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ABSTRACT

Many of the current applications used in battery powered devices are from digital sig-
nal processing, telecommunication, and multimedia domains. Traditionally applica-
tion-specific fixed-function circuits have been used in these designs in form of applica-
tion-specific integrated circuits (ASIC) to reach the required performance and energy-
efficiency. The complexity of these applications has increased over the years, thus the
design complexity has increased even faster, which implies increased design time.
At the same time, there are more and more standards to be supported, thus using
optimised fixed-function implementations for all the functions in all the standards
is impractical. The non-recurring engineering costs for integrated circuits have also
increased significantly, so manufacturers can only afford fewer chip iterations. Al-
though tailoring the circuit for a specific application provides the best performance
and/or energy-efficiency, such approach lacks flexibility. E.g., if an error is found
after the manufacturing, an expensive chip iteration is required. In addition, new

functionalities cannot be added afterwards to support evolution of standards.

Flexibility can be obtained with software based implementation technologies. Un-
fortunately, general-purpose processors do not provide the energy-efficiency of the
fixed-function circuit designs. A useful trade-off between flexibility and perform-
ance is implementation based on application-specific processors (ASP) where pro-
grammability provides the flexibility and computational resources customised for the

given application provide the performance.

In this Thesis, application-specific processors are considered by using fast Fourier
transform as the representative algorithm. The architectural template used here is
transport triggered architecture (TTA) which resembles very long instruction word
machines but the operand execution resembles data flow machines rather than tra-
ditional operand triggering. The developed TTA processors exploit inherent par-

allelism of the application. In addition, several characteristics of the application



have been identified and those are exploited by developing customised functional
units for speeding up the execution. Several customisations are proposed for the
data path of the processor but it is also important to match the memory bandwidth
to the computation speed. This calls for a memory organisation supporting parallel
memory accesses. The proposed optimisations have been used to improve the energy-
efficiency of the processor and experiments show that a programmable solution can

have energy-efficiency comparable to fixed-function ASIC designs.
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1. INTRODUCTION

The recent advances in the semiconductor fabrication processes and technologies
have allowed more complex integrated circuits to be developed. This has allowed
more and more functionality to be integrated into a single chip. Nowadays even en-
tire systems are integrated on a single chip, hence the name System-On-Chip (SoC).
The high integration level has resulted in reduction of the size and the cost of digital
systems. This has expanded the digital systems to whole new markets. The growth
has been especially high in embedded systems where the system is designed for a
single purpose, i.e., the system is not used for general-purpose computing. Nowadays
the line between embedded and general-purpose systems is blurred and modern em-
bedded devices have more computing power than personal computers of yesterday.
As many embedded systems are handheld, or even integrated in clothing, the sys-
tems are often limited by constraints on size, weight, battery life, and cost. For such
devices the area of the chip is an important cost factor but today even more important
is the energy-efficiency. Many of the devices are battery powered and the battery
life of the device is dependent on the energy drawn from the battery. Low power
consumption is often used as a design criteria when designing energy-efficient sys-
tems but design for low-power does not necessary imply that the completed design
is energy-efficient. A low-power system may have poor performance, thus the time
to complete the task is long. A more efficient system may have higher power con-
sumption but it completes the task faster, thus the energy for completing the task is
lower implying better energy-efficiency. The design must also fulfil the criteria for
performance, i.e., the task is required to be computed in the given time period. The
energy-efficiency is defined as the energy consumed for performing the required task.
Even the small mobile systems must be able to perform tasks which require high per-
formance. Many design tradeoffs must be made to balance the often conflicting goals

of energy-efficiency, low-power, high performance, and small area [6].

To address these design factors application-specific integrated circuits (ASIC) are of-
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ten used as a part of the system to perform the critical tasks efficiently. As the capab-
ilities of chip manufacturing as well as the the requirements of the applications have
increased, the complexity of the designs has exploded, which increases the design
time and the risks significantly. One solution for reducing the time to design an ASIC
is to use modern design tools, which can be used to convert an algorithm described in
a high-level language, e.g., C/C++, to a register-transfer logic (RTL) description, as
presented in [9,83]. There are also modifications developed to the ASIC design flow.
For example structured ASICs [93] have predetermined logic layers and the func-
tionality is realised by a routing layer. Such an arrangement lowers the non-recurring
engineering (NRE) costs. At the same time, the design time is shortened as there is no
need to route all the transistor layers. Although the approach of developing a circuit
for one purpose provides potentially the best performance as the design is tailored for
the single application, it lacks the flexibility. E.g., if during the development an error
is found or specifications change, an expensive and time consuming chip iteration is

required.

To address these problems field programmable gate arrays (FPGA) have been de-
veloped where the system can be reconfigured if the design is required to be changed
leading to lower NRE costs. The main drawback of the FPGA is decreased per-
formance, increased power dissipation, and higher chip cost. Another solution is
to use a programmable solution. General-purpose processors can be used but their
performance may not be sufficient and, in particular, their energy-efficiency is poor.
The best of both worlds can be obtained by combining the programmability with
application-specific design, i.e., flexibility and efficiency are obtained by tailoring the
processor according to the requirements of the application at hand. Such processors
are called application-specific processors (ASP) or application-specific instruction
set processors (ASIP). The motivation for the ASIP is to customise the instruction set
according to the needs of the given application. In this Thesis, the name ASP is used

to refer to processors with a customised instruction set. [12,25, 63]

It is common that applications of wireless baseband signal processing, multimedia
signal processing, on-line monitoring, or sensor signal processing exhibit very similar
signal processing characteristics [55]. These application groups are called domains
and when a system is designed for an application, it might be designed to support a
wider range of applications in this domain. This is called domain-specific design. In

a similar fashion, as fixed-function ASICs do not provide flexibility, designs custom-



ised for a single application may also show limited flexibility. When increasing the
flexibility and supporting several applications from the same domain, i.e., domain-
specific design, we obtain an application domain-specific processor (ADSP) [78,94].
In this Thesis, ADSPs are not considered and the thesis will concentrate on ASPs,
although similar techniques are used to design ADSPs.

There are several design tools for developing ASPs, e.g., [33,43,77]. With the aid
of modern ASP toolsets the design time can be significantly lowered and also the
risks in the design are lowered, since the result is programmable and can be fixed,
if needed, by modifications to the software. The main drawback of ASPs is lower
energy-efficiency compared to ASICs. There are several processor architectures,
which can be used as a template for customisation. E.g., very long instruction word
(VLIW) machines have recently gained considerable popularity especially in digital
signal processing (DSP) domain. VLIW has potential for higher performance as it
may exploit instruction level parallelism (ILP) in the application by executing opera-
tions concurrently in multiple processing elements (PE).

Currently the application area where energy-efficiency and flexibility have great im-
portance is wireless communications. In the future, cognitive radios will require
functionality changed fairly often, thus programmable solutions will be preferred. In
addition, in the future, almost all communications devices will be battery powered

or they scavenge their energy from the environment, thus energy-efficiency is a vital

property.

Many recent wireless communication systems are based on orthogonal frequency
division multiplexing (OFDM), e.g., IEEE 802.11a/g (WiFi) [41], 802.16 (WiMAX)
[42], 3GPP long term evolution (3G LTE) [1], digital video broadcasting (DVB) [61],
digital audio broadcasting (DAB) [48], and ultra wideband (UWB) [67]. OFDM
is also used in some wired systems, e.g., very-high-speed digital subscriber line
(VDSL). The popular wired internet access asymmetric digital subscriber line (ADSL)
[22,58] is based on VDSL. In OFDM systems [95], digital data is encoded on mul-
tiple carrier frequencies. The frequency modulation and demodulation are realised
with the aid of one of the most popular tools in DSP, the Fast Fourier transform
(FFT). In the transmitter, inverse FFT (IFFT) is used to spread the data over multiple
carriers and, in receiver, FFT demodulates information from multiple carriers to time

domain as illustrated in Figure 1.
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Fig. 1. Principal block diagram of OFDM system. dy...dy—1 data bits 0 to N — 1; P/S:

parallel-to-serial conversion; LPF : low pass filter; D/A: digital-to-analog conver-

sion; A/D: analog-to-digital conversion; S/P : serial-to-parallel conversion.

The FFT is an efficient method for computing the Discete Fourier Transform (DFT).
First, the DFT can be used to determine the frequency spectrum of a signal. This is a
direct examination of information encoded in the frequency, phase, and amplitude of
the component sinusoids. For example, human speech and hearing use signals with
this type of encoding. Second, DFT can be used to determine the frequency response
of a system based on the impulse response of the system and vice versa. This allows
systems to be analysed in the frequency domain, just as convolution allows systems
to be analysed in the time domain.Third, the DFT can be used as an intermediate step
in more elaborate signal processing techniques.The classic example of this is FFT
convolution, an algorithm for convolving signals that is hundreds of times faster than
conventional methods [72]. The speedup in previous example is dependent of the

convolution size and it will grow with the convolution.

The FFT can be used in various other applications such as sound analysis, magnetic
resonance imaging (MRI) [64,71], compression methods, e.g., in Joint Photographic
Experts Group (JPEG) [70, 85] and Moving Picture Experts Group (MPEG) [52,90],
encryption, e.g., in the public key Rivest, Shamir, and Adleman ciphering (RSA) [60,
62], and in Global Positioning System (GPS) [51,91] and Galileo [81,86] acquisition.

1.1 Scope and Objective of Research

The general research problem posed in this Thesis is "how to combine the flexibil-
ity and energy-efficiency in application implementation so that the design process

is still general and can be supported by tools”. Especially, the Thesis considers
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energy-efficiency of programmable architectures in embedded systems where a pri-
ori information about the applications is often available. The work considers also
scalability, i.e., the resulting methodology must allow designer to trade-off perform-
ance against implementation cost. The resulting computing structures must exploit
the inherent parallelism in the applications to support scalability. The work does
not include reactive general-purpose computations and, therefore, e.g., support for

interrupts is not considered.

The solutions proposed in this Thesis are based on the transport triggered architecture
(TTA) template.Some earlier work has shown that TTA processors have potential for
energy-efficient ASPs [10,38,66]. The main application area in the Thesis is compu-
tationally intensive tasks in digital signal processing and, in particular, Fast Fourier
transform. The FFT uses complex-valued arithmetic, thus it represents well the cur-
rent trend in DSP. The Thesis focuses primarily on mixed-radix in-place decimation-
in-time (DIT) FFT algorithms and many of the novel contributions related to this

algorithm can also be applied to other FFT algorithms.

The objective of the Thesis is to develop effective methods to increase the perform-
ance of an ASP in complex-valued DSP computing without major increase in power
consumption and still maintaining the flexibility with the aid of programmability.
The main claim in this thesis is that a programmable ASP can be designed so that it

possesses energy-efficiency comparable to a fixed-function ASIC.

1.2 Main Contributions

In this Thesis, mechanisms are proposed to design energy-efficient programmable
solutions for embedded systems. The energy-efficiency is demonstrated with the aid
of ASP based on transport triggering paradigm. The customisation is carried out
for Fast Fourier transform. Several novel approaches are used for improving the

performance for reducing the power consumption of the processor.

A novel energy-efficient coefficient generator is proposed in publication [P3]. Pub-
lication [P1] shows that the ASP can perform energy-efficient FFT computation with
the aid of hardware supported memory address generation and the exposed data
path in the used processor template. Publication [P2] introduces support for vari-

able length FFT; the shown implementation supports all the power-of-two lengths
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up to 16384. Publication [P4] shows improved energy-efficiency with conflict-free
parallel memory scheme for FFT based on two— and four— ported parallel memor-
ies. The four—ported parallel memory doubles the throughput while maintaining the
energy-efficiency. Publication [P5] presents how the performance can be increased
by reducing the software overhead. This improves the energy-efficiency even further.

To summarise, the main contributions are the following:

e novel coefficient generation method for mixed-radix FFT, where the look-up

table contains only % + 1 complex-valued coefficients,

e energy-efficient memory organisation for FFT computations based on parallel

memory concept,
e energy-efficient operand address generation for mixed-radix FFT, and

e novel processor structure for mixed-radix FFT computations exploiting the ex-

posed data path of transport triggered architecture.

1.3 Author’s Contribution

The work presented in this Thesis has been reported in publications [P1-P5]. None of
the publications [P1-P5] have yet been used in another academic thesis. The author
has been the first author on all of the publications [P1-P5].

The publication [P3] describes the twiddle factor generator for mixed-radix FFT sup-
porting radix-4 and radix-2 computations. The author proposed the principle of
twiddle factor generation for radix—4 FFT and implemented the generator. M.Sc.
Tero Partanen developed the initial program code for the algorithm. The author also
developed and implemented twiddle factor generation for the mixed-radix FFT. This

twiddle factor generation is used in publications [P1,P2,P4,P5].

An application-specific processor tailored for FFT supporting one fixed size N =
1024 is proposed in [P1]. M.Sc. Risto Mikinen developed the initial program code
for the FFT algorithm and created the first version of the corresponding assembly
code. The author was responsible for developing the hardware implementation of the
functional units in the processor and connectivity optimisation by programming the

final version of the program with parallel assembly.
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In [P2], an application-specific processor tailored for FFT supporting power-of-two
lengths up to N = 16384 is proposed. The author created the mechanisms to support
the various transform lengths and implemented the software and hardware parts of

the tailored processor.

The author created the hardware implementation of the parallel memory scheme in
[P4] where the access scheme for two ported access was developed by Dr. Jarno
Tanskanen. The access scheme for the four ported parallel memory was created by
the author and the author implemented the required hardware and software parts for

the processor.

In [P5], the author developed mechanisms to reduce the software overhead and to
speed up the computation. The author provided the required modifications to the
hardware units. Finally, the author has carried out the verification and analysis of the

developed structures described in [P1-P5].

1.4 Thesis Outline

This Thesis consists of an introductory part where different FFT algorithms are de-
scribed in Chapter 2. Chapter 3 describes the coefficient generation for the FFT where
three different methods for coefficient generation are described. Chapter 4 describes
fixed-function FFT processors, programmable FFT processors, and fundamentals of
the ASP template used in this work, i.e., Transport Triggered Architecture (TTA).
Finally, Chapter 5 concludes the introductory part of the Thesis. This is followed by

the second part of the Thesis containing the five original publications.
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2. FAST FOURIER TRANSFORM

Discrete Fourier transform (DFT) is the main tool in the class of discrete trigono-
metric transforms. However, the definition of DFT contains redundancy and several
methods have been proposed to avoid the redundant computations. Any method for
computing DFT with lower arithmetic complexity than DFT is called Fast Fourier
transform (FFT). In this chapter, the most popular FFT methods are discussed. Sec-
tion 2.1 the describes Discrete Fourier transform and gives an introduction to Fast
Fourier transform based on Cooley-Tukey decomposition. In sections 2.2, 2.3, and
2.4, different approaches for exploiting the Cooley-Tukey principle are discussed.
Section 2.5 describes properties of FFT algorithms, e.g., in-place computations, which
reduces the requirements for memory and, therefore, the energy consumption of the
memory. Section 2.6 describes how the operand data can be fetched from the memory
and how the storage is efficiently used, i.e., the possibility to use multiple single port

memories.

2.1 Discrete Fourier Transform and its Fast Algorithms

Discrete Fourier transform is used to convert a finite sequence of equally-spaced
samples to a sequence of coefficients of a finite combination of complex sinusoids. In
other words, the time domain representation of an N-point discrete time signal x(n)

is converted to frequency domain representation X (r) as follows [56]
N-1
X(r)=Y x(mW{", r=0,1,--- N—1 (1)
n=0
where the coefficients Wy are defined as
Wy = e /2N = cos (2 /N) — jsin (2m/N) 2)

where j denotes the imaginary unit. As the coefficients Wy are composed of sine

and cosine functions, the coefficients Wy have symmetry and periodicity properties,



10 2. Fast Fourier Transform

which imply that the DFT defined in (1) contains redundancy. By exploiting the
underlying properties of the coefficients Wy several fast algorithms for DFT have
been developed over the years. In general, an algorithm, which has lower arithmetic
complexity than DFT, is called a Fast Fourier transform (FFT). The most popular
FFT is the Cooley-Tukey algorithm [23] where divide-and conquer paradigm [73] is
used to decompose DFT into a set of smaller DFTs. In particular, the Cooley-Tukey
principle states that a DFT of length N = PQ can be computed with the aid of P-point
DFT and Q-point DFT.

2.2 Radix-p Algorithms

If a factor N, like P or Q above, is not a prime, the previous process can be recursively
applied and the larger DFT will be computed with the aid of several smaller DFTs.
Especially, when the DFT length is a power of a prime, i.e., N = p?, then the N-
point DFT can be computed with the aid of p-point DFTs constructed in g computing
stages. As the resulting fast algorithm contains only p-point DFTs, it’s is called a
radix-p FFT. The most popular approach is radix-2 FFT algorithm where the DFT is
decomposed recursively until the entire algorithm is computed with the aid of 2-point
DFTs as follows:

41 g1
X(r) = Y x@o)Wy+ Y x(2n+ 1wt
n=0 n=0
N_q N_q
2 2
= Y x@n)W¥+Wy Y x(2n+ 1)WY, r=0,1,--- . N—1.  (3)
n=0 2 n=0 2

This equation shows that the coefficients Wy", commonly called twiddle factors, serve
as adjustments in the process of converting small radix DFTs into longer transforms
[56].

There are two principal approaches to decomposing the DFT: Decimation-In-Time
(DIT) [65] and Decimation-In-Frequency (DIF) [15]. An example of both approaches
is illustrated in Figure 2 where signal flow graphs of 8-point FFT derived with both
approaches are shown. In the 8-point transform, the computations are carried out in
three computing stages where each column contains four 2-point DFTs. The prin-

cipal computation building block in the radix-2 FFT is 2-point DFT in (3), which is
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b)
Fig. 2. Signal flow graphs of 8-point radix-2 FFT: a) decimation-in-time and b) decimation-

in-frequency algorithm.

also called a radix-2 butterfly. In the Figure 2, notation —1 is used to represent sub-
traction side of the radix-2 butterfly and notation Wy, shows required coefficient. The
Cooley-Tukey butterfly [23], shown in Figure 3(a) is used in DIT algorithms while
the Gentleman-Sande butterfly [32] shown in Figure 3(b) is used in DIF algorithms.

This work concentrates on the DIT approach but both approaches result in the same
arithmetic complexity and the main difference is the indexing in operand accesses for
the FFT butterfly and the order of the computations inside the FFT butterfly. In fixed-
point implementations, DIT and DIF approach may result in different quantisation
noise performance. However, the differences seem to be small and, according to [13],
DIT provides clearly better SNR in radix-2 algorithms.

In the Cooley-Tukey butterfly, one complex multiplication and two complex addi-

tions are needed, each stage contains N /2 butterflies, and the number of the stages is
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Fig. 3. FFT butterflies according to a) radix-2 DIT algorithm in Figure 2(a) and b) radix-2
DIF algorithm in Figure 2(b).

log, N, which gives the total of %logzN complex multiplications and Nlog, N addi-
tions for an N-point transform. The complex multiplications use the complex-valued
twiddle factors Wy, as the second input.

2.3 Radix-2" Algorithms

Traditionally the most popular FFT have been the radix-2 FFTs where computations
are based on 2-input, 2-output butterflies depicted in Figure 3. The arithmetic cost of
an N-point radix-2 FFT is (§ log, N) complex multiplications and (Nlog, N) com-
plex additions. The complexity is often measured in terms of real-valued operations.

The complex-valued addition requires two real-valued additions:
21+ = (a+jb)+(c+jd) = (a+b)+ j(b+d).
The complex multiplication in turn requires more operations:
2122 = (a+ jb)(c+ jd) = (ac — bd) + j(ad + bc),

i.e., four real-valued multiplications and two real-valued additions.

The radix-2 FFT is a special case in the class of radix-2° FFTs [20]. The arithmetic
complexity of FFT can be reduced by using greater than two radix if many of the
complex coefficients turn out to be trivial that is (&1 or £j). Let us consider the
basic equation of the DFT in (1) and divide the original N-point problem to four

partial sums by dividing the system to four sub problems where the length of problem
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Fig. 4. Signal flow graph of radix-4 butterfly.
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+ Z (n+3)Wi4 ) r=0,1,--- N—1. 4)

This method results in a radix-4 algorithm where computations are based on 4-point
DFT. This approach has benefits in terms of arithmetic complexity as 4-point DFT
can be computed with trivial coefficients. By combining the twiddle factors, the

radix-4 butterfly is defined as:

Y= xo + Wxi + Waxpy + Wsx;
yvi= x — jWixi — Waxo + jWixs )
2= xo — Wixi + Wox, — Wsx;

3= x + jWxi — Woxo — W3

This results in arithmetic cost of three complex multiplications and 12 complex ad-
ditions. The radix-4 butterfly is presented in Figure 4. With the radix-4 algorithm,
The computations are carried out in log,(N) butterfly stages; e.g., 64-point FFT is
completed in three stages while the same transform requires six stages in the radix-2
algorithm. The arithmetic complexity for an N-point radix-4 FFT is %TN logy N com-
plex multiplications and 3N log, N complex additions.

From the implementation point of view, the lower number of arithmetic operations
provides potential for faster computation and energy savings. In addition, the latency
of computations can be shorter. Besides lower arithmetic complexity, the radix-4 FFT
provides also other advantages. The lower number of butterfly computation stages

implies that, in memory based systems, less memory accesses are required. This
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Table 1. Arithmetic cost and the number of butterfly stages in different FFT algorithms.

Radix | # complex multiplications | # complex additions | # stages
2 Jlog, N Nlog, N log, N
4 %logzN %logzN %logzN
8 3?NlogZN Nlog, N %logzN

speeds up the computations, reduces energy consumption, and relaxes the memory

bandwidth requirements.

The arithmetic complexity can further be reduced by selecting on even higher radix.
However, in radix-8 and higher, the butterflies will contain non-trivial coefficients
and, therefore, the relative arithmetic complexity is not decreasing as much. While
radix-8 computations are applicable as they provide some advantages in specific im-
plementation styles, higher radices are seldom used. The arithmetic cost and the

number of stages of the different radix systems are presented in Table 1.

The main drawback of the higher radix p is the fact that the length of the transform has
to be a power of 27, i.e., radix-4 algorithms can only be applied when the transform
length is a power of four. When the radix is higher, there are less sequence sizes
where the algorithm can be applied. Due to this fact, radix-2 FFT has been popular.
It also provides relatively good savings in arithmetic complexity and regularity, which

eases the implementation.

2.4 Mixed-Radix FFT

The limitation of radix-2* FFTs is the fact that it can be applied only to transform
lengths that are a power of the radix. This can be overcome by using mixed-radix
approach where the DFT decomposition contains several radices, e.g., 32-point FFT
can be computed with two radix-4 stages and a single radix-4 stage. An example of
mixed-radix FFT is shown in Figure 5 where signal flow graph of a 32-point in-place
DIT FFT based on radix-4 and radix-2 is illustrated. The in-place computation saves
memory, since each memory block is reused after the butterfly is computed. The
memory requirements of the in-place computing is N memory locations. The operand

access, i.e., the memory addressing, is discussed in more detail in Section 2.6.

The selection of the used radix is a compromise of the butterfly complexity, arithmetic

cost, transform sizes to be supported, system requirements, and the design time of the
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Fig. 5. Signal flow graph of 32-point mixed-radix DIT in-place FFT algorithm.

system. In this work, the mixed-radix is selected, which supports all the transform
sizes of power of two. When size is not power of four the last stage of the transform
is computed with radix-2 algorithm. In the developed system, one radix-4 or two
radix-2 butterflies are computed simultaneously, to obtain four input and four output
butterflies in either case. The mixed-radix approach is usually used when designed
system should support multiple FFT sizes, since the required sizes are not usually
all equal to the same power. E.g., if we need to support the IEEE 802.16.1 OFDMA
PHY [42], the transform lengths 256 and 2048 need to be supported but radix-4 FFT
cannot be used to compute a 2048-point FFT.

2.5 In-Place Computations

The mixed-radix algorithms, radix-2" FFT algorithms, and radix-p algorithms in gen-
eral, are block processing algorithms where processing is carried out in processing
stages consisting of butterfly computations. This can be seen from the signal flow

graphs of the algorithms, e.g., Figure 2 and Figure 5: when input operands are avail-
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Fig. 6. Signal flow graphs of in-place DIT FFTs: a) 8-point radix-2, b) 16-point radix-2, and
¢) 16-point radix-4.

able the butterfly operations in the first computing stage can be completed, results
are stored, and then used as operands for the second butterfly stage. Often in soft-
ware implementations, double buffering [34] is used, i.e., operands are stored in an
array and results are stored to an another array and the role of buffers is exchanged
for the next iteration. However, there is no need to reserve additional memory for
the computation. Once the operands for a butterfly operations are read, the same
memory locations can be used to store the results, i.e., computation can be performed
in-place [46]. Exploitation of this property reduces the memory requirements of soft-

ware implementations significantly.

Real-time FFT is often computed on consecutive blocks in the input data stream but
FFT can be computed with overlapped blocks. In such a case, the computation is
called sliding FFT (alternatively running FFT) [29]. There are special mechanisms
for reducing complexity of sliding FFT computations but this type of computations

are not considered in this thesis.
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Fig. 7. Operand address generation for in-place FFT: a) 8-point radix-2 FFT at Figure 6a),
b) 16-point radix-2 FTT at Figure 6b), c) 16-point radix-4 FFT in Figure 6¢), d)
32-point mixed-radix FFT at Figure 5, and e) 64-point radix-4 FFT.

2.6 Permutations and Operand Access

Different FFT algorithms have different operand access patterns. E.g., in Figure 6a),
the signal flow graph of an 8-point in-place DIT radix-2 FFT is shown where the
access pattern of the operand data for butterfly computations depends on the butterfly
column s of the FFT. This implies that results stored in an array from a butterfly stage
need to be permuted before processing on the next stage. If the array is stored in
memory and the length of array is a power of two, the permutation can be carried out
with index manipulation. At bit-level, a linear address (ay_1,an—2,...,do) is rotated
to the right but the bit field to be rotated depends on the stage s: the least significant

bits (alog2 N—s—1,---,dp) are rotated. The bit-level manipulation is illustrated in Figure



18 2. Fast Fourier Transform

7. The address bit field to be rotated depends clearly on the processing stage s.
Figure 7b) and c) show the difference between operand address generation in radix-2
and radix-4 algorithms. In radix-2, one bit rotation to the right is performed while
in radix-4, two bits are rotated to the right. Mixed-radix approach is used when the
number of bits in the array index is odd, as shown in Figure 7d) where two bit rotation
is used for radix-4 butterflies and, in the last stage, no rotation is required for radix-2

butterflies as shown in Figure 5.

In Figure 5, the input is at natural order and the output of the FFT is at bit reversed
order. In order to get the output frequencies of the FFT, the output sequences needs
to be permuted according to bit reversal. The bit reversal of N = 2" indexed data
is an algorithm that reorders the the data according to a reversing of the bits of the
index [31]. E.g., representation of an array X = (xp,x,...,Xx7) in bit reversed order

is (x0,x4,x2,...) as follows

xo — xp : 000 — 000 x4 — x1 : 100 — 001
x1 — x4 : 001 — 100 x5 — x5 : 101 — 101
X2 —>x:010 — 010 x¢ — x3: 110 — 011
x3 = x6:011 = 110 x7 —=x7:111 = 111

The reversal of bits of the index is clearly seen in the previous example. The previous
permutation is related to radix-2 algorithms. In radix-4 algorithms, the same type of
reversal in bit-level indices is visible but now the reversal is carried out in 2-bit fields

as follows (array with 16 elements):

xo — xo : 0000 — 0000 xg —xp : 1000 — 0010
x1 —xg 0001 — 0100 X9 —>x9 :1001 — 0110
Xy — x4 20010 — 1000 x10 =~ xs : 1010 — 1010
x3 — x12: 0011 — 1100 x11 — xp3: 1011 — 1110
x4 — xp 20100 — 0001 X1z = x3 1100 — 0011
x5 —> x10 : 0101 — 0101 x13 — x11 21101 — 0111
X6 —> x¢ 0110 — 1001 X14 —x7 1110 — 1011

x7 —>x14: 0111 — 1101 X15 —> x15: 1111 — 1111
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Since bit reversal is invertible, the same permutation applies to sorting out a sequence

in bit reversed order as desired for the output frequencies of the FFT.
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3. TWIDDLE FACTOR GENERATION FOR FFT

The twiddle factors are an integral part of FFT algorithms and often these coefficients
are stored in a lookup table and fetched during computation of the algorithms. While
this is a simple and quick method for short transforms, the table size increases super-
linearly with the transform size. Therefore, with longer transforms it is more efficient

to compute the coefficients at run-time.

In Section 3.1, we introduce the twiddle factors in FFT algorithms. Next we dis-
cuss two principal methods for computing the coefficients; polynomial and recurs-
ive methods are discussed in section 3.2, methods based on CORDIC algorithm are
introduced in section 3.3, and methods exploiting lookup tables are reviewed in sec-
tion 3.4. Finally in section 3.5, we discuss the proposed method to compute the
coefficients based on a lookup table, which supports mixed-radix FFTs consisting of
radix-4 and radix-2 computations.

3.1 Twiddle Factors

The FFT algorithms contain complex-valued coefficients known as twiddle factors as

shown in (3). They are defined as
WE = ¢ 727/N — cos(2mk /N) — jsin(2mk/N). (6)

These coefficients are actually complex roots of unity evenly spaced in the unit circle
on complex plane [20]. The number of different factors depends on the problem size
N and the type of the fast algorithm. E.g., in radix-2 algorithms, each butterfly op-
eration use one coefficient thus %logzN factors are used in the algorithm. However,
there are only % different factors in the algorithm as seen in the 16-point radix-2

Fourier transform illustrated in Figure 8 a). In the radix-4 algorithm, there are four
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twiddle factors in each butterfly:

N
WY, W Wk Wk k= 0., = 1.
As W9 = 1, there is a total of 3 Nlog, N non-trivial twiddle factors while only (¥ — 1
N 3V 108y Yz

are unique, Figure 8 b) shows coefficients of 16-point radix-4 FFT.

When implementing an FFT algorithm, it is obvious that there is a large number of
coefficients, which need to be used, especially when the transform size is large. The
twiddle factors can be formed by using trigonometric functions, which are, however,
expensive. The coefficients can be computed with fast algorithms, which exploit the
trigonometric identities of twiddle factors, e.g., Singleton’s method [69]. Then the
coefficients can be computed on the fly, when they are needed. Another approach
is to exploit lookup tables and read the coefficients from the tables. In many cases,
the lookup tables are stored in ROM but, in software implementations, data memory
can be used to store the coefficients. However, random access memory consumes
more power than read-only memory. In addition, when coefficients are stored to data
memory, additional memory accesses are required. In general, on-the-fly computa-
tion of twiddle factors requires less area, but consume more dynamic power compared

to methods using lookup tables.

3.2 Polynomial and Recursive Twiddle Factor Generation

The twiddle factors can be generated as piecewise polynomial approximation of a
function. Polynomial approximation requires multiplications and additions to com-
pute the value of a function with given parameters. It should also be noted that
the complexity of the polynomial based algorithm increases significantly with the re-
quired output precision. In [28], second order polynomial approximation is combined
with Horner’s rule to compute the sine and cosine values. The described computa-
tion unit contains four multipliers, four adders, and two lookup tables. The tables are
used to partition the parameter ranges into regions. In order to increase precision,
the number of regions have to be increased, which in turn increases the cost. Similar

structure is proposed in [74].

The recursive twiddle factor generation is based on recursive feedback difference

equations for sine and cosine functions. This approach is less complex compared
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a) W?é WTé
Fig. 8. Twiddle factors in 16-point FFT: a) radix-2 algorithm and b) radix—4 algorithm. By,

refers to sector number.

to the polynomial, one iteration uses two real-valued multiplications and two real-
valued additions to produce a complex-valued result. The drawback of the algorithm
is error propagation of the finite numbers due to the feedback structure of the al-
gorithm. In [19], a method to reduce the complexity of error propagation circuit is
proposed. The accuracy is improved with a LSB correction table containing % 3-bit
entries. The area cost is reduced by sharing the same multiplier and adder for both
real and imaginary parts. This effectively doubles the latency of coefficient genera-
tion. The method uses two lookup tables for cosine and sine values and both tables
require log, N — 2 entries. The drawback is that the method generates an ordered se-
quence of twiddle factors, thus it supports only a specific type of FFT algorithms and
the reported unit supports only radix-2 DIF FFT.

In these algorithms, the large number of iterations will increase the length of com-
putation kernel. This might increase the need for intermediate storage. i.e., registers.
Also the large number of multiplications will increase the power consumption of

twiddle factor generation [P3].

3.3 Twiddle Factor Generation Based on CORDIC

The Coordinate Rotational Digital Computer (CORDIC) algorithm is a well known
iterative algorithm for performing vector rotations [26, 45, 84]. All of the trigono-
metric functions can be evaluated by rotating an unit vector in complex plane. This

operation is effectively performed iteratively with the CORDIC algorithm. The gen-
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eral rotation transform at iteration ¢ can be given as

{X,H = X,cos¢p —Y;sin¢ )

Yii1 = Yicosp+X;sing

where (X;11,Y;4+1) is the resulting vector generated by rotation of an angle ¢ from
the original vector (X;,Y;), i.e., the resulting vector rotates in the unit circle in similar
fashion as the twiddle factors. Therefore, the CORDIC algorithm can be used to
compute the twiddle factors, generating the sine and cosine values. In particular,
CORDIC is used for replacing the twiddle factors with rotation information and,
therefore, avoid multiplication with the twiddle factor by replacing it with rotation
realised with additions. This operation mode is called rotation mode. The CORDIC
can also operate in vectoring mode which returns the rotation angle and the scaled

magnitude of the original vector.

The CORDIC multiplier consumes less power compared to a traditional multiplier.
E.g., in [92], a pipelined CORDIC unit consumed roughly 20 % less power than
the traditional complex-valued multiplier while the area cost was about the same.
Recursive CORDIC iteration saves area compared to lookup based twiddle factors
(discussed in the next section) but it introduces longer latency. In [92], the rota-
tion angle constants for generating all the twiddle factors for an N-point FFT are
stored in a lookup table with log, N entries. In [30], the twiddle factors are generated
without pre-calculated coefficients. The CORDIC algorithm is iterative, thus it can
be pipelined easily and it lends itself to pipelined FFT architectures. However, the
dynamic power consumption with a large number of iterations and/or long pipeline
will be in higher than in a lookup table based approach. This will be the case, when
longer word widths are used, i.e., increased accuracy calls for more iterations. This
can be seen also with short transforms. E.g., in [7], it is shown that multiplier-based
FFT consumes significantly less power compared to CORDIC FFT on FPGA. How-

ever, the clock frequency of CORDIC implementation can be much higher.

Traditionally the CORDIC has mainly beed used in fixed-function ASICs but it can
be used to accelerate computations in a programmable processor as reported in [68].
The authors describe instruction extensions for CORDIC operations and there are
separate instructions for vectoring and rotation mode. Four different instructions
are needed for a 16-iteration CORDIC operation. The architecture supports SIMD

operation and two CORDIC 16-bit operations with 16-bit operands are carried out
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in parallel. Despite the overhead, the authors report 10x speedup in several matrix

operations compared to a baseline architecture without the CORDIC extensions.

3.4 Methods Based on Lookup Tables

The twiddle factors can be stored in a lookup table, which is then indexed according
to the selected algorithm. The simplest design, in radix-2, requires two coefficients
in one butterfly, where the first twiddle factor is trivial +1 and the second is a non-
trivial complex number. Now the memory contains all the twiddle factors in order
in the memory thus the number of required coefficients in radix-2 is %logzN where
N is the transform size, e.g., lookup table has 448 entries when N = 128 [11]. The
memory can be now accessed with an index obtained from a simple counter. In this
approach, the lookup table contains redundancy as many of the coefficients are the
same. Such redundancy can be removed by adding an address generation logic before
the lookup table. In [47,88], a method to reduce the number of coefficients in radix-2
algorithms to % is proposed. Each twiddle factor is stored only once in the table, i.e.,
the lookup table contains 64 entries when N = 128. Such a table can be used only
for a sequential implementation but, in [49], a method is proposed, which allows the
N /2 entries to be distributed over 2, P =0, 1, ..., logz% — 1 sub tables such that those
can be accessed by 2F butterfly units simultaneously.

The previous twiddle factor table contains redundancy: as the twiddle factors are
equally spaced in unit circle on the complex plane, there is symmetry as illustrated
in Figure 8 a). We can note that the real and imaginary parts of the twiddle factors
in the sector By and Bj, as seen in Figure 8 a), can be used to obtain the twiddle
factors required in sectors B, and B3. The number of lookup table entries in the
radix-2 case can be reduced down to % 4 1. Such an approach has been presented
in [14,54,80]. When N = 128 only 33 complex-valued entries are needed. In this
method, the twiddle factors from sectors By and B in Figure 8 are stored to the
lookup table and the rest of twiddle factors are generated simply by interchanging
the real and imaginary parts of the coefficient and changing the sign of the real part

of the coefficient before it is assigned to the imaginary part.

The previous representation still contains redundancy in lookup tables: the sym-
metry of twiddle factors between in different quadrants is exploited but the symmetry

between real and imaginary parts of the twiddle factors is not used. This symmetry



26 3. Twiddle Factor Generation for FFT

allows all the twiddle factors to be generated from only one sector, By in Figure 8
a). In [36], this redundancy is avoided by generating twiddle factors for radix-2 FFT's
with the aid of N + 1 complex-valued twiddle factors stored in a lookup table, i.e.,
when N = 128, the lookup table contains 17 entries. A twiddle factor W} is computed
based on exponent k as follows

Ri+jla ,when0 <k<¥
W — —Ro—jly ,when¥ <k<?¥ ®
N Iy—jRy ,whenf <k<¥

—~Ra+jly ,when3®¥ <k<¥

where A is the index to the lookup table consisting the coefficients from the segment
B()I

k[n—2:0] ,when O <k<?®
~k[n—2:0]4+1 ,when§¥+1 <k<Zf-1
A k[n 0]+ ,wen/%—i— _k_é‘zv ©)
kln—2:0] ,when 7 <k<
~kln—2:0]+1 ,when3®¥ +1 <k<i-1

where k[a : b] denotes the bit field (kq,kq—1,kq—2,--.,kp+1,kp) Of bit-level represent-
ation of integer k, and ~ denotes bit-wise complement operation. R4 and I4 are the
real and imaginary part of the coefficient from the lookup table at the location A,

respectively.

In Table 2, the twiddle factors for 32-point radix-2 FFT are listed in 2 decimals ac-
cording to the sectors. The sine values, which are needed to create all the twiddle
factors, are in the sector By. The actual twiddle factor requires only negation of sine
and cosine values read from the lookup table as defined in (8). According to (9), the
index to the lookup table is formed with simple operations: increment and comple-

ment. The index generation logic depends only on the length of FFT to be supported.

Table 2. Twiddle factors in 32-point radix-2 FFT.

’ By ‘ B ‘ B> ‘ B3 ‘
0
w9,(1.0,0.0) | W(0.0,—1.0)
wi, (.98, —.20) | Wi, (. 20 —.98) | W5 (—.20,—.98) | W5 (—.98,—.20)
w,(.92,—.38) W32( —.92) | Wi9(-.38,-.92) | W} (—.92,-.38)
w3, (.83,—.56) | W (.56,—.83) | Wi (—.56,—.83) | W5 (—.83,~.56)
wh(.71,—.71) WiZ(-.71,-.71)
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3.5 Extension for Lookup Table Methods to Mixed-Radix FFT

Many of the previously discussed methods are applicable only for a limited set of FFT
algorithms, e.g., many methods support only radix-2 FFT. If more efficient mixed-
radix computations are to be used, more flexible twiddle factor generation methods
need to be found. In [P3], a twiddle factor computation method is proposed, which
supports radix-4 FFT and mixed-radix FFT. The method exploits lookup tables and
% + 1 complex-valued twiddle factors need to be stored for an N-point FFT. When
the lookup table has been created for an N-point FFT, the proposed method supports
all the the power-of-two transform sizes up to N when computed with mixed-radix
algorithms containing radix-4 and radix-2 computations. The Figure 8 b) shows that
the method presented in (8) could not be used, the usage of sectors from by to B3 is not
sufficient to generate all coefficients in radix-4 FFT. The main drawback of the lookup
approach compared to polynomial methods is the fact that the size of table increases
as the transform size increases. However, we target embedded systems where the
FFT sizes are not huge. Therefore, the size and power consumption of the lookup
tables are reasonable compared to multipliers required in polynomial methods. If

huge transforms are computed, the polynomial methods will be more effective.

Apart from the lookup tables, the proposed twiddle factor unit requires only few
additional components, mainly two real-valued negation units for changing the sign
of sine and cosine values obtained from the lookup table. In addition, the method
allows completely pipelined implementation, thus it can generate twiddle factors at

each clock cycle unlike some of the other methods discussed earlier.

In the proposed method, the factor W/\} is computed based on the given power of
the principal root of unity, k. Such an approach is flexible as it allows the method
to be used with several types of FFT algorithms as there is no need to compute the
twiddle factors in a certain fixed order. The different ordering of twiddle factors can
be organised simply by providing the powers, k, to the unit. This is also illustrated
in [P3] as there is a permutation unit, in which the power parameter k is generated
from a linear counter to be used as a operand for the proposed twiddle factor unit.
Such permutations are performed at bit-level, thus no arithmetic units are needed and
the solution requires a rather small area. Such an additional unit is not needed if
radix-4 DIF algorithm is used. This is the same case as used in some polynomial

methods, where the twiddle factors are generated in increasing order of powers, k.
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4. ARCHITECTURES FOR FFT COMPUTATION

In general, the FFT implementations can be divided to two main classes: fixed-
function processors and programmable processors. The fixed-function processors
are tailored for a specific application and the functionality cannot be changed at run-
time. However, fixed-function FFT processors may allow parameters to be changed,
e.g., the size of he the Fourier transform to be computed can be changed at run-time.

Fixed-function processors can be implemented either on an FPGA or as an ASIC.

The implementation style depends on the application at hand and the design goals.
Traditionally fixed-function circuit is selected when application is known, i.e., there
are no changes expected to the application, and in particular, low energy and/or high
performance is desired. On the other hand, software implementation is flexible as
the functionality can be changed easily. This style is selected when the applica-
tion is not mature and there is a high probability to change the functionality. The
application-specific processor tries to collect the best features of both styles; some of
the resources are tailored for the specific application, thus lower power consumption
can be expected. With adequate parallelism also higher performance can be assumed.
Software implementation allows the functionality to be changed by changing the pro-

gram.

In this chapter, architectures for computing fast Fourier transform are reviewed. First,
fixed-function FFT processors are discussed in Section 4.1. In Section 4.2, more flex-
ible solutions, i.e., FFT on programmable processors, are discussed. The proposed
energy-efficient programmable processor for FFT is discussed in Section 4.3. First,
the TTA template and the design framework related to TTA are discussed. Finally in
Section 4.4, the energy-efficiency of the proposed customised processor is compared

to other FFT processors including both fixed-function and programmable solutions.
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4.1 Fixed-Function Architectures for FFT

In fixed-function FFT processors, the underlying hardware is either an FPGA or an
ASIC tailored specifically for FFT computations. The circuit can be used as an ac-
celerator for a host processor where the main goal of the circuit is to be faster and/or
more energy-efficient than the host. One of the advantages of such a configuration
is that while the accelerator is carrying out computations, the host is free to execute
other tasks. Another possibility is to use the circuit as an individual block of a larger

system or in the system-on-chip (SoC), e.g., in an OFDM transceiver.

The signal flow graphs of FFTs derived with Cooley-Tukey decomposition consist
of smaller DFTs and multiplications with twiddle factors as seen in Figure 2. It
can be seen that the basic building blocks of these algorithms are 2-point DFT and
complex-valued multiplication, i.e., FFT butterflies. The butterfly related to radix-2
DIT algorithm in Figure 2(a) is shown in Figure 3(a). The FFT butterfly is related to
the radix; radix-2 butterfly is based on 2-point DFT while radix-4 butterfly is based
on 4-point DFT.

According to [3] FFT computing architectures are classified into five categories:
single memory, dual-memory, pipelined, cache-memory, and array architectures. Here,
single memory and dual-memory architectures are combined to memory architecture
as illustrated in Figure 9(a). An example of pipeline architecture is shown in Figure
9(b), principal cache-memory architecture is shown in Figure 9(c), and array archi-

tecture depicted in Figure 9(d) .

Memory architectures consist one or more processing elements within the FFT column
connected to main memory. In pipeline architecture there is a processing element, or
elements, dedicated for one butterfly stage in the FFT algorithm. A memory architec-
ture where local cache is connected between main memory and processing elements

is called cache-memory architecture.

The array architecture consist of several independent processing elements with local
buffers connected together by an interconnection network, many implemented as
Network-on-Chip (NoC) [57]. Array systems may use multiple chips [17,76] or a
single chip [50]. Throughput of the array systems can be high as several butterflies in
a FFT column are computed in parallel and the data for the next column is fed from

local buffers via interconnection to processing elements. However, the cost of having
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Fig. 9. Principal architectures for fixed-function FFT processors: (a) memory, (b) pipelined,

(c) cache-memory, and (d) array.

such amount of parallelism and parallel data transports is high.

An architecture is developed by selecting an FFT algorithm with specific features,
which then can be exploited for optimising the architecture. The simplest implement-
ation is achieved when using memory architecture with a single processing element;

other implementation methods are used when the simplest implementation style can-
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not satisfy the performance requirements. In the memory architecture, the compu-
tation speed of the system is restricted by the memory bandwidth since operands to
butterfly computations and results use the same memory. The memory architecture

with a single processing element is naturally the cheapest solution.

4.1.1 Memory Architecture

In memory architectures, one or more FFT butterflies from the same column, i.e., data
processing for input set defined by FFT radix, is performed in parallel [53]. comput-
ing multiple butterflies from the same column in parallel increases the throughput of
the system [89]. This increases parallelism and therefore the area cost, i.e., when
using radix-2 FFT the maximum number of butterflies in one column is % Higher
radix can be used to increase parallelism, e.g., in radix-4 FFT, two radix-2 columns
are combined. It should also be noted that the complexity of data flow control in-

creases with the parallelism.

Input data for the butterfly is fetched from the data memory and the output data
is stored back to it. The pressure for memory accesses increase with the parallel-
ism. The coefficients used in the butterfly computations can be fetched from the data
memory, from a separate coefficient memory, or generated on the fly. This topic was

described in more details in Section 3.

Usually memory based systems are used when large Fourier transform sizes are
needed but high throughput is not needed [89]. The performance is limited by the
memory bandwidth, i.e., the number of available memory ports. Multi-ported memor-
ies can be used to increase the memory bandwidth but unfortunately such a solution is
expensive both in area and power consumption. A cheaper solution is to use multiple
single-port memories but in such parallel memory systems the bandwidth is reduced
by memory conflicts. In case of conflicts, the memory accesses need to be serialised.
In addition, conflict detection and management increases the area and power dissip-
ation of the system. There are also conflict-free parallel access schemes tailored for
FFT, e.g., the method reported in [35].
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4.1.2 Pipelined Architectures

In the previous approach, parallelism was increased by computing several butterflies
in parallel. However, throughput can also be increased by computing butterflies from
multiple columns at the same time and this is the basis for the pipeline architecture [8,
79]. Such an architecture can achieve high throughput. At minimum, one butterfly
unit is required for each column in the algorithm. This implies that the number of

butterflies is dependent on the Fourier transform size unlike in the previous approach.

Another issue to note is the fact that in pipeline architecture all the twiddle factors
in a butterfly column are mapped on to a single multiplier unit. This is very ef-
fective if the selected algorithm is such that many columns have constant twiddle
factors and in such a case the constant multiplier can be used instead of a general
complex-valued multiplier or complex rotator [59]. Different pipeline approaches are
presented in [37] and the results indicate that the delay-feedback approach provides
the best utilisation and minimises the memory cost. In radix-2 single delay-feedback
approach, each butterfly unit requires a memory, i.e., a FIFO type structure, with
size of ﬁm The total size of these memories is N — 1, which is the same as the
memory based systems using in-place computation although the individual memor-
ies in pipeline architecture are smaller, however several different address generation
schemes are required. Pipeline based systems consume more area due to the parallel

resources and are used normally in FFT systems where high throughput is required.

The throughput of the system can be increased by computing multiple butterflies from
the same column in parallel as shown for the pipelined systems in [44] or increasing
the FFT radix. This requires more memory ports and the area cost is higher due to
the increased number of processing elements (PE). In [75], a scalable FFT architec-
ture is proposed, which combines principles from the memory-based and pipelined
designs. As illustrated in Figure 10, the architecture carries out iterative computa-
tions with the aid of butterfly PEs . The input multiplexer selects either the input or
data from the previous iteration. The architecture is based on a constant geometry al-
gorithm where the interconnections between the butterfly columns are perfect shuffle
permutations. Such permutations are realised in the architecture with the aid of hard-
wired perfect shuffle network followed by temporal permutation based on cascaded
switch-exchange units. Each unit contains two delay lines and multiplexers for ex-

changing the signals. The architecture is scalable in the sense that for N-point FFT
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Fig. 10. Principle organisation of scalable architecture for radix-2 FFT.

the number of processing elements can be scaled from one to N/2. However, the
number of processing elements must be a power-of-two. The twiddle factors for the

butterfly processing elements are obtained from internal lookup tables.

In [45], an FFT architecture using a CORDIC multiplier is proposed. This pipeline
architecture contains four radix-8 butterfly units and one radix-2 unit, thus it supports
FFT sizes of 8192, 4096, 1024, 512, 128, and 64. The radix-8 units exploit distributed
arithmetic. Each result of the radix-8 butterflies is fed to a CORDIC-multiplier and
then stored to temporal memory. Due to the pipeline schedule, the memory usage is
not optimal; %N + 192—N8 memory elements are required for N-point Fourier transform.
The system has throughput of one sample per cycle and the latency depends on the
Fourier transform size. The area of the system is 55k gates without memories. The
small area is achieved by using 16-bit internal data representation with 8-bit input
data.

An 8-parallel pipelined architecture is proposed in [79] supporting Fourier transform
sizes from 64 to 1024. Different transform sizes are based on different algorithms and
radix-2/2°radix-2/24 /23, radix-22 /23, radix-23 /23, and radix-2* /23 FFT algorithms
are used. The locality of the algorithm is exploited when mapping the computations
on 8-path or 4-path modules. The first module contains four radix-2 operation sets

and the second consists five radix-2 operation sets. An 1024-point Fourier transform
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uses four data paths and an additional radix-2 stage in the first module. A CORDIC
unit with nine pipeline stages is used in twiddle factor generation and complex multi-
plication. The accuracy of a 9-stage CORDIC unit is sufficient for input with 10 bits
of precision. The actual input data format is block floating-point: 10-bit mantissa
with shared 4-bit exponent in blocks of eight samples. The proposed scheme pro-
cesses 512-point FFT in 64 cycles and 1024-point FFT in 256 cycles. The maximum
clock frequency is 300MHz, which provides throughput of 2,4 Gb/s for 512-point
Fourier transform. The 1024-point Fourier transforms are executed at 5 MHz speed.
The processor takes 3.2 mm? of area.

4.1.3 Cache-Memory Architecture

In order to reduce the power consumption of a large centralised memory, a smaller
memory, i.e., cache, could be used. Cache-memory architecture is based on this
idea. The FFT algorithm must be such that it contains a high degree of locality [2]
and the algorithm can be divided into independent groups, called epochs, of smaller
FFTs [3]. The FFT size is defined by the epoch sizes, N = N N, - - - N, and each
epoch contains N% independent N,-point FFTs, i.e., this follows the Cooley-Tukey
decomposition. For example, 1024-point FFT can be divided to two epochs, which
each contain 32 FFTs of size 32. In this case, A memory with 32 entries could be
used in inter-epoch computations and memory with 1024 entries is used in intra-
epoch computations. The cache is usually so small that it can be implemented as a

local register bank [3,4].

An energy-efficient FFT based on cache-memory architecture is proposed in [16].
The unit uses a memory model where the cache is located between main memory
and the FFT butterfly. FFT sizes from 128 to 1024 are supported and the FFT scheme
is radix-2 and radix-2° using pipelined dual-delay-feedback architecture. This is an
example how pipelined architecture model could be combined with a memory-based
model, i.e., the butterfly uses pipeline based architecture and rest of the system is
memory based. The authors present a 3-epoch system. Four memory accesses are re-
quired in each cycle, which would lead to an expensive four-ported implementation.
To avoid this, the cache is divided to two banks containing even and odd addresses
with data exchange logic if data is required to or from different cache. The FFT

scheme is manipulated in order to have only one read and write from the even cache
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and the second one from the odd cache in a cycle. The main memory is divided in
similar fashion to two single port memories. Two twiddle factors are required in each
cycle, and those are provided from ROM memories where power consumption sav-
ings can be achieved by applying the twiddle factor generation model to the system.
The system is optimised based on symbol-error-rate analysis and the word length is
set to 13 bits. The multiplier is set to have two modes: full 13x13 bit multiplication
and smaller, 13x(9-5) bit multiplication depending on the modulation scheme and the

size of the Fourier transform.

4.2 FFT on Programmable Processors

In programmable processors, the underlying hardware is either a general-purpose
processor (GPP), digital signal processor (DSP), or an application-specific processor
(ASP). Usually GPPs are too power hungry to satisfy the demand on power budget
or require too many cycles when driven in low power modes. The GPPs designed for
low power dissipation, e.g., for mobile domain, contain typically hardware accelerat-
ors for computationally intensive algorithms like FFT. The hardware accelerator can
be a DSP, ASP, or a fixed-function accelerator discussed in the previous Section. The
accelerator is placed in the same circuit to reduce power consumption and to speed
up the data transfers.

One popular GPP processor family in the mobile systems is ARM, which completes
1024-point FFT with 62.5 kcycles (1 GHz ARM cortex A9, Pandaboard) [18]. The
DSPs often provide special instructions to speed up FFT computations and to improve
energy-efficiency [82]. In software implementations, FFT computations are naturally

related to memory architecture discussed in Section 4.1. This gives a lower bound
N

lOgradixN%

FFT, and M,, is the number of memory accesses in a cycle.

to the cycle count where N is the size of the FFT, radix is the radix of the

In [82], the underlying hardware is a two-way exposed pipeline VLIW where eight
parallel operations can be executed in parallel. The processor contains two register
banks, each register bank provides service to four functional units, i.e., each register
and FU combination forms a cluster. Each cluster has memory access, through a L1
cache, of 64-bit with aligned data and 32-bit with non aligned data, giving maximum
throughput of 128 bits per cycle. The vendor specific libraries contain optimised FFT

functions written in assembly language and the special instructions for speeding up
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FFT computations are extensively used in the code. A 1024-point radix-4 FFT with
16-bit operands takes 6526 cycles without L1 cache misses and stalls. Estimating the

L1 cache miss and stall cycles gives a total cycle count of around 8000 cycles. [82].

An ASP called SPOCS is presented in [5] where the processor architecture is spe-
cially designed for OFDM systems with custom hardware and instructions for FFT.
The processor contains one program memory, two data memories, a program control
unit, a data processing unit, and address unit, an instruction register and an interrupt
controller. The address unit contains a special FFT address generation unit, which
generates the address for accessing the input data as well as the twiddle factors. The
twiddle factors are stored in the memory. The system supports FFT sizes from 64 to
8192 points but only a version supporting Fourier transform lengths up to 2048 points
has been implemented. The processor uses radix-2 computations. The internal word
length of the processor is 16 bits.

Another ASP tailored for mixed-radix FFT is proposed in [87]. It uses a two-issue
five-stage dynamical-static-hybrid pipeline described in [40]. The ASP can compute
two radix-4 and four radix-2 butterflies in every cycle, i.e., eight 32x32-bit complex-
valued multiply-accumulate operations in one cycle. The memory is vectorised and
cached with separate vector direct memory access (DMA) unit. The memory word
length is 256-bit. The implementation is based on the cache-memory architecture
discussed in 4.1.3 and computations are divided to epochs. The epoch computations
requires access to memory in columns and rows; the first epoch access the memory by
columns and the second epoch by rows. For this purpose the data shuffling within the
register file has been introduced. This saved an extra pipeline stage for the dedicated
shuffling unit. This also requires dedicated instructions for the register file, in order to
shuffle the data correctly. The twiddle factors are stored in the main memory but the
redundancy of the twiddle factors is not exploited. The register file is power hungry
and since the data path of the processor is not exposed the designer cannot optimise

the register transports.

In [34], an ASP supporting radix-2 FFT sizes from 16 to 8092 points is proposed.
The processor uses two or three epochs, depending on the size of the Fourier trans-
form. By introducing the third epoch the size of the intra epoch register file could
be kept small when the size of the Fourier transformation increases. The ASP has
been obtained by adding custom hardware Tensilica’s Xtensa template [33] to effi-

ciently compute FFT on the ASP. The Xtensa core contains 128-bit wide data bus,
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which supports four parallel data reads or stores, i.e., the complex-valued data is
32-bit. The Xtensa core is expanded with two register files, twiddle factor memory,
and radix-2 butterfly unit. The butterfly unit can compute four radix-2 butterflies
simultaneously, which requires eight input data operands and four twiddle factors.
This effectively implies four complex-valued multipliers. The two register files are
used to store intermediate results within an epoch and the register files are used with
ping-pong approach. Since in-place computations are not used, two register files
are required. However, two register files simplify the addressing and butterflies are
easier to design to have a uniform structure. The twiddle factor memory contains
coefficients for intra epoch computations and the twiddle factors are fetched from the
data memory to the local twiddle factor memory at the beginning of each epoch. The
twiddle factors for inter-epoch, i.e., twiddle factors between the epochs, are fetched
from the main memory. Total of % + 1 coefficients are stored to memory, which are
used to compute the twiddle factors on the fly. The twiddle factor generator would
save the accesses to the data memory and thus would increase the performance and

decrease the energy consumption, although the core area would be increased.

4.3 Proposed Architecture Based on Transport Triggering

In general, ASPs are based on flexible processor templates, which are then tailored
according to the requirements of the given application. One such a template is the
transport triggered architecture (TTA) [24], which is a class of statically programmed
instruction level parallelism (ILP) architectures reminding very long instruction word
(VLIW) architecture. It has been widely used in modern day embedded systems
due to its modularity and scalability. In the TTA programming model, the program
specifies only the data transports to be performed in the architecture. A data transport
to a specific port in a functional unit triggers the actual operations. Such a paradigm

is opposite to traditional operation triggered architectures.

The TTA was proposed to overcome the limitations of VLIW architectures, in partic-
ular, to reduce the register pressure; When the performance of a VLIW architecture
is scaled up by adding new functional units (FU), new connections to the register file
(RF) are required [21] to provide more operands from the register file to the larger
number of functional units. Such connections limit the performance of the system by

constraining the operational frequency and increasing power dissipation of the bus
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Fig. 11. Principal organisation of transport triggered architecture consisting of instruction
and data memories, control unit (CU), interconnection network (IC), functional units
(FU), and register files (RF).

structure.

The TTA the programming model allows specifying each transport and, therefore,
the transports to the register file are visible to the programmer at compile time. The
register file can be implemented as a functional unit that has significantly less read
and write ports compared to a normal register file in VLIW [24]. Also the complexity
of the interconnection network, i.e., the bus connecting FUs and RFs, can be signi-
ficantly reduced compared to the VLIWs. Derived from the VLIW, the TTA possess
modularity and scalability, which allows tailoring the processors by including only
the necessary FUs. The application-specific functions can be implemented with user
defined special functional units (SFU), which are used in a manner similar to standard

functional units, they transporting operands to input port of the function unit.

Figure 11 illustrates the principal organisation of a TTA processor. Control unit (CU)
reads the instruction from instruction memory and decodes the instruction as trans-
ports within the interconnection network (IC) between FUs, SFUs, and RFs. The
control unit can also receive transports from the interconnection network to maintain
the return address and perform jumps. The load store unit (LSU) is a special func-
tional unit, which is used to connect memory to the machine. The interconnection
network consist connections to the FUs and connections from the FUs. The usual
number of connections are two input ports and one for the output but the number of
ports are not restricted by the architecture. The register file can contain an arbitrary
number of input (write) and output (read) ports. In the figure, the connections to and
from the FU or the RF are marked with dots. Apart from customisation of the com-
puting resources and their connections, the word lengths of each resource, FU, RF,

SFU or bus, can be set according to the requirements of the given application.
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The main drawback of TTA is the wide instruction word like in VLIW. This can be al-
leviated by using instruction compression as discussed, e.g., in [39] where dictionary-
based compression, Huffman coding, and instruction template-based compression

were evaluated.

The TTA-based Codesign Environment (TCE) [43] is an application-specific pro-
cessor design toolset that uses a multi-issue exposed data path processor architecture
template. The design flow allows the designer to freely customise the data path re-
sources in the core to exploit the available instruction-level parallelism (ILP) in com-
putation intensive kernels. The design toolset includes a retargetable compiler and
architecture simulator, making design space exploration feasible. The input language
for the toolset could be OpenCL, C/C++, or parallel assembly. Apart from tailoring
the processor architecture with basic data path resources, the designer can also create
user-specific instruction set extensions (SFUs) to further accelerate the application at
hand [27].

One possible candidate for the SFU is found by chaining up the operations executed;
if an operation pattern is repeated in the application, it is a good candidate for a
user specific functional unit. Such operation patterns can be, e.g., memory address
generation, complex addition, and complex multiplication, as illustrated in [P2-P5].
The SFU can also contain more specialised and complex functions like twiddle factor
generator as shown in [P3]. The TTA template supports different latencies, thus the

special function units can be pipelined to an arbitrary number of stages.

After the required performance is achieved, the next step is to minimise the resources
to reduce power dissipation, while maintaining the performance. When the data path
is highly customised for one application there is only small overhead in the area
and energy budget compared to fixed-function ASICs [66]. The programmability of
the processor is usually limited if heavy customisations are used, i.e., when general-
purpose functional units are removed. However, the architecture is still program-
mable but the performance of general applications may not be high. With modern
tools, the design of TTA processor takes less time than designing a fixed-function
hardware implementation [P1]. The TCE framework is used for designing the exper-

iments used in this Thesis.
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4.4  Energy-Efficiency Comparison

The energy-efficiency is defined as the energy consumed for performing the required
task. Power consumption is a usual design metric when designing energy-efficient
systems. The power consumption depends on several issues: area due to the static
power consumption, computing resources, memories, caches, computation cycles,
operating voltage, and operation frequency. In general, the memory architecture with
a single butterfly processing element has the lowest power consumption due to the
simplicity of the design. Such a system has small area but as it is sequential, it has also
the lowest performance. The other architectures possess higher levels of parallelism,
which increases the power consumption. The increased parallelism allows lower
clock frequency to be used for the same performance. This allows lower supply
voltage to be used and, therefore, a parallel solution may even provide better energy-

efficiency [79], even though the power consumption is higher.

In this Thesis, the energy-efficiency is measured as the number of 1024-point FFTs
performed with energy of 1 mJ. This approach tries to compensate the effect of com-
putational speed but there are other implementation specific parameters, which have
a great effect on the result. In order to have meaningful comparisons, the imple-
mentations should be normalised. Although exact scaling of the characteristics of
an implementation on a specific IC technology to another technology is difficult,
even impossible, there are several normalisation methods proposed in the literature.
In [79], a normalisation method for IC technologies is proposed, which take into ac-
count many aspects of architectures and implementations. The normalised energy

consumption of a system, E,,,, is defined as follows:

1 2
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(10)

Enorm = Eimpl

where Ej,,;, is energy consumption of the system implemented on a specific IC tech-
nology, W, is the word length of the system, Uj,,, is the supply voltage of the
implementation, and L;,,, is feature size of the specific IC technology on which the
system has been implemented. The energy consumption of the implemented system
is normalised for the same system implemented on reference technology where L, is
the feature size of the reference IC technology, U, is the supply voltage of reference

technology, and W, is the word length of the reference design.
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Table 3. Energy-efficiency comparison of various normalised FFT implementations meas-
ured as the number of executed 1024-point FFTs with energy of 1 mJ. Vee: Supply
voltage. WL: Word length. t.y.: Clock period. tppr: FFT execution time.

Design  Tech. Method WL V¢ telk trpr FFT/m]

[nm] [bits] [V] [MHz] [us]
[P5] 130 ASP 16 1.5 250 21 809
[18] 65 GPP 16 1.2 1000 63 1!
[82] 130 DSP 16 1.5 720 8 100!
[5] 180 ASP 16 1.8 280 37 61!
[75] 45 ASIC 32 0.9 650 2 1007
[16] 180 ASIC 13 1.8 51 61 748
[87] 65 ASP 16 1.2 150 6 633!
[34] 130 ASP 16 1.5 320 14 1170!
[79] 180 ASIC 14 18 5 220 755

! Energy does not include memories.

We have compared the energy-efficiency of the proposed TTA processor customised
for FFT computations from [P5] to several other FFT implementations by using the

previous normalisation with the following parameter set:

e L,;=130nm,
e Uyr=15V, and

o W= 16 bits.

The energy-efficiency comparisons are listed in Table 3. As predicted the imple-
mentation on a general-purpose processor in [18] has quite poor energy-efficiency.
The DSP processor presented in [82] can achieve high performance but the energy-
efficiency in high speed mode is lower than execution with lower frequency and core
voltage. The high performance is achieved by using manually optimised assembly
code. It should be noted that the energy figures for this processor in Table 3 do not

include memories.

The ASP presented in [5] introduces special operations to obtain higher performance

and improve the energy-efficiency. The special function units are address generation,
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subtraction butterfly, and addition butterfly. Each butterfly uses two complex-valued
multipliers and three complex-valued adders. The twiddle factors are stored in the
main memory. It seems that the performance and energy-efficiency could have been

improved by using a sophisticated twiddle factor generation mechanism.

The pipeline architecture in [75] uses permutation realised with the aid of delay lines,
which introduce high dynamic power as the data travels through the registers in a
delay line. The authors do not describe whether the twiddle factor memories and

address generators are included in the energy figures.

An energy-efficient pipelined processor is proposed in [79]. The processor uses 10-
bit mantissa and 4-bit shared exponent in floating-point arithmetic to gain higher
accuracy than fixed-point arithmetic. The processor is capable of running a 512-
point FFT at 300 MHz while consuming power of 507 mW. The authors present
power figure for the 1024-point FFT at 5 MHz clock. The narrow floating-point word
length allows CORDIC pipeline to be shortened as the accuracy obtained depends on
pipeline length of CORDIC. If larger word lengths are needed, e.g., to support larger
Fourier transforms or to improve the signal to noise ratio, the pipeline depth needs to

be increased, which increases the power consumption.

The cache-memory architecture in [16] provides an energy-efficient memory archi-
tecture where a small data cache is used to reduce memory accesses. The processor
uses 13-bit complex data input and the maximum FFT size is 1024-points. Increas-
ing the maximum size will increase the memory and cache energy consumption and
if better accuracy is required the increase in word length would increase the power
consumption of memories and arithmetic units. In [87], a small cache memory is used
to reduce memory accesses. The energy figure does not include caches or memor-
ies. Further energy savings could be reached by using sophisticated twiddle factor

generation instead of storing all the twiddle factors to the main memory.

The ASP in [34] has two small caches to reduce memory accesses. The caches are
accessed in ping-pong fashion to avoid performance penalty due to stall cycles when
off-loading the computation results to the main memory. Two kinds of coefficients
are required; intra epoch twiddle factors and N different inter epoch twiddle factors.
The intra epoch twiddle factors are stored in a ROM memory and inter epoch twiddle
factors are stored to main memory. The implementation uses % + 1 complex-valued

coefficients to compute the twiddle factors. The butterfly unit can compute four but-
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terflies in parallel, which implies that there are four complex multipliers, while the
proposed design contains only one. The processor supports a maximum of 1024-
point FFT and, in order to support larger FFT sizes, the cache sizes or the number of
epochs has to be increased. The memories, except intra epoch twiddle factor ROM,
and caches are excluded from the energy figure. Finally, the power consumption
estimates have been obtained from Tensilica tool and the accuracy of the power es-

timation is not known.



5. CONCLUSIONS

In this Thesis, several methods for increasing the energy-efficiency of fast Fourier
computations on application-specific processor platform based on transport triggered
architecture are proposed. The application-specific processor template was selected
as the primary target platform for picking the best of the two worlds: flexibility of
programmability and efficiency due to customisation. In addition, the design cycle
of an ASP with aid of modern design tools is significantly shorter compared to tradi-
tional circuit design cycle. The main goal was to improve energy-efficiency without
sacrificing performance and for obtaining this goal optimisations both in hardware
and software were used. By introducing sufficient parallelism in the architecture,
the computationally intensive kernels could be mapped efficiently on the computing
resources. The traditional overheads due to iterations were minimised by exploiting
software pipelining. High parallelism and in particular high utilisation of the com-
putational resources provides high performance with good energy-efficiency. The

proposed system still has flexibility due to programmability.

The main contributions of this Thesis are the following:

e novel coefficient generation method for an N-point mixed-radix FFT where the
lookup table contains only % + 1 complex-valued coefficients,

e energy-efficient memory organisation for FFT computations based on parallel

memory concept,
e energy-efficient operand address generation for mixed-radix FFT, and

e novel processor structure for mixed-radix FFT computations exploiting the ex-

posed data path of transport triggered architecture.

Memory bandwidth is often the main bottleneck limiting the performance. Increas-

ing the bandwidth by adding more memory ports is extremely costly with traditional
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methods. One solution is to add single port memories but there the memory ac-
cess conflicts slow down the execution. Here, the parallel memory access scheme
is proposed to reduce the energy penalty for using multiple memory ports and to re-
move memory access conflicts, i.e., allowing continuous loading of the operands and
storing the results. Parallel memory emulates multi-ported memory, i.e., the soft-
ware designer does not require knowledge of the memory architecture, which might
speed up the design cycle. The proposed parallel memory scheme is targeted towards
ASP designs where the existing principles are used to construct a conflict-free access
scheme. The proposed scheme does not employ any predefined access format sig-
nals for the parallel memory and the detailed hardware structure for dynamic conflict
resolution is included in the memory interface. One of the sources for energy con-
sumption are memory address computations and an here energy-efficient approach
was taken as address computation units were customised for the application. Espe-
cially, by operating at bit-level, expensive word-wide arithmetic operations can be
avoided and replaced with simple bit-wise logic-operations. The customised opera-
tions reduce the overhead as long sequences of arithmetic operations can be avoided.
The drawback is, of course, the fact that the address computations are application-
specific. but programmability also general address computations in a similar fashion
as in any other processor. Another source for energy consumption is a multi-ported
register file. In particular, the write ports are expensive. In the exposed data path
of the TTA template, register file distribution was used. In addition, in TTA pro-
cessors the operand transports introduce overhead, thus special arrangements were
proposed to lower such overheads. E.g., the proposed multi-input complex-valued
adder provides an energy-efficient solution for performing radix-4 butterfly opera-
tions without moving the operands several times. The approach is normally used in

fixed function circuits and could only be used with exposed data path processors.

Finally, various coefficients in DSP algorithms can also be a source of high energy
consumption. When large number of coefficients are needed, hether they are com-
puted on-the-fly, indicating high dynamic power consumption due to computations,
or stored in memory, implying energy consumption due to access to it. By exploit-
ing the special properties of the coefficients, energy-efficient approach for applica-
tion specific architectures can be developed. This was illustrated with the aid of the
proposed special function unit for twiddle factor generation. The proposed method

supports radix-4 and mixed-radix algorithms while the existing methods are proposed
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for radix-2 algorithms.

The results of the proposed ASP are characterised in terms of energy consumption
per 1024-point FFT computation and the area in terms of the equivalent gates on 130
nm IC process. In conclusion, the FFT can be implemented efficiently, both in terms
of energy and performance. The transport triggered architecture provides a good
template for energy-efficient computations in the area of digital signal processing.

In order to support all the Fourier transform sizes specified in the 3G LTE specific-
ation, further development is required to support non-power-of-two transforms, i.e.,
support for radix-3 and radix-5 are required. The energy-efficiency could be further
improved by reducing memory accesses by introducing a small cache and tweaking
the FFT algorithm to maximise the cache usage.
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5. Conclusions
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Abstract. Transport Triggered Architecture (TTA) offers a cost-effective trade-
off between the size and performance of ASICs and the programmability of
general-purpose processors. This paper presents a study where a high perfor-
mance, low power TTA processor was customized for a 1024-point complex-
valued fast Fourier transform (FFT). The proposed processor consumes only 1.55
wJ of energy for a 1024-point FFT. Compared to other reported FFT implementa-
tions with reasonable performance, the proposed design shows a significant im-
provement in energy-efficiency.

1 Introduction

Fast Fourier transform (FFT) has an important role in many digital signal processing
(DSP) systems. E.g., in orthogonal frequency division multiplexing (OFMD) commu-
nication systems, FFT and inverse FFT are needed. The OFMD technique has become
a widely adopted in several wireless communication standards. When operating in
wireless environment the devices are usually battery powered and, therefore, an energy-
efficient FFT implementation is needed. In CMOS circuits, power dissipation is propor-
tional to the square of the supply voltage [1]. Therefore, a good energy-efficiency can be
achieved by aggressively reducing the supply voltage [2] but unfortunately this results
in lower circuit performance. In this paper, a high performance, low power processor is
customized for a 1024-point FFT application. Several optimization steps, such as spe-
cial function units, code compression, manual code generation, are utilized to obtain the
high performance with low power dissipation. The performance and power dissipation
are compared against commercial and academic processors and ASIC implementations
of the 1024-point FFT.

2 Related Work

Digital signal processors offer flexibility and, therefore, low development costs but at
the expense of limited performance and typically high power dissipation. Field
programmable gate arrays (FPGA) combine the flexibility and the speed of application-
specific integrated circuit (ASIC) [3]. However, FPGAs cannot compete with the energy-
efficiency of ASIC implementations. For a specific application, the energy-efficiency
between these alternatives can differ by multiple orders of magnitude [4]. In general,
FFT processor architectures can be divided into five categories: processors are based

S. Vassiliadis et al. (Eds.): SAMOS 2006, LNCS 4017, pp. 227-236, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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on single-port memory, dual-port memory, cached memory, pipeline, or array architec-
ture [5]. In [6], areconfigurable FFT-processor with single memory based scalable IP core
is presented, with radix-2 algorithm. In [7], variable-length FFT processor is designed us-
ing pipeline based architecture. It employs radix-2/4/8 single path delay feedback archi-
tecture. The proposed processor supports three different transform lengths by bypassing
the input to the correct pipeline stage. In [5], cached memory architecture is presented,
which uses small cache memories between the processor and the main memory. It offers
good energy-efficiency in low voltage mode but with rather low performance. In [8], an
energy-efficient architecture is presented, which exploits subtreshold circuits techniques.
Again the drawback is the poor performance.

The proposed FFT implementation uses a dual-port memory and the instruction
schedule is constructed such that during the execution two memory accesses are per-
formed at each instruction cycle, i.e., the memory bandwidth is fully exploited. The
energy-efficiency of the processor matches fixed-function ASICs although the proposed
processor is programmable.

3 Radix-4 FFT Algorithm

There are several FFT algorithms and, in this work, a radix-4 approach has been used
since it offers lower arithmetic complexity than radix-2 algorithms. The specific algo-
rithm used here is a variation of the in-place radix-4 decimation-in-time (DIT) algorithm
and the 4"-point FFT in matrix form is defined as

0
F4n = [ H [Pin]T(I4n—l ®F4)Dinpin PZ)’% )
s=n—1
. n
Pi" = I4(n7sfl) ®P4(s+1)745 5 P";ll - I4(n7k) ®P4k74 5
k=1
1,iff n = (mR mod K) + |[mR /K |
0, otherwise

Pk gr(m,n) = { (1)
where ® denotes tensor product, PI’;}’ is an input permutation matrix of order N, Fy is the
4-point discrete Fourier transform matrix, Dy, is a diagonal coefficient matrix of order
N, Py, is a permutation matrix of order N, and Iy is the identity matrix of order N. Matrix
Pk r is a stride-by-R permutation marix [9] of order K such that the elements of the
matrix. In addition, mod denotes the modulus operation and |-] is the floor function.
The matrix D3, contains N complex-valued twiddle factors, W/\j, as follows

N/4—1
Dy = @ diag{Wi‘(f,mOM )} ,i=0,1,...,3; sz — o J2mk/N )
k=0
where j denotes the imaginary unit and ¢ denotes matrix direct sum. Finally, the matrix
Fy is given as

111 1
=it
B=1,11 ) 3)

Lj =1-j
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4 Transport Triggered Architecture

Transport triggered architecture (TTA) is a class of statically programmed instruction-
level parallelism (ILP) architectures that reminds very long instruction word (VLIW)
architecture. In the TTA programming model, the program specifies only the data trans-
ports (moves) to be performed by the interconnection network [10] and operations occur
as “side-effect” of data transports. Operands to a function unit are input through ports
and one of the ports is dedicated as a trigger. Whenever data is moved to the trigger
port, the operation execution is initiated.

When the input ports are registered, the operands for the operation can be stored into
the registers in earlier instruction cycles and a transport to the trigger port starts the
operation with the operands stored into the registers. Thus the operands can be shared
between different operations of a function unit, which reduces the data traffic in the
interconnection and the need for temporary storage in register file or data memory.

A TTA processor consists of a set of function units and register files containing
general-purpose registers. These structures are connected to an interconnection net-
work, which connects the input and output ports of the resources. The architecture can
be tailored by adding or removing resources. Moreover, special function units with
user-defined functionality can be easily included.

5 TTA Processor for Radix-4 FFT

An effective means to reduce power consumption without reducing the performance is
to exploit special function units for the operations of the algorithm. These units reduce
the instruction overhead, thus they reduce the power consumption due to instruction
fetch. Here four custom-designed units tailored for FFT application were used.

The interconnection network consumes a considerable amount of power and, there-
fore, all the connections from ports of function units and register files to the buses,
which are not really needed, should be removed. By removing a connection, the capaci-
tive load is reduced, which reduces also the power consumption. Clock gating technique
can be used to reduce the power consumption of non active function units. Significant
savings can be expected on units with low utilization.

TTA processors remind VLIW architectures in a sense that they use long instruction
words, which implies high power consumption on instruction fetch. This overhead can
be significantly reduced by exploiting program code compression.

5.1 Arithmetic Units

Since the FFT is inherently an complex-valued algorithm, the architecture should have
means to represent complex data. The developed processor uses 32-bit words and the
complex data type is represented such that the 16 most significant bits are reserved for
the real part and the 16 least significant bits for the imaginary part. Real and imaginary
parts use fractional representation, i.e., one bit for sign and 15 bits for fraction. The
arithmetic operations in the algorithm in (1) can be isolated into 4-input, 4-output blocks
described as radix-4 DIT butterfly operation defined by the following:

(o, y1,52,53)" = Fa (1, Wy, Wa, W3)" (x0,x1,%2,x3)" 4)
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Fig.1. a) Block diagram of complex adder. Solid lines represent real parts and dotted lines
imaginary parts. ports opl-3 are operand ports and trigger port defines the operation. b) Block
diagram of data address generator. opO: Base address of input buffer. op1: Base address of output
buffer. op2: Butterfly column index. trig: Element index, trigger port. resO: Resulting address
after field reversal. res1: Resulting address after index rotation.

where x; denotes an input operand, W; is a twiddle factor, and y; is an output operand.
One of the special function units in our design is complex multiplier, CMUL, which is
a standard unit containing four 16-bit real multipliers and two 16-bit real adders. When
the operand to the CMUL unit is a real one, i.e., multiplication by one, the other operand
is directly bypassed to the result register. The CMUL unit is pipelined and the latency is
three cycles. The butterfly operation contains complex additions defined by (3). In this
work, we have defined a four-input, one-output special function unit, CADD, which
supports four different summations according to each row in F4. The motivation is that,
in a TTA, the instruction defines data transports, thus by minimizing the transports, the
number of instructions can be minimized. Each of the four results defined by Fy are
dependent on the same four operands, thus once the four operands have been moved
into the input registers of the function unit, four results can be computed simply by
performing a transport to trigger register, which defines the actual function out of the
four possible complex summations. The block diagram of the CADD unit is illustrated
in Fig. 1 a).

5.2 Address Generation

The N-point FFT algorithm in (1) contains two type of data permutations: input per-
mutation of length N and variable length permutations between the butterfly columns.
In-place computations require manipulation of indices into data buffer. Such manipu-
lations are low-power if performed in bit-level. If the 4" input operands are stored into
a buffer in-order, the read index to the buffer, i.e., operand for the butterfly operation,
can be obtained by bit field reversal. This reminds the bit reversal addressing in radix-2
algorithms but, instead of reversing single bits, here 2-bit fields are reversed [11], i.e.,
a 2n-bit read index r = (rp,— 17 (2n-2--- ro) is formed from an element index (a linear
counter) a = (dzp—1d2p—2 - -.Agp) as

Pk = Aop—2k—2 5 Mgyl = Aon—2%—1, 0 < k<n (5)
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This operation is implemented simply with wiring. In a similar fashion, the permuta-
tions between the butterfly columns can be realized in bit-level simply by rotation of
two bits to the right. However, the length of the bit field to be rotated is dependent on
the butterfly column index, s, in (1). The 2n-bit read index p = (pan—1p2p—2---Po) is
formed from the element index @ as [11]

P2k = 4(2k+4-25) mod 2(s+1)70 <k<s

P2k+1 = A2 11125) mod 2(s+1):0 <k <'s ©)
P = Qx,s <k <n '

P21 = Qokr1,8 <k <n

Such an operation can be easily implemented with the aid of multiplexers. When the
generated index is added to the base address of the memory buffer, the final address to
the memory is obtained. The block diagram of the developed AG unit is shown in Fig 1
b). The input ports of the AG units are registered, thus the base addresses of input and
output buffers need to be store only once into operand ports op0 and op1, respectively.
The butterfly column index is stored into operand port op2 and the address computation
is initiated by moving an index to trigger port. Two results are produced: output port
resO contains the address according to input permutation and port res1 according to bit
field rotation.

5.3 Coefficient Generation

A coefficient generator (COGEN) unit was developed for generating the twiddle fac-
tors, which reduces power consumption compared to the standard method of storing the
coefficients as tables into data memory. In an radix-4 FFT, there are Nlog4(N) twid-
dle factors as defined by (2) but there is redundancy. It has been be shown that all the
twiddle factors can be generated from N/8 + 1 coefficients [12] with the aid of simple
manipulation of the real and the imaginary parts of the coefficients. The COGEN unit
is based on a table where the N/8 + 1 are stored. This table is implemented as hard
wired logic for reducing the power consumption. The unit contains an internal address
generator, which creates the index to the coefficient table based on two input operands:
butterfly column index (s = 0,1,...,n— 1) and element index (a = 0,1,...,4" — 1).
The obtained index is used to access the table and the real and imaginary parts of the
fetched complex number are modified by six different combinations of exchange, add,
or subtract operations depending on the state of input operands. The resulting complex
number is placed in the output register as the final twiddle factor.

5.4 General Organization

The general organization of the proposed TTA processor tailored for FFT (FFTTA)
processor is presented in Fig. 2. The processor is composed of eight separate function
units and a total of 11 register files containing 23 general-purpose registers. The func-
tion units and register files are connected by an interconnection network (IC) consisting
of 18 buses and 61 sockets. In addition, the FFTTA processor contains a control unit,
instruction memory, and dual-ported data memory. The size of the data memory is 2048
words of 32 bits implying that 32-bit data buses are used. There is one 1-bit bus, which
is used for transporting the Boolean values.
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Fig.2. Architecture of the proposed FFTTA processor. CADD: Complex adder. CMUL: Com-
plex multiplier. AG: Data address generator. COGEN: Coefficient generator. ADD: Real adder.
LD ST: Load-store unit. COMP: Comparator unit. CNTRL: Control unit. RFx: Register files,
containing total of 23 general purpose registers.

5.5 Instruction Schedule

In principle, an 4"-point radix-4 FFT algorithm in (1) contains two nested loops: an
inner loop where the butterfly operation is computed 4"~ times and an outer loop
where the inner loop is iterated n times. Each butterfly operation requires four operands
and produces four results. Therefore, in a 1024-point FFT, a total of 10240 memory
accesses are needed. If a single-port data memory is used, the lower bound for the
number of instruction cycles for a 1024-FFT is 10240. If a dual-port memory is used,
the lower bound is 5120 cycles.

In order to maximize the performance, the inner loop kernel needs to be carefully
optimized. Since the butterfly operations are independent, software pipelining can be
applied. In our implementation, the butterfly operations are implemented in a pipelined
fashion and several butterflies at different phases of computation are performed in par-
allel. The developed 1024-point FFT code follows the principal code in Fig. 3.

In initialization, pointers and loop counters, i.e., butterfly and element indices, are
set up. The input data is stored in order into data memory buffer. Another 1024-word
buffer is reserved for intermediate storage and the final result. There is no separate code
performing the input permutation but the address generation unit is used to access the
input buffer in correct order with an address obtained from port resO of AG in Fig.1b).
The results of the first butterfly column are stored into the intermediate buffer with an
address obtained from port res1 of AG. All the accesses to the intermediate buffer are
done by using addresses from port res1 of AG.

In the prologue, the butterfly iterations are started one after each other and, in the
actual inner loop kernel, four iterations of butterfly kernels are performed in parallel in
pipelined fashion. The loop kernel evaluates also the loop counter. In the epilogue, the
last butterfly iterations are completed and the loop counter of the outer loop is evalu-
ated. The kernel contains the functionality of butterfly operations, which requires four
triggers for memory reads and memory writes and corresponding address computations,
four triggers for complex multiplier and four triggers for CADD unit. Since the branch
latency is three cycles, the kernel can actually be implemented with four instructions.
However, this approach results in a need for moving variables from an register to an-
other. The reason is that parallel butterfly iterations need more than four intermediate
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main() {
initialization(); /* 9 instr. */
for (stage=0; stage<5; stage++) {
prologue(); /* 16 instr. */
for(k=0; k<84; k++)
kernel(); /* 12 instr. */
epilogue; /* 21 instr. */
}
}

Fig. 3. Pseudocode illustrating structure and control flow of program code

results, which need to be stored into register files. Since there is no mechanism to dy-
namically index the register accesses, the only way is to use the register files as first-
in-first-out buffers. Such register copies introduce additional power consumption, in
particular, since the moves require additional buses and increase the register activity.

The final implementation of the kernel was 12 instructions and by that way, it was
possible to keep the intermediate results in a dedicated register without need to copy
the values. This resulted significant savings in power consumption at the expense of
lengthening the program code by eight instructions. The parallel code for 1024-point
FFT contains a total of 58 instructions and the instruction length was 162 bits. The
program spends 96% of the execution time in the kernel. The execution of 1024-point
FFT takes 5234 instruction cycles, thus the overhead to the theoretical lower bound
with dual-port data memory (5120 cycles) is only 2% (114 cycles). This overhead is
negligible compared to overheads seen in typical software implementations.

5.6 Code Compression

TTA suffers from poor code density, which is mostly due to minimal instruction en-
coding that is used to simplify decoding. Minimal instruction encoding leads to long
instruction words. The long instruction word consists of dedicated fields, denoted as
move slots. Each move slot specifies a data transport on a bus. Each move slot consists
of three fields: guard, destination ID, and source ID. The guard provides means for con-
ditional execution. The destination ID specifies the address of a socket that is reading
data from a bus. The source ID specifies the address of a socket that is writing data on a
bus. In addition to move slots, instruction words may contain dedicated long immediate
fields to define large constant values, e.g., for jump addresses.

The poor code density can be improved by compression. Compression also results in
reduced power consumption as fewer bits need to be fetched from the program mem-
ory. Dictionary-based compression is one of the simplest compression approaches to
improve the code density [13]. Dictionary-based program compression stores all unique
bit patterns into a dictionary and replaces them in the program code with code words to
the dictionary. Given a program with N unique instructions, the length of the code word
is [logz|N|] bits. During execution, the code word, fetched from the program memory
is used to obtain the original instruction from the dictionary for decoding.

In order to reduce the power consumption of the FFTTA processor and improve
the code density, dictionary-based program compression was applied. All the unique



234 T. Pitkédnen et al.

instructions of the program code were stored into a dictionary and replaced with indices
pointing to the dictionary. This resulted in decrease in the width of the program memory
from 162 bits to 6 bits. The decompression, i.e., the dictionary access was supplemented
to the control unit without additional pipeline stage. The actual dictionary(8586 bits)
was implemented using standard cells.

6 Performance Analysis

In order to analyse the characteristics of the FFTTA processor, the structures of the
previous special function units were described manually in VHDL. The structural de-
scription of the FFTTA core was obtained with the aid of the hardware subsystem of
the MOVE Framework [14], which generated the VHDL description.

Then the FFTTA was synthesized to a 130nm CMOS standard cell ASIC technology
with Synopsys Design Compiler. This was followed by a gate level simulation at 250
MHz. Synopsys Power Compiler was used for the power analysis. The obtained results
are listed in Table 1. It should be noted that the instruction and data memories take
40% of the total power consumption of 74mW with 1.5V supply voltage. If the supply
voltage is reduced to 1.1V, the total power consumption will drop down to about 40
mW. However, this will reduce the maximum clock frequency.

Table 1. Characteristics of 1024-point FFT on FFTTA processor on 130 nm ASIC technology
with 1.5V supply voltage

Clock Cycles 5234 Execution Time 20.94 us Power 74 mW
Clock Frequency 250 MHz Area 140 kgates Energy 1.55u)

Table 2 presents how many 1024-point FFT transforms can be performed with energy
of 1 mJ. The results are presented for ten different implementations of the 1024-point
FFT. For some implementations there are different operating voltage or clock frequency
points listed. Spiffee processor [5] employs a high performance architecture and low
supply voltages and it’s dedicated for the FFT. The StrongArm SA-1100 processor [15]
employs custom circuits, clock gating, and reduced supply voltage. The Stratix [16] is
an FPGA solution with dedicated embedded FFT logic usign Altera Megacore func-
tion. The TI C6416 [17] is a digital signal processor and the Imagine [18] is a media
processor. They were both created using pseudo-custom data path tiling. In addition,
the TI C6416 employs pass-gate multiplexer circuits. The 1024-point FFT with radix-
4 algorithm can be computed in 6002 cycles in TI C6416 when using 32-bit complex
words (16 bits for real and imaginary parts) [19]. However, in-place computations can-
not be used and the processor has eight memory ports while the FFTTA uses only two.
The Intel Pentium-4 [20] is a standard general-purpose microprocessor. Rest of the
processors are dedicated for the FFT. The custom scalable IP core Zhao [6], employs
single memory architecture with clock gating. The custom variable-length Lin [7] FFT-
processor employs radix-2/4/8 single-path delay algorithm. MIT FFT uses subtreshold
circuit techniques [8].
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Table 2. The number of 1024-point FFTs performed with a unit of energy

Design Tech.Oper. Clock Exec. FFT/mJ Design  Tech.Oper. Clock Exec. FFIT/mJ

voltage freq. time voltage Freq. time

[nm] [V] [MHz] [us] [nm] [V] [MHz] [us]
FFTTA 130 1.5 250 209 645 130 1.2 720  8.34 100
600 1.1 16 330 319 |TIC6416 130 1.2 600  10.0 167
Spiffee 600 2.5 128 41 67 130 1.2 300 21.7 250
600 3.3 173 40 39 |MITFFT 180 0.35 0.01 250000 6452
SA-110 350 2 74 4257 60 180 0.9 6 4306 1428
130 1.3 275 47 241 |Lin 350 33 4545 225 93
Stratix 130 1.3 133 97 173 350 23 17.86 57 133
130 1.3 100 129 149 |Zhao 180 - 20 281.6 43
Imagine 150 1.5 232 160 16 |IntelP4 130 1.2 3000 239 0.8

Compared to other FFT designs the proposed FFTTA processor shows significant
energy-efficiency. Only the MIT FFT outperforms the FFTTA. However, due to its long
execution time, the MIT FFT is not usable in high performance designs. The perfor-
mance of the FFTTA processor is still quite feasible although it does not provide the
best performance. However, the performance can be scaled, i.e., the execution time can
be halved by doubling the resources and memory ports. The memory size remains con-
stant and it can be estimated that the energy-efficiency remains the same in terms of
FFTs per energy unit.

7 Conclusions

In this paper, a low-power application-specific processor for FFT computation has been
described. The resources of the processor have been tailored according to the needs of
the application consisting of eight function units and 11 register files. Several methods
for reducing the power consumption of the processor were utilized: clock gating, special
function units, and code compression. The processor was synthesized on a 130 nm
ASIC technology and power analysis showed that the proposed processor has both high
energy-efficiency and high performance.

The described processor has limited programmability but the purpose of this experi-
ment was to prove the feasibility and potential of the proposed approach. However, the
programmability can be improved by introducing additional function units and loos-
ening the code compression. In addition, different transform sizes can be supported
by modifying the address generators and twiddle factor unit. This modifications are
mainly addition of multiplexers, thuse significant increase in power consumption is not
expected. In addition, the performance of the processor can be improved by adding
computational resources implying need for higher data memory bandwidth
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Abstract. An integral part of FFT computation are the twiddle factors, which, in
software implementations, are typically stored into RAM memory implying large
memory footprint and power consumption. In this paper, we propose a novel
twiddle factor generator based on reduced ROM tables. The unit supports both
radix-4 and mixed-radix-4/2 FFT algorithms and several transform lengths. The
unit operates at a rate of one factor per clock cycle.

1 Introduction

Fast Fourier transform (FFT) has gained popularity lately due to the fact that OFDM
has been used in several wireless and wireline communication systems, e.g., IEEE
802.11a/g, 802.16, VDSL, and DVB. An integral part of the FFT computation are the
twiddle factors, which, in software implementations, are typically stored into RAM
memory implying large memory footprint. The twiddle factors can be generated at run-
time. A traditional method is to use CORDIC as described, e.g., in [1]. The sine and co-
sine values are needed in direct digital frequency synthesizers and often the generation
is based on polynomials, e.g., in [2]. An other approach is to use a function generator
based on recursive feedback difference equation [3,4]. Typically these approaches re-
sult in smaller area than memory based approaches. However, since the computation is
done at run-time, there is a huge amount of transistor switching implying higher power
consumption in CMOS implementations.

Another approach is to store the twiddle factors into a ROM table. In an N-point
FFT, there are N /2 different twiddle factors and an approach exploiting this property
has been reported in [5]. Methods requiring only N /4 coefficients to be stored into a
table are described in [6,7]. There is, however, even more redundancy since the real
and imaginary parts of the factors are sine values and N/8 4+ 1 complex coefficients
are needed to reconstruct all the factors for an N-point FFT [8]. In [9], a coefficient
manipulation method is presented where only N /8 + 1 coefficients are needed to gen-
erate the twiddle factors. However, the previous methods are designed only for radix-2
algorithms containing more arithmetic operations than radix-4 algorithms.

A twiddle factor generator unit could be used as a special function unit in an applica-
tion-specific instruction-set processor (ASIP) but it may not increase the performance
of the software implementation. Often several instructions are needed to compute the
correct index to the unit. Considerable performance increase can be expected, if the unit
can also perform the index modifications to avoid additional instructions. However, the
indexing of the twiddle factors varies depending on the FFT variant. More detailed
discussion on twiddle factor indexing can be found from [10].

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 65-74, 2007.
(© Springer-Verlag Berlin Heidelberg 2007



66 T. Pitkdnen, T. Partanen, and J. Takala

In this paper, we propose a low-power twiddle factor unit based on a ROM ta-
ble. The proposed work differs from the related work such that the proposed unit a)
supports radix-4 and mixed-radix-4/2 FFT algorithms, b) supports several transform
sizes (power-of-two), and c) integrates index manipulation. By supporting radix-4 al-
gorithms, the performance of FFT computation is increased significantly compared to
radix-2 algorithms. In addition, the overhead of address manipulation in software im-
plementation is omitted, which increases the performance even more. The unit can gen-
erate factors at a rate of one factor per clock cycle. The proposed unit has already been
used in the FFT implementations described in our previous work [11,12] but here the
twiddle factor generation is described in detail.

2 FFT Algorithms

In this work, we have used the traditional in-place radix-4 decimation-in-time (DIT)
radix FFT algorithm with in-order-input, permuted output as given, e.g., in [13]. In
this work, we would like to expose the different permutations, thus we formulate the
traditional algorithm in the following fashion:

0
F22n - R22n H [OEZH]T(IZ(ZH—Z) ®F4)A;2n0;2n > (1)
s=n—1
11 1 1
(=i
FB=1101 S @
1 j -1 —j
n
Ryon = H12(2n—2k) Q Pk 4 3 3)
k=2
OEm = 14“' ®P2(m72s)72(m72s—2) (4)

where j is the imaginary unit, 7, is an identity matrix of order n, and the permutation
matrices Ry and Oy are based on stride-by-S permutation matrices [14] Py s defined as

1, iff n = (mS mod N) + |mS/N|

{Pst]mn = {O’ otherwise ,mn=0,1,....N—1 (&)

The matrix A3, contains N twiddle factors W§ = e/ 2mk/K as follows
N/4-1 s+1 st st
. Lb4 J 2 L b4 J 3 \_ b4 J
SN - QSN @ dlag <W4(3Prl I W4s+lN 7W4s+l N 7W4s+1 N 5 (6)
b=0
S
QSN - HP4(X—1)’4 ®IN/4(371) . (7)
1=0

Examples of signal flow graphs of this algorithm are depicted in Fig. 1a) and 1c).

As the Fig. 1 shows the output data is not in order, thus to give it in order, input
permutation is needed at each column and it complicates the index modifications in the
coefficient generator.
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Fig. 1. Signal flow graph of a) 64-point radix-4, b) 32-point mixed-radix, and c¢) 16-point radix-4
FFT. A constant k in the signal flow graph represents a twiddle factor W6k4.

The radix-4 algorithms can be used only when the FFT size is a power-of-four.
Power-of-two transforms can be supported by using mixed-radix approach and a mixed-
radix-4/2 FFT consists of radix-4 processing columns followed by a single radix-2 col-
umn as follows

F22n+1 == S2(2n+1) (14" & FZ) 32(2n+1) .

0
H [0;<2n+1)]T (12(2"*‘) ® F4) A;(an)O;(an)

s=n—1

;Fz—(}_l1> (8)

where the matrices Oy, and Ay, are defined in (4) and (6), respectively. The matrix Sy is
a permutation matrix given as

Sy = (I @ Ryn) Py ,N =221, 9)
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The matrix By contains the twiddle factors for the radix-2 processing column and it is

defined as
N/2—1

BN — Qi\(j)g4(N/2) @ dlag <W187W]l\;> 7N — 221’l+] (10)
b=0
where the permutation matrix Q3 is defined in (7). Example of signal flow graph of the
mixed-radix-4/2 algorithm is shown in Fig. 1b).

3 Twiddle Factor Access

Our objective is to design a unit, which can generate twiddle factors for several power-
of-two size transforms. By investigating the structure of the twiddle factors in FFTs of
different size, we find that the twiddle factors of a shorter transform are included in the
larger transform. Our approach is based on lookup tables (LUT) containing the twiddle
factors, thus we need to define the maximum FFT size supported, Ny,qy = 2", and the
twiddle factors for shorter transforms can be generated from the same LUT.

The unit generates a twiddle factor based on index from an iteration counter, which
may be updated by software, if the unit is used as a special function unit in a processor.
When targeting to an application-specific fixed-function FFT processor, the iteration
counter is the counter, which used to generate all the control signals in the architecture.

An N-point radix-4 FFT contains log, (N) iterations of butterfly columns divided into
N /4 four-input radix-4 butterfly computations while, in a mixed-radix-4/2 algorithm,
log,(N/2) iterations of N /4 radix-4 computations is followed by N/2 two-input radix-
2 computations. Therefore, we need log, (N) bits to identify each butterfly input in a
butterfly column and [log,(log,(N))] bits to express the butterfly column, i.e., s in
definitions (1) and (8).

The input operands for the unit are the iteration counter and parameter indicating the
transform size. Let us denote the ([log,(log,(N))] + log,(N))-bit iteration counter by
c= (c[1og2(10g4(1v))]+10g2(1v)_1 ,...,c1,c0)". The transform size is indicated by parameter
f =102, (Nyax) —1og, (N). The structure of the proposed function unit is discussed in
the following sections with an example design supporting FFT sizes of 16, 32, and 64.
In this example case, the input parameter f can have values 0, 1, or 2 to indicate FFT
sizes 64, 32, or 16, respectively. A 5-bit iteration counter c is used when FFT size is 16
and, for a 64-point FFT, an 8-bit counter is needed. The block diagram of the example
design is illustrated in Fig. 2. The input parameters are written into registers f and ¢
and the final twiddle factor is obtained from the output registers.

3.1 Scaling

In order to minimize the bit-level shifts due to different transform sizes, we first shift
the iteration counter c to the left by the number of bits indicated by the parameter f.
This implies that after the shift we obtain a bit-field where the [log,(logy (Nuax))| +
10g, (Nyax) bits indicate the butterfly column s and the 102, (Nynax) = Rmax least signif-
icant bits contain the index of the twiddle factor in the column to be generated. Let
us denote this part by d = (d,,,,..1,...,do)". However, the actual index is in the most
significant bits index and d contains (7,,4x — log,(N)) zeros in the least significant bits.
The rest of the operation is based on operands s and d.
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Fig. 2. Block diagram of twiddle factor generator supporting transform sizes of 16, 32, and 64.
R: register. M: multiplexor. co: carry out. ci: carry in. <<: left shifter.

3.2 Permutation

The order of twiddle factors depends on the FFT algorithm and, in this work, we con-
centrate on the in-order input, permuted output FFTs given in (1) and (8). In these par-
ticular cases, we need to consider the implementation of matrices Ay, and By, defined in
(6) and (10), respectively.

Our approach is based on index modifications, thus first we need to perform the
permutation Oy, in (7). The the permutation can be investigated by considering the bit-
level rotations as discussed in [15,16]. This shows that the permutation is actually the
traditional bit-reversed permutation but here 2-bit fields are used instead of a single bit.
It should also be noted that the permutation varies according to the butterfly column
s. The permutation in our case is actually independent on the transform size, since we
have shifter the index earlier, thus the permuted index, [ = (llogz(N),...,ll,lo), of an
N-point FFT can be expressed in bit-level in matrix form as follows

1

[ = (’S@”Q )d L= - (11)
I 2s .

where I, is an antidiagonal matrix of order m. The bit-level permutations in a general
case are illustrated in Fig. 3. In our example case, the permutations are performed in the
block “permut” and the first two, i.e. the maximum butterfly column s is 2, permutations
from Fig. 3 are needed.

3.3 Lookup Table Index

Our approach is to store the twiddle factors to a lookup table and the indexing into the
table is based on the exponent k in the twiddle factor W,’\} as defined in (6). Different
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Fig. 3. Examples of bit-level index permutations according to (11)

values of k in FFTs can also be seen in Fig. 1. By exploiting the property Wy, = Wy,
we can express the twiddle factors as powers of Wy, . . The twiddle factors for radix-4
algorithm are defined in (6) and we can rewrite this equation as follows:

b mod 4)| Lb/ﬂfwl J Pmax

N
V=0 P W, 12
b=0

where mod is the modulus operation. Here we need an equation for the exponent k for
factor W/&mm, which can be found from the previous. In addition, we have used a shifted
index and, therefore, the index b can be replaced with the permuted index / from (11)
by the relation / = bN,yqx /N, thus we obtain

s+1
1b/4]4%" Npae [L IN

| _ /414 Nipax
N 4t Noax

jmod4] [L v Jan]

We may denote the first term as 4 and the second as g. Then the operation at bit-level
representation can defined as follows:

k= (bmod4)| (13)

I
k=hg;g= ( . 0 ) Ly h= (020 2,012,020 5)1 (14)

Nimax—25—2 Rmax—28
where 0, ,, is an n x m matrix containing zeros and f is the input operand defining
the index shift, f = nuq —log, (N). In the example case in Fig. 2, the block “mask”
generates a 6-bit mask, where the 25 most significant bits are ones and the rest are
zeros. This is used to mask the 6-bit permuted index /. Then the two least significant
bits are omitted and the 4-bit result is passed to multiplication with /. Since £ is a 2-bit
variable, a simple solution is to us adder, where the same operand is fed but the second
one is shifted one bit to right, i.e., multiplied by two. Multiplexers can be used to feed
either the operand or zero to the adder and these multiplexers are controlled by the
multiplicand A.

The 2-bit variable & needs to be extracted from / with the aid of multiplexer con-
trolled with f. Figure 2 indicates that /& can be extracted also from d, which shortens the
critical path. The block “S” performs the extraction, i.e., h = (hy,ho)" = (dp+1,df)".

In the last butterfly column of mixed-radix-4/2 algorithm, the twiddle factors have a
bit different form and by using the fact that, in the last column, s = log,(N/2) we may
rewrite (10) as follows:
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N U’/2J4(S+ N Nmax
(b mod 2)| 1
By =0y Pwy N Tl (15)

max
b=0

By following the procedure used to define the exponent k in radix-4 case, we can define
k in this case as follows

= (b moa 2)| P/ Mo _ [L IN Lo

Nmax
= d 2 . 16
v e = by, A HL Ninax J4“‘+‘] e

By comparing this equation to (13), we find that there is a scaling difference in the sec-
ond term and, if the same hardware is used to generate exponent for both radix-4 and
mixed-radix-4/2 twiddle factors, this needs to be compensated. In bit-level representa-
tion, this can be defined as

k:2hg; h= (017nmax_f_1,1,01’f)l (17)

where g is obtained as in (14). The example case in Fig. 2 shows a block “detectmr”,
which is used to detect when mixed-radix algorithm is used and the twiddle factors are
for the last butterfly column consisting of the radix-2 butterflies. In this case, the least
significant bit of f can be used to detect the mixed-radix transform and the detection of
the last butterfly column is detected with the aid of hard-coded detection. Signal “12” is
active-high, which masks the signal “h(1)” since & is only a 1-bit parameter. In addition,
the operand g is directed to the lower input of the adder, where the operand is shifted
one bit to the left, thus the additional multiplication by two is realized.

3.4 Memory Reduction

Here we propose a method to reconstruct twiddle factors for radix-4 and mixed-radix-
4/2 FFT from a ROM table containing N/8 + 1 coefficients. The twiddle factors in
64-point radix-4 FFT are shown in Table 1 and it can be seen that by reordering the
coefficients into six blocks, BO...BS5, all the twiddle factors can be retrieved from co-
efficients in block B0 containing nine complex coefficients. Since we need to support
several transform sizes up to an N,q,-point FFT, we store (Nuqc/8 + 1) complex-valued
coefficients into a table, M = (Mo, My, ..., My3) | My = WI{‘,’W. The rest of the twiddle
factors can be obtained from the table M as follows:

N,
Mk R k S 1§ax
— M N < k< N
4
. _Jsz Noax » erax <k S 3Nénax
_ 4
WNm(Lx - — }k\’max L S 3N§lax < k S anzax (18)
nax _
Nmax SNyax
—-M N, max. k< max
f—Nmax 5 o ~ 3
Vil 5N,
| My T <k

4

where M, is the complex conjugate of M;.
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Table 1. Twiddle factors in 64-point radix-4 FFT. The decimal value is shown as (real,imaginary).

BO Bl B2 B3 B4 B5

Wg, (1.0,0.0) WS (.00,-1.0)

W, (1.0,-.10) WD (.10,-1.0) WP (-1.0,.10)

W2, (.98.-.20) W} (:20,-.98) WP (-.20.-.98) W2 (-.98.-.20)

W2, (.96,-.29) WP (:29.-.96) W (-.29,.96)

W (.92.-.38) W7 (.38,-.92) W2 (-.38,-.92) W2F (-.92,-.38) WP (-.92,.38)

W3, (.88,-.47) W/ (47.-.88) W2 (-.47.-.88) W2/ (-.88,-.47)

WS, (:83,-.56) W/ (.56,-.83) W27 (-.56,-.83) W20 (-.83,-.56) W2 (-.56,.83)
W, (.77.-.63) Wg, (.63,-.77) Wg (-77..63)

Wg, (71,-71) W2 (-.71,-71)

In order to generate correct twiddle factor W,'\j for the given exponent k defined ear-
lier, we need to create an index to the table M. Such a method can be obtained by noting
the fact that the twiddle factors are defined by vectors with equal spaced angles along
a unit circle, thus when starting from zero angle the indices to the table M increase by
one until k = N/8. Then the indices decrease until k = N/4 and they start to increase
again. This behavior results in six regions as shown in Table 1.

In bit-level, we may generate the index to lookup table by dividing the bit-field k into
two parts; the three most significant bits of k are denoted as ¢ = (ky,, —1,
Knppi—2,knp—3)" and the least significant bits by r = (ky, .. 4,...,k1,ko)”. The index
to the lookup table is obtained as follows

_ r ,ifgy=0
w_{~r+1 , otherwise (19)

where ~ r denotes inversion of bits in r. This can be seen in the lower part in Fig. 2.
The index w is used to access the lookup table M (“LUT” in Fig. 2) and the obtained
complex value M,, needs to be modified according to (18), which shows that the correct
twiddle factor can be obtained as follows

o= { TR W) - oo TeS 0 T =0

Npax — (_I)LIOV%S (MW) _|_j(_1)fI0V41V429{(MW) , otherwise (20)

where 7 denotes bitwise exclusive-OR operation and R(x) and 3 (x) denote real and
imaginary part of x, respectively. Figure 2 shows that this modification requires two
multiplexors and two real adders with XOR-gates in inputs.

4 Experiments

We have described the proposed twiddle factor unit in VHDL language such that N, =
214 i.e., the unit supports power-of-two FFTs up to 16K, thus lookup table contains
2049 complex-valued coefficients. The inputs to the unit are 17-bit ¢ register and 4-bit
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Table 2. Power dissipation and area of twiddle factor unit designs: proposed unit, pipelined (two
stages) and non-pipelined, and unit based on ROM table [5]

pipelined @250MHz non-pipelined@140MHz  ROM table [5]@250MHz
Power [mW] Area [kgates] Power [mW] Area [kgates] Power [mW] Area [kgates]
LUT 1.50 12 2.24 15.8 43.00 20.5
Pipeline 0.95 0.3
Total 3.70 14.3 4.11 18.4 43.00 20.5

f register. The lookup table contains complex-valued coefficients with 16-bit real and
imaginary parts, i.e., word width of lookup table is 32 bits.

The design has been synthesized with Synopsys tools onto a 130 nm standard cell
technology. Then power estimates have been obtained with Synopsys tools with aid of
gate level simulations. The analysis results are listed in Table 2.

The analysis results show that the critical path limits the clock frequency to 140
MHz when no pipelining is exploited. When two pipeline stages are used, the maximum
clock frequency is 275 MHz. The lookup table has been designed with hard-wired logic
for reducing the power consumption. If the lookup table was implemented as a ROM
memory, the power consumption would have been eight times higher, although the area
had been half smaller.

For comparison, we have also implemented a unit based on the traditional ROM table
approach where Ny, /2 = 8192 coefficients are stored (“ROM table” in Table 2). The
method in [9] is not compared since it does not support radix-4 algorithms.

We have also the twiddle factor unit in an ASIP tailored for FFT computations [12]
and, in this 32-bit processor containing, e.g., complex multiplier and adder, the twid-
dle factor unit uses about 23% of the core area (instruction and data memories not
included), while the power consumption is only 7% of the total power consumption of
the core. However, the unit improved significantly the performance of the FFT software
implementation; the unit provides twiddle factor once per instruction cycle without ad-
ditional address manipulation instructions.

5 Conclusions

In this paper, we have described a twiddle factor unit supporting radix-4 and mixed-
radix-4/2 FFT algorithms and several power-of-two FFT sizes. The unit can be used as
a special unit in an ASIP architecture or a coefficient generator in application-specific
FFT processors. The unit shows significant power savings compared to the popular
approach where the twiddle factors are stored into a ROM table.
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Abstract Many of the current applications used in bat-
tery powered devices are from digital signal processing,
telecommunication, and multimedia domains. These
applications typically set high requirements for com-
putational performance and often parallelism is the
key solution to meet the performance requirements. In
order to exploit the parallel processing units, memory
should be able to feed the data path with data. This
calls for a memory organization supporting parallel
memory accesses. In this paper, a conflict resolving
parallel data memory system for application-specific
instruction-set processors is described. The memory
structure is generic and reusable to support various
application-specific designs. The proposed memory sys-
tem does not employ any predefined access format
signals for memory addressing. The proposed parallel
memory system is attached to an application-specific
instruction-set processor core and comparison on area,
power, and critical path are shown. The experiments
show that significant power savings can be obtained by
exploiting the parallel memory system instead of multi-
port memory.
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1 Introduction

In current embedded systems, the most important ap-
plications are from digital signal processing (DSP),
telecommunication, and multimedia domains. These
applications typically set high requirements for com-
putational performance. Furthermore, these applica-
tions are realized on battery powered devices where
low power consumption is an critical design issue. In
general, algorithms in these domains contain inherent
parallelism, which can be exploited in various ways,
thus the performance is often obtained by increasing
the parallelism in the implementations. Typical algo-
rithms contain fine-grain parallelism thus, in implemen-
tations based on application-specific integrated circuits
(ASIC), the number of computational resources can
be increased, e.g., arithmetic units. In processor based
implementations, the same approach can be used, i.e.,
the number of parallel functional units is increased,
which calls for instruction-level parallelism (ILP).

An implementation approach where the flexibil-
ity of programmable solution and power-efficiency of
an ASIC solution are combined is application-specific
instruction-set processor (ASIP). In an ASIP, the ar-
chitecture is tailored according to the requirements of
the given application or application domain, thus the
fine-grain parallelism in the algorithm can be exploited
in form of ILP. Since the architecture is customized, the
power consumption can be expected to be lower than in
a processor designed for general-purpose computing.

@ Springer
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In order to exploit the parallel functional units in the
data path of a processor, the bandwidth of the memory
system should match the performance of the data path.
Especially in DSP domain, several operands from mem-
ory need to be accessed to feed the parallel arithmetic
units, which implies that the memory system should
either support several accesses per instruction/clock
cycle or have multiple ports.

In this paper, a parallel memory system is proposed
to be used in ASIP implementations. The memory
system is based on several independent single-port
memory modules and access logic, which directs sev-
eral memory access requests to multiple memories and
converts the logical addresses to physical addresses for
each memory. The power-efficiency of the proposed
system is compared to multi-port memories and the
results show that significant power savings can be ob-
tained, if the data can be distributed over the multiple
memory modules. Although, the proposed design is
demonstrated with a single storage scheme, the parallel
memory system can be easily modified to support other
storage schemes. Furthermore, the data permutation
and address computation circuitry might be fitted in
the existing pipeline structure of the processor without
lowering the clock frequency or increasing the number
of pipeline stages.

2 Related Work

The most flexible and simplest approach from the pro-
grammer or compiler point of view to increase the
memory bandwidth is to use multi-port memories since
the same memory space can be accessed simultaneously
through several ports. Unfortunately, multi-port mem-
ories require larger area, provide slower access time,
and higher power consumption than single-port mem-
ories. Recently multi-port memories have been con-
sidered in field-programmable gate array designs, e.g.,
in [1, 2], but there the memories are predefined mod-
ules with additional logic. Therefore, the cost of mem-
ory organization is different than in other gate array
technologies where the basic building block is gate.
Another approach to increase the memory band-
width is to access a single-port memory with a higher
frequency than the processing frequency. However, this
solution might not scale to when the number of ports
is increased and the power consumption typically in-
creases as the access time is shortened. In DSP proces-
sors, the memory bandwidth is traditionally increased
by using extended Harvard architecture where several
data memories are connected to the data path, e.g., in
Motorola DSP56000 [3], there were two data memory
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banks and Hitachi DSPi [4] contained four memory
banks. The drawback is that certain memory locations
can be accessed only over a dedicated memory port and
this is visible to the programmer.

To avoid the cost of multi-port memory structure,
several different methods have been used. High-
bandwidth multi-port data cache memory systems in
multiple-issue processors have been considered in
[5-7]. To provide the functionality of an N-port mem-
ory, N single-port memory modules with the same
data content could be employed. A write operation is
always sent to all the memory modules to maintain
the data coherence. As a drawback, the memory must
be replicated N times and no other accesses can be
made during a write operation.

Another approach is to use N single-port memories
to emulate the multi-port memory. This is referred to
as a parallel memory system. In order to support access
to memory location over different ports, additional per-
mutation and address computation circuitry is needed.
Unfortunately, there is no single storage scheme, which
would allow conflict-free parallel access for all possible
access patterns thus designs, which consider conflict
resolution multi-port memory system, employ some
form of a simple low-order interleaving scheme, e.g.,
[2, 5, 7, 8]. The parallel memory approach can also
be used to create shared memory for multi-processor
systems as described, e.g., in [9].

In a parallel memory system, a module assignment
function S(i) is a function of the incoming address i
from the load/store unit (LSU) and determines the
index of the memory module where the data is located.
The address for MMgy;, is determined by the address
assignment function a(i). If the parallel memory logic
has N LSUs, then N module and address assignment
functions, S(ix) and a(ix), respectively, are computed
simultaneously. Here iy refers to an address from LSUy,
0 <k < N. Basically, S(i) determines, how well the
memory performs for a given parallel address trace.
The most simple and well-known module assignment
functions are low-order and high-order interleaving
functions. The low-order interleaving, is efficient for
parallel access of successive array elements and it is
defined by the following equations:

S@i) =imod N
! a() =i/N : @

The high-order interleaving performs well when sev-
eral different arrays are accessed in parallel and it is
described as follows

: S() = i/amax

a(i) = i mod amax
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Table 1 Low-order and .
high-order interleaving Low-order High-order
examples. i S(@i) a(i) i S(@) a(i) i S@) a(i) i S@) a(i)
0 0 0 8 0 2 0 0 0 8 2 0
1 1 0 9 1 2 1 0 1 9 2 1
2 2 0 10 2 2 2 0 2 10 2 2
3 3 0 11 3 2 3 0 3 11 2 3
4 0 1 12 0 3 4 1 0 12 3 0
5 1 1 13 1 3 5 1 1 13 3 1
6 2 1 14 2 3 6 1 2 14 3 2
7 3 1 15 3 3 7 1 3 15 3 3

N =4, amay = 4.

where amay is simply a constant defining the number
of memory locations in each memory module. An ex-
ample of low and high-order interleaving module and
address assignment functions are shown in Table 1.

In many cases, the operands for parallel processing
can be stored such that conflict-free access to cer-
tain patterns is possible, e.g., rows, columns, blocks,
forward, and backward-diagonals [10, 11]. These are
called the access formats. In general, the module as-
signment functions used for this purpose are linear [10]
or so called XOR-schemes [12, 13]. Multi-skewing
scheme [14] provides versatile access formats. Storage
schemes supporting stride accesses are presented in
[15, 16]. A brief overview of storage schemes is pro-
vided in [17].

In previous papers, parallel memories have been
considered in different type of architectures and ap-
plications: multiprocessor systems performing scientific
computations with matrix data, vector machines with
stride accesses, and general-purpose computation on
multi-issue machines. Popular examples on DSP area
have been fast Fourier transform (FFT) computation
and video processing. This paper considers parallel
memory system in ASIP designs where the existing par-
allel memory theory can be used to construct specific
storage schemes to avoid or significantly reduce the
memory conflicts. Furthermore, unlike in many other
parallel memory systems, we do not employ any pre-
defined access format signals for the parallel memory
addressing. We also present details of the hardware
structure for dynamic conflict resolution.

3 Parallel Memory System

As shown in Fig. 1, the parallel memory logic is de-
signed to locate between the load-store units and syn-
chronous single-port memory modules, thus a parallel
memory non-optimally emulates a multi-port memory.
Unlike in multi-port memories, access conflicts are pos-
sible in parallel memories, i.e., one or more single-
port memory modules are tried to be accessed more
than once during a single cycle parallel memory access.
In general, it is not possible to find a generic storage
scheme such that conflict-free access is possible for all
address traces. In the case of memory conflict, par-
allel memory hardware recognizes the conflict, locks
the processor by sending a lock request to the global
control unit of the processor core, performs conflict-
ing accesses sequentially (requiring more cycles), and
releases the lock. No modifications to software are re-
quired for correct functionality. Because of this locking
behavior, the software does not know whether a multi-
port or parallel memory system is employed. However,
access conflicts increase the cycle count.

A multi-port memory can be replaced by a parallel
memory architecture after the application code has
been written. In this case, the software has been likely
developed assuming an ideal multi-port memory and
no attention is paid into the addresses of simultaneous
memory accesses. It might be possible not to find a
conflict-free parallel memory storage scheme since the
address traces can be irregular, not fitting to typical
access formats. A better performance in terms of clock

Multi-
port
MM,

Processor
core

Processor
core

Permutation
network

&

logic _‘{ MMN,I

MM,

Figure 1 Different data memory configurations: a multi-port memory and b parallel memory system consisting of single-port memories

with permutation network and conflict resolution logic.
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Figure 2 Principal structure (o] [B0] [B6] [B] 6] (o) [Bu] (B0
of parallel data memory: a a i i ijl b l i i igl
read (load) and b write ] . ] 3 : ; ; :
(store) operation with related [e@w ] [e@ ] [e@] [a@] Le@w ] [e@] [a@] [ a@]
address, read data, and write ) * l 1 l * l — *

data crossbars. The fixed 1 I . . [ - . B

control signals for the

XNAddMux,/ X\ AddrMux,/ 1-\AddrMux, / 0-\AddrMuxy

X-\AddrMux,/ X\ AddrMux,/ 1\ AddrMux,/ 0—-\AddrMux,

multiplexers refer to the l l Addresses J l J l Addresses l J
example in Fig. 3. [ ] [av ] [wv ] [ ] [, | [ ] [y | [
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l Data ‘ l
[ Rlach | [ Rlach | [ Rlach | [ Rlach ]
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Data
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cycles can be obtained when a conflict-free storage
scheme is found for application-specific access formats
used in the application code. Especially, the code of
the innermost loops, where typically the most of the
execution time is spent, should be written such that
the addresses of simultaneous memory accesses will not
cause memory module access conflicts. This may re-
quire manual assembler optimization and regeneration
of the hardware for the processor core.

The proposed parallel memory design is generic and
re-usable. Application-specific memory functions can
be fitted in and generics are employed in the very high
speed integrated circuit hardware description language
(VHDL) design so that several parallel memory com-
ponents with different parameters (bus widths, number
of ports, and memory functions) could be fitted in
the same design. Parallel memory logic provides the
needed address computation, interconnection, and con-
flict resolution logic. The proposed design is a matched
memory system, i.e., the number of LSUs and memory
modules is the same. In addition, the proposed struc-
ture receives multiple addresses simultaneously and no
access pattern signaling is used. In traditional designs,
the access pattern is defined and the actual addresses
to the memory modules are generated separately based
on the base address information.

Figure 3 An example of

4 Conflict Resolution

Depending on the address i, and the module assign-
ment function S(ix), the load or store operation from
LSUk may refer to any memory module. For this rea-
son, permutation network shown in Fig. 1b is needed
to route the signals from the LSUs to the memory
modules. The read (load) data from the memory mod-
ules need also to be permuted when moved to the
LSUs. The permutations are often implemented with
crossbars and the crossbars related to read and write
operations are illustrated in Fig. 2 for N = 4. The read
data from the memory module need to be saved to
registers when several accesses are made to the same
memory module.

For each LSU; and MMy pair, there is a control unit,
which enables the MM, and drives the crossbar control
signals: control for the address (AddrMuxCtrly), read
data (RdMuxCtrly), and write data (WrMuxCtrli). This
control unit circuitry is shown in Fig. 4. The mod-
ule assignment functions S(ix) are solved in parallel.
They can be used to control read data crossbar so
that S(ix) drives RdMuxCtrl; (connected to RdMuxy
in Fig. 2) at the correct moment. For various other
control purposes, S(ix) indices are binary coded and
used to construct a binary control matrix. This is shown

control matrix. a Control a b ¢ d

matrix. b ‘Tfal.lsposed cqntrol MM, [0]1]2]3 LSUJ0]1]2]3 LSU, [0]1]2]3 LSU, [0[1]2]3

matrix. ¢ ‘1’ bits served in the .

first cycle. d 1’ bits served in LSU,|0[0]0 | 145G,y | MM, |[0|0[0]0 MM, [0/0]|0]0 MM, |0[{0]0]|O

the second cycle. LSU, |0]0]|1|0SG) | MM, |0[0[0]0 MM, [0[0]0]|0 MM, |0[{0]0]O
LSU,[0|0|1|0%8G,) | MM, [0[1]1]0 MM, [0|0|1]0 MM, [0[1]0]0
LSU,|0]0]|0|1SG;) | MM; [ 1[0]0]1 MM, [0|0]0]1 MM, [1[{0]|0]|0
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Figure 4 Control unit logic.
There is one control unit
circuit for each LSU; and

MMEnX, *
MMy pair. OR-trees k SG,)
producing CurrLsuEnBit and 1 CurrLsuEnBit
Lockrq signals combine the Lockrq UrTLSUEN I
data from all the control ) (CtrIMatrixRows
units. Block input and output CtriMatrixRow;. | - from other units) Glock LsuWrXy
i itten i N
signals are written in bold.. - MMEnX, RAMuxCirl,
LsuEnXy, LsuWrXy, and iy [ ranspose
are signals from LSUj. TCtrlMatrix
MMEnX; and MMWrX, are Row, NewTCul
enable and R/W signals for MatrixRow,
MMy.. (With true multi-port
memory, we would simply ™ iom bits of MoreToCome, x.jy
have LSuEnX; = MMEnXy T ame i s
and LsuWrX; = MMWrX.) ) ’
Glock: global lock signal from CurrLsubits 0 0 N-I N
the processor core. N = 2":
the number of memory ports.
PriEncoder
MoreToCome, CurrLsuEnBit, CurrLsuEnBit.y 1) Lockrq Lockrq
MMEnX,* Reg
n
. AddrMux 4n
MMEnX, * Ctrl,
MMWrX,
N n
CurrLsu, WrMuxCtrl,

NewTCtrl
MatrixRow,

in Fig. 4, where a decoder produces a single control
matrix row, CtrIMatrixRow,. An example matrix is
shown in Fig. 3a for N = 4. It can be seen that LSUj,
and LSUj; are accessing MM3, and LSU,; and LSU, are
accessing MM,.

Each control unit needs to know which LSU will
access their memory module. This is obtained by trans-
posing the control matrix as illustrated in Fig. 3b. The
kth row of the transposed matrix is delivered for the
kth control unit. In Fig. 4, the control matrix com-
posed from CtrlMatrixRows from all the control units is
transposed and TCtrIMatrixRowy is obtained for each
control unit k. If there are more than one "1’ bits on any
TCtrIMatrixRow of the transposed matrix, then there
are corresponding number of memory conflicts. Parallel
control units make always as many parallel accesses
as possible. If there is a conflict, a priority encoder
(PriEncoder) of the control unit k selects the rightmost
bit (LSU) on the TCtrIMatrixRowy in the first cycle,
the next rightmost bit in the second cycle, and so on,
until all the "1’ bits on the row are served. ‘1’ bits are
reduced one by one with the XOR-gates producing

NewTCtrIMatrixRowy in Fig. 4. This loop is enabled by
the multiplexer controlled by LockrqReg signal. All the
rows of the transposed control matrix are processed in
parallel by the control units.

Each priority encoder has MoreToCome signal
which tells that there are still 1’ bits left. As is shown
in Fig. 4, these MoreToCome signals are combined
from each control unit to a single bit using an OR-tree.
After registering, this bit becomes the lock request sig-
nal (LockrqReg) to be sent to the processor. CurrLsu
signal of the control unit tells the index of the LSU,
which is to be currently served by the memory module.
The same position CurrLsu signal bits have been com-
bined by N OR-trees shown in Fig. 4. The resulted
CurrLsuEnBits are used to control the state machines
and RdMuxCtrl signals.

The transposed control matrices for the first and
second memory cycles of the example are shown in
Fig. 3c—d. The rows of these matrices are used to control
the multiplexers of the address (AddrMuxCtrl), write
data (WrMuxCtrl), (write mask), and write signal cross-
bars. The crossbar multiplexer control signals for the
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control matrix given in Fig. 3 would be the following
(x refers to “don’t care” condition):

When all the accesses are load operations, the multi-
plexer controls are:

Cycle 1:  AddrMuxCtrly_3 = {x, x, 2, 3},
RdMuxCtrly 3 = {x, x, 2, 3}.
Cycle 2:  AddrMuxCtrly_3 = {x,x, 1, 0},

RdMuxCtrly_; = {3, 2, X, X}.

When all the accesses are store operations, the
multiplexer controls are:

Cycle 1:  AddrMuxCtrly_ 3 = WrMuxCtrly 3 =
{x,x,2,3}.

Cycle 2:  AddrMuxCtrly_3 = WrMuxCtrly 3 =
{x,x,1,0}.

The cases for cycle 2 are shown with a simplified
architecture in Fig. 2. A parallel memory access may
consist of both load and store operations. The main
benefit of using the control matrix is that any kind of
module assignment function, S(i), can be included and
used to construct the rows of the control matrix. After
that, all the memory module and crossbar controls can
be obtained automatically.

The lock request signal (LockrqReg) from the par-
allel memory logic is registered and, therefore, the
previous input values have to be saved to registers (i.e.,
addresses (ix), memory enables (LsuEnXy), write en-
ables (LsuWrXy), write data, and possible write masks),
because otherwise they would be overwritten by new
values. A simple state machine controls the saving of
this data at the correct moment. The saving is not
shown in the figures. The previous input values caused
memory conflict(s) and the lock request, thus they are
needed to resolve the conflict(s) sequentially.

The design contains numerous scalable components.
There are three crossbars: address, read data, and write
data. When LSUs with sub word support are used, an

additional crossbar is needed for the write mask. Each
crossbar has N input and output busses with corre-
sponding bus widths. In addition, one smaller crossbar
for single-bit memory write signals is needed. There
are (N + 1) OR-trees and each OR-tree merges an N-
bit input into a single bit. Finally, there are N priority
encoders with an N-bit input and 2N decoders with a
(log, N)-bit input.

5 Experiments

In order to demonstrate the power savings, the pro-
posed memory system was integrated to an existing
ASIP design. Different type of memory organizations
were connected to the core and synthesized on an ASIC
technology and various cost estimates were obtained
with the aid of simulations. Before going into details of
experiments, we shortly describe the reference design
used in the experiments.

5.1 Reference ASIP with Dual-Port Memory

The reference ASIP was a processor core tailored
for radix-4 FFT computations described in [18]. The
processor is based on transport triggered architecture
(TTA). In the TTA programming model, the program
specifies only the data transports to be performed by
the interconnection network and operations occur as
“side-effect” of data transports [19]. Operands to a
function unit enter through ports and one of the ports
is dedicated to act as a trigger. When data is moved to
the trigger port, execution of an operation is initiated.
A TTA processor consists of a set of function units
and general-purpose register files. These structures are
connected to an interconnection network, which con-
nects the input and output ports of the resources. The
architecture can be modified by adding or removing

[RF1] [COGEN] [ ADD | [cMUL][comP][  GCU
A AA AA AA AN

v
INSTR| [ LSU_|[ LSU o
AA AA

YY Y Y

MEM
YY YY Y Y

AJOWHN VIVAd

‘ﬁl ‘ﬁl ‘ﬁl #L

Figure 5 Principal architecture of the reference processor. ADD:
Real adder. AG: Data address generator. CADD: Complex
adder. CMUL: Complex multiplier. COGEN: Coefficient gener-
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Figure 6 Memory configurations with total size of 2048 x 32
used in comparison: a parallel quad-port memory, b parallel dual-
port memory, ¢ dual-port memory, and d single-port memory.

resources and special function units with user-defined
functionality can be easily included.

The structural VHDL description of the TTA core
was obtained by using the processor generator of the
TCE framework [20]. The principal block diagram of
the reference core with two LSUs is illustrated in Fig. 5,
which also shows that a dual-port memory was used
in the reference design. The processor was synthesized
and verified on a commercial 130 nm ASIC technol-
ogy and the critical paths in the core dictated a clock
frequency of 250 MHz. This is actually quite close to
the practical maximum clock frequency of the used
technology.

The original reference design can compute a radix-4
butterfly operation with the throughput of 0.25 butter-
flies per cycle, which implies that two memory accesses
are performed in a clock cycle, thus two LSUs are
sufficient. In the reference design, a dual-port memory
shown in Fig. 6¢c was used.

5.2 ASIPs with Parallel Memory System

In order to compare the properties of parallel memory
systems, the dual-port memory (2048 x 32) in the ref-
erence ASIP was replaced with a parallel memory logic
and two 1024 x 32 single-port memories as illustrated
in Fig. 6b. In this test case, the logic to control the
crossbar was designed to implement the storage scheme
proposed in [21] where a XOR scheme designed for
stride permutation access for 2"-element arrays distrib-
uted over N = 2" memory modules. In this case, the as-
signment functions are represented at bit-level, i.e., the
module assignment is S(i) = (m,—y), . .., my, mo)! and
the address assignment a(i) = (@y—n-1), - ., a1, ap)’. It
the address from a LSU is represented in bit-level
as an array i = (iy—_1), ..., i1, ip)!, the assignments are
defined with the following equation pair:

aj=1ijn, J=0,1,...,r—n—1
_ () i=0. 1 1
mj - @k:() l((kn+j)modr)»]— sl oo, n—

Lin(J) = Lr+n—ged(n,rmod n) — j—1) /n| 3)

where gcd(.) is the greatest common denominator, |- ]
denotes floor operation, and ) denotes bit-wise XOR
operation.

In this case, the number of ports, N, was two, thus
the scheme reduces to a parity bit computation of an
address i from the LSUy. The computed bit S(ix) = myo
defines which one of the memory modules should be
accessed. An address for the module S(ix) is simply
defined by the most significant bits of the address i; as
a(ik) = ik / N.

As an example, an excerpt of the data address trace
is shown in Table 2. The first 10 clock cycles represent
the prolog code and the actual iteration kernel starts at
cycle cc = 10. To save the memory storage, the com-
putation is performed in in-place fashion, which can
be seen form the memory trace: operand load from a
certain address is followed by result store into the same
address 10 cycles later. During the iteration kernel the
full memory bandwidth is exploited. In each clock cycle,
both memory modules are accessed as indicated by
the column S, which in this case equals to the parity
bit of the corresponding address ix. The conflict-free
operation was verified with RTL-level simulation.

Table 2 Example of data address trace for the 1024-point radix-4
FFT implementation with two load/store units.

cc LSUy LSU;

™w i() S ™w i S
0 r 1024 1 r 1028 0
1
2 r 1032 0 r 1036 1
3
4 r 1025 0 r 1029 1
5
6 r 1033 1 r 1037 0
7
8 r 1026 0 r 1030 1
9
10 r 1034 1 r 1038 0
11 w 1024 1 w 1028 0
12 r 1027 1 r 1031 0
13 w 1032 0 w 1036 1
14 r 1035 0 r 1039 1
15 w 1025 0 w 1029 1
16 r 1040 0 r 1044 1
17 w 1033 1 w 1037 0
18 r 1048 1 r 1052 0
19 w 1026 0 w 1030 1
20 r 1041 1 r 1045 0
21 w 1034 1 w 1038 0

cc Clock cycle, rw read/write, iy and i; addresses, S memory
module index.
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Another test case was created by extending the ref-
erence core by adding more functional units such that
the butterfly computations were performed with the
throughput of 0.5 butterflies per clock cycle. There-
fore, higher memory bandwidth was needed and four
LSUs were included. This resulted in almost twofold
speedup; a 1024-point FFT was computed in 2648 cy-
cles compared to the two load/store case, 5208 cycles.
In this case, the parallel memory system contained
four 512 x 32 single-port memory modules and parallel
memory logic as depicted in Fig. 6a. The module and
address assignment functions are still from Eq. 3 but
now the module assignment reduces to computation of
two bit parity and address assignment produces one bit
narrower results.

5.3 Memory Access Pipeline

The LSUs in the reference ASIP were pipelined con-
taining three stages and, therefore, the proposed par-
allel memory system was easy to interface to the core.
The LSU signals to and from the memory modules are
registered requiring two clock cycles, and the memory
access itself requires one clock cycle. The input signals
for the synchronous memory modules (i.e., address,
enable, write enable, write data (and write mask)) are
read in the rising clock edge. Thus, because there is
not much logic between the registered LSUs and in-
put/output ports of the memory modules, the timing
budget was met. The principal timing diagram of the
parallel memory between the input and output registers

of LSU for read and write operations are illustrated in
Fig. 7. The control logic, address crossbar, and write
crossbar are located in the 1st cycle slot between the
LSUs and memory modules. The read crossbar is con-
nected between the outputs of the memory modules
and LSUs. During a read clock cycle, the data appears
to the memory module data output bus after a related
memory access delay. Then the data travels through the
read crossbar to the data input registers of the LSUs.

5.4 Comparison

All the test cases were synthesized to a 130 nm, 1.5 V
CMOS standard cell ASIC technology with Synopsys
Design Compiler. This was followed by a gate level
simulation at 250 MHz. Synopsys Power Compiler was
used for the power analysis. The obtained results are
listed in Table 3. The cost figures listed in “Memory”
in parallel memory cases include also the control logic
and crossbar.

When comparing the two first cases (dual-port mem-
ory case and 2-port parallel memory case, which con-
tain the same reference core with two LSUs where the
same code is executed), it can be seen that the dual-
port memory requires larger area (factor of 3.5) than
the parallel memory system. The power consumption
of dual-port memory case is almost double compared
to parallel memory, thus the power-efficiency of the
parallel memory system is significantly better than in
dual-port memory.

Table 3 Characteristics of
1024-point radix-4 FFT
implementations on TTA.

All designs synthesized and

Area Power Energy/FFT Cycles/FFT
[kgates]  [mW]  [uJ]
Dual-port memory, Fig. 6¢c Memory 102.4 272 0.57
reference core with Core 33.1 43.6 0.91 5208
2 LSUs Total 135.5 70.8 1.48
Parallel memory, Fig. 6b Memory 29.7 15.7 0.33
reference core with Core 33.1 43.6 0.91 5208
2 LSUs Total 62.8 59.3 1.24
Parallel memory, Fig. 6a Memory 37.0 29.0 0.31
extended core with Core 66.3 88.0 0.93 2648
4 1LSUs Total 103.3 117.0 1.24

analyzed at 250 MHz clock
frequency.
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Table 4 Characteristics of different 2048 x 32 memory implementations based on 130 nm ASIC technology with 250 MHz clock

frequency.
Structure # ports Organization Area Power Energy/FFT Cycles/ Delay
[kgates] [mW] [ud] FFT [ns]
Parallel Memory 4%(512 x 32) 32.0 235 0.25
Fig. 6a 4 Logic & crossbar 5.0 5.5 0.06 2648 2.10
Total 2048 x 32 37.0 29 0.31
Parallel Memory 2%(1024 x 32) 27.8 13.9 0.29
Fig. 6b 2 Logic & crossbar 1.9 1.8 0.04 5208 217
Total 2048 x 32 29.7 15.7 0.33
Dual-port
Fig. 6¢c 2 Total 2048 x 32 102.4 272 0.57 5208 248
Single-Port
Fig. 6d 1 Total 2048 x 32 25.9 10.8 0.45 10328 1.83

We can also analyze the scalability of the system by
comparing the last two test cases in Table 3 (in ex-
tended core, the computational resources are doubled
compared to reference core). The results show that the
area and power consumption of the parallel memory
scale quite nicely. The power-efficiency seems to even
improve but that is due to the fact that we have doubled
the resources but the schedule, e.g., execution time,
is not half of the original, thus the relative time per
memory access is longer than in the reference case. It
should be noted, that this kind of scaling was possible in
our reference application, FFT, since it is regular. Some
other applications may not allow this kind of scalability.

In order to compare the power consumption of
parallel-memory and multi-port memory, we analyzed
the area and power consumption of 2048 x 32 memory
realized as parallel memory, dual-port, and single-port
memory as shown in Fig. 6. The results are listed in
Table 4, which presents the area, power, and energy dis-
sipation acquired through gate level simulation of 1024-
point FFT at 250 MHz. The only multi-port memory
configuration is the dual-port memory since the used
technology library did not contain any memories with
larger number of ports.

The results show that multi-port memories are ex-
pensive both in terms of area and power. Adding a
second port results in almost four times larger area and
three times higher power consumption. When adding a
second port with parallel memory approach, the area
and power are increased by factors of 1.2 and 1.5, re-
spectively. A 4-port parallel memory increases area and
power by factors of 1.4 and 2.8, respectively, compared
to a single-port case. The energy figures in Table 4 show
that a 2-port parallel memory is even more energy-
efficient than single-port memory. This is due to the
fact that execution time is half of the execution time
in single-port case.

The largest dual-port memory in the technology li-
brary was 4096 words, thus we repeated the previous
analysis for 4096 x 32 memory organizations and the
results are listed in Table 5. It can be noted that the
parallel memory requires only 26% of the area of
corresponding dual-port memory and uses 52% of the
power. In addition, when the memory size is doubled
(2 to 4 kW), the power consumption of dual-port mem-
ory increases by a factor of 1.61, while the correspond-
ing dual-port parallel memory increases by a factor of
1.43. Correspondingly doubling the memory capacity of

Table 5 Characteristics of different 4096 x 32 memory implementations based on 130 nm ASIC technology with 250 MHz clock

frequency.
Structure # ports Organization Area Power Energy/FFT Cycles/ Delay
[kgates] [mW] [ud] FFT [ns]
Parallel Memory 4%(1024 x 32) 55.7 27.2 0.29
4 Logic & crossbar 5.0 5.5 0.06 2648 2.23
Total 4096 x 32 60.7 32.7 0.35
Parallel Memory 2%(2048 x 32) 51.8 21.6 0.45
2 Logic & crossbar 1.9 1.8 0.04 5208 2.86
Total 4096 x 32 53.9 224 0.49
Dual-port 2 Total 4096 x 32 204.3 434 0.90 5208 271
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a 4-port parallel memory increases power consumption
by factor of 1.13. Finally, the energy figures in Tables 4
and 5 show that the dual-port memory consumes 1.7-1.8
times more energy than the 2-port parallel memory.

It should be noted that the memory structures shown
here are created for the same pipelining structure as
used in the original core designed for dual-port mem-
ory, thus the structures are not always optimal, e.g., in
Table 5, the 4 kW 2-port parallel memory is slower
than the corresponding 4-port memory. However, all
the structures fulfill the clock constraint, 4.0 ns.

In parallel memory systems, the additional logic and
crossbar introduce additional delay, which may limit
the access time and, therefore, the maximum clock
frequency. We have listed the critical paths of the
memory designs in Tables 4 and 5. The timing aspects
of parallel memories have already been considered,
e.g., in [17, 22], and the results indicate that the cost
of additional logic and crossbar is not dominant when
then number of ports is not large, i.e., less than 16.
It can be assumed that, in ASIP implementations, this
is the case. In addition, if the critical path in parallel
memory becomes the limiting factor, the load and store
operations need to be pipelined more efficiently.

The previous discussion indicates that the area and
power costs of multi-port memory are significantly
larger than in parallel memory case. The costs also
seem to increase faster as the number of ports is
increased. This is one of the reasons that multi-port
memories ASIC technology libraries are often limited
only to dual-port. Finally, the ASIC technology used
in our experiments can be classified as a low-power
IC technology and the static power consumption is
not as significant as in future technologies. Therefore,
the previous power consumption comparisons between
multi-port and parallel memory will be different in
the future. However, the static power consumption is
related to the area, thus it can be expected that, in
the future, parallel memory system will be even more
energy-efficient compared to multi-port memories.

6 Conclusion

In this paper, a conflict resolving parallel data memory
for ASIP designs was proposed. The proposed memory
system does not employ any predefined access format
signals for the parallel memory addressing. Such a
memory system can be exploited in application-specific
designs where the address trace can be highly regular
and predictable, thus there can be a good change to find
a well performing storage scheme. The existing parallel
memory theory can be used to construct application-
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specific storage schemes. The proposed parallel mem-
ory system contains conflict-detection logic, thus it is
general-purpose. However, if the storage scheme does
not suit to the instruction schedule, i.e., the parallel
accesses in the address trace are done into the same
memory module, performance is degraded as the mem-
ory accesses need to be serialized.

Although the experiments used in this paper were
performed with a TTA processor, the parallel memory
system is applicable for any ASIP supporting multiple
LSUs and memory wait states.

Our experiments on low power ASIC technology
show that significant power savings can be obtained
by using parallel memory system instead of multi-port
memory. Furthermore, the area comparison implies
that the savings will be even higher in the future when
static power consumption will become dominant.
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Abstract In this paper, a processor architecture tailored
for radix-4 and mixed-radix FFT computations is de-
scribed. The processor has native support for power-of-
two transform sizes. Several optimizations have been
used to improve the energy-efficiency of the processor
and experiments show that a programmable solution can
possess energy-efficiency comparable to fixed-function
ASICs.

Keywords Discrete Fourier transform -
Application-specific integrated circuit -
Digital signal processors - Parallel architecture

1 Introduction

Quite often implementations of Fast Fourier transform
(FFT) are based on Cooley-Tukey radix-2 FFT algo-
rithms due to the regularity and principal simplicity of
the computations. However, FFT algorithms with higher
radices can be more efficient as many of the twiddle fac-
tors become trivial multiplications. Especially, radix-4
algorithms have been popular since the 4-point discrete
Fourier transform (DFT) can be computed without
multiplications.

In order to gain efficiency with higher radices, the ba-
sic DFTs need to be computed with efficient algorithms

T. O. Pitkdnen () -J. Takala

Department of Computer Systems, Tampere University
of Technology, P.O. Box 553, 33101 Tampere, Finland
e-mail: teemu.pitkanen@tut.fi

but advantage is gained only in cases where the length
of the input sequence is a power of the radix. A solution
supporting power-of-two transform lengths with lower
complexity than radix-2 is mixed-radix FFT where the
DFT is decomposed to a structure containing DFTs of
several sizes.

Even lower arithmetic complexity can be achieved
with split-radix FFT algorithms, where the number of
arithmetic operations is close to the theoretical mini-
mum. Typically in split-radix algorithms even and odd
indexed outputs are computed differently, thus the reg-
ularity of the Cooley-Tukey FFT in control flow is not
achieved.

FFT implementations can be divided to two catego-
ries: memory based, e.g., [25, 31] or pipelines, e.g., [11,
26, 30]. Pipelined FFTs are usually used in short FFTs
since as the size of the FFT increases, more intermedi-
ate storage is needed and memory is more efficient stor-
age for large amount of data than registers and delay
elements used in pipelines. The basic principle of the
both methods are shown in Fig. 1: (a) shows memory
based computations with one processing element (PE)
and a single port memory and, in (b), a two ported
memory with one PE is illustrated, with one radix-2 PE
up to four simultaneous access to the memory can be
used efficiently. In (c), a parallel architecture is shown
with multiple PEs and memory ports and, in (d), basic
principle of pipelined method is depicted where delay
elements are used in the feedback loop. The memory
based designs are considered to be smaller and require
less power. On the other hand, pipelined designs offer
higher throughput. Nowadays memories are also used
in pipelined designs to reduce power dissipation, espe-
cially when large transform is needed [30]. In memory
based designs, the throughput can be improved by
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c) d)

Figure 1 Basic principles of FFT computation methods: a single
PE with single port memory, b single PE with dual ported mem-
ory, ¢ parallel column architecture, and d pipelined architecture.

adding more processing elements and more memory
accesses, i.e., parallel architectures, but this of course
increases area and power consumption.

Traditionally FFT has been implemented as a
fixed-function VLSI circuit since it provides better
energy-efficiency and performance than software im-
plementations. Such implementations have recently
been reported, e.g., in [31, 33], based on radix-2 FFT
and examples of radix-4 FFTs can be found, e.g.,
from [7, 9] and mixed-radix algorithms are reported
in [12, 16]. Recently, software implementations have
became preferable due to the flexibility but the energy-
efficiency of programmable architectures has been poor
compared to dedicated hardware structures. However,
the energy-efficiency can be improved by customizing
the architecture towards to the application domain.

In this paper, we describe a processor architecture
tailored for FFT computations. Several optimizations
have been used to improve the energy-efficiency of
the processor. This paper is based on the principles re-
ported in our earlier papers [18, 19, 21] and shows that
a programmable solution can possess energy-efficiency
comparable to fixed-function ASIC. The processor is
tailored for radix-4 and mixed-radix FFT algorithms
and supports several transform lengths.

2 Related Work

General-purpose processors (GPP) are used in FFT
calculation, but the main limitation of the GPPs in the
mobile environment is the energy consumption. The
main reason for this is high cycle count, which requires
high clock frequency to achieve required throughput.
The Intel Pentium-4 [5] represents a standard general-
purpose microprocessor. StrongArm SA-1100 [10] can
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be considered as general-purpose processor for mobile
devices as it employs custom circuits, clock gating,
and reduced supply voltage. Better solution in energy
wise are general-purpose DSP processors. The FFT
computation takes significantly less cycles compared
to GPPs, thus the clock frequency can be orders of
magnitude less for the same or better throughput. Ex-
amples of such general-purpose DSP processors are
TI TMS320C6416 [28], which is a VLIW machine, and
Imagine [24] designed for media applications. Both the
processors utilize pseudo-custom data path tiling. In
addition, pass-gate multiplexer circuits are exploited in
C6416.

Pure hardware solution can achieve highest usage of
the parallelism available in the algorithm, but there are
different solutions how much parallelism is exploited,
since it requires more functional units and memory
ports. The energy consumption can be reduced by using
low supply voltage [1] or even using sub threshold sup-
ply voltage [29]. With ultra low voltages the through-
put of the system is heavily reduced. Dynamic power
consumption can be reduced by exploiting the inherent
properties of algorithms. E.g., one of the four twiddle
factors in radix-4 butterfly or half of the twiddle factors
in radix-2 butterflies is trivial 1 thus multiplication is
not needed. In [30], multiplications by +/2/2 and — j are
avoided. In [11], a method to reduce the use of general
multipliers is presented by balancing the binary tree of
the FFT calculation.

In memory based designs, the memory bandwidth
needs to match the throughput, which often calls for
additional memory ports. However, the parallel mem-
ory ports are typically expensive in terms of area and
energy, in particular the write ports. Instead of using
multi-port memories, we can use several single-port
memories. In [25], two single-port memories are ex-
ploited and four single-port memory are used in [32]
but the FFT computations were limited to radix-2 al-
gorithms, the supported FFT sizes are 256 and 1,024.
Also a parallel memory scheme can be used where
memory emulates the multi-port memory with some
access scheme [17], access scheme can be conflict-free.
Power consumption of the memories are important is-
sue also in pipeline based designs, where in [30] authors
present a method of using shift registers instead of the
memories in the feedback loop. This has a major impact
on the power dissipation. Twiddle factor storage has
major effect to the power dissipation and it can be
reduced by using coefficient generator, which exploits
the symmetry of sine and cosine functions. In [11, 30],
the twiddle factors are computed on-online, which is
area-efficient solution but unfortunately computations
increase the dynamic power consumption.
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Application-specific processors (ASP) are increasing
in popularity as they offer a good midpoint solution
between DPS and custom hardware. One example is
SPOCS [2], which contains special instructions for FFT
computations reducing the implementation complexity
and cycle count. SPOCS processor consist: program
control unit, address unit with two address generation
units, specialized FFT addres generation unit, and ad-
dress register, optimized data processing unit with two
MACs, one ALU, barrel shifter and register file, pro-
gram memory and two dual ported data memories.

In this paper, we propose a processor customized for
FFT computations. The processor is programmable,
thus it is ASP. We exploit several of the optimizations
used also in ASIC implementations, which typically
cannot be exploited in software implementations or
introduce too much additional overhead, e.g., we use
complex data type with native support, address com-
putations often requiring multiplication are performed
at bit-level where mainly rotations are needed, nested
loops are avoided with the aid of specialized address
generation units, multiplications with trivial constants
1 is avoided, and a parallel memory with conflict-free
parallel access scheme is used to emulate two-ported
memory. We have created a twiddle factor genera-
tor which exploits the redundancy in the factors and
we use ROM table approach, which consumes sig-
nificantly less power compared online computations.
Finally, the processor is based on transport triggered
paradigm where the programming model reminds static
data flow. This architecture template provides some
additional advantage in energy-efficiency. We exploit
efficiently radix-4 computations and the resulting in-
struction schedule is tight and exploits fully the avail-
able memory bandwidth, which is seldom the case in
software implementations.

3 FFT Algorithms

In this paper, we have used the in-place decimation-
in-time radix-4 FFT algorithm with in-order-input, per-
muted output as given, e.g., in [23] and corresponding
mixed-radix algorithm. The radix-4 algorithm can be
formulated as follows:

0
Frn = Ryn |: H (Lys ® Fi @ Lyn—s—1) (Tys1 40 @ I4n.s|)i|;

s=n—1

)

167
11 1 1
1—j—1 7
Fo= {200 ) @
1j —1—j
0
Ry = H Ly ® Pyo-n 4 (3)
k=n-2

where ® denotes tensor product, /y is identity matrix
of order N, and Ry is a permutation matrix based
on stride-by-S permutation matrix of order N, Py,
defined as [6]

[P ] | 1, iffn = (mS mod N) + [mS/N|
N.Slmn = 10, otherwise ’
mn=0,1,..., N—1. 4)

The matrix T, y contains twiddle factors W% = e/2*"/N
as follows
Ty n = diag (0(0)°, 0(0)', @(0)%, @ (0)*,

o)’ o) 0(1)? o), ...,

w(k/4— D% ok/4—1)%); (5)

T
0= Ry (Whee Wi, WD) (6)

An example of signal flow graph of this algorithm is
depicted in Fig. 2a. As the radix-4 algorithm supports
only power-of-four transform sizes, we use mixed-radix
approach to support also power-of-two FFTs. Again
we use a mixed-radix algorithm with in-order input,
permuted output, consisting of radix-4 and radix-2 com-
putations as follows

F22n+| = S2(2n+1) (1411 ®F2) U2(2n+l)

0
X |: l_[ (I @ F4 ® Lhon—2-1) (T4v+114n ® Lron-25-1 )i| ;
s

=n—1

O

11
r=(11) ®)
Syt = (I ® Ran) Powsin 9)

where twiddle factors for the last radix-2 processing
column are defined as

Uy = ST, (IN/z @ diag (W?V, Wi ..., W,Q’/H)) (10)
where @ denotes matrix direct sum. An example of

signal flow graph of the mixed-radix algorithm based on
radix-4 and radix-2 computations is shown in Fig. 2b.
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Figure 2 Signal flow graph of
a 16-point radix-4 FFT and b
32-point mixed-radix FFT. A
constant k in the signal flow
graph represents a twiddle
factor W¥,.

©COENOTBRWN=O

©CONOUIAWN = O

4 Transport Triggered Architecture

Transport triggered architecture (TTA) [4], is a class
of statically programmed instruction-level parallelism
architectures reminding very long instruction word
(VLIW) architectures. In TTA programming model,
the program specifies only the operand transfers and
operations are performed as a side-effect of the data
transfer. Operands to a function unit are fed through
input ports and one of the ports acts as a trigger; when-
ever data is written to the trigger port, function unit
starts executing the operation.

A TTA processor consists of a set of function units
and register files containing general-purpose registers.
The input and output ports of these resources are
connected together with an interconnection network
as illustrated in Fig 3. The data transports are carried
out by buses in the interconnection network. The
processors in Fig 3 contains six buses implying that six
parallel data moves can be performed in each cycle.
The operands can be moved directly from the output
port of an function unit to an input port of another
function unit without the need to store the result to
register file. The interconnection network can be fully
connected, i.e., all the ports of all the function units are
connected to the all the buses. Quite often the network
is optimized in such a way that only a sub set of all
possible connections are used as shown in Fig. 3; the
ports of the resources are connected only to some of the
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buses (black dots). Instructions specify each individual
transport on each bus, i.e., instruction contains a bit
field for each bus, which specifies which output port and
input port are connected to the bus during one instruc-
tion cycle. As the instruction contains several fields for
defining parallel moves, the instruction format reminds
very long instruction word (VLIW) machines but here
the instructions control the interconnection network
and specify the data moves rather than controlling
directly the function units as in VLIW machines. As
the instructions control only data transports, the archi-
tecture has only one instruction, move. The drawback
of the TTA is really wide instruction word and poor
code density, both can be improved with code com-
pression [8].

[ FU | [ Fu ][ Lsu

<> bmEM |

[ ru ][ rRF ][ RF | [ ontRL K IMEM ]
Figure 3 TTA processor organization. FU Function unit. RF
Register file. LSU Load-store unit. CNTRL Control unit.
DMEM Data memory. IMEM Instruction memory. Dots repre-
sent connections between buses and ports of function units.
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The function units follow the transport triggering par-
adigm; each unit trigger the operation execution when
an operand is moved to a trigger operand register
shown in the principal block diagram of a function unit
in Fig. 4. A single trigger register is the minimum re-
quirement and additional operands can be fed through
one or more operand registers; unit in Fig. 4 is a two-
operand unit having a trigger port “tdata” with trigger
register and operand port “oldata” with operand reg-
ister. As the operation starts execution when data is
written to the trigger register, all the other operands
need to be transferred to operand registers in the same
or earlier cycle. Operands in input registers can also be
shared between consecutive operations in a function
unit, i.e., there is no need to transfer the operands
again to the registers if the same operands are used
in the next operation. This reduces the traffic in the
interconnection and the need for temporary storage in
register files or data memory.

Function units can also support several operations
and the actual operation to be executed is indicated
with an opcode attached to the trigger move instruc-
tion. Function units can be pipelined and different op-
erations may even have different pipeline depths. The
pipeline is synchronized with a control register chain
initiated from trigger load signal “tload” as depicted
in Fig. 4. The control signal from register chain can
also be used for clock gating as shown in Fig. 4, which
effectively reduces power consumption of pipeline
stages during idle cycles. Function units can produce
one or more results and the output ports can be reg-
istered, which allows the result to be moved to the
destination on a later instruction cycle. However, new
results will overwrite the previous, thus results need
to be moved before new results arrive. Finally, TTA

oldata
tdata

olload Operand reg
tload I_C

glock —> X Trigger reg

opcode —> Pipeline reg
> (optional
et
Output reg
clock P (optional

U ridata

Figure 4 Principal structure of a two-operand, one-result func-
tion unit.

processors support also wait states, which means the the
pipelines of the function units needs to be locked during
such cycles. Each function unit has a global lock signal
“glock” as illustrated in Fig. 4.

The processor architecture can be tailored for a spe-
cific application by selecting suitable resources to the
processor and optimizing the interconnection network
according to the traffic generated by the application.
Significant improvements can be obtained by using spe-
cial function units which perform application-specific
operations. Such units are the key to energy-efficient
implementations; customization of the function units
according to the specific characteristics of the appli-
cation is effective means to reduce power consump-
tion without reducing the performance. Such units also
reduce the instruction overhead, thus they reduce the
power consumption due to the instruction fetch.

As TTA processors are statically programmed, there
are no run-time predictions, which try to improve the
performance in general-purpose computing but unfor-
tunately consume power. When customizing a proces-
sor for a specific application, we can exploit all the
a priori information and efficient instruction schedul-
ing can be created off-line. In TTA case, the target
of scheduling is to allocate operand moves over the
buses such that operands are in the operand registers
when operand is moved to trigger port. In addition, the
schedule has to guarantee that results are moved from
result ports before new results arrive. Development
tools for customizing TTA processors and retargetable
compiler for the customized TTA processors can be
found from [27].

5 Building Blocks for FFT Computations

In order to customize the TTA processor for FFT
computations, we need to first identify the specific fea-
tures of the application, which can be exploited when
defining the functional units and organization of the
processor. The first issue is the fact that FFT exploits
complex-valued arithmetic, thus an efficient implemen-
tation should support complex data type. Here we
simply split the native 32-bit word of the processor
template into two parts representing real and imag-
inary part of complex number. The 16-bit parts are
represented as signed fractional numbers. We also need
arithmetic units supporting the previous complex data
type, thus a complex-valued multiplier and complex-
valued adder are included. The complex multiplica-
tion unit provides product of two operands with one
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exception. As +1 is one of the twiddle factors but it
cannot be represented with the normalized fractional
representation, we have allocated a special twiddle
factor bit pattern to represent this value. When the
multiplier detects the value, it passed the other operand
to the output, i.e., performs multiplication by +1.

The complex add unit is tailored for FFT butterfly
computations. The unit has five input ports as illus-
trated in Fig. 5. The unit computes any of the four-
operand (inputs 01-04 in the figure) additions defined
by 4-point DFT, F4, in Eq. 2. The unit can supports
also complex-valued two-operand add/subtract, which
is needed in radix-2 butterfly used in our case when
realizing mixed-radix algorithm. The operation code is
used as the trigger port in the complex add unit, thus
once the four complex-valued operands are moved to
the input registers, four results can be triggered by
simply transferring an opcode to trigger port without
the need retransmit all the operands.

In order to save memory storage, in-place computa-
tions are used, i.e., results from butterfly computations
are stored to memory locations where the operands
were read. This implies that for an N-point FFT only
N-memory locations are used. The FFT computations
contain also special access patterns. This can be seen
in Fig. 2: the operands to butterfly computations are
not accessed in linear order from the memory array.
By considering the index computations in bit-level, it
can be found that the operand index can be obtained
from the linear address with the aid of simple rotations.
In N-point FFT with radix-4 algorithm, we have an
n-bit (n =log, N) linear index a = (ay_1, ..., ay, o).
The operand index in the first processing column is
obtained by rotating the the linear index two bits to
the right; idxo = (a1, ao, an—1, . . ., az). In the second col-
umn, the rotation is performed for (n —2) least sig-
nificant bits; idx, = (a,_, ay,_2, ay, ap, @y_3, ..., az). In
general, in the processing column s (the first column
is indexed as zero as indicated in Fig. 2), the (n — 2s)
least significant bits are rotated two bits to the right.
The operation is illustrated in Fig. 6a and b. In 64-point

Figure 5 Block diagram of complex adder unit.
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Figure 6 Example of operand address generation. Radix-4 algo-
rithm N = 64: a 8-bit iteration counter and b format of operand
index at different processing columns and mixed-radix algorithm
N = 32: ¢ 7-bit iteration counter and d operand index format.

transform, there are three processing radix-4 processing
columns, thus we have a 2-bit stage counter, “iStage”. A
6-bit linear index is seen in Fig. 6a (bits 5-0). In the first
column, the 6-bit field is rotated two bits to the right as
depicted in Fig. 6b. In the second column, the 4-bit field
is rotated, while in the last column (iStage =2) a 2-bit
field is rotated two bits to the right, i.e., original linear
index is used.

A mixed-radix algorithm is used when # is odd, i.e.,
N is not a power-of-four. In such a case, the index is
obtained in similar fashion as illustrated in Fig. 6¢ and
d and the only difference is that the field to be rotated
has an odd number of bits. In the last column, a 1-bit
field is rotated two bits to the right, i.e., again the linear
index is used. Based on these principles, we designed
a special unit, which rotates the linear index obtained
from iteration counter and adds the operand index to
the base address of the memory array. The unit requires
the transform length and processing column index as
additional parameters. The processing column index
can be obtained from the iteration counter, i.e., the
most significant bits of iteration counter as illustrated
in Fig. 6, thus the operand address generation unit
contains three input ports as illustrated in Fig. 7. The
base address of the memory array and transform length
are initialized once, thus the iteration counter is the

linear index
transform length

rotator

base address absolute address

Figure 7 Operand address generation unit.



J Sign Process Syst (2011) 63:165-176

17

Figure 8 Block diagram of
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supporting transform sizes of
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only operand transferred to the unit during the kernel
execution.

Another memory related issue in FFT computations
is the twiddle factors. Here we have designed a spe-
cial unit, which computes the twiddle factors based on
complex-valued coefficients stored in a lookup table.
Several methods have been proposed to minimize the
lookup tables for generating twiddle factors but mainly
for radix-2 algorithms. We have developed a method
for minimizing the coefficient tables for radix-4 FFT
such that also mixed-radix algorithms are supported.
For N-point FFT, we need to store N/8 + 1 complex-
valued coefficients in a table and four real-valued
adders and some control logic are needed to produce
the twiddle factors as illustrated in Fig. 8. When the
lookup table is designed for an N-point FFT, the units
can generate twiddle factors for all the smaller power-
of-two transform sizes. More detailed description of the
twiddle factor unit can be found from [20].

High performance FFT implementation requires
also high memory bandwidth implying need for mul-
tiple memory ports. We have avoided the multi-port
memories due to their high power consumption and
used parallel independent single-port memories in-
stead. Parallel memory organization requires that the
operands to be accessed in parallel are distributed
to different memory modules, which requires suitable
conflict-free access scheme to be used in the parallel
memory control logic. As there is no general-purpose
conflict-free parallel scheme, this approach is not used
in processors. However, in this work, we are tailoring
the processor for FFT computations, thus we have a pri-
ori information about the access patterns and here we
use the simple parity scheme proposed in [3]. The par-
allel memory organization provides energy-efficiency

LUT

compared to multi-port memories as we discussed ear-
lier in [22].

6 Processor Organization

The proposed processor is based on TTA template
and the special function units described in the previous
section were included in the processor as shown in the
organization in Fig. 9. The instruction unit (iu) fetches
and decodes the instructions from the instruction mem-
ory and generates control signals. The immediate unit
is used for extracting immediate data from instructions.
The interconnection network consists of one Boolean-
valued bus mainly for transporting results from com-
parison unit to be used as parameter for conditional
execution. The interconnection contains 17 buses for
transporting 32-bit words. The network is optimized

Dmem| Dmem

mux&ctr

Figure 9 Block diagram of FFT processor. Dmem data memory.
Imem instruction memory. ld/st load-store unit. #fg twiddle factor
unit. ag address generator. cmul complex multiplier. cadd com-
plex adder. add adder. lu logical unit. shift shifter. cmp compare
unit. iu Instruction unit. imm immediate unit. RF register file.
RFb Boolean register file.
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clockcycles 1 2 3 4 5 6 7 8 9 1011 1213141516 17

add
ag
tfg
Id/st
cmul
lcadd
Id/st

Figure 10 Reservation table of computing a single radix-4
butterfly.

(not fully connected) and several of the buses reduced
to point-to-point connections.

The schedule of the FFT computation is constructed
with the aid of software pipelining. The reservation
table for a single radix-4 butterfly computation is illus-
trated in Fig. 10 where the register files used for tem-
porary storage are left out for clarity. The resources are
listed in vertical axes and the first unit “add” is used to
increment the iteration counter. The updated counter
value is moved to address generator, which computes
the memory address of the operand, and twiddle factor
generator, which determines the corresponding factor.
The memory address is transferred to load-store unit,
which fetches the operands from memory. The memory
address is also stored to register file as it is needed
later to store the final result. The twiddle factor and
operand are transferred to complex multiplier and the
product is stored to register file. These operations are
performed four times thus all the operands and twiddle
factors for a single butterfly are available. Once the
four products are available, they are transferred to
complex adder and four different additions in radix-4
butterfly (or two add/subtract operations from radix-
2 computations in case of the last butterfly column in
mixed-radix algorithm) are performed in consecutive
instruction cycles. Each result from complex add unit
is directly transferred to the second load-store unit. At
the same time, the memory address is read from register

cycle |1 2 3 4 5 6 7 8 9 1011 12 13 14 15[{16 17 18 19 21 22 23 24 25 26 27 28 29 30 31 32|33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

file, thus the units can store the result to memory.
The reservation table shows that the execution of one
butterfly takes 18 cycles.

When pipelining several butterfly computations as
depicted in the reservation table in Fig. 11, we see a
perfect overlap once the pipeline has been filled at cycle
#14. All the resources are fully utilized and two memory
accesses over two load-store units occur in every cycle
indicating that the memory bandwidth matches the per-
formance of the arithmetic resources. During the kernel
computations, all the arithmetic units and load/store
units have utilization of 100%, thus no energy is spent
on idle operations. Based on this reservation table,
we can select a kernel function to be iterated in our
FFT implementation. The iteration kernel is shown in
Fig. 11 consisting of the cycles #16—#32. the cycles #1—
#15 represent prologue and cycles #33—#47 are epilogue
finalizing the iterations. The selected kernel of 16 cycles
consists of one control point of exiting the kernel, which
is determined by comparing the iteration counter.

The pseudo code of the schedule is presented in
Fig. 12. In the initializations, the end condition for itera-
tions is computed and the used algorithm is determined:
pure radix-4 or mixed-radix. Mixed-radix computations
require that during the last butterfly column, radix-2
butterflies are computed instead of radix-4. While typ-
ically such an alternative computation requires branch-
ing, here the kernel is a basic block without branching
as we exploit conditional execution. This implies that
the software pipelining can be fully exploited without
any need to flush the operation pipeline. It should also
be noted that the code contains only a single loop as
illustrated by the code in Fig. 13. In general, software
implementations of FFT contain three nested loops,
which indicates overhead of three loops. As we exploit
only a single iteration counter, the control overhead
is significantly reduced. This can be done as there are
special units for managing memory related index com-
putations: both the operand/result access and twiddle
factor access.

add

ag

tfg
Id/st
cmul
cadd
st HEEN

Prologue

Kernel

Figure 11 Reservation table for FFT computation.
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FFT (N, *baseAddress) {

if (mods (N) != 0)
radix2 = 1;
else
radix2 = 0;
for(i = 0; i < Nx[loga(N)]; i +=4) {
if (i == ([logg (N)]-1) %N)
lastStage = 1;
else

lastStage = 0;
for(j = 0; J < 4; j++) {
twiddle = tfg(N,i+j, radix2, lastStage);

address[j] = ag(N, rbaseAaddress, i+]j);
A[j] = twiddle x (xaddress[]]);

}

if (lastStage == 1 and radix2 == 1) {
res[0] = A[0] + A[1l];
res[1l] = A[0] - A[1l];
res[2] = A[2] + A[3];
res[3] = A[2] - A[3];

} else {
res[0] = A[O] + A[1] + A[2] + A[3];
res[1] = A[0] - im*A[1] - A[2] + imxA[3];
res[2] = A[0] - A[1l] + A[2] - A[3];
res[3] = A[0] + im*A[1] — A[2] - im#*A[3];

} for(j = 0; 3 < 4; j++) |
xaddress[J] = res[]j];
}
}
}

Figure 12 Pseudocode for FFT computation.

The efficiency of the implementation can be consid-
ered by noting that the theoretical lower bound for a
1,024-point radix-4 FFT when using a dual-port mem-
ory is 5,121 memory cycles, i.e., 1,024log,(1,024) + 1
parallel reads and writes to dual-port memory. In the
proposed processor with two single-port memory mod-
ules as illustrated in Fig. 9, the 1,024-point FFT requires
5,160 cycles. This indicates that the looping overheads
are minimal.

As the TTA processor reminds VLIW, it suffers the
same drawback as VLIW: long instruction word implies
high power consumption in instruction fetch. In order
to reduce the power consumption of program memory

main () {
initialization(); /* 7 to 41 instructions «/
prologue (); /* 15 instr. x/
for (idx=0; idx < (N[logyN])/16-1; didx++) {
kernel(); /* 16 instr. x/
}
epilogue; /* 15 instr. =/
}

Figure 13 Pseudocode illustrating the structure and control flow
of the program code.

and improve the code density, dictionary-based pro-
gram compression was applied to the program mem-
ory [8]. All the unique instructions of the program code
were stored into a dictionary and replaced with indices
pointing to the dictionary. This resulted in decrease in
the width of the program memory from 167 bits down
to 7 bits. The actual dictionary was implemented using
hardwired standard cells.

7 Experiments

We have designed a customized TTA processor such
that the twiddle factor generator unit supports power-
of-two FFTs up to 16K, ie., the lookup table in
the twiddle factor unit contains 2,049 complex-valued
coefficients. The native word width of the processor is
32 bits, which allows complex values to be represented
with 16-bit real and 16-bit imaginary parts and, there-
fore, the word width of the lookup table in twiddle
factor unit is 32 bits. In addition, the unit has five
pipeline stages and the lookup table was implemented
as hardwired logic. Clock gating was applied to reduce
the power consumption of the function units during idle
cycles. This provides power savings on units with low
utilization.

The design has been described with VHDL language
and synthesized with Synopsys tools onto a 130 nm
standard cell technology. Estimates for power con-
sumption are obtained with Synopsys tools with the
aid of gate level simulations. The characteristics of the
results are listed in Table 1. The twiddle factor unit
uses about 23% of the core area and 7% of the

Table 1 Characteristics of the proposed processor synthesized on
130 nm ASIC technology.

Supported FFT sizes
Cycle count
Execution time
Power consumption

64-16,384

207-114,722

828 ns—459us @ 250 MHz
60-73 mW @ 1.5V, 250 MHz

Max. clock freq. 255 MHz
Area (kgates)
Core 375
Imem 2
Dmem 240
Total 279.5
1,024-point FFT
Cycle count 5,160

60.4mW @ 1.5V, 250 MHz
29.8 mW @ 1.1 V, 140 MHz

Power consumption

8,192-point FFT
Cycle count
Power consumption

57,396
68.7mW @ 1.5 V, 250 MHz
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power consumption, thus twiddle factor unit improves
the energy-efficiency of FFT computations. The most
significant power savings compared to our previous
results from [19] are due to data memories as here
we have exploited two parallel single-port memories
instead of dual-port memories. The power consumption
of the data memories was halved, which is significant
since the memories represent half of the total power
consumption.

The energy-efficiency of FFT implementations is
often compared by measuring how many 1,024-point
FFTs can be computed with unit of energy, thus we
selected some examples from the literature represent-
ing FFTs with different implementation technologies.
The comparison results are listed in Table 2. The Intel
Pentium-4 [5] represents a standard general-purpose
microprocessor. StrongArm SA-1100 [10] can be consi-
dered as general-purpose processor for mobile devices.
Representatives of general-purpose DSP processors
are TT TMS320C6416 and Imagine [24] designed for
media applications. FFT implementations on C6416 are

reported in [28]. It should be noted that cycle count
of 6002 is obtained with eight memory ports while the
proposed processor uses only two. The SPOCS [2] is
an ASP with instruction extensions tailored for FFT
computations which supports FFT from 64- to 8,196-
points, but the implemented system would only support
FFT to 2,048-points.

Spiffee processor [1] is tailored for FFT computa-
tions and energy-efficiency is obtained by using low
supply voltages. In [13], an FPGA solution with dedi-
cated embedded FFT logic is reported. In [33], a cus-
tom scalable IP core is reported, which employs single
memory architecture with clock gating supporting FFT
sizes from 16- to 1,024-points, while in [14] a custom
variable-length FFT-processor employing radix-2/4/8
single-path delay algorithm is described, supporting
FFT lenghts from 512- to 2,048-points. Highly opti-
mized VLSI implementation of FFT using sub thresh-
old circuit techniques is described in [29]. Three staged
Radix-8 architecture with memory divided to eight
banks capable of 8,192-point FFT is described in [15].

Table 2 Energy-efficiency

comparison of various FFT Design Tech. Method Vee felk IFFT FFT/mJ
implementations measured as - (nm) V) (MHz) (1s)
the number of 1024-point 1,024-point FFT
FFTs performed with energy Proposed 130 ASP 1.5 250 21 809
of 1 mJ. 130 ASP 1.1 140 37 910
[13] 130 FPGA 13 100 13 149
130 FPGA 1.3 275 5 241
[28] 130 DSP 1.2 720 8 100
130 DSP 12 300 22 250
[5] 130 CPU 12 3,000 24 1
[24] 150 DSP 1.5 232 160 16
[29] 180 ASIC 0.9 6 430 1,428
180 ASIC 0.35 0.01 250,000 6,452
[33] 180 FPGA - 20 282 43
[14] 350 ASIC 33 45 23 93
350 ASIC 23 18 57 133
[10] 350 CPU 2.0 74 426 60
[2] 180 ASP 1.8 280 37 31
[1] 600 ASIC 33 173 105 39
600 ASIC 1.1 16 330 319
[25] 65 ASIC - 1,400 4 -2
[32] 180 ASIC 1.8 139 41 -4
[11] 180 ASIC 1.8 20 51 4800
[26] 45 ASIC 0.9 654 2 2,731
[30] 180 ASIC 1.8 50 21 105
8,192-point FFT
Vec supply voltage. e clock Proposed 130 ASP 1.5 250 230 63
frequency. frrr FFT exection [15] 180 ASIC 1.8 20 717 55b
£1me. L. [31] 180 ASIC - 22 908 35
a‘f’a‘i’l”;;:"nsumpt‘o“ 1s not [12] 250 ASIC - 12 1,198 4
b Energy does not include (1] 180 ASIC 18 20 410 60
memories. [30] 180 ASIC 1.8 50 164 7
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In [25], switch case fabric is used, which uses two single-
port RAM and one ROM memories for each radix-2
processing element. Unfortunately, no power figures
are available although quite fast processing time is
achieved. Four single-port RAM memories are used
in [32] combined with one radix-2 processing element.
A scalable pipelined architecture is presented in [26]
where two or four processing elements can be used with
perfect shuffle permutation and data reordering. High
energy-efficiency is achieved by using modern technol-
ogy and low supply voltage. In [11], a single delay feed-
back (SDF) pipelined FFT using balanced binary tree is
described, which supports different FFT sizes. Only the
power dissipation of the core is presented excluding the
memories, the system supports FFT sizes from 1,024- to
8,192-points. Another SDF pipelined FFT with SRAMs
as delay elements is presented in [30], with support
for FFT lengths from 512- to 8§,192-points. The use
of memories decrease the area and has major impact
on the power dissipation compared to implementations
using shift registers. This is beneficial when the FFT size
is large since the number of elements in delay element
increases with the FFT size.

The comparison in Table 2 shows the energy-
efficiency of the proposed processor. The efficiency is
in the level of fixed-function ASIC implementations al-
though the proposed implementation is programmable.

8 Conclusions

In this paper, a low-power application-specific proces-
sor tailored for FFT computation was proposed. The
processor is tailored for FFT and several methods for
reducing the power consumption of the processor were
utilized: clock gating, special function units, and code
compression. The processor was synthesized on a 130
nm ASIC technology and power analysis showed that
the proposed processor has both high energy-efficiency
and high performance. As the proposed processor is
highly optimized for FFT, the programmability is lim-
ited. However, this is always the case in application-
specific implementations where flexibility is traded
against efficiency. The programmability of the proces-
sor can be easily improved by introducing additional
function units and loosening the code compression.
In addition, the performance of the processor can be
improved by adding computational resources.
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