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Abstract

The purpose of this thesis is to study properties of the EEG signal recorded during anesthesia
or sedation. The main emphasis was put on the regularity/complexity analysis of the EEG
during gradually deepening sedation and the EEG patterns of burst-suppression level anesthe-
sia. Additionally, time-frequency analysis was applied to selected EEG patterns during burst-
suppression level anesthesia. The EEG signals underlying this work have mainly been recorded
during propofol anesthesia/sedation, however, for the comparison purposes also sevoflurane
recordings have been used. For most of the cases the EEG was recorded using the conventional
skin electrodes, however for one case EEG recorded with depth electrodes from the subthala-
mic region of the brain was used.

Regularity/complexity properties of the signals have been analyzed using several entropy based
measures (Shannon entropy, spectral entropy, and approximate entropy), a coarse-grained com-
plexity measure (Lempel-Ziv complexity), and a fractal dimension estimator (Higuchi fractal
dimension). The main idea of the regularity/complexity analysis was to study the ability of the
different measures to follow the anesthetic depth. In addition, the influence of the frequency
content of the EEG signal, as well as co-administration of the commonly used opiate remifen-
tanil, on the efficiency of the mentioned measures as depth-of-sedation indicators was studied.
The time-frequency analysis was conducted by using quadratic time-frequency distributions
(Wigner-Ville distribution, Choi-Williams distribution, and optimal distributions) in order to
investigate the instantaneous frequency of the spindles during propofol induced anesthesia as
well as during normal physiological sleep.

The results show that, although the applied regularity/complexity measures do not depend
directly on the power spectrum of the signal (with the exception of spectral entropy), they are
highly sensitive to the frequency content of the EEG. Higuchi fractal dimension almost always
outperformed other measures when their ability to differentiate between different levels of
sedation was tested. Remifentanil was found to significantly deteriorate the ability of the tested
measures to follow the depth of sedation.

The time-frequency analysis of the spindle patterns shows that the angle of the trend of its
instantaneous frequency is generally small. However, occasionally spindles can show either
increasing or decreasing trend in the instantaneous frequency. The analysis also reveals that
the spindles during propofol anesthesia have slightly higher average frequency than that of the
spindles during physiological sleep.
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CHAPTER 1

Introduction

Anesthesia monitoring based on indices calculated from the electroencephalogram (EEG) has
been an active area of research field for several decades. The first noticeable success was achieved
in 1996 when Aspect Medical Systems, Inc. (USA) introduced the Bispectral Index (BIS). BIS
is a method combining several signal processing approaches (frequency, bispectrum, and time
domain) for the calculation of a scalar depth of anesthesia measure (Rampil, 1998). From that
time on several other commercial methods for the assessment of depth of anesthesia have been
developed and implemented. The Patient State Index (PSI) by Physiometrix Inc. (USA), the
Narcotrend index by MonitorTechnik (Germany), and the Entropy index by GE Healthcare
OY (Finland) can be mentioned as examples (Rampil, 1998; Schultz et al., 2000; Viertiö-Oja
et al., 2004; Lipping and Jäntti, 2004; Lipping et al., 2006).

Despite the fact that several different methods/devices are already available for anesthesia mon-
itoring, the research in this field is still very active. There are two main reasons for this: first,
the available methods have certain drawbacks causing them to fail in certain situations and,
secondly, EEG monitoring is becoming more popular in the intensive care unit (ICU) and the
methods designed for monitoring surgical anesthesia may not best suit the situation in the ICU.

On one hand, these depth-of-anesthesia monitors are developed to measure the effect of the
anesthetic drug on brain functioning in order to decrease the incidence of awareness in anesthe-
sia, i.e. the situation of too light anesthesia should be avoided (see section 2.2 for the definition
of anesthesia). On the other hand, they should help anesthesiologists maintain anesthesia at the
optimal level in order to prevent delays in the recovery phase, i.e. too deep anesthesia should
be avoided (Senhadji et al., 2002; Recart et al., 2003; Ekman et al., 2004).

The effects of different anesthetics on the EEG are very different. Drugs like propofol and
etomidate, which are so-called GABAergic drugs (gamma-aminobutyric acid (GABA) is the
principle inhibitory neurotransmitter in the cortex), first cause slowing of the EEG activity
and finally a burst-suppression pattern. Other drugs such as ketamine, nitrous oxide and xenon
induce unconsciousness with different mechanisms and the EEG changes they produce do not
correlate with unconsciousness in the same way as the GABAergic drugs (Nelson et al., 2002;
Rudolph and Antkowiak, 2004; Jameson and Sloan, 2006). Thus, for the latter case the earlier
mentioned indices calculated from the EEG do not correlate with unconsciousness. Mixtures
of the anesthetics such as isoflurane and nitrous oxide, for example, therefore may produce un-
predictable behavior in the EEG indices. It has been reported that when the anesthetic drug
called ketamine has been used in conjunction with other drugs like propofol or sevoflurane, the
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1. INTRODUCTION

unexpected increase in both BIS and Entropy indices can occur (Hirota et al., 1999; Vereecke
et al., 2003; Hans et al., 2005). It has been shown that both BIS and Entropy indices are practi-
cally unaffected by the increase of the anesthetic agent nitrous oxide (Barr et al., 1999; Anderson
and Jakobsson, 2004; Sleigh and Barnard, 2004). Additionally, Davidson and Czarnecki (2004)
have studied the behavior of the BIS in the case of halotane anesthesia in children. The authors
concluded that the BIS value should be interpreted with caution since it may underestimate the
level of anesthesia.

The manufacturers of the commercial monitors generally provide the range of the correspond-
ing index where the level of anesthesia is considered to be adequate for surgical procedures.
Nevertheless, these numbers should be taken critically because there are some cases where
awareness during operation (Rampersad and Mulroy, 2005) and explicit recall of the intraop-
erative events (Mychaskiw et al., 2001) have been reported. However, the depth of anesthesia
was adequate according to the BIS monitor for both cases.

EEG monitoring in the ICU helps to optimize the sedation, and therefore, the time period of
mechanical ventilation as well as the overall stay in the ICU and hospital can be reduced (Kress
et al., 2000; Tonner et al., 2006). Undersedation in the ICU can have several consequences for
the patients such as an increased overall stress level, increased blood pressure, and increased
oxygen consumption (Roth-Isigkeit et al., 1998; Soliman et al., 2001). Oversedation on the
other hand can involve several risks as well. For example, it can cause a decrease in blood
pressure, prolonged periods of mechanical ventilation, and withdrawal syndrome for sedative
drugs (Cammarano et al., 1998; Tonner et al., 2006).

Anesthesia monitors were initially designed for use in operating rooms, but their use has been
extended to the ICU in order to assess the level of sedation (Shapiro, 1999). However, there are
some principal differences between the condition of the patients in the ICU and those under
surgical anesthesia. While the patients in surgical anesthesia must be unaware of the ongoing
events, the ICU patients are tried to be kept at a cooperative level (Tonner et al., 2003). As a
consequence, the patients in the ICU usually a have higher level of electromyographic activity
which, in turn, can falsely cause increase in the BIS value (Bruhn et al., 2000a). Additionally,
in the ICU the recording protocol is normally not as strict as in the operating room, causing
usually many more different artifacts. Several studies have evaluated the performance of the
BIS index in critically ill patients and found that it is not satisfactory (Nasraway et al., 2002;
Riess et al., 2002).

The aim of this thesis is to give an overview of the regularity/complexity as well as the time-
frequency methods used in the field of analysis of electrical activity of the brain during anes-
thesia and sedation and present the original results of the studies performed by the author.

The thesis is organized as follows: Chapter 2 gives an overview of the EEG signal during anes-
thesia and intensive care. Chapters 3 and 4 review the regularity and complexity measures and
the time-frequency methods, respectively, used in this thesis. Chapter 5 presents a brief dis-
cussion about the topic and gives a few concluding remarks, as well. Chapter 6 gives a short
summary of the original publications as well as the author’s contribution. Appendix A gives a
brief overview about the history of the term “entropy”. A short description of the phase-space
concept of the dynamical systems and the correlation dimension is given in appendix B.

2



CHAPTER 2

EEG Signal during Anesthesia and Intensive Care

This chapter gives a short overview of the EEG signal: its origins, measurement, and classifica-
tion. Anesthesia and the behavior of the EEG signal during anesthesia is reviewed as well.

2.1 Overview of the EEG Signal

Electroencephalography is the measurement of the electrical activity of the brain by using
special electrodes placed on the scalp. The recorded signal is called an electroencephalogram
(EEG), and it represents the electrical activity of a large number of neurons in the vicinity of
the electrode. In 1924, Hans Berger, a German psychiatrist, made the first measurement of elec-
trical activity from the human brain, and called it Electroenkephalogram (Berger, 1929; Swartz
and Goldensohn, 1998).

2.1.1 The Origin of the EEG

An EEG measured from the scalp is the summation of microscopic ionic currents from the
large populations of underlying cortical neurons. The so-called pyramidal neurons located
mainly in the fifth layer of the cortex are considered to contribute the most to the EEG. Pyra-
midal neurons have long straight dendrites perpendicular to the surface of the cortex, and thus,
neighboring cells have approximately parallel dendrites. These pyramidal dendrites receive a
large number of synaptic connections from other neurons. When neighboring pyramidal neu-
rons are activated synchronously, their individual current flows are summed, and as a result, a
remarkably larger regional current flow is formed. This larger current flow generates voltage,
which can be detected as the EEG on the scalp. An EEG measured at the scalp and generated by
cortical neurons may originate from either the cortex itself or the subcortical structures which
indirectly trigger the activity of cortical neurons (Rampil, 1998; Lukatch and Greenwald, 2003;
Lipping and Jäntti, 2004).

2.1.2 Measurement of the EEG

A diagnostic EEG signal is most commonly measured using scalp electrodes located according
to the 10–20 electrode placement system (Sharbrough et al., 1991). The 10–20 system describes

3



2. EEG SIGNAL DURING ANESTHESIA AND INTENSIVE CARE

(a) (b)

Figure 2.1 — (a): illustration of the 10–20 EEG electrode location system (picture adapted from
van de Velde (2000)). (b): location of the frontal, temporal, parietal, and occipital lobes of the
human brain (picture adapted from Gray (2000)).

how electrodes are located on the scalp. The location of the electrodes on the front-back line is
based on dividing the distance between the nasion and the inion over the vertex in the midline.
There are five locations marked along that line: frontal polar “Fp”, frontal “F”, central “C”,
parietal “P”, and occipital “O” (Fig. 2.1(a)). The first location, “Fp”, is located at 10% of the
nasion-inion distance, the second point, “F”, at 20% of that distance from the point “Fp” and
so on in 20% steps. Lastly, the distance between point “O” and the inion is again 10% of the
whole distance.

The electrode names come from anatomical terms for the brain lobes (see Fig. 2.1(b)); how-
ever, the central region is an exception since there is no central lobe of the brain. In order
to differentiate electrode locations between left and right hemispheres, even numbers are used
as subscripts for the right hemisphere and odd numbers for the left hemisphere. The letter
“z” stands for an electrode placed on the midline. If necessary, additional more closely spaced
electrodes can be added (American Electroencephalographic Society, 1994; Jasper, 1958).

In contrast, when EEG monitoring is performed in the operating room or intensive care unit
(ICU), often only a limited number of electrodes—2 or 4—are used (van Gils et al., 2002; Smith
et al., 2006). In this case the electrodes are most often located on the forehead.

The EEG signal measured from the electrodes is filtered by pre-filters, which remove very low
frequencies (usually below 0.5 Hz) and frequencies above the Nyquist limit. Removal of the
very low frequencies is often necessary to avoid drift of the signal’s baseline, while removal
of the frequencies above the Nyquist limit is necessary to prevent aliasing. Removal of high
frequencies depends on the application: it is common that 70 Hz is the upper limit for routine
EEG recordings. In the case of some clinical tests or evoked potentials recording, much higher
cutoff frequency may be needed. After analog prefiltering the EEG signal is amplified and
digitized (Smith et al., 2006).
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Sedation and Anesthesia

Table 2.1 — Definition of the EEG rhythms according to the frequency content (Niedermayer,
1999).

EEG rhythm Frequency range, Hz

Delta (δ) < 4

Theta (θ) 4 – 7

Alpha (α) 8 – 13

Beta (β) 14 – 30

Gamma (γ ) > 30

2.1.3 Classification of the EEG

The EEG signal is classically divided into five different rhythms according to the frequency
band of the signal. The rhythms and corresponding frequency bands are shown in Table 2.1.
The proportion of these rhythms in a subject’s EEG depends on his/her age and mental status.

The delta rhythm is typically seen during deep slow wave sleep, and it has relatively large am-
plitude. In addition, the delta rhythm can occur in the cases of brain injury and coma as well
as during anesthesia. The theta rhythm can be seen during certain stages of sleep and in states
of quiet focus such as during meditation (Aftanas and Golosheykin, 2005). The alpha rhythm
dominates during periods of relaxation with eyes closed but still awake. The alpha rhythm
has the largest amplitude in the occipital regions. Sometimes the alpha rhythm is also called
“Berger’s wave” in memory of the founder of the EEG. The beta rhythm is associated with
normal waking consciousness states. Low amplitude beta rhythm is often connected with ac-
tive thinking and concentration. In particular, rhythmic beta with a dominant frequency is
associated with several pathologies and drug effects. The gamma rhythm of the brain is asso-
ciated with perception and consciousness (Vanderwolf, 2000). It has been shown that gamma
activity occurs during waking or active sleep as well as in a burst-suppression pattern in anes-
thesia (Vanderwolf, 2000).

2.2 Sedation and Anesthesia

The definitions of sedation and anesthesia are referring to the patients’s level of awareness and
response to stimulation. The term “sedation” comes from the Latin word sedare, meaning “to
settle”, “to calm” (Harper, 2001). The term “anesthesia” comes from the Greek word anaisthe-
sia, meaning “lack of sensation”, “loss of feeling” (Harper, 2001).

The term sedation is used when a patient in the ICU, for example, is given a small dose of
anesthetic drug to make him/her calm and minimize anxiety. Sedation is sometimes further
divided into two subcategories: light sedation and deep sedation. Light sedation is the state
where the level of consciousness is minimally suppressed, and the patient is able to breathe
independently and to respond appropriately to verbal command or physical stimulation. Deep

5



2. EEG SIGNAL DURING ANESTHESIA AND INTENSIVE CARE

Table 2.2 — Responsiveness scores for the modified OAA/S scale.

Score Responsiveness

5 Responds readily to name spoken in normal tone

4 Lethargic response to name spoken in normal tone

3 Responds only after name is called loudly or repeatedly

2 Responds only after mild prodding or shaking

1 Responds only after painful trapezius squeeze

0 No response after painful trapezius squeeze

sedation, on the other hand, is defined as the state of moderately suppressed consciousness or
the state of unconsciousness. The patient is not easily aroused from deep sedation and the
protective reflexes, i.e. independent breathing and responses to verbal or physical stimuli, are
not preserved (Murphy, 1996).

The depth of sedation can be clinically assessed, for example, by using the Ramsay score or the
Observer’s Assessment of Alertness/Sedation (OAA/S) score (Ramsay et al., 1974; Chernik
et al., 1990; Glass et al., 1997). The responsiveness scores for the modified OAA/S scale are
shown in Table 2.2 (Glass et al., 1997).

Anesthesia is defined as the state of unconsciousness, amnesia, and hemodynamic, motor, and
endocrinologic stability during surgery, produced by specific medication (van Gils et al., 2002).
This means that for achieving an adequate level of anesthesia, usually a combination of hyp-
notics, analgesics, and neuromuscular blocking agents are used. Therefore, general anesthesia
consists of three partially dependent components: a) hypnosis, b) analgesia, and c) muscle re-
laxation. A short description of each of these components is given subsequently.

Hypnosis With the use of hypnotic medication the patient is taken to the unconscious state,
i.e. he/she is unaware of ongoing events (surgical procedures, for example). In addition,
hypnosis has to assure amnesia, i.e. the patient should not remember anything that hap-
pened during the operation.

Analgesia Analgesia (i.e. painlessness) is obtained with the use of analgesic medication. De-
spite the fact that the patient could be in deep hypnosis, his/her body can still perceive
the pain. That kind of situation is called nociception. Therefore, the purpose of analge-
sia is to assure antinociception, i.e. patient’s body should not perceive any pain during
surgical operation.

Muscle relaxation The relaxed state of muscles is often required for the surgeon to perform
an operation. Muscle relaxation is usually obtained either by the use of neuromuscular
blocking agents or sufficient combination of hypnosis and analgesia.

6
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Hypnotics Analgetics Neuromuscular
blocking agents

HYPNOSIS ANALGESIA MUSCLE
RELAXATION

Unconsciousness
Amnesia

Autonomic
stability Antinociception Immobility

Figure 2.2 — Scheme of nonlinear drug-effect relationship. Diagram adapted from van Gils
et al. (2002).

Murphy (1996) has stated that a patient is adequately anesthetized when awareness is suppressed
completely, incision does not produce movement, and the patient’s responses to surgical stim-
ulation are eliminated or minimal.

Fig. 2.2 shows that the relationship between drugs (hypnotics, analgetics, and neuromuscular
blocking agents) and desired responses (hypnosis, analgesia, and muscle relaxation) is not a sim-
ple one-to-one connection. Instead, these relationships are complex and definitely nonlinear.

2.3 EEG Signal during Anesthesia

Anesthetic drugs influence both the frequency content and the amplitude of the EEG signal.
Despite the fact that each drug has specific dose-related EEG effects, they all share some com-
mon characteristics. In Table 2.3 the EEG effects of drugs called sevoflurane and propofol are
compared. For both intravenous and inhaled anesthetics, subanesthetic doses usually cause an
increase in frontal beta activity and suppression of alpha activity that normally can be seen
in the occipital region. Thereafter, EEG turns into large-amplitude, slow-wave activity with
superimposed widespread alpha activity. Further increasing the dose of the anesthetic drug
causes the slow activity to increase until short flat periods of EEG—the so-called suppression—
appear. The duration of suppression periods increases gradually, and the high amplitude activ-
ity periods—the so-called bursts—shorten (subsection 2.3.1). If the doses are further increased,
the occurrence of the bursts gradually decreases until they disappear, and the EEG is continu-
ously in suppression.
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Table 2.3 — The effect of sevoflurane (inhaled) and propofol (intravenous) anesthesia on EEG
signal characteristics. Table adapted from Miller (2000).

Anesthetic drug Anesthetic level Effect on EEG frequency

Sevoflurane

Subanesthetic Loss of alpha
Frontal beta

Anesthetic Frontal 4–8 Hz activity

Increasing dose
Diffuse theta and delta
Burst-suppression
Silence

Propofol

Low dose Loss of alpha
Frontal beta

Moderate dose Frontal delta
Waxing/waning alpha

Increasing high dose
Diffuse delta
Burst-suppression
Silence

2.3.1 Burst-Suppression Pattern

Burst-suppression (BS) is the signal pattern where large-amplitude, mixed-activity bursts fol-
lowed by significantly suppressed activity periods are occurring repeatedly. The BS pattern can
occur, for example, during ischemia, very strong hypothermia, and deep surgical anesthesia
(Smith et al., 2006). The BS pattern represents abnormal cortical activity during which about
95% of the cortical cells are inactive (Steriade et al., 1994). Therefore, it can be concluded that
during BS the patient is in a deeply unconscious state. More importantly, the BS pattern in a
healthy patient can be produced only by large concentrations of an anesthetic drug (Hoffman
and Edelman, 1995; Huotari et al., 2004). It is also known that different anesthetic drugs pro-
duce different BS patterns, suggesting that their action mechanisms are different (Watts et al.,
1999; Huotari et al., 2004).

Examples of typical EEG patterns during anesthesia at the BS level in propofol and sevoflurane
anesthesia are shown in Fig. 2.3. By inspecting Fig. 2.3 visually, one can notice that in compar-
ison with the burst induced by propofol, the sevoflurane burst has a more complex structure.
Bursts induced by sevoflurane tend to contain a higher proportion of large-amplitude, abrupt
activity while propofol bursts mainly contain slow wave activity with superimposed mixed
higher frequency activity. In addition, the spindle activity (subsection 2.3.2) can occur during
anesthesia induced by propofol.

2.3.2 EEG Spindles

The spindle is a specific EEG pattern appearing during sleep. Spindles are defined as 1–3 second
periods of waxing and waning 7–14 Hz oscillations usually superimposed on top of the other
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Fz–A1A2

100 μV
2 sec

(a)

Fz–A1A2
100 μV

2 sec

(b)

Figure 2.3 — Example of a typical BS pattern during deep anesthesia induced by propofol
(a) and sevoflurane (b). Gray boxes denote spindle patterns, which can occur during propofol
anesthesia. For both cases the surface electrode Fz with the reference at joint A1A2 lead is used.

EEG activity (McCormick and Bal, 1997; Amzica and Steriade, 1995). Spindle oscillation is gen-
erated as a result of interaction between thalamocortical and thalamic reticular cells (Bazhenov
et al., 2000; Steriade and Timofeev, 2003). Additionally, spindles have been studied during nor-
mal physiological sleep in order to examine sleep stages and sleep disorders (Himanen et al.,
2002, 2003). The results of these studies showed that spindle frequencies were slower for sleep
apnea patients than for the healthy patients. The authors conclude that lower sleep spindle
frequency could indicate disturbed sleep and altered neural mechanisms regulating sleep.

In addition to physiological sleep, spindle patterns can occur during deep anesthesia induced by
propofol (Jäntti et al., 1993; Huotari et al., 2004; Wolter et al., 2006). Spindle patterns induced
by propofol can be most clearly seen during deep anesthesia when the BS pattern already is
“turned on”. The frequency of the spindles is usually in the range of 13–15 Hz and the duration
roughly in the range of 2–5 seconds (Huotari et al., 2004). Usually, spindles occur after the burst
but sometimes they can occur during longer suppression periods or during bursts as well. Fig.
2.3(a) illustrates a typical situation when bursts are followed by spindles during deep propofol
anesthesia.

It has been shown that synchronous EEG activity corresponding to spindles can, in fact, be
detected even before the BS starts. At the beginning this activity has the frequency of about
20 Hz, which thereafter, as anesthesia deepens, gradually decreases down to about 13 Hz as BS
starts (publication VI).

Several methods have been used for analyzing (sleep) spindles. For example, Durka et al. (2005)
have applied a method called matching pursuit (Mallat and Zhang, 1993; Mallat, 1999) to sleep
spindles in order to obtain high resolution results. A through and comprehensive overview of
the analysis of EEG spindles is given by Żygierewicz (2000).
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CHAPTER 3

Regularity Analysis of the EEG signal

This chapter gives an overview of the regularity/complexity measures used in this thesis for
analyzing the EEG signal. The main emphasis is on the following regularity/complexity mea-
sures: Shannon entropy (publication III), spectral entropy (publications II, III, IV, and V),
approximate entropy (publications II, III, IV, and V), Lempel-Ziv complexity (publications II,
III, IV, and V), and Higuchi fractal dimension (publications II, III, IV, and V).

It has been argued that besides the EEG phase synchrony, a sufficient complexity of brain dy-
namics is essential for conscious brain activity (Tononi and Edelman, 1998). In their dynamical
model Tononi and Edelman emphasize that synchronized brain activity is a necessary but not
a sufficient condition for conscious brain functioning. The authors hypothesize that at least
another factor—complexity—is important in order to guarantee a sufficient differentiation of
brain dynamics. In addition, Fell et al. (2003) propose that chaoticity of the EEG may be an-
other necessary condition for conscious brain functioning. Despite the fact that the evidence
for chaotic brain dynamics is controversial and inconclusive, the chaoticity in brain dynamics
may explain the flexibility and fast reactivity of the brain (Fell et al., 2003).

3.1 Measures for Estimating Signal Regularity/Complexity

There are several methods used for estimating regularity/complexity properties of the signal.
Many of these are so-called entropy based methods, i.e. they are based on estimating a certain
type of entropy of the signal. Since the term “entropy” is used in different fields—for example,
in physics, information theory, and signal processing—it can cause misunderstandings. In order
to explain how the term “entropy” has been used over the course of time, a brief history of
entropy is given in Appendix A.

The classic method for estimating regularity of a signal is Shannon entropy (ShEn). A de-
tailed description of ShEn is given in subsection 3.1.1. Another regularity measure widely
used in EEG analysis—spectral entropy (SpEn)—is overviewed in subsection 3.1.2. The third
entropy-based measure in this thesis is approximate entropy (ApEn), which is described in sub-
section 3.1.3. Subsection 3.1.4 gives an overview of a coarse-grained complexity measure called
Lempel-Ziv complexity (LZC), and finally, in subsection 3.1.5 an overview of a fractal dimen-
sion estimator—Higuchi fractal dimension (HFD)—is given.

11



3. REGULARITY ANALYSIS OF THE EEG SIGNAL

3.1.1 Shannon Entropy

The concept of entropy in the context of information theory was introduced by Shannon
(1948), and it can be viewed as a measure of order in the signal. Shannon entropy of a dis-
crete signal is defined as

HS h =−
Na∑
i=1

pi log pi , (3.1)

where Na is the number of all possible amplitude values in the signal and pi is the probability
that the amplitude ai is one of these values.

In general, it is not reasonable to take into account all amplitude values. Instead, signal ampli-
tude values are divided into bins, i.e. the probability density function (PDF) of the signal is
estimated by means of a histogram. In this case Na corresponds to the number of bins in the
histogram.

In order to obtain a normalized value for Shannon entropy, HS h , Eq. 3.1 should be modified as
follows:

ShEn=
HS h

logNa
. (3.2)

By using Eq. 3.1 it can be shown that a signal with a sharp PDF has small HS h value, whereas,
a signal with a flat PDF has a larger HS h . Let us assume that a discrete random variable has two
possible amplitude values, and let p1 and p2 denote the probability that it takes value 1 or 2,
respectively. Then, if p1 � p2, i.e. the signal takes mostly only one value (PDF is sharp), Eq.
3.1 yields a small value. On the other hand, if p1 ≈ p2, i.e. signal values are almost equiprobable
(PDF is flat), then a much larger value is obtained by applying Eq. 3.1. For example, if p1 = 0.99
and p2 = 0.01 then Eq. 3.1 yields that HS h = 0.056, while for p1 = p2 = 0.5 the result would be
HS h = 0.693.1

The main difficulty related to the calculation of ShEn is the estimation of the signal PDF
(Bercher and Vignat, 2000). In fact, the problem is more general and must be faced everywhere
where estimation of PDF is involved (for example, Pham (1996, 2004)).

3.1.2 Spectral entropy

Spectral entropy, introduced by Powell and Percival (1979) and further developed by Inouye
et al. (1991), is based on Shannon entropy (3.1), where the PDF of a signal is replaced by its
power spectrum, P . Spectral entropy is defined as

HS p =−
fhi g h∑

i= fl ow

Pi log Pi , (3.3)

1The calculations presented here are performed by using the natural logarithm. If the base of logarithm was 2,
then the corresponding entropies would be HS h = 0.08 and HS h = 1, respectively.

12



Measures for Estimating Signal Regularity/Complexity

(a) (b) (c)

Figure 3.1 — Rectangular signal (a), the magnitude (b), and phase of its Fourier’ transform.
The frequency range of the x-axis for plots (b) and (c) is from 0 to the Nyquist frequency.

where fl ow and fhi g h are the lowest and highest frequencies in the spectrum, respectively, used
for the HS p calculation. In addition, before applying Eq. 3.3, the power spectrum P has to be
normalized so that the condition ∑

i

Pi = 1 (3.4)

would be fulfilled (Inouye et al., 1991; Viertiö-Oja et al., 2004; Rezek and Roberts, 1998; Vak-
kuri et al., 2004). Usually spectral entropy is normalized as well as

SpEn=
HS p

logNf
, (3.5)

where Nf is the number of frequency components in the frequency range [ fl ow , fhi g h].

It follows from Eq. 3.5 that signals having sharp or “spiky” power spectra have low SpEn. A
flat power spectrum, on the other hand, gives a high value for SpEn. The reasoning here is
the same as for ShEn (subsection 3.1.1); the only difference is that now the probabilities of the
signal amplitude values are replaced by the values of its power spectrum.

Eq. 3.3 shows that the calculation of SpEn takes into account only the power spectrum of the
signal while all phase information is discarded. Thus, by randomizing the phase it is possible
to create an arbitrary number of signals having the same power spectrum and, therefore, the
same SpEn values. This phenomenon can be shown by taking a rectangular signal, for instance,
and calculating its magnitude and phase spectrums by means of the Fourier transform. The
results for a rectangular signal are presented in Fig. 3.1. Thereafter, by replacing the phases
with random numbers (i.e. by randomizing them) and taking the inverse Fourier transform,
a signal having the same power spectrum as the original signal is obtained. Examples of such
signals are given in Fig. 3.2. It can be seen that the signals in Fig. 3.2 show more complex
structure than the original rectangular signal. Although the first component of the magnitude
spectrum (Fig. 3.1(b)) is significantly larger than the other higher components, all the signals
in Fig. 3.2 have the same fundamental frequency as the original rectangular signal.

Another property of SpEn is that it does not take into account the order of the frequency com-
ponents in the power spectrum. This, in turn, allows the creation of an arbitrary number of
signals by randomizing the order of the frequency components in the power spectrum while
still having the same SpEn values. Fig. 3.3 gives an example of signals having power spectra
obtained by randomizing the order of the frequency components of the spectrum of the rect-
angular signal (original phases are preserved). By comparison with the signals in Fig. 3.2, the
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(a) (b) (c)

Figure 3.2 — Examples of signals having the same power spectrum as the signal in Fig. 3.1(a).
The phases from Fig. 3.1(c) have been replaced by random numbers in the range −π . . .π.

(a) (b) (c)

Figure 3.3 — Examples of signals having the same spectral components as the signal in Fig.
3.1(a). The order of the frequency components (Fig. 3.1(b)) has been randomized. Original
phases have been preserved.

signals in Fig. 3.3 show even more complex structure since the large fundamental component
of the rectangular signal is not necessarily preserved anymore.

3.1.3 Approximate entropy

Approximate entropy (ApEn), introduced by Pincus et al. (1991), is a measure quantifying the
regularity of the signal. ApEn is an approximation of the Kolmogorov-Sinai (KS) entropy by
adapting it to signals of finite length.

The algorithm of ApEn for a discrete signal s of finite length N begins by fixing a positive
integer m and a positive real number r . Parameters m and r correspond to the vector length
(it is also called the embedding dimension of the phase space) and maximum allowable distance
between two vectors (distance between two phase-space points), respectively.2 Thereafter, N −
m+ 1 vectors xm(i ) = {s (i ), s (i + 1), . . . , s (i +m− 1)} are formed from the signal s . Next, for
each i , 1� i �N −m+ 1, the quantity C m

i (r ) is calculated as follows:

C m
i (r ) =

number of j such that d[xm(i ),xm( j )]� r

N −m+ 1
, (3.6)

where d denotes the distance between two vectors xm(i ) and xm( j ). Often, the distance d is
calculated by using a maximum norm:

d[xm(i ),xm( j )] = max
k=1,...,m

(|s (i + k − 1)− s ( j + k − 1)|). (3.7)

2A brief explanation of the phase-space concept is given in Appendix B.
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The quantity C m
i (r ) is the probability that any vector xm( j ) is within the distance r of xm(i ).

Based on Eq. 3.6, the average of the logarithms of the functions, C m
i (r ) and Φm(r ), is defined

as:

Φm(r ) =
1

N −m+ 1

N−m+1∑
i=1

logC m
i (r ). (3.8)

KS entropy is defined by using Eq. 3.8 as follows (Eckmann and Ruelle, 1985; Pincus et al.,
1991):

KS entropy = lim
r→0

lim
m→∞ lim

N→∞[Φ
m(r )−Φm+1(r )]. (3.9)

Due to the limits in Eq. 3.9, this definition is not suitable for the analysis of finite and noisy
signals obtained from measurements (Pincus et al., 1991; Richman and Moorman, 2000).

Pincus (1991) defined ApEn for fixed parameters m and r as a family of formulas:

ApEn(m, r ) = lim
N→∞[Φ

m(r )−Φm+1(r )], (3.10)

which for finite length signals is estimated by the following family of statistics:

ApEn(m, r,N ) = Φm(r )−Φm+1(r ). (3.11)

By using conditional probabilities, it is possible to give Eq. 3.11 the following interpretation
(Pincus et al., 1991):

−ApEn=Φm+1(r )−Φm(r )
= average over i of log[conditional probability that
|s ( j +m)− s (i +m)|� r, given that
|s ( j + k)− s (i + k)|� r for k = 0,1, . . . , m− 1].

(3.12)

ApEn can be thought of as the negative logarithm of the probability, where points that are close
in m-dimensional space remain close in m+ 1-dimensional space. In addition, it can be shown
that the upper bound for ApEn is given by the following relation (Richman and Moorman,
2000): ApEn(m, r,N )� log(N −m).

In order to obtain accurate estimates for conditional probabilities described in Eq. 3.12 the
length of the signal should be at least 10m and preferably 20m to 30m data points (Pincus et al.,
1991; Pincus and Goldberger, 1994). Consequently, this sets practical limits for selecting values
for m. In addition, it has been suggested that the parameter r should be in the range of 10–25%
of the signal standard deviation (Pincus et al., 1991; Pincus and Goldberger, 1994).

When applying ApEn calculations to the measured signals, it must be kept in mind that ApEn
suffers from the bias effect and that it is strongly dependent on the length of the signal (Pincus,
1991; Pincus et al., 1991). In addition, Richman and Moorman (2000) show that in some cases
ApEn lacks consistency.
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Mark new sequence
and c = c + 1

Clear C Sb u f LZC

C Sb u f contained
in P Sb u f ?

No

Yes
i = i + 1 Normalize c by b

Store previous symbol
s(i − 1) into P Sb u f

Store s(i) into C Sb u f

Read symbol s(i)

Initialization:
P Sb u f , C Sb u f , c , i

i >N ?
Yes

No

P Sb u f – buffer for previous sequence
C Sb u f – buffer for current sequence
c – complexity counter
s(i) – i th symbol of sequence s
b – normalization factor, b =N/ logκN
N – length of sequence s
κ – number of different symbols in s

Figure 3.4 — Block diagram of the algorithm for calculating Lempel-Ziv complexity of the
sequence of symbols s. Diagram adapted from Zhang et al. (2001).

3.1.4 Lempel-Ziv Complexity

Lempel-Ziv complexity (LZC) introduced by Lempel and Ziv (1976) is a measure expressing
the rate of a new subsequence (pattern) generation along the given sequence of symbols s. The
procedure for calculating LZC is illustrated in Fig. 3.4. The idea behind the calculation of
LZC is the following: the algorithm goes through the sequence of symbols s counting different
subsequences found in s. Every time a new subsequence is found, the complexity counter c is
increased by 1, and finally, the result is normalized:

LZC=
c

b
, (3.13)

where b is the normalization factor defined as

b =
N

logκN
. (3.14)

In Eq. 3.14, N denotes the length of the sequence s, and κ is the number of different symbols
in s.

Therefore, a sequence consisting of many similar subsequences (patterns) has a low LZC value
(low complexity), while a sequence containing a large number of different subsequences has a
high LZC value (high complexity).
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For instance, in the following binary sequence of 18 symbols, s = 101001010010111110, there
are 8 different subsequences: 1|0|10|01|010|0101|11|110 (vertical line | denotes the separation
between different subsequences). Since s is a binary sequence, the number of different symbols,
κ, is 2, and therefore, by applying Eq. 3.13, we obtain: LZC= 8/(18/ log2 18)≈ 1.85.

Prior to applying the LZC algorithm, the signal s has to be converted into the sequence of
symbols s. If κ = 2, i.e. there are two different symbols in s, the conversion can be done as
follows:

s(i ) =

�
0 if s (i )< Td

1 if s (i )� Td
, (3.15)

where s(i ) and s (i ) are the current symbol and the current sample in s and s , respectively.
Td denotes the threshold, which can be calculated as Td = mean{s} (Zhang et al., 2001) or
Td =median{s} (Abásolo et al., 2006b).

Several authors have stated that it is sufficient to use κ = 2 for practical calculations (Xu et al.,
1997; Radhakrishnan and Gangadhar, 1998; Zhang et al., 2001; Szczepański et al., 2003); how-
ever Abásolo et al. (2006b) suggest using κ= 3 since more information is preserved during the
conversion process.

3.1.5 Higuchi Fractal Dimension

In 1988 Higuchi introduced an algorithm for estimating a signal fractal dimension3 directly in
the time domain.

Estimating a fractal dimension according to the Higuchi algorithm is based on the following
scheme. From the given signal s = {s (1), s (2), . . . , s (N )}, k new curves s k

j are constructed as
follows:

s k
j =

�
s ( j ), s ( j + k), s ( j + 2k), . . . , s

�
j +
�

N − j

k

�
k
�	

j = 1,2, . . . , k , (3.16)

where both j and k are integers and �·� denotes the floor operation. j denotes the initial time
and k is the time interval between samples. N denotes the length of the signal s . Then the
length Lj (k) for each constructed curve s k

j is calculated as

Lj (k) =
1

k

⎡⎢⎢⎣
⎛⎜⎜⎝
� N− j

k �∑
i=1

|s ( j + i k)− s ( j + (i − 1)k)|
⎞⎟⎟⎠ · N − 1

�N− j
k �k

⎤⎥⎥⎦ . (3.17)

The length Lj (k) is calculated for all curves having the same time interval k for j = 1, ..., k.

This procedure is repeated for each k ranging from 1 to kmax, and then for each k, the average
length is calculated as

L(k) =
1

k

k∑
j=1

Lj (k). (3.18)

3The concept of a fractal dimension is briefly described in Appendix B.
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The curve length calculation procedure for the case k = 3 and j having the values j = 1,2,3
is illustrated in Fig. 3.5. The bold vertical lines in Fig. 3.5 denote the difference between
sample values being k samples apart, i.e. |s ( j + i k)− s ( j + (i − 1)k)|, which are summed up
and normalized, as defined by Eq. 3.17. Thereafter, the individual lengths Lj (k) are averaged
according to Eq. 3.18, and the average curve length, L(k), for given k is obtained.

If the relation L(k) ∝ k−D approximately holds, then the signal s can be considered as fractal-
like with the dimension D . Therefore, when L(k) is plotted against 1/k, where k = 1, ..., kmax,
in a double-logarithmic plot, the data points should fall into a straight line with the slope D .
The estimate of the fractal dimension D is the slope of the least-squares linear fit applied to the
pairs (log1/k , log L(k)), where k = 1, ..., kmax.

It has been claimed that the main advantage of the Higuchi algorithm over the “conventional”
correlation-dimension algorithm is its speed since there is no need for reconstructing the attrac-
tor in the phase-space (Esteller et al., 1999, 2001; Bashashati et al., 2003).

3.2 Literature Overview Related to the Regularity/Complexity Analysis
of the EEG Signal

The regularity and complexity measures described in subsections 3.1.1–3.1.5 have been widely
applied to the analysis of the EEG signal measured in various situations like anesthesia and/or
sedation, Alzheimer’s disease, hypothermia, ischemia, and epilepsy. In addition, they have been
also quite popular for analyzing several cardiovascular diseases. Subsequently a short overview
of the literature related to EEG complexity analysis is given.

Shannon entropy ShEn is used to study the effects of desflurane on the EEG signal (Bruhn
et al., 2001b). Bruhn et al. (2002) note the usefulness of ShEn since it is highly robust against
several artifacts occurring in the EEG signal. Thakor et al. (2006) and Shin et al. (2006) have ap-
plied ShEn to the EEG in order to study the effect of hypothermia on neurological recovery of
the brain after cardiac arrest. Based on ShEn, they have derived a new measure called informa-
tion quantity. The authors report that both measures have a good capability to track changes
in the EEG during hypothermia. Bezerianos et al. (2003) have used ShEn and Tsallis entropy
(see Appendix A for more details about Tsallis entropy) to detect brain injury level caused by
ischemia. The authors conclude that both measures are able to describe in a satisfactory manner
the changes in the EEG that occur after ischemic insult.

Spectral Entropy The first application of SpEn in the EEG analysis was to quantify regular-
ity of the alpha rhythm, i.e. to measure wakefulness rather than the unconsciousness (Inouye
et al., 1991). SpEn also is used for monitoring the depth of anesthesia (Rezek and Roberts, 1998;
Zhang and Roy, 2001; Ellerkmann et al., 2004; Vakkuri et al., 2005; Maksimow et al., 2006). Ad-
ditionally, the algorithm of SpEn has been implemented and used in the Entropy module of the
commercially available anesthesia monitor S/5TM by GE Healthcare Finland OY, the former
Datex-Ohmeda (Viertiö-Oja et al., 2004; Vakkuri et al., 2004). It has been shown that SpEn
decreases suddenly as the patient becomes unconscious during the induction of anesthesia, and
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Figure 3.5 — An example of calculating the curve length Lj (k), when the time interval is 3,
i.e. k = 3, and the initial time, j , is taking values j = 1 (a), j = 2 (b), and j = 3 (c). The bold
vertical lines denote the difference between sample values being k samples apart.

it does not decrease significantly with further deepening of the anesthesia (Sleigh et al., 2004).
In addition, Abásolo et al. (2006a) have used SpEn for analyzing EEG signals from patients
having Alzheimer’s disease. The authors reported that they did not find significant differences
between Alzheimer’s disease patients and control subjects’ EEGs with SpEn.

Approximate Entropy ApEn is a popular tool for analyzing drug effects of several anesthet-
ics like desflurane (Bruhn et al., 2000b, 2001b), isoflurane (Bruhn et al., 2000c), and propofol
(Bruhn et al., 2001a, 2002, 2003; Bouillon et al., 2004; Koskinen et al., 2006). ApEn has also
been used for analyzing EEG during physiological sleep (Burioka et al., 2002, 2003, 2005b) as
well as in the case of epilepsy (Burioka et al., 2005a) and schizophrenia (Abásolo et al., 2005).
Additionally, ApEn has been widely applied in clinical cardiovascular studies—publications by
Pincus et al. (1991); Goldberger et al. (1994); Ho et al. (1997); Mäkikallio et al. (1997); Ferrario
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et al. (2006) are only a few examples.

Lempel-Ziv Complexity LZC has been used for analyzing changes in the EEG signal during
anesthesia (Zhang and Roy, 1999; Zhang et al., 2001; Jordan et al., 2006). It has also been
used for analyzing the EEG from the Alzheimer’s disease patients (Abásolo et al., 2006b) and
schizophrenia patients (Hornero et al., 2006). In addition, LZC has been applied to the analysis
of the EEG during hypoxia (Jernajczyk et al., 2006).

Higuchi Fractal Dimension HFD has been used for the assessment of the depth of sedation
in the intensive care unit (Anier et al., 2004). Additionally, HFD has been used for analyzing
EEG from normal awake patients (Accardo et al., 1997) and from epileptic patients (Arle and
Simon, 1990; Accardo et al., 1997). It has also been used for detecting the influence of the
magnetic field (Klonowski et al., 2000) as well as microwave stimulation on the EEG (Parts
et al., 2003) and in EEG-based-biofeedback systems (Bashashati et al., 2003).

3.3 EEG Regularity/Complexity during Propofol Induced Sedation

In this section an overview of the behavior of regularity/complexity measures (described in
subsections 3.1.2–3.1.5) during propofol induced sedation is given. This overview is mainly
based on publication V; the detailed description of the whole study can be found therein.

In brief, 15 patients were sedated using propofol. The sedation was performed according to
the step-wise protocol, where the propofol concentration was increased by small steps every 4
minutes. Shortly before each administration of increased propofol concentration the OAA/S
score was assessed. Recorded EEG signals were visually inspected, and artifact removal was
done manually. Thereafter, the EEG was segmented into 15 second segments, and SpEn, ApEn,
LZC, and HFD were calculated for each segment.

Fig. 3.6 gives an example of the EEG-signal segments for different OAA/S scores (left col-
umn) and the corresponding power spectra (right column). In spite of the fact that the figure
shows the EEG signals and power spectra from a single study, the phenomenon is more gen-
eral and can be seen almost everywhere where propofol sedation is used. The figure illustrates
rather clearly how the amplitude of the EEG gradually increases as the OAA/S score decreases,
i.e. sedation deepens. Additionally, as the sedation deepens, the power spectrum of the EEG
becomes more concentrated (i.e. a more emphasized spike appears in the spectrum) and it
gradually shifts towards the lower frequencies.

Before applying the methods listed above, the EEG signal was filtered using two bandpass filters:
a) 2–47 Hz and b) 2–32 Hz. The results of regularity/complexity calculations are shown in Fig.
3.7. The results show that in general the regularity/complexity of the EEG tends to decrease
as time goes by, i.e. the concentration of propofol increases. This trend is especially clear for
ApEn and HFD for the 2–47 Hz bandpass-filtered signal. Whereas the SpEn and LZC show a
plateau phase or even slight increase for the same filter during the first 12 minutes. This kind
of so-called biphasic effect becomes more emphasized when the EEG is filtered with a 2–32 Hz
filter, i.e. higher frequencies are removed from the signal.
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0 10 20 30 40 500 3 6 9 12 15

Figure 3.6 — Samples of 15 sec signal segments at different OAA/S levels (left column) and the
corresponding power spectra (right column). All signals were filtered beforehand using a 2–47
Hz bandpass filter. The y-axis is in the same scale for all EEG signals and all power spectra are
normalized according to Eq. 3.4.

Fig. 3.7 also illustrates how the assessment of the OAA/S score influences the behavior of the
regularity/complexity measures. Namely, after every 4 minutes when the OAA/S score has
been assessed, the values of the regularity/complexity measures undergo a sudden increase or
jump. This effect is especially clear for the ApEn and HFD when the 2–47 Hz filter has been
applied. The removal of the higher frequencies from the raw EEG signal tends to decrease
that “jumping” effect. This kind of behavior is caused by the fact that stimuli accompanying
the assessment of the OAA/S score actually influences the patient by bringing him/her into a
lighter level of sedation. This phenomenon is described in more detail by Jensen et al. (2004).
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Figure 3.7 — The behavior of the regularity/complexity measures during propofol induced
sedation. In the left column signals are filtered with a 2–47 Hz bandpass filter, and in the right
column the bandpass filter is 2–32 Hz. The gray lines correspond to the measures calculated
from the individual recordings and the thick black line is the median of the individual measures.
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CHAPTER 4

Time-Frequency Analysis of the EEG Signal

Time-frequency analysis in this thesis is based on the Wigner-Ville distribution (publication
I), Choi-Williams distribution (publication IV), and the generalized marginals Choi-Williams
distribution with optimized kernel (publication I).

4.1 Overview of the Time-Frequency Analysis

The Fourier transform (FT) is a well-known method for performing spectral analysis, i.e. trans-
forming the time-domain signal, s (t ), to the frequency domain, ŝ ( f ). If the signal at hand con-
sists of a transient phenomena, then the FT may not be the most suitable tool for this situation.
The reason for this is the fact that the FT correlates the signal s (t ) with a sinusoidal wave—the
domain of which covers the whole real axis. This means that ŝ ( f ) depends on the values of s (t )
for all times t , i.e. ŝ ( f ) is global, and therefore it is often difficult to analyze local properties of
s (t ) from ŝ ( f ).

To overcome this problem, in 1946 Gabor introduced the method where prior to taking the FT,
the signal energy was localized by multiplying it with the translatable window function g (t −
τ). By translating g (t ) along the signal s (t ) and taking the FT, one obtains a two dimensional
result, called the Gabor transform or short time Fourier transform. Therefore, in the Gabor
transform the signal s (t ) is correlated with the modulated sinusoidal waves, i.e. sinusoidals are
localized in time.

Ideally, one would like to get the arbitrarily precise time and frequency information of the
given signal. Unfortunately, this is not possible: the uncertainty principle states that the energy
spread of the signal in time, σt , and in frequency, σ f , cannot be simultaneously arbitrarily small
(Cohen, 1994; Loughlin and Cohen, 2004; Mallat, 1999, chap. 4):

σtσ f �
1

2
. (4.1)

In Eq. (4.1) the equality holds only when the window g is a Gaussian function.

Another approach to obtain the signal energy distribution—both in time and frequency—is to
correlate the signal with a time and frequency translation of itself. In this case the obtained
result is a so-called quadratic time-frequency distribution (TFD). This method was first used in
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quantum physics by Wigner (1932), and thereafter, it was adapted to signal processing by Ville
(1948). The obtained method has a better time-frequency resolution compared to the Gabor
transform. However, the most serious drawback of this kind of quadratic TFD is the existence
of the so-called cross-terms (see sections 4.3 and 4.4).

The general class of quadratic TFD—the so-called Cohen’s class of distributions (CCD)—was
introduced by Cohen (1966, 1989). CCD covers a whole family of TFD, where for each mem-
ber a different smoothing kernel for suppressing cross-terms is used. Depending on the kernel
function, the distributions have different names: Choi-Williams distribution (CWD) and Born-
Jordan distribution (BJD) can be mentioned as examples.

4.2 Analytic Signal

A signal sa(t ) is said to be analytic if its Fourier transform is zero for negative frequencies:

ŝa( f ) = 0 if f < 0. (4.2)

A non-analytic signal s (t ) and its analytic version sa(t ) are related through their Fourier trans-
forms as follows (Mallat, 1999, chap. 4):

ŝa( f ) =

�
2 ŝ ( f ) if f � 0
0 if f < 0.

(4.3)

The analytic signal sa(t ) is obtained by taking the inverse Fourier transform of ŝa( f ) defined by
the relation (4.3).

4.3 Ambiguity Function

The ambiguity function (AF) is a joint time-frequency correlation function measuring how
the energy of the signal is concentrated in the time-delay versus frequency-delay plane (Hamila
et al., 1999; Mallat, 1999, chap. 4).

The AF of an analytic signal sa(t ) is defined as follows (Mallat, 1999, chap. 4):1

AF(τ,ξ ) =
∫

sa

�
t +

τ

2

�
s∗a
�

t − τ
2

�
e− jξ t d t , (4.4)

where τ and ξ denote the time and frequency lag, respectively.

1All integrals hereafter run from −∞ to +∞.
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If sa(t ) is a composite signal consisting of two components, i.e. sa(t ) = s1(t )+ s2(t ), then its AF
becomes:

AF(τ,ξ ) =
∫ �

s1

�
t +

τ

2

�
+ s2

�
t +

τ

2

���
s∗1
�

t − τ
2

�
+ s∗2

�
t − τ

2

��
e− jξ t d t

=
∫

s1

�
t +

τ

2

�
s∗1
�

t − τ
2

�
e− jξ t d t +

∫
s2

�
t +

τ

2

�
s∗2
�

t − τ
2

�
e− jξ t d t+∫

s1

�
t +

τ

2

�
s∗2
�

t − τ
2

�
e− jξ t d t +

∫
s2

�
t +

τ

2

�
s∗1
�

t − τ
2

�
e− jξ t d t

=AFs1(τ,ξ )+AFs2(τ,ξ )+ cross-terms

(4.5)

Eq. 4.5 shows that there are two kinds of terms in the AF of the composite signal:

1. Terms that contain only the same signal component (see the 2nd row in Eq. 4.5)—the
so-called auto-terms.

2. Terms that contain both signal components (see the 3rd row in Eq. 4.5)—the so-called
cross-terms (interference components). The cross-terms are generated due to the quadratic
form of the AF, and their location in τ–ξ plane is determined by the time and frequency
differences between signal components.

An example of a signal having two frequency components and its AF are shown in Figs. 4.1(a)
and 4.1(b), respectively.

4.4 Cohen’s Class of Distributions

The presence of the cross-terms in the ambiguity plane can often make the interpretation of
results difficult. Therefore, one of the main problems in the time-frequency analysis is to atten-
uate the cross-terms and to preserve the auto-terms at the same time.

In order to attenuate the cross-terms in CCD, the AF is first multiplied by a so-called smoothing
kernel (Cohen, 1966, 1989):

CCD(t , f ) =
∫∫

φ(τ,ξ )AF(τ,ξ )e− jξ t e− jτ f dξ dτ, (4.6)

where φ(τ,ξ ) denotes the kernel in the τ–ξ domain. Some members of the CCD are shown
in Table 4.1.

It can be seen from Table 4.1 that WVD is the special case of the CCD family because there is
no smoothing kernel (φ = 1), and thus, the cross-terms are not attenuated at all. Therefore, if
the signal at hand consists of several components, then there necessarily will be several cross-
terms presented on the time-frequency plane, and the interpretation of the results can be rather
complicated. On the other hand, if the given signal contains a single component, then the
WVD can have resolutions superior to the other TFDs.
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s1(t ) s2(t )
t

(a)

t2− t1

−(t2− t1)

f2− f1

−( f2− f1)

Cross-term

Cross-term

Auto-term

ξ

τ

(b)

Figure 4.1 — An example of an analytic, composite signal (only the real part is shown) having
two components (a) and its ambiguity function (b). t1 and t2 denote the occurrence in time of
the first and the second component, respectively, while f1 and f2 denote their frequencies. Note
that both auto terms are concentrated around the origin of the τ–ξ plane, while the cross-terms
are located away from the origin. The location of the cross-terms are determined by the time
and frequency differences between the signal components, i.e. by t2−t1 and f2− f1, respectively.

Table 4.1 — Examples of the TFDs belonging to the Cohen’s class of distributions and their
kernel functions.

TFD Kernel function, φ(ξ ,τ)

Wigner-Ville distribution (WVD) 1

Choi-Williams distribution (CWD)a exp(−τ2ξ 2/σ)

Born-Jordan distribution (BJD) sinc(τξ )

aParameter σ is used for adjusting the width of the kernel.
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t , sec
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Figure 4.2 — Test signal that consists of two linear chirp components: one is increasing from
20 Hz to 50 Hz, and the other is decreasing from 40 Hz to 10 Hz.

The two remaining examples from Table 4.1, the CWD and the BJD, have smoothing kernels
of exponential and sinc function shape, respectively (Williams, 1996; Choi and Williams, 1989;
Cohen, 1966; Born and Jordan, 1925). While the BJD has no extra parameters, the CWD has
an additional parameter, σ , for adjusting the width of the kernel. If σ is small, then the kernel
quickly decreases to zero when moving away from the origin on the τ–ξ plane. This means
that the cross-terms located away from the origin are attenuated effectively. The drawback here
is that at the same time part of the auto-terms are suppressed as well. On the other hand, if σ
has a larger value, then the shape of the kernel becomes flatter and the auto-terms are better
preserved. Of course, at the same time the attenuation of the cross terms also deteriorates. At
the limit σ→∞, the kernel function equals 1, i.e. CWD and WVD become equal:

lim
σ→∞CWD=WVD. (4.7)

An example of a signal having several components is shown in Fig. 4.2. Its AF, WVD, and
CWD are presented in Figs. 4.3(a), 4.3(b), and 4.3(c), respectively.

4.5 Optimal Distributions

TFDs belonging to the Cohen’s class of distributions are so-called fixed-kernel distributions.
This means that the shape of their kernels is always the same; the shape does not depend on the
signal. It is obvious that one might obtain better results if such a distribution is used, where the
kernel is adapted according to the signal by some predetermined means, i.e. the distribution
would have an optimal kernel shape according to certain criteria. Consequently, the drawback
of such optimal methods is extended computational time, caused by the optimization process
(Jones and Parks, 1990, 1992; Baraniuk and Jones, 1993; Jones and Baraniuk, 1995; Xia et al.,
1996; Davy et al., 2001).

A distribution, used for an optimal approach is the generalized marginals Choi-Williams distri-
bution (GMCWD); the kernel of which is defined as (Xia et al., 1996):

φ(τ,ξ ) = exp

⎡⎣− 1

σ

B∏
k=1

(ξ cosψk +τ sinψk )
2

⎤⎦ , (4.8)
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where B is the number of kernel branches, ψk denotes the angle of the k th branch, for k =
1, ...,B , and σ is the parameter for adjusting the widths of the branches (σ has the same role as
in CWD).

Another possible kernel for optimal distribution is the so-called radially Gaussian kernel (Jones
and Parks, 1990; Jones and Baraniuk, 1995):

φ(τ,ξ ) = exp

⎡⎣−τ2+ ξ 2

2σ2
s (ψ)

⎤⎦ , (4.9)

where σs (ψ) is the function that controls the spread of the kernel at the radial angle ψ. A
detailed description of calculation of σs (ψ) can be found in Jones and Baraniuk (1995) and
Davy et al. (2001).

One possible way to perform an optimization is to minimize the Kullback distance d between
the signal’s AF given by Eq. 4.4 and the kernel given by Eq. 4.8 (Davy et al., 2001):

d =
∫∫ �� AF(τ,ξ )−� φψ(τ,ξ )

�
log
� AF(τ,τ)

� φψ(τ,ξ )
dξ dτ, (4.10)

where ψ is the parameter being changed during optimization. � denotes the normalization
operation applied both to the AF and the kernel function. For example, for the kernel function
φ(τ,ξ ) the normalization operation� is defined as (Davy et al., 2001)

� φ(τ,ξ ) =
|φ(τ,ξ )|∫∫ |φ(τ,ξ )|dξ dτ

. (4.11)

Fig. 4.3(d) illustrates the optimal GMCWD of the test signal given in Fig. 4.2. The shape of the
2-branch optimal kernel used for calculating GMCWD is shown in Fig. 4.3(e). The Kullback
distance d as a function of two branch angles, ψ1 and ψ2, is depicted in Fig. 4.3(f). The local
minimum corresponding to the optimal branch angles is marked with a circled asterisk.

4.6 Summary of the Time-Frequency Analysis

There are several different methods that allow one to obtain time-frequency representations of
the signal. In general, one would like to use “the best” method, but as Cohen (1994) pointed
out, there is not such a TFD that would yield the best result for all signals.

For example, if a signal at hand is a (more or less) single component signal, then WVD generally
gives good results (in the way that the results are straightforwardly interpretable). On the other
hand, if the signal contains several components, then the results of WVD may not be easily
interpretable due to the presence of the cross-terms. In that case the use of a TFD having a
smoothing kernel is obviously more justified, and probably the best results would be obtained
if the optimal kernel would be used.

Fig. 4.4(a) gives an example of the EEG signal segment during propofol induced anesthesia at
the burst-suppression level. The same signal as in (a) but filtered with a 3–47 Hz bandpass filter
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Figure 4.3 — (a): AF of the test signal given in Fig. 4.2. (b): WVD of the test signal. (c):
CWD of the test signal. (d): optimal GMCWD of the test signal, σ = 1. (e): optimal 2-branch
GMCWD kernel. (f): surface of the distance d as a function of two variables of ψ1 and ψ2 (Eq.
4.10); the location of the minimum distance is denoted by �. All figures are gray-scale coded
where white denotes the minimum value and black the maximum value, respectively.
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is shown in Fig. 4.4(b). Prior to applying a time-frequency analysis, it is often useful to remove
the very low-frequency components from the signal due to their (usually) large energy. The
WVD of the filtered signal is illustrated in Fig. 4.4(c). By examining Fig. 4.4(c) one can identify
≈ 8 Hz activity appearing at around 1.5 sec and belonging to the burst. Around the same
time there is additional higher-frequency activity (up to ≈ 25 Hz). Spindle activity at ≈ 14 Hz
appears at around 3.5–3.6 sec. Analogously, the higher-frequency components up to ≈ 25 Hz
are present. In addition, there appears to be ≈ 5− 25 Hz activity during 2.3–3.1 sec.; however,
for this case it is clear that activity appearing between the burst and the spindle is actually
interference caused by the cross-terms. Similarly, most of the higher-frequency components for
the burst and spindle are actually cross-terms interferences, as well. Therefore, one has to be
rather careful and critical while interpreting the results obtained by WVD.

Fig. 4.4(d) illustrates a time-frequency representation of the filtered EEG signal in Fig. 4.4(b)
obtained by using the optimal radially gaussian kernel as described in Jones and Baraniuk
(1995). It is clear that most of the interferences have been removed and thus the interpreta-
tion of the results is easier. However, when applying TFDs with an optimal kernel one has to
keep in mind that these methods generally take significantly more time to compute.
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Figure 4.4 — (a): The EEG signal at the burst-suppression level during propofol anesthesia.
Note that the burst pattern first appears, containing a slow-wave component with superim-
posed higher-frequency activity. The burst is followed by a spindle pattern. (b): The same
signal as in (a) but filtered with a 3–47 Hz bandpass filter. (c): WVD of the filtered EEG signal
shown in (b). (d): Time-frequency representation of the filtered EEG signal obtained using the
optimal radially Gaussian kernel.
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CHAPTER 5

Discussion and Concluding Remarks

The analysis of the EEG during anesthesia has been an active research field for several decades,
but the real breakthrough was made about 10 years ago when the Aspect Medical Systems
Inc. introduced their depth-of-anesthesia monitor based on the Bispectral Index (BIS). Since
then many research groups have been working on the methods for brain monitoring during
anesthesia/sedation and, as a consequence, a myriad of articles have been published.

This thesis, however, includes several new aspects, shortly listed below.

• As a part of the regularity/complexity analysis, the measure called Higuchi fractal di-
mension, which is relatively uncommon in EEG analysis, has been considered. One of
the main advantages of this measure is the computational simplicity. The results showed
that for almost all applied cases it outperformed other tested measures.

• Regularity/complexity measures have been applied to the EEG patterns occurring during
burst-suppression.

• The behavior of the regularity/complexity measures has been studied using artificial sur-
rogate signals of known properties.

• The influence of the frequency content of the EEG to the regularity/complexity mea-
sures has been studied systematically.

• The influence of remifentanil, administered together with propofol, on behavior of the
regularity/complexity measures have been studied.

• Quadratic time-frequency distributions have been used to study the instantaneous fre-
quency of the spindles during propofol induced anesthesia as well as during physiological
sleep.

More detailed discussion of the above listed aspects is given in the following.
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5.1 Regularity/Complexity Analysis

Regularity/complexity analysis is applied in three different cases in this thesis. Firstly, it is ap-
plied to the different EEG patterns occurring during deep propofol and sevoflurane anesthesia
(burst, spindles, suppression, pre-burst-suppression EEG). Secondly, the methods are applied
to the artificially generated signals—the so-called surrogate signals—having predefined power
spectra as well as the probability density functions. Thirdly, they are applied to the continuous
EEG signal recorded during gradually deepening sedation.

Regularity/Complexity of the EEG Burst-Suppression Patterns

In the analysis of the regularity/complexity properties of the EEG burst-suppression patterns,
i.e. bursts, suppressions, and spindles, two different anesthetic drugs—propofol and sevoflu-
rane—were considered. Additionally, in this case the EEG recordings from the conventional
scalp electrodes, as well as from the depth electrodes, have been utilized. The EEG was recorded
from the Parkinson disease patients who were implanted with the depth electrodes for the
stimulation of the subthalamic nucleus.

The results of the analysis show that the regularity/complexity of the EEG recorded from the
depth electrodes is significantly lower than that of the frontal scalp electrodes; this effect is
especially clear for the sevoflurane recordings. Additionally, regularity/complexity of the EEG
tends to increase from the pre-burst-suppression EEG to the bursts to the suppression. Again,
this effect is more clear for the sevoflurane recordings.

The results indicate clearly that the mechanisms of propofol and sevoflurane anesthesia differ
from each other and that this difference is reflected in the properties of the EEG patterns.
Further interpretation of the results can be problematic since the data set was limited—in this
case only four recordings were available for the analysis. Another issue is that the amplitude of
the EEG during suppression periods is very low. Although the applied methods do not depend
on the amplitude of the signal, the signal-to-noise ratio becomes worse as the signal amplitude
decreases. Therefore, the results for the suppression periods are more reliable for the depth
electrodes, since the amplitude of the signal is higher for them. In the future, this analysis
should be extended to the larger number of recordings and the results should be interpreted in
the light of the models describing the origin of the burst-suppression phenomenon.

Regularity/Complexity of the Surrogate Signals

It is known that the power spectrum as well as the PDF of the EEG change during anesthesia or
sedation. Therefore, it would be useful to study, how different regularity/complexity measures
are affected by those properties. Theoretically, Shannon entropy and spectral entropy depend
only on the PDF and the power spectrum of the signal, respectively. However, in real cases,
neither the PDF nor the power spectrum of the signal are generally known and, thus, they have
to be estimated. Since there are several ways to estimate the PDF or the power spectrum, and
these procedures always include an estimation error, the results may vary. For example, some
issues related to the power spectrum estimation, in the calculation of the spectral entropy, are
described by Lipping et al. (2005).
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The study of the surrogate signals, having predefined power spectrum and PDF, shows that the
remaining regularity measures used in this thesis—approximate entropy, Lempel-Ziv complex-
ity, and Higuchi fractal dimension—are mainly dependent on the signal bandwidth; the shape
of the PDF has only a minor effect. However, when the shape of the PDF is sharpening, say,
when it is getting sharper than the Gaussian distribution, the dependence on the PDF increases.
This effect is especially clear for the approximate entropy.

However, in this case the shapes of the power spectra of the generated surrogate signals were
limited to rectangular and always centered at the half of the Nyquist frequency. One future
improvement for this kind of study would be to change the shape of the surrogate signal’s
power spectrum to resemble more the real EEG’s power spectrum.

Another interesting topic related to the surrogate analysis is the comparison of the visual ap-
pearance of surrogates having similar entropy/complexity but different shape of the power
spectrum or PDF compared to a preselected EEG segment. This is especially interesting as
in everyday clinical practice the EEG is interpreted mainly based on visual inspection by
neurophysiologists. In section 3.1.2 of this thesis it is shown that signals of very different
waveform can yield similar spectral entropy. A more systematic study including other regular-
ity/complexity measures would be needed.

Regularity/Complexity of the EEG during Sedation

In the studies involving regularity/complexity analysis of continuous EEG the signal was recor-
ded from the ICU patients and from the patients scheduled to undergo ambulatory surgery.
For both cases the patients were sedated using propofol and, for the latter case, an opiate called
remifentanil, was administered according to the previously defined protocol. Depth of sedation
was assessed clinically using the Ramsay score or the modified OAA/S score.

In this case the regularity/complexity measures were calculated in a moving analysis window
and their correlation with the Ramsay score and the modified OAA/S was studied. Addition-
ally, the influence of remifentanil to the behavior of the regularity/complexity measures was
estimated.

An important aspect one has to keep in mind when performing the regularity/complexity
analysis, is the EEG frequency band used for the analysis. It means that one has to carefully
select the cutoff frequencies for the low-pass and high-pass filters. In this thesis the following
three lower cutoff frequencies for the EEG frequency band have been used: 0.5 Hz, 2 Hz, and
6 Hz. The higher cutoff frequencies were selected as 19 Hz, 32 Hz, and 47 Hz. This particular
selection of the lower cutoff frequencies was made to cover the rather wide range of lower
cutoff frequencies used in commercial depth-of-anesthesia monitors. For example, the SNAP®
monitor by Viasys Healthcare (USA) has lower cutoff frequency 0.1 Hz while that of the CSI®
monitor by Danmeter A/S (Denmark) is as high as 6 Hz.

Selecting the higher cutoff frequency for the EEG frequency band involves a trade-off, espe-
cially if the EEG during sedation is considered. Namely, it is known that the frequency band of
the EEG during sedation can extend up to 40 Hz or even higher. However, the high-frequency
component of the EEG can be contaminated by the muscle activity, especially when the pa-
tient is waking up from sedation. Although the muscle activity is noise from the EEG point of

35



5. DISCUSSION AND CONCLUDING REMARKS

view, it can be utilized for the early detection of arousal from sedation. Rautee et al. (2004) have
found that for the depth-of-sedation analysis 20 Hz is the effective border-frequency between
the EEG and the muscle activity. However, from neurophysiology it is known that muscle
activity can cause frequency components of as low frequency as 5 Hz or even lower. Therefore,
to minimize the effect of muscle activity in the analysis, 19 Hz was selected as the lowest value
for the higher cutoff frequency. The higher upper edges of the EEG frequency band—32 Hz
and 47 Hz—are inspired by the commercial Entropy® monitor by GE Healthcare.

Usually it is assumed that the EEG signal becomes more regular—entropy decreases—as anes-
thesia/sedation is deepening. However, since different methods take into account different
properties of the signal, the results can be contradictory. For example, the Shannon entropy
increases with deepening sedation, as pointed out by Bruhn et al. (2001b) as well as in the pub-
lication III.

The results clearly show that despite the fact that the applied regularity measures (except spec-
tral entropy) do not directly depend on the power spectrum, they are still very sensitive to the
frequency content of the signal. This, in turn, can cause the situation where the monotoni-
cally decreasing behavior of the presented regularity measures is lost when high frequencies are
cut off and/or low frequencies are preserved. In this situation typically the so-called biphasic
behavior—at the lighter levels of sedation EEG regularity/complexity increases with deepening
sedation, while at deeper levels the change is the opposite—occurs. The length and the steepness
(for the increasing and decreasing phase) of the different phases depends on the exact selection
of the cutoff frequencies.

5.2 Time-Frequency Analysis

In this thesis the time-frequency analysis is concentrated on the EEG spindle patterns. The
main idea behind the analysis is to investigate the instantaneous frequency of the spindles dur-
ing propofol anesthesia and, in addition, to perform the comparison with spindles occurring
during physiological sleep.

Propofol spindles can contain two (or even more) waxing and waning oscillations, which are
easily distinguishable by visual observation. An example of such waveform is given in Fig.
5.1(a). Another property of propofol spindle waveforms is the appearance of higher frequency
components—they appear at twice, sometimes even at triple, of the principal frequency of the
spindle (see time-frequency representations in Fig. 5.1). Additionally, in propofol anesthesia
part of the spindle sometimes transforms to another rhythm of the main harmonic frequency,
and the so-called “breaking” waveform appears. Such case is illustrated in Fig. 5.1(b). However,
it remains to be investigated whether or not these two harmonic-producing phenomena have
the same origin.

The analysis of instantaneous frequency of the spindles has revealed that the angle of its trend
is generally very small, meaning that the principal frequency of a given spindle is relatively
stable. However, occasionally spindles can show either increasing or decreasing trend in the
instantaneous frequency. For example, the spindle presented in Fig. 5.1(a) demonstrates slightly
increasing instantaneous frequency.
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(a) A spindle having two oscillating components
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(b) A spindle having “breaking” waveform

Figure 5.1 — Examples of the spindle structures during propofol induced anesthesia. (a): A
spindle having two waxing-waning oscillations and its time-frequency representation; (b): a
spindle having the so-called “breaking” waveform in its time-frequency representation. Time-
frequency representations for both cases are calculated using the optimally radial Gaussian ker-
nel. The time axis is the same for the given spindle waveform and the corresponding time-
frequency representation
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Comparison between the spindles during propofol induced anesthesia and physiological sleep
shows that the average frequency of the propofol spindles is slightly higher than that of the
sleep spindles. But, nevertheless, it still fits into the frequency range considered typical to sleep
spindles in general.

38



CHAPTER 6

Summary of the Publications and the Author’s Contribution

This thesis includes five original publications, which can be divided into two subcategories: reg-
ularity and time-frequency analysis of the EEG signal. Publications II, III, and V deal with the
regularity analysis, whereas, publication I concentrates on the time-frequency analysis. Excep-
tionally, publication IV deals with both regularity and time-frequency analysis. Subsequently,
a short summary of each publication as well as the author’s contribution to each paper is given.

Publication I concentrates on two time-frequency methods—WVD and GMCWD with an op-
timized kernel—which have been applied to the spindle patterns occurring during propofol
induced anesthesia. The results from this study show that the instantaneous frequency of the
spindle during deep propofol anesthesia show a slightly decreasing trend. The comparison be-
tween the two methods yields that by using GMCWD with an optimized kernel, it is possible
to obtain slightly better results by means of mean square error. However, the cost of this was
a significantly larger computational load. The author performed all analyses and is the first
author of the article.

Publication II compares the regularity/complexity measures—SpEn, ApEn, LZC, and HFD—
applied to the different signal patterns recorded during propofol as well as sevoflurane anes-
thesia. The signal patterns included bursts and suppression periods (for both propofol and
sevoflurane) as well as spindles (only for propofol). In addition, this study makes a comparative
analysis between signals recorded by using conventional surface electrodes and depth electrodes.
The results show that the complexity of the EEG increases from the pre-burst-suppression pat-
tern, to the bursts and to the suppression. This tendency is more emphasized in sevoflurane
recordings. The author performed all analyses included in this study and is the first author.
This work participated in the student paper competition of the 5th International Workshop on
Biosignal Interpretation (Tokyo, Japan, Sept. 6–8 2005) where it won second place.

Publication III can be divided into two parts, where ShEn in addition to the regularity mea-
sures listed for publication II are applied 1) to the artificially generated surrogate signals, and
2) to the EEG signals. The artificial signals were generated so that both their PDFs and power
spectra were previously fixed. The idea of such an analysis was to determine how the regularity
measures listed above are influenced by the shape of the PDF and power spectrum of the signal.
The result of the first part shows that ShEn and SpEn expectedly depend only on one property,
i.e. on the PDF or the power spectrum, respectively, while ApEn, LZC, and HFD depend
on both properties. Secondly, the measures were applied to the EEG signals recorded in the
ICU during propofol induced sedation. Prior to applying the regularity measures, the EEG
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6. SUMMARY OF THE PUBLICATIONS AND THE AUTHOR’S CONTRIBUTION

signal was low-pass filtered by using several cut-off frequencies. In addition, we used an analysis
window of several lengths. The results show that ApEn, LZC, and HFD are more strongly
dependent on the presence of high frequencies than other measures. Additionally, SpEn, calcu-
lated using the fast Fourier transform for power spectrum estimation, is more sensitive to the
length of the analysis window. The comparison with the Ramsay scores (clinical assessment of
depth of sedation) reveals that while ShEn remains constant or slightly increases with deepen-
ing sedation, the other measures tend to decrease. The author performed all analyses related to
the artificial signals and is the the first author.

Publication IV compares the properties of the EEG spindle patterns corresponding to two
different phenomena: natural sleep and propofol anesthesia. In this study, the time-frequency
method CWD was applied in order to obtain the intraspindle mean frequency and the angle of
the trend at an instantaneous frequency. In addition, three regularity measures—SpEn, ApEn,
and HFD—were applied. The statistical analysis revealed that all measures, except ApEn, were
able to separate these two types of EEG spindles. The author performed all analyses included
in this study and is the first author.

Publication V gives an overview of the study, where 45 patients were randomly divided into
three groups according to the dose of remifentanil (0, 2, or 4 ng/ml) administered. Additionally,
all patients received a stepwise-increased, effect-site concentration controlled dose of propofol.
At every step of propofol concentration increase, the OAA/S score was assessed. The EEG
signal was segmented into 15 sec segments, and for each segment, the SpEn, ApEn, LZC, HFD,
relative beta ratio, and SyncFastSlow measure were calculated. In addition, the state entropy
and response entropy from the AS/5 Anesthesia monitor were included in the comparison.
The goal of this study was to analyze the influence of remifentanil as well as the frequency
content of the EEG to the performance of the above listed measures. The results show that
regularity measures are highly sensitive to the frequency content of the signal as well as to the
dose of remifentanil. By means of the prediction probability, the most discriminative measure
with respect to OAA/S score was HFD, which even outperformed response entropy and state
entropy. The author performed all analyses included in this study and was the first author.

In all the above listed publications, especially the supervisor of the thesis, Prof. Tarmo Lipping,
as well as M.D, Ph.D Ville Jäntti, M.D Pasi Puumala, and Prof. Michel Struys, gave valuable
comments and were also co-writers of the publications.
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APPENDIX A

A Brief History of Entropy

Despite the fact that the concept of entropy has been widely used in the field of signal process-
ing for characterizing regularity properties of the signal, its origin is in physics, more precisely
in thermodynamics (Darrow, 1944; Machta, 1999; Ambegaokar and Clerk, 1999). In statistical
thermodynamics the word entropy has been used to characterize a system’s “disorder”, “ran-
domness”, “dispersion”, “homogeneity”, or even “mixed-up-ness” (Styer, 2000).

Entropy as in Classical Thermodynamics

In 1854 Rudolf Clausius, a German physicist and mathematician, published a paper where
for the first time the mathematical formulation of entropy was given. Clausius was further
developing the ideas of Sadi Carnot, a French physicist and engineer, who in the beginning of
the 19th century worked on heat engines (he invented an ideal heat engine, the so-called Carnot
cycle) and formulated the first steps towards the second law of thermodynamics. In this paper
Clausius stated that in any real process a small amount of heat energy dQ is wasted across
the system boundary, i.e. there always will be energy loss. Clausius gave the energy loss the
following formulation:

d S =
dQ

T
, (A.1)

where T is the absolute temperature, dQ is the amount of heat added or removed from the
system, and d S is the change of entropy. However, the quantity S got the name entropy only in
1865 when Clausius published another paper on thermodynamics (Cropper, 2001). According
to Laidler (1995), Clausius wrote:

I propose to name the quantity S the entropy of the system, after the Greek word [trope],
the transformation. I have deliberately chosen the word entropy to be as similar as possible
to the word energy: the two quantities to be named by these words are so closely related in
physical significance that a certain similarity in their names appears to be appropriate.

As formulated by Clausius, the concept of entropy in classical thermodynamics literally means
the transformation of energy. Entropy here can be thought of as the macroscopic scale (large-
scale) measure.
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A. A BRIEF HISTORY OF ENTROPY

Entropy as in Statistical Thermodynamics

In 1877 Ludwig Boltzmann, an Austrian physicist, introduced an alternative formulation of
entropy, the microscopic entropy:

S = kB logΩ, (A.2)

where kB is Boltzmann’s constant and Ω is the number of microstates within the given macro-
state. Boltzmann’s entropy formula can be manipulated into the formula (Machta, 1999; Styer,
2000):

S =−kB

∑
i

pi log pi , (A.3)

where the sum goes over the microstates i of the system and pi is the probability that i th

microstate of the given macrostate is occupied.

Entropy described by (A.2) or (A.3) is usually thought of as a measure of statistical disorder of
the system.

A generalized form of Boltzmann entropy, i.e. (A.3), is the so-called Tsallis entropy (Tsallis,
2002):

Sq =
kB

q − 1

�
1−∑

i

pq
i

 
, (A.4)

where q is a real parameter. In the limit q→ 1 Boltzmann entropy is obtained.

Entropy as in Information Theory

In 1948 Claude Shannon, an American engineer and mathematician, published the work where
the theoretical basis for the transmission of signals between a transmitter and receiver was
founded. He derived an expression for describing information flow H , which he was going
to call the “measure of uncertainty”. However, the story goes that Shannon was convinced
to use the name of “entropy” instead of “uncertainty”, and according to Tribus and McIrvine
(1971), Shannon said:

My greatest concern was what to call it. I thought of calling it “information”, but the word
was overly used, so I decided to call it “uncertainty”. When I discussed it with John von
Neumann, he had a better idea. Von Neumann told me, “You should call it entropy, for two
reasons. In the first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more important, nobody
knows what entropy really is, so in a debate you will always have the advantage”.

Shannon entropy, defined as
HS h =−

∑
i

pi log pi , (A.5)

has almost the same formulation as Boltzmann entropy (A.3); the important difference is the
absence of Boltzmann’s constant. Therefore, Shannon entropy has no physical units.
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A generalization of Shannon entropy is the so-called Rényi entropy, introduced by Alfred Rényi
(1995), which defines a family of entropies used for quantifying the randomness of the system
(Kantz and Schreiber, 1997). The Rényi entropy of order q , where q > 0, is defined as:

Hq =
1

1− q
log
∑

i

pq
i (A.6)

In the limit q→ 1 Rényi entropy H1 converges to Shannon entropy (A.5).
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APPENDIX B

Phase-Space Concept and Correlation Dimension

Phase-Space Concept

Dynamical systems are often described by using the phase-space (also known as a state-space)
concept. In this approach it is assumed that the state of a system can be described by a set of
d state variables so that each state of the system corresponds to a point ζ ∈ �d , where �d

is a d -dimensional Euclidean space. �d is called the true phase-space and d the true phase-space
dimension.

Since the state of a dynamical system is changing with time, the state ζ (t ) is a function of time.
If the current state ζ (0) uniquely determines the future states, i.e. ζ (t ), t > 0, the system is a
deterministic dynamical system.

Usually, however, it is not possible to observe directly the true states ζ (t ) of a dynamical sys-
tem. Typically, one has obtained only the time series of measurements x(t ) = h(ζ (t )) by ap-
plying some measurement function h to the true states ζ . Thus, the measurement function h
usually transforms the true states ζ to the lower dimensional space (�d →�d ′ , d ′ < d ), where
frequently d ′ = 1, i.e. the obtained time series is one dimensional.

A continuous time deterministic dynamical system can be described by a set of differential
equations

ζ̇ = F(ζ (t )), (B.1)

where F is a smooth vector field in �d . Depending on the structure of F, there are several pos-
sibilities for the behavior of ζ (t ) as t →∞. If the dynamical system is dissipative and bounded,
then after a sufficiently long, time the system will be attracted to some sub-set of phase-space,
which is called an attractor. There are four types of attractors: fixed points, limit cycles, limit
tori, and strange attractors. It is characteristic for chaotic systems that their attractors are ge-
ometrically complicated objects, typically having fractal, i.e. self-similar, structure; therefore,
such attractors are called strange attractors.

One of the most frequently used examples for illustrating deterministic chaotic systems is the
so-called Lorenz system, which is given by the following differential equations (Lorenz, 1963):⎧⎨⎩

ẋ(t ) = σ (y(t )− x(t ))
ẏ(t ) = r x(t )− y(t )− x(t )z(t )
ż(t ) = x(t )y(t )− b z(t ).

(B.2)
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B. PHASE-SPACE CONCEPT AND CORRELATION DIMENSION
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Figure B.1 — (a): Numerically integrated x-coordinate of the Lorenz system. (b): Phase-space
representation of the Lorenz system. The parameters are chosen as σ = 10, r = 28, and b = 8/3
for both cases.

The parameters are traditionally chosen as σ = 10, r = 28, and b = 8/3. The x-coordinate and
attractor in phase-space of the Lorenz system is shown in Fig. B.1.

Before applying further analysis, the phase-space has to be reconstructed from the measurement
signal x(t ). Thus, the measurements have to be transformed somehow into the reconstructed
vectors x ∈ �m , where m is the embedding dimension. One possibility to obtain the recon-
structed vectors is to use time-delayed embedding:

x(t ) =
$

x(t ), x(t −τ), x(t − 2τ), . . . , x(t − (m− 1)τ)
%
, (B.3)

where τ is the difference in samples between adjacent components of the delay vectors. τ is
also called the delay time.

Another problem one has to deal with before applying delay reconstruction is that neither the
embedding dimension m nor time delay τ is generally known a priori. A comprehensive over-
view about finding good embedding parameters, i.e. m and τ, is given by Kantz and Schreiber
(1997) and Galka (2000).

Correlation Dimension

One possibility to quantify self-similarity or fractality of a geometrical object reconstructed
from a finite set of data points is the so-called correlation dimension D , introduced by Grass-
berger and Procaccia (1983). In order to obtain the correlation dimension first the so-called
correlation sum for a collection of reconstructed phase-space points x is formed. The classical
formula for the correlation sum is the following:

C (r ) =
2

N (N − 1)

∑
i

∑
j>i

Θ(r −‖xi − x j‖), (B.4)
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where r is a predefined distance in phase-space, and Θ is the Heaviside function defined as

Θ(x) =

�
0 if x � 0
1 if x > 0.

(B.5)

Thus, the correlation sum defined by Eq. B.4 counts pairs (xi ,x j ) whose distance is smaller
than r . If the amount of data is growing to infinity (N →∞) and distance r is converging to
zero (r → 0), then C is expected to scale according to the power law, C (r ) ∝ r D , where D is
the correlation dimension. Thereafter, the correlation dimension D is defined as

D = lim
r→0

lim
N→∞

∂ logC (r )

∂ log r
(B.6)

The calculation of a correlation dimension from the time series, as well as accompanying pitfalls
and interpretation problems, are described in a very detailed manner by Kantz and Schreiber
(1997).
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