TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Jani Peltotalo

Solutions for Large-Scale Content Delivery over the
Internet Protocol

Tampereen teknillinen yliopisto. Julkaisu 925
Tampere University of Technology. Publication 925

Jani Peltotalo

Solutions for Large-Scale Content Delivery over the
Internet Protocol

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 19" of November 2010, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2010

ISBN 978-952-15-2457-8 (printed)
ISBN 978-952-15-2506-3 (PDF)
ISSN 1459-2045

ABSTRACT

The current trend is going more and more towards IP-based delivery for all kind of
digital content. At the same time, the increasing quality of the digital media is simul-
taneously increasing the size of the media, which will also increase the requirements
for the capacity in the content delivery path. It is obvious that the traditional content
delivery based on the client-server model will easily overload the delivery network
and none of the customers will be happy about the quality of the service. Hence,

more scalable solutions in the digital content distribution area are needed.

In the best-effort service, like in the IP datagram forwarding, the successful delivery
of a packet to its receivers is not guaranteed in the network layer. So, in IP-based
applications, failures in the content delivery path between the sender and receiver will
cause packet losses, which have to be dealt with in the transport or application layers.
Another reason for packet losses in a multi-sender P2P environment is a peer churn

which will cause the media being sent to a receiver to be temporarily interrupted.

This Thesis studies large-scale content delivery over the Internet Protocol, mainly at
the scalability and reliability point of view, in two separate research areas: (a) file
delivery to large user population, and (b) real-time P2P media streaming in a mobile
networking environment. Multicast-based file delivery is one of the most efficient
ways to deliver the same content to a large user population, but reliability becomes
a concern, because multicast techniques are commonly based on unreliable transport
protocols to scale up to large and massive receiver groups. As it is shown in this
Thesis, FEC data carousel will be the best way to provide reliability in most cases
when the total amount of data which is transmitted in the delivery system is used as

a critical factor.

In P2P content distribution, overlay network structure and data partitioning are very
important issues from the scalability point of view. A random mesh-based overlay

architecture provides flexibility for handling peer departures, but good general con-

ii Abstract

nectivity between peers is better achieved using for example clustered overlay archi-
tecture. In P2P delivery, a downloading client becomes a leecher peer when it has at
least one complete block, so with a small enough block size the number of alternative
source peers will increase faster. Data partitioning in P2P media streaming applica-
tions is even more demanding. Partitioning based on fixed byte ranges, like in P2P
file delivery, is not suitable for streaming a continuous media, which is of variable bit

rate nature.

In contrast to file delivery where one does not care if the data parts arrive in the
original order or not, since the viewing experience will be anyhow the same once
the file is fully downloaded, P2P media streaming applications require that all data is
received relatively close to its playback position. Good user experience is achieved by
using client side buffers to eliminate the network induced delay and jitter. With bigger
buffer size it is possible to smooth the variation between packet arrival times and
have also time for packet loss recovery. On the other hand, the smaller the buffering
time is the faster the playback can be started. The real-time P2P media streaming
system presented in this Thesis contains several important improvements to enhance
the mobile usage, like small ten seconds initial buffering time, ten seconds reception
buffer due to the RTP usage, and the partial RTP stream concept, which allow a single

media stream to be effectively received simultaneously from multiple senders.

PREFACE

The work presented in this Thesis has been carried out at the Department of Com-
munications Engineering at the Tampere University of Technology during the years
2003-2010. The research work has been funded by Nokia Research Center, TeliaSon-
era, Tekes — the Finnish Funding Agency for Technology and Innovation and Tampere
University of Technology Doctoral Programme. In addition, I have received grants
form Research and Training Foundation of TeliaSonera Finland Oyj and from Indus-
trial Research Fund at the Tampere University of Technology. All aforementioned

financial support is appreciatively acknowledged.

The work would not be possible without the help and support of many people. First
of all, I would like to express my gratitude to my supervisor Prof. Jarmo Harju for his
guidance and motivation during the research. Sincere acknowledgement goes also to
the reviewers of the Thesis, Prof. Jorg Ott and Dr. Vincent Roca, for their valuable
comments and criticism which helped me to improve the quality of the Thesis. The
research work for all publications included in this Thesis has been done in a team en-
vironment, so [want to thank all people who have worked with me in several research
projects during the years. In addition, I would like to thank all other colleagues in

our department for the very pleasant working environment.

I would also like to thank my mother and late father for the continuous support and
care. Finally, many thanks go to my dear wife Heidi for her love and support and to
our beautiful children, Peppi, Veikka and Unna, for the joy they bring to my life.

Tampere, October 2010

Jani Peltotalo

Preface

TABLE OF CONTENTS

Abstracto e i
Preface ii
Table of Contents e v
List of Publications e ix
Listof Figures o e e xi
List of Abbreviations e xiii
1. Introduction 1
1.1 Objective and Scope of Research 2

1.2 Main Contributions oo 3

1.3 Author’s Contribution 3

1.4 ThesisOutline, 7

2. Technologies for Large-Scale Content Delivery 9
2.1 Multicast and Broadcast Technologies 9
2.1.1 IPMulticast L 10

2.1.2 File Delivery over Unidirectional Transport 11

2.1.3 Real-time Transport Protocol 13

2.14 IPDatacastover DVB-H 14

2.1.5 Multimedia Broadcast Multicast Service System 15

2.2 Peer-to-Peer Technologies 16

2.2.1 Peer-to-Peer Overlay Network Structures 17

vi

Table of Contents

2.2.2 Peer-to-Peer File Sharing 18
2.2.3 Peer-to-Peer Media Streaming 20
23 Summary 23
Challenges e 25
3.1 Application Developers 25
3.1.1 Access Network Independence 26
3.1.2 Reliability 28
3.1.3 Scalability 28
32 ServiceProviders oL 29
3.2.1 Content Persistence 30
3.2.2 Content Partitioning 31
3.2.3 Digital Rights Management 32
324 Content Integrity, 33
33 EndUsers e 34
3.3.1 Service Discovery 34
3.3.2 Service Availability oL 35
3.4 Security Considerations 0. 35
3.5 Summary 37
Reliability e 39
4.1 File Delivery Applications 40
4.1.1 DataCarousel, 41
412 FECDataCarousel 42
4.1.3 Point-to-Point and Point-to-Multipoint File Repair 44
4.14 Peer-to-Peer File Repair 45
415 Summary 47

Table of Contents vii

4.2 Peer-to-Peer Media Streaming Applications 49
42.1 PacketInterleaving 50

422 Packet Retransmissions 51

423 Forward Error Correction 53

424 Summaryo e e e 55

5. Scalability 57
5.1 FLUTE Server File Format 58

5.2 Clustered Overlay Structure 60

5.3 Multiple Stream Approach oo 64
54 Summary ...l 68

6. Conclusions e 71
6.1 MainResults 72

6.2 Future Development 74
Appendix AErrata e 77
Appendix B Existing Peer-to-Peer Media Streaming Systems 79
Bibliography 81

Publications e e e 97

viii Table of Contents

LIST OF PUBLICATIONS

This Thesis consists of an introductory part and the following publications that have

been previously published. In the text, these publications are referred to as [P1], [P2],
..., [P7].

[P1]

[P2]

[P3]

[P4]

[P5]

Jani Peltotalo, Sami Peltotalo, Jarmo Harju, and Rod Walsh, “Performance
analysis of a file delivery system based on the FLUTE protocol,” in Inter-
national Journal of Communication Systems, Volume 20, Issue 6, October 5
2006, pp. 633-659. doi:10.1002/dac.835

Jani Peltotalo, Sami Peltotalo, Alex Jantunen, Lassi Vddtdmoinen, Jarmo
Harju, Rami Lehtonen, and Rod Walsh, “A Massively Scalable Persistent
Content Distribution System,” in Proceedings of the Sixth IASTED Interna-
tional Conference on Communications, Internet, and Information Technol-
ogy (CIIT 2007), Banff, Alberta, Canada, July 2—4 2007, pp. 255-261.

Jani Peltotalo, Jarmo Harju, Alex Jantunen, Marko Saukko, Lassi Viiti-
mdinen, Igor D. D. Curcio, Imed Bouazizi, and Miska M. Hannuksela, “Peer-
to-Peer Streaming Technology Survey,” in Proceedings of the Seventh In-
ternational Conference on Networking (ICN 2008), Cancun, Mexico, April
13—-18 2008, pp. 342-350. doi:10.1109/ICN.2008.86

Jani Peltotalo, Jarmo Harju, Marko Saukko, Lassi Vaatdimoinen, Igor D. D.
Curcio, and Imed Bouazizi, “Personal Mobile Broadcasting based on the
3GPP MBMS System,” in Proceedings of the 6th International Conference
on Advances in Mobile Computing & Multimedia (MoMM?2008), Linz, Aus-
tria, November 24-26 2008, pp. 156-162. doi:10.1145/1497185.1497219

Jani Peltotalo, Jarmo Harju, and Miska M. Hannuksela, “Reliable, Server-
Friendly and Bandwidth-Efficient File Delivery System using FLUTE Server

List of Publications

[P6]

[P7]

File Format,” in Proceedings of the IEEE International Symposium on Broad-
band Multimedia Systems and Broadcasting 2009 (BMSB2009), Bilbao,
Spain, May 13-15 2009, pp. 1-6. doi:10.1109/ISBMSB.2009.5133753

Jani Peltotalo, Jarmo Harju, Lassi Védidtdmoinen, Igor D. D. Curcio, and Imed
Bouazizi, “RTSP-based Mobile Peer-to-Peer Streaming System,” in Interna-
tional Journal of Digital Multimedia Broadcasting, Volume 2010, Article ID
470813, 15 pages, 2010. doi:10.1155/2010/470813

Jani Peltotalo, Jarmo Harju, Lassi Vadtimoinen, Igor D. D. Curcio, Imed
Bouazizi, and Joep van Gassel, “Scalable Packet Loss Recovery for Mobile
P2P Streaming,” in Proceedings of the Eighth International Conference on
Wired/Wireless Internet Communications (WWIC 2010), LNCS 6074, Lulea,
Sweden, June 1-3 2010, pp. 107-120. doi:10.1007/978-3-642-13315-2_9

LIST OF FIGURES

An example IP multicast delivery network 10
FLUTE BB structure 11
Buildingupa FLUTE packet 12

Simplified protocol stack for content delivery in IPDC over DVB-H 15

Simplified protocol stack for the MBMS user services 16
Tree-based P2P overlay network 18
Mesh-based P2P overlay network 19
The file downloading process with BitTorrent 20
Block alignment problem L. 31
Static data carousel with three files described by one FDT Instance . 41
Example of a Reed-Solomon FECcode 43
PTP and PTM file repair procedure after FLUTE session 44
P2P file repair procedure using BitTorrent 46
Sending interleaved packet stream 50
Scalable packet loss recovery based on RTCP and RTSP 52
An example media container file 59
Example architecture of a CBT overlay network 61
Example overlay architecture for P2P media streaming service . . . 62
Tree-based P2P overlay network with multiple streams 65

RTP stream partitioning 66

Xii

List of Figures

21

Partial RTP stream delivery

LIST OF ABBREVIATIONS

3GPP Third Generation Partnership Project
ADSL Asymmetric Digital Subscriber Line
ALC Asynchronous Layered Coding
ALM Application Layer Multicast

ARQ Automatic Repeat Request

ASM Any-Source Multicast

AVC Advanced Video Coding

BB Building Block

BCL Backup Cluster Leader

BM-SC Broadcast Multicast Service Centre
CBT Clustered BitTorrent

CC Congestion Control

CDN Content Delivery Network

CL Cluster Leader

CSRC Contributing Source

DCCP Datagram Congestion Control Protocol
DNS Domain Name System

DoS Denial of Service

Xiv List of Abbreviations

DRM Digital Rights Management

DVB Digital Video Broadcasting

DVB-H DVB - Handheld

DVD Digital Versatile Disc

EDGE Enhanced Data rates for GSM Evolution
ESI Encoding Symbol Identifier

ESP Encapsulating Security Payload

FD File Delivery

FDT File Delivery Table

FEC Forward Error Correction

FICIX Finnish Communication and Internet Exchange association
FLUTE File Delivery over Unidirectional Transport
HSDPA High Speed Downlink Packet Access
HSUPA High Speed Uplink Packet Access
HTTP Hypertext Transfer Protocol

HTTPS HTTP over TLS

IGMP Internet Group Management Protocol
IETF Internet Engineering Task Force

1P Internet Protocol

IPDC IP Datacasting

IPTV IP Television

IPv4 IP version 4

IPv6

IP version 6

XV

ISO

ISP

LAN

LCT

LDPC

MAD-FCL

MBMS

MD5

MDC

MPEG

MP4

MP3

MTU

NACK

NAT

OSI

p2p

PGP

PI

PKI

PPSP

PTM

PTP

International Organization for Standardization
Internet Service Provider

Local Area Network

Layered Coding Transport

Low Density Parity Check
MAD FileCasting Library
Multimedia Broadcast Multicast Service
Message Digest 5

Multiple Description Coding
Moving Picture Experts Group
MPEG-4 Part 14

MPEG-1 Audio Layer 3
Maximum Transmission Unit
Negative Acknowledgement
Network Address Translation
Open System Interconnection
Peer-to-Peer

Pretty Good Privacy

Protocol Instantiation

Public Key Infrastructure
Peer-to-Peer Streaming Protocol
Point-to-Multipoint

Point-to-Point

XVi List of Abbreviations

QoE Quality of Experience

QoS Quality of Service

RMT Reliable Multicast Transport

RTP Real-time Transport Protocol
RTCP RTP Control Protocol

RTSP Real Time Streaming Protocol
RTT Round Trip Time

SAP Session Announcement Protocol
SBN Source Block Number

SDP Session Description Protocol

SDS Session Discovery Server

SHA-1 Secure Hash Algorithm 1

SRTP Secure RTP

SSM Source-Specific Multicast

SvC Scalable Video Coding

STUN Session Traversal Utilities for NAT
TCP Transmission Control Protocol
TOI Transport Object Identifier

TSI Transport Session Identifier
TURN Traversal Using Relays around NAT
UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

URI Uniform Resource Identifier

XVii

URL

VoD

VoIP

VPN

WEBRC

WLAN

WWWwW

Uniform Resource Locator
Video-on-Demand

Voice over IP

Virtual Private Network

Wave and Equation Based Rate Control
Wireless LAN

World Wide Web

XViii List of Abbreviations

1. INTRODUCTION

As the amount of media delivered in the Internet Protocol (IP) [104] based networks
seems to be ever-growing and the speeds of end-users’ access network connections
are getting faster day by day, the core network capacity continues to be a scarce
resource. Proxy servers [66, pp. 112-116] and Content Delivery Networks (CDNs)
[21], such as Akamai [11], have been widely utilized to reduce the response time
for a client request and the amount of data delivered in the core network when the
client-server model is used in the content delivery. However, due to the client-server
model a particular proxy server or CDN server might also become the bottleneck,
like the original server without proxy server or CDN usage, if a massive number of
clients located in the same area are requesting the content simultaneously, and most
of those are using the same proxy server or are directed to the same CDN server.
Coupled with the problems related to security, heterogeneity of the networks and
rights management issues advanced solutions in the digital content distribution space

are needed.

IP multicast was designed globally accessible, but the stateful method for routing
packets between operators was considered too resource consuming and therefore
global IP multicast distribution has not been much deployed. IP Television (IPTV)
deployments within operators, like [85], [122], and [33] in Finland, have been one of
the major IP multicast deployments so far and in those cases IP multicast has been
enabled only internally and even just for the IPTV service usage. Those IP multi-
cast enabled isolated networks are coming commonly available and can be also used
for other than IPTV service. However, it is evident that IP multicast is not solution
to all problems that exist in the large-scale content delivery. Nor does Peer-to-Peer
(P2P) alone solve the distribution problem. Of course the bottleneck is no more in
single links close to media sources, but is distributed more evenly in the network.
Therefore, there is still demand for one-to-many delivery for static media files that

can be distributed to multiple receivers at the same time. Thus, IP multicast has

2 1. Introduction

great advantages for delivery with controlled last-mile elements, both for mobile and
fixed usage. However, content persistence while the number of still-receiving users

dwindle is better served by P2P techniques.

At the moment, P2P media streaming is securing its position among users. Although
the improvements compared with a traditional unicast media transfer are great and
will help small organizations to build, for example Internet radio service to a large
audience rather easily, people are probably unaware of the opportunities. For the av-
erage user, YouTube [139] allows easy to access and easy to use services in order
to spread user generated content and to share experiences in a community like envi-
ronment. Nevertheless, if the intention is a professional broadcasting of high-quality
content over the Internet to a large-scale audience, then P2P media streaming is a

much better choice.

1.1 Objective and Scope of Research

The objective of this Thesis is to create enabling tools for content providers, service
providers, network operators and end users to help the distribution and use of all kind
of digital content. The target is to show that by combining different technologies
it is possible to provide scalable and reliable file delivery to a massive user popula-
tion. Additionally, this Thesis focuses on real-time P2P media streaming in a mobile
networking environment. The increasing use of mobile devices in our daily life will
also create demand for the new types of services in the mobile domain. Some of
the currently existing P2P media streaming applications, such as Octoshape [92] and
SopCast [123], are somehow suitable for being used in a mobile networking environ-
ment but still more tailored applications where the whole concept is designed with a

mobile environment philosophy are needed to gain support from mobile users.

The scope of this Thesis is large-scale content delivery over the Internet Protocol.
Basically this Thesis combines prototype solutions for multicast-based reliable file
delivery system and P2P-based real-time media streaming system. This Thesis is
mainly focusing on the challenges and solutions in large-scale content delivery and

is targeting people with information and communication technology backgrounds.

1.2. Main Contributions 3

1.2 Main Contributions

To summarize, the main contributions of the Thesis are:

e Implementation and performance analyses of a reliable, server-friendly and

bandwidth-efficient file delivery system

e A brief survey on the P2P media streaming field and a closer look at selected

applications

e Implementation and performance analyses of a large-scale real-time P2P media

streaming system for a mobile networking environment

e The specification of a personal mobile broadcasting system as an extension to
the currently existing Third Generation Partnership Project (3GPP)! Multime-
dia Broadcast Multicast Service (MBMS) system

1.3 Author’s Contribution

The research work for all publications included in this Thesis has been done in a
team environment where all of the authors have contributed to the work. The first
author of the publication is however identified as a main contributor. The author of
this Thesis has been the main contributor in all of the included publications. As a part
of the research work, the author of this Thesis has also contributed to standardization
activities in the Internet Engineering Task Force (IETF)?, in the 3GPP and in the
Moving Picture Experts Group (MPEG)?.

Publications can be divided into two main groups. Publications [P1], [P2], and [P5]
propose components for a reliable large-scale file delivery system. Publications [P3],
[P6], and [P7] deal with a P2P media streaming in a mobile networking environment.
Publication [P4] is a little side track, by proposing personal mobile broadcasting still

utilizing the same content delivery protocols as used in the other publications.

U http://www.3gpp.org/
2 http://www.ietf.org/
3 http://mpeg.chiariglione.org/

4 1. Introduction

Publication [P1] presents the results of performance tests carried out for a file delivery
system based on the File Delivery over Unidirectional Transport (FLUTE) [97, 98]
protocol. The publication shows how FLUTE manages to recover from packet losses
using Forward Error Correction (FEC) and repeat transmissions in a data carousel,
and a simple Point-to-Point (PTP) file repair scheme based on the Hypertext Transfer
Protocol (HTTP) [38]. The results show that careful optimisation of FEC overhead,
and the number of repeat transmissions, gives the best system performance in most
cases. Based on the simplified error reception and distribution model, it is mathemat-
ically illustrated that the simple client-server PTP file repair is optimal only for small

groups.

The author has been the main contributor for the MAD FileCasting Library (MAD-
FCL) library [83] used in the performance tests. The initial version of the publication
was written together with M.Sc. Sami Peltotalo, and all modifications after the peer
review were done by the author. M.Eng Rod Walsh revised the text in the final phase
and provided some additional input to the publication. Prof. Jarmo Harju improved

the writing style.

Publication [P2] proposes a large-scale content distribution system based on IP mul-
ticast and P2P delivery technique, with a need for timely and reliable delivery, and
content persistence. The strengths of both IP multicast and P2P overlay have been
leveraged to simultaneously scale server and distribution network capacities to serv-

ing a greater number of receiving hosts for mass media content.

The author provided necessary changes for the MAD-FCL library together with M.Sc.
Sami Peltotalo as a continuation for the implementation work done for [P1]. The
client side of the Delco content delivery system [30] was implemented by Mr. Alex
Jantunen, and the server side by Mr. Lassi Viitimoinen. The text was mainly written
by the author, but all other authors provided also some input to the publication. M.Sc.
Rami Lehtonen, M.Eng Rod Walsh and Prof. Jarmo Harju contributed to the system

designing and revised the text.

Publication [P3] gives a brief survey on the P2P media streaming field and takes also
a closer look at selected applications. In practice, selected P2P media streaming
systems, Octoshape, SopCast, TVAnts [127] and TVU networks [128], are analysed
and tested over different leased line and mobile network connections. Experimental

tests showed that all applications are somehow suitable for mobile usage with high-

1.3. Author’s Contribution 5

throughput mobile networks, but still it is clear that they are designed to be used with

leased line connections.

Performance measurements for the publication were done by the author and Mr.
Marko Saukko. The text was mainly written by the author. Some parts of the publica-
tion contain rewritten text provided by M.Sc. Alex Jantunen, Mr. Lassi Vadtdimoinen
and Mr. Marko Saukko. Dr. Imed Boazizi, M.Sc. Igor D.D. Curcio, and M.Sc. Miska
M. Hannuksela provided some preliminary material about the studied systems. M.Sc.
Igor D.D. Curcio and Prof. Jarmo Harju revised the text and improved the writing
style.

Publication [P4] presents a personal mobile broadcasting system as an extension to
the currently existing 3GPP MBMS system. A new user-level interface between the
Broadcast Multicast Service Centre (BM-SC) and the personal mobile broadcaster
is proposed to provide the enablers for announcing, setting up and tearing down a
personal mobile broadcast session and delivering media data to the MBMS user pop-
ulation. In addition some new functionality, to be able to restrict the delivery only to
a subset of the MBMS user population, are proposed in the publication.

The text was written by the author based on preliminary material provided by M.Sc.
Lassi Véitimoinen and Mr. Marko Saukko. Dr. Imed Boazizi and M.Sc. Igor D.D.
Curcio gave guidance during the system designing phase. Prof. Jarmo Harju revised

the text and improved the writing style.

Publication [P5] presents a reliable, server-friendly and bandwidth-efficient file de-
livery system using the FLUTE server file format. As is shown in [P1], the use of
FEC is a good option to improve the reliability from the viewpoints of receivers and
the file delivery system. However, the load of the file delivery server might increase
if the FEC encoding is done on-the-fly. The FLUTE server file format enables stor-
age of pre-composed source symbols and pre-calculated FEC symbols into a media
container file, so there is no need to source symbol construction and FEC encoding

on-the-fly.

The author implemented needed modifications to the MAD-FCL library and to the
proprietary Raptor FEC [76] and MPEG-4 Part 14 (MP4) file format [53] libraries,
and carried out the performance measurements. The publication was mainly written
by the author of this Thesis. M.Sc. Miska M. Hannuksela provided some preliminary

text and revised the text. Prof. Jarmo Harju improved the writing style.

6 1. Introduction

Publication [P6] proposes an effective real-time P2P media streaming system for the
mobile networking environment as an alternative solution to traditional streaming
applications based on the client-server approach. A scalable overlay network which
groups peers into clusters according to their proximity is created and maintained
using extended Real Time Streaming Protocol (RTSP) [117] messages by the cluster
leaders with the help of a service discovery server. Furthermore, the actual media
delivery is implemented using a partial RTP stream concept. Real-time Transport
Protocol (RTP) [116] sessions are split into a number of partial streams in such a way
that it allows re-assembling the original media session in real-time at the receiving
end. Partial streams also help in utilizing the upload capacity with finer granularity
than just per one original stream. This is beneficial in mobile environments where

bandwidth can be scarce.

The author has been member of the implementation team together with M.Sc. Lassi
Viaitamoinen, M.Sc. Alex Jantunen, M.Sc. Joep van Gassel, and Mr. Marko Saukko.
The text has been written by the author based on discussions and preliminary material
provided by the whole implementation team. Experimental tests presented in the
publication have been conducted by the author and M.Sc. Lassi Viditdmoinen. Dr.
Imed Boazizi, M.Sc. Igor D.D. Curcio, and Prof. Jarmo Harju have been involved in
the system designing and revised the text.

Publication [P7] presents a scalable two-stage packet loss recovery mechanism for
a real-time P2P media streaming system using RTP Control Protocol (RTCP) [116]
and RTSP. This publication is a direct continuation for [P6] to ensure seamless media
playback, if some data packets are lost due to the sudden uncontrolled disappearance
of a sender. Scalability is necessary to prevent the ripple through effect of retransmis-
sion requests and redundant retransmissions in case many peers start simultaneously

requesting lost packets due to a single cause, like a failing or departed peer.

The author identified problems relating to RTCP-based packet loss recovery in a P2P
environment. Scalable two-stage packet loss recovery mechanism is designed based
on discussions in our project meetings. The author implemented the currently exist-
ing packet loss recovery mechanism and conducted experimental tests for the publica-
tion. The text is mainly written by the author based on preliminary material produced
in the designing phase. M.Sc. Igor D.D. Curcio, and Prof. Jarmo Harju revised the

text and improved the writing style.

1.4. Thesis Outline 7

1.4 Thesis Outline

This Thesis consists of an introductory part and seven publications [P1-P7]. The
introductory part gives technical background information and describes what kind
of challenges exist in a large-scale content delivery. Several ways how to enhance
scalability and guarantee reliability are also highlighted in the introductory part. The

main results are presented in the publications.

The rest of the introductory part is organized as follows. Chapter 2 introduces tech-
nologies that can be used in a large-scale content delivery over the IP. The chapter
is divided into two part; first multicast and broadcast technologies are briefly cov-
ered, followed by an introduction to the P2P technologies. Chapter 3 focuses on the
challenges when designing a large-scale content delivery system. The chapter cov-
ers issues relating to problems and obstacles for an application developer, service
provider and end user which have to be taken into account in order to gain massive

public support for the content delivery system.

Chapter 4 introduces methods how to provide reliability in a large-scale content de-
livery. The chapter is divided into two parts; first methods for guaranteeing the reli-
ability in multicast-based file delivery applications are presented, followed by ways
to ensure good user experience in P2P media streaming. Chapter 5 concentrates on
the ways how to enhance system wide scalability in multicast-based file delivery ap-
plications and P2P media streaming applications. Finally, Chapter 6 concludes the
Thesis.

1. Introduction

2. TECHNOLOGIES FOR LARGE-SCALE CONTENT DELIVERY

In the Internet, IP is the protocol on which all digital contents are transmitted. Since
IP is connectionless, it can be used in the unidirectional broadcast networks as well.
Examples of a unidirectional system are MBMS system specified by the 3GPP and
IP Datacast (IPDC) service! for Digital Video Broadcasting — Handheld (DVB-H)
devices?. Considering Internet and unidirectional broadcast networks, IP acts as a

unifying layer, giving possibilities for the combined use of these technologies.

Next, several key technologies, specified by the IETF, 3GPP, DVB project® and in-
dividual researchers, that can be used in a large-scale content delivery are briefly

introduced.

2.1 Multicast and Broadcast Technologies

Multicast and broadcast are the most efficient ways to deliver the same content to a
large user population. When serving multiple users with the same data using unicast
delivery, the data is replicated at the server end separately for each user. This means
that the same data packet is forwarded multiple times on each link depending on the
amount of users behind that link. With a multicast and broadcast delivery, the amount
of data delivered within the network can be remarkably reduced in comparison with
the unicast delivery, since the same data packet is forwarded only once on each link
for all users behind that link.

! http://www.ipdc-forum.org/
2 http://www.dvb-h.org/
3 http://www.dvb.org/

10 2. Technologies for Large-Scale Content Delivery

Fig. 1. An example IP multicast delivery network

2.1.1 IP Multicast

When using IP multicast, an IP datagram does not need to be replicated at the server
end, but the same datagram is delivered for each receiver with a minimum amount of
replication. This is achieved by using Point-to-Multipoint (PTM) delivery illustrated
in Fig. 1. The receivers must join the multicast group using Internet Group Manage-
ment Protocol (IGMP) [22] in order to receive the data delivered by the media server.
The network infrastructure must also support multicast delivery to make it possible
to forward the data stream to the receivers. If some of the routers do not support
multicast delivery, like router R4 in Fig. 1, the receivers located in the sub-network

behind the router are not capable of receiving the data, even if desired.

There are two kinds of multicast service models. In Any-Source Multicast (ASM)
[29], a receiver simply joins the multicast group and does not need to know the iden-
tity of the source(s). So, any host or router, whether or not belonging to the multicast
group, may transmit data to all receivers belonging to that group. That is, an ASM

multicast group may have an arbitrary number of transmitters delivering data to that

2.1. Multicast and Broadcast Technologies 11

FLUTE

ALC

LCT CcC FEC

Fig. 2. FLUTE BB structure

group, hence the name any-source. Source-Specific Multicast (SSM) [47] modifies
the ASM service model such that in addition to knowing the multicast group address,
a receiver must also know relevant source(s). More information about IP multicast
can be found in [134] and [32].

2.1.2 File Delivery over Unidirectional Transport

FLUTE is a protocol used to deliver files over IP networks, including the Internet and
unidirectional systems, from a sender to one or more receivers. FLUTE can be used
with both multicast and unicast User Datagram Protocol (UDP) [103] delivery, but it

is particularly valuable in multicast networks.

FLUTE builds on the Asynchronous Layered Coding (ALC) Protocol Instantiation
(PI) [80] of the Layered Coding Transport (LCT) Building Block (BB) [79]. LCT
provides transport level support for reliable content delivery and stream delivery pro-
tocols. ALC combines the LCT BB, an optional Congestion Control (CC) BB (for
example Wave and Equation Based Rate Control (WEBRC) Building Block [75]) and
a FEC BB [133] to provide congestion controlled reliable asynchronous delivery. See
Fig. 2 for an illustration of the FLUTE BB structure. This modular approach, taken
by the Reliable Multicast Transport (RMT) IETF working group?, allows to reuse
existing components in different contexts and to enable or disable features according
to the need. ALC PI is for example originally designed for the delivery of arbitrary
binary objects and this service is used to deliver files with FLUTE.

LCT defines the notion of LCT channels to allow massive scalability, which has been
designed based on the receiver-driven layered multicast principle, where receivers
are responsible for implementing an appropriate CC algorithm based on the adding

and removing of layers of the delivered data. A FLUTE session consists of one or

4 http://datatracker.ietf.org/wg/rmt/charter/

12 2. Technologies for Large-Scale Content Delivery

source
symbols
010101010101 101010
101010101010
010101010101 010101
101010101010 101010101010
010101010101
101010101010
. 010101 Header| 010101
111111000000
000000111111 000000111111 101010 FLUTE
110011001100 " packet
001100110011 110011001100
001100110011 | 10111o|
tr22§epcc:n source FEC
d blocks symbols

Fig. 3. Building up a FLUTE packet

more LCT channels identified by the combination of the sender (using the sender’s
IP address and a Transport Session Identifier (TS]) it assigns) and the multicast group
(the IP multicast destination address).

Great flexibility is given to the FLUTE sender with regard to how the data is parti-
tioned among the LCT channels. A common use case is to send the same content
on all different LCT channels but encoded at different bit rates. Additionally, the
FLUTE sender may act intelligently to enable receivers to acquire all files of the
FLUTE session by joining all channels for a shorter time than is normally required
with one channel. In such a case, the data sent over each channel complements the

data of other channels.

The default FEC scheme for the FLUTE protocol is Compact No-Code FEC scheme
[132], which provides file partitioning mechanism, i.e., how the file is divided into
source blocks and source symbols, but does not produce FEC symbols, and so en-
coding symbols are all source symbols. However, when using, for example, Reed-
Solomon FEC [68] or Raptor FEC schemes, FEC symbols are calculated and included

in the encoding symbols.

Fig. 3 shows how a file is partitioned into FLUTE packets. The file is a transport ob-
ject for the FLUTE protocol, and based on the file partitioning parameters of the used
FEC scheme, a FLUTE sender calculates the source block structure, i.e., the number
of source blocks and their lengths. Each source block is then fragmented into source
symbols also according to the file partitioning parameters of the used FEC scheme.
If FEC is used, then a desired number of FEC symbols are generated by the FEC

2.1. Multicast and Broadcast Technologies 13

encoder based on the source symbols. Finally, a FLUTE packet is constructed with a
FLUTE header and an encoding symbol and then it is ready for UDP/IP delivery.

The FLUTE sender communicates the metadata associated with the files delivered
in the FLUTE session to the receivers using a special object, named File Delivery
Table (FDT) instance. An FDT instance will be delivered with a dedicated Transport
Object Identifier (TOI) value 0 and it describes various attributes, including those
used in the file partitioning and thus the FLUTE receivers are able to calculate the
source block structure in advance of receiving a file. An example FDT instance is

shown in Listing 1.

<?xml version="1.0" encoding="iso-8859-1"7?>
<FDT-Instance Expires="3467015421">
<File TOI="1"

Content-Location="file:///flute"
Content-Length="2229112"
Content-MD5="bv0kXK1M300QtLgtggAAOw=="
FEC-OTI-FEC-Encoding—-ID="0"
FEC-OTI-Maximum-Source-Block—-Length="64"
FEC-OTI-Encoding-Symbol-Length="1428"/>

</FDT-Instance>

Listing 1. An example FDT instance

In this example one file, named flute, will be delivered with TOI value 1 using Com-
pact No-Code FEC scheme (FEC Encoding ID 0). The Message Digest 5 (MDS5)
[110] checksum allows receivers to check the integrity of the file after all source
blocks are received. Other parameters (file size, maximum source block length and
encoding symbol length) will be used by the partitioning algorithm to calculate the

source block structure.

2.1.3 Real-time Transport Protocol

RTP provides end-to-end transport services for delivering real-time data over any
kind of IP network. The majority of RTP implementations are using multicast or
unicast UDP delivery, but RTP can be used also with other suitable underlying net-
work or transport protocols, such as Datagram Congestion Control Protocol (DCCP)

[65, 100]. Distribution of a real-time data simultaneously to many receivers can be

14 2. Technologies for Large-Scale Content Delivery

efficiently accomplished using PTM delivery, hence RTP is particularly valuable in

multicast and broadcast networks where native support for PTM delivery is available.

The sending side precedes each data chunk with an RTP header to comprise an RTP
packet. Information provided by the RTP header includes timestamps for jitter re-
moval and synchronous rendering, sequence numbers for packet loss detection and
concealment, and the payload format of the particular data chunk. The data transport
is augmented by a control protocol (RTCP) to monitor the Quality of Service (QoS)

and to provide minimal control and identification functionality.

In a multimedia session, each medium (such as audio, video or subtitle stream) is
typically carried in a separate RTP session with its own RTCP packets unless the
encoding itself bundles multiple media into a single stream during the encoding pro-
cess. Each RTP session uses different pairs of destination transport addresses, where
a pair of transport addresses consists of a network address plus a pair of ports for RTP
and RTCP.

Base RTP specification [116] specifies only functions that are expected to be common
across all RTP applications. Hence, a complete specification of RTP for a particular
application will require one of more companion documents. An RTP profile speci-
fication, like [95, 115], will define a set of payload type codes and their mapping to
payload formats, and an RTP payload format specification, such as [109, 115], will
define how a particular payload is to be carried within RTP.

2.1.4 IP Datacast over DVB-H

IPDC over DVB-H [35] is a service for delivering all kind of digital content on top
of IP over a unidirectional broadcast network. Because of the one-to-many broadcast
delivery in the last-mile connection, it is an efficient way to reach large user popula-
tion. An important aspect of the IPDC system is that it combines the unidirectional
DVB-H [34] broadcast network and the bi-directional cellular mobile networks into a
single overall service system. In practise this means that the DVB-H network is used
for content delivery, and the mobile network is used for interaction. More information
about DVB-H is available in [37].

Content delivery protocols for streaming and file delivery services are defined in [36].

RTP will be used for streaming services, where audio, video and subtitle streams

2.1. Multicast and Broadcast Technologies 15

Application(s)
Audio, video and
subtitle streams All kind of files Associated delivery
procedures
RTP payload formats
RTP/RTCP FLUTE HTTP
UDP TCP
P
DVB-H Point-to-point bearer

Fig. 4. Simplified protocol stack for content delivery in IPDC over DVB-H

are delivered in real-time and rendered while downloaded. FLUTE protocol will be
used for non-real-time file delivery services, where files are first downloaded before
consumption. Two associated delivery procedures are also applicable to the content
delivery: post repair of files which are initially delivered as part of a FLUTE session
and reception reporting allowing a receiver to report statistics about streaming or file
delivery services. Simplified protocol stack for content delivery in IPDC over DVB-
H is illustrated in Fig. 4.

2.1.5 Multimedia Broadcast Multicast Service System

MBMS is a PTM service where digital content is transmitted from a commercial
content provider to a large number of users. MBMS service can de divided into
two parts: MBMS bearer service [S] and MBMS user service [6]. MBMS bearer
service defines physical broadcast and multicast channels with corresponding control
signalling, and methods for the IP data delivery. MBMS user services are built over
the MBMS bearer service and currently two different delivery methods, streaming

and download, are defined.

Similar to the IPDC over DVB-H, RTP is used as a transport protocol for the stream-
ing delivery method and FLUTE for the download delivery method. MBMS defines
also the same two associated delivery procedures like IPDC over DVB-H, i.e., post
repair of files and reception reporting. Simplified protocol stack for the MBMS user
services is illustrated in Fig. 5. As it can be seen from Figs. 4 and 5, content delivery

protocols are harmonized in the latest IPDC over DVB-H and MBMS specifications.

16 2. Technologies for Large-Scale Content Delivery

Application(s)
Audio, video and
subtitle streams All kind of files Associated delivery
procedures
RTP payload formats
RTP/RTCP
FLUTE HTTP
FEC (optional)
UDP TCP
P
MBMS bearer Point-to-point bearer

Fig. 5. Simplified protocol stack for the MBMS user services

The main difference is an optional FEC usage in the streaming delivery method in
the latter one. Another observation from the figures is that both IPDC over DVB-H
and MBMS rely heavily on the outcomes of the IETF working groups.

Almost identical protocol stacks allow service providers to utilize both technologies
in the same service quite easily. This also increases the amount of possible users
since the combined coverage area is usually bigger than individual coverage area.
More information about content networking in the mobile Internet can be retrieved
from [31, pp. 327-370], where also MBMS and IPDC systems are explained in detail.

2.2 Peer-to-Peer Technologies

In a P2P network each participant, a peer, shares some of its resources and can use
resources offered by the other peers for its own purposes. Therefore, a single peer
acts as a server and a client simultaneously. P2P networks can be classified in many
ways. Usually, the classification is done based on the use case and P2P networks
are divided into six distinct categories: file sharing, instant messaging, Voice over IP

(VoIP) [41], storage networks, distributed computing, and media streaming.

Before being able to transfer any data in a P2P network, a peer must first some-
how join the overlay network, and the means to do that vary between different P2P
networks and protocols. Actual data delivery in a P2P network uses Application

Layer Multicast (ALM) principle [48], where IP datagrams are replicated at the end

2.2. Peer-to-Peer Technologies 17

hosts, compared with native multicast delivery where IP datagrams are replicated at
the routers. Since identical packets might be sent over the same link, depending on
the overlay network structure, ALM is less efficient in comparison with the native
multicast protocols. In contrast there is no need to change routers, so the network

infrastructure does not restrict the service availability.

Although P2P techniques do not directly reduce the overall network load in compar-
ison with the traditional client-server approach, the network load is distributed more
evenly to the whole network. This leads to single links near to the media source being
less congested and decreases also the total distribution time [66, pp. 147-151] since
all peers are also redistributors as well as consumers of the data. More high-level
information, like the definition of a P2P system, functions in a P2P system and tax-
onomies for P2P system can be fetch from [24]. The first textbook-like survey [125]
provides also an up-to-date and in-depth introduction to the P2P field.

2.2.1 Peer-to-Peer Overlay Network Structures

A P2P network is actually an overlay network built on top of an existing network
infrastructure. This means that the logical connections between peers are formed at
a higher level than the network level typically using Transmission Control Protocol
(TCP) [105]. In the overlay network the connections can be described as tunnels on

the top of existing network topology that do not care about the underlying path.

Fig. 6 presents a tree layout for a P2P overlay network. Each peer in the network,
except the data source, is connected to a parent node and several child nodes. In a
tree-based overlay network a single point of failure type of problem exists. If any of
the parent nodes happen to fail, the whole network originating from the failed parent
node fails to receive the data. Even though tree is a very simple structure, it must
have some maintenance functionalities, because peers are coming and going once in
a while. Assume that Peer 3 leaves, which simultaneously interrupts the data transfer
that was going to its descendent, i.e., to Peer 8, Peer 9, Peer 13 and Peer 14. The
replacement for a missing data source must be found as fast as possible to prevent
peers experiencing long interrupts in the data delivery. This is done by different

search algorithms depending on the implementation.

The single point of failure issues can be avoided, or at least reduced in a combined

tree-mesh or a mesh layout network. Fig. 7 illustrates mesh layout for a P2P over-

18 2. Technologies for Large-Scale Content Delivery

Peer 1

07 ' Qy
T @@
L

Peer 11
Peer 15
Q = Peer 6 Q
Peer 12 Sy
Source Peer2 g .
Peer 7 (Peer 16
@ Peer 13
Q < >E 0
Qs Peer 8
Peer 3 <
Peer 14

Peer 9

Fig. 6. Tree-based P2P overlay network

lay network where each peer is connected to more than one other peers. When a peer
leaves the network, it only affects those peers that are connected to it. However, mesh
layout requires more complicated routing algorithms or request mechanisms between
peers due to the increased number of peer connections. A mesh-based overlay net-
work is more commonly used in P2P file sharing than in P2P media streaming when

real-time demands are not so important.

2.2.2 Peer-to-Peer File Sharing

Most of the P2P file sharing applications make use of multiple sources for informa-
tion distribution. A file is first partitioned into pieces or chunks, typically of equal
size. A peer then connects to the seeder or leecher peers and requests the missing
pieces of the file in a random order. The difference between a seeder and a leecher
peer is that the former has a complete copy of the file while the latter has only a

partial copy and is sharing already downloaded pieces with the other peers while

2.2. Peer-to-Peer Technologies 19

Fig. 7. Mesh-based P2P overlay network

downloading missing pieces at the same time.

At the time of writing this Thesis, one P2P file sharing network, BitTorrent [27] has
almost gained de facto standard status when speaking about P2P file sharing. The
BitTorrent overlay network consists of a tracker and seeder and leecher peers. Before
a peer can join the overlay network a .torrent file must be first fetched somewhere,
usually from some World Wide Web (WWW) server, and if the .torrent file is not
available, all new downloads will be blocked. Search functionality is not part of
the BitTorrent protocol, but often WWW servers with downloadable .torrent files are

thought to be part of the BitTorrent system.

The file downloading process with BitTorrent is depicted in Fig. 8. The .torrent file
retrieved in phase 1 contains a Uniform Resource Locator (URL) [19] of the tracker
for the file sharing session in question. When a connection request from a peer is

received, the tracker responds with a random list of other peers (phase 2), and these

20 2. Technologies for Large-Scale Content Delivery

Www
server

1. Get .torrent

2. Get peer list &
4. DL status info

Tracker

Fig. 8. The file downloading process with BitTorrent

randomly selected peers among all peers in the network might create a long delay to
the file sharing between two peers. Peers request file pieces (phase 3) from several
peers according to a rarest-first piece selection algorithm and after each file piece is
correctly received a download status update message is sent to the tracker (phase 4).
More information about the BitTorrent protocol can be found in [26]. BitTorrent has
proven its strength for deploying large-scale P2P file delivery [59, 106], but there are

still scalability issues with the original approach.

2.2.3 Peer-to-Peer Media Streaming

P2P media streaming is a method for multicasting or broadcasting streaming media
over the Internet using a P2P network. It can be seen as a combination of tradi-
tional television or radio broadcast type of media delivery over a new kind of deliv-
ery medium. With real-time P2P media streaming there is no need to download the
entire media file before playback can be started; decoding can be started as soon as
enough data is buffered in the peer. The length of the buffering time depends on the

amount of peers attending in the network, as well as the peers’ network capacity and

2.2. Peer-to-Peer Technologies 21

the overall network latency. Also, both the software used for receiving and rendering
the stream and the stream encoding format have an influence on the duration of the
buffering time. In the live streaming, the video of an ongoing event, like a football
match, is delivered as a stream in real-time. After an initial buffering period, me-
dia rendering is started from a certain location and all peers consume the data in the
same time window. With a Video-on-Demand (VoD) streaming the user searches for
a video from some catalogue, and after a certain amount of initial buffering playback

is started from the beginning of the video.

P2P media streaming systems can be either push-based or pull-based [74, 141]. In
a push-based system, a peer sends the data to other peers without explicit request
after it has received the data. One of the problems with this approach is that the
packet forwarding decision must be based on a predetermined routing algorithm,
which makes the system somewhat inflexible. Loss recovery is also a big problem
with push-based system. There is no request for the data and it is not possible to
request retransmission of the missing data. Third problem is the amount of duplicate
data because peers just forward the data based on the predetermined routing algorithm
and this may lead to a situation that one or more peers will be sending the same

packets to a common destination peer.

All aforementioned problems are solved in a pull-based system where a peer wishing
to receive a packet from other peer must request it prior to receiving. An obvious
weakness with the pull-based system is the issue of dealing with free-riders [63, 86].
A free-riding peer is only requesting and receiving packets from other peers, without
uploading anything to others. It is obvious that this affects the performance of the
network, because free-riders do not send requested packets to other peers. Another
possible weak point in the pull-based system is the packet request overhead. If there
are lots of free-riders in the system or overlay network failures are very common, it

is possible that multiple peers are requesting the same packet multiple times.

A P2P media streaming solution based on the BitTorrent protocol is proposed in
[120]. The rarest-first chunk downloading policy is replaced by a policy where peers
first download chunks that will be consumed in the near future. This is done by
introducing a sliding window and preventing peers from requesting chunks located
outside their current window. The tit-for-tat peer selection policy is also modified
to allow free tries to a larger number of peers to let peers participate sooner in the

media distribution. Another P2P media streaming system based on a P2P file sharing

22 2. Technologies for Large-Scale Content Delivery

implementation has been proposed already in [60]. This receiver-driven P2P media
streaming system was built on top of the Gnutella protocol and according to the au-
thors the system was first prototype implementation with multi-sender bandwidth ag-
gregation, adaptive buffer control, peer failure detection and streaming quality main-

tenance functionalities.

However, the data partitioning based on fixed byte ranges is not suitable for stream-
ing a continuous media, which is of variable bit rate nature. A dedicated application
is admittedly a better choice for P2P media streaming purposes. The list of exist-
ing P2P media streaming systems which were active in September 2010 is available
in Appendix B. Good overview and measurement study for one pull-based system,
PPLive [107], is available in [46]. Even though some solutions have proven their
functionality with wired connections, those might not be suitable for the mobile net-

working environment.

An RTSP-based mobile P2P media streaming system where original RTP sessions
related to a media delivery are split into a number of so-called partial streams, ac-
cording to a predefined set of parameters, is proposed in [P6]. Proposed approach
allows low-complexity re-assembly of the original media session in real-time at the
receiving end. Partial streams also help in utilizing the upload capacity with finer
granularity than just per one original stream, which is beneficial in mobile environ-

ments where bandwidth can be scarce.

At the time of writing this Thesis, standardization work in the P2P media stream-
ing field has been also started. The Peer-to-Peer Streaming Protocol (PPSP)° IETF
working group will design a protocol for signalling and control between trackers and
peers, and a signalling and control protocol for communication among the peers. The
former will handle the initial and periodic exchange of meta information between
trackers and peers and the latter will control the advertising and exchange of media
data availability between the peers. It will be interesting to see is this working group
able to create a specification which will be widely used in the P2P media streaming
applications in the near future.

3 http://datatracker.ietf.org/wg/ppsp/charter/

2.3. Summary 23

2.3 Summary

In this chapter basic technologies for a large-scale content delivery over the Internet
Protocol are briefly presented. The chapter focuses on two approaches which can
be used to enhance traditional PTP-based content delivery. Firstly, multicast and
broadcast technologies that are efficient ways to deliver the same content to a large
user population when native support for PTM delivery is available in the network
are briefly covered. Second part of the chapter contains an introduction to the P2P
technologies for PTM services using an overlay network built on top of an existing

network infrastructure.

In spite of the obvious benefits, IP multicast has not yet been widely utilized. While
the multicast deployments might not be solvable globally, limited-scope multicast
distribution networks are already utilized for specific applications, like IPTV, and
possible can be also used for other services in the near future. P2P-based content
delivery is suffering from the diverse spectrum of non-interoperable systems since
most of the P2P systems have been initially designed and implemented by individual
researchers without any kind of standardization activities. However, usually imple-
mentations inside one P2P network are interoperable, due to the publicly available
protocol definitions after the initial implementation has been published, and these ad-
ditional implementations can be used to extend the possible user population, maybe
also using devices which where not supported by the initial implementation, for a

specific service.

24

2. Technologies for Large-Scale Content Delivery

3. CHALLENGES

Large-scale content delivery is a challenging and complex task. The content delivery
system should scale to large heterogeneous user population and should be able to
provide good user experience regardless of the available throughput and processing
capacity and the experienced loss pattern. The content delivery application should be
also easy to use and the service should guarantee content persistence.

More detailed information about several key challenges, which have to be taken into
account in order to gain massive public support for the content delivery system, are
next presented in Sections 3.1, 3.2 and 3.3. Challenges have been divided into three
different categories: challenges for application developers, service providers, and
end users even though some of the presented problems could be viewed from several
perspectives. In addition, some general security considerations are highlighted in
Section 3.4.

3.1 Application Developers

Application developers are facing several challenges when trying to implement a
large-scale content delivery system. During previous few years all kind of commu-
nication between different devices using different access network technologies has
become more and more attractive. Users want to use the same tried and tested appli-
cations all the time regardless of their location. From the service provider’s point of
view reliability and scalability are the most important features for the application.

Application developers must also take usability into account. People do not always
want to, or even cannot, install the stand-alone client software or share their band-
width for security reasons, which prevents the effective spreading of new content

delivery techniques. WWW browser plugins [87], which extend the browser to work

26 3. Challenges

with additional content types, might be used to overcome the stand-alone client soft-

ware installation problem.

It is also very important to have an appropriate designing phase before the actual ap-
plication development is started. If the coding is started in a hurry, it is possible that
some important features, like reliability or scalability, cannot be any more enhanced
(or it requires large changes in the code base) when the application has been tested for
the first time. This will of course have an influence on the achievable performance of
the application later on. On the other hand, if the application has a reasonable mod-
ular structure, as a result from the designing phase, it is possible to quickly change
some specific part of the code or include some new features, like an additional FEC
scheme, to the application when needed.

3.1.1 Access Network Independence

There are a couple of challenges when developing applications for pervasive net-
works. Most normal consumer connections are suffering connection limitations based
on Network Address Translation (NAT) because ISPs do not want that users use still
relatively small bandwidth for hosting services or using P2P technologies. To avoid
connection limitations, especially in a P2P communication, application developers
should consider including some kind of NAT traversal technique, such as Traver-
sal Using Relays around NAT (TURN) [101] or Session Traversal Utilities for NAT
(STUN) [114], to the application. Due to the increasing use of devices with multi-
ple access network technologies, applications should also be able to handle vertical

handover across various technology domains to support seamless mobility.

With P2P media streaming the delay and downlink throughput of the access network
affect the user experience, and should be taken into account when designing an ap-
plication to be used with different access network technologies. The delay has an in-
fluence on the buffering period at the beginning of the stream, and if the used stream
bit rate is too high, in comparison with the downlink throughput, it is not possible to
use the application at all. It is also important to pay attention to asymmetric broad-
band connections, since lower uplink throughput make things non-optimal, as peers
with asymmetrical access tend to use more download bandwidth compared with the

provided upload bandwidth.

The downlink and uplink throughput and the average Round Trip Time (RTT) val-

3.1. Application Developers 27

Table 1. Network characteristics

Connection Throughput (Downlink/Uplink) RTT

EDGE 154 kbps / 77 kbps 623 ms

Mobile UMTS 351 kbps / 123 kbps 135 ms
HSDPA 888 kbps / 347 kbps 88 ms

Leased line ADSL 1 Mbps / 512 kbps 48 ms
LAN 100 Mbps / 100 Mbps 5 ms

ues for Enhanced Data rates for GSM Evolution (EDGE) [2], Universal Mobile
Telecommunications System (UMTS) [1], High Speed Downlink Packet Access (HS-
DPA) [4], Asymmetric Digital Subscriber Line (ADSL) [58] and Local Area Network
(LAN) [50] network connections are shown in Table 1. The downlink throughput val-
ues for the mobile network connections are measured by downloading a 10 MB file
from ftp://ftp.funet.fi/dev/ and using the Wireshark network protocol analyser [136]
to calculate the value. The uplink throughput values for the mobile network connec-
tions are measured by uploading a 10 MB file to one of our university servers and
using Wireshark to calculate the value. With the leased line network connections
theoretical values are shown for downlink and uplink throughputs. The average RTT
values for all aforementioned network connections (from 100 measurements) to the
Finnish Communication and Internet Exchange association (FICIX)! are measured

to get the access network delay.

If we compare characteristics between a pure wired network and a mobile network,
where the mobile connects to an access point which then connects to the wired net-
work, there is a clear difference. Only HSDPA connection provides reasonable good
downlink throughput and delay values for P2P media streaming purposes. However,
uplink connection will become the bottleneck in this network, to which High Speed
Uplink Packet Access (HSUPA) [3] will provide enhancements in the near future. On
the other hand, all aforementioned mobile networks are suitable for P2P file sharing

when the real-time requirements are not so critical.

Uhttp://www.ficix.fi/

28 3. Challenges

3.1.2 Reliability

In a best-effort network, like in the Internet, the successful delivery of a packet to its
receivers is not guaranteed at the network layer [52, 143]. Only acknowledgement-
based protocol, such as TCP, where the receiver lets the sender know what has been
received correctly can provide reliability in the transport layer in this kind of net-
work. TCP is however not suitable for large-scale content delivery and more scal-
able protocols, like UDP, are used instead. Unreliable transport protocols are able
to scale up to large and massive receiver groups, but the guarantee for fully reliable
file delivery or good user experience in P2P media streaming must be provided at
the application layer. Short introduction to protocol layering and comparison be-
tween five-layer Internet protocol stack and seven-layer International Organization
for Standardization (ISO)?> Open System Interconnection (OSI) reference model is
available in [66, pp. 48-56].

There are different methods for providing reliability for multicast-based file delivery
applications and good user experience for P2P media streaming applications, since
they have different requirements from a user point of view. These methods include
for example repeated transmission and FEC for file delivery applications and packet
interleaving and packet retransmission for P2P media streaming applications. More
information on how to provide reliability in a large-scale content delivery is presented
in Chapter 4.

3.1.3 Scalability

At the start of a mass media content release there are generally many customers
requesting the same content. The traditional client-server based content delivery
will easily overload the delivery network and none of the customers will be happy
about the QoS. Hence, a service provider should utilise multicast or broadcast de-
livery, which serves very large user groups without overloading server and network
resources. However, multicast-based unreliable content delivery will create another
scalability challenge to the content delivery server. How to keep the load of the
content delivery server as low as possible and still simultaneously guarantee the reli-
ability?

2 http://www.iso.org/

3.2. Service Providers 29

Scalability is also problem in a P2P networks. When a peer joins the P2P overlay
network, it should not pose an unmanageable burden to the overlay network and its
operation. Rather it should provide more resources into the system, such as upload
bandwidth or processing power. Scalability in the overlay adaptation, in order to
follow the dynamic network conditions, is often achieved with the decentralized dis-
tribution of the key components among participating peers to prevent a single point of
failure types problems when unexpected peer departures occur. So, the overlay net-
work should be constructed in a self-organized manner to scale well in the dynamic

network conditions.

However, often there is a limit when the system cannot grow any more and its func-
tionality starts to drop. This can happen because of the limited network bandwidth
or processing power of some important entity, or there are simply too many control
messages generated on the network that cannot be processed in time. Good scalabil-
ity affects also service availability in a way that any participant in the system should
not become a bottleneck so that service cannot be provided any more. More informa-
tion about how to enhance scalability in a large-scale content delivery is presented in
Chapter 5.

3.2 Service Providers

Service providers are very interested in all the features provided by the application.
Scalability of the system and methods for providing reliability are however features
that depend on the decisions made by the application developers during the imple-
mentation phase. So from the scalability and reliability point of view the service

provider can only select some software and use it within the limits.

One of the most critical challenges for the service provider is the content itself. How
to provide persistence in a long-tailed service when it is not reasonable to use the
primary delivery mode any more? How to partition content so that network resources
are optimally used? How to guarantee content owner rights when distributing content
in a digital form? How to provide content integrity in an untrusted environment?
Some solutions for the aforementioned questions are next discussed in the following

subsections.

30 3. Challenges

3.2.1 Content Persistence

Content persistence is very important issue in a large-scale static content delivery. If
the service provider uses multicast-based content delivery, the full copy of the con-
tent is available for the clients as long as the service is available. However, after
the popularity of the content has decreased below certain threshold value, it is not
reasonable to use multicast delivery any more. For example, the threshold can be
calculated from the relative costs of multicast and unicast delivery. If the popular-
ity of the content increases again, the service provider can of course schedule a new
multicast transmission period to decrease the total amount of data delivered in the
network. On the other hand, there might still be a significant amount of clients inter-
ested to retrieve the content after stopping the multicast-based delivery. In this kind
of long-tailed service, the service provider could for example switch to P2P delivery

if multi-technology delivery is supported in the first place.

Because peers in the P2P overlay network may arrive and depart in a very dynamic
fashion the service provider must follow statistics to guarantee that a full copy of
the content is available among receivers. For example in the Delco system [P2], the
service provider can follow P2P statistics from the BitTorrent tracker and control
its own BitTorrent seeders to backup the delivery. However, the statistics cannot be
trusted with full certainty because there can be badly behaving clients who indicate
that they have the content but do not upload it.

Content persistence in a P2P media streaming services is not a big issue for the ser-
vice provider. In a live streaming service, the content is available as long as the
original data source wants to stream the content to the P2P network. When the orig-
inal data source leaves the network, other peers in the delivery tree or chain will be
able to play out the stream until all buffered data is consumed. In a VoD streaming
service, the full copy of the content is always available at least from the original data
source. In addition to the reception buffer, data storage via caching should be used in
the VoD streaming service. When using caches, the VoD data can be distributed away
from the original data source. This helps relieving the network load from the original
data source, as new peers joining the network are able to download VoD content from

multiple sources instead of relying on the original data source.

3.2. Service Providers 31

1 2 3 4 5] 6

1 2 3 4 5 6 7 8
(a)

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8
(b)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(©
Fig. 9. Block alignment problem

3.2.2 Content Partitioning

Content partitioning in a multi-source or multi-technology environment can be a chal-
lenging problem for the service provider. In a multi-source P2P content delivery a
wide range of block sizes can be used. However, a downloading client becomes a
leecher peer when it has at least one complete block, so with a small enough block
size the number of alternative source peers will increase faster. In a multi-technology
delivery systems, like proposed in [P2], it is crucial that block sizes are adjustable in
all delivery technologies. When the block sizes are equal or the bigger block size is
a multiple of the smaller block size, all technologies can be optimally used to simul-
taneously receive data or some technology can be efficiently used to request missing

blocks after the delivery is ended with some other technology.

Block alignment problem with a missing block recovery using the Delco system [P2],
where FLUTE and BitTorrent are used for large-scale content delivery, as an example
is described in Fig. 9. FLUTE’s default file partitioning algorithm generates at most
two different sizes for the source blocks and the sizes are as close to each other
as possible. In Fig. 9a neither of FLUTE’s block sizes (the upper chain) are equal

to BitTorrent’s piece size (the lower chain), and three BitTorrent pieces are needed

32 3. Challenges

for the recovery of one missing FLUTE block and recovery will cause unnecessary
duplicate traffic in the network. It should be noted that with FLUTE a data portion is
referred to as a block and with BitTorrent as a piece, but conceptually they stand for
the same thing, i.e., both represent a chunk of the file. In Fig. 9b smaller FLUTE’s
block size is equal to BitTorrent’s piece size, and two BitTorrent pieces are needed for
the recovery. In Fig. 9c FLUTE uses only one block size (enhancement introduced in
the Delco system), which is equal to BitTorrent’s piece size, and only one BitTorrent
piece is needed for the recovery. From this example it is easy to see that appropriate
content partitioning is very important in a large-scale content delivery system.

3.2.3 Digital Rights Management

The increased number of households with broadband connectivity and advances in
the large-scale content delivery have created both opportunities and threats for the
service providers. P2P techniques can be utilised in the delivery systems to increase
cost efficiency from the service provider point of view, since end users’ devices, to-
gether with a small number of service provider’s peers, collectively form the delivery
infrastructure. However, after the content injection the service provider is not able to

restrict the delivery between peers.

Digital Rights Management (DRM) offers protection against the illegal distribution
of copyrighted material such as music files or Digital Versatile Disc (DVD) films. For
example Windows Media DRM is a proven platform to protect and securely deliver
content for playback on computers, portable devices, and network devices [135].
When using DRM in a P2P content delivery [14, 62], the copyrighted material can
be delivered with smaller investments into the delivery infrastructure, still preventing
the illegal use of the material. DRM can be also used in a multicast or broadcast
based content delivery [93,99] to restrict the content consuming only a licensed user

population.

DRM issues have not gained high priority in this Thesis, mainly due to the prototype
and proof-of-concept type of implementation work, but for example the Delco sys-
tem [P2] is designed so that the content distribution and DRM can be separated and

various technologies can be used for the content delivery as well as for the DRM.

3.2. Service Providers 33

3.2.4 Content Integrity

Integrity of the delivered content is one of the key issues when delivering content
through an untrusted or an unreliable network, like the Internet. If some misbehaving
user can modify some parts of the content and share this fake content with the other
users, there will be chain reaction of unhappy users in the multi-source environment
without proper integrity verification. Typically, the content integrity is verified ac-
cording to some hash algorithm, for example using MDS5 or Secure Hash Algorithm
1 (SHA-1) [90], allowing the receiver to verify the received content by comparing the

calculated hash values with the values provided by the sender or the content creator.

Hash values alone are not sufficient enough to guarantee the content integrity if the
receiver cannot trust to the hash values provided by the sender or the content creator.
This is the case when an attacker can modify both the provided hash values and
the actual content. This can be overcome by using digital signatures, i.e., signed
hash values for instance by using RSASSA-PKCS1-v1_5 [61], instead of plain hash
values. However, techniques relying on public key cryptography require that the
public keys of the senders are securely delivered to the receivers. This can be for
example achieved with a Public Key Infrastructure (PKI) [49], or by a Pretty Good
Privacy (PGP) [23] web of trust, or via pre-distributed public keys.

When delivering content in pieces or blocks it is best to provide hash value for each
piece separately. FLUTE provides MD5 hash checksum for the whole file, so when
corrupted data is received it is necessary to start the whole downloading process from
the beginning as the exact location of the corruption is not known. With the help
of piece level verification, only the corrupted piece must be received again which
decreases the amount of total data needed for successful delivery. BitTorrent, for
example, is effective against Denial of Service (DoS) attack where a hostile peer tries
to poison a download with corrupted pieces, since a .torrent file includes a list of
piece hashes (SHA-1), which ensures that received and accepted pieces are always

correct as long as the .torrent file is not corrupted in the first place.

File download resuming after an accidental application shut-down or system crash
can be also done with the help of piece hash values even without any previously
saved state information about the progress. For example, in the Delco system [P2]
pieces are saved to the file system in their final locations, and it is possible to check,

with the help of piece hashes, which pieces are already written and retrieve only the

34 3. Challenges

missing pieces to complete the file downloading.

3.3 End Users

Guarantee for the reliable content delivery and good user experience are the most
important issues for the average end user. However, these are provided by the appli-
cation itself, so major problems and obstacles for the end user deals with the service
itself. Service discovery or bootstrapping is the first obstacle when user wants to join
a particular multicast or P2P content sharing session. When the user has been able to
join the service, the availability of the content and the key components in the content

delivery system might influence the Quality of Experience (QoE) of the end user.

3.3.1 Service Discovery

In a multicast-based content sharing system, receivers must join the multicast group
in order to receive the data delivered by the server. One way for service discovery
in multicast-based content sharing is to define necessary transmission session pa-
rameters in a file according to some session description syntax, such as the Session
Description Protocol (SDP) [43], which would then be acquired by receivers before
the data delivery session begins by means of some transport protocol, like the Session
Announcement Protocol (SAP) [44] or HTTP.

A SAP announcement will be sent to a specific well-known multicast group, for ex-
ample with IP version 4 (IPv4) global scope multicast sessions SAP announcements
will be sent to 224.2.127.254, which will be listened by the receivers to get infor-
mation about available services. With HTTP, the file is of course fetched from some
well-known service provider web page describing all available services. Because
the original SDP is defined for general real-time multimedia session description pur-
poses, it does not describe all necessary attributes for FLUTE based file delivery ses-
sions. To overcome this problem SDP Descriptors for FLUTE [130] defines required
additional SDP attributes for initiating a FLUTE session.

In a P2P content sharing system, P2P client has to know at least one operational node,
such as central server, higher level peer or ordinary peer, which to connect to join the

existing P2P overlay network. A list of operational peers is often delivered with the

3.4. Security Considerations 35

client software and/or retrieved from a web page or another static place. A peer in
the list might become unreachable at any moment and it is of course possible that
the bootstrapping P2P client does not find any operational peer. This should be rare
occasion, but it is possible if the peer list is not retrieved and updated periodically.

3.3.2 Service Availability

Multicast-based content delivery suffers from the limitation that access networks that
do not support multicast will not support any multicast-based service at all and it is
not possible to receive such service even if desired. To overcome this restriction, the
service provider could utilize more than one delivery technology for the same service.
If for example P2P delivery is also enabled in addition to the multicast delivery,
clients whose access networks do not support multicast can join the P2P delivery.
Clients whose access networks support multicast can start seeding to non-multicast
clients after they have received some data through the multicast delivery. The service
provider must of course have some P2P seeders to backup the delivery, but the server

workload will still remain much lower than in the traditional client-server model.

Availability and functionality of the key components, like searching, downloading or
indexing, is very important for the P2P networks. Responsibilities of the key com-
ponents are often distributed among many peers to provide better service availability.
Central tracker easily becomes a bottleneck in BitTorrent, since available bandwidth,
processing power and memory are often limiting factors. If a tracker goes down, the
.torrents depending on the tracker become very quickly non-functional and new peers
will not be able to join the distributed download procedure.

Availability of an individual peer is also important, because they can provide more
resources on the network. Users are often encouraged for being available on the
network, for example by giving better downloading speed when uploading more.
NAT traversal also has an effect on peer availability, sometimes peer just cannot be

reachable because application does not have sufficient NAT traversal support.

3.4 Security Considerations

Security has not been the central point in this Thesis, so this section introduces some

general security threats and counter-measures very briefly. The content delivery sys-

36 3. Challenges

tem can encounter many kinds of attacks, which may target the content delivery in-
frastructure, the content delivery protocol(s), or the content itself. An attacker may
try to compromise the routing infrastructure or the content delivery server by creating
congestion so that the user data cannot be delivered in time. It is also possible that
someone attacks against some specific functionality in the content delivery infras-

tructure, like trying to poison the peer list database in the BitTorrent tracker.

Since the session description needed for joining the content delivery session is often
delivered out-of-band, it is possible that some other attacker may try to compromise
the joining phase by corrupting the SDP description for the FLUTE session or the
URL of the tracker in the .torrent file for BitTorrent file sharing session. One way to
avoid these kind of problems is to use source authentication when retrieving the ses-
sion description. This can be done for example by adding authentication data to the
SAP announcements or by using HTTP over TLS (HTTPS) [108] when downloading

the session description from some WWW server.

Another way to create a DoS attack against legitimate users is to corrupt the meta data
needed to actually receive the content. If for example FDT Instance in the FLUTE
session or piece hashes in the .torrent file are corrupted the receiver will most likely
reject the content even though it has been actually correctly received. In the former
case, the meta data integrity can be for example provided at the packet level by using
Encapsulating Security Payload (ESP) [64] to check the integrity and authenticate
the sender of all the packets being exchanged in the session. It is also possible to use
a secure version of the desired protocol if such exists, like HTTPS when retrieving
the .torrent file or Secure RTP (SRTP) [16] instead of RTP to provide confidentiality,
message authentication, and replay protection to the RTP/RTCP protocols.

Attacks against the content itself can be divided into attacks that try to get access to
copyrighted content and attacks that try to corrupt the content. Access control to the
content being transmitted can be provided at the file level, for example using DRM
(see Subsection 3.2.3) or at the packet level using for instance ESP. It is also very
important to validate the content integrity (see Subsection 3.2.4) before consumption
to prevent running some malicious code which might be injected within the content.
In addition to what is explained in Subsection 3.2.4 it is also possible to provide

content integrity at the packet level like the meta data integrity described above.

3.5. Summary 37

3.5 Summary

An increasing base of broadband connections, with an increasing average bandwidth,
clearly shows that there is great potential for the new types of content delivery ser-
vices in the near future. For example, in Finland 70% of the households had a broad-
band connection and 99% of the households had a change to have a leased line broad-
band connection in April 2009 [67]. Due to the heterogeneous multi-device, multi-
access environment of the end users, efficient large-scale content delivery cannot be
fulfilled by the intelligent applications only. Hence, advanced solutions require in-

vestments also from the service providers and network operators.

Problems and obstacles presented in this chapter give a vision what have to be at
least taken into account in a large-scale content delivery. This Thesis will mainly
concentrate on the reliability and scalability, but topics which somehow relates to
these, like content partitioning, content persistence and service availability, are also
further studied. Some of the presented problems, like security and DRM issues, have
not been gained high priority in this Thesis and are therefore only briefly covered to

get the big picture clearer.

38

3. Challenges

4. RELIABILITY

IP provides a best-effort service for forwarding datagrams from a source to the des-
tination. It does not make any promises about packet delay, packet jitter or packet
loss. So, in IP-based applications, failures in the network path between the sender
and receiver will cause packet losses. Typically, a burst of packets are lost [13,20]
after which the reception of packets is resumed back to normal, and it is up to the

transport protocol or application to deal with the packet losses.

In a P2P communication media is partitioned into pieces or chunks, which allow
the media to be received simultaneously from multiple senders. Because these peers
may join and leave the P2P overlay network at their own will, media being sent to a
receiver may be temporarily interrupted, introducing another reason for packet losses
in a P2P system. Hence, in a multi-sender P2P environment two different causes, due
to which packet loss may be experienced, can be distinguished: (a) network failure,
and (b) peer churn. The amount of actual lost data varies between different P2P
protocols and is of course the minimum indexable block even though only one IP

packet is lost.

There are different methods to provide reliability for multicast-based file delivery
applications and for P2P media streaming applications, since they have different re-
quirements from a user point of view. In a file delivery, one does not care if the data
parts arrive in the original order or not, and it usually does not matter how fast the
data is delivered. The viewing experience will still be the same once the file is fully
downloaded and more focus should be put into optimizing both the total overhead
caused by the guarantee of reliability and the load of the server in a file delivery

system.

P2P media streaming applications are using client side buffers to eliminate the access
network induced delay and jitter. If some packets are lost, those should be recovered

before the playback point reaches the gap in the reception buffer to ensure good user

40 4. Reliability

experience. An initial buffering time is very crucial in a P2P media streaming system,
because with bigger buffer size it is possible to smooth the variation between packet
arrival times and have time for packet loss recovery. On the other hand, the smaller

the buffering time is, the faster the playback can be started.

Several methods how to provide reliability for multicast-based file delivery and P2P

media streaming applications are next presented in Sections 4.1 and 4.2.

4.1 File Delivery Applications

Bandwidth-efficient delivery of large files to a large number of users has become very
important. IP multicast techniques can help to decrease the amount of data transmit-
ted in a system, but reliability becomes a concern, because multicast techniques are
commonly based on unreliable transport protocols to scale up to large and massive

receiver groups.

Repeated transmissions and FEC are two options to achieve the reliability in the main
forwarding path. For the return path there are multiple options such as traditional
client-server repair and P2P repair. By finding the optimal combination of repeat
transmissions, FEC, and optional file repair data it is possible to decrease the total

amount of system-wide data required for a successful large-scale file delivery.

There are many studies concerning reliable multicast-based file delivery on packet
erasure channels [78]. For example Almeroth et al. [12] have examined the possi-
bility to use best-effort cyclic multicast to deliver WWW pages. They carried out
analysis and simulations to demonstrate the performance of cyclic multicast with-
out FEC. Rodriguez and Biersack [113] extended the cyclic multicast analysis done
in [12] and added FEC to the analysis too. Nonnenmacher et al. [91] investigated
how FEC can be combined with Automatic Repeat Request (ARQ) to achieve scal-
able reliable multicast transmission. All aforementioned studies mainly concentrated
on the mathematical analysis of reliable multicast and Reed-Solomon was used as a
FEC code.

There are also more recent studies considering scalable reliable multicast delivery.
For example Neumann et al. [89] introduced large-scale content distribution proto-
cols, which are capable of scaling to massive numbers of users. Their focus was on

solutions provided by the IETF RMT working group. Neumann and Roca [88] anal-

4.1. File Delivery Applications 41

FLUTE
receivers

FLUTE
sender

Fig. 10. Static data carousel with three files described by one FDT Instance

ysed FEC codes for partially reliable media broadcasting schemes. They studied Low
Density Parity Check (LDPC) Staircase and Triangle [112] and Reed-Solomon FEC
schemes. Luby et al. [82] [81] introduced and analysed the performance of Raptor
FEC codes for reliable download delivery in wireless broadcast systems.

4.1.1 Data Carousel

Repeated transmission of files utilizing a data carousel [78] technique is one way to
enable reliable multicast content delivery. The amount of redundant data to achieve
a certain level of complete reception can be statistically calculated according to pre-
dictable characteristics, such as a packet loss ratio, packet loss distribution, the num-
ber of receivers, or the quantity of data. Typical examples of a certain level of com-
plete data would be 99% of receivers achieve complete error-free reception, or 99%
of all data is correctly received and decoded by all receivers. Receivers that join a
multicast session after its start suffer an initial loss of all data transmitted prior to

their joining which complicates this calculation significantly.

Fig. 10 presents a static data carousel with three files described by one FDT instance
which is delivered before the files. In this scenario, the content does not change
during the FLUTE session and receivers can join and download the content at any
time, and all packet losses will finally be recovered - providing that the amount of
carousel cycles is sufficiently high. In a dynamic data carousel some of the files in
a FLUTE session changes dynamically, and those must be described using a new

FDT instance and files must be changed in the carousel. Usually the new file version

42 4. Reliability

supersedes the older version and still receiving clients have to discard the old version
and receive the new one instead, because it is not possible to get the old data any

more.

Packet loss recovery based on a data carousel is studied in [P1]. In short, it is studied
how many carousel cycles are needed to successfully receive the file and what is the
effect of changing the encoding symbol length. It is assumed that a single receiver
can represent the behaviour of all receivers, which is naturally not the case with the
Internet. The assumption is much closer to the truth in environments, where there
is only one hop between the sender and the receivers, and the receivers have the
similar quality of reception. This is the case for example in DVB-H network when

all receivers are located within good network coverage.

4.1.2 FEC Data Carousel

FEC is a mathematically more efficient method of providing redundant data with the
potential to achieve better system performance. Adding FEC to the data carousel
results in a FEC data carousel [78]. However, depending on the amount of the FEC

data and the mean packet loss ratio, several carousel cycles might still be needed.

FEC codes can be divided into systematic and non-systematic codes. With a system-
atic FEC code, such as Reed-Solomon FEC for small block sizes and Raptor FEC
for large block sizes, the first portion of a FEC encoding block consists of source
symbols, i.e., the original content items for the given block, while the remaining
symbols for the block consist of FEC symbols generated by a FEC encoder. When a
non-systematic FEC code is used, all encoding symbols for the block consist of FEC
symbols generated by the FEC encoder.

An example of a Reed-Solomon FEC code is presented in Fig. 11. In this example
k = 4 source symbols together with n — k = 3 FEC symbols are transmitted over the
packet erasure channel. The receiver can reconstruct the original content when any

set of encoding symbols equal in number to the number of source symbols is received.

With Raptor FEC (named MBMS FEC in [6]), the operation of a FEC encoder is
divided into several steps. First, the source file is divided into Z > 1 source blocks
and FEC encoding is applied independently to each source block. Next, each source
block is divided into N > 1 contiguous sub-blocks. After that, each sub-block is

4.1. File Delivery Applications 43

FEC FEC
k original encoding decoding recontructed
source I I k source
symbols symbols
received
symbols
n-k FEC
symbols

Fig. 11. Example of a Reed-Solomon FEC code

divided into K sub-symbols and the mth symbol of a source block consists of the
concatenation of mth sub-symbol from each of the sub-blocks. It should be noted
that when N > 1, then a source symbol is not a contiguous portion of the source
file. This happens when the source file size is bigger than the target sub-block size
(the recommended value of which is 256 KB). Finally, the FEC encoder generates
a desired number of FEC symbols for each source block that consists of K source
symbols.

The receiver then receives some set of encoding symbols, slightly more in number
than the number of source symbols and feeds those to a FEC decoder. From these
encoding symbols, the FEC decoder generates K source symbols, divides each source
symbol into N sub-symbols, and composes N sub-blocks which can be concatenated

to reconstruct the original source block.

The RaptorQ FEC code described in [77] is a next generation of the Raptor FEC
code. The RaptorQ FEC code provides superior flexibility, support for larger source
block sizes and better coding efficiency than the Raptor FEC code, which simplify
the usage of the RaptorQ FEC code in an object delivery compared with the Raptor
FEC code.

Packet loss recovery based on an FEC data carousel is studied in [P1]. Basically
the same tests as with the plain data carousel have been performed to study how

a different amount of FEC data affect the amount of needed carousel cycles. In

44 4. Reliability

File repair server

\\ 2. File repair
\ \request

3b. PTM / 3a.lPTP \
repair info / \ repair data
/ \

¥

1. Original multicast data

3b. PTM repair data

FLUTE
sender

Wireless or
wired access

Fig. 12. PTP and PTM file repair procedure after FLUTE session

addition, it is also studied what is the effect of changing the source block length,
since with bigger source block it is possible to get better protection against losses,

but with shorter source block FEC encoding and decoding times are shorter.

4.1.3 Point-to-Point and Point-to-Multipoint File Repair

An option to the carousel type of packet loss recovery is to use some kind of PTP
or PTM file repair technique, which can be utilized when encoding symbols are still
missing after the FLUTE sender has stopped sending the file. The repairing could
happen also during a FLUTE session to decrease downloading time if only a few
packets are missing and the next delivery of those packets is suggested being far

away in the future.

Both MBMS [6] and IPDC over DVB-H [36] enable PTP and PTM file repair proce-
dures. PTP repair is based on HTTP and PTM repair is based on HTTP and FLUTE.
Fig. 12 shows the file repair procedures after the original multicast transmission. First
the FLUTE receiver makes a file repair request to the file repair server. The request
contains the Uniform Resource Identifier (URI) [18] of the file and the Source Block
Number (SBN) and the Encoding Symbol Identifier (ESI) values for the requested

4.1. File Delivery Applications 45

encoding symbols. If the client has several incomplete files or too many encoding
symbols are missing from the same file, then it has to make several file repair re-
quests. An example file repair request message is shown in Listing 2.

GET /path/repair_script?fileURI=www.example.com/news/

latest.3gp&SBN=5;ESI=12&SBN=20;ESI=27 HTTP/1.1

Host: mbmsrepairl.example.com

Listing 2. An example file repair request message

The file repair server can choose between the PTP and PTM repair methods for exam-
ple based on some algorithm, which uses the cost of transmission of the repair data
as efficiency metric. The file repair server behaviour depends on the selected repair
method. If the server decides to use PTP repair it responds with 200 OK message,

which includes the encoding symbols the client requested.

If the file repair server decides to use PTM repair, it redirects the clients to a multicast
repair session using 302 Found response message. The temporary URI is given by the
Location field in the HTTP response and is the URI of the SDP file of the multicast
repair session. In case of PTM repair, the repair information is gathered from the
file repair server to the service system. This information consists of the file URIs
and/or the Source Block Numbers/Encoding Symbol IDs of the files, which were
not delivered completely with the original multicast transmission. According to the
information, the service system can schedule FLUTE sender to deliver the repair
data through the multicast link. It is implementation specific in which level the repair
data is delivered, i.e., the whole file, complete blocks, or only individual encoding

symbols.

Simple HTTP-based client-server PTP file repair scheme is mathematically analysed
in [P1]. The main focus is to study is it possible to utilise PTP file repair to minimise
the total amount of data transmitted in the system when multicast vs. PTP link cost

ratiois 1:1.

4.1.4 Peer-to-Peer File Repair

The ultimate option of moving PTP or PTM file repair costs away from service
providers and network operators is to base file repair on a P2P scheme. A combi-

nation of a P2P overlay network, and a proximity connectivity peer exchange could

4. Reliability

46

An _JOO_\jU_mﬁm
. . | * 2 o \
file received via |
unreliable delivery ie Xl N
10 Xj
~
~
~N

.,._.--...------.----.-.-..---..--.
o :
P
>
5y
g8
S .Ma Peer 6 2 g
I‘K’ J / \\\\\\\\\\\\\\\\ aOa
Aﬁm anKb J . I Peer 10
. @ ! /'
Content 3 .
|
xi W

| Peer 11 (leecher)

Qo -

17
\
\
B

provider's
seeder U B

Peer 2 D f \ 1
& R
Peer 5 @

Peer 7 (seeder)

Fig. 13. P2P file repair procedure using BitTorrent

4.1. File Delivery Applications 47

be utilised in the delivery systems to increase cost efficiency. An example P2P file
repair scheme is illustrated in Fig. 13, where BitTorrent is used to retrieve missing
blocks among other peers after the multicast sender has stopped sending the file. In
this example Peer 4 has an incomplete file and is requesting missing blocks 9, 11, and
12 from Peer 3 and Peer 5. Peer 4 is simultaneously also providing blocks 4 and 8 for
Peer 9. The content provider must have some P2P seeders to guarantee the delivery,
in a case that there is not a full copy of the file among the clients. Still, the server
workload for providing the small subsets of files will remain much lower than in the

traditional client-server model.

This kind of file repair scheme is introduced in the Delco system [P2], where multi-
cast and P2P techniques have been combined in a novel way. The system provides the
combined benefits of both techniques enabling large-scale content delivery to wired
and mobile users with a modest service device infrastructure. In the Delco system
P2P file repair can be used to repair/complete the multicast delivery either during
the multicast transmission period (simultaneous multicast and P2P file delivery), or
afterwards (first multicast file delivery and then P2P file repair). In the first case
downloading client should not repair data that is to be received through multicast file

delivery.

In addition to the file repair, P2P file delivery can be used to extend the service to
clients whose access networks do not support multicast file delivery. Clients whose
access networks support multicast file delivery can start seeding to non-multicast
clients after they have received at least one block/piece through the multicast file
delivery. When using this kind of combined delivery, all receivers can be served,
no matter whether they have multicast support or not. However, appropriate content
partitioning is very important as explained in Subsection 3.2.2.

4.1.5 Summary

All studied packet loss recovery mechanisms are able to provide reliability in a large-
scale file delivery. The results of performance tests carried out for a file delivery
system based on the FLUTE protocol are presented in [P1]. In the simulations, the
FLUTE sender transmitted data, i.e., an FDT Instance and a single file, in a carousel
under uniformly distributed errors and with burst errors. Encoding symbols for each

block and also the blocks were sent sequentially, which means that the transmission

48 4. Reliability

of an object was not interleaved. This is not the optimal case with Reed-Solomon
FEC, from the packet loss recovery point of view, but it requires less memory from

the receiver.

Two types of carousels were studied, a plain data carousel and an FEC data carousel.
The plain data carousel used FLUTE with Compact No-Code FEC, and the FEC data
carousel used FLUTE with Reed-Solomon FEC, based on Vandermonde matrices
[111]. FLUTE performance was measured by the total amount of data the FLUTE
sender has to transmit so that a FLUTE receiver receives the file correctly. With a
plain data carousel, this is directly related to the number of carousel cycles the sender
performs, and with an FEC data carousel also the FEC overhead must be taken into

account.

The results from large-scale simulations and related mathematical performance anal-
ysis shows that the file delivery performance using a plain data carousel gets quite
poor already with low average packet loss. In conclusion, it is obvious that the plain
data carousel is not alone sufficient enough for reliable large-scale file delivery, but
is of course a better option in comparison with the traditional client-server type of
content delivery. The effect of adding even a small amount of FEC data into the data
carousel is remarkable both under uniformly distributed errors and with burst errors.
When considering the performance of the FEC data carousel without interleaving, it
should be noted that the overhead data in one loop increases when the amount of FEC
data increases, so the total amount of data averagely needed to transmit describes bet-

ter the performance of the FEC data carousel.

Since FLUTE is designed for unidirectional transport, the FLUTE sender is not aware
of the receiving status of the FLUTE receivers. Thus, it is very important to have a
proper configuration at the FLUTE sender to deliver reception guarantees with op-
timal data expense from the system point of view. Based on the encoding symbol
and source block length tests best performance was found when the encoding sym-
bol length was at the maximum length for an encoding symbol carried in the FLUTE
packet which kept the complete IP packet length within the link Maximum Transmis-
sion Unit (MTU). Likewise, better performance with the FEC code was shown using
large source block lengths.

Based on the simplified error reception and distribution model presented in [P1], it

is illustrated that the simple HTTP-based client-server PTP file repair is optimal only

4.2. Peer-to-Peer Media Streaming Applications 49

for small groups when the total amount of data, which is transmitted in the system
and needed for reliable file delivery, is used as a critical factor. However, in some case
it might be so that multicast link cost is many times higher than PTP link cost, thus
the total amount of data is not the most critical factor any more. The relative costs
of PTP and PTM transmission will affect the optimal balance between PTP repair
and multicast repeat transmission. However, the detailed analysis of this subject
would only be possible using solid cost metrics which are currently unavailable for
the DVB-H and MBMS bearers referenced.

The P2P file repair poses new questions for optimizing the multicast-based file deliv-
ery. For example, how well must the multicast delivery succeed in order to reach the
point where the receivers are able to repair the missing data from each other? To be
able to answer the question, a large-scale laboratory and field testing with the Delco

system [P2] is needed.

There are a lot of options for the service provider how to provide reliability in a
large-scale file delivery. However, a plain data carousel is not sufficient (at least
for large user population) and the service provider should utilize some of the three
enhanced versions of the data carousel, i.e., data carousel with PTP file repair, FEC
data carousel or data carousel with P2P file repair. FEC data carousel will be the
best choice for most cases when the total amount of data which is transmitted in the
delivery system is used as a critical factor. On the other hand, the service provider
could also favour plain data carousel with P2P file repair, since most of the repair
data will be exchanged between clients and maybe only one carousel cycle is enough

to deliver sufficient amount of the data among the clients.

4.2 Peer-to-Peer Media Streaming Applications

P2P media streaming applications are gaining more and more users around the world.
These applications allow end-users to broadcast content throughout IP-based net-
works in real-time without the need for any special infrastructure, since the user’s
device, together with all other peers, collectively forms the infrastructure. Further-
more, dedicated servers are no longer required since every peer can serve data to
other peers. This is in contrast to a service like YouTube which still requires content

to be uploaded to a central server first.

50 4. Reliability

1 2 3 4 5 6 7 8 9 10 1 12 Original packet
stream
) 4
1 5 9 H 2 6 10 3 7 11 4 8 12 Interleaved
packet stream
T }\ ””” }\ ””” } R ed
| ! ! eceive
1 5 9 2 6 10 ! loss ! loss ! loss ! 4 8 12 packet stream
L (. (. |

Recontructed
packet stream

|
loss i 12
|

Fig. 14. Sending interleaved packet stream

Since most of the existing P2P media streaming applications are using unreliable
transport protocols, reliability and good user experience must be guaranteed above
the transport layer. Packet interleaving, packet retransmission or FEC can be used ei-

ther in isolation or together to achieve the wanted reliability level or user experience.

4.2.1 Packet Interleaving

Packet interleaving is one way to mitigate packet loss bursts. Fig. 14 shows an ex-
ample of interleaved packet stream. Interleaving should be done with a well-known
mixing scheme, for example with a fixed block size and the first and last packets of
the block in the original position, so that the receiver knows when it has received all
packets belonging to a block and can reconstruct the original packet stream. In the
example, the sender is sending 12 packets in a mixed order and three packet is lost
during the transmission. When the receiver has reconstructed the packet stream a

single gap is divided into three smaller gaps and the quality of the media is improved.

An obvious weakness of packet interleaving is that it only smoothes burst errors, it
does not provide means to improve reliability. On the other hand, packet interleaving
does not increase the used bandwidth so it is a good option to enhance user experience
in the application which does not require 100% reliability, like VoIP applications such
as Skype [121].

4.2. Peer-to-Peer Media Streaming Applications 51

4.2.2 Packet Retransmissions

To ensure seamless media playback in a video streaming application the data should
not have interruptions. Therefore, if some data packets are missing, those should
be retransmitted before the playback point reaches the gap in the reception buffer. In
traditional streaming applications based on RTP/RTCP special mechanisms are avail-
able for the retransmission of lost packets. This procedure consists of signalling the
losses by the receiver and retransmitting the lost packets by the sender. One method
to signal packet losses to the sender is using the generic Negative Acknowledgement
(NACK) RTCP Receiver Reports (RRs), as specified in [95]. In addition [109] speci-

fies how the lost packets can be retransmitted by delivering them in a separate stream.

In P2P media streaming the receiving peer does not necessarily know which one of
the two options, i.e., network failure or peer churn, is causing the experienced packet
loss. Therefore, the traditional RTCP-based packet loss signalling is insufficient in
the P2P media streaming case. This is due to the fact that when a sender completely
leaves the network, it does not make sense to keep sending generic NACK RTCP
RRs to signal lost packets since they will never be received by the departed sender.
Another weak point with the RTCP-based packet loss signalling is the fact that a
peer does not explicitly request retransmission; it only signals which packets have
been lost to the sender, and it is up to the sender to decide how to deal with this

information.

In order to allow the scalable and efficient retransmission of lost packets in the pres-
ence of network failure and unexpected peer churn, a simple two-stage packet loss
recovery mechanism for RTSP-based mobile P2P media streaming system [P6] is
proposed in [P7]. Scalability is necessary to prevent the ripple through effect of
retransmission requests and redundant retransmissions in case many peers start si-
multaneously requesting lost packets due to a single cause, like a failing or departed

peer.

The proposed packet loss recovery mechanism is illustrated in Fig. 15 where Peer Y
has experienced packet losses from the Video 0 sender and requests retransmission
of the lost packets from the alternative source peers. After a special time-out value
has expired, the signalling of packet losses using RTCP is started (stage one). Firstly,
the packet losses are signalled back to the peer it was expected to receive the missing
packets from, i.e., Video 0 sender in Fig. 15, by sending generic NACK RTCP RRs.

52 4. Reliability

S R Existing RTP dataflow

RTSP SETUP + Normal
< RTSP PLAY RTCP

Peer X Video 0

Extended

RTSP SETUP + AN
RTSP PLAY /‘%

.

Fig. 15. Scalable packet loss recovery based on RTCP and RTSP

This can be considered as a normal operation according to [95]. Alternatively or si-
multaneously, a similar RTCP RR may be sent to other peers serving different partial
RTP streams (see Section 5.3 and [P6] for more information about the partial RTP
stream concept) from the same RTP session, i.e., Video I sender in Fig. 15. Note that
this extends the scope of the original RTCP specification beyond its normal use.

If the packets that have been signalled as lost using RTCP do not arrive within a
certain waiting time, the receiving peer selects a new candidate source peer and starts
to request the retransmission of the lost packets by means of RTSP (stage two). The
candidate source peers can be peers that are already serving the receiving peer with
other media streams of the same service, for example the Audio peer in Fig. 15, or
completely different peers, like Peer X in Fig. 15. Note however that these cannot
be peers that are already serving other partials from the same RTP session, since
in that case RTCP RRs should be used as described above. Retransmissions from
the new peers are explicitly requested by setting up a new RTP session using RTSP
SETUP and RTSP PLAY messages. However, the current syntax of the Range header
field does not allow requesting the retransmission of individual packets or a limited
set of packet ranges; it allows time-based ranges but these do not suffice to uniquely
identify single packets. Due to this, a new Packet-Range header field is defined in [P7]
to make the RTSP-based packet loss signalling possible.

The new RTP session can either be set up permanently, or used only to retrieve miss-

4.2. Peer-to-Peer Media Streaming Applications 53

ing packets. In the former case, the old existing RTP session is discarded and play-
back resumes with the new peer possibly after individual missed packets have been
received. In the latter case, the new session will be torn down using the RTSP TEAR-
DOWN message after the lost packets have been retransmitted. In order to improve
the speed of retransmissions, backup RTSP sessions can be kept open, without actual
streaming taking place, just for the purpose of the requesting retransmission of lost
packets in case other peers fail. This allows faster error recovery, since the set up time
is eliminated from the retransmission procedure. Alternatively, similar performance
improvements can also be realized by pipelining the RTSP SETUP and RTSP PLAY
messages as specified in [8] and [118].

In combination with the aforementioned two stages, a special signalling mechanism
in order to avoid multiple peers, downstream from the point of failure in a broken
path, from signalling lost packets due to the same root cause, such as a malfunc-
tioning peer, or a peer departed in an uncontrolled way or cut off from the network
connection, is devised. The proposed mechanism includes two aspects. The first
aspect is the signalling of pending retransmission requests downstream, i.e., in the
direction of the data flow from the original data source to the leaf nodes. Hence, in
the absence of packets, the information is signalled to indicate to the receiving peers
that the sender is aware of the losses. Secondly, it includes the signalling of the re-
covered packets both downstream and upstream. This information can be utilized by
the recipients to efficiently reconnect to other peers which have signalled that they

have resolved the problem.

4.2.3 Forward Error Correction

The use of FEC in a P2P media streaming poses new requirements for the system
design. It is possible to send the FEC data out-of-band using TCP before actual
media streaming like in [45]. This kind of solution which separates the FEC packets
from the original media packets and creates FEC packets when the media content
is created is far from being the most optimal solution. However, the paper claims
that traditional packet retransmission is not a suitable packet loss recovery method in
P2P media streaming, and therefore FEC is preferred. On the other hand, based on
a mathematical analysis a threshold value based on the network load is proposed for

switching from the FEC usage to packet retransmissions to avoid congestion because

54 4. Reliability

of FEC overhead.

A better approach is to put FEC layer between transport layer and application layer as
specified in [6] for the streaming delivery method or in [71] for multicast-based video
delivery over Wireless Local Area Networks (WLANs). The FEC encoding block
size is very important when FEC encoding and decoding are done on-the-fly. With a
large block size FEC decoding might introduce too much extra delay, in addition to
the normal buffering delay, compared with streaming without FEC. However, FEC
provides fast packet loss recovery and with appropriate block size, i.e., some fraction
of the buffer size, FEC can be efficiently used to enhance user experience in P2P
media streaming. On the other hand, unnecessary FEC overhead eats up bandwidth
which could be also used to provide more source bytes to improve the stream quality

to clients that experience less losses than the lost bandwidth.

Another obstacle in a multi-source P2P environment is how to divide FEC data gener-
ation among source peers. In the simplest model, all source peers will generate FEC
data based on the whole block and the requesting peer will request the same packet(s)
for all blocks from the same peer, for example packet number one for from peer one,
packet number two from peer two and so on, like in [39, 137]. The receiving peer
can reconstruct the block when it has received k packets from different peers. In this
kind solution, the missing packets can be fully recovered when the number of leaving
peers plus the number of lost packets is smaller than n — k. However, the number of
candidate source peers can be limited if a high number of peers suffer from a high
packet loss ratio and are not able to recover the block and produce an FEC encoding
block for sharing purposes. It might be also possible to store only a subset of the
generated FEC packets, in addition to the original media packets which are needed
for the local playback, if the amount of peers in a streaming service is reasonably

high to ensure the FEC data availability from multiple peers in every situation.

It is obvious that more advanced model for FEC data generation among source peers
is needed. One possibility, discussed in our project meetings, could be a distributed
Reed-Solomon FEC code where the generator matrix is split among peers and each
peer generates FEC symbols based on different part of the source block. However,
both mathematical analysis and implementation level verification are needed to show
that it is possible to recover the block with one FEC decoding on the receiving side
even though different generator matrices are used on the sending side. Some hints

towards an advanced model can be also retrieved from [69], where Reed-Solomon

4.2. Peer-to-Peer Media Streaming Applications 55

erasure resilient codes system is designed to operate in a P2P networking environ-
ment. However, in this system the number of FEC symbols is much larger than the
number of source symbols, which might introduce too much overhead from the P2P

media streaming point of view.

4.2.4 Summary

As mentioned earlier all presented mechanism can be used to achieve the wanted
reliability level or user experience in P2P media streaming applications. Packet in-
terleaving is however not studied in detail in this Thesis. This is due to the fact that
packet interleaving is not alone sufficient in a video streaming system, like presented
in [P6]. Additionally, the needed RTP operations in [P6] are provided by slightly
extended GNU ccRTP library [40] and this kind of feature is not provided in the
library.

Laboratory tests with the RTSP-based packet loss recovery mechanism, presented in
[P7], have shown that it is beneficial to try to ensure seamless media playback using
packet retransmissions. With churning peers, few packets remain lost with the packet
loss recovery. This loss is due to the fact that also some of the selected new source
peers departs before sending all of the requested missing packets and the small ten
seconds initial buffering time does not allow to request some of the missing packets
again. With a 1% uniformly distributed packet loss, retransmitted packets are also
affected by the packet loss which causes some amount of packets to remain lost also
with the packet loss recovery. Full implementation level support for the two-stage
packet loss recovery mechanism is still needed to be able to verify the operation of
the packet loss recovery mechanism and to be able to fine tune all parameters in the

system to maximize the quality and minimize the data delivered in the network.

FEC is especially useful in the unidirectional transmission, when no feedback chan-
nel can be used to inform the sender about packet losses, or when there is a low-
latency requirement and the initial buffering time is very small in order to allow fast
playback at the receiving end. Small initial buffering time gives less time to react to
changing network conditions and there might not be enough time for packet retrans-
missions, requiring other means to provide robustness against packet losses. The use
of FEC in a P2P media streaming is only shortly discussed in this Thesis based on a

preliminary study. However, FEC could improve the robustness against packet losses

56 4. Reliability

in the proposed RTSP-based mobile P2P media streaming system [P6], [P7] and is

therefore an interesting topic for the future developments.

An additional way to provide robustness against packet losses in a P2P media stream-
ing environment is to utilise application layer network coding. Network coding [10]
has been originally proposed to enhance multicast delivery, and its suitability for P2P
media streaming is studied for example in [131] and [72]. Network coding is not
further studied in this Thesis, but it would be interesting to see is it possible and ben-
eficial to integrate application layer network coding to the RTSP-based mobile P2P
media streaming system proposed in [P6].

S. SCALABILITY

Traditional content delivery based on the client-server model will easily overload the
delivery network and hence more scalable solutions should be utilized in a large-
scale content delivery. On the file delivery side it is possible to enhance scalability
by using IP multicast, which however requires application layer packet loss recovery.
The use of FEC codes is a classical solution to improve the reliability of multicast and
broadcast transmissions over a packet erasure channel. However, FEC encoding on-
the-fly increases the load of the server and it may decrease the overall performance

of the file delivery system.

Scalability is also problem in a P2P networks. A P2P overlay network should be con-
structed in a self-organized manner, taking location awareness into account, to scale
well in the dynamic network conditions. Scalability in the P2P overlay maintenance,
in order to follow the dynamic network conditions, is often achieved with the decen-
tralized distribution of the key components among participating peers to prevent a
single point of failure types problems when unexpected peer departures occur. Data
partitioning is another important scalability issue especially in P2P media streaming
applications. When a peer joins the P2P media streaming service, it should be able
to provide upload capacity, instead of only downloading the data, regardless of its
available upload bandwidth.

Next, a couple of ways to enhance scalability in a large-scale content delivery are
presented. First storage format for pre-composed source symbols and pre-calculated
FEC symbols to avoid source symbol construction and FEC encoding on-the-fly in
a file delivery server is highlighted in Section 5.1. After that some important as-
pects which can be used to provide more scalable P2P media streaming systems are

discussed in Sections 5.2 and 5.3.

58 5. Scalability

5.1 FLUTE Server File Format

The media container file format is an important element in the chain of multime-
dia content creation, manipulation, transmission and consumption. The file format
comprises means of organizing the generated bit stream in such way that it can be ac-
cessed for local decoding and playback, transferred as a file, or streamed, all utilizing
a variety of storage and transport architectures. The ISO base media file format [55]
is a base format for many different media file formats. For example MP4 file format,
Advanced Video Coding (AVC) file format [54] and 3GPP file format [7] are based

on the ISO base media file format.

The ISO base media file consists of metadata and media data that are enclosed in
separate boxes, the movie box (moov) and the media data box (mdat), respectively.
The movie box may contain one or more tracks and each track resides in one trak
box. A media track refers to samples formatted according to a media compression
format and its encapsulation to the ISO base media file format. A hint track refers
to hint samples, containing cookbook instructions for constructing packets for trans-
mission over an indicated communication protocol. In addition to timed tracks, the
ISO base media file can contain any non-timed binary items. The meta box may list
and characterize any number of binary items that can be referred to and each one of

them can be associated with a file name and unique item identifier.

The FLUTE server file format consists of features that are a part of Edition 3 of the
ISO base media file format and Amendment 1 for it [56]. Files intended for the de-
livery are partitioned into several source blocks, and each source block is then stored
as a file reservoir item in a media container file. For each source block additional
FEC symbols can be pre-computed and stored as a FEC reservoir item. The actual
transmission is controlled by File Delivery (FD) hint tracks containing instructions
that ease the encapsulation of source and FEC symbols into FLUTE packets.

Fig. 16 shows an example media container file with one source file. In this example,
each source block consists of more than one sub-block, so a source symbol is not
a contiguous portion of the source file. Consequently, it is not possible to include
source symbols by reference to the original source file. Instead, the media container
file contains three file reservoirs labelled File reservoir 1, 2, and N, and an equal
number of FEC reservoirs labelled FEC reservoir 1, 2, and M. In a general case, any

number N file reservoirs and M FEC reservoirs can be stored in a media container

5.1. FLUTE Server File Format 59

MEDIA CONTAINER FILE

mdat meta
‘FILE RESERVOIR N ‘FEC RESERVOIR M
‘FILE RESERVOIR 2 ‘ FEC RESERVOIR 2
FILE RESERVOIR 1 FEC RESERVOIR 1
\ ORIGINAL
FILE FILE
PROPERTY
TABLE
HINT HINT HINT HINT HINT
SAMPLE 1 SAMPLE 2 SAMPLE 3 | | SAMPLE 4 SAMPLE P
moov trak trak trak
HINT TRACK 1 HINT TRACK 2 HINT TRACK R

Fig. 16. An example media container file

file, and typically N = M. When the media container file is formatted according to
the ISO base media file format, each file reservoir and FEC reservoir is a binary item
of the ISO base media file format.

The file property table can be formatted similarly to the FD Item Information Box of
the ISO base media file format. It contains an association meta data to identify items
that are file reservoirs and items that are FEC reservoirs. In addition, the association
meta data logically links each respective pair of a file reservoir and FEC reservoir
with each other, i.e., the source symbols of a source blocks and the FEC symbols
derived from the source block. In practice, the association meta data can be a loop or
a table of partition entries as described subsequently.

The media container file may additionally comprise any number of hint tracks for
instructing in deriving packets from file and FEC reservoirs for file delivery. The hint
tracks can be formatted according to the FD hint tracks of the ISO base media file
format. File and FEC reservoirs can be used independently of FD hint tracks and vice
versa. The reservoirs aid the design of hint tracks and allow alternative hint tracks, for
example with different FEC overheads, to re-use the same FEC symbols. They also
provide means to access source symbols and additional FEC symbols independently
for post-delivery repair, which may be performed over FLUTE or out-of-band via
another protocol. In order to reduce complexity when a server follows hint track

instructions, hint samples refer directly to the data ranges of the items to be copied

60 5. Scalability

into the hint samples.

The support for file delivery is designed to optimize the server transmission process
by enabling FLUTE servers to follow simple instructions. It is enough to follow one
pre-defined sequence of instructions per channel in order to transmit one session. The
file format allows storage of alternative FLUTE transmission session instructions that
may lead to equivalent end results. Such alternatives may be intended for different
channel conditions because of higher FEC protection or even by using different FEC

schemes.

The prototype implementation for a reliable, server-friendly and bandwidth-efficient
file delivery system using the FLUTE server file format is presented in [P5]. The pro-
totype system has been used both to evaluate the FLUTE server file format specifica-
tion during the standardization process and to study the performance issues relating to
the on-the-fly source block partitioning and FEC encoding. The impact of a system-
atic on-the-fly source block partitioning has been studied using Compact No-Code
FEC scheme, Reed-Solomon FEC measurements demonstrate the FEC encoding ef-
fect when the source block size is relatively small and Raptor FEC measurements

show how large source block sizes affect on-the-fly FEC encoding.

5.2 Clustered Overlay Structure

In P2P content distribution, an overlay network is created at the application layer in
order to transfer the actual content among peers in the network. A random mesh-
based overlay architecture, like in [142] and [84], provides flexibility for handling
peer departures, but good general connectivity between peers is not usually achieved.
There have been many studies about how to organize peers in an efficient and scalable
way. In [126] receivers are organized into a hierarchy of bounded-size clusters and
the multicast tree is built based on that. In [70] peers are organized into a directed
acyclic graph to enable peers to obtain locality awareness in a distributed fashion. To
improve the file sharing performance of the BitTorrent protocol, Clustered BitTorrent
(CBT) concept where peers are grouped into clusters according to their proximity is

proposed in [140].

Fig. 17 presents an example architecture of a CBT overlay network. The CBT overlay

network is composed of a tracker and three distinct types of peers: super-peer, seeder

5.2. Clustered Overlay Structure 61

Cluster 1
(Fundamental cluster)

U

Fig. 17. Example architecture of a CBT overlay network

and leecher. The tracker has normal BitTorrent functionality and acts as a super-peer
in the fundamental cluster. Periodical monitoring of the super-peer backbone net-
work, to be able to provide precise information for new peers joining the network,
is also tracker’s responsibility. The super-peer acts as a cluster head, and collects
and maintains the state information about all peers in a cluster. Section 5 in [140]
presents simulation results to evaluate the proposed system against the original Bit-
Torrent approach. These simulations showed that the CBT system can achieve faster
download speed and higher file availability compared with the original system. How-
ever, because the lack of CBT implementation large-scale field testing is not possible

and simulation results cannot be verified in the real environment.

Similar cluster based overlay network structure for real-time P2P media streaming
services is proposed in [P6]. Peers are grouped into clusters according to their prox-

imity in order to efficiently exchange data between peers. For VoD streaming ser-

62 5. Scalability

Cluster 2 Cluster 3

_______ Overlay update

— — Neighboring
cluster connection

Data connection

Fig. 18. Example overlay architecture for P2P media streaming service

vices, the clusters could be constructed for example based on the interest level for
certain pieces of data, so that the peers watching the same part of a video at the same
time belong to the same cluster. In live streaming services a cluster can be formed
only based on the proximity of peers because all peers are interested in the same data
pieces within the same time window. Clusters will also help with scalability issues
of peer maintenance. Peers inside a cluster are considered being close to each other

and thus communication between peers can be done more efficiently.

The architecture of the overlay network with three clusters sharing a certain streaming
service, such as a live stream channel or a VoD movie, is presented in Fig. 18. The
cluster concept is implemented with the help of Cluster Leaders (CLs). There is
one CL assigned to each cluster with the possibility for one or more Backup Cluster
Leaders (BCLs). CLs are used to manage peers inside the cluster and to connect new
arriving peers. A new arriving peer can select a suitable cluster according to its best

knowledge of locality using RTT values between CLs and itself.

5.2. Clustered Overlay Structure 63

In addition to RTT measurements, location awareness could be also based on for ex-
ample IP level hop count [28], geographic location [124] or some combination of
these three mentioned metrics [140]. IP level hop count is not alone suitable for
proximity metric, since with Virtual Private Networks (VPNs) or other tunnelling
techniques one hop might actually consist of a large number of hops and the distance
could be quite long. Nor does small IP level hop count guarantee small delay, be-
cause it does not take connection speed into account. Geographic location is also
problematic in the IP level point of view because even if peers are geographically
close to each other, the IP level routing path could circulate through a distant router.

Hence, only RTT values are used in the system for proximity checks.

It should be noted that for every different streaming service such an overlay network
is maintained separately. The Service Discovery Server (SDS) is a central non-mobile
server containing information about the cluster hierarchy and the available streaming
services in the system. All overlay network operations in the system are implemented
using extended RTSP messages. More information about the used RTSP messages
and an example message exchange when a peer is participating in a particular service
is available in [P6].

One important issue with the clustered overlay architecture is the overlay mainte-
nance. When the CL leaves the streaming service, it needs to be replaced by one of
the BCLs. If a cluster does not have an active CL, new peers cannot be accepted into
the streaming service. However, this does not affect the data streaming connections
between existing peers, because streaming and overlay connections are independent.
The merging of two clusters must be done when a cluster becomes too small. If the
number of peers is too small, a new joining peer will get a very small list of data
sources which makes the functionality less reliable when one of these peers leaves
the service. When the cluster grows too large to be handled by a single CL, the cluster
should be split into two separate clusters. The existing CL assigns one of its BCLs to
become a new CL for the new cluster, and redirects a number of existing peers to the
new cluster. This cluster change will not affect the existing data streaming connec-
tions and a new joining peer can still prioritize connections within the new cluster.
However, new peers should establish data streaming connections also between peers
that are located in different clusters to ensure that the new cluster does not become

separate island if all “original” peers leave the streaming service.

In this kind of streaming network, where most of the peers are from the same cluster,

64 5. Scalability

some kind of intelligence to avoid loops is needed. Such loops occur when a sender
starts receiving its own data via a number of intermediate peers in the mesh network.
Loop detection and/or avoidance mechanism based on the list of ancestors is pro-
posed in [15] and [25]. Similarly, an algorithm based on a streaming path in the form
of list of ancestors is used also in [P6]. The path for the data stream in the application
level containing peer identifiers which have forwarded the stream is delivered using
the Contributing Source (CSRC) list in the RTP packets. This list is then used to
avoid accepting connections from peers who are already in the list and for dropping
connections if a peer notices that it is in the list.

The main focus in the current system is in the maintenance of the streaming service
and the clustered overlay network when malicious interruptions are not considered.
However, all P2P systems may suffer from attacks and opportunistic behaviours.
Thus, it is quite obvious that a selfish peer can affect and interrupt the expected
functioning of the proposed P2P streaming system. Resilience against attacks has
not been studied in [P6] or in [P7], so this direction may form the basis for another

thesis as a logical continuation for the proof-of-concept implementation work.

5.3 Multiple Stream Approach

Fig. 19 presents a tree layout for a P2P overlay network with the multiple stream ap-
proach. A single stream is divided into several descriptions (three descriptions in the
figure) and each of the descriptions are then forwarded separately to the network. In
this approach a peer receiving all of the descriptions can reconstruct the full quality
original stream. If a peer sending out one description leaves the network, the over-
all stream quality will not collapse remarkably because satisfactory quality can be
achieved from the descriptions that still exist. If Peer 8 for example leaves the net-
work, it affects only Peer 4 and Peer 9, which still are able to play out the stream with

the descriptions that still exist during the replacement peer search.

The multiple stream approach helps also to relieve the churning phenomenon. In
churning, multiple (probably hundreds) peers rapidly attach and detach the network
within a short period of time, making streams rapidly available and unavailable. If we
compare the multiple stream approach to the single stream approach in a churning,
we avoid the following problematic case. Suppose that a peer sending out full stream

leaves the network. If it is the only provider for that stream, the reception of the

65

5.3. Multiple Stream Approach

SwpaAls 2]dynuL Yim y10mM3au KpJ12ao Jzd pasvq-2a4f 61 “S1d

6 199d 0L Je8d / Je8d

\
gleed 9ledd \gledd ziead 6I89d ¢ ue p18dd Gueed 9 199d L 193d
. . /. \ f- 3 K \
(N \ / ;
v v/ A Py
Z 100 @m Jaad

80In0g

66 5. Scalability

Tc=NxTp=24
Time
-------- =} O (= Oo—4—a—4—-8 & =} O =} (=} Oo—4—8——848 L i
2 5 8 1" 14 17 20 23 26 29 32 35 38 41 44 47 Timestamp
Te=6
—
N J

|:| RTP packet . Partial0
IZ' Partial 1
- - - - Partial 2
Partial 3

Fig. 20. RTP stream partitioning

stream will be cut off from all the peers listening the stream sent by the detached
peer. Hence, a large amount of peers joining and departing the network in a single

stream system may cause a full loss of stream at times.

For this kind of stream partitioning, there are already some well performing solu-
tions available, such as Multiple Description Coding (MDC) [42] or Scalable Video
Coding (SVC) [119] [57], but with the lack of a publicly available implementation.
However, the usage of MDC or SVC in the real-time P2P media streaming is an in-
teresting research area as is proposed also in [84] and [86]. Multiple stream approach
based on MDC or SVC allows also clients with a low throughput access network
connection to play out the stream with the smaller amount of descriptions, like Peer
8 in Fig. 19, and the overall quality of the stream increases.

Because of the lack of a publicly available MDC or SVC implementation and in
order to have unique sending slots for each of the sending peers, a partial RTP stream
concept for RTSP-based mobile P2P media streaming system is presented in [P6].
The original RTP sessions related to a media delivery are split into a number of so-
called partial streams according to a pre-defined set of parameters in such a way that
it allows low-complexity re-assembly of the original media session in real-time at the

receiving end.

Assuming a time line of a single RTP session, such as audio, video or subtitle stream
of the entire multimedia session, RTP stream partitioning is illustrated in Fig. 20. An
RTP session is split into smaller pieces, each consisting of a group of RTP packets,
along the time axis. Every piece has a fixed duration 7p which is expressed in time

(illustrated by different colours in the figure). The N partial streams are constructed

5.3. Multiple Stream Approach 67

Fig. 21. FPartial RTP stream delivery

by assigning pieces sequentially one by one into the partial streams 0...N-1 and then
continuing again with partial stream 0, so Tc = N * Tp is used to denote the cycle
time. It should be noted that the piece duration 7p should be selected in such a way
that it is large enough to contain at least one RTP packet on average. If it is chosen
too small, not every piece will have data, which may in the extreme case lead to
an empty partial stream. On the other hand, larger cycle times lead to longer start-
up times, since at least one complete cycle needs to be buffered before seamless
playback can be guaranteed. RTP timestamps and sequence numbers are generated
by the original data source and those are delivered unchanged within the streaming
service. Due to this RTP packets from multiple partial streams can be reassembled in
the correct sequence order at each peer for the local playback and individual packets

can be uniquely identified within the streaming service.

A peer may request the delivery of one or more partial streams from another peer.
A partial stream is the smallest granularity for media streaming, i.e., a peer may
not stream a fraction of a partial stream, and the number of partial streams can be
tuned to achieve the target bit rate of a partial stream. Each peer in the network
should have enough uplink bandwidth to be able to stream at least a single partial
stream; hence the partial stream concept will help in utilizing the upload capacity
with finer granularity than just per one original stream. This is beneficial in mobile

environments where bandwidth can be scarce.

Fig. 21 illustrates media delivery among four peers. Arrows between each peer de-

68 5. Scalability

note an active RTP session and the direction defines the data flow direction. A sourc-
ing peer can send multiple partial streams to a particular receiving peer. These multi-
ple partial streams could either be streamed in a single RTP session or separate RTP
sessions. Peers in the figure are numbered and coloured. The smaller the number
is, the earlier the peer has joined the network; in this case peer number one is the
original data source. Different colours in the peers buffers show the origin of the
received data. For simplicity, the value four is used for the number of partials for
each peer. However, the number of partial streams does not necessarily need to be
constant throughout the P2P network within a particular streaming service. In the
figure peer number two is receiving all partials from the original data source, that is,
peer number one, and is forwarding partials to peers number three, four, and five.
Peer number four is also receiving partials from peer number three, and peer number
five from peers number three and four. More information about the media delivery
and data buffering is available in [P6].

Multiple stream approach is also a potential way for implementing an incentive mech-
anism [96] in a P2P media streaming network. The incentive mechanism can be
considered similar to scoring in traditional P2P file sharing networks, where the up-
loading peers are scored by the amount of data they upload. The better score a peer
has, the more privileged are the peer’s download opportunities. In a streaming net-
work, a peer uploading more streams has better score, thus being entitled to download
more streams and getting a higher quality stream itself. For example, for every up-
loaded stream, a peer is entitled to download one stream, thus avoiding free-riding
and enabling fairness among the peers in the network. However, since system wide
download and upload rates match each other, there must be enough peers on the net-
work to provide all download bandwidth by uploading the content.

5.4 Summary

As mentioned earlier in this Thesis multicast or broadcast delivery can be used to
serve very large user groups without overloading server and network resources. How-
ever, multicast-based unreliable content delivery requires application layer mecha-
nisms to handle packet losses which might compromise the scalability of the file
delivery system in some cases. One way to decrease the load of the content delivery

and file repair servers is to use FLUTE server file format presented in this Thesis.

5.4. Summary 69

The results from the performance measurements using the FLUTE server file format,
presented in [P5], showed that the sending time stayed essentially the same regard-
less of the usage of the media container file with the Compact-No Code FEC and
the Reed-Solomon FEC schemes when the maximum source block size is relatively
small. However, if a large number of FLUTE receivers are not able to reconstruct
the source file completely after the multicast/broadcast file transfer session has been
completed, the file repair server might be the bottleneck if media container files are
not used. With the FLUTE server file format it is also possible to have a lightweight
file repair server, without any FEC capabilities, since the file repair server can use
compiling instructions, meta data, and reservoir items to compile the requested data

packet set.

The results also showed the importance of avoiding on-the-fly FEC encoding with
Raptor FEC. Already with a 100 kB source file, when there is one source block with
1024 source symbols, on-the-fly FEC encoding and sending takes roughly two sec-
onds more compared with the media container file usage. It should be however noted
that the used Raptor FEC library might be optimized to perform the FEC encod-
ing faster and to be somehow appropriate for on-the-fly FEC encoding. There exist
also other large source block FEC schemes, like LDPC Staircase, which might be
appropriate for on-the-fly FEC encoding. To be able to verify this, LDPC Staircase
codec available at [94] could be integrated into the current prototype implementation.
However, with large source block sizes the file delivery system is much more resistant

against burst errors and ought to require less overhead for similar performance.

In P2P content distribution, overlay network structure is very important from the scal-
ability point of view. A random mesh-based overlay architecture provides flexibility
for handling peer departures, but good general connectivity between peers is not usu-
ally achieved. In this Thesis cluster based overlay network structure for real-time P2P
media streaming services is proposed. Peers are grouped into clusters according to
their proximity in order to efficiently exchange data between peers and to help with
the scalability issues of peer maintenance. Performance evaluation in the laboratory
network environment, presented in [P6], has shown that the RTSP signalling over-
head needed for the maintenance of the streaming service and the clustered overlay

network is quite minimal in comparison with the actual media data.

Another important scalability issue in a P2P media streaming, especially in the mo-

bile networking environment, is the partitioning of the original multimedia data into

70 5. Scalability

smaller parts. The partial RTP stream concept presented in this Thesis allows low-
com-plexity re-assembly of the original media session on the receiving side and also
help in utilizing the upload capacity with finer granularity than just per one original
stream. In addition, the partial RTP stream concept has enabled a fast proof-of-
concept implementation due to its low-complexity. However, in order to receive a
complete stream, a peer must receive all partial streams in contrast to MDC or SVC
when one or more descriptions can be lost. On the other hand, overall system design
makes it possible to integrate MDC or SVC implementation into the system as soon
as such an implementation becomes publicly available.

First laboratory tests together with the tests in the mobile networking environment,
presented in [P6], have shown that the current implementation performs well and
offers very low initial buffering times. However, more advanced laboratory tests with
different latencies, throughputs and packet losses between peers are still needed to
highlight system bottlenecks and usability issues.

6. CONCLUSIONS

The distribution of all kind of digital content is increasingly becoming the primary
task of IP-based networks. While the emphasis on P2P file sharing was previously
on the exchange of MPEG-1 Audio Layer 3 (MP3) [51] music files with the size of
3-8 MB, the size of files being traded on BitTorrent often exceeds 500 MB [17,106].
Considering a realistic usage scenario, the delivery of one million copies of one DVD
film (size 5 GB) in the P2P network during a period of one month creates an average
capacity requirement of 15 Gbps to the distributed delivery system. It is easy to
see that a more optimal use of the network capacity is desperately needed; including
broadcast and currently unutilized multicast solutions, preferably augmented by P2P-
based techniques as is proposed in [P2].

During the previous few years there has been a growing interest in the use of P2P
technologies for deploying large-scale live media streaming systems over the Inter-
net. P2P media streaming applications allow end-users to broadcast content through-
out the Internet in real-time without the need for any special infrastructure, since the
user’s device, together with all other peers, collectively forms the infrastructure. In
the future, possibly due to the PPSP IETF working group, when there are lots of in-
teroperable P2P media streaming applications which can be used any time regardless
of the location, with a huge amount of popular channels, it would be possible that the
dominant position of the traditional broadcast television is challenged.

This Thesis studies large-scale content delivery over the Internet Protocol and the
target is to create enabling tools for content providers, service providers, network
operators and end users to help the distribution and use of all kind of digital content.
The research work presented in this Thesis can be divided into two separate areas,
(a) file delivery to large user population, and (b) real-time P2P media streaming in a
mobile networking environment, focusing on several problems and obstacles which

have to be taken into account in order to gain massive public support for the content

72 6. Conclusions

delivery system.

Application developers should design the system so that it can scale to large hetero-
geneous user population and be able to provide good QoS/QoE. Service providers are
of course very interested in all the features provided by the application, but one of the
most critical challenges from the service provider’s point of view is the content itself;
since after selecting the used application it can be used within its limits. Major prob-
lems and obstacles to the average end user deal with service discovery and service
availability. It is also very important to take usability into account when designing
the application and the service, since the effective spreading of new content delivery

techniques requires easy to access and easy to use services.

6.1 Main Results

The main results of the research work are several prototype or proof-of-concept im-
plementations for both aforementioned research areas. MAD-FLUTE [83] was the
first open source FLUTE implementation and it has been utilized around the world for
different purposes, for example in IP version 6 (IPv6) SSM testing [129] in a large-
scale international IPv6 pilot network [9] and in DVB-H piloting [102]. The Delco
content delivery system combined multicast and P2P techniques in a novel way and it
is still an exciting and potentially fundamental step in the deployment of large-scale
content delivery systems. In addition to these publicly available implementations lot
of research and implementation work has been required for the proprietary proto-
type implementations for file delivery system using FLUTE server file format and for

real-time P2P streaming application.

The main research topics have been reliability and scalability. On the file delivery
side it is possible to enhance scalability by using IP multicast, which serves large user
population without overloading network resources. However, multicast-based unre-
liable content delivery requires that packet loss recovery is done at the application
layer. As it is shown in this Thesis, there are a lot of options for the service provider
how to provide reliability in a large-scale file delivery. FEC data carousel will be the
best choice for most cases when the total amount of data which is transmitted in the
delivery system is used as a critical factor. On the other hand, the service provider
could also favour a plain data carousel with P2P file repair, since most of the repair

data will be exchanged between clients and maybe only one carousel cycle is enough

6.1. Main Results 73

to deliver sufficient amount of the data among the clients. However, application layer
packet loss recovery mechanisms might compromise the scalability of the content
delivery system in some cases. One way to decrease the load of the content delivery
and file repair servers is to use FLUTE server file format for pre-composed source
symbols and pre-calculated FEC symbols to avoid source symbol construction and
FEC encoding on-the-fly.

In P2P content distribution, overlay network structure is very important from the
scalability point of view. In this Thesis cluster based overlay network structure for
real-time P2P media streaming services is proposed. Peers are grouped into clusters
according to their proximity in order to efficiently exchange data between peers and
to help with the scalability issues of peer maintenance. Another important scalability
issue in a P2P media streaming, especially in mobile networking environment, is the
partitioning of the original multimedia data into smaller parts. This Thesis presents a
partial RTP stream concept which allows low-complexity re-assembly of the original
media session on the receiving side. Performance evaluation in the laboratory net-
work environment together with the tests in the mobile environment have shown that
the current implementation performs well and offers very low initial buffering times
compared with most of the other existing P2P media streaming systems. In addition,
RTSP signalling overhead needed for the maintenance of the streaming service and

the clustered overlay network is quite minimal compared wth the actual media data.

Seamless media playback in the real-time P2P media streaming is one of the most
important issues from the user point of view. This Thesis introduces several tech-
niques that can be used to provide good user experience, but the main focus is in
packet retransmissions based on RTCP and RTSP protocols. Performance evaluation
with the RTSP-based packet loss recovery mechanism has shown that it is beneficial
to try to ensure seamless media playback using packet retransmissions. The increase
in the RTSP signalling overhead is quite small but the improvement is noticeable.
However, full implementation level support for the proposed two-stage packet loss
recovery mechanism is still needed to be able to verify the operation of the proposed

recovery mechanism.

This Thesis provides separate prototype or proof-of-concept implementations for file-
based and streaming-based content delivery. However, it would be worth to study is
it feasible to have a single application for file-based and streaming-based content

delivery and what kind of trade-offs in repair mechanisms in such an application

74 6. Conclusions

could be done.

6.2 Future Development

The author of this Thesis sees three logical directions for the future development.
Firstly, in the file delivery side the FLUTE server file format concept introduced
in [P5] could be combined also to the Delco system presented in [P2]. FEC is not
currently used in the Delco system since clients will use P2P delivery to complete
the multicast delivery if needed. However, by finding the optimal combination of
repeat transmissions and FEC during the multicast transmission period, the amount
of clients with a full copy of the file will be higher, simultaneously decreasing the
total amount of system-wide data required for successful file delivery to very large
user population. On the other hand, FEC encoding on-the-fly increases the load of
the server and it may decrease the overall performance of the file delivery system.
By using the FLUTE server file format, this extra server load can be avoided and the

overall system performance increased.

Secondly, the real-time P2P media streaming system for the mobile networking envi-
ronment presented in [P6] and [P7], could be enhanced with several error robustness
techniques, such as FEC and multiple stream approach based on MDC or SVC, in
addition to the current mechanisms based on packet retransmissions and peer replace-
ment before the reception buffer underflows. FEC provides fast packet loss recovery,
but with inappropriate encoding block size it might introduce too much extra delay,
in addition to the normal buffering delay. The multiple stream approach based on
MDC or SVC provides two important features for the end user. If a peer providing
one description leaves the network, it is not so critical to retrieve a replacement peer
quickly, since satisfactory quality can be achieved from the descriptions that still exist
and it is possible return to the full quality original stream when all of the descriptions
are again available. Peers with low throughput access network connections are also
able to play out the stream by using only a suitable number of descriptions and the
overall quality of the stream increases.

Thirdly, one interesting research area is the integration of P2P media streaming into
the social networking to provide one way to share real-time video clips to a limited
user group, i.e., to your friends in the social network. This kind of concept for de-

livering user generated content to a restricted user group is also proposed in [P4]. In

6.2. Future Development 75

the latter case, the delivery is based on the service provider’s broadcast network in
comparison with broadcasting the content throughout the IP-based network without

the need for any special infrastructure in the former case.

In addition to the aforementioned directions, building blocks provided by this Thesis
can be used as a part of other kind of content delivery systems. At the time of writing
this Thesis, CDN systems are mainly used to replicate all kind of pre-stored con-
tent, like objects embedded in the WWW pages, files, user generated non-real time
media streams and VoD content, near to the users to maximize the available band-
width for accessing the content in a client-server manner. CDN servers are typically
located at the edge or access networks so by combining the CDN system to a local
FLUTE-based file delivery the data delivered in the core network can be minimized
and benefits from multicast-based content delivery can be achieved without support
for the multicast delivery in the core network. It might be also feasible to integrate
CDN and P2P technologies in a media streaming system, as is studied for example
in [73,138]. However, content replication in the current CDN systems is typically
done prior to the consumption, so there might be scalability issues if the replication

to hundreds or thousands of CDN servers has to be done in real-time.

Content delivery in this Thesis is based on a server-centric paradigm, where users
have references to specific, physical locations where the content (or part of it) can be
retrieved from. At the time of writing this Thesis, lots of efforts have been allocated
to changing this paradigm into an information-centric or content-centric view. In this
new approach, applications will interact with the communication network using a
simple request/reply abstraction and the communication network is then responsible
for routing the request towards the nearest provider that can offer the content. So, the
fundamental principle is that the communication network should allow a user to focus
on the content he or she needs without knowing specific locations where the content
is actually stored. It will be interesting to see whether this new approach is gaining
ground in the near future or is the old server-centric paradigm slightly modified to

support changing usage patterns better.

76

6. Conclusions

APPENDIX A
ERRATA

We all occasionally make mistakes. The errata below list the mistakes that exist in

the published papers.

e [P3] Jani Peltotalo, Jarmo Harju, Alex Jantunen, Marko Saukko, Lassi V&iti-
moinen, Igor D.D. Curcio, Imed Bouazizi, and Miska M. Hannuksela, “Peer-
to-Peer Streaming Technology Survey,” in Proceeding of the Seventh Interna-
tional Conference on Networking (ICN 2008), Cancun, Mexico, April 13-18
2008, pp. 342-350. doi:10.1109/ICN.2008.86

Remarks

In Section 6, last paragraph, Advanced Video Coding (AVC) should be Scal-
able Video Coding (SVC), which is the scalable extension of AVC included in
the Fifth edition of the AVC specification. Accordingly reference [2] should

have been:

H. Schwarz, D. Marpe, and T. Wiegand, Overview of the Scalable Video Cod-
ing Extension of the H.264/AVC Standard, IEEE Transactions on Circuits and
Systems for Video Technology, vol. 17, no. 9, pp. 1103-1120, Sep. 2007.

At the time of writing this Thesis, SVC is also included in the following
ISO/IEC specification:

ISO/IEC, Information technology — Coding of audio-visual objects — Part 10:
Advanced Video Coding, International Organization for Standardization / In-
ternational Electrotechnical Commission (ISO/IEC), ISO/IEC 14496-10:2009,
Fifth Edition, May 2009.

e [P5] Jani Peltotalo, Jarmo Harju, and Miska M. Hannuksela, “Reliable, Server-
Friendly and Bandwidth-Efficient File Delivery System using FLUTE Server

78

Appendix A

File Format,” in Proceedings of the IEEE International Symposium on Broad-
band Multimedia Systems and Broadcasting 2009 (BMSB2009), Bilbao, Spain,
May 13-15 2009, pp. 1-6. doi:10.1109/ISBMSB.2009.5133753

Remarks
In Section III, Raptor FEC is also a systematic FEC code in a sense that the
encoding symbols include the original source symbols composed from the sub-
symbols by the FEC encoder. Updated explanation is available in Subsec-
tion 4.1.2.

APPENDIX B
EXISTING PEER-TO-PEER MEDIA STREAMING SYSTEMS

Table B.1 summarises existing P2P media streaming systems which were active (at
least have a working home page from a Finnish IP address) in September 2010. Sys-
tems are also labelled with live and/or VoD tags, but this labelling might be incorrect
with some of the listed systems. Only a small subset of the systems have been tested
and all systems do not have an English version of the home page, so also additional

information available in the Internet has been used in the labelling.

Table B.1. Existing P2P media streaming systems

Software Home Page Live VoD
Abacast http://www.abacast.com/ X X
ACTLab TV http://www.actlab.tv/ X
Afreeca http://afreeca.com/ X
AllCast http://www.allcast.com/ X
BitTorrent DNA http://www.bittorrent.com/dna/ X
CloneCast http://clonecast.free.fr/ X
Coolstreaming Mediacenter http://www.coolstreaming.us/hp.php?lang=en X
End System Multicast http://esm.cs.cmu.edu/ X
Freecast http://www.freecast.org/ X
Global Media Services http://globalmediaservices.net/ X
Itiva http://www.itiva.com/ X X
Joost http://www.joost.com/ X
MaxTV http://www.max-tv.be/?Ing=en X
Mediazone http://www.mediazone.com/index.html X X
NiFTyTV Online Television http://www.niftytv.com/ X X
Nodezilla http://www.nodezilla.net/ X
Octoshape http://www.octoshape.com/ X
P2P-Radio http://p2p-radio.sourceforge.net/ X
P2PLive http://www.p2plive.net/ X
Pcast http://itv.mop.com/ X
PeerCast http://www.peercast.org/ X
Peerstream http://www.peerstream.net/ X
PPLive http://www.pptv.com/en/ X X

Continued on the next page

80

Appendix B

Table B.1. Existing P2P media streaming systems — continued from the previous page

Software Home Page Live VoD
PPStream http://ppstream.com/ X
QQLive http://live.qq.com/ X
RawFlow http://www.rawflow.com/ X
ShareCast http://www.scast.tv/scast/ X
SopCast http://www.sopcast.com/ X X
Stream-2-Stream http://s2s.sourceforge.net/ X
StreamAudio http://www.streamaudio.com/ X
StreamerOne http://www.streamerone.com/ X
Streamer P2P Radio http://www.streamerp2p.com/ X
Swarmcast http://www.swarmcast.com/ X X
Trevbus http://www.trevbus.org/ X
Tribler Streaming http://tribler.org/trac/ X
TVU networks http://www.tvunetworks.com/ X
Uusee http://www.uusee.com/ X
Vatata http://www.vatata.com/en/ X X
Veoh http://www.veoh.com/ X X
Vuze http://www.vuze.com/ X
Zattoo http://zattoo.com/ X

BIBLIOGRAPHY

[1] 3GPP, “General Universal Mobile Telecommunications System (UMTS) ar-
chitecture,” 3rd Generation Partnership Project (3GPP), TS 23.101, Dec. 2009.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/23101.htm

[2] ——, “GSM/EDGE Radio Access Network (GERAN) overall description;
Stage 2,” 3rd Generation Partnership Project (3GPP), TS 43.051, Dec. 2009.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/43051.htm

[3] ——, “Enhanced uplink; Overall description; Stage 2,” 3rd Generation
Partnership Project (3GPP), TS 25.319, Jun. 2010. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/25319.htm

[4] ——, “High Speed Downlink Packet Access (HSDPA); Overall description;
Stage 2, 3rd Generation Partnership Project (3GPP), TS 25.308, Jun. 2010.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/25308.htm

[5] ——, “Multimedia Broadcast/Multicast Service (MBMS); Architecture and
functional description,” 3rd Generation Partnership Project (3GPP), TS
23.246, Jun. 2010. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-
info/23246.htm

[6] ——, “Multimedia Broadcast/Multicast Service (MBMS); Protocols and
codecs,” 3rd Generation Partnership Project (3GPP), TS 26.346, Jun. 2010.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/26346.htm

[7] ——, “Transparent end-to-end packet switched streaming service (PSS);
3GPP file format (3GP),” 3rd Generation Partnership Project (3GPP), TS
26.244, Jun. 2010. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-
info/26244.htm

82

Bibliography

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

——, “Transparent end-to-end Packet-switched Streaming Service (PSS);
Protocols and codecs,” 3rd Generation Partnership Project (3GPP), TS
26.234, Jun. 2010. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-
info/26234.htm

6NET Home Page. (2010, Sep.). [Online]. Available: http://www.6net.org/

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204—
1216, Jul. 2000.

Akamai Home Page. (2010, Sep.). [Online]. Available:
http://www.akamai.com/

K. C. Almeroth, M. H. Ammar, and Z. Fei, “Scalable Delivery of Web Pages
Using Cyclic Best-Effort Multicast,” in Proceedings of the IEEE INFOCOM
1998, Mar. 1998, pp. 1214-1221.

J. Andren, M. Hilding, and D. Veitch, “Understanding End-to-End Internet
Traffic Dynamics,” in Proceeding of the IEEE Global Communications Con-
ference (IEEE GLOBECOM 1998), Nov. 1998, pp. 1118-1122.

G. Arora, M. Hanneghan, and M. Merabti, “P2P Commercial Digital Content

Exchange,” Electronic Commerce Research and Applications, vol. 4, no. 3, pp.
250-263, 2005.

P. Baccichet, J. Noh, E. Setton, and B. Girod, “Content-Aware P2P Video
Streaming with Low Latency,” in Proceedings of the IEEE International Con-
ference on Multimedia and Expo (ICME 2007), July 2007, pp. 400—403.

M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“The Secure Real-time Transport Protocol (SRTP),” Internet Engineering
Task Force, RFC 3711, Mar. 2004. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3711.txt

A. Bellissimo, B. N. Levine, and P. Shenoy, “Exploring the Use of BitTor-
rent as the Basis for a Large Trace Repository,” University of Massachusetts
Ambherst, Technical Report 04-41, Jun. 2004.

Bibliography 83

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier
(URI): Generic Syntax,” Internet Engineering Task Force, RFC 3986, Jan.
2005. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3986.txt

T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Locators
(URL),” Internet Engineering Task Force, RFC 1738, Dec. 1994. [Online].
Available: http://www.rfc-editor.org/rfc/rfc1738.txt

M. S. Borella, D. Swider, S. Uludag, and G. B. Brewster, “Internet Packet
Loss: Measurement and Implications for End-to-End QoS,” in Proceeding of
the 1998 International Conference on Parallel Processing (ICPP '98), Aug.
1998, pp. 3—-12.

R. Buyya, M. Pathan, and A. Vakali, Content Delivery Networks (Lecture
Notes in Electrical Engineering). Springer-Verlag Berlin Heidelberg, 2008,
vol. 9.

B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan,
“Internet Group Management Protocol, Version 3,” Internet Engineering
Task Force, RFC 3376, Oct. 2002. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3376.txt

J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “OpenPGP
Message Format,” Internet Engineering Task Force, RFC 4880, Nov. 2007.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4880.txt

G. Camarillo and IAB, ‘“Peer-to-Peer (P2P) Architecture: Definition,
Taxonomies, Examples, and Applicability,” Internet Engineering Task
Force, RFC 5694, Nov. 2009. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc5694.txt

Y.-H. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang, “Early Experience with an Internet Broadcast System based
on Overlay Multicast,” in Proceedings of the USENIX 2004 Annual Technical
Conference, 2004, pp. 155-170.

B. Cohen, “Incentives Build Robustness in BitTorrent,” in Workshop on Eco-
nomics of Peer-to-Peer Systems (P2PECON2003), Jun. 2003, pp. 116-121.

84 Bibliography

[27] ——. (2010, Sep.) The BitTorrent Protocol Specification. [Online]. Available:
http://www.bittorrent.org/beps/bep_0003.html

[28] L. Dai, Y. Cao, Y. Cui, and Y. Xue, “On Scalability of Proximity-Aware Peer-
to-Peer Streaming,” Comput. Commun., vol. 32, no. 1, pp. 144-153, 20009.

[29] S. Deering, “Host extensions for IP multicasting,” Internet Engineering
Task Force, RFC 1112, Aug. 1989. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc1112.txt

[30] Delco Project Home Page. (2010, Sep.). [Online]. Available:
http://delco.cs.tut.fi/

[31] S. Dixit and T. Wu, Content Networking in the Mobile Internet. — Wiley-

Interscience, 2004.

[32] B. M. Edwards, L. A. Giuliano, and B. R. Wright, Interdomain Multicast Rout-
ing: Practical Juniper Networks and Cisco Systems Solutions. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[33] Elisa Viihde (in Finnish). (2010, Sep.). [Online]. Available:
http://www.elisa.fi/viithde/

[34] ETSI, “Digital Video Broadcasting (DVB); Transmission System for Hand-
held Terminals (DVB-H),” European Telecommunications Standards Institute
(ETSI), ETSI EN 302 304, V1.1.1, Nov. 2004.

[35] ——, “Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Set of
Specifications for Phase 1,” European Telecommunications Standards Institute
(ETSD), ETSI TS 102 468, V1.1.1, Nov. 2007.

[36] ——, “Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Con-
tent Delivery Protocols,” European Telecommunications Standards Institute
(ETSD), ETSI TS 102 472, V1.3.1, Feb. 2009.

[37] G. Faria, J. A. Henriksson, E. Stare, and P. Talmola, “DVB-H: Digital Broad-
cast Services to Handheld Devices,” Proceedings of the IEEE, vol. 94, no. 1,
pp- 194-209, Jan. 2006.

Bibliography 85

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol — HTTP/1.1,” Internet
Engineering Task Force, RFC 2616, Jun. 1999. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2616.txt

V. Gau, P.-J. Wu, C.-N. Lee, and J.-N. Hwang, “A Scheme for Peer-to-Peer
Live Streaming with Multi-Source Multicast and Forward Error Correction,” in
Proceedings of the 2008 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP "08), Mar. 2008, pp. 2173-2176.

GNU ccRTP - GNU Telephony. (2010, Sep.). [Online]. Available:
http://www.gnu.org/software/ccrtp/

B. Goode, “Voice over Internet Protocol (VoIP),” Proceedings of the IEEE,
vol. 90, no. 9, pp. 1495-1517, Sep 2002.

V. K. Goyal, “Multiple Description Coding: Compression Meets the Net-
work,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 74-94, Sep. 2001.

M. Handley and V. Jacobson, “SDP: Session Description Protocol,” Internet
Engineering Task Force, RFC 2327, Apr. 1998. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2327.txt

M. Handley, C. Perkins, and E. Whelan, “Session Announcement Protocol,”
Internet Engineering Task Force, RFC 2974, Oct. 2000. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2974.txt

M. Hayasaka and T. Miki, “Peer-to-Peer Multimedia Streaming with Guar-
anteed QoS for Future Real-time Applications,” Transactions of Information
Processing Society of Japan, vol. 49, no. 3, pp. 1364—1373, Mar. 2008.

X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measurement Study of
a Large-Scale P2P IPTV System,” IEEE Transactions on Multimedia, vol. 9,
no. &, pp. 1672-1687, Dec. 2007.

H. Holbrook and B. Cain, “Source-Specific Multicast for IP,” Internet
Engineering Task Force, RFC 4607, Aug. 2006. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4607.txt

86

Bibliography

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A
Survey of Application-Layer Multicast Protocols,” Communications Surveys
& Tutorials, IEEE, vol. 9, no. 3, pp. 58-74, 2007.

R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,”
Internet Engineering Task Force, RFC 3280, Apr. 2002. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3280.txt

IEEE Standards Association, “IEEE Standard for Information Technology —
Telecommunications and Information Exchange Between Systems — Local and
Metropolitan Area Networks — Specific Requirements — Part 3: Carrier Sense
Multiple Access with Collision Detection (CMSA/CD) Access Method and
Physical Layer Specifications,” IEEE 802.3 Ethernet Working Group, IEEE
802.3-2008, Part 3, Section Two, Jun. 2010.

ISO/IEC, “Information technology — Coding of moving pictures and associ-
ated audio for digital storage media at up to about 1,5 Mbit/s — Part 3: Audio,”
International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC), ISO/IEC 11172-3:1993, Aug. 1993.

——, “Information technology — Open Systems Interconnection — Basic Ref-
erence Model: The Basic Model,” International Organization for Standard-
ization/International Electrotechnical Commission (ISO/IEC), ISO/IEC 7498-
1:1994, Second Edition, Nov. 1994,

——, “Information technology — Coding of audio-visual objects — Part 14:
MP4 file format,” International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC), ISO/IEC 14496-14:2003, First Edi-
tion, Nov. 2003.

——, “Information technology — Coding of audio-visual objects — Part 15: Ad-
vanced Video Coding (AVC) file format,” International Organization for Stan-
dardization/International Electrotechnical Commission (ISO/IEC), ISO/IEC
14496-15:2004, First Edition, Apr. 2004.

——, “Information technology — Coding of audio-visual objects — Part 12:

ISO base media file format,” International Organization for Standardiza-

Bibliography 87

[56]

[57]

[58]

[59]

[60]

[61]

[62]

tion/International Electrotechnical Commission (ISO/IEC), ISO/IEC 14496-
12:2008, Third Edition, Oct. 2008.

——, “Information technology — Coding of audio-visual objects — Part 12:
ISO base media file format, AMENDMENT 1: General improvements in-
cluding hint tracks, metadata support, and sample groups,” International
Organization for Standardization/International Electrotechnical Commission
(ISO/IEC), ISO/IEC 14496-12:2008/Amd.1, Final Proposed Draft Amend-
ment, MPEG document N 10249, Oct. 2008.

——, “Information technology — Coding of audio-visual objects — Part 10:
Advanced Video Coding,” International Organization for Standardization/In-
ternational Electrotechnical Commission (ISO/IEC), ISO/IEC 14496-10:2009,
Fifth Edition, May 2009.

ITU-T, “Asymmetric Digital Subscriber Line (ADSL) Transceivers,” Interna-
tional Telecommunication Union - Telecommunication Standardization Sector
(ITU-T), ITU-T Recommendation G.992.1, Jul. 1999.

M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, Al, and L. Garcés-Erice,
“Dissecting BitTorrent: Five Months in a Torrent’s Lifetime,” in Proceedings
of the 5th International Workshop on Passive and Active Measurement (PAM
2004), Apr. 2004, pp. 1-11.

X. Jiang, Y. Dong, D. Xu, and B. Bhargava, “GnuStream: a P2P Media
Streaming System Prototype,” in Proceedings of the International Conference
on Multimedia and Expo (ICME 2003), Jul. 2003, pp. 325-328.

J. Jonsson and B. Kaliski, “Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1,” Internet Engineering
Task Force, RFC 3447, Feb. 2003. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3447.txt

T. Kalker, D. H. J. Epema, P. H. Hartel, R. L. Lagendijk, and M. Van Steen,
“Music2Share - Copyright-Compliant Music Sharing in P2P Systems,” Pro-
ceedings of the IEEE, vol. 92, no. 6, pp. 961-970, June 2004.

88 Bibliography

[63] M. Karakaya, I. Korpeoglu, and O. Ulusoy, “Free Riding in Peer-to-Peer Net-
works,” Internet Computing, IEEE, vol. 13, no. 2, pp. 92-98, March-April
2009.

[64] S. Kent, “IP Encapsulating Security Payload (ESP),” Internet Engineering
Task Force, RFC 4303, Dec. 2005. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4303.txt

[65] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control Protocol
(DCCP),” Internet Engineering Task Force, RFC 4340, Mar. 2006. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4340.txt

[66] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach,
Sthed. Addison-Wesley Publishing Company, 2009.

[67] Laajakaistainfo.fi (in Finnish). (2010, Sep.). [Online]. Available:
http://www.laajakaistainfo.fi/

[68] J.Lacan, V. Roca, J. Peltotalo, and S. Peltotalo, “Reed-Solomon Forward Error
Correction (FEC) Schemes,” Internet Engineering Task Force, RFC 5510,
Apr. 2009. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5510.txt

[69] J. Li, “Efficient Implementation of Reed-Solomon Erasure Resilient Codes in
High-Rate Applications,” U.S. Patent 7,418,649, Aug. 26, 2008.

[70] J. Liang and K. Nahrstedt, “DagStream: Locality Aware and Failure Resilient
Peer-to-Peer Streaming,” in Proceedings of the 13th Annual Multimedia Com-
puting and Networking Conference (MMCN’06), Jan. 2006, pp. 224-238.

[71] H. Liu, M. Wu, D. Li, S. Mathur, K. Ramaswamy, L. Han, and D. Raychaud-
huri, “A Staggered FEC System for Seamless Handoff in Wireless LANs:
Implementation Experience and Experimental Study,” in Proceedings of the
Ninth IEEE International Symposium on Multimedia, Dec. 2007, pp. 283-290.

[72] H. Liu, X. Tu, and J. Xie, “Network Coding for P2P Live Media Streaming,”
in IFIP International Conference on Network and Parallel Computing 2008
(IFIP NPC2008), Oct. 2008, pp. 392-398.

Bibliography 89

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

X. Liu, H. Yin, and C. Lin, “A Novel and High-Quality Measurement Study
of Commercial CDN-P2P Live Streaming,” in Proceeding of the 2009 Interna-
tional Conference on Communications and Mobile Computing (CMC 2009),
vol. 3, Jan. 2009, pp. 325-329.

Y. Liu, Y. Guo, and C. Liang, “A Survey on Peer-to-Peer Video Streaming
Systems,” Peer-to-Peer Networking and Applications, vol. 1, no. 1, pp. 18-28,
March 2008.

M. Luby and V. Goyal, “Wave and Equation Based Rate Control (WEBRC)
Building Block,” Internet Engineering Task Force, RFC 3738, Apr. 2004.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3738.txt

M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, ‘“Raptor
Forward Error Correction Scheme for Object Delivery,” Internet Engineering
Task Force, RFC 5053, Oct. 2007. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc5053.txt

M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder,
“RaptorQ Forward Error Correction Scheme for Object Delivery,” Internet
Engineering Task Force, Internet-Draft draft-ietf-rmt-bb-fec-raptorq-03, Jun.
2010, work in progress. [Online]. Available: http://www.ietf.org/internet-
drafts/draft-ietf-rmt-bb-fec-raptorq-03.txt

M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft,
“The Use of Forward Error Correction (FEC) in Reliable Multicast,”
Internet Engineering Task Force, RFC 3453, Dec. 2002. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3453.txt

M. Luby, M. Watson, and L. Vicisano, ‘“Layered Coding Transport (LCT)
Building Block,” Internet Engineering Task Force, RFC 5651, Oct. 2009.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc5651.txt

——, “Asynchronous Layered Coding (ALC) Protocol Instantiation,” Internet
Engineering Task Force, RFC 5775, Apr. 2010. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5775.txt

M. Luby, T. Gasiba, T. Stockhammer, and M. Watson, “Reliable Multimedia

90 Bibliography

Download Delivery in Cellular Broadcast Networks,” IEEE Transactions on
Broadcasting, vol. 53, no. 1, pp. 235-246, Mar. 2007.

[82] M. Luby and M. Watson and T. Gasiba and T. Stockhammer and W. Xu, “Rap-
tor Codes for Reliable Download Delivery in Wireless Broadcast Systems,” in

Proceedings of the Consumer and Communications Networking Conference
(CCNC 2006), Jan. 2006, pp. 192-197.

[83] MAD Project Home Page. (2010, Sep.). [Online]. Available:
http://mad.cs.tut.fi/

[84] N. Magharei and R. Rejaie, “PRIME: Peer-to-Peer Receiver-drlven MEsh-
Based Streaming,” in Proceedings of the 26th IEEE International Conference
on Computer Communications (INFOCOM 2007), May 2007, pp. 1415-1423.

[85] Maxinetti PCTV (in Finnish). (2010, Sep.). [Online]. Available:
http://pctv.maxinetti.fi/

[86] J. D. Mol, D. H. P. Epema, and H. J. Sips, “The Orchard Algorithm: Build-
ing Multicast Trees for P2P Video Multicasting Without Free-Riding,” IEEE
Transactions on Multimedia, vol. 9, no. 8, pp. 1593—1604, Dec. 2007.

[87] Mozilla Firefox Plugins. (2010, Sep.). [Online]. Available:
https://addons.mozilla.org/en-US/firefox/browse/type:7

[88] C. Neumann and V. Roca, “Analysis of FEC Codes for Partially Reliable Me-
dia Broadcasting Schemes,” in Proceedings of the 2nd International Workshop
on Multimedia Interactive Protocols and Systems (MIPS’04), Nov. 2004, pp.
108-119.

[89] C. Neumann, V. Roca, and R. Walsh, “Large Scale Content Distribution Pro-
tocols,” ACM SIGCOMM Computer Communications Review, vol. 35, no. 5,
pp- 85-92, Oct. 2005.

[90] NIST, “Secure Hash Standard,” National Institute of Standards and Tech-
nology (NIST), Federal Information Processing Standards Publication 180-2,
Aug. 2002.

Bibliography 91

[91] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-Based Loss Re-
covery for Reliable Multicast Transmission,” IEEE/ACM Transactions on Net-
working, vol. 6, no. 4, pp. 349-361, Aug. 1998.

[92] Octoshape = Home Page. (2010, Sep.). [Online]. Available:
http://www.octoshape.com/

[93] OMA, “DRM Specification,” Open Mobile Alliance, OMA-TS-DRM-DRM-
V2_1-20081106-A, Nov. 2008.

[94] OpenFEC.org Project Home Page. (2010, Sep.). [Online]. Available:
http://openfec.org/

[95] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey, “Extended RTP
Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback
(RTP/AVPF),” Internet Engineering Task Force, RFC 4585, Jul. 2006.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4585.txt

[96] V. Pai and A. E. Mohr, “Improving Robustness of Peer-to-Peer Streaming with
Incentives,” in Proceedings of the First Workshop on the Economics of Net-
worked Systems, Jun. 2006, pp. 31-36.

[97] T. Paila, M. Luby, R. Lehtonen, V. Roca, and R. Walsh, “FLUTE
- File Delivery over Unidirectional Transport,” Internet Engineering
Task Force, RFC 3926, Oct. 2004. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3926.txt

[98] T. Paila, R. Walsh, M. Luby, V. Roca, and R. Lehtonen, “FLUTE - File
Delivery over Unidirectional Transport,” Internet Engineering Task Force,
Internet-Draft draft-ietf-rmt-flute-revised-11, Mar. 2010, work in progress.
[Online]. Available: http://www.ietf.org/internet-drafts/draft-ietf-rmt-flute-

revised-11.txt

[99] B. Pankajakshan and B. J. Parker, “Digital Rights Management for Multicast-
ing Content Distribution,” U.S. Patent 7,191,332, Mar. 13, 2007.

[100] C. Perkins, “RTP and the Datagram Congestion Control Protocol (DCCP),”
Internet Engineering Task Force, RFC 5762, Apr. 2010. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5762.txt

92 Bibliography

[101] M. Petit-Huguenin, “Traversal Using Relays around NAT (TURN) Resolution
Mechanism,” Internet Engineering Task Force, RFC 5928, Aug. 2010.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc5928.txt

[102] PLUTO, “Deliverable 2.3 - Simulated Services,” The Physi-
cal Layer DVB Transmission Optimisation (PLUTO) project, IST-
026902/TUT/WPO2/RE/P/Del2-3, Aug. 2007. [Online]. Available:
http://dea.brunel.ac.uk/pluto/publications/del2-3.pdf

[103] J. Postel, “User Datagram Protocol,” Internet Engineering Task Force, RFC
0768, Aug. 1980. [Online]. Available: http://www.rfc-editor.org/rfc/rfc768.txt

[104] ——, “Internet Protocol,” Internet Engineering Task Force, RFC 0791, Sep.
1981. [Online]. Available: http://www.rfc-editor.org/rfc/rfc791.txt

[105] ——, “Transmission Control Protocol,” Internet Engineering Task Force, RFC
0793, Sep. 1981. [Online]. Available: http://www.rfc-editor.org/rfc/rfc793.txt

[106] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips, “The Bittorrent
P2P File-Sharing System: Measurements and Analysis,” in Peer-to-Peer Sys-
tems IV (Lecture Notes in Computer Science). Springer Berlin / Heidelberg,
2005, vol. 3640, pp. 205-216.

[107] PPLive - The Most Popular Net TV in the World. (2010, Sep.). [Online].
Available: http://www.pptv.com/en/

[108] E. Rescorla, “HTTP Over TLS,” Internet Engineering Task Force, RFC 2818,
May 2000. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2818.txt

[109] J. Rey, D. Leon, A. Miyazaki, V. Varsa, and R. Hakenberg, “RTP
Retransmission Payload Format,” Internet Engineering Task Force, RFC
4588, Jul. 2006. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4588.txt

[110] R. Rivest, “The MDS5 Message-Digest Algorithm,” Internet Engineering
Task Force, RFC 1321, Apr. 1992. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc1321.txt

[111] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communication
Protocols,” ACM SIGCOMM Computer Communication Review, vol. 27, no. 2,
pp- 24-36, 1997.

Bibliography 93

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

V. Roca, C. Neumann, and D. Furodet, “Low Density Parity Check
(LDPC) Staircase and Triangle Forward Error Correction (FEC) Schemes,”
Internet Engineering Task Force, RFC 5170, Jun. 2008. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5170.txt

P. Rodriguez and E. W. Biersack, “Continuous Multicast Push of Web Docu-
ments over the Internet,” IEEE Network Magazine, vol. 12, no. 2, pp. 18-31,
Mar. 1998.

J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session Traversal
Utilities for NAT (STUN),” Internet Engineering Task Force, RFC 5389, Oct.
2008. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5389.txt

H. Schulzrinne and S. Casner, “RTP Profile for Audio and Video Conferences
with Minimal Control,” Internet Engineering Task Force, RFC 3551, Jul.
2003. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3551.txt

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” Internet Engineering Task Force, RFC
3550, Jul. 2003. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3550.txt

H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol
(RTSP),” Internet Engineering Task Force, RFC 2326, Apr. 1998. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2326.txt

H. Schulzrinne, A. Rao, R. Lanphier, M. Westerlund, and M. Stiemerling,
“Real Time Streaming Protocol 2.0 (RTSP),” Internet Engineering Task
Force, Internet-Draft draft-ietf-mmusic-rfc2326bis-24, Jul. 2010, work in
progress. [Online]. Available: http://www.ietf.org/internet-drafts/draft-ietf-
mmusic-rfc2326bis-24.txt

H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103-1120, Sep.
2007.

P. Shah and J. F. Paris, “Peer-to-Peer Multimedia Streaming Using BitTorrent,”
in Proceedings of the 26th IEEE International Performance Computing and
Communications Conference (IPCC2007), Apr. 2007, pp. 340-347.

94 Bibliography

[121] Skype - Free Calls, Video Calls and Instant Messaging over the Internet.
(2010, Sep.). [Online]. Available: http://www.skype.com/

[122] Sonera - Koti TV (in Finnish). (2010, Sep.). [Online]. Available:
http://www.sonera.fi/tv/koti+tv/

[123] SopCast - Free P2P Internet TV. (2010, Sep.). [Online]. Available:
http://www.sopcast.org/

[124] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Feasibility
of Supporting Large-Scale Live Streaming Applications with Dynamic Appli-
cation End-Points,” in Proceedings of the 2004 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM 2004). New York, NY, USA: ACM, Aug. 2004, pp. 107-120.

[125] R. Steinmetz and K. Wehrle, Peer-to-Peer Systems and Applications (Lecture
Notes in Computer Science). — Springer-Verlag New York, Inc., 2005, vol.
3485.

[126] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: An Efficient Peer-to-Peer
Scheme for Media Streaming,” in Proceedings of the 22nd Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM
2003), vol. 2, Mar. 2003, pp. 1283-1292.

[127] TVAnts Home Page. (2008, Jan.). [Online]. Available: http://www.tvants.com/

[128] TVU networks - Live TV from around the World. (2010, Sep.). [Online].
Available: http://www.tvunetworks.com/

[129] S. Venaas and T. Chown, “Source Specific Multicast (SSM) with IPv6,” in Pro-
ceeding of the 2005 Symposium on Applications and the Internet Workshops
(SAINT 2005 Workshops), Jan. 2005, pp. 64—67.

[130] R. Walsh, I. Curcio, S. Peltotalo, J. Peltotalo, and H. Mehta, “SDP
Descriptors for FLUTE,” Internet Engineering Task Force, Internet-Draft
draft-mehta-rmt-flute-sdp-06, Jul. 2010, work in progress. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-mehta-rmt-flute-sdp-06.txt

[131] M. Wang and B. Li, “Network Coding in Live Peer-to-Peer Streaming,” IEEE
Transactions on Multimedia, vol. 9, no. 8, pp. 1554—-1567, Dec. 2007.

Bibliography 95

[132] M. Watson, “Basic Forward Error Correction (FEC) Schemes,” Internet
Engineering Task Force, RFC 5445, Mar. 2009. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5445.txt

[133] M. Watson, M. Luby, and L. Vicisano, “Forward Error Correction (FEC)
Building Block,” Internet Engineering Task Force, RFC 5052, Aug. 2007.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc5052.txt

[134] B. Williamson, Developing IP Multicast Networks. Cisco Press, 1999.

[135] Windows Media Digital Rights Management. (2010, Sep.). [Online]. Avail-

able: http://www.microsoft.com/windows/windowsmedia/drm/default.mspx

[136] Wireshark Packet Analyzer. (2010, Sep.). [Online]. Available:
http://www.wireshark.org/

[137] P.-J. Wu, J.-N. Hwang, C.-N. Lee, C.-C. Gau, and H.-H. Kao, “Eliminating
Packet Loss Accumulation in Peer-to-Peer Streaming Systems,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 19, no. 12, pp.
1766-1780, Dec. 20009.

[138] D. Xu, S. S. Kulkarni, C. Rosenberg, and H.-K. Chai, “Analysis of a CDN-
P2P Hybrid Architecture for Cost-Effective Streaming Media Distribution,”
Multimedia Systems Journal, vol. 11, no. 4, pp. 383-399, April 2006.

[139] YouTube - Broadcast Yourself. (2010, Sep.). [Online]. Available:
http://www.youtube.com/

[140] J. Yu and M. Li, “CBT: A proximity-aware peer clustering system in large-
scale BitTorrent-like peer-to-peer networks,” Computer Communications,
vol. 31, no. 3, pp. 591-602, Feb. 2008.

[141] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the Power of Pull-
Based Streaming Protocol: Can We Do Better?” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 9, pp. 1678-1694, December 2007.

[142] X.Zhang,]. Liu, L. Boand, and T.-S. P. Yum, “CoolStreaming/DONet: a Data-
driven Overlay Network for Peer-to-Peer Live Media Streaming,” in Proceed-
ing of the 24th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM?2005), vol. 3, Mar. 2005, pp. 2102-2111.

96 Bibliography

[143] H. Zimmermann, “OSI Reference Model — The ISO Model of Architecture
for Open Systems Interconnection,” IEEE Transactions on Communications,
vol. 28, no. 4, pp. 425-432, Apr. 1980.

PUBLICATIONS

PUBLICATION P1

Jani Peltotalo, Sami Peltotalo, Jarmo Harju, and Rod Walsh, “Performance analy-
sis of a file delivery system based on the FLUTE protocol,” in International Jour-
nal of Communication Systems, Volume 20, Issue 6, October 5 2006, pp. 633—659.
doi:10.1002/dac.835

Copyright (©) 2006 John Wiley & Sons, Ltd. Reprinted with permission.

PUBLICATION P2

Jani Peltotalo, Sami Peltotalo, Alex Jantunen, Lassi V&ddtdmoinen, Jarmo Harju,
Rami Lehtonen, and Rod Walsh, “A Massively Scalable Persistent Content Distri-
bution System,” in Proceedings of the Sixth IASTED International Conference on
Communications, Internet, and Information Technology (CIIT 2007), Bantf, Alberta,
Canada, July 24 2007, pp. 255-261.

Copyright (© 2007 ACTA Press. Reprinted with permission.

PUBLICATION P3

Jani Peltotalo, Jarmo Harju, Alex Jantunen, Marko Saukko, Lassi Viitdmdoinen, Igor
D. D. Curcio, Imed Bouazizi, and Miska M. Hannuksela, “Peer-to-Peer Streaming
Technology Survey,” in Proceeding of the Seventh International Conference on Net-
working (ICN 2008), Cancun, Mexico, April 13-18 2008, pp. 342-350.
doi:10.1109/ICN.2008.86

Copyright (© 2008 IEEE. Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission

of the IEEE does not in any way imply IEEE endorsement of any of the Tampere
University of Technology's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this material, you agree to all provisions of the

copyright laws protecting it.

kulkki
Text Box
This material is posted here with permission of the IEEE. Such permission
of the IEEE does not in any way imply IEEE endorsement of any of the Tampere University of Technology's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.
By choosing to view this material, you agree to all provisions of the
copyright laws protecting it.

Seventh International Conference on Networking

Peer-to-Peer Streaming Technology Survey

Jani Peltotalo, Jarmo Harju, Alex Jantunen, Marko Saukko, Lassi Védidtdamoinen
Tampere University of Technology, Department of Communications Engineering
P.O.Box 553, FIN-33101 Tampere, Finland
Email: forename.surname @tut.fi

Igor Curcio, Imed Bouazizi, Miska Hannuksela
Nokia Research Center
Visiokatu 1, FIN-33720 Tampere, Finland
Email: forename.surname @nokia.com

Abstract

Lately there has been a growing interest in the use of

peer-to-peer technologies for deploying large-scale live me-
dia streaming systems over the Internet. In this paper we
give a brief survey on the peer-to-peer streaming field and
have also a closer look on selected applications. In prac-
tice, we analyse the selected peer-to-peer streaming systems
(Octoshape, SopCast, TVAnts and TVU networks) and see
if they are suitable for mobile usage. This paper also shows
results from an experimental test carried out by using se-
lected applications with a PC over different network con-
nections (EDGE, UMTS, HSDPA, ADSL and LAN). None
of the selected applications are designed to be used in a
mobile environment, so there is still a lot of work to do to
have optimized systems in the mobile network environment.

1. Introduction

As the amount of media delivered in the Internet seems
to be ever-growing and the speeds of end-users’ access net-
work connections are getting faster day by day, network
capacity continues to be a scarce resource. As opposed
to the traditional client/server architecture, some solutions
to relieve network congestion have been proposed, differ-
ent peer-to-peer techniques being the most interesting and
popular ones. In a peer-to-peer network, a single host acts
as a server and a client simultaneously. Although peer-to-
peer techniques do not seem to directly reduce network load
compared to client/server approach, it has been observed
that network load is distributed more evenly to the whole
network when using peer-to-peer techniques. This leads to
single links within the network being less congested.

978-0-7695-3106-9/08 $25.00 © 2008 IEEE
DOI 10.1109/ICN.2008.86

342

Peer-to-peer streaming is a method for multicasting or
broadcasting streaming media, for example audio or video,
over the Internet using a peer-to-peer network. It can be
seen as a combination of traditional television or radio
broadcast type of media delivery over a new kind of de-
livery medium, the Internet. The aim for these techniques
is to allow bandwidth-consuming streaming media to be de-
livered to a large number of consumers without unnecessary
network congestion.

There are special requirements for the access networks
and peer-to-peer streaming applications when they are used
in the mobile environment. For example delay, jitter and
throughput in the access network, used content encoding
format, stream bitrate and buffer size affect to the quality of
experience and the usability of the application.

Next, the related technologies are discussed in Section 2.
Then an introduction to the peer-to-peer streaming concept
is given in Section 3. A closer look on selected applications
and the results of an experimental test carried out by using
these applications are given in Sections 4 and 5. Finally,
Section 6 concludes this paper.

2. Related Technologies

In this section we give an overview of the technologies
that are commonly used for delivering digital content to a
large number of users in the Internet.

2.1. Multicast

Multicast is an elaboration from the simple unicast deliv-
ery scheme. While still utilizing the nature of client/server
architecture, the amount of data delivered within the net-
work can be remarkably reduced compared to the unicast

IEEE
@ computer
soclety

Figure 1: Multicast delivery scheme

delivery. This is achieved by using point-to-multipoint de-
livery. Multicast delivery scheme is presented in Figure 1.

When using multicast, an IP datagram does not need
to be replicated at the server end, but the same datagram
is delivered for each receiver with a minimum amount of
replication. The receivers must register to "listen” the mul-
ticast traffic in order to receive the data delivered by the
server. Also, the network infrastructure (i.e., routers) must
support multicast traffic to make it possible to forward the
data stream to the end-users. As presented in Figure 1, one
of the routers does not support forwarding multicast traffic,
so the users located in the network behind the router are not
capable of receiving the data, even if desired. So the net-
work infrastructure sets a restriction to service availability
for the users wishing to receive the service.

2.2. Application Layer Multicast

In application layer multicast IP datagrams are replicated
at the end hosts, compared with native multicast delivery
where IP datagrams are replicated at the routers. In prac-
tice, the end-hosts form an overlay network, and the goal is
to construct and maintain an efficient overlay for data trans-
mission. Since application layer multicast protocols possi-
bly send identical packets over the same link (depending on
the overlay network topology), they are less efficient com-
pared to native multicast protocols. In contrast there is no
need to change routers, so the network infrastructure does
not set a restriction to service availability.

2.3. Peer-to-Peer Overlay

A peer-to-peer network utilizes a client/server architec-
ture between number of hosts in a network. That is, each
host acts as a server and client simultaneously. The network
is depicted in Figure 2 and, as it is obvious, there are no
routers in this architecture. This is because a peer-to-peer

343

B
Meda Toace| | 2= \:!/ _?_
e — L.

Figure 2: Peer-to-Peer overlay network

network is actually an overlay network. This means that
the logical connections between hosts, peers, are formed on
higher level than the network (IP) level. Typically the peer
connections are formed using TCP.

Each host acts as a server and a client and the actual traf-
fic is unicast (point-to-point) in nature. But because the
hosts are distributed all over the network, the actual traf-
fic load is distributed more evenly over the whole network.
In contrast to an ordinary client/server architecture, where
there is one centralized server (or more if the server system
is distributed) serving all client hosts, a peer-to-peer net-
work utilizes multiple "servers” distributed over the whole
network.

Before being able to transfer data in a peer-to-peer net-
work, a host must first somehow join the overlay network,
and the means to do that vary between different peer-to-peer
protocols. There is one major advance compared to mul-
ticast, though: because peer-to-peer traffic often relies on
the existing network infrastructure capable of unicast traf-
fic, there are no (or only a few) users left outside of service
from the traffic reachability point of view.

Because of the lack of actual media server in a peer-to-
peer network, there must be some way to inject the content
for delivery to the network. This is usually done by making
the data available on one or more hosts within the network
(media source), allowing the content to be delivered to the
users. This makes content controlling difficult in the net-
work, when compared to centralized content servers used in
multicast and unicast networks.

3. Peer-to-Peer Streaming

Peer-to-peer streaming is a concept for distributing
streaming content over a peer-to-peer network. Also the
term application layer multicast is sometimes used because
application layer connections are used to form the peer con-
nections. The streaming media needs to be injected to
the network for delivery, and it is further being delivered

through the whole network to the clients wishing to receive
the data. Sometimes the users may not want to receive the
data (e.g., a TV channel), but will act as a relay node, also
referred to as “reflector”, to other clients within the net-
work. Reflectors are hosts that pass the streaming data to
other hosts without consuming it themselves.

As these networks are peer-to-peer networks, the user
wishing to receive (or act as a reflector) needs to join the
network before the actual data traffic can occur. After the
user has joined the network, there is a varying warm-up
time before any data can be consumed. This is because
of the initial buffering of data before a stream can be pre-
sented in order to ensure seamless viewing or listening of
streaming media. The length of the warm-up time depends
on the amount of users attending in the network, as well as
the users’ network capacity and the overall network latency.
Also the software used for receiving and playing the stream
and stream encoding format affects to the duration of the
warm-up time. When a larger reception buffer is used in the
software, the warm-up time is longer. A higher quality (low
compression ratio and higher bitrate) stream usually takes a
longer warm-up time than low bit rate stream of low quality.

3.1. Network Layout

The network layout varies depending on the technique
in use. Typical layouts are tree and mesh. In a tree layout
network, the stream is divided to several hosts in each node,
so that after each node the amount of receivers within the
network is multiplied. So, each host in the network acts as
a point-to-multipoint server, so that one host receives one
stream and delivers it down to several hosts. In a mesh net-
work, each node is connected to several other hosts, and
each can receive and send out multiple streams.

On a tree layout network there exists the single point
of failure type of problem. When considering strictly a
tree layout network, every node of the tree (excluding leaf
nodes) is a root node having one or more child nodes. A
stream is always passed through the root node to its chil-
dren. If any of the root nodes happens to fail, the whole net-
work originating from the failed root node fails to receive
the stream. The worst case scenario is that the primary root
for the whole tree fails, leading to denial of service for the
whole network.

Such single point of failure issues can be avoided, or at
least reduced in a combined tree-mesh or a mesh layout net-
work. In these kind of networks all or at least some of
the peers (nodes) have more than one connection to other
nodes, so that instead of just passing the stream from root
to children, also the children to root direction is used. This
allows other nodes to receive the stream when a single
(root) node fails. Thus compared to tree layout, mesh lay-
out requires more complicated routing algorithms or request

344

mechanisms between peers due to the increased number of
peer connections.

3.2. Push and Pull Methods

One common feature shared by some peer-to-peer
streaming systems is that they are push-based systems. This
means that after a peer has received data (the stream) it
sends it on to other peers in the network, without explicit
requests for data from other peers. The forwarding decision
is based on some predetermined routing algorithm, and the
same algorithm is globally used over the whole network.
This also leads to the network layout to be somewhat rigid,
at least to some extent, because it is determined by the rout-
ing algorithm.

The problem with push-based systems is that they are
poor in recovering from transmission losses, caused by the
lack of requests for data. For example, if a peer connec-
tion is broken between two peers, a sending peer fails to
forward the data to the receiving peer across this broken
connection. This leads to the receiving peer never receiving
data, because of the broken connection, thus experiencing
a corrupted stream. Another problem in a push-based net-
work is the amount of duplicate data. Because of the routing
algorithm used for ”’blindly” forwarding (pushing) the data,
it may well be that one or more peers may be sending the
same packets to a common destination host. [7] This can be
avoided using requests to get the desired packets from the
sending peers, leading to pull-based system.

In a pull-based system, peers wishing to receive the
stream request the missing packets from other peers. That
is, a peer wishing to receive a packet from other peers must
request it prior to receiving. After receiving a packet, peer
must notify other peers about the packet it received in order
to pass the stream along in the network, thus enabling other
peers to request the data.

However, if for some reason a packet is not received by
a peer, it may request it from one or more peers announcing
to have that packet. This results in better resilience against
packet loss in reception, because in case of a failure the
receiving peer can redirect request packets to another peer
having the desired data. Also, when using a request based
method, there is no need for using predetermined routing al-
gorithms as in the push-based approach. [7] The amount of
duplicate data sent within the network is reduced, because
the requests from the peer wishing to receive a packet may
only be addressed to one sender who provides the packet to
the receiver.

An obvious weakness with the pull-based method is the
issue of dealing with free-riders. A free-riding peer is only
requesting and receiving packets from other peers, without
uploading anything to others. It is obvious that this affects
to the performance of the network, because free-riders do

not send requested packets to other peers.

In a pull-based network the layout may well be more ad
hoc in nature, because there might not be any predetermined
way to form peer-relations, but the requests and announce-
ments sent within the network define peer-relations.

3.3. Multiple Stream Approach

To deal with, e.g., the free-riding problem apparent a in
single stream based delivery utilizing peer-to-peer stream-
ing networks, there is an alternative approach to deliver
streaming data: using multiple streams. In this approach
a single stream (full stream) is divided into several sub-
streams, also referred to as “descriptions” [5]. Each sub-
stream is then forwarded separately in the network. A
peer receiving all of the substreams can reconstruct the full-
quality original stream from the sub-streams received, and
therefore enjoys the best quality.

Using multiple streams in a peer-to-peer streaming net-
work is a potential way for implementing an incentive
mechanism [8] in such a network. The incentive mechanism
can be considered similar to ’scoring” in traditional peer-to-
peer file sharing networks, where the uploading peers are
scored by the amount of data they upload. The more scores
a peer has, the more privileged are the peer’s download op-
portunities. In a streaming network, a peer uploading more
streams has better ’scores”, thus being entitled to download
more substreams and getting a higher quality stream itself.
For example, for every uploaded stream, a peer is entitled
to download one stream, thus enabling fairness among the
peers in the network.

In addition to free-riding, the multiple stream approach
helps to relieve the churning phenomenon also. If a peer
sending out one substream leaves the network, the over-
all stream quality does not collapse remarkably, because
satisfactory quality of the overall stream can be achieved
from the substreams that still exist. In churning, multiple
(probably hundreds) peers rapidly attach and detach to the
network within a short period of time, making substreams
rapidly available and unavailable. If we compare the mul-
tiple stream approach to the single stream approach in a
churning, we avoid the following problematic case. Sup-
pose that a peer sending out full stream leaves the network.
If it is the only provider for that stream, the reception of
the stream will be cut off from all the peers listening the
stream sent by the detached peer. Hence, large amount of
peers joining to and departing from the network in a single
stream system may cause full loss of stream at times.

3.4. Mobile Aspects

There are special requirements for the access networks
and peer-to-peer streaming applications when they are used

in a mobile network environment. Delay in the access net-
work has an effect on the buffering period at the begin-
ning of the stream. Furthermore, the role of the application
buffer size is much more important. If it is big enough, the
effects of delay and jitter can be ignored. The access net-
work throughput limits the quality of the stream: the bigger
the used stream bitrate is, the bigger the throughput should
be. If the used stream bitrate is too high then it is not pos-
sible to use the application over mobile network at all. Cur-
rently used content encoding formats do not have much ef-
fect, but when optimized solutions for mobile devices will
exist then CPU capabilities might exclude some content en-
coding formats.

All these aspects affect to the quality of experince and
the usability of the peer-to-peer streaming application and
should be taken into account in a mobile network environ-
ment.

4. Closer Look on Selected Applications

In this section a closer look on selected applications, Oc-
toshape [6], SopCast [9], TVAnts [10] and TVU networks
[11], is given. These were selected from currently existing
software packages, summarized in Table 4 (at the end), after
a preliminary study taking into account the aspects defined
in Section 3.4. Also MaxTV [3] is introduced in Subsection
4.5, because of its relationship to the selected applications.
However, no measurements were done with it.

4.1. Octoshape

Octoshape is a 2003 founded company that offers com-
mercial live broadcasting services. They offer free trial only
to companies and organizations and their offer is not appli-
cable for home users [6]. This ensures that the content of
their system, even if trial content, will always have decent
background.

Because of the commercial nature, the content is offered
mostly by companies, e.g., TV and radio stations. The bi-
trate of the streams vary from 32 kbps for audio streams to
800 kbps for video streams. Even though there is a broad-
casting fee, the watching is free of charge and no references
for pay television is mentioned [6]. There is, however, at
least one channel that has connection restrictions and the
Octoshape client warns that "This stream cannot be viewed
in your country.”.

Octoshape has also broadcasted some big events like the
Eurovision Song Contest in 2006 and 2007. They also
broadcasted the Tour de France in 2007 in cooperation with
the Belgian broadcaster VRT with quality as high as 1.5
Mbps [6].

Octoshape works on Windows (2000 and later versions),
Linux and Max OS X, of which the two latter ones are in

beta stage. The system requirements are such that almost
any web browser and video player can be used with Oc-
toshape. The client application is quite simple and includes
only the connection to the delivery network. The content
is searched with a web browser and the streams are played
with a third party video player. Neither of them is integrated
to the Octoshape client itself.

4.2. SopCast

SopCast is a free peer-to-peer streaming application that
can be used for both live and Video on Demand (VoD) ser-
vices. It is a closed source and is based on Sop technology.
The SopCast Team started to work on this project in Decem-
ber 2004 and has gained considerable popularity especially
in China.

SopCast has its own client and server software built on
the Windows operating system. The Software is divided
into three different components: SopPlayer, SopServer and
WebPlayer. Although they have built their UT in which they
embedded everything needed for viewing streams, the soft-
ware needs either the Windows Media Player 9 (or above),
or the latest RealPlayer. Separate media player applica-
tions, e.g., VideoLan Client or MPlayer, can also be used
for stream playback. In addition to Windows, there is also
a console-based software built for Linux platforms which
have GUI provided by third party.

To use SopCast, users are not forced to register, and
the software can easily be downloaded from the webpage.
However, registration is required if a user wishes to broad-
cast his own media stream. A channel may either be pub-
lic, and shown to all SopCast users, or private so that your
stream can be reached through a link, e.g., after advertising
the stream on your own webpage.

Most of the content in SopCast is related to sports, but
there are also channels in entertainment and music cate-
gories. Channels in SopCast are founded by home users and
no TV company partners are mentioned in the home pages.

4.3. TVAnts

TVAnts is a freeware application developed by the Zhe-
jiang University (software copyrighted in 2005). TVAnts
provides live broadcasting functionality to everyone with
Internet connection.

TVAnts is based on a tracker system where content infor-
mation is gathered from different trackers and listed in the
TVAnts client. All the needed features like content search
and watching are integrated to the TVAnts client and no
third party softwares are needed to run by the user dur-
ing the software usage. Even though TVAnts has a lot of
users, the client is only available for the Windows operat-
ing system. The contents of the channel list is a mixture of

346

Japanese and English languages. Also the channel guides
and advertisements are mostly in Japanese.

The content varies a lot and used channel bitrates are be-
tween 10 kbps and 900 kbps where the typical value beeing
between 300 kbps and 500 kbps. The most popular streams
are “’sport broadcasts”, e.g., football, and at times the audi-
ence goes over 500 simultaneous users on the most popular
ones.

TVAnts offers much more specific information about the
network statistics than the other competitors reviewed in
this paper, most probably because of the university back-
ground. Users may, e.g., watch how the buffer is filled and
which parts are available, as well as upload and download
statistics, and CPU usage of the different software compo-
nents (e.g., tracker, transmitter, media player, etc.) are mon-
itored.

4.4. TVU networks

TVU networks was founded in 2005 and it is headquar-
tered in Mountain View, California with Asia Pacific offices
also in Changhai, China. TVU offers live broadcast services
for home users and companies based on their own technol-
ogy. Amateur broadcasting and viewing the streams are free
of charge. However, for professional broadcasters TVU of-
fers broadcast hardware and services [11].

TVU has set the goal to be a global TV broadcaster
and has also some partners, e.g., Black Belt TV, GOD TV,
ETTYV, The Auto Channel, WCSN, which offer content 24/7
with reasonable quality. From these partners at least WCSN
provides currently also one premium channel. In addition to
this there are a lot of channels founded by home users with
varying quality.

Typical channel bandwidth is between 280 kbps and 400
kbps. There is no limit in the quality, but when broad-
casting with higher quality more upload capacity is needed
from the broadcaster and clients in order to keep the streams
playable.

Currently TVU offers players for Windows (2000, XP
and Vista with WMP 9 or above) and broadcasting software
for Windows and Linux. The bandwidth requirement for
the player is 300 kbps. The system requirements for boad-
casting are very low compared to modern computers. The
minimum bandwidth requirement for broadcasting is two
times the video quality, but in order to ensure good user ex-
perience, a connection with around ten times the video qual-
ity is recommended. The latest versions of the TVUBroad-
caster and TVUPlayer softwares are beta versions, however
the Windows client worked very well during our tests [11].

4.5. MaxTV

A system related to the selected technologies is MaxTV
[3]. This is capable of playing streams from all of the se-
lected systems via plugins that provides connection to the
specific P2P network. Because MaxTV is not the original
player of these streams, it was not tested against other sys-
tems.

Due to the large number of different P2P streaming solu-
tions in the market, MaxTV is in very good position because
it can be extended to support multiple techniques simulta-
neously. This makes the end users’ life easier; there is no
need to download and install multiple applications, and the
change between channels broadcasted in different networks
is managed using only one application.

5. Experimental Tests

In this section, results for experimental tests carried out
by using Octoshape, SopCast, TVAnts and TVU networks
TVUPlayer with a PC (Intel Core2Duo 6300, 2GB DDR2,
running Windows XP SP2) over different network connec-
tions (EDGE, UMTS, HSDPA, ADSL and LAN) are pre-
sented. We used the latest version of the applications that
were available at 9th of January 2008.

Windows XP SP2 is limiting incomplete outbound TCP
connection attempts to 10 [4], which slows down the con-
nection establishment to the P2P network. In Windows XP
SP1 there was no limitations like this. There are unoffi-
cial ways to overcome this limitation, however none of them
was used in our tests.

A Nokia N95 was used as a modem for the EDGE con-
nection, and a Nokia DKE-2 cable was used between the PC
and the mobile phone. For the UMTS connection we used
a Nokia 6680 as a modem with a Nokia CA-53 cable that
connected the mobile phone with the PC. With HSDPA, a
Nokia N95 was used as a modem and the connectivity to
the PC was established through the Nokia DKE-2 cable.
The Ericsson HM410dp was used as an ADSL modem in
the tests, and it was connected to the PC Gigabit Ethernet
controller with an RJ-45 cable.

5.1. Connection Characteristics

Table 1 shows the measured downlink and uplink
throughput and the average Round Trip Time (RTT) val-
ues for each network connection. The downlink through-
put values (DL) are measured by downloading 10 MB file
from ftp:/ftp.funet.fi/dev/ and using the Wireshark network
protocol analyzer [12] to calculate the value. The uplink
throughput values (UL) are measured by uploading 10 MB
file to one of our university server and using Wireshark to
calculate the value. The average RTT values (from 100

measurements) to http://www.ficix.fi/ are measured to get
the access network delay. FICIX, the Finnish Communica-
tion and Internet Exchange association, is the biggest Inter-
net exchange point in Finland.

Table 1: Network characteristics

Connection | Throughput (DL/UL) RTT
EDGE 154 kbps / 77 kbps 623 ms
Mobile UMTS 351 kbps / 123 kbps 135 ms
HSDPA 888 kbps / 347 kbps 88 ms
Leased line ADSL 1 Mbps / 512 kbps 48 ms
LAN 100 Mbps / 100 Mbps 5 ms

There were no firewalls to FICIX with leased line con-
nections, but with mobile connections the firewall setup is
operator dependent. In the tests, the client software was
restarted between the tests, and when starting, the client’s
initial downloading (webpages, channel list, etc.) was al-
lowed to complete before pressing the play button.

With SopCast and TVAnts it is possible to get informa-
tion about the number of peers in each channel. In our tests
we selected from SopCast and TVAnts only channels that
offered a good channel and a reasonably large user popula-
tion. With TVU networks we selected channels provided by
partner companies to ensure that we could get as large user
population as possible, because the number of peers in the
channels founded by home users is usually quite low. With
Octoshape the content is offered mostly by companies and
it has good quality, so we selected channels with bitrates
closiest to the bitrates used with SopCast, TVAnts and TVU
network.

Measurements for one test case, e.g., ~350 kbps stream
with SopCast, were conducted using several channels dur-
ing several days to exclude defects induced by temporary
good peers.

5.2. Results

Table 2 shows bootstrap times for different stream quali-
ties with different network connections. The bootstrap time
is the time (average from 5 to 20 tests) from pressing the
play button to good user experience. From the table it is
evident that the boostrap time is dependent on the delay and
throughput of the access network as was pointed out in the
Section 3.4 also. Bootstrap times with Octoshape are re-
markably lower than with other technologies. Th reason for
this might be the commercial nature of Octoshape. During
the tests we noticed that Octoshape client gets most of the
data from one peer, which might be provided by the com-
pany. Still from time to time the upload rate of our client
was quite high, so there is also peer-to-peer delivery be-
tween normal peers.

Table 2: Bootstrap times for different stream qualities with different network connections

Octoshape SopCast TVAnts TVU networks
Connection | ~ 100 | ~400 | ~600 | ~64 | ~350 | ~600 | ~ 100 | ~350 | ~600 | ~ 100 | ~350 | ~ 500
kbps kbps kbps | kbps | kbps kbps kbps kbps kbps kbps kbps kbps
EDGE 14s T -2 -2 59s - - - -2 -2 1ossT -7 -2
UMTS 8s -2 -2 24s -2 -2 87s -2 -2 47s -2 -2
HSDPA 6s 13s 17s 14s 65s 74s 59s 71s 87s 37s Sls 58s
ADSL 4s 10s 11s 14s 62s 69s 62s T2s 80s 31s 56s 62s
LAN 4s 10s Ss 13s 54s 36s 59s 69s 77s 22s 26s 28s

From the home pages of the tested applications it is
possible to find information about buffering times, for
TVU networks 5-30s and SopCast 30-90s (Octoshape and
TVAnts do not publish buffering times). These are some-
what in line with our bootstrap time measurements.

For TVU networks and TVAnts the average stream buffer
size was around 45s, for SopCast it was around 47s, and
for Octoshape around 32s. These values were measured by
disconnecting from the access network and measuring how
long the stream continued to play without noticeable inter-
rupts. So our measured buffer size was the time period from
the disconnection to the noticeable interrupts. There might
be data in the buffer also after this time period, but, e.g.,
TVAnts stopped to play the stream when the first disconti-
nuity in the buffer occured.

From these values we can conclude that after the initial
buffering (boostrap time), delay and jitter in the access net-
work do not have much effect to the user experience, be-
cause the big buffer size will smooth the variation between
packet arrival times.

Table 3 shows how the quality of the selected applica-
tions was seen by our research group. In the table the stream
bitrates are categorized as following: Low is up to 150 kbps,
Medium is from 300 kbps to 400 kbps, and High is from
500 kbps to 600 kbps. Satisfactory means that the stream
was watchable, but from time to time there were some in-
terrupts or buffering that lowered the user experience. Good
means that the stream played as expected without errors, but
the experience was lowered because of the bootstrap time.
Very good means that in addition to the good signal quality,
the bootstrap time was low.

We also tested how these technologies worked when
the connection is changed from one to another, e.g., from
UMTS to ASDL. If the roaming is successful, the user can
continue playing the stream all the time without interrupts,
which is obvious benefit for mobile usage. From the se-
lected technologies Octoshape and SopCast were able to re-
cover from the connection change quite easily and with the

'Sometimes the stream works with this connection and sometimes it
does not. It is not recommended to use this connection with this stream.
2Connection is not suitable to be used with this stream.

348

Table 3: Quality of Experience

\ ;[irl::: Octoshape SopCast TVAnts TVU networks
Low Very Good | Satisfactory | Satisfactory Good
Medium | Very Good | Satisfactory Good
High Very Good | Satisfactory | Satisfactory Good

shortest interrupt, but they required the new connection to
be available almost instantly when the originating connec-
tion was disconnected. TVAnts was also few times able to
recover from connection exchange, but usually with noti-
cable interrupts and software restart would be much better
choice.

With TVUPlayer we noticed that it remained online in
the background (the icon stays in the notification area) when
it is closed normally. This allows TVU to collect idle users
to share their upload bandwidth to increase the stream avail-
ability and also allows a faster resume of the stream play-
back, but as a disadvantage this could also just consume
bandwidth if the user does not have more upload bandwidth
than the download consumes.

As a conclusion, our experimental tests show that
all applications are suitable for mobile usage with high-
throughput mobile networks, but still it is clear that they
are designed to be used with leased line connections.

6. Conclusion

At the moment peer-to-peer streaming is securing its po-
sition among users and the implementations are more or
less unfinished or oriented to a small group of broadcast-
ers. Compared to traditional unicast media transfer, peer-to-
peer streaming offers a lot of improvements concerning the
bandwidth usage and server requirements. Although the im-
provements are great and help small organizations to build,
e.g., Internet radio to a large audience rather easily, people
are probably unaware of the opportunities.

Compared to YouTube [13] and other similar techniques,
peer-to-peer streaming solutions are still far from being ma-

ture. A lot of work needs to be done for example on usabil-
ity, in order to gain massive public support. People do not
always want to, or even cannot, download the client soft-
ware or share their bandwidth for security reasons, which
prevents effective spreading of these techniques.

For the average user, YouTube allows easy-to-access and
easy-to-use services in order to spread user content and to
share experiences in a community-like environment. But
if the intention is that of professionally broadcasting high
quality content over the Internet to a large-scale audience,
then peer-to-peer streaming is the best choice.

The currently existing peer-to-peer streaming applica-
tions are not implemented with a mobile network environ-
ment philosophy but, as this paper shows, some of them
are already suitable to be used in the mobile environment.
Still there are many issues to be solved before optimized
solutions for mobile devices will be available. One way
to enhance the mobile usage with current applications is to
implement support for multiple stream approach (see Sec-
tion 3.3), e.g., with Multiple Description Coding (MDC) [1]
or Advanced Video Coding (AVC) [2]. In this way clients
with low throughput access network connections are also
able to play the stream and the overall quality of the stream
increases.

References

[1] V. K. Goyal. Multiple Description Coding: Compression
Meets the Network. [EEE Signal Processing Magazine,
18(5):74-94, Sept. 2001.

ISO/IEC 14496-10:2005. Information technology — Coding
of audio-visual objects — Part 10: Advanced Video Coding,
2005.

MaxTV. Homepage, 2007. Available http://www.max-
tv.be/. Accessed 8 January 2008.

Microsoft Corporation. Part 2: Network Protection Tech-
nologies, 2004. Available http://technet.microsoft.com/en-
us/library/bb457156.aspx#EHAA. Accessed 8 January
2008.

J. Mol, D. Epema, and H. Sips. The Orchard Algorithm: P2P
Multicasting without Free-Riding. In Proceedings of the
Sixth IEEE International Conference on Peer-to-Peer Com-
puting, Sept. 2006.

Octoshape. Homepage, 2007. Available
http://www.octoshape.com/. Accessed 3 January 2008.

V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E.
Mohr. Chainsaw: Eliminating Trees from Overlay Multi-
cast. In Proceedings of the Fourth International Workshop
on Peer-to-Peer Systems, Feb. 2005.

V. Pai and A. E. Mohr. Improving Robustness of Peer-to-
Peer Streaming with Incentives. In Proceedings of the First
Workshop on the Economics of Networked Systems, June
2006.

SopCast. Homepage, 2006. Available
http://www.sopcast.org/. Accessed 2 January 2008.

2

3

[4

[5

[6

(7]

[8

[9

349

[10] TVAnts. Homepage, 2007. Available
http://www.tvants.com/. Accessed 3 January 2008.
TVU Networks Corporation. Homepage, 2007. Available

http://www.tvunetworks.com/. Accessed 2 January 2008.

(1]

[12] Wireshark. Homepage, 2008. Available
http://www.wireshark.org/. Accessed 15 January 2008.
[13] YouTube. Homepage, 2007. Available

http://www.youtube.com/. Accessed 2 January 2008.

A. Summary of Existing Peer-to-Peer Stream-
ing Technologies

Table 4 summarises currently existing peer-to-peer
streaming technologies which have been active (at least
have a working home page) on January 2008. Technologies
are divided into three categories (freeware, commercial, and
Far East). The last gategory exists since for those technolo-
gies it was quite difficult to obtain enough information for a
different classification, because there were no English ver-
sions of the web pages available.

Table 4: Summary of existing peer-to-peer streaming technologies

Software Home page Live | VoD
ACTLab TV http://www.actlab.tv/ X
CloneCast http://clonecast.free.fr/ X
Coolstreaming Mediacenter http://www.coolstreaming.it/en/ X
Cybersky-TV http://www.cybertelly.com/ X
End System Multicast (ESM) http://esm.cs.cmu.edu/ X
Freecast http://www.freecast.org/ X
Nodezilla http://www.nodezilla.net/ X
P2P-Radio http://p2p-radio.sourceforge.net/ X
Freeware P2PLive http://www.p2plive.org/ X
Peer-to-Group Media Broadcast http://www.alphaworks.ibm.com/tech/p2g/ - -
PeerCast http://www.peercast.org/ X
PPLive http://www.pplive.com/ X X
Seecast (Google Code) http://code.google.com/p/seecast/ - -
SopCast http://www.sopcast.com/ X X
Stream-2-stream http://s2s.sourceforge.net/ X
Trevbus http://www.trevbus.org/ X
Tribler Streaming http://tribler.org/test_streaming/ X
TVAnts http://www.tvants.com/ X
TVU networks & Viidoo http://www.tvunetworks.com/ X
VidTorrent http://viral.media.mit.edu/index.php?page=vidtorrent - -
Abacast http://www.abacast.com/ X
AllCast http://www.allcast.com/ X
BitTorrent http://www.bittorrent.com/ X X
CCIPTV http://en.cciptv.com/ X
Grid Networks http://www.gridnetworks.com/ X
Itiva http://www.itiva.com/ X X
JoostTM http://www.joost.com/ X
MaxTV http://www.max-tv.be/?Ing=en X
Mediazone http://www.mediazone.com/ X X
NeoKast http://www.neokast.com/ X
. Network Foundation Technologies (NFT) http://www.nft-tv.com/ X
Commercial
Octoshape http://www.octoshape.com/ X
PeerStream http://www.peerstream.net/ X
RawFlow http://www.rawflow.com/ X
StreamAudio / ChainCast http://www.streamaudio.com/ X
StreamerOne http://www.streamerone.com/ X
Streamer P2P http://www.streamerp2p.com/ X
Swarmcast http://www.swarmcast.com/ X X
SyncCast http://www.synccast.com/ X X
Veoh http://www.veoh.com/ X X
Vuze http://www.vuze.com/ X
Zattoo http://zattoo.com/ X
Afreeca & Pdbox http://afreeca.pdbox.co.kr/ X
Gridmedia http://www.gridmedia.com.cn/ X
Mysee http://www.mysee.com/ X
Pcast http://itv.mop.com/ X
PPStream http://ppstream.com/ X
PPMate http://www.ppmate.com/ X
Far East PPStream http://ppstream.com/ X
SynaCast http://www.synacast.com/ X
QQLive http://tv.qq.com/ X
Roxbeam http://www.roxbeam.com/ X X
ShareCast http://www.scast.tv/scast/ X
Uusee http://www.uusee.com/ X
Vakaka http://vakaka.com/ X

350

PUBLICATION P4

Jani Peltotalo, Jarmo Harju, Marko Saukko, Lassi Vddtamoinen, Igor D. D. Cur-
cio, and Imed Bouazizi, “Personal Mobile Broadcasting based on the 3GPP MBMS
System,” in Proceedings of the 6th International Conference on Advances in Mobile

Computing & Multimedia (MoMM?2008), Linz, Austria, November 24-26 2008, pp.
156-162. doi:10.1145/1497185.1497219

Copyright (© 2008 ACM. Reprinted with permission.

PUBLICATION P5

Jani Peltotalo, Jarmo Harju, and Miska M. Hannuksela, “Reliable, Server-Friendly
and Bandwidth-Efficient File Delivery System using FLUTE Server File Format,” in
Proceedings of the IEEE International Symposium on Broadband Multimedia Sys-
tems and Broadcasting 2009 (BMSB2009), Bilbao, Spain, May 13-15 2009, pp. 1-6.
doi:10.1109/ISBMSB.2009.5133753

Copyright (©) 2009 IEEE. Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission

of the IEEE does not in any way imply IEEE endorsement of any of the Tampere
University of Technology's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this material, you agree to all provisions of the

copyright laws protecting it.

kulkki
Text Box
This material is posted here with permission of the IEEE. Such permission
of the IEEE does not in any way imply IEEE endorsement of any of the Tampere University of Technology's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.
By choosing to view this material, you agree to all provisions of the
copyright laws protecting it.

Reliable, Server-Friendly and Bandwidth-Efficient
File Delivery System using FLUTE Server File
Format

Jani Peltotalo*, Jarmo Harju* and Miska M. Hannuksela'

* Tampere University of Technology, Department of Communications Engineering
P.O.Box 553, FI-33101 Tampere, Finland
Email: forename.surname @tut.fi

 Nokia Research Center
P.O.Box 1000, FI-33721 Tampere, Finland
Email: forename.surname @nokia.com

Abstract—The use of Forward Error Correction (FEC) codes
is a classical solution to improve the reliability of multicast and
broadcast transmissions in a packet erasure channel. However,
FEC encoding on-the-fly increases the load of the server and it
may decrease the overall performance of the file delivery system.
This paper presents a reliable, server-friendly and bandwidth-
efficient file delivery system using the server file format for File
Delivery over Unidirectional Transport (FLUTE) protocol. The
FLUTE server file format enables storage of pre-composed source
symbols and pre-calculated FEC symbols into a media container
file, so there is no need to source symbol construction and
FEC encoding on-the-fly. Additionally, the actual transmission
is controlled by file delivery hint tracks containing cookbook
instructions that ease the encapsulation of source and FEC
symbols into a transmittable packet stream.

Index Terms—File Delivery System, FLUTE, ISO Base Media
File Format, FLUTE Server File Format

I. INTRODUCTION

The media container file format is an important element
in the chain of multimedia content creation, manipulation,
transmission and consumption. The file format comprises
means of organizing the generated bit stream in such way that
it can be accessed for local decoding and playback, transferred
as a file, or streamed, all utilizing a variety of storage and
transport architectures. The ISO base media file format [1]
is a base format for many different media file formats. For
example MP4 file format (ISO/IEC 14496-14 [2]), AVC file
format (ISO/IEC 14496-15 [3]) and 3GPP file format (3GPP
TS 26.244 [4]) are based on the ISO base media file format.

The FLUTE server file format consists of features that are
a part of Edition 3 of the ISO base media file format [1] and
Amendment 1 for it [5]. Files intended for the delivery are
partitioned into several source blocks, and each source block
is then stored as a file reservoir item in a media container file.
For each source block additional Forward Error Correction
(FEC) symbols can be pre-computed and stored as a FEC
reservoir item. The actual transmission is controlled by File

Delivery (FD) hint tracks containing instructions that ease the
encapsulation of source and FEC symbols into packets.

Earlier studies have shown that the use of FEC is a good
option to improve the reliability of a file delivery system in a
packet erasure channel [6]. As is shown in [7], the overhead
in a data carousel [6] caused by the guarantee of reliability is
much lower when FEC is added to the data carousel. However,
the load of the file delivery server might increase if the FEC
encoding is done on-the-fly. This extra server load can be
avoided and the overall system performance increased by using
the FLUTE server file format.

The structure of the remainder of this paper is as follows.
Next, short overviews of the FLUTE protocol, ISO base media
file format and FLUTE server file format are given in Sections
II—V. Then the architecture of a file delivery system using the
FLUTE server file format is described in Section VI. After that
performance analysis of the system is given in Section VII.
Finally, Section VIII concludes this paper.

II. FLUTE PrOTOCOL

File Delivery over Unidirectional Transport (FLUTE) [8]
has been widely adopted as the file delivery protocol for
multicast and broadcast applications. FLUTE is based on the
Asynchronous Layered Coding (ALC) protocol [9], and the
Layered Coding Transport (LCT) protocol [10]. LCT provides
transport level support for reliable content delivery and stream
delivery protocols. ALC is a protocol instantiation of the
LCT building block, and it serves as a base protocol for
massively scalable reliable multicast distribution of arbitrary
binary objects. FLUTE builds on top of ALC/LCT and defines
a protocol for unidirectional delivery of files. FLUTE therefore
inherits all of the functionalities defined in the ALC and LCT
protocols.

LCT defines the notion of LCT channels to allow massive
scalability, which has been designed based on the receiver-
driven layered multicast principle, where receivers are re-

sponsible of implementing an appropriate congestion control
algorithm based on the adding and removing of layers of the
delivered data. The sender sends the data into different layers,
with each being addressed to a different multicast group.

One or multiple LCT channels may be used for the delivery
of the files of a FLUTE session. A great flexibility is given to
the FLUTE sender with regard to how the data is partitioned
among the LCT channels. A common use case is to send
the same content on all different LCT channels but coded
at different bit rates. Additionally, the FLUTE sender may
act intelligently to enable receivers to acquire all files of the
FLUTE session by joining all channels for a shorter time than
is normally required with one channel. In such a case, the
data sent over each channel complements the data of other
channels.

FLUTE defines a File Delivery Table (FDT), which carries
metadata associated with the files delivered in the FLUTE
session, and provides mechanisms for in-band delivery and
updates of the FDT.

III. FORWARD ERROR CORRECTION

FEC codes can be divided into systematic and non-
systematic codes. With a systematic FEC code, such as Reed-
Solomon FEC [11], the first portion of a FEC encoding block
consists of source symbols, i.e., the original content items for
the given block, while the remaining symbols for the block
consist of FEC symbols generated by a FEC encoder. In this
case, the receiver must receive any set of encoding symbols
equal in number to the number of source symbols.

When a non-systematic FEC code is used, all symbols for
the block consist of symbols generated by the FEC encoder.
In this case, the receiver must receive a sufficient number of
symbols to reconstruct the original user data for the given
block via FEC decoder. There exists a couple of alternative
systematic FEC encoding schemes, Raptor FEC [12] (named
MBMS FEC in 3GPP TS 26.346 [13]) being one of the most
widely used among different standardization organizations.

With Raptor FEC, the operation of a FEC encoder is divided
into several steps. First, the source file is divided into Z > 1
source blocks and FEC encoding is applied independently to
each source block. Next, each source block is divided into
N > 1 contiguous sub-blocks. After that, each sub-block is
divided into K sub-symbols and the mth symbol of a source
block consists of the concatenation of mth sub-symbol from
each of the sub-blocks. It should be noted that when N > 1,
then a source symbol is not a contiguous portion of the source
file. This happens when the source file size is bigger than the
target sub-block size (the recommended value of which is 256
KB). Finally, the FEC encoder generates a desired number of
FEC symbols for each source block that consists of K source
symbols.

It is not necessary for the receiver to know the total number
of FEC symbols (per source block) with the Raptor FEC.
The receiver receives some set of encoding symbols, slightly
more in number than the number of source symbols, and feeds
those to an FEC decoder. From these encoding symbols the

MEDIA CONTAIMER FILE

mdat meta
FEC RESERVOIR M

[FEC RESERVOIR 2

FEC RESERVOIR 1

FILE RESERVOIR N
FILE RESERVOIR 2
FILE RESERVOIR 1
ORIGINAL
FILE FILE

1 PROPERTY
TABLE

-

HINT HINT HINT HINT HINT
SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE P
w - . 4
Mmooy trak trak trak
HINT TRACK 1 HINT TRACK 2 HINT TRACK R
Fig. 1. An example media container file

FEC decoder generates K source symbols, divides each source
symbol to N sub-symbols, and composes /N sub-blocks which
can be concatenated to re-establish the original source block.

IV. ISO BASE MEDIA FILE FORMAT

The basic building block in the ISO base media file format
is called a box. Each box has a header and a payload. The
box header indicates the type of the box and the size of the
box in terms of bytes. A box may enclose other boxes, and
the ISO base media file format specifies which box types are
allowed within a certain box. Furthermore, some boxes are
mandatorily present in each file, while others are optional.
Moreover, for some box types, it is allowed to have more
than one box present in a file. So, the ISO base media file
format actually specifies a hierarchical structure of boxes.

According to the ISO base media file format, an ISO
base media file consists of metadata and media data that are
enclosed in separate boxes, the movie box (moov) and the
media data box (mdat), respectively. The movie box may
contain one or more tracks, and each track resides in one trak
box. A media track refers to samples formatted according to
a media compression format and its encapsulation to the ISO
base media file format. A hint track refers to hint samples,
containing cookbook instructions for constructing packets for
transmission over an indicated communication protocol.

It should be noted that the ISO base media file format does
not limit a presentation to be contained in a single file; it may
be contained in several files. One file contains the metadata
for the whole presentation. This file may also contain all the
media data, whereupon the presentation is self-contained. The
other files, if used, are used to contain media data and are not
required to be formatted according to the ISO base media file
format. The ISO base media file format concerns the structure
of the presentation file only.

In addition to timed tracks, the ISO base media file can
contain any non-timed binary items. The meta box may list
and characterize any number of binary items that can be
referred to and each one of them can be associated with a

FLUTE

Content Providers File Generator 150 file

Clefle s &) — [

trak

-Ep ot

- ~ track

File Repair Server

mdat

Original fles, Fie
reservous, FEC
reservoirs, and
hirtl samples
(FLUTE packets)

PTP or PTM

file rapair

FLUTE Sender

-3
B
=

FLUTE/UDPAP —
packets

SDPQ/

y @ T

—
L— FLUTE receivers
discovers neaded

session paramelers

-

Fig. 2.

file name and unique item identifier.

V. FLUTE SERVER FILE FORMAT

Fig. 1 shows an example media container file with one
source file. In this example, each source block consists of more
than one sub-block, so a source symbol is not a contiguous
portion of the source file. Consequently, it is not possible to
include source symbols by reference to the original source
file.Instead, the media container file contains three file reser-
voirs labeled File reservoir 1, 2, and N, and an equal amount
of FEC reservoirs labeled FEC reservoir 1, 2, and M. In
a general case, any number N file reservoirs and M FEC
reservoirs can be stored in a media container file, and typically
N equals to M. When the media container file is formatted
according to the ISO base media file format, each file reservoir
and FEC reservoir is a binary item of the ISO base media file
format.

The file property table can be formatted similarly to the FD
Item Information Box of the ISO base media file format. It
contains an association meta data to identify items that are file
reservoirs and items that are FEC reservoirs. In addition, the
association meta data logically links each respective pair of a
file reservoir and FEC reservoir with each other, i.e., the source
symbols of a source blocks and the FEC symbols derived from
the source block. In practice, the association meta data can be
a loop or a table of partition entries as described subsequently.

The media container file may additionally comprise any
number of hint tracks for instructing in deriving packets from
file and FEC reservoirs for file delivery. The hint tracks can
be formatted according to the FD hint tracks of the ISO
base media file format. File and FEC reservoirs can be used
independently of FD hint tracks and vice versa. The reservoirs
aid the design of hint tracks and allow alternative hint tracks,
for example with different FEC overheads, to re-use the same
FEC symbols. They also provide means to access source
symbols and additional FEC symbols independently for post-
delivery repair, which may be performed over FLUTE or out-
of-band via another protocol. In order to reduce complexity
when a server follows hint track instructions, hint samples

System Architecture

refer directly to the data ranges of the items to be copied into
the hint samples.

The support for file delivery is designed to optimize the
server transmission process by enabling FLUTE servers to fol-
low simple instructions. It is enough to follow one pre-defined
sequence of instructions per channel in order to transmit one
session. The file format allows storage of alternative FLUTE
transmission session instructions that may lead to equivalent
end results. Such alternatives may be intended for different
channel conditions because of higher FEC protection or even
by using different error correction schemes.

VI. SYSTEM ARCHITECTURE

A file delivery system using the FLUTE server file format
is presented in Fig. 2. A content provider creates a media
container file using a FLUTE file generator. The FLUTE server
gets a copy of the media container file and uses it for compiling
adata packet stream to be sent to FLUTE receivers. Needed
transmission session parameters required to join, receive data
from, and end FLUTE sessions can be described for example
using a Session Description Protocol (SDP) [14] formatted file
as is instructed in SDP Descriptors for FLUTE [15]. This file
should be fetched by the FLUTE receivers before the FLUTE
session begins by means of some transport protocol, such as
Hypertext Transfer Protocol (HTTP) [16].

If a FLUTE receiver is not able to reconstruct the source
file completely, it may contact a file repair server, typically
after the the multicast/broadcast file transfer session has been
completed. An example of a communication protocol and
mechanism between the FLUTE receiver and the file repair
server is defined in [13]. The existing source and FEC symbols
included in the media container file can be used also in a post-
session repair procedure between the FLUTE receiver and the
repair server.

A. FLUTE File Generator Operation

A flow diagram of a FLUTE file generator operation is
shown in Fig. 3. The operation starts with step S1 where at
least one source file is provided to be added into a media

START

¥ . ¥

ORGANIZE FEC
i PROVIDE REDUNDANCY i
SOURCE FILE DATAIN b

CONTAINER FILE

kL 4 L4
PROVIDE FEC GENERATE
52 1 SCHEME ASSOCIATION t 50
INFORMATION META DATA
L & ¥
CALCULATE

3 GENERATE FILE g
83 1 PARTITIONING + 810
PARAMETERS PROPERTY TABLE

L J ¥
DIVIDE SOURCE GENERATE
s — FILE INTO SOURCE COMPILATION [— 811
BLOCKS INTRUCTIONS
-
¥ ; ¥
PARTITION ORGANIZE
85 SOURCE BLOCK ASSOCIATION
; INTO SOURCE META DATA, FILE
PROPERTY TABLE [— 512

SYMBOLS
T AND COMPILATION
INSTRUCTIONS IN

¥ CONTAINER FILE

ORGANIZE
£ SOURCE SYMBOLS
IN CONTAINER FILE
I STOP

¥

CALCULATE FEC
REDUNDANCY
DATA

Fig. 3. Flow diagram showing a FLUTE file generator operation

container file. Information about the intended FEC scheme
is provided in step S2, to be able to calculate partitioning
parameters for the source file in step S3. In step S4, the source
file is divided into source blocks according to the calculated
partitioning parameters.

Each created source block is then handled with steps S5
through S9. The processed source block is partitioned into
source symbols in step S5 also according to the partitioning
parameters from step S3. In step S6, source symbols of the
processed source block are organized in the media container
file as a binary item according to the ISO base media file
format, and the item containing the source symbols for a
source block is referred to as a file reservoir. In next step
S7, FEC symbols are calculated based on the source symbols
composed in step S5. Next, in step S8, FEC symbols are
organized into the media container file as a FEC reservoir
item.

Next, association meta data between source and FEC sym-
bols is generated in step S9. If the source file is divided to
more than one source block, then steps from S5 to S9 are
repeated for each source block, which is shown by line L1 in
the figure. So, if there are N source blocks for a particular

START

-

12 2
. _ | PROVIDE MEDIA COMPILE DATA =
: CONTAINER FILE PACKET SET =
u
v v
N DETEFMINE PR TRANSMIT DATA :
52 4 OVERHEAD PACKET SET 85
CAPACITY
12 v
SELECT
COMPILING
%~ INSTRUCTIONS STop

SET

Fig. 4. Flow diagram showing a FLUTE sender operation

source file, then there exist IV file and N FEC reservoir items
for the particular source file in the media container file.

In next step S10, a file property table containing information
about inserted source files is generated. In this table for
example information about content type, content encoding,
content length, content location, MD5 digest and file parti-
tioning parameters for each source file can be presented. Also
information about actual storage location of each reservoir
items and associations between file and FEC reservoirs per
each source file is usually recorded into the file property table.

Next step S11 generates the FLUTE packet compilation
instructions to be used by media servers. These instructions
can be used as hints how to compose a transmittable packet
stream using the reservoir items stored in the media container
file. In practice, the compilation instructions are FD hint
tracks. An FD hint sample to form a transmittable packet can
refer to an indicated byte range in a particular file reservoir
item. Last step S12, organizes generated association meta data,
file property table and compilation instructions into the media
container file.

B. FLUTE Sender Operation

Fig. 4 shows a flow diagram of a FLUTE sender operation.
The operation starts with step S1 where a media container
file is provided to the FLUTE sender. In next step S2, the
FLUTE sender determines FEC overhead capacity which is
possible to be used with the media session in question.
Using this information suitable compiling instructions set
among available alternatives is selected in step S3. The
media container file contains pre-composed source symbols
and pre-calculated FEC symbols as file reservoirs and FEC
reservoirs, respectively, so there is no need to source symbol
construction and FEC encoding on-the-fly. Instead, the media
server uses compiling instructions, meta data, and reservoir
items to compile data packet set in step S4. Compiled data
packet set is then transmitted to the FLUTE receivers in step

S5. It is not necessary for the FLUTE sender to compile all
data packets belonging to the selected compiling instruction
set at once; it is possible to repeat steps S4 and S5 several
times. This is illustrated by line L1 in the figure.

VII. PERFORMANCE MEASUREMENTS

Results from performance measurements carried out by
using a modified MAD-FLUTE sender [17] (based on version
1.7) with a PC (Intel Core2Duo 6300, 2GB DDR?2, running
Ubuntu 8.10) are presented in this section. The used media
container files were generated by a FLUTE file generator
implementation which comprises parts of the MAD-FCL li-
brary, a proprietary Raptor library and an enhanced proprietary
MP4 file format library. Measurements have been performed
using three different FEC schemes: Compact No-Code FEC
[18], Reed-Solomon FEC over GF(2"8), and Raptor FEC. The
impact of a systematic on-the-fly source block partitioning is
studied using Compact No-Code FEC. Reed-Solomon FEC
measurements demonstrate the FEC encoding effect when the
source block size is relatively small. Raptor FEC measure-
ments show how large source block sizes affect on-the-fly FEC
encoding. Encoding symbol lengths and/or FLUTE packet
sizes for Compact No-Code FEC and Reed-Solomon FEC
measurements were set according to the Raptor FEC ones.

Table 1 shows elapsed times (average values from ten
measurements) when the FLUTE sender was sending 100 kB,
1 MB, 10 MB and 100 MB source files, with and without a
media container file, targeting to a 1 Mbps sending rate. From
the table we can see that the sending time stays essentially
the same regardless of the usage of the media container file
with the Compact-No Code FEC and the Reed-Solomon FEC.
There are a couple of reasons for this. Neither source block
partitioning nor Reed-Solomon FEC encoding takes much time
because the maximum source block size is relatively small, i.e.,
255 encoding symbols in these measurements. The FLUTE
sender is also targeting to a specific sending rate and it can
catch up the small source block partitioning and/or Reed-
Solomon FEC encoding times with a small decrease of the
packet sending interval. The results from the Raptor FEC
measurements prove the importance of avoiding on-the-fly
FEC encoding with large source block sizes. Already with a
100 kB source file, when there is one source block with 1024
source symbols, the on-the-fly FEC encoding and sending
takes roughly two seconds more compared to the media
container file usage. The recommended minimum source block
size with the Raptor FEC is 1024 source symbols. Thus,
with a 100 kB source file, there are small 100 B symbols,
which are then grouped into a ten-symbol FLUTE packet for
transmission. The same amount of source symbols exists also
with a 1 MB source file, but in this case each symbol is 1024
B long and there are more FLUTE packets for transmission.
It should be noted that the used Raptor FEC library might be
optimized to perform the FEC encoding faster. However, after
a closer look into the library it is possible to conclude that the
FEC encoding time depends heavily on the number of source
symbols. On the other hand, with large source block sizes the

file delivery system is much more resistant against burst errors
and ought to require less overhead for similar performance.

VIII. CONCLUSION

As the amount of traffic in the IP based networks seems
to be ever-growing, it is very important to optimize both
the overhead caused by the guarantee of reliability and the
load of the server in a file delivery system. As is shown in
earlier studies, the use of FEC is a good option to improve
the reliability from the viewpoints of receivers and the file
delivery system. However, the load of the file delivery server
might increase if the FEC encoding is done on-the-fly. This
paper presented a file delivery system which responds to both
above mentioned issues by using the FLUTE server file format.

The results from the performance measurements showed
that with small source block sizes the file delivery server is
able to perform source block partitioning and FEC encoding
on-the-fly without an increase in the sending time. However, if
a large amount of FLUTE receivers are not able to reconstruct
the source file completely after the multicast/broadcast file
transfer session has been completed, the file repair server
might be the bottleneck if media container files are not used.
Another observation from the measurements is the importance
of a media container file usage with large source block sizes.

REFERENCES

[1

ISO/IEC, “Information technology — Coding of audio-visual objects —
Part 12: ISO base media file format,” ISO/IEC 14496-12:2008, Third
Edition, 2008.

[2] ——, “Information technology — Coding of audio-visual objects — Part
14: MP4 file format,” ISO/IEC 14496-14:2003, First Edition, 2003.

[3] ——, “Information technology — Coding of audio-visual objects —
Part 15: Advanced Video Coding (AVC) file format,” ISO/IEC 14496~
15:2004, First Edition, 2004.

[4] 3GPP, “Transparent end-to-end packet switched streaming service

(PSS); 3GPP file format (3GP),” 3rd Generation Partnership

Project (3GPP), TS 26.244, Dec. 2008. [Online]. Available:

http://www.3gpp.org/ftp/Specs/html-info/26244.htm

ISO/IEC, “Information technology — Coding of audio-visual objects —

Part]12: ISO base media file format, AMENDMENT 1: General im-

provements including hint tracks, metadata support, and sample groups,”

ISO/IEC 14496-12:2008/Amd.1, Final Proposed Draft Amendment,

MPEG document N10249, 2008.

[6] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and

J. Crowcroft, “The Use of Forward Error Correction (FEC) in Reliable

Multicast,” Internet Engineering Task Force, RFC 3453, Dec. 2002.

[Online]. Available: http://www.rfc-editor.org/rfc/rfc3453.txt

J. Peltotalo, S. Peltotalo, J. Harju, and R. Walsh, “Performance analysis

of a file delivery system based on the FLUTE protocol,” International

Journal of Communication Systems, vol. 20, no. 6, pp. 633-659, 2007.

T. Paila, M. Luby, R. Lehtonen, V. Roca, and R. Walsh, “FLUTE

- File Delivery over Unidirectional Transport,” Internet Engineering

Task Force, RFC 3926, Oct. 2004. [Online]. Available: http://www.rfc-

editor.org/rfc/rfc3926.txt

[9] M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, and J. Crowcroft,
“Asynchronous Layered Coding (ALC) Protocol Instantiation,” Internet
Engineering Task Force, RFC 3450, Dec. 2002. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3450.txt

[10] M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, M. Handley, and

J. Crowcroft, “Layered Coding Transport (LCT) Building Block,”

Internet Engineering Task Force, RFC 3451, Dec. 2002. [Online].

Available: http://www.rfc-editor.org/rfc/rfc3451.txt

[5

[7

[8

(1]

[12]

[13]

[14]

TABLE I
ELAPSED TIMES WHEN SENDING SOURCE FILES WITH DIFFERENT FEC OVERHEADS. ISO FILE: PRE-COMPUTED SOURCE AND FEC SYMBOLS IN THE
ISO FILE. NORMAL FLUTE: ON-THE-FLY SOURCE BLOCK PARTITIONING AND FEC ENCODING.

Compact-No FEC 5% FEC 10%
File size Code FEC Reed-Solomon Raptor Reed-Solomon Raptor
ISO Normal ISO Normal 1SO Normal 1SO Normal 1SO Normal
File FLUTE File FLUTE File FLUTE File FLUTE File FLUTE
100 kB 104ms 105ms 109ms 109ms 109ms 2,183s 115ms 115ms 115ms 2,186s
1 MB 1,07s 1,06s 1,13s 1,12s 1,13s 2,46s 1,18s 1,17s 1,18s 2,46s
10 MB 10,73s 10,62s 11,23s 11.21s 11,27s | 828,20s 11,77s 11,74s 11,80s | 827,56s
100 MB | 107,31s | 106,26s | 112,42s | 112,11s | 112,66s = 117,84s | 117,39s | 118,03s -1
FEC 25% FEC 50% FEC 100%
File size Reed-Solomon Raptor Reed-Solomon Raptor Reed-Solomon Raptor
1SO Normal 1SO Normal 1SO Normal ISO Normal 1SO Normal 1SO Normal
File FLUTE File FLUTE File FLUTE File FLUTE File FLUTE File FLUTE
100 kB 130ms 130ms 130ms 2,19s 157ms 157ms 157ms 2,19s 210ms 210ms 209ms 2,19s
1 MB 1,34s 1,34s 1,34s 2,47s 1,61s 1,61s 1,61s 2,48s 2,15s 2,15s 2,15s 2,50s
10 MB 13,40s 13,425 13.41s | 828,03s 16,10s 16,10s 16,10s | 827,78s | 21,46s 21,49s 21,46s | 831,63s
100 MB | 134,13s | 134,17s | 134,13s -1 160,90s | 161,10s | 160,95s -1 214,61s | 214,90s | 214,61s -1

! Not applicable with the current implementation. FEC encoding takes too much time.

J. Lacan, V. Roca, J. Peltotalo, and S. Peltotalo, “Reed-Solomon
Forward Error Correction (FEC) Schemes,” Internet Engineering Task
Force, Internet-Draft draft-ietf-rmt-bb-fec-rs-05, Nov. 2007, work in
progress. [Online]. Available: http://www.ietf.org/internet-drafts/draft-
ietf-rmt-bb-fec-rs-05.txt

M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, “Raptor
Forward Error Correction Scheme for Object Delivery,” Internet
Engineering Task Force, RFC 5053, Oct. 2007. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5053.txt

3GPP, “Multimedia Broadcast/Multicast Service (MBMS); Protocols
and codecs,” 3rd Generation Partnership Project (3GPP), TS 26.346,
Dec. 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-
info/26346.htm

M. Handley and V. Jacobson, “SDP: Session Description Protocol,”
Internet Engineering Task Force, RFC 2327, Apr. 1998. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2327.txt

[15] H. Mehta, “SDP Descriptors for FLUTE,” Internet Engineering Task
Force, Internet-Draft draft-mehta-rmt-flute-sdp-05, Jan. 2006, work in
progress. [Online]. Available: http://www.ietf.org/internet-drafts/draft-
mehta-rmt-flute-sdp-05.txt

[16] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol — HTTP/1.1,” Internet
Engineering Task Force, RFC 2616, Jun. 1999. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2616.txt

[17] MAD-FCL. MAD Project’'s Home
http://mad.cs.tut.fi/

[18] M. Luby and L. Vicisano, “Compact Forward Error Correction (FEC)
Schemes,” Internet Engineering Task Force, RFC 3695, Feb. 2004.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3695.txt

Page. [Online]. Available:

PUBLICATION P6

Jani Peltotalo, Jarmo Harju, Lassi Vditdmoinen, Igor D. D. Curcio, and Imed Bouaz-
izi, “RTSP-based Mobile Peer-to-Peer Streaming System,” in International Journal
of Digital Multimedia Broadcasting, Volume 2010, Article ID 470813, 15 pages,
2010. doi:10.1155/2010/470813

Copyright (© 2010 Jani Peltotalo et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

Hindawi Publishing Corporation

International Journal of Digital Multimedia Broadcasting
Volume 2010, Article ID 470813, 15 pages
doi:10.1155/2010/470813

Research Article

RTSP-based Mobile Peer-to-Peer Streaming System

Jani Peltotalo,' Jarmo Harju,' Lassi Viidtiméinen,'! Imed Bouazizi,? and Igor D. D. Curcio

2

! Department of Communications Engineering, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
2 Nokia Research Center, P.O. Box 1000, 33721 Tampere, Finland

Correspondence should be addressed to Jani Peltotalo, jani.peltotalo@tut.fi

Received 1 June 2009; Revised 12 November 2009; Accepted 6 January 2010

Academic Editor: John Buford

Copyright © 2010 Jani Peltotalo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-to-peer is emerging as a potentially disruptive technology for content distribution in the mobile Internet. In addition to
the already well-known peer-to-peer file sharing, real-time peer-to-peer streaming is gaining popularity. This paper presents an
effective real-time peer-to-peer streaming system for the mobile environment. The basis for the system is a scalable overlay network
which groups peer into clusters according to their proximity using RTT values between peers as a criteria for the cluster selection.
The actual media delivery in the system is implemented using the partial RTP stream concept: the original RTP sessions related
to a media delivery are split into a number of so-called partial streams according to a predefined set of parameters in such a way
that it allows low-complexity reassembly of the original media session in real-time at the receiving end. Partial streams also help
in utilizing the upload capacity with finer granularity than just per one original stream. This is beneficial in mobile environments

where bandwidth can be scarce.

1. Introduction

Peer-to-Peer (P2P) streaming applications are gaining more
and more users around the world. These applications allow
end-users to broadcast content throughout the Internet in
real-time without the need for any special infrastructure,
since the user’s device, together with all other peers, col-
lectively forms the infrastructure. Furthermore, dedicated
servers are no longer required since every peer can serve data
to other peers. This is in contrast to a service like YouTube
[1] which still requires content to be uploaded to a central
server first. Some of the currently existing P2P streaming
applications, such as Octoshape [2] and SopCast [3], are
suitable to be used in a mobile environment but still there
are many issues to be solved before an optimized solution for
mobile devices can be realized [4].

With real-time P2P streaming there is no need to
download the entire media file before playback can be
started. Decoding can be started as soon as enough data
is buffered in the peer. This avoids long startup times, and
eliminates the need to store the entire content on the mobile
device which still has a relatively small amount of internal

memory compared to the increasing size of the actual media.
In live streaming, video of an ongoing event, like a football
match, is delivered as a stream in real-time. After an initial
buffering period, the user starts to watch the stream from
a certain location and all peers consume data in the same
time window. With a Video-on-Demand (VoD) streaming
the user searches a video from some catalogue, and after a
certain amount of initial buffering the user starts to play the
video from the beginning.

In order to increase the robustness and to accommodate
the limited up- and download bandwidth between peers in
the network, the original multimedia session needs to be split
into smaller parts, which can be reassembled at the receiving
peers into the original media representation. This paper
presents an effective real-time P2P streaming system where
original Real-time Transport Protocol (RTP) [5] sessions
related to a media delivery are split into a number of so-called
partial streams according to a predefined set of parameters.
This approach allows low-complexity reassembly of the
original media session in real-time at the receiving end.

The structure of the remainder of this paper is as follows.
The related work is discussed in Section 2. Then, a short

overview of the system is given in Section 3. Detailed descrip-
tions of the overlay network and the media delivery are given
in Sections 4-8. After that, results from the performance
experiments are presented in Section 9. Interesting areas for
further work are discussed and highlighted in Section 10.
Finally, Section 11 concludes this paper.

2. Related Work

Many P2P file sharing applications make use of multiple
source distribution. A file is first partitioned into pieces or
chunks, typically of equal size. A peer then connects to the
seeder or leecher peers, and requests the missing pieces of
the file in a random order. The difference between a seeder
and a leecher peer is that the former has a complete copy of
the file while the latter has only a partial copy. For example,
with BitTorrent [6] the complete multimedia file can be
partitioned into blocks of 256 KB which are then selected
by the interested peers and requested according to a rarest-
first piece selection algorithm. This approach is not at all
suitable for streaming applications as it does not consider the
delay problem. Users may experience long download delays
of possibly several days. It also assumes that the full content
is known and available at the source peers, which does not
necessarily apply to streaming applications as the stream may
be live.

A P2P multimedia streaming solution based on the
BitTorrent protocol is proposed in [7]. The rarest-first chunk
downloading policy is replaced by a policy where peers
first download chunks that will be consumed in the near
future. The tit-for-tat peer selection policy is also modified
to allow free tries to a larger number of peers to let
peers participate sooner in the multimedia distribution.
Another P2P streaming system based on a P2P file sharing
implementation was proposed already in [8]. However, the
data partitioning based on fixed byte ranges is not suitable
for streaming a continuous media, which is of variable bit
rate nature.

In P2P content distribution, an overlay network is created
at the application layer in order to transfer the actual content
among peers in the network. A random mesh-based overlay
architecture, like in [9, 10], provides flexibility for handling
peer departures, but good general connectivity between peers
is not usually achieved. There have been many studies about
how to organize peers in an efficient and scalable way. In
[11] receivers are organized into a hierarchy of bounded-size
clusters and the multicast tree is built based on that. In [12]
peers are organized into a directed acyclic graph to enable
peers to obtain locality awareness in a distributed fashion.
To improve the file sharing performance of the BitTorrent
protocol, an overlay network where peers are grouped into
clusters according to their proximity is proposed in [13].
Even though some solutions have proven their functionality
with wired connections, those might not be suitable for the
mobile environment.

Preliminary results of the mobile P2P system described
in this paper have been published in [14]. In the following
sections more information about the system is given by
explaining in detail the extended Real Time Streaming

International Journal of Digital Multimedia Broadcasting

Protocol (RTSP) [15] messages used for signalling and
providing more results from the experiments.

3. General System Overview

The architecture of the system is designed to be scalable
and efficient for real-time streaming services in the mobile
environment. The system supports both live and VoD
streaming services. Location awareness in terms of peer
proximity has been exploited to reduce delay, and thus, to
improve the scalability of the system.

Peers are grouped into clusters according to their prox-
imity in order to efficiently exchange data between peers. For
VoD streaming services, the clusters could be constructed
for example, based on the interest level for certain pieces
of data, so that the peers watching the same part of a
video at the same time belong to the same cluster. In live
streaming services a cluster can be formed only based on
the proximity of peers, because all peers are interested in
the same data pieces within the same time window. Clusters
will also help with scalability issues of peer maintenance.
Peers inside a cluster are considered to be close to each other
and thus communication between peers can be done more
efficiently.

All overlay network operations in the system are imple-
mented using extended RTSP messages. All RTSP methods
are extended to include an additional RTP2P-v1 tag in the
Require header field. This tag makes it possible for the
receiving peer to detect that support for the real-time P2P
extensions is needed. Additionally, all RTSP messages will
include a Peer-Id header field to indicate the source of
a message. The most important new header field is called
overlay and it is used widely in the overlay network
operations. The usage of the Overlay header field and
other additional header fields depending on the message
type are explained in Sections 4 and 7. The syntaxes of the
Peer-Id and Overlay header fields in Augmented Backus-
Naur Form (ABNF) [16] are given below:

Peer-Id = "Peer-Id:" SP id CRLF id = 1*DIGIT

Overlay = "Overlay:" SP operation CRLF

operation = "backup" | "create" | "join_bcl" |
"join_neighbor" |"join_peer" | "leave" |
"new_peer_id" | "remove" | "split" |
"update"

The RTSP Uniform Resource Locator (URL) is formatted
according to the ABNF syntax shown below. The host and
port parts are defined in [17, Section 3.2]. The service-id
specifies the service and the stream-id specifies the RTP
session. Like in [15], it is also possible to use the asterisk
character instead of the URL meaning that the request does
not apply to any particular resource:

rtsp_URL = "rtsp://" host [":" port] ["/" [service-id
["/" stream-id]]]

service-id = 1*DIGIT

stream-id = 1*DIGIT

Peers exchange actual media data between each other
using RTP. The system is using time-based chunking, which

International Journal of Digital Multimedia Broadcasting

Cluster 2

_Cluster 3

== Overlay update
Neighboring cluster connection
—— Data connection

FiGure 1: Overlay architecture.

creates multiple partial streams from an original RTP session.
This implements multisource streaming in a way that each
sender sends bursts of data from a different partial stream.
Multisourcing will help to cope with the dynamics of mobile
peers and distributes bandwidth usage in the system more
flexibly and evenly. The original data stream source generates
also RTP timestamps and sequence numbers for the RTP
delivery. Timestamps and sequence numbers are delivered
unchanged within the streaming service. This is done for
allowing RTP packets from multiple partial streams being
reassembled in the correct sequence order at each peer for
local playback. The RTP time line is known system-wide, so
the timestamps can be used to uniquely identify individual
packets within a streaming service.

4. Overlay Network Architecture

The architecture of the overlay network with three clusters
sharing a certain streaming service, such as a live stream
channel or a VoD movie, is presented in Figure 1. It should
be noted that for every different streaming service such
an overlay network is maintained separately. The Service
Discovery Server (SDS) is a central nonmobile server con-
taining information about cluster hierarchy and the available
streaming services in the system.

When a peer wants to join the P2P overlay network, a
peer identifier (ID) is first requested from the SDS using
an RTSP OPTIONS message with a new_peer_id tag in the
Overlay header field. Because the peer does not have a peer
ID yet, it must set the value to minus one in the OPTIONS
message. A unique peer ID is then returned by the SDS using
a 200 OK message with a New-Peer-Id header field. The

syntax of the New-Peer-Id header field in ABNF is given
below:

New-Peer-Id = "New-Peer-Id:" SP id CRLF
id = 1*DIGIT

The cluster concept is implemented with the help of
Cluster Leaders (CLs). There is one CL assigned to each
cluster with the possibility for one or more Backup Cluster
Leaders (BCLs). CLs are used to manage peers inside the
cluster and to connect new arriving peers. Each ordinary peer
must perform periodical keep alive messaging to inform its
existence to the CL and all other peers from which it has
received RTP packets. The latter is done to avoid unnecessary
data transmission because RTP uses User Datagram Protocol
(UDP) and the sending peer does not otherwise know that
the receiving peer is still in the network. A new arriving peer
can select a suitable cluster according to its best knowledge
of locality using Round Trip Time (RTT) values between CLs
and itself.

In addition to RTT measurements, location awareness
could be also based on, for example, IP level hop count,
geographic location or some combination of these three
mentioned metrics. IP level hop count is not alone suitable
for proximity metric, since with Virtual Private Networks
(VPNs) or other tunneling techniques one hop might actu-
ally consist of a large number of hops and the distance could
be quite long. Nor does small IP level hop count guarantee
small delay, because it does not take connection speed into
account. Geographic location is also little problematic in IP
level point of view. Even if peers are geographically close to
each other, the IP level routing path could circulate through
distant router. Hence, only RTT values are used in our system
for proximity checks.

CLs are nodes with suitable capabilities, such as a high
throughput access network connection, enough memory
and CPU power, and long-expected battery lifetime. One
cluster should contain only a limited number of peers in
order to sustain system scalability. The CL collects statistical
data of the peers participating in a cluster. This statistical
data contains information about service join time, reception
buffer position, missing RTP packets, and upstream and
downstream connections, and can be used to make the
decision of the best peer from which to start downloading
data. Statistical information can be used to, for example,
filter out candidate source peers which already have many
upstream connections or lots of missing RTP packets. Service
join time can be used to estimate the behavior of the peer. If
the peer has joined to the service very long time ago, it is
most likely a stable peer which will provide data in the future
also. On the other hand, without extra information about the
expected battery lifetime with mobile devices, long service
joining time can also mean short-expected battery lifetime.

The CL is a functional entity in the network and may
also participate as an ordinary peer at the same time, by
receiving and sending media data. Thus, the CL can be seen
as a functional extension of an ordinary peer. The CL will
inform the SDS currently at ten seconds intervals about
changes in the cluster by sending an OPTIONS message with
an update tag in the Overlay header field in order to
maintain an up-to-date cluster list at the SDS. The updated
cluster information will be expressed using an Extensible
Markup Language (XML) [18]. To decrease the amount
of data delivered in the network, all XML fragments are
compressed using deflate compression mechanism from
the zlib data compression library [19].

While joining the selected cluster, a peer receives an
initial list of peers from which the actual media data can
be acquired. Naturally, the corresponding CL inserts joined
peers into its peer list, and if the amount of peers is very large,
the CL can return only a subset of peers. Proximity testing
in the peer selection is optional since the cluster selection
procedure guarantees that peers are reasonably close to each
other. Anyway, a peer which finally selects its sources for the
stream, needs to test a certain amount of peers until suitable
ones are found. The peer can later receive updates of the peer
list while performing periodical keep alive messaging to the
CL, which ensures that the peer list can be kept up-to-date
during the streaming service.

The peer’s contact information, that is, all information
needed for contacting the peer, could include also a cluster
ID, so that peers can prioritize connections within their own
cluster. However, there should always be data connections
between peers that are located in different clusters. This
ensures that clusters do not become separate islands having
only one incoming connection from other clusters, which
would form a single point of failure that could cause
problems later on when that peer leaves the streaming
service.

4.1. Service Creation and Initial Cluster. The message
exchange during service creation is presented in Figure 2.
When a peer wants to create a service, an ANNOUNCE

International Journal of Digital Multimedia Broadcasting

Original data SDS
source '

T 1

! 1
I

! ANNOUNCE

1

I

i

1

1

!

1
Waiting |
for peers 1
i

I

1

i

1

1

i

1

1

i

[
I
i
FiGure 2: Creation of the service and the initial cluster.

message will be sent to the SDS. A Client-Port header
field indicates the port number to be used in the overlay
communication. The service is described using the Session
Description Protocol (SDP) [20]. Two new SDP attributes,
service-type and stream-info are used to signal the ser-
vice information. The service-type attribute defines the
type for the service, and the stream-info attribute defines
the identifier for the RTP session and parameters to be
used in the RTP session partitioning explained in Section 7.
The syntaxes for the service-type and stream-info
attributes and the Client-Port header field in ABNF are
given below:

service-type-line = "a=service-type:" type CRLF

type = "live" | "vod"

stream-info-line = "a=stream-info:" id";" piece-size";"
nb-of-partials ";" CRLF

id = "id=" 1xDIGIT

piece-size = "piece-size=" 1*DIGIT

nb-of-partials = "nb-of-partials=" 1*DIGIT

Client-Port = "Client-Port:" SP port CRLF
port = 1*#DIGIT

As a response to the successful session creation, a 200
OK message is sent by the SDS. The message contains the
Cluster-Id and Service-Id header fields to describe the
IDs for the initial cluster and the newly created service,
respectively. A 301 Moved Permanently message can also
be sent if the SDS has been moved to another location. In a
redirection case the Location header field must be present
informing the new location of the SDS. Any other message
type must be interpreted as a failed session creation. The
syntaxes of the Cluster-Id and Service-Id header fields
in ABNF are given below:

Cluster-Id = "Cluster-Id:" SP id CRLF
id = 1*DIGIT

Service-Id = "Service-Id:" SP id CRLF
id = 1*DIGIT

There are two possibilities for creating the initial cluster
and selecting a CL for it: (a) the first peer joining the service

International Journal of Digital Multimedia Broadcasting

BCL

| GET_PARAMETER |
./ (ping) i

OPTIONS (cluster update)

5

200 OK/

I
I
I
I
I
I
I
i
I
301 Moved Permanently |
I
I
I
I
I
I
I
I

alt |
[200 OK] []

F1GURrE 3: Uncontrolled CL departure.

will be assigned as a CL by the SDS, and (b) the original data
source will be the first CL in the service. The latter possibility
uses more resources from the original data source and
therefore the original data source should be released from
the CL responsibilities when possible. However, the latter
possibility also guarantees that the initial cluster remains
operational because the first joining peer might depart from
the service quite quickly. Hence, the alternative (b) is used in
our system.

When the service is successfully created, the original data
source becomes CL for the initial cluster, which is illustrated
by the dashed line without message type in Figure 2, and
starts to wait for other peers to join the service. When new
peers are joining the service, BCLs are assigned by the CL
by using an OPTIONS message with a backup tag in the
Overlay header field. If a peer accepts the BCL assignment,
it sends a 200 OK message, and if not, it will send a 403
Forbidden message.

The service is updated and removed by using an
ANNOUNCE message. If some part of the information have
changed, the SDS updates the information in the database.
To remove a service, the stop time in the SDP t-1ine should
be set smaller than the prevailing system time, which means
that the service has been stopped and the SDS can remove
the service from the database. To a successful service update
or removal the SDS will respond with a 200 0K message,
otherwise the SDS will return 400 Bad Request or 404
Not Found messages.

4.2. Cluster Leader Departure. When the CL leaves the
network it needs to be replaced by one of the BCLs. If a
cluster does not have an active CL, new peers cannot be
accepted into the network. However, this does not affect the
data streaming connections between existing peers because
the streaming and overlay connections are independent. New
peers cannot be discovered by normal peers during the
cluster leader change, but this should not be an issue because
peers should have knowledge about more peers than they are
using.

The message exchange in the event of an uncontrolled CL
departure is presented in Figure 3. When the BCL does not
get a response to its periodical GET_PARAMETER message, it
concludes that the CL has left from the cluster and contacts
the SDS using an OPTIONS message with an update tag in
the Overlay header field to replace the old CL. The source
of the first received OPTIONS message will be assigned as a
new CL, illustrated by the dashed line without message type
in the figure, and the new arriving peers can normally start
using the new CL. All other BCLs will receive a 301 Moved
Permanently message with the information about the new
CL and will send an OPTIONS message with the join_bcl tag
in the Overlay header field to the new CL and will continue
in the BCL role. If the original CL has not left the cluster but
has had connectivity issues, it is redirected to the new CL by
the SDS. In this case the old CL becomes a BCL.

When a peer notices that the CL is not available, it tries
to connect to the known BCLs. If the BCL has replaced the

‘ Peer ‘
T
I

cL |
i
1
I
I

I
OPTIONS (ciuster split)

I
I
; (00K
I
-
A 000K ‘
I
REDIRECT _ | i
]

FIGURE 4: Successful cluster splitting procedure.

old CL, it accepts the connection with a 200 OK message,
otherwise it sends a 301 Moved Permanently message
with the Location header field indicating the location of the
last known CL. It should be noticed that the CL departure is
not an atomic operation and takes some time, and therefore
there can be short times when any one of the BCLs does not
know the correct CL of the cluster. If none of the BCLs in the
list respond, the peer sends a query to the SDS and asks for a
new cluster which it can join.

4.3. Cluster Splitting and Merging. When the cluster grows
too large to be handled by a single CL, the cluster should
be split into two separate clusters. The existing CL assigns
one of its BCLs to become a new CL for the new cluster,
and redirects a number of existing peers to the new cluster.
The message exchange in the successful cluster splitting
procedure is presented in Figure 4.

Cluster splitting is performed by using an OPTIONS
message with the split tag in the Overlay header field.
After receiving this message, the BCL will inform the SDS
that wants to become the CL of a new cluster by sending an
OPTIONS message with a create tag in the Overlay header
field. To a successful cluster creation, the SDS will respond
with a 200 0K message, which contains a Cluster-Id
header field to describe the ID for the new cluster. Otherwise,
the SDS will return a 400 Bad Request message if the
request message format is not valid, or a 404 Not Found
message if the service is not available anymore. After a
successful cluster creation, the BCL will become the CL of the
new cluster, and replies to the splitting CL by sending a 200
OK message, otherwise it must send a 400 Bad Request
message to the splitting CL and wait for further instructions.

The splitting CL then sends a REDIRECT message, with
the location of the new CL in the Location header field
to those peers that should change the cluster. The redirected
peers will then join the new cluster by sending an OPTIONS

International Journal of Digital Multimedia Broadcasting

SDS

| | ! OPTIONS !
! . REDIRECT | (cluster join) I
i

: (___2000K____
! OPTIONS |k__2000K__

i

(cluster removal) i
i

FIGURE 5: Successful cluster merging procedure.

message to the new CL. After a successful cluster join, that
is, the peer received a 200 OK message from the new CL,
the peer will send a 200 0K message to the splitting CL.
Otherwise, the peer will send a 400 Bad Request message
to inform that it is not possible to join to the new cluster.

The overlay connections between the CLs are created
after a successful splitting by sending an OPTIONS message
with a join neighbor tag in the Overlay header field
and a 200 OK message. This connection is subsequently
used to exchange cluster information expressed using XML
fragments between neighboring clusters.

Merging of two clusters must be done when a cluster
becomes too small. If the amount of peers is too small, a new
joining peer will get a very small list of data sources which
makes the functionality less reliable when one of these peers
leaves the service. The message exchange in the successful
cluster merging procedure is presented in Figure 5.

The merging is started by the CL, when the amount of
peers in the cluster drops below some predefined threshold,
by sending a REDIRECT message to all peers in the cluster.
Peers will then join the new cluster, selected by the merging
CL from its neighbor clusters, by sending an OPTIONS
message to the new CL. After a successful cluster join, the
peer will send a 200 OK message to the merging CL. If the
redirected peer does not receive any response from the new
CL or it receives a 400 Bad Request message, it must send
a 400 Bad Request message to the merging CL to inform
that it is not possible to join to the new cluster and wait for
further instructions.

After all peers in the cluster have confirmed the cluster
change, the merging CL will remove the cluster by sending
an OPTIONS message with a remove tag in the Overlay
header field to the SDS. This message is optional, because
the cluster is removed also automatically if a keepalive
message has not been received during a certain interval. To
a successful cluster removal, the SDS will respond with a
200 OK message. Otherwise, the SDS will return a 400 Bad
Request message if the request message format is not valid,
or a 404 Not Found message if the cluster is not available
anymore. The merging CL itself then must send a cluster join
message, that is, an OPTIONS message with a join_bcl tagin

International Journal of Digital Multimedia Broadcasting

the Overlay header field, to a known neighbor and join as a
BCL.

All overlay network connections are maintained by
sending GET_PARAMETER and 200 OK messages between
peers as keep alive messages. Keep alive messages between
neighboring CLs are exchanged at 20 seconds intervals and
are used to exchange information about neighboring clusters.
Keep alive messages between the CL and the BCL are used to
deliver cluster information to the BCL and these messages are
sent at 30 seconds intervals.

5. Partial RTP Streams

In order to have unique sending slots for each of the sources,
a partial RTP stream concept is introduced in this paper.
First, every RTP session, such as video, audio or subtitle
streams of the entire multimedia session is split into smaller
pieces along the time axis. Each of the pieces has a fixed
duration Tp which is expressed in time. The start time is
aligned with the start time of the RTP time base, that is, the
start of the first piece is located at the origin of the RTP time
line. One of the benefits of taking time as a unit is that all
packets can remain intact at the RTP layer. Segmentation at
the RTP packet level is not required for creating the partial
streams. This significantly reduces the complexity of the
implementation.

In the second step, RTP packets belonging to each of the
RTP sessions are assigned to N partial streams according to
(1), where i denotes the index of the partial stream (0 <
i < N) and fgrp denotes the RTP timestamp as carried
in the RTP data packet. The algorithm allows assigning
every RTP packet in the session to a partial RTP stream
without having to maintain the state in the peer itself. Only
by examining the RTP timestamp in combination with the
constant parameters is sufficient to identify the partial stream
the RTP packet is assigned to. Assuming a timeline of a single
RTP session, this process is illustrated in Figure 6, where
Tc = N * Tp is used to denote the cycle time:

i=ﬂoor(tkj) mod N. (1)
Tp

Note that the piece size Tp should be selected in such a
way that it is large enough to contain at least one RTP packet
on average. If it is chosen too small, not every piece will
have data, which may in the extreme case lead to an empty
partial stream. On the other hand, larger cycle times lead
to longer startup times, since a complete cycle needs to be
buffered before seamless playback can be guaranteed. In one
particular type of partitioning, every piece would start with
an intracoded picture. This would facilitate independent
decoding of partial streams in the presence of packet loss
due to the fact that a partial stream is not being received.
This could for instance easily be achieved by aligning the
pieces with group-of-picture (GOP) boundaries. Enhanced
robustness will also be achieved by assigning key (RTP)
packets to multiple partials. Key packets could for instance
be Instantaneous Decoding Refresh (IDR) picture data or
other data that would help error concealment. Duplicate RTP

packets would simply be removed upon reception and would
therefore not affect the basic algorithm or its complexity.

The number of partial streams, N, can vary per RTP
session. For instance it may not be very useful to partition
an audio stream into lower bit rate partial streams if the bit
rate of the entire RTP audio session is already in the order of
magnitude of a single partial RTP video stream. This also has
the additional advantage that the audio is received either in
its entirety or not at all, thereby reducing annoying audible
artifacts in the case of partial stream loss.

The number of partial streams does not necessarily
need to be constant throughout the P2P network within a
particular streaming service. As a matter of fact it is possible
to vary N at every forwarding peer in the network. However,
choosing the same N throughout the network simplifies the
design of the partitioning functionality.

6. Media Delivery Mechanism

All peers in the streaming network are forming a non-
hierarchical mesh structure. Peers are connected to several
other peers and are receiving data from and sending data to
multiple other peers. An example mesh layout can be seen in
Figure 1.

A peer may request the delivery of one or more partial
streams from another peer. A partial stream is the smallest
granularity for media streaming, that is, a peer may not
stream a fraction of a partial stream. The number of partial
streams can be tuned to achieve the target bit rate of a partial
stream. Each peer in the network should have enough uplink
bandwidth to be able to stream at least a single partial stream.

In this kind of streaming network, where most of the
peers are from the same cluster, some kind of intelligence to
avoid loops is needed. Such loops occur when a sender starts
receiving its own data via a number of intermediate peers in
the mesh network. To avoid loops, an algorithm based on
streaming path in the form of list of ancestors is used. The
path for the data stream in the application level containing
peer IDs which have forwarded the stream is delivered using
the contributing source (CSRC) list in the RTP packets. This
list is then used to avoid accepting connections from peers
who are already in the list and for dropping connections if a
peer notices that it is in the list.

Figure 7 illustrates media delivery among four peers.
Arrows between each peer denote an active RTP session, and
the direction defines the data flow direction. A sourcing peer
can send multiple partial streams to a particular receiving
peer. This allows for a smaller granularity of rate adaptation
between two individual peers in the network. These multiple
partial streams could either be streamed in a single RTP
session or separate RTP sessions. Peers in the figure are
numbered and colored. The smaller the number is, the earlier
the peer has joined the network; in this case peer number
one is the original source. Different colors in the peers buffers
show the origin of the received data. For simplicity, the value
four is used for the number of partials for each peer.

In order to receive a complete stream, a peer must receive
all partial streams; in this example, partials 0, 1, 2, and 3.

Tc=NXxTp =24

International Journal of Digital Multimedia Broadcasting

Time
- o o =3 8——a8—4—8 & =3 o =3 8 ——8—4—-8 & =3 ,,,,>
2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 Timestamp
Tp =6
. S— J

[J RTP packet

- - Partial 0 (i = 0)
- -Partial 1 (i=1)
-+ Partial 2 (i = 2)

[20] [23] [#] [4] - - - Partial 3 (i = 3)

F1GUrE 6: RTP stream partitioning.

F1GURE 7: Partial RTP stream delivery.

Peer number two is receiving all partials from the original
data source, that is, peer number one, and is forwarding
partials to peers number three, four, and five. Peer number
four is also receiving partials from peer number three, and
peer number five from peers number three and four. All
incoming packets for all of the partial streams that constitute
a particular RTP session are added to a separate buffer
pool. This buffer pool maintains the information about the
destination peer to which the incoming packets need to be
forwarded. Every incoming packet is examined and assigned
to one of the outgoing queues. In case the peer is playing back
the received streams locally, the local player is considered to
be a destination as well.

Packets destined for a particular receiving peer are
transferred from the buffer to the outgoing RTP queue as
soon as they have been received. In case of local playback, that
is, the receiving peer is decoding and rendering the received
RTP session, the packets are also forwarded internally to
the media player. Buffering is needed to recover from peer
departures and consequential missing data. The peer can
ask a replacement peer to send the missing data from its
buffer. There is also a possibility that a peer does not have
certain part of the buffer available because of bad network
conditions, for example, insufficient bandwidth. These parts
might be later downloaded if needed. Because of the missing
data, the playback is interrupted during this period and it
depends on the used codec how missing data will affect
on Quality of Experience (QoE). Data will most probably
not come in order or in time from all sources as the delay
could vary very much between different sources, so the buffer
is also needed to collect all the data from different partial

Reception buffer

Playback buffer in media player ~Missing Network delay
o ——

Playback point Live
source

Buffering delay

Timeline 1otal delay

F1GURE 8: Data buffering.

streams and arrange the data in order before passing it to the
local media player.

When all partial streams are received almost at the same
time, the buffering delay can be reduced and the data can
be passed earlier to the media player. However, the situation
may change during time, and a constant buffer delay is
currently used in the implementation. Data buffering is
presented in Figure 8. The playback buffer is the buffer
located in the media player. When peers consume media, the
reception buffer is simultaneously shared with other peers.
The total delay from content generation to receiver playback
is the sum of the network delay, buffer delay, and media
player playback delay.

In addition to the reception buffer, data storage via
caching should be used in a VoD streaming service. When
using caches, the VoD data can be distributed away from
the original data source. This helps relieving the network
load from the original data source, as new peers joining
the network are able to download VoD content from
multiple sources instead of relying on the original data
source. Caching could be implemented in many ways, in the
simplest model all peers store all data they have consumed.
If a peer does not have enough storage capacity, the data
belonging to a specific partial stream could be cached instead.
Alternatively, a peer can limit the amount of cached data
by applying a sliding time window. In the former case, an
algorithm based on peer IDs could be used to determine
which partial stream should be stored. This kind of partial
caching requires that the amount of peers in a streaming
service is reasonably high. To ensure data availability from
multiple peers in every situation, support nodes, which

International Journal of Digital Multimedia Broadcasting

Other
peers

Selected
@

SDS

I
I
I
I
T
V
I
|
,
I
I

J

GET_PARAMETER (ping)

T
1
1

OPTIONS (kluster join)
200

200 OK

DESCRIBE (service list)
é —————
Choosing
service
DESCRIBE (service info)
e

} <

}<

discovered]

CLis

loop |

loop
[Until suitable

[For every

peer

connection]|

loop |

[Data

transfer]

TEARDOWN

4

OPTIONS chuster leave)!
!

e __2000K L

FIGURE 9: Peer in a service.

10

act as stream relay nodes, could be used to store all the
data. Such relay nodes simply store the data and pass it
to other network participants. It should be noted that a
support node also consumes upload bandwidth from other
peers, but with a high throughput network connection
it provides more bandwidth to others than it consumes.
The currently existing simple VoD implementation uses
the simplest caching model, which is of course not the
most optimal one, but it enabled a fast proof-of-concept
implementation.

7. Peer Operation in a Service

Figure 9 shows the message exchange in case a peer is
participating in a particular service. For getting a list of all
available services a DESCRIBE message is sent to the SDS.
The service list information obtained in the 200 0K message
contains only general information of the services to decrease
the message size and the information is expressed as XML
fragments. If a user wishes to search services with a wildcard
string, a search element could be used to deliver the wildcard
string to the SDS. If there are not available services, the SDS
will respond with a 404 Not Found message.

To be able to join to a particular service, more detailed
service information must be retrieved from the SDS using a
DESCRIBE message with an RTSP URL specifying the service.
A 200 OK message contains only a partial list of the available
clusters, in case a large number of clusters has been created.
The response uses multipart MIME [21], because it must
deliver both the SDP of the service and the initial cluster list
in XML format. If the service is not available anymore, a 204
No Content message will be sent by the SDS.

After obtaining the CL list from the SDS, the peer makes
contact with several CLs until a suitable CL is discovered. For
this purpose, the peer sends a GET_PARAMETER message to
the CL and starts the RTT counter. The peer stops the RTT
counter when it receives a 200 OK message and compares the
RTT value to some predefined upper limit. The first CL with
an RTT value below the limit is then selected as the CL for
the service.

The peer joins the selected cluster by sending an OPTIONS
message with a join_peer tag in the Overlay header field
to the CL of the cluster. In the 200 OK message, an initial
peer list is received in XML format if some peers have already
joined the cluster. Otherwise, a Cluster-Id header field is
used to describe the ID for the cluster. The initial peer list is
a random subset of the total peer set, if there are lots of peers
in the cluster.

The peer tries to request data from other peers in the
list order using a SETUP message. This message handles
the configuration of the UDP port numbers for the RTP
reception using the Transport header field. If there are
fewer peers than the target number of partial streams, the
peer continues requesting again from the beginning of the
list, so that it will receive more than one partial stream from
a single peer. If a certain peer is not responding, it will be
removed from the internal known peer list, so that the peer
does not try to reconnect again. The peer which is receiving
the requested stream, that is, audio or video stream, will

International Journal of Digital Multimedia Broadcasting

respond with a 200 0K message to indicate that it might be
possible to get the stream data from the peer.

Setting up of the partial RTP streams is done by
sending a PLAY message to the peer which is receiving the
requested stream. Splitting of the original RTP session into
partial streams is explained in Section 5, and these partial
stream parameters are signaled using a Partial-Stream
header field. The format of a Partial-Stream header field
in ABNF is given below:

Partial-Stream = "Partial-Stream:" SP partial-stream-
info
CRLF

partial-stream-info = id ";" piece-size ";"

nb-of-partials ";"
id = "id=" 1*DIGIT
piece-size = "piece-size=" 1*DIGIT
nb-of-partials = "nb-of-partials=" 1*DIGIT

If the peer is able to send the requested partials, it will
respond with a 200 OK message. If the peer noticed a loop,
it will response with a 400 Bad Request message, and if
the peer cannot send the requested partials, it will respond
with a 404 Not Found message. After the 200 OK message,
data delivery from the requested peer using RTP is started.
If the interval between two consecutive RTP packets is more
than the predefined maximum allowed delay, the receiving
peer should conclude that the sending peer is not capable of
delivering the data in time and it should change the sender
for the partial in question.

A peer can depart from the network in two ways. In a
controlled departure, the peer informs its neighbors and the
CL that it is leaving the network. The peer sends an OPTIONS
message with a leave, tag in the Overlay header field to
the CL, and a TEARDOWN message to all of its data delivery
neighbors. Neighbors, which were sending data know that
they can terminate the RTP session. Also peers that were
receiving data know that they will not be able to receive more
data from that peer, and can search for a replacement. The
TEARDOWN message will also be sent when a peer notices
that there is a loop in the data delivery for some partial
stream.

An uncontrolled peer departure is noticed both by the
CL and a peer which sends data to the departed peer after
connection keep alive messages, that is, GET_PARAMETER
messages, have not been received within some time interval
X. Currently, keep alive messages are sent at 30 seconds
intervals towards the CL and at 15 seconds intervals towards
the peer which sends the data. If the sending peer does
not receive keep alive message within 30 seconds interval
it concludes that the receiving peer has departed and
terminates the RTP session. Similarly, if the CL does not
receive any message from the peer within 45 seconds interval
it concludes that the receiving peer has departed and removes
the peer from the cluster because of inactivity. A peer
which is receiving data from the departed peer will notice
uncontrolled departure after it has not received any RTP
packets since Y seconds. The value Y should be defined so
that it is possible to get data from a replacement peer within
the reception buffer duration in order to avoid interruption.
This is basically the same situation when the sending peer

International Journal of Digital Multimedia Broadcasting

is not capable of delivering the data in time and currently
Y is calculated according to (2). This value consists of
time between two pieces belonging to the same partial RTP
stream, the normal network delay Ty, that can be calculated
from RTSP request-response pairs, and a small extra time Tg
given to peers to patch packets that might still be forwarded
in the network:

Y=Tpx(N—-1)+ Ty + TE. (2)

To request data from a replacement peer from a certain
starting point, a Packet-Range header field can be included
into a PLAY message to signal the play-after value using RTP
sequence numbers. The Packet-Range header field can also
be used to signal the current playback position when the
peers are seeking a new playback position in a VoD service.
The format of a Packet-Range header field in ABNF is given
below. The two different use cases can be distinguished by the
minus sign used in the former case:

Packet-Range = "Packet-Range:" SP range-specifier CRLF
range-specifier = 1*DIGIT ["-"]

In the VoD service, two other additional header fields are
required for the seeking operation. The desired seek time in
milliseconds will be signaled using a Seek header field. A
Fast-Send header field will be used to inform the sender
to send a specified amount of data (in milliseconds) as fast
as possible to be able to fill up the reception buffer and start
playback with as small delay as possible. The formats of the
Seek and a Fast-Send header fields in ABNF are given
below:

Seek = "Seek:" SP seek-time CRLF
seek-time = 1xDIGIT

Fast-Send = "Fast-Send:" SP fast-send-time CRLF
fast-send-time = 1*DIGIT

8. Implementation

The architecture of the real-time P2P streaming (RTP2P)
application is presented in Figure 10. The RTP2P application
is implemented using C++ and it consist of ten different
software components. The principle in the figure is that the
higher layer uses all components that are immediately below
it, so, for example, the Graphical User Interface (GUI) uses
Service, Common, and Media Player components.

The GUI is implemented using the gtkmm framework
[22] for the Linux desktop environment and the maemomm
framework [23] for the Nokia N800 Internet Tablet. Cur-
rently three different media players, VLC [24], MPlayer [25],
and GStreamer [26], are needed in the application. This
is necessary because any single player cannot offer all the
features required for our application. VLC is used to stream
RTP packets locally to the RTP2P application in the case of
the original data source. The original data source only listens
to the local socket, and receives RTP packets generated by
the VLC and can forward those further using the multisource
streaming concept explained in Sections 5 and 6. MPlayer is
used for the media playback on the client applications. It is

11

Graphical user interface

Media
player

FIGURE 10: Architecture of the RTP2P streaming application

Figure 11: Graphical user interface.

also possible to use VLC for the media playback, but with
MPlayer it is possible to achieve a better synchronization
with multiple elementary streams by using RTCP sender
reports. GStreamer is used to create an RTP stream from the
camera of the N800 device. The needed RTP operations are
provided by the GNU ccRTP library [27]. In addition, the
Boost libraries [28] are utilized for threading time and file
system operations.

Other proprietary software components, that is, Service,
Overlay, Streaming, XML, RTSP, Common, and SDP, form
the basis for the peer operation. The SDP component is
based on the GNU oSIP library [29] and is used to parse the
streaming service description expressed in the SDP format.
The Common component contains definitions and function-
alities which are widely used by other components including,
for example, threading and socket operations. The XML
component is based on the Expat XML parser [30] and it is
utilized for parsing cluster and service information expressed
in the XML format. The RTSP component contains RTSP
message creation and parsing and also the base functionality
for RTSP operations, which are enhanced and utilized by
Streaming and Overlay components. The Streaming compo-
nent includes sender and receiver functionalities to handle
P2P RTSP communications and RTP reception and sending
operations for the streaming service. The functionality of
the cluster leader and all RTSP overlay communication are
included in the Overlay component. The Service component
contains the functionality needed to join, create, and manage
streaming services.

Figure 11 presents the GUI in a Nokia N800 device. The
GUI consist of three parts: (a) the main application view

12

T — B
0@

Nokia N800 Nokla E90
(==Y | (

Nokla N800 Nokia E90

— N

meol A

Nokia N800 Nokia E90

" Base station

=R E

Nokia N800 Nokia E90

International Journal of Digital Multimedia Broadcasting

Service
dlscovery
server

Monlt

Orlgmal
data
source

F1GURE 12: Test setup for evaluating the operation of the system in the mobile environment.

with Main, Info and Player tabs, (b) Create, Connect, List
and Preferences dialogs launched from the drop down menu,
and (c) Toolbar buttons at the bottom to start and stop the
selected service at the receiving end, and the service in the
original data source. The List dialog is used to obtain the
service list from the SDS which is then shown in the Main
tab. Information about the sourced service is also shown in
the Main tab. The Info tab is used to show detailed service
information about the sourced service and the service that
is currently received by the peer. The Player tab shows the
sourced stream in the original data source and the currently
received stream by the peer. The Connect dialog is used to
enter an [P address or a domain name for connecting to
the SDS. The Create dialog is used for creating new services.
Service name, type and description are given by the user, as
well as the file to be sourced in case of stored content. The
content can also be captured directly from the camera. The
Preferences dialog can be used to adjust some attributes, for
example, port numbers for the network traffic and the level
of debug messaging.

9. Performance Evaluation

The test setup for evaluating the operation of the system
in the mobile environment is presented in Figure 12. Four
Nokia N800 Internet Tablets with HSDPA network connec-
tion provided by the Nokia E90 were used together with a
PC acting as an SDS. In some test cases, also another PC was
acting as an original data source. During the tests a special
application was used to monitor streaming connections
between peers. As most normal consumer connections, also
mobile connections are suffering from Network Address
Translation (NAT) based connection limitations because
Internet Service Providers (ISPs) do not want that users use
the relatively small mobile bandwidth for hosting services
or using P2P technologies. To avoid connection limitations,
a workaround with VPN solution was utilized. Every entity
with a restricted network connection first creates a connec-
tion to the VPN server and gets the desired free connectivity
through the VPN tunnel. A more permanent solution could
be implemented using NAT traversal to overcome these
restrictions.

14
12t ™
R e PR st RS g N SN 0K
10} 1
g 8T 1
L
2
£ oo ‘
&
st]
2 8 o
0 W
0 100 200 300 400 500 600 700

Overlay size

—— Overlay join
-« - Buffering
x - Total time

FiGUre 13: Overlay joining time and an initial buffering time as a
function of overlay size; maximum cluster size 30 peers.

Tests have shown that the system performs well over
mobile connections with ten seconds initial buffering time.
The buffer size in our application is also ten seconds due to
the RTP usage and is relatively small compared to the buffer
sizes of existing solutions reported in [4].

Because the amount of available mobile devices was
limited, a laboratory network environment with 17 desktop
PCs (Intel Core2Duo E6550, 4 GB DDR2, running CentOS
Linux, kernel 2.6.18 PAE) has been utilized to test the system
functionality with a larger amount of peers. 16 hosts were
used to run 40 peers in each host together with one host
acting both as an SDS and as an original data source. The
connectivity between all devices was provided by a 1 Gbps
switch. The length for one live streaming service was roughly
one hour and all forthcoming figures present average values
from five different live streaming services. The maximum
cluster size was set either to 30 or to 70 peers, and peers were
started in 40 cycles with a 5 starting interval: first one peer
was started at each host, then a second one and so on.

International Journal of Digital Multimedia Broadcasting

200 T T T T T T

180 1
160
140
120 !
100
80

Traffic per peer (B/s)

60
40 [1
20 1

0
0 100 200 300 400 500 600

Overlay size

Sent RTSP bytes
- =~ Received RTSP bytes

(a)

F1GURE 14: The amount of sent and received RTSP data, (a) maximum cluster size 30 peers, and (b) maximum cluster size 70 peers.

9.1. Steady Network. In this test scenario all peers stayed
steadily in the service from the joining time to the end
of the service. The streaming service joining time, that is,
the overlay joining time plus the initial buffering time, as
a function of the overlay size is presented in Figure 13.
From the figure we can see that the initial buffering time
remains almost constant regardless of the number of peers
in the network. The increase in overlay joining time could
be minimized by improving the current cluster selection
algorithm.

The amount of sent and received RTSP data in bytes
per peer as a function of overlay size is shown in Figure 14.
The combined bit rate of the original RTP sessions is about
112 kbps, encoded using FFmpeg’s [31] H.263+ video, and
AAC audio codecs. Hence, the RTSP signalling overhead
is quite minimal compared to the actual media data. The
reason for the larger amount of RSTP data sent is caused
by the relatively large cluster status information messages
transmitted to the SDS by the CLs. The main difference
between Figure 14(a) and Figure 14(b) is the slight increase
in the RTSP signalling data after 300 peers with the
maximum cluster size of 30 peers. This is caused by the
larger (and increasing) amount of clusters and cluster status
information messages. Similar effect might take place also
with the maximum cluster size of 70 peers when the amount
of peers is increased above the currently used maximum
value.

9.2. Network with Leaving and Rejoining Peers. To simulate
even a more realistic situation and the churning caused by
the real mobile nodes, a timer functionality that is able to
randomly shut down and restart nodes was used. After a peer
had joined to the service, it stayed randomly from 30s to
10 min in the service and then left the service and joined back
after 10 s. This allowed us to test the network in more realistic
situations where peers are leaving and data connections are
failing.

13
200 T T T T T T
2 J
§ J
(=%
5 J
=9
= 4
&
g
= J
40+ 1
20 ¢ 1
0
0 100 200 300 400 500 600 700
Overlay size
—— Sent RTSP bytes
~ %~ Received RTSP bytes
(b)
3 J
§ 4
A
5 J
a — \
9 4
&
g
=601 1
40 r 1
20 1 1
0
0 100 200 300 400 500 600 700

Overlay size

—— Sent RTSP bytes
~»~ Received RTSP bytes

F1GURE 15: The amount of sent and received RTSP data with leaving
and rejoining peers; maximum cluster size 70 peers

The amount of sent and received RTSP data in bytes
per peer as a function of the overlay size is presented in
Figure 15. If we compare these values to the corresponding
values in the steady state scenario, we can see that the values
follow the same trend, but the replacement peer searching
and peer rejoining messages cause small overall increase to
the signalling data.

10. Future Developments

In the current overlay implementation, a cluster change is
controlled by the CL. Peer-controlled cluster change, where
a peer changes the cluster after acquiring knowledge about a
new cluster which would serve its data requirements better,

14

would make the system more scalable and will increase the
overall performance.

Clusters are currently loosely connected together
between the neighboring CLs to share some peer infor-
mation. A clearer cluster group structure with a Cluster
Group Leader (CGL) is worth studying. The CGL could
collect the information about all clusters within the cluster
group and send cluster update messages to the SDS, instead
of separate update messages from individual CLs. This
organization into an n-level hierarchical structure could
increase network scalability and reduce the overlay joining
time since the cluster search time would be reduced from
O(n) to O(log(n)). As a drawback, the complexity of the
system and the overlay maintenance will be highly increased.

More advanced implementation level support for VoD
streaming such as better caching mechanism and support
for other Video Cassette Recording (VCR) functionalities like
fast-forward and rewind, in addition to the currently existing
seek functionality will definitely pose different requirements
compared to the live streaming case. Mechanisms for han-
dling packet losses is an important research area in peer-to-
peer streaming. Different error robustness techniques, such
as simple retransmission, Forward Error Correction (FEC)
and network coding, need to be studied to find out the
benefits and drawbacks of those techniques, when used in
addition to the current mechanism which is based on peer
replacement before the reception buffer underflows.

One interesting research area is the usage of Multiple
Description Coding (MDC) [32] or Scalable Video Coding
(SVC) [33] in the real-time P2P streaming as is proposed also
in [10]. A single stream is divided into several descriptions
and each of the descriptions is then forwarded separately to
the network. With this approach, the current partial stream
could be replaced by one description without affecting
the clustered overlay network architecture. However, our
partial stream concept has much lower complexity (than
MDC or SVC), which has enabled a fast proof-of-concept
implementation. Our design allows an easy replacement of
the partial stream concept with MDC or SVC as soon as their
implementations become publicly available.

11. Conclusions

The effective real-time P2P streaming system for the mobile
environment presented in this paper is an alternative solution
to traditional client-server-based streaming applications. A
scalable overlay network which groups peers into clusters
according to their proximity is created and maintained using
extended RTSP messages by the cluster leaders with the help
of a service discovery server. Furthermore, the actual media
delivery is implemented using a partial RTP stream concept.
RTP sessions are split into a number of partial streams in
such a way that it allows reassembling the original media
session in real-time at the receiving end.

The first laboratory tests together with the tests in the
mobile environment have shown that the current implemen-
tation performs well and offers very low initial buffering
times. More advanced laboratory tests with different latencies

International Journal of Digital Multimedia Broadcasting

and throughputs between peers are still needed to highlight
system bottlenecks and usability issues.

Acknowledgments

The authors would like to thank Joep van Gassel, Alex
Jantunen and Marko Saukko for their valuable work as part
of the development team. This work was partially supported
by TEKES as part of the Future Internet program of Finnish
Strategic Centre for Science, Technology and Innovation in
the field of ICT (TIVIT).

References

[1] “YouTube—Broadcast Yourself,” May 2009, http://www.
youtube.com/.

[2] “Octoshape,” May 2009, http://www.octoshape.com/.

[3] “SopCast,” May 2009, http://www.sopcast.org/.

[4] J. Peltotalo, J. Harju, A. Jantunen, et al., “Peer-to-peer stream-
ing technology survey,” in Proceedings of the 7th International
Conference on Networking (ICN "08), pp. 342—350, April 2008.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“RTP: A Transport Protocol for Real-Time Applications,”
Internet Engineering Task Force, RFC 3550, July 2003,
http://www.rfc-editor.org/rfc/rfc3550.txt.

[6] B. Cohen, “Incentives build robustness in BitTorrent,” in

Proceedings of the Workshop on Economics of Peer-to-Peer

Systems (P2PECON *03), pp. 116—121, June 2003.

P. Shah and J.-E Paris, “Peer-to-peer multimedia streaming

using BitTorrent,” in Proceedings of the 26th IEEE International

Performance, Computing, and Communications Conference

(IPCC 07), pp. 340-347, April 2007.

X. Jiang, Y. Dong, D. Xu, and B. Bhargava, “GnuStream: a

P2P media streaming system prototype,” in Proceedings of the

International Conference on Multimedia and Expo (ICME ’03),

pp. 325-328, July 2003.

X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStream-

ing/DONet: a data-driven overlay network for peer-to-peer

live media streaming,” in Proceeding of the 24th Annual

Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM ’05), vol. 3, pp. 2102-2111, March 2005.

[10] N. Magharei and R. Rejaie, “PRIME: peer-to-peer receiver-

drlven MEsh-based streaming,” Proceedings of the 26th
IEEE International Conference on Computer Communications
(INFOCOM °07), pp. 1415-1423, May 2007.

[11] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: an efficient

peer-to-peer scheme for media streaming,” in Proceedings of

the 22nd Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM ’03), vol. 2, pp. 1283—

1292, March 2003.

J. Liang and K. Nahrstedt, “DagStream: locality aware and

failure resilient peer-to-peer streaming,” in Proceedings of

the 13th Annual Multimedia Computing and Networking

Conference (MMCN ’06), pp. 224-238, January 2006.

[13] J. Yu and M. Li, “CBT: a proximity-aware peer clustering

system in large-scale BitTorrent-like peer-to-peer networks,”

Computer Communications, vol. 31, no. 3, pp. 591-602, 2008.

J. Peltotalo, J. Harju, M. Saukko, et al., “A real-time peer-to-

peer streaming system for mobile networking environment,”

in Proceedings of the INFOCOM and Workshop on Mobile Video

Delivery (MoVID °09), April 2009.

[7

=

[9

(12

(14

International Journal of Digital Multimedia Broadcasting

[15] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Stream-
ing Protocol (RTSP),” Internet Engineering Task Force, REC
2326, April 1998, http://www.rfc-editor.org/rfc/rfc2326.txt.

[16] D. Crocker and P. Overell, “Augmented BNF for Syntax Speci-
fications: ABNE” Internet Engineering Task Force, RFC 2234,
November 1997, http://www.rfc-editor.org/rfc/rfc2234.txt.

[17] T. Berners-Lee, R. Fielding, and L. Masinter, ““Uniform
Resource Identifier (URI): Generic Syntax,” Internet Engi-
neering Task Force, RFC 3986, January 2005, http://www.rfc-
editor.org/rfc/rfc3986.txt.

[18] W3C, Extensible Markup Language (XML) 1.0, World Wide
‘Web Consortium (W3C), 4th edition, 2006.

[19] “zlib,” May 2009, http://zlib.net/.

[20] M. Handley and V. Jacobson, “SDP: Session Description
Protocol,” Internet Engineering Task Force, RFC 2327, April
1998, http://www.rfc-editor.org/rfc/rfc2327.txt.

[21] K. Moore, “MIME (Multipurpose Internet Mail Extensions)
Part Two: Message Header Extensions for Non-ASCII Text,”
Internet Engineering Task Force, RFC 1522, Sepember 1993,
http://www.rfc-editor.org/rfc/rfc1522.txt.

[22] “gtkmm—C++ Interfaces for GTK+ and GNOME,” May
2009, http://www.gtkmm.org/.

[23] “maemomm—C++ bindings for the Maemo API,” May 2009,
http://maemomm.garage.maemo.org/docs/index.html.

[24] “VLC Media Player,” May 2009, http://www.videolan.org/vlc/.

[25] “MPlayer—The Movie Player,” May 2009, http://www.
mplayerhq.hu/.

[26] “GStreamer: open source multimedia framework,” May 2009,

http://www.gstreamer.net/.

“GNU ccRTP—GNU Telephony,” May 2009, http://www.gnu.

org/software/ccrtp/.

[28] “Boost C++ Libraries,” May 2009, http://www.boost.org/.

[29] “The GNU oSIP Library,” May 2009, http://www.gnu.org/
software/osip/osip.html.

[30] “The Expat XML Parser,” May 2009, http://expat.sourceforge.
net/.

[31] “FFmpeg,” May 2009, http://www.ffmpeg.org/.

[32] V. K. Goyal, “Multiple description coding: compression meets
the network,” IEEE Signal Processing Magazine, vol. 18, no. 5,
pp. 74-93, 2001.

[33] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the
scalable video coding extension of the H.264/AVC standard,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 1103-1120, 2007.

[27

15

PUBLICATION P7

Jani Peltotalo, Jarmo Harju, Lassi Vidtdmoinen, Igor D. D. Curcio, Imed Bouazizi,
and Joep van Gassel, “Scalable Packet Loss Recovery for Mobile P2P Streaming,” in
Proceedings of the Eigth International Conference on Wired/Wireless Internet Com-
munications (WWIC 2010), LNCS 6074, Lulea, Sweden, June 1-3 2010, pp. 107-
120. doi:10.1007/978-3-642-13315-2_9

Copyright (©) 2010 Springer-Verlag Berlin Heidelberg. Reprinted with permission.

