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Abstract

In the era of wireless communications, the demand for localization and localization-
based services has been continuously growing, as increasingly smarter wireless devic-
es have emerged to the market. Besides the already available satellite-based localiza-
tion systems, such as the GPS and GLONASS, also other localization approaches are
needed to complement the existing solutions. Finding different types of low-cost locali-
zation methods, especially for indoors, has become one of the most important research

topics in recent years.

One of the most used approaches in localization is based on Received Signal Strength
(RSS) information. Specific fingerprints about RSS are collected and stored and posi-
tioning can be done through pattern or feature matching algorithms or through statisti-
cal inference. A great and immediate advantage of the RSS-based localization is its
ability to exploit the already existing infrastructure of different communications networks
without the need to install additional system hardware. Furthermore, due to the evident
connection between the RSS level and the quality of a communications signal, the RSS
is usually inherently included in the network measurements. This favors the availability

of the RSS measurements in the current and future wireless communications systems.

In this thesis, we study the suitability of RSS for localization in various communications
systems including cellular networks, wireless local area networks, personal area net-
works, such as WiFi, Bluetooth and Radio Frequency Identification (RFID) tags. Based
on substantial real-life measurement campaigns, we study different characteristics of
RSS measurements and propose several Path Loss (PL) models to capture the essen-
tial behavior of the RSS levels in 2D outdoor and 3D indoor environments. By using the
PL models, we show that it is possible to attain similar performance to fingerprinting
with a database size of only 1-2% of the database size needed in fingerprinting. In ad-
dition, we study the effect of different error sources, such as database calibration errors,
on the localization accuracy. Moreover, we propose a novel method for studying how
coverage gaps in the fingerprint database affect the localization performance. Here, by
using various interpolation and extrapolation methods, we improve the localization ac-
curacy with imperfect fingerprint databases, such as those including substantial cover-

age gaps due to inaccessible parts of the buildings.
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1 Introduction

1.1 Background and motivation

During the last two decades, wireless communications have become a significant part of our eve-
ryday life. The new continuously developing wireless technologies have brought about new oppor-
tunities for utilizing the available radio signals. One of the most attractive use cases is the radio-
network-based localization, where the available wireless signals are exploited for the localization
purposes. Although satellite-based localization with Global Navigation Satellite Systems (GNSS)
can provide high localization accuracy in outdoor environments at the global scale, the challenge of
the development of a global scale indoor localization system remains unsolved. Moreover, the per-
formance of the localization system should be founded not only on the actual localization accuracy,
but also on the overall cost of the localization system. The overall cost is composed of economic
factors, such as the implementation and maintenance costs of the system, and operating factors,
such as the energy-efficiency factor. The latter one is a crucial factor for the user experience due to
the possibility of enhancing the battery durability in the wireless devices. For example, GNSS ena-
bles accurate navigation for vehicles, but it is unnecessarily accurate and energy-inefficient for
location-aware marketing that can run in the mobile device as a background process informing the
user whenever something interesting emerges nearby. Hence, as pointed out in [77], a single local-
ization system is unable to meet all the requirements set by the industry, and therefore, continuing

studies over a variety of positioning technologies is necessary.

The market of the indoor localization has been increasing rapidly over the recent years and the
growth is still accelerating [116],[129]. This has produced an increasing demand for cost-efficient
wireless indoor localization systems operating at the global scale. As a result, the use of the al-
ready available wireless networks has been proposed in the literature for the localization purposes
[10]1,[37],[491,[59].[85],[147]. Here, the fundamental advantage is that no additional hardware is

required for the new localization system, and moreover, the availability of the wireless systems,
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such as Wireless Local Area Networks (WLAN) [64] and Bluetooth Low Energy (BLE) [27], is yet

expected to be increased in the future.

Most of the wireless communications networks provide a straightforward access to the Received
Signal Strength (RSS) values, which has made the RSS-based localization one of the most attrac-
tive network-based localization approaches. Probably the most often mentioned RSS-based locali-
zation approach is the fingerprinting studied, for example, in [16],[21],[76],[80],[81],[92],[94],[109],
[117],[138],[141]. Here, the fundamental idea is to first collect leaming data from the target area
and then use it later in the user localization, by comparing the user measurements with the learn-
ing data. However, if the target area, the number of the observable wireless networks, and the
number of radio transmitters (TX) grow, the size of the leamning database might become intolerably
large. Even if there would be enough storage capacity in the database, the data traffic handled by
the database server might become a bottleneck of the system. To tackle this problem, by using
Path Loss (PL) models, such as in, for example, [1],[100],[101],[112],[122], the size of the database
can be significantly reduced. However, due to harsh and unpredictable radio propagation environ-
ment, the accuracy of the PL models might sometimes be inadequate, which directly results in de-
creased localization performance. There is thus a fundamental tradeoff between the accuracy of a
localization algorithm and its required database size and storage capacity, a tradeoff that is ad-

dressed all through this thesis.

We use the above-mentioned TX acronym for any transmitting radio device, whose signal can be
utilized for the RSS-based localization. These are, for example, Access Points (AP) in WLANs and

Base Station transmitter (BS) in cellular networks.

1.2 The scope and objectives of research

The main focus in this thesis is to study the RSS-based localization from the fingerprinting and PL
modeling point of view and analyze the performance of the localization systems under the influ-
ence of different error sources and coverage gaps in the learning data. We focus on the two-step
localization approach, which is divided into the learning data collection phase and the user localiza-
tion phase, often referred to as the offline phase and the online phase [37]. However, there are
also localization approaches available in the literature, which perform the localization while simul-
taneously learning about the environment. These types of approaches are generally referred to as
Simultaneous Localization and Mapping (SLAM), which is described in a tutorial format in [22] and
[44]. Moreover, in [95] a computationally efficient fastSLAM-algorithm was introduced. The Bayesi-

an-based fastSLAM-algorithm exploits specific tree structures for providing considerable reduction
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in the computation complexity compared to traditional Kalman-filter-based approaches. Further-
more, in [133] the full SLAM problem (or offline SLAM problem), where the localization and map-
ping are done only after all the data has been collected, was solved by introducing a novel
GraphSLAM-algorithm. However, on top of this, in this thesis we are also interested in the learning
data from the RSS statistics point of view, since such knowledge provides valuable information for
the SLAM approach and for the RSS-based localization algorithms in general. Having a clear un-
derstanding of the properties of the radio propagation environment and the RSS statistics is in vital
role when developing new localization algorithms and PL models and creating computer-based

simulations for the localization purposes.

The main focus of the thesis regarding the localization systems is on the 3D indoor localization with
multi-storey buildings, but also outdoor scenarios for suburban and urban environments are con-
sidered. In this thesis, the vertical coordinates of the 3D systems are always discretized to the
known floor heights, which is adequate for the considered use cases. For the indoor case, we
study WLANSs at both 2.4 GHz and 5 GHz carrier frequencies, BLE beacon signals at 2.4 GHz car-
rier, and passive Radio Frequency ldentification (RFID) tags at Ultra-High Frequency (UHF). For
the outdoor case we consider 2™ generation (2G) and 3™ generation (3G) cellular networks, name-
ly the Global System for Mobile Communications (GSM) [2] and the Wideband Code Division Mul-
tiple Access (WCDMA) [5]. For all the considered cases we are interested in the observed RSS
statistics and the PL model parameters, and especially, in how the parameters differ between sep-
arate localization systems. Besides these, one of the objectives is to compare the localization ac-
curacy between the considered localization systems and include the aspect of the database size in
the performance comparison. Thus, we consider the two-step localization approach and study the
advantages and disadvantages of the traditional fingerprinting and PL-model-based approaches.
Both of these approaches require collection of the training data, is first processed and stored in the
learning database. The fundamental comparison between the performances of the two approaches
is performed based on the localization accuracy and the required size of the learning database.
Furthermore, since RSS-based localization introduces various error sources in the localization es-
timation, we are also highly interested in studying the effects of different error sources on the local-

ization accuracy.

The essential description of the considered localization system in this thesis is illustrated in Fig. 1-1.
One example of a similar type of a system is the Horus, presented earlier in [147] and [148]. The
Horus is a WLAN-based indoor localization system, which uses the two-step fingerprinting ap-
proach including the offline-phase and online-phase (i.e., learning data collection phase and the

user localization phase). In addition, the Horus system incorporates several algorithms and meth-
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Fig. 1-1 An example of the considered two-step localization system including the training phase
and the user localization phase. In this thesis, we concentrate on the mobile-centric ap-
proach where the localization is performed by the user device (i.e., the localization block is
physically located inside the user device).

ods for handling different statistical properties of the RSS measurements, such as the temporal

and statistical correlation of the RSS measurements taken from the same AP.

1.3 Main contributions of the thesis

This compound thesis consists of 8 publications, none of which has been used as a part of any

other PhD thesis. The main contributions of the thesis can be concisely described as follows:

o Different RSS interpolation and extrapolation algorithms are studied and derived to esti-
mate the RSS values in areas, where no learning data has been collected.

¢ A randomized model for simulating RSS coverage gaps in the learning database is derived.
Based on the model, the effect of coverage gaps on the localization performance is studied
and the above-mentioned interpolation and extrapolation methods are proposed to alleviate
the reduction in the localization performance with coverage gaps.

¢ Novel deconvolution approach based on estimating the PL models without the knowledge
of TX locations is presented. In addition, characteristics of traditional PL models are com-
pared between different localization systems, including both indoor and outdoor localization,

and different carrier frequencies in case of WLAN (2.4 GHz and 5 GHz).
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e The characteristics of the RSS measurements obtained during the learning phase are dis-
cussed. These include the format of the RSS distribution in a fixed location, and the format
of the RSS shadowing distribution with spatial correlation.

e The effect of the learning database calibration error and the bias error on the performance
of the RSS-based localization system is evaluated. These types of errors occur when there
are not enough repetitive RSS measurements collected for the learning data, or there is a
bias between the RSS values of the user device and the device used for collecting the

learning data.

In [P1] and [P2] we studied the effect of coverage gaps on the localization accuracy and on the
floor detection probability in a multi-storey building with fingerprinting approach. For this we devel-
oped a randomized process to simulate incomplete fingerprint database with realistic coverage
gaps caused by an inadequate learning data collection. To reduce the negative effect of the cover-
age gaps, in [P1] we proposed several different interpolation and extrapolation methods to retrieve
the missing fingerprint data and showed that with proper interpolation and extrapolation the aver-
age localization error could be decreased by up to 12%. In addition, in [P2] we studied the effect of
different error sources on the localization performance, such as the database calibration errors and

RSS bias errors.

In [P3]-[P8] we studied and introduced new models regarding the estimation of PL model parame-
ters and the RSS statistics in various localization systems. In [P3] we compared the RSS charac-
teristics between the 2.4 GHz and 5 GHz carriers for the indoor WLAN with different building types,
including office buildings and shopping malls. With PL models we either have to assume the TX
positions known, or we have to estimate them with the training data. Hence, in [P4] we proposed a
method for estimating the TX location and the PL parameters jointly by using a specific deconvolu-
tion principle. In [P5] we studied the modeling of the RSS measurements in cellular networks, and
in [P6], we studied RSS measurement distributions and tested how the localization accuracy was
changed after a re-configuration of a WLAN system. Furthermore, a comparison of the PL model

characteristics between WLAN and RFID was conducted in [P8].

In [P7] a comparison of the localization performance between WLAN and BLE was done by con-
sidering multiple different localization approaches. Moreover, in [P4] and [P7] also the aspect of the

database size was taken into account in the performance comparison.
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1.4 Outline of the thesis

This thesis is organized in three conceptual parts, which can be briefly described as the leamning

phase part, the PL modeling part, and the user localization part.

In Chapter 2 we first discuss the suitability and motivation for using RSS measurements for locali-
zation purposes and provide methods on how to access the RSS data in all the considered locali-
zation systems. After this, the RSS measurements are used to build-up the learning database simi-
lar to the learning phase step in the fingerprinting approach. Besides the description of the data-
base, we also discuss different aspects of the learning data collection and analyze distributions of
the RSS values.

In Chapter 3, we introduce several feasible PL models for the localization purposes in both indoor
and outdoor environments. In addition, we analyze the distribution of shadowing, which describes
the local variations of the RSS values around the PL model, and we use the obtained results to
generate TX-wise RSS models based on computer-simulations. After this, we introduce various
approaches, such as the Least Squares (LS) method and the Minimum Mean Square Error (MMSE)
method, to estimate the PL model parameters. In the end, we compare the PL model characteris-

tics between all the considered localization systems, including both indoor and outdoor cases.

In Chapter 4 we focus on various different deterministic and probabilistic user localization algo-
rithms by considering the fingerprinting and PL-model-based approaches. Then, by using the pre-
sented algorithms, the localization accuracy is studied under influence of different error sources in
the learning database. In addition to this, we study the effect of database coverage gaps and intro-
duce sufficient interpolation and extrapolation methods to alleviate the effect of the incomplete
learning data. Finally, the localization performance between the considered localization systems is

compared and analyzed.

Finally, in Chapter 5, we draw conclusions by unifying the most important results presented in the
thesis. Furthermore, we address some remarks on the possible future studies for the RSS-based

localization.

1.5 Author’s contribution to the publications

For all the publications [P1]-[P8], the basis of the computer analysis software, used to process,

analyze and visualize the RSS measurements and the PL models, was written by the author. In
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[P1],[P2],[P3].[P5], the author derived all the main results and performed the majority of the writing
work. In publications [P4],[P6],[P7],[P8], the contribution of the author regarding the derivation of
the main results is considered to be equal with the corresponding first authors. However, in these
papers, most of the writing effort was contributed by the corresponding first authors. In addition, the
author was the sole collector of the outdoor RSS measurement data and participated in the collec-
tion of the indoor measurement data which were used in the results of the publications. Dr. Elena
Simona Lohan ([P1]-[P8]) and Prof. Markku Renfors ([P1]-[P3],[P5]) provided valuable comments

and suggestions for the publications.
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2 RSS Measurements and Learning Phase: Generation and
Calibration of a Learning Database

Before concentrating on the technical details of the RSS-based localization approaches, it is im-
portant to justify the use of RSS in wireless localization systems. Therefore, in this chapter we first
discuss the applicability of RSS in localization systems by stating several reasons favoring the
RSS approach. Moreover, we describe how the RSS can be accessed in various communications
systems considered later in the thesis. After this, we describe the generation of the learning phase
used in the considered RSS localization approaches and study the statistics of the RSS measure-

ments.

There are generally two fundamental approaches in the RSS-based localization: the approach with
assumed prior information on the environment, such as the SLAM methods [22],[44], and the two-
step approach without such prior information. In the two-step approach, there are two separate
phases in the localization. Firstly, there is the learning phase, where data from the target area is
collected and stored in the learning database. Secondly, there is the user localization phase, where
the localization is performed based on the data obtained from the learning phase. In this thesis we
consider the two-step approach, because the availability of learning data enables studies regarding
PL models and RSS measurement distributions, and thus, it provides more insight into the proper-
ties of the radio propagation environment. Moreover, understanding the RSS measurement behav-
ior in various radio propagation environments is a vital issue in developing new SLAM-based local-

ization approaches.

There are many different ways to collect the learning data and to construct the actual learning da-
tabase. Besides the amount of collected and stored learning data, also many practical issues re-
garding the data collection affect the eventual user localization performance. In this chapter, we
discuss about some practical considerations during the data collection process and describe the

structure of the database used later in this thesis. In addition, we study the distribution of the RSS



10 RSS Measurements and Learning Phase: Generation and Calibration of a Learning Database

measurements taken from the same TX in one location. The characteristics of the RSS distribution

are important in understanding the underlying error sources in the localization systems.

2.1 Suitability of RSS in localization systems

RSS is one of the most important quantities in modern localization systems. This is because to-
gether with the noise power, the RSS defines the signal-to-noise-power ratio (SNR) of a communi-
cations signal. Moreover, according to the famous Shannon’s law (also Shannon-Hartley theorem)
[123], the SNR defines the achievable capacity of the communications system. In several present
communications systems, including cellular networks and WLAN, the available bit rate of the net-
work user is dynamically adjusted by modifying the modulation and coding scheme of the used
communications waveform, according to the observed signal quality. Therefore, constant monitor-
ing of the RSS is typically incorporated into common functionalities of a communications system,
as it is extremely advantageous to approaching theoretically achievable system bit rates. In addi-
tion, the RSS measurements are also playing an important role in radio resource management as
they can be used in monitoring the signal levels of neighboring BS in cellular networks or AP in
WLANS [78]. Monitoring the RSS of neighboring cells can be used, for example, in advanced inter-
ference management and in making decisions of handovers by which the user device switches the
serving cell [78]. Due to the above facts, the RSS measurements are expected to be maintained
also in future communications systems, which only increases the motivation of studying and ex-

ploiting RSS in the localization-based services.

From the localization point of view, RSS provides information on the distance between a radio
transmitter and a radio receiver, such as between the AP and the user device in WLANs. Assum-
ing the knowledge of the location of the radio transmitter and its transmission power, it is possible
to approximate the physical distance between the communicating radios based on the observed
RSS value by using proper PL models, which are further discussed in Chapter 3. Moreover, with
multiple distance approximations from multiple radio transmitters, it is possible to estimate the loca-
tion of the radio receiver geometrically by trilateration [48],[90],[128],[145]. However, due to a vast-
ly dynamic and heterogeneous radio propagation environment [112],[122], the accuracy of PL
models is often relatively poor, especially when most of the system parameters, such as the
transmitter locations, are unknown. In addition, the majority of the PL models available in the litera-
ture are not fully adequate to be exploited in localization systems, since the required radio envi-

ronment parameters are unavailable [28],[82]. Nevertheless, PL-based localization has certain
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considerable advantages, such as a small learning database size [P4],[P7], over the traditional

fingerprinting methods, which makes it a noteworthy option for many localization systems.

Another of the most appealing and practical reasons to use the RSS in localization is its availability
in Application Programming Interfaces (API) of the most common operating systems. For example,
Android (Google Inc.) and Windows Phone (Microsoft Inc.) provide a direct access to the RSS
measurements of hearable WLAN APs via their operating system APIs [53],[93]. This makes the
usage of RSS measurements in localization services attractive, since it enables the development
of localization-based applications by only creating new software updates and without the need to
install or access into specific hardware components. In many other well-known localization meth-
ods, such as Angle-Of-Arrival (AOA), Time-Of-Arrival (TOA) and Time-Difference-Of-Arrival
(TDOA), dedicated measurement hardware and accurate synchronization algorithms [9] are re-
quired to be used in the devices, which can increase the cost of the localization system. Hence,
this particular economical aspect of the RSS-based localization favors its status in the future mar-

ket of localization-based services [116],[129].

Although GPS is able to provide accurate localization outdoors, there is still motivation for the
RSS-based approaches. Whereas GPS outperforms the RSS-based approaches in localization
accuracy and localization reliability in outdoor scenarios, RSS-based approaches support out-
standing energy-efficiency in many use cases. For example, in cellular-based localization, the RSS
measurements are continuously monitored during the normal network operations [6]. Thus, the
RSS measurements can be considered to be obtained as free of charge from the energy-efficiency
and localization points of view, because no additional signaling is required. Moreover, if the leamn-
ing data is stored beforehand in the user device, the localization can be performed without any
help from an online localization server. In this case, the only additional effort for acquiring the user
location estimate is in the computational burden of the desired localization estimation algorithm. It
means that the RSS-based localization can also run as a background process and provide con-
stant localization awareness for the user device, which can be further exploited in many location-
based services. In [96], the energy-efficiency of a localization system was optimized by using

game-theoretical algorithms.

2.2 Accessing RSS indicators in localization systems

The RSS measurements can be accessed via the API of the operating system found in the meas-
urement device. Depending on the operating system in the device and on the measured communi-

cations network, the extent of radio measurement reports might differ, but at least the required
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RSS measurement and the corresponding radio transmitted identities can be observed in the ma-
jority of the communications networks. There are several RSS-like indicators in the radio meas-
urement reports, such as Received Signal Code Power (RSCP), Received Signal Strength Indica-
tor (RSSI) and E./N, (Energy per Chip to Noise power spectral density ratio) in WCDMA cellular
networks [5]. It is very important to understand which of the available indicators represents the es-

sential RSS value to be considered in the localization systems.

In 2G cellular networks, namely the GSM, the RSS measurements, generally referred to as the
received signal level (RXLEV) in the standard [2], are reported together with the Absolute Radio-
Frequency Channel Numbers (ARFCN) on the active cell and each neighbor cell. The measure-
ments are done based on the Broadcast Control Channel (BCCH), which is a logical channel work-
ing under the ARFCN, regardless of the device being in idle or connected mode [2]. The BS identi-
fication is done based on the reported ARFCN and on the Base Station Identity Code (BSIC) of
each BS. If the radio network planning has been appropriately conducted, there should always be
a unique pair of ARFCN and BSIC for each BS heard in the same area. Typically the actual cell

identity indicator is reported only for the serving cell.

In the GSM system the RSS measurements from different BSs are taken from orthogonal channels
in time and frequency, and thus, the measurements from different BSs do not practically interfere
with each other. However, in 3G networks, here referred to as WCDMA networks, the Node Bs,
referred to for simplicity also as BSs, can operate in the same frequency simultaneously as the
signal separation is managed in the code domain [4]. This implies that the orthogonality between
the signals transmitted by the BSs is achieved only in the code domain and the traditional signal
power measurements do not reveal the BS-wise RSS levels. Now, since there are different RSS-
like indicators found in the 3G measurement report, it is important to understand which of the
measurements are relevant in the localization context. The RSS measurements are generally ob-
tained via the Common Pilot Channel (CPICH), which provides two types of signal level measure-
ments: RSSI and RSCP. Here, the RSSI measures the total signal power over the measured phys-
ical channel, which can contain signals from multiple BSs due to the used CDMA approach. As a
result, the RSSI is not an appropriate RSS measure for the RSS-based localization, since separate
BSs cannot be properly distinguished from each other and RSSI measures a joint effect of all BSs.
Instead, RSCP is a proper RSS measurement, since it is obtained after processing the signal in the
code domain by de-scrambling the received signal with the BS-wise scrambling code. Thus, by
using the RSCP, the RSS levels from separate BSs can be appropriately distinguished and ex-
ploited for localization purposes. Similar to the ARFCN and BSIC in GSM, a unique combination of
the used channel frequency, described by the UMTS Terrestrial Radio Access ARFCN (UARFCN)
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in the WCDMA [3], and the scrambling code should provide a unique BS identity for each region. In
addition, similar to the GSM, the global cell identity is typically reported only for the serving cell.

In 4th generation (4G) cellular networks, namely the Long Term Evolution — Advanced (LTE-A), the
RSS measurement set is very close to the one used in the WCDMA. In LTE-A, there are also the
RSSI measurements, which include the power from the whole signal band at the used carrier fre-
quency. Since the LTE-A is based on the Orthogonal Frequency-Division Multiple Access (OFDMA)
scheme, the RSSI measurement includes also the interference from neighboring cells using the
same carrier frequency. Thus, RSSI is again not a useful RSS measure in LTE. Instead of the
RSSI, the signal power from a certain BS can be obtained from the Reference Symbol Received
Power (RSRP) measurement [6], which offers the corresponding RSS measurements for the de-
sired localization purposes. The cell identification can be obtained from the primary and secondary
synchronization sequences used by the BS, but also a global cell identity can be found in the

broadcasted system information block.

In WLANSs and BLE networks, the RSS value of the heard AP or the BLE beacon is defined based
on the signal strength measurement from a specific preamble or a beacon included in the received
signal. Unlike in the case of cellular networks, which have their own dedicated frequency bands,
WLANSs and BLE networks operate in a contested frequency band, namely as the Industrial, Scien-
tific and Medical (ISM) band. For this reason, the RSS measurements from WLANs and BLE net-
works may contain interference from other TXs. In addition, one considerable issue with the RSS
measurements in WLANs [64] is the interpretation of the RSS measurements, which are often giv-
en differently by each chip-set vendor. This should be taken into account in the design of the local-
ization system by carrying out a separate calibration phase for handling different chip-set vendors.
Otherwise, the localization accuracy might drop drastically. The identity of WLAN APs or BLE bea-
cons can be found by globally unique MAC addresses found in the control fields of the received

signal frame.

Compared to all above-mentioned communications networks, passive RFID tags introduce a no-
ticeably distinctive approach for accessing and exploiting the RSS information. The localization
with RFID tags have been earlier studied, for example, in [34],[121],[151]. Since passive RFID tags
are not transmitting any communications signals of their own, the RSS measurements are based
on backscattered signal powers. When the tag is read with the tag reader device, the Application
Specific Integrated Circuit (ASIC) attached to the RFID tag modulates and emits the signal back to
the reader device. This signal returning from the RFID tag to the tag reader is called the backscat-
tered signal. The modulation performed in the ASIC conveys a specific Electronic Product Code

(EPC), which can be used to identify the tag. Thus, the backscattered signal power of passive



14 RSS Measurements and Learning Phase: Generation and Calibration of a Learning Database

RFID tags can be directly used in RSS-based localization purposes in a similar manner as the ref-

erence signals in cellular networks, WLANs, and Bluetooth beacons, and an example of this is

shown in [P8].

Table 1.

Methods for accessing the RSS indicators and the corresponding TX identity information in

the considered communications systems. Here, GSM, WCDMA and LTE-A are able to pro-
vide also a separate global cell-identity information, but only for the serving cell.

RSS indicator name RSS measurgment TX identity
channel/origin
System
GSM RXLEV BCCH BSIC/ARFCN
scrambling code
WCDMA RSCP CPICH JUARFCN
. Primary/secondary
Reference signals L
LTE-A RSRP across the bandwidth synchronization se-
quences
WLAN RSS (or RSSI) Preamble/beacon MAC address
BLE RSS (or RSSI) Preamble/beacon MAC address
REID RSS (or RSSI) Backscattered signal EPC
power

2.3 Collection of RSS measurements

2.3.1 Determination of the measurement coordinates

Besides measuring the actual RSS values from different TXs, determining the correct measure-
ment coordinates is vital in the learning phase. Depending on the considered signals and commu-
nication system type, the determination of the measurement coordinates can be a fairly straight-
forward or a very cumbersome task. For example, in outdoor environments when cellular data is
collected, there is typically an access to GNSS-based coordinate estimates, whereas indoors there

are no globally valid localization systems providing adequate coordinate estimates.

When collecting the measurements from cellular networks, the exploitation of GNSS-based coordi-
nate estimates is extremely advantageous. To manually insert each coordinate at each measure-
ment location for large areas would be an exhausting process. Mostly, the GNSS-based coordi-
nates are adequately accurate for the RSS-based localization purposes. If the measurements are

mapped into a synthetic grid, as described in Section 2.4, the coordinate errors will be roughly less
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than half of the used grid interval. Conversely, in some areas, for example in urban canyons, the
GNSS-based coordinates can be rather inaccurate, which will automatically reduce the quality of
the learning phase data. In addition, if cellular measurements are taken indoors, typically the
GNSS coordinates become inaccurate which results in inconsistency between the nearby indoor

and outdoor RSS measurements.

Due to the absence of reliable GNSS-based coordinate estimates in indoor environment, the
measurement campaigns are often much more complicated indoors. Furthermore, since the target
localization accuracy for indoors is typically below 2-3 meters, the tolerable errors in the learning
data coordinates should be less than half of this, i.e. below 1 meter. It is clear that there are yet no
global localization methods to achieve this level of accuracy for indoors. Thus, since the coordi-
nates cannot be obtained with any existing localization system, determining the coordinates manu-
ally is one considerable option. In this case, the measurement coordinates have to be manually
inserted by the measurer at each location where the RSS measurements are obtained. Although
here the chance of causing substantial coordinate errors due to the human factor is evident, by
carefully conducted measurement campaign and with good building maps it is still possible to have

very accurate and trustworthy coordinate estimates.

Nowadays most of the smartphones have inbuilt GNSS capability, which makes different
crowdsourcing-based data collection approaches very cost-effective for localization service provid-
ers [71],[120],[142],[149]. In the crowdsourcing approach, the collection of learning data is conven-
iently outsourced to common mobile users, which allows a straightforward access to the GNSS-
coordinates and the corresponding RSS measurements in a large scale system. However, since
there is no guarantee of the measurement quality, the crowdsourcing methods require specific sig-
nal processing methods for handling the measurement outliers and for monitoring the consistency
of the data.

Crowdsourcing methods are also possible in indoor environment, as studied in
[471,[52],[62],[110],[140],[143],[152], but in this case the complexity increases rapidly due to lack of
globally available coordinate estimates. For example, by exploiting different sensors included in the
mobiles, such as accelerometers, gyroscopes, magnetometers, barometers and pedometers, it is
possible to generate the learning database based on advanced machine-learning algorithms.
Nonetheless, for research purposes the manually determined coordinates are a safe approach,

since it is always clear in which way and in which coordinates the measurements were truly taken.
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2.3.2 Error sources and practical consideration of the RSS measurement campaign

The manual collection of fingerprints, including measurement coordinates and the corresponding
RSS measurements, can be organized in many different ways and can lead to various outcomes of
the system performance. For example, in indoors data collection, the measurement device can be
attached into a specifically designed platform, where the orientation and movement of the device is
extremely steady, or the measurement device can be held in hand. In [39] the performance of the
localization system is compared between two cases, where in the first case the device is on the
hand of the user, and in the second case the device is on a flat-surface table. In addition, the
measurements can be taken during a time period when nobody else remains in the building, which
reduces the influence of the radio propagation environment on the measured RSS values. These
kinds of measurement arrangements are desirable for studying certain radio propagation charac-
teristics and new localization algorithms, but often they give too optimistic results for real-life locali-
zation accuracy. Conversely, by taking the measurements as randomly as possible during different
times of a day with arbitrary device orientation and with random levels of crowd, the localization
results should be more realistic. On the other hand, it might be very difficult to study the underlying

system models, since abrupt errors from unfamiliar error sources might occur.

Since the radio environment is not stationary, it is generally not enough to gather learning data by
taking only one set of RSS measurements per each location. Especially indoors the difference of
RSS levels between Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) signals can be significant.
The LOS signal can be easily interrupted with any obscuring object including walls, doors, furniture,
people and the body of the device holder [15],[102]. Although some of the obscuring objects might
be stationary with respect to the building, they still move with respect to the movement of the
measurement device and might any time emerge between the device and the TX. For example, in
[72] it has been reported up to 20dB to 30dB signal variations due to obscured furniture and people
presence in the 2.4 GHz ISM band. Thus, in order to study the characteristics of the RSS behavior
in a fixed location, numerous measurements are required to reveal the distribution shape. The
shape of the distribution has been further discussed in Section 2.5 and has also been briefly tack-
led in publications [P2],[P5],[P6].

In some localization algorithms, such as in [117], it is desired to acquire the complete distribution of
RSS values from all locations, whereas in some algorithms, as in [109], only the mean of the RSS
values is desired. For both of the cases, the more measurements are obtained, the more accurate
distribution parameter estimates can be achieved. This procedure is often referred to as calibration
of the RSS mean and its effect on the positioning performance is further studied in [P2] and in Sec-
tion 4.2.
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Because of the apparent uncertainties in the learning data collection, the performance of the locali-
zation system depends greatly on the variety of the conducted measurement campaign. In addition,
the TX density, the building type, the area size and the number of floors are all affecting the locali-
zation performance. Therefore, in the literature it is very difficult to find a fair comparison between
different localization approaches. For example, in our own studies the average indoor localization
error without advanced tracking or filtering methods varies roughly between 3m and 25m depend-
ing on the considered building. The only way to have a fair comparison between different localiza-
tion methods would be to use exactly the same data set in all studied cases. For this reason we
have also distributed some of our own indoor measurement data publicly in [132], which allows

researchers to compare their algorithms with each other by using the same reference dataset.

2.4 Database structure

It is common to map the measurements obtained from the leaming data measurement campaign
into a synthetic grid with some predefined discrete coordinate values, as done in [61]. In this pro-
cedure, based on the measurement coordinates, the measurements are mapped to the closest
coordinates found in a predefined synthetic grid. Thus, the database size can be considerably re-
duced and the nearby RSS measurements can be efficiently combined together. After the grid
mapping process, at each fingerprint (i.e. grid point) there are RSS measurements taken from one
or multiple TXs, where each observed TX might have one or multiple RSS measurements. Thus,
the set of RSS measurements taken from the ™ TX in the i fingerprint

xss. 1S given as

QRSS,[,V = {Pi,r,q g = 0’1””’NRSS,i,r - 1} J (2.4.1)

where F,

and N, are the g™ RSS measurement (in dBm), and the number of RSS meas-
urements in the i" fingerprint and taken from the 7™ TX, respectively. Throughout the thesis, math-
ematical sets are always denoted with the letter 2 (omega) with appropriate subscripts and super-
scripts. Now by including the coordinates of the fingerprints, the measurement set can be de-

scribed as
{5022 { Qs 17 €y F1i= 0,1, N 14, (2.4.2)

where x;, y; and z;are the x-coordinate, y-coordinate and z-coordinate of the i" fingerprint, Nyp is

the total number of fingerprints in the database, and @, ={0,1,2,...,N,, —1} is the set of TX indi-
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ces used to identify the TXs, where N7y is the total number of TXs in the database. For example, if

TXs with indices =3, =7, r=14 and =23 are heard in the fingerprint index i=0, the fingerprint can

be given as {x;, ¥y, Z» Qpsso3> Passor> Lrssonss assos | - Moreover, it should be noticed that
both the number of heard TXs (i.e., the number of sets (2, . ) and the number of RSS measure-

ments for each observed TX (i.e., the number of elements in each €, . ) varies between sepa-

rate fingerprints. If the altitude or the floor-index of a building is not desired to be considered in the

localization system, the z-coordinate can be simply neglected.

In case multiple RSS measurements are heard from the same TX in the same grid point (i.e., there

is more than one element in the set O , it is possible to store either the complete histogram of

the RSS values, as done in [117], or only one or several RSS distribution parameters, such as the
mean of the RSS values as proposed in [109], and the standard deviation. In our studies we have
consistently used the latter approach and stored only the arithmetic mean of the RSS values in
case multiple RSS values from the same TX have been observed in the same grid point. Now, by
considering the RSS measurements from the #" TX in the i fingerprint, given in (2.4.1), we can

calculate the mean RSS value P;, as

(2.4.3)

where P, is the mean RSS value stored in the learning database. Finally, the elements in a com-

plete learning database can be described as
{xo2iz{B, ir €Qpy }ii=0,1, Ny, 1} (2.4.4)

Of course, by storing only the mean RSS value, a part of the information is lost, but the required
database size is much smaller compared to the case when we would store the whole RSS histo-
gram. Moreover, using the arithmetic mean, it is possible to update the database incrementally by
only keeping a count of the total number of RSS values as new measurements become available.
In this case the updated RSS value in the i" fingerprint and #" TX in the database can be defined

as

counter™ i,r

P,-,,,upda,ed:#(N P+ B, ) (2.4.5)

counter



RSS Measurements and Learning Phase: Generation and Calibration of a Learning Database 19

where P is the new RSS

i,rupdated

is the updated RSS value, P, is the original RSS value, £,

1, Npss i r

measurement, and Neouner is the number of measurements used to calculate the p, . The incre-

mental updating can be a great advantage in large-scale systems, since there is no need to store
and process all the measurement data whenever new measurements are desired to be updated in
the database. It should also be noticed that the use of the RSS mean values can be seen as the
Maximum Likelihood (ML) estimation of the expected value of a Gaussian distributed random vari-

able.

The grid coordinates can be organized either in a uniform rectangular grid, as done in [70] and [74],
or in a non-uniform grid, as studied in [13] and [61]. The non-uniform grid can be especially useful
for indoor localization as the grid point locations can be adapted according a specific building floor
plan. By this way the grid points are always found in the middle of the corridors and in the most
vital areas, whereas in the uniform grid the grid points might locate inside walls and other obstacles,
which are unreasonable from the localization point of view. For this reason, the non-uniform grid
might provide better localization accuracy in practice compared to the uniform grid. However, build-
ing floor plans are often unavailable, which makes the efficient utilization of non-uniform grids very
difficult. Therefore, we have decided to use the uniform grid, which offers simplified implementa-
tions for certain localization algorithms and an efficient design of the database structure due to the

regularity of the grid.
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The density of the grid points affects the database calibration accuracy. If the grid interval is cho-
sen to be very large, the average number of RSS measurements per TX at one grid point increas-
es and the RSS distribution estimates improve. Additionally, a large grid interval results in a sparse
fingerprint structure which saves space in the database, but it might decrease the localization ac-
curacy. On the other hand, with a very small grid interval, the database size increases and the
dense fingerprint structure enables a high resolution for the localization algorithms. However, at the
same time the number of RSS measurements per TX at one grid point decreases, which automati-
cally leads to lower quality RSS distribution estimates. Because of this, the RSS measurements
from the same AP in adjacent grid points might have unrealistically large differences which cause
instability in certain localization algorithms. An example of using a uniform grid interval of 1m and

5m in one floor of a University building in Tampere, Finland, is shown in Fig. 2-1.
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Fig. 2-1 An example of a uniform fingerprint grid with grid interval of 5m (upper) and 1m (lower)
in a University building in Tampere, Finland.
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2.5 Analysis of RSS measurement distribution

For each grid coordinate and TX there is a distinct RSS measurement distribution. More specifical-

ly, we refer to the set of RSS measurements Q... , given by (2.4.1), where the measurements

RSS i,

have not been processed, excepting the mapping to the grid coordinates. These local TX-wise
RSS fluctuations can be caused by the changes in the radio propagation channel, the measure-
ment error and the data traffic in a communications network. The magnitude of the fluctuation is
essential to the localization performance, since it also defines the variance of the used RSS mean
estimate, given in (2.4.3), in the leaming phase. In addition, assuming a stationary system in time,
the same RSS fluctuation is conveyed to the localization phase and it causes a similar RSS distri-
bution as the user takes measurements from the corresponding location and TX. The RSS distribu-

tion shape and the distribution parameters have been studied in [31],[32],[68],[69] and [84]. In [P6]
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Fig. 2-2 An example of RSS measurement histograms and the corresponding fitted Gaussian dis-
tributions observed in a single grid location by a single AP in 2.4GHz WLAN networks.
Each sub-figure represents the RSS distribution for a separate AP in one specific location.
All the distributions have the same mean RSS value as -70dBm.



22 RSS Measurements and Learning Phase: Generation and Calibration of a Learning Database

we studied the shape and the parameters of the RSS distribution at different distances from the TX.
The results in [P6] suggested that the best fit was with the lognormal distribution (i.e., Gaussian in
dB-scale) among several tested ones including the Weibull distribution. A few examples of the RSS
measurement distributions and the fitted Gaussian distributions are illustrated in Fig. 2-2 for an
indoor 2.4 GHz WLAN systems where all the cases have the same average RSS as -70 dBm. It
can be seen that the Gaussian distribution does not fit nicely into the RSS measurements due to
the heavy skewness and kurtosis visible in the RSS measurements. Nevertheless, since the RSS
values are often observed in a discrete format, also the probability distribution could be defined as

discrete, such as the multinomial distribution.

In many cases the distribution fitting process gets very challenging due to heavy skewness of the
observed distributions. In addition, there might be multiple clearly distinguishable peaks in the dis-
tribution as it would be a mixture of different distributions. For example, in an indoor environment
multiple peaks might occur, if a door between the measurement device and the TX is either open
or closed. This creates a mixture of two distributions separated by a RSS bias subject to the atten-
uation of the door. Thus, a better fit compared to the single Gaussian fitting case, can be achieved
by using a mixture of Gaussians as shown in Fig. 2-3. Here, the mixture of two Gaussians is fitted
into the RSS measurements by using the Expectation Maximization (EM) algorithm [40]. The
skewness of the RSS distribution has been studied in [68],[70],[126] in more detail. In addition, the
distribution kurtosis was considered in [P7] and [32], and in [84], where the skewness and kurtosis

of the Gaussian distribution was adjusted to get a better fit with the RSS distribution.
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Fig. 2-3 An example of RSS measurement histogram (the same found in the bottom-right corner in
Fig. 2-2) and the corresponding fitted single Gaussian distribution and the fitted Gaussian
mixture distribution with two Gaussian components.
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As the radio wave propagates in the transmission medium, it is always attenuated due to the trav-
elled distance and encountered obstacles in the propagation path. In addition, the radio propaga-
tion medium introduces multiple other phenomena which affect the RSS values, such as reflection,
absorption, diffraction, and refraction of the radio waves. The dependency between the RSS
measurements and the radio propagation distance is modeled with PL models
[71,[81,[45],[103],[112],[122],[130]. The PL models can be classified into different categories such as
physical models, deterministic models, empirical models, and hybrid models. Probably the most
famous model based on a physical law is the Free-Space Path Loss (FSPL) based on the general
inverse-square law. However, the FSPL provides often far too optimistic propagation losses, for
which reason empirical and deterministic models have been introduced [112]. Empirical models are
based on massive measurement campaigns, and typically include several tuning parameters for
the models in order to cover several types of propagation environments. Instead, deterministic
models, such as ray tracing [112] and dominant path modeling [139], aim to create an accurate
model of the propagation environment including all the obstacles and their electromagnetic proper-

ties.

Because the PL models and the observed RSS values together are able to provide a distance es-
timate between the TX and the user device, PL models are extremely useful for localization pur-
poses. Nevertheless, the selection of feasible PL model for the localization purposes is limited by
the fact that the parameters of the propagation environment are not typically known beforehand.
For example, in the well-known empirical-based Okumura-Hata model [112],[122], it is required to
include parameters concerning the type of the propagation environment (rural, suburban or urban
(small or large city)), the used carrier frequency, and the antenna heights of the TX and the user

device. Therefore, the deterministic and empirical models are not directly feasible for the RSS-
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based localization, because information about antenna heights and sometimes also the user carri-

er frequencies are not easily accessible or not available at all.

When considering the learning-data-based localization systems, PL models are particularly advan-
tageous for reducing the size of the learning database. This is because PL models can compactly
predict the RSS values in any coordinates by using only a few model parameters per each TX. Due
to PL modeling inaccuracies, the localization accuracy is often somewhat reduced compared to the
conventional fingerprinting approach. The comparison between the localization accuracy and the
database size considering the PL-model-based approach and the fingerprinting-based approach is

further conducted in Section 4.4.

PL models are also in vital role when simulating communications networks for localization-based
studies as done in [P5] and [115]. Although only the real-life network measurements can truly vali-
date the performance of the studied localization algorithms, the simulated network models are able
to verify the algorithm consistency for various use cases and reveal severe algorithm issues which
have not been found with the real-life measurements. Therefore, with appropriate simulation mod-

els, it is possible to diminish the workload introduced by the real-life measurement campaigns.

3.1 Feasible PL models for localization purposes

Since in the localization systems the radio propagation environment parameters are not typically
known beforehand, the number of PL model parameters must be minimized. One of the most used
and practical model is the log-distance PL model [19],[67],[98],[112],[119], whose different variants
can be used in both outdoor and indoor environments. A common requirement for all the consid-
ered PL models is the availability of the TX locations. Of course, these TX locations are not usually
known in advance, and therefore, the TX location estimation is part of the actual PL model estima-

tion problem and it is further considered in Section 3.3.1.

The PL models are always considered as TX-wise, and hence, it is convenient to also reorganize
the RSS measurements in the database to be TX-wise. Thus, we denote the set of measurements

including the coordinates and the corresponding RSS values for each observed TX as

{x(_r)’y;y)’zjr)’P_(r) L= 0,,,,,]\7};) , (3.1.1)

J J

where x, " and 2" are the /" x-coordinate, y-coordinate and z-coordinate of the /" TX and

N©is the number of measurements in the 7" TX. These TX-wise coordinates and RSS values are
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extracted from the complete fingerprint data set given in (2.4.4) so that only the values with the

correct TX index r are considered, and hence, x'” € {x,}, »'” € {y,}, 2" €{z,} and P{" € {P, }

fori=0,1,...,N.,—1.

3.1.1 Log-distance path loss model

One of the most used PL model in the RSS-based localization systems is the log-distance PL

model, which contains only two unknown PL parameters in its simplest format. Now, with the log-

distance PL model the observed RSS at distance dj.” can be presented as
PO = 47 =100 log,, (d)+ (", (3.1.2)

where P\, d\” and W " are the RSS value, the measurement distance and the noise term of the
j" measurement of the ™ TX, respectively. Besides the actual measurement noise, Wj.(” includes

shadowing and other effects of random RSS fluctuations within the grid point. Furthermore, A" and
n are the path loss constant and the path loss exponent of the " TX. The measurement distance

d\" is the distance between the estimated TX location and the location of the ™ measurement de-

fined as

~A(r r 2 ~A(r r 2 A(r r 2
4 = (i =) (50— (2 -2 19
where x\7), p and z{) are the estimates of the x-coordinate, the y-coordinate and the z-

coordinate of the position of the ™ TX.

The path loss constant A7 represents the RSS value at the 1m reference distance from the TX,
but in general the reference distance is not restricted to this specific value. By introducing an addi-

tional reference distance d, inside the logarithm log,, (dj(.”/dREF) given in (3.1.2), the path loss
constant A” becomes the RSS value at the d,.. distance. However, throughout this thesis we

define d,..=1m, and thus, consider the A”’ as the RSS value at the 1m distance.

In addition, compared to various empirical PL models, the A7 aggregates all the additive distance-
independent terms into a single parameter. For example, considering the Okumura-Hata model,
the A"/ can be conceived as the summation of terms depending on the propagation environment,

which are the used carrier frequency and the antenna heights of the TX and the user device.
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Moreover, since we define the PL model to represent the observed RSS value, not the actual path

loss value, the parameter A" embodies also the transmission power of the TX.

The path loss exponent n” describes the steepness of the RSS attenuation as a function of dis-
tance. The attenuation rate of the RSS can be determined as 101" dB per a decade of the dis-
tance. In a free space environment the path loss exponent is physically defined as n™=2, but the
value is typically increased as obstacles appear in the radio path. However, in certain propagation
environments, such as in narrow corridors, it is not uncommon to observe smaller values than the
free space exponent (i.e., n(r)<2) [113]. Furthermore, as seen later in Section 3.4, the correlation
between 4” and n can also affect the observed path loss exponent values. Consequently, if the

parameter A7 gets a very high value, the overall PL model is typically compensated with a relative-
ly small value of n®.

Since the PL models in general are functions of the propagation distance, the modeling can be
naturally adopted in both 2D and 3D environments. In this thesis we consider the 3D model to in-
clude the 2D horizontal coordinates and a discretized vertical coordinate for each floor. In other
words, the location of the user device and the TXs are always restricted in the known floor levels,
and thus, cannot float in between the floors. In case of the 2D PL models, the z-coordinate will
simply be neglected. However, due to asymmetric properties of the radio propagation parameters
in the vertical and horizontal direction inside buildings, the indoor 3D models can be inaccurate if
floor losses are not included in the modeling process. Floor losses in 3D models are discussed in
Section 3.1.3.

3.1.2 Multi-slope path loss models

Occasionally, the single slope log-distance PL model cannot describe the RSS behavior with re-
quired accuracy. Particularly in the indoor environment due to walls and other obstacles, the radio
propagation parameters might change as a function of distance. To incorporate this into the propa-
gation modeling process, multi-slope PL models have been proposed in [P4] and in the literature in
[17],[30],[46],[75],[150]. One well-known indoor multi-slope PL model is the Ericsson model
[17],[112],[122], which is essentially a multi-slope log-distance model with empirically tuned PL
parameter values. Other PL models for the indoor environment have been proposed in [33] and
[65].

By diving the fundamental log-distance model, given in (3.1.2), into two separate PL slopes we end

up with a dual-slope PL model, where the /" RSS value of the ™ TX can be given as
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A" —10n” log,, (d.;r) ) + W./(r) ’ d;") Sdypy

(r) _
}? =

d"
A" —10n" log,, (dBP’O)— 101" log,, [;

BP0

o e (3.1.4)
J o2 J BP,0

where n{” and »” are the path loss exponents of the ™ TX for the first slope and the second slope,

and 4., is a breakpoint distance, defining the exact distance where the slope exponents change.

BP0

We consider the breakpoint distance 4., , to be maintained constant throughout the TXs, but it is

BP,0
also possible to optimize its value as TX-wise. However, this would directly mean an additional PL

parameter for each TX to be stored in the database.

For considering PL models with more than two slopes, it is convenient to switch to matrix notations
both in the PL model presentation and further in the PL model estimation discussed in Section 3.3.

Firstly, the TX-wise RSS measurements are included into a single column vector as

PO =[p” PV .. %—JT’ and secondly the PL parameters are grouped into one parameter

vector defined as 0

multis

S T : .
= [A(” n” n” - ny | . With multi-slope PL models it is often

desired that the overall PL function is continuous at the breakpoint distances. Fundamentally, this
means that the next slope always begins from the same RSS value where the previous slope end-
ed. Now, by taking this into account, after a few arithmetic operations, the multi-slope log-distance

PL model including N, . slopes in total for the r" TX can be written as

PO —H" 90 L WO, (3.1.5)

multis = multis

where W is a noise vector for the " TX and H”

multis

is the system matrix given as

()
hg

()
HY = lll

multis

: (3.1.6)

ll(r)

()
NG -1

in which the /" row is further defined as
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Moreover, 4,, . is the breakpoint distance (i.e., a boundary between two slopes) between the m"

and the (m+1)" slope and 1, (d'”) is an indicator function described as

e ()
Im(d@): Loibdi>dy,, (3.1.8)
/ 0, otherwise

Here, the indicator function is used to define whether the distance dj.” of the /" measurement of

the /" TX is larger than the breakpoint distance d,, , .

3.1.3 Indoor log-distance model featuring floor losses and frequency-dependency

One of the main differences between the radio wave propagation in outdoor and indoor environ-
ments is the floor loss in multi-storey buildings. The floor losses introduce asymmetric PL models,
in which the radio signal attenuation differs in horizontal and vertical direction. Typically the floor
losses are much larger than wall losses, and therefore, RSS measurements which have the equal

3D distances to the TX, but are located in separate floors, might differ significantly.

Besides the floor losses, also the carrier frequency can be included in the PL model. In most cases
the used carrier frequency is available directly or indirectly (e.g., a channel identification number
etc.) in the API of the measurement device. Of course, the usage of frequency-dependent PL
models is not only restricted to indoors, but they can be sometimes very useful for outdoor models

as well.
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Motivated by to the above discussion, in [P7] we have also considered the single-slope log-
distance-based PL model including floor losses and frequency-dependency as

B = A <100 log,, (417) - 100" log,, (£10)) = FEND,., + W0 (319)

floors j

where £ and F\" are the carrier frequency and the floor loss of the " TX, and N¢) is the

carr Sloors, j
number of floors between the /" measurement and the TX location. Here it is assumed that for

each TX the floor loss is constant for all floors. Furthermore, the floor loss parameters F” are

assumed to be unknown and they are part of the PL parameter estimation problem discussed later

in Section 3.3.

3.2 Shadowing analysis and simulation of RSS measurements

The noise variable " in the PL models includes the effect of shadowing, RSS fluctuations within

the measurement location and other type of measurement errors. The term shadowing has been
used in variety of different contexts, but we refer by it to the random fluctuations of the RSS values
around the PL model. If we assume noise free measurements and a perfect RSS calibration, which

captures the true average RSS values for each location and TX, only shadowing is left from the PL

noise parameter Wj.(”. As the PL models describe a linear dependency between the logarithmic

propagation distance and the observed RSS value, physically the shadowing values present the
local variations of the RSS values due to heterogeneous radio propagation environment. It should
be noticed that without any changes in the propagation environment, the pure shadowing value is

fixed per each coordinate location and TX.

A large variety of different shadowing distributions has been proposed in the literature, such as the
log-normal distribution, Nakagami-lognormal distribution, Weibull-lognormal distribution, Gamma
distribution, and Weibull-gamma distribution [25],[31],[114]. In this context, it is quite common to
refer to linear scale RSS values with the distributions. Consequently, with linear scale RSS values

the lognormal distribution results in a Gaussian distribution with logarithmic scale RSS values.

Since the shadowing is caused by fixed obstacles in the radio propagation path, the effect of each
obstacle on the RSS values is comparable in neighboring coordinates. This distance dependent
correlation can be modeled with an environment specific autocorrelation function, as discussed in
[12],[54],[58],[105],[107],[127],[147],[148]. The actual shape of the autocorrelation function de-
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pends on the radio propagation environment and based on the Gudmundson model [56], the auto-

correlation function for the shadowing can be modeled as

Rshadr}w(Ad) = eiAd/de” 4 (321)

where Ad is the distance difference and D

ecor 1S de-correlation distance, which depends on the
radio propagation environment. In [P5] we have further studied the shadowing distributions and the
shadowing autocorrelation function by using estimated PL models to remove the dependency of

the propagation distance from the RSS measurements.

From the localization point of view, shadowing can be understood as both a negative and a posi-
tive phenomenon. In the PL-model-based localization, shadowing introduces local variations of the
RSS values with respect to the average RSS value provided by the PL models, and thus, it reduc-
es the modeling accuracy. On the other hand, in conventional fingerprinting-based approach, the
local RSS variations due to the shadowing can sometimes be useful in the localization, since they

induce differences between nearby fingerprints making their comparison feasible.

A proper understating and modeling of the shadowing phenomenon is also very important in com-
puter-based simulations of the RSS measurements. The simulations can be very useful in validat-
ing localization systems and in finding problematic cases in the considered approach without the
need of extensive measurement campaigns. In [P5] we have studied the simulation of RSS meas-
urements for cellular-based localization system. Although the simulations of the RSS measure-
ments considering a complete cellular network are quite complicated, modeling RSS measure-
ments of a single TX is rather straightforward. Here we can directly utilize the pre-discussed PL
models and the correlated shadowing model, given in (3.2.1). The basic steps for creating simulat-

ed RSS measurements for a certain grid coordinates from a single TX can be described as follows:

1. Create tentative RSS measurements based on the desired PL model and the TX location
Create uncorrelated shadowing values from the desired distribution (such as Gaussian)
Filter the uncorrelated shadowing values with a proper filter based on (3.2.1) in order to
achieve a correlated shadowing values with the desired autocorrelation function

4. Add the correlated shadowing values to the tentative RSS measurements created in step 1

in order to get the final simulated RSS measurements.

In Fig. 3-1, the different phases of the process are illustrated together with a real-life BS measure-
ment example. First, to get the simulated RSS values we have estimated the PL model parameters
from a real-life BS using the log-distance PL model, as given further in (3.3.4). Then, based on the

estimated PL model we have estimated the distribution and the correlation of the shadowing values
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and generated random shadowing with similar statistics with the real-life RSS measurements. In
the end, the correlated shadowing was added to the PL model to get the final simulated RSS mod-
el. Hence, when comparing the RSS plots of the simulated BS with the real-life BS, the main dif-
ference can be found from the different realizations of the shadowing fluctuations on top of the PL
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Fig. 3-1 An example of the RSS Modeling process using the estimated PL model from real-life
BS measurements: PL model (top), uncorrelated shadowing (middle-left), correlated
shadowing (middle-right), the final RSS model as the sum of the PL model and correlat-
ed shadowing (bottom-left), and the real-life BS measurements (bottom-right).



32 Path Loss Models for RSS-based Localization

models, which are the same for both of the cases.

3.3 Estimation of the PL model parameters

3.3.1 Estimation of TX location

In order to use the PL models, the estimates of the TX locations are required to determine the dis-
tances between the measurements and TX location. Since we know that the radio signal begins to
attenuate as soon as it departs from the transmission antenna, it would be logical to estimate the
TX location based on the maximum observed RSS level. However, due to measurement errors,
obstacles and different types of non-idealities in the radio path, using only the coordinates of the
maximum heard RSS value as the TX location estimate, might result in large estimation errors.
Nevertheless, since the TX is expected to be located around the area where most of the maximum
RSS values are observed, the weighted centroid method has been proposed and used in [24], and
in [P3],[P7],[P8]. Here the basic principle is to estimate the TX location as a weighted mean over

the measurement coordinates as

NG -1
~(r) (r) (,)
§n — Z o

N}rp) 1

P = Z vy (3.3.1)

NG -1

A(r) Z U(I) (;)

where the coordinate weights for the /" measurement and the ™ TX is given as

()
5

10
i r (r) *°
J N1 B

d 100
k=0

(3.3.2)

Hence, the weights are simply the linear scale RSS values of each measurement point. With such
linear scale approach the weights for the large RSS values are relatively higher compared the low
RSS values.
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Another approach for the TX location estimation is the deconvolution-based approach introduced in
[P4], where the AP location estimates are obtained jointly with the PL model parameter estimates.

This method is discussed later in Section 3.3.4 in more detail.

3.3.2 Parameter estimation of the log-distance PL models

In the PL parameter estimation process it is convenient to use the matrix notations. Thus, using the

same approach as shown in (3.1.5), the RSS value vector for the single-slope log-distance model

can be modeled as P” =H" 0"

) N
loadisiOneaie + W', where the PL parameter vector is given as

7 . : :
=|4"" n| and the system matrix H{,, is described as

G(V)

logdist

I —10log,,(dy"”)

O L —10log,,(d")

logdist

: (3.3.3)

1 —10log,,(d"), )

)
N1

Now, the above estimation problem can be solved by using well-known linear regression methods.
Depending on the availability and usage of information regarding the statistics of the estimated
parameters and the noise term, there are numerous approaches for obtaining the parameter esti-
mates as shown in [26] and [111]. Another excellent source for the analysis and estimation algo-

rithms regarding the linear regression is presented by Kay in [73].

Assuming no prior knowledge of the estimation problem, a straightforward approach is the famous

LS solution, where the estimated parameter vector for the /™ TX is given as

—1 T
) o P, (3.3.4)

method

NG _(g®T (r
0mez‘//md,LS - (H H

method = method

where 0 and H"  are the parameter vector estimate and the system matrix of the /™ TX
method ,LS

method

A A

) PL model or the multi-slope (9" and H"

(r) )
multis LS multis

, , )
for either the single-slope (0,,,,, ,s and H;,),.,

PL model. If the noise term W' is white, the LS approach can be considered as Best Linear Unbi-
ased Estimator (BLUE), and moreover, if additionally the noise is Gaussian, the LS approach is

actually the Minimum Variance Unbiased estimator (MVU) [73].

If the quality of the measurements in P’

are considered to be varying, one option is to utilize the
Weighted Least squares (WLS) approach, where the estimated parameter vector for the /™ TX is

given as
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A —1
o _ (H(rﬂ QVH" ) H
method WLS ~— d

metho method method Q(r) P(r) (3 " 3 5)
where Q(r)is a specific diagonal weighting matrix for the ™ TX. Considering RSS-based localiza-
tion systems, high RSS values are often considered as important from the localization accuracy
point of view. Thus, in [P4] have we used the linear scale RSS values as the weights of the meas-

P
urements as Q") = diag(10 ' ). However, with this weighting allocation the localization accuracy

with the WLS-based PL model estimates was not generally improved compared to the LS-based

approach.

Occasionally there might be a priori information regarding the statistics of the PL parameters and
the noise term. In this case the linear system, given in (3.1.5), can be considered as a Bayesian
linear system. In [30], the Bayesian approach was considered for multi-slope PL models including
estimation of the breakpoint distance. Nevertheless, assuming that both the PL parameter vector

e(r)

method

~ N(uy’,C{’) and the noise term W’ ~ N(0,C!,’) are Gaussian distributed and inde-
pendent of each other, we can find the MMSE estimate [73] of the estimated parameter vector as

N ! M7 )7t r - Y 7! r 7! r

efnre)thnd,MMSE = (Cg) +H5n3thodcl(/lf) H( : ) (H( : C;V) P( : +C59) Hé))i (3-3-6)

method method

where p{”and C|” are the mean vector and the covariance matrix of the prior distribution of the
PL parameter vector, and C{/’ is the covariance matrix of the noise term. Under the given condi-

tions, the estimate is the mean of the posterior function resulted from the Bayesian inference. In

addition, it is also the MVU for the considered estimation problem. If the prior information is not

available, then the inverse of the prior covariance matrix approaches to zero (i.e., C;’)fl —0)and

—1 -1 T -1
c, H" ) (H(’) (o P“’), which resembles the WLS esti-

method method

the estimate becomes as (H(”T

method

mate, given earlier in (3.3.5). With white noise assumption Ci;)fl becomes diagonal, and based on

the variance of the noise components, it can be considered as the weighing matrix Q(V) in the WLS.
In Fig. 3-2, we have illustrated the PL model estimation using the single-slope and dual-slope log-
distance PL models with measurements from a real-life cellular BS. As expected, the dual-slope PL
model appears to give a better fit with the measurements than the single-slope PL model. However,
with the dual-slope PL models it is obvious that the quality of the LS fitting depends greatly on the

used breakpoint distanced,,, , .
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Fig.3-2  An example of the LS estimation of the PL model for measurements from a real-life cellular
BS using the single-slope and the dual-slope log-distance PL models. The breakpoint dis-

tance of the dual-slope model is set to d , ,=400m.

3.3.3 Parameter estimation of the log-distance PL model with floor losses and fre-

gquency-dependency

Due to the differences between horizontal and vertical radio propagation in indoor environment,

introducing floor losses in the estimation problem is beneficial. Here we have included also the

frequency-dependency on the same PL model, but if preferred, it can be easily neglected from the

equations. By using the matrix notation, the PL model given in (3.1.9) can be presented as

(r) _ (r) (r) (r)
P - Hf/oorleﬂoorL + W

i) i
where the system matrix H,) , is given as

1 —10log, (d\” £))

carr

I —10log,(d" f)

carr

H(V) _

floorL — |

)
N1

I —10log,(d*), f2)) —N

, (3.3.7)

(r)
_Nﬂ(mrs,O
_ N(l‘)

floors,1

: (3.3.8)

(r)
ﬂoonv,N;;,)fl
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And where the PL parameter vector is defined as 0,  =|4" 2" F" " Hence, besides the

traditional log-distance PL model parameters 4" and 1, the floor loss parameter F” is also

included in the estimated parameters. In addition, it is worth of noticing that the carrier frequency

found from the second column of H)  could be introduced in similar way also with system matrix

floorL

of the basic log-distance PL model given in (3.3.3).

Although the above system model could be solved using the LS, WLS and MMSE methods as dis-
cussed earlier, the physical interpretation of the floor loss parameter FL(” constrains its value to be
larger than zero. In other words, the possible gain from the floor is desired to be avoided. This re-
sults in a Non-Negative Least Squares (NNLS) problem in which the estimated PL parameter vec-

tor can be found as

A 2
ry : (r) (r) (r)
eﬂoorL - arg(fnln HHﬂoorLeﬂoorL —P

floorL

10 0 (3.3.9)
subjectto [0 1 0] 6%  >0.
0 0 1

Here in fact, all the PL parameters are constrained as 4" <0, n” >0 and F” >0. At least in
most of the communications networks, these are very reasonable assumptions about the PL mod-
els. To solve the given PL parameter estimate (A)%jm an iterative algorithm described in [79] can be

exploited. In many practical cases the PL parameter vector (A)%jm can also be solved by using the

MMSE approach given in (3.3.6) and using appropriately chosen prior values p!” and C{” to

avoid negative floor losses. However, since the prior distribution is assumed to be Gaussian, the
process does not strictly limit the estimated vector and so negative floor losses might occasionally
occur. In Fig. 3-3, an illustration of the 3D PL modeling is shown with the PL model with floor loss-

es and without floor losses.
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Fig. 3-3 An example of the 3D PL model for indoor environment for one AP in 2.4GHz WLAN net-
work: the original RSS measurements (top), the log-distance PL model without floor losses
(left), and with floor losses (right), where the estimated floor loss was 6.8dB.
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3.3.4 Joint estimation of the PL parameters and the TX location by deconvolution

In all previously discussed PL model estimation approaches, the location the on TX was assumed
to be known based on the TX location estimation by the weighted centroid given in (3.3.1). In [P4],
we have studied a different approach for obtaining the estimates of the PL parameters and the TX
location by deconvolution. Here the fundamental idea is to trial the assumed PL model over all the
available grid coordinates and to assume the AP location to be in the grid coordinate at each trial.
After this, the TX location can be estimated based on the residual errors of the PL model fitting in

each grid point. The process for the /" TX can be described as follows:

1. For each grid point in which the TX has been heard {xj.”,yj.”,zj.’) Lj= 0,...,N}j.?}, set the
AP location as the grid point coordinates (&, = x¥, 31y = »\”,2() =z’ ) and calculate

the corresponding system matrices H'”

method

for each trialed grid point.

2. Compute the PL parameter estimate vector 0" for each trialed grid point by using the

method
desired estimation method.

3. Compute the estimated RSS values based on the PL parameter estimates as

D) _ g a0
P =H 0

method = method

for each trialed grid point.

4. Compute the norm of the error vector for each trialed grid point as ||f’(’) —P(")” and define
the coordinates of the TX as the coordinates of the grid point with the smallest error norm.
Alternatively, estimate the coordinates of the TX as the average of the coordinates of the
N,

wgn 9rid points having the smallest error norms.

5. If N, >1 (i.e., average over multiple coordinates is taken), re-compute the PL parameter

estimate 9"

method

for the estimated TX location by using the desired PL parameter estimation

method.

The above deconvolution approach utilizes brute-force ideology when trialing the TX locations over
the known grid coordinates and choosing the location where the PL model has the best fit with the
observed measurements. An alternative approach for the joint estimation of the TX location and
the PL parameters is to use advanced iterative methods, such as the non-linear LS, as studied in
[100] and [101]. However, with these algorithms one must deal with several design parameters,
such as the values of the initial parameter estimates, the iteration step size, and the convergence
criterion, which are further discussed in [26] and [118]. In addition, the convergence of the algo-

rithm to the global optimum is not generally guaranteed, but multiple runs with different parameter
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initializations are often required. For example, the well-known Gauss-Newton for solving the non-

linear LS problem can be very sensitive to poor parameter initializations [100].

3.4 Comparison of PL model parameter statistics for the considered
localization systems

The results shown in this section are achieved using the single-slope log-distance PL model with
the LS principle. Although other approaches, such as the WLS and MMSE, could benefit in some
modeling scenarios, the LS is a well-justified approach in the general case, where no information
from the modeled system is available. For example, the LS approach always finds a better fit be-
tween the PL model and the measurements compared to the MMSE method, since the LS is purely
based on the measurement data. This is because the MMSE introduces a priori information, which
drives the estimates into the direction determined by a priori distribution values. Of course, if the a
priori information is correct, the estimate accuracy will increase. Nonetheless, in practice it is very
difficult, even impossible, to define correct a priori distributions. Moreover, as seen later on, the PL
parameter values might vary considerably between different communications systems and radio

propagation environments.

We have studied the estimation of PL parameters in different communication systems in [P3]-[P8].

The average values of the estimated path loss constant A", path loss exponent n?, and the

shadowing standard deviation are shown for different communications systems in Table 2.

Table 2. The average estimated PL parameter values for the considered communications systems

PL Parameter
Average o1;ﬂthe PL Average of tr;rja PL srf\a::jeor\?v?rfgoétt:r?d-
System constant A" [dBm] exponent n'” [-] ard deviation [dB]
WLAN 2.4 GHz -52 1.5 5.9
WLAN 5 GHz -45 1.6 5.3
BLE -71 1.3 6.2
RFID -7 2.2 2.8
Cellular GSM (Suburban) 4 29 6.2
Cellular WCDMA (Urban) -18 2.6 10.8
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Here the results for the WLANs, BLE and the RFID are acquired from one university building in
Tampere, Finland, and the cellular network results are based on outdoor measurements taken also
in Tampere. To maintain a reasonable comparability between different systems, for all cases the
PL model parameters have been estimated using the single-slope log-distance model without tak-
ing floor losses into account. The differences between the average parameter values are fairly visi-
ble between different communication systems. This indicates that a system specific optimization of

the PL modeling approach is advantageous for increasing the modeling accuracy.

Since the RSS-based localization is still mostly associated with the WLANs and cellular networks,

we turn the focus of more detailed analysis on these systems. For the following studies we consid-
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Fig. 3-4 Histograms of the estimated PL parameter values for 2.4GHz WLAN networks in a Universi-
ty building and Mall building, and for cellular networks in suburban and urban environments.



Path Loss Models for RSS-based Localization 41

er the previously mentioned University building (WLAN 2.4 GHz) and the two cellular network cas-
es (Cellular GSM (Suburban) and Cellular WCDMA (Urban)), and one shopping mall with 2.4 GHz
WLAN from Berlin, Germany. To get a better impression of the distribution of the PL parameter
estimates, in Fig. 3-4 we show the histograms of the estimated PL parameter values for the 4 dif-

ferent scenarios.

Here, to get reliable parameter estimates we have only considered TXs with more than 30 meas-
urements in the histograms. It should be noticed that this is not beneficial from the localization ac-
curacy point of view, since many TXs are dropped from the database due to this procedure. From

Fig. 3-4 it can be seen that the PL parameters of WLANs can be clearly distinguished from the

cellular network parameters, especially regarding the path loss constant A" . Nevertheless, the
differences between the two buildings as well as the differences between the two cellular cases are
relatively small. However, the path loss exponent " in the University building is generally larger
compared to the shopping mall, since in the shopping mall there are more open spaces than in the
University building, which reduces the value of the path loss exponent. A similar observation can
be made also with the cellular networks between the urban and sub-urban case. Here, in the urban

case, where there are more obstacles in the radio path compared to the sub-urban case, the val-

45
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Fig. 3-5 Distributions of the shadowing values for 2.4GHz WLAN networks in a University building
and Mall building, and for cellular networks in suburban and urban environments.
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ues of the path loss exponents are generally larger than in the sub-urban case.

In Fig. 3-5, we illustrate the distribution of the shadowing values for the above scenarios. With the
exception of the urban WCDMA network, all other scenarios share a rather similar shadowing dis-
tribution. The reason for the unique and slightly skewed distribution of the urban cellular case might
be originated either from the propagation environment effects or from the WCDMA access method.
Unlike in the GSM, the RSS indicator in the WCDMA system is the RSCP, which can be affected
by the data traffic load of the system [5].

One important notice, which has not been often mentioned in the literature is a positive correlation
between the path loss parameters A”and n”. On average, whenever the parameter A" in-

creases, also n"’ increases. Therefore, the previously discussed comparison of the PL model pa-
rameters between different communications systems should always be performed based on both

of the parameters. As we look back at the Table 2, it is possible to see a pattern in the PL parame-
ter pairs. For example, by sorting the table rows based on the values of the parameter A" from

the smallest to the largest, also the parameter n” values become sorted apart from the WCDMA
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Fig. 3-6 lllustration of the correlation between the PL parameters A" and n"” for all the estimat-
ed 2.4GHz WLAN APs in the shopping mall in Berlin. Each circle in the plot describes the
estimated A" and n"" for one AP.
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case. The correlation of the PL parameters is further illustrated in Fig. 3-6, where the 4" and n""”

are jointly given for all the APs heard in the Berlin shopping mall case.

Based on the Fig. 3-6, there is a clear linear dependency between the two parameter values and
the Pearson product-moment correlation coefficient can be computed as high as 0.91. This infor-

mation can be used, for example, in defining the prior covariance matrix C!” in the MMSE estima-
tion approach, given in (3.3.6). These correlation characteristics are mostly a property of single-
slope models. With dual-slope models the correlation between the parameter A" and the first

slope exponent né” is still considerable, but with the second slope exponent nl(” the correlation

with the 4" is greatly decreased.
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4 Localization Phase with User RSS Measurements

Regarding the localization phase, in which the user is localized based on the data collected in the
learning phase, there are numerous different approaches for estimating the location discussed in
the literature [16],[21],[76],[80],[81],[92],[94],[109],[117],[137],[138],[141],[147],[148]. Noteworthy

surveys between different localization algorithms are found in [10],[49],[59] and [61].

One important study topic within the field of RSS-based localization is Bayesian-based location
filtering and tracking methods [13],[14],[23],[35],[41],[63],[83],[89],[97],[125],[144]. Here, the fun-
damental idea is to estimate the user location recursively via the Markov process based on the
assumptions on the user movement by means of the state-transition model and on the RSS meas-
urements by means of the measurement (or observation) model. One of the most famous Bayesi-
an-based tracking algorithms is the Kalman filter, studied in [13],[35],[83],[89], which provides the
MMSE location estimates in the case of linear system model with Gaussian distributed random
variables. Other Bayesian filtering methods without necessarily having the assumptions on the
linearity or on the Gaussian distributed variables are discussed in [14],[23],[29],[41],[63],[97],[125],
[144]. Although the filtering algorithms should always be included in the practical localization sys-
tems, we have left them out in our studies, since they can be considered as a completely new field
of studies. Nonetheless, we fairly assume that the quality of the static estimates, provided in our

studies, reflect the quality of the filtered location estimates.

In this Section we first present different considered localization algorithms for both the fingerprint
and PL model based localization. Then, we analyze the effect of different types of errors, such as
the database calibration errors and bias errors, on the localization performance. After this, the ef-
fect of the coverage gaps in the learning database is modeled in our simulator and analyzed. The
degradation of the localization performance due to the coverage gaps is reduced by introducing

different interpolation and extrapolation methods for the lost RSS values. We conclude the section
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by comparing the localization performance in different communications systems by considering

both fingerprinting and PL-model-based localization approaches.

4.1 Localization algorithms

4.1.1 Conventional fingerprinting

In the conventional fingerprinting the RSS measurements taken by the user are compared with the
measurements available in the learning database. The user position estimate is determined based
on coordinates of one or multiple fingerprints with the best match for the user measurements.
Hence, eventually the fingerprinting-based localization is a classification problem, where the multi-
dimensional user measurement is attempted to be categorized into the correct fingerprint. The fin-
gerprinting algorithms can be roughly divided into deterministic approaches [21],[80],[109] and
probabilistic approaches [16],[80],[81],[92],[94],[117]. In the deterministic approach the location of
the user is assumed to be a non-random variable whereas in the probabilistic approach the loca-

tion is assumed to be a random variable with a specific probability distribution.

Usually, the deterministic approaches are based on computing a certain predefined cost function in

each grid point. Now, we define the set of RSS measurements taken by the user from N, TXs

heard

as

QRSS,USER = {PUSER,r 7€ Qppeara } J (4.1.1)

where P, . is the user RSS measurement from the r" TX and ;... C Yy is a set of indices r

of those TXs, which are heard in the current measurement, and thus, the number of elements in

Qrvearg 1S diven as |Qm€m_d = N, yaa - A Widely used cost function is based on the squared Euclid-

ian distance ||||2 between the user measurements and the database fingerprints as

wi = Z (PUSER,r _B,r )2 ) (4.1.2)

re QTlezrd

where ) is the value of the cost function at the /" fingerprint and P, is the RSS value of the ™ TX

stored in the /™ fingerprint. Besides the Euclidian norm, other norms such as the p-norm and the
maximum norm might also be suitable. Moreover, if information on the standard deviation of the

RSS distribution in each fingerprint is available, also the Mahalanobis-norm can be exploited [61].
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In case that one or more TXs are not found in the studied fingerprint, a small heuristic bogus value
can be used instead. Typically the level of the bogus value should be equal or less than the small-

est observed RSS value in the database [117].

For the sake of notational convenience we denote the fingerprint location coordinates and the user
location coordinates by using vectors as
X, = [‘xi Vi Zi]T

1

. (4.1.3)

X USER

USER — [XUSER Yuser 2

where X, is the coordinate vector of the /™ fingerprint and X, is the coordinate vector of the user

locations in which X, Vg @nd z, are the x-coordinate, y-coordinate and the z-coordinate of

the user location. The most straightforward method to estimate the user location based on the
cost-function-based approach is the Nearest Neighbor (NN) method [20],[80], where the estimated

user location is determined at the fingerprint where the cost function is minimized:

Xyseranv = Xi» Where k = arg min ¢, . (4.1.4)

1

Another popular method is the K-Nearest Neighbor (KNN) method [20],[38],[57],[80],[108],[134],
where the user location is obtained by taking an average of the K,, fingerprint coordinates with

the smallest cost function as

. 1
Xuser kNN = Z Xy, (4.1.5)

KNN keQpny

where €, is the set of fingerprint indices i pointing out the |QKNN| = K, smallest values of the

cost function /).

The cost-function can also be used directly as a weighting function, which can be used to indicate
the relative categorization precision between the user measurements and each fingerprint. Thus,
by exploiting the KNN principle, the user location estimate can also be calculated by using a

weighted average as

. U
Xuser kNN Z 1 Xk s (4.1.6)
keQyny Z wl
1€Qeny
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in which case the approach is referred as the Weighted K-Nearest Neighbor (WKNN) [20],[80].
Here the inverse of the cost function is required, since the weight value should always increase as

the cost-function decreases.

It is shown in [61], that the nearest-neighbor-based methods give relatively good performance
compared to more advanced localization algorithms, such as the probabilistic Bayesian approach
discussed later on. With a tight fingerprint grid interval, the NN is able to provide roughly the same
localization accuracy as the KNN and WKNN. However, as the grid interval is increased, KNN and
WKNN can improve their accuracy compared to the NN, since they are able to estimate the user in
the middle of the fingerprint coordinates, whereas the estimates of the NN are always found exact-
ly at the fingerprint locations. Conversely, a general problem in the KNN method is that although
there would be a perfect match with the user measurement and the correct fingerprint, the estimate
is always biased due to the effect of other fingerprints, with possibly much worse match with the
location estimate. This issue can be somewhat alleviated with the WKNN assuming that the

weights are scaled properly.

In addition to the above discussed localization algorithms, also other interesting approaches have
been proposed in the literature. One of these is the rank-based approach, studied in
[86],[871,[88],[91],[146], where the RSS measurements are not used in the traditional manner for
calculating the cost function or the likelihood. In the rank-based method the basic idea is to organ-
ize the RSS measurements from different TXs into a descending order based on the RSS values.
The resulted ordered TX index vector is called as the ranking vector. In the user localization phase,
instead of using the actual RSS values, ranking vector of the heard TXs is compared with ranking
vector in each fingerprint. Hence, the cost function is based on similarity measures, such as the
Spearman distance, Spearman’s footrule, Jaccard coefficient, Hamming distance, or Canberra
distance, as discussed in [86] in more detail. One great advantage of the rank-based method is its
tolerance against biased RSS measurement errors. For example, if one device is used to collect
the learning data and another device to perform the localization, in rank-based approach the mutu-
al RSS bias between the RSS measurements of separate devices does not affect the localization

performance as long as the order of the RSS values remains the same [86].

A probabilistic localization approach using Bayesian methods can be very advantageous in finger-
printing. Firstly, the probabilistic approach offers widely-known tools for describing the theoretical
framework of the estimation problem, and thus, it provides an access to several useful concepts in
the estimation process, such as the evaluation of the localization error quantiles. Secondly, the
Bayesian methods act as the backbone of Bayesian filters, such as the famous Kalman filter [13],

which are used for efficient tracking of the user location. In the Bayesian framework, one of the
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most important concepts is the likelihood function, which binds the user RSS measurements and

the system coordinates together. Assuming independent measurements from each TX, the proba-

bility of observing the RSS measurements €, .. at the fingerprint coordinates x; can be written
as
p(QRSS,USER |X,)= H DPrss (PUSER,r _B,r)7 (4.1.7)
rEQT)dmu'd
where p,. () is the probability density function of the measured RSS values defining how RSS
values vary in one fingerprint when multiple measurement from the same TX are considered.

Based on the given definition of the likelihood, we assume that p, (-) is identical for all finger-

prints and TXs. Although this is not exactly true in practice, we assume that the database includes
only one RSS value per each fingerprint and AP, and so, any information regarding the parameters

of individual RSS probability density functions is inaccessible. The shape of the probability densify

function p, () can be freely chosen by design. Two distributions which are often mentioned in the

literature are the Gaussian distribution as pRSS(v)zl/«/27m}23SS exp(—v2/2afess) with the variance

05 @S @ design parameter, and the exponential distribution as p,(v) = 1/2exp (—Ivl), where v

is the function argument [61].

Using the fact that the fingerprint grid is uniform and assuming that there is no available a priori
information on the true user position X, (i-e., p(X gz ) is Not known), based on the Bayes’ rule

[73], the posterior probability density function for the user position is directly proportional to the

likelihood function as

Nyp—1

P(Xyer | QRSS,USER) X Z p(QRSS,USER | X)X Xy ) s (4.1.8)
=0

where

. . .th o .
1, 1f x4, 18 mapped to the i™ fingerprint (4.1.9)

(X =

X (Xusee) 0, otherwise
is an indicator function. Here the indicator function is used to apply the posterior function over the
whole coordinate space so that the posterior function would not be restricted only to the known

fingerprint coordinates. Thus, the posterior function is determined to be piecewise defined around
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each fingerprint. As an example, the normalized posterior (i.e. likelihood) function of a real-life

WLAN scenario in the multi-storey University building is given in Fig. 4-1.

The actual location estimate of the user can be obtained in several ways from the posterior func-
tion. One of the most famous approaches is the MAP estimation [86], where user estimate is the

coordinates of the maximum value posterior function value as

Likelihood (dB)

Likelihood (dB)

Fig. 4-1 A normalized Bayesian fingerprinting-based likelihood (max. value is set to 0dB) of the
user location for one set of user RSS measurements g ;o1 in the University building in
2.4GHz WLAN network: all floors (top) and the view on the 2™ floor only (bottom). The
grey star around the maximum value of the likelihood is the true user location.
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A

XUSER,MAP = arg max p(XUSER ‘ QRSS,USER) - (41 1 0)
In this case, since the a priori distribution is assumed to be uniform, the MAP estimate is identical
with the ML estimate. Nevertheless, based on our studies and the studies in [61], a better average

performance compared to the MAP estimate is obtained by taking the mean of the posterior func-

tion as
Nep QO .
N p( RSS,USER |Xl)
XUSER, MMSE = N1 X;, (4.1.11)
=0
l Z p (QRSS,USER | Xk)
k=0

which can be considered as the MMSE estimate of the user location.

4.1.2 Probabilistic localization using the PL models

There are several reasons for exploiting PL-model-based localization in present and future com-
munications networks. Firstly, as the number of available TXs increase the fingerprinting-based
approaches begin to suffer from the excessive amount of data needed to store and process from
multiple different communications networks and TXs. In addition, because of the growth of the in-
door localization systems, the data is also expanding vertically as multi-floor buildings have to be
taken into account. Secondly, the PL models are naturally interpolating and extrapolating the learn-
ing data in all desired coordinates, whereas the in the fingerprinting, the fingerprints are restricted

to provide information from only their own coordinates.

One of the traditional approaches for the PL-model-based localization is the trilateration principle
[48],[90],[128],[145]. In trilateration, the fundamental idea is to determine the user location based
on the range estimates to a set of known TX locations. Here, for simplicity, we focus on using only
the single-slope log-distance model to estimate the ranges, but any other PL model is also appli-

cable. Now, assuming the user measurement set €2, ... given in (4.1.1), there range to the "

heard TX can be obtained by solving the measurement distance parameter from (3.1.2) as

‘:1( " 7PUSER S

=10 1047 (4.1.12)

c}(r)

RANGE
where A7 and 7" are the PL parameter estimates of the " TX. In addition, by assuming the es-

timated TX locations to be known, the distance between the user measurement location and each

()

T
ion i - &) 20 50 50
TX location is obtained as HXUSER — Xy [

, Where X,y =X,y Vv Zp| IS the TX location esti-
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mate given earlier in (3.3.1). Thus, the user location can be estimated by exploiting the LS principle
as

A o . ()
XUSER trilater — ATZTIIN Z (HXUSER —Xzy

XUSER

— %) 4113

r eQTXhmrd

This equation can be solved, for example, by using iterative non-linear LS methods. An illustration
of the trilateration principle is given is Fig. 4-2, where an artificial test set-up is created. In the set-
up there are 3 TXs with known locations and noisy range estimates. The non-linear LS estimation
is done by using the Newton-Raphson method [55] with two separate initializations. The figure also
reveals one of the negative sides of using iterative methods as the first initialization convergences

into an incorrect local maximum far away from the true user location.

Besides the trilateration, PL models can be used to recreate the original fingerprint data by approx-
imating the RSS levels of each TX in each fingerprint This idea can be directly used for the locali-

zation purposes in similar way as in the Bayesian-based fingerprinting. Hence, again for simplicity

250 | ¥ Initial location estimate
Iteration path
QO Final location estimate

True location Initialization #1
% TX#1 location

150 | % TX#2 location
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g e TX#1 range estimate
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50 : * ”"u. ' ,’ &
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_5 O 1 1 1 | 1 1 1
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Fig. 4-2 A simulated example of the trilateration principle, where 3 noisy range estimates are ob-
tained from separate TXs with known TX locations. The final location estimate is achieved
by solving a non-linear LS problem iteratively with the Newton-Raphson algorithm. The
two tested parameter initializations in the algorithm result in different final location esti-
mates.
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we restrict our analysis to the single-slope log-distance models without excluding the possibility to
use other PL models. Based on the estimated PL model parameters, the estimated RSS level from

the /" TX at any coordinate x, can be given as
P = 4 —10n" Tog,, ([R5 —x, [ ). (4.1.14)

Now, by considering the estimated RSS level I%“f’as the estimate of the fingerprint measurement

B,r, the NN, KNN, and WKNN along with the Bayesian method are all directly applicable with the

PL models. However, on contrary to the fingerprinting methods, the RSS values of each TX can be
defined in arbitrary coordinates in the system, and thus, no bogus values have to be used with the
PL models. An example of the likelihood function based on the Bayesian-based approach using
the PL models is shown in Fig. 4-3. The presented likelihood is given for exactly the same case
used earlier with the Bayesian fingerprinting in Fig. 4-1. Here, we have used the re-created finger-
print grids based on the LS-based estimates of the single-slope log-distance PL model including

the floor losses. The likelihood is calculated with the posterior function given in (4.1.8) by substitut-

ing x, — x, and by replacing the fingerprint RSS value 7,, found in the probability density function
Prss (PUSERJ_ — EJ,) with the estimated value I%“f). By comparing the PL-model-based likelihood with

the earlier fingerprinting-based likelihood (i.e., Fig. 4-1 with Fig. 4-3), the PL-model-based likeli-
hood seems smoother and it covers the whole building area including those areas where no learn-
ing data were original taken. However, in the PL-model-based approach, the likelihood is widely
spread in multiple floors, which might affect the floor detection probability. Moreover, if the floor
losses would not be included in the PL model, the likelihood spread would be even more severe

due to asymmetric propagation losses in horizontal and vertical directions.

Similar to the fingerprinting algorithms, there are also other approaches for the user location esti-
mation originating from the PL model estimation. One of these is the weighted-centroid-based
method studied in [P7] and [20], in which the user location is determined as the weighted centroid
of the location estimates of the heard TXs, similar to the TX location estimation given in (3.3.1).
This intuitive method is based on the well-justified assumption that the user is located near the AP
with the highest observed RSS level. As shown in the localization performance results shown in
Section 4.4, the weighted centroid method provides comparable localization performance with PL-

modeling-based estimation methods.
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Fig. 4-3 A normalized Bayesian PL-modeling-based likelihood (max. value is set to 0dB) of the
user location for one set of user RSS measurements Qs ;oep in the University building in
2.4GHz WLAN network: all floors (top) and the view on the 2™ floor only (bottom). The
grey star around the maximum value of the likelihood is the true user location.
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4.2 Error sources in RSS-based user localization

In learning-based RSS data localization system, there are multiple sources of error affecting the
localization accuracy. Since the localization is based on the pre-collected learning data, all chang-
es in the learning data between the data collection time and the user localization time affect the
localization performance. In [P6] we studied the effect of WLAN 2.4 GHz AP configuration changes
in a University building by comparing two data sets taken from two years apart. Based on the given
results, the effect of re-configuration was not significant as long as the learning data was kept up-
dated. This implies that the building structure and the propagation environment is more influential

for the localization accuracy than the AP topology.

Besides the outdated leaming data induces error in the localization, also the quality of the data is
an essential error source in localization systems. For example, if only one RSS measurement per
TX is collected from each fingerprint, the mean of the local RSS distribution might be estimated
very poorly. In fact, with only one RSS measurement, the variance of the estimated RSS mean is
equal to the variance of the true RSS distribution in the fingerprint. This induces a calibration error
in the learning data, where the error distribution is inherited from the RSS distribution, as discussed
in Section 2.5. In addition to the calibration error due to low number of measurements, the RSS
bias between the device used to collect the learning data and the device used to perform the local-
ization can decrease the localization performance considerably. The problem with the RSS bias is
that the error is affected in the same direction in each fingerprint, whereas with the typical calibra-
tion error the error distribution is symmetric. We have studied the effect of database calibration
error in [P2], where we have considered a Gaussian distributed calibration error and the RSS bias
error for both positive and negative bias values. The effect of the different error sources are depict-
ed in Fig. 4-4 considering the KNN-based fingerprinting localization in the 2.4 GHz WLAN network
in the University building. From the results, it is evident that the Gaussian distributed calibration
error has the smallest effect on the localization error. Moreover, even with 20dB standard deviation,
the localization performance is dropped by only less than 3 meters. Conversely, significant perfor-
mance degradation can be witnessed with the positive RSS bias error. It is widely recognized the
high level RSS measurements are very important from localization accuracy point of view, as they
always point out the user location to be in very close proximity to the location of the observed TX.
However, due to practical RSS boundaries, a large positive RSS bias results in RSS clipping and

widens the area where the high RSS levels can be heard.
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Fig. 4-4 The effect of the RSS calibration error and the RSS bias error on average localization
error using KNN-algorithm in the University building with 2.4GHz WLAN network. The re-
sults are given separately for fingerprint grid intervals of g=2m and g=5m.

Depending on the considered communications network there might be some issues which cannot
be anyway affected by the localization system design. For example, the number of heard TXs is
often assumed to be depending on how many of the TXs are within the range (i.e., above some
certain RSS level) of the measurement device. In WLANS this is roughly true, as all hearable APs
are reported during each scan of the APs up to the some practical limit of maximum number of
simultaneously scanned APs. However, in cellular networks the measurement process is strictly
managed by the network and all the observable BSs are not necessarily measured during the pro-
cess. Although this cannot be considered exactly as an error source of the localization system, it
surely affects the localization performance. In Fig. 4-5, we show the Gaussian fitted distributions of
the measured RSS values for different numbers of heard BSs per measurement in a GSM cellular
network. It can be clearly seen that, if high level RSS values are available in the measurements,
the number of measured BSs is smaller than with the low RSS values, where the number of meas-
ured BSs increase. This happens in the GSM network, because without any BSs with a high RSS
level available, the measurement device is probably around the cell edge and several BSs are

monitored in order to prepare for an upcoming handover between cells. On the other hand, if high
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Fig. 4-5 Gaussian fitted distributions of the measured RSS values for different numbers of heard
BSs per measurement set in a GSM cellular network.

RSS levels are observed, the measurement device is probably near the BS and imminent hando-

vers are not required, and thus, there is no need to monitor other BSs.

4.3 Effect of coverage gaps on the positioning accuracy

Occasionally, the learning data does not necessarily cover the whole target area of the localization
system. From the localization point of view this is problematic, since some of the areas are left in a
total unawareness of the surrounding radio environment. These coverage gaps can be originated
simply from poorly covered collection of learning data or due to the fact that some of the areas are
restricted or inaccessible by the persons collecting the data. In addition to these, parts of the learn-

ing data might get outdated or lose their integrity, which might lead to exclusion of the data.

The study of the coverage gaps is not generally straightforward. To reveal the effect of coverage
gaps on the localization performance, we must understand the performance of the original localiza-
tion system without the coverage gaps. Therefore, in [P1] and [P2] we have proposed a random-
ized method to synthetically remove fingerprints from the original full coverage fingerprint database.

By this way, it is possible to study how the missing fingerprints specifically affect the system per-
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formance, since the original fingerprint database is fully known as a reference. The removal of the
fingerprints cannot be done based on the uniform probability distribution, where each fingerprint
has an equal probability of being removed. Instead, the coverage gaps are assumed to include

large chunks of nearby measurements, which results in visible holes in the fingerprint grid. For this
purpose we introduce a design parameter d,, , , which describes the radius of the chunk (in me-
ters) of removed fingerprints. Another required design parameter is 1, which determines the per-

cent of removed fingerprints with respect to the initial number of fingerprints. Furthermore, the cov-

erage gaps are assumed to be formulated independently in a floor-wise manner. Now, by denoting
the set of original fingerprint indices as (1,,,, = {0,1,2,...,NFP —1}, and by initializing the set of
partial fingerprint indices as 2,7, =2, » the fingerprint removal method can be described as

follows:

1. Select randomly the coordinates (xs,ys,zs) of one fingerprint from s €€2,,,..,.., by using the

uniform probability distribution.

2. Remove all fingerprints whose Euclidian distance in the horizontal plane (the xy-plane) to

the randomly selected fingerprint (x;,y,,z, ) is smaller or equal to the block radius parame-

ter d,;,, - The preserved fingerprints are now defining the new partial database 2,3, -

3. Check if enough fingerprints have been removed and the desired removal percentage u

satisfies the inequality|QPARTML| < (1—,u)|QFULL| . If yes, continue to the part 4. Otherwise, go
back to the part 1 and continue removing fingerprints.

4. In case |QPARTML|:(1—,[L)|QFULL| is not satisfied with one fingerprint accuracy, retrieve a
required number of the fingerprints from the last removed block starting from the finger-

prints with largest distance to (xs,ys,zs).

In Fig. 4-6, the removal process has been illustrated with the original fingerprints, the partial finger-
prints obtained by the above described removal process, and the partial fingerprint set obtained by

the uniform removal process. The percent of removed fingerprints is ;. =30% for both of the re-

moval methods. It can be clearly seen that the uniform removal method does not create coverage
gaps, but more likely, it decreases the average density of the original fingerprints. Because of the
randomized nature of the above described removal process, the process can be repeated over
several times with different random number realizations. Consequently, the results of the effects of
the coverage gaps in the following analysis are based on the average of 100 different realizations

of the removal process.
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Fig. 4-6
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An illustration of the original fingerprint grid (top) and the partial fingerprint grids with 30%
of the fingerprints removed (i.e., = 30%) by using the uniform removal (middle) and the
block-based removal with d,,, , =10m (bottom). In the block removal case the circles indi-
cate the removed areas of the removal process. The red and dashed circle is the last re-
moved area, where part of the fingerprints has been retrieved in order to satisfy the de-
sired removal percentage . .
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In Fig. 4-7 we have studied the effect of coverage gaps on the average localization error and the
floor detection probability by using 2 different grid intervals and 3 different fingerprint removal

methods. The used localization algorithm was the KNN-based fingerprinting. It can be seen that
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Fig. 4-7 The effect of the coverage gaps on the average localization error and floor detection
probability as a function of removal percentage . with different fingerprint removal
methods using the KNN-algorithm in the University building with 2.4GHz WLAN network.
The results are given separately for fingerprint grid intervals of g=2m and g=5m.
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the block-based removal methods have considerably lower localization accuracy compared to the
uniform removal method. Here, it should also be noticed that the selection of the localization algo-
rithm has a crucial role in achieving reasonable localization accuracy. If coverage gaps are present
in the dataset, the algorithms whose estimates are based on taking an average over multiple fin-
gerprint coordinates, such as the KNN, WKNN and MMSE, are superior against the NN. This is
because, if the user is in the middle of a coverage gap, the NN is forced to place the estimates
somewhere in the gap boundaries, whereas KNN, WKNN, and MMSE are able to find the estimate

inside the gap.

In [P1] we have studied different TX-wise and floor-wise interpolation and extrapolation methods
for recovering the RSS values inside the coverage gaps. We considered several well-known inter-
polation and extrapolation methods and the target was to improve the localization performance
decreased by the coverage gaps. It was shown that with the interpolation alone, there was no sig-
nificant effect on the localization performance, since the average-based localization algorithms
were able to find the location estimates inside the coverage gaps anyway. However, if also extrap-

olation of the RSS values was considered, it was possible to improve the localization performance
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Fig. 4-8 Mean positioning error as a function of the removal percentage . considering original fin-
gerprints, partial fingerprints (block-based removal with d,, , =10m) and for different ex-
trapolation methods after interpolation in the University building with 2.4GHz WLAN network
(fingerprint grid interval of 5m).
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by certain extrapolation approaches. Fig. 4-8 shows the results regarding the mean localization

error as a function of the removal percent p for different studied extrapolation approaches and

using the block removal method with d,,, =10m. Here the minimum and mean methods refer to

constant-based extrapolation approaches, where the extrapolated value is always either the mini-
mum or the mean value over all available RSS values. In the gradient method the extrapolated
values are based on the gradient of the closest available RSS values. In the nearest-method the
extrapolated values were determined as the RSS value in the closest known location. Finally, the

most consistent extrapolation method was determined to be the Inverse Distance Weighting (IDW),

also referred as the Shepard’s algorithm [124]. Here the extrapolated RSS value P, ,» at the lo-

cation (X,y;psr> Vevmear )i the /7 floor is defined based on distance-weighted RSS levels as

dE)';TRAP
J_ plr)
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Fig. 4-9 Mean positioning error as function of removal percentage p considering original finger-
prints, partial fingerprints and IDW interpolated/extrapolated fingerprints for uniform finger-
print removal and block removal with d,,,, =10m and d,,, =20m in the University building
with 2.4GHz WLAN network (fingerprint grid interval of 5m).
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where Q7 is the set of measurement indices of the " TX found in the /" floor, and thus a subset of

the TX measurement set given earlier in (3.1.1). Here, the design parameter u can be used to con-
trol the relative weight between different distances. Based on the results, apart from the gradient-
based approach the extrapolation seems to reduce the mean localization error up to 12% com-
pared to the case without the extrapolation. The problem with the gradient-based method is that
sometimes increasing gradient in the edge of the area of known RSS values results in very unreal-
istic extrapolation results. In Fig. 4-9, the IDW method is separately studied with different finger-
print removal methods. It seems that the more severe is the effect of the coverage gaps on the

localization accuracy the more gain can be achieved via the extrapolation.

4.4 Comparison of localization performance for the considered localiza-
tion systems

We have studied the localization performance using the discussed RSS-based localization algo-
rithms in various different communications systems, including the WLANs at both 2.4 GHz and 5
GHz carriers, BLE, and cellular networks with GSM and WCDMA. For each system we have com-
pared the performance of 3 different localization approaches: the conventional fingerprinting dis-
cussed in Section 4.1.1, the PL-model-based localization and the heuristic weighted centroid
method, discussed in Section 4.1.2. In case of the PL-model-based approach we have considered
the log-distance model, and moreover, for the indoor environment we study the models with and

without the floor losses including the frequency-dependency.

In Fig. 4-10 the cumulative localization error of the indoor localization is showed for WLANSs at the
2.4 GHz and 5 GHz carriers and the BLE at the 2.4 GHz carrier. All results are obtained from the
same University building used earlier in this thesis to maintain a fair comparison between different
systems. Based on the results, the 2.4 GHz WLAN and the BLE outperform the 5 GHz WLAN.
However, this is mainly due to lack of measurements at 5 GHz carrier, since most of the WLAN
APs are still operating at the 2.4G Hz carrier. In the WLANS the traditional fingerprinting is the most
accurate localization approach, but in the BLE the weighted centroid method seems to be the most
accurate one. In all cases the PL model where the floor losses are included provides better results
compared to the model without the floor losses. Especially the floor detection probability is signifi-

cantly improved by including the floor losses into the PL model.
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Fig. 4-10
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Comparison between cumulative localization error between different localization ap-
proaches in 2.4 GHz and 5 GHz WLANSs and BLE in the University building. The results
include the Bayesian PL model approach with and without floor losses, the weighted
centroid approach, and the Bayesian fingerprinting approach. The mean errors and the
floor detection probabilities Py, are given in the legend for each localization approach.
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In Fig. 4-11 similar localization accuracy results are shown for the cellular networks, including the
sub-urban GSM network and an urban WCDMA network. In both cases, the fingerprinting achieves
the best average localization accuracy and the PL-model-based localization has the worst average
accuracy among the considered approaches. However, in the GSM case, the PL models provide
consistently better accuracy up to the 90% quantile, where the PL error curve saturates and the
weighted centroid method begins to reach the fingerprinting curve. Hence, it seems that handling

certain large errors in the PL modeling approach would increase the average estimation accuracy

considerably.

Fig. 4-11 Comparison between cumulative localization error between different localization ap-
proaches in the suburban GSM and the urban WCDMA cellular networks. The results
include the Bayesian PL model approach, the weighted centroid approach, and the
Bayesian fingerprinting approach. The mean errors are given in the legend for each lo-

Suburban GSM
lr BEEEEEEEEEEW
el AAEEAAAALAK
0.8 o
g
4
&
g,#
0.6 E',':
3
0.4 e
$
0.2 .,',' - A -PL model, mean err=320 m
] - & - WeighCen, mean err=274 m
i = B = Fingerprint, mean err=225 m
O 1 1 1 1 1 1 ]
200 300 400 500 600 700 800
Distance error [m]
Urban WCDMA
d i
08 [ fly X
ra
B
0.6 !
e
ieh
0.4rF KAI
w
02} f - A -PL model, mean err=79 m
- % = WeighCen, mean err=64.6 m
= B - Fingerprint, mean err=59.7 m

:

100 150 200 250 300 350 400
Distance error [m]

50

calization approach.



66 Localization Phase with User RSS Measurements

The overall performance of the localization system is not only about the actual localization accura-
cy, but only about the algorithm complexity and the size of the learning database. Thus the number
of parameters required to be stored in the learning database are shown in Table 3. Here, in case of
the outdoor systems, namely the GSM and WCDMA, there are no values for the PL model with

floor losses, since the outdoor models are considered only in 2D.

Table 3.  Number of parameters required to be stored in the database for the considered localization
approaches in different localization systems.
System
— WLAN WLAN BLE GSM WCDMA
Localization approach 2.4GHz 5GHz
Weighted centroid 1764 460 312 96 78
PL model with floor losses 3087 805 546 - -
PL model without floor losses 2646 690 468 160 130
Fingerprinting 139302 22525 41715 5481 1246

By comparing the numbers of stored database elements in the fingerprinting with the correspond-
ing number in the weighted centroid or the PL-model-based approaches, it is evident that the fin-
gerprinting approach is not able to compete with the other approaches in terms of database size.
For example, in the 2.4 GHz WLAN, the fingerprinting database includes 45 times more database
elements than the database of PL models with floor losses. Moreover, it is a fair assumption that
the database size correlates with the computational complexity of the localization algorithm. Be-
cause of these reasons, the applicability of the fingerprinting methods at a global scale, especially
as new exploitable communications network emerge in the future, is not straightforward. Although
the problem regarding the actual database size could be solved, the data traffic between the data-
base server and the user device might become as a bottleneck of the system. In addition, the data
traffic handling in the server must also be designed to take into account the traffic generated from
the database updates and general database maintenance duties. Nevertheless, the decision of
which localization approach to use should depend on the scale of the localization system and on

the availability of the database and computational resources.



5 Conclusions and Future Considerations

In this thesis we have studied different approaches for RSS-based localization in indoor and out-
door wireless localization systems. In the beginning, we justified the utilization of the RSS meas-
urements for the localization purposes based on the fact that the RSS measurements are widely
available in various wireless communications networks. In addition, the RSS measurements can be
easily accessed via the APlIs of different operating systems, which enables the use of RSS-based
localization in most of the user devices available in the market. The number of the available net-
works and the TXs is expected to be increased in the future, which enables improved availability

and accuracy for the upcoming localization systems.

The research focus in this thesis has been in the two-step localization approach, where in the first
step the learning data is collected from the target area, and in the second step, the user localiza-
tion is performed by exploiting the learning phase data. We addressed different aspects of the
learning data collection and indicated that the statistics of the RSS measurements are heavily af-
fected by the manner how the data collection is performed. In any case, due to the unpredictable
radio propagation environment, simplified models for the RSS measurement statistics can be very
difficult to obtain.

The RSS value can be considered as a function of the propagation distance between the meas-
urement device and the TX. This dependency between the propagation distance and the RSS val-
ue can be modeled using the PL models. Thus, by assuming known PL model parameters, the
user device can be located based on the triangulation principle and the localization can be per-
formed without the collection of learning data. However, at the global scale it is very challenging, or
even impossible, to find PL models with a reasonable number of model parameters so that it suits
in all possible radio propagation environments. Moreover, certain PL model parameters in the lo-
calization systems, such as the effective antenna heights of the user device and the TX, are often

unavailable, which makes certain PL models unfeasible for the localization purposes.
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We have studied several PL models for both the 3D indoor and the 2D outdoor environments and
used them to reduce the database size compared with the traditional fingerprinting, since only a
few parameters per PL model have to be stored per each TX. We discussed several PL parameter
estimation methods, such as the LS, WLS, and MMSE, from which the used method can be se-
lected based on the availability of the prior information on the shadowing standard deviation and
the a priori distribution of the PL parameters. We compared the distribution of the estimated PL
model parameters between different indoor and outdoor systems. Based on the results, we ob-
served that, as the number of obstacles in the radio path increases, also the PL exponent increas-
es. This observation is well-aligned with the intuition and the earlier results indicated in the litera-
ture. Nevertheless, we also pointed out the significant correlation between the PL constant and the
PL exponent parameters in the single-slope log-distance model. Besides the single-slope models,
we provided methodology for modeling and estimating multi-slope PL models, which can improve

the modeling accuracy for certain radio propagation environments.

We have studied different localization methods for the deterministic and probabilistic fingerprinting
approaches and for the probabilistic PL-model-based approach. The comparison of the localization
performance between the probabilistic fingerprinting approach and the probabilistic PL-model-
based approach showed that the fingerprinting approach provides better localization accuracy and
floor detection probability compared to the PL-model-based approach. However, in terms of the
required database size, the PL-model-based approach rises clearly above the fingerprinting ap-
proach with up to 50 times smaller database size compared to the fingerprinting in case of the BLE
system. This sort of difference in the database sizes cannot be simply ignored in the localization
performance comparison, and thus, the exploitation of the PL-model-based approach should be
seriously considered as a reasonable option for the future localization systems. Another type of a
method for reducing the size of the learning database is proposed in [131]. Here the leaming data-
base is compressed based on spectral analysis, which exploits the spatial correlation of the RSS
measurements taken from the same TX. Here, up to a certain database compression ratio, the
localization accuracy with the compressed database is surprisingly slightly better compared to the
original uncompressed database. This is because with relatively small compression ratios, the pro-
posed method basically removes only the noise from the fingerprints and leaves the essential RSS

information untouched.

In addition to the localization accuracy comparisons, we have studied also the effect of RSS mean
calibration error and RSS bias error in the learning database on the localization performance. It
was shown that the Gaussian distributed calibration error was not as severe as the bias errors.
Moreover, the direction of the bias error was shown to be important regarding the degradation of

the localization performance. Besides the RSS errors in the database, we also studied the effect of
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incomplete database on the localization performance by introducing a randomized iterative method
to create coverage gaps in the fingerprint grid. To recover the lost fingerprints we proposed multi-
ple interpolation and extrapolation methods and reduced the localization error with the recovered

database by up to 12% compared to the incomplete database.

As already indicated earlier, the number of the available networks and the corresponding TXs is
expected to be increased in the future. Due to the excessive amount of data included in all localiza-
tion systems, fingerprinting-based systems might become very challenging from the data handling
point of view. Thus, building-up and maintaining extensive databases might become an over-
whelming task in the future. To tackle this problem, compressive sensing methods [50],[99], and
advanced machine learning methods [11],[18],[22],[42],[43],[44],[51],[60],[66],[95],[133],[135],[136]
have been proposed in the literature. These latter ones are generally referred to as the SLAM
methods, as they perform the leaming phase and the user localization phase simultaneously. Of
course, here the estimation problem becomes more challenging as the number of unknown varia-
bles increase. In [36] it has been shown that several traditional signal processing methods are in-
consistent when the system dimensions are large. To tackle this, the authors in [36] use random
matrix theory jointly with complex analysis methods for an improved consistency in large-
dimensional systems. Nevertheless, by efficiently exploiting the studies regarding the RSS-related
radio propagation characteristics in the literature, such as the ones discussed in this thesis, the

SLAM approach could be the next big step in the future RSS-based localization systems.

Another important future study topic is the hybridization of the RSS with other types of localization
information, such as the AOA, TOA and TDOA, as studied, for example, in [104] and [106]. In addi-
tion, hybridization of the RSS with possible inertial sensor measurements is especially interesting,
as the inertial sensor data is often available by the API of mobile operation systems. Moreover,
inertial sensors have also an important role in the self-learning process of the above-mentioned
SLAM methods. Another exciting localization enabling sensor is the magnetometer, which
measures the direction of the earth's magnetic field. This can be used for the indoor localization,
since the local distortions in the magnetic field caused by the structural properties of the building
can be considered as location-based fingerprints. Since each localization approach have unique
advantages and disadvantages, a proper combination of different approaches should improve the

overall localization performance.
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