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Abstract

This  thesis  introduces  a  new  Predictus-model  for  performance  evaluation  and 

estimation  in  a  multi-layer  website  environment.  The  model  is  based  on  soft 

computing ideas,  i.e.  simulation and statistical  analysis.  The aim is  to  improve 

energy consumption of the website's hardware and investment efficiency and to 

avoid loss of availability. The aim of optimised exploitation is reduced energy and 

maintenance costs  on the  one hand and increased end-user  satisfaction due to 

robust and stable web services on the other.

A method based on simulation of user requests is described. Instead of ordinary 

static parameter set, the dynamic extraction from previous log files is used. The 

distribution of existing requests is exploited to generate the actual based natural 

load.  By  loading  the  server  system  with  valid  and  well-known  requests,  the 

behaviour of the server system is natural. The control back loop on the generation 

of work load assures the validity of the work load in the long-term.

A method for identifying the actual performance of the website is described. Using 

the well-known load in simulation of usage by a large number of virtual users and 

observing the utilisation rate of server resources ensure the best information for 

the internal state of the system. The disturbance of the service website usage can be 

avoided  using  the  mathematical  extrapolation  method  to  reach  the  saturation 

point on the single server resource. 
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1  Introduction

1 Introduction

This  chapter  provides  a  short  overview of  the  research  topic  examined in  this 

thesis. The aim of this chapter is to provide the background to the research. Such a 

research  background  includes  an  introduction  to  the  research  area  and  the 

motivation behind this research.

1.1 Background

The World-Wide-Web was initially started as a project to enable the easy exchange 

of  information between researchers  who were  geographically  distant  from each 

other (Berners-Lee, Caillan, Luotonen, Nielesen, & Secret, 1994). It has now taken 

the  role  of  an  international  information  superhighway,  and  it  has  become 

synonymous with a mega warehouse of information. Web services have been used 

for different purposes, such as allowing for the exchange of information within and 

between  organizations,  and  lately  for  advertising,  selling  and  buying  of 

merchandise,  which  have  been  referred  to  as  electronic  commerce,  normally 

known as e-commerce. The World-Wide-Web has certainly helped in the sharing of 

information among Internet users throughout the world. There can be no denying 

that the Web has already become a part of everyday life in a large part of the world.

Many  traditional  services  have  been  transformed  or  converted  to  Web-based 

services. A variety of e-commerce online models now exist, ranging from shopping, 

auction,  reservation,  media  services,  banking  and  trading  to  customer  relation 

management, personnel management, etc. In addition to becoming a cost-effective 

solution for many traditional businesses, e-commerce is also creating new business 

opportunities. Web-based services have become such a critical component of many 

companies nowadays that guaranteeing performance and availability has become 

essential. About a third of all companies enabled customers to order their products 

or  services  online  in  2007  (Selhofer,  Lilischkis,  Woerndl,  Alkas,  &  O’Donnell, 

2008). This can be accomplished through different technical channels, including 

the company’s own website or third party trading platforms on the internet.
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1  Introduction

Splaine  &  Jaskiel  (2001) pointed  out  two  relevant  questions  in  system 

management: “How much extra performance do we need to have at present?” and 

“How long before we have to upgrade the existing infrastructure?” Maintaining the 

web  system  infrastructure  should  meet  a  two-fold  challenge  (Lin,  Liu,  Xia,  & 

Zhang, 2005). It must meet customer expectations in terms of quality of service 

(QoS) and that companies have to control information technology (IT) costs  to 

remain competitive. In addition, the aim in most cases of e-commerce services is to 

keep the service attractive to users and possibly increase the number of interested 

visitors. To achieve this requirement, services have to be constantly updated and 

improved  with  new  service  components  (applets)  to  keep  them  coming.  The 

improvements  and  enhancements  of  services  require  a  more  effective 

infrastructure to guarantee adequate quality of service. In many cases, customer 

expectations are satisfied by increasing the performance of service systems through 

adding more resources  such as  processors,  memory,  and even more redundant 

servers. 

ITIL (APM Group Ltd, 2011) defines the term performance as a measure of what  

is  achieved or delivered by a System, person,  team, Process or  IT Service .  In 

addition, in this study performance is embodied as an index. It is understood as a 

score  for  how well  a  particular  workload's  set  of  assigned  resources  are  being 

utilized compared to the optimum level. This index immediately shows whether 

resources  have remaining  capacity,  are  being over-utilized,  or  are  aligned "just 

right" to meet the demand. 

Performance requirements are based on the requirements during  hotspots.  The 

term ‘hotspot’ is introduced in  (Baryshnikov et al., 2005) and it means anything 

where traffic is significantly higher than the norm. The performance requirements 

vary depending on a number of reasons like the time of the day, happenings in 

society,  marketing  activities,  etc.  This  could  easily  lead  to  overestimation  of 

performance  requirements  and  to  increased  information  technology  costs.  To 

avoid overloading of the service, the gap between actual usage of the service and 

total available performance should be known by the service provider. An accurate 

knowledge  about  the  web  server  system bottlenecks  and their  locations  is  not 

enough in many cases. On those cases, the improvements of system activities are 

2



1  Introduction

focused  via  rough  guesses.  Some  of  those  improvements  might  be  focused 

correctly.  However,  some  improvements  are  merely  extra  costs.  To  avoid 

unnecessary high performance and high costs, it can be done by optimising a web 

service regularly.

Despite the increasing urgency of getting a hold on soaring energy demands in IT, 

costs continue to spiral out of control. Energy costs are increasing by 16% every 

year, while greenhouse gas emissions from data centres have already surpassed the 

output of Argentina or Netherlands and are due to overtake those of all airlines by 

2020  (Kaplan,  Forrest,  & Kindler,  2008).  However,  according to  one report,  it 

need not be that way. The report recommended that companies adopt a new metric 

called Corporate  Average Data  Efficiency (CADE)  which combines  both IT and 

facilities’ costs to monitor energy use, and create "energy czar" positions to manage 

energy efficiency.

Power consumption in data centres in the U.S. has been studied by Koomey (2007; 

2011).  In 2005, the total direct consumption for all servers in the U.S. was about 5 

million kW, including cooling and auxiliary equipment. When electricity used for 

cooling and auxiliary equipment is included, it  rises to 1.2% of retail  electricity 

3
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1  Introduction

sales in that year, resulting in a utility  bill  of  2.7 billion USD (the 2006 dollar 

value) when valued at U.S. industrial electricity prices. The total server power and 

electricity consumption for the world as a whole is about two and a half  times 

bigger than that of the U.S. The E-Server Consortium has reported corresponding 

energy consumption in Europe  (Schäppi,  Bellosa,  Przywara,  Bogner,  & Weeren, 

2007).  The report  shows that  the  total  electric  power consumption in  Western 

Europe (EU 15 plus Switzerland) in 2006 amounted to 39.5 TWh. In Figure 1.1, it 

is shown that the consumption is concentrated mostly on infrastructure and on the 

class of low price servers. According to the report, the servers are classified into 

three  categories,  the  volume servers  (valued  <25,000 US$),  mid-range  servers 

(25,000–500,000 US$), and high end servers (>5,000,000 US$). Data centres' 

energy consumption growth rate appears to have slowed significantly in the period 

2005-2010. The projected growth rate was 100%  (Koomey, 2007), but what was 

achieved seems to have been 36% (Koomey, 2011). This can be explained, above all, 

by  the  economic  slowdown  rather  than  as  a  result  of  active  energy-saving 

measures.

Updated information within the EU, or global data in general, does not exist, but 

according to Figure 1.2 (Koomey, 2011), distribution of the different categories of 

servers would have remained the same for the U.S. data centres between 2005 and 

2010.

Server utilization data centre is, in one of the reports  (Kaplan et al., 2008), only 

6%. According to a second source of utilization, it is about 15% (VMware, n.d.). The 

centralization of services in a smaller number of servers can be the average rate of 

utilization to increase.

In may ways, Green ICT has risen in the recent past according to the discussion. It 

will  be  completed  under  the  heading  of  constantly  developing  new  scientific 

research  (Benedetto et al., 2012; Hu, Deng, & Wu, 2011; Jiang, 2012; Sugiyama, 

2012) and commercial reports  (Datacenter Dynamics, 2011). In addition to these 

various  alliances  (Commission  of  the  European  Communities,  2008; 

GreenICT.com.au, 2008; GreenICT.org.uk, n.d.), some have created different goals 

for the achievement.

4
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By combining the functions of servers,  it  can be used to reduce the number of 

server machines. IDC Report  (IDC, 2007) predicts that with the x86 processors, 

the supply will  increase by 61%. The 2010 forecast has reduced the number of 

deliveries  to  39%  per  annum  due  to  the  multi-core  technology  and  server 

consolidation.  By reducing the number of  servers,  data centers are expected to 

decline  in  total  consumption,  which  includes  the  purchase  of  new  equipment, 

items of expenditure arising from the direct energy consumption and cooling.

The number of  users of  websites is  generally  very difficult  to  determine.  Some 

figures,  whose  accuracy  is  laborious  to  verify,  can  be  obtained;  for  example, 

(Miniwatts Marketing Group, 2012). It shows that at the end of 2011, the world 

had 2.3 billion Internet users. The total transport volume is even more difficult to 

assess.  In  any  case,  clearly  there  is  an  enormous  number  of  online  services, 

including  users  and  traffic  volume.  In  addition,  we  know  that  websites, 

applications and technology are very heterogeneous.

The performance requirements vary depending on a number of reasons, like the 

time of the day, events in society, marketing activities, etc. This easily leads to the 

overestimation  of  performance  requirements  and  to  increased  information 

5

Figure 1.2:  U.S. electricity use for data centres (2000, 2005, and 2010) 



1  Introduction

technology costs. With real and sufficient information, usage of the web service 

will  only  be  achieved  by  analyzing  the  log  data  on  a  regular  basis.  When  the 

number of servers is reduced and the physical machine utilization rate increases, 

less energy is needed in data centers. In many cases, the computing power is sized 

on a peak load basis, and even if the devices are under-loaded, fewer machines at a 

higher rate of use can achieve the same result as before.

Ferrari  et  al.  (2006) said that  providers  of  e-business services,  such as  on-line 

banking,  auctioning  and  retailing,  must  utilize  their  computing  resources 

efficiently and offer a high quality of service to their users. In order to do so, it is  

important to predict the performance that the system can achieve for a given level 

of demand, for instance, using a model which is: (a) sufficiently detailed to take 

into  account  the  essential  system  features;  and  (b)  sufficiently  simple  to  be 

analytically and numerically tractable. 

1.2 Research Problem

Regular  evaluation  is  needed  to  meet  the  challenge  of  quality  of  service  and 

reasonable  level  in  costs  of  information  technology’s  infrastructure.  There  are 

several  models  in  evaluating  computer  systems.  Quite  a  number  of  them  are 

analytical  (Dilley, Friedrich, Jin, & Rolia, 1998; Jian, 1991) or simulation models 

(Jian,  1991).  However,  redundancy in  high availability  and scalable  web server 

systems makes it challenging to perform a regular evaluation of performance by 

simulation or analytic models. The latent errors in software or configurations can 

slowly deprecate the effective performance of the system, making them noticeable 

only  in  long  periods.  This  type  of  errors  is  not  manageable  via  short  period 

simulation or by analytical methods. In addition, changes in software or hardware 

configurations  and  new  versions  of  applications  require  manual  update  of  the 

analytic models. The current best practice in the area is based on experience and 

the intuition of web service maintainers.

Proactive management of  resources requires accurate prediction of workload. A 

study (Sang & Li, 2000) of network traffic assesses how far into the future a traffic 
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rate process can be predicted for a given error constraint and what the minimum 

prediction  error  is  over  a  specified  prediction  time  interval.  Another  study 

(Papagiannaki,  Taft,  Zhang, & Diot,  2005) introduced a methodology to predict 

operations that have to take place in an IP backbone network. The presented traffic 

prediction model in the study on IP network is quite similar to the prediction in the 

web service system. However, capacity and performance monitoring methods are 

not equal due to the internal state robustness. In addition, the data management in 

IP network is only partially comparable to web service systems.

A framework  (Vercauteren, Aggarwal, Wang, & Li, 2007) has been introduced to 

provide  both  long-term  (in  days)  and  short-term  (in  minutes)  predictions. 

However, to ensure customers are satisfied in normal operations on a web service, 

the required prediction time frame is several weeks or even months. Another study 

(Hellerstein,  Zhang,  &  Shahabuddin,  1998) describes  a  statistical  approach  to 

characterizing  normal  system  operation  for  time  varying  workloads  in  a  web 

server. The study does not recognise the actual performance of the server system 

but assumes that it is fixed over time and well-known. However, the performance 

in quite many installations is not known and is not fixed but varies in terms of time 

depending on the configuration manner and the internal states of the system.

The dynamic resource allocation is a suitable method in some cases according to 

the problems shown in  this  study.  However,  it  requires resources  organised as 

pools,  wherefrom/whereto  such  resources  can  be  allocated  and  returned.  The 

dynamic  configuration  management  can  be  an  effective  method  to  facilitate 

momentarily.  Conversely,  the total  amount of  resources cannot be increased or 

especially decreased flexibly by means of cost savings.

Performance engineering and testing oriented blog  (Podelko, 2007) is professing 

that performance testing theory is almost non-existent and performance testing 

practice is pretty mature. The conception of the aforesaid blog is that activities are 

grouped  around  commercial  tools  and  user  communities.  On  the  age  of  the 

mainframes, capacity planning was typical for corporations using mainframes. In 

another blog, Podelko (2009) pointed out that test vendors are on the easier side, 

“trying to implement something to make it easier for an inexperienced person to  

create and run load test scripts”. While this produces nice analysis graphs and 
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may be helpful in some cases, it cannot replace performance engineering processes 

and good performance engineers.

1.3 Aim of the Research

The aim of the research is to enhance the previous practices using historical web 

service  access  information,  combined  with  resource  utilisation via  natural  load 

usage simulation. The intuition behind the approach is to use mathematical tools 

to  process  historical  information  and  extract  trends  in  the  usage  evolution  at 

different time scales. The aim can be divided into three sub-objectives.

The first objective of this study is to introduce a regular basis prediction model for 

the sake of obtaining a web server system performance by using a known natural 

workload. This objective includes the following research question: 

Question  1: Is  it  possible  to  measure  the  performance  of  the  website  

system on a regular basis? 

The study introduces an entirely novel approach to predict the real performance of 

an  e-commerce  website  system.  The  natural  workload  has  to  reflect  the 

characteristics  of  past  access.  This  model  is  also  suitable  for  monitoring 

deterioration in performance.

The second objective of the study is showing that the actual usage of a web service 

is measurable and analysable automatically on a regular basis (for example, daily 

or weekly). This objective includes the following research question: 

Question  2: Is  it  possible  to  analyse  the  usage  of  a  website  and  

characterise it automatically and on a regular basis to identify the peak  

load? 

The third objective of the study is showing that a gap between performance and 

peak usage levels can be seen as a spare performance of the system. This objective 

includes the following research question: 
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Question 3: How can the current website performance and actual usage  

be compared to each other?

The above research questions lead to the following research hypotheses:

Hypotheses

The total performance of the server system consists of a unique combination of 

hardware,  applications,  configuration,  and status of different application layers. 

This study hypothesises that the actual performance of the server system can be  

defined using a known natural load with a short test-time period . During the test 

load, the response time and different resource utilisation indicators of the system 

are recorded into separate log files. 

In  this  study,  it  is assumed that  the actual  usage  of  a  web  server  system  is  

measurable  and  analysable  automatically  and  the  result  can  be  exploited  to  

construct the natural load test for simulation purposes. The analysis can be based 

on ordinary access log files. The analysis can be done in a specified form in all 

cases, and the result is comparable despite the nature of a web service.

Furthermore, by  combining the analysed actual usage data and the calculated  

total performance of the web server system, the moment when the performance  

of  the  system runs  out  can  thus  be  estimated.  This  is  the  moment,  when the 

system  does  not  have  enough  performance  to  serve  users  within  the  required 

response times.

1.4 Research Approach

Design science creates and evaluates IT artefacts that solve the problems in the 

organization. The scientific aspect of design science answers the questions: can we 

build innovation and how useful will it be for the organization? We can also ask 

what kind of innovation should it be and how should it be created. The study by 

Järvinen (2004) suggests that if the research problem includes the following verbs: 

construct, alter, improve, create, repair, etc., it most probably belongs to design 

science. Hevner et al. (2004) believe that the result of design science is the artefact 
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itself. The artefact will provide a solution to the problem, and its research should 

provide new data on the topic in a new and innovative way.  

IT-artefact is constructed to perform a specific function  (March & Smith 1995), 

which indicates that completion of the construction of design problems has been 

resolved. Artefact construction action is aimed, in their opinion, at the advantage 

or  value  of  the  artefact  produced  by  the  user  community.  Van  Aken 

(2004) suggests  that  design  science  is  intended  to  provide  information  to  a 

construction problem which can be solved, or the performance of existing systems 

that can be improved. Van Aken believes that innovation in the utility should be 

evaluated sooner rather than later. 

Hevner believes that the results of design science are of four types: conceptual, 

models, methods, and realization. The concepts form a terminology of the research 

problem. Models indicate the relationship between concepts. Methods are steps 

while implementation of the artefact in the environment is realization. 

This study, using design science in reference to Hevner, created seven guidelines 

for  IT  artefact  design,  implementation  and  evaluation.  Instructions  are 

summarized in Table 1, and their relevance is discussed in more detail in the text. 

The contribution of  this  study is  proposing an analysis  and forecasting model, 

which is suitable for optimizing website performance.

The first of these Hevner guidelines is IT artefact, which is intentionally built for 

one of the key problems of the organization. It can be implementation but also 

concepts, designs, or a method which has been applied to the construction and 

operation. IT artefacts are rarely completely ready for information systems, rather, 

they are the innovations that define the ideas, practices, technical capabilities and 

products that enable systems analysis and design; implementation and use can be 

effectively  and  efficiently  implemented  (Hevner  et  al.,  2004).  Hevner  excludes 

people and the various elements of the organization, the IT artefact definition as 

well  as  the  development  during  time.  Implementation  of  an  artefact  is  an 

indication  of  the  design  process  and  the  outcome  of  the  operation  (Järvinen, 

2004). This study of IT artefact is suitable for website performance analysis and 

forecasting  model.  An  artefact  of  implementation  is  shown  by  designing  and 
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constructing  a  website  performance  analysis  and  forecasting  model,  using  a 

reference pattern in Hevner’s seven IT artefacts for planning.

Design science emphasizes the importance of the research problem from a business 

perspective.  Computer  science  research  is  about  acquiring  knowledge  and 

understanding that enable technology-design and implementation artefacts so far 

unresolved or poorly resolved in the business of the problems. Hevner et al. (2004) 

points out in the second guideline that research is relevant, if it helps solve the 

problem of the community using it. As to a business perspective, the research is 
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Table 1:  Design science research guidelines, adapted from Hevner et al.  

(2004)

Guideline Description

Guideline 1: Design as 

an artefact

Design science research must produce a viable artefact in the 

form of a construct, model, method, or an instantiation.

Guideline 2: Problem 

relevance

The objective of design science research is to develop technology-

based solutions to important and relevant business problems.

Guideline 3: Design 

evaluation

The utility, quality, and efficacy of a design artefact must be 

rigorously demonstrated via well-executed evaluation methods.

Guideline 4: Research 

contributions

Effective design science research must provide clear and 

verifiable contributions in the areas of design artefact, design 

foundations, and/or design methodologies.

Guideline 5: Research 

rigour

Design science research relies upon the application of rigorous 

methods in both the construction and evaluation of the design 

artefact.

Guideline 6: Design as 

a search process

The search for an effective artefact requires utilizing every 

available means to reach the desired ends while satisfying laws in 

the problem environment.

Guideline 7: 

Communication of 

research

Design science research must be presented effectively both to 

technology-oriented as well as management-oriented audiences.
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important and relevant if the company stakeholders' requests for a website service 

to a high level, and on the other hand, it must be cost-effective.

IT artefact  utility,  quality  and impact should be addressed through an accurate 

assessment and evaluation methods. The evaluation shall be based on the business 

environment demands artefacts, and it will be integrated into the IT infrastructure. 

The following features are used in the evaluation instrumentation: functionality, 

completeness,  consistency,  accuracy,  performance,  reliability,  availability, 

suitability of the organization, and other necessary qualities. Iterative evaluation of 

the artefact, Hevner's third instruction, provides feedback on the construction of 

both  process  and  outcome  (Hevner  et  al.,  2004).  This  study  of  IT  artefact 

assessment focuses  on how well  the  selected research methods are suitable for 

website performance optimization in different technological environments. 

Hevner's fourth guideline affect the planning of design science research and will 

provide clear benefits in the following areas: the planned artefact, knowledge of the 

construction,  the  design  of  the  assessment  data,  and  methodology  used.  An 

important question in each case of the design science research is what kind of new 

and innovative  landmark contribution that  is  delivering results.  Design science 

research includes  three  different  types  of  contribution  subjects,  at  least  one  of 

which must be found for each study design. The first contribution is the subject of 

IT artefact itself. Artefact is the answer to the problem studied. It can be a solution 

to the problem studied, or it can generate substantial new scientific information on 

research or apply existing knowledge in a new and innovative way. The second area 

of  contribution  is  the  planning  of  construction  process  and  modelling  of  the 

artefact. A significant contribution can be achieved, for example, in a new type of 

design  process  or  model  development.  The  third  area  of  contribution  is 

methodology. The method used in the study and the method for evaluating the 

research area itself will bring its own contribution. The evaluation methodology 

and  metrics  are,  in  the  planning  study,  important  aspects  in  themselves.  The 

research contribution of this study is the extent to which the selected method is 

suitable for solving this research problem. In the future, it would certainly benefit 

those seeking a research method to study a similar problem (Hevner et al., 2004).
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The  study’s  scientific  accuracy  according  to  Hevner's  fifth  guideline  must  be 

proven by means of exact research methods as well as the IT artefact construction 

of the assessment  (Hevner et al., 2004). Scientific research indicates the level of 

accuracy and how it is carried out. The design science research as well as accuracy 

is  defined  as  the  existing  research  knowledge  and  theoretical  foundations  of 

research methodology, not to mention its effective use.

In  the  sixth  guideline,  a  good design approach is  the  search process  using the 

available means to achieve the objectives of the study environment; however, by 

following  the  prevailing  laws.  Available  measures  and  solutions  Hevner  et  al. 

(2004) calls as a means to construct a solution.

Finally, the seventh instruction  (Hevner et al., 2004) says that the results of the 

investigation should be forwarded to the management, as well as the technically 

minded  people  in  the  organization.  The  artefact,  which  has  been  described  in 

sufficient  detail  presented  technical  personnel  and  practitioners,  as  well  as 

explained how it is constructed.

In this study, the contribution of design science is achieved by examining how well  

Hevner's  seven  guidelines  for  creating  an  IT  artefact  suitable  for  website 

performance analysis and prediction model are set up.

1.5 Research Methods

At the beginning of the study, the actual log files are analysed using mathematical 

models. The study uses existing works on characterization of the load and pattern 

recognition in the different time frames measured by a number of requests and file 

sizes. In  Figure 1.3, this phase is shown as actual usage analysis. The long-term 

trend is evaluated based on the log file analysis using time series models. 

In addition, the real response times and resource utilisation are measured using 

natural load. The effect of adjustment rate on the load is studied, and while load 

settings are kept unchanged, results are comparable in the long-term. However, if  

the load is adjusted based on actual usage using log file characteristic, it allows for 
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a more precise view of the service performance. The real performance of the web 

system  in  a  lengthy  period  is  predicted  by  extrapolating  from  the  workload 

information and systems load metrics, using the statistical pattern recognition. The 

natural load is marked as a load test in Figure 1.3.

During  the  natural  load,  critical  server  resources  are  monitored  using  SNMP 

(Simple  Network  Management  Protocol)  based  on  RFC  1157  (Case,  Fedor, 

Schoffstall, & Davin, 1990). The monitoring of resources under the natural load 

facilitates the obtainment of raw data from the system internal status. The data can 

be used to predict the total performance of the system in the future. The operating  

system behind the SNMP interface is not discussed in this study. It is assumed that 

the  SNMP  response  from  the  system  produces  valid  and  comparable  results 

despite the differences in operating systems.

When a server  system resource  utilization is  loaded for  the  upper  limit  or  the 

maximum response time is exceeded, then the server system's overall performance 

limit is reached. 

Figure  1.3 presents  Predictus-model  using  BPMN  notation  (OMG  (Object 

Management Group), 2011). On this basis, the method has been developed, which 

is  implemented  by  several  appropriate  programming languages  and simulation 

applications.  Only  the  essential  aspects  of  the  method  have  been  opened  at  a 

detailed level; unimportant parts are excluded from the consideration.
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Figure 1.3: Performance estimating model, Predictus for distributed e-business architecture
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The moment, when the performance does not reach the desired level, is possible to 

predict by combining the results from the analysis of the access log and the natural 

simulated load. In  Figure 1.3, this is shown as an estimation of run-out capacity. 

The result of the evaluation is shown in a simple time-based graph that can be 

interpreted by non-performance experts. The bottlenecks can be recognised based 

on system load analysis.

1.6 Scope of the Research

In this study, the web server system is explored as distributed computing. Such 

computer  systems,  where  the  resources  are  divided  among  many  virtual 

computers,  are  mostly  seen  as  independent  computer  systems,  which  can  be 

evaluated using the methods presented in this study. However, the virtualization 

specific questions are not discussed in this study. 

Some  non-predictable  load  peaks  (hotspots),  such  as  breaking  news  in  media 

services, present an unexpected peak of usage, and are not discussed in this study. 

Instead, the gap between normal usage and maximum performance of the system 

should be continuously watched. If  the potential user population is known, the 

resource consumption estimation in any unexpected situation can be calculated. 

In this study, a simulation model is presented to define the actual performance of 

the system using simulated user requests.  System load is monitored during the 

natural load to obtain the consumption of the system resources. By varying the 

system  load,  the  change  in  response  time  and  resource  utilisation  can  be 

determined. The extrapolation method is used to expand the regression analysis 

results in order to predict the time when performance is not enough to satisfy the 

load required by real usage.
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1.7 Related Studies

Some recent news  (Aalto-www, 2010) from Aalto-university related that energy 

effective data centres are to be developed in Finland in a research project called 

Energy-efficient server centres for Finland. The aim of the project is to analyse 

ICT equipment  and cooling  systems in  data centres  and to  figure  out  the  best 

solutions to optimise energy consumption and utilise the waste heat.

FIT4Green  (Fit4Green  Consortium,  2010) aims  at  contributing  to  ICT  energy-

reducing  efforts  by  creating  an  energy-aware  layer  of  plug-ins  for  data  centre 

automation frameworks so as to improve energy efficiency of existing IT solution 

deployment strategies. This is to minimize overall power consumption by moving 

computation and services around a federation of IT data centre sites. 

1.8 Contributions of the Work

I worked as a data communications expert in a software company in the 1990s. At 

that time, client-server systems, which were based on proprietary protocols, was 

generally used for commercial purposes. Computer equipment was expensive then, 

and cloud services were not even discussed. I have encountered regular problems 

in the performance of a variety of systems, particularly the fact that they had to be 

resolved ad-hoc. It turned out that the current problem could be solved with hard 

work, but a long-term solution did not exist. I then came up with the idea over 

whether it would be possible to track the performance of information systems as 

with  any  other  company's  operational  system  or  activity.  And  in  particular,  I 

became  interested  in  it,  especially  the  manner  in  which  performance  can  be 

managed proactively. At that time, an idea was born, namely,  that the concept of 

performance can be solved by means of an impulse-response pair.

No ready-made solution or even one in the right direction, the idea could not be 

realised  in  only  a  number  of  years.  But  the  idea  of  proactive  performance 

management  model  began  to  mature  gradually  over  the  years.  Over  time, 

proprietary protocols have decreased, while the http protocol gained ground. It 
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provided much better opportunities for the development of performance testing 

tools. When I was in the central role in a web development and maintenance work 

in the early 2000s, there was a need to develop a model that works in practice. At 

that time, I noted that the performance management tools were developed for web 

services, but they were merely reactive "fire fighting," or were intended to improve 

the performance of application code. They did not make it possible to monitor the 

actual  use  of  the  service  and  in  particular,  to  anticipate  the  future  use  or 

application behavior. In other words, the impulse (the actual website usage) and 

response (the resulting system load) were completely unknown to the performance 

monitoring  process.  They  also  did  not  support  the  continued  development  of 

website applications and continuous testing.

Right from the beginning of model development, it was clear that the performance 

analysis and monitoring should be a continuous operation, in which case it must be 

as  highly  automated  as  possible.  From  this  perspective,  I  began  to  develop  a 

method to  ensure  website  performance throughout  its  life  cycle.  I  developed a 

method comprising the following necessary key components: the identification of 

system components, test load management, the related data collection, the analysis 

of results and their interpretation and follow-up.

Initially,  the  process  was  developed  in  two  separate  websites.  It  could  be 

generalized  to  very  small  changes  and  required  only  one  way  to  describe  the 

various layers of hardware and the number of servers and their key components. 

After that, it was found that the model can be generalized to almost all commonly 

used HTTP and HTTPS websites.

In this work, the hardware identification details have been overlooked and are only 

focused upon in order to consider the core of the model alone.  The generalized 

Predictus-model has been able to ascertain that the application components are 

related  to  the  method  and  work  well  in  different  environments,  and  that  the 

analysis produces reasonable and verifiable results in different test sessions.

The  functionality  of  the  Predictus-model  has  been  verified  in  practice  in  very 

different  environments.  Differentiating  factors  have  been  the  applications,  the 

website's purpose and scale of use, a different hardware architecture distributed 
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among a wide network of hardware or a single service on a dedicated hardware. 

Differentiation was tested using the characteristics of the tested item. Not only is 

the generation of load testing and monitoring independent but so are the results of 

the analysis platform.

A large number of different websites have been tested using the Predictus-model. 

Therefore,  this  study is  based on a large number of  log  files,  and a very large 

number of test runs in a number of e-business environments. In this study, the 

data is mainly derived from four different independent websites. Of these websites, 

architecture is discussed later in Chapter 5 .

In  this  study,  the  performance  measurement  and  analysis  of  the  model  are  a 

completely new kind of approach. It is based on my idea to combine well-known 

load test and control the load and burden due to the hardware components. The 

well-known test load, of course, corresponds as closely as possible to the load of 

real users. And since users cause the load changes with time, it is obviously to be 

taken into account for the long-term analysis.

1.9 Thesis Outline

The  state  of  the  art  in  modern  e-commerce  website  technologies  and  in 

performance engineering is described in Chapters 2 and 3. Chapter 2 is focused on 

web service requirements from the viewpoint of users, the boosting technologies 

and some essential problems. Chapter 3 is focused on principles of performance 

management,  characterisation  of  access  log,  focal  concepts  and principles,  and 

finally the tools for monitoring and estimation.
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The methods used in this thesis are discussed in Chapters 4 and 5. The analysis and 

characterization of a commercial website are described in Chapter 4. It answers the 

research  question,  how  to  actual  usage  of  the  website  can  be  measured  and 

analysed on a regular basis as well as the way in which the peak load forecast is 

formed during normal usage. The natural load, monitoring of the server resource 

consumption,  and analysis  are  described in  Chapter  5.  It  answers  the  research 

question, how the network hardware performance can be measured on a regular 

basis,  and  it  will  form a  forecast  of  future  performance.  Figure  1.4 shows  the 

structure  of  the  method  and  the  corresponding  book  chapters,  wherein  each 

component of the method described below.

Synthesis of the results of the actual usage analysis and natural load is put forward 

in  Chapter  6.  The  actual  performance  of  the  web  system  and  the  analysis  of  

additional resources are described in this chapter. It answers the research question 

of how the gap between current performance and the spare performance can be 

visualized easily understandable form.

Finally, a general discussion and conclusions round off this thesis in Chapter 7.
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 2 Website Environment 

2 Website Environment

This chapter describes the requirements for a complete web service system, which 

generally consists of hardware, software, configuration, and applications. Some of 

those requirements are derived in order to satisfy user requirements while some 

are meant to satisfy system management requirements. 

2.1 User Expectations

A website must be easy to follow, be consistent and predictable, and must seem 

simple and natural. If a website has actually delivered the information or service(s) 

the customer was looking for, a customer has found a reason to stay on the site. 

Users have several common requirements: performance, usability, navigation, and 

many others. Some of these requirements may be explicitly stated through formal 

documents, while others are implied or assumed. Some general statements are the 

following (Loosley, 2005):

● An  unreachable website is useless for the user, despite good reasons to visit 

such a site.

● Having  reached  the  site,  pages  that  download  slowly are  likely  to  drive 

customers to try another site. 

● If the site is sufficiently responsive, other design qualities come into play.

Web  users'  tolerance  for  loading  delays  depends  on  several  factors,  including 

expectations, site feedback, the complexity of a task, importance of the aim, and 

the relevance (utility)  of  the  information being provided by the  site.  And their 

perception  of  a  site's  quality  and  credibility  diminishes  as  its  download  times 

increases. 

Selvidge et al. (2002) studied the variable impact of web delays on losing users, 

frustration and proportion of task completion. The current HTTP1.1 technology 

does not allow users to get an estimate of the amount of time they would have to 

wait when downloading a document but only provides a real-time measure of the 
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amount  of  content  that  has  been  downloaded.  Sometimes,  users  wait  for  a 

significant  amount  of  time  before  being  refused  connection.  This  is  quite 

frustrating for users and may lead to avoiding a specific site. Hence, for website 

designers it is important to design the website in a manner that neither the waiting 

time for a requested connection nor the chance that the user is refused connection 

will be too high. 

If  users are just  browsing through the internet for entertainment,  they may be 

more tolerant  of  download delays  than if  they have to  find the  information to 

complete  a  task  before  a  certain  deadline  (Selvidge  et  al.,  2002).  Another 

important  aspect  that  influences  tolerance  for  time  delays  is  whether  the 

information was worth the wait  or if  the information was considered valueless. 

Tolerance for delays could also be related to tasking demands, web page content, 

or attributes of the population of users sampled, such as computer-experience level 

and download speed they typically experience. Some old studies (Kuhmann, 1989; 

Kuhmann, Boucsein, Schaefer, & Alexander, 1987; G. Martin & Corl, 1986; Weiss, 

Boggs, Lehto, Shodja, & Martin, 1982) have shown that longer delays or system 

response times increase frustration and stress, and decrease productivity. Galletta 

et al. (2003) have shown that decrease in performance, attitudes and behavioural 

intentions is not necessarily linear.

The subjective understanding of adequate or good performance has to be defined 

using measurable and communicational means. The problem exists especially if 

the system for which we are considering this question does not exist as yet. The 

problem is that of  setting performance requirements for an as yet  non-existing 

system.  Typically,  the  requirements  are  specified  in  a  non-quantitative  way. 

Statements such as the following may be part of requirements: The system should 

have low overhead,  the  memory and processor speeds should be synchronized, 

there should be a low probability of failure, and so on. In all of these cases, the  

qualitative requirements are stated, which may be quite difficult to measure and 

realize.  They are non-specific,  non-measurable,  and therefore,  unacceptable.  To 

change this, the analyst should look at what the system will be required to do, and 

what performance would be needed for a typical system with the same loads. 
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The basic advice regarding response times has remained unchanged for sometime 

now (Miller 1968; Card et al. 1991; Menascé & Almeida 2002) :

● 0.1 second is about the limit for having the user feel that the system is reacting 

instantaneously,  meaning  that  no  special  feedback  is  necessary  except  to 

display the result.

● 1.0  second  is  about  the  limit  for  the  user's  flow  of  thought  to  stay 

uninterrupted,  even  if  the  user  will  notice  the  delay.  Normally,  no  special 

feedback is necessary during delays of more than 0.1 and less than 1.0 second, 

but the user does lose the feeling of operating directly on the data.

● If  the  response time for  the  transaction exceeds  four  seconds,  but  remains 

below six  seconds,  then 60% of  the search transaction will  be  lost  because 

users will abort the search, and potential sales will be lost.

● If the response time exceeds six seconds at the web server, then 95% of the 

search request will be aborted. 

● Normally, response times should be as fast as possible, but it is also possible 

for  the  computer  to  react  so  fast  that  the  user  cannot  keep  up  with  the 

feedback.

A study  (Galletta, 2002)  has shown that relatively small increases in delay can 

have a profound impact on how users react to websites. Lindgaard & Dudek (2002) 

found that  user satisfaction is  a complex construct  comprising several  affective 

components as well as a concern for usability. User satisfaction in the context of 

business to consumer (B2C) websites is a complex construct comprising concepts 

that cannot all be captured under the term ‘satisfaction’. Concern for usability as 

well as expectations based on interactive experience are integral to the experience, 

although usability appears to be assessed independently of affective aspects of user 

satisfaction, at least in browsing behaviour when the interaction is not hindered by 

severe usability problems.

A user expects technically  constant quality  from the service even if  there are a 

number  of  simultaneous  users.  The  technical  service  level  quality  indicator  is 

simply measured by the user-experienced response time. An earlier study found 
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that waiting time is the most objectionable deficiency of the medium (Lightner & 

Zeng, 2009). The user-experienced response time is determined by the weakest 

link in the chain from the server to the browser: the throughput of the server, the 

server connection to the internet, the internet itself, the user's connection, and the 

rendering speed of the user's browser. Only the server throughput and the server 

connection to the internet are maintained by the web service provider. Sufficient 

system resources are needed to keep the quality of service predictable.

2.2 Fault Tolerance

To ensure the availability of a web service, it should be protected against a single  

point of errors.  Tanenbaum and Van Steen  (Van Steen, 2003) explained that a 

system is fault-tolerant if it maintains four characteristics: availability, reliability, 

safety, and maintainability. Availability ensures that the system is available to be 

used at any given moment. Reliability allows the system to perform continuously 

without failure. Safety makes sure that in the event of failure, it should not cause 

any undesirable behaviour that compromises the safety of the system and its users. 

Maintainability measures how straightforward a failure can be repaired. 

Tanenbaum and Van Steen (Van Steen, 2003) classify the different types of failings 

that can occur:

● Communication failure happens when a message may be delayed, lost, or 

corrupted.  The server  may be  crashed after  receiving a  request,  and the 

client may be crashed after sending a request.

● The Byzantine failure occurs when a server does not behave in the correct 

manner.  For  instance,  a  server  produces  an  output  which  it  should  not 

produce or does not produce any output at all.

● Omission failure occurs when a server fails to respond to a request based on 

different reasons such as connection failures. Crash failure is a subclass of 

omission failure. It occurs when a server systematically omits all  outputs 

and nothing is heard from that server anymore.
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● Timing failure occurs when a server either omits the specified output  or 

responds too early or too late. In the situation where the server responds too 

late, it will affect the performance of the system.

● Response  failure  happens  when  the  server’s  response  is  incorrect.  The 

server might provide the wrong reply to a request, or it reacts unexpectedly 

to a request.

There are a number of techniques that can help achieve fault tolerance in a web 

service. The most common technique is redundancy.  Physical redundancy deals 

with hardware or software; it runs an extra hardware or software at the same time 

to  provide  the  correct  output.  In  the  case  of  a  web service  system,  it  leads  to 

distributed  computing.  Distributed computing  is  a  common way  in  web server 

systems  to  guarantee  the  fault  tolerant,  but  it  also  leads  to  better  scalability. 

However,  increasing  the  number  of  servers  is  also  increasing  the  maintenance 

costs such as energy consumption, maintain costs, licensing fees, etc. Hence, the 

amount of servers has to be optimised between scalability, fault tolerance and the 

economy. 

2.3 Cluster Computing

Distributed  system  is  defined  in  an  old  study  (Booth,  1976) as  a  collection  of 

computers, which are remotely located from a central computing. On some other 

studies  (Mullender, 1993; Van Steen, 2003), the distributed system is seen as a 

loosely  coupled,  autonomous  computer  system  with  their  own  failure  modes, 

which can execute logically separate computations. 

In general, cluster computing is the technique of linking two or more computers 

into a network in order to take advantage of the parallel processing power of those 

computers. There are several varieties of computer clusters, each offering different 

advantages to the user. These varieties are considered in the following. 
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High-availability (HA) clusters

High-availability clusters are also known as fail-over clusters. They are designed to 

ensure  non-stop  access  to  service  applications.  The  clusters  are  designed  to 

maintain redundant nodes that can act as backup systems in the occurrence of a 

defect. The minimum number of nodes in a high-availability cluster is two – one 

active  and  one  redundant  –  though  most  high-availability  clusters  will  use 

considerably more nodes. High-availability clusters aim to solve the problems that 

arise from mainframe failure in an enterprise. Rather than losing all access to IT 

systems, high-availability clusters ensure non-stop access to a system. This feature 

is  especially  prominent  in  business,  where  data  processing  is  usually  time-

sensitive. 

Load-balancing clusters

Load-balancing clusters operate by distributing a workload evenly over multiple 

back end nodes. Typically, the cluster will be configured with multiple redundant 

load-balancing front ends. Since each element in a load-balancing cluster has to 

offer full service, it can be thought of as a high-availability cluster, where all the 

available servers process requests.

Load-balancing clusters operate by routing all requests through one or more load-

balancing front-end nodes, which then distribute the workload efficiently among 

the  available  active  nodes.  Load-balancing  clusters  are  highly  useful  for  those 

working with limited IT budgets. Assigning a few nodes to managing the workload 

of a cluster ensures that limited processing power can be optimised. 

High Performance Clusters

High performance clusters (HPCs) utilize the parallel processing power of multiple 

nodes.  They  are  commonly  used  to  perform  operations  that  prefer  nodes  to 

communicate  as  they  perform  their  tasks.  The  best  known  HPC  is  Berkeley’s 

Seti@Home  Project,  an  HPC  consisting  of  over  5  million  volunteer  home 
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computers  applying processing power to  the  analysis  of  data from the Arecibo 

Observatory radio telescope. 

Generally  high  performance  clusters  are  used  primarily  for  computational 

purposes, rather than handling IO-oriented operations such as a web service or 

databases.  For  instance,  a  cluster  might  support  computational  simulations  of 

weather  forecasts  or vehicle crashes.  The primary distinction within computing 

clusters  is  how tightly-coupled  the  individual  nodes  are.  To  illustrate,  a  single 

computed job may require frequent communication among nodes - this implies 

that the cluster shares a dedicated network, is compactly located, and probably has 

homogeneous nodes. The other extreme is where a computing job uses one or few 

nodes,  and needs little  or no inter-node communication.  This  latter category is 

sometimes  called  "Grid"  computing.  Tightly-coupled  computed  clusters  are 

designed for work that might traditionally have been called "supercomputing". 

Grid computing

Grid computing is optimised for workloads, which consist of many autonomous 

tasks or packets of work that do not have to share data between the jobs during the  

computational process. Computer grids serve to manage the allocation of jobs to 

computers,  which  will  perform the  work  independently  of  the  rest  of  the  grid 

cluster.  Resources  such  as  disk  storage  may  be  shared  by  all  the  nodes,  but 

intermediate results from one job do not influence other jobs in progress on other 

nodes of the grid.

Characteristics of a distributed system are described in other study  ( Van Steen, 

2003) as follows:  

● By transparency,  to the user of the system it appears that all tasks are 

handled by a single computer.

● Scalability ensures that the system will still be able to perform all user 

requests without any performance degradation by adjusting the number 

of servers.
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● Fault tolerance enables the system to continue to operate regardless of 

failure, and that users are unable to notice these faults.

● Openness  makes it  possible  to  improve and extend from the original 

system without the need to restructure the entire system.

● Concurrency  allows servers to handle different requests from multiple 

clients simultaneously.

● Heterogeneity guarantees, that each server on a distributed system may 

have different hardware and different software versions.

● Security  provides  a  secure  communication channel  for  the  users  and 

ensures access to authenticated users only.

● Resource  sharing  provides  users  the  ability  to  access  resources 

anywhere in the system.

Generally, distributed systems aim to perform without being seriously affected by 

any failings that might occur in the system. If there is failure, the system is still  

able to recover and users would be unable to know this failure. 

An effective and a most common way is to combine multiple Web servers called 

‘‘clustered Web server’’ or ‘‘server farm’’ and balance the load among these servers. 

In order to address the network latency delays caused over greater distances, large 

organizations  are  also  deploying distributed Web servers  in  different  locations. 

User service requests are routed to a server based on some routing algorithms. The 

system performance depends critically on these routing algorithms. This method of 

load  management  has  been  shown  to  improve  the  quality  of  service  (QoS)  in 

practice and is thus widely used. One advantage of using multiple servers is that 

one need not develop very accurate plans for the server capacity; one can add to 

the  existing  capacity  in  an  ad-hoc  fashion  through  either  new  servers  or  by 

employing unused capacity elsewhere (Zhang & Fan 2008).
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Figure 2.1: Architecture of clustered system. The server farm consists of several  
dedicated server clusters

The  clustered  system  architecture,  where  requests  are  served  by  the  system 

through different clusters of servers, from the web server cluster to the application 

server cluster, and possibly to the database server cluster as shown in Figure 2.1. In 

general, it is possible for requests to be served by a subset of these clusters. Even 

though this infrastructure is architecturally simple, the system is quite complicated 

with a load balancing mechanism. It consists of numerous clusters of servers, each 

of which can have quite a number of software and hardware components. A typical 

Web system is comprised of several nodes with tens of applications running on 

them. Given the great complexity of the overall  system, planners are constantly 

confronted with questions regarding: how many servers to place at each cluster in 

the current infrastructure; what layout can deliver the best QoS; is there enough 

performance available to support the expected business possibilities  and future 

growth?
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2.4 Web Service Performance Boosting Technologies

The Web traffic has experienced huge growth in the last decade. Content providers 

and e-commerce merchants  are  overwhelmed in  many cases  by  the  number of 

request for web pages resulting in considerable deterioration (for example, long 

response time) in web server  performance.  In order to  keep the response time 

within a satisfactory level, administrators limit the number of simultaneously open 

connections. When the number of request overtakes this limit, all later user access 

requests will be rejected. Hence, often either the waiting time is high or the user 

request  is  not  processed  at  all.  Either  situation  could  lead  to  disappointed 

customers, forcing many of them away from the site. The traffic may change with 

the time of the day, the day of the week, or even the month of the year. These 

seasonal or periodic fluctuations make it more difficult to come up with a proposal 

over the adequate performance of a site.

There  are  various  solutions  developed  to  solve  this  concern,  such  as  replacing 

servers  with  more  effective  ones,  caching  or  outsourcing.  However,  these 

approaches to load management have their own troubles. For example, a server 

replacement  may  work  for  a  while,  but  it  is  not  scalable  and  could  cause 

interruption  due  to  server  upgrade  and  maintenance.  Besides,  if  the  server 

performance is planned based on the peak load, then the added performance is 

useless during the off-peak hours. Outsourcing, on the other hand, has a certain 

price tag, and yet one has limited control over the Quality of Service. Caches have 

been used in several ways to address the issue of slow response time caused by 

overloaded servers. The caches intercept requests for Web content, and attempt to 

respond to the requests whenever possible. When these requests cannot be served 

from the caches, they are forwarded to the Web server. The presence of dynamic 

content featured on most websites raises significant barriers to caching.

Many websites dynamically generate responses on the fly when user requests are 

received.  One  study  (Titchkosky,  Arlitt,  &  Williamson,  2003)  has  empirically 

evaluated the impact of three different dynamic content technologies (Perl, PHP, 

and Java)  on web server  performance.  The results  of  this  study show that  the 
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overheads of dynamic content generation reduce the peak request rate by up to a 

factor of 8, depending on the workload characteristics and the technologies used.

2.5 Software Aging and Rejuvenation

Some studies have reported the software aging phenomenon (Garg, van Moorsel, 

Vaidyanathan,  &  Trivedi,  1998;  Huang,  1995) in  which  the  state  of  system 

performance degrades slowly. The primary symptoms of this degradation include 

exhaustion of  system resources,  such as memory leaking,  unreleased file  locks, 

data corruption, and instantaneous error accumulation. This may eventually lead 

to  performance  degradation  or  other  unexpected  effects.  A  proactive  fault 

management  method to  deal  with  the  software  aging  phenomenon is  software 

rejuvenation. Unplanned computer system outages are more likely to be the result 

of software failures than of hardware failures (Gray & Siewiorek, 1991; Sullivan & 

Chillarege, 1991). In some studies (Grottke et al. 2006; Silva 2006), software aging 

has been reported widely encountered as well  as in high-availability and safety-

critical systems. This essentially involves gracefully terminating an application or a 

system  and  restarting  it  in  a  clean  internal  state.  This  process  removes  the 

accumulated errors and frees up operating system resources. The preventive action 

can be done at optimal times (for example, when the load on the system is low) so 

that  the  overhead  due  to  planned system  downtime  is  minimal.  This  method, 

therefore,  avoids  unplanned  and  potentially  expensive  system  outages  due  to 

software aging. 

Aging is explained in Castelli et al. (2001) as caused by software that is extremely 

complex and never wholly free of errors. In a web application environment, it is 

practically impossible to completely test and verify that a piece of software is bug-

free.  This  situation  is  further  exacerbated  by  the  fact  that  web  software 

development tends to be extremely timed to market driven factors, which results in 

applications that could meet the short-term market needs, yet do not account very 

well for long-term ramifications such as reliability. Hence, residual faults have to 

be tolerated in the operational phase. These faults can take different types, but the 

ones that we are concerned with are the causes of long-term exhaustion of system 
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resources such as memory, threads, and kernel tables. The essentially economic 

problem of developing and producing bug-free codes is not the problem at hand; 

rather,  we  are  addressing  one  of  the  problems that  arises  from  the  prevailing 

approach to developing software, and one approach to attacking that problem is 

software rejuvenation.

The following  Figure 2.2 and  Figure 2.3 from  Avritzer et al.  (2002) provide an 

example  of  software  aging.  Figure  2.2 shows throughput  versus  time of  a  web 

server application running on a Unix server. The test started at time 0 but about 

5½ hours into the test, things went awry. Throughput, which had been holding 

steady at 62 transactions per second, suddenly fell effectively to zero.  Figure 2.3 

shows the memory profile for the Web server process during the test. Initially 13 

MB, the process size grows rapidly at first, and then steadily until reaching 182 MB 

at the 5½ hour point of the test. At this point, the process stopped growing, but 

also  stopped  serving  all  but  a  very  small  number  of  transactions.  The  other 

transactions' timed-out were discarded by the load generator. This normal growth, 

which reaches a certain level  and stops,  needs to  be distinguished from a fatal 

memory leak, in which memory grows to the point that something breaks and the 

application fails to function.

Memory leaks are a common software fault  (Avritzer et al., 2002) in applications 

written  in  languages  in  which  the  programmer  is  responsible  for  memory 

allocation and recovery. Memory gets allocated but never gets freed due to a fault 

in the code. A memory leak is considered to be fatal if it results in the application  

crashing or else failing to function. Aging anomalies can be detected in load test by 

executing  a  long  soak  run  with  a  fixed  workload  while  monitoring  application 

throughput and resource consumption.
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Figure 2.2: Throughput deteriorating in system with fatal memory leak. The throughput is  
maintained in a stable level until the available memory reaches zero at 5½ hours.

Figure 2.3: Memory usage in case of fatal memory leak. The available memory is decreased  
until it reaches zero at 5½ hours.

Menascé et al. (2003) explained that the speed of aging is dependent on the load 

on the server. With a higher load rate, the aging process is advanced faster. The 

load dependent aging process is formulated as follows:

λ
ag
= C×(n̄

s
)a×λ

ag
i

 (1)

Where  C  and  a (a>0) are constants,  ns is the average number of requests at the 

server, and ag
i  is the load independent aging rate. In the case of C=1 and a=0, the 

load independent aging rate is expressed.
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The  system  performance  degradation  also  occurs  due  to  some  other  factors. 

Thalheim & Tropmann (2011) suggest that even if the system is working effectively 

in the initial stages, the performance might be reduced if the system load does not 

change. This may be due to the increase in the size of the database tables or even 

due to other competing systems.

2.6 Conclusion

A website has to be reachable as expected by users. Availability is aimed to keep as 

high a level as possible in e-commerce sites. The availability rate is aimed to be 

increased using redundancy or other fault tolerant techniques. However, complex 

redundancy produces more complexity in the analysis.

Cluster  computing  is  a  highly  effective  way  to  achieve  a  fault  tolerant  website 

environment. However, the fault tolerance creates some challenges for analytical 

methods. At first, while one server from a server farm is in a malfunction state due 

to  hardware  or  software  failures,  the  analytical  models  have  to  be  updated 

immediately  to  become  a  valid  analytical  model.  Secondly,  all  the  redundant 

servers have to be similar, otherwise the models would be laborious to maintain.

The performance models are complicated due to the web performance boosting 

techniques.  For  example,  the  usage  of  cache  produces  uncertainties,  when  the 

response  is  achievable  from  memory  and  when  the  much  slower  I/O-oriented 

response is required. The difference in response time is remarkably higher in case 

of disk search instead of memory search. In an analysis, it cannot be assumed to  

benefit either. 

Software aging is responsible for the continuous fluctuations on the performance 

of the server farm. Slow software aging is hard to perceive and the possible damage 

is immediate in case of resource run-out. In the worst case, the throughput can 

bring  down  the  complete  web  server  system  without  prior  warning  and  then 

rejuvenating can take several hours.  
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3 State of the Art in Performance Analysis

This  chapter  provides  a  review  of  web  access  log  analysis  and  performance 

management. The traditional performance management is focused on defining the 

throughput of the present server system. The access log analysis is the past usage 

of a service, e.g. how many requests at a time, and what is the size of response, etc. 

Normally, the analysis is done by examining the log files of the web application.

3.1 Access Log Analysis

Typically,  workload is  exposed with  linear  extrapolations  or  other  curve  fitting 

methods.  While such techniques addressing simple trends,  they do not capture 

different time frame variations. One research (Hellerstein et al., 1998) describes an 

approach to characterization of the web server access log. The methodology of the 

research can capture periodic effect (e.g. time-of-the-day and day-of-the-week) and 

trends (e.g. growth in user demand from month to month). Having a statistical 

model  that  characterizes  normal  behaviour  allows  for  extrapolating  values  of 

metrics (e.g. HTTP operations) so that three questions can be answered: (1) What 

will the workload be at a specific time in the future; (2) When will the workload 

grow beyond a specific limit; (3) When will this limit be exceeded during a specific 

time-of-the-day or day-of-the-week. The limit of the research was seen as a given 

value. 

One of the methods is based on decomposing the usage data to daily, weekly, and 

monthly  fractions  using  analysis  of  variance  (ANOVA)  technique,  which  is 

expressed as:

yijkl = i jkijkl  (2)

, where   is a grand mean, i  is a deviation of daily pattern,  j is a deviation of 

weekly pattern,  k is a deviation of monthly pattern and finally  ijkl is an error 

term.  The  regular  peak  loads  are  exposed  by  data  decomposition,  and  the 
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prediction  relies  on  those  peaks.  The  prediction  is  made  using  least-square 

regression.

The study by  Papagiannaki et al. (2005) presented a methodology for predicting 

when and where the link maintain operations have to take place in the core of an 

IP network. The methodology is claimed as simple to implement, and can be fully 

automated. In addition, it provides accurate forecasts for at least 12 months into 

the future. Hence, it is suitable within the context of capacity planning. However, 

multi-resolution analysis (MRA) of the original signal and modelling of selected 

approximation  and  detail  signals  using  ARIMA  models  could  possibly  provide 

accurate forecasts for the behaviour of the traffic at other time scales, such as from 

one day to the next or at a particular hour on a given day in the future. These 

forecasts could be useful for other network engineering tasks, like scheduling of 

maintenance windows or large database network backups.

Cleveland et  al.  (1990) expressed  the  method STL (Seasonal  Decomposition  of 

Time  Series  by  Loess)  for  the  decomposition  of  time  series  in  terms  of  three 

components: trend, seasonal, and residual. Some details in design goal make the 

STL suitable for access log data decomposition. Namely: a) flexibility in variation 

in the trend and seasonal components;  b)  the ability  to  decompose series with 

missing value; and c) robust trend and seasonal components that are not distorted 

by transient, aberrant behaviour in the data. STL consists of a sequence of locally 

weighted  smoothing  operations.  The  implementation  is  based  on  computer 

routines. One of the implementations (Team, 2011) has been made effectively in R.

A study by  Baryshnikov  et  al.  (2005)  investigates  the  potential  for  predicting 

hotspots sufficiently far in advance, so that preventive action can be taken before a 

hotspot takes place. Performing accurate load predictions appears to be a daunting 

challenge at first  glance, but this study shows that when applied to web server 

page-request  traffic,  even  elementary  prediction  methods  can  have  surprising 

forecasting power. The study shows that there is useful predictability in internet 

traffic that can be applied to the use of resources that experience strong surges in 

traffic.  Prediction  algorithms  in  practice  may  be  supplemented  with  partial 

prediction data such as the general timing of particular events. For example, it may 
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be known that an announcement will appear within a couple of hours on a given 

day, but the timing is otherwise unknown. 

In another study  (Lu, Yang, & Zhao, 2004), a prediction was made using MRA 

wavelets. Using wavelet MRA has been able to show the overall long term trend, as 

well  as  analysing  variability  at  multiple  time  scales.  The  largest  amount  of 

variability  in the signal  comes from its  fluctuations at  the 12-h time scale.  The 

analysis  indicates that  a parsimonious model consisting of  those two identified 

components is capable of capturing 98% of the total energy in the original signal, 

while explaining 90% of its variance. The resulting model is capable of revealing 

the behaviour of the network traffic through time, filtering short-lived events that 

may cause traffic perturbations beyond the overall trend.

3.2 Forecasting of Workload

Coffman & Odlyzko (2001) said that everything changes so rapidly on the Internet 

that it is impossible to forecast far into the future. The internet has been increased 

at  about  100% a  year  for  its  entire  history.  This  observation could  be  used to 

extrapolate the growth rate into the future, and predict that traffic will continue to  

double every year. However, this assumption would hardly work for all websites. 

Due to the nature of the propagation on the Web, it is hard to predict the points in  

time at which hotspots will occur. This situation occurs in many types of websites. 

For example, an unpredictable stock market crash can generate a huge increase in 

traffic  to  sites  with  financial  news  and  analysis.  For  practical  purposes,  it  is 

valuable to predict the magnitude of possible hotspots even when timing cannot be 

predicted.  Menascé  &  Almeida  (2002) described  two  forecasting  strategies, 

quantitative and qualitative. The former relies on the existence of historical data to 

evaluate future values.  The latter is  a subjective process,  based on judgements, 

intuition,  expert  opinions,  historical  analogy,  commercial  knowledge,  and  any 

other relevant information. Qualitative analysis plays an important role in cases 

where little  or no historical  data is available. Quantitative analysis may rely on 

historical  access  log  or  any  other  regular  business  statistics,  which  can  affect 

hotspots in the web services.

37



3  State of the Art in Performance Analysis

Menascé  &  Almeida  (2002) collected  several  essential  characteristics  of 

forecasting. At first, it suggested that a good forecast is more than just a single 

number;  it  is  a set  of  scenarios and assumptions.  Time plays a key role  in the 

forecasting process. The longer the time horizon, the less accurate is the forecast. 

Secondly, forecasting horizons can be grouped into the following classes: A) short-

term (<3 months); B) intermediate term (e.g. from three months to one year); and 

C) long-term (>1 year). Demand forecasting in the Web can be illustrated by typical 

questions that come up very often during the course of capacity planning projects. 

Thirdly, there are good questions: Can we forecast the number of visitors to the 

company's  website in order to  plan the adequate capacity to support  the load? 

What  is  the  expected  load  for  the  credit  card  authorization  service  during  the 

Christmas  season?  How will  the  number  of  messages  processed  by  the  e-mail 

servers vary over the next year? Finally, there is encouragement for the planning 

process. Implementation of Web services should rely on a careful planning process, 

i.e. a planning process that pays attention to performance and capacity right from 

the beginning. Planning the capacity of Web services requires a series of steps to be 

followed in a systematic way. One of its key steps is workload forecasting, which 

predicts how the system workload will vary over time.

From a load modelling point of view, the difference in using computing resources 

has changed the type of model for workload characterization. While in the early 

days  of  computing  (70's)  the  typical  systems were  used in  batch or  interactive 

mode  (Ferrari 1972), static workload models could adequately represent the user 

behaviour. In the 80's, dynamic workload models were introduced (Calzarossa et 

al. 1986; Ferrari 1983; Haring 1983) which were able to represent variabilities in 

user behaviour. In the 90's, generative workload models  (Raghavan et al.  1993; 

Barford & Crovella 1998) have been proposed as a suitable method for capturing 

the dynamics and changes in the system. 

Workload may change in various ways.  Menascé & Almeida (2002) defined three 

different  dimensions  in  e-mail  traffic:  the  number  of  users,  the  number  of 

messages per user, and the size of messages. Compounding the problem is the fact 

that  the  three  dimensions  expand  at  different  growth  rates.  In  one  case,  the 

number of messages observed had a threefold increase, but the size of messages 
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went up twenty times in the same period of time because of attached graphics. 

However,  web  workloads  and  traditional  workloads  change  in  different  ways, 

depending  on  prospective  business  and  technology  evolution.  The  workload 

change happens for several reasons: new applications, increase in the volume of 

transactions  and  requests  processed  by  the  applications,  enhancements  of  the 

application environment, marketing and sales promotions, and overall economic 

factors.

Most companies consider access logs to be very sensitive data. Hence, there are 

only  few  published  studies  (Arlitt  et  al.  2001;  Menascé  2000;  Menascé  et  al. 

1999) of e-business workloads due to the difficulty of obtaining actual logs from 

website maintainers. In Menascé et al. (1999), the authors propose a graph-based 

methodology  for  characterizing  e-business  workloads  and apply  it  to  an  actual 

workload to obtain metrics related to the interaction of customers with a site. For 

example,  the  paper  shows  how  to  obtain  information  such  as  the  number  of 

sessions, average session length, and buy-to-visit ratio. Menascé (2000) presented 

several models for workload characterization of e-business sites. It also shows how 

workload  models  can  be  obtained  from  HTTP  logs.  Arlitt  et  al. 

(2001) characterized the workload of an actual e-commerce site for the purpose of 

analysing its scalability. They use performance-related criteria to cluster requests 

into  similar  groups.  They  then  use  multiclass  queuing  models  to  carry  out  a 

performance  planning  study  for  the  site.  In  Menascé  &  Almeida  (2002),  the 

authors study the effect of time scale on operational analysis for a large web-based 

shopping system. They show that time-related service level agreements and input 

parameters for predictive queuing models are sensitive to time scale.

Andreolini et al. (2002) suggested that most web benchmark tools work fine when 

used to analyse a single server system, but none of them is able to address all issues 

related to the analysis of distributed web server systems. The authors refer to tools 

like SURGE  (Barford & Crovella 1998)  and Webstone  (Mindcraft,  2010).  Such 

tools suffer also age problems, as they do not support dynamic requests and the 

recent protocols. The study summarised a lack in ability to sustain realistic Web 

traffic under critical load conditions, the difficulty or impossibility of emulating 

realistic  dynamic  and  secure  Web  services,  and  the  poor  support  in  analysing 
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collected advanced statistic  properties.  As a  consequence,  the  authors  conclude 

that there is a lot of room for further research and implementation in this area.

The  hierarchical  and  multi-scale  characterization  approach  has  been  used  in 

Menascé et al. (2003) to identify several characteristics in the workload of the two 

sites analysed. Some of the findings are: 

● 88 % of the sessions have less than 10 requests.

● The  session  length,  measured  in  the  number  of  requests  to  execute 

e-business functions, is heavy-tailed.

● More than 70 % of the functions performed are product selection functions 

in contrast to product ordering functions.

● Requests to execute frequent e-business functions exhibit a similar pattern 

of behaviour as observed for the total number of HTTP requests.

Mahanti  et  al.  (2009) has  analysed  a  non-commercial,  WWW2007  conference 

website. The datasets were collected over a 1-year period in 2007 in the form of 

access logs (server-side) and Google Analytics  (Google Inc.,  2010)  (client-side) 

reports.  The  datasets  contain  approximately  10  million  requests  from  about 

130,000 unique visitors generating 215 GB of traffic volume. The measurements 

are  used  to  characterize  the  usage  behaviour  of  the  website  visitors.  Modern 

websites  (including  WWW2007)  contain  a  lot  of  graphics,  including  photos, 

banners,  logos,  maps,  and  menus.  Hence,  web  pages  and  images  account  for 

approximately 75% of the total data. The rest of the traffic volume is attributable to 

visitors downloading PDF documents from the website. The average visit duration 

varied between 2 … 4 minutes, except for the last three months leading up to the 

conference  when  the  average  visit  duration  varied  between  4  minutes  and  6 

minutes. Approximately, 70% of the visits lasted less than 1 minute. Most of the 

visits with page depth greater than 3 can be attributed to search engine spiders and 

conference organizers. Furthermore,  single-page visits were mostly restricted to 

the homepage, the program page, the call for paper page, the important dates page, 

or specific paper downloads. The top 18 pages accounted for about 53% of the total 

page views. For obvious reasons, the most viewed page was the homepage at 19%. 
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The total traffic volume transferred was based on a day of week and hour of the 

day. The study found that the work week accounted for almost 80% of the total 

traffic volume. Each weekday has about 15 … 17% of the total traffic volume, with 

Monday being slightly busier. 

Zhang & Fan (2008) has shown that content providers and e-commerce merchants 

are  often  overwhelmed  by  the  number  of  request  for  Web  pages  and  online 

transactions,  resulting  in  considerable  degradation  (for  example,  long  waiting 

time)  in  web server  performance.  In  order  to  keep the response time within a 

satisfactory limit,  web server maintainers often limit  the number of  concurrent 

open  connections.  When the  number  of  requests  overtakes  this  limit,  all  later 

access requests will be denied. Hence, often either the response time is long, or the 

user  request  is  not  processed  at  all.  Either  situation  could  lead  to  dissatisfied 

customers, driving many of them away from the site. In addition, the traffic may 

change with the time of the day, the day of the week, and even the month of the 

year. These seasonal or periodic fluctuations make it even more laborious to plan 

what would be an adequate capacity for a site.

3.3 Performance Management

The  traditional  performance  management  and  measurement  tools  of  the  web 

server  system are  discussed from a  system level  point  of  view.  A  system level 

performance model portrays the system as a black box. In this case, the internal 

details of the box are not modelled explicitly. As a result, the throughput of the 

whole system is considered.

3.3.1 Performance Related Terminology

The concept of performance management includes quite many subsystems, like 

performance  measurement,  performance  analysis,  performance  evaluation,  etc. 

However, those concepts are not clearly defined, and they are inconsistently used 

in the literature. 
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Figure 3.1:  Performance management and its subsystems according to revised Bloom's  
taxonomy 

Bloom's Taxonomy (Bloom, 1956; Buckley & Exton, 2003; Overbaugh, n.d.) helps 

define  the  concepts  of  performance  measurement,  performance  analysis,  and 

performance evaluation in relation to each other. The result is illustrated in Figure

3.1. The distinctive features of this approach are as follows (Singleton, 2002):

● An automated process in performance management aims to take the human 

"out of the loop”. The human consideration is still required in order to set 

up  the  system  and  to  define  the  performance  goals.  However,  the 

mechanisms for observing the current state of the system, comparing the 

obtained  values,  deciding  on  tuning  activities,  and  finally  putting  these 

activities into effect are automated and embedded within the system.

● Performance management accompanies a  distributed approach to prevent 

any  performance  threat  from  a  centralised  coordinator,  for  it  locally 

monitors system performance and gathers local state information.

● Performance management must include a mechanism that  autonomously 

controls the system behaviour.

● Performance management should be proactive due to the time gap between 

a launch of control actions and state information collection. A prediction 

mechanism  forecasts  the  following  system  state  based  on  which  control 

decision is made.
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Figure 3.2: The traditional approach to evaluate the performance of computer systems and  
networks is an “off-line” performance analysis: (a) and an agent-based mechanism for the  

realisation of the performance management architecture; (b) (Kotsis, 2004)

A  demand  is  observed  for  immediate  embedded  performance  tuning  actions 

replacing the conventional off-line approach of performance analysis. The human 

professional powered process of constructing a model, evaluating it, validating and 

interpreting  the  results  and  conclusion,  thereby  putting  performance  tuning 

actions into effect is no longer sufficient if real-time responsiveness of the system 

is needed. Hence, the proposition of an online, dynamic performance management 

approach which is outlined in Figure 3.2(b).

Figure 3.3 shows Performance Engineering activities and also as an example of the 

placement on waterfall development cycle  (Singleton, 2002). It can be seen that 

the performance estimation and prediction can start as early as the system design. 

As soon as the first design has taken shape, the performance model construction 

can begin.
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Figure 3.3:  Modelling within performance engineering.
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In practice, the application-induced load on the server in general is described, as 

well as the dimension of its workload. The workload is a set of variables and their  

values, which describe a variety of customer volumes and the volume of application 

activity over time.  For example,  in an online bookstore service,  two descriptive 

parameters of the workload could be: (a) requests for the travel book purchase of a 

day; and (b) the web server CPU utilization per minute.

The  term "workload"  is  used loosely  to  describe  a  general  behaviour  of  client-

server application. When the number of requests from customers does not vary 

considerably, server load is said to be stable. In contrast, when the request type or 

frequency  changes  with  time,  the  server  is  said  to  be  varying  or  dynamically 

loading.  In addition,  it  is  also used as a term referring to the amount of  work 

required to provide the client resource requirements, which relate to the server.

3.3.2 Performance Engineering

In  Jewell  (2008),  performance  engineering  is  defined  specially  in  software 

engineering  as  a  technical  discipline  which  aims  to  ensure  that  development 

project  results  in  the  delivery  of  a  system  which  meets  a  pre-specified  set  of 

performance objectives. This is done by:

● managing the performance risk of a project

● controlling or coordinating activities in the project that have an impact on 

performance, and

● applying  specialized  performance  estimation  and  design  skills  to  the 

architecture of the system under development.

More generally, performance engineering is defined in  Dumke et al. (2001) as a 

collection  of  models  in  support  of  the  development  of  performance-oriented 

systems throughout the entire life cycle. Those models can be seen as a group of 

tests and are categorised and described in Splaine & Jaskiel (2001) as follows:

● Smoke test is used to evaluate whether the software release is ready for 

testing.
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● Load testing is used to model the real-world performance of a website 

over a short period of time. 

● Stress test is used to determine if a specific combination of hardware and 

software  has  the  capacity  to  handle  an  excessively  large  number  of 

transactions during peak operation hours.

● Spike  and  bounce  testing  is  used  to  estimate  the  consequences  of 

significantly exceeding a normal average amount of clients.

This categorisation is focused on the design and building phase of the web service. 

There  are  no  tests  for  the  whole  life  cycle  of  the  web  service.  Jian 

(1991)  recognized that performance evaluation is required at every stage in the life 

cycle  of  a  computer  system,  including  design,  use,  and  upgrade.  However,  the 

presented analytical tools are improper to monitor web server system performance 

and capacity issues as a normal maintenance operation.

The scope of performance testing is not properly defined and varies from designing 

scripts  and  executing  tests  in  its  narrowest  interpretation  to  all  kinds  of 

performance-related actions when a synthetic or natural workload is applied to the 

system in a much wider interpretation.  The wider interpretation often includes 

performance analysis, performance troubleshooting and diagnostics, tuning, and 

capacity  planning,  making  out  the  word  "testing"  to  be  rather  concealing  the 

substance of  what is behind.  The difference behind these definitions can partly 

describe  the  broad  range  of  opinions  about  a  path  from  functional  testing  to 

performance testing: while the path from automated functional testing to "narrow 

definition" performance testing is quite straightforward, skills required by other 

areas of a "wide definition" performance testing are quite different.

Speaking about the wide definition of performance testing, it is clearly and highly 

interlinked with performance engineering. Performance testing is a source of raw 

data  for  any kind  of  modelling  and capacity  planning  activities.  It  is  a  way to 

calibrate  and  validate  models.  In  this  context,  models  mean  not  only  formal 

models, but any kind of perception of how the system is supposed to work.  If any 

proactive performance experiment is considered as performance testing, the only 

other  source  of  data  may  be  observation  or  log  analysis  of  real  work  with  the 
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system, and one may never know the exact level of load applied and what exactly 

happened  in  the  system.  A  notable  exception  is  data  defining  load  (like 

throughput)  which is a parameter of  performance testing; so they cannot come 

from its results but should come from analysing real systems or other sources.

Performance  is  usually  defined  as  the  speed with  which  a  certain  operation  is 

executed or the capability of executing a number of such operations within a unit 

of  time.  Performance  analysis  can  be  evaluated  with  simulation,  analytical 

modelling  or  empirical  evaluation  (Koziolek,  2008;  Lilja,  2000) as  explained 

below:

● Simulation is an imitation of a programme execution focusing on specific 

aspects. It is flexible as changes can be dealt with easily if the simulation is  

derived  automatically.  However,  simulation  can  suffer  from  a  lack  of 

accuracy. 

● Analytical  modelling  is  a  technique  where  a  system  is  mathematically 

described. Results can be less accurate than real-system measurements.

● Empirical  evaluation  is  performed  by  measurements  and  metrics 

calculation. It provides the most accurate results since no abstractions are 

made. 

Many websites are utilising multi-tier software architectures. The performance on 

such multi-tier  environments  is  typically  measured by the end-to-end response 

times. Most of the studies on modelling the response times have limited their focus 

to modelling the mean (Bhulai, Sivasubramanian, van der Mei, & van Steen, 2007). 

However,  since  the  user  experienced  performance  is  highly  affected  by  the 

variability in response times, the variance of the response times is important as 

well. 

The increased complexity of web-based applications requires more server capacity. 

As a result, the experienced delay in loading the page is determined not simply by 

transfer delay but also by server performance. Normally, generating a page also 

involves connections to back-end mainframes or database servers, thereby slowing 

down the process even further.
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Capacity planning is the process of predicting when future load levels will saturate 

the  system and  determining  the  most  cost-effective  way  of  delaying  system 

saturation  as  much as  possible.  The  lack  of  proactive  and continuous  capacity 

planning  procedure  may  lead  to  unexpected  unavailability  and  performance 

problems.

Capacity planning is essential for several reasons (Menascé & Almeida 2002):

● to avoid financial losses

● to ensure customer satisfaction

● to preserve a company's external image

● capacity problems cannot be solved instantaneously

Predicting the resource requirements in a rapidly changing environment brings 

more challenges, such as breaking news in the media environment or closing dates 

in e-government applications. In such a case, the normal load can be quite stable,  

but it can be increased rapidly, affecting system performance. The service provider 

cannot  overestimate  the  performance  of  the  system  to  keep  the  investments 

effective.  From  the  service  provider's  viewpoint,  this  means  seeking  a  balance 

between  economically  effective  investments  and customer  satisfaction  with  the 

technical quality of the service.

3.3.3 Performance Estimation

The traditional approach to evaluating the performance of computer systems is an 

off-line performance analysis as represented in  Figure 3.2(a). Originating from a 

characterisation of the system under study and characterisation of the actual load, 

a performance model is built, and performance results are obtained by applying 

performance evaluation techniques such as analytical,  numerical,  or simulation. 

Alternatively, the modelling and evaluation step can be replaced by performance 

measurements of the real system. In any case, an analysis of results follows, which 

can trigger an improvement of the model if the results do not provide the required 
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knowledge.  Alternatively,  it  will  lead  to  performance  tuning  activities  if 

performance  shortages  are  detected.  However,  many  aspects  of  emerging 

computing  environments  create  a  variety  of  performance-results  influencing 

factors, which cannot be adequately represented in a model. Applications in such 

environments are typically characterised by a complex, irregular, data-dependent 

execution behaviour, which is considerably dynamic and has time varying resource 

demands.  The performance produced by the  execution platform is  laborious  to 

predict as it is generally composed of heterogeneous components.

Individual  servers or entire server system performance analysis  and forecasting 

have  been  developed  in  a  number  of  different  models.  Thalheim  &  Tropmann 

(2011) present a model where automatic performance analysis is difficult. A study 

by Tsai et al. (2007) in turn presents a model which assumes that only the system 

processing speed is the bottleneck.

One of the more important aspects of performance engineering is the selection of 

the appropriate estimating technique for the situation at hand.  Figure 3.4 shows 

some of  the  common estimating techniques  and the corresponding cost  versus 

accuracy trade-offs. From a technical standpoint, the difference in these techniques 

comes from the manner in which volumetric and parametric costs, the resource 

model and queuing model are represented and used to estimate performance.
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Figure 3.4:  Cost/effort and accuracy/benefit trade-offs between performance estimation  
techniques (Jewell 2008)

Typically, more than one of these estimation techniques should be used during the 

life  of  a project.  Low-cost,  low-effort  methods are  commonly used early  in the 

project for feasibility study purposes, whereas the higher-accuracy methods may be 

employed later, when more is known about the solution design and validation of 

the  solution  performance  characteristics  is  deemed  critical.  These  estimating 

techniques may be summarized as follows (Jewell, 2008): 

● “Rules  of  thumb”  estimating  relies  on  very  preliminary,  simplified 

assumptions concerning volumetric and parametric costs, system resources 

and wait times in order to deliver an estimate relatively quickly.

● Analytical  modelling uses spreadsheets (or special  purpose tools in some 

cases) that perform static calculations to make predictions of “steady state” 

performance and utilisation of a system under a given workload. The static 

calculations typically take into account some amount of queuing theory and 

statistical  techniques,  in  addition  to  volumetric,  parametric  costs  and 

system resources.
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● Simulation modelling conventionally employs what is known as a discrete 

event simulation tool to mimic the transaction processing behaviour of the 

live system from a resource utilisation and timing perspective. With these 

kinds  of  tools,  the  modeller  must  spend a  considerable  amount  of  time 

populating the model with the resource model,  the parametric costs  and 

transaction processing behaviour. 

● Prototypes can be thought of as not entirely constructed or as early versions 

of a considered invention, product or solution. The purpose of building any 

prototype is to learn from and leverage the experience of building or testing 

such a prototype before making a commitment to the production version. 

For  IT  solutions,  performance  prototyping  can  serve  as  a  means  of 

investigating aspects of solution performance before a completely developed 

live system is available for performance testing.

● Benchmark  testing  refers  to  the  process  of  performance  testing  using  a 

known workload before and after making a change or enhancement to the 

system, in order to determine whether the system’s performance has been 

impacted by the change.

As the previous categorisation shows, performance monitoring and estimation in a 

live environment are not known in general  as an essential  part  of maintenance 

operations.

3.3.4 Performance Analysis

In  Lilja  (2000),  performance  analysis  is  described  as  a  combination  of 

measurement, interpretation and communication of a computer system's capacity. 

It means it is important to recognise that we need not necessarily be dealing with 

the complete system. Eventually, it is necessary to analyse only a small portion of 

the  system,  independent  of  the  other  components.  For  instance,  we  may  be 

interested in studying the performance of  a certain computer system's network 

interface  independent  of  the  size  of  its  memory  or  the  type  of  processor. 

Unfortunately, the components of a computer system can interact in incredibly 
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complex and frequently unpredictable ways. One of the most engaging tasks of the 

performance analyst  can be figuring out  how to measure the necessary data.  A 

large  quantity  of  creativity  may  be  needed  to  develop  good  measurement 

techniques that disturb the system as little as possible while providing authentic 

reproducible results. After the required data have been collected, the results must 

be  interpreted  using  appropriate  statistical  techniques.  Finally,  even  excellent 

measurements interpreted in a statistically appropriate fashion are of no practical 

use to anyone, unless they are communicated in a clear and consistent manner.

Little's law is widely applicable in analytic methods.  The law was first proven by 

Little (1961) and it applies insofar as the number of jobs entering the system is 

equal to those completing services, so that no new jobs are created in the system 

and no jobs are lost inside the system. The law can be used for a system or any part 

of the system. We can apply the law to relate queue length Qi  and response time 

Ri  at the ith device as follows:

Qi = i Ri  (3)

where i  is the arrival rate to device i. In case of balanced job flow, the arrival rate 

is equal to the throughput X i , equation (3) can be written thus:

Qi = X i Ri  (4)

Because Little's law can be used for a whole system, the equation (4) can be written 

for the whole system:

Q = X R  (5)

The response time at  the maximum throughput is  too high to be acceptable in 

many cases. In such cases, it is more interesting to know the maximum throughput 

achievable  without  exceeding  a  pre-specified  response  time limit.  This  may  be 

called usable capacity of the system. In many applications, the knee point of the 
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throughput curve or the response time curve is considered the optimal operation 

point.

In any capacity analysis identifying the bottleneck resource should be the first step 

in performance improvement  (Jian, 1991). The resource (e.g. memory, processor 

time, disk I/O, network I/O) with the highest total service demand  Di  has the 

highest utilization and is called the bottleneck resource. Suppose the resource  b, 

Db  is the bottleneck,  Dmax  in a set of resources D1,D2,⋯, DM .  The throughput 

bound of the system is:

X N   min{ 1
Dmax

, N
DZ }  (6)

and the response time is respectively:

R N   max {D , NDmax−Z }  (7)

where N is the number of requests, Z is the think time, and D = ∑ Di  is the sum 

total of service demands on all resources.

Requests arrive at the web server at rate   and they get served constantly at rate 

 .  The  server  utilization  is  U = λ/ μ . In  the  case  of  infinite  request  queue 

Menascé & Almeida (2002) has shown that the average response time R depends 

on average service rate   and the utilization U of the server.

R =

1
μ

1−U

 

(8)

While the utilization increases close to 1, the denominator of Equation (8) goes to 

zero and R goes to infinity. In Figure 3.5, the curve shows a dramatic increase in 

response time seen when the workload approaches its maximum possible value. 
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Figure 3.5: Typical website response time curve compared 
to workload

The arrival rate    and the service rate    may depend on the system state  k  in 

many cases.  The  throughput  of  the  service  system is  usually  a  function of  the 

number  of  requests  present  in  the  system.  A  typical  throughput  curve  X(k) is 

shown in Figure 3.6. The light load region in the figure shows, that as the workload 

of  website  increases,  the  throughput  increases  almost  linearly.  At  light  loads, 

requests  face  very  little  congestion for  resources.  After  some point,  congestion 

starts to build up, and throughput increases at a much lower rate until it reaches a 

saturation value. The maximum value is determined by the bottleneck device at the 

single server.
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Figure 3.6: Typical website throughput curve compared to number 
of arrival requests (Menascé & Almeida, 2002)

Let  J be the value of  k,  and after which the value of the throughput no longer 

changes. Now, the expressions for  k  becomes:

μk = {X k  , kJ
X J  , kJ

 (9)

In general web systems, the user population size is infinite, and the queue size is 

limited to W requests. In case of X J  , the fraction of time, pk , server has k

(k=0,1 ,⋯)  requests (Menascé & Almeida, 2002):

pk = {p0
k

 k 
, kJ

p0 X J J k

 J 
, kJ

 (10)

where p0  is:

p0 = [1∑k=1
J

k

 k 
  J

J 
× 
1− ]

−1

 (11)
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where   k =X 1×X 2×⋯×X k  and  = /X J  .  As discussed in Section  2.5, 

the throughput function X J   depends on the internal state of the system and the 

rejuvenation interval. 

3.4 Response Time

Response time is broadly defined as the time interval between a user's request for 

service and the service's return of results, as discussed in Fortier & Michel (2003). 

In  reality,  this  is  oversimplified  and  is  not  all  there  is  to  it.  There  are  more 

elements on the side of both request and response that make up the true measure. 

The process begins with the user inputting the transaction. This is not a single step, 

but it  can be much longer if  the user is  using an interactive interface with the 

transactional  service.  The  database  system  must  set  up  the  appropriate  data 

structures  and  provide  resources  for  the  transaction  to  be  executed.  The 

transaction  is  then  executed  by  the  database  engine.  The  transaction  then 

completes  processing,  prepares  the  transaction  results  and  sends  them  off,  as 

shown in  Figure  3.7.  Each  of  these  steps,  while  a  bit  more  complete  than  the 

simplistic  model,  is  still  only  a  partial  representation  of  the  full  transaction 

processing cycle in a commercial database system. In addition, the rendering time 

required  by  the  browser  or  any  other  end-user  systems  requires  time  that  is 

dependent on the complexity of the data and the performance of the browser. Each 

of  these  components  of  the  transaction  response  time  is  a  response  time 

component. These components are the subparts of the total transaction response 

time, just as queue wait time and server time represent the job time in a queuing 

model.

Selvidge et al. (2002) has defined  system response time as the speed at which a 

computer  responds  to  a  user’s  command.  User  think  time is  defined  as  the 

duration of time between the computer’s response and the user’s next command 

input. For example, the time it takes from the user’s action of selecting a link on a 

web page until the page is presented is the system response time.
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Figure 3.7: Transaction processing response partitioning

The response time of a computer system will normally rise as the load increases. 

Manifold  methods  have  been  developed  to  provide  rules  of  thumb  for  such 

scenarios. One, called the stretch factor (Fortier & Michel, 2003), is computed as 

the expected response time over the expected service time, or:

Stretch factor=
EW
E S

 (12)

where  EW  is the expected response time and  ES  is the expected service time. 

This measure is depicted in Figure 3.8. In most real systems, one wishes to see this 

stretch factor have a computed value of approximately 5. If the factor rises above 

this approximation, this implies longer waiting times in relation to service times 

and therefore, lower availability of the resource and higher utilization.

Figure 3.8: Stretch factor compared with utilisation
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The ISO 9126-2 (ISO/IEC, 2001) standard defines three different response times. 

In  general,  the  response  time  should  measure  the  time  consumption  for 

completing at specified task. It should be recorded as the time span between the  

start of the task and its completion. 

The second definition is the  mean time to response:  The meantime to response 

should record the regular response time under a defined system load in terms of 

concurrent tasks and system utilization. It is estimated by acquiring the response 

several  times  and  dividing  the  sum  of  all  response  times  by  the  number  of  

measurements. This can again be divided into the required mean response time so 

that the result is the ratio of fulfilling the prerequisites. The ratio should be less 

than 1.0, lower being better.

Finally, the worst case response time is defined: The worst case response time is 

calculated using the ratio of the maximum response time of a set of measurements  

divided by the required maximum response time. Again, the value should be less 

than 1.0, lower being better.

3.5 Throughput

Throughput is defined as the rate (request per unit of time) at which the requests 

can be serviced by the system. For batch streams, the throughput is measured in 

jobs per second. For interactive systems, the throughput is measured in request 

per second. For CPUs, the throughput is measured in Millions of Instructions per 

Second (MIPS), or Millions of Floating-Point Operations per Second (MFLOPS). 

For  web  servers,  the  throughput  is  measured  in  HTTP  operations  per  second 

(HTTPops/sec). For networks, the throughput is measured in packets per second 

(pps) or bits per second (bps). For transactions processing systems, the throughput 

is measured in Transactions per Second (TPS). Hence, in order for the throughput 

value  to  be  meaningful,  the  type  of  the  transaction  considered  has  to  be 

characterised when reporting the throughput.

Throughput  is  defined  in  some  studies  (Fortier  &  Michel,  2003;  Jian,  1991; 

Koziolek & Happe, 2008) as with response time, which will grow as additional load 
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is placed on the system. However, unlike response time, there will be a point when 

the throughput will maximize and possibly begin to degrade, as shown in  Figure

3.9. In the figure, the throughput increases over a wide range of load and then 

slows as a saturation point  is  reached.  In the throughput case,  the  throughput 

increases to some maximal level and then levels off. At a critical point in the load, 

where  the  response  time  has  begun  to  increase  exponentially,  the  throughput 

begins  to  degrade  below  the  maximum.  Such  curves  are  typical  of  computer 

systems where there is  inadequate service capacity for the presented load. It  is 

aimed always at  keeping the throughput near its peak, but not too far into the 

saturation region, so that resources stay available for spikes in load. The maximum 

achievable  throughput  under  ideal  workload  conditions  is  called  the  nominal 

capacity of the system. For computer networks, the nominal capacity is called the 

bandwidth and is usually expressed as bits per second. Often the response time at 

maximum  throughput  is  too  high  to  be  acceptable.  In  such  cases,  it  is  more 

relevant to know the maximum throughout achievable without exceeding a pre-

specified response time limit. This may be called the usable capacity of the system. 

In many applications, the knee of the throughput or the response time curve is 

considered the optimal operation point. 

Figure 3.9: Throughput curves versus response curves. 
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Another important measure is efficiency. This measure is related to utilization and 

throughput.  The  relationships  look  at  the  ratio  of  the  maximum  achievable 

throughput compared to the actual throughput:

Efficiency = real throughput
theoretical throughput

 (13)

Efficiency can also be measured for multiple resource systems. One common use is 

when  looking  at  the  performance  speed-up  of  having  one  processor  versus  n 

processors. Efficiency in this class of environment is calculated as the ratio of the 

theoretical throughput times the number of devices, and divided by the speed of a 

single device. 

In Figure 3.10 we can see that the theoretical efficiency of adding more processors 

is a linear curve with an efficiency equal to the number of devices applied. The real 

measured  curve  shows  a  very  different  story.  The  efficiency  is  not  linear  and 

continues to degrade as more devices are added. This is due to the added overhead 

involved in keeping the processors effectively utilized in performing tasks.

Figure 3.10: Multiprocessor efficiency curve. 

Throughput is defined in ISO 9126-2 (ISO/IEC, 2001) as follows: The throughput 

characterises the number of tasks, which can be satisfied over a given period. In 
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addition, the mean amount of throughput is described as a number of concurrent 

runs in the specified task calculated by the sum of each of the throughputs and 

divided by the amount of runs. Then, this is divided by the required throughput to  

get a ratio. The ratio should be less than 1.0, lower being better. Third, the worst 

case throughput is defined as the amount of concurrent runs in the specified task, 

to be calculated by taking the maximum of the measured throughput values and 

dividing this by the required throughput to get the ratio. The ratio should be less 

than 1.0, lower being better.

3.6 Utilization, Reliability, and Availability

The utilization of a resource is a measure of how busy the resource is (Jian 1991; 

Fortier & Michel 2003). It is measured as the fraction of time the resource is busy 

servicing the requests. Thus this is the ratio of busy time and total elapsed time 

over a given period. The period during which a resource is not being used is called 

the idle time. Some resources, such as processors, are always either busy or idle, so 

their utilisation in terms of the ratio of busy time to total time makes sense. For 

other resources, such as memory, only a fraction of the resource may be used at a 

given  time;  their  utilisation  is  measured  as  the  average  fraction  used  over  an 

interval. It is computed as the fraction of time the resource is busy servicing clients  

divided by the entire period:

Utilization= time busy
time busytime idle

 (14)

In most systems, it is not reasonable to saturate resources. Instead, the aim is to 

balance the utilization such that no device is more heavily utilized than another. In 

principle, this is the goal, but in reality, this is difficult to achieve. Utilization is an 

important measure when examining systems. Different devices in a system have 

different average utilization values. For example, processors typically will be highly 

utilized, while memory, disks, and other peripheral devices will all have smaller 

fractional use time.
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Utilisation is defined in ISO 9126-2 (ISO/IEC, 2001) as having three purposes: The 

I/O device utilisation  section suggests several metrics to describe the load of the 

specified resources with respect to the tasks defined. It contains metrics for the 

device utilisation, load limit, I/O related errors and the waiting time of the user 

due to device response times.  The  memory resource utilisation  metrics  can be 

used to conclude the memory consumption for the execution time of the specified 

tasks.  The  standardised  metrics  include  metrics  for  the  maximum  amount  of 

memory  consumed,  the  mean  occurrence  of  memory  errors,  and  the  ratio  of 

memory errors to execution time. Finally, the communication resource utilisation  

is  supposed  to  characterize  the  load  of  communication-related  transmission 

channels. Metrics of this group contain the maximum transmission utilisation, the 

media device utilisation balancing,  the mean occurrence of  transmission errors, 

and the mean of transmission errors per time.

Other  important  measures  in  analysing  computer  systems  include  systems 

reliability and systems availability. They are defined in (Jian, 1991). The reliability 

of a system is a measure of the probability of errors or a measure of the typical time 

between errors. Most computer systems are fairly reliable, with hardware being 

more reliable than software. The availability of a system is measured in terms of 

reliability. If a system is highly reliable, it will more likely be available than not.  

However, if a system is unreliable, then it will have periods of downtime, where the 

system is not running or is running erroneously. The time during which the system 

is not available is called downtime; the time during which the system is available is 

called uptime. Often, the mean uptime, better known as the Mean Time to Failure 

(MTTF),  is  a  better  indicator  since  a  small  downtime  and  small  uptime 

combination may result in a rather high availability measure, but users may not be 

able to get any service if the uptime is less than the time required to complete the 

service. 

3.7 Benchmarking Tools and Techniques

Fortier  &  Michel  (2003) described  four  techniques  for  computer  system 

performance  evaluation  including  simulation  modelling,  Petri-nets,  analytical 
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modelling,  and  test-bed  analysis.  Depending  on  the  criteria  allocated  for  the 

computer  system's  analysis,  some  approximate  selection  metrics  can  be 

determined. The most significant criterion deals with this stage of the computer 

system's life cycle. For example, if the computer system planning is in the earliest 

phases of  the life cycle,  when trade-offs on new components are examined,  the 

analytical  modelling  is  the  most  effective  method  to  provide  relatively  quick 

answers, making it possible to determine early on if a subset of several alternatives 

is best for a more detailed modelling. Once this rough analysis has been completed, 

and choices of alternatives are narrowed to some smaller subset, Petri-nets would 

probably  be  applied  to  further  refine  the  choices.  Petri-nets  add  the  ability  to 

model and trade off concurrency, conflict, and synchronization, something that is 

impossible to accomplish with analytical modelling. In the next phase, when the 

system  or  something  similar  already  exists,  measurements  are  available  as  a 

modelling possibility. Simulation provides the ability to produce detailed models of 

a target system or just some specific contentious component(s). Once the system is 

constructed,  the  empirical  modelling  would  be  applied.  This  would  allow  for 

verifying whether early modelling was correct and to possibly identify areas where 

the new system could be further refined and improved.

The next criterion for consideration when deciding on which modelling tool to use 

is  the resources that  have to  do with  the modelling task.  In most  situations,  a 

model is requested after some problem has occurred, and it should be resolved as 

soon as possible. If time is not bounded to perform all the possible evaluations,  

then each reasonable model would probably be walked through, thus refining the 

analysis defined under the criterion of the time stage. The problem is that typically 

there is no such luxury available. If time is bounded, then the use of analytical or 

Petri-net modelling is the most effective, with analytical modelling winning out if 

time is very short.  If  time is important though not critical,  then Petri-nets and 

simulation are the next models of choice. Petri-nets require less time to develop 

than simulations but would also be provided with possibly less detailed analytical 

information. If the system already exists, then measurements may be appropriate 

over simulation modelling, if the number of alternatives we are looking at is small. 
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If the number of alternatives is considerable, then simulation would win out, even 

though it would typically take more time than measurements.

Two remarkable associations have developed multi-purpose load test applications 

since  the  early  days  of  commercial  computing,  SPEC  (Standard  Performance 

Evaluation  Corporation)  (SPEC,  2010) and  TPC  (Transaction  Processing 

Performance Council)  (TPC, 2010). Both organizations have benchmarking tools 

for several types of transactions on internet computing. However, both tools use 

their own generic applications on the application server. They do not measure the 

real existing application set. The result describes the performance of the hardware, 

neither the configuration nor the application. Especially, the actual usage and its 

change on time do not  affect  the  results.  As we have discussed in Section  2.5, 

software aging is remarkably effective on the performance of the server system.

Producing representative web trace load is a challenging task due to the number of 

unusual features of web workload. Web servers have encountered highly variable 

requests, which are exhibited as variability in CPU loads and the number of open 

connections.  The  second  feature  of  web  workload  is  self-similarity  in  network 

traffic of web requests, i.e. traffic can show significant variability over a wide range 

of scales. Self-similarity in traffic has been shown to have a significant negative 

impact  on  network  performance  (Dill  et  al.  2002;  Crovella  &  Bestavros  1997; 

Barford & Crovella  1998),  so it  is  an important  feature  to capture in a natural 

workload. 

To  clarify  these  properties  in  a  benchmarking  process,  one  of  the  following 

approaches  could  be  used:  a  trace-based  or  an  analytic  approach.  Trace-based 

workload  generation  uses  pre-recorded  records  of  past  workloads  typically 

identified in access logs and either samples or replays traces to generate workloads. 

In  contrast,  analytic  workload  generation  starts  with  mathematical  models  for 

different workload characteristics and then generates outputs that adhere to the 

models. 

Both approaches have strengths and weaknesses. The trace-based approach is easy 

to implement, and it mimics the activity of a known server system. However, it 

treats the workload as a black box. Hence, the result is that the response to the 
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system is of well known workload only. Furthermore, it can be hard to adjust the 

workload to imitate future conditions or varying demands. Analytic models do not 

have these weaknesses, but they can be challenging to construct for at least four 

reasons.  First,  it  is  necessary  to  identify  those  characteristics  of  the  workloads 

which  are  important  to  model.  Second,  the  chosen  characteristics  must  be 

empirically measured. Third, it can be difficult to create a single output workload 

that  accurately  exhibits  a  large  number  of  different  characteristics.  Fourth, 

updating the model is required in case of application, configuration or hardware 

updates, and a lot of laborious operations may be required.

Benchmarking tools and techniques are reviewed in a tutorial  (Andreolini et al. 

2002). It is aimed at evaluating the performance and scalability of highly accessed 

web server systems. The focus in the study is on design and testing of locally and 

geographically  distributed  architectures  where  the  performance  evaluation  is 

procured through workload generators and analyses in a laboratory environment. 

The tutorial perceives the qualities and issues of existing tools in terms of the main 

features  that  characterize  a  benchmarking  tool  (workload  representation,  load 

generation, data collection, output analysis and report) and their applicability to 

the analysis of distributed web server systems.

One study (Ruffo, Schifanella, Sereno, & Politi, 2004) presents a set of tools that 

allows the performance analysis of web applications by means of a scalable what-if 

analysis on the test bed. The approach used in that paper is based on a workload 

characterization  generated  from  information  extracted  from  log  files.  The 

workload is generated using user behaviour analysis, which is derived by extracting 

information  from  the  web  application  log  files.  In  this  manner,  the  synthetic 

workload used to evaluate the web application under test is representative of the 

real traffic that the web application has to serve. One of the most common critics to 

this approach is  that synthetic workload produced by web stressing tools  is  far 

from being realistic. The use of the behaviour analysis might be useful to overcome 

this criticism.

Grid  computing  is  a  common  platform  for  solving  large-scale  computing  task 

requirement for high availability. However, a number of major technical issues, 

including the  lack of  sufficient  performance evaluation  approaches,  disturb  the 
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further development of grid computing. Therefore, the requirements are manifold; 

adequate  approaches must  synthesize  appropriate performance metrics,  natural 

workload  models,  versatile  tools  for  workload  generation,  submission,  and 

analysis. An approach to intercepting this complex problem is shown in Iosup et al. 

(2007). A set of grid performance objectives, based on traditional and grid-specific 

performance metrics, is shown. Also, the requirements for realistic grid workload 

modelling, data and network management, and failure modelling are synthesized.

Common  web  server  systems  are  relying  on  multi-tier  architectures.  The 

performance of such multi-tier systems is typically measured by the end-to-end 

response times. Most of the research studies analysing the response times of such 

systems have restricted their  focus  to  modelling the  mean.  However,  since  the 

user-perceived performance is highly affected by the variability in response times, 

the variance of  the response times is  important  as well.  A study  (Bhulai  et  al., 

2007)  has presented an analytical model for multi-tiered web applications based 

on a queuing-theoretical framework. Based on this model, the mean response time 

of a service can be estimated and a reasonable approximation of its variance can 

also be provided. 

An end-to-end monitor to measure website performance has been developed by 

Cherkasova  et  al.  (2002).  The  system passively  collects  packet  traces  from the 

server site to determine service performance characteristics. The study introduces 

a two-pass heuristic  method and a  statistical  filtering mechanism to  accurately 

reconstruct  a  composition  of  individual  page  and  performance  characteristics 

integrated  across  all  client  accesses.  However,  the  monitor  requires  specific 

software  components  (agents)  for  each  server  of  an  independent  network 

appliance in order to capture all HTTP transactions for a web server.

Ardaiz et al. (2001) have shown that with measurements taken from the server and 

without introducing traffic on the network, it is possible to estimate the service 

time experienced by a web client. In the study, the metrics has been analysed so as 

to be obtainable at a web server regarding the service time experienced by a client, 

which  has  components  that  depend  on  the  round  trip  time  and  bandwidth, 

something that  is  difficult  to  obtain without  modifications in all  web browsers. 

This metrics has been compared in an experiment with clients and servers situated 
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in different locations on the Internet, and therefore, under the same conditions of 

variability and network load as any normal client would experience.

3.8 Monitoring Tools

One  report  (Balaton,  Kacsuk,  Podhorszki,  &  Vajda,  2000) provides  a  short 

description of  the grid monitoring architecture and existing event services.  The 

report  compares  several  monitoring  tools  that  can  be  utilised  in  a  grid 

environment. Compared properties of the tools are based on the requirements of 

scalability,  intrusiveness,  validity  of  information,  data  format,  extendibility, 

communication, security and measurement metrics. The study is aiming to collect 

monitoring  data  in  large  distributed  systems for  a  variety  of  purposes  such as 

performance analysis, tuning, and prediction. As a result, the study presents a list 

of required features for monitoring tools. Most of the compared tools are using 

their own, albeit quite well-known, proprietary agents to collect the raw data. 

Distributed computer systems require a great amount of monitoring data to be 

collected  for  a  variety  of  tasks  such  as  fault  detection,  performance  analysis, 

performance tuning, performance prediction, and scheduling. A study by Tierney 

et al. (2001) presents a developed agent-based system to automate the execution of 

monitoring sensors and the collection of event data. The developed Java Agents for 

Monitoring and Management (JAMM) architecture relies on well-known sensors 

in the UNIX world, like netstat, iostat, and vmstat. However, JAMM is planning to 

collect  monitoring  events,  and  to  analyse  and  visualise  them  with  external 

application like NetLogger Toolkit (Tierney et al., 1998). It can be used even as an 

accurate application level analysis and lifeline style visualization. In addition, there 

are no possibilities to integrate them into the access history or well-known load 

simulation.

Most of the analytic applications and monitoring systems have their own features 

and are not necessarily interoperable due to different designs and implementation 

approaches. The study by  Yang & Theys (2005) presented a resource monitoring 

framework (RMF) that provides network administrators and researchers with a 
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consistent  and  scalable  interface  for  a  wide  range  of  monitoring  applications. 

However, this framework does not include tools for integrating the access logs and 

well-known load simulation.

Most  of  the  tools  mentioned  above  are  relying  on  their  own  sensors  for  data 

collecting. However, in modern computer systems, robust,  comparable, reliable, 

and secure sensors are integrated into the kernel level. The data of these sensors 

can be collected by using SNMPv2 or SNMPv3. Most server resources are rather 

simple to implement, like the memory or TCP connection available. At the same 

time,  CPU  usage  is  the  most  interesting  in  several  service  instances  and  its 

implementation is playing a critical role. 

On the other hand, those tools analyse all the individual user requests and network 

packages,  referring  to  certain  requests.  The  concept  leads  to  accurate  results. 

However, in geographically distributed systems this has to be distributed to the 

sensors as well. For example, local area network (LAN) traffic cannot be remotely 

monitored  without  a  local  proxy.  The  local  proxies  require  investments, 

maintenance,  and  these  are  increasing  monitoring  costs.  The  monitoring  and 

analytic systems on this type of arrangement are poorly generalized with increased 

energy consumption. 

The  CPU  is  a  discrete  state  machine.  It  can  only  be  at  100%,  executing  an 

instruction, or at 0%, waiting for something to do. There is no such thing as using 

only 45% of a CPU. The CPU percentage is the amount of time interval that the 

system's processes were found to be active on the CPU. If a process is taking 45% 

CPU, 45% of the samples taken are active on the CPU. In the rest of the time, the 

process  was  in  a  waiting  state.  Load averages  do not  include any processes  or 

threads waiting on I/O, networking, databases or anything else not demanding the 

CPU. Hence, it is precisely the CPU load that is measured. The load averages differ 

from CPU percentage in two significant ways: 1) load average measures the trend 

in CPU utilization, and not only an instantaneous snapshot, as does percentage; 

and 2) load averages include all demands for the CPU, and not only how much was 

active  at  the  time  of  measurement.  The  CPU  usage  monitoring  in  Unix-liked 

operating systems is based on time counters in the kernel. Walker (2006) described 

the CPU load instrumentation in Linux kernel as follows. 
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In the kernel of Linux, each dispatchable process is granted a permanent amount 

of time on the CPU per dispatch. By default, this amount is 10 milliseconds. For 

such short time duration, the process is assigned a physical CPU on which to run 

its  instructions  and is  allowed  to  take  over  that  processor.  In  most  cases,  the 

process will give up control before the 10 ms are up through socket calls, I/O calls 

or  calls  back  to  the  kernel.  On a  typical  modern 2.6  GHz processor,  10  ms is 

enough time for approximately 50-million instructions to occur. If the process uses 

its fully allotted CPU time of 10 ms, an interrupt is raised by the hardware, and the 

kernel  regains  control  of  the  process.  The  kernel  then  promptly  penalizes  the 

process for being such a hog. Hence, time slicing is an important design concept 

for making an operating system seem to run smoothly on the outside.

One of the duties the kernel completes when it receives control is to increase its 

jiffies counter. The jiffies counter is for measuring the number of time slices that 

have occurred since the system was booted. The jiffies counter is incremented by 1, 

and the load-average calculation is checked to see if  it  should be computed. In 

actuality, the load-average computation is not truly calculated on each quantum 

tick, but driven by a variable value that is based on the HZ frequency setting and 

tested on each quantum tick. HZ is not the processor's MHz rating. This variable 

sets the pulse rate of particular Linux kernel activity, and 1 HZ equals one quantum 

or 10 ms by default. 

The data values can be figured out using a /proc pseudo-filesystem as an interface 

to kernel data structures. In Linux and Solaris, it is mounted at /proc. It carries a 

great number of information in kernel. Data for SNMP interface in Linux can be 

figured out using the next source code fragment on Linux and Solaris kernels. 
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read("/proc/stat", buff);
sscanf(buff, "%llu %llu %llu %llu %llu %llu %llu", &cusell,
&cicell, &csysll, &cidell, &ciowll, &cirqll, &csoftll);
cpu->user_ticks = (unsigned long)cusell;
cpu->nice_ticks = (unsigned long)cicell;
cpu->sys_ticks = (unsigned long)csysll;
cpu->idle_ticks = (unsigned long)cidell;
cpu->wait_ticks = (unsigned long)ciowll;
cpu->intrpt_ticks = (unsigned long)cirqll;
cpu->sirq_ticks = (unsigned long)csoftll;
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The corresponding code fragment used in Solaris is the following:

The above code fragments show that implementations are not the same even in 

different  Unix  versions.  However,  there  are  some  common  principles  in  most 

operating systems, i.e. the metrics of load is characterized as user,  nice,  sys,  idle, 

and  wait states.  The  names  may  vary  in  different  environments.  All  these 

categories have their own counters. In addition, some implementations have the 

raw counter.  The  different  counters  are  available  via  SNMP  interface  for 

monitoring purposes.

The single value of a number of ticks does not say anything about the load rate. It 

requires also knowledge about the duration of a time slice between two different 

values. This leads to the concept of load average. The load averages indicate by 

increasing duration whether (or not) the physical CPUs are over- or under-utilized. 

The point of perfect utilization, meaning that the CPUs are always busy and yet no 

process ever waits for one, is the average from matching the number of CPUs. If 

there are four CPUs on a machine and the reported one-minute load average is 

4.00, the machine has utilized its processors perfectly for the last 60 seconds. This 

understanding can be extrapolated to the 5- and 15-minute averages.

There  are  plenty  of  SNMP  implementations  available  in  different  operating 

systems  and  in  different  architectures.  In  this  study,  the  widely  available  net-

SNMP  (Net-SNMP Development Team, 2007) is used in the Linux environment. 

In the MIB-description, the CPU usage is described as follows:
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kstat_read(kstat_fd, ksp, &cs);
cpu2->user_ticks = (unsigned long)cs.cpu_sysinfo.cpu[CPU_USER];
cpu2->idle_ticks = (unsigned long)cs.cpu_sysinfo.cpu[CPU_IDLE];
cpu2->kern_ticks = (unsigned long)cs.cpu_sysinfo.cpu[CPU_KERNEL];
cpu2->wait_ticks = (unsigned long)cs.cpu_sysinfo.cpu[CPU_WAIT];
/* or cs.cpu_sysinfo.wait[W_IO]+cs.cpu_sysinfo.wait[W_PIO] */
cpu2->sys2_ticks = (unsigned long)cpu2->kern_ticks+cpu2->wait_ticks;
/* nice_ticks, intrpt_ticks, sirq_ticks unused */
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In net-SNMP, there are several indicators for CPU usage. Some of them indicate 

percentage values and the rest are for CPU ticks.  The tick indicators are called 

'Raw'. The total number of ticks is  100 ∗ Number of Processors . For a single 

processor machine numbers will appear to be percentages as the kernel will tally 

ticks at 100 per second.

System CPU raw user  (ssCpuRawUser):  user CPU time in ticks per second, as 

reported by the kernel.

System CPU raw nice  (ssCpuRawNice):  nice  CPU time in  ticks  per  second,  as 

reported by the kernel.

System CPU raw system (ssCpuRawSystem): system CPU time in ticks per second, 

as reported by the kernel.
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UCD-SNMP-MIB::ssCpuUser.0 = INTEGER: 7
UCD-SNMP-MIB::ssCpuSystem.0 = INTEGER: 0
UCD-SNMP-MIB::ssCpuIdle.0 = INTEGER: 91
UCD-SNMP-MIB::ssCpuRawUser.0 = Counter32: 105129968
UCD-SNMP-MIB::ssCpuRawNice.0 = Counter32: 5481391
UCD-SNMP-MIB::ssCpuRawSystem.0 = Counter32: 9448037
UCD-SNMP-MIB::ssCpuRawIdle.0 = Counter32: 932770472
UCD-SNMP-MIB::ssCpuRawWait.0 = Counter32: 1144770
UCD-SNMP-MIB::ssCpuRawKernel.0 = Counter32: 0
UCD-SNMP-MIB::ssCpuRawInterrupt.0 = Counter32: 1442

ssCpuRawSystem OBJECT-TYPE
  SYNTAX   Counter32
  MAX-ACCESS read-only
  STATUS   current
  DESCRIPTION
    "The number of 'ticks' (typically 1/100s) spent
     processing system-level code.
     On a multi-processor system, the 'ssCpuRaw*'
     counters are cumulative over all CPUs, so their
     sum will typically be N*100 (for N processors).
     This object may sometimes be implemented as the
     combination of the 'ssCpuRawWait(54)' and
     'ssCpuRawKernel(55)' counters, so care must be
     taken when summing the overall raw counters."
  ::= { systemStats 52 }
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System  CPU  raw  idle  (ssCpuRawIdle):  idle  CPU  time  in  ticks  per  second,  as 

reported by the kernel.

System CPU raw wait  (ssCpuRawWait): iowait CPU time in ticks per second, as 

reported by the kernel.

System CPU raw kernel (ssCpuRawKernel): kernel CPU time in ticks per second, 

as reported by the kernel. 

As described,  the interface is  suitable  also for  the  multi-CPU architecture.  The 

timing of each value has to be managed by the application as well as the number of  

CPU's that has to be known by the application.

In  the  Microsoft  Windows  environment,  the  corresponding  CPU  busy  value  is 

available, e.g. in SNMP-Informant MIB. The description of the MIB is as follows:

As we can see, the CPU load value in Linux is the number of ticks, and in Microsoft  

Windows  it  is  the  load-average.  However,  the  sample  interval  is  not  defined 

explicitly.  Empirical  test  has shown, that  the results  for SNMP queries in both 

environments  are  accurate  compared  to  the  load  monitoring  tools  on  each 
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 cpuPercentProcessorTime OBJECT-TYPE
  SYNTAX   Gauge32
  MAX-ACCESS read-only
  STATUS   current
  DESCRIPTION
      "% Processor Time is the percentage of time
      that the processor is executing a non-Idle
      thread. This counter was designed as a primary
      indicator of processor activity. It is
      calculated by measuring the time that the
      processor spends executing the thread of the
      Idle process in each sample interval, and
      subtracting that value from 100%. (Each
      processor has an Idle thread which consumes
      cycles when no other threads are ready to run).
      It can be viewed as the percentage of the
      sample interval spent doing useful work. This
      counter displays the average percentage of busy
      time observed during the sample interval. It
      is calculated by monitoring the time the
      service was inactive, and then subtracting that
      value from 100%."
   ::= { processorEntry 5 }
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operating  system; similar  results  are  found for  the  top  in  Linux and the  Task 

Manager  Performance → in Microsoft Windows.

All  these  performance  measurements  are  not  useful  unless  there  is  some 

relationship associated with the measure. For example, how do we know if,  for 

some given metric, it is important to maximize or minimize its value? To make 

sound judgements, we must understand the measures we are taking and what their 

relationship is to system values, as shown in Figure 3.11. For example, for a CPU, 

do we wish to have a high number of instructions per second or a low number? Are 

we looking for medians or modes? This will make a difference on how the results 

will  be interpreted.  To decide on how to  interpret the measurements,  we must 

understand how they are related to each other. For example, high disc utilization 

may be mapped to a low system throughput. Alternatively, high CPU utilization 

may be mapped to a high throughput. It is important to know which is which in 

order to decide.

Figure 3.11: Metrics versus usefulness. 

The load average from 0 to 1.0 are acceptable for a single CPU. As a general rule of 

thumb, a machine is being overworked if load averages consistently exceed three 

times the number of CPUs. However, the average number of processes is not the 

right criterion to evaluate the load of the server system. In a long period, the CPU 
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can be completely loaded and the number of queuing processes is close to zero if  

the arrival rate is equal to the processing time. At the same time, the load of CPU is  

close to 100%.

3.9 Performance Prediction Using Natural Load

Draheim et al. (2006) presents a load testing of web applications by simulating 

realistic  user  behaviour  with  stochastic  analysis  models.  Simulation  of  user 

behaviour is necessary in order to achieve valid testing results. In contrast to many 

other user models, website navigation and time delay are modelled stochastically. 

The models can be constructed from sample data and can take into account the 

effects of session history on user behaviour and the existence of different categories 

of users. The approach is implemented in an existing architecture modelling and 

performance evaluation tool, and is integrated with existing methods for forward 

and reverse engineering. This is a typical agent-based performance tool suitable for 

in-house application development process. However, it does not suit the industry-

strength web server application tools.

A key aspect in managing resources for customer sites is to predict and assess the 

load associated with a site in order to figure out how best to allocate resources for  

the site over time and to efficiently schedule tasks. The cost associated with the 

site,  as  well  as  return on investment,  is  also key parameters.  A paper  (Bagchi, 

Hung, Iyengar, Vogl, & Wadia, 2006) has described the work done in developing 

tools for answering these critical questions. The tools use both analytical models 

and discrete event simulations to predict performance and analyse costs needed for 

handling a customer workload while satisfying the service level objectives. These 

tools provide capacity and load planning, performance simulation, as well as cost 

and financial analyses.

A study by Hadharan et al. (2000) indicates that for the Active Server Page (ASP) 

Script Engine, performance predictions from the simulation model matched the 

performance observed in a test environment. However, for the JSP Script Engine, 

the model predicted a higher throughput than laboratory test results at high load. 
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This  result  suggests  that  web server  performance can be critically  limited by a 

software bottleneck that causes requests to be serialized. This may cause a request 

to wait for some resource (i.e., a lock) in contrast to consuming CPU or memory. In 

addition, the study ignores the limitations caused by inadequate configuration.

The study by Bacigalupo et al. (2004) reports on a comparative assessment of two 

approaches for predicting mean response times to different workloads on server 

architectures for a robust application benchmark. Results  introduced show that 

both manners can be used to make predictions for new server architectures with a 

valid  level  of  accuracy.  The  study  also  shows  that  the  method can  make  close 

predictions when only a very restricted amount of recorded data is available. The 

work is extended to show that percentile response time metrics can be predicted 

with a proper level of precision, given a mean response time prediction. 

Bi et al. (2004) analysed the advantage of wavelet packet and proposed a novel 

load forecasting algorithm based on wavelet packet analysis. Based on the insight 

of the wavelet theory, the bi-orthogonal wavelet and symmetrical border extension 

method are selected to improve forecasting performance. The algorithm developed 

provides  information for  analysing characteristics  of  load components,  and the 

forecasting accuracy is improved. 

3.10 Quality of Service

Menascé & Almeida (2002)  argue that in a web environment a user does not care 

about traffic jams, overloaded servers, network bandwidth, or other indicator of 

system activities. Besides content and aesthetics, online users want performance, 

availability,  and security.  To an online customer,  quality  of  service  means fast, 

predictable user-perceived response time and 24 x 7 uptime. And degradation in 

the  service  level  of  a  website  is  noted  in  real  time.  Quality  of  Service  (QoS) 

indicators for web services should represent response time, availability, reliability, 

predictability, and cost.

A study by G. Ferrari et al. (2006) classifies several existing studies on the Quality 

of Service of e-Business systems into three categories. The first category treats the 
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system as a ‘black box’. The response of such a box is measured and a policy that 

controls some operational characteristics reacts to observed changes on demand. 

However, studies in this approach do not attempt to predict the performance of a 

system  in  relation  to  its  structure.  The  second  category  relies  on  a  series  of  

experiments whereby emulated clients are used to calibrate the behaviour of the 

system.  The  statistics  gathered  during  the  experimental  phase  are  used  to 

configure  the  system  for  the  required  performance  metrics  during  run  time. 

Although there is an element of prediction here, it is limited by the fact that only 

situations similar to those encountered during the experiments can be effectively 

managed on-line. The third category includes  studies based on the analysis and 

evaluation of models whereby the system is represented by some kind of a queuing 

network. 

The study by Bouch et al. (2000) was designed to investigate users' requirements 

for internet Quality of Services. The study lists a set of objective thresholds that 

reveal users' subjective assessments of quality. It shows that: 

● The task to which users are committed, the length of time they have been 

interacting  with  a  site,  and  the  method of  page  loading  that  affects  the 

acceptability of QoS.

● Tolerance of delay is affected by users' conceptual models of how the system 

works.

● Poor  website  performance  leads  to  low-grade  company image  and often 

compromises users' conceptions of the security of the site. 

There is a great number of participants in the design of internet services: server 

designers,  network  providers,  advertisers,  content  providers,  and the  end-users 

themselves. A failure to understand users'  on-line QoS requirements may affect 

users' conception of a company's stature and commercial viability which, in turn, 

affects  the  business  interests  of  service  providers  and  advertisers.  The  future 

internet  will  have  more  users,  and  support  a  greater  variety  of  internet 

applications. It has the potential to change the way in which consumers interact 

with companies. 
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3.11 Conclusion

The access log analysis does not necessarily produce valid results of usage due to 

the  rapid  growth  rate.  The  maintainer  faces  the  problem  of  improving  the 

calculations  by  intuitive  conjecture  and  educated  guesses.  Even  then,  the  long 

period  estimations  of  usage  are  rather  lucky  guesses  instead  of  fact-based 

knowledge. Still, the development process has to be done several months or even 

years pro-actively by the terms of hardware and application investments. 

The  general  interests  in  performance  management  are  to  create  an  automated 

process  which  reduces  manpower  in  routine  work  and  proactive  operations. 

Manpower is still required in a setup of the management process and the goals of 

the operations. The proactive activities are required especially in the environment 

of e-commerce in order to minimise damages. In general, competition for market 

shares  is  strict  and  in  case  of  dissatisfaction  by  customers,  a  switch  to  the 

competitor's service is oversimplified.

Performance analysis is mathematically considered to be simple. The basis for the 

analysis  of  a website in service is rather complicated.  The throughput on some 

incoming rates of requests should be known beforehand. However, the throughput 

is not constant due to several reasons. Hence, the performance analyses have to be 

updated regularly to match the present requirements. 

Another essential measure of performance is the response time. For the user, it is 

the first indicator of incipient problems. At first, the user feels no specific slowness 

in the responses and thereafter problems heave into view. The most observable 

indicator is an error message. However, there are two unsolved problems in the 

measurements;  first,  the  end-to-end  response  time.  It  varies  depending  on 

transmission  route  and  even  the  time  of  the  day.  The  second  problem  is  the 

rendering  time in  a  browser.  The  competition  between browser  manufacturers 

intimidates developing of continuous faster solution to ensure market sharing. At 

the same time, the content producers create still more attractive contents to seize 

on the improvements of  browser capabilities.

Continuous  monitoring  of  performance  is  necessary  due  to  the  changes  in  the 

internal state of the system, the updates of the applications, and the changes in 
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usage. Therefore, the selection of the monitoring software is troublesome. Several 

theoretical  models  are  shown,  but  the  monitoring  tools  in  practice  are  mostly 

based on the monitoring of active state. The monitoring, by regular requests of 

simple  and static  URL's,  does  not  produce  accurate  enough data  for  proactive 

operations  of  website  maintainers.  However,  operating  systems  are  embodying 

tools for monitoring consumption of resources.

In general, the performance of the system has to be good enough during the peak 

time to satisfy user needs. To figure out the moment of the hotspot and top usage, 

the log files have to be analysed.  In this  section,  the analysis  methods and the 

sample collection processes  are  discussed.  In  addition,  the prediction model  of 

usage in the near future is shown at the end of the chapter. 
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4 Access Log Analysis

This section describes the log file information based on the actual usage of the 

analysis. The log data will provide a clear understanding as to when the service was 

used, how big was the instantaneous peak load, and the kind of service the site has 

been used for.

Queries made by users are recorded for all the application servers or all the load 

balancers. Necessary information for the user's requests is stored and analyzed in 

order  to  find  the  service  most  frequently  used  applications  and  the  required 

parameter.  Applications  and  the  relevant  information  presented  in  the  log 

information, in which users are using the service, are included in the load tests.

The log analysis model used in this study is based on a study (Soininen & Jaakkola, 

2012) and is presented in  Figure 4.1. In section 4.1, the web servers’ own log file 

recording process, and the mechanism for data pre-processing are discussed. Then, 

section  4.2 presents the height of the peak load with the timing and number of 

service requests and their parameters. Section 4.3 introduces the analysis of query 
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Figure 4.1: Rescisco-model for log file analysis on websites 



4  Access Log Analysis

types. Section  4.4 discusses the trend analysis of daily peak load. In section  4.5, 

the sensitivity of the analysis is briefly discussed, and section 4.6 finally draws this 

chapter to a close with the conclusion.

4.1 Collecting and Sampling Process

E-business workload is defined in Menascé et al. (2003) to be made up of sessions. 

A session is a sequence of requests of various types made by a single customer 

during a single visit to a site or a system. During a session, a customer requests the 

execution of various functions such as browse, search, select, add to the shopping 

cart, register, and pay. A request to execute a function may generate many other 

requests to the system. For example, several images may have to be retrieved to  

display the page that contains the results of the execution of a function.

The log files are collected during the normal usage of  the web services. In this 

study, the web services are based on Apache (Apache Software Foundation, n.d.) or 

Microsoft’s Internet Information Service (IIS)  (Microsoft Corporation, n.d.). The 

impact of the log file collection process itself on the performance of the system is  

not  adequately  discussed  in  studies.  Empirically,  it  is  known  that  in  some 

Microsoft operating systems, the huge log files are deteriorating the whole system 

performance due to the writing to the log files. Only a few remarks can be found 

(DeveloperSide.NET, n.d.; Microsoft Corporation, n.d.) which consider the log file 

size.  Therefore,  the  log  file  rotation,  i.e.  creating new files  regularly,  has  to  be 

considered to avoid decline in performance due to the measurement process. At 

the same time, we assume that the log file writing process does not load the system 

remarkably  or merely affects  only one layer  on the system. Probably,  the layer 

mostly affected is the load balancer group, which is only lightly loaded in quite 

many cases.

As to the result of the analysis, we are only interested in the peak load moment and 

the number of requests during the hotspots. In general,  the peak load moment 

happens in the same period, e.g. daily basis. On the other hand, the duration of the 

peak  load  time  varies,  even  from  day  to  day.  It  depends  probably  on  quite  a 
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number of things, e.g. the content, response time, day of the week, season or even 

weather. Within the long period, the peak time varies and even new peaks can be 

found. Despite the changes in the peak load, the number of the arrival requests is 

the key issue. All the requests have to be satisfied within the required response 

time, and supplied content to the request has to be relevant and valid.

The size of the access log file is  easily  very large to analyse as such. Each user 

session generates even hundreds of requests to the server system. E.g. in the case 

of  one million unique browsers per  week,  there could easily  be more than ten 

million requests per day. It is not inevitable to analyse all that data; instead, five to 

ten minutes hourly per day is enough. This is based on two assumptions. Namely, 

sufficient data is available per session and the load is even distributed to the whole 

one hour period.

The log file has to be filtered out from the samples generated by the preceding 

natural loading process. This ensures that the loading process itself does not infect 

the result of the usage analysis. In addition, all requirements that are not fetched 

by the system under study have to be filtered out such as requests relied by the 

load  balancer  even  though  generated  outside  of  the  system  under  study.  And 

therefore, they do not generate real load to the system.
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Figure 4.2: The effect of sample length 

The effect  of  the sample length is shown in  Figure 4.2.  As we can see, using 1 

minute sample per hour, the average maximum usage in hits per second is 68 at  

hour 16. By increasing the sample size to 60 minutes, the average maximum usage 

is decreased to 38 hits per second at the same position. However, by shortening the 

length of the sample, the possibility to the outliers is increasing. We can estimate 

that a 5-minute sample size eliminates temporary outliers and is simultaneously 

short enough for performance estimations.

The number of arrival requests in time in Figure 4.2 is defined as follows:

=maxnmt  (15)

, where nm  = number of transaction per second at time slice m, t = hour, 0...23.
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4.2 Arrival Rate

One aim of the access log analysis is to figure out the characteristics of the peak 

time using the most effective means. It can be done using some statistical methods. 

Often, a cyclical pattern in an access log can be found. In different days, the peak is  

normally concentrated on the same time of the day. In many cases, the load during 

a  weekend  is  different  from  during  workdays.  The  difference  depends  on  the 

nature of the service. On media services, the usage is lower during the weekends 

and for entertainment services the usage is higher in the weekends than during 

office hours. The analysis can be done on a daily, weekly or monthly basis. The 

suitability  of  the  following analysis  methods is  performed:  decomposing,  linear 

regression, and ARIMA methods.

Box & Jenkins (1976) suggests that this kind of data is usually best achieved by a 

three-stage iterative procedure based on identification, estimation, and diagnostic 

checking. Identification means the use of the data, and of any information on how 

the series was generated, to suggest a subclass of parsimonious models worthy to 

be entertained. Estimation means the efficient use of the data to make interference 

about  parameters  conditional  on  the  adequacy  of  the  entertained  model. 

Diagnostic  checking means checking the fitted model in its relation to the data 

with  the  intention  of  revealing  model  inadequacies  in  order  to  achieve  model 

improvement. In this context, identification refers to the sampling of raw data, and 

estimation  refers  to  the  analysis  of  the  sampled  data.  Finally,  the  diagnostic 

checking refers to the checking of the validity of the developed model.

The number of requests based on an access log is shown in  Figure 4.3. The time 

scale is 96 days, 24 samples each, totalling n=669 samples. However, there are 

some outliers, i.e. in the level of 50 up to 70 requests per second, which should not  

be in an essential role while dimensioning the system. In the figure, the number of 

requests per second is a mean value for one hour, and it is based on five-minute 

samples.
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Figure 4.3:  The hourly maximum arrival requests per second on a period of 96 days on an e-
commercial website.

For website modelling, it is essential to know the service load on the peak size and 

its timing. If there is more than one service using the same server system, the log 
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Table 2: Sample of peak load height and timing

Date Time Requests / hour

20120310 00:00:00 121056

20120310 01:00:00 227064

20120310 02:00:00 332808

20120310 03:00:00 307200

... ... ...

20120310 21:00:00 74136

20120310 22:00:00 51720

20120310 23:00:00 82464
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analysis  has  to  be  performed  on  all  services  in  order  to  obtain  sufficient 

information.  As a result,  the level  of  loading for  each period is summarized in 

Table  2.  The result  is  easy to  communicate and is  readily  available  for  further 

processing.  In  consecutive  days,  it  will  form  the  time  series,  allowing  for  the 

drawing up of a forecast for the future use of the service.

As an example,  Figure 4.4 shows the typical workload during a single day. The 

figure consists  of 24 mean values of  samples for each hour.  The most relevant 

workload occurred between hours 7 and 19. The web service performance has to be 

fitted according to the maximum of peak time. The mean problem of sampling of 

arrival requests is extracting outliers out of the relevant data. 

Figure 4.4:The maximum workload for each hour during a typical day
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The general purpose of the different smoothing methods is to remove outliers and 

anomalies from the data and extract the most meaningful values to fit the optimal 

system. The first method is decomposing. The  stl is the standard function in the 

statistical  computing  application,  R  (Team,  2011).  The  method  is  a  two-step 

procedure in the R. First of all, the raw data vector has to be converted to the time 

series. The only remarkable parameter is the number of observations per time unit. 

In this case, the time unit length can be chosen between 24 hours and one week, 

i.e. 168 hours. On the second phase, the decomposition of the time series requires 

two span parameters, one for trend component and one for seasonal component. 

Those parameters have to be synchronized to the time unit length. In this matter, 

168 hours is used. The result is seasonal decomposition of the time series. 

The second method for analysing the access log is decomposing by Loess-method 

(R.  B.  Cleveland  et  al.,  1990).  The  method  produces  similar  seasonal 

decomposition as the stl-method. Let v  be a vector of existing values for arrival 

rates  and  the  v=1...N ,  where  N=number  of  observations.  The  loess-method 

performs decomposition to the trend component, the seasonal component, and the 

remainder component, denoted by T v , S v and Rv :

v = T vSvRv  (16)

The additive model is more suitable in the case of constant seasonal amplitude. 

Another possibility is to use the multiplicative model as follows:

v = T v∗Sv∗Rv  (17)

The result of decomposing is shown in Figure 4.5. The total length of the data is 90 

days with 24 samples each day. The raw data is shown in the most upper part of 

the figure, in the data panel. In the seasonal panel, the decomposed seasonal data 

and  the  trend  component  are  shown  respectively.  The  remainder  component 

expresses the anomalies and outliers. 
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Figure 4.5:The decomposed actual usage of web service

The daily maximum values are the most dominant values for system measurement, 

and they are expressed as:

Z i=max(S i , S i+1 , ... , S i+23)+max(T i ,T i+1 , ... ,T i+23)  (18)

where i=1... v
24 . The daily maximum can occur at any time of the day. This leads 

to time series, which is not equal in intervals. By changing the time series to daily 

maximum values, the time series can be equalized without any risks.

The  result  of  decomposing  is  the  sum  of  these  components,  and  it  has  to  be 

changed to prediction. There are several methods to predict further. However, in 

this case we will use two of them. First of all, the extrapolation based on the linear 

regression. Secondly, the sum curve is extrapolated in the form of a curve. The 

results are shown in Figure 4.6. 
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In the seasonal decomposition, the  Z v  is the sum of the trend and the seasonal 

curves:

Z v=T vSv  (19)

The prediction for the Z v  is based on the Fourier series approach:

yt=a∑k=1
K

[ sin 2 kt
m  cos 2 kt

m ]N t  (20)

where  N t is  the  ARIMA  process.  The  value  K  can  be  chosen  by  minimizing 

Akaike’s Information Criterion (AIC).

In the case of linear regression, just one maximum value for a day is generated to 

characterise the usage for the linear regression. As we can see in  Figure 4.6, the 

decomposition curve is continuously on a lower level than linear regression. The 
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Figure 4.6: Prediction for daily peak values using seasonal decomposition method or simple linear  
regression based on daily maximum values 
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decomposition method aims to leave out all the high values. However, in this case 

the  high  values  are  the  key  issue,  and  they  cannot  be  removed until  they  are 

outliers.

The  decomposing  method  is  somewhat  arbitrary.  The  different  components 

produced, are not real, nor are they measurable by any means. At the same time, 

the results cannot be validated by statistical means. In addition, by changing the 

time series and decomposing parameters, the results vary remarkably. 

To summarize the above, the most suitable prediction method for evaluating the 

maximum values is the simple linear regression. That method can be used to find 

the  maximum  values,  and  simultaneously  and  effectively  remove  the  outliers 

without distorting the results. 
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4.3 Analysis by Types of Queries

The access logs have to be analysed also by qualitative means. The total number of 

queries  in  a  certain  time  frame  is  playing  an  important  role  in  performance 

evaluation. However, most of the queries are unique, and get different response 

times from the service system. There are two types of differences, the applications 

are either different or they have different parameters.

We have analysed the access logs into two, as service e-commerce websites A and 

B. Both websites use different applications. In Figure 4.7  and Table 3, the numbers 

90

Figure 4.7: Distribution of application queries at two websites on a typical day
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do not refer to the specific application but the popularity of the application on the 

site.  Figure  4.7 indicates  the  proportion  of  the  applications.  The  first  20 

applications are shown, and the rest creates a heavy tail.

The number of parameters and their combinations are shown in Table 3. In most 

cases, the number of possible values of parameters is not known, hence the total 

number of combination is not known. Therefore, the “huge” in the table means a 

great  number  of  different  parameter  combinations,  from  several  hundreds  to 

thousands. The number of combinations depends on the number of parameters 

and their number of allowed values.
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Table 3: Number of parameters on application at the websites A and B

TOP-20 
Application

Website A Website B

Parameters Number of

Combinations

Parameters Number of  

Combinations

1 0 - 3 huge

2 19 huge 2 huge

3 10 huge 1 huge

4 0 - 0 -

5 5 huge 0 -

6 10 huge 0 -

7 10 huge 1 huge

8 0 - 2 huge

9 0 - 0 -

10 1 / 11 2 / huge 0 -

11 5 huge 2 0

12 17 huge 0 -

13 0 - 0 -

14 0 - 0 -

15 22 huge 0 -

16 2 / 3 3 / 3 0 -

17 14 huge 0 -

18 0 - 0 -

19 0 - 0 -

20 0 - 0 -
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Applying the most used 100 applications with the suitable parameters to the source 

of the natural load, the realistic load can be generated (Soininen & Jaakkola, 2012). 

Using a large enough number of queries and set of parameters, the effect of cache 

can be eliminated in the server system. Otherwise the analysis can be distorted due 

to the short response time and resource consumption when the minimal number of 

pre-set parameters and low number of applications queries are used. The process 

of natural load is described in the Chapter 5.

As to the second result of log analysis,  Table 4 shows the result of the qualitative 

analysis of the resulting URL and related parameters. The actual protocol and web 

address may be omitted if they do not cause confusion. When the service  requests 

are placed in a random order, it can easily be used for the source file in the load 

tests. When the service requests and their parameters in Table 4 are used for load 

testing, it confirms that the website under test is loaded with exactly the identical 

proportion as real users do. In addition, service requests and their parameters are 

real, occurring in actual usage, and are not programmatically generated random 

combinations.
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Table 4: Sample of most used URLs with parameters

/ads/?departmentId=5

/WidgetSettings.aspx

/news/Default.aspx?newsid=299221

/js/AdCounter.js

/news/glow/1.7.7/widgets/images/darkpanel/bg.gif

/news/Default.aspx?newsid=266704

/news/DynamicImageResizeHandler.ashx?image=442d576b-

b0ed.jpg&width=320&height=320
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4.4 Trend Prediction 

The trend on prediction of the system usage is a vital component for estimating the 

behaviour. There are mainly three different methods for prediction: a) tendency or 

dependency  is  constant  ( yt=b0+b1 x1+b2 x2+...bk xk   and  yt01=bi  remains  as 

constant); b) leading indicator; or c) structural analysis. It is very difficult to find a 

phenomenon as a leading indicator which has a good enough correlation to the 

single website. On the other hand, the general structure analysis is required to be 

analysed for  all  websites due to  the  different  applications.  It  is  not  possible  to 

perform for all applications and all versions. Due to these reasons, the prediction is 

based on the continuance of tendency in the model of this study. 

In this study, we are interested as much as possible in generating a forecast for the 

future use of the service. Usage of the service prediction is an advantage if it is the  

most conservative. In this way, sudden seasonal changes receive the lowest weight. 

We cannot take advantage of more than 90 data points to describe the use of the  

service history, since sometimes the website usage is changing too fast and in such 

a case, the forecast reliability decreases sharply. In addition, we cannot predict a 

longer period than what is the number of data points in history. On the other hand, 

the prognosis needs to extend far enough that the operational management and 

maintenance  steps  can  be  planned and carried  out  during  the  forecast  period. 

When using the 90 data points backwards, it can be predicted from about 30 data 

points on. As shown in Figure 4.6, a method which best describes the situation is a 

simple linear regression. The forecast accuracy is not increased even if the seasonal 

decomposition method is used to filter the daily maximum values.

4.5 Sensitivity Analysis

The log data analysis is related to the outcome of the accuracy of a few factors. This 

section seeks to identify  the most crucial  ones,  to  evaluate their  impact on the 

outcome, and to assess the likelihood of their occurrence, if relevant.
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First of all, the web application structure is meant to use the application to call an 

URL or its attributes. The service can be constructed in such a way that the data is  

placed in a file system, in which case the invitation is a direct reference to the file 

on the disk. The service can also be built so that the URL is a call to the desired 

application, and the file is defined as an attribute. Therefore, we have taken into 

account the log analysis in both formats. In this study, the result of both methods 

is taken into account.

Secondly, the use of the service associated with seasonal fluctuation is greater than 

that generally used in the calculation period (for three months). This may cause 

significant changes in the forecast changes. We need, however, over many years 

collected data using the service before we can accurately determine what is the load 

peak  associated  with  seasonal  variations  and  what  is  the  individual  random 

variation.  In  this  study,  the  data  of  website  usage  were  not  available  for  a 

sufficiently long to permit a seasonal variation in the time series could be taken 

into account.

Thirdly, the amount of data being collected affects the accuracy of the sample, and 

which describes the use of the service. The key issue is, how many unique URL 

requests are picked according to the sample which describes the entire use of the 

service. And also, how many key types of URLs are selected. In practice, it has been 

observed that the general use of the service is on a long tail. Therefore, a significant 

proportion of the requests directed to a few pages or applications, while most of  

the pages or applications are directed only a few requests. The same also applies to 

the URL attributes. The study has been used in the default value of 100 types and 

2000  unique  URL  attributes.  Variation  in  these  values  does  not  provide  a 

substantial variation in the outcome.

4.6 Conclusion

The usage of an e-commerce web service can be analysed based on access log files. 

The key issues in the analysis are hotspot usage and the most used queries with 

real parameters. The resolution of peak usage has to be balanced between short- 
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and long-term accuracy. Using very short-term, the high peaks can be revealed, but 

the result can be sensitive to disturbance. Instead of using very long terms, the 

mean value  of  access  can  be  revealed,  but  the  result  can  be  very  conservative 

against changes. The result of analysis is utilised on a simulated natural load which 

is discussed in the next chapter.

In this chapter, we have presented a method that can be used to form a true and 

fair view of network use.  The result is a straightforward pattern of log file which is  

easy  to  communicate.  It  shows  the  daily  load  peak  height  and  its  timing.  In 

addition,  the analysis  can be used to describe the type of  queries generated by 

users. 
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5 Mastered Way of Workload and its Impact

This  chapter  presents  the  workload  and  resource  consumption  measurement 

methods used in this study.  The system under test (SUT) is introduced as a black 

box,  whose  internal  details  are  not  known.  Every  single  server  resources  are 

monitored in each load case, and they can be visualized in an appropriate way. 

Monitoring of resources is aimed not to increase the load of the resource or to 

occur as little as possible.

Thalheim & Tropmann (2011) suggest that the service applications, the history of 

the  usage allows  us  to  conclude that  the  usage typically  occurs  in  a  particular 

repetition, and are used during certain periods. They may be characterized by the 

consumption of resources and behavioral measures. Therefore, we can assume that 

at certain times, the future of these processes are running in the same way as they 

have been in the past. It can consequently be expected that future behavior can be 

described by conduct made in the past.

The practical arrangements for testing have been carried out in several different 

independent  commercial  online  services.  Services  are  being  loaded,  and  the 

resource consumption is controlled as described in this section. All services have 

been in commercial use throughout the duration of testing. Architecture is shown 

in  Figure  5.1(A)  and  Figure  5.1(B).  Figure  5.1(A)  shows  a  typical  commercial 

application architecture of the multi-layer model. The system is easily scalable by 

adding complete individual servers or components to increase efficiency.  Figure

5.1(B) type is a simple small-line server system typically used. It does not include 

the redundancy so that loadbalancer layer is not needed. It can scale worse than 

the A-type service, and increased performance is obtained by changing only the 

complete servers more efficiently.

The A-type service can be categorized as the computing cluster, wherein each node 

produces separate and autonomic functions and does not transfer data between 

parallel nodes, which takes place only in different layers. The load balancing and 

application server layers in the system can be classified as the  high-availability  

cluster due to the redundant nodes. In the case of failure, a single node of the 
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server does not prevent the operation of the entire system, only performance is 

reduced by the amount of the failed node.

Determination of system performance occurs in several stages:

● Loading the system with natural queries. Details of the testing activities are 

discussed in Sections 5.1 and 5.2.

● Load-time resource usage monitoring: the result is obtained for each server 

resource utilization and workload, presented in more detail in Section 5.3.
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● Correlation  between  workload  and  resource  consumption:  the  result  is 

maximum  system  performance.  The  descriptive  measure  is  defined  in 

Section 6.1.

● The current spare performance at the time of analysis is a result of a review 

data consolidation. The matter is dealt with in Section 6.8.

Knowledge of the current performance compared to the expected regular top-load 

is  essential  to  optimize  server  performance  of  the  system’s  point  of  view.  By 

combining  the  usage  analysis  of  the  actual  system  performance,  it  gives  an 

adequate understanding of the current excess performance. 

5.1 Impact of Test Load

Loading the SUT by the well-known load is being reviewed as well performance of 

the  system of  critical  resources  and the  correlation  between the  workload  and 

resource usage. Consumption of resources caused by the workload is discussed in 

Section  5.2.  Another  factor  which  exists  during  the  test  is  the  undetermined 

background load, which is caused by users doing the actual load of queries during 

the  test.  The  significance  of  the  backround  load  can  be  minimized  (but  not 

completely removed) by timing the test at the moment when the background load 

is  minimized.  In  many  of  the  practical  online  services,  the  lowest  possible 

background load occurs at night. Uncontrolled load is another potential source of 

internal system maintenance operations, such as backup or database management 

tasks. Usually, these service operations should be done on a well-known schedule 

and are also well-known for their duration. This background load which is caused 

by the service runs can be avoided by timing load testing appropriately.

The correlation between the load and resource consumption is also affected by the 

factors that can be detected, but their magnitude cannot be affected. In the long-

term,  software  aging  can  be  detected,  but  it  cannot  be  influenced  by  testing 

arrangements.  The  only  possibility  to  minimize  the  impact  is  a  server  or  an 

application, to restart or even a full system restart. In general, applications should 

be  avoided  when  restarting  to  keep  interference  with  the  system  as  little  as 
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possible. On the other hand, application can be utilized and the internal caches can 

be used as efficiently as possible. The effects of software aging phenomenon will be 

discussed in Section 6.7.

Any control requires that the load factors can be controlled during the test load, 

such as queries, variation over time, the timing of peak load and the amount of it,  

different number of inquiries and the amount of data transferred. This is discussed 

later in Section  5.1. The second group consists of random factors. Partially, they 

can also be interpreted as being hidden factors. They affect the activity, but they 

are not known accurately, or the value cannot be measured. This group consists of 

a variety of factors, including internal  state of the system, the system resulting 

from the history of usage, the need for communication between different nodes of 

machines, and the complexity of questionnaires used in load testing, even their 

order.

The test load is presented as having both a quantitative and qualitative impact on 

system  resource  consumption.  The  quantitative  impact  means  the  number  of 

queries  over  time.  The  qualitative  impact  means  the  differences  in  queries 

resulting  in  load  variation.  Synthetic  load  may  be  used  to  determine  system 

performance, but the queries do not match the actual queries made by users, so the 

resource consumption is not responsible for the actual use of the situation. The 

better descriptive situation of  the reality  created when a synthetic load is used 

instead of authentic is to log the recorded real queries made by users.

A too-low test rate with a load testing, actual use of resources, and the correlation 

between consumption may not occur correctly. Resource consumption may change 

in different ways at different load levels.  The operating system kernel has been 

used for the acceleration of the system characteristics by optimizing the use of 

resources,  such as  the  available  memory using the  I/O cache.  In  this  case,  the 

memory consumption at  low load is  not  at  all  correlated with  the  actual  load. 

When the load increases, it is found that the consumption of memory appears to 

remain constant, and is then released from the cache memory to serve for use in 

increasing the load.
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The impact of quality means that the formations of response are used for different 

applications  by  different  queries.  Each  application  uses  its  own  resources  in  a 

typical way; URI can create a complex database query and a database server to 

consume  processing  power  and  result  in  disk  I/O,  but  does  not,  for  example, 

consume any file server resources. The change of parameters in queries can cause 

significant changes in resource consumption. Typically, changes in the parameters 

influence the results of search queries, and they will be implemented through the 

database. Database indexing and implementation of query application will depend 

on  how  the  change  will  affect  the  parameters  of  the  database  server  resource 

consumption.

Testing the performance requires several test runs of long period of time. Contents 

are updated on a regular basis for many services, hence URI is not identical with 

contents of the various tests or the same content in different URI. In this case, the 

different responses obtained from the tests are not the same and cannot be directly 

compared.  From  the  user's  point  of  view,  however,  the  service  availability  in 

different load conditions is a key issue. Therefore, the accessibility of the service 

has  to  be  compared  and  not  with  the  identity  of  the  response.  Assessing  the 

response of  the service accessibility  instead of the time in different test  runs is 

comparable to the results from the response contents.

User interest in the change of the service sub-region to another, in some cases a 

rather  short  period  of  time,  can  cause  a  change  in  load  between  the  two 

applications. This in turn leads to the use of the characteristics and the system will  

be further changed in the consumption of resources. Log analysis can confirm that 

the server system is loaded in the same proportion as the user load, and thus will  

lead to the correct understanding of the server resource consumption.

As the test load increases, response time will also change. The hypothesis is that 

response time does not necessarily increase linearly with increasing load. At the 

beginning of load increases, it may increase slowly until at some point it begins to 

rise sharply, as shown in  Figure 3.5. Assuming further that the effect of the test 

load is achieved, a linear response is only in the event that the resources need to 

queue waiting time, and increases linearly with the length of the queue or amount 
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of use. This situation may be, for example, that the use of the CPU and memory 

usage does not slow down the increase in service activities.

5.2 Controlled Load on the System

When the system is loaded with the highest expected performance of the system, 

there are at  least  two problems. First,  in the maximum load or close to it,  the 

system is not stable. It appears as random or cyclical high spikes within a response 

time. This is because when running out of resources, they have to queue or limit 

the overloading of the service definitions to take effect, then the user will have to 

queue even for access to the service. Instead of the usual contents for the user, 

visible messages are notifications of the state of the system, not the user’s desired 

content. On the other hand, too high a degree of loading can cause disorder mode 

as is also shown in the service user, either in response time which is too long, or  

even receiving a server response to be other than the content desired by the user. 

Service, which is in commercial use, interferes with the operation of the testing, 

and is not acceptable. Even a momentary overload can cause interruption on the 

payment transaction and could result in an awkward manual processing and the 

dissatisfaction of users. Hence, regular testing is needed of the normal operation of 

disturbing causes, and possibly, the continuous dissatisfaction among users.

Later, it is assumed that the load can be carried out, amounting to the service on a 

regular basis by loading in a known amount of virtual users. In such a case, the 

requests are known, as well as their contents and the time when the request is sent  

to the server and response time. A common use of the service is, at the same time, 

possible to test with, but it should be kept to a minimum so that the unknown 

magnitude of the load can be minimized.

Figure 5.2  shows the connection between the number of  virtual  users and the 

number of incoming requests to  the server.  HTTP is a connectionless protocol, 

hence the number of concurrent users is not a well-defined concept. Even when 

using the HTTP protocol version 1.1, and the Keep Alive feature, the number of 

concurrent users is not unique. As can be seen in Figure 5.2, the number of users 
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(0 … n) can be any at time  t.  In the future,  request per second (rps) is used to 

replace the number of virtual users, since it is unique in any given time.

The  idea  of  gradually  changing  load  rate  during  loading  is  raised  at  first  in 

Andreolini & Casolari (2006). In the model shown in this study, it is modified so 

that it is better suited for use in automatic test load.

Figure 5.3 shows the structural load used in this study. The desired load level is 

determined indirectly, based on the number of virtual users. They do not match 

exactly. The virtual number of users is only about how many requests the server 

can cope with. In practice, however, response time and thinking time cause that 

part of the virtual users to wait for the response from the server, before thinking 

time has expired. So, the active users of the service is less than or equal to the 

maximum number of virtual users.

Figure 5.3 shows a single loading test with an overall length of about 1300 seconds. 

For  each  pulse  duration  is  about  180 seconds,  and  after  a  pause  between  the 

pulses,  it  is  approximately  40 seconds.  During  the  break,  requests  are  not 

generated by means of the service load at all.  Figure 5.3 shows that the load is 

increased  progressively  to  about  45 rps  level  until  it  reaches  an  empirically 

determined service-specific maximum level, which is here about 210 rps. The load 
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may also be degressive. Maximum load is chosen so as to cause no more than about 

40% to 50% utilization of the resource, which is the bottleneck when a normal 

usage  is  still  possible.  The  load  test  is  performed  once  a  day.  The  system  is 

operated and maintained in accordance with normal procedures between the two 

tests.

Figure 5.3:The structure of the natural load test

In this  study,  JMeter  (JMeter  contributors,  n.d.) has  been used to  arrange for 

testing of the basic functions. These are:

● Control  of  the  amount  of  virtual  users.  JMeter,  in  terms  of  its  thread-

monitoring; in practice, this means control of the number of simultaneous 

requests.

● Prevent burstness using the ramp-up procedure and by using a random-

scale  break  between  requests,  and  distribution  of  queries  between  the 

different threads.

● Generated  by  a  predetermined  HTTP  calls  in  order  to  obtain  a  load  as 

natural as possible.
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● Combine HTTP requests and responses to them, and calculate the response 

time for each request-response pair.

● Saves the result in an easily readable log file for later analysis.

These requirements can be met in the test script, which is shown in Figure 5.4. Log 

files that are generated during the execution of a script, can be analyzed in another 

stage.  The  analysis  is  carried  out  using  a  high-level  statistical  programming 

language, R. Statistical analysis will be described later in this section.

Figure 5.4: JMeter test arrangement

JMeter script structure is shown in Figure 5.4.  The gradual increase in the load is 

shown in  Figure  5.3.  It  was  carried out  using  a  number  of  consecutive  thread 

groups. The groups are designated as "Thread Group 20%", "Thread Group 40%", 
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etc. Each group includes a pair of matched elements in the application. First, there 

are 20% of the queries to the maximum number, then the name of the group refers 

to the number of queries (40%, 60%. ...) with respect to the maximum number. 

Maximum load is generated in the "Thread Group 100%".

The load on the server will burst when the number of virtual users is increased too 

quickly. Therefore, at the beginning of each pulse, the load is increased slowly up 

to maximum number of virtual users. This is called in a basic regulation of a group 

as the ramp-up period. Ramp-up is the time during which the virtual users, i.e. 

threads, will increase from zero to the maximum in each group. If the ramp-up 

time is  zero,  all  threads  in  the  group will  be launched immediately  during the 

activation. If the ramp-up time is T, and the maximum number of threads is N, it 

creates a new thread  T/N  seconds. Furthermore, a too-long ramp-up time could 

not be used since then the desired peak load is not necessarily achieved. There may 

be  a  situation  in  which  the  previously  started  threads  have  already  received  a 

mission accomplished, and have already been completed before the last threads are 

activated when the desired load level is not achieved. A suitable ramp-up time is 

determined  experimentally  for  each  network  service.  This  is  affected  by  the 

estimated hit rate U e , and the desired number of threads N t , in which case the 

ideal ramp-up time is:

T r=
N t
U e

 (21)

In  addition,  a  random  length  of  breaks  between  queries  is  needed  to  prevent 

burtsness. It is implemented in Gaussian Random Timer element. This element is 

responsible  for  the  real-world  time think  Z that  is  described in  more detail  in 

section  3.3.2 and  3.3.4.  By  default,  JMeter  thread  sends  queries  without 

interruption. In that situation, the test load can overload the server by generating 

too many requests in a very short period of time. At that time, the load level could 

be quite high, but that is not managed in terms of resource consumption. Gaussian 

Random Timer is used to create a random length of a pause before each request. 

Pause length is determined in the fixed part of the element and the random part.  

As used herein, this is the sum of the values set for a short time compared to the 
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conventional think time. The actual length of the pause is not relevant, because it is 

designed only to reduce bursts. This is due to the fact that the actual number of  

incoming queries is calculated from the actual log of the number of queries, instead 

of using the set number of virtual users, and the expected think time.

The sending of HTTP requests are processed by the JMeter HTTP Request Default 

element and the  CSV Data Set Config.  The former is the default  for storage of 

values  and the latter explains the data warehouse, where the URI addresses are 

stored. URI data store contains the addresses generated by the analysis of the log 

in the process as described above in section 4.

5.3 Resource Utilization

In this study, resource usage rate is controlled using the SNMP protocol (Simple  

Network Management Protocol) (Case et al., 1990), while the system is loaded in a 

known  and  controlled  load.  SNMP  protocol  is  the  result  of  the  fact  that  it  is 

accurately  defined,  it  is  generally  known,  it  is  readily  available  in  different 

hardware  platforms  and  operating  systems,  and  may  be  extended.  Figure  5.3 

shows, how the load remains constant, in order to stabilize the controlled resource 

utilization. From a knowledge of the load and the consequent resource usage, the 

correlation can be determined.

According to Utilization Law (Jian, 1991) the resource utilization U i  is defined as 

the  ratio  to  which  a  resource  is  in  use  during  the  time  T.  If  the  resource  is 

monitoring the time T, and found that it is used time Bi , then the utilisation rate 

is:

U i =
Bi
T

 (22)

If  U i = 1 ,  the  resource  has  become  saturated.  When  a  single  resource  has 

become saturated, the entire server has become saturated, and the load cannot be 

increased above the boundary reached by the server. If the server consists of a layer 

of redundant servers, the whole layer has become saturated, and all the servers are 
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saturated with respect to any resource on the assumption that among the servers, 

the load balancer is working properly. The saturation point for the entire system as 

a given resource is:

U tot = ∑
i=1

n Bi
Tn

 (23)

where n is the number of parallel servers in the system. It assumed that the servers 

are identical in amount of resources and the balancing of the load. If U tot = 1 , the 

entire system has become saturated, and the maximum throughput is achieved.

When the amount of incoming queries is changed, the change in utilization can be 

detected when the number of queries is sufficiently high. The background noise 

from external sources occurs through a valley bottom, where each pulse is followed 

by a short pause with no load. Load, and the correlation between the consumption 

of resources, is a linear or almost linear near the saturation point of the resource. 

Therefore, the maximum pulse peak value can be increased to 40 … 50% of the 

expected saturation level without significant loss of accuracy to the result.

When avoiding the saturation of resources, it ensured at the same time that the 

service can be used as normal throughout the test. The accuracy of the test load 

increased when the load from other sources is minimized. It is done by timing the 

load test to take place using the service in terms of quiet time.

A virtual server allows for very high utilization rates; a fairly common commercial 

use of virtualization technology, VMware, has reported (VMware, n.d.) a number 

of customers using up to 60 … 80% utilization rates of the server's processors. 

Generally, 80% utilization rate is a reasonable upper limit and 90% and should be 

a  CPU  overload  warning  level.  Resources  for  each  virtual  machine  have  been 

allocated to  start  up,  and since then they have adapted to  the  virtual  machine 

throughout  the  life  of  the  variable  load.  In  addition,  when  the  processes  are 

isolated inside a virtual machine, any virtual machines does not compromise other 

virtual machines’ resources.

Response accuracy increases when the load on its external and internal sources of 

the unknown proportion of the load is reduced. As shown in Figure 5.3 and Figure
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5.5, the load level is about 210 rps, causing approximately 25% utilization of the 

application server processor's layer. 

Figure  5.6 shows results  for  the  application server  processor  utilization of  two 

different test runs. In the upper figure, the sampling frequency was 10 seconds, 

and in the lower, three seconds. Three seconds have been selected because it is the 

maximum acceptable response time, for it provides at least one sample of each of 

the response time of the acceptance window. As noted, the results of utilization of 

the resource do not change significantly at a higher sampling rate. If the sampling 

rate is raised to a very high level, it begins to interfere with the system under test. 

Utilization  is  sufficiently  an accurate  understanding of  the  10-second sampling 

intervals. The precondition is that the load is done in manageable bursts which in 

this study are, in principle, assumed.
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Figure 5.6: Impact of a sampling rate on resource utilization measurement results.

Figure 5.7 below shows the number of queries, response time, and the CPU load for 

each  server  layer  separately.  The  figure  contains  the  following  server  layers:  a 

database (DB),  load balancing (LB),  and the application server (AS).  Each load 

curve  is  the  sum  of  all  layer  server  resources  in  proportion  to  the  available 

resources. Incoming request for the server is up to about 45 requests per second. 

This leads to more than 200 requests per SNMP query.
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The correlation between the resource utilization on the server and the demands on 

the amount of the range indicates how well the response complies with the impulse 

to change, as shown in Figure 5.8 below.
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Figure 5.7: The effect of natural load test to the resource utilisation
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Figure 5.8: The correlation between resource utilisation and workload on left column. On the  
right column is correlation between resource utilisation and response time.
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The single value of the load can lead to a variety of utilization values. This is due to 

several  reasons.  First,  the  queries  in  the  load  are  various  so  that  they  require 

different amounts of resources. On the other hand, the system's internal state may 

be different for different time points; this is due to the size of the backround load 

and the history of usage. When using SNMP to query the system status data every 
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Figure 5.9:One example of the server load. Above, the increase in load causes the response time  
of growing up shown in the picture below, even though none of the resources is close to the  

saturation point.
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ten seconds, as in  Figure 5.9, the work load leads to approximately 1700 query 

results (170 rps * 10 sec). Since the generated combination with the URI is a very 

large set of queries, the simultaneous responses  and results of the load are very 

different. Dependence between the generated load and consumption of resources 

can be represented by a set of points. These two variables have yet to take into 

account the response time.

As shown in  Figure 5.9,  the response time will  change when the load changes. 

When these two parameters combined with resource utilisation are presented in 

mutual dependency,  the result  must be presented in 3D space,  as  it  is  hard to 

visualize in the form of 2D. Figure 5.10 shows a visualization rather than 3D-space. 

Facet grid can be used for all three parameters’ simultaneous visualizations. The 

individual numerical values are not critical for the response time, which gives an 

idea of how close to the three-second acceptable limit is each load. On the basis of 

the image,  it  can also be seen that  the set  of  points  is  arranged in a relatively 

linearly loading as well  as the resource consumption and the response time. As 

response time and load increases, a set of points approaches each facets at upper-

right corner. Based on the image, it can be observed that the restriction on the 

response time (3000 msec) is exceeded in some cases; facets (3000, 4000] and 

(4000,1e+05]. The number of cases in which the threshold is exceeded, however, is 

very small when compared with the total number of data points, n = 89 700.
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Another  option  for  the  interdependence  of  the  three  parameters  presented 

describes  a  ternary plot  which  is  shown in  Figure  5.11.  The problem is  that  it 

requires the mutual dependency of parameters, which in this case does not exist,  

and the result is approximate only and may support other methods. Initially, the 
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observation has changed to relative values between 0 … 1. Utilization is already in 

the  normalized form.  Response  time is  normalized by dividing  the  findings  by 

three seconds.  Throughput is divided by the maximum observation values.  The 

software package  (Imai, King, & Lau, 2006, 2008) takes care of the actual data 

modification and presentation. In this way, detection data has been modified to a 

shape in order to determine the balance between the variables, and the closer the 

triangular centre of the observation points, the better is the findings in balance. 

Figure  5.11 shows  that  the  response  time  of  observations  has  exceeded  the 

permissible three seconds, and the workload is thus relatively low. Workload may 

be sufficient to find that the system is loaded with a variety of mixed loads.

Figure 5.11: Ternary presentation of utilisation, workload and response time

The  website  user  can  detect  the  response  time  exceeded  without  none  of  the 

resources utilization limits being exceeded. The system may be configured so that, 
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for example, it limits the number of concurrent connections (Apache max_conn), 

or the number of simultaneous sessions (Apache max_sess). If such limitations can 

be  detected  using  SNMP  queries,  the  method  described  above  can  be  used  to 

determine  the  system  saturation  point.  However,  it  is  unusual  that  such 

programmatic boundaries cannot be found using SNMP queries. The system must 

therefore be loaded at least once in such a large load that such restrictions will 

become apparent. 

The  correlation  between  response  time  and  resource  consumption  shall  be 

examined  in  all  cases  where  programmatic  constraints  are  found.  The  most 

limiting factor (MRF) is obtained as follows:

MRF = minmaxloadutilisation ,maxload response time  (24)

As explained in Section  2.5 above, the system performance is not constant over 

time, it will change as a result of the phenomenon of software aging. Furthermore, 

as explained in Section  3.3.4, the system has always one or more bottlenecks. A 

carefully designed equipment is one in which the various resources are in balance 

nearly or completely, in which each resource is not significantly more utilised than 

others, and the system is optimized in terms of costs. In this case, without further 

analysis  of  the  performance,  bottlenecks  cannot  be  detected in the system. Far 

from the equilibrium point of the system is always a performance-limiting resource 

that is already identified in previous analyses. In practice, the service cannot be 

completely balanced;  yet  always,  one of  the  server  layers and a single resource 

group is the bottleneck.

5.4 Sensitivity Analysis

The  load  test  is  carried  out  on  some  of  the  outcomes  of  the  factors  affecting 

accuracy. This section seeks to identify those most significant to assess their impact 

on the outcome and to assess the likelihood of their occurrence, if relevant.

First  of  all,  the  ration  between  load  used  in  the  testing  and  the  assumed  or 

calculated  performance.  Incoming  requests  and  the  arising  loads  cause  the 
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consumption of resources which is linear up to the knee point. At the knee point 

and above, the consumption of a resource begins to grow vigorously, and operation 

of  the  system  becomes  unstable.  It  is  therefore  appropriate  that  the  service 

operates  continuously  below  the  knee  point,  and  also  during  load  testing. 

Operating in the linear part of the test loading conditions of the target value may 

be allowed a fairly large fluctuation. In this study, the guide value used is 40 … 

50% of the maximum value. Experience has shown that the results do not radically 

alter the range 20 … 80% of the highest value.

Second, resource consumption is also affected by the number of requests coming 

from outside  of  the  test.  Their  significance  may be  assumed to  be  equal  to  or 

greater than that of the test load requests. Their importance cannot be completely 

eliminated; the only way is to schedule a test load in such a way that they account  

for as low as possible.

Thirdly, the server environment itself gives rise to a variety of contingency factors. 

These include, for example, the operating system, the metering (here, the SNMP), 

the database, the application server, etc. Their origin and the differing versions of 

these products cause various kinds of uncertainties. This study has used two of the 

most frequently appearing operating systems (Linux and Windows), application 

servers (Apache and IIS) and databases (MySQL and SQL Server). These results 

can be judged only by comparing the representation of  time series. The results 

obtained do not give rise to the need for a further review.

Fourth, the metering accuracy, i.e.  control of resources that are relevant to the 

service  load  capacity.  If  the  bottleneck  in  the  resource  is  not  involved  in  the 

control,  it  will  be apparent, therefore, that the response time is exceeded, even 

though none of the resources to be monitored is saturated. In this case, control of 

resources must be added or clarified. The method does not give direct information 

about what resources are needed to be monitored more closely.
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5.5 Conclusion

In this chapter, the system under test to a load is presented in such a way that it is 

well-known, both quantitatively and qualitatively. The chapter showed the loading 

system to explore the different sizes of load impulses, and to induce change in the 

server resource loading rate. In addition, the utilization of resources varies, while 

the response time changes as the load changes.

By observing the load rate and the consequent change in the use of resources, the 

bottleneck  of  the  whole  system  can  be  identified  which  further  allows  for  the 

performance of the system. In the next section, a performance analysis is made on 

the basis of the collected data. 
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6 Performance Analysis of the System

This chapter provides an analysis of the data, collected on the basis of the previous 

track. A result of this analysis is the performance prediction in different load rates 

of the system. The chapter goes through four different network workload results 

over a 90-day period. The network architecture is shown in Figure 5.1.

In examining the performance of computer systems, there are several commonly 

used  gauges.  The  best-known  is  the  response  time  (also  known  as  speed, 

turnaround time, reaction time),  throughput (sometimes also called capacity or 

bandwidth), utilization, reliability and cost, or performance ratio. The two most 

interesting gauges on e-business are cost and throughput. In addition, reliability is 

important. Throughput can be improved by investing in equipment or software or 

both,  but  the  costs  are  growing  rapidly  as  discussed  in  Chapter  1.  The  most 

important indicators of the cost optimization point of view are: request arrival rate, 

throughput,  and response time. The only infrastructure resulting indicators are 

response  time  and  throughput.  This  is  due  to  the  overall  performance  of  the 

servers, which in turn can affect the tuning of applications and configuration. The 

maximum acceptable response time is set by management.

The  chapter  validates  the  reliability  of  the  forecasts  produced  by  the  model. 

Validation of the problem has two aspects. First, the validity of an experimental 

model, i.e. the computational structure has to fulfill  the intended functions and 

logical structures. Second, how well does the experimental model represent a real 

system, and how far does it behave like a real model. The first approach is easier to 

be satisfied.

Each HTTP request response time is determined separately. Therefore, there is no 

single  clear  response  time,  but  it  must  use  an  average  response  time  which 

describes all the HTTP queries performed between the SNMP queries. Response 

time  indicators  describing  the  properties  have  been  discussed  in  other  studies 

(Ciemiewicz, 2001; Mielke, 2006).
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6.1 Precision and Accuracy

Website performance characterized by sequential measurements does not produce 

exactly the same results. Instead, there is an area in which the results are placed. 

Figure 6.1 is used to illustrate the difference between the measurement accuracy 

and precision. Figure 6.1(a) illustrates the precision. The measuring may include a 

systematic error, in which case the values are inaccurate but the variation is small. 

Figure 6.1(b) illustrates the measurement of  the number resulting from correct 

values, but the variation is large when the method of measurement is inaccurate. 

Figure 6.1(c) illustrates the target state with a good precision, and the deviation is 

small when the accuracy is good.

Although the analysis is performed automatically, it still seeks both accuracy and 

precision as much as possible. The problem, however, is that the evaluation of the 

source material is only available for programmatic resources. This can easily lead 

to a very complex programmatic interpretation analysis of the appropriate data to 

be  formulated  alternatively,  so  that  the  relevant  data  has  to  be  rejected  if  it 

contains the incompatible characteristics of the rules. In this study, the simpler 

inference  rules  have  been  chosen,  which  will  have  to  accept  the  risk  that  the 

relevant information will be rejected. Supposedly, however, in the longer term, the 

problem  can  be  compensated  when  an  increasing  number  of  analyses  will  be 

carried out.
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Figure 6.1: Precision versus accuracy. In (a) low accuracy is presented with high  
precision and (b) presents a high accuracy with low precision. In (c), there is a high  

accuracy with high precision.

(a) (b) (c)
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6.2 Data Preprocessing

Data preprocessing has three objectives. First of all,  the fact that the individual 

random  fluctuation  becomes  less  important.  Secondly,  the  findings  are  of  a 

different  sampling rate,  which is  aligned prior to  analysis.  Thirdly,  the  relative 

proportion of the findings; they are changed into a usable form prior to use.

The  individual  random  fluctuations  can  be  reached  in  a  very  wide  variety  of 

sources. Mindful that the most common cause is a server test apparatus and the 

logical distance between the data communication networks, this is what causes the 

fluctuation  in  performance  of  the  data  communications.  The  server  hardware 

resource usage may have short-term spikes due to natural causes. These situations 

include  a  service  request  from  an  external  source,  which  will  require  a  lot  of 

resources. Spikes may also be negative, i.e. a constant load drop suddenly for no 

apparent reason. Such might occur, for example, in short-term communications 

outage. These random variations may be displayed in the monitoring equipment, 

but  they  are  not  covered  by  the  web  server  system  in  normal  operation;  they 

interfere with the analysis, and thus their removal is essential.

SNMP queries are to take place at regular intervals, typically every few seconds. 

Natural variability may arise from carrying out the survey equipment congestion. 

At the same time, the SNMP queries occur with the URI queries; their intermediate 

may be a few milliseconds. These events are made in time into a form that makes it 

possible to perform the analysis. Since the interval of SNMP-query is the coarsest 

available unit of measurement, it must be adapted to a URI query interval for the 

interval of SNMP queries. Each URI query also has its own response time, when 

the  term  of  all  queries  and  response  time  shall  be  summarized  such  into  a 

statistical indicator that can be used to describe the response time as accurately as 

possible.

Many of the responses of SNMP queries are in such a format that they cannot be 

used as such. One such response is the current amount of memory available. Alone, 

it is not relevant; in addition, we must also know the total amount of memory.  

Furthermore,  the  CPU  load  ratio  is  into  a  similar  situation.  Some  of  SNMP 

implementations are such that they return the CPU number of events from the 
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previous server startup time. Another possibility is that the number of events is 

obtained as the sum of various events. The actual load on the CPU is then:

CPU tot = CPU user+CPU kernel+CPU wait  (25)

It  is  also  necessary  to  know how many processors  such  as  events  are  created. 

Processors  or  the  number  of  threads  and  total  amount  of  memory  is  usually 

obtained  via  SNMP  query.  It  should  be  noted  that  the  different  test  runs  at 

hardware resources may be different. In particular, the use of virtual hardware, 

new resources, increase or decrease, is technically very easy and does not require a 

service interruption. Thus, for each test run, it should be necessary to upgrade the 

hardware information for data normalization. In this study, it has been assumed 

that the total amount of hardware resources will not change during the test.

6.3 Validation of Measurements

Authentic queries can be carried out to validate the load so that the loading rate is 

increased until the saturation point is reached or an acceptable response time limit 

is exceeded. In this way, the measured maximum performance should be the same 

as  the  analysis  result  obtained.  The  model  does  not  produce  exactly  the  same 

results load, because the load is caused by queries and the system's internal state is 

not the same for each recording session. However, the accuracy can be increased by 

repeating the tests several times within a short period of time. 

The analysis results will be independent of the load used during the loading rate, so 

that the loading rate and tested resource utilization should be found between an 

adequate correlation. Figure 6.2 shows the impact of loading rate on the forecast of 

maximum performance. As we can see, throughput does not depend on load rate to 

be used. Throughput is mainly located on two different levels of approximately 

400 … 450 rps and 900 … 1200 rps regardless of the load which varies between 

20 … 90 rps. Findings in the layers are consistent with Figure 6.12. It thus appears 

that  for  the  test  used  in  a  load  factor,  there  is  little  effect  on  the  resulting 

performance of the forecast.
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Figure 6.2: The effect of load test rate for the predicted performance in website A.

Load  and  resource  utilization  formed  by  the  observation  group  hit  rates  and 

standard deviation can be described by using the  adjusted R2  value  (Cameron & 

Windmeijer 1997). A set of points are combined by means of linear regression, and 

the suitability of the result is described using the value of R2 . When the regression 

line  obtained  extends  outside  the  region  measured  by  using  the  linear 

extrapolation,  it  can  be  found  in  the  performance  forecast  for  the  server  to  a 

specific resource. At the time of measurement, it is the most limiting resource in 

the  current  bottleneck  in  the  system.  This  result  is  sufficiently  accurate  in 

determining the overall system performance.

6.4 Interdependence of Measurable Factors

Resource  consumption,  but  also  response  time,  plays  an  important  role  in 

assessing the maximum performance of a system. At the same time, as the load 

increases, it generally increases the response time. Increase in the response time is 

usually due to the fact that resources have to wait. The general increase in activities 

for the server hardware system means an increase in almost all the events in terms 

of resources such as CPU, memory, disk I/O, network traffic, etc. In Figure 5.9, the 
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load increases from 40 rps to 170 rps, and response time will increase from 500 ms 

to 1700 ms. However, none of the service resources is close to the saturation point.  

Therefore, each of the analyses shall consider the response time of the estimate. 

The response time applies to the entire system, it is not resource-specific.

Figures 6.4 to 6.7 show the measured response time (R), the number of incoming 

requests, and resource utilization (U i)  of key resources in one measurement run. 

Resources utilization is collected for each resource or resource group separately. 

The total  system throughput and response time are  relevant  only  to  the whole 

system level. In this study, the resource-specific throughput or resource-specific 

response time is not relevant.  As we can see,  the equations  (3) and  (4), over a 

sufficiently  long  time  arrival  rate,  should  be  equal  to  throughput,  λ=X.  

Therefore,  the  images  have  been  used  instead  of  the  arrival  rate  or  the  term 

throughput.

The arithmetic mean to describe the use of response time has been discussed in 

another  study  (Ciemiewicz,  2001).  It  focuses  on  outlier  due  to  biased  results, 

especially  in  terms of  the  SLA agreement.  The study shows how even a  single 

outlier can distort the value of response times describing the key figure. However, 

it proposes using either the geometric mean or the median. Table 5 shows website 

A1 loading test response times, calculated by various methods. Individual response 

times are  converted to  10-second intervals  so  that  the  response time period is 

represented by maximum, median, arithmetic mean or geometric mean.

All four of the table methods used to correlate well with the load level increase. For 

the service user, it is important that the response time remains below the desired 
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Table 5: Summary of response time values on website A1

Max Median Arithm. Mean Geom. Mean

Min 0,0 0,0 0,0 0,0

1st Qu. 39,0 9,0 11,7 10,7

Median 743,0 11,0 19,8 12,3

Arith. Mean 1 086,0 9,4 27,9 11,8

3rd Qu. 1 462,0 12,0 37,3 15,9

Max 10 070,0 31,5 114,9 30,1
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limit value. When the load factor rises enough, a fraction of the total response time 

exceeds  the  limit  value.  Distribution  of  the  response  time  should  therefore  be 

inclined to the right (positively skewed distribution). In addition, tail should be as 

short  as  possible,  and  then  the  number  of  long  response  times  would  be 

minimized.

Only the long response times are interesting in this analysis. The  Table 5 shows 

that when the data is formed by the maximum values, the long response time will  

remain. Figure 6.3 shows the maximum values of the calculated density plot, which 

is found to be strongly skewed to the right. The figure also shows the 3 000 ms 

threshold value by a vertical  line.  We note  that  the  threshold exceeds to  some 

extent. They are also  reflected in  Figure 6.4 to  Figure 6.7 - Response Time vs. 

Throughput graph. It is obvious that the response times may be processed only 

using a maximum value. The problem is the higher variability than other methods; 

on the other hand, it is the only one that preserves the necessary information about 

the long response times.

Figure 6.3: Density plot of response time values in the application server of website A1.

Figures  6.4 to  6.7 show that the material is formed from four different sites. In 

three cases, the most loaded server has been the application server:  Figure 6.4, 

Figure 6.6, and Figure 6.7, and in one case, the database server,  Figure 6.5. Each 
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service  is  located  on  a  different  hardware,  different  application  and  different 

content. In addition, services are aimed at different segments of the public. Data is 

summarized and the resource utilization is collected using SNMP query every 10 

seconds.  The  period  includes  the  response  time and mean of  throughput.  The 

arithmetic mean is selected to describe the data by the fact that the various peaks 

do not intentionally affect eliminated. The obtained data is illustrated in Figures 

6.4 to 6.7 so that the connection between the results forms a set of points, and the 

points are connected to 3 degree spline.

Figure 6.4: Measured throughput (X), response time (R) and utilisation % (U) in application  
server on a type A website A1.

Figure 6.5: Measured throughput (X), response time (R)  and utilisation % (U) in database  
server on a type B website B1.
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As noted, the connection between the throughput and the response time is not as 

that assumed in  Figure 3.5, as in any measured case. The measured results are 

from the network systems, each containing a number of servers. Therefore, it is 

possible that a low load, whose effect is different from the previous studies, has 

been  demonstrated.  Communication  between  the  servers  takes  time  and using 

high-level  application solutions  for  various  pools  and protocol  operation is  not 

optimized for speed but in terms of usability.

In Figures 6.5 and 6.6, two different service load performance are presented; the 

first is the database server, and the second is the application server CPU load. As 
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Figure 6.7: Measured throughput (X), response time (R) and utilisation % (U) in application  
server on a type B website B3.

Figure 6.6: Measured throughput (X), response time (R) and utilisation % (U) in application  
server on a type B website B2.
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the figures clearly show, when the load increases, the response time will increase 

more sharply at the beginning, and then stabilized. For the server processor, each 

of the load rates is very high, being very close to the saturation point of the curve 

and is due to sharp returns at high throughput values. If  the load continues to 

increase, as well as response time, utilization appears to be referred to a very sharp 

rise. If the load continues to increase as well as response time, utilization appears 

to be referred to a very sharp rise.

Dependency is linear or almost linear between throughput and utilization rate, at 

least until 80% utilization rate, as shown in Figure 6.6. This result reinforces the 

idea that the processor capacity can be safely used for about 70%. It is possible that 

an available capacity as shown in the Figure 3.9 is higher than the limit shown, and 

in particular, the lower limit saturation is higher. The difference may be due to the 

fact that as hardware advances, the border of available capacity will increase.

6.5 Performance Prediction

Figures  6.4 to  6.7 set out the resource groups for a maximum out-performance 

forecast using a linear extrapolation. It will be extended by linear extrapolation to 

forecast  maximum  accepted  response  time  up  to  three  seconds.  Similarly,  the 

connection between utilization and throughput capacity will be expanded by the 

linear  extrapolation  until  the  resource  maximum  allowable  rates  of  utilization. 

Thus, the results obtained, when selected, give the minimum performance of the 

system.

Figure 6.7 presents the test result formed by means of linear extrapolation forecast 

of the performance of the application server, which is shown in Figure 6.8. Since 

the resource utilization is far from saturation point, linear prediction is well suited, 

such  as  shown  in  Figures  6.4 to  6.7.  In  Figure  6.8,  the  maximum  resource 

performance value is 2150 rps when the utilization rate is 70%.
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The same tests as in Figures  6.4 -  6.7 are shown;  Table 6 shows the maximum 

performance predictions for other resources. Because extrapolation is necessary to 

consider a maximum value as well as sensing the linear curve fit to values in the 

table, the  R2  value is also shown. The forecast accuracy is not enough to get an 

accurate picture of just data points describing the curve. Therefore, the maximum 

performance in the table is shown precisely in the curve fit rather than by means of 

a simple minimum value.

As  we  can  see  from  the  table  that  the  linear  extrapolation  not  always  gives 

reasonable results, in some cases, it gives very low  R2  values.  These have been 

omitted from the table.  Generally,  the phenomenon is  due to  the fact  that  the 

server resource consumption of the layer is so small that it does not sufficiently 

correlate  with  the  load  increase  rate.  In  this  case,  it  is  clear  that  the  resource 

cannot be a bottleneck in the system.

If the limiting factor in the analysis is response time, the real bottleneck in the test 

has not been found; in other words, a critical resource load data was not collected 

using SNMP. Exceeding the  allowable  response time always indicates a  lack  of 
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Figure 6.8: Estimated maximum throughput in application server on the website B3.
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resource,  because  it  cannot  in  itself  be  a  bottleneck.  When  the  response  time 

threshold is exceeded, the resource monitoring needs to be extended.

When  approaching  a  saturation  point,  it  shows  a  strong  increase  in  resource 

utilization  as  the  load  increases.  In  this  case,  the  extrapolation  will  result  in 

excessively  high-performance  values.  One  has  to  use  the  Weibull  growth  curve 

equation rather than the linear extrapolation:

U=a−be−cd
 (26)

, where a= horizontal asymptote on the right, b=difference between the asymptote 

and the intercept (the value of  U  at   = 0),  c=the natural logarithm of the rate 

constant, and d= the power to which x is raised. 
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Table 6: Summary of throughput values within one test run at websites A1, B1, B2, and B3

Resource i CPU Utilisation Memory

Estimated R2 Estimated R2

Website A1

Load Balancer 24 400 0,599 589 000 0,037

Application Server 2 150 0,936 987 0,246

Database Server - - - -

Website B1

Application Server - - - -

Database Server 22 0,9 - -

Website B2

Application Server 109 0,941 - -

Database Server 4 140 0,213 44 500 0,091

Website B3

Application Server 13 0,795 45 0,881

Database Server 112 0,635 - -
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Figure 6.9 compares the linear extrapolation and the Weibull growth curve. The 

maximum value of throughput is derived from the linear extrapolation and the 

growth  of  the  Weibull  growth  curve.  When  using  the  linear  extrapolation,  the 

resource  100%  duty  cycle  is  the  maximum  throughput  of  69 rps  and  the 

adjusted R2  value is then 0.873.

There  are  very  few studies  on  acceptable  resource  saturation  levels.  Maximum 

utilization of the resource depends on the type of resource. For processors, it is 

typically 60 … 70% respectively, the memory utilization rate depends on the total 

amount of memory, operating system, and the amount of memory needed by the 

application.  When  using  a  70%  utilization  rate,  as  shown  in  Figure  6.9,  the 

predicted throughput is 47 rps. As a kind of reference value, memory consumption 

can probably be considered to have a maximum value of 90%.
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Figure 6.9: Fitting of measured resource utilisation using different rates of natural workload
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The  different  methods  of  calculating  the  values  produced  and  their  relevance 

indicators and adjusted R2  values are summarized in  Table 7.

As seen from the Table 7, a set of points fits quite well with all the models used in 

the calculation, both  R2  and  adjusted R2  are reasonably close to one. The table 

confirms the understanding formed on the basis of Figure 6.9 that the linear model 

produces a performance of over-optimistic results; in particular, using a of 100% 

saturation rate.  On the other hand, the resource utilization is low, as shown in 

Figure 6.8. Weibull growth curve produces too pessimistic results. This study has 

concluded that if the resource utilization is not more than 50%, a linear model is 

always used, unless it is used for Weibull growth curve.

6.6 Visualization of Results

When the load test is repeated several times on successive days, there will be a time 

series of performance of each individual resource. According to a website resource, 

such a performance time series is shown in Figure 6.10. The measured values are 

summarized for a single day in Table 6. In Figure 6.10 the measurement time is a 

green vertical line, the left side of the values are the measured observations, and 

the straight lines on the right side are the predictions of performance. The line with 

the same color wide area represents the 95 % confidence interval. It is normal that 

the predicted performance loadbalancer range is large, because its load is small 

compared to the other server's layers. In practice, the most potential bottleneck is 

always a best scenario; that is, standard deviation of measurement results is the 
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Table 7: Forecast accuracy using different calculation methods

Method Estimated
performance

Adjusted R2  R2

Linear 100% 69 0.87 0.87

Linear 70% 47 0.87 0.87

Weibull 33 0.89 0.89
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smallest, and the confidence interval is the narrowest. As with Table 8 and Figure

6.10, the most limiting layer in this case, is the database server.
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Figure 6.10: Visualisation of measured performance of different layers at the website A1 and  
prediction for the next 30 days
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Maximum predicted throughput for each resource, i, is given for the time, t:

X̂ i=ai×bi t  (27)

where i is a resource for 1...n, a and b are the linear prediction coefficients of the 

linear regression line in Table 9.

Maximum performance of the entire server system by the time t is as follows:

X̂ max=min( X̂ i (t ))  (28)

Figure 6.11 shows the corresponding calculated performance values for network 

service B2. In this case, the most limiting is the application server layer. In this site 

there is no load balancing layer, since there is only one application server. The 

measured performance values are summarized in Table 10.

Predicted  throughput  for  each  resource  in  i is  shown  in  equation  (27).  The 

parameters a and b are the values of the linear prediction table according to Table

9.
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Table 9: Summary of predicted performance coefficients for equation (27) at the website A1

Resource i a b  

Load Balancer CPU 4670 14.4

Application Server CPU 797 3.86

Database Server CPU -102 7.67

Table 8: Summary of performance values at website A1 in a period of three months

Resource i Min. 1stQu.  Median Mean 3rdQu. Max.
Load Balancer CPU 1790 5220 5580 5540 5910 10 500

Application Server CPU 685 895 951 1020 1190 2010

Database Server CPU 43.1 56.6 128 288 609 988
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Maximum performance of the service B2 at the time t is given by Equation  (28) 

using the parameters a and b, which are shown in Table 11.
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Table 10: Summary of performance values at the website B2 in a period of three months

Resource Min. 1stQu.  Median Mean 3rdQu. Max.
Application Server CPU 58.0 141 168 172 207 305

Database Server CPU 91.8 197 628 846 887 3360

Table 11: Summary of calculated performance values at the website B2

Resource i a b  

Application Server CPU 122 1.13

Database Server CPU 267 40 921
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Figure 6.11: Visualisation of measured performance of different layers at the website B2 and  
prediction for the next 21 days
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6.7 Rapid Changes in Performance and Software Aging

Sudden deterioration in performance can be interpreted in the server system as a 

mistake,  either  software  or hardware or their  combination.  Similarly,  a  sudden 

improvement  in  performance  is  often  due  to  increased  efficiency  in  the  new 

version  of  the  software,  changing  configurations,  the  server  system of  internal 

change in status or restart of server devices or services. Slow network performance 

degradation can result in the software aging phenomenon. Resource consumption 

will  continue  until  the  available  resources  have  all  been  consumed.  Such  an 

amendment is shown in Figure 2.2. 

The second type of  change is a progressive increase in website performance.  It 

occurs rarely, and usually as a result of maintenance operations such as services or 

equipment being restarted.  Figure 6.12 shows a several days long test for service 

A2,  the result  of throughput values where the virtual  number of  users remains 

constant throughout the test. As to change, the exact cause is unknown. However, 

it is known that the hardware or software configuration is not modified during the 

test. It can be assumed that the change is at least partly caused by the server or  

restart  services  or  database  indices'  regeneration.  Image  of  the  performance 

change is due primarily to the fact that the response time is shortened and the 

virtual  user sends new service  requests.  To begin transmission,  it  slowly  drops 

until 20090414 is approximately in 400 rps level. The verse is one of the service 

changes, which resulted in the transmission rate suddenly rising to the level of 800 

rps and then to a level of about 1200 rps. 
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The third reason for the change is caused by long-term software maintenance and 

updates.  A more recent version of  the software may require more or even less 

resources than the previous one. The growing consumption of resources, aimed at 

the user's point of  view, is  for the software to provide a better level of  service. 

Reduced consumption of resources in turn means better software internally, that 

is, fewer mistakes.

The tested website applications have been at the early stages of development, so 

the  tested  individual  application  has  not  been  finalized  in  relation  to  resource 

consumption, and the phenomenon is clearly visible even for a few days during the 

period of lower performance.
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Figure 6.12:Unexpected increase in the performance of website A2
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6.8 Combination of Results

This section combines usage analysis and results  of the performance prediction 

obtained by load test of the results, and presents them in a way easy to understand. 

The aim is to make the results easy to interpret; so that they can be understood by 

non-experts in the performance or maintenance experts of a service.

In Chapter 4, we have presented the analysis of website actual usage. It has been 

clarified on the basis of service, and the daily peak load causing the performance 

requirement. It addresses all layers of the web service. Previously, in this chapter, 

the  analysis  of  current  performance  is  shown.  It  shows  that  the  service 

performance is determined by the different layers and particularly on the basis of 

the neck of the bottle of service. Combining these analyses has been clarified as a 

safety  margin  between  the  actual  use  and  saturation  point  of  the  bottleneck 

resource.

Combining these results is shown in Figure 6.13. The green vertical line shows the 

measurement at a current time; the stroke on the left side is measured values, and 

the right side is a prediction. Red dots show the daily peak load values, which are  

formed  on  the  basis  of  Chapter  4.  The  red  bar  shows  the  derived  confidence 

interval  width.  Blue dots represent  the system on a daily  basis  -  the measured 

performance values. The blue beam is the width of the confidence interval which is  

derived  from  the  measured  values.  Despite  the  fact  that  Figure  6.13 with  the 

forecast extends from 90-day onwards, its accuracy is not sufficient as a maximum 

of 30 days. This is due to the fact that the image matching two linear extrapolation, 

which in themselves are relatively inaccurate.

At the right side of moment of measurement, the area between the blue and the red 

line  is  a  safety  margin,  which  exists  at  every  moment  between  the  predicted 

performance and the  actual  usage.  The service  administrator  is  responsible  for 

ensuring that  the  service  is  providing a  safety  margin,  taking  into  account  the 

expected  abrupt  changes,  which  cannot  be  predicted  on  the  basis  of  analyzed 

history.  In  some  cases,  the  changes  are  predictable;  some  of  the  events  come 

unexpectedly.  Typical  signs  in  advance  of  new  visitors  to  a  web  store  offer 

attractive promotions, and breaking news in media services. Both of these cause 
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changes in the number of visitors who do not appear in any way in the history, but  

their range may be more or less precisely estimated. In both cases, the number of 

users is generally limited in any case. Limiting factors may be marketing channel 

size, population of the area, language area size, etc.

If the website hardware is well  balanced, the bottleneck may change to another 

resource  on  each  occasion  of  testing.  This  is  not  relevant  when  assessing  the 

adequacy of the performance of the system, or the cost of the minimum level. After 

wanting to make changes to the system's performance, it is also familiar with each 

of the server layers and the performance of each resource separately. In Figures 

6.10 and  6.11 show each layer of the server performance in two different online 

services on the basis of processing power. The figures can be used to evaluate each 

layer of the server processing power’s sufficiency or excess.

Figure 6.13 contains some findings of the individual performance indices which 

can be interpreted as outliers. They can be caused by several reasons: inaccuracy of 

the  measurement  method,  the  load  combinations  of  different  surveys,  the 

bottleneck resource is not observable among the resources, or the system's internal 

state  is  different  at  the  initial  time  of  tests.  For  these,  there  is  no  single 

explanation, and so these can be considered occasional uncertainty in the load-

sensing system.
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Figure 6.13: The combination of actual performance and usage of the website B.
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Figure 6.10 and  Figure 6.11 clearly visualize the server layers as containing too 

much processing power. Removal of the excess power from the server processing 

layers, which are not congestion, maintenance costs, and energy consumption, will 

be  reduced without  risk  of  interference.  In  addition,  images  with  layer-specific 

knowledge increase the technical quality of service because the service will increase 

in stability.

6.9 Sensitivity Analysis

Data generated by the artificial  load contains a number of  factors affecting the 

accuracy of the outcome. This section seeks to identify those most significant in 

order to assess their impact on the outcome and to assess the likelihood of their 

occurrence, if relevant of course.

First, the meaning of precision and accuracy. The analysis aims at ensuring that 

the forecast accuracy is as good as possible,  i.e.  a method to produce the most  

precise estimates for each period of  time in the performance of  the duty cycle, 

which is generated by users. On the other hand, the same load of material carried 

out in successive runs of the performance should possibly produce high precision 

results to be shown as consistent with the predictions of the performance. Both the 

precision and accuracy are enhanced by improving the functioning of the model. In 

practice, the improvement of the model refers to the environment resulting from a 

further consideration of these factors.

Second, the results vary between the load tests, which cause the natural variation 

in  the  time  series.  This  is  shown  by  the  increased  confidence  interval  for  the 

forecast. That is, on the one hand, the load test is carried out with various surveys 

for each test; and on the other hand, the internal state of the system is different for 

each time point. These variations are natural, and thus belong to a method. The 

large range may indicate unstable behavior in the system and the reasons leading 

to the need for research on a case by case basis.
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Third, control of resources through the data collected requires pre-treatment. This 

refers to the observation of individual values (outliers) removed. These may be 

caused by uncontrolled external load, so the effect is filtered off. They can also be 

caused by a known load, in which case a single query to form an unexpectedly high, 

and  therefore,  appear  in  the  utilization  of  a  significant  change  (increase). In 

principle, this cannot be filtered out except for a single peak; the system does not 

affect the outcome. However, if the URL of the individual means the presence of a 

significant number, it is taken into account when forming the material of the load. 

In this case, the impact load occurs on the right way in the system. If any individual 

URL is to cause other queries compared to a very high peak load, it will turn out in  

the top-30 listing.

Fourth, the load and resource consumption correlate poorly or not at all. In this 

case, the response time is exceeded before the resource becomes saturated. This is 

a matter that occurs when the bottleneck resource is not found. It is evident that 

the bottle neck has not been any one hardware resource; instead, the application 

will wait for a lock semaphore or other soft resource to be released. This is not  

usually  possible  to  be  detected  by  using  SNMP  interface  and  is  therefore,  not 

possible to find in this study as shown.

Fifth, the factors resulting from the regression. The correlation between the load 

and resource consumption is linear up to the knee point only. The point of the knee 

may continue after the consumption of a linear, but the slope is higher than the 

former, or a change in the graph is of a higher degree. When using the load which 

is considerably less than the knee point, the slope of the graph is not known. On 

the other hand, the shape is not interesting, because the system load factor will be 

kept constantly under the knee-point, i.e. in the linear portion of the function.

6.10 Conclusion

In this chapter, several commercial online services have been identified through 

analysis of performance. The analysis is initially loaded with natural service with 

intermittent  load  queries  and  by  monitoring  the  utilisation  rates  of  the  server 
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system  resources.  The  results  are  analyzed  by  simple  statistical  methods.  The 

results which have been found, and appear to be uniquely defined, are repeated as 

expected.  We have found that  by loading a service in a controlled manner,  the 

resource's maximum load factor can be predicted without having the normal use of 

service disruption. Forecast accuracy depends on the bottleneck resource type and 

degree of loading. The CPU saturation prediction is fairly straightforward, but the 

memory  usage  prediction,  in  turn,  is  not  due  to  the  complexity  of  memory 

allocation algorithms. In addition, too-low a load factor does not make sense when 

it comes to being predictable. This is due to the fact that the measurement range 

varies  considerably  when  compared  to  the  low  and  high  degree  of  loading  of 

resources. In addition, each resource in the bottle neck, which has a low capacity 

and accuracy of the estimates, is not crucial.

We have also found that, although the load test is repeated several times in a short 

period of time in the same load, the outcome is not exactly the same performance 

index  in  all  the  test  runs.  This  is  due  to  several  reasons,  one  of  which  is 

accompanied by a random element, which is eliminating bursts. The same set of 

requests  does not  exactly  exist  in different test  runs.  The result's  range can be 

reduced by regression analysis. Regression analysis can be a simple linear model or 

a  model  for  a  better  fit  may  be  found by  using  a  higher-order  model  such  as  

Weibull Growth curve.

The experimental model seems to produce reasonably accurate and precise results 

for predicting the maximum performance by taking into account both the response 

time and the resource utilization rate.
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7 Conclusions

This  section presents  the conclusions of  the work,  the  answers  to  the  research 

questions and the hypotheses derived from them. This section also addresses the 

research question and its solution.

7.1 Implications for practice

The  Predictus-model  developed  in  this  study  may  be  used  to  express  the 

performance  of  a  website  system,  especially  when  the  performance  varies  for 

service-specific  reasons.  The  changes  can  be  traced  from  several  sources.  The 

fastest change is caused by changes in the usage, the number of users or interests 

that change from one page to another. The second source is the internal status of  

the server system, which can cause a general malfunction due to software aging. 

The third source is the new software versions, system software,  utilities,  or the 

application versions.

In  this  study,  several  log  files  are  combined  using  a  novel  manner  to  find  a 

prediction model, aimed at indicating the moment of the performance problem if 

no resolving actions are taken. The model developed in this study is applicable to 

predicting the forthcoming requirements for actions of a web service. Maintaining 

operations  (hardware  investments  and  installations,  configuration  changes,  or 

software updates) can be done pro-actively and in good timing.  

Performance improving techniques, such as caching, are changing the behaviour of 

the system within different  load rates such that  their  functioning is  difficult  to 

model  analytically or use discrete event simulation.

The method implicating the  Predictus-model utilises several statistical methods, 

even concatenated. There is no aim at maximal accuracy thus far, only to prove 

that it is fit for use in measuring the total performance. The accuracy of the method 

can be intensified by increasing the accuracy at the component level. The results of  

the throughput are suggesting that the method gives indicative results; there is no 
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evidence of exact and unambiguous value for throughput. Firstly, this is caused by 

the  inaccurate  method  of  deriving  the  maximum  throughput  based  on  the 

measured values. Secondly, no such analytical methods exist, which could validate 

the measured results.

The model does not contain any protocol-specific data, so it can also be applied 

more widely than for the http-based systems. Here, the log analysis deals with the 

analysis of the http requests, so its use in connection with other protocols requires 

modification. Here, too, the load to perform the load test as such is not suitable for 

use with other protocols. JMeter, used to load on the service, is also suitable for a 

number  of  other  protocols  for  testing,  but  in  this  study  JMeter-referenced 

applications are not suitable for use in other protocols.

We have shown that  the analysis  of  web server  system usage can be based on 

ordinary http log files. The analysis can be done in a specified form in most cases, 

and the result is comparable day-by-day despite the nature of the web service. The 

actual usage of a web server is the most relevant indicator of timing and duration 

of the peak load. The requirement of performance on the web server system has to 

be based on the peak load. 

The total performance of the server system consists of a unique combination of 

hardware,  applications,  configuration,  and  status  of  different  applications.  We 

have shown that  the  actual  performance of  a  web server  system is  measurable 

using  well-known  natural  load  traced  by  web  log  analysis.  The  resource 

consumption can be monitored using the SNMP monitoring system. The analysis 

of the results can be done automatically using some simple statistical methods. We 

have determined that  the performance curve  is  not  linear  up to  the  saturation 

point. However, we have not found a suitable higher-degree mathematical method 

for fitting observed performance results with the degree of utilisation within this 

study. The natural load should be increased up to the saturation point to figure out 

the asymptotic.  However,  at  the beginning we have set  the requirement not to 

disturb the normal usage during the load test. The utilisation up to the saturation 

point is the most disturbing to regular usage and leads to recovery operations in 

the worst case, and therefore, cannot be used. Therefore, the partial rate of load is 

the most recommended method for performance evaluation.
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The combination of the analysis of log files and the analysis of the natural load test 

produces the prediction of performance for the foreseeable future. We have shown 

that the final result can be described in an unambiguous format so as to figure out 

the moment when the system does not have perform adequately to serve users with 

the required response times. However, the most important result is the amount of 

spare performance, i.e. the gap between actual usage and real performance. The 

user population is somewhat limited in most cases. It can be estimated based on 

the content, language, or even the historical knowledge of usage. In case of planned 

advertisement campaigns and the like, the maintainer should be able to estimate 

beforehand the number of expected visitors. This study has not committed itself to 

the unexpected change in the amount of visitors. Only the expected natural trend 

for visitors and performance is included.

In this method, only the http protocol is used in natural load tests and in access log 

analysis.  This  is  caused  by  the  simplicity  of  the  logging  and  analysis  tools. 

However, there are other similar protocols, like ftp and https. Other systems using 

connectionless  protocols  could  be  analysed  as  well.  The  connection-oriented 

protocols,  like  telnet,  are  rather  challenging  to  simulate.  Probably,  the  most 

troublesome feature to  simulate  is  the think time. However,  in an e-commerce 

environment  the  connection oriented  protocols  are  rather  exceptional.  Another 

group  of  fairly  analysable  protocols  is  the  large  binary  files,  like  multimedia 

streams.  Yet,  this  group  is  widespread.  The  problem  with  this  group  is  the 

difficulties with end-to-end response time measurement and the user experience. 

The former reflects differences in the system's capacity, and the latter refers to the 

performance of  the  client  hardware  and software,  i.e.  the  user's  computer  and 

browser.

The exact  relevancy of  the  shown method compared to  the  real  web service  is 

rather troublesome to evaluate. In the initial period, i.e. less than three months, 

the measured results  are somewhat inconstant.  Hence,  the conclusions are not 

based on stable measurements. On the other hand, the changes since the initial 

period seem to  stabilise  or  are  at  least  explicable.  In  that  context,  the  natural  

workload can be assumed to match the real workload. In this study, only CPU and 

the amount of free physical memory are monitored. The SNMP protocol makes a 

151



7  Conclusions

great  number  of  other  resources  available.  Some  of  them  are  essential  for  an 

undisturbed operation, while some are devalued. The most essential question is 

finding  the  appropriate  objects  to  monitor.  When  monitoring  some  irrelevant 

resources, the real bottleneck can be passed unnoticed and the results may seem 

unreasonable. 

The study has shown that a short period of well-known natural test load is enough 

to define the actual performance of the server system. The length of the period is 

defined by the number of queries rather than the amount of time. However, all the 

load impulses have to be well managed, and the maximum load should be as stable 

as possible to increase the measurement accuracy. The study has also shown that 

the actual  amount of  incoming requests  can be analysed automatically  and the 

distribution of different queries can be found. The result of the access log analysis 

has been used to construct the natural work load simulation. Finally, the results 

have  been  combined  automatically,  and  the  spare  capacity  can  be  figured  out. 

Furthermore, the moment of run out performance can be automatically defined. 

Lastly, the performance analysis process can be automated to achieve comparable 

results and avoid laborious human-oriented analysis. 

The functioning of the Predictus-model has been tested in practice, i.e. in several 

websites separately.  The feedback on website B has been criticized for the long 

response  time  at  the  early  stage  of  the  analysis  series.  Some  improvement 

requirements  have  been  revealed  by  the  expressed  model,  and  the  measured 

performance  was  clearly  becoming  more  effective.  The  extra  performance 

removing in website type A concretizes the simultaneous change in the real and 

calculated performance, and hence confirms the integrity of the Predictus-model. 

Hence,  the spare performance of  the server system can be dissembled together 

with  energy  and other  maintenance  costs.  In  addition,  the  fixing  of  the  faulty 

configuration,  application  or  increase  in  performance,  even  the  unexpected 

malfunctioning events and the loss of revenues can be avoided.
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7.2 Implications for research

At the beginning of the study, three research questions and three hypotheses were 

identified: 

Question 1: Is  it  possible  to  analyse  the  usage  of  a  website  and  

characterise it automatically and on a regular basis to identify the peak  

load? The corresponding hypothesis was: 

Hypothesis 1: The actual usage of a web server system is measurable and  

analysable automatically, and the result can be exploited to construct the  

natural load test for simulation purposes.

Chapter 4  has shown that the service usage can be measured both quantitatively 

and qualitatively, and the result of measurement can be unambiguously and easily 

changed to communicateable information.  Furthermore, a qualitative result of the 

measurement may be altered to such a form that can uniquely take advantage of 

the simulation or other analysis. 

Question 2: Is  it  possible  to  measure  the  performance  of  the  website  

system on a regular basis? The corresponding hypothesis was:

Hypothesis 2: The actual performance of the server system can be defined  

using a known natural load with a short test-time period.

The method presented in Section 5 is to load the web service in the same way as 

users  of  the  service  burden in  actual  use.  In  the  same  section,  a  method  was 

presented that can be used to collect information on the resource consumption of 

the entire server system during loading and at the same time to observe the user-

perceived  response  time.  It  was  also  discovered  that  the  loading  level  can  be 

considered to be moderate so that it does not interfere with the normal use of the 

service.

Question 3: How can the current website performance, and actual usage  

be compared with each other? The corresponding hypothesis was:

Hypothesis 3: In  combining  the  analysed  actual  usage  data  and  the  

calculated total performance of the web server system, the moment when  

the performance of the system runs out can thus be estimated. 
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The data accumulated during the artificial loading is analyzed in section 6, and the 

result has ascertained the ability of the service to work in actual use. When the 

actual usage of the website and its actual performance is converted to comparable 

values,  the current spare performance is found. Website usage as well as variation 

in performance can be predicted by means of extrapolation to give a forecast of 

future service ability. The point at which the service is not able to effectively serve 

users, may be found where the curves intersect at the predicted cycle. 

All the research questions have been addressed in this study, and the hypotheses 

have been found to be correct.

The  research  problem is  solved.  And the  Predictus-model  is  applied  to  a  data 

centre, it provides the opportunity to make substantial energy savings. When the 

performance  of  the  server  devices  is  adapted  to  a  real  need  to  match,  it  also 

eliminates overcapacity. On the other hand, it ensures that sufficient capacity is 

available  wherever  it  is  needed.  The  proposed  model  provides  a  quick  and 

inexpensive way for performance management. Existing applications do not need 

to change, and hardware investments are rendered unnecessary. In addition to the 

removal,  the  over-capacity  model  also  provides  information  about  where  the 

capacity is needed in order to increase the level of service that can be secured.

Results of energy savings and the management of capacity needs are commonly 

solved using virtualised server environments. The technology of virtualisation will 

probably mature in the near future.  Websites located in large data centres can 

utilise the virtual servers most effectively. The fast performance adjustment can be 

arranged effectively up to the maximum total capacity of the data centres. Instead, 

companies  maintaining  a  single  website  can  benefit  from  the  automated 

optimisation shown in this study.

The validity of the results must be assessed on the basis of the extent to which the 

meter, which is presented in the study, describes the website system measured. In 

order for the meter developed to be valid,  it  shall  be described in an unbiased 

pattern,  which is  to  be measured.  Website usage at  a certain period of  time is  

history  and it  does not  change over time.  By increasing the size of  the sample 

describing the use of the service, the accuracy can be improved at the same time 
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until  finally  the  meter  is  completely  unbiased.  However,  describing  the  service 

performance is much more difficult. It is based on the user's subjective experience 

of the response time, and on the other hand, response accuracy. These are not 

sufficient to describe the service performance. In this study, we have assumed that 

responses are error-free due to the performance. In addition, there are no software 

errors, which causes the standstill of situations that are not consuming resources.

Adequacy  of  resources  is  the  primary  measure  of  performance.  When  all  the 

resources of the server system is adequate, response time is a characteristic of the 

system. Among other things, it depends on the physical distance between devices. 

Response  time  is  only  a  secondary  indicator,  it  tells  us  that  an  unrecognized 

resource is completely finished or will soon run out. For the SNMP interface to 

provide correct results in resource consumption, the method should gives a valid 

understanding of system performance. Different computer systems use different 

implementations  of  SNMP,  and  their  reliability  can  not  always  be  absolutely 

certain.

In the following, the Hevner's guidelines are used as the basis for evaluating the 

design research contributions of this study. 

Guideline 1: Design science research must produce a viable artefact in the form of a 

construct, model, method, or an instantiation.

• The Predictus-model and any method that has been built on the basis of the 

model, form artefact according to Hevner's first guideline.

• IT artefacts are rarely fully prepared for information systems; in most cases, 

they are innovations. So even in this case, the Predictus-model is a guideline 

for the development of a methodology. The final accuracy, precision, and 

usefulness of the performance prediction is contingent upon the reliability 

of the means used.

Guideline 2:  The objective of  design science research is  to  develop technology-

based solutions to important and relevant business problems.

• With method, the end result is awareness of the 'performance reserve' size, 

which is  an important  business  information.  It  can be used to  draw the 
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necessary conclusions over performance increase or decrease, or the timing 

of the necessary activities.

Guideline  3:  The  utility,  quality,  and  efficacy  of  a  design  artefact  must  be 

rigorously demonstrated via well-executed evaluation methods.

• In  Figure 1.3 the  Predictus-model is the result of a long iterative process. 

The  development  is  guided  by  the  awareness  that  the  result  should  be 

beneficial, both economically and technically.

• A more  detailed discussion  is  found at  each  stage  of  the  method in  the 

sensitivity analysis (sections 4.5, 5.4, and 6.9). They deal with the model and 

the method's accuracy-related issues.

Guideline 4:  Effective design science research must provide clear and verifiable 

contributions in the areas of design artefact,  design foundations, and/or design 

methodologies.

• As set out above, the artefact gives a clear answer to the research problem. 

As  seen  in  further  studies  (section  7.3),  the  result's  accuracy  can  be 

improved by improving the method.

• The  most  important  contribution  of  this  study,  however,  is  the  result 

emanating  from  the  Predictus-model  development.  It  can  clearly  and 

regularly provide information on the level of spare performance at each time 

of measurement.

Guideline  5:  Design  science  research  relies  upon  the  application  of  rigorous 

methods in both the construction and evaluation of the design artefact.

• Data collection and calculation methods used in this thesis, are commonly 

used.  According to  the  results,  their  accuracy is  meant  in many ways to 

attract attention.  Changes in system performance, caused by the collection 

of data, are discussed in section  4.1.  The accuracy of results provided by 

SNMP interface has been thoroughly discussed in section 5.3. Performance 

relevancy and accuracy have been assessed in section 6.5 using the R-value, 

and in section 6.8 in terms of spare performance.
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Guideline 6:  The search for an effective artefact requires utilizing every available 

means to reach the desired ends while satisfying laws in the problem environment.

• The  Predictus-model  development  process  is  described  briefly  in  the 

introductory chapter; it took place during a period of several years of trial-

and-error.  The design process has not been particularly  systematic,  little 

things have had to be resolved on a case-by-case basis. 

Guideline  7:  Design  science  research  must  be  presented  effectively  both  to 

technology-oriented as well as management-oriented audiences.

• The  method  produces  a  concrete  performance  prediction  which  can  be 

communicated on a regular basis to management and technically-oriented 

staff so that the necessary conclusions and actions can be drawn.

7.3 Limitations of the research and suggestions for further studies

One of the possible limitations of this research is that the adoption study has been 

conducted for a single protocol. No statistical generalisation of the results can be 

provided in a single case research and the representativeness of the results in other 

environments may be questionable. However, the concentration on one protocol 

has brought  with it the benefit of allowing for an in-depth study.

The work utilizes two independent combinations of linear extrapolation. When two 

low-precision  projections  are  combined,  the  result  may  not  be  particularly 

accurate.  The  result  is  indicative,  in  many  cases  sufficient,  but  far-reaching 

conclusions about the final outcome can not be drawn. The study has not taken 

into account in any way the inaccuracy which is immediately followed by a change 

of system performance or website usage.

The study is focused on dealing with reasonably short responses, such as a normal 

web page in general. When handling a variety of video or audio streams, or other 

similar  continuous  data  streams,  the  method  is  not  apparently  suitable  for 

performance evaluation.  In  such a  case,  the  response time is  poorly  suited for 

describing user experience.
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The method may be further developed in several different directions. One obvious 

target  for  development  is  a  protocol  independency.  The other  is  the  quality  of 

experienced  by  the  user  to  be  described  in  an  alternative  way  rather  than  the 

response  time.  In  addition,  the  accuracy  of  analysis  can  be  improved  by 

introducing  a  more  sophisticated  analysis  rather  than  the  linear  extrapolation, 

used throughout this study. 
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 Glossary of Terms and Abbreviations 

Glossary of Terms and Abbreviations

 Accuracy 

The  absolute  di erence  between  a  reference  value  and  the  correspondingff  
reference value

 ANalysis Of VAriance (ANOVA)

a general statistical technique used to separate the total variation observed in a 
set of measurements into the variation due to measurement error within each 
alternative and the variation across alternatives

 Analytic model

A  modeling  technique  that  uses  mathematical  expressions  to  represent 
relationships between modeled system components

 Arithmetic mean

The sum of all values divided by the number of values

 ASymmetric MultiProcessor (ASMP)

A synonym for “loosely-coupled multiprocessor”

 Availability

a metric used to represent the percentage of time a system is available during 
an observation period

 Bandwidth

the maximum possible throughput of a resource

 Benchmark

A well-defined, repeatable workload that can be executed on various systems in 
order to compare performance

 Bottleneck 

A resource  that  saturates  first  as  the  workload intensity  increases.  it  is  the 
resource with the highest service demand

 Cache

A  small  fast  memory  holding  recently-accessed  data,  designed  to  speed  up 
subsequent accesses to the same data. A local data structure holding a copy of 
remote data

 Capacity

Capacity is about some activity over time, e.g. bytes moved over a period, from 
which utilisation can be derived. Capacity is e.g. the number of cars per hour a 
motorway can handle.
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 Glossary of Terms and Abbreviations

 Capacity analysis

Evaluation of a factory, production process or line, or machine, to determine its 
maximum output rate.

 Capacity management

The process of ensuring the current capacty is adequate and used in the most 
e ective wayff

 Capacity planning

A process of predicting when future load levels will saturate the system and of 
determining the most cost-e ective way of delaying system saturation as muchff  
as possible

 Central Processing Unit (CPU)

The arithmetic, logic, and control unit of a computer that executes instructions

clustering  analysis  a  process  by  which  a  large  number  of  components  are 
grouped into clusters of similar components

 Concurrency

A  synonym  for  “parallel  processing”,  but  also  applies  to  single  processing 
environment where multiple programs are interleaved

 Confidence level

The probability that a confidence interval actually contains the real mean

 Continuous probability distribution

probability distribution associated with a continuous random variable

 Continuous random variable

A random variable whose values are uncountable

 Data centre infrastructure efficiency (DCIE)

A metric used to determine the energy efficiency of a data centre. The metric, 
which is  expressed as  a  percentage,  is  calculated by dividing IT equipment 
power by total facility power. DCIE was developed by members of the Green 
Grid, an industry group focused on data centre energy efficiency. 

 Deadlock

a situation in which two (or more) processes require a resource held by another

 Descriptive statistics

Summarize a large amount of data using a small amount of data, often using 
only one number

178

http://searchDataCenter.techtarget.com/sDefinition/0,,sid80_gci332661,00.html
http://WhatIs.techtarget.com/definition/0,,sid9_gci212560,00.html


 Glossary of Terms and Abbreviations

 E-business

Conducting business over the Internet

 E-governement

A generic term that refers to any government functions or processes that are 
carried  out  in  a  digital  form  over  the  Internet.  Local,  state  and  federal 
governments essentially set up central websites from which the public (both 
private  citizens  and  businesses)  can  find  public  information,  download 
government forms and contact government representatives. 

 E ciencyffi

The speed-up divided by the number of processors

 Elapsed time

The total time spent by a job from its submission until its completion

 End users

The final or ultimate user of a computer system. The end user is the individual  
which uses the product after it has been fully developed and marketed. The 
term is useful because it distinguishes two classes of users, users who require a 
bug-free and finished product (end users), and users who may use the same 
product for development purposes. 

 Extrapolation

A method that infers values from outside the range of values used to build a 
model

 Geometric mean

A  measure  of  location  that  is  applicable  to  proportions  rather  than 
measurements or rates

 Harmonic mean

A measure of location that is applicable to rates rather than measurements or 
proportions

 Histogram

A graph which plots the probability distribution

 Hit

A resource request for a file from the Web server, as recorded in the server 
access log.

 Hot spot

excessive contention for the same resource (often data in memory)
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 Independent and Identically Distributed (IID)

A characteristic of a collection of random variables if each random variable has 
the same distribution and all random variables are mutually independent

 Input/Output (I/O)

The  process  of  receiving  and  transmitting  data,  as  opposed  to  the  actual 
processing of data

 Interactive processing

The processing of tasks with think times in between

 Internet

The global set of interconnected networks that use TCP/IP

 internet

A collection of  packet-switching and broadcast networks that are connected 
together via routers

 Interpolation

A method that infers values from within the range of values used to build a 
model

 intranet

A  private  internet  deployed  by  an  organization  for  its  internal  use  and 
necessarily connected to the Internet

 Last In, First Out (LIFO)

a scheduling policy that processes tasks in the reverse order that they arrive. 
Also

called “First In, Last Out”

 Latency

The delay imposed by a computing device

 Law of large numbers

States that the average of the outcomes of a large number of experiments will  
approach the expected value

 Linear regression

A modelling technique that derives a line equation, relating a dependent data 
set to an independent data set

 Load balancing

The distribution of work to resources so that the loads are relatively equal
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 Glossary of Terms and Abbreviations

 Local Area Network (LAN)

a network intended to serve a small area

 Loosely-coupled multiprocessor

A multiprocessor where accesses to memory locations can di er, depending onff  
whether  the  memory  is  local  to  the  processor  or  remote  mean  typically 
shorthand for “arithmetic mean”

 Mean Time Between Failures (MTBF)

The amount of time a component is expected to work without a failure

 Mean Time To Repair (MTTR)

the average repair time to fix or replace a failed component and start using the 
system again

 Median

The middle value in an ordered set of values when there is an odd number of  
values, and the average of the middle two values when there is an even number 
of values

 Memory hierarchy

layers of memory devices, where lower layers have higher capacity but slower 
access times

 Memorylessness

a property of a random distribution such that the probability for an event is not 
conditional upon the existence of a previous event. A property of a process such 
that transitions to future states are not dependent upon past states, but only 
the present state

 Mode

the most frequent value in the set of values

 Model

An abstraction of a system, often simplifying the details

 Multiprocessor

A parallel computer where the processors share resources (usually memory and 
the network)

 Natural (work)load

Characteristics  are  similar  to  those  of  real  workload  and  can  be  applied 
repeatedly in a control manner, is developed and used for studies.

 Network Attached Storage (NAS)

specialized file servers that serve file system data over a network
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 Node

An element of a graph or a processor in a multiprocessor or multicomputer

 Page depth

The number of unique page views during a visit.

 Page impression

The exact number of times a specific website has been accessed or viewed by a 
user. A page impression acts as a counter for Web pages, informing site owners 
how many times their sites were visited. Page impressions are also referred to 
as hits.

 Page view 

A resource request for a file that is a Web page (e.g., .php or .html files).

 Parallel processing

The simultaneous execution of operations

 Parallelism

a synonym for “parallel processing”

 Percentile

A value in an ordered set of values below which a certain percentage of values 
fall

 Performability 

It metrics quantify the system’s ability to perform in the presence of faults. It 
combines performance and reliability to quantify the operational quality of a 
service between the occurrence of an error and its full recovery, or over the 
complete execution. (Eusgeld, Happe, Limbourg, Rohr, & Salfner, 2008)

 Performance 

It is about the amount of time that an individual transaction or piece of work 
takes to be completed.  

 Performance engineering

It: 1) develops practical strategies that help predict the level of performance 
and 2) provides recommendations to realize the optimal performance level

 Performance model

a  system’s  representation  used  for  predicting  the  values  of  performance 
measures of the system

 Pipelining

The simultaneous execution of di erent stages (or, phases) of an operationff
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 Precision

the amount of scatter in a set of measurements

 Predictive statistics

summarize  a  large  amount  of  data  using  a  small  amount  of  data,  but  this 
summary often comes in the form of an equation (also called a model)

 Probability

A  mathematical  expression  of  the  likelihood  of  an  event  of  an  experiment 
occurring on a scale of 0 to 1

 Quality of Experience

Sometimes also known as "Quality of User Experience," is a subjective measure 
of a customer's experiences with a vendor. 

 Quality of Service (QoS)

The properties of a network that contribute to the degree of satisfaction that 
users perceive, relative to the network’s performance. Four categories that are 
considered: (1) capacity or data rate, (2) latency or delay, (3) jitter,  and (4) 
tra c lossffi

 Random

The unpredictability of future behaviour. This is not non-determinism

 Random variable

a function that assigns values to the outcomes

 Range

the maximum value minus the minimum value in a set of values

 Real (work)load

Observed on a system being used for normal operations. It cannot be repeated 
as such, and therefore, is generally not suitable for use as a test workload. 

 Regression

A mathematical model derived from measured values

 Reliability

Measures of the occurrence of failures during the processing of services

 Residence

Time total time spent by a request at a resource
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 Resolution

The  smallest  incremental  change  that  can  be  detected  and  displayed  by  a 
measuring tool

 Response time 

Time from when a customer arrives to a system until the customer completes 
service and exits the system

 Rule Of Thumb (ROT)

A method of procedure based on experience and common sense

 Scalability

System's  ability  to  gracefully  increase its  capacity  in  order  to  accommodate 
future growth.  Scalability  can be measured as a ratio of  the increase in the 
system performance relative to the amount of new hardware and/or system 
software that one have added.

 Scheduling policies

Policies responsible for assigning work to be executed over time in order to 
reach  certain  objectives,  such  as  minimizing  average  response  time  or 
maximizing throughput

 Service Level Agreement (SLA)

A contract between the service provider and the customer. it sets specific goals 
for response time, throughput, etc.

 Service time 

Wall  clock  time  between the  start  of  an  event  and  the  last  byte  of  output 
retrieved (typically does not include time to render output on a display device.)

 Session

The session of activity that a user with a unique IP address spends on a website 
during a specified period of time. The number of user sessions on a site is used 
in  measuring  the  amount  of  traffic  a  website  gets.  The  site  administrator 
determines what the time frame of a user session will be (e.g., 30 minutes). If  
the visitor comes back to the site within that time period, it is still considered 
one user session because any number of visits within that 30 minutes will only 
count as one session. If the visitor returns to the site after the allotted time 
period has expired, say an hour from the initial visit, then it is counted as a 
separate user session. 

 Simple linear correlation coe cientffi

A measure of association which computes the linear relationship between one 
data set and the other
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 Simulation

A modelling technique that uses a program to represent relationships between 
modelled system components. Time is often a parameter

 Software Performance Engineering (SPE)

A process of constructing software systems that meet performance objectives

 Spatial locality

A workload characteristic of a data stream in which successive references have 
close  addresses.  Caching  has  better  performance  when  spatial  locality  is 
present

 Static model

A model where time is not a variable in the model

 Statistic

A numerical quantity (e.g., mean) calculated from data

 Statistical randomness

A property of a sequence of random numbers such that the sequence contains 
no recognizable pattern or regularities

 Statistical regularity

The characteristic of random events to converge to predictable values when an 
experiment is repeated a large number of times

 Statistics

A range of techniques for analysing data,  interpreting data, displaying data, 
and making decisions based on data

 stochastic process

A collection of random variables that are parametrized on time

 Storage Area Network (SAN)

Specialized  networks  for  storage  data  that  can  connect  multiple  hosts  to 
multiple storage devices

 Summary

Statistics group multiple descriptive statistics together to describe data more 
thoroughly

 Synthetic model 

A model that is constructed using basic components of the real workload
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 Synthetic (work)load

Workload generated by synthetic testing tools. Normally used for comparison 
of hardware.

 Systematic error

Errors in measurements that are a result of some experimental “mistake”, such 
as a change in the experimental environment of an incorrect procedure, that 
introduces a constant or slowly changing bias into the measurements

 Temporal locality

A workload characteristic of a data stream in which the references that occur 
together in some time period are likely to occur together again in future time 
periods

 Test (work)load

 Any workload used in performance studies. A test load can be real or synthetic. 

 Think time

Elapsed time between the receipt of a reply and the generation of a new request 
in a closed system

 Thrashing

Excessive page file activity due to the lack of adequate memory

 Throughput

Rate at which work is executed

 Tightly-coupled multiprocessor

A multiprocessor where accesses to all memory locations take the same amount

of time

 Time to first byte (TTFB)

The duration from the virtual user making an HTTP request to the first byte of 
the page being received by the browser. This time is made up of the socket 
connection time, the time taken to send the HTTP request and the time to take 
to get the first byte of the page.

 Time to last byte

Service time. 

 Trace-based workload

Workload  generation  based  on  the  replay  of  workload  parameters  that  are 
captured during an earlier execution of a real system
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 Traffic volume

The  number  of  bytes  transferred  by  the  Web  server.  For  example,  traffic 
volume per day is the total bytes transferred to all visitors during a 24-hour 
period.

 Topology

Specifies the connectivity of the processors or computers

 Utilization

A number between 0 and 1 showing the average fraction of the total time that a 
resource is busy

 Validation

Determining how close the results of a model are to what would be produced 
by an actual system

 Verification

Determining whether a model is implemented correctly

 Virtual Local Area Network (VLAN)

Remotely connected lans that appear to be one

 Visit

A  series  of  resource  requests  from  a  unique  visitor  who  are  temporally 
clustered. After 30 minutes of inactivity,  a page view by the same visitor is 
counted as a new visit. Visits are sometimes referred to as sessions.

 Visit duration

The  duration  of  a  visit  (i.e.,  an  amount  of  time  a  visitor  spends  browsing 
through  the  site  during  a  visit).  Visit  duration  is  also  known  as  session 
duration.

 Visitor

A unique client (IP) generating a hit or page view.

 Web

Nickname for the world wide web

 Weighted statistic

A product of the statistic for a set of values and a weight assigned to it

 Wide Area Network (WAN)

A network that covers a large area
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 Workload characterization

The process of partitioning the workload into smaller sets, where elements of 
each set are similar in some way

 World Wide Web (WWW)

A client/server architecture that integrates various types of information on the 
Internet
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