

Tampereen teknillinen yliopisto. Julkaisu 1083
Tampere University of Technology. Publication 1083

Jari Soininen

Website Performance Evaluation and Estimation in an
E-business Environment

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Auditorium 240, at Tampere University
of Technology – Pori, on the 31st of October 2012, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2012

ISBN 978-952-15-2929-0 (printed)
ISBN 978-952-15-2957-3 (PDF)
ISSN 1459-2045

Soininen, Jari, 2012, “Website Performance Evaluation and Estimation in an

E-business Environment”. Faculty of Computing and Electrical Engineering.

Tampere University of Technology, Tampere, Finland.

Keywords: Performance Engineering, E-commerce, E-business, Optimisation,

Performance Monitoring, Natural Load

Abstract

This thesis introduces a new Predictus-model for performance evaluation and

estimation in a multi-layer website environment. The model is based on soft

computing ideas, i.e. simulation and statistical analysis. The aim is to improve

energy consumption of the website's hardware and investment efficiency and to

avoid loss of availability. The aim of optimised exploitation is reduced energy and

maintenance costs on the one hand and increased end-user satisfaction due to

robust and stable web services on the other.

A method based on simulation of user requests is described. Instead of ordinary

static parameter set, the dynamic extraction from previous log files is used. The

distribution of existing requests is exploited to generate the actual based natural

load. By loading the server system with valid and well-known requests, the

behaviour of the server system is natural. The control back loop on the generation

of work load assures the validity of the work load in the long-term.

A method for identifying the actual performance of the website is described. Using

the well-known load in simulation of usage by a large number of virtual users and

observing the utilisation rate of server resources ensure the best information for

the internal state of the system. The disturbance of the service website usage can be

avoided using the mathematical extrapolation method to reach the saturation

point on the single server resource.

 Preface

Preface

The present study was carried out during the period 2006-2012 at the Josbit Ltd

and Tampere University of Technology, Pori. The realization that performance

measurement requires tremendous manual labour was initially formed in the mid-

1990s. However, it took more than ten years before I discovered that this purpose

can be developed into a systematic model which can be further automated through

programmatic means.

I wish to express my gratitude to Mr. Teijo Lallukka and Mr. Timo Karvonen for

their technical assistance. Without their help, the results presented in this thesis

would not have been achieved.

I owe my utmost thanks to my colleague, Mr. Aki Parviainen, for his close

cooperation and many helpful discussions during all these years. His expertise in e-

commerce has been very useful.

A vote of thanks also to Maggy O'Donnell for her assistance with the language.

Thanks to her skills, this thesis is now easier to read.

I wish to express my sincere gratitude to my advisers, Prof. Hannu Jaakkola and

Dr. Jari Palomäki, from Tampere University of Technology for their invaluable

encouragement, guidance and forbearance with my thesis. I want to thank Ms.

Ulla Nevanranta for taking care of all the practical arrangements during the

research. Sincere acknowledgements go also to Prof. Dr. rer. nat. habil. Bernhard

Thalheim and D.Sc., Leading Researcher Enn Tõugu for reviewing the thesis and

for providing valuable comments on the manuscript.

The work has been supported financially by Academy of Finland, Ulla Tuominen

Foundation, High Technology Foundation of Satakunta, and Finnish Cultural

Foundation, which greatly contributed to the preparation of this thesis and for

which I want to express my highest appreciation.

Finally, my warmest thanks go to my dearest soul mate Soile, and also to my

wonderful children Joona and Jemina, whom lately I have not been able to spend

as much time with as a father should.

ii

 Table of Contents

Table of Contents
Preface..ii

List of Figures...v

List of Tables..viii

Acronyms and Initialisms...ix

1 Introduction..1

1.1 Background...1
1.2 Research Problem..6
1.3 Aim of the Research...8
1.4 Research Approach..9
1.5 Research Methods..13
1.6 Scope of the Research...16
1.7 Related Studies...17
1.8 Contributions of the Work...17
1.9 Thesis Outline...19

2 Website Environment..21

2.1 User Expectations...21
2.2 Fault Tolerance..24
2.3 Cluster Computing...25
2.4 Web Service Performance Boosting Technologies..30
2.5 Software Aging and Rejuvenation...31
2.6 Conclusion...34

3 State of the Art in Performance Analysis..35

3.1 Access Log Analysis..35
3.2 Forecasting of Workload...37
3.3 Performance Management..41

3.3.1 Performance Related Terminology..41
3.3.2 Performance Engineering...45
3.3.3 Performance Estimation...48
3.3.4 Performance Analysis...51

3.4 Response Time...56
3.5 Throughput..58
3.6 Utilization, Reliability, and Availability..61
3.7 Benchmarking Tools and Techniques...62
3.8 Monitoring Tools...67
3.9 Performance Prediction Using Natural Load...74
3.10 Quality of Service...75
3.11 Conclusion...77

4 Access Log Analysis...79

4.1 Collecting and Sampling Process..80
4.2 Arrival Rate..83
4.3 Analysis by Types of Queries..90
4.4 Trend Prediction ...93
4.5 Sensitivity Analysis..93

iii

 Table of Contents
4.6 Conclusion...94

5 Mastered Way of Workload and its Impact..97

5.1 Impact of Test Load...99
5.2 Controlled Load on the System...102
5.3 Resource Utilization...107
5.4 Sensitivity Analysis...117
5.5 Conclusion...119

6 Performance Analysis of the System...121

6.1 Precision and Accuracy..122
6.2 Data Preprocessing..123
6.3 Validation of Measurements...124
6.4 Interdependence of Measurable Factors..125
6.5 Performance Prediction...130
6.6 Visualization of Results...134
6.7 Rapid Changes in Performance and Software Aging...140
6.8 Combination of Results...142
6.9 Sensitivity Analysis..145
6.10 Conclusion..146

7 Conclusions..149

7.1 Implications for practice..149
7.2 Implications for research...153
7.3 Limitations of the research and suggestions for further studies..157

References ..159

Glossary of Terms and Abbreviations..177

iv

 List of Figures

List of Figures

Figure 1.1: Electric power consumption in data centres in EU in 2006.....................3

Figure 1.2: U.S. electricity use for data centres (2000, 2005, and 2010)5

Figure 1.3: Performance estimating model, Predictus..15

Figure 1.4: Structure of the thesis...20

Figure 2.1: Architecture of clustered system. ...29

Figure 2.2: Throughput deteriorating in system with fatal memory leak................33

Figure 2.3: Memory usage in case of fatal memory leak...33

Figure 3.1: Performance management and its subsystems......................................42

Figure 3.2: The traditional approach to evaluate the performance.........................43

Figure 3.3: Modelling within performance engineering...44

Figure 3.4: Cost/effort and accuracy/benefit trade-offs...50

Figure 3.5: Typical website response time curve compared to workload................54

Figure 3.6: Typical website throughput curve...55

Figure 3.7: Transaction processing response partitioning..57

Figure 3.8: Stretch factor compared with utilisation..57

Figure 3.9: Throughput curves versus response curves. ..59

Figure 3.10: Multiprocessor efficiency curve. ..60

Figure 3.11: Metrics versus usefulness. ...73

Figure 4.1: Model for log file analysis on websites..79

Figure 4.2: The effect of sample length ..82

Figure 4.3: The hourly maximum arrival requests per second................................84

Figure 4.4: The maximum workload for each hour during a typical day.................85

v

 List of Figures

Figure 4.5:The decomposed actual usage of web service..87

Figure 4.6: Prediction for daily peak values ...88

Figure 4.7: Distribution of application queries at two websites on a typical day....90

Figure 5.1: The architecture of two separate test environments used in this study 98

Figure 5.2: Schematic representation of the number of requests..........................103

Figure 5.3: The structure of the natural load test...104

Figure 5.4: JMeter test arrangement...105

Figure 5.5: The response on the application server layer CPU utilisation.............109

Figure 5.6: Impact of a sampling rate on resource utilization................................110

Figure 5.7: The effect of natural load test to the resource utilisation......................111

Figure 5.8: The correlation between resource utilisation and workload................112

Figure 5.9: One example of the server load..113

Figure 5.10: Resource utilisation, workload and response time.............................115

Figure 5.11: Ternary presentation of utilisation, workload and response time......116

Figure 6.1: Precision versus accuracy..122

Figure 6.2: The effect of load test rate for the predicted performance...................125

Figure 6.3: Density plot of response time values in the application server............127

Figure 6.4: Throughput, response time and utilisation-% on website A1..............128

Figure 6.5: Throughput, response time and utilisation-% on website B1..............128

Figure 6.6: Throughput, response time and utilisation-% on website B2..............129

Figure 6.7: Throughput, response time and utilisation-% onwebsite B3...............129

Figure 6.8: Estimated maximum throughput in application server.......................131

Figure 6.9: Fitting of measured resource utilisation...133

vi

 List of Figures

Figure 6.10: Visualisation of measured performance of different layers at the

website A1...136

Figure 6.11: Visualisation of measured performance of different layers at the

website B2...139

Figure 6.12: Unexpected increase in the performance of website A2.....................141

Figure 6.13: The combination of actual performance and usage of the website B.144

vii

 List of Tables

List of Tables

Table 1: Design science research guidelines, adapted from Hevner et al. (2004)....11

Table 2: Sample of peak load height and timing...84

Table 3: Number of parameters on application at the websites A and B.................91

Table 4: Sample of most used URLs with parameters..92

Table 5: Summary of response time values on website A1......................................126

Table 6: Summary of throughput values within one test run at websites A1, B1, B2,

and B3...132

Table 7: Forecast accuracy using different calculation methods............................134

Table 8: Summary of performance values at website A1 in a period of three months

...137

Table 9: Summary of predicted performance coefficients for equation (27) at the

website A1..137

Table 10: Summary of performance values at the website B in a period of three

months..138

Table 11: Summary of calculated performance values at the website B2...............138

viii

 Acronyms and Initialisms

Acronyms and Initialisms

ACID Atomicity, Consistency, Isolation, and Durability

ATM Asynchronous Transfer Mode

ANOVA ANalysis Of Variance

ASMP ASymmetric MultiProcessor

CDF Cumulative Distribution Function

CMG Computer Measurement Group

CPU Central Processing Unit

DBMS DataBase Management System

DNS Domain Name Server

FCFS First Come, First Served

FIFO Fist In, First Out

FILO Fist In, Last Out

HPE Human Performance Engineering

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

I/O Input/Output

IID Independent and Identically Distributed

IIS Internet Information Server

IP Internet Protocol

IT Information Technology

ITIL Information Technology Infrastructure Library

LAN Local Area Network

LAN Local Area Network

LCG Linear Congruential Generator

LFU Least Frequently Used

LIFO Last In, First Out

LRU Least Recently Used

ix

 Acronyms and Initialisms

MIMD Multiple Instruction, Multiple Data

MISD Multiple Instruction, Single Data

MPMD Multiple Programme, Multiple Data

MPP Massively Parallel Processor

MRU Most Recently Used

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MTTR Mean Time To Repair

MVA Mean Value Analysis

NAS Network Attached Storage

NUMA Non-Uniform Memory Architecture

OLAP On-Line Analytical Processing

OLTP On-Line Transaction Processing

OS Operating System

PDF Probability Density Function

PMF Probability Mass Function

RAID Redundant Array of Inexpensive Disks

RAM Random Access Memory

RDBMS Relational DataBase Management System

RFC Request For Comments

ROT Rule Of Thumb

SAN Storage Area Network

SIMD Single Instruction, Multiple Data

SISD Single Instruction, Single Data

SLA Service Level Agreement

SMP Symmetric Multi Processor

SPE Software Performance Engineering

SPEC Standard Performance Evaluation Corporation

SPMD Single Program, Multiple Data

TCP Transport Control Protocol

TPC Transaction Processing Council

x

 Acronyms and Initialisms

UDP User Datagram Protocol

UMA Uniform Memory Architecture

URL Universal Resource Locator

VLAN Virtual Local Area Network

VM Virtual Memory

WAN Wide Area Network

xi

1 Introduction

1 Introduction

This chapter provides a short overview of the research topic examined in this

thesis. The aim of this chapter is to provide the background to the research. Such a

research background includes an introduction to the research area and the

motivation behind this research.

1.1 Background

The World-Wide-Web was initially started as a project to enable the easy exchange

of information between researchers who were geographically distant from each

other (Berners-Lee, Caillan, Luotonen, Nielesen, & Secret, 1994). It has now taken

the role of an international information superhighway, and it has become

synonymous with a mega warehouse of information. Web services have been used

for different purposes, such as allowing for the exchange of information within and

between organizations, and lately for advertising, selling and buying of

merchandise, which have been referred to as electronic commerce, normally

known as e-commerce. The World-Wide-Web has certainly helped in the sharing of

information among Internet users throughout the world. There can be no denying

that the Web has already become a part of everyday life in a large part of the world.

Many traditional services have been transformed or converted to Web-based

services. A variety of e-commerce online models now exist, ranging from shopping,

auction, reservation, media services, banking and trading to customer relation

management, personnel management, etc. In addition to becoming a cost-effective

solution for many traditional businesses, e-commerce is also creating new business

opportunities. Web-based services have become such a critical component of many

companies nowadays that guaranteeing performance and availability has become

essential. About a third of all companies enabled customers to order their products

or services online in 2007 (Selhofer, Lilischkis, Woerndl, Alkas, & O’Donnell,

2008). This can be accomplished through different technical channels, including

the company’s own website or third party trading platforms on the internet.

1

1 Introduction

Splaine & Jaskiel (2001) pointed out two relevant questions in system

management: “How much extra performance do we need to have at present?” and

“How long before we have to upgrade the existing infrastructure?” Maintaining the

web system infrastructure should meet a two-fold challenge (Lin, Liu, Xia, &

Zhang, 2005). It must meet customer expectations in terms of quality of service

(QoS) and that companies have to control information technology (IT) costs to

remain competitive. In addition, the aim in most cases of e-commerce services is to

keep the service attractive to users and possibly increase the number of interested

visitors. To achieve this requirement, services have to be constantly updated and

improved with new service components (applets) to keep them coming. The

improvements and enhancements of services require a more effective

infrastructure to guarantee adequate quality of service. In many cases, customer

expectations are satisfied by increasing the performance of service systems through

adding more resources such as processors, memory, and even more redundant

servers.

ITIL (APM Group Ltd, 2011) defines the term performance as a measure of what

is achieved or delivered by a System, person, team, Process or IT Service . In

addition, in this study performance is embodied as an index. It is understood as a

score for how well a particular workload's set of assigned resources are being

utilized compared to the optimum level. This index immediately shows whether

resources have remaining capacity, are being over-utilized, or are aligned "just

right" to meet the demand.

Performance requirements are based on the requirements during hotspots. The

term ‘hotspot’ is introduced in (Baryshnikov et al., 2005) and it means anything

where traffic is significantly higher than the norm. The performance requirements

vary depending on a number of reasons like the time of the day, happenings in

society, marketing activities, etc. This could easily lead to overestimation of

performance requirements and to increased information technology costs. To

avoid overloading of the service, the gap between actual usage of the service and

total available performance should be known by the service provider. An accurate

knowledge about the web server system bottlenecks and their locations is not

enough in many cases. On those cases, the improvements of system activities are

2

1 Introduction

focused via rough guesses. Some of those improvements might be focused

correctly. However, some improvements are merely extra costs. To avoid

unnecessary high performance and high costs, it can be done by optimising a web

service regularly.

Despite the increasing urgency of getting a hold on soaring energy demands in IT,

costs continue to spiral out of control. Energy costs are increasing by 16% every

year, while greenhouse gas emissions from data centres have already surpassed the

output of Argentina or Netherlands and are due to overtake those of all airlines by

2020 (Kaplan, Forrest, & Kindler, 2008). However, according to one report, it

need not be that way. The report recommended that companies adopt a new metric

called Corporate Average Data Efficiency (CADE) which combines both IT and

facilities’ costs to monitor energy use, and create "energy czar" positions to manage

energy efficiency.

Power consumption in data centres in the U.S. has been studied by Koomey (2007;

2011). In 2005, the total direct consumption for all servers in the U.S. was about 5

million kW, including cooling and auxiliary equipment. When electricity used for

cooling and auxiliary equipment is included, it rises to 1.2% of retail electricity

3

Figure 1.1: Electric power consumption in data centres in EU in 2006. The chart shows the
energy consumption (in TWh) of server hardware (volume, mid-range, high-end), storage and

network equipment and infrastructure (cooling, UPS, lighting etc.) of total power consumption.

1 Introduction

sales in that year, resulting in a utility bill of 2.7 billion USD (the 2006 dollar

value) when valued at U.S. industrial electricity prices. The total server power and

electricity consumption for the world as a whole is about two and a half times

bigger than that of the U.S. The E-Server Consortium has reported corresponding

energy consumption in Europe (Schäppi, Bellosa, Przywara, Bogner, & Weeren,

2007). The report shows that the total electric power consumption in Western

Europe (EU 15 plus Switzerland) in 2006 amounted to 39.5 TWh. In Figure 1.1, it

is shown that the consumption is concentrated mostly on infrastructure and on the

class of low price servers. According to the report, the servers are classified into

three categories, the volume servers (valued <25,000 US$), mid-range servers

(25,000–500,000 US$), and high end servers (>5,000,000 US$). Data centres'

energy consumption growth rate appears to have slowed significantly in the period

2005-2010. The projected growth rate was 100% (Koomey, 2007), but what was

achieved seems to have been 36% (Koomey, 2011). This can be explained, above all,

by the economic slowdown rather than as a result of active energy-saving

measures.

Updated information within the EU, or global data in general, does not exist, but

according to Figure 1.2 (Koomey, 2011), distribution of the different categories of

servers would have remained the same for the U.S. data centres between 2005 and

2010.

Server utilization data centre is, in one of the reports (Kaplan et al., 2008), only

6%. According to a second source of utilization, it is about 15% (VMware, n.d.). The

centralization of services in a smaller number of servers can be the average rate of

utilization to increase.

In may ways, Green ICT has risen in the recent past according to the discussion. It

will be completed under the heading of constantly developing new scientific

research (Benedetto et al., 2012; Hu, Deng, & Wu, 2011; Jiang, 2012; Sugiyama,

2012) and commercial reports (Datacenter Dynamics, 2011). In addition to these

various alliances (Commission of the European Communities, 2008;

GreenICT.com.au, 2008; GreenICT.org.uk, n.d.), some have created different goals

for the achievement.

4

1 Introduction

By combining the functions of servers, it can be used to reduce the number of

server machines. IDC Report (IDC, 2007) predicts that with the x86 processors,

the supply will increase by 61%. The 2010 forecast has reduced the number of

deliveries to 39% per annum due to the multi-core technology and server

consolidation. By reducing the number of servers, data centers are expected to

decline in total consumption, which includes the purchase of new equipment,

items of expenditure arising from the direct energy consumption and cooling.

The number of users of websites is generally very difficult to determine. Some

figures, whose accuracy is laborious to verify, can be obtained; for example,

(Miniwatts Marketing Group, 2012). It shows that at the end of 2011, the world

had 2.3 billion Internet users. The total transport volume is even more difficult to

assess. In any case, clearly there is an enormous number of online services,

including users and traffic volume. In addition, we know that websites,

applications and technology are very heterogeneous.

The performance requirements vary depending on a number of reasons, like the

time of the day, events in society, marketing activities, etc. This easily leads to the

overestimation of performance requirements and to increased information

5

Figure 1.2: U.S. electricity use for data centres (2000, 2005, and 2010)

1 Introduction

technology costs. With real and sufficient information, usage of the web service

will only be achieved by analyzing the log data on a regular basis. When the

number of servers is reduced and the physical machine utilization rate increases,

less energy is needed in data centers. In many cases, the computing power is sized

on a peak load basis, and even if the devices are under-loaded, fewer machines at a

higher rate of use can achieve the same result as before.

Ferrari et al. (2006) said that providers of e-business services, such as on-line

banking, auctioning and retailing, must utilize their computing resources

efficiently and offer a high quality of service to their users. In order to do so, it is

important to predict the performance that the system can achieve for a given level

of demand, for instance, using a model which is: (a) sufficiently detailed to take

into account the essential system features; and (b) sufficiently simple to be

analytically and numerically tractable.

1.2 Research Problem

Regular evaluation is needed to meet the challenge of quality of service and

reasonable level in costs of information technology’s infrastructure. There are

several models in evaluating computer systems. Quite a number of them are

analytical (Dilley, Friedrich, Jin, & Rolia, 1998; Jian, 1991) or simulation models

(Jian, 1991). However, redundancy in high availability and scalable web server

systems makes it challenging to perform a regular evaluation of performance by

simulation or analytic models. The latent errors in software or configurations can

slowly deprecate the effective performance of the system, making them noticeable

only in long periods. This type of errors is not manageable via short period

simulation or by analytical methods. In addition, changes in software or hardware

configurations and new versions of applications require manual update of the

analytic models. The current best practice in the area is based on experience and

the intuition of web service maintainers.

Proactive management of resources requires accurate prediction of workload. A

study (Sang & Li, 2000) of network traffic assesses how far into the future a traffic

6

1 Introduction

rate process can be predicted for a given error constraint and what the minimum

prediction error is over a specified prediction time interval. Another study

(Papagiannaki, Taft, Zhang, & Diot, 2005) introduced a methodology to predict

operations that have to take place in an IP backbone network. The presented traffic

prediction model in the study on IP network is quite similar to the prediction in the

web service system. However, capacity and performance monitoring methods are

not equal due to the internal state robustness. In addition, the data management in

IP network is only partially comparable to web service systems.

A framework (Vercauteren, Aggarwal, Wang, & Li, 2007) has been introduced to

provide both long-term (in days) and short-term (in minutes) predictions.

However, to ensure customers are satisfied in normal operations on a web service,

the required prediction time frame is several weeks or even months. Another study

(Hellerstein, Zhang, & Shahabuddin, 1998) describes a statistical approach to

characterizing normal system operation for time varying workloads in a web

server. The study does not recognise the actual performance of the server system

but assumes that it is fixed over time and well-known. However, the performance

in quite many installations is not known and is not fixed but varies in terms of time

depending on the configuration manner and the internal states of the system.

The dynamic resource allocation is a suitable method in some cases according to

the problems shown in this study. However, it requires resources organised as

pools, wherefrom/whereto such resources can be allocated and returned. The

dynamic configuration management can be an effective method to facilitate

momentarily. Conversely, the total amount of resources cannot be increased or

especially decreased flexibly by means of cost savings.

Performance engineering and testing oriented blog (Podelko, 2007) is professing

that performance testing theory is almost non-existent and performance testing

practice is pretty mature. The conception of the aforesaid blog is that activities are

grouped around commercial tools and user communities. On the age of the

mainframes, capacity planning was typical for corporations using mainframes. In

another blog, Podelko (2009) pointed out that test vendors are on the easier side,

“trying to implement something to make it easier for an inexperienced person to

create and run load test scripts”. While this produces nice analysis graphs and

7

1 Introduction

may be helpful in some cases, it cannot replace performance engineering processes

and good performance engineers.

1.3 Aim of the Research

The aim of the research is to enhance the previous practices using historical web

service access information, combined with resource utilisation via natural load

usage simulation. The intuition behind the approach is to use mathematical tools

to process historical information and extract trends in the usage evolution at

different time scales. The aim can be divided into three sub-objectives.

The first objective of this study is to introduce a regular basis prediction model for

the sake of obtaining a web server system performance by using a known natural

workload. This objective includes the following research question:

Question 1: Is it possible to measure the performance of the website

system on a regular basis?

The study introduces an entirely novel approach to predict the real performance of

an e-commerce website system. The natural workload has to reflect the

characteristics of past access. This model is also suitable for monitoring

deterioration in performance.

The second objective of the study is showing that the actual usage of a web service

is measurable and analysable automatically on a regular basis (for example, daily

or weekly). This objective includes the following research question:

Question 2: Is it possible to analyse the usage of a website and

characterise it automatically and on a regular basis to identify the peak

load?

The third objective of the study is showing that a gap between performance and

peak usage levels can be seen as a spare performance of the system. This objective

includes the following research question:

8

1 Introduction

Question 3: How can the current website performance and actual usage

be compared to each other?

The above research questions lead to the following research hypotheses:

Hypotheses

The total performance of the server system consists of a unique combination of

hardware, applications, configuration, and status of different application layers.

This study hypothesises that the actual performance of the server system can be

defined using a known natural load with a short test-time period . During the test

load, the response time and different resource utilisation indicators of the system

are recorded into separate log files.

In this study, it is assumed that the actual usage of a web server system is

measurable and analysable automatically and the result can be exploited to

construct the natural load test for simulation purposes. The analysis can be based

on ordinary access log files. The analysis can be done in a specified form in all

cases, and the result is comparable despite the nature of a web service.

Furthermore, by combining the analysed actual usage data and the calculated

total performance of the web server system, the moment when the performance

of the system runs out can thus be estimated. This is the moment, when the

system does not have enough performance to serve users within the required

response times.

1.4 Research Approach

Design science creates and evaluates IT artefacts that solve the problems in the

organization. The scientific aspect of design science answers the questions: can we

build innovation and how useful will it be for the organization? We can also ask

what kind of innovation should it be and how should it be created. The study by

Järvinen (2004) suggests that if the research problem includes the following verbs:

construct, alter, improve, create, repair, etc., it most probably belongs to design

science. Hevner et al. (2004) believe that the result of design science is the artefact

9

1 Introduction

itself. The artefact will provide a solution to the problem, and its research should

provide new data on the topic in a new and innovative way.

IT-artefact is constructed to perform a specific function (March & Smith 1995),

which indicates that completion of the construction of design problems has been

resolved. Artefact construction action is aimed, in their opinion, at the advantage

or value of the artefact produced by the user community. Van Aken

(2004) suggests that design science is intended to provide information to a

construction problem which can be solved, or the performance of existing systems

that can be improved. Van Aken believes that innovation in the utility should be

evaluated sooner rather than later.

Hevner believes that the results of design science are of four types: conceptual,

models, methods, and realization. The concepts form a terminology of the research

problem. Models indicate the relationship between concepts. Methods are steps

while implementation of the artefact in the environment is realization.

This study, using design science in reference to Hevner, created seven guidelines

for IT artefact design, implementation and evaluation. Instructions are

summarized in Table 1, and their relevance is discussed in more detail in the text.

The contribution of this study is proposing an analysis and forecasting model,

which is suitable for optimizing website performance.

The first of these Hevner guidelines is IT artefact, which is intentionally built for

one of the key problems of the organization. It can be implementation but also

concepts, designs, or a method which has been applied to the construction and

operation. IT artefacts are rarely completely ready for information systems, rather,

they are the innovations that define the ideas, practices, technical capabilities and

products that enable systems analysis and design; implementation and use can be

effectively and efficiently implemented (Hevner et al., 2004). Hevner excludes

people and the various elements of the organization, the IT artefact definition as

well as the development during time. Implementation of an artefact is an

indication of the design process and the outcome of the operation (Järvinen,

2004). This study of IT artefact is suitable for website performance analysis and

forecasting model. An artefact of implementation is shown by designing and

10

1 Introduction

constructing a website performance analysis and forecasting model, using a

reference pattern in Hevner’s seven IT artefacts for planning.

Design science emphasizes the importance of the research problem from a business

perspective. Computer science research is about acquiring knowledge and

understanding that enable technology-design and implementation artefacts so far

unresolved or poorly resolved in the business of the problems. Hevner et al. (2004)

points out in the second guideline that research is relevant, if it helps solve the

problem of the community using it. As to a business perspective, the research is

11

Table 1: Design science research guidelines, adapted from Hevner et al.

(2004)

Guideline Description

Guideline 1: Design as

an artefact

Design science research must produce a viable artefact in the

form of a construct, model, method, or an instantiation.

Guideline 2: Problem

relevance

The objective of design science research is to develop technology-

based solutions to important and relevant business problems.

Guideline 3: Design

evaluation

The utility, quality, and efficacy of a design artefact must be

rigorously demonstrated via well-executed evaluation methods.

Guideline 4: Research

contributions

Effective design science research must provide clear and

verifiable contributions in the areas of design artefact, design

foundations, and/or design methodologies.

Guideline 5: Research

rigour

Design science research relies upon the application of rigorous

methods in both the construction and evaluation of the design

artefact.

Guideline 6: Design as

a search process

The search for an effective artefact requires utilizing every

available means to reach the desired ends while satisfying laws in

the problem environment.

Guideline 7:

Communication of

research

Design science research must be presented effectively both to

technology-oriented as well as management-oriented audiences.

1 Introduction

important and relevant if the company stakeholders' requests for a website service

to a high level, and on the other hand, it must be cost-effective.

IT artefact utility, quality and impact should be addressed through an accurate

assessment and evaluation methods. The evaluation shall be based on the business

environment demands artefacts, and it will be integrated into the IT infrastructure.

The following features are used in the evaluation instrumentation: functionality,

completeness, consistency, accuracy, performance, reliability, availability,

suitability of the organization, and other necessary qualities. Iterative evaluation of

the artefact, Hevner's third instruction, provides feedback on the construction of

both process and outcome (Hevner et al., 2004). This study of IT artefact

assessment focuses on how well the selected research methods are suitable for

website performance optimization in different technological environments.

Hevner's fourth guideline affect the planning of design science research and will

provide clear benefits in the following areas: the planned artefact, knowledge of the

construction, the design of the assessment data, and methodology used. An

important question in each case of the design science research is what kind of new

and innovative landmark contribution that is delivering results. Design science

research includes three different types of contribution subjects, at least one of

which must be found for each study design. The first contribution is the subject of

IT artefact itself. Artefact is the answer to the problem studied. It can be a solution

to the problem studied, or it can generate substantial new scientific information on

research or apply existing knowledge in a new and innovative way. The second area

of contribution is the planning of construction process and modelling of the

artefact. A significant contribution can be achieved, for example, in a new type of

design process or model development. The third area of contribution is

methodology. The method used in the study and the method for evaluating the

research area itself will bring its own contribution. The evaluation methodology

and metrics are, in the planning study, important aspects in themselves. The

research contribution of this study is the extent to which the selected method is

suitable for solving this research problem. In the future, it would certainly benefit

those seeking a research method to study a similar problem (Hevner et al., 2004).

12

1 Introduction

The study’s scientific accuracy according to Hevner's fifth guideline must be

proven by means of exact research methods as well as the IT artefact construction

of the assessment (Hevner et al., 2004). Scientific research indicates the level of

accuracy and how it is carried out. The design science research as well as accuracy

is defined as the existing research knowledge and theoretical foundations of

research methodology, not to mention its effective use.

In the sixth guideline, a good design approach is the search process using the

available means to achieve the objectives of the study environment; however, by

following the prevailing laws. Available measures and solutions Hevner et al.

(2004) calls as a means to construct a solution.

Finally, the seventh instruction (Hevner et al., 2004) says that the results of the

investigation should be forwarded to the management, as well as the technically

minded people in the organization. The artefact, which has been described in

sufficient detail presented technical personnel and practitioners, as well as

explained how it is constructed.

In this study, the contribution of design science is achieved by examining how well

Hevner's seven guidelines for creating an IT artefact suitable for website

performance analysis and prediction model are set up.

1.5 Research Methods

At the beginning of the study, the actual log files are analysed using mathematical

models. The study uses existing works on characterization of the load and pattern

recognition in the different time frames measured by a number of requests and file

sizes. In Figure 1.3, this phase is shown as actual usage analysis. The long-term

trend is evaluated based on the log file analysis using time series models.

In addition, the real response times and resource utilisation are measured using

natural load. The effect of adjustment rate on the load is studied, and while load

settings are kept unchanged, results are comparable in the long-term. However, if

the load is adjusted based on actual usage using log file characteristic, it allows for

13

1 Introduction

a more precise view of the service performance. The real performance of the web

system in a lengthy period is predicted by extrapolating from the workload

information and systems load metrics, using the statistical pattern recognition. The

natural load is marked as a load test in Figure 1.3.

During the natural load, critical server resources are monitored using SNMP

(Simple Network Management Protocol) based on RFC 1157 (Case, Fedor,

Schoffstall, & Davin, 1990). The monitoring of resources under the natural load

facilitates the obtainment of raw data from the system internal status. The data can

be used to predict the total performance of the system in the future. The operating

system behind the SNMP interface is not discussed in this study. It is assumed that

the SNMP response from the system produces valid and comparable results

despite the differences in operating systems.

When a server system resource utilization is loaded for the upper limit or the

maximum response time is exceeded, then the server system's overall performance

limit is reached.

Figure 1.3 presents Predictus-model using BPMN notation (OMG (Object

Management Group), 2011). On this basis, the method has been developed, which

is implemented by several appropriate programming languages and simulation

applications. Only the essential aspects of the method have been opened at a

detailed level; unimportant parts are excluded from the consideration.

14

1 Introduction

Figure 1.3: Performance estimating model, Predictus for distributed e-business architecture

15

1 Introduction

The moment, when the performance does not reach the desired level, is possible to

predict by combining the results from the analysis of the access log and the natural

simulated load. In Figure 1.3, this is shown as an estimation of run-out capacity.

The result of the evaluation is shown in a simple time-based graph that can be

interpreted by non-performance experts. The bottlenecks can be recognised based

on system load analysis.

1.6 Scope of the Research

In this study, the web server system is explored as distributed computing. Such

computer systems, where the resources are divided among many virtual

computers, are mostly seen as independent computer systems, which can be

evaluated using the methods presented in this study. However, the virtualization

specific questions are not discussed in this study.

Some non-predictable load peaks (hotspots), such as breaking news in media

services, present an unexpected peak of usage, and are not discussed in this study.

Instead, the gap between normal usage and maximum performance of the system

should be continuously watched. If the potential user population is known, the

resource consumption estimation in any unexpected situation can be calculated.

In this study, a simulation model is presented to define the actual performance of

the system using simulated user requests. System load is monitored during the

natural load to obtain the consumption of the system resources. By varying the

system load, the change in response time and resource utilisation can be

determined. The extrapolation method is used to expand the regression analysis

results in order to predict the time when performance is not enough to satisfy the

load required by real usage.

16

1 Introduction

1.7 Related Studies

Some recent news (Aalto-www, 2010) from Aalto-university related that energy

effective data centres are to be developed in Finland in a research project called

Energy-efficient server centres for Finland. The aim of the project is to analyse

ICT equipment and cooling systems in data centres and to figure out the best

solutions to optimise energy consumption and utilise the waste heat.

FIT4Green (Fit4Green Consortium, 2010) aims at contributing to ICT energy-

reducing efforts by creating an energy-aware layer of plug-ins for data centre

automation frameworks so as to improve energy efficiency of existing IT solution

deployment strategies. This is to minimize overall power consumption by moving

computation and services around a federation of IT data centre sites.

1.8 Contributions of the Work

I worked as a data communications expert in a software company in the 1990s. At

that time, client-server systems, which were based on proprietary protocols, was

generally used for commercial purposes. Computer equipment was expensive then,

and cloud services were not even discussed. I have encountered regular problems

in the performance of a variety of systems, particularly the fact that they had to be

resolved ad-hoc. It turned out that the current problem could be solved with hard

work, but a long-term solution did not exist. I then came up with the idea over

whether it would be possible to track the performance of information systems as

with any other company's operational system or activity. And in particular, I

became interested in it, especially the manner in which performance can be

managed proactively. At that time, an idea was born, namely, that the concept of

performance can be solved by means of an impulse-response pair.

No ready-made solution or even one in the right direction, the idea could not be

realised in only a number of years. But the idea of proactive performance

management model began to mature gradually over the years. Over time,

proprietary protocols have decreased, while the http protocol gained ground. It

17

1 Introduction

provided much better opportunities for the development of performance testing

tools. When I was in the central role in a web development and maintenance work

in the early 2000s, there was a need to develop a model that works in practice. At

that time, I noted that the performance management tools were developed for web

services, but they were merely reactive "fire fighting," or were intended to improve

the performance of application code. They did not make it possible to monitor the

actual use of the service and in particular, to anticipate the future use or

application behavior. In other words, the impulse (the actual website usage) and

response (the resulting system load) were completely unknown to the performance

monitoring process. They also did not support the continued development of

website applications and continuous testing.

Right from the beginning of model development, it was clear that the performance

analysis and monitoring should be a continuous operation, in which case it must be

as highly automated as possible. From this perspective, I began to develop a

method to ensure website performance throughout its life cycle. I developed a

method comprising the following necessary key components: the identification of

system components, test load management, the related data collection, the analysis

of results and their interpretation and follow-up.

Initially, the process was developed in two separate websites. It could be

generalized to very small changes and required only one way to describe the

various layers of hardware and the number of servers and their key components.

After that, it was found that the model can be generalized to almost all commonly

used HTTP and HTTPS websites.

In this work, the hardware identification details have been overlooked and are only

focused upon in order to consider the core of the model alone. The generalized

Predictus-model has been able to ascertain that the application components are

related to the method and work well in different environments, and that the

analysis produces reasonable and verifiable results in different test sessions.

The functionality of the Predictus-model has been verified in practice in very

different environments. Differentiating factors have been the applications, the

website's purpose and scale of use, a different hardware architecture distributed

18

1 Introduction

among a wide network of hardware or a single service on a dedicated hardware.

Differentiation was tested using the characteristics of the tested item. Not only is

the generation of load testing and monitoring independent but so are the results of

the analysis platform.

A large number of different websites have been tested using the Predictus-model.

Therefore, this study is based on a large number of log files, and a very large

number of test runs in a number of e-business environments. In this study, the

data is mainly derived from four different independent websites. Of these websites,

architecture is discussed later in Chapter 5 .

In this study, the performance measurement and analysis of the model are a

completely new kind of approach. It is based on my idea to combine well-known

load test and control the load and burden due to the hardware components. The

well-known test load, of course, corresponds as closely as possible to the load of

real users. And since users cause the load changes with time, it is obviously to be

taken into account for the long-term analysis.

1.9 Thesis Outline

The state of the art in modern e-commerce website technologies and in

performance engineering is described in Chapters 2 and 3. Chapter 2 is focused on

web service requirements from the viewpoint of users, the boosting technologies

and some essential problems. Chapter 3 is focused on principles of performance

management, characterisation of access log, focal concepts and principles, and

finally the tools for monitoring and estimation.

19

1 Introduction

The methods used in this thesis are discussed in Chapters 4 and 5. The analysis and

characterization of a commercial website are described in Chapter 4. It answers the

research question, how to actual usage of the website can be measured and

analysed on a regular basis as well as the way in which the peak load forecast is

formed during normal usage. The natural load, monitoring of the server resource

consumption, and analysis are described in Chapter 5. It answers the research

question, how the network hardware performance can be measured on a regular

basis, and it will form a forecast of future performance. Figure 1.4 shows the

structure of the method and the corresponding book chapters, wherein each

component of the method described below.

Synthesis of the results of the actual usage analysis and natural load is put forward

in Chapter 6. The actual performance of the web system and the analysis of

additional resources are described in this chapter. It answers the research question

of how the gap between current performance and the spare performance can be

visualized easily understandable form.

Finally, a general discussion and conclusions round off this thesis in Chapter 7.

20

Figure 1.4: Structure of the thesis

 2 Website Environment

2 Website Environment

This chapter describes the requirements for a complete web service system, which

generally consists of hardware, software, configuration, and applications. Some of

those requirements are derived in order to satisfy user requirements while some

are meant to satisfy system management requirements.

2.1 User Expectations

A website must be easy to follow, be consistent and predictable, and must seem

simple and natural. If a website has actually delivered the information or service(s)

the customer was looking for, a customer has found a reason to stay on the site.

Users have several common requirements: performance, usability, navigation, and

many others. Some of these requirements may be explicitly stated through formal

documents, while others are implied or assumed. Some general statements are the

following (Loosley, 2005):

● An unreachable website is useless for the user, despite good reasons to visit

such a site.

● Having reached the site, pages that download slowly are likely to drive

customers to try another site.

● If the site is sufficiently responsive, other design qualities come into play.

Web users' tolerance for loading delays depends on several factors, including

expectations, site feedback, the complexity of a task, importance of the aim, and

the relevance (utility) of the information being provided by the site. And their

perception of a site's quality and credibility diminishes as its download times

increases.

Selvidge et al. (2002) studied the variable impact of web delays on losing users,

frustration and proportion of task completion. The current HTTP1.1 technology

does not allow users to get an estimate of the amount of time they would have to

wait when downloading a document but only provides a real-time measure of the

21

2 Website Environment

amount of content that has been downloaded. Sometimes, users wait for a

significant amount of time before being refused connection. This is quite

frustrating for users and may lead to avoiding a specific site. Hence, for website

designers it is important to design the website in a manner that neither the waiting

time for a requested connection nor the chance that the user is refused connection

will be too high.

If users are just browsing through the internet for entertainment, they may be

more tolerant of download delays than if they have to find the information to

complete a task before a certain deadline (Selvidge et al., 2002). Another

important aspect that influences tolerance for time delays is whether the

information was worth the wait or if the information was considered valueless.

Tolerance for delays could also be related to tasking demands, web page content,

or attributes of the population of users sampled, such as computer-experience level

and download speed they typically experience. Some old studies (Kuhmann, 1989;

Kuhmann, Boucsein, Schaefer, & Alexander, 1987; G. Martin & Corl, 1986; Weiss,

Boggs, Lehto, Shodja, & Martin, 1982) have shown that longer delays or system

response times increase frustration and stress, and decrease productivity. Galletta

et al. (2003) have shown that decrease in performance, attitudes and behavioural

intentions is not necessarily linear.

The subjective understanding of adequate or good performance has to be defined

using measurable and communicational means. The problem exists especially if

the system for which we are considering this question does not exist as yet. The

problem is that of setting performance requirements for an as yet non-existing

system. Typically, the requirements are specified in a non-quantitative way.

Statements such as the following may be part of requirements: The system should

have low overhead, the memory and processor speeds should be synchronized,

there should be a low probability of failure, and so on. In all of these cases, the

qualitative requirements are stated, which may be quite difficult to measure and

realize. They are non-specific, non-measurable, and therefore, unacceptable. To

change this, the analyst should look at what the system will be required to do, and

what performance would be needed for a typical system with the same loads.

22

2 Website Environment

The basic advice regarding response times has remained unchanged for sometime

now (Miller 1968; Card et al. 1991; Menascé & Almeida 2002) :

● 0.1 second is about the limit for having the user feel that the system is reacting

instantaneously, meaning that no special feedback is necessary except to

display the result.

● 1.0 second is about the limit for the user's flow of thought to stay

uninterrupted, even if the user will notice the delay. Normally, no special

feedback is necessary during delays of more than 0.1 and less than 1.0 second,

but the user does lose the feeling of operating directly on the data.

● If the response time for the transaction exceeds four seconds, but remains

below six seconds, then 60% of the search transaction will be lost because

users will abort the search, and potential sales will be lost.

● If the response time exceeds six seconds at the web server, then 95% of the

search request will be aborted.

● Normally, response times should be as fast as possible, but it is also possible

for the computer to react so fast that the user cannot keep up with the

feedback.

A study (Galletta, 2002) has shown that relatively small increases in delay can

have a profound impact on how users react to websites. Lindgaard & Dudek (2002)

found that user satisfaction is a complex construct comprising several affective

components as well as a concern for usability. User satisfaction in the context of

business to consumer (B2C) websites is a complex construct comprising concepts

that cannot all be captured under the term ‘satisfaction’. Concern for usability as

well as expectations based on interactive experience are integral to the experience,

although usability appears to be assessed independently of affective aspects of user

satisfaction, at least in browsing behaviour when the interaction is not hindered by

severe usability problems.

A user expects technically constant quality from the service even if there are a

number of simultaneous users. The technical service level quality indicator is

simply measured by the user-experienced response time. An earlier study found

23

2 Website Environment

that waiting time is the most objectionable deficiency of the medium (Lightner &

Zeng, 2009). The user-experienced response time is determined by the weakest

link in the chain from the server to the browser: the throughput of the server, the

server connection to the internet, the internet itself, the user's connection, and the

rendering speed of the user's browser. Only the server throughput and the server

connection to the internet are maintained by the web service provider. Sufficient

system resources are needed to keep the quality of service predictable.

2.2 Fault Tolerance

To ensure the availability of a web service, it should be protected against a single

point of errors. Tanenbaum and Van Steen (Van Steen, 2003) explained that a

system is fault-tolerant if it maintains four characteristics: availability, reliability,

safety, and maintainability. Availability ensures that the system is available to be

used at any given moment. Reliability allows the system to perform continuously

without failure. Safety makes sure that in the event of failure, it should not cause

any undesirable behaviour that compromises the safety of the system and its users.

Maintainability measures how straightforward a failure can be repaired.

Tanenbaum and Van Steen (Van Steen, 2003) classify the different types of failings

that can occur:

● Communication failure happens when a message may be delayed, lost, or

corrupted. The server may be crashed after receiving a request, and the

client may be crashed after sending a request.

● The Byzantine failure occurs when a server does not behave in the correct

manner. For instance, a server produces an output which it should not

produce or does not produce any output at all.

● Omission failure occurs when a server fails to respond to a request based on

different reasons such as connection failures. Crash failure is a subclass of

omission failure. It occurs when a server systematically omits all outputs

and nothing is heard from that server anymore.

24

2 Website Environment

● Timing failure occurs when a server either omits the specified output or

responds too early or too late. In the situation where the server responds too

late, it will affect the performance of the system.

● Response failure happens when the server’s response is incorrect. The

server might provide the wrong reply to a request, or it reacts unexpectedly

to a request.

There are a number of techniques that can help achieve fault tolerance in a web

service. The most common technique is redundancy. Physical redundancy deals

with hardware or software; it runs an extra hardware or software at the same time

to provide the correct output. In the case of a web service system, it leads to

distributed computing. Distributed computing is a common way in web server

systems to guarantee the fault tolerant, but it also leads to better scalability.

However, increasing the number of servers is also increasing the maintenance

costs such as energy consumption, maintain costs, licensing fees, etc. Hence, the

amount of servers has to be optimised between scalability, fault tolerance and the

economy.

2.3 Cluster Computing

Distributed system is defined in an old study (Booth, 1976) as a collection of

computers, which are remotely located from a central computing. On some other

studies (Mullender, 1993; Van Steen, 2003), the distributed system is seen as a

loosely coupled, autonomous computer system with their own failure modes,

which can execute logically separate computations.

In general, cluster computing is the technique of linking two or more computers

into a network in order to take advantage of the parallel processing power of those

computers. There are several varieties of computer clusters, each offering different

advantages to the user. These varieties are considered in the following.

25

2 Website Environment

High-availability (HA) clusters

High-availability clusters are also known as fail-over clusters. They are designed to

ensure non-stop access to service applications. The clusters are designed to

maintain redundant nodes that can act as backup systems in the occurrence of a

defect. The minimum number of nodes in a high-availability cluster is two – one

active and one redundant – though most high-availability clusters will use

considerably more nodes. High-availability clusters aim to solve the problems that

arise from mainframe failure in an enterprise. Rather than losing all access to IT

systems, high-availability clusters ensure non-stop access to a system. This feature

is especially prominent in business, where data processing is usually time-

sensitive.

Load-balancing clusters

Load-balancing clusters operate by distributing a workload evenly over multiple

back end nodes. Typically, the cluster will be configured with multiple redundant

load-balancing front ends. Since each element in a load-balancing cluster has to

offer full service, it can be thought of as a high-availability cluster, where all the

available servers process requests.

Load-balancing clusters operate by routing all requests through one or more load-

balancing front-end nodes, which then distribute the workload efficiently among

the available active nodes. Load-balancing clusters are highly useful for those

working with limited IT budgets. Assigning a few nodes to managing the workload

of a cluster ensures that limited processing power can be optimised.

High Performance Clusters

High performance clusters (HPCs) utilize the parallel processing power of multiple

nodes. They are commonly used to perform operations that prefer nodes to

communicate as they perform their tasks. The best known HPC is Berkeley’s

Seti@Home Project, an HPC consisting of over 5 million volunteer home

26

2 Website Environment

computers applying processing power to the analysis of data from the Arecibo

Observatory radio telescope.

Generally high performance clusters are used primarily for computational

purposes, rather than handling IO-oriented operations such as a web service or

databases. For instance, a cluster might support computational simulations of

weather forecasts or vehicle crashes. The primary distinction within computing

clusters is how tightly-coupled the individual nodes are. To illustrate, a single

computed job may require frequent communication among nodes - this implies

that the cluster shares a dedicated network, is compactly located, and probably has

homogeneous nodes. The other extreme is where a computing job uses one or few

nodes, and needs little or no inter-node communication. This latter category is

sometimes called "Grid" computing. Tightly-coupled computed clusters are

designed for work that might traditionally have been called "supercomputing".

Grid computing

Grid computing is optimised for workloads, which consist of many autonomous

tasks or packets of work that do not have to share data between the jobs during the

computational process. Computer grids serve to manage the allocation of jobs to

computers, which will perform the work independently of the rest of the grid

cluster. Resources such as disk storage may be shared by all the nodes, but

intermediate results from one job do not influence other jobs in progress on other

nodes of the grid.

Characteristics of a distributed system are described in other study (Van Steen,

2003) as follows:

● By transparency, to the user of the system it appears that all tasks are

handled by a single computer.

● Scalability ensures that the system will still be able to perform all user

requests without any performance degradation by adjusting the number

of servers.

27

2 Website Environment

● Fault tolerance enables the system to continue to operate regardless of

failure, and that users are unable to notice these faults.

● Openness makes it possible to improve and extend from the original

system without the need to restructure the entire system.

● Concurrency allows servers to handle different requests from multiple

clients simultaneously.

● Heterogeneity guarantees, that each server on a distributed system may

have different hardware and different software versions.

● Security provides a secure communication channel for the users and

ensures access to authenticated users only.

● Resource sharing provides users the ability to access resources

anywhere in the system.

Generally, distributed systems aim to perform without being seriously affected by

any failings that might occur in the system. If there is failure, the system is still

able to recover and users would be unable to know this failure.

An effective and a most common way is to combine multiple Web servers called

‘‘clustered Web server’’ or ‘‘server farm’’ and balance the load among these servers.

In order to address the network latency delays caused over greater distances, large

organizations are also deploying distributed Web servers in different locations.

User service requests are routed to a server based on some routing algorithms. The

system performance depends critically on these routing algorithms. This method of

load management has been shown to improve the quality of service (QoS) in

practice and is thus widely used. One advantage of using multiple servers is that

one need not develop very accurate plans for the server capacity; one can add to

the existing capacity in an ad-hoc fashion through either new servers or by

employing unused capacity elsewhere (Zhang & Fan 2008).

28

2 Website Environment

Figure 2.1: Architecture of clustered system. The server farm consists of several
dedicated server clusters

The clustered system architecture, where requests are served by the system

through different clusters of servers, from the web server cluster to the application

server cluster, and possibly to the database server cluster as shown in Figure 2.1. In

general, it is possible for requests to be served by a subset of these clusters. Even

though this infrastructure is architecturally simple, the system is quite complicated

with a load balancing mechanism. It consists of numerous clusters of servers, each

of which can have quite a number of software and hardware components. A typical

Web system is comprised of several nodes with tens of applications running on

them. Given the great complexity of the overall system, planners are constantly

confronted with questions regarding: how many servers to place at each cluster in

the current infrastructure; what layout can deliver the best QoS; is there enough

performance available to support the expected business possibilities and future

growth?

29

2 Website Environment

2.4 Web Service Performance Boosting Technologies

The Web traffic has experienced huge growth in the last decade. Content providers

and e-commerce merchants are overwhelmed in many cases by the number of

request for web pages resulting in considerable deterioration (for example, long

response time) in web server performance. In order to keep the response time

within a satisfactory level, administrators limit the number of simultaneously open

connections. When the number of request overtakes this limit, all later user access

requests will be rejected. Hence, often either the waiting time is high or the user

request is not processed at all. Either situation could lead to disappointed

customers, forcing many of them away from the site. The traffic may change with

the time of the day, the day of the week, or even the month of the year. These

seasonal or periodic fluctuations make it more difficult to come up with a proposal

over the adequate performance of a site.

There are various solutions developed to solve this concern, such as replacing

servers with more effective ones, caching or outsourcing. However, these

approaches to load management have their own troubles. For example, a server

replacement may work for a while, but it is not scalable and could cause

interruption due to server upgrade and maintenance. Besides, if the server

performance is planned based on the peak load, then the added performance is

useless during the off-peak hours. Outsourcing, on the other hand, has a certain

price tag, and yet one has limited control over the Quality of Service. Caches have

been used in several ways to address the issue of slow response time caused by

overloaded servers. The caches intercept requests for Web content, and attempt to

respond to the requests whenever possible. When these requests cannot be served

from the caches, they are forwarded to the Web server. The presence of dynamic

content featured on most websites raises significant barriers to caching.

Many websites dynamically generate responses on the fly when user requests are

received. One study (Titchkosky, Arlitt, & Williamson, 2003) has empirically

evaluated the impact of three different dynamic content technologies (Perl, PHP,

and Java) on web server performance. The results of this study show that the

30

2 Website Environment

overheads of dynamic content generation reduce the peak request rate by up to a

factor of 8, depending on the workload characteristics and the technologies used.

2.5 Software Aging and Rejuvenation

Some studies have reported the software aging phenomenon (Garg, van Moorsel,

Vaidyanathan, & Trivedi, 1998; Huang, 1995) in which the state of system

performance degrades slowly. The primary symptoms of this degradation include

exhaustion of system resources, such as memory leaking, unreleased file locks,

data corruption, and instantaneous error accumulation. This may eventually lead

to performance degradation or other unexpected effects. A proactive fault

management method to deal with the software aging phenomenon is software

rejuvenation. Unplanned computer system outages are more likely to be the result

of software failures than of hardware failures (Gray & Siewiorek, 1991; Sullivan &

Chillarege, 1991). In some studies (Grottke et al. 2006; Silva 2006), software aging

has been reported widely encountered as well as in high-availability and safety-

critical systems. This essentially involves gracefully terminating an application or a

system and restarting it in a clean internal state. This process removes the

accumulated errors and frees up operating system resources. The preventive action

can be done at optimal times (for example, when the load on the system is low) so

that the overhead due to planned system downtime is minimal. This method,

therefore, avoids unplanned and potentially expensive system outages due to

software aging.

Aging is explained in Castelli et al. (2001) as caused by software that is extremely

complex and never wholly free of errors. In a web application environment, it is

practically impossible to completely test and verify that a piece of software is bug-

free. This situation is further exacerbated by the fact that web software

development tends to be extremely timed to market driven factors, which results in

applications that could meet the short-term market needs, yet do not account very

well for long-term ramifications such as reliability. Hence, residual faults have to

be tolerated in the operational phase. These faults can take different types, but the

ones that we are concerned with are the causes of long-term exhaustion of system

31

2 Website Environment

resources such as memory, threads, and kernel tables. The essentially economic

problem of developing and producing bug-free codes is not the problem at hand;

rather, we are addressing one of the problems that arises from the prevailing

approach to developing software, and one approach to attacking that problem is

software rejuvenation.

The following Figure 2.2 and Figure 2.3 from Avritzer et al. (2002) provide an

example of software aging. Figure 2.2 shows throughput versus time of a web

server application running on a Unix server. The test started at time 0 but about

5½ hours into the test, things went awry. Throughput, which had been holding

steady at 62 transactions per second, suddenly fell effectively to zero. Figure 2.3

shows the memory profile for the Web server process during the test. Initially 13

MB, the process size grows rapidly at first, and then steadily until reaching 182 MB

at the 5½ hour point of the test. At this point, the process stopped growing, but

also stopped serving all but a very small number of transactions. The other

transactions' timed-out were discarded by the load generator. This normal growth,

which reaches a certain level and stops, needs to be distinguished from a fatal

memory leak, in which memory grows to the point that something breaks and the

application fails to function.

Memory leaks are a common software fault (Avritzer et al., 2002) in applications

written in languages in which the programmer is responsible for memory

allocation and recovery. Memory gets allocated but never gets freed due to a fault

in the code. A memory leak is considered to be fatal if it results in the application

crashing or else failing to function. Aging anomalies can be detected in load test by

executing a long soak run with a fixed workload while monitoring application

throughput and resource consumption.

32

2 Website Environment

Figure 2.2: Throughput deteriorating in system with fatal memory leak. The throughput is
maintained in a stable level until the available memory reaches zero at 5½ hours.

Figure 2.3: Memory usage in case of fatal memory leak. The available memory is decreased
until it reaches zero at 5½ hours.

Menascé et al. (2003) explained that the speed of aging is dependent on the load

on the server. With a higher load rate, the aging process is advanced faster. The

load dependent aging process is formulated as follows:

λ
ag
= C×(n̄

s
)a×λ

ag
i

 (1)

Where C and a (a>0) are constants, ns is the average number of requests at the

server, and ag
i is the load independent aging rate. In the case of C=1 and a=0, the

load independent aging rate is expressed.

33

2 Website Environment

The system performance degradation also occurs due to some other factors.

Thalheim & Tropmann (2011) suggest that even if the system is working effectively

in the initial stages, the performance might be reduced if the system load does not

change. This may be due to the increase in the size of the database tables or even

due to other competing systems.

2.6 Conclusion

A website has to be reachable as expected by users. Availability is aimed to keep as

high a level as possible in e-commerce sites. The availability rate is aimed to be

increased using redundancy or other fault tolerant techniques. However, complex

redundancy produces more complexity in the analysis.

Cluster computing is a highly effective way to achieve a fault tolerant website

environment. However, the fault tolerance creates some challenges for analytical

methods. At first, while one server from a server farm is in a malfunction state due

to hardware or software failures, the analytical models have to be updated

immediately to become a valid analytical model. Secondly, all the redundant

servers have to be similar, otherwise the models would be laborious to maintain.

The performance models are complicated due to the web performance boosting

techniques. For example, the usage of cache produces uncertainties, when the

response is achievable from memory and when the much slower I/O-oriented

response is required. The difference in response time is remarkably higher in case

of disk search instead of memory search. In an analysis, it cannot be assumed to

benefit either.

Software aging is responsible for the continuous fluctuations on the performance

of the server farm. Slow software aging is hard to perceive and the possible damage

is immediate in case of resource run-out. In the worst case, the throughput can

bring down the complete web server system without prior warning and then

rejuvenating can take several hours.

34

 3 State of the Art in Performance Analysis

3 State of the Art in Performance Analysis

This chapter provides a review of web access log analysis and performance

management. The traditional performance management is focused on defining the

throughput of the present server system. The access log analysis is the past usage

of a service, e.g. how many requests at a time, and what is the size of response, etc.

Normally, the analysis is done by examining the log files of the web application.

3.1 Access Log Analysis

Typically, workload is exposed with linear extrapolations or other curve fitting

methods. While such techniques addressing simple trends, they do not capture

different time frame variations. One research (Hellerstein et al., 1998) describes an

approach to characterization of the web server access log. The methodology of the

research can capture periodic effect (e.g. time-of-the-day and day-of-the-week) and

trends (e.g. growth in user demand from month to month). Having a statistical

model that characterizes normal behaviour allows for extrapolating values of

metrics (e.g. HTTP operations) so that three questions can be answered: (1) What

will the workload be at a specific time in the future; (2) When will the workload

grow beyond a specific limit; (3) When will this limit be exceeded during a specific

time-of-the-day or day-of-the-week. The limit of the research was seen as a given

value.

One of the methods is based on decomposing the usage data to daily, weekly, and

monthly fractions using analysis of variance (ANOVA) technique, which is

expressed as:

yijkl = i jkijkl (2)

, where  is a grand mean, i is a deviation of daily pattern,  j is a deviation of

weekly pattern, k is a deviation of monthly pattern and finally ijkl is an error

term. The regular peak loads are exposed by data decomposition, and the

35

3 State of the Art in Performance Analysis

prediction relies on those peaks. The prediction is made using least-square

regression.

The study by Papagiannaki et al. (2005) presented a methodology for predicting

when and where the link maintain operations have to take place in the core of an

IP network. The methodology is claimed as simple to implement, and can be fully

automated. In addition, it provides accurate forecasts for at least 12 months into

the future. Hence, it is suitable within the context of capacity planning. However,

multi-resolution analysis (MRA) of the original signal and modelling of selected

approximation and detail signals using ARIMA models could possibly provide

accurate forecasts for the behaviour of the traffic at other time scales, such as from

one day to the next or at a particular hour on a given day in the future. These

forecasts could be useful for other network engineering tasks, like scheduling of

maintenance windows or large database network backups.

Cleveland et al. (1990) expressed the method STL (Seasonal Decomposition of

Time Series by Loess) for the decomposition of time series in terms of three

components: trend, seasonal, and residual. Some details in design goal make the

STL suitable for access log data decomposition. Namely: a) flexibility in variation

in the trend and seasonal components; b) the ability to decompose series with

missing value; and c) robust trend and seasonal components that are not distorted

by transient, aberrant behaviour in the data. STL consists of a sequence of locally

weighted smoothing operations. The implementation is based on computer

routines. One of the implementations (Team, 2011) has been made effectively in R.

A study by Baryshnikov et al. (2005) investigates the potential for predicting

hotspots sufficiently far in advance, so that preventive action can be taken before a

hotspot takes place. Performing accurate load predictions appears to be a daunting

challenge at first glance, but this study shows that when applied to web server

page-request traffic, even elementary prediction methods can have surprising

forecasting power. The study shows that there is useful predictability in internet

traffic that can be applied to the use of resources that experience strong surges in

traffic. Prediction algorithms in practice may be supplemented with partial

prediction data such as the general timing of particular events. For example, it may

36

3 State of the Art in Performance Analysis

be known that an announcement will appear within a couple of hours on a given

day, but the timing is otherwise unknown.

In another study (Lu, Yang, & Zhao, 2004), a prediction was made using MRA

wavelets. Using wavelet MRA has been able to show the overall long term trend, as

well as analysing variability at multiple time scales. The largest amount of

variability in the signal comes from its fluctuations at the 12-h time scale. The

analysis indicates that a parsimonious model consisting of those two identified

components is capable of capturing 98% of the total energy in the original signal,

while explaining 90% of its variance. The resulting model is capable of revealing

the behaviour of the network traffic through time, filtering short-lived events that

may cause traffic perturbations beyond the overall trend.

3.2 Forecasting of Workload

Coffman & Odlyzko (2001) said that everything changes so rapidly on the Internet

that it is impossible to forecast far into the future. The internet has been increased

at about 100% a year for its entire history. This observation could be used to

extrapolate the growth rate into the future, and predict that traffic will continue to

double every year. However, this assumption would hardly work for all websites.

Due to the nature of the propagation on the Web, it is hard to predict the points in

time at which hotspots will occur. This situation occurs in many types of websites.

For example, an unpredictable stock market crash can generate a huge increase in

traffic to sites with financial news and analysis. For practical purposes, it is

valuable to predict the magnitude of possible hotspots even when timing cannot be

predicted. Menascé & Almeida (2002) described two forecasting strategies,

quantitative and qualitative. The former relies on the existence of historical data to

evaluate future values. The latter is a subjective process, based on judgements,

intuition, expert opinions, historical analogy, commercial knowledge, and any

other relevant information. Qualitative analysis plays an important role in cases

where little or no historical data is available. Quantitative analysis may rely on

historical access log or any other regular business statistics, which can affect

hotspots in the web services.

37

3 State of the Art in Performance Analysis

Menascé & Almeida (2002) collected several essential characteristics of

forecasting. At first, it suggested that a good forecast is more than just a single

number; it is a set of scenarios and assumptions. Time plays a key role in the

forecasting process. The longer the time horizon, the less accurate is the forecast.

Secondly, forecasting horizons can be grouped into the following classes: A) short-

term (<3 months); B) intermediate term (e.g. from three months to one year); and

C) long-term (>1 year). Demand forecasting in the Web can be illustrated by typical

questions that come up very often during the course of capacity planning projects.

Thirdly, there are good questions: Can we forecast the number of visitors to the

company's website in order to plan the adequate capacity to support the load?

What is the expected load for the credit card authorization service during the

Christmas season? How will the number of messages processed by the e-mail

servers vary over the next year? Finally, there is encouragement for the planning

process. Implementation of Web services should rely on a careful planning process,

i.e. a planning process that pays attention to performance and capacity right from

the beginning. Planning the capacity of Web services requires a series of steps to be

followed in a systematic way. One of its key steps is workload forecasting, which

predicts how the system workload will vary over time.

From a load modelling point of view, the difference in using computing resources

has changed the type of model for workload characterization. While in the early

days of computing (70's) the typical systems were used in batch or interactive

mode (Ferrari 1972), static workload models could adequately represent the user

behaviour. In the 80's, dynamic workload models were introduced (Calzarossa et

al. 1986; Ferrari 1983; Haring 1983) which were able to represent variabilities in

user behaviour. In the 90's, generative workload models (Raghavan et al. 1993;

Barford & Crovella 1998) have been proposed as a suitable method for capturing

the dynamics and changes in the system.

Workload may change in various ways. Menascé & Almeida (2002) defined three

different dimensions in e-mail traffic: the number of users, the number of

messages per user, and the size of messages. Compounding the problem is the fact

that the three dimensions expand at different growth rates. In one case, the

number of messages observed had a threefold increase, but the size of messages

38

3 State of the Art in Performance Analysis

went up twenty times in the same period of time because of attached graphics.

However, web workloads and traditional workloads change in different ways,

depending on prospective business and technology evolution. The workload

change happens for several reasons: new applications, increase in the volume of

transactions and requests processed by the applications, enhancements of the

application environment, marketing and sales promotions, and overall economic

factors.

Most companies consider access logs to be very sensitive data. Hence, there are

only few published studies (Arlitt et al. 2001; Menascé 2000; Menascé et al.

1999) of e-business workloads due to the difficulty of obtaining actual logs from

website maintainers. In Menascé et al. (1999), the authors propose a graph-based

methodology for characterizing e-business workloads and apply it to an actual

workload to obtain metrics related to the interaction of customers with a site. For

example, the paper shows how to obtain information such as the number of

sessions, average session length, and buy-to-visit ratio. Menascé (2000) presented

several models for workload characterization of e-business sites. It also shows how

workload models can be obtained from HTTP logs. Arlitt et al.

(2001) characterized the workload of an actual e-commerce site for the purpose of

analysing its scalability. They use performance-related criteria to cluster requests

into similar groups. They then use multiclass queuing models to carry out a

performance planning study for the site. In Menascé & Almeida (2002), the

authors study the effect of time scale on operational analysis for a large web-based

shopping system. They show that time-related service level agreements and input

parameters for predictive queuing models are sensitive to time scale.

Andreolini et al. (2002) suggested that most web benchmark tools work fine when

used to analyse a single server system, but none of them is able to address all issues

related to the analysis of distributed web server systems. The authors refer to tools

like SURGE (Barford & Crovella 1998) and Webstone (Mindcraft, 2010). Such

tools suffer also age problems, as they do not support dynamic requests and the

recent protocols. The study summarised a lack in ability to sustain realistic Web

traffic under critical load conditions, the difficulty or impossibility of emulating

realistic dynamic and secure Web services, and the poor support in analysing

39

3 State of the Art in Performance Analysis

collected advanced statistic properties. As a consequence, the authors conclude

that there is a lot of room for further research and implementation in this area.

The hierarchical and multi-scale characterization approach has been used in

Menascé et al. (2003) to identify several characteristics in the workload of the two

sites analysed. Some of the findings are:

● 88 % of the sessions have less than 10 requests.

● The session length, measured in the number of requests to execute

e-business functions, is heavy-tailed.

● More than 70 % of the functions performed are product selection functions

in contrast to product ordering functions.

● Requests to execute frequent e-business functions exhibit a similar pattern

of behaviour as observed for the total number of HTTP requests.

Mahanti et al. (2009) has analysed a non-commercial, WWW2007 conference

website. The datasets were collected over a 1-year period in 2007 in the form of

access logs (server-side) and Google Analytics (Google Inc., 2010) (client-side)

reports. The datasets contain approximately 10 million requests from about

130,000 unique visitors generating 215 GB of traffic volume. The measurements

are used to characterize the usage behaviour of the website visitors. Modern

websites (including WWW2007) contain a lot of graphics, including photos,

banners, logos, maps, and menus. Hence, web pages and images account for

approximately 75% of the total data. The rest of the traffic volume is attributable to

visitors downloading PDF documents from the website. The average visit duration

varied between 2 … 4 minutes, except for the last three months leading up to the

conference when the average visit duration varied between 4 minutes and 6

minutes. Approximately, 70% of the visits lasted less than 1 minute. Most of the

visits with page depth greater than 3 can be attributed to search engine spiders and

conference organizers. Furthermore, single-page visits were mostly restricted to

the homepage, the program page, the call for paper page, the important dates page,

or specific paper downloads. The top 18 pages accounted for about 53% of the total

page views. For obvious reasons, the most viewed page was the homepage at 19%.

40

3 State of the Art in Performance Analysis

The total traffic volume transferred was based on a day of week and hour of the

day. The study found that the work week accounted for almost 80% of the total

traffic volume. Each weekday has about 15 … 17% of the total traffic volume, with

Monday being slightly busier.

Zhang & Fan (2008) has shown that content providers and e-commerce merchants

are often overwhelmed by the number of request for Web pages and online

transactions, resulting in considerable degradation (for example, long waiting

time) in web server performance. In order to keep the response time within a

satisfactory limit, web server maintainers often limit the number of concurrent

open connections. When the number of requests overtakes this limit, all later

access requests will be denied. Hence, often either the response time is long, or the

user request is not processed at all. Either situation could lead to dissatisfied

customers, driving many of them away from the site. In addition, the traffic may

change with the time of the day, the day of the week, and even the month of the

year. These seasonal or periodic fluctuations make it even more laborious to plan

what would be an adequate capacity for a site.

3.3 Performance Management

The traditional performance management and measurement tools of the web

server system are discussed from a system level point of view. A system level

performance model portrays the system as a black box. In this case, the internal

details of the box are not modelled explicitly. As a result, the throughput of the

whole system is considered.

3.3.1 Performance Related Terminology

The concept of performance management includes quite many subsystems, like

performance measurement, performance analysis, performance evaluation, etc.

However, those concepts are not clearly defined, and they are inconsistently used

in the literature.

41

3 State of the Art in Performance Analysis

Figure 3.1: Performance management and its subsystems according to revised Bloom's
taxonomy

Bloom's Taxonomy (Bloom, 1956; Buckley & Exton, 2003; Overbaugh, n.d.) helps

define the concepts of performance measurement, performance analysis, and

performance evaluation in relation to each other. The result is illustrated in Figure

3.1. The distinctive features of this approach are as follows (Singleton, 2002):

● An automated process in performance management aims to take the human

"out of the loop”. The human consideration is still required in order to set

up the system and to define the performance goals. However, the

mechanisms for observing the current state of the system, comparing the

obtained values, deciding on tuning activities, and finally putting these

activities into effect are automated and embedded within the system.

● Performance management accompanies a distributed approach to prevent

any performance threat from a centralised coordinator, for it locally

monitors system performance and gathers local state information.

● Performance management must include a mechanism that autonomously

controls the system behaviour.

● Performance management should be proactive due to the time gap between

a launch of control actions and state information collection. A prediction

mechanism forecasts the following system state based on which control

decision is made.

42

3 State of the Art in Performance Analysis

Figure 3.2: The traditional approach to evaluate the performance of computer systems and
networks is an “off-line” performance analysis: (a) and an agent-based mechanism for the

realisation of the performance management architecture; (b) (Kotsis, 2004)

A demand is observed for immediate embedded performance tuning actions

replacing the conventional off-line approach of performance analysis. The human

professional powered process of constructing a model, evaluating it, validating and

interpreting the results and conclusion, thereby putting performance tuning

actions into effect is no longer sufficient if real-time responsiveness of the system

is needed. Hence, the proposition of an online, dynamic performance management

approach which is outlined in Figure 3.2(b).

Figure 3.3 shows Performance Engineering activities and also as an example of the

placement on waterfall development cycle (Singleton, 2002). It can be seen that

the performance estimation and prediction can start as early as the system design.

As soon as the first design has taken shape, the performance model construction

can begin.

43

3 State of the Art in Performance Analysis

Figure 3.3: Modelling within performance engineering.

44

3 State of the Art in Performance Analysis

In practice, the application-induced load on the server in general is described, as

well as the dimension of its workload. The workload is a set of variables and their

values, which describe a variety of customer volumes and the volume of application

activity over time. For example, in an online bookstore service, two descriptive

parameters of the workload could be: (a) requests for the travel book purchase of a

day; and (b) the web server CPU utilization per minute.

The term "workload" is used loosely to describe a general behaviour of client-

server application. When the number of requests from customers does not vary

considerably, server load is said to be stable. In contrast, when the request type or

frequency changes with time, the server is said to be varying or dynamically

loading. In addition, it is also used as a term referring to the amount of work

required to provide the client resource requirements, which relate to the server.

3.3.2 Performance Engineering

In Jewell (2008), performance engineering is defined specially in software

engineering as a technical discipline which aims to ensure that development

project results in the delivery of a system which meets a pre-specified set of

performance objectives. This is done by:

● managing the performance risk of a project

● controlling or coordinating activities in the project that have an impact on

performance, and

● applying specialized performance estimation and design skills to the

architecture of the system under development.

More generally, performance engineering is defined in Dumke et al. (2001) as a

collection of models in support of the development of performance-oriented

systems throughout the entire life cycle. Those models can be seen as a group of

tests and are categorised and described in Splaine & Jaskiel (2001) as follows:

● Smoke test is used to evaluate whether the software release is ready for

testing.

45

3 State of the Art in Performance Analysis

● Load testing is used to model the real-world performance of a website

over a short period of time.

● Stress test is used to determine if a specific combination of hardware and

software has the capacity to handle an excessively large number of

transactions during peak operation hours.

● Spike and bounce testing is used to estimate the consequences of

significantly exceeding a normal average amount of clients.

This categorisation is focused on the design and building phase of the web service.

There are no tests for the whole life cycle of the web service. Jian

(1991) recognized that performance evaluation is required at every stage in the life

cycle of a computer system, including design, use, and upgrade. However, the

presented analytical tools are improper to monitor web server system performance

and capacity issues as a normal maintenance operation.

The scope of performance testing is not properly defined and varies from designing

scripts and executing tests in its narrowest interpretation to all kinds of

performance-related actions when a synthetic or natural workload is applied to the

system in a much wider interpretation. The wider interpretation often includes

performance analysis, performance troubleshooting and diagnostics, tuning, and

capacity planning, making out the word "testing" to be rather concealing the

substance of what is behind. The difference behind these definitions can partly

describe the broad range of opinions about a path from functional testing to

performance testing: while the path from automated functional testing to "narrow

definition" performance testing is quite straightforward, skills required by other

areas of a "wide definition" performance testing are quite different.

Speaking about the wide definition of performance testing, it is clearly and highly

interlinked with performance engineering. Performance testing is a source of raw

data for any kind of modelling and capacity planning activities. It is a way to

calibrate and validate models. In this context, models mean not only formal

models, but any kind of perception of how the system is supposed to work. If any

proactive performance experiment is considered as performance testing, the only

other source of data may be observation or log analysis of real work with the

46

3 State of the Art in Performance Analysis

system, and one may never know the exact level of load applied and what exactly

happened in the system. A notable exception is data defining load (like

throughput) which is a parameter of performance testing; so they cannot come

from its results but should come from analysing real systems or other sources.

Performance is usually defined as the speed with which a certain operation is

executed or the capability of executing a number of such operations within a unit

of time. Performance analysis can be evaluated with simulation, analytical

modelling or empirical evaluation (Koziolek, 2008; Lilja, 2000) as explained

below:

● Simulation is an imitation of a programme execution focusing on specific

aspects. It is flexible as changes can be dealt with easily if the simulation is

derived automatically. However, simulation can suffer from a lack of

accuracy.

● Analytical modelling is a technique where a system is mathematically

described. Results can be less accurate than real-system measurements.

● Empirical evaluation is performed by measurements and metrics

calculation. It provides the most accurate results since no abstractions are

made.

Many websites are utilising multi-tier software architectures. The performance on

such multi-tier environments is typically measured by the end-to-end response

times. Most of the studies on modelling the response times have limited their focus

to modelling the mean (Bhulai, Sivasubramanian, van der Mei, & van Steen, 2007).

However, since the user experienced performance is highly affected by the

variability in response times, the variance of the response times is important as

well.

The increased complexity of web-based applications requires more server capacity.

As a result, the experienced delay in loading the page is determined not simply by

transfer delay but also by server performance. Normally, generating a page also

involves connections to back-end mainframes or database servers, thereby slowing

down the process even further.

47

3 State of the Art in Performance Analysis

Capacity planning is the process of predicting when future load levels will saturate

the system and determining the most cost-effective way of delaying system

saturation as much as possible. The lack of proactive and continuous capacity

planning procedure may lead to unexpected unavailability and performance

problems.

Capacity planning is essential for several reasons (Menascé & Almeida 2002):

● to avoid financial losses

● to ensure customer satisfaction

● to preserve a company's external image

● capacity problems cannot be solved instantaneously

Predicting the resource requirements in a rapidly changing environment brings

more challenges, such as breaking news in the media environment or closing dates

in e-government applications. In such a case, the normal load can be quite stable,

but it can be increased rapidly, affecting system performance. The service provider

cannot overestimate the performance of the system to keep the investments

effective. From the service provider's viewpoint, this means seeking a balance

between economically effective investments and customer satisfaction with the

technical quality of the service.

3.3.3 Performance Estimation

The traditional approach to evaluating the performance of computer systems is an

off-line performance analysis as represented in Figure 3.2(a). Originating from a

characterisation of the system under study and characterisation of the actual load,

a performance model is built, and performance results are obtained by applying

performance evaluation techniques such as analytical, numerical, or simulation.

Alternatively, the modelling and evaluation step can be replaced by performance

measurements of the real system. In any case, an analysis of results follows, which

can trigger an improvement of the model if the results do not provide the required

48

3 State of the Art in Performance Analysis

knowledge. Alternatively, it will lead to performance tuning activities if

performance shortages are detected. However, many aspects of emerging

computing environments create a variety of performance-results influencing

factors, which cannot be adequately represented in a model. Applications in such

environments are typically characterised by a complex, irregular, data-dependent

execution behaviour, which is considerably dynamic and has time varying resource

demands. The performance produced by the execution platform is laborious to

predict as it is generally composed of heterogeneous components.

Individual servers or entire server system performance analysis and forecasting

have been developed in a number of different models. Thalheim & Tropmann

(2011) present a model where automatic performance analysis is difficult. A study

by Tsai et al. (2007) in turn presents a model which assumes that only the system

processing speed is the bottleneck.

One of the more important aspects of performance engineering is the selection of

the appropriate estimating technique for the situation at hand. Figure 3.4 shows

some of the common estimating techniques and the corresponding cost versus

accuracy trade-offs. From a technical standpoint, the difference in these techniques

comes from the manner in which volumetric and parametric costs, the resource

model and queuing model are represented and used to estimate performance.

49

3 State of the Art in Performance Analysis

Figure 3.4: Cost/effort and accuracy/benefit trade-offs between performance estimation
techniques (Jewell 2008)

Typically, more than one of these estimation techniques should be used during the

life of a project. Low-cost, low-effort methods are commonly used early in the

project for feasibility study purposes, whereas the higher-accuracy methods may be

employed later, when more is known about the solution design and validation of

the solution performance characteristics is deemed critical. These estimating

techniques may be summarized as follows (Jewell, 2008):

● “Rules of thumb” estimating relies on very preliminary, simplified

assumptions concerning volumetric and parametric costs, system resources

and wait times in order to deliver an estimate relatively quickly.

● Analytical modelling uses spreadsheets (or special purpose tools in some

cases) that perform static calculations to make predictions of “steady state”

performance and utilisation of a system under a given workload. The static

calculations typically take into account some amount of queuing theory and

statistical techniques, in addition to volumetric, parametric costs and

system resources.

50

3 State of the Art in Performance Analysis

● Simulation modelling conventionally employs what is known as a discrete

event simulation tool to mimic the transaction processing behaviour of the

live system from a resource utilisation and timing perspective. With these

kinds of tools, the modeller must spend a considerable amount of time

populating the model with the resource model, the parametric costs and

transaction processing behaviour.

● Prototypes can be thought of as not entirely constructed or as early versions

of a considered invention, product or solution. The purpose of building any

prototype is to learn from and leverage the experience of building or testing

such a prototype before making a commitment to the production version.

For IT solutions, performance prototyping can serve as a means of

investigating aspects of solution performance before a completely developed

live system is available for performance testing.

● Benchmark testing refers to the process of performance testing using a

known workload before and after making a change or enhancement to the

system, in order to determine whether the system’s performance has been

impacted by the change.

As the previous categorisation shows, performance monitoring and estimation in a

live environment are not known in general as an essential part of maintenance

operations.

3.3.4 Performance Analysis

In Lilja (2000), performance analysis is described as a combination of

measurement, interpretation and communication of a computer system's capacity.

It means it is important to recognise that we need not necessarily be dealing with

the complete system. Eventually, it is necessary to analyse only a small portion of

the system, independent of the other components. For instance, we may be

interested in studying the performance of a certain computer system's network

interface independent of the size of its memory or the type of processor.

Unfortunately, the components of a computer system can interact in incredibly

51

3 State of the Art in Performance Analysis

complex and frequently unpredictable ways. One of the most engaging tasks of the

performance analyst can be figuring out how to measure the necessary data. A

large quantity of creativity may be needed to develop good measurement

techniques that disturb the system as little as possible while providing authentic

reproducible results. After the required data have been collected, the results must

be interpreted using appropriate statistical techniques. Finally, even excellent

measurements interpreted in a statistically appropriate fashion are of no practical

use to anyone, unless they are communicated in a clear and consistent manner.

Little's law is widely applicable in analytic methods. The law was first proven by

Little (1961) and it applies insofar as the number of jobs entering the system is

equal to those completing services, so that no new jobs are created in the system

and no jobs are lost inside the system. The law can be used for a system or any part

of the system. We can apply the law to relate queue length Qi and response time

Ri at the ith device as follows:

Qi = i Ri (3)

where i is the arrival rate to device i. In case of balanced job flow, the arrival rate

is equal to the throughput X i , equation (3) can be written thus:

Qi = X i Ri (4)

Because Little's law can be used for a whole system, the equation (4) can be written

for the whole system:

Q = X R (5)

The response time at the maximum throughput is too high to be acceptable in

many cases. In such cases, it is more interesting to know the maximum throughput

achievable without exceeding a pre-specified response time limit. This may be

called usable capacity of the system. In many applications, the knee point of the

52

3 State of the Art in Performance Analysis

throughput curve or the response time curve is considered the optimal operation

point.

In any capacity analysis identifying the bottleneck resource should be the first step

in performance improvement (Jian, 1991). The resource (e.g. memory, processor

time, disk I/O, network I/O) with the highest total service demand Di has the

highest utilization and is called the bottleneck resource. Suppose the resource b,

Db is the bottleneck, Dmax in a set of resources D1,D2,⋯, DM . The throughput

bound of the system is:

X N   min{ 1
Dmax

, N
DZ } (6)

and the response time is respectively:

R N   max {D , NDmax−Z } (7)

where N is the number of requests, Z is the think time, and D = ∑ Di is the sum

total of service demands on all resources.

Requests arrive at the web server at rate  and they get served constantly at rate

 . The server utilization is U = λ/ μ . In the case of infinite request queue

Menascé & Almeida (2002) has shown that the average response time R depends

on average service rate  and the utilization U of the server.

R =

1
μ

1−U

(8)

While the utilization increases close to 1, the denominator of Equation (8) goes to

zero and R goes to infinity. In Figure 3.5, the curve shows a dramatic increase in

response time seen when the workload approaches its maximum possible value.

53

3 State of the Art in Performance Analysis

Figure 3.5: Typical website response time curve compared
to workload

The arrival rate  and the service rate  may depend on the system state k in

many cases. The throughput of the service system is usually a function of the

number of requests present in the system. A typical throughput curve X(k) is

shown in Figure 3.6. The light load region in the figure shows, that as the workload

of website increases, the throughput increases almost linearly. At light loads,

requests face very little congestion for resources. After some point, congestion

starts to build up, and throughput increases at a much lower rate until it reaches a

saturation value. The maximum value is determined by the bottleneck device at the

single server.

54

3 State of the Art in Performance Analysis

Figure 3.6: Typical website throughput curve compared to number
of arrival requests (Menascé & Almeida, 2002)

Let J be the value of k, and after which the value of the throughput no longer

changes. Now, the expressions for  k becomes:

μk = {X k  , kJ
X J  , kJ

 (9)

In general web systems, the user population size is infinite, and the queue size is

limited to W requests. In case of X J  , the fraction of time, pk , server has k

(k=0,1 ,⋯) requests (Menascé & Almeida, 2002):

pk = {p0
k

 k 
, kJ

p0 X J J k

 J 
, kJ

 (10)

where p0 is:

p0 = [1∑k=1
J

k

 k 
  J

J 
× 
1−]

−1

 (11)

55

3 State of the Art in Performance Analysis

where  k =X 1×X 2×⋯×X k and = /X J  . As discussed in Section 2.5,

the throughput function X J  depends on the internal state of the system and the

rejuvenation interval.

3.4 Response Time

Response time is broadly defined as the time interval between a user's request for

service and the service's return of results, as discussed in Fortier & Michel (2003).

In reality, this is oversimplified and is not all there is to it. There are more

elements on the side of both request and response that make up the true measure.

The process begins with the user inputting the transaction. This is not a single step,

but it can be much longer if the user is using an interactive interface with the

transactional service. The database system must set up the appropriate data

structures and provide resources for the transaction to be executed. The

transaction is then executed by the database engine. The transaction then

completes processing, prepares the transaction results and sends them off, as

shown in Figure 3.7. Each of these steps, while a bit more complete than the

simplistic model, is still only a partial representation of the full transaction

processing cycle in a commercial database system. In addition, the rendering time

required by the browser or any other end-user systems requires time that is

dependent on the complexity of the data and the performance of the browser. Each

of these components of the transaction response time is a response time

component. These components are the subparts of the total transaction response

time, just as queue wait time and server time represent the job time in a queuing

model.

Selvidge et al. (2002) has defined system response time as the speed at which a

computer responds to a user’s command. User think time is defined as the

duration of time between the computer’s response and the user’s next command

input. For example, the time it takes from the user’s action of selecting a link on a

web page until the page is presented is the system response time.

56

http://library.books24x7.com/book/id_4361/viewer.asp?bookid=4361&chunkid=229887154#ch11fig0283351526-7371-4107-9DA2-CC81C3A92452

3 State of the Art in Performance Analysis

Figure 3.7: Transaction processing response partitioning

The response time of a computer system will normally rise as the load increases.

Manifold methods have been developed to provide rules of thumb for such

scenarios. One, called the stretch factor (Fortier & Michel, 2003), is computed as

the expected response time over the expected service time, or:

Stretch factor=
EW
E S

 (12)

where EW is the expected response time and ES is the expected service time.

This measure is depicted in Figure 3.8. In most real systems, one wishes to see this

stretch factor have a computed value of approximately 5. If the factor rises above

this approximation, this implies longer waiting times in relation to service times

and therefore, lower availability of the resource and higher utilization.

Figure 3.8: Stretch factor compared with utilisation

57

3 State of the Art in Performance Analysis

The ISO 9126-2 (ISO/IEC, 2001) standard defines three different response times.

In general, the response time should measure the time consumption for

completing at specified task. It should be recorded as the time span between the

start of the task and its completion.

The second definition is the mean time to response: The meantime to response

should record the regular response time under a defined system load in terms of

concurrent tasks and system utilization. It is estimated by acquiring the response

several times and dividing the sum of all response times by the number of

measurements. This can again be divided into the required mean response time so

that the result is the ratio of fulfilling the prerequisites. The ratio should be less

than 1.0, lower being better.

Finally, the worst case response time is defined: The worst case response time is

calculated using the ratio of the maximum response time of a set of measurements

divided by the required maximum response time. Again, the value should be less

than 1.0, lower being better.

3.5 Throughput

Throughput is defined as the rate (request per unit of time) at which the requests

can be serviced by the system. For batch streams, the throughput is measured in

jobs per second. For interactive systems, the throughput is measured in request

per second. For CPUs, the throughput is measured in Millions of Instructions per

Second (MIPS), or Millions of Floating-Point Operations per Second (MFLOPS).

For web servers, the throughput is measured in HTTP operations per second

(HTTPops/sec). For networks, the throughput is measured in packets per second

(pps) or bits per second (bps). For transactions processing systems, the throughput

is measured in Transactions per Second (TPS). Hence, in order for the throughput

value to be meaningful, the type of the transaction considered has to be

characterised when reporting the throughput.

Throughput is defined in some studies (Fortier & Michel, 2003; Jian, 1991;

Koziolek & Happe, 2008) as with response time, which will grow as additional load

58

3 State of the Art in Performance Analysis

is placed on the system. However, unlike response time, there will be a point when

the throughput will maximize and possibly begin to degrade, as shown in Figure

3.9. In the figure, the throughput increases over a wide range of load and then

slows as a saturation point is reached. In the throughput case, the throughput

increases to some maximal level and then levels off. At a critical point in the load,

where the response time has begun to increase exponentially, the throughput

begins to degrade below the maximum. Such curves are typical of computer

systems where there is inadequate service capacity for the presented load. It is

aimed always at keeping the throughput near its peak, but not too far into the

saturation region, so that resources stay available for spikes in load. The maximum

achievable throughput under ideal workload conditions is called the nominal

capacity of the system. For computer networks, the nominal capacity is called the

bandwidth and is usually expressed as bits per second. Often the response time at

maximum throughput is too high to be acceptable. In such cases, it is more

relevant to know the maximum throughout achievable without exceeding a pre-

specified response time limit. This may be called the usable capacity of the system.

In many applications, the knee of the throughput or the response time curve is

considered the optimal operation point.

Figure 3.9: Throughput curves versus response curves.

59

3 State of the Art in Performance Analysis

Another important measure is efficiency. This measure is related to utilization and

throughput. The relationships look at the ratio of the maximum achievable

throughput compared to the actual throughput:

Efficiency = real throughput
theoretical throughput

 (13)

Efficiency can also be measured for multiple resource systems. One common use is

when looking at the performance speed-up of having one processor versus n

processors. Efficiency in this class of environment is calculated as the ratio of the

theoretical throughput times the number of devices, and divided by the speed of a

single device.

In Figure 3.10 we can see that the theoretical efficiency of adding more processors

is a linear curve with an efficiency equal to the number of devices applied. The real

measured curve shows a very different story. The efficiency is not linear and

continues to degrade as more devices are added. This is due to the added overhead

involved in keeping the processors effectively utilized in performing tasks.

Figure 3.10: Multiprocessor efficiency curve.

Throughput is defined in ISO 9126-2 (ISO/IEC, 2001) as follows: The throughput

characterises the number of tasks, which can be satisfied over a given period. In

60

3 State of the Art in Performance Analysis

addition, the mean amount of throughput is described as a number of concurrent

runs in the specified task calculated by the sum of each of the throughputs and

divided by the amount of runs. Then, this is divided by the required throughput to

get a ratio. The ratio should be less than 1.0, lower being better. Third, the worst

case throughput is defined as the amount of concurrent runs in the specified task,

to be calculated by taking the maximum of the measured throughput values and

dividing this by the required throughput to get the ratio. The ratio should be less

than 1.0, lower being better.

3.6 Utilization, Reliability, and Availability

The utilization of a resource is a measure of how busy the resource is (Jian 1991;

Fortier & Michel 2003). It is measured as the fraction of time the resource is busy

servicing the requests. Thus this is the ratio of busy time and total elapsed time

over a given period. The period during which a resource is not being used is called

the idle time. Some resources, such as processors, are always either busy or idle, so

their utilisation in terms of the ratio of busy time to total time makes sense. For

other resources, such as memory, only a fraction of the resource may be used at a

given time; their utilisation is measured as the average fraction used over an

interval. It is computed as the fraction of time the resource is busy servicing clients

divided by the entire period:

Utilization= time busy
time busytime idle

 (14)

In most systems, it is not reasonable to saturate resources. Instead, the aim is to

balance the utilization such that no device is more heavily utilized than another. In

principle, this is the goal, but in reality, this is difficult to achieve. Utilization is an

important measure when examining systems. Different devices in a system have

different average utilization values. For example, processors typically will be highly

utilized, while memory, disks, and other peripheral devices will all have smaller

fractional use time.

61

3 State of the Art in Performance Analysis

Utilisation is defined in ISO 9126-2 (ISO/IEC, 2001) as having three purposes: The

I/O device utilisation section suggests several metrics to describe the load of the

specified resources with respect to the tasks defined. It contains metrics for the

device utilisation, load limit, I/O related errors and the waiting time of the user

due to device response times. The memory resource utilisation metrics can be

used to conclude the memory consumption for the execution time of the specified

tasks. The standardised metrics include metrics for the maximum amount of

memory consumed, the mean occurrence of memory errors, and the ratio of

memory errors to execution time. Finally, the communication resource utilisation

is supposed to characterize the load of communication-related transmission

channels. Metrics of this group contain the maximum transmission utilisation, the

media device utilisation balancing, the mean occurrence of transmission errors,

and the mean of transmission errors per time.

Other important measures in analysing computer systems include systems

reliability and systems availability. They are defined in (Jian, 1991). The reliability

of a system is a measure of the probability of errors or a measure of the typical time

between errors. Most computer systems are fairly reliable, with hardware being

more reliable than software. The availability of a system is measured in terms of

reliability. If a system is highly reliable, it will more likely be available than not.

However, if a system is unreliable, then it will have periods of downtime, where the

system is not running or is running erroneously. The time during which the system

is not available is called downtime; the time during which the system is available is

called uptime. Often, the mean uptime, better known as the Mean Time to Failure

(MTTF), is a better indicator since a small downtime and small uptime

combination may result in a rather high availability measure, but users may not be

able to get any service if the uptime is less than the time required to complete the

service.

3.7 Benchmarking Tools and Techniques

Fortier & Michel (2003) described four techniques for computer system

performance evaluation including simulation modelling, Petri-nets, analytical

62

3 State of the Art in Performance Analysis

modelling, and test-bed analysis. Depending on the criteria allocated for the

computer system's analysis, some approximate selection metrics can be

determined. The most significant criterion deals with this stage of the computer

system's life cycle. For example, if the computer system planning is in the earliest

phases of the life cycle, when trade-offs on new components are examined, the

analytical modelling is the most effective method to provide relatively quick

answers, making it possible to determine early on if a subset of several alternatives

is best for a more detailed modelling. Once this rough analysis has been completed,

and choices of alternatives are narrowed to some smaller subset, Petri-nets would

probably be applied to further refine the choices. Petri-nets add the ability to

model and trade off concurrency, conflict, and synchronization, something that is

impossible to accomplish with analytical modelling. In the next phase, when the

system or something similar already exists, measurements are available as a

modelling possibility. Simulation provides the ability to produce detailed models of

a target system or just some specific contentious component(s). Once the system is

constructed, the empirical modelling would be applied. This would allow for

verifying whether early modelling was correct and to possibly identify areas where

the new system could be further refined and improved.

The next criterion for consideration when deciding on which modelling tool to use

is the resources that have to do with the modelling task. In most situations, a

model is requested after some problem has occurred, and it should be resolved as

soon as possible. If time is not bounded to perform all the possible evaluations,

then each reasonable model would probably be walked through, thus refining the

analysis defined under the criterion of the time stage. The problem is that typically

there is no such luxury available. If time is bounded, then the use of analytical or

Petri-net modelling is the most effective, with analytical modelling winning out if

time is very short. If time is important though not critical, then Petri-nets and

simulation are the next models of choice. Petri-nets require less time to develop

than simulations but would also be provided with possibly less detailed analytical

information. If the system already exists, then measurements may be appropriate

over simulation modelling, if the number of alternatives we are looking at is small.

63

3 State of the Art in Performance Analysis

If the number of alternatives is considerable, then simulation would win out, even

though it would typically take more time than measurements.

Two remarkable associations have developed multi-purpose load test applications

since the early days of commercial computing, SPEC (Standard Performance

Evaluation Corporation) (SPEC, 2010) and TPC (Transaction Processing

Performance Council) (TPC, 2010). Both organizations have benchmarking tools

for several types of transactions on internet computing. However, both tools use

their own generic applications on the application server. They do not measure the

real existing application set. The result describes the performance of the hardware,

neither the configuration nor the application. Especially, the actual usage and its

change on time do not affect the results. As we have discussed in Section 2.5,

software aging is remarkably effective on the performance of the server system.

Producing representative web trace load is a challenging task due to the number of

unusual features of web workload. Web servers have encountered highly variable

requests, which are exhibited as variability in CPU loads and the number of open

connections. The second feature of web workload is self-similarity in network

traffic of web requests, i.e. traffic can show significant variability over a wide range

of scales. Self-similarity in traffic has been shown to have a significant negative

impact on network performance (Dill et al. 2002; Crovella & Bestavros 1997;

Barford & Crovella 1998), so it is an important feature to capture in a natural

workload.

To clarify these properties in a benchmarking process, one of the following

approaches could be used: a trace-based or an analytic approach. Trace-based

workload generation uses pre-recorded records of past workloads typically

identified in access logs and either samples or replays traces to generate workloads.

In contrast, analytic workload generation starts with mathematical models for

different workload characteristics and then generates outputs that adhere to the

models.

Both approaches have strengths and weaknesses. The trace-based approach is easy

to implement, and it mimics the activity of a known server system. However, it

treats the workload as a black box. Hence, the result is that the response to the

64

3 State of the Art in Performance Analysis

system is of well known workload only. Furthermore, it can be hard to adjust the

workload to imitate future conditions or varying demands. Analytic models do not

have these weaknesses, but they can be challenging to construct for at least four

reasons. First, it is necessary to identify those characteristics of the workloads

which are important to model. Second, the chosen characteristics must be

empirically measured. Third, it can be difficult to create a single output workload

that accurately exhibits a large number of different characteristics. Fourth,

updating the model is required in case of application, configuration or hardware

updates, and a lot of laborious operations may be required.

Benchmarking tools and techniques are reviewed in a tutorial (Andreolini et al.

2002). It is aimed at evaluating the performance and scalability of highly accessed

web server systems. The focus in the study is on design and testing of locally and

geographically distributed architectures where the performance evaluation is

procured through workload generators and analyses in a laboratory environment.

The tutorial perceives the qualities and issues of existing tools in terms of the main

features that characterize a benchmarking tool (workload representation, load

generation, data collection, output analysis and report) and their applicability to

the analysis of distributed web server systems.

One study (Ruffo, Schifanella, Sereno, & Politi, 2004) presents a set of tools that

allows the performance analysis of web applications by means of a scalable what-if

analysis on the test bed. The approach used in that paper is based on a workload

characterization generated from information extracted from log files. The

workload is generated using user behaviour analysis, which is derived by extracting

information from the web application log files. In this manner, the synthetic

workload used to evaluate the web application under test is representative of the

real traffic that the web application has to serve. One of the most common critics to

this approach is that synthetic workload produced by web stressing tools is far

from being realistic. The use of the behaviour analysis might be useful to overcome

this criticism.

Grid computing is a common platform for solving large-scale computing task

requirement for high availability. However, a number of major technical issues,

including the lack of sufficient performance evaluation approaches, disturb the

65

3 State of the Art in Performance Analysis

further development of grid computing. Therefore, the requirements are manifold;

adequate approaches must synthesize appropriate performance metrics, natural

workload models, versatile tools for workload generation, submission, and

analysis. An approach to intercepting this complex problem is shown in Iosup et al.

(2007). A set of grid performance objectives, based on traditional and grid-specific

performance metrics, is shown. Also, the requirements for realistic grid workload

modelling, data and network management, and failure modelling are synthesized.

Common web server systems are relying on multi-tier architectures. The

performance of such multi-tier systems is typically measured by the end-to-end

response times. Most of the research studies analysing the response times of such

systems have restricted their focus to modelling the mean. However, since the

user-perceived performance is highly affected by the variability in response times,

the variance of the response times is important as well. A study (Bhulai et al.,

2007) has presented an analytical model for multi-tiered web applications based

on a queuing-theoretical framework. Based on this model, the mean response time

of a service can be estimated and a reasonable approximation of its variance can

also be provided.

An end-to-end monitor to measure website performance has been developed by

Cherkasova et al. (2002). The system passively collects packet traces from the

server site to determine service performance characteristics. The study introduces

a two-pass heuristic method and a statistical filtering mechanism to accurately

reconstruct a composition of individual page and performance characteristics

integrated across all client accesses. However, the monitor requires specific

software components (agents) for each server of an independent network

appliance in order to capture all HTTP transactions for a web server.

Ardaiz et al. (2001) have shown that with measurements taken from the server and

without introducing traffic on the network, it is possible to estimate the service

time experienced by a web client. In the study, the metrics has been analysed so as

to be obtainable at a web server regarding the service time experienced by a client,

which has components that depend on the round trip time and bandwidth,

something that is difficult to obtain without modifications in all web browsers.

This metrics has been compared in an experiment with clients and servers situated

66

3 State of the Art in Performance Analysis

in different locations on the Internet, and therefore, under the same conditions of

variability and network load as any normal client would experience.

3.8 Monitoring Tools

One report (Balaton, Kacsuk, Podhorszki, & Vajda, 2000) provides a short

description of the grid monitoring architecture and existing event services. The

report compares several monitoring tools that can be utilised in a grid

environment. Compared properties of the tools are based on the requirements of

scalability, intrusiveness, validity of information, data format, extendibility,

communication, security and measurement metrics. The study is aiming to collect

monitoring data in large distributed systems for a variety of purposes such as

performance analysis, tuning, and prediction. As a result, the study presents a list

of required features for monitoring tools. Most of the compared tools are using

their own, albeit quite well-known, proprietary agents to collect the raw data.

Distributed computer systems require a great amount of monitoring data to be

collected for a variety of tasks such as fault detection, performance analysis,

performance tuning, performance prediction, and scheduling. A study by Tierney

et al. (2001) presents a developed agent-based system to automate the execution of

monitoring sensors and the collection of event data. The developed Java Agents for

Monitoring and Management (JAMM) architecture relies on well-known sensors

in the UNIX world, like netstat, iostat, and vmstat. However, JAMM is planning to

collect monitoring events, and to analyse and visualise them with external

application like NetLogger Toolkit (Tierney et al., 1998). It can be used even as an

accurate application level analysis and lifeline style visualization. In addition, there

are no possibilities to integrate them into the access history or well-known load

simulation.

Most of the analytic applications and monitoring systems have their own features

and are not necessarily interoperable due to different designs and implementation

approaches. The study by Yang & Theys (2005) presented a resource monitoring

framework (RMF) that provides network administrators and researchers with a

67

3 State of the Art in Performance Analysis

consistent and scalable interface for a wide range of monitoring applications.

However, this framework does not include tools for integrating the access logs and

well-known load simulation.

Most of the tools mentioned above are relying on their own sensors for data

collecting. However, in modern computer systems, robust, comparable, reliable,

and secure sensors are integrated into the kernel level. The data of these sensors

can be collected by using SNMPv2 or SNMPv3. Most server resources are rather

simple to implement, like the memory or TCP connection available. At the same

time, CPU usage is the most interesting in several service instances and its

implementation is playing a critical role.

On the other hand, those tools analyse all the individual user requests and network

packages, referring to certain requests. The concept leads to accurate results.

However, in geographically distributed systems this has to be distributed to the

sensors as well. For example, local area network (LAN) traffic cannot be remotely

monitored without a local proxy. The local proxies require investments,

maintenance, and these are increasing monitoring costs. The monitoring and

analytic systems on this type of arrangement are poorly generalized with increased

energy consumption.

The CPU is a discrete state machine. It can only be at 100%, executing an

instruction, or at 0%, waiting for something to do. There is no such thing as using

only 45% of a CPU. The CPU percentage is the amount of time interval that the

system's processes were found to be active on the CPU. If a process is taking 45%

CPU, 45% of the samples taken are active on the CPU. In the rest of the time, the

process was in a waiting state. Load averages do not include any processes or

threads waiting on I/O, networking, databases or anything else not demanding the

CPU. Hence, it is precisely the CPU load that is measured. The load averages differ

from CPU percentage in two significant ways: 1) load average measures the trend

in CPU utilization, and not only an instantaneous snapshot, as does percentage;

and 2) load averages include all demands for the CPU, and not only how much was

active at the time of measurement. The CPU usage monitoring in Unix-liked

operating systems is based on time counters in the kernel. Walker (2006) described

the CPU load instrumentation in Linux kernel as follows.

68

3 State of the Art in Performance Analysis

In the kernel of Linux, each dispatchable process is granted a permanent amount

of time on the CPU per dispatch. By default, this amount is 10 milliseconds. For

such short time duration, the process is assigned a physical CPU on which to run

its instructions and is allowed to take over that processor. In most cases, the

process will give up control before the 10 ms are up through socket calls, I/O calls

or calls back to the kernel. On a typical modern 2.6 GHz processor, 10 ms is

enough time for approximately 50-million instructions to occur. If the process uses

its fully allotted CPU time of 10 ms, an interrupt is raised by the hardware, and the

kernel regains control of the process. The kernel then promptly penalizes the

process for being such a hog. Hence, time slicing is an important design concept

for making an operating system seem to run smoothly on the outside.

One of the duties the kernel completes when it receives control is to increase its

jiffies counter. The jiffies counter is for measuring the number of time slices that

have occurred since the system was booted. The jiffies counter is incremented by 1,

and the load-average calculation is checked to see if it should be computed. In

actuality, the load-average computation is not truly calculated on each quantum

tick, but driven by a variable value that is based on the HZ frequency setting and

tested on each quantum tick. HZ is not the processor's MHz rating. This variable

sets the pulse rate of particular Linux kernel activity, and 1 HZ equals one quantum

or 10 ms by default.

The data values can be figured out using a /proc pseudo-filesystem as an interface

to kernel data structures. In Linux and Solaris, it is mounted at /proc. It carries a

great number of information in kernel. Data for SNMP interface in Linux can be

figured out using the next source code fragment on Linux and Solaris kernels.

69

read("/proc/stat", buff);
sscanf(buff, "%llu %llu %llu %llu %llu %llu %llu", &cusell,
&cicell, &csysll, &cidell, &ciowll, &cirqll, &csoftll);
cpu->user_ticks = (unsigned long)cusell;
cpu->nice_ticks = (unsigned long)cicell;
cpu->sys_ticks = (unsigned long)csysll;
cpu->idle_ticks = (unsigned long)cidell;
cpu->wait_ticks = (unsigned long)ciowll;
cpu->intrpt_ticks = (unsigned long)cirqll;
cpu->sirq_ticks = (unsigned long)csoftll;

3 State of the Art in Performance Analysis

The corresponding code fragment used in Solaris is the following:

The above code fragments show that implementations are not the same even in

different Unix versions. However, there are some common principles in most

operating systems, i.e. the metrics of load is characterized as user, nice, sys, idle,

and wait states. The names may vary in different environments. All these

categories have their own counters. In addition, some implementations have the

raw counter. The different counters are available via SNMP interface for

monitoring purposes.

The single value of a number of ticks does not say anything about the load rate. It

requires also knowledge about the duration of a time slice between two different

values. This leads to the concept of load average. The load averages indicate by

increasing duration whether (or not) the physical CPUs are over- or under-utilized.

The point of perfect utilization, meaning that the CPUs are always busy and yet no

process ever waits for one, is the average from matching the number of CPUs. If

there are four CPUs on a machine and the reported one-minute load average is

4.00, the machine has utilized its processors perfectly for the last 60 seconds. This

understanding can be extrapolated to the 5- and 15-minute averages.

There are plenty of SNMP implementations available in different operating

systems and in different architectures. In this study, the widely available net-

SNMP (Net-SNMP Development Team, 2007) is used in the Linux environment.

In the MIB-description, the CPU usage is described as follows:

70

kstat_read(kstat_fd, ksp, &cs);
cpu2->user_ticks = (unsigned long)cs.cpu_sysinfo.cpu[CPU_USER];
cpu2->idle_ticks = (unsigned long)cs.cpu_sysinfo.cpu[CPU_IDLE];
cpu2->kern_ticks = (unsigned long)cs.cpu_sysinfo.cpu[CPU_KERNEL];
cpu2->wait_ticks = (unsigned long)cs.cpu_sysinfo.cpu[CPU_WAIT];
/* or cs.cpu_sysinfo.wait[W_IO]+cs.cpu_sysinfo.wait[W_PIO] */
cpu2->sys2_ticks = (unsigned long)cpu2->kern_ticks+cpu2->wait_ticks;
/* nice_ticks, intrpt_ticks, sirq_ticks unused */

3 State of the Art in Performance Analysis

In net-SNMP, there are several indicators for CPU usage. Some of them indicate

percentage values and the rest are for CPU ticks. The tick indicators are called

'Raw'. The total number of ticks is 100 ∗ Number of Processors . For a single

processor machine numbers will appear to be percentages as the kernel will tally

ticks at 100 per second.

System CPU raw user (ssCpuRawUser): user CPU time in ticks per second, as

reported by the kernel.

System CPU raw nice (ssCpuRawNice): nice CPU time in ticks per second, as

reported by the kernel.

System CPU raw system (ssCpuRawSystem): system CPU time in ticks per second,

as reported by the kernel.

71

UCD-SNMP-MIB::ssCpuUser.0 = INTEGER: 7
UCD-SNMP-MIB::ssCpuSystem.0 = INTEGER: 0
UCD-SNMP-MIB::ssCpuIdle.0 = INTEGER: 91
UCD-SNMP-MIB::ssCpuRawUser.0 = Counter32: 105129968
UCD-SNMP-MIB::ssCpuRawNice.0 = Counter32: 5481391
UCD-SNMP-MIB::ssCpuRawSystem.0 = Counter32: 9448037
UCD-SNMP-MIB::ssCpuRawIdle.0 = Counter32: 932770472
UCD-SNMP-MIB::ssCpuRawWait.0 = Counter32: 1144770
UCD-SNMP-MIB::ssCpuRawKernel.0 = Counter32: 0
UCD-SNMP-MIB::ssCpuRawInterrupt.0 = Counter32: 1442

ssCpuRawSystem OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of 'ticks' (typically 1/100s) spent
 processing system-level code.
 On a multi-processor system, the 'ssCpuRaw*'
 counters are cumulative over all CPUs, so their
 sum will typically be N*100 (for N processors).
 This object may sometimes be implemented as the
 combination of the 'ssCpuRawWait(54)' and
 'ssCpuRawKernel(55)' counters, so care must be
 taken when summing the overall raw counters."
 ::= { systemStats 52 }

3 State of the Art in Performance Analysis

System CPU raw idle (ssCpuRawIdle): idle CPU time in ticks per second, as

reported by the kernel.

System CPU raw wait (ssCpuRawWait): iowait CPU time in ticks per second, as

reported by the kernel.

System CPU raw kernel (ssCpuRawKernel): kernel CPU time in ticks per second,

as reported by the kernel.

As described, the interface is suitable also for the multi-CPU architecture. The

timing of each value has to be managed by the application as well as the number of

CPU's that has to be known by the application.

In the Microsoft Windows environment, the corresponding CPU busy value is

available, e.g. in SNMP-Informant MIB. The description of the MIB is as follows:

As we can see, the CPU load value in Linux is the number of ticks, and in Microsoft

Windows it is the load-average. However, the sample interval is not defined

explicitly. Empirical test has shown, that the results for SNMP queries in both

environments are accurate compared to the load monitoring tools on each

72

 cpuPercentProcessorTime OBJECT-TYPE
 SYNTAX Gauge32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "% Processor Time is the percentage of time
 that the processor is executing a non-Idle
 thread. This counter was designed as a primary
 indicator of processor activity. It is
 calculated by measuring the time that the
 processor spends executing the thread of the
 Idle process in each sample interval, and
 subtracting that value from 100%. (Each
 processor has an Idle thread which consumes
 cycles when no other threads are ready to run).
 It can be viewed as the percentage of the
 sample interval spent doing useful work. This
 counter displays the average percentage of busy
 time observed during the sample interval. It
 is calculated by monitoring the time the
 service was inactive, and then subtracting that
 value from 100%."
 ::= { processorEntry 5 }

3 State of the Art in Performance Analysis

operating system; similar results are found for the top in Linux and the Task

Manager Performance → in Microsoft Windows.

All these performance measurements are not useful unless there is some

relationship associated with the measure. For example, how do we know if, for

some given metric, it is important to maximize or minimize its value? To make

sound judgements, we must understand the measures we are taking and what their

relationship is to system values, as shown in Figure 3.11. For example, for a CPU,

do we wish to have a high number of instructions per second or a low number? Are

we looking for medians or modes? This will make a difference on how the results

will be interpreted. To decide on how to interpret the measurements, we must

understand how they are related to each other. For example, high disc utilization

may be mapped to a low system throughput. Alternatively, high CPU utilization

may be mapped to a high throughput. It is important to know which is which in

order to decide.

Figure 3.11: Metrics versus usefulness.

The load average from 0 to 1.0 are acceptable for a single CPU. As a general rule of

thumb, a machine is being overworked if load averages consistently exceed three

times the number of CPUs. However, the average number of processes is not the

right criterion to evaluate the load of the server system. In a long period, the CPU

73

3 State of the Art in Performance Analysis

can be completely loaded and the number of queuing processes is close to zero if

the arrival rate is equal to the processing time. At the same time, the load of CPU is

close to 100%.

3.9 Performance Prediction Using Natural Load

Draheim et al. (2006) presents a load testing of web applications by simulating

realistic user behaviour with stochastic analysis models. Simulation of user

behaviour is necessary in order to achieve valid testing results. In contrast to many

other user models, website navigation and time delay are modelled stochastically.

The models can be constructed from sample data and can take into account the

effects of session history on user behaviour and the existence of different categories

of users. The approach is implemented in an existing architecture modelling and

performance evaluation tool, and is integrated with existing methods for forward

and reverse engineering. This is a typical agent-based performance tool suitable for

in-house application development process. However, it does not suit the industry-

strength web server application tools.

A key aspect in managing resources for customer sites is to predict and assess the

load associated with a site in order to figure out how best to allocate resources for

the site over time and to efficiently schedule tasks. The cost associated with the

site, as well as return on investment, is also key parameters. A paper (Bagchi,

Hung, Iyengar, Vogl, & Wadia, 2006) has described the work done in developing

tools for answering these critical questions. The tools use both analytical models

and discrete event simulations to predict performance and analyse costs needed for

handling a customer workload while satisfying the service level objectives. These

tools provide capacity and load planning, performance simulation, as well as cost

and financial analyses.

A study by Hadharan et al. (2000) indicates that for the Active Server Page (ASP)

Script Engine, performance predictions from the simulation model matched the

performance observed in a test environment. However, for the JSP Script Engine,

the model predicted a higher throughput than laboratory test results at high load.

74

3 State of the Art in Performance Analysis

This result suggests that web server performance can be critically limited by a

software bottleneck that causes requests to be serialized. This may cause a request

to wait for some resource (i.e., a lock) in contrast to consuming CPU or memory. In

addition, the study ignores the limitations caused by inadequate configuration.

The study by Bacigalupo et al. (2004) reports on a comparative assessment of two

approaches for predicting mean response times to different workloads on server

architectures for a robust application benchmark. Results introduced show that

both manners can be used to make predictions for new server architectures with a

valid level of accuracy. The study also shows that the method can make close

predictions when only a very restricted amount of recorded data is available. The

work is extended to show that percentile response time metrics can be predicted

with a proper level of precision, given a mean response time prediction.

Bi et al. (2004) analysed the advantage of wavelet packet and proposed a novel

load forecasting algorithm based on wavelet packet analysis. Based on the insight

of the wavelet theory, the bi-orthogonal wavelet and symmetrical border extension

method are selected to improve forecasting performance. The algorithm developed

provides information for analysing characteristics of load components, and the

forecasting accuracy is improved.

3.10 Quality of Service

Menascé & Almeida (2002) argue that in a web environment a user does not care

about traffic jams, overloaded servers, network bandwidth, or other indicator of

system activities. Besides content and aesthetics, online users want performance,

availability, and security. To an online customer, quality of service means fast,

predictable user-perceived response time and 24 x 7 uptime. And degradation in

the service level of a website is noted in real time. Quality of Service (QoS)

indicators for web services should represent response time, availability, reliability,

predictability, and cost.

A study by G. Ferrari et al. (2006) classifies several existing studies on the Quality

of Service of e-Business systems into three categories. The first category treats the

75

3 State of the Art in Performance Analysis

system as a ‘black box’. The response of such a box is measured and a policy that

controls some operational characteristics reacts to observed changes on demand.

However, studies in this approach do not attempt to predict the performance of a

system in relation to its structure. The second category relies on a series of

experiments whereby emulated clients are used to calibrate the behaviour of the

system. The statistics gathered during the experimental phase are used to

configure the system for the required performance metrics during run time.

Although there is an element of prediction here, it is limited by the fact that only

situations similar to those encountered during the experiments can be effectively

managed on-line. The third category includes studies based on the analysis and

evaluation of models whereby the system is represented by some kind of a queuing

network.

The study by Bouch et al. (2000) was designed to investigate users' requirements

for internet Quality of Services. The study lists a set of objective thresholds that

reveal users' subjective assessments of quality. It shows that:

● The task to which users are committed, the length of time they have been

interacting with a site, and the method of page loading that affects the

acceptability of QoS.

● Tolerance of delay is affected by users' conceptual models of how the system

works.

● Poor website performance leads to low-grade company image and often

compromises users' conceptions of the security of the site.

There is a great number of participants in the design of internet services: server

designers, network providers, advertisers, content providers, and the end-users

themselves. A failure to understand users' on-line QoS requirements may affect

users' conception of a company's stature and commercial viability which, in turn,

affects the business interests of service providers and advertisers. The future

internet will have more users, and support a greater variety of internet

applications. It has the potential to change the way in which consumers interact

with companies.

76

3 State of the Art in Performance Analysis

3.11 Conclusion

The access log analysis does not necessarily produce valid results of usage due to

the rapid growth rate. The maintainer faces the problem of improving the

calculations by intuitive conjecture and educated guesses. Even then, the long

period estimations of usage are rather lucky guesses instead of fact-based

knowledge. Still, the development process has to be done several months or even

years pro-actively by the terms of hardware and application investments.

The general interests in performance management are to create an automated

process which reduces manpower in routine work and proactive operations.

Manpower is still required in a setup of the management process and the goals of

the operations. The proactive activities are required especially in the environment

of e-commerce in order to minimise damages. In general, competition for market

shares is strict and in case of dissatisfaction by customers, a switch to the

competitor's service is oversimplified.

Performance analysis is mathematically considered to be simple. The basis for the

analysis of a website in service is rather complicated. The throughput on some

incoming rates of requests should be known beforehand. However, the throughput

is not constant due to several reasons. Hence, the performance analyses have to be

updated regularly to match the present requirements.

Another essential measure of performance is the response time. For the user, it is

the first indicator of incipient problems. At first, the user feels no specific slowness

in the responses and thereafter problems heave into view. The most observable

indicator is an error message. However, there are two unsolved problems in the

measurements; first, the end-to-end response time. It varies depending on

transmission route and even the time of the day. The second problem is the

rendering time in a browser. The competition between browser manufacturers

intimidates developing of continuous faster solution to ensure market sharing. At

the same time, the content producers create still more attractive contents to seize

on the improvements of browser capabilities.

Continuous monitoring of performance is necessary due to the changes in the

internal state of the system, the updates of the applications, and the changes in

77

3 State of the Art in Performance Analysis

usage. Therefore, the selection of the monitoring software is troublesome. Several

theoretical models are shown, but the monitoring tools in practice are mostly

based on the monitoring of active state. The monitoring, by regular requests of

simple and static URL's, does not produce accurate enough data for proactive

operations of website maintainers. However, operating systems are embodying

tools for monitoring consumption of resources.

In general, the performance of the system has to be good enough during the peak

time to satisfy user needs. To figure out the moment of the hotspot and top usage,

the log files have to be analysed. In this section, the analysis methods and the

sample collection processes are discussed. In addition, the prediction model of

usage in the near future is shown at the end of the chapter.

78

 4 Access Log Analysis

4 Access Log Analysis

This section describes the log file information based on the actual usage of the

analysis. The log data will provide a clear understanding as to when the service was

used, how big was the instantaneous peak load, and the kind of service the site has

been used for.

Queries made by users are recorded for all the application servers or all the load

balancers. Necessary information for the user's requests is stored and analyzed in

order to find the service most frequently used applications and the required

parameter. Applications and the relevant information presented in the log

information, in which users are using the service, are included in the load tests.

The log analysis model used in this study is based on a study (Soininen & Jaakkola,

2012) and is presented in Figure 4.1. In section 4.1, the web servers’ own log file

recording process, and the mechanism for data pre-processing are discussed. Then,

section 4.2 presents the height of the peak load with the timing and number of

service requests and their parameters. Section 4.3 introduces the analysis of query

79

Figure 4.1: Rescisco-model for log file analysis on websites

4 Access Log Analysis

types. Section 4.4 discusses the trend analysis of daily peak load. In section 4.5,

the sensitivity of the analysis is briefly discussed, and section 4.6 finally draws this

chapter to a close with the conclusion.

4.1 Collecting and Sampling Process

E-business workload is defined in Menascé et al. (2003) to be made up of sessions.

A session is a sequence of requests of various types made by a single customer

during a single visit to a site or a system. During a session, a customer requests the

execution of various functions such as browse, search, select, add to the shopping

cart, register, and pay. A request to execute a function may generate many other

requests to the system. For example, several images may have to be retrieved to

display the page that contains the results of the execution of a function.

The log files are collected during the normal usage of the web services. In this

study, the web services are based on Apache (Apache Software Foundation, n.d.) or

Microsoft’s Internet Information Service (IIS) (Microsoft Corporation, n.d.). The

impact of the log file collection process itself on the performance of the system is

not adequately discussed in studies. Empirically, it is known that in some

Microsoft operating systems, the huge log files are deteriorating the whole system

performance due to the writing to the log files. Only a few remarks can be found

(DeveloperSide.NET, n.d.; Microsoft Corporation, n.d.) which consider the log file

size. Therefore, the log file rotation, i.e. creating new files regularly, has to be

considered to avoid decline in performance due to the measurement process. At

the same time, we assume that the log file writing process does not load the system

remarkably or merely affects only one layer on the system. Probably, the layer

mostly affected is the load balancer group, which is only lightly loaded in quite

many cases.

As to the result of the analysis, we are only interested in the peak load moment and

the number of requests during the hotspots. In general, the peak load moment

happens in the same period, e.g. daily basis. On the other hand, the duration of the

peak load time varies, even from day to day. It depends probably on quite a

80

4 Access Log Analysis

number of things, e.g. the content, response time, day of the week, season or even

weather. Within the long period, the peak time varies and even new peaks can be

found. Despite the changes in the peak load, the number of the arrival requests is

the key issue. All the requests have to be satisfied within the required response

time, and supplied content to the request has to be relevant and valid.

The size of the access log file is easily very large to analyse as such. Each user

session generates even hundreds of requests to the server system. E.g. in the case

of one million unique browsers per week, there could easily be more than ten

million requests per day. It is not inevitable to analyse all that data; instead, five to

ten minutes hourly per day is enough. This is based on two assumptions. Namely,

sufficient data is available per session and the load is even distributed to the whole

one hour period.

The log file has to be filtered out from the samples generated by the preceding

natural loading process. This ensures that the loading process itself does not infect

the result of the usage analysis. In addition, all requirements that are not fetched

by the system under study have to be filtered out such as requests relied by the

load balancer even though generated outside of the system under study. And

therefore, they do not generate real load to the system.

81

4 Access Log Analysis

Figure 4.2: The effect of sample length

The effect of the sample length is shown in Figure 4.2. As we can see, using 1

minute sample per hour, the average maximum usage in hits per second is 68 at

hour 16. By increasing the sample size to 60 minutes, the average maximum usage

is decreased to 38 hits per second at the same position. However, by shortening the

length of the sample, the possibility to the outliers is increasing. We can estimate

that a 5-minute sample size eliminates temporary outliers and is simultaneously

short enough for performance estimations.

The number of arrival requests in time in Figure 4.2 is defined as follows:

=maxnmt (15)

, where nm = number of transaction per second at time slice m, t = hour, 0...23.

82

4 Access Log Analysis

4.2 Arrival Rate

One aim of the access log analysis is to figure out the characteristics of the peak

time using the most effective means. It can be done using some statistical methods.

Often, a cyclical pattern in an access log can be found. In different days, the peak is

normally concentrated on the same time of the day. In many cases, the load during

a weekend is different from during workdays. The difference depends on the

nature of the service. On media services, the usage is lower during the weekends

and for entertainment services the usage is higher in the weekends than during

office hours. The analysis can be done on a daily, weekly or monthly basis. The

suitability of the following analysis methods is performed: decomposing, linear

regression, and ARIMA methods.

Box & Jenkins (1976) suggests that this kind of data is usually best achieved by a

three-stage iterative procedure based on identification, estimation, and diagnostic

checking. Identification means the use of the data, and of any information on how

the series was generated, to suggest a subclass of parsimonious models worthy to

be entertained. Estimation means the efficient use of the data to make interference

about parameters conditional on the adequacy of the entertained model.

Diagnostic checking means checking the fitted model in its relation to the data

with the intention of revealing model inadequacies in order to achieve model

improvement. In this context, identification refers to the sampling of raw data, and

estimation refers to the analysis of the sampled data. Finally, the diagnostic

checking refers to the checking of the validity of the developed model.

The number of requests based on an access log is shown in Figure 4.3. The time

scale is 96 days, 24 samples each, totalling n=669 samples. However, there are

some outliers, i.e. in the level of 50 up to 70 requests per second, which should not

be in an essential role while dimensioning the system. In the figure, the number of

requests per second is a mean value for one hour, and it is based on five-minute

samples.

83

4 Access Log Analysis

Figure 4.3: The hourly maximum arrival requests per second on a period of 96 days on an e-
commercial website.

For website modelling, it is essential to know the service load on the peak size and

its timing. If there is more than one service using the same server system, the log

84

Table 2: Sample of peak load height and timing

Date Time Requests / hour

20120310 00:00:00 121056

20120310 01:00:00 227064

20120310 02:00:00 332808

20120310 03:00:00 307200

...

20120310 21:00:00 74136

20120310 22:00:00 51720

20120310 23:00:00 82464

4 Access Log Analysis

analysis has to be performed on all services in order to obtain sufficient

information. As a result, the level of loading for each period is summarized in

Table 2. The result is easy to communicate and is readily available for further

processing. In consecutive days, it will form the time series, allowing for the

drawing up of a forecast for the future use of the service.

As an example, Figure 4.4 shows the typical workload during a single day. The

figure consists of 24 mean values of samples for each hour. The most relevant

workload occurred between hours 7 and 19. The web service performance has to be

fitted according to the maximum of peak time. The mean problem of sampling of

arrival requests is extracting outliers out of the relevant data.

Figure 4.4:The maximum workload for each hour during a typical day

85

4 Access Log Analysis

The general purpose of the different smoothing methods is to remove outliers and

anomalies from the data and extract the most meaningful values to fit the optimal

system. The first method is decomposing. The stl is the standard function in the

statistical computing application, R (Team, 2011). The method is a two-step

procedure in the R. First of all, the raw data vector has to be converted to the time

series. The only remarkable parameter is the number of observations per time unit.

In this case, the time unit length can be chosen between 24 hours and one week,

i.e. 168 hours. On the second phase, the decomposition of the time series requires

two span parameters, one for trend component and one for seasonal component.

Those parameters have to be synchronized to the time unit length. In this matter,

168 hours is used. The result is seasonal decomposition of the time series.

The second method for analysing the access log is decomposing by Loess-method

(R. B. Cleveland et al., 1990). The method produces similar seasonal

decomposition as the stl-method. Let v be a vector of existing values for arrival

rates and the v=1...N , where N=number of observations. The loess-method

performs decomposition to the trend component, the seasonal component, and the

remainder component, denoted by T v , S v and Rv :

v = T vSvRv (16)

The additive model is more suitable in the case of constant seasonal amplitude.

Another possibility is to use the multiplicative model as follows:

v = T v∗Sv∗Rv (17)

The result of decomposing is shown in Figure 4.5. The total length of the data is 90

days with 24 samples each day. The raw data is shown in the most upper part of

the figure, in the data panel. In the seasonal panel, the decomposed seasonal data

and the trend component are shown respectively. The remainder component

expresses the anomalies and outliers.

86

4 Access Log Analysis

Figure 4.5:The decomposed actual usage of web service

The daily maximum values are the most dominant values for system measurement,

and they are expressed as:

Z i=max(S i , S i+1 , ... , S i+23)+max(T i ,T i+1 , ... ,T i+23) (18)

where i=1... v
24 . The daily maximum can occur at any time of the day. This leads

to time series, which is not equal in intervals. By changing the time series to daily

maximum values, the time series can be equalized without any risks.

The result of decomposing is the sum of these components, and it has to be

changed to prediction. There are several methods to predict further. However, in

this case we will use two of them. First of all, the extrapolation based on the linear

regression. Secondly, the sum curve is extrapolated in the form of a curve. The

results are shown in Figure 4.6.

87

4 Access Log Analysis

In the seasonal decomposition, the Z v is the sum of the trend and the seasonal

curves:

Z v=T vSv (19)

The prediction for the Z v is based on the Fourier series approach:

yt=a∑k=1
K

[ sin 2 kt
m  cos 2 kt

m ]N t (20)

where N t is the ARIMA process. The value K can be chosen by minimizing

Akaike’s Information Criterion (AIC).

In the case of linear regression, just one maximum value for a day is generated to

characterise the usage for the linear regression. As we can see in Figure 4.6, the

decomposition curve is continuously on a lower level than linear regression. The

88

Figure 4.6: Prediction for daily peak values using seasonal decomposition method or simple linear
regression based on daily maximum values

4 Access Log Analysis

decomposition method aims to leave out all the high values. However, in this case

the high values are the key issue, and they cannot be removed until they are

outliers.

The decomposing method is somewhat arbitrary. The different components

produced, are not real, nor are they measurable by any means. At the same time,

the results cannot be validated by statistical means. In addition, by changing the

time series and decomposing parameters, the results vary remarkably.

To summarize the above, the most suitable prediction method for evaluating the

maximum values is the simple linear regression. That method can be used to find

the maximum values, and simultaneously and effectively remove the outliers

without distorting the results.

89

4 Access Log Analysis

4.3 Analysis by Types of Queries

The access logs have to be analysed also by qualitative means. The total number of

queries in a certain time frame is playing an important role in performance

evaluation. However, most of the queries are unique, and get different response

times from the service system. There are two types of differences, the applications

are either different or they have different parameters.

We have analysed the access logs into two, as service e-commerce websites A and

B. Both websites use different applications. In Figure 4.7 and Table 3, the numbers

90

Figure 4.7: Distribution of application queries at two websites on a typical day

4 Access Log Analysis

do not refer to the specific application but the popularity of the application on the

site. Figure 4.7 indicates the proportion of the applications. The first 20

applications are shown, and the rest creates a heavy tail.

The number of parameters and their combinations are shown in Table 3. In most

cases, the number of possible values of parameters is not known, hence the total

number of combination is not known. Therefore, the “huge” in the table means a

great number of different parameter combinations, from several hundreds to

thousands. The number of combinations depends on the number of parameters

and their number of allowed values.

91

Table 3: Number of parameters on application at the websites A and B

TOP-20
Application

Website A Website B

Parameters Number of

Combinations

Parameters Number of

Combinations

1 0 - 3 huge

2 19 huge 2 huge

3 10 huge 1 huge

4 0 - 0 -

5 5 huge 0 -

6 10 huge 0 -

7 10 huge 1 huge

8 0 - 2 huge

9 0 - 0 -

10 1 / 11 2 / huge 0 -

11 5 huge 2 0

12 17 huge 0 -

13 0 - 0 -

14 0 - 0 -

15 22 huge 0 -

16 2 / 3 3 / 3 0 -

17 14 huge 0 -

18 0 - 0 -

19 0 - 0 -

20 0 - 0 -

4 Access Log Analysis

Applying the most used 100 applications with the suitable parameters to the source

of the natural load, the realistic load can be generated (Soininen & Jaakkola, 2012).

Using a large enough number of queries and set of parameters, the effect of cache

can be eliminated in the server system. Otherwise the analysis can be distorted due

to the short response time and resource consumption when the minimal number of

pre-set parameters and low number of applications queries are used. The process

of natural load is described in the Chapter 5.

As to the second result of log analysis, Table 4 shows the result of the qualitative

analysis of the resulting URL and related parameters. The actual protocol and web

address may be omitted if they do not cause confusion. When the service requests

are placed in a random order, it can easily be used for the source file in the load

tests. When the service requests and their parameters in Table 4 are used for load

testing, it confirms that the website under test is loaded with exactly the identical

proportion as real users do. In addition, service requests and their parameters are

real, occurring in actual usage, and are not programmatically generated random

combinations.

92

Table 4: Sample of most used URLs with parameters

/ads/?departmentId=5

/WidgetSettings.aspx

/news/Default.aspx?newsid=299221

/js/AdCounter.js

/news/glow/1.7.7/widgets/images/darkpanel/bg.gif

/news/Default.aspx?newsid=266704

/news/DynamicImageResizeHandler.ashx?image=442d576b-

b0ed.jpg&width=320&height=320

4 Access Log Analysis

4.4 Trend Prediction

The trend on prediction of the system usage is a vital component for estimating the

behaviour. There are mainly three different methods for prediction: a) tendency or

dependency is constant (yt=b0+b1 x1+b2 x2+...bk xk and yt01=bi remains as

constant); b) leading indicator; or c) structural analysis. It is very difficult to find a

phenomenon as a leading indicator which has a good enough correlation to the

single website. On the other hand, the general structure analysis is required to be

analysed for all websites due to the different applications. It is not possible to

perform for all applications and all versions. Due to these reasons, the prediction is

based on the continuance of tendency in the model of this study.

In this study, we are interested as much as possible in generating a forecast for the

future use of the service. Usage of the service prediction is an advantage if it is the

most conservative. In this way, sudden seasonal changes receive the lowest weight.

We cannot take advantage of more than 90 data points to describe the use of the

service history, since sometimes the website usage is changing too fast and in such

a case, the forecast reliability decreases sharply. In addition, we cannot predict a

longer period than what is the number of data points in history. On the other hand,

the prognosis needs to extend far enough that the operational management and

maintenance steps can be planned and carried out during the forecast period.

When using the 90 data points backwards, it can be predicted from about 30 data

points on. As shown in Figure 4.6, a method which best describes the situation is a

simple linear regression. The forecast accuracy is not increased even if the seasonal

decomposition method is used to filter the daily maximum values.

4.5 Sensitivity Analysis

The log data analysis is related to the outcome of the accuracy of a few factors. This

section seeks to identify the most crucial ones, to evaluate their impact on the

outcome, and to assess the likelihood of their occurrence, if relevant.

93

4 Access Log Analysis

First of all, the web application structure is meant to use the application to call an

URL or its attributes. The service can be constructed in such a way that the data is

placed in a file system, in which case the invitation is a direct reference to the file

on the disk. The service can also be built so that the URL is a call to the desired

application, and the file is defined as an attribute. Therefore, we have taken into

account the log analysis in both formats. In this study, the result of both methods

is taken into account.

Secondly, the use of the service associated with seasonal fluctuation is greater than

that generally used in the calculation period (for three months). This may cause

significant changes in the forecast changes. We need, however, over many years

collected data using the service before we can accurately determine what is the load

peak associated with seasonal variations and what is the individual random

variation. In this study, the data of website usage were not available for a

sufficiently long to permit a seasonal variation in the time series could be taken

into account.

Thirdly, the amount of data being collected affects the accuracy of the sample, and

which describes the use of the service. The key issue is, how many unique URL

requests are picked according to the sample which describes the entire use of the

service. And also, how many key types of URLs are selected. In practice, it has been

observed that the general use of the service is on a long tail. Therefore, a significant

proportion of the requests directed to a few pages or applications, while most of

the pages or applications are directed only a few requests. The same also applies to

the URL attributes. The study has been used in the default value of 100 types and

2000 unique URL attributes. Variation in these values does not provide a

substantial variation in the outcome.

4.6 Conclusion

The usage of an e-commerce web service can be analysed based on access log files.

The key issues in the analysis are hotspot usage and the most used queries with

real parameters. The resolution of peak usage has to be balanced between short-

94

4 Access Log Analysis

and long-term accuracy. Using very short-term, the high peaks can be revealed, but

the result can be sensitive to disturbance. Instead of using very long terms, the

mean value of access can be revealed, but the result can be very conservative

against changes. The result of analysis is utilised on a simulated natural load which

is discussed in the next chapter.

In this chapter, we have presented a method that can be used to form a true and

fair view of network use. The result is a straightforward pattern of log file which is

easy to communicate. It shows the daily load peak height and its timing. In

addition, the analysis can be used to describe the type of queries generated by

users.

95

 5 Mastered Way of Workload and its Impact

5 Mastered Way of Workload and its Impact

This chapter presents the workload and resource consumption measurement

methods used in this study. The system under test (SUT) is introduced as a black

box, whose internal details are not known. Every single server resources are

monitored in each load case, and they can be visualized in an appropriate way.

Monitoring of resources is aimed not to increase the load of the resource or to

occur as little as possible.

Thalheim & Tropmann (2011) suggest that the service applications, the history of

the usage allows us to conclude that the usage typically occurs in a particular

repetition, and are used during certain periods. They may be characterized by the

consumption of resources and behavioral measures. Therefore, we can assume that

at certain times, the future of these processes are running in the same way as they

have been in the past. It can consequently be expected that future behavior can be

described by conduct made in the past.

The practical arrangements for testing have been carried out in several different

independent commercial online services. Services are being loaded, and the

resource consumption is controlled as described in this section. All services have

been in commercial use throughout the duration of testing. Architecture is shown

in Figure 5.1(A) and Figure 5.1(B). Figure 5.1(A) shows a typical commercial

application architecture of the multi-layer model. The system is easily scalable by

adding complete individual servers or components to increase efficiency. Figure

5.1(B) type is a simple small-line server system typically used. It does not include

the redundancy so that loadbalancer layer is not needed. It can scale worse than

the A-type service, and increased performance is obtained by changing only the

complete servers more efficiently.

The A-type service can be categorized as the computing cluster, wherein each node

produces separate and autonomic functions and does not transfer data between

parallel nodes, which takes place only in different layers. The load balancing and

application server layers in the system can be classified as the high-availability

cluster due to the redundant nodes. In the case of failure, a single node of the

97

5 Mastered Way of Workload and its Impact

server does not prevent the operation of the entire system, only performance is

reduced by the amount of the failed node.

Determination of system performance occurs in several stages:

● Loading the system with natural queries. Details of the testing activities are

discussed in Sections 5.1 and 5.2.

● Load-time resource usage monitoring: the result is obtained for each server

resource utilization and workload, presented in more detail in Section 5.3.

98

Figure 5.1: The architecture of two separate test environments used in this study

5 Mastered Way of Workload and its Impact

● Correlation between workload and resource consumption: the result is

maximum system performance. The descriptive measure is defined in

Section 6.1.

● The current spare performance at the time of analysis is a result of a review

data consolidation. The matter is dealt with in Section 6.8.

Knowledge of the current performance compared to the expected regular top-load

is essential to optimize server performance of the system’s point of view. By

combining the usage analysis of the actual system performance, it gives an

adequate understanding of the current excess performance.

5.1 Impact of Test Load

Loading the SUT by the well-known load is being reviewed as well performance of

the system of critical resources and the correlation between the workload and

resource usage. Consumption of resources caused by the workload is discussed in

Section 5.2. Another factor which exists during the test is the undetermined

background load, which is caused by users doing the actual load of queries during

the test. The significance of the backround load can be minimized (but not

completely removed) by timing the test at the moment when the background load

is minimized. In many of the practical online services, the lowest possible

background load occurs at night. Uncontrolled load is another potential source of

internal system maintenance operations, such as backup or database management

tasks. Usually, these service operations should be done on a well-known schedule

and are also well-known for their duration. This background load which is caused

by the service runs can be avoided by timing load testing appropriately.

The correlation between the load and resource consumption is also affected by the

factors that can be detected, but their magnitude cannot be affected. In the long-

term, software aging can be detected, but it cannot be influenced by testing

arrangements. The only possibility to minimize the impact is a server or an

application, to restart or even a full system restart. In general, applications should

be avoided when restarting to keep interference with the system as little as

99

5 Mastered Way of Workload and its Impact

possible. On the other hand, application can be utilized and the internal caches can

be used as efficiently as possible. The effects of software aging phenomenon will be

discussed in Section 6.7.

Any control requires that the load factors can be controlled during the test load,

such as queries, variation over time, the timing of peak load and the amount of it,

different number of inquiries and the amount of data transferred. This is discussed

later in Section 5.1. The second group consists of random factors. Partially, they

can also be interpreted as being hidden factors. They affect the activity, but they

are not known accurately, or the value cannot be measured. This group consists of

a variety of factors, including internal state of the system, the system resulting

from the history of usage, the need for communication between different nodes of

machines, and the complexity of questionnaires used in load testing, even their

order.

The test load is presented as having both a quantitative and qualitative impact on

system resource consumption. The quantitative impact means the number of

queries over time. The qualitative impact means the differences in queries

resulting in load variation. Synthetic load may be used to determine system

performance, but the queries do not match the actual queries made by users, so the

resource consumption is not responsible for the actual use of the situation. The

better descriptive situation of the reality created when a synthetic load is used

instead of authentic is to log the recorded real queries made by users.

A too-low test rate with a load testing, actual use of resources, and the correlation

between consumption may not occur correctly. Resource consumption may change

in different ways at different load levels. The operating system kernel has been

used for the acceleration of the system characteristics by optimizing the use of

resources, such as the available memory using the I/O cache. In this case, the

memory consumption at low load is not at all correlated with the actual load.

When the load increases, it is found that the consumption of memory appears to

remain constant, and is then released from the cache memory to serve for use in

increasing the load.

100

5 Mastered Way of Workload and its Impact

The impact of quality means that the formations of response are used for different

applications by different queries. Each application uses its own resources in a

typical way; URI can create a complex database query and a database server to

consume processing power and result in disk I/O, but does not, for example,

consume any file server resources. The change of parameters in queries can cause

significant changes in resource consumption. Typically, changes in the parameters

influence the results of search queries, and they will be implemented through the

database. Database indexing and implementation of query application will depend

on how the change will affect the parameters of the database server resource

consumption.

Testing the performance requires several test runs of long period of time. Contents

are updated on a regular basis for many services, hence URI is not identical with

contents of the various tests or the same content in different URI. In this case, the

different responses obtained from the tests are not the same and cannot be directly

compared. From the user's point of view, however, the service availability in

different load conditions is a key issue. Therefore, the accessibility of the service

has to be compared and not with the identity of the response. Assessing the

response of the service accessibility instead of the time in different test runs is

comparable to the results from the response contents.

User interest in the change of the service sub-region to another, in some cases a

rather short period of time, can cause a change in load between the two

applications. This in turn leads to the use of the characteristics and the system will

be further changed in the consumption of resources. Log analysis can confirm that

the server system is loaded in the same proportion as the user load, and thus will

lead to the correct understanding of the server resource consumption.

As the test load increases, response time will also change. The hypothesis is that

response time does not necessarily increase linearly with increasing load. At the

beginning of load increases, it may increase slowly until at some point it begins to

rise sharply, as shown in Figure 3.5. Assuming further that the effect of the test

load is achieved, a linear response is only in the event that the resources need to

queue waiting time, and increases linearly with the length of the queue or amount

101

5 Mastered Way of Workload and its Impact

of use. This situation may be, for example, that the use of the CPU and memory

usage does not slow down the increase in service activities.

5.2 Controlled Load on the System

When the system is loaded with the highest expected performance of the system,

there are at least two problems. First, in the maximum load or close to it, the

system is not stable. It appears as random or cyclical high spikes within a response

time. This is because when running out of resources, they have to queue or limit

the overloading of the service definitions to take effect, then the user will have to

queue even for access to the service. Instead of the usual contents for the user,

visible messages are notifications of the state of the system, not the user’s desired

content. On the other hand, too high a degree of loading can cause disorder mode

as is also shown in the service user, either in response time which is too long, or

even receiving a server response to be other than the content desired by the user.

Service, which is in commercial use, interferes with the operation of the testing,

and is not acceptable. Even a momentary overload can cause interruption on the

payment transaction and could result in an awkward manual processing and the

dissatisfaction of users. Hence, regular testing is needed of the normal operation of

disturbing causes, and possibly, the continuous dissatisfaction among users.

Later, it is assumed that the load can be carried out, amounting to the service on a

regular basis by loading in a known amount of virtual users. In such a case, the

requests are known, as well as their contents and the time when the request is sent

to the server and response time. A common use of the service is, at the same time,

possible to test with, but it should be kept to a minimum so that the unknown

magnitude of the load can be minimized.

Figure 5.2 shows the connection between the number of virtual users and the

number of incoming requests to the server. HTTP is a connectionless protocol,

hence the number of concurrent users is not a well-defined concept. Even when

using the HTTP protocol version 1.1, and the Keep Alive feature, the number of

concurrent users is not unique. As can be seen in Figure 5.2, the number of users

102

5 Mastered Way of Workload and its Impact

(0 … n) can be any at time t. In the future, request per second (rps) is used to

replace the number of virtual users, since it is unique in any given time.

The idea of gradually changing load rate during loading is raised at first in

Andreolini & Casolari (2006). In the model shown in this study, it is modified so

that it is better suited for use in automatic test load.

Figure 5.3 shows the structural load used in this study. The desired load level is

determined indirectly, based on the number of virtual users. They do not match

exactly. The virtual number of users is only about how many requests the server

can cope with. In practice, however, response time and thinking time cause that

part of the virtual users to wait for the response from the server, before thinking

time has expired. So, the active users of the service is less than or equal to the

maximum number of virtual users.

Figure 5.3 shows a single loading test with an overall length of about 1300 seconds.

For each pulse duration is about 180 seconds, and after a pause between the

pulses, it is approximately 40 seconds. During the break, requests are not

generated by means of the service load at all. Figure 5.3 shows that the load is

increased progressively to about 45 rps level until it reaches an empirically

determined service-specific maximum level, which is here about 210 rps. The load

103

Figure 5.2: Schematic representation of the number of requests / time and number of virtual
users

5 Mastered Way of Workload and its Impact

may also be degressive. Maximum load is chosen so as to cause no more than about

40% to 50% utilization of the resource, which is the bottleneck when a normal

usage is still possible. The load test is performed once a day. The system is

operated and maintained in accordance with normal procedures between the two

tests.

Figure 5.3:The structure of the natural load test

In this study, JMeter (JMeter contributors, n.d.) has been used to arrange for

testing of the basic functions. These are:

● Control of the amount of virtual users. JMeter, in terms of its thread-

monitoring; in practice, this means control of the number of simultaneous

requests.

● Prevent burstness using the ramp-up procedure and by using a random-

scale break between requests, and distribution of queries between the

different threads.

● Generated by a predetermined HTTP calls in order to obtain a load as

natural as possible.

104

5 Mastered Way of Workload and its Impact

● Combine HTTP requests and responses to them, and calculate the response

time for each request-response pair.

● Saves the result in an easily readable log file for later analysis.

These requirements can be met in the test script, which is shown in Figure 5.4. Log

files that are generated during the execution of a script, can be analyzed in another

stage. The analysis is carried out using a high-level statistical programming

language, R. Statistical analysis will be described later in this section.

Figure 5.4: JMeter test arrangement

JMeter script structure is shown in Figure 5.4. The gradual increase in the load is

shown in Figure 5.3. It was carried out using a number of consecutive thread

groups. The groups are designated as "Thread Group 20%", "Thread Group 40%",

105

5 Mastered Way of Workload and its Impact

etc. Each group includes a pair of matched elements in the application. First, there

are 20% of the queries to the maximum number, then the name of the group refers

to the number of queries (40%, 60%. ...) with respect to the maximum number.

Maximum load is generated in the "Thread Group 100%".

The load on the server will burst when the number of virtual users is increased too

quickly. Therefore, at the beginning of each pulse, the load is increased slowly up

to maximum number of virtual users. This is called in a basic regulation of a group

as the ramp-up period. Ramp-up is the time during which the virtual users, i.e.

threads, will increase from zero to the maximum in each group. If the ramp-up

time is zero, all threads in the group will be launched immediately during the

activation. If the ramp-up time is T, and the maximum number of threads is N, it

creates a new thread T/N seconds. Furthermore, a too-long ramp-up time could

not be used since then the desired peak load is not necessarily achieved. There may

be a situation in which the previously started threads have already received a

mission accomplished, and have already been completed before the last threads are

activated when the desired load level is not achieved. A suitable ramp-up time is

determined experimentally for each network service. This is affected by the

estimated hit rate U e , and the desired number of threads N t , in which case the

ideal ramp-up time is:

T r=
N t
U e

 (21)

In addition, a random length of breaks between queries is needed to prevent

burtsness. It is implemented in Gaussian Random Timer element. This element is

responsible for the real-world time think Z that is described in more detail in

section 3.3.2 and 3.3.4. By default, JMeter thread sends queries without

interruption. In that situation, the test load can overload the server by generating

too many requests in a very short period of time. At that time, the load level could

be quite high, but that is not managed in terms of resource consumption. Gaussian

Random Timer is used to create a random length of a pause before each request.

Pause length is determined in the fixed part of the element and the random part.

As used herein, this is the sum of the values set for a short time compared to the

106

5 Mastered Way of Workload and its Impact

conventional think time. The actual length of the pause is not relevant, because it is

designed only to reduce bursts. This is due to the fact that the actual number of

incoming queries is calculated from the actual log of the number of queries, instead

of using the set number of virtual users, and the expected think time.

The sending of HTTP requests are processed by the JMeter HTTP Request Default

element and the CSV Data Set Config. The former is the default for storage of

values and the latter explains the data warehouse, where the URI addresses are

stored. URI data store contains the addresses generated by the analysis of the log

in the process as described above in section 4.

5.3 Resource Utilization

In this study, resource usage rate is controlled using the SNMP protocol (Simple

Network Management Protocol) (Case et al., 1990), while the system is loaded in a

known and controlled load. SNMP protocol is the result of the fact that it is

accurately defined, it is generally known, it is readily available in different

hardware platforms and operating systems, and may be extended. Figure 5.3

shows, how the load remains constant, in order to stabilize the controlled resource

utilization. From a knowledge of the load and the consequent resource usage, the

correlation can be determined.

According to Utilization Law (Jian, 1991) the resource utilization U i is defined as

the ratio to which a resource is in use during the time T. If the resource is

monitoring the time T, and found that it is used time Bi , then the utilisation rate

is:

U i =
Bi
T

 (22)

If U i = 1 , the resource has become saturated. When a single resource has

become saturated, the entire server has become saturated, and the load cannot be

increased above the boundary reached by the server. If the server consists of a layer

of redundant servers, the whole layer has become saturated, and all the servers are

107

5 Mastered Way of Workload and its Impact

saturated with respect to any resource on the assumption that among the servers,

the load balancer is working properly. The saturation point for the entire system as

a given resource is:

U tot = ∑
i=1

n Bi
Tn

 (23)

where n is the number of parallel servers in the system. It assumed that the servers

are identical in amount of resources and the balancing of the load. If U tot = 1 , the

entire system has become saturated, and the maximum throughput is achieved.

When the amount of incoming queries is changed, the change in utilization can be

detected when the number of queries is sufficiently high. The background noise

from external sources occurs through a valley bottom, where each pulse is followed

by a short pause with no load. Load, and the correlation between the consumption

of resources, is a linear or almost linear near the saturation point of the resource.

Therefore, the maximum pulse peak value can be increased to 40 … 50% of the

expected saturation level without significant loss of accuracy to the result.

When avoiding the saturation of resources, it ensured at the same time that the

service can be used as normal throughout the test. The accuracy of the test load

increased when the load from other sources is minimized. It is done by timing the

load test to take place using the service in terms of quiet time.

A virtual server allows for very high utilization rates; a fairly common commercial

use of virtualization technology, VMware, has reported (VMware, n.d.) a number

of customers using up to 60 … 80% utilization rates of the server's processors.

Generally, 80% utilization rate is a reasonable upper limit and 90% and should be

a CPU overload warning level. Resources for each virtual machine have been

allocated to start up, and since then they have adapted to the virtual machine

throughout the life of the variable load. In addition, when the processes are

isolated inside a virtual machine, any virtual machines does not compromise other

virtual machines’ resources.

Response accuracy increases when the load on its external and internal sources of

the unknown proportion of the load is reduced. As shown in Figure 5.3 and Figure

108

5 Mastered Way of Workload and its Impact

5.5, the load level is about 210 rps, causing approximately 25% utilization of the

application server processor's layer.

Figure 5.6 shows results for the application server processor utilization of two

different test runs. In the upper figure, the sampling frequency was 10 seconds,

and in the lower, three seconds. Three seconds have been selected because it is the

maximum acceptable response time, for it provides at least one sample of each of

the response time of the acceptance window. As noted, the results of utilization of

the resource do not change significantly at a higher sampling rate. If the sampling

rate is raised to a very high level, it begins to interfere with the system under test.

Utilization is sufficiently an accurate understanding of the 10-second sampling

intervals. The precondition is that the load is done in manageable bursts which in

this study are, in principle, assumed.

109

Figure 5.5:The response on the application server layer CPU utilisation during a load test

5 Mastered Way of Workload and its Impact

Figure 5.6: Impact of a sampling rate on resource utilization measurement results.

Figure 5.7 below shows the number of queries, response time, and the CPU load for

each server layer separately. The figure contains the following server layers: a

database (DB), load balancing (LB), and the application server (AS). Each load

curve is the sum of all layer server resources in proportion to the available

resources. Incoming request for the server is up to about 45 requests per second.

This leads to more than 200 requests per SNMP query.

110

5 Mastered Way of Workload and its Impact

The correlation between the resource utilization on the server and the demands on

the amount of the range indicates how well the response complies with the impulse

to change, as shown in Figure 5.8 below.

111

Figure 5.7: The effect of natural load test to the resource utilisation

5 Mastered Way of Workload and its Impact

Figure 5.8: The correlation between resource utilisation and workload on left column. On the
right column is correlation between resource utilisation and response time.

112

5 Mastered Way of Workload and its Impact

The single value of the load can lead to a variety of utilization values. This is due to

several reasons. First, the queries in the load are various so that they require

different amounts of resources. On the other hand, the system's internal state may

be different for different time points; this is due to the size of the backround load

and the history of usage. When using SNMP to query the system status data every

113

Figure 5.9:One example of the server load. Above, the increase in load causes the response time
of growing up shown in the picture below, even though none of the resources is close to the

saturation point.

5 Mastered Way of Workload and its Impact

ten seconds, as in Figure 5.9, the work load leads to approximately 1700 query

results (170 rps * 10 sec). Since the generated combination with the URI is a very

large set of queries, the simultaneous responses and results of the load are very

different. Dependence between the generated load and consumption of resources

can be represented by a set of points. These two variables have yet to take into

account the response time.

As shown in Figure 5.9, the response time will change when the load changes.

When these two parameters combined with resource utilisation are presented in

mutual dependency, the result must be presented in 3D space, as it is hard to

visualize in the form of 2D. Figure 5.10 shows a visualization rather than 3D-space.

Facet grid can be used for all three parameters’ simultaneous visualizations. The

individual numerical values are not critical for the response time, which gives an

idea of how close to the three-second acceptable limit is each load. On the basis of

the image, it can also be seen that the set of points is arranged in a relatively

linearly loading as well as the resource consumption and the response time. As

response time and load increases, a set of points approaches each facets at upper-

right corner. Based on the image, it can be observed that the restriction on the

response time (3000 msec) is exceeded in some cases; facets (3000, 4000] and

(4000,1e+05]. The number of cases in which the threshold is exceeded, however, is

very small when compared with the total number of data points, n = 89 700.

114

5 Mastered Way of Workload and its Impact

Another option for the interdependence of the three parameters presented

describes a ternary plot which is shown in Figure 5.11. The problem is that it

requires the mutual dependency of parameters, which in this case does not exist,

and the result is approximate only and may support other methods. Initially, the

115

Figure 5.10: Resource utilisation, workload and response time

5 Mastered Way of Workload and its Impact

observation has changed to relative values between 0 … 1. Utilization is already in

the normalized form. Response time is normalized by dividing the findings by

three seconds. Throughput is divided by the maximum observation values. The

software package (Imai, King, & Lau, 2006, 2008) takes care of the actual data

modification and presentation. In this way, detection data has been modified to a

shape in order to determine the balance between the variables, and the closer the

triangular centre of the observation points, the better is the findings in balance.

Figure 5.11 shows that the response time of observations has exceeded the

permissible three seconds, and the workload is thus relatively low. Workload may

be sufficient to find that the system is loaded with a variety of mixed loads.

Figure 5.11: Ternary presentation of utilisation, workload and response time

The website user can detect the response time exceeded without none of the

resources utilization limits being exceeded. The system may be configured so that,

116

5 Mastered Way of Workload and its Impact

for example, it limits the number of concurrent connections (Apache max_conn),

or the number of simultaneous sessions (Apache max_sess). If such limitations can

be detected using SNMP queries, the method described above can be used to

determine the system saturation point. However, it is unusual that such

programmatic boundaries cannot be found using SNMP queries. The system must

therefore be loaded at least once in such a large load that such restrictions will

become apparent.

The correlation between response time and resource consumption shall be

examined in all cases where programmatic constraints are found. The most

limiting factor (MRF) is obtained as follows:

MRF = minmaxloadutilisation ,maxload response time (24)

As explained in Section 2.5 above, the system performance is not constant over

time, it will change as a result of the phenomenon of software aging. Furthermore,

as explained in Section 3.3.4, the system has always one or more bottlenecks. A

carefully designed equipment is one in which the various resources are in balance

nearly or completely, in which each resource is not significantly more utilised than

others, and the system is optimized in terms of costs. In this case, without further

analysis of the performance, bottlenecks cannot be detected in the system. Far

from the equilibrium point of the system is always a performance-limiting resource

that is already identified in previous analyses. In practice, the service cannot be

completely balanced; yet always, one of the server layers and a single resource

group is the bottleneck.

5.4 Sensitivity Analysis

The load test is carried out on some of the outcomes of the factors affecting

accuracy. This section seeks to identify those most significant to assess their impact

on the outcome and to assess the likelihood of their occurrence, if relevant.

First of all, the ration between load used in the testing and the assumed or

calculated performance. Incoming requests and the arising loads cause the

117

5 Mastered Way of Workload and its Impact

consumption of resources which is linear up to the knee point. At the knee point

and above, the consumption of a resource begins to grow vigorously, and operation

of the system becomes unstable. It is therefore appropriate that the service

operates continuously below the knee point, and also during load testing.

Operating in the linear part of the test loading conditions of the target value may

be allowed a fairly large fluctuation. In this study, the guide value used is 40 …

50% of the maximum value. Experience has shown that the results do not radically

alter the range 20 … 80% of the highest value.

Second, resource consumption is also affected by the number of requests coming

from outside of the test. Their significance may be assumed to be equal to or

greater than that of the test load requests. Their importance cannot be completely

eliminated; the only way is to schedule a test load in such a way that they account

for as low as possible.

Thirdly, the server environment itself gives rise to a variety of contingency factors.

These include, for example, the operating system, the metering (here, the SNMP),

the database, the application server, etc. Their origin and the differing versions of

these products cause various kinds of uncertainties. This study has used two of the

most frequently appearing operating systems (Linux and Windows), application

servers (Apache and IIS) and databases (MySQL and SQL Server). These results

can be judged only by comparing the representation of time series. The results

obtained do not give rise to the need for a further review.

Fourth, the metering accuracy, i.e. control of resources that are relevant to the

service load capacity. If the bottleneck in the resource is not involved in the

control, it will be apparent, therefore, that the response time is exceeded, even

though none of the resources to be monitored is saturated. In this case, control of

resources must be added or clarified. The method does not give direct information

about what resources are needed to be monitored more closely.

118

5 Mastered Way of Workload and its Impact

5.5 Conclusion

In this chapter, the system under test to a load is presented in such a way that it is

well-known, both quantitatively and qualitatively. The chapter showed the loading

system to explore the different sizes of load impulses, and to induce change in the

server resource loading rate. In addition, the utilization of resources varies, while

the response time changes as the load changes.

By observing the load rate and the consequent change in the use of resources, the

bottleneck of the whole system can be identified which further allows for the

performance of the system. In the next section, a performance analysis is made on

the basis of the collected data.

119

 6 Performance Analysis of the System

6 Performance Analysis of the System

This chapter provides an analysis of the data, collected on the basis of the previous

track. A result of this analysis is the performance prediction in different load rates

of the system. The chapter goes through four different network workload results

over a 90-day period. The network architecture is shown in Figure 5.1.

In examining the performance of computer systems, there are several commonly

used gauges. The best-known is the response time (also known as speed,

turnaround time, reaction time), throughput (sometimes also called capacity or

bandwidth), utilization, reliability and cost, or performance ratio. The two most

interesting gauges on e-business are cost and throughput. In addition, reliability is

important. Throughput can be improved by investing in equipment or software or

both, but the costs are growing rapidly as discussed in Chapter 1. The most

important indicators of the cost optimization point of view are: request arrival rate,

throughput, and response time. The only infrastructure resulting indicators are

response time and throughput. This is due to the overall performance of the

servers, which in turn can affect the tuning of applications and configuration. The

maximum acceptable response time is set by management.

The chapter validates the reliability of the forecasts produced by the model.

Validation of the problem has two aspects. First, the validity of an experimental

model, i.e. the computational structure has to fulfill the intended functions and

logical structures. Second, how well does the experimental model represent a real

system, and how far does it behave like a real model. The first approach is easier to

be satisfied.

Each HTTP request response time is determined separately. Therefore, there is no

single clear response time, but it must use an average response time which

describes all the HTTP queries performed between the SNMP queries. Response

time indicators describing the properties have been discussed in other studies

(Ciemiewicz, 2001; Mielke, 2006).

121

6 Performance Analysis of the System

6.1 Precision and Accuracy

Website performance characterized by sequential measurements does not produce

exactly the same results. Instead, there is an area in which the results are placed.

Figure 6.1 is used to illustrate the difference between the measurement accuracy

and precision. Figure 6.1(a) illustrates the precision. The measuring may include a

systematic error, in which case the values are inaccurate but the variation is small.

Figure 6.1(b) illustrates the measurement of the number resulting from correct

values, but the variation is large when the method of measurement is inaccurate.

Figure 6.1(c) illustrates the target state with a good precision, and the deviation is

small when the accuracy is good.

Although the analysis is performed automatically, it still seeks both accuracy and

precision as much as possible. The problem, however, is that the evaluation of the

source material is only available for programmatic resources. This can easily lead

to a very complex programmatic interpretation analysis of the appropriate data to

be formulated alternatively, so that the relevant data has to be rejected if it

contains the incompatible characteristics of the rules. In this study, the simpler

inference rules have been chosen, which will have to accept the risk that the

relevant information will be rejected. Supposedly, however, in the longer term, the

problem can be compensated when an increasing number of analyses will be

carried out.

122

Figure 6.1: Precision versus accuracy. In (a) low accuracy is presented with high
precision and (b) presents a high accuracy with low precision. In (c), there is a high

accuracy with high precision.

(a) (b) (c)

6 Performance Analysis of the System

6.2 Data Preprocessing

Data preprocessing has three objectives. First of all, the fact that the individual

random fluctuation becomes less important. Secondly, the findings are of a

different sampling rate, which is aligned prior to analysis. Thirdly, the relative

proportion of the findings; they are changed into a usable form prior to use.

The individual random fluctuations can be reached in a very wide variety of

sources. Mindful that the most common cause is a server test apparatus and the

logical distance between the data communication networks, this is what causes the

fluctuation in performance of the data communications. The server hardware

resource usage may have short-term spikes due to natural causes. These situations

include a service request from an external source, which will require a lot of

resources. Spikes may also be negative, i.e. a constant load drop suddenly for no

apparent reason. Such might occur, for example, in short-term communications

outage. These random variations may be displayed in the monitoring equipment,

but they are not covered by the web server system in normal operation; they

interfere with the analysis, and thus their removal is essential.

SNMP queries are to take place at regular intervals, typically every few seconds.

Natural variability may arise from carrying out the survey equipment congestion.

At the same time, the SNMP queries occur with the URI queries; their intermediate

may be a few milliseconds. These events are made in time into a form that makes it

possible to perform the analysis. Since the interval of SNMP-query is the coarsest

available unit of measurement, it must be adapted to a URI query interval for the

interval of SNMP queries. Each URI query also has its own response time, when

the term of all queries and response time shall be summarized such into a

statistical indicator that can be used to describe the response time as accurately as

possible.

Many of the responses of SNMP queries are in such a format that they cannot be

used as such. One such response is the current amount of memory available. Alone,

it is not relevant; in addition, we must also know the total amount of memory.

Furthermore, the CPU load ratio is into a similar situation. Some of SNMP

implementations are such that they return the CPU number of events from the

123

6 Performance Analysis of the System

previous server startup time. Another possibility is that the number of events is

obtained as the sum of various events. The actual load on the CPU is then:

CPU tot = CPU user+CPU kernel+CPU wait (25)

It is also necessary to know how many processors such as events are created.

Processors or the number of threads and total amount of memory is usually

obtained via SNMP query. It should be noted that the different test runs at

hardware resources may be different. In particular, the use of virtual hardware,

new resources, increase or decrease, is technically very easy and does not require a

service interruption. Thus, for each test run, it should be necessary to upgrade the

hardware information for data normalization. In this study, it has been assumed

that the total amount of hardware resources will not change during the test.

6.3 Validation of Measurements

Authentic queries can be carried out to validate the load so that the loading rate is

increased until the saturation point is reached or an acceptable response time limit

is exceeded. In this way, the measured maximum performance should be the same

as the analysis result obtained. The model does not produce exactly the same

results load, because the load is caused by queries and the system's internal state is

not the same for each recording session. However, the accuracy can be increased by

repeating the tests several times within a short period of time.

The analysis results will be independent of the load used during the loading rate, so

that the loading rate and tested resource utilization should be found between an

adequate correlation. Figure 6.2 shows the impact of loading rate on the forecast of

maximum performance. As we can see, throughput does not depend on load rate to

be used. Throughput is mainly located on two different levels of approximately

400 … 450 rps and 900 … 1200 rps regardless of the load which varies between

20 … 90 rps. Findings in the layers are consistent with Figure 6.12. It thus appears

that for the test used in a load factor, there is little effect on the resulting

performance of the forecast.

124

6 Performance Analysis of the System

Figure 6.2: The effect of load test rate for the predicted performance in website A.

Load and resource utilization formed by the observation group hit rates and

standard deviation can be described by using the adjusted R2 value (Cameron &

Windmeijer 1997). A set of points are combined by means of linear regression, and

the suitability of the result is described using the value of R2 . When the regression

line obtained extends outside the region measured by using the linear

extrapolation, it can be found in the performance forecast for the server to a

specific resource. At the time of measurement, it is the most limiting resource in

the current bottleneck in the system. This result is sufficiently accurate in

determining the overall system performance.

6.4 Interdependence of Measurable Factors

Resource consumption, but also response time, plays an important role in

assessing the maximum performance of a system. At the same time, as the load

increases, it generally increases the response time. Increase in the response time is

usually due to the fact that resources have to wait. The general increase in activities

for the server hardware system means an increase in almost all the events in terms

of resources such as CPU, memory, disk I/O, network traffic, etc. In Figure 5.9, the

125

6 Performance Analysis of the System

load increases from 40 rps to 170 rps, and response time will increase from 500 ms

to 1700 ms. However, none of the service resources is close to the saturation point.

Therefore, each of the analyses shall consider the response time of the estimate.

The response time applies to the entire system, it is not resource-specific.

Figures 6.4 to 6.7 show the measured response time (R), the number of incoming

requests, and resource utilization (U i) of key resources in one measurement run.

Resources utilization is collected for each resource or resource group separately.

The total system throughput and response time are relevant only to the whole

system level. In this study, the resource-specific throughput or resource-specific

response time is not relevant. As we can see, the equations (3) and (4), over a

sufficiently long time arrival rate, should be equal to throughput, λ=X.

Therefore, the images have been used instead of the arrival rate or the term

throughput.

The arithmetic mean to describe the use of response time has been discussed in

another study (Ciemiewicz, 2001). It focuses on outlier due to biased results,

especially in terms of the SLA agreement. The study shows how even a single

outlier can distort the value of response times describing the key figure. However,

it proposes using either the geometric mean or the median. Table 5 shows website

A1 loading test response times, calculated by various methods. Individual response

times are converted to 10-second intervals so that the response time period is

represented by maximum, median, arithmetic mean or geometric mean.

All four of the table methods used to correlate well with the load level increase. For

the service user, it is important that the response time remains below the desired

126

Table 5: Summary of response time values on website A1

Max Median Arithm. Mean Geom. Mean

Min 0,0 0,0 0,0 0,0

1st Qu. 39,0 9,0 11,7 10,7

Median 743,0 11,0 19,8 12,3

Arith. Mean 1 086,0 9,4 27,9 11,8

3rd Qu. 1 462,0 12,0 37,3 15,9

Max 10 070,0 31,5 114,9 30,1

6 Performance Analysis of the System

limit value. When the load factor rises enough, a fraction of the total response time

exceeds the limit value. Distribution of the response time should therefore be

inclined to the right (positively skewed distribution). In addition, tail should be as

short as possible, and then the number of long response times would be

minimized.

Only the long response times are interesting in this analysis. The Table 5 shows

that when the data is formed by the maximum values, the long response time will

remain. Figure 6.3 shows the maximum values of the calculated density plot, which

is found to be strongly skewed to the right. The figure also shows the 3 000 ms

threshold value by a vertical line. We note that the threshold exceeds to some

extent. They are also reflected in Figure 6.4 to Figure 6.7 - Response Time vs.

Throughput graph. It is obvious that the response times may be processed only

using a maximum value. The problem is the higher variability than other methods;

on the other hand, it is the only one that preserves the necessary information about

the long response times.

Figure 6.3: Density plot of response time values in the application server of website A1.

Figures 6.4 to 6.7 show that the material is formed from four different sites. In

three cases, the most loaded server has been the application server: Figure 6.4,

Figure 6.6, and Figure 6.7, and in one case, the database server, Figure 6.5. Each

127

6 Performance Analysis of the System

service is located on a different hardware, different application and different

content. In addition, services are aimed at different segments of the public. Data is

summarized and the resource utilization is collected using SNMP query every 10

seconds. The period includes the response time and mean of throughput. The

arithmetic mean is selected to describe the data by the fact that the various peaks

do not intentionally affect eliminated. The obtained data is illustrated in Figures

6.4 to 6.7 so that the connection between the results forms a set of points, and the

points are connected to 3 degree spline.

Figure 6.4: Measured throughput (X), response time (R) and utilisation % (U) in application
server on a type A website A1.

Figure 6.5: Measured throughput (X), response time (R) and utilisation % (U) in database
server on a type B website B1.

128

6 Performance Analysis of the System

As noted, the connection between the throughput and the response time is not as

that assumed in Figure 3.5, as in any measured case. The measured results are

from the network systems, each containing a number of servers. Therefore, it is

possible that a low load, whose effect is different from the previous studies, has

been demonstrated. Communication between the servers takes time and using

high-level application solutions for various pools and protocol operation is not

optimized for speed but in terms of usability.

In Figures 6.5 and 6.6, two different service load performance are presented; the

first is the database server, and the second is the application server CPU load. As

129

Figure 6.7: Measured throughput (X), response time (R) and utilisation % (U) in application
server on a type B website B3.

Figure 6.6: Measured throughput (X), response time (R) and utilisation % (U) in application
server on a type B website B2.

6 Performance Analysis of the System

the figures clearly show, when the load increases, the response time will increase

more sharply at the beginning, and then stabilized. For the server processor, each

of the load rates is very high, being very close to the saturation point of the curve

and is due to sharp returns at high throughput values. If the load continues to

increase, as well as response time, utilization appears to be referred to a very sharp

rise. If the load continues to increase as well as response time, utilization appears

to be referred to a very sharp rise.

Dependency is linear or almost linear between throughput and utilization rate, at

least until 80% utilization rate, as shown in Figure 6.6. This result reinforces the

idea that the processor capacity can be safely used for about 70%. It is possible that

an available capacity as shown in the Figure 3.9 is higher than the limit shown, and

in particular, the lower limit saturation is higher. The difference may be due to the

fact that as hardware advances, the border of available capacity will increase.

6.5 Performance Prediction

Figures 6.4 to 6.7 set out the resource groups for a maximum out-performance

forecast using a linear extrapolation. It will be extended by linear extrapolation to

forecast maximum accepted response time up to three seconds. Similarly, the

connection between utilization and throughput capacity will be expanded by the

linear extrapolation until the resource maximum allowable rates of utilization.

Thus, the results obtained, when selected, give the minimum performance of the

system.

Figure 6.7 presents the test result formed by means of linear extrapolation forecast

of the performance of the application server, which is shown in Figure 6.8. Since

the resource utilization is far from saturation point, linear prediction is well suited,

such as shown in Figures 6.4 to 6.7. In Figure 6.8, the maximum resource

performance value is 2150 rps when the utilization rate is 70%.

130

6 Performance Analysis of the System

The same tests as in Figures 6.4 - 6.7 are shown; Table 6 shows the maximum

performance predictions for other resources. Because extrapolation is necessary to

consider a maximum value as well as sensing the linear curve fit to values in the

table, the R2 value is also shown. The forecast accuracy is not enough to get an

accurate picture of just data points describing the curve. Therefore, the maximum

performance in the table is shown precisely in the curve fit rather than by means of

a simple minimum value.

As we can see from the table that the linear extrapolation not always gives

reasonable results, in some cases, it gives very low R2 values. These have been

omitted from the table. Generally, the phenomenon is due to the fact that the

server resource consumption of the layer is so small that it does not sufficiently

correlate with the load increase rate. In this case, it is clear that the resource

cannot be a bottleneck in the system.

If the limiting factor in the analysis is response time, the real bottleneck in the test

has not been found; in other words, a critical resource load data was not collected

using SNMP. Exceeding the allowable response time always indicates a lack of

131

Figure 6.8: Estimated maximum throughput in application server on the website B3.

6 Performance Analysis of the System

resource, because it cannot in itself be a bottleneck. When the response time

threshold is exceeded, the resource monitoring needs to be extended.

When approaching a saturation point, it shows a strong increase in resource

utilization as the load increases. In this case, the extrapolation will result in

excessively high-performance values. One has to use the Weibull growth curve

equation rather than the linear extrapolation:

U=a−be−cd
 (26)

, where a= horizontal asymptote on the right, b=difference between the asymptote

and the intercept (the value of U at  = 0), c=the natural logarithm of the rate

constant, and d= the power to which x is raised.

132

Table 6: Summary of throughput values within one test run at websites A1, B1, B2, and B3

Resource i CPU Utilisation Memory

Estimated R2 Estimated R2

Website A1

Load Balancer 24 400 0,599 589 000 0,037

Application Server 2 150 0,936 987 0,246

Database Server - - - -

Website B1

Application Server - - - -

Database Server 22 0,9 - -

Website B2

Application Server 109 0,941 - -

Database Server 4 140 0,213 44 500 0,091

Website B3

Application Server 13 0,795 45 0,881

Database Server 112 0,635 - -

6 Performance Analysis of the System

Figure 6.9 compares the linear extrapolation and the Weibull growth curve. The

maximum value of throughput is derived from the linear extrapolation and the

growth of the Weibull growth curve. When using the linear extrapolation, the

resource 100% duty cycle is the maximum throughput of 69 rps and the

adjusted R2 value is then 0.873.

There are very few studies on acceptable resource saturation levels. Maximum

utilization of the resource depends on the type of resource. For processors, it is

typically 60 … 70% respectively, the memory utilization rate depends on the total

amount of memory, operating system, and the amount of memory needed by the

application. When using a 70% utilization rate, as shown in Figure 6.9, the

predicted throughput is 47 rps. As a kind of reference value, memory consumption

can probably be considered to have a maximum value of 90%.

133

Figure 6.9: Fitting of measured resource utilisation using different rates of natural workload

6 Performance Analysis of the System

The different methods of calculating the values produced and their relevance

indicators and adjusted R2 values are summarized in Table 7.

As seen from the Table 7, a set of points fits quite well with all the models used in

the calculation, both R2 and adjusted R2 are reasonably close to one. The table

confirms the understanding formed on the basis of Figure 6.9 that the linear model

produces a performance of over-optimistic results; in particular, using a of 100%

saturation rate. On the other hand, the resource utilization is low, as shown in

Figure 6.8. Weibull growth curve produces too pessimistic results. This study has

concluded that if the resource utilization is not more than 50%, a linear model is

always used, unless it is used for Weibull growth curve.

6.6 Visualization of Results

When the load test is repeated several times on successive days, there will be a time

series of performance of each individual resource. According to a website resource,

such a performance time series is shown in Figure 6.10. The measured values are

summarized for a single day in Table 6. In Figure 6.10 the measurement time is a

green vertical line, the left side of the values are the measured observations, and

the straight lines on the right side are the predictions of performance. The line with

the same color wide area represents the 95 % confidence interval. It is normal that

the predicted performance loadbalancer range is large, because its load is small

compared to the other server's layers. In practice, the most potential bottleneck is

always a best scenario; that is, standard deviation of measurement results is the

134

Table 7: Forecast accuracy using different calculation methods

Method Estimated
performance

Adjusted R2 R2

Linear 100% 69 0.87 0.87

Linear 70% 47 0.87 0.87

Weibull 33 0.89 0.89

6 Performance Analysis of the System

smallest, and the confidence interval is the narrowest. As with Table 8 and Figure

6.10, the most limiting layer in this case, is the database server.

135

6 Performance Analysis of the System

136

Figure 6.10: Visualisation of measured performance of different layers at the website A1 and
prediction for the next 30 days

6 Performance Analysis of the System

Maximum predicted throughput for each resource, i, is given for the time, t:

X̂ i=ai×bi t (27)

where i is a resource for 1...n, a and b are the linear prediction coefficients of the

linear regression line in Table 9.

Maximum performance of the entire server system by the time t is as follows:

X̂ max=min(X̂ i (t)) (28)

Figure 6.11 shows the corresponding calculated performance values for network

service B2. In this case, the most limiting is the application server layer. In this site

there is no load balancing layer, since there is only one application server. The

measured performance values are summarized in Table 10.

Predicted throughput for each resource in i is shown in equation (27). The

parameters a and b are the values of the linear prediction table according to Table

9.

137

Table 9: Summary of predicted performance coefficients for equation (27) at the website A1

Resource i a b

Load Balancer CPU 4670 14.4

Application Server CPU 797 3.86

Database Server CPU -102 7.67

Table 8: Summary of performance values at website A1 in a period of three months

Resource i Min. 1stQu. Median Mean 3rdQu. Max.
Load Balancer CPU 1790 5220 5580 5540 5910 10 500

Application Server CPU 685 895 951 1020 1190 2010

Database Server CPU 43.1 56.6 128 288 609 988

6 Performance Analysis of the System

Maximum performance of the service B2 at the time t is given by Equation (28)

using the parameters a and b, which are shown in Table 11.

138

Table 10: Summary of performance values at the website B2 in a period of three months

Resource Min. 1stQu. Median Mean 3rdQu. Max.
Application Server CPU 58.0 141 168 172 207 305

Database Server CPU 91.8 197 628 846 887 3360

Table 11: Summary of calculated performance values at the website B2

Resource i a b

Application Server CPU 122 1.13

Database Server CPU 267 40 921

6 Performance Analysis of the System

Figure 6.11: Visualisation of measured performance of different layers at the website B2 and
prediction for the next 21 days

139

6 Performance Analysis of the System

6.7 Rapid Changes in Performance and Software Aging

Sudden deterioration in performance can be interpreted in the server system as a

mistake, either software or hardware or their combination. Similarly, a sudden

improvement in performance is often due to increased efficiency in the new

version of the software, changing configurations, the server system of internal

change in status or restart of server devices or services. Slow network performance

degradation can result in the software aging phenomenon. Resource consumption

will continue until the available resources have all been consumed. Such an

amendment is shown in Figure 2.2.

The second type of change is a progressive increase in website performance. It

occurs rarely, and usually as a result of maintenance operations such as services or

equipment being restarted. Figure 6.12 shows a several days long test for service

A2, the result of throughput values where the virtual number of users remains

constant throughout the test. As to change, the exact cause is unknown. However,

it is known that the hardware or software configuration is not modified during the

test. It can be assumed that the change is at least partly caused by the server or

restart services or database indices' regeneration. Image of the performance

change is due primarily to the fact that the response time is shortened and the

virtual user sends new service requests. To begin transmission, it slowly drops

until 20090414 is approximately in 400 rps level. The verse is one of the service

changes, which resulted in the transmission rate suddenly rising to the level of 800

rps and then to a level of about 1200 rps.

140

6 Performance Analysis of the System

The third reason for the change is caused by long-term software maintenance and

updates. A more recent version of the software may require more or even less

resources than the previous one. The growing consumption of resources, aimed at

the user's point of view, is for the software to provide a better level of service.

Reduced consumption of resources in turn means better software internally, that

is, fewer mistakes.

The tested website applications have been at the early stages of development, so

the tested individual application has not been finalized in relation to resource

consumption, and the phenomenon is clearly visible even for a few days during the

period of lower performance.

141

Figure 6.12:Unexpected increase in the performance of website A2

6 Performance Analysis of the System

6.8 Combination of Results

This section combines usage analysis and results of the performance prediction

obtained by load test of the results, and presents them in a way easy to understand.

The aim is to make the results easy to interpret; so that they can be understood by

non-experts in the performance or maintenance experts of a service.

In Chapter 4, we have presented the analysis of website actual usage. It has been

clarified on the basis of service, and the daily peak load causing the performance

requirement. It addresses all layers of the web service. Previously, in this chapter,

the analysis of current performance is shown. It shows that the service

performance is determined by the different layers and particularly on the basis of

the neck of the bottle of service. Combining these analyses has been clarified as a

safety margin between the actual use and saturation point of the bottleneck

resource.

Combining these results is shown in Figure 6.13. The green vertical line shows the

measurement at a current time; the stroke on the left side is measured values, and

the right side is a prediction. Red dots show the daily peak load values, which are

formed on the basis of Chapter 4. The red bar shows the derived confidence

interval width. Blue dots represent the system on a daily basis - the measured

performance values. The blue beam is the width of the confidence interval which is

derived from the measured values. Despite the fact that Figure 6.13 with the

forecast extends from 90-day onwards, its accuracy is not sufficient as a maximum

of 30 days. This is due to the fact that the image matching two linear extrapolation,

which in themselves are relatively inaccurate.

At the right side of moment of measurement, the area between the blue and the red

line is a safety margin, which exists at every moment between the predicted

performance and the actual usage. The service administrator is responsible for

ensuring that the service is providing a safety margin, taking into account the

expected abrupt changes, which cannot be predicted on the basis of analyzed

history. In some cases, the changes are predictable; some of the events come

unexpectedly. Typical signs in advance of new visitors to a web store offer

attractive promotions, and breaking news in media services. Both of these cause

142

6 Performance Analysis of the System

changes in the number of visitors who do not appear in any way in the history, but

their range may be more or less precisely estimated. In both cases, the number of

users is generally limited in any case. Limiting factors may be marketing channel

size, population of the area, language area size, etc.

If the website hardware is well balanced, the bottleneck may change to another

resource on each occasion of testing. This is not relevant when assessing the

adequacy of the performance of the system, or the cost of the minimum level. After

wanting to make changes to the system's performance, it is also familiar with each

of the server layers and the performance of each resource separately. In Figures

6.10 and 6.11 show each layer of the server performance in two different online

services on the basis of processing power. The figures can be used to evaluate each

layer of the server processing power’s sufficiency or excess.

Figure 6.13 contains some findings of the individual performance indices which

can be interpreted as outliers. They can be caused by several reasons: inaccuracy of

the measurement method, the load combinations of different surveys, the

bottleneck resource is not observable among the resources, or the system's internal

state is different at the initial time of tests. For these, there is no single

explanation, and so these can be considered occasional uncertainty in the load-

sensing system.

143

6 Performance Analysis of the System

Figure 6.13: The combination of actual performance and usage of the website B.

144

6 Performance Analysis of the System

Figure 6.10 and Figure 6.11 clearly visualize the server layers as containing too

much processing power. Removal of the excess power from the server processing

layers, which are not congestion, maintenance costs, and energy consumption, will

be reduced without risk of interference. In addition, images with layer-specific

knowledge increase the technical quality of service because the service will increase

in stability.

6.9 Sensitivity Analysis

Data generated by the artificial load contains a number of factors affecting the

accuracy of the outcome. This section seeks to identify those most significant in

order to assess their impact on the outcome and to assess the likelihood of their

occurrence, if relevant of course.

First, the meaning of precision and accuracy. The analysis aims at ensuring that

the forecast accuracy is as good as possible, i.e. a method to produce the most

precise estimates for each period of time in the performance of the duty cycle,

which is generated by users. On the other hand, the same load of material carried

out in successive runs of the performance should possibly produce high precision

results to be shown as consistent with the predictions of the performance. Both the

precision and accuracy are enhanced by improving the functioning of the model. In

practice, the improvement of the model refers to the environment resulting from a

further consideration of these factors.

Second, the results vary between the load tests, which cause the natural variation

in the time series. This is shown by the increased confidence interval for the

forecast. That is, on the one hand, the load test is carried out with various surveys

for each test; and on the other hand, the internal state of the system is different for

each time point. These variations are natural, and thus belong to a method. The

large range may indicate unstable behavior in the system and the reasons leading

to the need for research on a case by case basis.

145

6 Performance Analysis of the System

Third, control of resources through the data collected requires pre-treatment. This

refers to the observation of individual values (outliers) removed. These may be

caused by uncontrolled external load, so the effect is filtered off. They can also be

caused by a known load, in which case a single query to form an unexpectedly high,

and therefore, appear in the utilization of a significant change (increase). In

principle, this cannot be filtered out except for a single peak; the system does not

affect the outcome. However, if the URL of the individual means the presence of a

significant number, it is taken into account when forming the material of the load.

In this case, the impact load occurs on the right way in the system. If any individual

URL is to cause other queries compared to a very high peak load, it will turn out in

the top-30 listing.

Fourth, the load and resource consumption correlate poorly or not at all. In this

case, the response time is exceeded before the resource becomes saturated. This is

a matter that occurs when the bottleneck resource is not found. It is evident that

the bottle neck has not been any one hardware resource; instead, the application

will wait for a lock semaphore or other soft resource to be released. This is not

usually possible to be detected by using SNMP interface and is therefore, not

possible to find in this study as shown.

Fifth, the factors resulting from the regression. The correlation between the load

and resource consumption is linear up to the knee point only. The point of the knee

may continue after the consumption of a linear, but the slope is higher than the

former, or a change in the graph is of a higher degree. When using the load which

is considerably less than the knee point, the slope of the graph is not known. On

the other hand, the shape is not interesting, because the system load factor will be

kept constantly under the knee-point, i.e. in the linear portion of the function.

6.10 Conclusion

In this chapter, several commercial online services have been identified through

analysis of performance. The analysis is initially loaded with natural service with

intermittent load queries and by monitoring the utilisation rates of the server

146

6 Performance Analysis of the System

system resources. The results are analyzed by simple statistical methods. The

results which have been found, and appear to be uniquely defined, are repeated as

expected. We have found that by loading a service in a controlled manner, the

resource's maximum load factor can be predicted without having the normal use of

service disruption. Forecast accuracy depends on the bottleneck resource type and

degree of loading. The CPU saturation prediction is fairly straightforward, but the

memory usage prediction, in turn, is not due to the complexity of memory

allocation algorithms. In addition, too-low a load factor does not make sense when

it comes to being predictable. This is due to the fact that the measurement range

varies considerably when compared to the low and high degree of loading of

resources. In addition, each resource in the bottle neck, which has a low capacity

and accuracy of the estimates, is not crucial.

We have also found that, although the load test is repeated several times in a short

period of time in the same load, the outcome is not exactly the same performance

index in all the test runs. This is due to several reasons, one of which is

accompanied by a random element, which is eliminating bursts. The same set of

requests does not exactly exist in different test runs. The result's range can be

reduced by regression analysis. Regression analysis can be a simple linear model or

a model for a better fit may be found by using a higher-order model such as

Weibull Growth curve.

The experimental model seems to produce reasonably accurate and precise results

for predicting the maximum performance by taking into account both the response

time and the resource utilization rate.

147

 7 Conclusions

7 Conclusions

This section presents the conclusions of the work, the answers to the research

questions and the hypotheses derived from them. This section also addresses the

research question and its solution.

7.1 Implications for practice

The Predictus-model developed in this study may be used to express the

performance of a website system, especially when the performance varies for

service-specific reasons. The changes can be traced from several sources. The

fastest change is caused by changes in the usage, the number of users or interests

that change from one page to another. The second source is the internal status of

the server system, which can cause a general malfunction due to software aging.

The third source is the new software versions, system software, utilities, or the

application versions.

In this study, several log files are combined using a novel manner to find a

prediction model, aimed at indicating the moment of the performance problem if

no resolving actions are taken. The model developed in this study is applicable to

predicting the forthcoming requirements for actions of a web service. Maintaining

operations (hardware investments and installations, configuration changes, or

software updates) can be done pro-actively and in good timing.

Performance improving techniques, such as caching, are changing the behaviour of

the system within different load rates such that their functioning is difficult to

model analytically or use discrete event simulation.

The method implicating the Predictus-model utilises several statistical methods,

even concatenated. There is no aim at maximal accuracy thus far, only to prove

that it is fit for use in measuring the total performance. The accuracy of the method

can be intensified by increasing the accuracy at the component level. The results of

the throughput are suggesting that the method gives indicative results; there is no

149

7 Conclusions

evidence of exact and unambiguous value for throughput. Firstly, this is caused by

the inaccurate method of deriving the maximum throughput based on the

measured values. Secondly, no such analytical methods exist, which could validate

the measured results.

The model does not contain any protocol-specific data, so it can also be applied

more widely than for the http-based systems. Here, the log analysis deals with the

analysis of the http requests, so its use in connection with other protocols requires

modification. Here, too, the load to perform the load test as such is not suitable for

use with other protocols. JMeter, used to load on the service, is also suitable for a

number of other protocols for testing, but in this study JMeter-referenced

applications are not suitable for use in other protocols.

We have shown that the analysis of web server system usage can be based on

ordinary http log files. The analysis can be done in a specified form in most cases,

and the result is comparable day-by-day despite the nature of the web service. The

actual usage of a web server is the most relevant indicator of timing and duration

of the peak load. The requirement of performance on the web server system has to

be based on the peak load.

The total performance of the server system consists of a unique combination of

hardware, applications, configuration, and status of different applications. We

have shown that the actual performance of a web server system is measurable

using well-known natural load traced by web log analysis. The resource

consumption can be monitored using the SNMP monitoring system. The analysis

of the results can be done automatically using some simple statistical methods. We

have determined that the performance curve is not linear up to the saturation

point. However, we have not found a suitable higher-degree mathematical method

for fitting observed performance results with the degree of utilisation within this

study. The natural load should be increased up to the saturation point to figure out

the asymptotic. However, at the beginning we have set the requirement not to

disturb the normal usage during the load test. The utilisation up to the saturation

point is the most disturbing to regular usage and leads to recovery operations in

the worst case, and therefore, cannot be used. Therefore, the partial rate of load is

the most recommended method for performance evaluation.

150

7 Conclusions

The combination of the analysis of log files and the analysis of the natural load test

produces the prediction of performance for the foreseeable future. We have shown

that the final result can be described in an unambiguous format so as to figure out

the moment when the system does not have perform adequately to serve users with

the required response times. However, the most important result is the amount of

spare performance, i.e. the gap between actual usage and real performance. The

user population is somewhat limited in most cases. It can be estimated based on

the content, language, or even the historical knowledge of usage. In case of planned

advertisement campaigns and the like, the maintainer should be able to estimate

beforehand the number of expected visitors. This study has not committed itself to

the unexpected change in the amount of visitors. Only the expected natural trend

for visitors and performance is included.

In this method, only the http protocol is used in natural load tests and in access log

analysis. This is caused by the simplicity of the logging and analysis tools.

However, there are other similar protocols, like ftp and https. Other systems using

connectionless protocols could be analysed as well. The connection-oriented

protocols, like telnet, are rather challenging to simulate. Probably, the most

troublesome feature to simulate is the think time. However, in an e-commerce

environment the connection oriented protocols are rather exceptional. Another

group of fairly analysable protocols is the large binary files, like multimedia

streams. Yet, this group is widespread. The problem with this group is the

difficulties with end-to-end response time measurement and the user experience.

The former reflects differences in the system's capacity, and the latter refers to the

performance of the client hardware and software, i.e. the user's computer and

browser.

The exact relevancy of the shown method compared to the real web service is

rather troublesome to evaluate. In the initial period, i.e. less than three months,

the measured results are somewhat inconstant. Hence, the conclusions are not

based on stable measurements. On the other hand, the changes since the initial

period seem to stabilise or are at least explicable. In that context, the natural

workload can be assumed to match the real workload. In this study, only CPU and

the amount of free physical memory are monitored. The SNMP protocol makes a

151

7 Conclusions

great number of other resources available. Some of them are essential for an

undisturbed operation, while some are devalued. The most essential question is

finding the appropriate objects to monitor. When monitoring some irrelevant

resources, the real bottleneck can be passed unnoticed and the results may seem

unreasonable.

The study has shown that a short period of well-known natural test load is enough

to define the actual performance of the server system. The length of the period is

defined by the number of queries rather than the amount of time. However, all the

load impulses have to be well managed, and the maximum load should be as stable

as possible to increase the measurement accuracy. The study has also shown that

the actual amount of incoming requests can be analysed automatically and the

distribution of different queries can be found. The result of the access log analysis

has been used to construct the natural work load simulation. Finally, the results

have been combined automatically, and the spare capacity can be figured out.

Furthermore, the moment of run out performance can be automatically defined.

Lastly, the performance analysis process can be automated to achieve comparable

results and avoid laborious human-oriented analysis.

The functioning of the Predictus-model has been tested in practice, i.e. in several

websites separately. The feedback on website B has been criticized for the long

response time at the early stage of the analysis series. Some improvement

requirements have been revealed by the expressed model, and the measured

performance was clearly becoming more effective. The extra performance

removing in website type A concretizes the simultaneous change in the real and

calculated performance, and hence confirms the integrity of the Predictus-model.

Hence, the spare performance of the server system can be dissembled together

with energy and other maintenance costs. In addition, the fixing of the faulty

configuration, application or increase in performance, even the unexpected

malfunctioning events and the loss of revenues can be avoided.

152

7 Conclusions

7.2 Implications for research

At the beginning of the study, three research questions and three hypotheses were

identified:

Question 1: Is it possible to analyse the usage of a website and

characterise it automatically and on a regular basis to identify the peak

load? The corresponding hypothesis was:

Hypothesis 1: The actual usage of a web server system is measurable and

analysable automatically, and the result can be exploited to construct the

natural load test for simulation purposes.

Chapter 4 has shown that the service usage can be measured both quantitatively

and qualitatively, and the result of measurement can be unambiguously and easily

changed to communicateable information. Furthermore, a qualitative result of the

measurement may be altered to such a form that can uniquely take advantage of

the simulation or other analysis.

Question 2: Is it possible to measure the performance of the website

system on a regular basis? The corresponding hypothesis was:

Hypothesis 2: The actual performance of the server system can be defined

using a known natural load with a short test-time period.

The method presented in Section 5 is to load the web service in the same way as

users of the service burden in actual use. In the same section, a method was

presented that can be used to collect information on the resource consumption of

the entire server system during loading and at the same time to observe the user-

perceived response time. It was also discovered that the loading level can be

considered to be moderate so that it does not interfere with the normal use of the

service.

Question 3: How can the current website performance, and actual usage

be compared with each other? The corresponding hypothesis was:

Hypothesis 3: In combining the analysed actual usage data and the

calculated total performance of the web server system, the moment when

the performance of the system runs out can thus be estimated.

153

7 Conclusions

The data accumulated during the artificial loading is analyzed in section 6, and the

result has ascertained the ability of the service to work in actual use. When the

actual usage of the website and its actual performance is converted to comparable

values, the current spare performance is found. Website usage as well as variation

in performance can be predicted by means of extrapolation to give a forecast of

future service ability. The point at which the service is not able to effectively serve

users, may be found where the curves intersect at the predicted cycle.

All the research questions have been addressed in this study, and the hypotheses

have been found to be correct.

The research problem is solved. And the Predictus-model is applied to a data

centre, it provides the opportunity to make substantial energy savings. When the

performance of the server devices is adapted to a real need to match, it also

eliminates overcapacity. On the other hand, it ensures that sufficient capacity is

available wherever it is needed. The proposed model provides a quick and

inexpensive way for performance management. Existing applications do not need

to change, and hardware investments are rendered unnecessary. In addition to the

removal, the over-capacity model also provides information about where the

capacity is needed in order to increase the level of service that can be secured.

Results of energy savings and the management of capacity needs are commonly

solved using virtualised server environments. The technology of virtualisation will

probably mature in the near future. Websites located in large data centres can

utilise the virtual servers most effectively. The fast performance adjustment can be

arranged effectively up to the maximum total capacity of the data centres. Instead,

companies maintaining a single website can benefit from the automated

optimisation shown in this study.

The validity of the results must be assessed on the basis of the extent to which the

meter, which is presented in the study, describes the website system measured. In

order for the meter developed to be valid, it shall be described in an unbiased

pattern, which is to be measured. Website usage at a certain period of time is

history and it does not change over time. By increasing the size of the sample

describing the use of the service, the accuracy can be improved at the same time

154

7 Conclusions

until finally the meter is completely unbiased. However, describing the service

performance is much more difficult. It is based on the user's subjective experience

of the response time, and on the other hand, response accuracy. These are not

sufficient to describe the service performance. In this study, we have assumed that

responses are error-free due to the performance. In addition, there are no software

errors, which causes the standstill of situations that are not consuming resources.

Adequacy of resources is the primary measure of performance. When all the

resources of the server system is adequate, response time is a characteristic of the

system. Among other things, it depends on the physical distance between devices.

Response time is only a secondary indicator, it tells us that an unrecognized

resource is completely finished or will soon run out. For the SNMP interface to

provide correct results in resource consumption, the method should gives a valid

understanding of system performance. Different computer systems use different

implementations of SNMP, and their reliability can not always be absolutely

certain.

In the following, the Hevner's guidelines are used as the basis for evaluating the

design research contributions of this study.

Guideline 1: Design science research must produce a viable artefact in the form of a

construct, model, method, or an instantiation.

• The Predictus-model and any method that has been built on the basis of the

model, form artefact according to Hevner's first guideline.

• IT artefacts are rarely fully prepared for information systems; in most cases,

they are innovations. So even in this case, the Predictus-model is a guideline

for the development of a methodology. The final accuracy, precision, and

usefulness of the performance prediction is contingent upon the reliability

of the means used.

Guideline 2: The objective of design science research is to develop technology-

based solutions to important and relevant business problems.

• With method, the end result is awareness of the 'performance reserve' size,

which is an important business information. It can be used to draw the

155

7 Conclusions

necessary conclusions over performance increase or decrease, or the timing

of the necessary activities.

Guideline 3: The utility, quality, and efficacy of a design artefact must be

rigorously demonstrated via well-executed evaluation methods.

• In Figure 1.3 the Predictus-model is the result of a long iterative process.

The development is guided by the awareness that the result should be

beneficial, both economically and technically.

• A more detailed discussion is found at each stage of the method in the

sensitivity analysis (sections 4.5, 5.4, and 6.9). They deal with the model and

the method's accuracy-related issues.

Guideline 4: Effective design science research must provide clear and verifiable

contributions in the areas of design artefact, design foundations, and/or design

methodologies.

• As set out above, the artefact gives a clear answer to the research problem.

As seen in further studies (section 7.3), the result's accuracy can be

improved by improving the method.

• The most important contribution of this study, however, is the result

emanating from the Predictus-model development. It can clearly and

regularly provide information on the level of spare performance at each time

of measurement.

Guideline 5: Design science research relies upon the application of rigorous

methods in both the construction and evaluation of the design artefact.

• Data collection and calculation methods used in this thesis, are commonly

used. According to the results, their accuracy is meant in many ways to

attract attention. Changes in system performance, caused by the collection

of data, are discussed in section 4.1. The accuracy of results provided by

SNMP interface has been thoroughly discussed in section 5.3. Performance

relevancy and accuracy have been assessed in section 6.5 using the R-value,

and in section 6.8 in terms of spare performance.

156

7 Conclusions

Guideline 6: The search for an effective artefact requires utilizing every available

means to reach the desired ends while satisfying laws in the problem environment.

• The Predictus-model development process is described briefly in the

introductory chapter; it took place during a period of several years of trial-

and-error. The design process has not been particularly systematic, little

things have had to be resolved on a case-by-case basis.

Guideline 7: Design science research must be presented effectively both to

technology-oriented as well as management-oriented audiences.

• The method produces a concrete performance prediction which can be

communicated on a regular basis to management and technically-oriented

staff so that the necessary conclusions and actions can be drawn.

7.3 Limitations of the research and suggestions for further studies

One of the possible limitations of this research is that the adoption study has been

conducted for a single protocol. No statistical generalisation of the results can be

provided in a single case research and the representativeness of the results in other

environments may be questionable. However, the concentration on one protocol

has brought with it the benefit of allowing for an in-depth study.

The work utilizes two independent combinations of linear extrapolation. When two

low-precision projections are combined, the result may not be particularly

accurate. The result is indicative, in many cases sufficient, but far-reaching

conclusions about the final outcome can not be drawn. The study has not taken

into account in any way the inaccuracy which is immediately followed by a change

of system performance or website usage.

The study is focused on dealing with reasonably short responses, such as a normal

web page in general. When handling a variety of video or audio streams, or other

similar continuous data streams, the method is not apparently suitable for

performance evaluation. In such a case, the response time is poorly suited for

describing user experience.

157

7 Conclusions

The method may be further developed in several different directions. One obvious

target for development is a protocol independency. The other is the quality of

experienced by the user to be described in an alternative way rather than the

response time. In addition, the accuracy of analysis can be improved by

introducing a more sophisticated analysis rather than the linear extrapolation,

used throughout this study.

158

 References

References

APM Group Ltd. (2011). ITIL official website. Retrieved from http://www.itil-

officialsite.com/

Aalto-www. (2010, December). Uutiset: Aalto-yliopistossa kehitetään

energiatehokkaita palvelinkeskuksia Suomeen - Aalto-yliopisto. Retrieved

December 8, 2010, from http://www.aalto.fi/fi/current/news/view/2010-12-

02/

Aken, J. (2004). Management research based on the paradigm of the design

sciences: the quest for field tested and grounded technological rules. ‐ Journal

of management studies, 41(2), 219-246.

Andreolini, A., Cardellini, V., & Colajanni, M. (2002). Benchmarking Models and

Tools for Distributed Web-Server Systems. Performance 2002, 208-235.

Andreolini, M., & Casolari, S. (2006). Load prediction models in web-based

systems. Proceedings of the 1st international conference on Performance

evaluation methodolgies and tools - valuetools ’06 (p. 27). New York, New

York, USA: ACM Press. doi:10.1145/1190095.1190129

Apache Software Foundation. (n.d.). Welcome! - The Apache Software Foundation.

Retrieved August 18, 2010, from http://www.apache.org/

Ardaiz, O., Freitag, F., & Navarro, L. (2001). Estimating the service time of web

clients using server logs. ACM SIGCOMM Computer Communication Review,

31(2 supplement), 108. doi:10.1145/844193.844202

Arlitt, Martin, Krishnamurthy, D., & Rolia, J. (2001). Characterizing the scalability

of a large web-based shopping system. ACM Transactions on Internet

Technology, 1(1), 44-69. doi:10.1145/383034.383036

159

 References

Avritzer, A., Farel, R., Futamura, K., Hosseini-Nasab, M., Karasaridis, A., Mainkar,

V., Meier-Hellstern, K., et al. (2002). Performance Analysis In the Age of the

Internet: A New Paradigm for a New Era.

Bacigalupo, D. A., Jarvis, S. A., & Nudd, G. R. (2004). An investigation into the

application of different performance prediction techniques to e-commerce

applications. 18th International Parallel and Distributed Processing

Symposium, 2004. Proceedings. (pp. 248-255). Santa Fe, NM, USA: IEEE.

doi:10.1109/IPDPS.2004.1303306

Bagchi, S., Hung, E., Iyengar, A., Vogl, N., & Wadia, N. (2006). Capacity planning

tools for web and grid environments. Proceedings of the 1st international

conference on Performance evaluation methodolgies and tools - valuetools

’06 (p. 25). New York, New York, USA: ACM Press.

doi:10.1145/1190095.1190127

Balaton, Z., Kacsuk, P., Podhorszki, N., & Vajda, F. (2000). Comparison of

representative grid monitoring tools. Reports of the Laboratory of Parallel

and Distributed Systems (SZTAKI), LPDS-2/2000. Citeseer.

Barford, P., & Crovella, M. (1998). Generating representative Web workloads for

network and server performance evaluation. ACM SIGMETRICS Performance

Evaluation Review, 26(1), 151-160. doi:10.1145/277858.277897

Baryshnikov, Y., Coffman, E., Pierre, G., Rubenstein, D., Squillante, M., &

Yimwadsana, T. (2005). Predictability of Web-Server Traffic Congestion. 10th

International Workshop on Web Content Caching and Distribution

(WCW’05) (pp. 97-103). Sophia Antipolis, France: IEEE.

doi:10.1109/WCW.2005.17

160

 References

Benedetto, S., Correia, L. M., Luise, M., Bogucka, H., Palicot, J., & Moy, C. (2012).

Green communications (pp. 169-179). Springer Milan. doi:10.1007/978-88-

470-1983-6_9

Berners-Lee, T., Caillan, R., Luotonen, A., Nielesen, H. F., & Secret, A. (1994). The

World-Wide Web. Communications of the ACM, 37, 77-82.

Bhulai, S., Sivasubramanian, S., van der Mei, R., & van Steen, M. (2007). Modeling

and Predicting End-to-End Response Times in Multi-tier Internet

Applications. In T. D. L. Mason & J. Yan (Eds.), ITC20’07 Proceedings of the

20th international teletraffic conference on Managing traffic performance in

converged networks (pp. 519-532). Springer-Verlag Berlin Heidelberg.

Bi, Y., Zhao, J., & Zhang, D. (2004). Power load forecasting algorithm based on

wavelet packet analysis. Power System Technology, 2004. PowerCon 2004.

2004 International Conference on (Vol. 1, pp. 987–990). IEEE.

Bloom, B. (1956). The Classification of Educational Goals by a Committee of

College and University Examiners. Taxonomy of Educational Objectives,

Handbook I, 1. New York: Longmans.

Booth, G. M. (1976). Distributed information systems. Proceedings of the June 7-

10, 1976, national computer conference and exposition (pp. 789–794). ACM.

Bouch, A., Kuchinsky, A., & Bhatti, N. (2000). Quality is in the eye of the beholder.

Proceedings of the SIGCHI conference on Human factors in computing

systems - CHI ’00 (pp. 297-304). New York, New York, USA: ACM Press.

doi:10.1145/332040.332447

Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and

Control. Holden-Day Inc., 500 Sansome Street, San Francisco, California,

USA.

161

 References

Buckley, J., & Exton, C. (2003). Bloom’s taxonomy: a framework for assessing

programmers' knowledge of software systems. MHS2003. Proceedings of

2003 International Symposium on Micromechatronics and Human Science

(IEEE Cat. No.03TH8717) (pp. 165-174). Portland, OR, USA: IEEE Comput.

Soc. doi:10.1109/WPC.2003.1199200

Calzarossa, M., Italiani, M., & Serazzi, G. (1986). A workload model representative

of static and dynamic characteristics. Acta Informatica, 23(3), pp. 255-266.

doi:10.1007/BF00289113

Cameron, C. A., & Windmeijer, F. A. G. (1997). An R-squared measure of goodness

of fit for some common nonlinear regression models. Journal of

Econometrics, 77(2), pp. 329-342. doi:10.1016/S0304-4076(96)01818-0

Card, S. K., Robertson, G. G., & Mackinlay, J. D. (1991). The information visualizer,

an information workspace. Proceedings of the SIGCHI conference on Human

factors in computing systems Reaching through technology - CHI ’91 (pp.

181-186). New York, New York, USA: ACM Press. doi:10.1145/108844.108874

Case, J., Fedor, M., Schoffstall, M., & Davin, J. (1990). Simple Network

Management Protocol (SNMP). Retrieved from

http://www.ietf.org/rfc/rfc1157.txt

Castelli, V., Harper, R. E., Heidelberger, P., Hunter, S. W., Trivedi, K. S.,

Vaidyanathan, K., & Zeggert, W. P. (2001). Proactive management of software

aging. IBM Journal of Research and Development, 45(2), pp. 311-332.

doi:10.1147/rd.452.0311

Cherkasova, L., Fu, Y., & Tang, W. (2002). Measuring end-to-end internet service

performance: Response time, caching efficiency and QoS. Retrieved from

http://www.hpl.hp.com/techreports/2002/HPL-2002-148.pdf

162

 References

Ciemiewicz, D. M. (2001). What Do You Mean?-Revisiting Statistics for Web

Response Time Measurements. CMG-CONFERENCE- (Vol. 1, pp. 385–396).

Computer Measurement Group; 1997. Retrieved from

http://www.cmg.org/proceedings/2001/1303.pdf

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A

Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official

Statistics, 6, pp. 3-73.

Coffman, K. G., & Odlyzko, A. M. (2001). Internet growth: Is there a “Moore’s Law”

for data traffic? Handbook of massive data sets (Vol. 142, pp. 47-93). Kluwer.

Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=236108

Commission of the European Communities. (2008). Addressing the challenge of

energy efficiency through Information and Communication Technologies.

Communication from the Commission to the European Parliament, the

Council, the European Economic and Social Committee and the Committee of

the Regions. Retrieved June 10, 2008, from

http://www.scribd.com/doc/6407079/Addressing-the-Challenge-of-Energy-

Efficiency-Through-Information-and-Communication-Technologies-

COM2008-241EN

Crovella, M. E., & Bestavros, A. (1997). Self-similarity in World Wide Web traffic:

evidence and possible causes. IEEE/ACM Transactions on Networking (Vol.

5, pp. 835-846). doi:10.1109/90.650143

Datacenter Dynamics. (2011). Forecasting Energy Demand. Retrieved from

http://www.datacenterdynamics.com/research/energy-demand-2011-12

DeveloperSide.NET. (n.d.). Apache Performance Tuning. Retrieved August 18,

2010, from http://www.devside.net/articles/apache-performance-tuning

163

 References

Dill, S., Kumar, R., Mccurley, K. S., Rajagopalan, S., Sivakumar, D., & Tomkins, A.

(2002). Self-similarity in the web. ACM Transactions on Internet Technology,

2(3), 205-223. doi:10.1145/572326.572328

Dilley, J., Friedrich, R., Jin, T., & Rolia, J. (1998). Web server performance

measurement and modeling techniques. Performance Evaluation, 33(1), 5-26.

doi:10.1016/S0166-5316(98)00008-X

Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., & Weber, G. (2006). Realistic

load testing of Web applications. Conference on Software Maintenance and

Reengineering (CSMR’06) (p. 11 pp.-70). Bari, Italy: IEEE.

doi:10.1109/CSMR.2006.43

Dumke, R., Rautenstrauch, C., Schmietendorf, A., & Scholz, A. (2001).

Performance engineering: state of the art and current trends. Heidelberg:

Springer-Verlag.

Eusgeld, I., Happe, J., Limbourg, P., Rohr, M., & Salfner, F. (2008).

Performability. In I. Eusgeld, F. Freiling, & R. Reussner (Eds.), Dependability

Metrics (Vol. 4909, pp. 245-254). Springer Berlin / Heidelberg.

Ferrari, D. (1972). Workload charaterization and Selection in Computer

Performance Measurement. Computer, 5(4), 18-24. doi:10.1109/C-

M.1972.216939

Ferrari, D. (1983). Measurement and tuning of computer systems. Englewood

Cliffs NJ: Prentice-Hall.

Ferrari, G., Ezhilchelvan, P., & Mitrani, I. (2006). Performance Modeling and

Evaluation of E-Business Systems. 39th Annual Simulation Symposium

(ANSS’06) (pp. 135-142). IEEE. doi:10.1109/ANSS.2006.36

164

 References

Fit4Green Consortium. (2010). Fit4Green | Energy aware ICT optimization

policies. Retrieved December 14, 2010, from http://www.fit4green.eu/

Fortier, P. J., & Michel, H. E. (2003). Computer systems performance evaluation

and prediction. Burlington MA: Digital Press.

Galletta, D. (2002). Web site delays: How tolerant are users? Journal of the

Association of Information Systems, (5(1)), 1-28. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.86.1775&rep=rep1&type=pdf

Garg, S., van Moorsel, A., Vaidyanathan, K., & Trivedi, K. S. (1998). A methodology

for detection and estimation of software aging. Proceedings Ninth

International Symposium on Software Reliability Engineering (Cat.

No.98TB100257) (pp. 283-292). IEEE Comput. Soc.

doi:10.1109/ISSRE.1998.730892

Goel, A. (2004). Advances in Distributed Systems. University of Toronto.

Google Inc. (2010). Google Analytics | Official Website. Retrieved December 3,

2010, from http://www.google.com/analytics/

Gray, J., & Siewiorek, D. P. (1991). High-availability computer systems. Computer,

24(9), 39–48. IEEE. doi:10.1109/2.84898

GreenICT.com.au. (2008). GreenICT.com.au. Retrieved from

http://greenict.com.au/

GreenICT.org.uk. (n.d.). GreenICT.org.uk. Retrieved from http://greenict.org.uk/

165

 References

Grottke, M., Li, L., Vaidyanathan, K., & Trivedi, K. S. (2006). Analysis of Software

Aging in a Web Server. IEEE Transactions on Reliability, 55(3), 411-420.

doi:10.1109/TR.2006.879609

Hadharan, R., Ehrlich, W. K., Cura, D., & Reeser, P. K. (2000). End to End

Performance Modeling of Web Sewer Architectures. ACM SIGMETRICS

Performance Evaluation Review, 28(2), 57-63. doi:10.1145/362883.581258

Haring, G. (1983). On stochastic models of interactive workloads. Proceedings of

the 9th International Symposium on Computer Performance Modelling,

Measurement and Evaluation (Vol. 1983, pp. 133–152). Amsterdam;New

York ;New York N.Y.: North-Holland Publishing Co. 

Hellerstein, J. L., Zhang, F., & Shahabuddin, P. (1998). Characterizing normal

operation of a web server: Application to workload forecasting and problem

detection. CMG-CONFERENCE- (Vol. 1, pp. 150–160). COMPSCER

MEASUREMENT GROUP INC.

Hevner, A., March, S., & Park, J. (2004). Design science in information systems

research. Mis Quarterly. Retrieved from http://dl.acm.org/citation.cfm?

id=2017217

Hu, J., Deng, J., & Wu, J. (2011). A Green Private Cloud Architecture with global

collaboration. Telecommunication Systems. doi:10.1007/s11235-011-9639-5

Huang, Y. (1995). Software Rejuvenation: Analysis, Module and Applications.

FTCS ’95 Proceedings of the Twenty-Fifth International Symposium on

Fault-Tolerant Computing.

IDC. (2007). Virtualization and Multicore Innovations Disrupting the Worldwide

Server Market, According to IDC. Retrieved February 15, 2012, from

166

 References

http://virtualization.info/en/news/2007/03/idc-reports-virtualization-

and.html

ISO/IEC. (2001, June). ISO9126-1. Software engineering - Product quality - Part

2: External Metrics.

Imai, K., King, G., & Lau, O. (2006). Zelig: Everyone’s Statistical Software. R

package version, 2–7. Citeseer.

Imai, K., King, G., & Lau, O. (2008). Toward A Common Framework for Statistical

Analysis and Development, 17(4), 892-913.

Iosup, A., Epema, D. H. J., Franke, C., Papaspyrou, A., Schley, L., Song, B., &

Yahyapour, R. (2007). On Grid Performance Evaluation Using Synthetic

Workloads. In E. Frachtenberg & U. U. Schwiegelshohn (Eds.), SSPP’06

Proceedings of the 12th international conference on Job scheduling

strategies for parallel processing (Vol. 4376, pp. 232-255). Springer-Verlag

Berlin Heidelberg.

JMeter contributors. (n.d.). JMeter - Apache JMeter. Retrieved October 24, 2010,

from http://jakarta.apache.org/jmeter/

Jewell, D. (2008). Performance Engineering and Management Method — A

Holistic Approach to Performance Engineering. Performance Modeling and

Engineering, 29–55. Boston, MA: Springer.

Jian, R. (1991). The art of computer systems performance analysis: Techniques for

experimental design, measurement, simulation, and modeling. John Wiley &

Sons, Inc., New York, USA.

Jiang, S. (2012). Green Networking Strategies Versus Networking Modes. Future

Wireless and Optical Networks.

167

 References

Järvinen, P. H. (2004). On Research Methods. Tampere: Opinpaja.

Kaplan, J., Forrest, W., & Kindler, N. (2008). Revolutionizing data center energy

efficiency. McKinsey & Company, Tech. Rep.

Koomey, J. G. (2007). Estimating total power consumption by servers in the US

and the world. Oakland, CA: Analytics Press.

Koomey, J. G. (2011). Growth in Data Center Electricity Use 2005 to 2010.

Oakland, CA. Retrieved from

http://www.analyticspress.com/datacenters.html

Kotsis, G. (2004). Performance Management in Dynamic Computing

Environments. Performance Tools and Applications to Networked Systems,

254–264.

Koziolek, H. (2008). Introduction to Performance Metrics. In I. Eusgeld, F.

Freiling, & R. Reussner (Eds.), Dependability Metrics (Vol. 4909, pp. 199-

203). Springer Berlin / Heidelberg. Retrieved from

http://dx.doi.org/10.1007/978-3-540-68947-8_17

Koziolek, H., & Happe, J. (2008). Performance Metrics for Specific Domains. In I.

Eusgeld, F. Freiling, & R. Reussner (Eds.), Dependability Metrics (Vol. 4909,

pp. 233-240). Springer Berlin / Heidelberg.

Kuhmann, W. (1989). Experimental investigation of stress inducing properties of

system response times. Ergonomics, 32, 271-280.

Kuhmann, W., Boucsein, W., Schaefer, F., & Alexander, J. (1987). Experimental

investigation of psychophysiological stress-reactions induced by different

system response times in human-computer interaction. Ergonomics, 30, 933-

943.

168

 References

Lightner, N. J., & Zeng, L. (2009). What is still wrong with the World-Wide Web?

An update after a decade. Journal of Intelligent Manufacturing, 22(1), 3-15.

doi:10.1007/s10845-009-0275-9

Lilja, D. J. (2000). Measuring computer performance: a practitioner’s guide.

New York, NY: Cambridge Univ Press. Retrieved from

http://books.google.com/books?hl=en&lr=&id=jb68T-

OuIC4C&oi=fnd&pg=PP1&dq=Measuring+computer+perform

ance:+a+practitioner%27s+guide&ots=XTORdPwObq&sig=21hb17-

M0lD1KrhiShvmCdXhLQg

Lin, W., Liu, Z., Xia, C. H., & Zhang, L. (2005). Optimal capacity allocation for Web

systems with end-to-end delay guarantees. Performance Evaluation, 62(1-4),

400-416. doi:10.1016/j.peva.2005.07.021

Lindgaard, G., & Dudek, C. (2002). What is this evasive beast we call user

satisfaction? Interacting with Computers, 492-452.

Little, J. D. C. (1961). A Proof for the Queueing Formula: L=Lamdba W.

Operations Research, 9, 383-387.

Loosley, C. (2005). When Is Your Web Site Fast Enough? Retrieved from

http://www.ecommercetimes.com/story/46627.html

Lu, S., Yang, X., & Zhao, X. (2004). The application of modeling and prediction

with MRA wavelet network. Journal of Marine Science and Application, 3(1),

20-23. doi:10.1007/BF02918641

Mahanti, A., Williamson, C., & Wu, L. (2009). Workload Characterization of a

Large Systems Conference Web Server. 2009 Seventh Annual

Communication Networks and Services Research Conference (pp. 55-64).

Moncton, BC, Canada: IEEE. doi:10.1109/CNSR.2009.19

169

 References

March, S. T., & Smith, G. F. (1995). Design and natural science research on

information technology. Decision support systems, 15(4), 251–266. Elsevier.

Martin, G., & Corl, K. (1986). System response time effects on user productivity.

Behavior and Information Technology, 5, 3-13.

Menascé, D. (2000). Scaling for e-business: technologies, models, performance,

and capacity planning. Upper Saddle River NJ: Prentice Hall PTR.

Menascé, D. A., & Almeida, V. A. F. (2002). Capacity Planning for Web Services.

Prentice Hall, Inc., New Jersey, USA.

Menascé, D. A., Almeida, V. A. F., Fonseca, R., & Mendes, M. A. (1999). A

methodology for workload characterization of E-commerce sites (pp. 119-128).

Denver, Colorado, United States. doi:10.1145/336992.337024

Menascé, D. A., Almeida, V. A. F., Riedi, R., Ribeiro, F., Fonseca, R., & Meira, W.

(2003). A hierarchical and multiscale approach to analyze E-business

workloads. Performance Evaluation, 54(1), 33-57. doi:10.1016/S0166-

5316(02)00228-6

Microsoft Corporation. (n.d.). The Official Microsoft IIS Site. Retrieved August 18,

2010, from http://www.iis.net/

Mielke, A. (2006). Elements for response-time statistics in ERP transaction

systems. Performance Evaluation, 63(7), 635-653.

doi:10.1016/j.peva.2005.05.006

Miller, R. B. (1968). Response time in man-computer conversational transactions.

Proceedings of the December 9-11, 1968, fall joint computer conference, part

I on - AFIPS ’68 (Fall, part I) (Vol. 33, p. 267). New York, New York, USA:

ACM Press. doi:10.1145/1476589.1476628

170

 References

Mindcraft. (2010). Mindcraft - WebStone Benchmark Information. Retrieved

December 3, 2010, from http://www.mindcraft.com/webstone/

Miniwatts Marketing Group. (2012). Internet Users in the World. Internet World

Stats. Retrieved from http://www.internetworldstats.com/stats.htm

Mullender, S. (1993). Distributed systems. University of Edinburgh. Retrieved

from http://doc.utwente.nl/64628

Net-SNMP Development Team. (2007). Net-SNMP. Retrieved January 2, 2011,

from http://www.net-snmp.org/

OMG (Object Management Group). (2011). BPMN Specification. Retrieved from

http://www.bpmn.org/

Overbaugh, R. C. (n.d.). Bloom’s Taxonomy. Retrieved November 25, 2010, from

http://www.odu.edu/educ/roverbau/Bloom/blooms_taxonomy.htm

Papagiannaki, K., Taft, N., Zhang, Z.-L., & Diot, C. (2005). Long-term forecasting

of Internet backbone traffic: observations and initial models. IEEE INFOCOM

2003. Twenty-second Annual Joint Conference of the IEEE Computer and

Communications Societies (IEEE Cat. No.03CH37428) (Vol. 2, pp. 1178-

1188). IEEE. doi:10.1109/INFCOM.2003.1208954

Podelko, A. (2007, January). Performance Testing and Performance Engineering.

Retrieved January 13, 2011, from

http://www.testingreflections.com/node/view/4816

Podelko, A. (2009, September). Performance Testing Innovations. Retrieved

January 13, 2011, from http://www.testingreflections.com/node/view/8285

171

 References

Raghavan, S., Vasukiammaiyar, D., & Haring, G. (1993). Generative models for

network load in a single server environment. University of Maryland, College

Park.

Ruffo, G., Schifanella, R., Sereno, M., & Politi, R. (2004). WALTy: a user behavior

tailored tool for evaluating web application performance. Third IEEE

International Symposium on Network Computing and Applications, 2004.

(NCA 2004). Proceedings. (pp. 77-86). IEEE. doi:10.1109/NCA.2004.1347765

SPEC. (2010). SPEC - Standard Performance Evaluation Corporation. Retrieved

January 3, 2011, from http://www.spec.org/

Sang, A., & Li, S. (2000). A predictability analysis of network traffic. Proceedings

IEEE INFOCOM 2000. Conference on Computer Communications.

Nineteenth Annual Joint Conference of the IEEE Computer and

Communications Societies (Cat. No.00CH37064) (Vol. 1, pp. 342-351). IEEE.

doi:10.1109/INFCOM.2000.832204

Schäppi, B., Bellosa, F., Przywara, B., Bogner, T., & Weeren, S. (2007). Energy

efficient servers in Europe Energy consumption, saving potentials, market

barriers and measures. Retrieved from http://www.efficient-

server.eu/fileadmin/docs/reports/E-

Server_PartI_SavingPotentials_and_Scenarios_28112007.pdf

Selhofer, H., Lilischkis, S., Woerndl, M., Alkas, H., & O’Donnell, P. (eds.). (2008).

The European e-Business Report 2008. Retrieved from

http://www.ebusiness-watch.org/key_reports/documents/EBR08.pdf

Selvidge, P. R., Chaparro, B. S., & Bender, G. T. (2002). The world wide wait:

effects of delays on user performance. International Journal of Industrial

Ergonomics, 29, 15-20.

172

 References

Silva, L. H. M. (2006). Software Aging and Rejuvenation in a SOAP-based Server.

Fifth IEEE International Symposium on Network Computing and

Applications (NCA’06) (Vol. 2006, pp. 56-65). Cambridge, MA, USA: IEEE.

doi:10.1109/NCA.2006.51

Singleton, P. (2002, July). Performance Modelling — What, Why, When and How.

BT Technology Journal, 2002(20). doi:10.1023/A:1020860029447

Soininen, J., & Jaakkola, H. (2012). Knowledge Mining of the Web Services Usage.

Proceedings of The 22nd European Japanese Conference on Information

Modelling and Knowledge Bases (EJC 2012), June 4-8, 2012, Final version in

Information Modelling and Knowledge Bases XXIV, IOS Press, Amsterdam.

Accepted for publication. Prague, Czech Republic: IOS Press.

Splaine, S., & Jaskiel, S. R. (2001). The Web Testing Handbook. STQE Publishing.

doi:10.1109/TPC.2011.2182569

Sugiyama, Y. (2012). Green ICT toward Low Carbon Society. Design for

Innovative Value Towards a Sustainable Society Proceedings of EcoDesign

2011: 7th International Symposium on Environmentally Conscious Design

and Inverse Manufacturing. doi:10.1007/978-94-007-3010-6_149

Sullivan, M., & Chillarege, R. (1991). Software defects and their impact on system

availability-a study of field failures in operating systems. [1991] Digest of

Papers. Fault-Tolerant Computing: The Twenty-First International

Symposium (pp. 2-9). IEEE Comput. Soc. Press.

doi:10.1109/FTCS.1991.146625

TPC. (2010). TPC - Homepage. Retrieved January 3, 2011, from

http://www.tpc.org/

173

 References

Team, R. D. C. (2011). R: A Language and Environment for Statistical

Computing. Vienna, Austria. Retrieved from http://www.r-project.org

Thalheim, B., & Tropmann, M. (2011). Performance Forecasting for Performance

Critical Huge Databases. Proceeding of the 2011 conference on Information

Modelling and Knowledge Bases XXII (pp. 206–225). IOS Press. Retrieved

from http://dl.acm.org/citation.cfm?id=1972767

Tierney, B., Crowley, B., Gunter, D., Lee, J., & Thompson, M. (2001). A monitoring

sensor management system for grid environments. Cluster Computing, 4(1),

19–28. Springer. doi:10.1023/A:1011408108941

Tierney, B., Johnston, W., Crowley, B., Hoo, G., Brooks, C., & Gunter, D. (1998).

The NetLogger methodology for high performance distributed systems

performance analysis. High Performance Distributed Computing, 1998.

Proceedings. The Seventh International Symposium on (pp. 260–267). IEEE.

Titchkosky, L., Arlitt, M., & Williamson, C. (2003). A performance comparison of

dynamic web technologies. ACM SIGMETRICS Performance Evaluation

Review, 31(3), 2–11. ACM.

Tsai, C.-H., Shin, K. G., Reumann, J., & Singhal, S. (2007). Online web cluster

capacity estimation and its application to energy conservation. Parallel and

Distributed Systems, IEEE Transactions on, 18(7), 932–945. IEEE.

doi:10.1109/TPDS.2007.1028

VMware, I. (n.d.). Performance Best Practices for VMware vSphereTM 4.1.

Retrieved November 16, 2011, from

http://www.vmware.com/pdf/Perf_Best_Practices_vSphere4.1.pdf

174

 References

Van Steen, M. (2003). Distributed Systems Principles and Paradigms. Network, 1,

2. Prentice-Hall. Retrieved from http://www.distributed-

systems.net/courses/ds-slides/notes.01.pdf

Vercauteren, T., Aggarwal, P., Wang, X., & Li, T. H. (2007). Hierarchical

forecasting of web server workload using sequential Monte Carlo training.

Signal Processing, IEEE Transactions on, 55(4), 1286–1297. IEEE.

Walker, R. (2006). Examining Load Average | Linux Journal. Retrieved December

7, 2010, from http://www.linuxjournal.com/article/9001

Weiss, S., Boggs, G., Lehto, M., Shodja, S., & Martin, D. (1982). Computer system

response time and psycho-physiological stress II (pp. 698-702).

Yang, R., & Theys, M. D. (2005). RMF: Resource monitoring framework for

integrating active and passive monitoring tools in Grid environments. Journal

of Parallel and Distributed Computing, 65(11), 1419–1428. Elsevier.

Zhang, Z., & Fan, W. (2008). Web server load balancing: A queueing analysis.

European Journal of Operational Research, 186(2), 681–693. Elsevier.

175

 Glossary of Terms and Abbreviations

Glossary of Terms and Abbreviations

 Accuracy

The absolute di erence between a reference value and the correspondingff
reference value

 ANalysis Of VAriance (ANOVA)

a general statistical technique used to separate the total variation observed in a
set of measurements into the variation due to measurement error within each
alternative and the variation across alternatives

 Analytic model

A modeling technique that uses mathematical expressions to represent
relationships between modeled system components

 Arithmetic mean

The sum of all values divided by the number of values

 ASymmetric MultiProcessor (ASMP)

A synonym for “loosely-coupled multiprocessor”

 Availability

a metric used to represent the percentage of time a system is available during
an observation period

 Bandwidth

the maximum possible throughput of a resource

 Benchmark

A well-defined, repeatable workload that can be executed on various systems in
order to compare performance

 Bottleneck

A resource that saturates first as the workload intensity increases. it is the
resource with the highest service demand

 Cache

A small fast memory holding recently-accessed data, designed to speed up
subsequent accesses to the same data. A local data structure holding a copy of
remote data

 Capacity

Capacity is about some activity over time, e.g. bytes moved over a period, from
which utilisation can be derived. Capacity is e.g. the number of cars per hour a
motorway can handle.

177

 Glossary of Terms and Abbreviations

 Capacity analysis

Evaluation of a factory, production process or line, or machine, to determine its
maximum output rate.

 Capacity management

The process of ensuring the current capacty is adequate and used in the most
e ective wayff

 Capacity planning

A process of predicting when future load levels will saturate the system and of
determining the most cost-e ective way of delaying system saturation as muchff
as possible

 Central Processing Unit (CPU)

The arithmetic, logic, and control unit of a computer that executes instructions

clustering analysis a process by which a large number of components are
grouped into clusters of similar components

 Concurrency

A synonym for “parallel processing”, but also applies to single processing
environment where multiple programs are interleaved

 Confidence level

The probability that a confidence interval actually contains the real mean

 Continuous probability distribution

probability distribution associated with a continuous random variable

 Continuous random variable

A random variable whose values are uncountable

 Data centre infrastructure efficiency (DCIE)

A metric used to determine the energy efficiency of a data centre. The metric,
which is expressed as a percentage, is calculated by dividing IT equipment
power by total facility power. DCIE was developed by members of the Green
Grid, an industry group focused on data centre energy efficiency.

 Deadlock

a situation in which two (or more) processes require a resource held by another

 Descriptive statistics

Summarize a large amount of data using a small amount of data, often using
only one number

178

http://searchDataCenter.techtarget.com/sDefinition/0,,sid80_gci332661,00.html
http://WhatIs.techtarget.com/definition/0,,sid9_gci212560,00.html

 Glossary of Terms and Abbreviations

 E-business

Conducting business over the Internet

 E-governement

A generic term that refers to any government functions or processes that are
carried out in a digital form over the Internet. Local, state and federal
governments essentially set up central websites from which the public (both
private citizens and businesses) can find public information, download
government forms and contact government representatives.

 E ciencyffi

The speed-up divided by the number of processors

 Elapsed time

The total time spent by a job from its submission until its completion

 End users

The final or ultimate user of a computer system. The end user is the individual
which uses the product after it has been fully developed and marketed. The
term is useful because it distinguishes two classes of users, users who require a
bug-free and finished product (end users), and users who may use the same
product for development purposes.

 Extrapolation

A method that infers values from outside the range of values used to build a
model

 Geometric mean

A measure of location that is applicable to proportions rather than
measurements or rates

 Harmonic mean

A measure of location that is applicable to rates rather than measurements or
proportions

 Histogram

A graph which plots the probability distribution

 Hit

A resource request for a file from the Web server, as recorded in the server
access log.

 Hot spot

excessive contention for the same resource (often data in memory)

179

 Glossary of Terms and Abbreviations

 Independent and Identically Distributed (IID)

A characteristic of a collection of random variables if each random variable has
the same distribution and all random variables are mutually independent

 Input/Output (I/O)

The process of receiving and transmitting data, as opposed to the actual
processing of data

 Interactive processing

The processing of tasks with think times in between

 Internet

The global set of interconnected networks that use TCP/IP

 internet

A collection of packet-switching and broadcast networks that are connected
together via routers

 Interpolation

A method that infers values from within the range of values used to build a
model

 intranet

A private internet deployed by an organization for its internal use and
necessarily connected to the Internet

 Last In, First Out (LIFO)

a scheduling policy that processes tasks in the reverse order that they arrive.
Also

called “First In, Last Out”

 Latency

The delay imposed by a computing device

 Law of large numbers

States that the average of the outcomes of a large number of experiments will
approach the expected value

 Linear regression

A modelling technique that derives a line equation, relating a dependent data
set to an independent data set

 Load balancing

The distribution of work to resources so that the loads are relatively equal

180

 Glossary of Terms and Abbreviations

 Local Area Network (LAN)

a network intended to serve a small area

 Loosely-coupled multiprocessor

A multiprocessor where accesses to memory locations can di er, depending onff
whether the memory is local to the processor or remote mean typically
shorthand for “arithmetic mean”

 Mean Time Between Failures (MTBF)

The amount of time a component is expected to work without a failure

 Mean Time To Repair (MTTR)

the average repair time to fix or replace a failed component and start using the
system again

 Median

The middle value in an ordered set of values when there is an odd number of
values, and the average of the middle two values when there is an even number
of values

 Memory hierarchy

layers of memory devices, where lower layers have higher capacity but slower
access times

 Memorylessness

a property of a random distribution such that the probability for an event is not
conditional upon the existence of a previous event. A property of a process such
that transitions to future states are not dependent upon past states, but only
the present state

 Mode

the most frequent value in the set of values

 Model

An abstraction of a system, often simplifying the details

 Multiprocessor

A parallel computer where the processors share resources (usually memory and
the network)

 Natural (work)load

Characteristics are similar to those of real workload and can be applied
repeatedly in a control manner, is developed and used for studies.

 Network Attached Storage (NAS)

specialized file servers that serve file system data over a network

181

 Glossary of Terms and Abbreviations

 Node

An element of a graph or a processor in a multiprocessor or multicomputer

 Page depth

The number of unique page views during a visit.

 Page impression

The exact number of times a specific website has been accessed or viewed by a
user. A page impression acts as a counter for Web pages, informing site owners
how many times their sites were visited. Page impressions are also referred to
as hits.

 Page view

A resource request for a file that is a Web page (e.g., .php or .html files).

 Parallel processing

The simultaneous execution of operations

 Parallelism

a synonym for “parallel processing”

 Percentile

A value in an ordered set of values below which a certain percentage of values
fall

 Performability

It metrics quantify the system’s ability to perform in the presence of faults. It
combines performance and reliability to quantify the operational quality of a
service between the occurrence of an error and its full recovery, or over the
complete execution. (Eusgeld, Happe, Limbourg, Rohr, & Salfner, 2008)

 Performance

It is about the amount of time that an individual transaction or piece of work
takes to be completed.

 Performance engineering

It: 1) develops practical strategies that help predict the level of performance
and 2) provides recommendations to realize the optimal performance level

 Performance model

a system’s representation used for predicting the values of performance
measures of the system

 Pipelining

The simultaneous execution of di erent stages (or, phases) of an operationff

182

 Glossary of Terms and Abbreviations

 Precision

the amount of scatter in a set of measurements

 Predictive statistics

summarize a large amount of data using a small amount of data, but this
summary often comes in the form of an equation (also called a model)

 Probability

A mathematical expression of the likelihood of an event of an experiment
occurring on a scale of 0 to 1

 Quality of Experience

Sometimes also known as "Quality of User Experience," is a subjective measure
of a customer's experiences with a vendor.

 Quality of Service (QoS)

The properties of a network that contribute to the degree of satisfaction that
users perceive, relative to the network’s performance. Four categories that are
considered: (1) capacity or data rate, (2) latency or delay, (3) jitter, and (4)
tra c lossffi

 Random

The unpredictability of future behaviour. This is not non-determinism

 Random variable

a function that assigns values to the outcomes

 Range

the maximum value minus the minimum value in a set of values

 Real (work)load

Observed on a system being used for normal operations. It cannot be repeated
as such, and therefore, is generally not suitable for use as a test workload.

 Regression

A mathematical model derived from measured values

 Reliability

Measures of the occurrence of failures during the processing of services

 Residence

Time total time spent by a request at a resource

183

 Glossary of Terms and Abbreviations

 Resolution

The smallest incremental change that can be detected and displayed by a
measuring tool

 Response time

Time from when a customer arrives to a system until the customer completes
service and exits the system

 Rule Of Thumb (ROT)

A method of procedure based on experience and common sense

 Scalability

System's ability to gracefully increase its capacity in order to accommodate
future growth. Scalability can be measured as a ratio of the increase in the
system performance relative to the amount of new hardware and/or system
software that one have added.

 Scheduling policies

Policies responsible for assigning work to be executed over time in order to
reach certain objectives, such as minimizing average response time or
maximizing throughput

 Service Level Agreement (SLA)

A contract between the service provider and the customer. it sets specific goals
for response time, throughput, etc.

 Service time

Wall clock time between the start of an event and the last byte of output
retrieved (typically does not include time to render output on a display device.)

 Session

The session of activity that a user with a unique IP address spends on a website
during a specified period of time. The number of user sessions on a site is used
in measuring the amount of traffic a website gets. The site administrator
determines what the time frame of a user session will be (e.g., 30 minutes). If
the visitor comes back to the site within that time period, it is still considered
one user session because any number of visits within that 30 minutes will only
count as one session. If the visitor returns to the site after the allotted time
period has expired, say an hour from the initial visit, then it is counted as a
separate user session.

 Simple linear correlation coe cientffi

A measure of association which computes the linear relationship between one
data set and the other

184

 Glossary of Terms and Abbreviations

 Simulation

A modelling technique that uses a program to represent relationships between
modelled system components. Time is often a parameter

 Software Performance Engineering (SPE)

A process of constructing software systems that meet performance objectives

 Spatial locality

A workload characteristic of a data stream in which successive references have
close addresses. Caching has better performance when spatial locality is
present

 Static model

A model where time is not a variable in the model

 Statistic

A numerical quantity (e.g., mean) calculated from data

 Statistical randomness

A property of a sequence of random numbers such that the sequence contains
no recognizable pattern or regularities

 Statistical regularity

The characteristic of random events to converge to predictable values when an
experiment is repeated a large number of times

 Statistics

A range of techniques for analysing data, interpreting data, displaying data,
and making decisions based on data

 stochastic process

A collection of random variables that are parametrized on time

 Storage Area Network (SAN)

Specialized networks for storage data that can connect multiple hosts to
multiple storage devices

 Summary

Statistics group multiple descriptive statistics together to describe data more
thoroughly

 Synthetic model

A model that is constructed using basic components of the real workload

185

 Glossary of Terms and Abbreviations

 Synthetic (work)load

Workload generated by synthetic testing tools. Normally used for comparison
of hardware.

 Systematic error

Errors in measurements that are a result of some experimental “mistake”, such
as a change in the experimental environment of an incorrect procedure, that
introduces a constant or slowly changing bias into the measurements

 Temporal locality

A workload characteristic of a data stream in which the references that occur
together in some time period are likely to occur together again in future time
periods

 Test (work)load

 Any workload used in performance studies. A test load can be real or synthetic.

 Think time

Elapsed time between the receipt of a reply and the generation of a new request
in a closed system

 Thrashing

Excessive page file activity due to the lack of adequate memory

 Throughput

Rate at which work is executed

 Tightly-coupled multiprocessor

A multiprocessor where accesses to all memory locations take the same amount

of time

 Time to first byte (TTFB)

The duration from the virtual user making an HTTP request to the first byte of
the page being received by the browser. This time is made up of the socket
connection time, the time taken to send the HTTP request and the time to take
to get the first byte of the page.

 Time to last byte

Service time.

 Trace-based workload

Workload generation based on the replay of workload parameters that are
captured during an earlier execution of a real system

186

 Glossary of Terms and Abbreviations

 Traffic volume

The number of bytes transferred by the Web server. For example, traffic
volume per day is the total bytes transferred to all visitors during a 24-hour
period.

 Topology

Specifies the connectivity of the processors or computers

 Utilization

A number between 0 and 1 showing the average fraction of the total time that a
resource is busy

 Validation

Determining how close the results of a model are to what would be produced
by an actual system

 Verification

Determining whether a model is implemented correctly

 Virtual Local Area Network (VLAN)

Remotely connected lans that appear to be one

 Visit

A series of resource requests from a unique visitor who are temporally
clustered. After 30 minutes of inactivity, a page view by the same visitor is
counted as a new visit. Visits are sometimes referred to as sessions.

 Visit duration

The duration of a visit (i.e., an amount of time a visitor spends browsing
through the site during a visit). Visit duration is also known as session
duration.

 Visitor

A unique client (IP) generating a hit or page view.

 Web

Nickname for the world wide web

 Weighted statistic

A product of the statistic for a set of values and a weight assigned to it

 Wide Area Network (WAN)

A network that covers a large area

187

 Glossary of Terms and Abbreviations

 Workload characterization

The process of partitioning the workload into smaller sets, where elements of
each set are similar in some way

 World Wide Web (WWW)

A client/server architecture that integrates various types of information on the
Internet

188

	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Acronyms and Initialisms
		

	1 Introduction
	1.1 Background
	1.2 Research Problem
	1.3 Aim of the Research
	1.4 Research Approach
	1.5 Research Methods
	1.6 Scope of the Research
	1.7 Related Studies
	1.8 Contributions of the Work
	1.9 Thesis Outline

	2 Website Environment
	2.1 User Expectations
	2.2 Fault Tolerance
	2.3 Cluster Computing
	2.4 Web Service Performance Boosting Technologies
	2.5 Software Aging and Rejuvenation
	2.6 Conclusion

	3 State of the Art in Performance Analysis
	3.1 Access Log Analysis
	3.2 Forecasting of Workload
	3.3 Performance Management
	3.3.1 Performance Related Terminology
	3.3.2 Performance Engineering
	3.3.3 Performance Estimation
	3.3.4 Performance Analysis

	3.4 Response Time
	3.5 Throughput
	3.6 Utilization, Reliability, and Availability
	3.7 Benchmarking Tools and Techniques
	3.8 Monitoring Tools
	3.9 Performance Prediction Using Natural Load
	3.10 Quality of Service
	3.11 Conclusion

	4 Access Log Analysis
	4.1 Collecting and Sampling Process
	4.2 Arrival Rate
	4.3 Analysis by Types of Queries
	4.4 Trend Prediction
	4.5 Sensitivity Analysis
	4.6 Conclusion

	5 Mastered Way of Workload and its Impact
	5.1 Impact of Test Load
	5.2 Controlled Load on the System
	5.3 Resource Utilization
	5.4 Sensitivity Analysis
	5.5 Conclusion

	6 Performance Analysis of the System
	6.1 Precision and Accuracy
	6.2 Data Preprocessing
	6.3 Validation of Measurements
	6.4 Interdependence of Measurable Factors
	6.5 Performance Prediction
	6.6 Visualization of Results
	6.7 Rapid Changes in Performance and Software Aging
	6.8 Combination of Results
	6.9 Sensitivity Analysis
	6.10 Conclusion

	7 Conclusions
	7.1 Implications for practice
	7.2 Implications for research
	7.3 Limitations of the research and suggestions for further studies

	References
	Glossary of Terms and Abbreviations
	Accuracy
	ANalysis Of VAriance (ANOVA)
	Analytic model
	Arithmetic mean
	ASymmetric MultiProcessor (ASMP)
	Availability
	Bandwidth
	Benchmark
	Bottleneck
	Cache
	Capacity
	Capacity analysis
	Capacity management
	Capacity planning
	Central Processing Unit (CPU)
	Concurrency
	Conﬁdence level
	Continuous probability distribution
	Continuous random variable
	Data centre infrastructure efficiency (DCIE)
	Deadlock
	Descriptive statistics
	E-business
	E-governement
	Eﬃciency
	Elapsed time
	End users
	Extrapolation
	Geometric mean
	Harmonic mean
	Histogram
	Hit
	Hot spot
	Independent and Identically Distributed (IID)
	Input/Output (I/O)
	Interactive processing
	Internet
	internet
	Interpolation
	intranet
	Last In, First Out (LIFO)
	Latency
	Law of large numbers
	Linear regression
	Load balancing
	Local Area Network (LAN)
	Loosely-coupled multiprocessor
	Mean Time Between Failures (MTBF)
	Mean Time To Repair (MTTR)
	Median
	Memory hierarchy
	Memorylessness
	Mode
	Model
	Multiprocessor
	Natural (work)load
	Network Attached Storage (NAS)
	Node
	Page depth
	Page impression
	Page view
	Parallel processing
	Parallelism
	Percentile
	Performability
	Performance
	Performance engineering
	Performance model
	Pipelining
	Precision
	Predictive statistics
	Probability
	Quality of Experience
	Quality of Service (QoS)
	Random
	Random variable
	Range
	Real (work)load
	Regression
	Reliability
	Residence
	Resolution
	Response time
	Rule Of Thumb (ROT)
	Scalability
	Scheduling policies
	Service Level Agreement (SLA)
	Service time
	Session
	Simple linear correlation coeﬃcient
	Simulation
	Software Performance Engineering (SPE)
	Spatial locality
	Static model
	Statistic
	Statistical randomness
	Statistical regularity
	Statistics
	stochastic process
	Storage Area Network (SAN)
	Summary
	Synthetic model
	Synthetic (work)load
	Systematic error
	Temporal locality
	Test (work)load
	Think time
	Thrashing
	Throughput
	Tightly-coupled multiprocessor
	Time to first byte (TTFB)
	Time to last byte
	Trace-based workload
	Trafﬁc volume
	Topology
	Utilization
	Validation
	Veriﬁcation
	Virtual Local Area Network (VLAN)
	Visit
	Visit duration
	Visitor
	Web
	Weighted statistic
	Wide Area Network (WAN)
	Workload characterization
	World Wide Web (WWW)

