ,l is the magnitude of the error. We use two models for the
indicator variables throughout the thesis. The first model for the
indicator variable is the Bernoulli-distribution

P(λk ,l = 1) = θk = 1−P(λk ,l = 0) (9)

where θk is the probability of an additive sensor error being present
in yk ,l . The notation P(·) is used for the probability mass functions of
discrete random variables.
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In the case of dynamic systems it is sometimes reasonable to model
the indicator variable as a Markov chain [68]with transition probab-
ilities

P(λk ,l = j |λk−1,l = i ) = θj i , (10)

P(λ0,l = 1) = θ0. (11)

Note that in both models, we assume for simplicity that the probabil-
ities of the indicator variable are the same for each of the elements of
the observation vector.

We use a linear state transition model for the sensor error size

rk+1,l =φk ,l rk ,l +εk+1,l (12)

r0,l �N
�

r0|0,l , Pr
0|0,l

�
, (13)

where εk+1,l � N
�

0,Σk+1,l
�

is a Gaussian white noise process. The
choiceφk ,l = 0 results in the Gaussian white noise process for the er-
ror size that could be used to model outliers in the observation noise
[55], [13]. The state transition model with the coefficientφk ,l = 1 is
the Gaussian random walk that can be used to model the evolution
of the multipath bias in GPS pseudorange measurements [23], [24],
[P5].

The system (1)–(3) can be expressed using the sensor error models as

�
xk+1

rk+1

�
=
�

Fk 0
0 Φk

��
xk

rk

�
+
�

wk

εk+1

�
(14)

yk = hk (xk )+Λk rk + vk (15)�
x0

r0

�
�N
��

x0|0
r0|0

�
,

�
P0|0 0

0 Pr
0|0

��
(16)
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where we have defined

Φk :=



φk ,1

...
φk ,m


 ,

Λk :=



λk ,1In y1

...
λk ,m In ym


 ,

Pr
0|0 =




Pr
0|0,1

...
Pr

0|0,m


 ,

r0|0 :=
�

r T
0|0,1 · · · r T

0|0,m

�T
,

εk :=
�
εT

k ,1 · · · εT
k ,m

�T
.

The augmented system (14)–(16) is a standard state-space system if
the indicator variables would be known. Naturally one could consider
the indicator variable as a part of the state and formulate a larger
non-linear and non-Gaussian system, but we handle Λk separately
due to the approximation methods discussed later on.

Furthermore, in the caseφi ,j = 0, ∀i , j we can write the system as

xk+1 = Fk xk +wk (17)

yk = hk (xk )+ vk (Λk ) (18)

x0 �N
�
x0|0, P0|0
�

, (19)

where the observation noise given Λk is a Gaussian white noise pro-
cess

vk (Λk ) :=Λk rk + vk �N (0, Rk (Λk )) (20)

Rk (Λk ) :=Rk +ΛkΣkΛT
k (21)

The system (17)–(19) is convenient if we are considering the additive
sensor errors simply as nuisance parameters causing the deteriora-
tion of the observation quality.
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Heavy-tailed distributions

Another approach for modeling faulty data would be to use non-
Gaussian distributions for the error components. In the robust fil-
ter design similar to M-estimation [31, 27], very large outliers are
modeled with the noise process

sk + vk �� (22)

where� is a member of a family of distributions with fat tails. The
robust filter design is then based on finding a state estimator that
performs the best should the noise have any of the distributions in
the family� [50],[51], [56], [P1].

Outliers in the observation noise process can also be modeled simply
using a heavy-tailed distribution such as Student-t distribution for
the observation noise instead of the Gaussian noise [69, 1]. A sample
drawn from a heavy-tailed distribution would result in more realiza-
tions that are far away from the bulk of the data.

Hierarchical modeling of varying environment

A Bayesian approach to the state-space estimation problem enables
us to use hierarchical modeling to describe more complex real world
phenomena. One application of hierarchical modeling is to describe
the probability of the presence of the additive sensor error (9) as a
time-evolving parameter. Given the model we can solve it jointly with
the state [P5]. The approach is reasonable because the probability
of the faulty observation is often dependent on the surrounding
environments that change gradually when the MS is moving with a
reasonably low velocity.

Now the probability mass function of λk ,l is defined with a hierarch-
ical model depending on the time-varying unknown variable θk as
follows

P(λk ,l = 0 | θk ) = 1−P(λk ,l = 1 | θk ) = 1−θk . (23)

In the state-transition model for the uncertainty parameter θk we
have to take into account that θk ∈ [0, 1]. The parameter is modeled as

10



a Markov process, and we take the density p (θk+1|θk ) to be unimodal,
with the mode near to the value of θk . A probability density fulfilling
these criteria would be

beta(ξ |α,β ) =
Γ(α+β )
Γ(α)Γ(β )

ξα−1(1−ξ)β−1, (24)

that is a beta density with parameters α and β evaluated at ξ. The
mode and variance of a beta distributed random variable are

mode(ξ) =
α−1
α+β −2

, V(ξ) =
αβ

(α+β )2(α+β −1)
. (25)

The beta density function is unimodal when α,β > 1, and the vari-
ance of a beta distributed random variable depends on α and β , with
variance→ 0 as α,β →∞.

The model probability is modeled as having the state-transition dens-
ity

p (θk+1 | θk ,S) = beta(θk+1 | θk (S−2)+1, (1−θk )S+2θk −1), (26)

where S is a tuning parameter. The state transition density is illus-
trated in Figure 1. In Figure 2 we have drawn a few example sample
paths of the process with a corresponding sample path of λk | θk .

0 0.2 0.4 0.6 0.8 1

θk+1

p (θk+1 | 0.3, 10)

p (θk+1 | 0.5, 100)

p (θk+1 | 0.7, 500)

❅❅❘

❅❅❘

��✠

Figure 1: State-transition densities with different parameter values.

The mode and variance of (26) are

mode(θk+1 | θk ,S) = θk , V(θk+1 | θk ,S) =
(1−θk )θk

S−1
. (27)
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Figure 2: Five sample paths of the process θk+1 | θk , 100 and a sample
path of λk | θk corresponding to the red colored θk+1 | θk , 100.

The most likely value of the model uncertainty θk+1 corresponds to
the model uncertainty at the previous time step θk , and increasing
the value of the tuning parameter S reduces the probability of θk+1

deviating significantly from θk . The hierarchical state-space model
for the system (17)–(19) is illustrated by the directed acyclic graph
(DAG) in Figure 3.

3 Estimation methods

From the whiteness and the mutual independence assumptions of
the noise processes it follows that xk , rk and Λk are Markov processes

p (xk , rk ,Λk | x0:k−1, r0:k−1,Λ0:k−1)
= p (xk | xk−1)p (rk | rk−1)P(Λk |Λk−1), (28)
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x1

y1
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x2
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Λ2

θ2
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yk

Λk

θk

Figure 3: DAG of the hierarchical state-space model

and therefore

p (x0:k , r0:k ,Λ0:k )

= p (x0)p (r0)P(Λ0)
k�

i=1

p (xi | xi−1)p (ri | ri−1)P(Λi |Λi−1), (29)

where

p (xk | xk−1) = pwk (xk − Fk−1xk−1) =N (xk | Fk−1xk−1,Qk−1) (30)

p (rk | rk−1) = pεk (rk −Φk−1rk−1) =N (rk |Φk−1rk−1,Σk ) , (31)

when the state transition models are defined with additive white
Gaussian process noises. The subscripted expression px (·) is occa-
sionally used to emphasize that we are considering the probability
density of the random variable x , but we omit the subscript whenever
it is clear from the context what random variable we are considering.
Also, the observations are conditionally independent

p (y1:k | x0:k , r0:k ,Λ0:k ) =
k�

i=1

p (yi | xi , ri ,Λi ). (32)

The likelihood function (32) can be expressed as

k�

i=1

pvi (yi −hi (xi )−Λi ri ) =
k�

i=1

N
�

yi | hi (xi )+Λi ri , Ri
�

, (33)
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in the case of additive white Gaussian observation noise (2). If the
noise is non-additive, then the form of the likelihood function can
be significantly more complex.

3.1 Bayesian estimation

The problem (14)–(16) can be solved using the general framework
of Bayesian statistics [33], [19], [61], [21], [6]. A complete solution
for the system would be the joint posterior distribution of the state,
errors and indicator variables given all the observations

p (x0:k , r0:k ,Λ0:k | y1:k ) =
p (y1:k | x0:k , r0:k ,Λ0:k )p (x0:k , r0:k ,Λ0:k )

p (y1:k )

∝
k�

i=1

p (yi | xi , ri ,Λi )p (xi | xi−1)p (ri | ri−1)P(Λi |Λi−1)×

×p (x0)p (r0)P(Λ0). (34)

In many of the algorithms discussed in the later sections, we are
considering the joint distribution of the state and the errors

p (x0:k , r0:k | y1:k ) =
�

Λ0:k

p (x0:k , r0:k ,Λ0:k | y1:k )

=
�

Λ0:k

p (x0:k , r0:k | y1:k ,Λ0:k )p (Λ0:k | y1:k )

∝
�

Λ0:k

�
k�

i=1

p (yi | xi , ri ,Λi )p (xi | xi−1)p (ri | ri−1)

�
×

×p (x0)p (r0)p (Λ0:k | y1:k ), (35)

where the notation
�
Λ0:k

is used for the summation over all possible
values of Λ0:k .

If we are interested only in the effect of the sensor errors on the
actual state x0:k and not the values of the errors r0:k , we treat them as
nuisance parameters and integrate them out from the joint posterior.

The computational load of evaluating (34) can be overwhelming,
especially with large k , as the dimensions of the state x0:k , the errors

14



r0:k and the indicator variables Λ0:k grow at every time step. However,
often we are interested only in the distribution of the most recent
state

p (xk , rk | y1:k ) =
�

Λ0:k

p (xk , rk | y1:k ,Λ0:k )p (Λ0:k | y1:k ), (36)

called the posterior filtering distribution, that can be expressed re-
cursively when (28) and (32) hold.

In this work we often solve the terms of (36) separately, because in our
applications the posterior filtering distribution conditioned on the
indicator variable history Λ0:k will be feasible to express approxim-
ately in closed form with a two-step process called Bayesian filtering.
We have the initial state distribution (3). Then we use the prediction
step

p (xk , rk | y1:k−1,Λ0:k ) =
�

p (xk , rk | xk−1, rk−1)×

×p (xk−1, rk−1, | y1:k−1,Λ0:k )d(xk−1, rk−1), (37)

to get the prior predictive distribution. The second part of the
Bayesian filtering is the update step

p (xk , rk | y1:k ,Λ0:k ) =
p (yk | xk , rk ,Λ0:k )p (xk , rk | y0:k−1,Λ0:k )

p (yk | y1:k−1,Λ0:k )
. (38)

Sometimes it is beneficial to evaluate other marginal distributions
p (xi | y1:k ) of the posterior distribution. These are called posterior
smoothing distributions, and from them we can obtain estimators of
the state xi with smaller variance than from the filtering distribution
at i th time step. This is due to the fact that smoothing distributions
are obtained with more information about the state. The linear Gaus-
sian system is a special case in which we are able to find the posterior
filtering and smoothing distributions p (xi | y1:k ,Λ1:k ) in closed form
using Kalman filter (KF) and Rauch-Tung-Striebel smoother (RTS)
algorithms, respectively [38], [59], [4], [37]. In the general case, the
posterior filtering and smoothing distributions are intractable and
we have to resort to approximative methods.
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The posterior distribution (34) is the complete solution for the dy-
namic estimation problem (14) – (16). In theory, the posterior dis-
tribution contains all the information about the system given the
models, the prior distributions and the observations. In addition, the
Bayesian approach to the problem enables the estimation of more
complex systems, as we could use nonlinear models, non-additive
noise, and even hierarchical models [33], [19], [P4].

Although it is the complete solution, the posterior filtering distribu-
tion (38) contains often too much information for many practical
applications and a single point estimate of the state and summar-
izing statistics such as the variance or quantiles of the distribution
would often be more appropriate. A Bayesian point estimate x̂k |k can
be derived as the point minimizing the expected loss of the estimate
[33], [10]. The loss is quantified with the loss function � (xk , x̂k |k ),
and the optimal estimate can be obtained as the solution for the
minimization problem

x̂k |k = arg min
θk

�
� (xk ,θk )p (xk | y1:k )dxk . (39)

Throughout this work we use the loss function

� (xk ,θk ) = ||xk −θk ||2P−1
k |k

, (40)

that is minimized with the posterior mean [33]. We use notations
|| · || for the Euclidian norm and ||x ||A :=

�
x T Ax . Other often used

Bayesian estimators are the median and the maximum a posteriori
estimate.

3.2 Kalman filter

An important special case, in which the conditional posterior distri-
bution can be computed analytically, is the linear Gaussian system
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�
xk+1

rk+1

�
=
�

Fk 0
0 Φk

��
xk

rk

�
+
�

wk

εk+1

�
(41)

yk =
�

Hk Λk

��xk

rk

�
+ vk (42)

�
x0

r0

�
�N
��

x0|0
r0|0

�
,

�
P0|0 0

0 Pr
0|0

��
(43)

where �
wk

εk+1

�
�N
��

0
0

�
,

�
Qk 0
0 Σk+1

��

and vk �N (0, Rk ) are mutually independent white noise processes.
The posterior distribution p (x0:k , r0:k | y1:k ,Λ0:k ) of the system (41)–
(43) is a Gaussian [8], and the posterior filtering distribution (38) can
be evaluated in closed form recursively using the KF method given in
Algorithm 1 [38], where we use the shorthand notation

Hk (Λk ) :=
�

Hk Λk

�

Ak :=
�

Fk 0
0 Φk

�

Bk :=
�

Qk 0
0 Σk+1

�

Xk :=
�

xk

rk

�
X0 �N
�

X0|0, V0|0
�

.

We use the notation Zk (Λ0:k ) for the means and covariances Zk con-
ditioned on the indicator variable histories Λ0:k .

The posterior filtering distribution is a Gaussian

p (xk , rk | y1:k ,Λ0:k ) =N
�
xk , rk |Xk |k (Λ0:k ), Vk |k (Λ0:k )

�
, (44)

and hence so are the marginal distributions. We obtain the posterior
filtering distribution of the state xk

p (xk | y1:k ,Λ0:k ) =N
�
xk | xk |k (Λ0:k ), Pk |k (Λ0:k )

�
(45)
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Algorithm 1 KF
1: for k = 1, . . . , T do
2: Xk |k−1(Λ0:k−1) = Ak−1Xk−1|k−1(Λ0:k−1)
3: Vk |k−1(Λ0:k−1) = Ak−1Vk−1|k−1(Λ0:k−1)AT

k−1+ Bk−1

4: Sk (Λ0:k ) =Hk (Λk )Vk |k−1(Λ0:k−1)Hk (Λk )T +Rk

5: Kk (Λ0:k ) = Vk |k−1(Λ0:k−1)Hk (Λk )T Sk (Λ0:k )−1

6: Xk |k (Λ0:k ) = Xk |k−1(Λ0:k−1)+Kk (Λ0:k )(yk −Hk (Λk )Xk |k−1(Λ0:k−1))
7: Vk |k (Λ0:k ) = Vk |k−1(Λ0:k−1)+Kk (Λ0:k )Hk (Λk )Vk |k−1(Λ0:k−1)
8: end for

by selecting the corresponding components from (44). It is also pos-
sible to find the Gaussian smoothing distributions p (xi , ri | y1:k ,Λ0:k )
for i = 0, . . . , k −1, after the Gaussian distributions p (xi , ri | y1:i ,Λ0:i )
are found using the KF algorithm. The smoothing distributions

p (xi , ri | y1:k ,Λ0:k ) =N
�
xi , ri |Xi |k (Λ0:k ), Vi |k (Λ0:k )

�
(46)

are obtained with the RTS-smoother [59] given by Algorithm 2.

Algorithm 2 Rauch-Tung-Stribel smoother
1: for k = T −1, . . . , 0 do
2: Xk+1|k (Λ0:k ) = Ak Xk |k (Λ0:k )
3: Vk+1|k (Λ0:k ) = Ak Vk |k (Λ0:k )AT

k + Bk

4: Gk = Vk |k (Λ0:k )AT
k Vk+1|k (Λ0:k )−1

5: Xk |T (Λ0:T ) = Xk |k (Λ0:k )+Gk (Xk+1|T (Λ0:T )−Xk+1|k (Λ0:k ))
6: Vk |T (Λ0:T ) = Vk |k (Λ0:k )+Gk (Vk+1|T (Λ0:T )−Vk+1|k (Λ0:k ))G T

k
7: end for

Although many positioning systems rely on nonlinear equations,
there are also linear observation equations. Examples of linear
measurement equations would be Doppler measurements [39], cov-
erage area measurements [41], and also position coordinates ob-
tained by a positioning system. Using the position coordinates
provided by existing positioning systems may cause the observa-
tion noise process to be non-white, depending on the algorithms
that the system uses to estimate the position.
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3.3 Extended Kalman filter

The observation equation (2) is often nonlinear in positioning. For
example, the range measurements between MS and a base station
(BS) with known coordinates p (i )k

yk ,i = hk ,i (xk )+ sk ,i + vk ,i = ||p (i )k −xk ,1:d ||+ sk ,i + vk ,i (47)

can be obtained using time differences between the emission and
the reception of a signal, or measuring received signal strengths and
using a path loss model for the attenuation of the signal strength with
distance [15]. At each time step we may obtain measurements from
several sources. The observation vector used in positioning is

yk =
�

yk ,1 . . . yk ,n y

�T
. (48)

The notation xk ,1:d refers to the d positioning coordinates of the
state. In GPS positioning, the basic observation type is a biased range
measurement between MS and a satellite with coordinates p (i )k

yk ,i = hk ,i (xk )+ sk ,i + vk ,i = ||p (i )k −xk ,1:3||+xk ,4+ sk ,i + vk ,i , (49)

where the bias xk ,4 is caused by the difference in MS and satellite
clocks, and is the same for each observation at any time step, exclud-
ing the effect of the satellite clock error. In reality, the observation
equation has more additive error components such as ionospheric
and trophospheric delays that in principle could be estimated and
their influence eliminated [39, 52]. Because the range measurement
are derived from the signals traveling between MS and some other
stations, the additive sensor error sk in the range measurements can
be caused by the attenuations and reflections of the signal between
MS and the station.

As the observation equation is nonlinear, we are unable to use KF
to solve the posterior distribution of the system (1)–(3), but instead
resort to approximate methods. The standard approach is to ap-
proximate the nonlinear functions as linear, and apply KF to the
approximate system. In cases where we are able to compute the
Jacobian matrix of the measurement equation, the most popular
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algorithm is the (first order) extended Kalman filter (EKF) [8], [16]. In
EKF, the nonlinear measurement equations are approximated using
the first order Taylor approximation about the predicted distribution
mean [xk |k−1(Λ0:k−1)T , rk |k−1(Λ0:k−1)T ]T . The EKF algorithm is given in
Algorithm 3. For simplicity we define

g k (Xk ,Λk ) = hk (xk )+Λk rk . (50)

In the algorithm g �k (Xk |k−1(Λ0:k−1),Λk ) is the Jacobian matrix of
g k (·,Λk )with respect to Xk evaluated at Xk |k−1(Λ0:k−1).

Algorithm 3 EKF
1: for k = 1, . . . , T do
2: Xk |k−1(Λ0:k−1) = Ak−1Xk−1|k−1(Λ0:k−1)
3: Vk |k−1(Λ0:k−1) = Ak−1Vk−1|k−1(Λ0:k−1)AT

k−1+ Bk−1

4: g k (Xk ,Λk )≈g k (Xk |k−1(Λ0:k−1),Λk )+g �k (Xk |k−1(Λ0:k−1),Λk )(Xk−Xk |k−1(Λ0:k−1))
5: Sk (Λ0:k ) = g �k (Xk |k−1(Λ0:k−1),Λk )Vk |k−1(Λ0:k−1)g �k (Xk |k−1(Λ0:k−1),Λk )T +Rk

6: Kk (Λ0:k ) = Vk |k−1(Λ0:k−1)g �k (Xk |k−1(Λ0:k−1),Λk )T Sk (Λ0:k )−1

7: Xk |k (Λ0:k ) = Xk |k−1(Λ0:k−1)+Kk (Λ0:k )(yk − g k (Xk |k−1(Λ0:k−1),Λk ))
8: Vk |k (Λ0:k ) = Vk |k−1(Λ0:k−1)+Kk (Λ0:k )g �k (Xk |k−1(Λ0:k−1),Λk )Vk |k−1(Λ0:k−1)
9: end for

We approximate the posterior distribution at each time step as Gaus-
sian with the mean and the covariance given by EKF

p (xk | y1:k ,Λ0:k )≈N
�
xk |k (Λ0:k ), Pk |k (Λ0:k )

�
. (51)

It is important to note that the EKF algorithm does not evaluate the
mean and the covariance of the posterior distribution directly, but
instead approximates the nonlinear functions using Taylor series
and hence we are able to evaluate the moments for this approxim-
ative system. In a sense this could be considered to be a one-step
approximation for the filtering problem. With very strong nonlin-
earities in the observation functions hk (·) the performance of EKF
can be severely degraded. However, range measurements with long
distances between MS and BS can be estimated locally very well with
even first order Taylor approximation, and in this case EKF performs
very accurately and is very fast.

There are Kalman-type filtering methods that are used to directly ap-
proximate the moments of the posterior distribution. The unscented
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Kalman filter uses the unscented transformation to approximate the
mean and covariance of a nonlinearly transformed Gaussian random
variable with a weighted sum of the nonlinear function evaluations
[35], [34], [36]. A similar approach is used in Kalman-type filters
that evaluate the mean and the covariance of the posterior filtering
distribution by approximating them with numerical integration, or
cubature formulas. These filters are referred to as cubature Kalman
filters [5], [58].

3.4 Gaussian mixture filter

In Section 3.2 we discussed the KF algorithm that can be used to
evaluate the Gaussian posterior distribution p (xk , rk | y1:k ,Λ0:k ) in
closed form. However, the indicator variable process Λk is generally
unknown and also stochastic, thus making the evaluation of p (xk , rk |
y1:k ) a more complicated process. The Markov chain model (10)
results in a Gaussian mixture (GM) posterior distribution, and the
posterior filtering distribution can be found using the GM filter (GMF)
[64], [3],[2].

To evaluate the posterior filtering distribution (38) we are required to
evaluate the posterior probability of the whole history of indicator
variables P(Λ0:k | y1:k ). The models (9) and (10)–(11) for the indicator
variables make it possible to do this in recursive form.

Due to the Markovian property of the indicator variable models, we
can write the predictive probability mass function as

P(Λ0:k | y1:k−1) =P(Λk |Λ0:k−1, y1:k )P(Λ0:k−1 | y1:k−1)
=P(Λk |Λk−1)P(Λ0:k−1 | y1:k−1). (52)

The posterior probability of the indicator history at time k can be
evaluated by multiplying the posterior probability of the indicator
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history from the time k −1 with the likelihood of the history and the
transition probability

P(Λ0:k | y1:k ) =
p (yk |Λ0:k , y1:k−1)P(Λ0:k | y1:k−1)

p (yk | y1:k−1)

=
p (yk |Λ0:k , y1:k−1)P(Λk |Λk−1)P(Λ0:k−1 | y1:k−1)

p (yk | y1:k−1)
. (53)

The predicted observation distribution

p (yk |Λ0:k , y1:k−1)

=
�

p (yk | xk , rk ,Λk )p (xk , rk |Λ0:k , y1:k−1)d(xk , rk ) (54)

is approximated as a Gaussian distribution

p (yk |Λ0:k , y1:k−1)≈N (z k (Λ0:k ) | 0,Sk (Λ0:k )) (55)

where the mean and the covariance

z k (Λ0:k ) = yk −Hk (Λk )Xk |k−1(Λ0:k−1) (56)

Sk (Λ0:k ) =Hk (Λk )Vk |k (Λ0:k )Hk (Λk )T +Rk (57)

are the innovation and the innovation covariance. The likelihood of
the indicator history (55), measures how well the current observation
is explained by a particular Λ0:k given the observation history y1:k−1

The GMF algorithm evaluates the posterior distribution in closed
form in the case of a linear dynamic system with additive sensor
errors by running a growing bank of KFs and computing the prob-
ability for each of the Gaussian components. In the case of nonlinear
systems, the posterior can be approximated analogously by running
a bank of Kalman-type filters, such as EKFs.

The dimension of Λ0:k grows at each time step exponentially and a
closed form solution of the posterior may become infeasible after
only a few time steps. Hence approximation techniques have been
developed for the problem. One solution is to remove mixture com-
ponents with small probability P(Λ0:i | y1:i ) to control the number of
components. Other approaches are often based on merging some of
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the components according to a strategy. The simplest technique is to
merge all the Gaussian components into a single one at each time
step. This could be done by computing the mean and the covariance
of the mixture distribution and approximating it with a Gaussian with
corresponding mean and covariance [55], [62]. The mean and cov-
ariance of the GM posterior filtering distribution have closed form
expressions

Xk |k =
�

Λ0:k

P(Λ0:k | y1:k )Xk |k (Λ0:k ) (58)

Vk |k =
�

Λ0:k

P(Λ0:k | y1:k )
�

Vk |k (Λ0:k )

+ (Xk |k (Λ0:k )−Xk |k )(Xk |k (Λ0:k )−Xk |k )T
�

. (59)

Other merging techniques include the generalized pseudo-Bayesian
approach of the first and the second order, and the interacting mul-
tiple model algorithm (IMM) [8], all of which keep the number of
components constant at each time step, but have a different strategy
of choosing which components to merge.

A novel sequential merging method

We consider the system (17)-(19) and the white indicator variable
model (9). Let the approximate posterior filtering distribution at time
k −1 be

p (xk−1 | y1:k−1)≈N
�
xk−1|k−1, Pk−1|k−1

�
. (60)

If we have m conditionally independent observations at time k , and
each of them may have an additive error present, the posterior filter-
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ing distribution will have 2m components. The posterior distribution
can be written as

p (xk | y1:k ) =
�

λk ,1

· · ·
�

λk ,m

P(λk ,1) · · ·P(λk ,m )p (xk | y1:k ,λk ,1, . . . ,λk ,m )

∝
�

λk ,1

· · ·
�

λk ,m

P(λk ,1) · · ·P(λk ,m )
m�

l=1

p (yk ,l | xk ,λk ,l )p (xk | y1:k−1)

∝
�

λk ,2

· · ·
�

λk ,m

P(λk ,2) · · ·P(λk ,m )
m�

l=2

p (yk ,l | xk ,λk ,l )p (xk | y1:k−1, yk ,1),

where p (xk | y1:k−1, yk ,1) is a two-component GM distribution. In the
novel merging method, we merge two-component GM distributions
p (xk | y1:k , yk ,1:l ) into a single Gaussian using moment matching be-
fore evaluating the posterior p (xk | y1:k , yk ,1:l+1) [P3]. Note that the
order in which observations are process has an influence on the
approximative posterior.

3.5 Sampling based methods

Sequential Monte Carlo (SMC) methods, or particle filters, are
sampling based methods that use a weighted sample to approxim-
ate the posterior distribution empirically [19], [60]. The approx-
imation is done with a set of N weighted samples, or particles,
{x (i )0:k , r (i )0:k ,Λ(i )0:k , w (i )

0:k }Ni=1, and the approximative posterior distribution
is

p̂N (x0:k , r0:k ,Λ0:k | y1:k )

=
N�

i=1

w (i )
0:kδ
�
(x0:k , r0:k ,Λ0:k )−

�
x (i )0:k , r (i )0:k ,Λ(i )0:k

��
, (61)

where δ(·) is the delta distribution. Optimally the particles would
be generated from the posterior distribution, but in practice import-
ance sampling based on the strong law of large numbers (SLLN) is
used, as drawing a sample from the posterior may be impossible.
Let π(x0:k , r0:k ,Λ0:k ) be a distribution with a support that contains
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the support of p (x0:k , r0:k ,Λ0:k | y1:k ). The mean of a function g (·) of
random variables x0:k , r0:k ,Λ0:k can be written as

E(g (x0:k , r0:k ,Λ0:k ) | y1:k ))

=
�

g (x0:k , r0:k ,Λ0:k )p (x0:k , r0:k ,Λ0:k | y1:k )d(x0:k , r0:k ,Λ0:k )

=

�
g (x0:k , r0:k ,Λ0:k )

p (x0:k ,r0:k ,Λ0:k |y1:k )
π(x0:k ,r0:k ,Λ0:k )

π(x0:k , r0:k ,Λ0:k )d(x0:k , r0:k ,Λ0:k )
�

p (x0:k ,r0:k ,Λ0:k |y1:k )
π(x0:k ,r0:k ,Λ0:k )

π(x0:k , r0:k ,Λ0:k )d(x0:k , r0:k ,Λ0:k )
.

(62)

SLLN states that the sample mean converges almost surely to the
expected value

1
N

�N
i=1 g (x (i )0:k , r (i )0:k ,Λ(i )0:k )

p (x (i )0:k ,r (i )0:k ,Λ(i )0:k |y1:k )

π(x (i )0:k ,r (i )0:k ,Λ(i )0:k )

1
N

�N
j=1

p (x (j )0:k ,r (j )0:k ,Λ(j )0:k |y1:k )

π(x (j )0:k ,r (j )0:k ,Λ(j )0:k )

(63)

=
N�

i=1

g (x (i )0:k , r (i )0:k ,Λ(i )0:k )w
(i )
0:k →E(g (x0:k , r0:k ,Λ0:k ) | y1:k )),

as the size of samples drawn from π(·) approaches infinity. Thus the
sample {x (i )0:k , r (i )0:k ,Λ(i )0:k }Ni=1 drawn from the importance distribution
π(x0:k , r0:k ,Λ0:k ) and the weights

w (i )
0:k =

p (x (i )0:k ,r (i )0:k ,Λ(i )0:k |y1:k )

π(x (i )0:k ,r (i )0:kΛ
(i )
0:k )

�N
j=1

p (x (j )0:k ,r (j )0:k ,Λ(j )0:k |y1:k )

π(x (j )0:k ,r (j )0:kΛ
(j )
0:k )

, (64)

can be used to estimate the expected value of any function
g (x0:k , r0:k ,Λ0:k ), and thus can be considered to be a representation
of the posterior distribution.

The importance distribution can be chosen freely within certain mild
restrictions [19], and this allows for the evaluation of the posterior
distribution to be performed sequentially as follows. Due to the
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Markovian property of the parameters, the posterior distribution can
be written

p (x0:k , r0:k ,Λ0:k | y1:k )
∝ p (yk | xk , rk ,Λk )p (xk | xk−1)p (rk | rk−1)P(Λk |Λk−1)×
×p (x0:k−1, r0:k−1,Λ0:k−1 | y1:k−1). (65)

The sequential importance sampling (SIS) algorithm is based on the
selection of an importance distribution that can be factored in a
certain way that allows the computation of the particle weights (64)
recursively. In particular, the choice

π(x0:k , r0:k ,Λ0:k | y1:k )

= p (xk | xk−1)p (rk | rk−1)P(Λk |Λk−1)π(x0:k−1, r0:k−1,Λ0:k−1 | y1:k−1). (66)

results in the particle weights

w (i )
0:k ∝w (i )

0:k−1p (yk | x (i )k , r (i )k ,Λ(i )k ). (67)

where the new samples (x (i )0:k , r (i )0:k ,Λ(i )0:k ) are obtained by propagating
the old samples (x (i )k−1, r (i )k−1,Λ(i )k−1) according to the state transition
distributions and adding them to (x (i )0:k−1, r (i )0:k−1,Λ(i )0:k−1). SIS is only
a restricted version of the more general particle filter but is very
popular due to its simplicity and general applicability. When we are
interested only in the posterior filtering distribution, it is sufficient
to store only the current particles {x (i )k , r (i )k ,Λ(i )k , w (i )

0:k }Ni=1.

In practice SMC methods are plagued by the degeneracy phe-
nomenon, where after a number of sequential steps of the algorithm,
all but one particle will have almost zero normalized weight. The
degeneracy problem is often solved in practice by using a procedure
called resampling, where particles with low weights are eliminated
and particles with large weights are multiplied. This can be done
for example by sampling the particle indices from the multinomial
distribution defined by the weights {w (i )

0:k }Ni=1, and forming the new
particles according to the indices. After sampling, the same weight
w (i )

0:k =
1
N

is assigned for all the particles. The resampling could be
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performed at each time step as one does in the bootstrap filter, or
after the effective sample size

Neff =
1
�N

i=1

�
w (i )

0:k

�2 , (68)

which is used to measure the degeneracy of the weights, becomes
smaller than some threshold value NTh[40]. The SMC methods using
resampling are referred to as sampling importance resampling (SIR)
filters (Algorithm 4).

Algorithm 4 SIR particle filter for the system (14)–(16)

1: Set w (i )
0 =

1
N

, i = 1, . . . , N

2: Draw x (i )0 �N
�
x0|0, P0|0
�

, r (i )0 �N
�

r0|0,Σ0|0
�

,Λ(i )0 �P(Λ0), i = 1, . . . , N
3: for k = 1, . . . , T do
4: Draw x (i )k �N

�
Fk−1x (i )k−1,Qk−1

�
, r (i )0 �N
�
Φk−1r (i )k−1,Σk

�
,

Λ(i )k �P(Λk |Λ(i )k−1), i = 1, . . . , N
5: Compute and normalize the weights

w (i )
0:k ∝w (i )

0:k−1p (yk | x (i )k , r (i )k ,Λ(i )k ), i = 1, . . . , N
6: if Neff <NTh then
7: Resample x (i )k , r (i )k ,Λ(i )k based on w (i )

0:k

8: Set w (i )
0:k =

1
N

, i = 1, . . . , N
9: end if

10: end for

Marginalized particle filtering

As discussed previously, the conditional distribution of the state and
the sensor errors given the indicator history Λ0:k can be solved in
closed form for linear systems and approximatively for nonlinear
systems

p (Xk | y1:k ,Λ0:k )≈N
�

Xk |k (Λ0:k ), Vk |k (Λ0:k )
�

. (69)

When part of the problem can be solved in closed form, it is pos-
sible to use marginalized particle filters (MPFs, also known as Rao-
Blackwellized filters) to approximate the posterior distribution more
accurately with fewer particles [20].
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In the state-space problem with the additive sensor errors we use SIR
to approximate

p̂N (Λ0:k | y1:k ) =
N�

i=1

w (i )
0:kδ(Λ0:k −Λ(i )0:k )≈P(Λ0:k | y1:k ). (70)

For each particle {Λ(i )0:k , w (i )
0:k }Ni=1, we can solve, at least approximately,

the mean and the covariance of p (xk | y1:k ,Λ(i )0:k ). The unnormalized
weight is computed for each of the particles as

w (i )
0:k ∝w (i )

0:k−1p (yk | y1:k−1,Λ(i )0:k )

=w (i )
0:k−1N
�

z k

�
Λ(i )0:k

�
| 0,Sk

�
Λ(i )0:k

��
. (71)

The weights degenerate with time steps, and in practice one has to
perform resampling the same way as for all SMC methods.

The approximate posterior filtering distribution obtained by MPF
algorithm is a GM distribution. In a sense MPF is a GM filter where
the unlikely components are pruned automatically in the resampling
procedure.

Algorithm 5 Marginalized SIR particle filter for the system (14)–(16)

1: Set w (i )
0 =

1
N

, i = 1, . . . , N

2: Draw Λ(i )0 �P(Λ0), i = 1, . . . , N
3: for k = 1, . . . , T do
4: Draw Λ(i )k �P(Λk |Λ(i )k−1), i = 1, . . . , N
5: Set Λ(i )0:k =

�
Λ(i )0:k−1,Λ(i )k

�

6: Evaluate p (Xk | y1:k ,Λ(i )0:k ) using KF
7: Compute and normalize the weights

w (i )
0:k ∝w (i )

0:k−1p (yk |X (i )k ,Λ(i )0:k ), i = 1, . . . , N
8: if Neff <NTh then
9: Resample p (Xk | y1:k ,Λ(i )0:k ) based on w (i )

0:k

10: Set w (i )
0:k =

1
N

, i = 1, . . . , N
11: end if
12: end for
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3.6 Variational Bayes

It is possible to approximate the posterior distribution of the state
using the expectation maximization [17],[11] or variational method
[12],[P7]. We study the system (17)–(19) with white indicator variable
process (9) and linear observation equations. Similar approximative
method could be used in the nonlinear case using the linearized
equations.

In the variational Bayes method the calculus of variations is used to
find the optimal approximate distribution

q (x0:k ,λ0:k ,1:m )≈ p (x0:k ,λ0:k ,1:m | y1:k )

by requiring that the distribution can be factored as

q (x0:k ,λ0:k ,1:m ) =qx0:k (x0:k )
k�

i=1

m�

l=1

qλi ,l (λi ,l ). (72)

In the following we will again leave out the subscripts of the dis-
tributions for notational convenience. The marginal distributions
q (λ1,1), . . . ,q (λk ,m ) and q (x0:k ) are found such that they minimize the
Kullback-Leibler (KL) divergence of the approximative distribution
with respect to the posterior distribution

KL(q (x0:k ,λ0:k ,1:m )||p (x0:k ,λ0:k ,1:m | y1:k ))

=
�

λ0:k ,1:m

�
q (x0:k )

k�

i=0

m�

l=1

q (λi ,l ) log
q (x0:k )
�k

i=0

�m
l=1 q (λi ,l )

p (x0:k ,λ0:k ,1:m | y1:k )
dx0:k . (73)

The calculus of variations is used to minimize the KL divergence with
respect to q (λi ,l ) by fixing the marginal distribution not containing
λi ,l

q (x0:k ,λ0:k ,1:m\λi ,l ) :=q (x0:k ,λ1,1, . . . ,λ1,m , . . . ,λi ,l−1,λi ,l+1, . . . ,λk ,m ).

The marginal distribution q (λi ,l )minimizing the KL-divergence is
[12, p. 466]

logq (λi ,l ) =Ex0:k ,λ0:k \λi ,l

�
log p (x0:k ,λ0:k ,1:m | y1:k )

�
+ const., (74)

29



where the expectation is taken with respect to q (x0:k ,λ0:k ,1:m\λi ,l ).

Because the posterior distribution is of the form

p (x0:k ,λ0:k ,1:m | y1:k )

∝
�

k�

i=1

N
�

yi |Hi xi , Ri (Λi )
�
N (xi | Fi−1xi−1,Qi−1)P(Λi )

�
×

×N
�
x0 | x0|0, P0|0
�
P(Λ0), (75)

we can evaluate the marginal q (λi ,l ) as

logq (λi ,l ) =Ex0:k ,λ0:k \λi ,l (log p (x0:k ,λ0:k ,1:m | y1:k ))+ const.

=Ex0:k ,λ0:k \λi ,l (log p (x0:k ,λ0:k ,1:m | y1:k ))+ const.

= (1−λi ,l )Exi

�
−1

2
log det Ri −

1
2
||yi ,l−Hi ,l xi ||2R−1

i ,l
+ log(1−θi )
�

+λi ,l Exi

�
−1

2
log det(Ri +Σi ,l )−

1
2
||yi ,l−Hi ,l xi ||2(Ri ,l+Σi ,l )−1+ log(θi )

�

+ const. (76)

Taking the exponential, it can be shown that the optimal approxim-
ative q (λi ,l ) is of the same form as the prior p (λi ,l ), i.e. a Bernoulli-
distribution

q (λi ,l ) = (1−θi ,l )1−λi ,l θ
1−λi ,l

i ,l , (77)

and therefore E(λi ,l ) = θi ,l . The probability of the sensor error being
present is

θi ,l =
ρ(2)i ,l

ρ(1)i ,l +ρ
(2)
i ,l

, (78)

where

logρ(1)i ,l =−
1
2

log det Ri ,l −
1
2
||yi ,l −Hi ,l xi |k ||2R−1

i ,l

− 1
2

tr
�

H T
i ,l R−1

i ,l Hi ,l Pi |k
�
+ log(1−θi ) (79)

logρ(2)i ,l =−
1
2

log det(Ri ,l +Σi ,l )−
1
2
||yi ,l −Hi ,l xi |k ||2(Ri ,l+Σi ,l )−1

− 1
2

tr
�

H T
i ,l (Ri ,l +Σi ,l )−1Hi ,l Pi |k

�
+logθi . (80)
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After finding each of the marginal distributions q (λi ,l ), we evaluate
the marginal distribution of the state q (x0:k ) as

logq (x0:k ) =Eλ0:k ,1:m

�
log p (x0:k ,λ0:k ,1:m | y1:k )

�
+ const.

=
k�

i=1

m�

l=1

−1
2
Eλi ,l (1−λi ,l )||yi ,l −Hi ,l xi ||2R−1

i ,l

− 1
2
Eλi ,l (λi ,l )||yi ,l −Hi ,l xk ||2(Ri ,l+Σi ,l )−1

− 1
2
||xi − Fi−1xi−1||2Q−1

i−1
− 1

2
||x0−x0|0||2P−1

0|0
+ const.

=
k�

i=1

−1
2
||yi −Hi xi ||2Ξ−1

i
−1

2
||xi − Fi−1xi−1||2Q−1

i−1

− 1
2
||x0−x0|0||2P−1

0|0
+ const., (81)

where

Ξ−1
i =



Ξ−1

i ,1
...
Ξ−1

i ,m




Ξ−1
i ,l =Eλi ,1(1−λi ,1)R−1

i ,1 +Eλi ,1(λi ,1)(Ri ,1+Σi ,1)−1

= (1−θi ,1)R−1
i ,1 +θi ,1(Ri ,1+Σi ,1)−1. (82)

It can be shown that the density q (x0:k ) is Gaussian and we can com-
pute the marginals

q (xi ) =N
�
xi |k , Pi |k
�

(83)

using KF and RTS-smoother, respectively described by Algorithms 1
and 2. The KF uses the observation noise matrices Ξi .

The set of equations (77) and (83) can be solved by a fixed-point itera-
tion for which the convergence is guaranteed due to certain convexity
properties of the error in the approximative distribution [12, p. 466].
This is the VB method that is summarized in Algorithm 6. Although
convergence checks could be performed within the algorithm, we
fix the number of iterations to M to control the computational costs.
The resulting algorithm is very close to the EM-method for detecting
change in the state transition model [17],[11],[44].
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Algorithm 6 Variational Bayes method
1: θi ,l ← 0, i = 1, . . . , k , l = 1, . . . , m
2: for m = 1, . . . , M do
3: Ξ−1

i ,l ← (1−θi ,l )R−1
i ,l +θi ,l W −1

i ,l , i = 1, . . . , k , l = 1, . . . , m
4: Evaluate xi |i , Pi |i , i = 1, . . . , k using Algorithm 1
5: Evaluate xi |k , Pi |k , i = k , . . . , 0 using Algorithm 2
6: for i = 1, . . . N do
7: logρ(1)i ,l =− 1

2
log det Ri ,l − 1

2
||yi ,l −Hi ,l xi |k ||2R−1

i ,l

− 1
2

tr
�

H T
i ,l R−1

i ,l Hi ,l Pi |k
�
+log(1−θi )

8: logρ(2)i ,l =− 1
2

log det(Ri ,l +Σi ,l )− 1
2
||yi ,l −Hi ,l xi |k ||2(Ri ,l+Σi ,l )−1

− 1
2

tr
�

H T
i ,l (Ri ,l +Σi ,l )−1Hi ,l Pi |k

�
+logθi

9: θi ,l =
ρ(2)i ,l

ρ(1)i ,l +ρ
(2)
i ,l

10: end for
11: end for

4 Positioning quality

The problem of determining and enhancing the reliability of the
positioning service in different situations is one of the fundamental
problems in the art of positioning. Traditionally positioning quality,
or integrity, is monitored using RAIM-techniques [14], [39]. The
integrity is defined in [54] as

a measure of trust which can be placed in the correctness
of the information supplied by the total system. Integrity
includes the ability of the system to provide timely warn-
ings to the user when the system should not be used for
intended operation.

Traditional RAIM is based on frequentist hypothesis testing, a theory
that has been criticised as ‘bad science’ because of its convoluted
approach (the ‘null ritual’) and its logical inconsistencies [10].
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4.1 RAIM

RAIM is a technique for using an overdetermined system of equa-
tions to perform a check on the consistency of the system, originally
used in GPS based aviation. The state contains at least four un-
knowns in GPS systems, i.e. three position coordinates and a receiver
clock bias. Therefore, observations from at least five satellites are
required for performing RAIM. Going through all the combinations
of observations and finding the corresponding state estimates, the
inconsistency of estimates would indicate the possibility of a faulty
observation, if at most one faulty observation is assumed [39].

When six observations are observed, it is possible to identify and
exclude the faulty observation, if at most a single one is present. This
testing can be done for example using the reliability testing method
[7]. This procedure is often referred to as RAIM with fault detection
and exclusion (RAIM/FDE).

Required navigation parameters

The performance of RAIM is traditionally monitored with the re-
quired navigation performance (RNP) parameters of accuracy, avail-
ability, continuity and integrity.

Briefly, the RNP parameters are defined as follows [67]. Accuracy is
the degree of conformance between the state estimates and the true
state. The availability of the navigation system is the percentage of
time that the services of the system are usable within the specified
coverage area. Continuity is the probability that the position service
is available for the duration of the phase of operation and integrity is
the ability of the system to provide timely warnings to the user when
the system is not to be used for positioning.

Traditionally availability and continuity are predictive parameters
using the information about the orbits of the satellites.
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4.2 Bayesian RAIM

Bayesian approach for RAIM is more straightforward than the tra-
ditional RAIM based on the testing of the observation consistency
[53], [P2], [P3], [P5]. In previous sections we modeled the positioning
problem as a dynamic estimation problem with additive sensor er-
rors and discussed a few of the methods to approximate the posterior
filtering distribution p (xk | y1:k ) that contains all of the information
provided by the models and the data. This posterior distribution
includes all the information about the system, including the additive
sensor errors, given the models and the received observations.

We have proposed a Bayesian framework for RAIM for personal posi-
tioning in urban environments [P5]. The proposed approach mon-
itors the system performance solely based on the posterior distri-
bution, and therefore the monitoring can be performed whenever
the posterior distribution exists. There does not exist RAIM require-
ments for personal positioning as there are for aviation. However, the
traditional RAIM is not applicable directly to the urban navigation
setting, for example due to the following reasons.

• The assumption of at most one biased observation is too strict
for urban navigation where multipath signals are common.

• The assumption that biased signals do not contain any useful
information about the position is too strict.

• The predicted availability of RAIM is traditionally based only
on the geometry and number of visible satellites, and not on
the received observations. The geometry and number of vis-
ible satellites can be very poor in urban environments where
large parts of the sky are blocked from view, and generally it
is difficult to predict future visibility of the satellites in urban
environments.

• Separate algorithms for positioning, error detection and error
identification complicate the receiver architecture [54].

• Integrity is monitored indirectly through the observations and
minimal biases that can be detected in the observations.
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Bayesian model comparison approach

In the Bayesian framework, there are several approaches for the
quality monitoring problem. Given the observation models

yk = hk (xk )+Λk rk

we can compute the probability for each Λ(i )k , i = 1. . . ,2n y for being
the true model. Based on the probabilities of the models, we can
investigate whether the observations indicate that one of the models
is more probable than the others.

The posterior odds for Λ(i )k against Λ(j )k being the true model can be
computed as

Oi j =
P
�
Λ(i )k | yk

�

P
�
Λ(j )k | yk

� =
p
�

yk |Λ(i )k

�

p
�

yk |Λ(j )k

�
P
�
Λ(i )k

�

P
�
Λ(j )k

� , (84)

where

p
�

yk |Λk
�

=
�

p
�

yk | xk ,Λk
�

p (xk |Λk )dxk =
�

p
�

yk | xk ,Λk
�

p (xk )dxk (85)

is the evidence given by the data yk for the model Λk .

We suggested a Bayesian RAIM procedure based on the posterior
odds in the case where at most a single observation channel is con-
taminated with a bias [P2]. The method is a snapshot RAIM proced-
ure, i.e. it performs the integrity check at each time step with only the
current set of observations, and no model for the dynamics of the er-
ror is used. Not taking the dynamics into consideration, and restrict-
ing to at most one bias within the observation vector, simplifies the
problem significantly, as we have n y +1 possible models at each time
step. We evaluate (84) for each of the models Λ(i )k , i = 1, . . . , n y against

Λ(n y+1)
k = 0 (the null model), and arrange the models according to

their probability. In the case where the most probable model is not
the null model, we check whether or not the correct contaminated
observation could in fact be identified based on the geometry of the
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problem. In the case the check fails, and the correct contaminated
channel can’t be identified, the system declares integrity failure.

In the cases where the geometric check does not fail or the null model
has the best odds, we compute whether the odds are good enough
to say a single model fits the data clearly the best. If the odds are
good enough, the system declares sufficient integrity, but if the odds
are not good, the system issues a warning that the integrity can’t be
guaranteed.

The described RAIM procedure was based solely on the probabilities
of certain observations being contaminated. The main drawback of
this method is that not all additive sensor errors cause the system to
have performance worse than required, nor does the system with no
errors necessarily perform within requirements.

Bayesian RAIM

When we have found the posterior distribution we can infer any kind
of information from it. Our suggested Bayesian RAIM approach is
simply based on computing the probabilities of the errors. Given the
posterior, we are able to compute the probability of the true error
being less than T , that can be for example the required accuracy for
the current positioning task,

P(xk ∈ΩT (xk |k ) | y1:k ) (86)

where ΩT (xk |k ) contains the states within the error tolerance T

ΩT (xk |k ) = {xk : ||xk ,1:d −xk |k ,1:d ||< T }. (87)

The position error is computed in d -dimensions.
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The probability (86) can be computed as the integral

PT =P
�
xk ∈ΩT (xk |k ) | y1:k

�
=
�

ΩT(xk |k )

p (xk | y1:k )dxk

=
�

Λ0:k

P
�
Λ0:k | y1:k
�
�

ΩT (x̂k )

p (xk | y1:k ,Λ0:k )dxk

=
�

Λ0:k

P
�
Λ0:k | y1:k
�
P
�
xk ∈ΩT (xk |k ) | y1:k ,Λ0:k

�
, (88)

so the probability of the error being smaller than a threshold can be
obtained as the sum of the probabilities of errors within the toler-
ance given the indicator history multiplied by the probability of the
indicator history. This approach takes automatically into account
the possibility that the presence of additive sensor error does not
necessarily cause the position error to be too large, and the absence
of additive sensor errors does not necessarily ensure that the per-
formance is within required limits.

In addition to the computation of accuracy, it is desirable also to
compute whether the system performance is not within a specified
alarm limit (AL). This probability is the integrity of the system, i.e. the
RNP parameter most directly linked to the safety of the operation.
Analogously to the accuracy, we can compute the integrity as

PAL =P
�
xk /∈ΩAL(xk |k ) | y1:k

�

=
�

Λ0:k

P
�
Λ0:k | y1:k
�
P
�
xk /∈ΩAL(xk |k ) | y1:k ,Λ0:k

�
. (89)

The evaluated integrity is compared to the maximum integrity risk P0

to decide whether or not to warn the user about a possibly too large
position error. The principle of Bayesian RAIM is pictured in Figure
4.

If PAL ≤ P0, we do not warn the user about possibly too large error.
Now the probability of misleading information (we say error is within
limits and it is not) PMI is equal to PAL. On the other hand, if PAL > P0

we warn the user about possibly too large error. The probability that
the error is actually within the tolerance is the probability of false
alarm and is equal to PFA = 1−PAL.
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Models
Prior info p (xk |y1:k )

yk x̂k

PAL

k ← k +1

integrity ok
≤ P0

insufficient
integrity> P0

Figure 4: Diagram of the Bayesian RAIM algorithm.

Numerical integration

The computations of the integrity and accuracy involve the integra-
tion of the posterior distribution over ΩAL(xk |k ), and ΩT(xk |k ) respect-
ively. Posterior distributions p (xk | y1:k ,Λ0:k ) are approximated as
GM. These can’t be integrated analytically over general regions, but
instead we have to rely on approximations [45], [57], [63], [22]. There
are two approaches for approximating the integral. First, one can
use numerical integration methods, i.e. quadrature or cubature rules
that approximate the integral as a weighted sum of integrand evalu-
ations at a set of nodes. Second, one can approximate the integration
problem with a simpler one. We can approximate the integration
region, or an integrand with something that we can analytically, or at
least very accurately evaluate. In the work related to this thesis we
use numerical approximations.

4.3 Failure diagnosis

In addition to RAIM methods, we can take the change detection ap-
proach for detecting abrupt changes in the observation sequence.
Due to the recursive nature of the filtering algorithms, undetected
sensor errors have an influence on the state estimates that may per-
sist several time steps after its occurrence. For example, running
KF algorithm without taking into account the possibility of errors

38



propagates the error in the mean according to Lemma 1. Proof for
the lemma is not provided as it is analogous to the proof of Lemma 5
in [25].

Lemma 1. Let the state space model be described by (1)–(3) where the
observation equation is linear. The influence of the realized additive
error sequence s1:k on the Kalman innovation and the posterior mean
can be expressed explicitly as

z k = z k (01:k )+∆z k (90)

and

xk |k = xk |k (01:k )+∆xk |k (91)

where

z k (01:k ) = yk −Hk xk |k−1(01:k−1) (92)

and xk |k (01:k ) are the innovation and the mean of KF conditioned on
Λi = 0, i = 1, . . . , k . The sequences ∆z k and ∆xk |k can be expressed
recursively as

∆z k = sk −Hk Fk−1∆xk−1|k−1 (93)

and

∆xk |k = Kk sk +Ck∆xk−1|k−1, (94)

where Ck = (Inx −Kk Hk )Fk−1.

The detection and the diagnosis of the constant biases in the system
is often carried out using statistical tests [26],[9]. In whiteness tests
such as the cumulative sum test, one computes whether or not the
innovation process is a zero mean white noise process, as it is in
the error-free case. In the generalized likelihood ratio test [70] one
tests whether or not a constant bias appeared in the system at each
of the time steps within a fixed window. Likelihood ratios of the
models with the assumption of the bias appearing at the k th time
step and the model without the bias are computed, and if the largest
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test statistic is large enough, the bias is diagnosed by computing its
maximum likelihood estimate.

In the Bayesian approach for the fault diagnosis problem we simply
solve for the biases and the effect they cause using for example the
estimation methods discussed in Sections 3.2 – 3.6 [P7].

Using Lemma 1 the system (41) – (43) can be transformed into the
system

�
rk+1

∆xk |k

�
=
�
Φk 0

KkΛk+1 Ck

��
rk

∆xk−1|k−1

�
+
�
εk+1

0

�
(95)

z k =
�
Λk −Hk Fk−1

�� rk

∆xk−1|k−1

�
+ z k (01:k ), (96)

r0 �N
�

r0|0, Pr
0|0
�

(97)

∆x0|0 = 0 (98)

where z k (01:k )�N (0,Sk (01:k )) is a white noise process independent
of rk , Λk and∆xk |k . We can find the posterior filtering distribution
for the system (95) – (97) in the Bayesian framework as

p (rk ,∆xk |k | z 1:k ) =
�

Λ0:k

P (Λ0:k | z 1:k )p (rk ,∆xk |k | z 1:k ,Λ0:k ), (99)

which is a GM distribution. We have proposed a method to approxim-
ate (99) and report the estimates for∆xk |k as an addition to already
implemented KF. A decision is made based on the estimate ∆xk |k
whether or not the KF estimate should be used for its intended pur-
pose [P6].

5 Conclusions and future work

In this thesis we have studied the Bayesian solution of a positioning
problem where observations may be contaminated with an additive
sensor error. In the defined positioning problem, the state transition
model is linear Gaussian, but observation equations can be linear
or nonlinear. The additive sensor errors were modeled as a linear
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Gaussian component multiplied by an indicator variable modeled
as a Markov chain. This error model is reasonable for biases caused
for example by multipath signals, but as we are describing failures,
unexpected errors or biases, the models should be constructed for
particular applications and systems. This is a worthy subject of study
on its own that was out of scope for the current work.

In theory the problem can be solved in the Bayesian framework com-
pletely, because the posterior distribution of the state contains all the
information about it given the models and the observations. How-
ever, as the solution is intractable in the general case due to exponen-
tial growth of computational requirements, we considered several
techniques to approximate the posterior distribution. Many of the
techniques approximate the posterior filtering distribution as a GM
distribution where the Gaussian components are the distributions of
the state given the observations and a particular indicator history of
presence of errors in observations. The Gaussian components may
vary significantly with different indicator histories and to keep the
computational costs at a reasonable level, some of the components
must be merged or deleted. The deleting or merging of the compon-
ents may cause the approximative method to lose the information
about the joint distribution of the errors and the state and there-
fore lead to wrong analysis about the state error. Further study on
techniques that approximate GM posterior filtering distributions but
are not prone to lose information about the joint distribution of the
state and errors is required. Smoothing, i.e. waiting a few time steps
to gather more data before merging or deleting components may
improve the approximative posterior. Other possible approaches
could be cost-based deleting or merging of the components so that
components with low but reasonable probability will not be deleted
immediately, if they describe MS motion that differ from the probable
components.

Often the main criticism against the Bayesian approach is the require-
ment of prior distributions. In the current application we require
priors for the magnitude and the presence of the sensor errors, in
addition to the state prior. Naturally, the priors can have a major
impact on the results, but we do not consider this being a major
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issue, because information about error magnitudes can be exper-
imentally found in any positioning system, and more importantly
because the prior distributions should reflect the prior information
that the user has. This means that if there is significant uncertainty
about the magnitude of the errors, this should be reflected by large
prior variances. The prior distributions will determine the influence
of the observations at a certain time step, and therefore severe prob-
lems may arise if the magnitudes and the variances of the errors
are significantly underestimated, or overestimated a priori. In the
worst case, the filter performance can become extremely sensitive, or
unresponsive, to additive errors, and the posterior distribution will
not contain truthful information about the state.

In this thesis, we investigated a Bayesian approach to system failure
diagnosis and RAIM. The Bayesian approach is attractive because
it is more straightforward than traditional methods. Given that we
have probabilistic models for all the system components, we can
solve all the statistics that describe the system performance, at least
in theory. Similar to classic GLR [70], [26], we are able to describe the
effect of sensor errors on the KF and estimate it using the Bayesian
approach. Based on the estimate, we can determine if the effect
of sensor errors on the state estimate is negligible, or are further
investigations required.

We also described a Bayesian RAIM method for urban navigation.
RAIM was originally designed for aviation purposes and is not dir-
ectly applicable to urban navigation. Therefore, we have investigated
a more general Bayesian approach corresponding to the traditional
RAIM that is applicable to any positioning problem in which we can
formulate the models as probability distributions. In the simplest
case, the Bayesian approach enables us to compute directly the pos-
terior probabilities of the models describing the presence of sensor
errors, and we can find the most probable error models. As the prob-
ability of the error model does not necessarily indicate anything
about the error in the state, we have investigated the method for dir-
ectly computing the posterior probability of the errors of certain size.
In the Bayesian framework this is done by integrating the posterior
distribution over a region defined by allowable error. We defined
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how to evaluate the RAIM performance parameters in the Bayesian
approach, but currently there do not exist requirements for the per-
sonal positioning quality, other than the emergency call positioning
requirements [28].

There is a lot of future development required for the personal RAIM
in urban environment. The Bayesian approach is very attractive
due to the benefits discussed in this thesis and it should be further
developed to be applicable in real positioning systems. The main
problem of the Bayesian approach is that it is computationally quite
demanding. The application of the Bayesian RAIM in handheld
devices is not currently feasible, but simultaneous development of
better approximative methods and more capable hardware could
make the Bayesian approach applicable in the near future.
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Abstract
Tracking and navigation problems are often solved us-
ing estimation methods that are based on least-squares
and Kalman filtering techniques. It is well known that
these classic methods are sensitive to unexpectedly large
measurement errors. In this article we discuss some ro-
bust static and dynamic estimation methods that are de-
signed to be insensitive against outlying observations. Po-
sitioning simulations and results of a field test where ro-
bust techniques are applied to pedestrian positioning us-
ing GPS pseudorange measurements are presented. The
results indicate that robust techniques have potential in
GNSS positioning.

1 Introduction
GNSS positioning problems are often solved using esti-
mation methods that are based on least squares estima-
tion and Kalman filtering techniques. These methods can
be shown to work optimally when the noises in the sys-
tems are Gaussian with known means and variances. The
assumption of Gaussianity, even though there might be
sound justification for making it, is sometimes made just
because it is convenient that there exists methods that are
in some sense optimal under it. The real measurement
data often contain unexpectedly large errors that do not fit
the assumed noise model. In GNSS measurements these
kinds of errors could be the results of multipath or non-
line-of-sight effects. It is well known that many of the

classic methods are very sensitive to these kinds of errors,
which are usually referred to as outliers, or blunder mea-
surements.

There has been extensive study on methods that would
behave as well as possible when the data is of good qual-
ity, but at the same time would be insensitive against oc-
casional large errors. One approach to handling outliers
is to try to detect them, modify the data or the model and
subsequently estimate using only good data. Another ap-
proach is to compute a robust estimate using all the data
and afterwards outliers could be detected as having the
largest residuals. We consider only the second approach.

Methods for computing robust estimates have been
considered for over 50 years. One of the most impor-
tant contributions to this field is the M-estimation the-
ory by Huber [2] [3], which is based on minimization
of other loss functions than the sum of quadratic terms.
M-estimation is discussed briefly in Section 2. The M-
estimation theory can be used instead of the ordinary least
squares in the case of static positioning.

The Kalman filter [4] and its extensions are the most
used dynamic estimation methods in various problems,
including GNSS navigation. Because of the popularity
there is great interest to develop a robust Kalman filter-
type dynamic estimation algorithms. Most of the work
done in this area is heuristic by nature but can be shown
to work in practice by simulations [9]. In this article we
consider the one-step optimal Bayesian recursive estima-
tor by Masreliez and Martin [7].

We test different stationary and dynamic estimators us-
ing simulated positioning scenarios in which we vary the
number of available measurements and the amount of
contamination. For simplicity, the provided simulations
are on two-dimensional plane. We use range measure-
ments to stationary pseudolites. The results are provided
and discussed in Section 4.

In Section 5 we provide results of a test where the ro-
bust methods were applied to pedestrian positioning using
GPS pseudorange measurements. In Section 6 we sum-
marize the results of simulations and tests and provide
some thoughts about future research on robust estimation
methods for GNSS positioning.
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2 Robust estimation
In the following two sections we consider estimation
methods for static and dynamic linear estimation prob-
lems. Linear problems are considered as in this article
we consider positioning with range and pseudorangemea-
surements obtained from pseudolites or satellites located
far away from the receiver. It is assumed that this results
in almost linear estimation problems.
Consider the ordinary linear regression problem

y = Hx + v, (1)

where y is the vector of observations, H is the design ma-
trix of full rank and v is the observation error with vari-
ance V(v) = R. In the case of independent errors R is a
diagonal matrix with elements σi. In LS estimation we
minimize the quadratic cost function

�

i
ρ(ri(x)) =

1
2

�

i
(ri(x)/σi)2 , (2)

where r(x) = y − Hx. The estimate that minimizes the
quadratic cost function is

x̂ = (HTR−1H)−1HTR−1y, (3)

which is a linear combination of observations and as such
the influence of outlying observations is not bounded in
any way.
To introduce robustness into the estimation problem,

Huber [2] suggested to minimize less rapidly increasing
functions than (2). In more general form the estimation
problem can be written as

x̂ = argmin
x

�

i
ρ(ri(x)/σi). (4)

Note that when ρ(·) = − ln pv, (4) is a maximum likeli-
hood estimation problem. This is why Huber referred his
framework as M-estimation. When ρ(·) is a convex func-
tion, we can solve (4) from the equation

�

i
ψ(ri(x)/σi)

dri(x)/σi
dx

= 0. (5)

and the solution is unique.
Although there does not exist a single best method for

solving (5), one of the most popular techniques is to solve

a sequence of weighted LS-problems. This is the itera-
tively reweighted least squares (IRLS) method which is
given by Algorithm 1 [8]. It has to be noted that IRLS
algorithm has only first degree convergence and needs
reparameterization at each iteration, hence it is not com-
putationally very atractive choice. Despite of this it is a
much-used algorithm, possibly because of the available
software for solving LS-problems. Also, with a good ini-
tial estimate, the algorithm often converges after only few
iterations if the stopping criteria are not too strict.
One of the most used robust M-estimators is the one

minimizing the original Huber’s loss function [2]

ρH(r) =
�
k|r| − k2

2 , |r| ≥ k
r2
2 , |r| < k . (6)

Note that Huber’s loss function corresponds to a density
function that is Gaussian in the middle and double ex-
ponential in the tails. The Huber’s ψ-function in Fig. 1
shows the influence of a residual to the estimate.
Another well-known loss function is the Tukey’s

bisquare

ρB(r) =




k2
6 , |r| ≥ k
k2
6

�
1 −
�
1 −
�
r
k

�2�3
�
, |r| < k (7)

which is not a convex function and as such the conver-
gence to a global minimum is not quaranteed. Note that
for residuals in the tails Tukey’s loss function gives zero
influence as illustrated by Figure 1. The effect is same as
leaving out particular observations from the system and
hence extra care has to be used when minimizing these
kinds of loss functions. With a bad initial estimate the
IRLS algorithm can ignore perfectly good observations
and converge to a local minimum.

3 Robust dynamic estimation
In order to robustify the Kalman filter, Masreliez andMar-
tin [7] approached the linear regression problem (1) using
the Bayesian framework

y = Hx + v, x ∼ Φ(x̄, P), v ∼ F, (8)

where Φ is Gaussian and Fv is symmetric and heavy-
tailed. There is a restriction for the form of Fv that re-
quires the existence of a transformation T such that the

2



Algorithm 1: IRLS
Set initial estimate x(0)
Set error tolerance �
k = 0
for k = 1, 2, . . ., N do

r(k−1) = y − Hx(k−1)
w(k−1)i =

ψ(r(k−1)i /σ)
|r(k−1)i /σ|

W (k−1) = diag[w(k−1)1 , . . . ,w(k−1)n ]
x(k) =

�
HTW (k−1)H

�−1
HTW (k−1)y

if ||x(k) − x(k−1)|| < � then
Stop

end
end

−6 −4 −2 0 2 4 6−6
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0
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Figure 1: ψ-functions indicate the influence that a sample has
on an M-estimator.

transformed innovation variable

u = T (H(x − x̄) + v) (9)

has a distribution Fu which has a density function that is
an even function of all its parameters and all the marginal
distributions Fui are members of a family of distributions
F . A transformation as such exists for example if the
measurements errors are independent and have distribu-
tions from the same family of distributions.
Let F0 be the least favorable member of the family of

distributions F i.e. the distribution that minimizes the
Fisher information for the best possible estimator θ0 of

a family of estimators Θ. Mathematically it is the saddle-
point of the game

min
θ∈Θ

max
F∈F

V(F, θ) = V(F0, θ0) = max
F∈F

min
θ∈Θ

V(F, θ), (10)

where Θ is a family of estimators and θ0 the min-max es-
timator. Masreliez and Martin [7] showed that if Fv is of
required form, the error variance for an estimator

x̂ = x̄ + PHTTTΨ(u), (11)

where [Ψ(u)]i = ψ(ui), is bounded from above as

E
�
(x̂ − x)(x̂ − x)T

�
≤
�
I − PHTTTTHEF0

�
dψ(u)
du

��
P. (12)

The ψ-function as defined in Section 2 is the derivative of
the loss function corresponding to the ML-estimate of the
least favorable distribution.
Consider the linear filtering problem

xk+1 = Fkxk + Γkwk (13)
yk = Hkxk + vk (14)
x0 ∼ Φ(x̄0, P0), (15)

where wk ∼ Φ(0,Qk) and vk is heavy-tailed, symmetric
non-Gaussian for which the transformation T discussed
previously exists. The Bayesian robust estimator for the
linear model is applied to the filtering problem sequen-
tially at each timestep k. This is carried out by heuristi-
cally approximating the posterior density with a Gaussian
distribution. The robust filter is presented by Algorithm
2.

Algorithm 2: Robust Kalman-type filter
x̂0|0 ∼ Φ(x̄0|0, P0|0)
for k = 1, 2, . . . do

x̄k|k−1 = Fk−1 x̄k−1|k−1
Pk|k−1 = Fk−1Pk−1|k−1FTk−1 + Γk−1Qk−1ΓTk−1
x̄k|k = x̄k|k−1 + Pk|k−1HT

k T
TΨ(T (yk − Hk x̄k|k−1))

Pk|k =
�
I − Pk|k−1HT

k T
T
k TkHkEF0

� dψ(u)
du

��
Pk|k−1

Approximate px̂k|k ≈ Φ(x̄k|k, Pk|k)
end

Two possible choices for family of distributions F , as
given byMasreliez andMartin [7], are the �-contaminated
family

F� = {F | F = (1 − �)Φ(·|0, 1) + �H,
H has a symmetric density

�
,

(16)
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and the p-point family

Fp =
�
F | F(−yp) = Φ(−yp|0, 1) = p

2 ,

F has a symmetric density and is continuous in ± p
2

�
,
(17)

which is discussed also in Martin and Masreliez [6].
The least favorable density for �-contaminated family

is

f�,0(x) =



1−�√
2π
exp
�
− 12 x2

�
, |x| < k

1−�√
2π
exp
�
−k|x| + 1

2k
2
�
, |x| ≥ k, (18)

where k is a function of the fraction of contamination �
and can be solved from the equation

2
k
φ(k|0, 1) − 2Φ(−k|0, 1) = �

1 − � , (19)

where φ is the Gaussian probability density function. The
expectation needed for the upper bound of the variance is

EF�,0

�
dψ(u)
du

�
= 1 − 2Φ(−k|0, 1). (20)

For �-contaminated family the error bound (12) is only an
upper bound as it is not possible that the innovation has
the least favorable distribution as its distribution.
The least favorable density for the p-point family of

distributions is

fp,0(x) =




K cos2
�

x
2myp

�
, |x| ≤ yp

K cos2( 12m ) exp
�
2K
p cos

2
�
1
2m

�
(yp − |x|)

�
, |x| > yp.

(21)

The normalization factor K can be solved using the prop-
erty of all the distributions of the family that the distri-
butions have the mass 1 − p inside the interval

�
−yp, yp

�
,

where the point yp is determined by Φ(−yp|0, 1) = p/2.
The parameter value m minimizing the variance can be
solved from

2m − p
�
1 + tan2

�
1
2m

�� �
2m + tan

�
1
2m

��
= 0. (22)

Using the ψ-function of the p-point family of estimators

ψp(x) =




1
myp tan

�
x

2myp

�
, |x| ≤ yp

sign(yp)
myp tan

�
1
2m

�
, |x| > yp,

(23)

the expectation can now computed from

EFp,0

�
dψ(u)
du

�
(24)

=
1
2

� yp

−yp

1
(myp)2

�
1 + tan2

�
x

2myp

��
fp,0(x)dx

The above formulation of a robustified Kalman-type fil-
ter is just one of many. More general formulations than
Algorithm 2 can be found for example in Kovačević et al.
[5] and Schick and Mitter [10].

4 Simulations
We compare the different positioning methods using Mat-
lab simulations. It is not a particularly easy task to choose
the best way to compare the methods [11], as judged by
different criteria several completely different filters can be
the best one.
In this work we choose to look at the frequential be-

haviour of the estimation methods. Instead of considering
the performance of the methods in one particular position-
ing scenario with a specific track and a set of observations,
we generated 200 tracks of 120 epochs and a set of obser-
vations for each of the tracks and look at the frequential
performance of the methods.
For simplicity we consider positioning with range mea-

surements from a set of stationary pseudolites located far
away at coordinates s1, . . . , sl.
To generate the tracks we used the piecewise constant

white noise acceleration model [1].

xk+1 = Fkxk + Γkwk, (25)

Γk =

� 1
2 I2×2
I2×2

�
, (26)

with
wk ∼ N

�
0, 0.22I2×2

�
(27)

F =
�
I2×2 I2×2
0 I2×2

�
. (28)

The state xk contains the position and velocity coordi-
nates.
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Measurements were generated with a model

yk =




||xk − s1||
...

||xk − sl||



+ vk, (29)

where the observation noise

vk ∼ (1 − ε)N(0, 102Il×l) + εN(0, 502Il×l). (30)

We generated several positioning scenarios by varying the
fraction of contamination ε as well as the number of mea-
surements.
In our tests we compared three static estimation meth-

ods. The performance of M-estimates with Huber’s and
Tukey’s bisquare loss functions were compared against
ordinary least squares solution. The tuning parameters for
the M-estimators were chosen as k = 1.345 for Huber and
k = 4.5 for bisquare.
Also three dynamic estimation methods were tested.

Two robust filters using the assumptions of measurement
errors F ∈ F� and ∈ Fp (REKF� and REKFp) were com-
pared against the performance of the ordinary EKF. The
parameter values were chosen as � = 0.1 and p = 0.5.
The results of simulations are given in Figures 2 - 3,

where the bounds that contain 33%, 67% and 90% of
the errors are plotted. Simulations show how extremely
sensitive the classic methods are to even small amount
of contaminated measurements. Robust filters offer good
protection against unmodeled errors with only about four
times more computation time than that of the Kalman fil-
ter. The M-estimation methods can give good results even
in very contaminated scenarios but with the lack of prior
information the static robust methods need more obser-
vations than the dynamic methods to be as robust as dy-
namic estimation methods. The robust filters perform al-
most identically on average as do two M-estimators as far
as the estimation error is considered.

5 Tests
We tested the methods with real GPS-data. The pseudo-
range measurements were collected from a 380 second
long walk around the campus area of Tampere Univer-
sity of Technology using the Holux GPSlim236 Wireless
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Figure 2: Error bounds containing 33%, 67% and 90% of the
errors when contamination fraction is ε.
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Figure 3: Error bounds containing 33%, 67% and 90% of the
errors when contamination fraction is ε.

Bluetooth GPS Receiver. Now it has to be noted that un-
like in simulations, we do not know the exact true track
but instead compute the distance to a reference track that
is assumed to be very close to the true track. Unfor-
tunately, there is some error also in the reference track
which in our tests was the postprocessed DGPS solu-
tion with data collected by two NovAtel’s DL-4 GPS re-
ceivers. As bad signal environments would also affect
the DGPS positioning, we obstruct the line-of-sight of the
GPS receiver by covering it. This should results in noisier
pseudorange measurements.
The state that we are solving now consists of position

and velocity coordinates in ECEF coordinates and clock
bias and clock drift in meters. The static estimation meth-
ods solve only for position and clock bias. The model
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used for pseudorange measurement is

ρi = ||si − x1:3|| + (b − bi)c + Ii + Ti + vi, (31)

where we assume that satellite clock bias bi, the de-
lays Ii, Ti correponding to ionophere and troposphere
can be solved accurately. Also, for simplicity the model
assumes independent errors vi ∼ N

�
0,
�
1500/

√
C/N0

�2�
,

where C/N0 is the carrier-to-noise ratio of the ith mea-
surent.
The filters use the constant velocity and clock drift mo-

tion model
xk+1 = Fkxk + wk (32)

wk ∼ N


0,




1
3∆t

3Qc
1
2∆t

2Qc 0
1
2∆t

2Qc ∆tQc 0
0 0 Qclock





 (33)

where ∆t is the length of the time interval between suc-
cessive epochs, Qc = diag(0.1, 0.1, .01) in ENU coordi-
nates and

Qclock =
�
1/3∆t3σ2c 1/2∆t2σ2c
1/2∆t2σ2c ∆tσ2c

�
, σ2c = 2. (34)

M-estimators with Huber and bisquare loss functions
use parameters k = 0.5 and k = 2.5 correspondingly. The
robust Kalman-type filters use parameter values p = 5 and
� = 0.2

0 10 20 30 40 50
0

100

200

300

C/N0

# obs

Figure 4: The distribution of measured carrier-to-noises.

From the collected pseudorange measurement data we
selected different combinations of measurements which

% of epochs
C/N0 ave(SV) when # SV < 4
(0,∞) 8.7 0
[20,∞) 8.2 0
[25,∞) 6.6 0.6
[30,∞) 4.8 22
(0, 40] 6.9 0
[20, 40] 6.4 0
[30, 40] 2.9 58
(0, 35] 5.2 0.7
(0, 30] 3.7 50

Table 1: 0.33 CERP radius [m] when observations with carrier-
to-noise ratios within certain intervals are used.

we used to compute the solutions. Different measurement
sets were selected based on the carrier-to-noise ratios of
the measurements. The results are collected in the Ta-
bles 2-5 in the form of the percentages of time when the
estimate is within some bound from the reference posi-
tion. The carrier-to-noise intervals and corresponding av-
erage number of available satellites and the percentage
of epochs when only less than four measurements were
available is collected in Table 1.
All the static estimation methods give very similar re-

sults but robust filters give often little better results than
the Kalman filter, but the difference is not very large. It is
debatable if the accuracy gained is worth the extra com-
putation time. Our Matlab implementations of the robust
filters required about four times more computation time
than our implementation of the EKF.

C/N0 EKF REKFp REKF� LS Huber Bisquare
(0,∞) 30.8 28.7 27.7 24.4 24.4 24.4
[20,∞) 31.4 30.2 30.2 25.9 25.9 25.9
[25,∞) 30.2 39.3 39.3 23.5 23.5 23.5
[30,∞) 8.5 23.2 19.5 13.7 13.7 13.7
(0, 40] 28.4 32.3 32.9 13.4 13.4 13.4
[20, 40] 28.7 32.6 33.2 13.1 13.1 13.1
[30, 40] 16.8 7.6 17.1 3.7 3.7 3.7
(0, 35] 4.3 8.2 6.7 1.2 1.2 1.2
(0, 30] 1.2 0.9 1.2 0.3 0.3 0.3

Table 2: How often (%) the estimate is within 5m of the refer-
ence track.

6 Conclusions
In this article we reviewed robust methods that can be
used in positioning applications. Both static and dynamic
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C/N0 EKF REKFp REKF� LS Huber Bisquare
(0,∞) 51.8 60.1 63.7 53.0 53.0 53.0
[20,∞) 48.5 62.2 64.3 55.2 55.2 55.2
[25,∞) 57.3 70.4 73.2 52.7 52.7 52.7
[30,∞) 55.5 61.6 55.2 32.3 32.3 32.3
(0, 40] 46.3 51.5 51.8 29.0 29.0 29.0
[20, 40] 44.8 49.7 50.9 31.1 31.1 31.1
[30, 40] 39.6 48.2 54.6 8.8 8.8 8.8
(0, 35] 20.7 24.7 25.9 4.9 4.9 4.9
(0, 30] 6.1 7.3 6.4 0.6 0.6 0.6

Table 3: How often (%) the estimate is within 10m of the ref-
erence track.

C/N0 EKF REKFp REKF� LS Huber Bisquare
(0,∞) 79.6 80.8 81.7 71.6 71.6 71.6
[20,∞) 74.7 80.8 82.9 72.6 72.6 72.6
[25,∞) 83.5 94.5 93.3 70.7 70.7 70.7
[30,∞) 80.8 93.0 92.7 46.3 46.3 46.3
(0, 40] 75.3 76.5 77.7 47.9 47.9 47.9
[20, 40] 67.1 75.0 76.2 50.0 50.0 50.0
[30, 40] 61.3 64.0 73.5 13.7 13.7 13.7
(0, 35] 55.5 51.2 52.7 15.2 15.2 15.2
(0, 30] 13.4 18.6 15.2 0.9 0.9 0.9

Table 4: How often (%) the estimate is within 15m of the ref-
erence track.

C/N0 EKF REKFp REKF� LS Huber Bisquare
(0,∞) 0 0 0 3.0 1.8 1.8
[20,∞) 0 0 0 2.7 2.7 2.7
[25,∞) 0 0 0 3.4 3.4 3.4
[30,∞) 0 0 0 6.1 6.1 6.1
(0, 40] 0 0 0 11.9 10.1 10.1
[20, 40] 0 0.6 0 12.2 12.2 12.2
[30, 40] 11.9 10.7 11.3 12.5 12.5 12.5
[0, 35] 0 0 0 45.4 45.1 45.1
(0, 30] 0 1.2 0.3 41.5 41.5 41.5

Table 5: How often (%) the estimate is not within 50m of the
reference track.

cases were considered. In simulations it could be shown
that the robust methods perform clearly better than the
classic methods even with small amount of bad observa-
tions. This is because the simplified nature of the simula-
tions, i.e. measurement noise in independent and outliers
occur independently with a certain probability.
We tested the methods also with typical GPS pseudor-

ange measurements in pedestrian positioning application.
We used a DGPS solution as a reference track and col-
lected the test data with consumer priced GPS receiver
which was covered to obtain noisier measurements. Ro-
bust Kalman-type filters seem to give almost always bet-
ter results than the Kalman filter but the difference be-
tween methods is not as distinctive as in simulations. This
might be because of several reasons. First, all the robust
methods discussed in this article assume zero mean noise
but in reality pseudorange measurements contain interfer-
ence that can not be modeled exactly but instead cause
the noise to be biased. Second, the outliers are not in-
dependent but tend to occur during successive epochs e.g.
while we are in an urban canyon and are not spread evenly
in time.
For future work tests with extremely noisy data should

be carried out. In that kind of environment, a good refer-
ence track would be very hard to obtain but easiest solu-
tion would be to evaluate the results graphically. To han-
dle patchy outliers, dynamic estimators that are based on
model selection could be applied. Also it would be in-
teresting to apply robust methods to sensor-aided GNSS
positioning and, in general to hybrid positioning.
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ABSTRACT  
 
An integrity monitoring/failure detection and 
identification approach for GNSS positioning that is 
based on Bayesian model comparison theory is 
introduced. In the new method the user defines models for 
no-failure/failure cases and the most plausible model is 
chosen and used to estimate position. If a channel is 
contaminated and the corresponding model is chosen then 
the effect of this channel on the position estimate is 
attenuated. The posterior probability odds of two models 
can be used as a measure of how well the models can be 
distinguished from each other. In the proposed RAIM-
technique if none of the model plausibilities stands out 
from the others, the user is made aware of the situation as 
the case might be that the effect of a good channel is 
attenuated and the contaminated one is modeled as a good 
one. The performances of traditional RAIM/FDE and the 
new method are compared via simulations. Results of a 
test with real GPS data are also presented. 
 
INTRODUCTION  
 
Quality monitoring and control techniques are important 
parts of any position estimation algorithm. As a result, 
receiver autonomous integrity monitoring (RAIM) has 
become a basic part of personal positioning receiver 
architectures [3,8,10]. Integrity of a positioning system 
refers to the ability of the system to warn the user when a 
given position estimate cannot be trusted. Autonomous 

means that the integrity monitoring is carried out using 
only the signals received by the system. Furthermore 
RAIM techniques have been enhanced to provide not only 
valuable information on the quality of the position 
estimate but also to offer means for detecting satellite 
failures and enable the exclusion of blunder observations.  
 
Traditional RAIM methods are based on conventional 
frequentist hypothesis testing, a theory that has been 
criticised for its convoluted approach and for logical 
inconsistencies [2]. In frequentist hypothesis testing, one 
seeks to reject the null hypothesis based on the 
improbability of the data given that the null hypothesis is 
true. But often what we are really interested in is whether 
one hypothesis is better that the other given the data.  
 
Bayesian model comparison allows us to think in this 
more direct fashion: we compare the probabilities of a 
model being true given the data and select the model that 
best describes the data. Bayesian techniques have been 
used in integrity monitoring by Ober [10] who introduced 
mixture error models which lead to exact position-domain 
results in addition to performing data-based integrity 
monitoring. However, the method introduced relies on 
improper prior probability densities which should not be 
used in the particular case of mixture estimation. 
 
We propose to use Bayesian model comparison as an 
autonomous integrity monitoring/fault detection 
technique. We refer to it as BRAIM in the rest of this 
article. The main advantage of the new proposed method 
is the natural interpretation of the results which appear as 
odds or probabilities of an assumption being true. Also, 
the algorithm is computationally light. 
 
We compare the performance of the proposed method to 
the reliability testing method by [1], which has been often 
applied to RAIM [5,9]. The technique was designed to be 
used as a statistical reliability testing procedure in 
geodetic networks but can be used also in positioning to 
detect and exclude a failure among the observations. The 
method performs two tests. First, a global test is carried 
out to detect a failure by a RAIM method known as least 
squares RAIM. Second, if the global test detected a 
failure, a local test is used to identify the faulty 
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observation, after which it can be excluded from the 
measurement set. Hence the method is sometimes referred 
to as RAIM/failure detection and exclusion (RAIM/FDE) 
[8] and we adopt this acronym in this article. 
 
In this article we first introduce briefly the concept of 
Bayesian model comparison problem, after which we 
describe Bayesian model comparison-based BRAIM 
method. We compare the performance of RAIM/FDE and 
BRAIM using simulations and a test with GPS data and 
present conclusions. 
 
BAYESIAN MODEL COMPARISON 
 
This section summarizes general Bayesian model 
comparison theory, see for example [11] for details. 
Suppose that we have models Mi all of which we consider 
to be reasonable for the problem we are interested in. 
Note that we don't necessarily believe that any of the 
models is the truth. The goal is to choose the most 
plausible model given the data. We assume that the 
problem is not new to us so that using our knowledge of 
the underlying situation, we can assign prior probabilities 
for the models P(M0),�…,P(Mn). The posterior probability 
of a model Mi being the model that produced data D is 

 
( ) ( )

( )
( )

i i
i

P D M P M
P M D

P D

|
| =  (1) 

which we use to compute the posterior ratio of two 
models 

 
( ) ( ) ( )

( ) ( ) ( )
i i i

ij
j j j

ij ij

P M D P D M P M
O

P M D P D M P M

B P

| |
= = ×

| |
 (2) 

The factor Pij 
is the prior odds ratio of Mi to Mj. This a 

priori information represents our personal opinion about 
the relative plausibility of the models given the 
background information. Often the prior probabilities for 
two models are taken to be equal (Pij = 1), representing 
the case where we don't favor one model over another, but 
this is not necessary. The second factor Bij, called the 
Bayes factor represents the evidence in favor of Mi as 
opposed to Mj [7]. The evidence for model Mi is 
 
 ( ) ( ) ( )di i i i i iP D M p D M p Mθ θ θ| = | , |  (3) 
 
where i is a vector of unknown parameters in the model 
Mi. The prior probability densities p( i | Mi ) are needed to 
compute the evidence. This sometimes could cause a 
problem as this information may not be available. On the 
other hand in many problems some a priori knowledge is 
available, for example in dynamic problems where 
models for the evolution of i are readily available. Prior 
probabilities are a powerful tool for incorporating that 
information into the model. The posterior odds ratios are 
used to make decisions. The choice of a meaningful scale 

depends on the area of application. Jeffreys [6] suggests 
the following scale for general scientific investigations  
 

Oij log10Oij Probability for Mi against Mj  
[1,3.2) [0,0.5) Not worth more than a mention 
[3.2,10) [0.5,1) Substantial 
[10,31.6) [1,1.5) Strong 
[31.6,100
)

[1.5, 2) Very strong 
[100, ) [2, ) Decisive 

 
Table1. Scales for odds of probability for Mi as 
suggested by Jeffreys [6]. 
 
BAYESIAN INTERGRITY MONITORING 
TECHNIQUE 
 
In this section we apply the Bayesian model comparison 
theory described in the previous section to develop an 
integrity monitoring/failure detection identification 
technique for GNSS positioning. For the sake of 
simplicity and possibility of analytical formulations we  

 

( )

0 0 0

0 0

0
0
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i ii

i
i

i
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M y H x v

M y H x v b e

x
H e v i n
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H x
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 (4)  

where ei is the ith  column of n×n  identity matrix, x0  is 
the parameter of m state variables (position, velocity, etc.) 
and bi is the bias. Model M0 corresponds to the situation 
of no failure component in any of the measurements and 
in each model Mi the ith measurement has an unknown 
bias bi which is taken to be independent of x0.  In general 
form the measurement equation under the model Mi is 
 i iy H x v= +  (5) 
If the prior of the parameter xi is normal with mean i and 
covariance Pi and the measurement error has a normal 
distribution with mean 0 and covariance R, we can write 
the evidence as 
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 i i iz y H= − µ  (7) 

 
1 1

* det(2 ( ) )

det(2 )

T
i i i

i
i

A A
c

π
π

− −Σ
=

Σ
 (8) 

 i
i

H
A

I
=  (9) 

421
ION 2009 International Technical Meeting,
January 26-28, 2009, Anaheim, CA



 
0

2

0 0
0

0 0
0

0 0
i

i

b

R
R

PxP
Σ = =

σ

 (10) 

 * 11
( ) ( )

2
T T

i i i i i i ig z z H PH R z−= − +  (11) 

Introducing S=HPx0HT+R, the constant ci
* can be written 

as 
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Using the above notation, the Bayes factor for the ith 
model can be computed as  

 exp( ( ) ( ))i
ij i i j j

j

c
B g z g z

c
= × −  (12) 

As an example, compared to the null model, the Bayes 
factor for ith model is 
 0 exp( ( ))i i i iB c g z=  (13) 
when the mean of the bias bi is zero.  
 
To compute the posterior odds ratio Oij we still need to 
model the prior odds ratio Pij. We assume that a 
measurement from a particular channel is contaminated 
with probability  and clean with probability 1-  and the 
quality of one channel is independent of another. The 
models that we have constructed in this section 
correspond to ones with 'no bad channels' and 'exactly one 
bad channel'. In our model, different channels are 
contaminated with the same probability so that all the 
ratios Pij=1, i,j > 0. Prior odds ratios Pi0 can be computed 
as 
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and the posterior odds ratio Oi0 can be expressed 
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The most plausible model can be found by comparing 
posterior odds, as for most plausible model M: Oij  1, for 
all j. 
 
We can analyze further the properties of the posterior 
odds Oij. First of all, the maximum odds for O0i = Oi0

-1, 
for all i is achieved when y = H0y0. Thus 
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be a threshold parameter. Then 
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If inequality (16) holds for all i then M0   is the most 
plausible model and the odds for it against any other 
model are at least 1/T. 
 
For simplicity assume that 0 is close to the actual 
unknown x0. Then given that M0 is the most plausible 
mode, the size of a bias  in the kth measurement is 
bounded as  

 ( )2 1 1 2
1

1 (1 )
ln 1 , .b ii ii b

ki

T
S S i

S
− − −

−

− ε
∆ ≤ σ + + σ ∀

ε
 

A larger bias in kth observation causes one of the i odds 
Oi0 > 1. Because of this Oi0 can be used to detect whether 
there is a blunder observation among the observation set 
and the odds Oi0 are a sensible measure of quality of the 
null model in a practical sense. 
 
Similar analysis can be carried for all the models. We 
focus on the posterior odds of a correct model that is the 
posterior odds for model Oij when there is a bias 
component in the ith measurement. From the equation (14) 
we see that the odds depend on bias as  

( ) ( )2 21 1
2

1 2 1 2( ) ( ) ii ij
i i j i

ii b jj b

S S
g e g e

S S

− −

− − − −∆ − ∆ = ∆ −
+ σ + σ

 (17) 

 
We want that a larger bias in ith observation would cause 
Oij to be larger, however from (17) using the fact that S-1 
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is a symmetric positive definite matrix it can be shown 
that this can be guaranteed only if  
 1 1 ,ii ijS S j− −> ∀  (18) 
If this holds, we can identify a blunder in ith if it is large 
enough. And because the odds for the correct model 
increase quadratically with the size of the realized bias 
element, the odds are a sensible measure of the 
correctness of the model choice. 
 
We assume that integrity will be attained if a model 
corresponding to a contaminated channel is selected and 
that the effect of a contaminated measurement is thereby 
attenuated. The decision of integrity is therefore based 
solely on the model space and not on the resulting 
positioning space. As a result the BRAIM method is 
based on posterior odds ratios that one model stands out 
as the best model. The test is declared inconclusive if 
none of the models stands out. The test is a failure if (18) 
does not hold and M0 is not the most plausible model 
because in this case there is no guarantee that the most 
plausible model handles the correct observation as a 
blunder. Otherwise the system is assumed to be working 
within prescribed standards. The threshold T for posterior 
odds for different situations can be based on Table 1. The 
BRAIM algorithm is illustrated in Figure 1. 
 

 
 
Fig.1. Diagram of the proposed BRAIM method. 
 
Once a model is selected, the information about the state 
is contained in the normal posterior distribution 
p(xi | y, Mi) = N(mi,Ci), where 
 

 
1

1

( ) ( )

( )

T T
i i i i i i i i i

T T
i i i i i i i i i

m PH H PH R y H

C P PH H PH R H P

−

−

= µ + + − µ

= − +
 

  
In the case of models Mi, i > 0, the state vector xi contains 
the bias element in addition to other state variables. This 
means that it will be estimated along with other 
parameters. 
 
Note that in the case of warning or failure the resulting 
model does not necessarily result in particularly bad 
position estimate.  It is important to note that the only 
conclusion that can be drawn is that none of the compared 
models stand out as the best one given the data.  Instead 
of issuing a warning or failure message, one could 
proceed to further data analysis, expanding the set of 
models until one model does stand out. This expansion 

could be for example models with more than one 
contaminated channel but this is left for future study. 
 
 
TESTS 
 
The performance of the new proposed method is now 
compared to that of the classic method of RAIM/FDE as 
it is discussed for example in [8] in a special case of only 
one possible outlying observation at a time. Positioning 
scenarios with various numbers (n) of satellites and sets 
of measurements with different noise variances are 
generated. We generate all the observation noises from 
N(0,102) for the duration of 10 epochs and after that one 
randomly selected satellite generates contaminated 
observations for the next 10 epochs. The contaminated 
observation noise has distribution N(0, c

2)  (Table 2) 
 

Test n c
2 

A1,A2 5 1002,2002

B1,B2 6 1002,2002 
C1,C2 7 1002,2002 

 
Table2. Test parameters. 
 
The track of the target was generated using a constant 
velocity model [4] using c

2 = 0.01 with an initial state 
(0,0,0,1,0,0)T. The satellites were generated uniformly on 
a rectangle [-105,105]×[-105,105]×[105,105+102] . 
 
The prior probability distribution for x0, which contains 
position and velocity were propagated using two different 
motion models from the posterior probability distribution 
p(x0 | Mk, y) obtained in previous epoch. The model Mk 
refers to the most plausible model in that epoch. The prior 
probability for bi is always taken to be independent of 
position and velocity and distributed as N(0, b

2). The 
motion models can be written as 

 1
0 0 , 1, 2

0
k k

j

I I
x x Q j

I
+ = + =  

where Q1=1002I  is large in the sense that it results in a 
prior that influences the results very little and Q2=I  is 
smaller so that the resulting prior does have an influence. 
 
The parameters of the methods ,  (probabilities of Type 
I and II errors in RAIM/FDE),  and b

2 are varied and the 
performance is reported as the fraction of epochs in which 
correct faulty channel was identified vs. the fraction of 
epochs in which no good channels were identified as 
faulty. 
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Fig.2. Method performance, more informative prior 
and smaller observation noise. 
 
 
 

 
 
Fig.3. Method performance, more informative prior 
and larger observation noise. 
 
 
 

 
 
Fig.4. Method performance, less informative prior and 
smaller observation noise. 
 

 
 
Fig.5. Method performance, less informative prior and 
larger observation noise. 
 
The results of the simulations are given in Figures 2 - 5 
which correspond to different scenarios. Figures 4 and 5 
indicate that if prior information for BRAIM is not taken 
advantage of, the methods have similar performance when 
there are 6 or more satellites.  On the other hand if use of 
prior information is made, then the BRAIM can perform 
significantly better than the traditional method, as can be 
seen from Figures 2 and 3. 
 

 System OK (%) Warning (%) Failure (%) 
Correct decision 74 26 0 
Wrong decision 33 67 0 

 
Table3. Test C1 results with T=10, b

2=802, =0.6 
(small-variance prior for parameters). 
 

 System OK (%) Warning (%) Failure (%) 
Correct decision 69 31 0 
Wrong decision 33 67 0 

 
Table4. Test C1 results with T=10, b

2=802, =0.6 
(large-variance prior for parameters). 
 
The rates of BRAIM algorithm issuing system OK and 
warning flags are given in Tables 3 and 4 in the cases 
where correct or wrong identification were made. The 
results show that when correct model is chosen, the 
system is most often recognized to be working properly 
and almost no false warning flags are given. When wrong 
model is chosen, system most often issues a warning in 
these particular tests with reported parameters. 
 
The new method was also applied to a real GPS-data test 
drive in Tampere. The 800 epochs long test route was in 
an urban area with a relatively clear view of the sky. The 
test was carried out by including data from at most one 
satellite with a poor carrier-to-noise ratio (C/N). Although 
poor C/N of a measurement does not mean that the 
measurement from that particular satellite is contaminated 
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and high C/N does not mean that a observation is of good 
quality this situation can be close to the at-most-one bad 
observation situation that we are considering in this 
article. The error of the estimated position is illustrated by 
Figure 6 where the error of the BRAIM estimate and 
ordinary Kalman filtered position are given. Several 
significant errors are excluded when the BRAIM method 
is used. 
 
 

 
 
Fig.6. Errors of Kalman filtered position estimate 
versus the error given by the BRAIM method on a real 
GPS data vehicular test. 
 
 
CONCLUSIONS 
 
In the current report we applied Bayesian model 
comparison theory to GNSS integrity monitoring problem 
and introduced Bayesian receiver autonomous integrity 
monitoring technique (BRAIM). It was shown through 
simulations that the new proposed method obtains similar 
performance to traditional RAIM/FDE processing 
method. Better performance can be achieved if good prior 
information for the unknown parameters is available. The 
clearest advantage of the new proposed method is its 
foundations in Bayesian statistics, so that method 
parameters can be interpreted more easily than the 
traditional concepts of significance, power of the test etc.  
Drawback of the method is the requirement to have prior 
distributions for parameters and prior odd ratios for the 
models, but on the other hand this can be considered an 
advantage as this information may well be available (e.g. 
through filtering) and Bayesian theory enables to use this 
information.  
 
 The method can be developed further by formulating 
more realistic models than the current ones based on 
normal distributions and the generalization of the method 
to handle more than one faulty channel. In this paper we 
have not discussed position-domain integrity information; 
such information could be obtained by computing 
credibility regions, as is standard in Bayesian statistics 
[10,11]. 
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ABSTRACT

We present an outlier-robust positioning Bayesian
filter based on Gaussian mixture distributions
and a fast sequential technique to approximate
the posterior distribution. Also, a receiver au-
tonomous integrity monitoring (RAIM) scheme
based on Bayesian decision theory is introduced.
The performances of the proposed methods are
compared via simulations in urban personal po-
sitioning scenarios. The simulations show that the
proposed techniques work well as outlier-robust
positioning methods and that the integrity mon-
itoring technique further enhances the perfor-
mance.

1 INTRODUCTION

Filtering is the main approach for solving navigation
and tracking problems in which the goal is to find an
estimate of the kinetic state (position, velocity, etc.)
of an object using current and past measurement data.
Currently the standard positioning method for satel-
lite navigation is the extended Kalman filter (EKF)
[1], which is fast, reliable and accurate given a clear
view of the sky. However, in urban environments the
signals are affected by reflections and attenuations.
As a result of these NLOS and multipath effects, the
statistical properties of the positioning signals can
differ from their nominal values and the use these sig-
nals with EKF can lead to significantly degraded per-
formance. This is a well-known problem and many
estimation methods have been developed that are ro-

bust against deviations from the model assumptions.
Huber’s robust M-estimation techniques have been
used as a static estimation methods [2, 3] and to com-
pute weights for the innovations in Kalman filter so
that the faulty observations have only little influence
on the estimate [4]. Similar methods that modify
the Kalman innovation has been considered in [5, 3].
Different approaches were considered in [6], where
an interacting multiple model filter was introduced to
enable positioning under spoofing, and in [7] where
a detection-identification-adaptation method, which
enhances Kalman filter algorithm with recursive hy-
pothesis testing, was introduced.

Another way to deal with failures in the position-
ing system is to monitor the quality of the signals
and the position estimate, and if necessary and possi-
ble, to enhance the quality. The process of monitor-
ing the quality and ensuring that the performance is
within tolerable limits is called receiver autonomous
integrity monitoring (RAIM). Various statistical test-
ing procedures are currently the basis of RAIM tech-
niques, and recently also Bayesian methods have
been proposed [8, 9]. Traditional RAIM techniques
were developed for aviation applications and make
the assumption of only one possible faulty observa-
tion at a time. However, for personal positioning
in urban environment, this assumption is too restric-
tive. Furthermore, RAIM techniques have tradition-
ally been so called snapshot techniques in which the
quality of the system is investigated at each epoch
based only on the current observations.

In this work we use a Bayesian filtering method that
is desensitized against failures and can be used nat-
urally to monitor integrity. Bayesian filtering com-
putes a probability distribution of the unknown kine-
matic state given all the data gathered up to that point,
from which it is possible to find not only the optimal
estimate of the state but also a measure of the qual-
ity of the estimate. If we model the faulty observa-
tions using Gaussian mixture densities, we can solve
the problem using the Gaussian mixture filter (GMF)
[10, 11], which have many applications in position-
ing [12]. In this paper we propose two approxima-



tions of GMF as outlier-robust positioning methods,
and a RAIM-technique based on Bayesian decision
theory.

The paper is organized as follows. First, in Section
2 we formulate a model based on Gaussian mixture
probability distributions for the positioning problem
that takes into account the possibility of faulty ob-
servations. In Section 3 we present the problem of
assessing the integrity of the system as a decision
theoretic problem which is solved using numerical
integration. In Section 4 we test the performance of
the positioning and integrity monitoring methods in
urban positioning simulations. Finally, in Section 5
we conclude the article with some discussion.

2 PROBLEM FORMULATION

We consider a Bayesian filtering approach for the
problem of positioning when there is a possibility
of a faulty observations occurring. The basic state-
space model we are considering for the positioning
problem is

xk+1 = Fkxk + wk

yk = hk(xk) + vk,
(1)

where xk ∈ Rnx is the state of the system and
yk ∈ Rnk is a vector of measurements at time tk.
Noise processes wk, vk are modeled as white, mutu-
ally independent and independent of the initial state
x0. In Bayesian filtering we compute the posterior
probability distribution p(xk|y1:k) of the state given
all the available, current and past observations. The
posterior distribution can be solved recursively by al-
ternating prediction and update steps. The prediction
step is defined as

p(xk|y1:k−1)=
�

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (2)

and the update step is defined as

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)�
p(yk|xk)p(xk|y1:k−1)dxk

, (3)

which in general can’t be computed analytically. If
the h(·) is linear andwk, vk are jointly Gaussian, then
the posterior distribution is a Gaussian with mean
and covariance given by the well-known Kalman fil-
ter recursions [13].

If the observation function is nonlinear, then the pos-
terior distribution can be approximated as a Gaus-
sian computed by the extended Kalman filter (EKF)

algorithm, which linearizes the observation function
around the prior mean [14]. In satellite navigation
EKF is currently the standard solution, due to its low
computational demands and the fact that generally it
works very well.

One situation in which the performance of EKF can
be degraded significantly is when faulty observations
or outliers occur [5, 3]. Faulty observations are mea-
surements that contain less information about the
unknown parameters than the regular observations,
sometimes they are taken to contain no information
at all about the parameters to be estimated. In the lat-
ter case it is sometimes justified to not to use them
at all in estimation process. However, in this case,
the faulty observations have to be identified reliably.
In this work we take a Bayesian approach to model
the faulty observations [15]. If the ith observation at
time tk is good, then we model it to have a sampling
distribution

p(yk,i|xk) = N
hk,i(xk)

σ2
k,i

(yk,i), (4)

where Nµ
Σ(·) denotes a normal distribution with

mean µ and covariance Σ and hk,i is the ith element
of the observation function at time tk. If the jth ob-
servation is taken to be a faulty one, then we model
it as a sample from a large-variance distribution

p(yk,j|xk) = N
hk,j(xk)

c2σ2
k,j

(yk,j), c > 1. (5)

Now, if there is uncertainty as to whether any obser-
vation is faulty or not, but the ith observation has a
prior probability � of being faulty and 1 − � to be a
good one, we model the sampling sampling distribu-
tion of yk,i with a Gaussian mixture distribution

p(yk,i|xk) = (1−�)N
hk,i(xk)

σ2
k,i

(yk,i)

+ �N
hk,i(xk)

c2σ2
k,i

(yk,i).
(6)

We assume that the observations given xk are inde-
pendent. Then the complete sampling distribution is
a mixture of 2nk components

p(yk|xk) =
nk�

i=1

p(yk,i|xk)

=
�

rk∈Rk

αrkNhk(xk)

R
rk
k

(yk),
(7)

where

Rk = {(rk1 , . . . , rknk
)|rkj ∈ {0, 1},∀j}, (8)



is the set of vectors rk in which ith element is 1 if
the ith observation is good and 0 if it’s faulty. The
coefficients

αrk = (1− �)
Pnk

j=1 rkj �nk−
Pnk

j=1 rkj

are the weights for sampling distribution which have
a combination of good and faulty observations as
given by rk. They can also be interpreted as the a
priori probabilities of the models defined by the di-
agonal covariance matrices

Rrk
k = �σ2

k,1rk1 , . . . ,σ
2
k,knk

rnk�
+ �c2σ2

k,1(1− rk1), . . . , c
2σ2

k,nk
(1− rknk

)�,

of yk|xk, rk when the partitioning into of good and
faulty observations is given by rk.

Computing the posterior distribution is done using
GMF and first order Taylor polynomial approxima-
tions of the nonlinear observations function hk(·)
around the prior mean x̄k|k−1 as in EKF

hk(xk) ≈ hk(x̄k|k−1) +Hk(xk − x̄k|k−1), (9)

Let the posterior distribution of xk−1 be

p(xk−1|y1:k−1) = N
x̄k−1|k−1

Pk−1|k−1
(xk−1), (10)

then the prior distribution of xk can be computed us-
ing the state transition model as

p(xk|y1:k−1) = N
x̄k|k−1

Pk|k−1
(xk), (11)

where

x̄k|k−1 = Fk−1x̄k−1|k−1

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1.

(12)

Then the posterior distribution is a Gaussian mixture
distribution

p(xk|y1:k) =
�

rk∈Rk

βrkN
x̄
rk
k|k

P
rk
k|k

(xk), (13)

where the mean and the covariance of the Gaussian
components are

x̄rkk|k = x̄k|k−1 +Krk
k (yk − hk(x̄k|k−1))

P rk
k|k = Pk|k−1 −Krk

k HkPk|k−1.
(14)

Each of the components depend on a Kalman gain

Krk
k = Pk|k−1H

T
k (S

rk
k )−1, (15)

where

Srk
k = HkPk|k−1H

T
k +Rrk

k (16)

is the approximated covariance of the innovation
yk − hk(xk|y1:k−1) given the model defined by rk.
The weights βrk also depend on the realized obser-
vations, the sampling distribution models and the a
priori weights αrk

βrk
k =

αrkN
hk(x̄k|k−1)

S
rk
k

(yk)

�
rk∈Rk

αrkN
hk(x̄k|k−1)

S
rk
k

(yk)
(17)

If (13) were used to compute the prior distribution
at the next time-step, then the number of the com-
ponents would grow from 2nk to 2nk · 2nk+1 which
in effect makes the computation of the posterior in-
feasible in practice. This is why approximation tech-
niques have been developed. Including merging sim-
ilar mixture components and deleting components
with small weights. In this work we use two differ-
ent methods both of which produce a single Gaussian
each time step. This keeps the algorithm computa-
tionally light.

The first method consists of merging all mixture
components into a single Gaussian at the end of the
filter update step by matching the mean and the vari-
ance of the Gaussian mixture distribution. This is
optimal in the Kullback-Leibler sense [16]. For a
Gaussian mixture distribution (13) the mean and co-
variance are [14]

x̄k|k=
�

rk∈Rk

βrk
k x̄rkk|k

Pk|k=
�

rk∈Rk

βrk
k (P

rk
k|k+(x̄k|k−x̄rkk|k)(x̄k|k−x̄rkk|k)

T )
(18)

The second method we introduce, which to our
knowledge is original, consists of merging the ob-
servations sequentially into a single Gaussian using
moment matching. This method is computationally
light at the expense of losing information about the
overall mixture distribution at each merging.

p(xk|y1:k)∝
nk�

i=2

p(yk,i|xk)p(yk,1|xk)p(xk|y1:k−1)

∼∝
nk�

i=3

p(yk,i|xk)p(yk,2|xk)p(xk|y1:k−1,1)

∼∝ · · · ∼∝ p(yk,ynk
|xk)p(xk|y1:k−1,nk−1),

(19)



where, given

p(xk|y1:k−1,m−1) = N
x̄k|k−1,m−1

Pk|k−1,m−1
(xk) (20)

and denoting p(xk|y1:k−1) = p(xk|y1:k−1,0)

p(xk|y1:k−1,m) = N
x̄k|k−1,m
Pk|k−1,m

(xk)

x̄k|k−1,m =
1�

i=0

βi
kx̄

i
k|k−1,m

Pk|k−1,m =
1�

i=0

βi
k(Pk|k−1,1 + (x̄k|k−1,m−

− x̄ik|k−1,m)(x̄k|k−1,m − x̄ik|k−1,m)
T )

(21)

The mixture components are computed as

x̄ik|k−1,m = x̄k|k−1,m−1+

Ki
k,m(yk,m − hk,m(x̄k|k−1,m−1))

P i
k|k−1,m = (I −Ki

k,mH
T
k,m)Pk|k−1,m−1,

(22)

where Hk,m is themth row vector of Hk and

Ki
k,m = Pk|k−1,m−1H

T
k,m(S

i
k)

−1

Si
k = Hk,mPk|k−1,m−1H

T
k,m + (c2)1−iσ2

k,m

(23)

Finally the posteriori weights are computed as

βi
k =

αi
kN

hk,m(x̄k|k−1,m−1)

Si
k

(yk,m)

�1
i=0 α

i
kN

hk,m(x̄k|k−1,m−1)

Si
k

(yk,m)

αi
k = (1− �)(1−i)�i

(24)

3 INTEGRITYMONITORING

In Bayesian filtering, the posterior distribution con-
tains all the knowledge about the uncertain state.
However, in applications the posterior needs to be
summarized by a few numbers, for example, the pos-
terior distribution’s mean as a point estimate of the
state and the covariance as in indicator of the qual-
ity of the estimate.. Here, we describe a system in
which we report a point estimate of the state and
also a decision as to whether the system has suf-
ficient ‘integrity’, a measure of trust which can be
placed on the correctness of the position estimate.
The method described here is similar to the one de-
scribed in [8, 17] but the approach is different.

In [9] we described a Bayesian integrity monitoring
method, which was based on formulation of mod-
els for faulty observations and comparing the pos-
teriori weights (17) of different models. If a single

model stood out, i.e. correct set of faulty measure-
ments were detected with high probability, a decision
was made that a correct set of faulty observations was
identified and integrity was achieved. This approach
does not take into account that faulty observations do
not necessarily cause the position estimate to be er-
roneous, nor does good data always give a position
estimate that is accurate. Here we introduce a direct
method that deals directly with the position error, and
the probabilities of good/faulty data models are taken
into account automatically. This is done using the
complete posterior distribution of the state xk at time
tk to monitor the integrity of the system.

The integrity monitoring scheme described here is
based on decisions whether the error of the estimate
x̂k is within acceptable limit. We define the set of
acceptable estimates as

ΩT (x̂k) = {xk : ||xk − x̂k|| < T}, (25)

where T is a user defined parameter. If the true error
is within this region, the estimate is trustworthy and
the positioning system has sufficient integrity. Al-
though the true error is unknown, we have an approx-
imation of the true posterior probability distribution
of the state.

We formulate the integrity monitoring problem as a
decision theoretic problem [18]. We have two actions
to choose from

a1 : Report ‘system has sufficient integrity’
a2 : Report ’system doesn’t have sufficient integrity’.

For these actions we define a cost function

L(xk, a) xk ∈ ΩT (x̂k) xk /∈ ΩT (x̂k)
a1 0 K1

a2 K0 0
, (26)

where K0 and K1 are user-defined costs of false
alarm and missed failure detection. Arguably K1 >
K0 as often false trust in the position estimate is more
harmful that occasional false warning. The action ai
is chosen which minimizes the expected loss

E(L(xk, a)|y1:k)=
�

L(xk, a)p(xk|y1:k)dxk

=

�
K1(1− P (xk ∈ ΩT (x̂k)|y1:k)), a = a1
K0P (xk ∈ ΩT (x̂k)|y1:k) a = a2.

(27)

The optimal action is a1 if

P (xk ∈ ΩT (x̂k)|y1:k) ≥
K1

K0 +K1
(28)



and a2 otherwise. To find the optimal action, we need
to compute the probability ΩT (x̂k)

P (xk ∈ ΩT (x̂k)|y1:k)=
�

ΩT (x̂k)
p(xk|y1:k)dxk,

=
�

rk

βrk

�

ΩT (x̂k)
N

x̄
rk
k|k

P
rk
k|k

(xk)dxk
(29)

If we merge the components in a manner described
in Section 2, then the integral is of a single Gaussian
over the hypersphere ΩT (x̂k).

In general case an integral of a Gaussian over ΩT (x̂)
can’t be computed analytically but has to be solved
approximatively. However, in the important case of
horizontal error, which is considered here, the inte-
gration region is a disk ΩT (ẑk), where zk is the hori-
zontal position. In this case we can compute the inte-
gral numerically fast and accurately. For simplicity,
we assume that ẑk = 0 as integration over an arbi-
trary disk can be transformed to an integration over
origin-centered disk. We get
�

ΩT (0)
Nµ

Σ(z)dz

=

� T

−T

� √
T 2−z21

−
√

T 2−z21

Nµ2|z1
Σ22|z1(z2)dz2N

µ1
Σ11

(z1)dz1,
(30)

where

µ2|z1 = µ2 + Σ21Σ
−1
11 (z1 − µ1)

Σ22|z1 = Σ22 − Σ21Σ
−1
11 Σ12.

(31)

We denote

F (z1) =

� √
T 2−z21

−
√

T 2−z21

N
µ2|z1
Σ22|z1(z2)dz2, (32)

which we can compute fast and accurately using er-
ror functions. The integration (30) is then

� T

−T
F (z1)N

µ1
Σ11

(z1)dz1. (33)

The integral (33) can be solved approximately us-
ing some one dimensional quadrature rule which is
a weighted sum of integrand values evaluated at pre-
defined points.
� T

−T
F (z1)N

µ1
Σ11

(z1)dz1≈
�

i

wiF (zi1)N
µ1
Σ11

(zi1) (34)

Given that the integrand (33) can be very ‘sharp’
peaked function on [−T, T ] e.g. in a case where
the variances of the elements are very small, we

use adaptive Lobatto quadrature [19] to compute
(34). Adaptive quadrature rules automatically seeks
to place the nodes zi1 in an optimal manner so that as
few as possible nodes are needed to obtain accurate
approximation to the integral. Comparison of differ-
ent quadrature rules is left for future work.

4 SIMULATIONS

We compare the performance of the proposed
method as an outlier-robust filter and as a RAIM
technique in simulated GNSS positioning scenarios
in urban environment. The state is generated us-
ing model in which the velocity and clock-drift are
a random walk processes. The state vector consists
of three position coordinates x1:3, three velocity el-
ements x4:6, clock bias x7 and clock drift x8. The
motion model is

xk+1 = Fkxk + wk, (35)

where

Fk =





I3 I3 0 0
0 I3 0 0
0 0 1 1
0 0 0 1



 (36)

and

Qk =




σ2
vel

�
1
3I3

1
2I3

1
2I3 I3

�
0

0 σ2
cd

�
1
3

1
2

1
2 1

�



 . (37)

The variances σ2
vel and σ2

cd are in all simulations 12
and 0.0012 respectively. These variances are used to
generate the tracks but filtering methods use incorrect
variance σ2

user = 42 as the variance of the velocity
process. Constellations of 6 visible satellites si, and
pseudorange observations

hk,i(xk) = ||x1:3,k − si||+ x7 (38)

with good and faulty noise distributions

pG(yk,i|xk) = N
hk,i(xk)

σ2
1

(yk,i)

pB(yk,i|xk) = N
hk,i(xk)+µ

σ2
2

(yk,i),
(39)

are generated. We use µ = 50 and σ2 = 25 so that
the true noise is not zero mean. We are simulating
200 epochs long scenarios during which the satellites



Interval k Contaminated observations yi
I [25, 50] i = 3
II [75, 100] i = 1, 2
III [125, 150] i = 4, 5, 6
IV [175, 200] i = 1, 2, 3, 4

Table 1: Faulty observations occur in batches defined by time
intervals I – IV.

are taken to be stationary for simplicity. In simula-
tions we generate faulty observations in batches dur-
ing fixed time intervals as given by Table 1.

We test the following methods:
GMF1: The Gaussian mixture filter in which we
merge all the components into a single one using mo-
ment matching after the decision about the system in-
tegrity is made.
GMF2: The Gaussian mixture filter in which we
merge all the components into a single one using mo-
ment matching. The decision about the integrity is
based on error probability computed after the com-
ponents have been merged.
GMF3: The Gaussian mixture filter in which we se-
quentially process observations and merge the result-
ing components using moment matching into a single
one, as described in Section 2. The decision about
the integrity is made based on the approximative er-
ror probability.
GMF4: The Gaussian mixture filter in which we
select the most probable model, which corresponds
to the mixture component with largest weight. The
integrity monitoring is based on the posterior odds
of the most probable model against the second most
probable model [9].
BFH: The robust Bayesian filter introduced in [20]
and shown to work well in GNSS based positioning
in [5, 3].
RAIM/FDE: The snapshot RAIM method intro-
duced by [21] is one of the standard integrity moni-
toring/ fault detection and exclusion-techniques. It is
based on a global least squares residuals test to detect
errors and a local w-test to identify them [21, 22].

4.1 Example

We consider one GNSS positioning example in ur-
ban environment. The GMF1 is compared against
the BFH as a robust filtering method with respect
to the horizontal position error (HPE). The proposed
method as a RAIM technique is compared against the
RAIM/FDE. GMF1 uses parametes values K0 = 1,

K1 = 100, T = 25 and RAIM/FDE uses parameter
values α = 0.1 and β = 0.1 [22]. BFH is tuned to
perform as well as possible in this scenario. The co-
ordinates of the satellites in this example are listed in
Table 2 and the simulated track is within 1000 from
the origin of the used coordinate system. The posi-
tion dilution of precision (PDOP) [1] for this partic-
ular scenario is 2.5.

i si · 10−7

1 [9.4, 0.6, 1.4]T

2 [5.2, 2.7, 1.4]T

3 [−1.7,−3.9, 1.9]T

4 [5.6, 3.9, 2.0]T

5 [−1.0, 0.2, 1.5]T

6 [1.4, 2.5, 1.4]T

Table 2: Satellite coordinates of the Example

The results of HPE and RAIM performance are given
in Figure 1. Given the observation noise defined by
(39) occurring in batches given by Table 1 GMF1
performs much more robustly than BHF. This is clear
as BHF is designed to work robustly under observa-
tion noise distributions that have symmetrical zero
mean densities.

As a RAIM method GMF1 performs much better
than RAIM/FDE. RAIM/FDEworks well in intervals
I and II when there is only one and two faulty obser-
vations present. When three and four observations
are faulty, RAIM/FDE can often detect the presence
large errors but often very large errors go undetected,
especially in time interval IV. From the Figure it can
be seen that GMF1 performs very robustly in inter-
vals I, II, and in intervals III and IV, when HPE be-
comes large, most of the time this can be detected by
the proposed RAIM.

4.2 Summary of the simulations

We run the simulations 100 times and investigate
the horizontal position root mean square error before
(RMSE) and after (RMSEIM) we have removed posi-
tion estimates that were computed when sufficient in-
tegrity was not achieved. We also report the frequen-
cies P00, P10 and P01, which correspond to justified
alarm, false alarm andmissed detection of the RAIM
performed by the filters and RAIM/FDE. We use pa-
rameter values K0 = 1,K1 = 100 and T = 25.
GMF4 uses threshold TGMF4 = 10 to decide whether
the system is working correctly [9]. Finally, we re-
port the maximum horizontal position error in the
whole set of errors max e and in the set where we
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Figure 1: Example: GMF1 is more robust filter than BFH and
performs better as RAIM method than RAIM/FDE

have removed errors given when sufficient integrity
was not achieved max eIM which corresponds to the
largest unremoved position error.

The results are summarized in Table 3. All the in-
troduced methods GMF1, GMF2 and GMF3 per-
form well in the difficult test scenarios when com-
pared to BFH and RAIM/FDE. Although differences
between the new methods are small, GMF1 gener-
ally seem to perform better than GMF2 and GMF3.
This is because of the approximations performed by
GMF2 and GMF3. However, because GMF1 has
to compute numerically 26 integrals at each epoch
whereas GMF2 and GMF3 compute only one, GMF1
is computationally much more demanding. The per-
formance of sequential GMF3 was almost as good as
the performance of GMF1 and GMF2 but it is com-
putationally much less demanding.

P00 P10 P01 RMSE RMSEIM max e max eIM
GMF1 0.109 0.091 0.050 13 8 229 128
GMF2 0.094 0.072 0.066 13 9 229 138
GMF3 0.080 0.062 0.079 14 9 238 127
GMF4 0.127 0.391 0.052 17 12 258 258
BFH – – – 19 – 169 –
RAIM/
FDE 0.079 0.019 0.262 32 28 7·103 7·103

Table 3: Simulation results

5 CONCLUSIONS

Outlier-robust Bayesian filtering based on Gaussian
mixture distributions were discussed and a fast se-
quential method for computing approximation of the
posterior distribution was introduced. In addition,
a RAIM technique based on Bayesian decision the-
ory was introduced. It was shown through simula-
tions that the proposed techniques perform well com-
pared to a snapshot RAIM/FDE and a robust filter-
ing method in difficult urban positioning scenarios.
The proposed techniques can be used as a position-
ing methods that are not only robust against outliers
but monitor the integrity and often correctly warns
that the estimate is not reliable.

The drawback of the proposed methods is that they
need models for faulty observations and the proposed
RAIM method depends on a user-defined loss func-
tion to model the relative costs of false alarms and
missed detection. It is very difficult to construct these
so that the methods work well in different situations.
The study on the influence of models and loss func-
tions is left as future work.
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Bayesian Positioning Using Gaussian Mixture Models with Time-varying
Component Weights

Henri Pesonen Robert Piché ∗

Abstract
Gaussian mixture models are often used in target tracking applications to take into account ma-
neuvers in state dynamics or changing levels of observation noise. In this study it is assumed that
the measurement or the state transition model can have two plausible candidates, as for example in
positioning with line-of-sight or non-line-sight-signals. The plausibility described by the mixture
component weight is modeled as a time-dependent random variable and is formulated as a Markov
process with a heuristic model based on the Beta distribution. The proposed system can be used to
approximate some well-known multiple model systems by tuning the parameter of the state tran-
sition distribution for the component weight. The posterior distribution of the state can be solved
approximately using a Rao-Blackwellized particle filter. Simulations of GPS pedestrian tracking
are used to test the proposed method. The results indicate that the new system is able to find the
true models and its root mean square error-performance is comparable to filters that know the true
models.

Key Words: Bayesian filtering, multiple model filtering, model uncertainty, Rao-Blackwellization

1. Introduction

Positioning and tracking are often carried out by modeling the problem as discrete time
stochastic systems [2]. By modeling the motion of the mobile station (MS) and the relation-
ship of the state (position, velocity, acceleration, etc, . . . ) and some observable quantities
stochastically, we can solve the posterior distribution of the state using Bayesian frame-
work optimally. Furthermore, under certain assumptions the computations can be carried
out recursively. However, in positioning systems the chosen models may not be valid at
every time step. For example, in satellite positioning system such as global positioning
system (GPS) signals obtained from directly visible and non-visible satellites have differ-
ent statistical qualities [8]. As another example, a MS has different motion models when
carried by a pedestrian vs. a car passenger.

Two common solutions to the problem are to use mixture distributions to describe the
systems, or to describe the system using switching models. In the case of Gaussian linear
systems, the posterior distribution can be evaluated analytically and recursively with the
celebrated Kalman filter [7]. When using Gaussian mixture distributions to describe the
stochastic components, Gaussian mixture filter (GMF) evaluates the posterior distribution
analytically, at least in theory [10]. GMF gives generally only a theoretical solution to
the problem, as it requires an exponentially growing number of mixture components to
describe the posterior distribution. In practice, approximations such as multiple model
filters (MMFs) are used [2].

A problem when using mixture distributions to describe the models, is that the weights,
or the probabilities of the models, are static. However, in general case the probabilities
will change with time. For example, often a two-component mixture distribution is used
to describe the observation error, with one component describing a ‘good’ observation and
the other describing a ‘bad’ observation [3, 9]. In the case of GPS positioning, obtaining
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a bad observation in an urban canyon is more likely than in a forest and much more likely
than on a highway. We propose a method where the mixture weight of a two-component
mixture distribution is modeled as a stochastic process, and is solved jointly with the state
parameters using a Bayesian filter.

The paper is organized as follows. In Section 2 we describe the considered linear
discrete time stochastic system, and in Section 3 we present a heuristic motion model for
the time-varying mixture component weight based on the Beta-distribution. In Section
4 we formulate the Rao-Blackwellized particle filter (RBPF) for the described system. In
Section 5 we test the performance of the filters based on the discussed models and conclude
the study in Section 6.

2. Problem formulation

We consider a linear discrete time stochastic system

xk+1 = Fkxk + wk (1)
yk = Hkxk + vk. (2)
x0 ∼ N

�
x̄0|0, P0|0

�
, (3)

where N (µ,Σ) is a Gaussian distribution with mean µ and covariance Σ. It is well-known
that in the case of white Gaussian noises wk and vk the Kalman filter (KF) can be used to
compute recursively the Gaussian posterior filtering distribution parameters. However, as
well-known is the non-robustness of the KF.

A common approach for making the system more robust against modeling errors is to
assume a set of models from which a member generated the state or the observations. These
are often referred to multiple model (MM) systems. We consider the case where there are
two possible models, although any number of models could be considered. The model is

p(xk+1|xk) = N (xk+1 | Fkxk, Qk)

p(yk|xk, λk) = N
�
yk | Hkxk, (1− λk)R

(1)
k + λkR

(2)
k

�
,

(4)

where the state model is Gaussian but observation error is modeled a Gaussian mixture
(GM) distributed random variable. This could model for example the presence of line-of-
sight/non-line-of-sight (LOS/NLOS) signals between MS and a satellite.

The parameter λk ∈ {0, 1} is the model parameter, and it remains to be defined. In the
simplest case it would be a Bernoulli distributed random variable independent of previous
values

p(λk = 0 | λk−1) = p(λk = 0) = 1− �

p(λk = 1 | λk−1) = p(λk = 1) = �.
(5)

The probability � represents the uncertainty of the model. Often the probability of the model
depends on the time. One approach to take this into account is consider the multiple model
approach for switching models. Now λk ∈ {0, 1} is a Markov chain with the transition
probabilities

p(λk = 0 | λk−1 = 0) = 1− p(λk = 1 | λk−1 = 0) = 1− �(1)

p(λk = 0 | λk−1 = 1) = 1− p(λk = 1 | λk−1 = 1) = 1− �(2).
(6)

This adaptive formulation of the multiple model state-space problem is sometimes called
the jump Markov linear system (JMLS) [5]. Notice that (5) is a special case of (6) where
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�(1) = �(2) = �. In theory, the posterior distribution can be found analytically for (4) with
the Gaussian mixture filter (GMF) [10, 1]. GMF evaluates the posterior distribution using a
bank of Kalman filters, increasing the number of filters at each time step. Computationally
the complexity of GMF increases exponentially with time, and complexity reduction meth-
ods are needed [9]. Two main methods are pruning and merging, in which some mixture
components are removed or combined, respectively. Monte Carlo simulation-based Rao-
Blackwellized Particle Filters (RBPFs) are an example of the pruning approach. RBPFs
automatically remove improbable components of the mixture posterior [5]. Different mul-
tiple model filters such as the interacting multiple model filter and the generalized pseudo-
Bayesian approaches are popular examples of merging algorithms [2].

In real life applications where the environment has a major impact on the models, the
assumption that the switching probability is known is not always very realistic. For example
in a target tracking application with GPS data, the environment has a major impact on the
data quality because objects such as trees and buildings block visibility to satellites and
degrade the data quality significantly. In applications of this nature, the uncertainty about
which model is generating the data is changing. In these kind of situations, a more realistic
model could be one where the model uncertainty in consecutive time instants tend to be
similar. In the next section we describe a state model for the model uncertainty with a
continuous probability density.

3. Time-varying model uncertainty variable

We consider a hierarchical model for the MM filter where the switching probability �k in
(5) and (6) is a time-dependent variable. The probability mass function of λk is now defined
by �k

p(λk = 0 | �k) = 1− p(λk = 1 | �k) = 1− �k (7)

Constructing a model for the evolution of the model uncertainty parameter we have to take
into account that the uncertainty �k ∈ [0, 1]. We model the parameters as a Markov process
and take the density p(�k+1|�k) to be unimodal, with the mode near to the value of �k. A
probability density fulfilling these criteria would be a Beta density

Beta(ξ | α, β) = Γ(α+ β)

Γ(α)Γ(β)
ξα−1(1− ξ)β−1. (8)

The mode and variance of a Beta distributed random variable are

mode (ξ) =
α− 1

α+ β − 2
, V (ξ) =

αβ

(α+ β)2(α+ β − 1)
. (9)

The Beta density function is unimodal when α, β > 1. The variance of a Beta distributed
random variable depends on α and β, with variance→ 0 as α, β → ∞.

We use a state-transition density

p(�k+1 | �k, S) = Beta(�k+1 | �k(S − 2) + 1, (1 − �k)S + 2�k − 1), (10)

where S is a tuning parameter. The mode and variance of (10) are

mode (�k+1 | �k, S) = �k, V (�k+1 | �k, S) =
(1− �k)�k
S − 1

. (11)

A larger tuning parameter S reduces the variance of �k+1 | �k, and the expected model
uncertainty is the previous model uncertainty. Different state transition densities are drawn
in Figure 1. The hierarchical state-space model is illustrated by the directed acyclic graph
(DAG) in Figure 2.
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Figure 1: State transition densities with various parameter values.
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Figure 2: DAG of the hierarchical state-space model

4. Bayesian estimation

Bayesian filtering framework can be used to solve the state-space model with the time-
varying model uncertainty. The posterior distribution p(xk|y1:k) can in theory be solved
recursively [6]. In practice it can be approximated empirically using sequential Monte
Carlo methods (SMC) [4]. The empirical representation of the posterior is a sum of N
support points {(x(i)0:k, λ

(i)
0:k, �

(i)
0:k) : i = 1, . . . , N} with the corresponding weights {ω(i)

1:k :
i = 1, . . . , N}

�pN (x0:k, λ0:k, �0:k | y1:k) ≈
N�

i=1

ω(i)
0:kδ

�
(x(i)0:k, λ

(i)
0:k, �

(i)
0:k)− (x0:k, λ0:k, �0:k)

�
. (12)

The posterior filtering distribution can be obtained as a marginal distribution of (12). The
performance of the SMC method can be enhanced in our system by using the fact that con-
ditioned on λ0:k, problem (4) can be solved optimally with the Kalman filter algorithm.
This enables us to approximate the posterior using RBPF, where we need only to approxi-
mate empirically p(�0:k, λ0:k | y1:k). If we write

p(xk | y1:k) =
�

[0,1]k+1

2k+1�

j=1

p(xk | y1:k, �0:k, λ(j)
0:k)p(�0:k, λ

(j)
0:k | y1:k)d�0:k

=

�

[0,1]k+1

2k�

j=1

p(xk | y1:k, �0:k, λ(j)
0:k)

p(�0:k, λ
(j)
0:k | y1:k)

π(�0:k, λ
(j)
0:k | y1:k)

π(�0:k, λ
(j)
0:k | y1:k)d�0:k,

(13)
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then the posterior can be approximated based on the strong law of large numbers as

p(xk | y1:k)

≈
N�

i=1

p(xk | y1:k, �0:k, λ0:k)
p(�0:k, λ0:k | y1:k)
π(�0:k, λ0:k | y1:k)

δ
�
(�(i)0:k, λ

(i)
0:k)− (�0:k, λ0:k)

�

=
N�

i=1

p(xk | y1:k, λ(i)
0:k)

p(�(i)0:k, λ
(i)
0:k | y1:k)

π(�(i)0:k, λ
(i)
0:k | y1:k)

(14)

where {�(i)0:k, λ
(i)
0:k : i = 1, . . . , N} is a sample drawn from the importance sampling distri-

bution π(�0:k, λ0:k | y1:k). In sequential importance sampling (SIS), potential importance
distributions are restricted to be of the form

π(λ0:k, �0:k | y1:k) = π(λ0, �0)
k�

i=1

π(λi, �i | y1:i, λ0:i−1, �0:1:i−1), (15)

where π(λ0:k−1, �0:k−1 | y1:k−1) is a marginal distribution at time k−1. This enables a sam-
ple set from π(λk, �k | y1:k) to be estimated by replacing the samples from π(λk−1, �k−1 |
y1:k−1) with a sample from π(λk, �k | y1:k, λ(i)

0:k−1, �
(i)
0:1:k−1). Because we can write

p(�0:k, λ0:k | y1:k) =
p(yk | �0:k, λ0:k, y1:k−1)p(�0:k, λ0:k | y1:k−1)

p(yk | y1:k−1)

∝ p(yk | λ0:k, y1:k−1)p(�k, λk | �0:k−1, λ1:k−1, y1:k−1)p(�0:k−1, λ0:k−1 | y1:k−1)

= p(yk | λ0:k, y1:k−1)p(λk | �k, �0:k−1, λ0:k−1, y1:k−1)×
× p(�k | �0:k−1, λ0:k−1, y1:k−1)p(�0:k−1, λ0:k−1 | y1:k−1)

= p(yk | λ0:k, y1:k−1)p(λk | �k)p(�k | �k−1)p(�0:k−1, λ0:k−1 | y1:k−1),

(16)

we have a recursive update formula for the empirical distribution weights

ω0:k
∆
=

p(�0:k, λ0:k | y1:k)
π(�0:k, λ0:k | y1:k)

∝ p(yk | λ0:k, y1:k−1)p(λk | �k)p(�k | �k−1)p(�0:k−1, λ0:k−1 | y1:k−1)

π(λ0, �0)
�k

i=1 π(λi, �i | y1:i, λ0:i−1, �0:i−1)

=
p(yk | λ0:k, y1:k−1)p(λk | �k)p(�k | �k−1)

π(λk, �k | y1:k, λ0:k−1, �0:k−1)

× p(�0:k−1, λ0:k−1 | y1:k−1)

π(λ0, �0)
�k−1

i=1 π(λi, �i | y1:i, λ0:i−1, �0:i−1)

=
p(yk | λ0:k, y1:k−1)p(λk | �k)p(�k | �k−1)

π(λk, �k | y1:k, λ0:k−1, �0:k−1)
× ω0:k−1.

(17)

In practice, after a few time steps, all but one particle will have nonzero weight. A
procedure called resampling is required [5].

5. Tests

We test the introduced method in an idealised target tracking application, where we are
able to observe horizontal coordinates of a MS at each time step, for example from a GPS
receiver. The state consists of two-dimensional position xposk and velocity vectors xvelk

xk =

�
xposk
xvelk

�
.
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The problem is modeled using a state-space model (1) – (3), with

Fk =

�
I2 I2
02 I2

�
, Hk =

�
I2 02

�
. (18)

In and 0n denote n×n identity and null matrices respectively. We use the constant velocity
model

E (wk) = 0, V (wk) = Qk = 0.12 ·
�
1
3I2

1
2I2

1
2I2 I2

�
(19)

to describe the target motion [2]. As the observation model, we use the mixture distribution

p(yk | xk, λk) = N
�
yk | Hkxk, (1− λk)5

2I2 + λk25
2I2

�
(20)

We use 100 runs of three different tests to test the performance of the introduced model.
The evolution of the uncertainty parameter with time is changed with each test. This is
illustrated in the Figure 3. In each test the averaged uncertainty is 1

kmax

�kmax
k=1 �k = 0.5.

The RBPF algorithms with 50 particles using different models are compared. GMFs
with model (5) and � = 0.5 (GMF1) and model (6) with �(1) = 1 − �(2) = 0.02 (GMF2)
are compared to GMF employing the introduced hierarchical model for time-evolution of
the model uncertainty pararameter �k (GMF3). Tuning parameter S = 100 is fixed in all
the tests.

The performance of the algorithms is compared through the average ability to estimate
the parameter �k and root mean square error (RMSE) of the position coordinate estimates.

0 50 100 150 200 250 300
0

0.5

1

�k

k

��✠
❄

❄
B. Test

A. Test

C. Test

Figure 3: The evolution of the model uncertainty parameter with time in different tests.

A. Test

Observations are simulated from (20) with constant probability p(λk = 0 | �k) = 0.5.
GMF1 is the filter based on the correct model. The results of the tests are reported in
Figure 4. The RMSE performances of GMF1 and GMF3 are virtually identical, as is the
estimations of �k. GMF2 has the worst performance due to the small switching probabilities
of λk.

B. Test

Observations are simulated from (20) with three changes of λk = 0 to λk+1 = 1 and three
changes of λk = 1 to λk+1 = 0. GMF2 is the filter based on model closest to the simulation
model. The results of the tests are reported in Figure 5. The RMSE performance and the
estimation accuracy of �k given by GMF2 is the best. GMF3 has an improved performance
compared to GMF1. The effect of the transition model for �k in GMF3 algorithm can be
seen in the estimation of �k as well as in the decrease of RMSE in time steps closer to the
change points kc ∈ {100, 200, 300}.
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Figure 5: Results of B. Test.

C. Test

Observations are simulated from (20) such that there is a linear increase in the probability
of λk = 1 in the interval k ∈ [50, 250]. The overall RMSE performance of GMF3 is the
best as is the estimation capability of �k. GMF2 perform well when �k is close to 0 or 1 but
has degraded performance otherwise, this is consistent with its performance in the previous
tests.

6. Conclusions

A heuristic hierarchical model for the time-evolution of the model uncertainty parameter
has been constructed and a RBPF-based algorithm for solving the resulting problem has
been provided. Through simulations we showed that the new proposed method is able to
approximate well the uncertainty parameter and it has RMSE performance comparable to
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Figure 6: Results of C. Test.

the situations where an optimal model would be used to approximate the state.
It is expected that employing this additional level of hierarchy will be beneficial for

applications where there the system behavior is governed by one of a set of models, with
switching occurring only occasionally. Further study is required to expand the algorithm to
handle more than two competing models.
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Bayesian Fault Detection Method for Linear
Systems with Outliers

Henri Pesonen and Robert Piché
Tampere University of Technology

Korkeakoulunkatu 1, 33720 Tampere

Abstract—A novel approach for monitoring the accuracy
of the Bayesian estimate of linear Gaussian state-space
model is introduced, based on the monitoring of the prop-
agation of the errors in the Kalman filter algorithm. The
effect of the sensor errors on the Kalman filter estimate
is explicitly computed and compensated. A marginalized
particle filter is used to compute the posterior distribution
of the sensor errors. Using a target tracking simulation
it is shown that the proposed method has improved
performance over the standard detection-identification-
adaptation (DIA) method

Index Terms—Bayesian filtering, marginalized particle
filtering, fault diagnosis, jump detection, change detection,
fault monitoring, Kalman filter, DIA

I. INTRODUCTION

Abrupt changes in linear dynamic systems are often
of significant interest as they can provide essential in-
formation about the processes, or possibly cause major
degeneracy of the state estimator if the changes of the
system go undetected. For example, in clinical trials,
changes in the system can be caused by biological events
which are of paramount importance to analyze [1]. In
positioning and tracking systems, the changes in the
environment or maneuvers cause the system to provide
biased position estimates which can lead to hazardous
situations [2].

In positioning systems, fault detection methods are
usually referred to as receiver autonomous integrity
monitoring (RAIM) methods [3]. The traditional RAIM
methods first perform fault detection based on a statis-
tical test for the consistency of the observation vector.
If the test fails, statistical tests are performed on each
of the observations in order to identify and remove the
faulty observation [4]. The diagnosis is usually carried
out at each time step by testing the bias of each of the
observations separately, but there have been studies of
integrity and quality monitoring methods in time series
data [5], [6], [7].

The first author thanks TUT graduate school for financial support.

We model the abrupt changes, or errors, in the system
as suddenly appearing or disappearing additive com-
ponents in the sensor model. In positioning systems,
such errors could be caused by multipath or non-line-of-
sight-signals, or sensor malfunctions [8]. The detection
of these kind of changes has traditionally been per-
formed with generalized likelihood ratio (GLR), or al-
most analogous detection-identification-adaptation (DIA)
method, and CUSUM algorithms [9], [5], [10], [11].
These methods are based on monitoring the innovation
process of a Kalman filter (KF) that does not take into
account the abrupt changes. Another approach is to
approximate the joint posterior distribution of the state
and the abrupt changes using multiple model filtering
[12], or sequential Monte Carlo methods [13], [2]. From
the resulting posterior distribution one can solve for
any quality measure of the chosen estimator. However,
quality measures based is the posterior distribution can
be quite sensitive to the probabilities on the tails of the
posterior which can be poorly estimated by sampling
based methods.

We propose a change detection method which com-
bines the two approaches. Instead of solving the joint
distribution of the state and the changes, we compute
the joint distribution of the changes and the KF estimate
error caused by the additive changes. One benefit of
this approach is that the detection procedure is separate
from the state estimator and can be applied as a separate
module to any system estimated by KF.

The paper is organized as follows. In Section II we
describe the state-space model for the system and for
the additive sensor errors. In Section III we present a
Bayesian approximative solution for the problem which
employes marginalized particle filter, which can be used
due to the special property of the proposed model. In
Section IV we describe our novel approach for fault
diagnosis of the nominal Kalman filter and in Section
V we compare the presented approaches in a simple
positioning problem. In Section VI we conclude our
study.
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II. PROBLEM FORMULATION

We consider a discrete time stochastic system with
additive unknown changes

xk+1 = Fkxk + wk (1)
yk = Hkxk + vk + sk. (2)
x0 ∼ N

�
x0|0, P0|0

�
, (3)

where xk ∈ Rnx is the state vector, yk ∈ Rny is
the observation, wk ∼ N (0, Qk) and vk ∼ N (0, Rk)
are mutually independent, zero mean Gaussian noise
processes. sk is the additional error process in the sensor
model. N (µ,Σ) is a Gaussian distribution with mean µ
and covariance Σ.

The Bayesian filtering framework can be used to
compute the posterior distribution p(xk | y1:k, s1:k),
where y1:k

∆
= [y1, . . . , yk], with the prediction step

p(xk | y1:k−1, s1:k−1)

=

�
p(xk | xk−1)p(xk−1 | y1:k−1, s1:k−1)dxk−1 (4)

and the update step

p(xk | y1:k, s1:k)
∝ p(yk | xk, sk)p(xk | y1:k−1, s1:k−1). (5)

It is well known that with the given model (1) – (3)
and known s1:k the posterior distribution is a Gaussian
distribution p(xk|y1:k, s1:k) = N

�
xk|k, Pk|k

�
with mean

and covariance computed recursively by the KF algo-
rithm

xk+1|k = Fkxk|k (6)

Pk+1|k = FkPk|kF
T
k +Qk (7)

zk = yk −Hkxk|k−1 − sk (8)

Sk = HkPk|k−1H
T
k +Rk (9)

Kk = Pk|k−1H
T
k S

−1
k (10)

xk|k = xk|k−1 +Kkzk (11)
Pk|k = (Inx −KkHk)Pk|k−1, (12)

where In is a n×n identity matrix, zk is the innovation
and Sk is the innovation covariance. The additive errors
sk are however usually unknown and, as they have a lin-
ear influence on the state estimates, they can significantly
degrade the performance of KF algorithm.

We model the additive errors sk as a Gaussian Markov
process depending on a Markov chain λk ∈ {0, 1} with

P (λk+1 = j | λk = i) = pij (13)

which is the switch probability between ith and jth
models at time k + 1. Modeling of pij can be often an

extremely complicated task, as it can be dependent on
the time k, and also on the value of xk [14].

Also the size of the errors is a difficult to model as the
cause of the errors is often unknown, and assuming the
value of the sensor error to be e.g. constant in time,
is quite a strong assumption. Therefore we consider
additive errors as jump Markov linear system

sk,i = λk,i�k,i, (14)

where sk,i is the ith element of sk at kth timestep
and �k ∼ N (0, R�

k) is Gaussian white noise process
independent of the stochastic processes in (1)–(3). Using
this model we estimate the value of ek,i independent of
the estimated ek−1,i. Note that

vk + sk ∼ N (0, Rk + ΛkR
�
kΛk) = N (0, Rk(Λk)) ,

(15)

where Λk
∆
= diag(λk,1, . . . , λk,ny

). This model is often
used to describe outliers in the observations [15] and
it is, in a sense, a conservative model for the sensor
errors. Often errors are modeled as a constant, or slowly
evolving, bias for consecutive time steps [2]. However,
if nothing is known about the dynamic nature of the
error, the assumption of constant bias may degrade the
performance of the estimator significantly. On the other
hand, if we assume that the size of the bias may change
freely from a time step to the next, we may be able to
estimate it better in the case when it is not constant or
slowly evolving.

III. MARGINALIZED PARTICLE FILTERING

The posterior distribution for the model introduced in
the previous section is

p(xk,Λ1:k |y1:k)=p(Λ1:k | y1:k)p(xk | y1:k,Λ1:k). (16)

The indicator variable history Λ1:k is a discrete random
variable with a finite number (nyk) of possible values
and probability mass function

p(Λ1:k | y1:k)=
nk

y�

i=1

P
�
Λ(i)
1:k | y1:k

�
δ
�
Λ1:k−Λ(i)

1:k

�
,

where P
�
Λ(i)
1:k | y1:k

�
is a shorthand notation for the

probability P
�
Λ1:k = Λ(i)

1:k | y1:k
�

. The marginal distri-
bution of the state is

p(xk | y1:k) =
nk

y�

i=1

P
�
Λ(i)
1:k | y1:k

�
p
�
xk | y1:k,Λ(i)

1:k

�
,

which can be computed with a bank of KFs [16], [17].
The sum goes over all possible Λ1:k and thus the exact
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solution is computationally intractable for even small
k. Several approximative techniques have been applied
for this problem, e.g. pruning or merging the Gaussian
components [12], [18].

We apply sequential Monte Carlo estimation for
approximating the posterior [19]. Because the part
p(xk|y1:k,Λ1:k) of the posterior can be solved analyt-
ically, it is possible to approximate only the marginal
distribution p(Λ1:k | y1:k) and thus decrease the vari-
ance of the empirical approximative posterior [13]. The
resulting estimation method is the marginalized particle
filter (MPF). Here are the details.

We approximate p(Λ1:k|y1:k) empirically with N sam-
ples

p(Λ1:k | y1:k) ≈
N�

j=1

ω(j)
1:kδ

�
Λ1:k − Λ(j)

1:k

�
, (17)

where

ω(j)
1:k ∝

P
�
Λ(j)
1:k | y1:k

�

π
�
Λ(j)
1:k | y1:k

� . (18)

The importance sampling distribution π (Λ1:k | y1:k) can
be chosen freely within certain requirements but the
choice

π(Λ1:k | y1:k) = π (Λ1)
k�

j=1

π (Λj | Λj−1) , (19)

enables recursive updating of weights ω1:k according to

ω(j)
1:k ∝ ω(j)

1:k−1p
�
yk | y1:k−1,Λ

(j)
1:k

�
. (20)

The latter term is evaluated by sampling Λ(j)
k from

(19), adding it to Λ(j)
1:k−1 and evaluating

p
�
yk | y1:k−1,Λ

(j)
1:k

�

=

�
p
�
yk | xk,Λ(j)

k

�
p
�
xk | y1:k−1,Λ

(j)
1:k

�
dxk

=
1�

det(2πSk(Λ
(j)
1:k))

e−
1
2
zk(Λ

(j)
1:k)

TSk(Λ
(j)
1:k)zk(Λ

(j)
1:k),

(21)

where zk(Λ
(j)
1:k) and Sk(Λ

(j)
1:k) are the innovation and

innovation covariance given the history Λ(j)
1:k and are

computed in (8) and (9).
The approximative posterior distribution is now

p̂(xk | y1:k) =
N�

j=1

ω(j)
1:kN

�
xk|k(Λ

(j)
1:k), Pk|k(Λ

(j)
1:k)

�
,

(22)

where (11) and (12) are computed given Λ(j)
1:k. In practice

we need to occasionally resample the Gaussian mixture
components to prevent degeneracy of the weights of
the approximative distribution. In the resampling proce-
dure, the components with large weights are duplicated
and used to replace components with small weights if
the effective sample size Neff drops lower than some
threshold value [19]. The effective sample size can be
approximated as

Neff ≈
1

�N
i=1

�
ω(i)
1:k

�2 . (23)

IV. NOMINAL SYSTEM FAULT DIAGNOSIS

Many of the classic change detection and quality
monitoring algorithms, such as GLR method [9] and
detection-identification-adaptation (DIA) method [5], are
based on the innovation of the nominal KF. The nominal
KF is run with the assumption that Λi = 0 for all i ≥ 1.
Due to the recursive nature of the KF algorithm, the error
propagates according to Lemma 1.

Lemma 1. Let the state space model be described by

(1)–(3). The influence of the realized additive error

sequence s1:k on the Kalman innovation (8) and the

posterior mean (11) can be expressed explicitly as

zk = zk(01:k) + ∆zk (24)

and

xk|k = xk|k(01:k) + ∆xk|k (25)

where

z0k = yk −Hkxk|k−1(01:k) (26)

The sequences ∆zk and ∆xk|k can be expressed recur-

sively as

∆zk = sk −HkFk−1∆xk−1|k−1 (27)

and

∆xk|k = Kksk + Ck∆xk−1|k−1, (28)

where Ck = (Inx −KkHk)Fk−1.

Proof: Analogous to the proof of Lemma 5 in [20].

Instead of solving the marginal distribution of the
state, we compute the posterior distribution of the ad-
ditive errors and the error of the nominal KF estimator.
Lemma 1 describes the evolution of the influence of
the additive errors on the state, the innovation, and the
KF estimator. Using the lemma, the quality monitoring
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procedure is formulated as a linear system with white
noise processes as process uncertainty:

�
sk+1

∆xk|k

�
=

�
0 0
Kk Ck

� �
sk

∆xk−1|k−1

�
+

�
Λk+1�k+1

0

�

(29)

zk =
�
Iny −HkFk−1

� � sk
∆xk−1|k−1

�
+ z0k, (30)

�
s0

∆x0|0

�
=

�
0
0

�
(31)

where zk(01:k) ∼ N(0, Sk(01:k)) is a white noise process
independent of sk and ∆xk|k. The system is observed
through (24). We can filter the system (29) – (31) in the
Bayesian framework and obtain the posterior

p(sk,∆xk|k | z1:k)

=

nk
y�

j=1

P
�
Λ(j)
1:k | z1:k

�
p(sk,∆xk|k | z1:k,Λ1:k). (32)

The approximative distribution is computed using MPF
analogously to the previous section. The resulting distri-
bution is

p̂(sk,∆xk|k | z1:k)

=
N�

j=1

ω(j)
1:kN

��
sk|k(Λ

(j)
1:k)

∆xk|k(Λ
(j)
1:k)

�
,Σk|k(Λ

(j)
1:k)

�
, (33)

where the mean and the covariance are computed ap-
plying the KF algorithm to the linear Gaussian system
(29) – (31) given Λ(j)

1:k. It can be shown that given Λ1:k

the weights for the approximative distributions of the
previous section and of the introduced model are the
same, i.e.

P (Λ1:k | y1:k) = P (Λ1:k | z1:k) . (34)

The posterior filtering distribution P (Λk | z1:k) is the
probability of an error being present in the observation,
and can be used to determine the quality of the observa-
tion vector. If P (λk,i = 1 | z1:k) > 0.5, then it is more
probable that the error is present than not, given the
whole observation history. In addition, to determining
whether an error is present, we are able to monitor the
size of the cumulative effect ∆xk|k of the sensor errors
s1:k. We use the mean of ∆xk|k as the estimate of the
sensor error size, and using this estimate we can compute
a corrected estimate x̃k|k using the filter estimate xk|k
with the estimated error ∆xk|k

x̃k|k = xk|k −∆xk|k. (35)

The quality monitoring method is illustrated in Figure 1.

sk

System

yk

KF

MPF

∆xk|k,P (Λk | z1:k)

zk, Sk

xk|k, Pk|k

Fig. 1. Quality monitoring of the nominal KF

V. SIMULATIONS

We test the discussed estimation method, referred to
as nominal system fault detection (NSFD), in a simu-
lation of a simple two-dimensional positioning tracking
problem in urban environment. At each time step we
receive the position coordinates of the receiver as the
measurement. The state consists of two position and two
velocity coordinates, and the motion of the target (1) is
modeled with the constant velocity model [12]

Fk =

�
I2 I2
02 I2

�
, Qk = 0.12

�
1
3I2

1
2I2

1
2I2 I2

�
. (36)

The nominal measurement model is (2) with

Hk =
�
I2 02

�
, Rk =

�
72 32

32 82

�
. (37)

We simulate 1000 tracks with 300 time steps. In
time interval k ∈ [101, 200] we simulate outliers in
the additive sensor error with model (14), using p00 =
p11 = 0.9 and �k ∼ N

�
0, 302I2

�
. We run the MPFs with

N = 25 particles, and use effective sample size threshold
0.6 ·N in the resampling procedure. The mean value of
the approximative posterior distribution is used as the
estimate. A DIA method that tests the presence of bias
at each time step with test statistic threshold TDIA = 5
is used as a comparison.

The simulation results are illustrated with Table I. The
correlation coefficient of the true error of the nominal
KF and the estimated error ∆xk|k given by NSFD is
0.77. Using the estimated ∆xk|k to evaluate a new state



5

estimate x̃k|k in (35), the RMSE of the KF 5.43 is
lowered to 4.38. This is an improvement to the RMSE
5.11 of DIA method. The errors are computed in the
two-dimensional position coordinates, i.e. the first two
dimensions of the state vector.

The failure detection power of NSFD and DIA is
compared by the ability to detect presence of the bias
in observations. This is quantified with the frequency of
false alarms (type I error), i.e. determining that there is
an error present when there is not, and missed alarms
(type II error), i.e. determining that there is no bias,
when in reality there is. NSFD is better than DIA
with respect to both type I and II errors. However,
although NSFD has improved performance of DIA with
respect to error detection power and RMSE performance,
NSFD is computationally more demanding. The current
implementation of NSFD takes roughly N times more
time than DIA, where N is the number of particles in
(33).

NSFD DIA KF
Type I error 0.04 0.11
Type II error 0.18 0.26
RMSE 4.38 5.11 5.43

TABLE I
PERFORMANCE COMPARISON OF ERROR DETECTION POWER AND

RMSE OF NSFD AND DIA METHODS.

VI. CONCLUSIONS

A new novel fault detection approach NSFD has been
proposed for linear Gaussian state-space models, and
marginalized particle filtering solution has been provided
for solving the resulting problem. The method was tested
against standard DIA method using positioning simula-
tions, and NSFD has better performance with respect
to the fault detection power and RMSE. However, the
improved performance is achieved at the cost of more
demanding computational requirements.
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Variational Bayes algorithm for tracking linear
systems with abrupt changes of the noise

covariances
H. Pesonen, Tampere University of Technology

R. Piché, Tampere University of Technology

Abstract—The variational Bayes method is applied to the state-
space estimation problem with manoeuvres or changes in the
covariance of the observation noise. The resulting algorithm is
an off-line batch method that can be used to provide a baseline
performance estimation results for the recursive methods. In
addition to batch methods we introduce a heuristic approach
to make the algorithm on-line. Through simulations we show
how the introduced method obtain the best accuracy out of all
compared approximative estimation methods.

Index Terms—Bayesian estimation, Kalman filter, Rauch-Tung-
Striebel smoother, variational Bayes, change detection

I. INTRODUCTION

The estimation of the state described by a linear state-
space system requires that we define the parameters of the
system, after which we can solve the system optimally with
the Kalman filter (KF) if the system noise processes are
normally distributed white processes [5]. However, it might
be problematic to describe the processes with a Gaussian
distribution. Gaussian mixture (GM) distributions are more
general models that can take into account several plausible
models for the system [1, 9]. For example, a navigation
system with manoeuvres can be described with one model
for the constant velocity motion and an another model for the
manoeuvres [3]. Also, systems with outlying measurements
can be described with one model for the good data and another
for the bad [7]. Although the most straightforward approach
would be to use the Gaussian model even if there are multiple
models, it is possible that the performance may be degraded.
In the present work we derive the variational Bayes (VB)
algorithm for approximating the posterior distribution of the
state within a time-window, given that the noise processes are
described with a two-component GM distribution. The VB
method can be applied as a batch method for computing the
posterior distribution offline for the whole track, or as a online
method using a moving window for the estimation.

This note is organized as follows. In Section II we describe
the linear state-space model with GM-noise processes. In
Section III we formulate the VB algorithm for the problem
and in Section IV we test several methods in two sets of
simulations. Finally in Section V we conclude the study.

II. PROBLEM

We model the problem of the abruptly changing linear
dynamic system as follows. The system is constructed as a

linear state-space model

xk = Fk−1xk−1 + wk−1, (1)
yk = Hkxk + vk, (2)
x0 ∼ N

�
x0|0, P0|0

�
, (3)

where vk and wk are mutually independent white noise pro-
cesses independent of the initial state xk, and N (µ,Σ) is the
normal distribution with the mean µ and the covariance Σ. The
noise processes have two plausible models and are defined as
follows. The state noise is modeled as

wk ∼ N (0, Qk)
1−λk+1 N (0,Mk)

λk+1 , (4)

and the observation noise as

vk ∼ N (0, Rk)
1−λk N (0,Wk)

λk , (5)

where λk ∈ {0, 1}, k = 1, . . . , N are mutually independent
Bernoulli-distributed random variables

λk ∼ Ber(θ). (6)

In theory the problem can be solved using the Bayesian
framework. The posterior distribution of the state is

p(x0:N | y1:N )

=
1�

λ1=0

· · ·
1�

λN=0

p(x0:N | y1:N , λ1:N )p(λ1:N | y1:N ), (7)

where a1:N
∆
= [a1, . . . aN ] The posterior (7) is a GM distribu-

tion and evaluation of it or its marginals is an enormous task
for even small N . Therefore, we are required to restrict ourself
to solving either only parts of the problem, or to approximate
the posterior distribution. For example, we could restrict our-
selves to computing only the marginal distributions of (7). The
marginal p(xk | y1:N , λ1:N ) = N

�
xk|N (λ1:N ), Pk|N (λ1:N )

�

can be computed recursively using KF for k = N

[xk+1|k+1(λ1:k+1), Pk+1|k+1(λ1:k+1)]

← KalmanStep(xk|k(λ1:k), Pk|k(λ1:k), yk, Fk,

Q
1−λk+1

k M
λk+1

k , Hk, R
1−λk+1

k W
λk+1

k ), (8)

where KalmanStep is one step of the KF algorithm, as given
in Algorithm 1.
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Algorithm 1 [xk|k, Pk|k] ←
KalmanStep(xk−1|k−1, Pk−1|k−1, yk, Fk−1,Qk−1, Hk,Rk)

1: xk|k−1 ← Fk−1xk−1|k−1

2: Pk|k−1 ← Fk−1Pk−1|k−1F
T
k−1 +Qk−1

3: Kk ← Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1

4: xk|k ← xk|k−1 +Kk(yk −Hkxk|k−1)
5: Pk|k ← Pk|k−1 +KkHkPk|k−1

Rauch-Tung-Striebel smoother (RTS) [8] is a recursive
smoothing algorithm for the linear Gaussian state-space model
to compute the marginals with k < N

[xk|N (λ1:N ), Pk|N (λ1:N ), Ck+1|N (λ1:N )]

← RTSStep(xk+1|N (λ1:N ), Pk+1|N (λ1:N ), xk|k(λ1:N ),

Pk|k(λ1:N ), Fk, Q
1−λk
k Mλk

k ), (9)

where RTSStep is defined in Algorithm 2. In the algorithm,
we compute also the cross-covariance

Ck+1|N (λ1:k) = cov(xk+1, xk | y1:N , λ1:k), (10)

as it required in the VB approximation of the posterior (7) as
discussed in Section III.

Algorithm 2 [xk|N , Pk|N , Ck+1|N ] ←
RTSStep(xk+1|N , Pk+1|N , xk|k, Pk|k, Fk,Qk)

1: xk+1|k ← Fkxk|k
2: Pk+1|k ← FkPk|kF

T
k +Qk

3: Gk ← Pk|kF
T
k P−1

k+1|k
4: Ck+1|N ← Pk+1|NGT

k
5: xk|N ← xk|k +Gk(xk+1|N − xk+1|k)
6: Pk|N ← Pk|k +Gk(Pk+1|N − Pk+1|k)G

T
k

The weight in (7) is obtained by running the bank of 2N

KFs.

p(λ1:N | y1:N ) ∝ p(y1:N | λ1:N )p(λ1:N )

=
N�

k=1

p(yk | y1:k−1, λ1:k)p(λk) (11)

=
N�

k=1

N
�
yk | Hkxk|k−1(λ1:k), Sk(λ1:k)

�
(1− θk)

1−λkθλk
k .

There exists several methods for making the evaluation of the
distributions feasible. Most methods are based on cutting off
or merging the branches of the mixture filtering distribution
p(xk | y1:k) [1, 9, 7, 2].

III. VARIATIONAL APPROXIMATION

We use the VB approach to approximate the posterior (7).
In the VB method we seek out the optimal approximative
distributions q·(·) that can be factorized as

p(x1:N , λ1:N |y1:N )

≈ qx1:N ,λ1:N (x1:N , λ1:N ) = qx1:N (x1:N )
N�

k=1

qλk(λk). (12)

This will be the only assumption about the form of q·(·).
Distributions qx1:N (x1:N ), qλ1(λ1), . . . , qλN (λN ) are found
such that they minimize the Kullback-Leibler (KL) divergence
between the posterior and the approximative distribution

KL(q(λ1:N , x1:N )||p(x1:N , λ1:N |y1:N )) (13)

=

�
q(x1:N )

N�

k=1

q(λk) log
p(x1:N , λ1:N |y1:N )

q(x1:N )
�N

k=1 q(λk)
dx1:Ndλ1:N .

In (13) and in the following we have left out the subscript
from the approximative distributions q(·). The KL divergence
can be minimized using calculus of variations by first fixing
q(x1:N ) and q(λi), i ∈ 1 : N\k, to minimize (13) with respect
to q(λk). As the result, we get

log q(λk)

= Ex1:N ,λ1:N\k (log p(x1:N , λ1:N | y1:N )) + const. (14)

for k = 1, . . . , N The expectation Ex1:N ,λ1:N\k (·) is eval-
uated for q(x1:N )

�N
i=1,i �=k q(λi). After finding q(λk), k =

1, . . . , N , we minimize (13) with respect to q(x1:N ) as

log q(x1:N )

= Eλ1:N (log p(x1:N , λ1:N | y1:N )) + const., (15)

where the expectation Eλ1:N (·) is evaluated for
�N

k=1 q(λk).
To compute (14) and (15), we express the posterior distri-

bution as

p(x1:N , λ1:N | y1:N )

= p(y1:N | x1:N , λ1:N )p(x1:N , λ1:N )

=
N�

k=1

p(yk | xk, λk)p(xk | xk−1, λk)p(λk) (16)

and find its logarithm

log p(x1:N , λ1:N | y1:N )

=
N�

k=1

log p(yk | xk, λk) + log p(xk | xk−1, λk) + log p(λk)

=
N�

k=1

(1− λk)

�
−1

2
log detRk − 1

2
||yk −Hkxk||2R−1

k

−1

2
log detQk−1 −

1

2
||xk − Fk−1xk−1||2Q−1

k−1
+ log(1− θ)

�

+ λk

�
−1

2
log detWk − 1

2
||yk −Hkxk||2W−1

k

−1

2
log detMk−1−

1

2
||xk−Fk−1xk−1||2M−1

k−1
+ log θ

�
. (17)



3

We compute (14) as

log q(λk) = Ex1:N ,λ1:N\k (log p(x1:N , λ1:N | y1:N )) + const.

= (1− λk)Exk−1:k

�
−1

2
log detRk − 1

2
||yk −Hkxk||2R−1

k

−1

2
log detQk−1 −

1

2
||xk − Fk−1xk−1||2Q−1

k−1
+ log(1− θ)

�

+ λkExk−1:k

�
−1

2
log detWk − 1

2
||yk −Hkxk||2W−1

k

−1

2
log detMk−1 −

1

2
||xk − Fk−1xk−1||2M−1

k−1
log(θ)

�

+ const. (18)

After some mechanical manipulation, we introduce the nota-
tion

log ρk,1 = −1

2
log detRk − 1

2
||yk −Hkxk|N ||2

R−1
k

− 1

2
tr
�
HT

k R
−1
k HkPk|N

�
− 1

2
log detQk−1

− 1

2
||xk|N − Fk−1xk−1|N ||2

Q−1
k−1

− 1

2
tr
��
Q−1

k−1 + Fk−1Q
−1
k−1F

T
k−1

�

×
�
Pk|N − 2Ck|NFT

k−1 + Fk−1Pk−1|NFT
k−1

��
+ log(1− θ)

log ρk,2 = −1

2
log detWk − 1

2
||yk −Hkxk|N ||2

W−1
k

− 1

2
tr
�
HT

k W
−1
k HkPk|N

�
− 1

2
log detMk−1

− 1

2
||xk|N − Fk−1xk−1|N ||2

M−1
k−1

− 1

2
tr
��
M−1

k−1 + Fk−1M
−1
k−1F

T
k−1

�

×
�
Pk|N − 2Ck|NFT

k−1 + Fk−1Pk−1|NFT
k−1

��
+ log θ,

where Exk(xk) = xk|N , V (xk) = Pk|N and cov(xk, xk−1) =
Ck|N . The marginal density of the model indicator variable
λk can be shown to be

q(λk) = (1− θk|N )1−λkθλk

k|N = Ber(θk|N ) (19)

θk|N =
ρk,2

ρk,1 + ρk,2
. (20)

As q(λk) is a Bernoulli-distribution, it has the mean E (λk) =
θk|N .

After finding each of the marginal distributions q(λi), we
evaluate the marginal distribution of the state q(x1:k) as

log q(x1:N ) = Eλ1:N (log p(x1:N , λ1:N | y1:N )) + const.

=
N�

k=1

−1

2
Eλk (1− λk) ||yk −Hkxk||2R−1

k

− 1

2
Eλk (λk) ||yk −Hkxk||2W−1

k

− 1

2
Eλk (1− λk) ||xk − Fk−1xk−1||2Q−1

k−1

− 1

2
Eλk (λk) ||xk − Fk−1xk−1||2M−1

k−1
+ const.

=
N�

k=1

−1

2
||yk −Hkxk||2Ξ−1

k
− 1

2
||xk − Fk−1xk−1||2Σ−1

k−1
+ const.,

where

Ξ−1
k = Eλk (1− λk)R

−1
k + Eλk (λk)W

−1
k

= (1− θk|N )R−1
k + θk|NW−1

k (21)
Σ−1

k−1 = Eλk (1− λk)Q
−1
k−1 + Eλk (λk)M

−1
k−1

= (1− θk|N )Q−1
k−1 + θk|NM−1

k−1. (22)

We can see that the density q(x1:N ) is a normal distribution
and we can compute the marginals

q(xk−1:k) = N

��
xk|N

xk−1|N

�
,

�
Pk|N Ck|N
CT

k|N Pk−1|N

��
(23)

using KF and RTS-smoother. The set of equations (19) and
(23) can be solved by a fixed-point iteration for which the
convergence is guaranteed given certain convexity properties
of the error in the approximative distribution [4]. This is the
VB method that is summarized in Algorithm 3. Although con-
vergence checks could be performed within the algorithm, we
fix the number of iterations to M to control the computational
costs. The resulting algorithm is very close to the EM-method
for detecting change in the state transition model [3, 6].

Algorithm 3 [x0:N |N , P0:N |N , θ1:N |N ] ←
VB(x0|0, P0|0, θ1:N , F1:N−1, Q0:N−1,M0:N−1, H1:N , R1:N ,W1:N )

1: θk|N ← 0, k = 1, . . . , N
2: a(1) ← − 1

2 log detRk − 1
2 log detQk−1 + log(1− θk)

3: a(2) ← − 1
2 log detWk − 1

2 log detMk−1 + log θk
4: for m = 1, . . . ,M do
5: for k = 0, . . . , N − 1 do
6: Ξ−1

k+1 ← (1− θk+1|N )R−1
k+1 + θk+1|NW−1

k+1

7: Σ−1
k ← (1− θk+1|N )Q−1

k + θk+1|NM−1
k

8: [xk+1|k+1, Pk+1|k+1] ←
KalmanStep(xk|k, Pk|k, yk, Fk,Σk, Hk+1,Ξk+1)

9: end for
10: for j = N − 1, . . . , 0 do
11: [xj|N , Pj|N , Cj+1|N ] ←

RTSStep(xj+1|N , Pj+1|N , xj|j , Pj|j , Fj ,Σj)
12: end for
13: for i = 1, . . . N do
14: log ρk,1←a(1)− 1

2 ||yk−Hkxk|N ||2
R−1

k

−1
2 tr

�
HT

k R
−1
k HkPk|N

�
− 1

2 ||xk|N−Fk−1xk−1|N ||2
Q−1

k−1

− 1
2 tr

��
Q−1

k−1 + Fk−1Q
−1
k−1F

T
k−1

�

×
�
Pk|N − 2Ck|NFT

k−1 + Fk−1Pk−1|NFT
k−1

��

15: log ρk,2←a(2)− 1
2 ||yk−Hkxk|N ||2

W−1
k

−1
2 tr

�
HT

k W
−1
k HkPk|N

�
− 1

2 ||xk|N−Fk−1xk−1|N ||2
M−1

k−1

− 1
2 tr

��
M−1

k−1 + Fk−1M
−1
k−1F

T
k−1

�

×
�
Pk|N − 2Ck|NFT

k−1 + Fk−1Pk−1|NFT
k−1

��

16: θk|N ← ρk,2

ρk,1+ρk,2

17: end for
18: end for

The Algorithm 3 is an offline method for approximating
the posterior distribution but can be heuristically modified
for online applications. First we choose a window size K,
and then approximate p(x1:K , λ1:K | y1:K) using the VB
method. Then using q(xK) as the prior, we approximate
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p(xK+1:2K , λK+1:2K | y1:2K) by applying the VB method
for the data yk+1:K . This is repeated at every Kth time step.

IV. SIMULATIONS

We simulate two cases of a GPS-positioning problem. In
both problems the estimation methods are based solving the
system (1)–(3), where

Fk =

�
I2 I2
02 I2

�
, Hk =

�
I2 02

�
(24)

Qk = σ2

�
1
3I2

1
2I2

1
2I2 I2

�
, Rk =

�
102 5

2

2

5
2

2
52

�
, (25)

and if not otherwise mentioned, these parameters are used to
generate the simulation data.

A. Manoeuvring target

In the example we consider only changes in the state
transition model, or manoeuvres. We generated 100 tracks with
velocities

∆xj =






�
5 + νj 0

�T
, j ∈ [0, 19] ∪ [51, 70]�

0 5 + νj
�T

, j ∈ [21, 49]�
5/

√
2 5/

√
2
�T

, j ∈ {20, 50},
(26)

where νj ∼ N
�
0, 0.12

�
is a white noise process. All the

estimation methods model the constant velocity motion with
σ = 0.1 and the manouevres with Mk = 100 · Qk. The
compared methods are the KFs and RTSs using only Qk

(KF1,RTS1) or Mk (KF2,RTS2), EM-algorithm (EM) [3], GM
filter (GM) with component merging at the each time step [7],
the VB algorithm (VB) and the moving window VB (with
window size 15) (MWVB), both with 40 iterations. VB and
EM methods use the prior θk = 0.1. From the simulations we
investigate the root mean square error (RMSE) performance
and the error threshold containing 95% of the estimation er-
rors. The numbers are reported in Table I. Amongst the online
estimation methods, MWVB has the best performance and
from the offline methods VB has the best performance. EM-
algorithm seems to be more sensitive to the initial estimates
of θk = 0 than VB method, which is the reason for its
performance being worse.

B. Change in the observation noise

In second problem, we generated 100 tracks of 70 time
steps. The track is generated with the constant velocity model
with σ = 1, and for the observations we simulated batches
of observation noise with larger covariance. The observation
noise is generated using Wk = 25 · Rk for time steps
k ∈ [20, 30) ∪ [50, 60). The compared methods are the KFs
and RTSs using only Rk (KF1, RTS1) or Wk (KF2, RTS2),
EM-algorithm (EM) [3] modified for the problem, GM filter
(GM) with component merging at each time step [7],the VB
algorithm (VB) and the moving window VB (with window size
15) (WBVB), both with 40 iterations. VB and EM methods
use the prior θk = 0.1. RMSEs and 95% error threshold
performances are reported in Table I. Again, MWVB has the

best performance out of the online methods and from the
offline methods VB has the best performance, although the
performance is almost identical to the EM-algorithm.

Test A Test B
RMSE 95%-err RMSE 95%-err

KF1 13.7 24.9 12.7 41.0
KF2 6.0 12.7 13.5 32.4
GM 7.2 15.1 11.6 37.2

MWVB 4.9 11.6 7.2 19.5
RTS1 9.6 21.5 7.5 21.3
RTS2 3.4 7.1 7.8 17.0
EM 3.6 7.6 5.7 14.1
VB 2.7 6.1 5.6 13.9

TABLE I
THE SIMULATIONS INDICATE THAT MWVB AND VB METHODS HAVE
GOOD PERFORMANCE AMONG THE ONLINE AND OFFLINE METHODS.

V. CONCLUSIONS

A variational Bayes change detection method was described
for linear state-space systems with noise processes defined by
changing noise covariances. Through simulations it was shown
that not only the method performs very well in offline mode,
but a heuristic online modification of the technique provides
good accuracy compared to other methods. Future study on
the extension of the method for more general noise processes
is required.
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