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Abstract 

In genetic circuits, the constituent genes do not interact only between themselves, they 

are also affected by regulatory molecules of the host cells that support the circuits’ 

operation and by the environmental conditions. These factors, along with the intrinsic 

noise in gene expression, affect the functioning of the circuits. As such, to understand 

the structure of natural circuits and to engineer functional synthetic circuits, one needs 

to characterize thoroughly how external factors and perturbations from the environment 

may affect their behavior. 

This thesis focused on two cellular mechanisms through which the dynamics of gene 

expression becomes environment dependent: the intake of gene expression regulatory 

molecules from the media and the σ factor competition. The first mechanism determines 

the dynamics by which inducer molecules in the media enter the cell cytoplasm and 

trigger or repress the expression of the target gene. The second mechanism allows cells 

to change its gene expression profile to adapt to specific stress conditions.  

Following the characterization of the effects of these mechanisms on the expression 

dynamics of individual genes from live, single cell measurements, we then performed in 

silico assessments on how these effects at the single gene level propagate to the circuit 

level. Here, the dynamics of genetic circuits was observed in both non-dividing and 

dividing cell populations, where errors in the partitioning of molecules in cell division 

occur and introduce significant variance between sister cells. 

From these studies, with the knowledge on the factors of the host cells and their 

environment sensing mechanisms, more predictive models of the circuits’ dynamics are 

expected to emerge. The models would further help in identifying what circuit 

composition, properties of the host strains and environmental conditions are needed for 

the circuits to exhibit the desired behavior. 
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1 Introduction 

1.1 Background motivation 

The discovery of the gene regulatory network (Jacob and Monod, 1961), responsible for 

many cellular complex behaviors (Kauffman, 1969), foresaw the prospect of single-cell 

machines: by inserting into cells synthetic genetic circuits, a module of genes interacting 

with one another in a predefined motif, one can create or modify cellular functions or 

responses to external signals. However, despite the numerous proposals for circuit motifs 

with attractive theoretical dynamics (Samad et al., 2005; Wolf and Arkin, 2003), only a 

limited number of these were successfully implemented (Anderson et al., 2007; Elowitz 

and Leibler, 2000; Gardner et al., 2000; Stricker et al., 2008). Furthermore, the stability 

and tunability of these circuits still has much left to be desired (Chandraseelan et al., 2013; 

Elowitz and Leibler, 2000), particularly when compared with genetic circuits existing in 

nature (Ishiura et al., 1998; Shea and Ackers, 1985), which were tailored merely by trial 

and error. 

The behavior of a genetic circuit depends not only on its composition but also on the 

surroundings, namely the host and the environmental context of this host (Cardinale and 

Arkin, 2012). A circuit’s composition includes its components and how they are wired to 

one another. These wires govern the flow of information between the genes and define 

the logical behavior of the circuit. Meanwhile, the host organism supports the operation 

of the circuit via e.g. its numbers of native transcription factors, RNA polymerases and 

ribosomes, the growth dynamics, etc. These factors cause the behavior of genetic 

constructs to vary even between cells of identical genotype (Elowitz and Leibler, 2000). 

Lastly, as the environmental conditions change or as cells navigate in space, the 

environmental cues constantly permeate through the membrane and affect some of the 
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host factors (Farewell et al., 1998; Jensen et al., 1993), leading to potential changes in the 

circuits’ operation. 

In bacteria, the regulatory mechanisms of gene expression to adapt to the environmental 

conditions target mostly at the process of transcription. For example, when E. coli cells 

are placed in poor media conditions, the production of stress-responding sigma factors, 

subunits of RNA polymerases (Gruber and Gross, 2003), are induced. These factors bind 

to the RNA polymerase core enzymes to form holoenzymes and assist the binding of 

these holoenzymes to the promoter region of the stress-responding genes, thus enhancing 

their transcription (Farewell et al., 1998). Also, when lactose appears in the media and is 

absorbed by cells, lactose molecules bind to the lac repressors in the cells and reduce their 

affinity to the lac promoter drastically (Lewis, 2005). As the promoter is cleared from the 

repressors, the transcription of the genes of the lac operon is triggered (Jacob and Monod, 

1961). It is expected that these regulatory mechanisms will interfere directly with the 

interactions between genes of the circuits, where the regulations of one gene over another 

also occur primarily at the transcription level. Therefore, to thoroughly assess how 

genetic circuits respond to changes in the environmental conditions, one needs to 

characterize the transcription kinetics of the constituent genes, the impacts of the host 

factors on this kinetics and the mechanisms through which the host factors sense fluctua-

tions in the environment (Cardinale and Arkin, 2012). 

With the recent advances in fluorescent imaging and image analysis techniques, the pro-

cess of gene expression can now be monitored in great detail (Golding et al., 2005; So et 

al., 2011; Yu et al., 2006). From in vivo measurements of the transcription dynamics of 

individual genes at the single event level, the key intermediate processes in transcription 

(Kandhavelu et al., 2012a; Muthukrishnan et al., 2012), i.e. the closed complex formation, 

isomerizations and the open complex formation, can be discerned. The findings derived 

from the observations are contributing to the design of more realistic models of gene ex-

pression dynamics. Furthermore, by observing this dynamics in various environmental 

conditions and host strains, one can expect to learn about the mechanisms through which 

cells regulate the expression of individual genes in response to media variations (Dong 

and Schellhorn, 2009a; Farewell et al., 1998; Mäkelä et al., 2013; Marbach and 

Bettenbrock, 2012). For example, in (Farewell et al., 1998), from comparisons of the gene 

expression profiles in wild type E. coli and in a rpoS-deletion mutant strain, it was shown 

that sigma factors (Gruber and Gross, 2003) compete for the binding to a limited pool of 

RNA polymerase core enzymes. As a result, increasing the abundance of one sigma factor 
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negatively regulates the expression of genes recognized by the other sigma factors (Dong 

and Schellhorn, 2009a). This knowledge will aid in understanding the operation of natural 

genetic circuits and in designing synthetic circuits with desired behaviors by selecting the 

right components from a well-characterized promoter – regulator library. It also helps in 

identifying what properties of the host organisms and the environment ensure robust op-

erations of the circuits.  

1.2 Thesis objective 

This thesis aims to characterize cellular mechanisms through which the transcription dy-

namics of individual genes becomes environment-dependent and how the impact of this 

external regulation on individual genes propagates to the dynamics of the circuits they 

constitute. 

For this, the author and colleagues first investigated the dynamics of genetic circuits in a 

fixed context. Here, the context’s impacts are defined explicitly in the kinetic rates of the 

constituent genes’ expression. Recent works have shown that the initiation of transcrip-

tion, where most regulation of gene expression occurs, consists of multiple sequential 

rate-limiting steps (Kandhavelu et al., 2012b; Muthukrishnan et al., 2012), namely the 

closed complex formation, isomerizations and the open complex formation. Changes in 

the context (i.e. promoter – regulator pairs, host strains and environmental conditions) 

affect the number and durations of the rate limiting steps in the transcription initiation 

process of individual genes (Kandhavelu et al., 2012b; Muthukrishnan et al., 2012, 2014). 

Using stochastic modeling, we made use of this knowledge to study how the behaviors of 

genetic circuits are affected by these changes in context by varying the parameters of 

transcription initiation of the component genes of the circuit. This objective was ad-

dressed in Publication I. 

Next, we observed the operation of genetic circuits in the context of proliferating cell 

populations, where cell growth and cell division are significant factors. Recently, it has 

been recognized that the partitioning of plasmids, RNAs, proteins and other macromole-

cules during cell division is not without errors (Huh and Paulsson, 2011a; Lindner et al., 

2008; Lloyd-Price et al., 2012b), resulting in differences in the number of molecules in-

herited by each daughter cell after division. Further, in stress conditions, cells may em-

ploy higher-variance partitioning schemes (Gupta et al., 2014; Männik et al., 2012) to 
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diverse sister cells even further. Here, using a stochastic model of gene expression 

(McClure, 1985) and various disordered and ordered partitioning schemes of regulatory 

molecules during cell division (Huh and Paulsson, 2011b), we explored the effects of 

errors in partitioning on the behavior of genetic circuits across cell generations. The re-

sults should inform on how this phenomenon causes qualitatively different effects from 

those caused by other sources of noise (e.g. in transcription, RNA degradation, etc.). This 

objective was addressed in Publication II. 

Finally, two cellular mechanisms through which gene expression becomes environment 

dependent were studied: the intake of gene expression inducer (Boezi and Cowie, 1961) 

and the σ factor competition for RNA polymerase (Farewell et al., 1998). 

The first mechanism, featured in Publication III and Publication IV, determines how 

inducer molecules enter cell cytoplasm from the media and trigger the expression of the 

target gene. Here, we theoretically investigated how the nature of the inducer intake sys-

tem (whether it is purely diffusive, with positive feedback or with negative feedback) 

affects the expression dynamics of the target gene in response to the introduction of in-

ducers in the media. We next applied this knowledge to characterize the intake kinetics of 

a lactose analogue from measurements of the in vivo transcription dynamics of the lac-

ara1 promoter in the Escherichia coli strain DH5-αPRO (Lutz and Bujard, 1997) at the 

single event level (Golding et al., 2005). 

The second mechanism allows cells to switch between gene expression profiles to adapt 

to specific stress conditions. This is achieved through the environment-dependent popula-

tion of σ factors (Farewell et al., 1998; Jishage and Ishihama, 1995; Jishage et al., 1996), 

which are subunits of the RNA polymerase that are required for specific binding of the 

RNA polymerase to gene promoters (Gruber and Gross, 2003). Due to the limited pool of 

RNA polymerases (Grigorova et al., 2006; Maeda et al., 2000), the appearance of a stress-

induced σ factor is expected to cause correlated reductions in the expression of all genes 

recognized by other σ factors. In practice, some of such genes were found to be impervi-

ous to this appearance (Dong and Schellhorn, 2009b; Rahman et al., 2006; Tani et al., 

2002), for unknown reasons. In Study V, using simulations and in vivo measurements, we 

addressed this phenomenon by studying the transcription kinetics of two RpoD (house-

keeping σ factor)-dependent promoters, PBAD and PtetA, differing in their sensitivity to the 

appearance of the stress responding σ factor RpoS in cells. 
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1.3 Thesis outline 

The thesis is organized as follows:  

Chapter 2 provides the biological background of the thesis’s topics. First, it presents in-

formation on the process of gene expression and the sub-process transcription. Next, the 

chapter discusses the actors that contribute to the transcription dynamics of individual 

genes. The concept of genetic circuits is also presented. 

Chapter 3 presents the relevant methods and approaches used to perform the data acquisi-

tion, extraction and analysis. Discussed are experiment systems, statistical tools, as well 

as the modeling and simulations of cellular processes. 

Chapter 4 is the summary of the results presented in the publications composing this the-

sis. 

Chapter 5 provides a discussion of the outcomes and future directions following the pre-

sented works. 
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2 Biological background 

This chapter provides an overview of the biological concepts relevant to the thesis. Name-

ly, it presents what is presently known about the dynamics and regulatory mechanisms of 

the sub-processes of gene expression in Escherichia coli. It also discusses qualitatively 

how the effects of these regulatory mechanisms on the expression dynamics of a single 

gene can propagate to that of small gene networks. 

2.1 The biology of Escherichia coli  

Being a member of the prokaryotic genus Escherichia, the bacterium Escherichia coli (E. 

coli) is Gram-negative and rod-shaped, typically 2 µm in length and 0.25-1 µm in diame-

ter (Figure 1), commonly found in the lower-intestine of warm-blooded animals. Despite 

being an enteric bacterium, E. coli can survive for an extended period of time outside the 

host organism, e.g. in soil, sand, and sediments (Ishii and Sadowsky, 2008). These extra-

intestinal conditions can be extremely cold and aerobic, far different from the favorable 

warm and damp environment inside the gastrointestinal tract. Even its primary habitat, E. 

coli cells constantly have to face fluctuations in the pH level and abrupt fluxes of nutri-

ents and water due to the host’s dietary activities. The fact that E. coli is able to accom-

modate itself to such a life between feast and famine makes it an interesting model organ-

ism to study the elasticity of cellular processes, such as intake of substances from the en-

vironment (Hansen et al., 1998; Jensen et al., 1993), gene expression (Dong and 

Schellhorn, 2009a; Muthukrishnan et al., 2014), and catabolism and anabolism (Shimizu, 

2013; Wang et al., 2010), to environmental cues. 
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Figure 1. Images of E. coli DH5-αPRO cells (Lutz and Bujard, 1997) un-
der (A) phase contrast microscope and (B) confocal microscope. Each 
rod-shaped object corresponds to a single cell. The cells are filled with 
fluorescent molecules (MS2-GFP), which makes them visible under the 
confocal microscope. 

Cultivated E. coli strains (E. coli K-12) can be grown and cultured efficiently and inex-

pensively in a laboratory setting, and have served as a prokaryotic model organism for 

over 60 years. Under favorable conditions, E. coli can reproduce as fast as 20 minutes by 

means of binary fission (Cooper and Helmstetter, 1968). Due to the ease of its genetic 

manipulation, E. coli is commonly chosen as the host organism for works involving re-

combinant DNA (Cohen et al., 1972) to produce a wide range of heterologous proteins, 

from human insulin (Goeddel et al., 1979), bovine chymosin (Emtage et al., 1983), to 

vaccines (Zhou et al., 2004), or to study prokaryotic processes, such as RNA and protein 

synthesis (Golding et al., 2005; Laursen et al., 2005; Muthukrishnan et al., 2012), degra-

dations (Bernstein et al., 2002; Chen et al., 2015). 

2.2 Gene expression 

Upon division, the daughter cells of an E. coli cell inherit not only the materials from the 

parent cell but also its instructions to survive. These instructions are encoded in the mac-

romolecule DNA (Deoxyribonucleic Acid). They are written in a four-letter-alphabet and 

B A 
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stored in units of heredity called genes. In E. coli MG1655’s genome, over six hundred 

essential genes and three thousand non-essential genes (dispensable for cell growth) have 

been identified (Gerdes et al., 2003). 

The information encoded in the genes are used to synthesize functional gene products 

through a process called gene expression, which consists of two main sub-processes: the 

first being transcription and the second being translation (Alberts et al., 1994) (Figure 2A). 

In transcription, the RNA polymerase holoenzyme (RNAPσ) transcribes a gene on DNA 

and assembles a messenger RNA (mRNA) as a single-stranded complementary copy of 

that gene. In translation, the mature mRNA is bound and read by ribosomes to synthesize 

proteins, chains of amino acid residues that, upon folding, are able to perform a vast array 

of functions in cells. In Escherichia coli, translation and transcription are coupled (Figure 

2B) (Miller et al., 1970) and determine the dynamics of gene expression and consequently 

the abundance of gene products (i.e. mRNAs, proteins). 

 

Figure 2: (A) Diagram of sub-processes of gene expression. (B) Visuali-

zation of the coupling between transcription and translation: The ribo-

somes attach to and translate the elongating mRNA segments of increas-

ing lengths (from right to left). The short ribosome-mRNA complexes 

(also called polyribosomes) farthest to the left may be caused by mRNA 

degradation. The arrow indicates putative RNA polymerase molecules 

presumably on or very near the transcription initiation sites. Adapted 

from (Miller et al., 1970). 
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Gene expression can be highly responsive to environment cues. For example, it was ob-

served that the expression rate of the genes in the lac operon, responsible for the transport 

and metabolism of lactose in E. coli can vary over the order of a hundred fold with the 

presence of lactose in the media (Jacob and Monod, 1961). The variation of smaller or-

ders was also observed, e.g., in the L-arabinose operon (Johnson and Schleif, 1995). An-

other study conducted on the synthetic lac-ara1 promoter (Lutz and Bujard, 1997) showed 

that not only the mean rate but also the noise in transcription can be regulated by external 

factors (Kandhavelu et al., 2012b). 

 

Figure 3. Signal pathways from the environment to the expression of a 

generic gene, indicated by the abundance of its RNA and proteins. The 

intermediate factors can have global effects on gene expression or can be 

gene-specific. 
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The responsiveness is achievable since, upon fluctuations in the environment (e.g. chang-

es in nutrient availability, osmolarity, temperature, etc.), cells are able to undergo changes 

that directly or indirectly affect several components of the transcription, translation and 

degradation machineries (Figure 3). Considering that regulations of bacterial gene expres-

sion, at least of the RNA numbers, occur mostly in transcription (Chen et al., 2015; 

Taniguchi et al., 2010), we only focus on the components of the transcription machinery, 

which are presented in the following sections. 

2.3 Mechanism of transcription 

The interaction between RNAP polymerase (RNAP) and the gene segment during the 

process of transcription is not an elementary reaction; rather it contains several sub-

processes (Buc and McClure, 1985; DeHaseth and Helmann, 1995; Lutz and Bujard, 

1997; Saecker et al., 2011). As E. coli’s DNA consists of two coiled biopolymer strands 

and exists in double helix form in most of the cell cycle (Cooper and Keasling, 1998; 

Gordon et al., 1997), the information on the gene segments are not readily assessable for 

RNAP to read and assemble a new RNA template from it. Instead, RNAP can only bind 

to a specific region of the gene segment (transcription starting site (TSS)), called the 

promoter region. Upon binding, the RNAP must perform several modifications on pro-

moter region to render the gene segment accessible and gather energy for the following 

promoter escape (Hsu, 2002), RNA elongation (Burns and Minchin, 1994; Saecker et al., 

2011) and transcription termination (Henkin, 2000).  

In vitro measurements suggest that, in E. coli, the initiation of transcription is a sequential 

process (Buc and McClure, 1985; Lutz et al., 2001; McClure, 1985) (described in Figure 

4). First, RNAP finds and binds to the promoter region to form the promoter - RNAP 

closed complex (RPc). This complex undergoes isomerizations (I1, I2 and I3), followed by 

DNA melting to form the promoter open complex (RPo) (i.e. open complex formation 

(DeHaseth and Helmann, 1995)). Upon forming of the open complex, the promoter may 

undergo several rounds of abortive initiation (Gralla et al., 1980) before forming the initi-

ating complex (RP). It should be noted that during the initiation of transcription, the pro-

moter region is occupied and modified by the bound RNAP, which prevents the binding 

of another RNAP that would trigger of another round of transcription. 
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Figure 4. Summary of the steps in transcription initiation, from the for-

mation of the promoter closed complex (RPc), with the end product being 

the initiating complex (RPinit). The intermediate complexes are isomeriz-

ing complexes (I1, I2, I3) and the promoter open complex (RPo). Reused 

from (Saecker et al., 2011).  

Transcription elongation quickly follows the formation of the initiating complex. In this 

process, RNAP slides in between and unwinds the DNA double helix from 3’ to 5’ with a 

speed of ~20-90 base pair per second (Ryals et al., 1982; Veloso et al., 2014; Vogel and 

Jensen, 1994) and, while doing so, it reads the information on the gene segment and as-

sembles a single-stranded RNA copy of the gene. Upon reaching the end of the gene 

segment (usually marked by G-C rich inverted repeats which form a hairpin loop (Wilson 

and von Hippel, 1995)), both RNAP and the template RNA are released from the DNA. 

Several studies suggest that the transcription dynamics of several E. coli genes, due to fast 

rates of promoter escape (Hsu, 2002) and transcription elongation (Herbert et al., 2006; 

Ryals et al., 1982; Vogel and Jensen, 1994), is mainly controlled by the duration of tran-

scription initiation (Saecker et al., 2011). In these studies, both in vitro (Lutz et al., 2001; 

McClure, 1985; Nierman and Chamberlin, 1979) and in vivo (Kandhavelu et al., 2012a, 

2012b; Muthukrishnan et al., 2012), it was shown that there are two main rate-limiting 

steps in transcription initiation (associated with the closed and open complex formations) 

and that other steps only become rate-limiting at temperatures as low as 24
o
C 

(Muthukrishnan et al., 2012). Because of this, the intervals between consecutive RNA 

productions can be fitted well by a model of two to three rate-limiting step, where the 

steps are sequential and exponentially distributed in time (Kandhavelu et al., 2012a, 

2012b; Muthukrishnan et al., 2012) (Figure 5). 
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Figure 5. Distributions of time intervals between consecutive RNA pro-
duction events in individual cells under the control of PtetA in conditions: 
(A) 0 ng/ml aTc at 37 

o
C (B) 15 ng/ml aTc at 24 

o
C, and (C) 15 ng/ml aTc 

at 37 
o
C. Also shown are the probability density functions of inferred 

models of transcription initiation differing in number of rate-limiting 
steps. Reused from (Muthukrishnan et al., 2012). 

As the lengthy initiation process occurs only at the promoter region, the dynamics of tran-

scription and consequently the dynamics of transcripts’ abundance are strongly dependent 

on the sequence of the controlling promoter. In (Lutz et al., 2001), using a panel of pro-

moter sequences derived from lac and araBAD promoters of E.coli, the transcription initi-

ation process on these promoters was found to differ widely. In agreement, in (Brewster 

et al., 2012) it was shown that, by altering a few nucleotides of the promoter region, one 

can cause significant differences in the stability of the RNAP - promoter complex (Figure 

6) and consequently achieve a fold change in the gene expression rate on the order of 10
3
, 

without changing the level of the gene expression regulators (Kinney et al., 2010). 
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Figure 6. Energy matrix for RNAPσ
70

 binding. The contribution of each 

base pair to the total binding energy is represented by color. The total 

binding energy of a particular promoter sequence can be calculated by 

summing the contribution from each base pair. Positive values indicate 

unfavorable contributions to binding energy. x-axis coordinates are with 

respect to TSS. Reused from (Brewster et al., 2012). 

The dependence of gene expression on the promoter sequence is a critical knowledge in 

bioengineering. For example, by modifying the promoter sequence, one can tune the pro-

duction of recombinant proteins, without the need of altering the gene sequence coding 

for the protein (which could affect the quality of the desired proteins). This allows achiev-

ing high-enough yields of recombinant proteins while avoiding their aggregation which 

would hamper the proteins’ ability to fold properly (Baneyx and Mujacic, 2004). 

2.4 RNA polymerase holoenzyme 

2.4.1 The functioning of RNA polymerase 

RNA polymerase (RNAP) is the main enzyme of the transcription machinery that is re-

sponsible to assemble RNA chains from the template genes (Alberts et al., 1994). RNAP 

is involved in all the three steps of the transcription cycle: initiation, elongation and ter-

mination. To initiate transcription (see above), the RNAP binds to the DNA and unwinds 

a small portion of the DNA double helix located prior to the TSS, leaving the bases of the 
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two DNA strands exposed. One of the DNA strands is used as a template for the synthesis 

of a new RNA. The RNAP then escapes from the promoter region and moves stepwise 

along the DNA, from the 3’ end to 5’ end of the template strand. While doing so, it reads 

the exposed DNA template and adds consecutive nucleotides to the RNA chain at the 

polymerization site, until reaching the template’s terminator (Figure 7). 

 

Figure 7. DNA is transcribed by the enzyme RNA polymerase: The RNA 
polymerase (pale blue) moves stepwise along the DNA (gold), unwinding 
the DNA helix at its active site. As it progresses, the polymerase adds 
consecutive nucleotides (here, small “T” shapes) to the RNA chain at the 
polymerization site using one of the two exposed DNA strands as the 
template. The polymerase has a flap in the closed position that displaces 
the newly formed RNA, allowing the two strands of DNA behind the pol-
ymerase to rewind. A short region of DNA/RNA helix is therefore 
formed only transiently, and a “window” of DNA/RNA helix therefore 
moves along the DNA with the polymerase. Adapted from (Alberts et al., 
1994). 

In bacteria, RNAP has several subunits: α
i
, α

ii
,  β, β’, ω and σ (Cramer, 2002), with the 

first five being the ‘core’ subunits forming the core enzyme with a stable structure. The 

level of RNAP ‘core’ enzyme was reported to change with media richness (Cabrera and 

Jin, 2001; Grigorova et al., 2006; Jishage et al., 1996; Liang et al., 1999), which should 

result in correlated changes in the expression of all genes in the genome. 

In order to initiate transcription, the RNAP core enzyme requires the aid of the σ subunits 

(Friedman et al., 2013; Ishihama, 2000; Mooney et al., 2005). Upon binding to a σ factor 
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molecule, the transcription enzyme (called RNAP holoenzyme (RNAPσ)) has increased 

binding affinity to specific sequences of the promoter region and is therefore able to form 

the closed complex with the promoter (Friedman et al., 2013). It should be noted that σ 

factors are not considered ‘core’ subunits of RNAP as they can leave the RNAP stochas-

tically during transcription elongation (Mooney et al., 2005; Raffaelle et al., 2005). The 

interaction between RNAP core enzymes and σ factors is illustrated in Figure 8. 

 

Figure 8. The σ cycle. The pool of free floating σ factors compete for 
RNAP core enzymes to form holoenzymes (RNAPσ), which in turn bind 
to the free promoter to form a closed complex. This is followed by the 
open complex and elongating complex formation. The σ factor is released 
stochastically from the elongating RNAP – DNA complex and can again 
participate in the competition for core enzyme binding. 

2.4.2 Competition between sigma factors for RNAP holoenzymes 

The bacteria E. coli contains 7 main sigma factors, which are named after their molecular 

weight in kDa (Gruber and Gross, 2003). These are σ
70

, σ
38

, σ
54

, σ
24

, σ
32

, σ
19

, σ
28

. These 

subunits compete for a limited number of RNAP core enzymes (Grigorova et al., 2006; 

Maeda et al., 2000) and generate heterogeneity in the pool of RNAP holoenzymes (Figure 

9). 
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The content of the σ pool
 
is highly responsive to environment cues. During normal 

growth conditions, the σ factor population consists mostly of the house-keeping σ
70 

(RpoD). When cells are put in specific stresses, the expression of other σ factors is either 

triggered or enhanced. For example, during starvation, both the transcription and the 

translation of the stress-responding σ
38

 (RpoS) are enhanced, leading to an increase in its 

protein yield (Altuvia et al., 1997; Sledjeski et al., 1996). Another σ factor, σ
54

, is found 

to be activated in nitrogen-limiting conditions (Zimmer et al., 2000). Once produced, 

these σ factors compete with the existing σ factors for RNAP core enzymes, resulting in 

perturbations in the RNAP holoenzyme distribution. 

 

Figure 9. (A) Model for σ factor competition with two types of σ factors, 
the housekeeping σ factor σ

70
 and σ

Alt
, a generic alternative σ factor. The 

model describes binding of σ
70

 and σ
Alt

 to RNAP enzymes (E) to form 
holoenzymes (Eσ

70
 and Eσ

Alt
) as well as the transcription process. (B) 

Core model for holoenzyme formation. Adapted from (Mauri and 
Klumpp, 2014). 

Each promoter, depending on its sequence, can be recognized only by a selection of σ 

factors (Barrios et al., 1999; Becker and Hengge-Aronis, 2001; Gruber and Gross, 2003; 

Hengge-Aronis, 2002). It was shown from standard in vitro transcription assays (Gaal et 

al., 2001; Tanaka et al., 1995) that promoters with the conserved sequence (TATAAT) at 

the -10 position from TSS are recognized by holoenzymes carrying either σ
70

 or σ
38

. The 

promoters’ preference for RNAPσ
38 

can be enhanced with the presence of nucleotides C 

and T at the -13 and -14 positions, respectively (Becker and Hengge-Aronis, 2001). This 

preference for RNAPσ
38

 can be tuned down with the presence of the consensus 

(TTGACA) at the -35 position from TSS
 
(Hengge-Aronis, 2002). Meanwhile, RNAPσ

54 

are able to bind only to promoters with the consensus sequences at -12 and -24 positions 

(Barrios et al., 1999). 
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Due to the diversity in the promoters’ selectivity for σ factors, the perturbations in the σ 

content would propagate to the gene expression level, but not necessarily in a correlated 

manner. For example, in (Chang et al., 2002; Dong and Schellhorn, 2009a; Farewell et al., 

1998) it was observed that, during starvation, the majority of genes whose promoter re-

gions are recognized by σ
70

 have reduced expression while an array of stress responding 

genes recognized by the stress responding σ
38

 are activated. Interestingly, even among 

promoters that are dominantly recognized by a single type of RNAPσ, some are more 

responsive to changes in the σ population than others. In Study V, we aim to explain this 

phenomenon from observations of the kinetic of transcription initiation of these promot-

ers. 

2.5 Transcription factors 

2.5.1 Repressors, activators, inducers 

There are several mechanisms that can regulate the expression of a gene, even when 

RNAPσ are abundant in cells (Jacob and Monod, 1961; Shimoni et al., 2007). One of 

such mechanisms is the alteration of the promoter’s secondary and ternary structures, 

signaled by the binding of proteins called transcription factors (Bell and Lewis, 2001; 

Lewis, 2005; Malan et al., 1984; Miyada et al., 1984). Upon binding to the promoter re-

gion, a transcription factor may restrict the promoter’s interaction with RNAPσ and ham-

per transcription (in this case, the factor is called repressor). Transcription factors can also 

actively recruit RNAPσ to the promoter region and enhance gene expression (and thus 

named activator). Since the interaction between transcription factors and the promoter 

depends on both the promoter sequence and the structure of regulatory protein (Dong et 

al., 1999; Kandhavelu et al., 2012b; Lutz and Bujard, 1997), this mechanism grants cells 

the ability to diversify the gene expression profile even further than by employing σ fac-

tors, due to the limitation in the variety of σ subunits. 

The functionality of transcription factors can be altered when bound by specific substanc-

es, called inducers. These inducers can render repressors inactive and indirectly promote 

the expression of the inducible gene. An example of such interaction is the case of the lac 

operon’s repressor (LacI), with lactose being its inducer (Bell and Lewis, 2001; Lewis, 

2005). The lac repressor is a homo-tetramer, encoded by the lacI gene. In the absence of 

lactose, LacI tetramers slide unspecifically along the DNA (Elf et al., 2007) and bind to 
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the two operator sites of the lac promoter. The bound tetramer then forms a stable com-

plex with the promoter and prevents RNAPσ from initiating the transcription of the genes 

in the lac operon. When lactose is introduced to the media and absorbed by cells, lactose 

molecules bind to LacI tetramers and reduce the binding affinity of the repressors to the 

operator sites, thus allowing RNAPσ to reach the promoter and initiate the transcription 

of lac genes (Bell and Lewis, 2001; Lewis, 2005). In lab experiments, the lactose mimic, 

Isopropyl β-D-1-thiogalactopyranoside (IPTG), is frequently used to regulate the activity 

of lac promoters (Jensen et al., 1993; Kandhavelu et al., 2012b; Lutz and Bujard, 1997; 

Marbach and Bettenbrock, 2012) instead of lactose due to its immunity to cellular hydrol-

ysis. 

Apart from neutralizing repressors, some inducers can promote gene expression by en-

hancing the functionality of transcription activators. This is the case of cyclic adenosine 

monophosphate (cAMP) activating the cAMP receptor protein (CRP), the activator of 

many catabolite genes (Busby and Ebright, 1999). Some inducers can even inverse the 

repressor’s function, turning it into an activator (as in the case of arabinose and the re-

pressor of the L-arabinose operon, AraC (Schleif, 2010)). 

2.5.2 Inducer entrance in cells 

Many inducers of gene expression are not synthesized by cells, but rather, enter cells from 

the environment. Upon fluctuations in the concentration of inducers in the media, one 

expects that the intracellular numbers of inducer and consequently the expression of its 

target gene will be affected. In (Jensen et al., 1993), it was shown that in wild type E. coli, 

when the concentration of IPTG in the media increases from 1 µM to 10 µM, the activity 

of lac promoter increases over 10 folds. In (Lutz and Bujard, 1997), in an E. coli strain 

overexpressing the lac repressor (DH5-αZ1), this fold change is reported to be on the or-

der of 10
3
. 

To enter cells and regulate gene expression, inducer molecules must travel across the cell 

membrane. In E. coli, the membrane consists of two layers (Alberts et al., 1994; 

Zimmermann and Rosselet, 1977), the inner membrane and the outer membrane, separat-

ed by the periplasmic space (Figure 10). The fabric of the membranes is two stacked 

sheets (referred as the lipid bilayer) of amphipathic molecules, with the hydrophilic heads 

pointing outward and the hydrophobic tails buried inward. The lipid bilayer is semi-

permeable: it only allows lipid-soluble molecules and some small, uncharged molecules 

to pass through (Finkelstein, 1976; Lodish et al., 2000), while repelling ionic and larger 
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molecules (Decad and Nikaido, 1976; Ronald Kaback, 1983; Walter et al., 1986). Located 

on the membrane layers are porins, membrane and transmembrane proteins (Alberts et al., 

1994; Benz and Bauer, 1988), which are various in type and allow more specific mole-

cules to travel across the membrane via either facilitated diffusion or active transport 

(Nikaido, 2003). Along with the lipid bilayers, these proteins play an important role in the 

dynamics of the intracellular inducer numbers and consequently the response of gene ex-

pression to the appearance of these inducers in the media. 

 

Figure 10. Illustration of E. coli membrane. The membrane consists of 
two lipid bilayers, the outer membrane and the inner membrane, separat-
ed by the periplasmic space. The membrane fabric is made up mostly of 
amphipathic molecules, with hydrophilic end (yellow) exposed to aque-
ous solution and hydrophobic tails buried inward. Bound to the mem-
brane layers are porins (orange), membrane (brown and green) and 
transmembrane (dark blue) proteins. Reused from Wikimedia 
(https://commons.wikimedia.org/wiki/File:Gram_negative_cell_wall.svg). 

The lactose intake system is one of the best studied intake mechanisms of inducers in 

molecular biology (Bentaboulet and Kepes, 1981; Ghazi and Shechter, 1981; Hansen et 

al., 1998; Jacob and Monod, 1961; Jensen et al., 1993; Marbach and Bettenbrock, 2012; 

Ozbudak et al., 2004; Ronald Kaback, 1983). Most of these studies were conducted in the 

regime of low lactose concentration. In this regime, the mean expression rate of the target 
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gene exhibits a close-to-linear dependence on the intracellular inducer level (Hansen et al., 

1998; Jensen et al., 1993), making it possible to study the intake kinetics with assays of 

the inducible gene’s products alone. At low concentrations (less than 0.25 mM), the cellu-

lar intake of lactose is found to have a positive feedback, conferred by the lactose per-

mease LacY. The LacY protein is a proton symporter (Ronald Kaback, 1983), which 

transports protons and lactose molecules simultaneously using the transmembrane proton 

gradient (Ramos and Kaback, 1977). Following the entrance of the first few lactose mole-

cules in the cell, the genes in the lac operon are activated. LacY proteins are then synthe-

sized and enhance the intake of lactose even further (Hansen et al., 1998; Jensen et al., 

1993; Ozbudak et al., 2004) (Figure 11). At higher lactose concentrations, the role of 

LacY is no longer significant (Jensen et al., 1993). Lactose molecules enter cells by 

means of alternative symporters (Bentaboulet and Kepes, 1981; Ghazi and Shechter, 1981) 

and potentially through passive diffusion (Decad and Nikaido, 1976). 

 

Figure 11. Diagram of the intake system of Trimethylglycine (TMG), 
used here as a lactose mimic: In the absence of glucose (Glu) in the media, 
TMG can enter cells and activate the genes in the lac operon (lacZYA), 
among which is lacY gene encoding for the lactose permease protein. Up-
on translation, LacY protein will enhance the intake rate of TMG even 
further. Reused from (Ozbudak et al., 2004).  
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Generally, the kinetics of the inducer intake process in the regime of high concentrations 

is less explored. In this regime, the transient period of gene expression following the addi-

tion of inducers to the media is relatively short. Also, once reaching steady states, the 

target gene’s activity is close to full-induction and thus can no longer reflect the changes 

in the intracellular inducer levels. In Publication IV, we addressed this problem with a 

method to characterize the intake kinetics of lactose in cells in this regime of concentra-

tion (from 0.25 mM up to 2 mM) using in vivo measurements of transcription at the single 

cell, single event level (Golding et al., 2005). 

2.6 Genetic circuits 

2.6.1 Motifs 

Individual genes have a limited set of possible dynamical behaviors. For example, due to 

the time-consuming transcription (Kandhavelu et al., 2012a; Lutz et al., 2001; 

Muthukrishnan et al., 2012) and degradations (Chen et al., 2015; Taniguchi et al., 2010), 

most genes are responsive only to slow changes in the regulatory molecules’ number and 

therefore can act as a low pass filter to external signals (Samoilov et al., 2002). Also, their 

expression rate was found to vary with the dose of inducers (Jensen et al., 1993; Müller-

Hill, 1990) and temperature (Muthukrishnan et al., 2012; Rouvière et al., 1995), within a 

certain range. However, these behaviors are usually monotonic and simple. 

In practice, genes rarely function separately. The chromosome of organisms as simple as 

E. coli contains thousands of genes interacting with one another forming a highly con-

nected gene network with a hierarchical organization (Martínez-Antonio et al., 2012; 

Ravasz et al., 2002). The expression of one gene can regulate directly or indirectly the 

expression of another gene or even itself via multiple overlapping pathways (Shen-Orr et 

al., 2002). These feedforward and feedback loops allow cells to achieve more complex 

and non-linear functions (Wolf and Arkin, 2003). 

Usually, each cellular function is performed by a module, a unique cluster of genes inter-

acting with each other via their gene products in repeating patterns called motifs (Shen-

Orr et al., 2002). The module’s motif determines the flow of information within the small 

gene network and consequently the copy dynamics of proteins and RNAs of the constitu-

ent genes. For example, in Cyanobacteria, the circadian rhythm, which allows cells to 

adapt better to rhythmic environments, is administrated by the kaiABC gene cluster 
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(Nakahira et al., 2004). In this cluster, the expressions of the three genes kaiA, kaiB and 

kaiC are wired so that the products of kaiC gene indirectly represses its own expression 

and thus gives rise to oscillations in the number of KaiC protein over time (Ishiura et al., 

1998). 

Along with the identification of existing gene modules in nature, there have been attempts 

to engineer new modules that exhibit the desired behaviors (Elowitz and Leibler, 2000; 

Gardner et al., 2000; Stricker et al., 2008). These modules are designed to mimic the be-

haviors of their electronic counterparts (Wolf and Arkin, 2003) and aimed to serve as a 

platform to control cellular functions or alter cellular responses to environmental condi-

tions. 

2.6.2 Toggle switch and Repressilator 

Among the designed genetic circuits, the Toggle switch and the Repressilator are the most 

widely studied and implemented. They recapture two complex behaviors that have been 

observed in nature, namely multistability (Arkin et al., 1998; Shea and Ackers, 1985) and 

oscillation (Ishiura et al., 1998), respectively. 

The Toggle Switch, which was realized for the first time in (Gardner et al., 2000), con-

sists of two genes (named gene A and gene B) with antagonistic interactions (Figure 12A). 

When gene A is activated, its proteins are produced and down-regulate the expression of 

gene B. This reduces the protein synthesis rate of gene B and consequently the number of 

protein B, which in turn allows gene A to express even further. Likewise, when gene B is 

activated, gene A is repressed, which enhances gene B’s expression further. The positive 

feedback in the expression of both genes causes their protein numbers either to stay low 

or to stay high. The circuit therefore has two stable states “A on B off” and “B off A on” 

(the system is thus regarded as being bistable). Due to several sources of noise, both in-

trinsic and extrinsic (Elowitz et al., 2002), the circuit may “flip” stochastically from one 

state to the other with certain probability rates. Also, by changing the media conditions, it 

can be biased to favor the one state over the other (Gardner et al., 2000). The system is 

therefore said to be capable of making “decisions” based on environment cues. 

The Repressilator, realized for the first time in (Elowitz and Leibler, 2000), is composed 

of three genes (named gene A, gene B and gene C) repressing one another in a loop 

(Figure 12B). With this structure, the expressions of all genes in the circuit have delayed 

negative feedbacks. This delayed feedback causes the protein numbers of the genes in the 
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circuits to oscillate over time, with relatively accurate periods following a sub-Poisson 

distribution (Chandraseelan et al., 2013) (i.e. the rises of the protein level of a certain 

gene in the circuit occur in a less noisy fashion than a Poisson process). 

 

Figure 12. Topology (left) and the corresponding behavior (right) of two 
genetic motifs. (A) Toggle switch (Gardner et al., 2000): The motif consists 
of two genes antagonistically repressing (denoted by the “blunt” arrows) 
each other, resulting in a system whose state is randomly switched between 
“A on B off” state and “A off B on” state. (B) Repressilator (Elowitz and 
Leibler, 2000): The motif consists of three genes repressing one another in 
a loop. The protein level of each gene in this motif oscillates over time with 
non-exponentially distributed periods. 

There are also other genetic constructs that can exhibit multistability (Ozbudak et al., 

2004) and oscillation (Atkinson et al., 2003; Stricker et al., 2008). Despite employing 

different topologies from the classic circuits, they operate following the same principal of 

positive feedback (for the multistability) and delayed negative feedback (for oscillation). 

2.6.3 Signal processing with genetic circuits 

Not all circuits function autonomously in cells, but rather some operate according to ex-

ternal signals. These external signals, originated from another cellular process or from the 

extracellular environment, directly affect the expression of one or more input genes and 

propagate throughout the small gene network. Thus, one can treat small genetic networks 

as genetic filters, where the expression of each constituent gene is a filter output. 
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Naturally, the response of a genetic filter depends on the filter’s structure, i.e. the wiring 

schemes between the promoter-regulator pairs. By following the design of electrical cir-

cuits, one can hope to create genetic circuits the desired responses both in the amplitude 

domain and in the frequency domain (Wolf and Arkin, 2003). Such filters when realized 

are expected to provide more selective controls over cellular processes. For example, by 

linking the output of genetic filters to the control mechanism of a process, one can acti-

vate or deactivate that process by applying input signals of certain magnitude or frequen-

cy to the system. 

Several designs of filters in the amplitude domain have been proposed. These include the 

biphasic amplitude filter (Wolf and Arkin, 2003) and logic gates (Anderson et al., 2007; 

Moon et al., 2012), which allows the expression of the output gene to be triggered when 

the input signal is within a certain range of magnitude. Meanwhile, filtering on the fre-

quency domain is more challenging as most of the network components (promoter-

regulator pairs) only allow signals of low frequencies to pass by (Samoilov et al., 2002), 

due to the time consuming transcription initiation (Muthukrishnan et al., 2012) and deg-

radation of proteins and RNA (Chen et al., 2015; Taniguchi et al., 2010). 

Aside from the structure, the performance of genetic filters is largely determined by the 

quality of its components. Due the stochastic nature of gene expression (Elowitz et al., 

2002), signals are constantly added with noise when traveling through the gene network, 

which severely degrades the filters’ performance. This problem is assessed in Publication 

I. Also investigated in this publication are the measures to abate the problem by modify-

ing the kinetics of transcription initiation of the motifs’ constituent genes. 

2.7 Cell division and the partitioning of molecules in cell division 

2.7.1 The cell cycle of E. coli 

The life of E. coli switches between feast and famine (Wang et al., 2010). To survive in 

hazards, cells have to rely on proliferation and diversification to ensure the survival of at 

least one cell lineage in the population. 

The proliferation of E. coli is performed through binary fission, where the parent cell is 

divided into two daughter cells of identical DNA contents. This process is split into three 

periods (Cooper and Helmstetter, 1968) (Figure 13). The first, also called as period B, 
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elapses between cell “birth” and the initiation of chromosome replication. In this period, 

cells contain a single copy of the chromosome. When cells reaches a certain length, they 

enter the second period, period C, with the trigger of chromosome replication at the repli-

cation origin (oriC) (Cooper and Keasling, 1998; Gordon et al., 1997). From the origin 

site, the chromosome is replicated bidirectionally with the unwinding of the double-

stranded DNA into two template strands and the assembly of two new double-helix 

strands from the template strands. Once replication reaches the opposite site of oriC 

(terC), the two double helix strands are separated from each other and migrate directly 

and rapidly to the quarter-cell destinations (Gordon et al., 2004). The last period, period D, 

is the preparation of cell division, where the parent cell is compartmentalized by the divi-

sion septum and eventually divided into two new daughter cells, each inheriting a chro-

mosome and approximately half of the cytoplasm’s content. Surprisingly, even though the 

duration of period C, during which the chromosome is being replicated, is non-negligible 

(on the order of 40 minutes in E. coli (Cooper and Helmstetter, 1968)), it was reported 

that the process of gene expression does not appear to be interrupted throughout the cell 

cycle (Arends and Weiss, 2004; Liu et al., 1994, 1993). 

 

Figure 13. The cell cycle of E. coli. There are three periods (B, C and D) 
in E. coli’s cell cycle, the milestones of which are the chromosome repli-
cation initiation at the origin site oriC (red dots), the completion of chro-
mosome replication at the termination site terC (blue dots), and cell divi-
sion. 
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2.7.2 Partitioning of molecules in cell division 

Along with cell proliferation to counter the death rate during hazards, the bacterial popu-

lation also employs cell differentiation to diversify the death rate, so as to avoid the anni-

hilation of the whole population (Kussell and Leibler, 2005). Cell differentiation can be 

generated not only from the stochastic nature of the biochemical reactions involved in the 

process of gene expression (Kaern et al., 2005; McAdams and Arkin, 1999) but also from 

the partitioning of plasmids, RNAs, proteins and organelles during cell division (Coquel 

et al., 2013; Lindner et al., 2008). 

In (Huh and Paulsson, 2011b), it is defined the level of errors in partitioning 2
xQ as the 

statistical difference between the number of molecules inherited by each daughter cell: 

2 2
|2 2 2

2 2

( ) L x

x L x

L R
Q CV CV

x L


     

(2.1) 

where ...  denotes the averages over all dividing cells in the population, x  is the number 

of partitioning molecules before division, L  and R  are the numbers of molecules inherit-

ed by the left daughter and the right daughter, respectively. 

In the absence of active segregation mechanisms, most molecules segregate randomly to 

two daughter cells with the probability ½ after division, resulting in the numbers of mole-

cules inherited by each daughter cell following a binomial distribution. The level of errors 

in partitioning is therefore given as: 

2 1
xQ

x
  

(2.2) 

It is notable that, for species that exist in large copy number ( 1x ), 2
xQ is small. 

However, considering that many proteins and RNA, especially ones with signaling func-

tions, are low-copied (Taniguchi et al., 2010), the errors in the partitioning of their mole-

cules would add significant variance to their molecular copy numbers at cell division. 

In the presence of segregation mechanisms, the level of errors in partitioning in division 

can deviate from that of random partitioning (1/ x ). These mechanisms can be either 

disordered (Figure 14), which increases the level of errors, or ordered (Figure 15), which 

decreases the level of errors. 
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Figure 14. Examples of disordered segregation schemes. (A) Variation in 

division site or random segregation of other large components differentiates 

sibling cells’ size or the volume accessible to the segregating component. 

The level of errors in partitioning ( xQ
disordered

) is increased with the level of 

errors in the partitioning of the assessable volume VolQ . (B) Segregating 

molecules (dots) are randomly grouped into vesicles (circles) and the vesi-

cles are independently partitioned into daughter cells. xQ
disordered 

increases 

with increasing vesicles’ size (s). Adapted from (Huh and Paulsson, 2011b). 

The disordered schemes can generate significant differences between the numbers of 

molecules inherited by each daughter cell in division even when the copy number of the 

partitioning molecules before division is high. For example, due to the imperfect position-

ing of the FtsZ ring at mid-cell in division (Kerr et al., 2006), the size of daughter cells 

may not be equal (Gupta et al., 2014; Männik et al., 2012), resulting in the difference in 

the volumes accessible to each partitioning molecule. These molecules therefore segre-

gate randomly and biasedly to the bigger daughter cell with the probability p>½. The lev-

el of errors in partitioning is therefore given by (Huh and Paulsson, 2011b): 

2 2
2 1 ( 1)vol x

x

Q CV x x
Q

x

  
  

(2.3) 

Here, 2
volQ  is the level of errors in the partitioning of accessible volume. From (2.2) and 

provided that 1x  , 2
xQ  is always greater than the level of errors achievable with the 

random partitioning scheme (1/ x ). 
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The ordered schemes allow the variance of the molecules inherited by each daughter cell 

to be below that of binomial distribution. This can be achieved by reducing the number of 

molecules able to segregate stochastically at division (e.g. using spindles or pair for-

mations to pre-allocate an equal number of molecules to segregate to each daughter cell). 

Other possibility is to enhance uniform spatial distribution of the partitioning molecules 

before cell division (e.g. the partitioning molecules are big enough to exclude themselves). 

In general, the ordered segregation schemes would require extreme parameters to greatly 

suppress the partitioning errors (Huh and Paulsson, 2011b). However, the phenomenon is 

not necessarily absent in nature. One prominent example is the highly ordered partition-

ing of E. coli chromosomes in cell division. In (Sheahan et al., 2004), it was reported that 

Nicotiana tabacum uses actin filaments to segregate the chloroplasts in mitosis more 

evenly than the independent segregation scheme. 

 

Figure 15. Examples of ordered segregation schemes. (A) Self-volume ex-

clusion: Segregating units with non-negligible size (gray circles) exclude 

each other and thereby promote more even segregation. The level of errors 

in partitioning ( xQ
ordered

) can be further reduced with increasing unit’s size 

(~ K x ). (B) Utilizing spindles: Organelles (dots) compete for available 

binding sites (ends of astral, gray) and unbound organelles are partitioned 

independently. (C) Pair formation: The segregating units form, with certain 

probability r, pairs, which at division push each other away to the two 

daughter cells. xQ
ordered

 is reduced by increasing the pairing probability r.  

Adapted from (Huh and Paulsson, 2011b). 

The variation in the number of the partitioning molecules caused by noisy partitioning is 

added only at the moment cell division occurs. Therefore, one expects that the effects of 

stochastic partitioning on the dynamics of single gene expression would be qualitatively 

different from the effects of noise in gene expression, as the latter is generated continu-
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ously and independently throughout the cell cycle. In Publication II, by observing the 

dynamics of two genetic circuits, the Toggle Switch and the Repressilator, with varying 

levels of errors in partitioning, the effects of errors in partitioning on the network level are 

investigated. 
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3 Methods of study 

This chapter provides an overview on the methods which have been employed to char-

acterize the dynamics of gene expression in E. coli and, based the observed kinetics, to 

study the dynamics of single gene expression and of small genetic circuits in different 

scenarios. 

3.1 Measurements of gene expression 

The constant development of new microscopy techniques has allowed us to peek into 

the microscopic world with greater and greater details. From the classic bright-field 

microscope with the resolution of ~0.2 µm, nowadays, an electron microscope can gen-

erate images with the resolution as high as ~0.1 nm, which is smaller than the size of a 

typical protein molecule (Erickson, 2009). Nevertheless, most intracellular processes are 

not readily visualized under the microscope due to the presence of the cell wall and the 

myriads of molecules floating behind it. For such direct observation, it is required that 

the object of study is either isolated (Buc and McClure, 1985; Miller et al., 1970), i.e. in 

vitro, or modified (e.g. using fluorescent fusion proteins (Elf et al., 2007; Hammar et al., 

2012; Romantsov et al., 2010)), which may cause the target system’s dynamics to devi-

ate from that of the native system. 

The discovery of the lac operon and its regulation by lactose (Jacob and Monod, 1961) 

offered alternative possibilities to characterize several cellular processes by observing 

the expression dynamics of a dependent gene. For example, in (Hansen et al., 1998; 

Jensen et al., 1993), from measurements of the expression of lacZ gene (using Beta-

galactosidase assays) with varying IPTG concentrations, the intake process of lactose in 
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E. coli was revealed to be with positive feedback in regime of low lactose concentra-

tions. In (Farewell et al., 1998), it was observed that the presence of the stress respond-

ing σ factor, σ
38

, in the stationary growth phase down-regulates the expression of many 

genes that are expressed in the exponential growth phase. This signifies the competition 

between σ
38

 and the house keeping sigma factor (σ
70

) for RNAP core enzymes. 

Here, we present measurement methods that have been employed to study the dynamics 

of gene expression. Also discussed are the scenarios where their application is proper. 

3.1.1 Relative quantification methods 

Relative quantification methods (also referred as assay methods) allow us to quantify 

the total amount of a certain target entity (the analyte) in a cell population. The target 

measurement results are usually shown in regard to certain reference entities that are 

relatively invariant to environmental conditions so that one can obtain the average level 

of analyte in each cell. The quantification process essentially involves the identification 

of the analyte from other entities by the use of exogenous analyte-specific reagents 

(Alberts et al., 1994). The information on the analyte level is then amplified so that it 

can be distinguished and extracted from the noise background (Livak and Schmittgen, 

2001). 

Several types of entities in cells, such as DNA, RNA and proteins, can be quantified 

using different assay methods. However, the information on their levels is shown only 

as averaged over the cell population. Thus, the assay results do not disclose the cell-to-

cell diversity in this amount in the population. Further, since the host cells are killed 

during the assay process, studying the time evolution of such quantities is challenging. 

3.1.2 Fluorescent proteins 

Fluorescent proteins, due to their ability to emit photons under proper excitation, can be 

used as a reporter of gene expression. The first fluorescent protein discovered is the 

green fluorescent protein (GFP), which was initially isolated from a species of illumi-

nating jellyfish and then modified to become functional when expressed in other organ-

isms (Shanner et al., 2005). 

To study the dynamics of a target promoter, one can insert into cells a genetic construct 

containing the gene encoding for fluorescent proteins under the control of that target 

promoter (Megerle et al., 2008; Ozbudak et al., 2004; Rosenfeld et al., 2005). These 
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cells are then imaged with confocal or epifluorescence microscopes. From the bright-

ness of each cell in the fluorescence images, one can extract information on the dynam-

ics of the fluorescence protein numbers and consequently the target promoter’s dynam-

ics in each cell (Figure 16). 

 

Figure 16. Measurement of PBAD activity upon the introduction of arabi-
nose (a) in the media. (A) Diagram of the arabinose intake system (PFGH-
araFGH, PE-araE) and the reporter system (PBAD-gfp). The arabinose uti-
lization system (PBAD-araBAD blurred) has been deleted in cells. (B) Ex-
ample of single cell induction kinetics of PBAD promoter with external 
media of 0.2% arabinose. Traces (open circles) of the GFP total intensity 
in each cell are shown at 5 minute intervals. The image panel corresponds 
to the fluorescence traces marked with green circles. Adapted from 
(Megerle et al., 2008). 

Unlike assay methods, the use of fluorescent proteins allows the observation of the cell-

to-cell diversity in gene expression and of the gene expression dynamics over time 

(Elowitz et al., 2002). However, the long protein maturation time (from 5 to 15 minutes 

(Shanner et al., 2005)) causes a noisy delay in the observation process. Added to this, 

due to the low fluorescent intensity and the fast diffusion speed of individual fluorescent 

molecules (Nenninger et al., 2010), a large amount of fluorescent proteins must be pro-

duced to be detectable under the microscope. Therefore, the reporter system is usually 

multi-copied (e.g. the genetic construct is placed on a high copy plasmid), making the 

observation of single gene expression dynamics unfeasible. 

3.1.3 Fluorescence in situ hybridization (FISH) 

FISH is a cytogenetic technique that uses multiple exogenous fluorescent probes that 

bind specifically to parts of the DNA or RNA with a high degree of sequence comple-

mentarity (Langer-Safer et al., 1982). As the probes co-localize at the target RNAs or 
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DNA segments, the clusters become visible under fluorescence microscope as bright 

spots, allowing one to study their abundance, localization and structure (Figure 17). 

This method has been further developed to be able to quantify the RNA level with sin-

gle molecule sensitivity (Raj et al., 2006; Skinner et al., 2013). From the distribution of 

the RNA numbers in each cell in a population, one can infer on the dynamics of tran-

scription of the target gene (So et al., 2011). 

 

Figure 17. Example of images acquired with the FISH technique. Both 
phase contrast and fluorescence images of the fixed cells after hybridiza-
tion are captured for cell segmentation and spot segmentation, respective-
ly. The two sets of images are then aligned to determine which cell each 
spot belongs to. From the number and intensity of the spots in each cell, 
further information on the RNA number, localizations can be extracted. 
Adapted from (Skinner et al., 2013). 

Despite the sensitivity and the ease of experiment preparation (e.g. probes can be de-

signed based on the target gene sequence, no genetic modification on the host cells is 

required), the FISH method requires that host cells are fixed in the hybridization process 

(the binding of the probes to the RNA segment). Therefore, with this method, it is not 

possible to observe the transcription dynamics in individual cells in real-time. 
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3.1.4 RNA-tagging system using MS2-GFP fusion proteins 

The RNA-tagging system using MS2-GFP (Golding et al., 2005; Le et al., 2005), like 

FISH, makes use of fluorescent probing molecules that bind specifically to the target 

RNA. Here, the probe is a fusion between a green fluorescent protein variant (GFPmut3) 

and the coating protein of bacteriophage MS2, capable of binding to the specific sites 

(“hairpin”) of the phage DNA (Valegård et al., 1990). The target RNA is a tandem array 

of 96 MS2 binding sites, separated from one another by randomized sequences to in-

crease the RNA’s stability. 

The measurement system contains two constructs (Figure 18). The first construct is 

placed on a single copy plasmid, containing the gene encoding for the RNA containing 

the 96 MS2 binding sites under the control of the target promoter. For the cross valida-

tion of the transcription activity, another tractable gene (e.g. lacZα (Golding and Cox, 

2004), mRFP1 (Muthukrishnan et al., 2012)) can also be inserted behind the promoter 

of interest. The second construct, placed on a multiple copy plasmid, contains the gene 

encoding MS2-GFP proteins under the control of a tunable promoter. 

 

Figure 18. Diagram of the MS2-GFP RNA tagging system. The gene en-
coding for RNA with 96 binding sites (red) is placed under the control of 
the single copied target promoter (P1). The reporter MS2-GFP proteins 
(green circles with hooks) are produced under the control of the multi-
copied promoter (P2). When a new target RNA is produced, its binding 
sites are rapidly bounded by MS2-GFP proteins and become foci of GFP, 
which are visible above the cell background under the fluorescence mi-
croscope. 

To measure the transcription dynamics of the target promoter, before activating the tar-

get gene, one has to prepare the reporter system by overexpressing MS2-GFP proteins 
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in cells. The amount of MS2-GFP should be high enough to be able to bind to and re-

port the appearance of novel target RNAs as they are transcribed. After the reporter in-

cubation time, the production of the target RNA can then be triggered and observed 

under the confocal microscope. As they are transcribed, the binding sites on the target 

RNA are bound by and become foci of MS2-GFP. These foci, due to the large number 

of bound MS2-GFP, appear as bright spots under the confocal microscope. 

Fluorescence images are captured in time series and processed with cell and spot-

segmentations (Chowdhury et al., 2012; Häkkinen et al., 2013). As the target RNAs are 

wrapped by MS2-GFP proteins and therefore protected from degradation mechanisms 

(Golding and Cox, 2004), the spots do not lose their intensity over time. Therefore, the 

total spot intensity over time can be fitted by a monotonically increasing piecewise-

constant function, where each step corresponds to the production of a single target RNA 

(Figure 19). With the function fitted, the moments of RNA appearances in each cell can 

then be extracted. 

 

Figure 19. Tagged RNA in E. coli DH5α-PRO cells. (A) Examples of un-
processed frames and segmented cells and RNA spots. The moments of 
image capture are shown for each frame. (B) A time series of scaled spot 
intensity levels from individual cells (circles) and the corresponding esti-
mated RNA numbers (solid lines). Reused from (Muthukrishnan et al., 
2012). 

The RNA-tagging system using MS2-GFP allows a lag-free observation of the tran-

scription dynamics at the single cell single event level in real time. This system has 
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been employed to parameterize the kinetics of transcription initiation of many bacterial 

promoters in the strain DH5α-PRO (Kandhavelu et al., 2012a, 2012b; Muthukrishnan et 

al., 2012). 

3.2 Stochastic modeling 

3.2.1 Goals of modeling 

Due to the limitation of measurement techniques, we are not able to observe every bio-

logical process directly and in its native form. For example, the interaction between lac 

repressor and DNA is only visualized with the use of a lac repressor – YFP (venus) fu-

sion protein (Elf et al., 2007; Hammar et al., 2012). Another example is the competition 

between σ factors for RNAP core enzyme, which is evidenced only through the tradeoff 

between the expression of genes recognized by each σ factor (Chang et al., 2002; 

Farewell et al., 1998; Rahman et al., 2006). 

To overcome these problems, we employ models, which are simplified representations 

of biological processes but can still capture the processes’ key behaviors. The model 

may serve two main purposes. The first purpose is validation, i.e. solving the inverse 

problem, which involves the finding of the model that is likely to produce the observa-

ble data. The second purpose is prediction, i.e. solving the forward problem: by apply 

the model to different contexts, we can also assess how the kinetics of the process 

would play a role in the dynamics of more complex systems, which are not readily ob-

servable or have not been engineered. 

3.2.2 Representation of biological processes in E. coli 

Due to the random movement of both reactive and non-reactive molecules in the cyto-

plasm (Alberts et al., 1994) and that reactions between multiple reactants are discrete 

events that occur only when the molecules collide, biochemical processes in cells are 

inherently stochastic, resulting in stochastic dynamics of substances’ copy numbers over 

time.  

Originally, by treating biochemical systems as solvent systems where all the interacting 

species exist in large copy numbers, one employs the deterministic approach to model 

biochemical reactions in cells. In this approach, the dynamics of the system is described 
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by a set of Ordinary Differential Equations (ODE), which deterministically characteriz-

es the change in the quantity of each reactant at any given time. By solving the ODE, 

we are able to study the time evolution of each species’ quantity over time. The deter-

ministic model may give us some information on the dynamics’ trends of the molecule 

numbers in the system, and is particularly useful in population studies. 

However, many processes in cells involve species that exist only in small copy number 

(e.g. genes, RNAs). The role of intrinsic noise (noise arises from the random movement 

of reactive and non-reactive molecules in cells) on the dynamics of molecule numbers 

over time therefore cannot be ignored. The use of ODE is no longer appropriate to cap-

ture the system dynamics in individual cells (Gillespie, 1992). In order to capture the 

stochastic nature of chemical reactions in cells, we study the kinetics of molecules in a 

solution based on the following assumptions: (i) The system is well-stirred and of con-

stant volume V. (ii) The system is in thermal equilibrium at constant temperature T. (iii) 

Reactions occur only when two or more molecules collide, while most collisions do not 

lead to reactions.  

The first assumption requires that the spatial distribution of one species' molecules is 

uniform within the cell volume V. Also, the positions of all molecules are independent 

of one another, no matter whether they are of the same species or not. The second as-

sumption requires that every molecule in the solution has independent, normally dis-

tributed velocity, with mean equal kBT/m, in which kB is the Boltzmann constant (Kittel 

and Kroemer, 1980), T is the solution’s absolute temperature and m is the molecular 

weight. The third assumption requires that the reactant molecules’ number is low 

enough to ensure that the system follows Maxwell-Boltzmann statistics (Gillespie, 1976; 

Kittel and Kroemer, 1980). With these assumptions, we are able to ignore individual 

molecules' position and velocity, and adopt a probabilistic approach on the evolution of 

the system’s state over time. The general reaction has the stochastic form written as 

follow: 

1 1

jcN N

ij i ij i

i i

s X r X
 

   
(3.1) 

where iX  is the i
th

 reactant out of N reactants in the system. ijs  and ijr  indicate how 

many molecules of substance iX are consumed/produced via the j
th

 reaction. The reac-

tion constant jc  is “reaction probability per time unit” indicating how likely the reac-
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tion j
th

 out of M reactions is to happen given the current reactants' molecule. Its value 

can be calculated from the reactant collision rate, Maxwell's velocity, and the probabil-

ity for reactions to occur upon collisions. We define the propensity function as: 

( ) . ( )j ja x c h x  (3.2) 

( ).ja x dt  is the probability for the j
th

 reaction to occur in the infinitesimal time window 

[ , )t t dt . ( )h x  is the number of possible reactant combinations of a reaction at a given 

time, with x  the reactants' molecule number vector. 

Because the propensity function at a specific time depends only on the current state ra-

ther than previous ones, we can consider the system dynamics as a Markov process, 

where each reaction marks a change in state. Therefore, one can model the system’s 

dynamics as probabilistic switching between the discrete states in its state space using 

Chemical Master Equation (Gillespie, 1977) and find the time-evolution of system’s 

probability in any given state over time.  

The analytical solution to Chemical Master Equation (CME) is usually intractable and 

computational challenging to obtain especially for complex systems involving either a 

large number of substances or fast and reversible reactions. Added to these, the genera-

tion of the probability densities is calculated on the continuous time scale, which is vul-

nerable to error when performed on a digital computer. To address these problems, the 

numerical Stochastic Simulation Algorithm (SSA) (Gillespie, 1977, 1976) is employed. 

3.2.3 Stochastic Simulation Algorithm 

The Stochastic Simulation Algorithm (SSA) numerically simulates the underlying Mar-

kov process described by the CME using random sampling of the reaction times. A sin-

gle simulation of the system over time yields explicitly a single possible sequence of 

reactions, corresponding to a single trajectory of the system’s state space with the ap-

propriate probability density. Acquiring a single trajectory is generally simple and gen-

erally inexpensive with current digital computers. However, to characterize the system 

dynamics, one is usually interested in the probability density described by the CME. 

Thus, multiple realizations are generated and analyzed together to approximate the real 

probability density. This can be both time and data storage consuming. Nevertheless, 

employing SSA with a finite number of realizations is still a preferred approach as it 
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allows the user to pre-allocate resource consumption to achieve a certain level of ap-

proximation of CME’s analytical results. 

Another reason that supports the preference of SSA is that, by studying the dynamics of 

interacting substances in single trajectories, one can observe the trends and the correla-

tions of substances' quantity unobtainable by CME. For example, robust oscillation with 

fluctuation in its period, when averaged, becomes damped oscillation. The information 

on the mean and noise of the oscillating period is therefore not observable by the 

CME’s solution. However, one can extract these properties on individual trajectories 

acquired with SSA. 

Unlike CME which tracts the time evolution of the probability density at fixed rates, 

SSA realizes the time evolution of substance number with a rate chosen from a set of 

rates randomly with a certain probability mass function. The function, which describes 

the probability that the next reaction in the system is the j
th

 reaction and will occur in an 

infinitesimal time interval [ , )t t dt , is dependent of the temporal system's state x  at 

time t. We denote ( )a x  the sum of all reactions’ propensity functions as follow: 

1

( ) ( )
M

j

j

a x a x


  
(3.3) 

Given ( )a x  the probability for any reaction to occur in the infinitesimal time window 

[ , )t t dt , the time for the first reaction to occur in the system has the following distribu-

tion: 

1
1( ) ln(1 )a x r     (3.4) 

Here, 1r  is a random variable following a uniform distribution [0,1)U . As all the reac-

tions compete with each other to be first one to occur given the system state x .  

The probability that the next reaction to occur is the j
th

 reaction is proportional to its 

propensity function ( )ja x . Therefore, the next reaction to occur is drawn by: 

'j j such that 
' 1 '

2

1 1

( ) . ( ) ( )
j j

i i

i i

a x r a x a x


 

    
(3.5) 

where 2r  is a random variable following a uniform distribution [0,1)U . 
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From (3.4) and (3.5), we have the outline to implement the SSA: From any given state 

x  at time t, we calculate   and draw j and update the system with the new state jx S  at 

time t  . jS is the stoichiometric vector indicating the changes in molecule numbers 

after one reaction j
th

 occurs. Therefore, from the initial state 0x  at time t, we can gener-

ate one trajectory describing the time evolution of substances' molecule numbers. The 

algorithm is executed in the following steps: 

1. Initialize the step 0n  , time: n ot t and state n ox x  

2. Calculate ( )j na x and ( )na x  given the current state nx  

3. Generate two random values 1r , 2r  from the uniform distribution [0,1)U  

4. Calculate   and j from equations (3.4) and (3.5) 

5. Perform the j
th

 reaction: Update 1n nt t     and 1n n jx x S    

6. Set 1n n  . Return to step 2. 

It should be noted that, during the iteration of the algorithm, all values of ( ,n nt x ) are 

recorded, giving a complete realization of the system’s state with the probability de-

scribed by the CME. The trajectory is usually resampled at fixed time intervals to make 

the analysis of multiple trajectories more convenient. 

3.2.4 Delayed Stochastic Simulation Algorithm 

Biological processes such as transcription initiation, transcription elongation, translation, 

etc., generally involve several sub-processes. To model these processes properly, one 

usually has to break them into or approximate them with sequences of elementary reac-

tions. For example, the complex transformation of species A to species B can be de-

scribed by reaction (3.6): 

0 1 0 1

1 2 ... n nc c c c c
nA I I I B      (3.6) 

Such approximation, however, requires the identification of the rate of each step, mak-

ing the number of free parameters in the model to increase drastically. Further, process-

es with little noise require a large number of steps to approximate. This increase in 
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number of reactions and reactants makes the simulations computationally and storage 

expensive. As the intermediary products 1I  to nI  do not play any other role in the sys-

tem, reaction (3.6) can be shortened to the delay form: 

0 ( )
c

BA B   (3.7) 

The delay term B  represents the time elapsed of the transformation from 1I  to B, that 

is, the molecule B is released at B  after the reaction consuming A. B  can have arbi-

trary probability densities, predefined by user rather than by convolving the probability 

densities of elementary reaction times. The system is therefore semi-Markovian: the 

probability of the system being in the next state within the infinitesimal time window 

depends not only on the current state but also on the previous ones. 

To numerically simulate the system with delayed product releases, we employ the De-

layed Stochastic Simulation Algorithm (DSSA) (Bratsun et al., 2005; Roussel and Zhu, 

2006). The DSSA, extended from the SSA, is employed. The algorithm is first devel-

oped by (Bratsun et al., 2005) and generalized by (Roussel and Zhu, 2006) to account 

for multiple delayed products. The outline of the DSSA is as follow: 

1. Initialize the step 0n  , time: n ot t and state n ox x  

2. Calculate ( )j na x and ( )na x  given the current state nx  

3. Generate two random values 1r , 2r from the uniform distribution [0,1)U  

4. Calculate   and j from equations (3.4) and (3.5) 

5. If there are any delayed products released from the time interval [ , )n nt t  : 

(a) Release the delayed product ( )ix  with the closest release time 't : Up-

date 'nt t  and 1( ) ( ) 1n i n ix x    

 (b) Return to step 2. 

6. Perform the j
th

 reaction: Update 1n nt t     and 1n n jx x S   . If the reaction has 

delayed products ( )ix with the release times ( )i : 
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 (a) Generate random values ( )' i following the distributions of ( )i  

 (b) Put the delayed products ( )ix in the release queue with the release times 

( )' 'n it t    

7. Set 1n n  . Return to step 2. 

In this thesis, the stochastic simulations are performed with Stochastic Genetic Network 

Simulator (SGNSim) (Ribeiro and Lloyd-Price, 2007) and its updated version Stochas-

tic Genetic Network Simulator 2 (SGNS2) (Lloyd-Price et al., 2012a). SGNSim, which 

was used in Publication I and Publication III, is a tool to model stochastic biochemi-

cal systems whose dynamics is driven by the DSSA. SGNS2, employed in Publication 

II and Publication IV, is also based on the DSSA and allows the modeling of com-

partmentalized systems, in which the compartments can be created, destroyed and di-

vided at runtime. 

3.2.5 Connecting stochastic systems of different time scales 

With the stochastic approach, though offering more information on the system dynam-

ics (e.g. fluctuations), an appropriate modeling strategy is required to gain results of 

relevance without the explosion of the parameter space and the computation time.  

In practice, biological systems often take place on vastly different time scales, with 

‘‘fast’’ reactions having much greater propensity rate function than ‘‘slow’’ ones. As 

fast reactions occur with must greater frequency than slow ones, an exact stochastic 

simulation of such a system will necessarily spend most of its time simulating the more 

frequent occurrences of fast reactions (Cao et al., 2005a, 2005b). 

If fast reactions and slow reactions do not share any common species, the system can be 

divided into non-interdependent systems, the “fast” system and the “slow” system, the 

dynamics of which can be concluded through separate simulations differing in ap-

proaches, simulation times, numbers of trajectories, etc.  

However, when fast and slow reactions involve some common species, separate simula-

tions are not possible. This is frustrating when knowing that a single fast reaction event 

will be of much less importance to the system’s dynamics than a slow reaction event. 

To avoid the waste of computational efforts, in (Cao et al., 2005b), the use of the “virtu-
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al fast system” was proposed. This system contains species connected to one another 

only by fast reactions, while assuming that all the slow reactions are switched off. We 

can impose the solution of the virtual fast system (either a value or a probability density) 

directly on the number of the common species and with this, study the dynamics of the 

slow system (which involves only slow reactions) alone. It should be noted that this 

approximation is only valid when the virtual fast system is stable and when its relaxa-

tion time is much less than the expected time for the next slow reaction. 

To demonstrate this, we have a model of transcription of a single-copy gene, regulated 

by some repressor molecules (McClure, 1985; Ribeiro et al., 2006): 

bind

unbind

k

k
R Pr PrR   

(3.8) 

ck
cPr Pr  (3.9) 

 
ok

c oPr Pr Pr M


    (3.10) 

Reaction (3.8) models the reversible binding between a repressor (R) and a promoter (Pr) 

with the binding rate kbind and unbinding rate kunbind to form the promoter repressor 

complex (PrR). When unbound by repressors, the free promoter can be bound by an 

RNAP holoenzyme to form the promoter closed complex (Reaction (3.9)) with the rate 

constant kc. Here, the number of RNAP holoenzymes is assumed to be very high and 

thus omitted in the value of kc. The formation of the closed complex is followed by the 

formation of the open complex Pro, with the rate constant ko. This is followed by very 

fast promoter escape, transcription elongation and finally the release of a novel mRNA 

(M) and the free promoter. 

Here, we assume that kbind and kunbind are much greater than kc and ko. Thus, reaction (3.8) 

is considered “fast”, and reaction (3.9), (3.10) are considered “slow”. Here, it is notice-

able that when using SSA to simulate the system, most of the reaction occurrences are 

either the binding or the unbinding of repressors to the promoter region. The firings of 

reaction (3.9), which greatly determine the dynamics of RNA production, occur with 

much smaller frequency. 

From the system’s reactions, it can be seen that the virtual fast system involves R, Pr 

and PrR interacting with one another through reaction (3.8). The solution of the system 

when t  is: 



44 

 

P(Pr=1)= 
K

R K
; P(Pr=0)= 

R

R K
 

(3.11) 

P(PrR=1)= 
R

R K
; P(PrR=0)= 

K

R K
 

(3.12) 

in which K, also called the dissociation constant, is the ratio between kunbind and kbind. By 

applying this solution of P(Pr) to reaction (3.8), the original system can then be approx-

imated by: 

cK k

R K
cPr Pr



  
(3.13) 

ok
c oPr Pr Pr M


    (3.14) 

This new approximating system contains essentially two reactions on the low time scale 

and thus can be simulated with much less computational efforts. However, the approxi-

mation on the dynamics of RNA production will become worse as the time scale be-

tween the fast and slow systems converge (Figure 20). 

 

Figure 20. Distributions of RNA production intervals with different mod-
els of transcription. The input parameters are: kunbind=1˟scale (s

-1
), 

kbind=0.1˟scale (s
-1

), R(0)=10, kc=1/300 (s
-1

), ko=1/300 (s
-1

). Here, the pa-
rameter “scale” is tuned to vary the difference in the time scale between 
fast and slow reactions. The distributions are shown along the approxi-
mated distributions (dash) with the dissociation constant unvaried with 
“scale”. 

The approximation of multi-timescale systems is employed in all the studies of the the-

sis, as it allows effective modeling of the transcription factor-promoter interactions (all 
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publications), the intake process of inducer in cells (Publication IV) and the σ factor 

competition for RNAP core enzymes (Study V). 

3.2.6 A detailed model of gene expression 

This section presents a detailed stochastic model of single gene expression in E. coli. It 

is conceived based on previous studies on the kinetics of transcription (Kandhavelu et 

al., 2012b; Muthukrishnan et al., 2012; Saecker et al., 2011), translation (Yu et al., 2006) 

and degradations (Chen et al., 2015; Taniguchi et al., 2010). The model reactions, along 

with their descriptions, are presented in Table 1. Also shown are some of the previous 

works where the information on the reactions’ rate constants can be found. 

Table 1. A stochastic model of single gene expression. 

Reaction Description References 

bind

unbind

k

k
R Pr PrR   

Binding / unbinding between 

repressors (R) and promoter (Pr) 

to form the repressed promoter 

complex. 

(Elf et al., 2007) 

(Rosenfeld et al., 2005) 

(Hammar et al., 2012) 

 

ck
cRNAP Pr Pr   

Formation of promoter closed 

complex (Prc) with the binding 

of RNA polymerase (RNAP) 

(Buc and McClure, 1985) 

(Lutz et al., 2001) 

(Muthukrishnan et al., 2012) 

 

ok
c oPr Pr  Formation of promoter open 

complex (Prc) 

(Buc and McClure, 1985) 

(Lutz et al., 2001) 

(Muthukrishnan et al., 2012) 

oPr Pr M RNAP


    

Promoter escape, transcription 

elongation (very fast), followed 

by the release of a new mRNA 

(M), and RNAP 

(Hsu, 2002) 

(Ryals et al., 1982) 

(Vogel and Jensen, 1994) 

Pk
M M P   

Translation from mRNA to 

protein (P) 

(Yu et al., 2006) 

(Taniguchi et al., 2010) 

Md
M   Degradation of mRNA 

(Bernstein et al., 2002) 

(Taniguchi et al., 2010) 

(Chen et al., 2015) 

Pd
P   Degradation of protein (Taniguchi et al., 2010) 

(Shanner et al., 2005) 
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It should be noted that, as σ factors exist in large copy numbers in cells, the release of a 

single σ factor molecule from the active RNAP during the transcription elongation 

(Mooney et al., 2005; Raffaelle et al., 2005) of this gene should not affect the σ factor 

population significantly and thus is not accounted in this model. 

From the model of single gene expression, one can predict the dynamics of gene expres-

sion, in both mean and noise (Pedraza and Paulsson, 2008), with different numbers of 

repressors [R] and RNA polymerases [RNAP] analytically as follow: 

Table 2. Properties of gene expression dynamics as a function of the numbers of repressors [R] and 
RNA polymerases [RNAP]. 

Description Mean (µ) 

Coefficient of Variation 

Squared (CVS=σ
2
/µ

2
) 

Regulation function ( f ) 1 1 1([ ] )unbind bind unbind bindk k R k k    0 

Duration of closed complex  

formation ( cc ) 
1 1 1[ ]ccf k RNAP  

 1 

Duration of open complex  

formation ( oc ) 
1

ock 
 1 

Interval between  

consecutive RNA productions 

 ( cc oct     ) 
cc oc    

2 2

2

( ) ( )

( )

cc oc

cc oc

 

 

 

 




 

RNA number ( M ) 
1 1( )t Md  

  
1

2

tCVS 
 

Protein number ( P ) 
1

M P Pk d 
 

1

1 1

1 M M

P M M P

CVS d

d d 



 
 


 

In each study of the thesis, a different simplified variant of this model was employed 

depending on the context of the study. 
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4 Summary of the Results 

This thesis focused on the long-term dynamics of genetic circuits and on the cellular 

mechanisms due to which such dynamics becomes environment dependent. Two mech-

anisms were investigated: the intake of gene expression inducers from the media and the 

σ factor competition for RNAP. The first mechanism affects only the expression dy-

namics of a specific gene, while the second mechanism is expected to have global im-

pacts on gene expression. As the time scale of the dynamics of genetic circuits can span 

several cell cycles (Elowitz and Leibler, 2000; Stricker et al., 2008; Zeng et al., 2010), 

this dynamics was also observed in the context of a dividing cell population, where er-

rors in the partitioning of regulatory molecules in cell division occur. 

The five studies contributed to the thesis' goal as follows: Publication I established a 

framework to study the dynamics of genetic circuits as a function of the transcription 

kinetics of the constituent genes. Here, the impact of the choice of promoters, the host 

cells and the environmental conditions are shown explicitly in the kinetics of transcrip-

tion. Publication II extended this framework by considering the effects of cell growth 

and cell division, where the partitioning of regulatory molecules is inherently stochastic. 

Publication III and Publication IV featured the intake kinetics of a gene expression 

inducer and its effects on the transcription dynamics of a gene. Studies V focused on 

the σ factor competition and the degree to which promoters with different transcription 

initiation kinetics are affected by this phenomenon. 

In Publication I, the dynamics of genetic circuits with varying transcription initiation 

kinetics was studied. Two genetic circuits are considered: a biphasic amplitude filter 

and a frequency filter. The input signals here are deterministic and are set constant in 

the time domain (for the biphasic amplitude filter) and in the frequency domain (for the 



48 

 

frequency filter). According to recent studies, the transcription initiation process in E. 

coli, controlled mostly at the promoter region, is well-modeled by a sequence of multi-

ple rate-limiting steps, the durations of which are exponentially distributed (Kandhavelu 

et al., 2012a, 2012b, 2011; Muthukrishnan et al., 2012). This results in a distribution of 

the RNA production intervals having a coefficient of variation (σ/μ) less than 1. There-

fore, we investigated whether the multi-step nature of transcription initiation could be 

utilized to compensate for the noise in filters’ response to the input signals. 

Using stochastic simulations driven by the multi-scale SSA (Cao et al., 2005a, 2005b; 

Gillespie, 1976), we found that, for realistic parameter values, the level of noise in the 

output of genetic filter motifs increases with increasing durations of rate-limiting steps 

in transcription initiation. As RNAs are produced with slower rates, the filters suffer 

from low-copy noise and thus have degraded performance. The effects of low copy 

number noise can be partially compensated by employing a less noisy transcription pro-

cess (i.e. having more rate-limiting steps in transcription initiation). 

It should be noted that the numbers and durations of rate-limiting steps in transcription 

initiation can vary not only between promoters (Lutz et al., 2001) but also between host 

cells and between different environmental conditions (Dong et al., 2011; Farewell et al., 

1998; Kandhavelu et al., 2012b; Muthukrishnan et al., 2014). Thus, these results will aid 

in the exploration of the range of behaviors of genetic motifs as a function of the kinet-

ics of transcription initiation and in tuning of synthetic motifs to attain specific charac-

teristics without affecting their protein products. 

In Publication II, we studied the behavior across cell generations of two genetic cir-

cuits, namely the Toggle Switch and the Repressilator, when subject to the random par-

titioning of their regulatory molecules in cell division. Several schemes of partitioning, 

both ordered and disordered (Huh and Paulsson, 2011b), have been employed to vary 

the level of errors in partitioning. The results from stochastic simulations suggest that 

genetic circuits are not impervious to this source of cell-to-cell variability, although the 

level of impact is heavily network-dependent. 

In the case of the Toggle Switch, it was found that increasing the level of partitioning 

errors, while increasing the switching rate between the noisy attractors of the Toggle 

Switch, decreases the variance of the phenotypic distribution of the population to levels 

lower than that of a binomial distribution. This is because of the anti-correlation be-

tween the numbers of molecules inherited by each daughter cell: with high-variance 
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partitioning, the stability of the inherited state of one cell is enhanced at the cost of the 

stability of its sister cell. This may be interesting in the critical case when switching to 

the other state can be lethal to the cells (e.g. the case of the bacteriophage λ-switch’s 

lytic circle (Oppenheim et al., 2005; Shea and Ackers, 1985)). 

In the case of the Repressilator, increasing partitioning errors result in more noisy peri-

ods of oscillation. However, the rate of desynchronization of the genetic clock in a cell 

population of the same lineage (the rate at which the phase of oscillation of the genetic 

clock in each cell deviates from the population’s mean phase) was considerably slow for 

all level of partitioning errors, except for the extreme case (where one daughter cell in-

herits all the regulatory molecules). 

These results show that the effects of noisy partitioning of regulatory molecules, espe-

cially low copied ones, on the dynamics of genetic circuits are not trivial to predict at 

the population level. The effects were also shown to differ widely from those of noise in 

gene expression. The differences arise from the inherent anti-correlation in the numbers 

of molecules inherited by sister cells and the periodicity of the division process, in con-

trast to noise in gene expression, which affects all cells in the population continuously 

and independently. 

In Publication III, the expression dynamics of individual genes in response to the addi-

tion of inducers to the media with different inducer intake kinetics was studied. Three 

intake mechanisms were considered: purely diffusive, with positive feedback and with 

negative feedback. Using detailed stochastic models of gene expression and intake pro-

cesses known to exist in E. coli, it was found that differing intake kinetics result in dif-

ferences in the transient period of gene expression before reaching near-equilibrium, as 

well as the steady-state noise in the expression of the inducible gene. Namely, the intake 

process with negative feedback has the shortest transient time and causes least noise in 

the RNA and protein numbers of the inducible gene at steady state. The intake process 

with positive feedback, on the other hand, has the longest transient time and amplifies 

the noise in gene expression at equilibrium. 

This work also showed that different intake kinetics can lead to different behaviors of 

genetic circuits, exemplified by a biased Toggle Switch. By having the expression of 

both genes of the Switch triggered by the same inducer, it was observed that the level of 

feedback in the intake process can alter the probability that the Switch chooses its first 

noisy attractor. 
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In Publication IV, the author and colleagues characterized the intake kinetics of the 

lactose analogue IPTG in E. coli DH5α-PRO. Like lactose, IPTG is hydrophilic and 

therefore does not diffuse easily through E. coli’s lipid bilayers (Decad and Nikaido, 

1976; Zimmermann and Rosselet, 1977). Rather, it enters cells via means of active 

transport using H
+
 symporters (Hansen et al., 1998; Ronald Kaback, 1983). Using the 

MS2-GFP RNA-tagging system (Golding et al., 2005), the transcription activity of lac-

ara1 promoter upon the introduction of IPTG at different concentrations (from 0.25mM 

up to 1.25mM) in the media was captured. We then constructed a hybrid model of in-

ducer intake through the bilayer membrane coupled with gene expression and fitted the 

model to observed data. 

The results indicate that at high concentrations, each IPTG molecule on average takes 

on a considerable amount of time (~30 minutes at 37
o
C) to travel cross the cell mem-

branes. This duration is significantly longer than the reported time for L-arabinose (less 

than 5 minutes (Fritz et al., 2014; Megerle et al., 2008)), which is likely due to the lat-

ter’s lower molecular weight (~150 Da, compared to ~238 Da of IPTG) (Benz and 

Bauer, 1988). The long traveling time for IPTG implies a lower bound for the response 

time of genetic systems to external excitation using IPTG. Also, in the regime of IPTG 

concentrations tested, the intake rate at the outer membrane was found to be linearly 

dependent on the external inducer concentration. This signifies that inducers can cross 

the outer membrane with a dynamics similar to that of a Michaelis–Menten process, 

where the amount of pores or transport proteins contributing to the intake process may 

take up only a small portion of the total amount of pores/proteins capable of intake. 

Aside the knowledge on the lactose intake system in the regime of high concentrations, 

the work also established a method that can potentially be used to study the intake kinet-

ics of other inducers. 

In Study V, σ factor competition and its effects on the activity of different promoters 

are studied. Two RpoD-dependent promoters having different transcription kinetics are 

selected. In particular, the first promoter (PBAD) has a long closed complex formation in 

comparison to the open complex formation. The second promoter (PtetA) has a short 

closed complex formation when compared with the other step. Using the MS2-GFP 

RNA-tagging system (Le et al., 2005) with independent validations, the transcription 

dynamics of the two promoters is observed with and without the appearance of the sta-

tionary stress-induced factor RpoS. 
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From the measurements, it was found that the two promoters behave differently in the 

exponential phase (where rpoS gene is repressed at the translation process) and in the 

stationary phase (where rpoS gene is unrepressed). This leads to the hypothesis that the 

ratio between the durations of the closed complex formation, which is dependent on the 

specific RNAP holoenzyme copy number, and the unaffected open complex formation 

is responsible for promoter sensitivity to the σ factor competition. 

Relevantly, the kinetics of closed and open complex formation are sequence dependent, 

implying that they are evolvable, either naturally or artificially. This “freedom” in the 

kinetics of the two rate-limiting steps in transcription initiation is expected to allow cells 

to diversify the behavior of each gene in response to changes in σ factor numbers. 
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5 Discussion 

In this thesis, we established a theoretical framework to study the long-term dynamics 

of genetic circuits subject to noise in gene expression and errors in the partitioning of 

the regulatory molecules in cell division. Subsequently, we investigated the effects of 

different dynamics of intake of gene expression inducers and the effects of σ factor 

competition on the dynamics of transcription of individual promoters. 

In our first study, we showed that the performance of chromosome-integrated genetic 

circuits can be improved by employing promoters of constituent genes with less noisy 

transcription processes (e.g. by having more rate-limiting steps). Therefore, we hypoth-

esize that, when beneficial for the cellular functions to have a close-to-deterministic 

dynamics, natural promoters will evolve towards accommodating more rate-limiting 

steps in transcription initiation and, thus, achieve more robust cellular functions. These 

findings here are potentially applicable to Synthetic Biology: recent works have shown 

that the promoter sequence can be modified to achieve faster/slower transcription rates 

(Brewster et al., 2012; Kinney et al., 2010) or to accommodate varying number of rate-

limiting steps in transcription initiation (Lutz et al., 2001). By replacing or modifying 

the promoter regions of the constituent genes, aside from altering their protein products, 

one can alter the kinetics of a genetic circuit significantly, without altering their gene 

products. 

Next, we showed that the random partitioning of molecules in cell division has effects 

that depend on the gene network studied, as shown by the differences observed between 

the effects on the two genetic circuits modeled. In the switch, the increased variability 

results in a counter-intuitive decrease in the variance of the phenotype distribution. In 

the clock, no new features appeared aside from increased speed of desynchronization 
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over generations. This suggests that the effects of partitioning errors, to be correctly 

predicted, need to be considered from the point of view of the network under scrutiny. 

Subsequently, in Publication III and Publication IV, the intake kinetics of lactose in 

cells was shown to play a major role in determining the dynamics of intracellular induc-

er numbers upon media perturbations. Given that the passage of each lactose molecule 

through the cell membrane was found to be time-consuming, the cell membrane is ex-

pected to act as a low-pass filter of chemical signals travelling from the external media 

to the cell cytoplasm. That is, the intracellular inducer levels will fail to capture the very 

fast dynamics of the extracellular concentrations. This poses an upper bound for the 

frequency of lactose concentrations that cellular functions can respond to. 

Also in Publication IV, we performed the inference on the transport rates of IPTG 

through the outer membrane, without the aid of LacY permease proteins, as a function 

of inducer concentrations in the media, and under optimal conditions (37
o
C, pH~7). 

Also estimated was the average time for each inducer molecule to travel through the 

membrane layers. This time proved to be of significance to the measured response time 

of gene expression, and future studies may be able to make use of this or similar meas-

urements to learn more about the process of intake of other molecules and the mem-

brane features involved in it. Also, in the future, it would be of interest to observe these 

parameters in cells placed in sub-optimal conditions. The results could inform on how 

the properties of the periplasm and the membrane pores, symporters change with, e.g., 

temperature or acidic levels. 

A recent study on the localization of membrane proteins (Romantsov et al., 2010) re-

ported that the lactose permease proteins (LacY) locate mostly at the cell poles. Because 

of this, aside from noise in gene expression, the dynamics in its numbers is inherently 

subject to partitioning errors in cell division (Huh and Paulsson, 2011a; Lindner et al., 

2008). Thus, it is expected that the response of lac promoters to a small dose of lactose 

in the media would vary not only between wild type and lacY deletion strains, but also 

between dividing and non-dividing populations of wild-type E. coli. In the future, we 

plan to study whether the errors in the partitioning of LacY proteins in cell division con-

tribute to the multistability of the lactose utilization network reported in (Ozbudak et al., 

2004). 

Finally, in Study V, it was shown that the response of gene expression to changes in the 

σ factor population varies between promoters of different σ factor selectivity and tran-
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scription initiation kinetics. We expect that this phenomenon also occurs in genetic cir-

cuits. Namely, the constituent genes of the circuits can also react diversely and in oppo-

site manners to these changes depending on their initiation kinetics, thus altering the 

circuits’ responses and subsequent behavioral properties, such as the degree of bias of 

the two noisy attractors of a Toggle Switch, or the properties of the pass-band of genetic 

filters. We hypothesize that one of the features evolved in promoters is their initiation 

kinetics as means to govern to what extent they react to stress conditions, and that this is 

one of the variables determining cells epigenetics. 

In conclusion, despite the recent technological advances in genetic engineering (Hasty 

et al., 2002; Wall et al., 2004), the operations performed by the realized genetic circuits 

remain almost circumstantial (Cardinale and Arkin, 2012; Cardinale et al., 2013). Given 

the findings reported in the thesis, the author corroborates this by showing that the be-

haviors of genetic circuits depend not only on the circuits’ composition but also on the 

host cells and the environmental context. By providing information on the hosts’ prop-

erties and how they communicate with the environment, one future direction for these 

studies should be directed towards identifying the boundaries that the host cells and the 

environment impose on the operations performed by the circuits. 
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The behavior of genetic motifs is determined not only by the gene-gene interactions, but also by the expression patterns of
the constituent genes. Live single-molecule measurements have provided evidence that transcription initiation is a
sequential process, whose kinetics plays a key role in the dynamics of mRNA and protein numbers. The extent to which it
affects the behavior of cellular motifs is unknown. Here, we examine how the kinetics of transcription initiation affects the
behavior of motifs performing filtering in amplitude and frequency domain. We find that the performance of each filter is
degraded as transcript levels are lowered. This effect can be reduced by having a transcription process with more steps. In
addition, we show that the kinetics of the stepwise transcription initiation process affects features such as filter cutoffs.
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transcription initiation, and thus will aid in tuning of synthetic motifs to attain specific characteristics without affecting their
protein products.
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Introduction

Genes function in networks, whose building blocks are motifs of

few genes. Several motifs have been identified, which perform a

specific function in networks [1]. Examples include genetic

switches, which can be used as memory circuits or for digital

control of processes; oscillators, which can be used for time-

keeping and synchronization; and genetic filters, which can be

used for noise filtering and computation via genetic logic [1].

In addition to the gene-gene interactions, the behavior of a

motif depends on the expression pattern of each constituent gene.

Investigating this dependency is of relevance given recent evidence

that both mean level and the cell to cell diversity in RNA and

protein numbers vary between genes by several orders of

magnitude [2]. For that, we need to use models that account for

the nature of gene expression, since genes with low expression

levels are abundant in bacteria [2,3]. Such low numbers cause the

dynamics of motifs to be poised with correlations and low copy

number fluctuations.

Much effort has been made to characterize the processes of

transcription and translation in bacteria. In vitro studies [4,5]

showed that transcription, the process by which RNA molecules

are produced, is controlled mostly at the promoter region of the

gene. Once the RNA polymerase reaches the transcription start

site and forms the closed complex, it remains there until the open

complex is complete. Following this, the polymerase can escape

the promoter and elongate along the DNA sequence, according to

which the RNA sequence will be assembled. Both in vitro and in

vivo studies suggest that the closed and open complex formations

are the lengthiest (rate-limiting) steps of the process of gene

expression, along with protein folding and activation.

Recently, the intervals between transcription events in individ-

ual, live cells have been measured for two promoters, lac-ara-1 [6]

and tetA [7]. These studies suggest that, under optimal conditions,

there are two to three major rate-limiting steps, which occur

during initiation, that control both mean rate and noise in RNA

production. These steps durations were also shown to vary widely

with induction level and environmental conditions [6,7]. In that

sense, they are major regulators of the dynamics of mRNA

production.

Since the duration of the rate-limiting steps in transcription is

both sequence-dependent and regulated by activator and repressor

molecules, these steps are both evolvable and adaptive to the

environment [6]. Since in prokaryotes translation is coupled with

transcription, these steps are likely also key regulators of protein

numbers [8]. However, it remains unknown to what extent one

can tune the behavior of genetic motifs by selecting specific

kinetics of initiation of the constituent genes.

In this work, we study the behavior of stochastic genetic motifs,

while varying the kinetics of transcription initiation of the

constituent genes. Two motifs are considered: one performs

filtering in the amplitude domain, and the other in the frequency

domain. The response of the motifs is quantified for a wide range of

transcriptional dynamics that are in accordance with measurements.

The results indicate that the dynamics of these two genetic

motifs, while dependent of the gene-to-gene interactions, is also

affected by the kinetics of transcription initiation of each

component gene. This, in turn, suggests that it is possible to

engineer synthetic circuits to be more robust or having higher

plasticity than the present ones, by selecting for promoters with

appropriate initiation kinetics.
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Methods

Gene expression
We use the delayed stochastic modeling strategy [9,10], which

correctly accounts for the low copy number effects, that is, the

fluctuations and correlations, of the interacting components, coupled

with non-exponential waiting times. The results are quantified from

Monte Carlo simulations of the reaction system, using SGN Sim

[11].

To model gene expression we use the following set of reactions.

The syntax A
k

BzC(t) denotes a reaction where A is

transformed into B and C, with a stochastic rate of k. While B
is released in the vessel of reactions instantaneously once the

reaction occurs, C is released after a delay of t [10].

S
?

S(t)zM(t) ð1Þ

M
dM 1 ð2Þ

1
kP M

P ð3Þ

P
dP 1 ð4Þ

where S~1 (S~0) denotes that the promoter is free (occupied),

M is the messenger RNA, and P is the protein. Reaction 1 models

transcription, Reaction 2 mRNA degradation (dM being the

mRNA degradation rate), Reaction 3 translation (kP representing

the per-mRNA translation rate), and Reaction 4 protein degra-

dation (dP denoting the protein degradation rate).

The infinite rate set for Reaction 1 derives from the assumption

that there is an inexhaustible pool of polymerases (which is a

common assumption for bacteria in optimal growth conditions).

The delay t represents the effects of all rate-limiting steps,

including the initiation of transcription up to the production of an

mRNA. As mentioned, recent evidence suggests that, in E. coli

under optimal growth conditions, t is determined to a great extent

by the sum of two to three rate-limiting steps, each following an

exponential distribution in duration [6,7]. We use t*C(a,a{1 l{1),
which denotes that the delay t is drawn from gamma distribution

with a shape of a and a mean of l{1. Integer values of a indicate that

transcription consists of a sequential steps, each with a rate of al.

The gamma distribution has a coefficient of variation (the standard

deviation over the mean) of a{1=2 regardless of the mean (cf. unity of

the exponential distribution, which is a gamma distribution with

a~1). Consequently, values of a~1 will result in a Poisson

distributed M*Poi(ldM
{1), while values of av1 result in a more

noisy (super-Poisson), and values of aw1 less noisy (sub-Poisson)

mRNA number dynamics. We note that even if transcription initia-

tion consists of sequential steps of unequal duration, the gamma

distribution is still a good approximation. If the steps are of the same

order of magnitude, they can be considered approximately equal,

else, fast steps can be neglected.

Finally, we let l ¼: kM f (X1, . . . ,Xn), where kM indicates the

maximal expression rate of the promoter, and f (X1, . . . ,Xn) :
N0

n.½0,1� is a regulatory function of the promoter, which

depends on substances X1 through Xn. It is generally not known

which steps are affected by which transcription factors, so we

assume that each step is affected in an equivalent manner. The

choice of these functions is discussed in the next section. Moreover,

we let m ¼: kM dM
{1 kP dP

{1, which coincides with the expected

protein level of a gene under full expression.

Unless otherwise stated, we use the parameters kM dM
{1~5,

dM~(5 min){1, kP dP
{1~100, and dP~(60 min){1. These

values were selected in accordance with measurements in live E.

coli [2]. In the results presented, each simulation is ran for 106 min,

and the system is sampled uniformly every 1 min. To assess the

kinetics of initiation within a realistic range of parameter values,

we set the number of rate-limiting steps a[f1,2,3,5,10g. The first

three have been observed in measurements of mRNA production

kinetics in live E. coli cells [6,7]. In vitro studies of the kinetics of

this process (see e.g. [12]) provide evidence for the existence of, at

least, five rate-limiting steps, namely, closed complex formation,

three isomerization steps, and promoter clearance. We also study

the effects of setting a to 10 to observe the behavior of the model in

limit conditions and due to the fact that some of the steps might be

non-exponential in duration, thus requiring multiple exponentially

distributed steps to be well described.

Gene regulation
The genes are coupled by interactions between their promoter

regions and the proteins they express. The activation/repression of

a gene is achieved by the binding of the protein expressed by

another gene. Once bound, this protein can either degrade while

bound, or unbind. While bound, the propensity for the gene to

express differs from the unbound case. The activation/repression

of gene B by gene A could be represented by the following set of

reactions:

PAzTB

kAB
T ’B ð5Þ

T ’B
kAB KAB

PAzTB ð6Þ

T ’B
dP

TB ð7Þ

where PA denotes the protein product of gene A, TB~1 denotes

that the binding site of the gene B for that protein is free, and

T ’B~1 (implying TB~0) that the binding site is occupied. Here,

Reaction 5 models the binding of the activator/repressor molecule

PA to the promoter region of gene B, Reaction 6 its unbinding,

and Reaction 7 the degradation of a bound protein. The rate of

binding is denoted by kAB and the disassociation constant by KAB.

To simplify the model, we take the limit kAB??. In this limit,

the binding of the regulatory proteins is assumed to be much faster

than the rate of transcription. It can be found that in this limit, the

expectation E½T ’B�~(1zKAB PA
{1){1 if PA is constant. Follow-

ing this, to implement the regulation, we vary the transcription

rate such that:

fAB(A)~ 1z(KAB P{1
A )zd

� �{1

iff gene A activates gene B
ð8Þ

fAB(A)~ 1z(KAB P{1
A ){d

� �{1

iff gene A represses gene B
ð9Þ
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and

fABC(A,B)~fAC(A)fBC(B)

iff genes A and B regulate gene C
ð10Þ

where d denotes the Hill coefficient, which represents the

cooperativity of binding, (e.g. d~2 can be taken that there are

two binding sites for a same type of protein) determining how steep

the transition between on- and off-states (e.g. E½T ’B�~0 and

E½T ’B�~1) is. Also, the role of the disassociation constant in this

context is now apparent, namely, it follows that E½T ’B�~0:5 iff

KAB~PA. In our simulations, we use d~2, since many proteins

are known to function in a dimeric form [13].

Results

Amplitude filtering
We start by examining how the properties of a genetic motif

performing amplitude filtering are affected by the transcriptional

dynamics. A genetic motif capable of behaving as a biphasic

amplitude filter should allow the output to be active only for a

certain range of input levels, which allows a process to be trigged

by a narrow range of molecular concentration [1]. The region of

inputs where the output is active is called the passband and the

non-active regions are referred by stopbands. We model a biphasic

amplitude filter consisting of four genes as follows. Gene A

activates the expression of genes B and C, and gene B activates the

expression of gene D, while gene C represses gene D. We model

explicitly the expression of genes B through D, while the relative

expression level of gene A acts as an input parameter. This is

illustrated in Figure 1. Such a circuit was used to explain the

narrow range of induction triggering the expression of Xbra in

Xenopus laevis [14].

We simulate the model for various values of shape a’ and rate

k’M of transcription of genes B and C, while the output gene shape

and rate are kept constant (a~2, kM dM
{1~5). This is due to the

fact that the effects of changes in a and kM in the protein

distribution of the output gene are more apparent and not related

to the internal behavior of the filter, and because it allows the

different cases to be easily compared. We set KBD~0:25m’ and

KCD~0:1m’, which is expected to produce a biphasic response (see

Equations 11 through 13). In this, m’~k’M dM
{1 kP dP

{1 denotes

the expression rate of genes B and C under full expression. To

vary the mean input level, we vary the quantity r~KAB
{1

PA~10KAC
{1 PA!PA.

If all molecule numbers were constant, the response of the filter

could be characterized by the following equations:

PB~m’ 1z(KAB PA
{1)d

� �{1 ð11Þ

PC~m’ 1z(KAC PA
{1)d

� �{1 ð12Þ

PD~m 1z(KBD PB
{1)d

� �{1
1z(PC KCD

{1)d
� �{1 ð13Þ

which is a good approximation for high expression levels. Note

that in Equation 13, PD is a function of r, but invariant to the

parameters a’ and k’M , thus the effects of varying them lie beyond

this formula. The response of the filter using Equations 11 through

13 is depicted in Figure 2.

The molecular levels will not be constant in our stochastic

model. We quantify the noise in molecular levels using Fano factor

(the variance over the mean), which is convenient, since Fano

factor of Poisson-distributed molecules equals unity regardless of

the mean. Even in the limit a?? the protein levels will remain

highly noisy (Fano factor Fano½P�§1), since in this case

PB,PC*Poi(m’) and their noise further propagates through the

probabilistic expression of gene D to the output protein levels PD.

Next, we present the response of the biphasic amplitude filter

using the stochastic model, and study how much it deviates from

the expected response when the shape and rate of transcription are

varied. The mean output level of the output gene D is presented in

Figure 3. As expected, the response resembles the curves in

Figure 2. Lower values of a (which imply higher noise) produce

slightly degraded performance in terms of the response of the filter.

That is, the maximum output protein level will be lower, and the

transition between the on- and off-states will be less steep. In

addition, the increased noise makes the passband to shift toward a

higher input level, since the distributions resulting from the model

tend to have right skew.

We also assessed the response for various mean expression levels

m’ of the component genes (Figure 4). The results are qualitatively

similar to those in Figure 3. Decreasing a’ or k’M (either leading to

higher noise) will degrade the filter performance. Moreover, as the

expression rate is lowered the shape of the transcription takes

greater role in determining the filter behavior. This implies that for

rarely expressed genes, it might be important to have sub-

Poissonian transcript dynamics, to compensate the increased low

copy number noise.

Adding noise in the processes within the filter must shift

downwards the value of the maximum output protein level.

Generally, adding noise results in a flatter response, which can be

interpreted as a degradation in performance, since the filter aims

to selectively turn the output on or off. Furthermore, it is possible

that adding noise also shifts the input level for which the maximal

output is attained or the locations of the transition bands. The

results depend on whether the input distributions and the response

function of the filter are symmetric or not.

Finally, we assessed quantitatively the effects on the output of

having different values of a’, for each expression ratio of the input

gene shown in Figure 4. For m’m{1~0:01, increasing a’ from 1 to

2, causes the output amplitude in the passband to increase by

10:8%. Increasing a’ from 1 to 3 causes the output amplitude to

Figure 1. Illustration of the biphasic amplitude filter motif. In
the biphasic amplitude filter, gene A acts as input to the filter, while
genes C and D compose the filter, represented by the dashed box,
along with the regulatory connections between each gene. The protein
level of gene D acts as the output.
doi:10.1371/journal.pone.0070439.g001
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Figure 2. Event probabilities in biphasic amplitude filter. Probabilities of events in the biphasic amplitude filter as a function of the input
protein level E½PA�. The solid black line denotes the probability that the output gene D is expressing, while the dark gray lines denote those of the
intermediate genes (solid denoting gene B and dashed gene C). The probabilities that the intermediate genes allow the output gene to express are
depicted by the light gray lines (solid denoting gene B and dashed gene C).
doi:10.1371/journal.pone.0070439.g002

Figure 3. Mean response of biphasic amplitude filter. Mean response E½PD� of the biphasic amplitude filter as a function of the protein level
E½PA� of the input gene, for various shapes a’. Different levels of gray denote different shape parameter a’. The simulations were performed with
m’m{1 of 0:05. The dashed black line is an approximation, assuming constant molecular levels.
doi:10.1371/journal.pone.0070439.g003
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increase by 12:9%. For other values of m’m{1, the differences are

smaller. For example, for m’m{1~0:05, these increases are,

respectively, 7:2% and 8:5%, while for m’m{1~1, these differences

are of the order of 1:5%.

Since our model dynamics is poised with noise, we study the

noise in the output gene protein level, as a function of the input

gene level. One might expect the noise to take a shape that is

characteristic to the output gene, e.g. constant for Poisson, or some

monotonically decreasing curve in our case. In the presence of

noisy molecular levels in the circuit, this is generally not true. The

noise in the output of this motif is expected to be higher in the

transition bands of the biphasic amplitude filter, with the

magnitude more characteristic to the output gene in the pass-

and stop-bands. An example from stochastic simulations is

presented in Figure 5.

From Figure 5 we find that even when the effects of changes in

transcription initiation on the response of the biphasic amplitude

filter are slight, the change in the fluctuations of the protein

numbers of the output gene might be significant. In Figure 6, we

present the output noise for various mean levels. For very low

expression levels, the low copy number noise in the output

becomes dominant.

As a consequence of the amplification of the noise in the

transition bands, the output of the filter becomes unpredictable in

these regions. Therefore, for this circuit to operate properly in

these regions, it is of importance to minimize the noise in the genes

composing the filter, for example, by adding rate-limiting steps in

initiation. Alternatively, regulation schemes that can provide

steeper transition bands are required, which can be accomplished

via regulatory schemes of higher-order. We hypothesize that the

latter scheme has less effect, since it cannot remove the problem,

only reduce its effects. Moreover, it is harder to implement in real

genetic circuits, as it requires altering both the protein and the

promoter sequences.

Frequency filtering
In this section, we study the effects of changes in the

transcription dynamics to a motif that performs filtering in the

frequency domain. It is known that changes in the transcriptional

dynamics can affect the period and its robustness of genetic

oscillators [15], so we expect that these changes affect the response

of certain frequency filters as well.

We constructed a motif that can perform low-pass frequency

filtering composed of four genes (A through D). This filter

suppresses highly transient signals while letting slowly varying

signals to pass through as-is. Such a filter would allow a specific set

of genes to be subject to only stable signals, by filtering out fast

fluctuations in the numbers of the regulatory molecules. Here,

gene A acts as an input, required to enable the expression of gene

B. Gene B represses gene C, C represses D, and D represses B,

that is, genes C through D form a loop (three-gene repressilator).

The structure of the motif is illustrated in Figure 7.

When a periodic signal PA is applied, the behavior of this circuit

should vary, depending on the frequency of the signal. When the

signal is of high frequency, the feedback loop should be the main

responsible for the frequency content of the output. For low

frequencies, the input from gene A will disconnect the feedback

loop periodically, and lower frequencies, including that of PA, are

introduced in the output. Thus, it is expected that the modulated

circuit would have a synchronization point when the input

frequency equals that of the repressilator, and that a phase

transition would occur in the output frequency response.

For simplicity, we let the Hill coefficient d ’??, in the

regulatory connection where A activates B. That is, the regulatory

connection becomes Boolean, with a threshold of KAB. We denote

the Boolean input signal by X ¼: (1z(KAB PA
{1)d ’){1. This

allows us to omit the explicit modeling of gene A, and

consequently this parameter does not need to be determined.

Instead, we can apply an arbitrary X[B. In this case, it does not

Figure 4. Mean response of biphasic amplitude filter for various transcription rates. Mean response E½PD� of the biphasic amplitude filter
as a function of the input gene protein level E½PA�, for various shapes a’ and rates k’M of transcription. Different levels of brightness denote different
shape parameter a’. The simulations were performed with m’m{1 of 1 (cyan), 0:05 (red), and 0:01 (green), in the order of decreasing performance. The
three cyan lines overlap. We also performed simulations with m’m{1 of 0:5, 0:2, 0:1, and 0:02 (not shown) to assert that the changes are generally
nonlinear and more drastic for low mean levels. The dashed black line is an approximation, assuming constant molecular levels.
doi:10.1371/journal.pone.0070439.g004
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Figure 5. Noise of response of biphasic amplitude filter. Noise of the response Fano½PD� of the biphasic amplitude filter as a function of the
input gene protein level E½PA�, for various shapes a’. Different levels of gray denote different shape parameter a’. The simulations were performed
with m’m{1 of 1.
doi:10.1371/journal.pone.0070439.g005

Figure 6. Noise of response of biphasic amplitude filter for various transcription rates. Noise of the response Fano½PD� of the biphasic
amplitude filter as a function of the input gene protein level E½PA�, for various shapes a’ and rates k’M of transcription. Different levels of brightness
denote different shape parameter a’. The simulations were performed with m’m{1 of 0:01 (green), 0:05 (red), and 1 (cyan), in the order of decreasing
noise. We also performed simulations with m’m{1 of 0:5, 0:2, 0:1, and 0:02 (not shown) to assert that the changes are generally nonlinear and more
drastic with low mean levels. The dashed black line is an approximation, assuming constant molecular levels.
doi:10.1371/journal.pone.0070439.g006
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matter if the connection is an activating (as in Figure 7) or

repressing, since the Boolean input can be flipped.

First, we let the input signal to be constant X~1. We analyze

the periodic behavior characteristic to the submotif of genes B, C,

and D. Since the genes B, C, and D are identical, we can treat

them interchangeably and quantify the distribution of periods

from any of the protein levels, denoted by TBCD, from the zeros of

the autocorrelation function of each time series.

We simulate our model for values of shape a’ and rate k’M of

genes B, C, and D, and m’ is defined analogously to the previous

subsection. Moreover, the disassociation constants are set to

KBC~KCD~KDB~0:05m’, which were found to produce an

oscillatory signal under constant input. The mean period of the

protein levels of genes B, C, and D, as a function of the mean

expression level m’ of the genes, is shown in Figure 8.

Interestingly, the period changes as a function of the number of

steps in transcription initiation. Also, changing the mean

transcription level affects the period (note that the disassociation

constants are a function of the expected expression level m’, which

would make a deterministic model invariant of m’).
We also examined if the robustness of the period is affected. We

quantify robustness by the coefficient of variation of the periods of

the protein numbers. This measure is convenient, since it equals

unity for exponentially distributed periods regardless of the mean.

The results are shown in Figure 9. For low mean protein numbers,

the period becomes unpredictable (i.e. exponential-like), whereas

for moderate levels, the period distribution is Gaussian-like, due to

lower noise in transcript production, implying more robust period

length. The shapes of the distribution were verified from period

histograms (see examples in the insets in Figure 9).

Next, we apply an unbiased Boolean square wave to X , that is,

X (t)~0 for time t that satisfies kTƒtv(kz1=2)T with any

integer k and X (t)~1 otherwise, and we denote its frequency by

fX ~T{1, where T refers to the period. The autocorrelation

function of this signal X is a triangular wave of the same

frequency, and consequently its spectral power is concentrated to

the harmonics of fX . The spectral power is measured in terms of

power spectral density (PSD), which is given by the Fourier

transform of the autocorrelation function and measures how much

of the signal power per unit frequency is concentrated around

certain frequency. Specifically, the PSD of X at frequency fX is

4p{2 (cf. Figure 10).

We measure the power spectral densities of the input X and the

output PD. An example is shown in Figure 10, with the input PSD

plotted for reference. The motif exhibits a low-pass behavior in the

frequency domain. Frequencies lower than those corresponding to

the mean period of the three-gene submotif when functioning

Figure 7. Illustration of the frequency filtering motif. In the
frequency filtering motif, gene A acts as an input to the motif, while the
filter consists of genes B, C, and D in a feedback loop structure along
with the modulation by the input, represented by the dashed box. The
protein level of gene D acts as an output of the filter.
doi:10.1371/journal.pone.0070439.g007

Figure 8. Mean period of frequency filtering motif with constant input. Mean period of the protein levels of genes B, C, and D (E½TBCD�), for
constant input X~1. Different levels of gray denote different shape parameter a’.
doi:10.1371/journal.pone.0070439.g008
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independently (see Figure 8) are only slightly attenuated (ampli-

fication factor of w10{1). In contrast, higher frequencies are

highly attenuated (amplification factor of v10{4).

Changing the shape parameter a’ of the transcription results in

slight variations in the performance of the frequency filter, while

the main characteristics are not changed. Namely, the attenuation

Figure 9. Noise in period of frequency filtering motif with constant input. Noise in the period of the protein levels of genes B, C, and D
(Cv½TBCD�), for constant input X~1. Different levels of gray denote different shape parameter a’. The insets exemplify the distributions of periods
TBCD for shape of a’~1 and ratios m’m{1 of 0:005 and 0:5 (units of the x-axis are seconds).
doi:10.1371/journal.pone.0070439.g009

Figure 10. Power spectral density of the frequency filtering motif. Power spectral density of the frequency filter as a function of the input
frequency. Different levels of gray denote different shape parameter a’. The simulations were performed with m’m{1 of 0:1. The dashed black line
represents the PSD of the input X at the input frequency.
doi:10.1371/journal.pone.0070439.g010
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of the frequencies is of the same order of magnitude, more noisy

shapes resulting in slightly higher attenuation in the passband.

Moreover, the cutoff frequency is affected by changes in the

characteristic frequency of the three-gene submotif (Figure 8). We

also varied the transcription rate k’M of the genes in the motif

(Figure 11). Again, lower transcription rates, implying more noise

in mRNA and protein levels, degrades performance, similarly to

when varying a’. The changes in the steepness of the transition

band of the filter are more apparent in the former case.

Similarly to the amplitude domain filter, the performance of the

frequency domain filter is affected by changes in the transcrip-

tional dynamics of the constituent genes. A transcription process

that is less noisy results in a frequency filter with steeper transition

bands. Consequently, an efficient frequency domain filter requires

limited noise level in transcription, which in the case of low

transcript levels can be implemented by a promoter with a

sequential initiation process. Interestingly, the cutoff frequency of

the filter is also affected by the kinetics of transcription.

As in the case of the amplitude filter, we assessed quantitatively

the effects on the output of having different values of a’, for each

expression ratio of the input gene shown in Figure 11. For

m’m{1~0:01, increasing a’ from 1 to 2, causes the magnitude of

the PSD in the passband to increase by 236:0%. Increasing a’ from

1 to 3, causes the PSD to increase by 275:1%. For other values of

m’m{1, the differences are smaller as before. In particular, for

m’m{1~0:05, these increases are, respectively, 32:5% and 41:9%,

while for m’m{1~1, these differences are of the order of 7%.

Discussion

Motivated by recent findings of the relevance of the kinetics of

the process of transcription initiation on the dynamics of RNA

production in bacteria [6,16], we investigated the functioning of

genetic filter motifs as a function of the kinetics of transcription

initiation of the constituent genes. We focused on two common

filters, namely, an amplitude filter and a frequency filter, as these

have several practical applications. One major concern regarding

their performance is that most genes in bacteria exhibit very low

expression levels. We investigated whether one can utilize the

multi-step nature of the process of initiation to compensate for the

low copy number noise.

We found that, for realistic parameter values, genetic motifs

with stochastic dynamics differ significantly from their determin-

istic counterparts. Consequently, the latter do not serve as a means

to predict the realistic behavior of genetic motifs in live cells. Also,

for low expression levels, high noise in the transcripts production

significantly degrades the performance of the motifs. The effects of

low copy number noise can be compensated by a multi-step (less

noisy) transcription process. We suggest that natural motifs with

low-expressing constituent genes might employ a multi-step

transcription initiation process so as to limit the noise in the

mRNA and protein levels, therefore allowing the motif to behave

robustly.

The sequence-dependent distribution of transcripts production

can have intriguing effects on the behavior of the motifs. These

were most prominent in the characteristic frequency of the

oscillatory circuit, in which, within a realistic interval of parameter

values, it is possible to have a period double that of the one of high

Figure 11. Power spectral density of the frequency filtering motif for various transcription rates. Power spectral density of the frequency
filter as a function of the input frequency, for various shapes a’ and rates k’M of transcription. Different levels of brightness denote different shape
parameter a’. The simulations were performed with m’m{1 of 1 (cyan), 0:05 (red), and 0:01 (green), in the order of decreasing performance. We also
performed simulations with m’m{1 of 0:5, 0:2, 0:1, and 0:02 (not shown) to assert that the changes are generally nonlinear and more drastic with low
mean levels. The dashed black line represents the PSD of the input X at the input frequency.
doi:10.1371/journal.pone.0070439.g011
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mean levels. Importantly, in both motifs studied, the cutoffs that

separate the different regimes of operation of the filters were found

to be tunable. The effects of changing the kinetics of transcription

initiation were found to be slight, partly masked by the noise, but

non-negligible.

It is known that changes in the kinetics of the sequential process

of transcription initiation affect the dynamics of mRNA abun-

dances of individual genes [16,17]. Here, we provided tentative

evidence that these changes affect the behavior of genetic motifs as

well. This is of relevance, since both the number and the kinetics of

these steps are dependent of the promoter sequence and

transcription factors alone, i.e., are independent of the protein

coding region. Due to this, we hypothesize that it is possible to

alter the kinetics of a genetic circuit significantly by replacing the

promoter region of the constituent genes, without the need of

altering the protein under their control. Further, we hypothesize

that changes in the promoter sequence of the constituent genes of

motifs constitutes a significant degree of freedom in their

evolutionary process in natural organisms.
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� We study effects of partitioning errors on the dynamics of genetic circuits.
� Effects of partitioning errors differ widely with network topology and behavior.
� In switches, errors reduce the phenotype distribution's variance across generations.
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� Errors produce qualitatively different effects than noise in gene expression.
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a b s t r a c t

In prokaryotes, partitioning errors during cell division are expected to be a non-negligible source of cell-
to-cell diversity in protein numbers. Here, we make use of stochastic simulations to investigate how
different degrees of partitioning errors in division affect the cell-to-cell diversity of the dynamics of two
genetic circuits, a bistable switch and a clock. First, we find that on average, the stability of the switch
decreases with increasing partitioning errors. Despite this, anti-correlations between sister cells,
introduced by the partitioning errors, enhance the chances that one of them will remain in the mother
cell's state in the next generation, even if the switch is unstable. This reduces the variance of the
proportion of phenotypes across generations. In the genetic clock, we find that the robustness of the
period decreases with increasing partitioning errors. Nevertheless, the population synchrony is
remarkably robust to most errors, only significantly decreasing for the most extreme degree of errors.
We conclude that errors in partitioning affect the dynamics of genetic circuits, but the effects are
network-dependent and qualitatively different from noise in gene expression.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Phenotypic diversity is a feature of all cell populations, includ-
ing monoclonal ones, that significantly affects their survival
chances, particularly in fluctuating environments (Kussell and
Leibler, 2005; Samoilov et al., 2006). The stochastic nature of the
biochemical reactions involved in the dynamics of gene regulatory
networks is one well-known contributing source of phenotypic
diversity (Kaern et al., 2005; McAdams and Arkin, 1999).

Recently, it has been recognized that the partitioning of
plasmids, RNAs, proteins and other macromolecules during cell
division can also be a non-negligible source of phenotypic diver-
sity (Huh and Paulsson, 2011a, 2011b; Lloyd-Price et al., 2012).

Similar to noise in gene expression, this source generates diversity
that can propagate through reaction networks to high-copy
number components, even in organisms with a morphologically
symmetric division process, such as Escherichia coli (Huh and
Paulsson, 2011a). After establishing a mathematical framework
with which to characterize this source of noise (Huh and Paulsson,
2011b), it was shown that the random errors in partitioning result
in cell-to-cell diversity in RNA and protein numbers that is difficult
to distinguish from the diversity arising from gene expression
noise, when observing cell populations at a single time moment
(Huh and Paulsson, 2011a). Nevertheless, while noise in gene
expression continuously generates diversity, noise from partitioning
only occurs sparsely, when cells divide. Thus, the effects of these two
sources should be readily distinguishable from a temporal perspec-
tive (Lloyd-Price et al., 2012). So far, it is unknown how these two
sources of noise differ in regards to their effects on the dynamics of
genetic circuits.
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Most cellular processes are regulated by small genetic net-
works, named motifs (Wolf and Arkin, 2003; Alon, 2007). It is
conceivable that the noise in the process of partitioning of the
products of gene expression affects the cell-to-cell diversity of
behaviors of these motifs. Here, we study the effects of errors in
partitioning on the behavior of two such motifs, the Toggle Switch
(Gardner et al., 2000) and the Repressilator (Elowitz and Leibler,
2000). These two circuits differ widely in behavior. While the
former is able to switch between two noisy attractors (Ribeiro et
al., 2006; Ribeiro and Kauffman, 2007; Zhu et al., 2007), the latter
only has one noisy attractor, a limit cycle (Elowitz and Leibler,
2000; Zhu et al., 2007; Loinger and Biham, 2007). Due to their
dynamic properties, these circuits are likely candidates to serve as
master regulators of future synthetic genetic circuits. Also, similar
circuits have evolved in natural cells to perform similar tasks (Wolf
and Arkin, 2002; Arkin et al., 1998; Lahav et al., 2004; Nelson et al.,
2004). Thus, understanding the effects of random partitioning of
RNA and proteins in cell division on the dynamics of these two
circuits may aid in understanding how cells maintain robust
phenotypes across generations.

The Toggle Switch is a two-gene motif, where each gene
expresses a transcription factor that represses the expression of
the other gene. As this circuit has two noisy attractors (Gardner
et al., 2000; Arkin et al., 1998), it can store one bit of information.
It can thus be used to make decisions (Arkin et al., 1998), or to
store the results of one (Wolf and Arkin, 2003). The level of gene
expression noise determines the frequency at which the Toggle
Switch changes between its noisy attractors (Loinger et al., 2007;
Potapov et al., 2011). A well-studied Toggle Switch is the “λ-
switch”, a decision circuit of the λ phage (Arkin et al., 1998), which
determines whether an infecting phage will lyse the cell or,
instead, integrate itself into the bacterial genome, forming a
lysogen. The lytic cycle can be activated in lysogens either
stochastically (Neubauer and Calef, 1970), or due to environmental
cues such as irradiation by UV light (Baluch and Sussman, 1978).
Meanwhile, the Repressilator is a synthetic three-gene motif
which exhibits oscillatory behavior (Elowitz and Leibler, 2000),
as each gene represses the next gene in the loop. In the Repressi-
lator, gene expression noise determines the robustness of the
period of oscillation (Häkkinen et al., 2013).

We study the effects of errors in partitioning on the behavior of
these two circuits, focusing on their ability to ‘hold state' (i.e. on
the stability of their noisy attractors) across cell lineages, when
subject to different partitioning schemes. Namely, we explore a
wide range of magnitudes of partitioning errors, since in E. coli the
process of partitioning of gene expression products ranges from
highly symmetric (Di Ventura and Sourjik, 2011) to heavily
asymmetric, e.g. due to spatially organized protein production
(Montero Llopis et al., 2010). For this, we first examine the
switching dynamics of the Toggle Switch in cell lineages. In this
context, we further consider two biologically motivated scenarios:
the phenotypic diversity in a continuous cell culture, and the
population dynamics when one state of the switch is lethal to the
cells, as in the case of λ lysogens. We then study the effects of
errors in partitioning on the behavior of the Repressilator. Speci-
fically, we study the robustness of the period of oscillations, and
the rate of desynchronization across cell lineages of an initially
synchronous population.

2. Methods

The models used here contain three main components. The
first is the genetic circuit within each cell. The second is cell
growth and division, and the last is the partitioning scheme of the
proteins and RNA molecules in division. For simulations, we used

the SGNS2 stochastic simulator (Lloyd-Price et al., 2012), which
utilizes the Stochastic Simulation Algorithm (Gillespie, 1977).

2.1. Stochastic model of gene expression

The model of gene expression, illustrated in Fig. 1A, consists of
the following set of reactions (Häkkinen et al., 2013):

Pr �!kc�f ðR;VÞ
Prc ð1Þ

Prc�!
ko PrþM ð2Þ

M�!kP MþP ð3Þ

M�!dM ∅ ð4Þ

P�!dP ∅ ð5Þ

The model includes transcription (Reactions (1) and (2)),
translation (reaction (3)), and degradation of mRNA (M, Reac-
tion (4)) and proteins (P, reaction (5)). Transcription initiation is a
two-step process, consisting of the closed and open complex
formations (Buc and McClure, 1985; Ribeiro et al., 2010). The free
promoter is represented by Pr and the promoter-RNAP complex is
represented by Prc. Here, the closed complex formation can be
repressed by a transcription factor produced by another gene by
blocking access to the transcription start site. The repression
function is a hill function with hill coefficient 2, as in (Zhu et al.,
2007). Specifically, it is

f ðR;VÞ ¼ K2
d

R
V

� �2þK2
d

ð6Þ

where R is the number of repressor molecules, V is the normalized
volume of the cell ranging from 0.5 to 1 over the cell cycle, and Kd

is the dissociation constant. This repression function arises when
the promoter has two operator sites, and there is strongly
cooperative binding between the two repressors which bind there.

2.2. Cell growth and division

Cell division in E. coli is remarkably stable, with little variance
in division time of sister cells when under optimal growth
conditions (squared coefficient of variation of division times
E0.02 (Hoffman and Frank, 1965)). We therefore divide cells
according to a fixed doubling time TD, implying that the popula-
tion doubles in size synchronously. Cell growth is modeled by
increasing V linearly from 0.5 to 1 over the lifetime of the cell.

Each cell division is modeled as an instantaneous process
which occurs at regular intervals, wherein the DNA (i.e. the
promoter region, Pr) is replicated, and the M and P molecules
are randomly partitioned into the daughter cells (see next section).
After division, we assume that the promoters in the daughter cells
are in the initial state (Pr), since any bound molecules are assumed
to have been removed from the DNA by the DNA polymerase
during replication (Guptasarma, 1995).

To illustrate the dynamics of the single-gene expression model
from the previous section with the growth and division model
here, we show several time traces in Fig. 1C, as well as the average
behavior. Note that the subtle oscillatory behavior observed in the
average behavior is due to the effects of linear cell growth and
exponential protein degradation.
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2.3. Molecule partitioning in cell division

The molecule partitioning in cell division is done according to
one of three partitioning schemes, which differ in the amount of
variance in the molecule numbers that they introduce in division.
In (Huh and Paulsson, 2011b), the partitioning error was quantified
by Q2

X ¼ CV2
L �CV2

X , where CV2
X and CV2

L are the squared coeffi-
cients of variation (CV2, defined as the variance over the squared
mean) of the number of molecules in parent cells immediately
before division (X), and in daughter cells immediately after
division (L), respectively. If the molecules are partitioned inde-
pendently and randomly, this will result in a binomial distribution
in the number of molecules which are inherited by a given
daughter, and thus Q2

X ¼ 〈X〉�1(Huh and Paulsson, 2011b). We
quantify differences between the variances produced by partition-
ing schemes by the log of the ratio between the Q2

X produced by
that scheme and what would be expected from a binomial
partitioning, giving lg ~Q , defined as

lg ~Q ¼ lgð〈X〉Q2
XÞ ð7Þ

If molecules are partitioned independently, i.e. binomially, lg ~Q
is 0. “Ordered” partitioning schemes resulting in lower variance
have lg ~Q o0. For this, we use the ‘Pair Formation' partitioning
scheme (Huh and Paulsson, 2011b), where the segregated mole-
cules first form pairs with probability k. These pairs then are
equally divided into the daughter cells while the unpaired mole-
cules are segregated independently (left side of Fig. 1B). It can be
shown (see Supplementary Material) that to achieve a given
lg ~Q o0, k must be set as (from Eq. (8) of Huh and Paulsson,
2011b):

k¼ 1�10lg ~Q ð8Þ

“Disordered” partitioning schemes, resulting in greater var-
iance, will have lg ~Q 40. For this, we use the ‘Random Accessible
Volume' segregation scheme (Huh and Paulsson, 2011b), where
large macromolecules in low copy number are independently
segregated into the daughter cells. These macromolecules
(denoted by B in Fig. 1B) reduce the volume accessible to other
molecules, and the error in their partitioning is imparted to the
segregated molecules (right side of Fig. 1B). If the same number of
B molecules is used to partition all molecules in the cell, this will
introduce a correlation in the number of molecules inherited by a
given daughter. In all cases, we assessed whether this correlation
affected the results by testing both a correlated model and an
uncorrelated model, where the B molecules are different for each
partitioned molecule. To achieve a given lg ~Q 40, we use the
following number of B molecules (derived from (Huh and
Paulsson, 2011b), see Supplementary Material):

B¼ 〈X〉CV2
Xþ 〈X〉�1

10lg ~Q �1
ð9Þ

The values of CV2
X and 〈X〉 in (9) were calculated by running a

simulation of the model with the binomial partitioning scheme,
and extracting the CV2 and mean of the protein distribution prior
to divisions. We verified that Eqs. (8) and (9) produce the desired
values of lg ~Q . Supplementary Fig. S1 shows a good correspon-
dence between the input lg ~Q and the value determined by
simulation.

Finally, to test the behavior of the model in the limit of
disordered partitioning, we use an all-or-nothing scheme, where
one daughter always receives all molecules, while the other
receives none. The lg ~Q for this scheme is labeled as “max” in
the figures. As might be expected, greater variance in partitioning
(higher lg ~Q ) increases the CV2 of the protein concentration P=V

Fig. 1. (A) Illustration of the stochastic model given by reactions (1)–(6). (B) Illustration of the partitioning schemes used, pair formation (left) and random accessible volume
(right), which result in lower- and higher-than-binomial variance in partitioning, respectively. (C) Protein concentration (P/V) over time for three independent realizations of
a model with a single gene, and the overall mean from 1000 realizations. The vertical dashed lines show division points.
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taken over all time (Supplementary Fig. S2), although the mean
concentration is unaffected.

2.4. Stability of the toggle switch

We quantify the stability of the noisy attractors of the Toggle
Switch by τs, the mean time for this 2-gene network to change
from one noisy attractor to the other, similar to (Potapov et al.,
2011). Switching points are defined as the moments when the sign
of the difference between the two protein concentrations differs
from the previous moment. However, a large amount of small
switching intervals are generated when the system is at the border
between the two noisy attractors. We discount any intervals
shorter than 40 min, so as to only consider ‘definitive' switches.
To get τs, we use a maximum likelihood estimator of the condi-
tioned exponential distribution, i.e. the sample mean subtracted
by the threshold of 40 min.

2.5. Continuous culture of cells containing a toggle switch

For the study of the Toggle Switch in continuous culture, we
use an abstracted model, so as to support the simulation of
thousands of cells for many generations. The number of cells in
each state is represented by c1 and c2, which evolve according to
the following reactions:

pi�!
1=τs

p3� i ð10Þ

pi �!
divide

pþ
i þp�

i ð11Þ

pþ
i �!k1 piðτPÞ ð12Þ

p�
i �!k1 pi ð13Þ

p�
i �!BP�k1p3� i ð14Þ

Cells switch stochastically between states with mean time τs
(reaction (10)). Cells divide synchronously every hour into two
daughters, one with more molecules, pþ

i , and one with less, p�
i

(reaction (11)). The sister cell inheriting more molecules is
protected from switching for a given amount of time, proportional
to the level of bias in partitioning (BP, ranging from 0 to 1),
denoted in reaction (12) by the fixed time delay τP. Here, we set τP
to BP� TD. Meanwhile, the sister cells inheriting less molecules
become more prone to switch to the other state with increasing BP
(reactions (13) and (14)). In the above reactions, k1 is an arbitrarily
fast rate. In order to maintain the number of cells stable, exactly
half of each type of cells, pþ

i and p�
i , are removed from the system

after each division event.

3. Results

We study the effects of partitioning errors in the dynamics
across cell generations of, first, the Toggle Switch, and second, the
Repressilator. In both cases, we explore a wide range of partition-
ing error rates per division, given the known diversity of the
partitioning schemes of proteins and plasmids in bacteria (Huh
and Paulsson, 2011a, 2011b). For that, and by using different
partitioning schemes, we vary lg ~Q from �1 (corresponding to
highly symmetric partitioning) to 0 (binomial), up to the max-
imum allowed by the mean protein number in the mother cell at
the moment of division (here labeled ‘max').

3.1. Toggle switch

We first examined the effects of errors in the partitioning
of regulatory molecules on the dynamics of the Toggle Switch. This
circuit is constructed by duplicating reactions (1)–(5), and con-
trolling the expression of each gene with the protein concentration
of the other gene (full model presented in Supplementary
Material, reactions (1)–(10)). Unless stated otherwise, we set the
model parameters as described in Table 1, which result in a mean
protein number before division 〈X〉 of approximately 20, if unre-
pressed. We set the dissociation constant, Kd, to a value that makes
the noisy attractors stable (Kd ¼ 〈X〉=3) by maintaining the protein
numbers of the repressed gene close to zero at all times. We
simulated the system for 2�108 s, sampling every 2 min, for each
lg ~Q tested. After each division, only one daughter of each lineage
was simulated (randomly selected), to avoid exponential popula-
tion growth.

In Fig. 2, we show the stability of the Toggle Switch for different
levels of error in partitioning (black lines with crosses). As
expected, increasing the error in partitioning from lg ~Q ¼ 0 to
max destabilizes the switch on average, with the mean switching

Table 1
Parameters used in the model, unless stated otherwise.

Parameter Description Value Source

TD Doubling time 3600 s Yu et al. (2006)
kc Closed complex formation (maximum) 1/300 s�1 Kandhavelu et al. (2011)
ko Open complex formation 1/300 s�1 Kandhavelu et al. (2011)
dM mRNA degradation rate 1/200 s�1 Bernstein et al. (2002)
kP Translation rate 3/200 s�1 Yu et al. (2006)
dP Protein degradation ratea 1/10,000 s�1 Taniguchi et al. (2010)

a The degradation rate was set to match a mean protein number of �20 molecules (Taniguchi et al., 2010), assuming no regulation and given the values of the other
parameters.

Fig. 2. Mean switching interval (τs) of the Toggle Switch for different levels of error
in partitioning, two mean protein levels, and correlated/uncorrelated disordered
partitioning schemes. For 〈X〉¼ 20, switching intervals are also shown for the
lineage which always inherits more/less molecules. Data is from one 2�108 s
simulation for each data point.
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time decreasing by a factor of �4. Interestingly, the stabilizing
effect from partitioning schemes with less variance than binomial
does not seem to be as strong as the destabilizing effect from high-
variance partitioning. We suspected that this may be due to the
already-low variance introduced due to binomial partitioning with
〈X〉¼ 20. We therefore halved the translation rate kP to 1.5/200 s�1

so as to reduce the 〈X〉 to 10 (gray line). This increases the error in
partitioning in the binomial case, and should therefore increase
the impact of error correction. Even after this change, however, the
stabilizing effects of the lower-variance partitioning schemes
appear to be minimal. Note that for the 〈X〉¼ 10 case, the
maximum value of lg ~Q is 1, and thus the mean switching time
for lg ~Q ¼ 1 and lg ~Q ¼ max is the same. Finally, we did not
observe any significant difference in the stability of the switch
when using correlated and uncorrelated disordered partitioning
(Fig. 2).

With high errors in partitioning, we noted one interesting
phenomenon. Although the added variance destabilizes the Toggle
Switch on average, there are many instances where one daughter
cell inherits most of the proteins of the gene that was ‘ON' in the
mother cell at the moment of division. This generates a transient
time during which the probability of switching state in that
daughter cell is much smaller than otherwise. As such, high errors
in partitioning can be a source of robustness of the states of the
circuit in some cells, at the cost of loss of robustness in the sister
cells. To show this, we simulated the lineage which inherits more
molecules from the parent (black line with squares in Fig. 2). For
these cells, an increased stability is observed for the high lg ~Q
cases. Conversely, the lineage which inherits less molecules
exhibits reduced stability (black line with circles in Fig. 2). Thus,
high-variance partitioning of the proteins of the Toggle Switch
leads to the splitting of the population into sub-populations of
cells that differ in the degree of stability in their noisy attractors at
birth. This has a far from straightforward effect on the phenotypic
distribution of the cell population.

To study this, we constructed an abstracted model of a
population of cells, each containing a Toggle Switch (see Methods).
High-variance partitioning was modeled by protecting the
daughter cells which inherit more molecules from switching,
and destabilizing the daughter cells which inherit less, by increas-
ing the probability that they change state after division (see
Methods). For simplicity, we assume that the partitioning is
biased, i.e. one cell always inherits significantly more than the
other. We set the mean switching time when there is no error in
partitioning to the measured time in Fig. 2 for lg ~Q ¼ �1 and
〈X〉¼ 20, i.e. τS ¼ 2:5� 104s. We simulated this model with 1000
cells for 108 s and recorded the fraction of cells in one of the two
states at each time moment. The variance-to-mean ratio (VMR) of
this number is shown in Fig. 3 for different levels of bias in
partitioning BP.

If the phenotype of each cell is randomly, independently and
unbiasedly chosen, the phenotypes should follow a binomial
distribution with p¼0.5. This distribution has a VMR of 1
�p¼0.5, which is observed for the lower biases in partitioning
in Fig. 3. Increasing the variance in partitioning (by increasing the
bias in partitioning) has the counterintuitive effect of reducing the
variance of the phenotype distribution. In other words, while
the frequency of the fluctuations of this distribution is faster, the
amplitude of the fluctuations is smaller, and thus the distribution
is less broad over time. In the limit of fully biased partitioning
(BP¼1), the VMR decreases to 1/3, independent of the population
size and the switching rate (see Supplementary Material). This
lower limit on the VMR is due to the combined effect of the
randomization of the states of half of the population after each
division (p�

i ) and the noise arising from previous events, namely
divisions and switches between noisy attractors. Note that these

levels of VMR would not be possible to reach without anti-
correlations in protein numbers between sister cells (which do
not arise from noise in gene expression).

It is possible to envision realistic scenarios in which reduced
variance is advantageous. Assume that, under certain conditions,
one of the two noisy attractors is lethal for example. In this case,
high-variance partitioning may protect a population from exter-
mination. To show this, we simulated a population of cells
containing a switch that either produces a maintenance protein
or a protein that leads to the lethal noisy attractor (we refer to this
protein as being, in that sense, ‘lethal’).

For these simulations, we used the model of the Toggle Switch
at the molecular level (built from reactions (1)–(5)), along with
one extra condition: if the lethal protein exceeds a threshold, here
set to eight molecules, the cell dies (full model presented in
Supplementary Material, reactions (1)–(10)). The simulations
were initialized with one cell in the nonlethal noisy attractor
(25 maintenance proteins, and none of the lethal ones). Finally, in
contrast to the switch in Fig. 2, we tripled the rate of the closed
complex formation for the gene controlling the lethal state and
weakened the repression strength to Kd¼14 for both genes, so as
to mimic a lysogenic cell under stress, e.g. due to UV irradiation
(Baluch and Sussman, 1978). From the simulations, we obtained
the probability that the resulting population survived the stress
(here lasting 9.5 generations, or 30,600 s). The results are shown in
Fig. 4 for both correlated and uncorrelated disordered partitioning
schemes.

Fig. 4A shows that high-variance partitioning increases the
chance of survival of a small population of cells. In particular, the
survival chance of each cell increased by �1.3 fold in the
correlated case, despite the increased rate at which the switch
changes state on average (Fig. 2), and by �1.7 fold in the
uncorrelated case. This increase in the latter case is due to the
reduced chance that the cell inheriting the maintenance protein
also inherits most lethal proteins. This strategy comes at a cost:
the mean number of cells in the surviving population decreases
with increasing variance in partitioning (Fig. 4B). In this case, the
mean drops from 3.3 cells to 1.5 cells when increasing lg ~Q from
0 to max in both the correlated and uncorrelated schemes.
Interestingly, the increased survival probability becomes apparent
for intermediate values of lg ~Q , without incurring a large loss in
the mean surviving population size (mean of 2.6 and 2.7 for
lg ~Q ¼ 1 cases with correlated and uncorrelated partitioning,
respectively). No large differences were observed in the survival
chances or in the mean number of cells in surviving populations
when the variance in partitioning was decreased below binomial.

We note that the survival chance (Fig. 4A) is not monotonic
with lg ~Q , as it decreases slightly for small positive lg ~Q , for both
the correlated and uncorrelated cases. We expect that this is due

Fig. 3. Variance-to-mean ratio (VMR) of the phenotype distribution in a cell
population with Toggle Switches in each cell, as a function of the bias in
partitioning, BP. Data is from populations of 1000 cells simulated for 108 s.
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to the weakness of the aforementioned protection effect for
small lg ~Q . Without it, cells inheriting the majority of the proteins
would be less stable, since they also inherit the majority of the
lethal proteins. If this is the case, this effect should be exacerbated
in the correlated case, where one daughter cell always falls into
this category. As expected, Fig. 4A shows a slightly larger drop
in survival chance for the correlated case compared to the
uncorrelated case.

The above simulations assumed small initial populations.
Increasing the initial size of a population increases its survival
chances, since the probability that all cells die decreases. Never-
theless, the partitioning scheme affects the mean size of the
population over time. To exemplify this, the number of cells in a
population starting with 10,000 cells is shown in Fig. 4C for both
the correlated and uncorrelated disordered partitioning schemes.
After a transient of �5 generations, all populations enter an
exponential phase (linear on the log-linear plot). The slope of this
line informs on how quickly the population is growing/shrinking
in the different conditions. Table 2 shows the change in population
size over 10 generations in this exponential phase. In agreement
with the above results, all the disordered partitioning schemes
improved populations' numbers, with the uncorrelated disordered
schemes providing the best improvements, to the point where the
numbers even grow. In addition, the point at which the growth
rate is maximized is for an intermediate value of lg ~Q , consistent
with the above observation that the benefits of disordered
partitioning appear before the drawbacks.

The increase of survival rates with high-variance partitioning
should apply at least so long as the protein lifetime is on the order
of, or longer than the cell doubling time, to ensure that the added
stability of the state of the cells is not lost during the cell cycle.
Nevertheless, we tested several other parameter sets, including
protein degradation faster than cell division. Qualitatively, the
results hold, except for extreme parameter values. For example,
high-variance partitioning decreases the population survival
chance when the lethal protein's interaction with the maintenance
gene's promoter is extremely cooperative.

We also tested whether resetting the promoter state at division
(see Methods) affected the above results. The only significant
effect was a reduction by �1 to 5% in the survival chances in
the lethal noisy attractor scenario. Finally, we tested whether, in
this context, the use of a hill function (Eq. (6)) is equivalent to
using elementary reactions by measuring the stability of Toggle
Switches in both cases, as recent studies show that these two
modeling strategies can exhibit significant differences (Zhu et al.,
2007; Thomas et al., 2012). For this test, we did not allow cells to
divide. We found no significant differences between the two
models.

3.2. Repressilator

We next studied how errors in partitioning affect the behavior
of the Repressilator across cell generations. The circuit is con-
structed by triplicating reactions (1)–(5), and controlling the
production of each gene (labeled A, B and C) with the protein
concentration of the previous gene (the full model is presented in
the Supplementary Material, reactions (11)–(25)). We set the
model parameters to those in Table 1, and Kd to five proteins.
We simulated the system for 107 s, sampling every minute, for
each lg ~Q tested, and quantified the period by the zeros of the
autocorrelation function of the concentration of one gene's pro-
duct. While the mean of the period (�375 min) does not differ
between conditions, the variance does, as it increases with
increasing variance in partitioning for both the correlated and
uncorrelated disordered partitioning schemes (Fig. 5). The uncor-
related case exhibits lower variance than the correlated case, since
there is a higher probability of transmitting some of the phase
information to the daughter cells. No significant change in either
the mean or the variability of the periods was observed for lower-
variance partitioning schemes.

With less robust periods in the higher-variance partitioning
case, we predict that an initially synchronized population of cells
will desynchronize faster. To test this, we simulated the growth
of 500 initially synchronous cells, and measured the mean protein
concentration of each protein within the entire population at
each moment (an example is shown in Fig. 6A for binomial
partitioning). Note that the mean overall protein concentration
exhibits a small oscillation, and does not converge to a constant
value because of the combined effects of protein degradation and
the linear increase of the cell volume over the cell cycle (same as
in Fig. 1C). To quantify the loss of synchrony, we measured the

Table 2
Change in population size over 10 generations in exponential phase, for the

independent partitioning scheme (lg ~Q ¼ 0) and two disordered partitioning

schemes with varying lg ~Q . Data is from a least-squares linear fit to generations
15–30 in Fig. 4C.

lg ~Q Uncorrelated Correlated

0 �27%
0.5 �16% �25%
1 þ37% �12%
Max þ8% �24%

Fig. 4. (A) Survival chance of cell populations for different levels of error in parti-
tioning and correlated/uncorrelated disordered partitioning schemes. (B) Distri-
bution of the number cells in surviving population. (C) Mean population size over
time for different partitioning schemes. Corr/uncorr refer to the correlated and
uncorrelated disordered partitioning schemes. All data is from 10,000 simulations
starting from one initial cell.
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absolute difference between the mean protein concentration of
each protein (solid lines in Fig. 6A) and the mean overall protein
concentration of the three genes (dashed line in Fig. 6A). We
define D as the average of this value over each generation. If cells
are in perfect synchrony, as in the beginning of the simulations, D
will be large. Random fluctuations and random partitioning will
reduce D, since the mean protein concentrations will converge to
the overall mean, indicating that the population is less synchro-
nous. The values of D across generations for different levels of
error in partitioning are shown in Fig. 6B.

For correlated partitioning, Fig. 6B shows that the synchroniza-
tion of the Repressilator is remarkably robust to partitioning
errors, as there is only a slight change in the rate of desynchro-
nization (i.e. how quickly D approaches 0) for �1r lg ~Q r1. This
is despite the observed increase in the noise in the lengths of the
periods at lg ~Q ¼ 1 (Fig. 5).

When all-or-nothing partitioning is applied, the cells desyn-
chronize rapidly, with its effects being visible already in the third
generation. This is explained as follows: in the second generation,
the cell receiving all proteins will oscillate more robustly than in
the cases with less variance in partitioning, while the cell that
received no proteins remains in an undetermined phase for most
of its lifetime.

Finally, despite the decreased variance in the periods (Fig. 5),
uncorrelated partitioning decreases the synchrony of the popula-
tion slightly faster than correlated partitioning. This is due to the
highly synchronous subpopulation of cells inheriting the majority
of molecules in the correlated case. Overall, our results show that
the synchrony of the Repressilator is not affected by moderate
partitioning errors, but decreases for more extreme errors.

When relaxing the assumption that the promoter state resets
during division, we found no significant effect on either the noise
in the oscillation period or the rate of desynchronization. Further,
we looked for phase-locking effects when the period of the
Repressilator was near an integer multiple of the cell cycle. We
were, however, not able to observe phase-locking in our simula-
tions, perhaps due to the magnitude of the noise in the period's
length, even in the lowest lg ~Q case (Fig. 5). This is in agreement
with a lack of change in behavior when changing the ratio
between the mean period and the mean length of the cell cycle
(data not shown).

4. Conclusions and discussion

From stochastic simulations, we studied the effects of errors in
partitioning on the behavior across cell generations of two genetic
circuits, the Toggle Switch and the Repressilator. Knowledge of
the effects is necessary not only to understand their kinetics in
long scales across cell lineages but also in the context of synthetic
biology, where partitioning schemes may potentially be used as
regulatory mechanisms. The results suggest that genetic circuits
are far from immune to this source of cell-to-cell variability,
although the extent to which they are affected is heavily network-
dependent.

We found that increasing partitioning errors not only decreases
the stability of the noisy attractors of the Toggle Switch but also
decreases the variance of the phenotypic distribution of the
population below that of a binomial distribution. Notably, while
the former result could be obtained by increasing noise in gene
expression, the latter could not. This effect was due to the anti-
correlation between the protein numbers inherited by sister cells,
which is enhanced with high-variance partitioning and increases
the stability of the inherited state of one cell at the cost of the
stability of its sister cell. In this context, we considered an extreme
case, by assuming that one of the states of a switch led to cell
death. We found that finite cell populations, originally heading to
extinction when employing binomial partitioning of components,
increase their survival chances and may even grow in numbers
over time, if they employ disordered partitioning schemes instead.
This is due to the increased chances that, following each division,
one of the daughter cells will remain in the non-lethal state.

The Repressilator was found to be more robust than the switch
to increasing partitioning errors. Though the variance in the
periods increased, consistent with an increase in noise in gene
expression, the synchrony of a population was remarkably robust

Fig. 6. (A) Mean protein concentrations of each protein in the Repressilator (solid
lines), when subject to independent partitioning of molecules at division (i.e.
lg ~Q ¼ 0). The overall mean protein concentration is also shown (dashed line).
Vertical dashed lines indicate division points. Data is from a population starting
with 500 cells in the same state ([A]¼12, [B]¼12, [C]¼0). (B) Difference between
the mean protein concentration of each protein and the mean overall protein
concentration, averaged over each generation (D), for differing levels of error in
partitioning and different partitioning schemes. Corr/uncorr refer to the correlated
and uncorrelated disordered partitioning schemes. Data is from a population of 500
initial cells for each line.

Fig. 5. CV2 of the period of oscillation of the Repressilator, subject to differing levels
of errors in partitioning and correlation in partitioning. Data is from one 107 s
simulation for each data point.
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to this increase. Only the strongest errors in partitioning (i.e., the
all-or-nothing partitioning scheme) were able to significantly
affect the degree of synchrony of the population. This is interest-
ing, in that the function of circuits to track time is commonly the
maintenance of synchrony between cells in a population. Further,
even in the ‘all-or-nothing' scenario, we expect that a simple cell
to cell communication system will suffice to quickly resynchronize
the clocks of sister cells following division.

We also studied the effects of correlations in the partitioning
errors of the different proteins of the two circuits above. Such
correlations are expected if the division process is morphologically
asymmetric. We found that these correlations have no effect on
the stability of the genetic switches and only slightly increase the
rate of desynchronization of Repressilators in sister cells.

In all conditions tested, we did not observe any significant
effect in the behavior of cells when using ordered partitioning
schemes, when compared to binomial partitioning. This, combined
with the fact that the implementation of such schemes is likely
energy-consuming (due to requiring error correction (Huh and
Paulsson, 2011b)), may explain why its use, while not absent (Di
Ventura and Sourjik, 2011), is seemingly rare in nature, at least for
low-to-medium-copy components such as RNA and regulatory
proteins.

Non-binomial partitioning errors can arise in a number of
different ways. Here, we have used pair formation to achieve
lg ~Q o0, and random accessible volume to achieve lg ~Q 40.
Though we believe that Q2

X , and thus lg ~Q , captures the most
important aspect of the partitioning schemes (Huh and Paulsson,
2011b), other partitioning schemes could result in similar values
of lg ~Q , but lead to different behaviors. For example, correlated and
uncorrelated disordered partitioning schemes produce slightly
different effects for the same lg ~Q . As more complex networks are
analyzed in this context in the future, it will likely become
necessary to characterize the various possible partitioning schemes
more comprehensively.

One sort of error in partitioning not considered here occurs
when the circuit is expressed from a multi-copy plasmid (Gardner
et al., 2000; Elowitz and Leibler, 2000), whose numbers are also
partitioned stochastically in division (Reyes-Lamothe et al., 2013).
We expect that errors in plasmid partitioning will affect the
dynamics of the circuits they code for in a manner similar to the
correlated disordered partitioning schemes employed here, since
the same partitioning error eventually affects all proteins. How-
ever, the impact of the division event will be delayed and diluted
over time by noise in plasmid replication and gene expression.
Other extrinsic noise sources not considered here include cell to
cell diversity in RNA polymerase and ribosome numbers, among
others. Future studies may assist in quantifying the contribution of
these sources on the temporal distributions of cellular phenotypes.

The results above show that the effects of errors in partitioning
differ widely from those of noise in gene expression. The differ-
ences arise primarily from the unavoidable anti-correlation in the
numbers of molecules inherited by sister cells, whereas noise in
gene expression affects all cells in the population independently.
In other words, unlike noise in gene expression, the division
process forces sister cells to move in opposite directions in the
network's state space, starting from the location of the mother cell
the moment prior to division.

The qualitative differences in the effects of errors in partition-
ing in the Toggle Switch and the Repressilator derive from the
differences in their long-term behaviors. In the Toggle Switch,
with two noisy attractors, division can move one of the daughter
cells close to the border of the basin of attraction that the mother
cell lied on, while moving the other daughter cell further into
the basin. That creates a strong possibility that the former cell
switches into the neighbor attractor while the chances that the

latter remains in the present attractor are enhanced. In other
words, there are increased chances that sister cells will exhibit
opposite behaviors. The Repressilator, on the other hand, has only
one attractor, a state cycle. Regardless where the daughter cells lie
on the state space following division, they will both travel towards
the same attractor, thus becoming closer in the state space with
time. Thus, in this network, the effects of partitioning are hardly
distinguishable from those of noise in gene expression.

From all of the above, it is possible to infer general conse-
quences of errors in partitioning on the dynamics of small genetic
circuits. In circuits with only one noisy attractor, the effects of
these errors are not expected to differ qualitatively from those of
noise in gene expression. Meanwhile, in circuits with more than
one noisy attractor, large errors in partitioning enhance the
chances for sister cells to begin their lifetime in different noisy
attractors, with one sister cell deeper into the mother's basin of
attraction and the other jumping way from it. There is a process in
natural organisms that exhibits some similarity. Namely, multi-
cellular organisms have stem cells which, in division, produce both
a renewed stem cell (i.e. on the same noisy attractor as the mother
cell) and a differentiated cell (i.e. on another noisy attractor of the
gene regulatory network). It would be of interest to assess in the
future the degree to which the many asymmetries in these
division events are deliberate.

Finally, it is interesting to note that the effects of noise in gene
expression and of errors in partitioning must, in one or more
aspects, differ for all networks. This is because, first, their effects at
the single gene level differ, in that while noise in gene expression
enhances fluctuations at all time points, errors in partitioning
occur only at specific, rare moments. Second, at the network level,
increased noise in gene expression decreases the stability of all
noisy attractors at all times. Meanwhile, partitioning errors pro-
mote transitions between attractors at specific points in time,
without affecting their stability otherwise. As such, it is reasonable
to hypothesize that both of these ‘perturbation mechanisms' will
be of use in present efforts in Synthetic Biology and are likely to be
used for different aims in natural organisms.
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Supplement to “Dynamics of small genetic circuits subject to stochastic partitioning 

in cell division” 

 

Jason Lloyd-Price, Huy Tran, and Andre S. Ribeiro 

Parameters for partitioning schemes 

The formulas used to adjust the    ̃ of a given partitioning scheme are presented here. 

The partitioning error for the Pair Formation scheme is given by equation 8 of ref. 6 in the main 

manuscript (where the probability of evenly partitioning a pair is p = 1): 

  
  

   

〈 〉
 

where k is the fraction of molecules that form pairs. The value of    ̃ is given by: 

   ̃    (〈 〉  
 )     (   ) 

To achieve a given    ̃, we therefore set          ̃. 

The partitioning error for the Random Accessible Volume segregation scheme, from equation 2 of ref. 6 

in the main manuscript, is: 
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where     
  is the partitioning error of the accessible volume. The value of     

  is determined by the 

number of macromolecules (denoted by B) that reduce the volume accessible to other molecules: 
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The value of    ̃ is given by:  
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To achieve a given    ̃, we therefore set   
〈 〉   

  〈 〉  

     ̃  
, where the values of    

  and 〈 〉 were 

calculated by simulating a model with the binomial partitioning scheme, and sampling these values 

immediately before division events. Figure S1 shows that the above formulas produce the desired values 

of    ̃ when applying the different partitioning schemes.  

 



 

Figure S1: Input    ̃ and simulated results after applying the partitioning schemes. 

 

 Figure S2: CV
2
 of the protein concentration ([P] = P/V), taken over all time with different errors 

in partitioning in division, for different mean protein levels before division. Data is from a single 

simulation of length 10
8
 s, for each level of partitioning error. 
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Stochastic model of the Toggle Switch 

The Toggle Switch’s model comprises two genes A and B, which repress each other via their protein 

products. The repression function is a hill function, described in equation (6) of the manuscript. 

Parameters are shown in Table S1. 

Parameter Description Value 

TD Doubling Time 3600 s 

kcA Gene A’s Closed Complex Formation Rate 1/300 s
-1

 

kcB Gene B’s Closed Complex Formation Rate 1/300 s
-1

 

ko Open Complex Formation Rate 1/300 s
-1

 

dM mRNA Degradation Rate 1/200 s
-1

 

kP Translation Rate 3/200 s
-1

 

dP Protein Degradation Rate 1/10000 s
-1
 

Kd Dissociation Constant  20/3 

Table S1: Parameters used in the single lineage simulation of a Toggle Switch. To vary the mean 

protein level from 20 to 10, the translation rate kP is halved from 3/200 s
-1
 to 1.5/200 s

-1
. The dissociation 

constant Kd, set as <X>/3, is 20/3 or 10/3 respectively. For parameter sources, see Table 1 in the main 

manuscript. 

The model consists of the following set of reactions: 
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In the case where one noisy attractor is ‘lethal’, the model consists of reactions (1)-(10) with one 

additional condition: if PB equals or exceeds 8, the simulation of that cell is immediately ended. 

Parameters are shown in Table S2. 

  



Parameter Description Value 

TD Doubling Time 3600 s 

kcA Gene A’s Closed Complex Formation Rate 1/300 s
-1

 

kcB Gene B’s Closed Complex Formation Rate 3/300 s
-1

 

ko Open Complex Formation 1/300 s
-1

 

dM mRNA Degradation Rate 1/200 s
-1

 

kP Translation Rate 3/200 s
-1

 

dP Protein Degradation Rate 1/10000 s
-1
 

Kd Dissociation Constant 14 

Table S2: Parameters used in the Toggle Switch simulation in the case where one noisy attractor 

is ‘lethal’. Gene B, the ‘lethal’ gene, has the rate of closed complex formation kcB 3 times faster than that 

of gene A (kcA), the maintenance gene. For parameter sources, see Table 1 in the main manuscript. 

Stochastic model of the Repressilator 

The model of the Repressilator consists of three genes A, B, and C, which repress each other in a ring. 

The repression function is a hill function, described in equation (6) of the manuscript. The model 

parameters are shown in Table S3. 

Parameter Description Value 

TD Doubling Time 3600 s 

kc Closed Complex Formation Rate 1/300 s
-1

 

ko Open Complex Formation Rate 1/300 s
-1

 

dM mRNA Degradation Rate 1/200 s
-1

 

kP Translation Rate 3/200 s
-1

 

dP Protein Degradation Rate 1/10000 s
-1
 

Kd Dissociation Constant  5 

Table S3: Parameters used in the Repressilator simulation. For parameter sources, see Table 1 in 

the main manuscript. 

The model consists of the following set of reactions:
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Minimum VMR with fully biased partitioning 

In the case of fully biased partitioning in the continuous culture model of a population of cells containing 

Toggle Switches, it is possible to derive the VMR of the phenotype distribution as follows. Let N be the 

number of cells before a division,    be the variance of the number of cells in state 1 at that time. The 

variance of the number of cells in state 1 after the division (after reactions (13) and (14) of the 

manuscript), is then        (   )  , where p is the probability that one of the cells receiving 

nothing will end up in state 1 after division, which is 0.5 since the switch is unbiased. We then obtain the 

variance of the stationary phenotype distribution by setting: 

   
  

 
 
  (   )

 
 

The VMR is therefore: 

  

  ⁄
 
 

 
 

We note that this result does not apply if the population is allowed to grow indefinitely. In this case, the 

VMR converges to the VMR of a binomial. 
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Abstract

Many genes are only active following the intake of an inducer
by the cell, via passive diffusive, positive, or negative feed-
back intake mechanisms. Based on measurements of the in
vivo kinetics of intake and subsequent transcription events
in Escherichia coli, we use stochastic models to investigate
how the kinetics of intake affects both transient and near-
equilibrium dynamics of gene expression. We find that the
intake kinetics affects mean and variability of the transient
time to reach the steady state of proteins numbers and also the
degree of fluctuations in these numbers. Fluctuations in the
extracellular number of inducers affects the variability of pro-
tein numbers at steady state in a degree that differs with the
intake kinetics. Finally, changing the intake kinetics of an in-
ducer of a genetic switch allows tuning the bias in the choice
of noisy attractor. We conclude that the kinetics of inducer
intake affects transient and near-equilibrium gene expression
dynamics and, consequently, the phenotypic diversity of or-
ganisms in fluctuating environments.

Introduction
To survive, cells must adapt to environmental changes, such
as in the concentration of nutrients and toxics. Some of these
changes can occur at rates faster than, e.g., the cell cycle, and
thus require rapid adaptability from the cells. This adaptabil-
ity may involve modifications in the kinetics of membrane-
associated mechanisms (Sajbidor, 1997), metabolic rates
(Talwalkar and Kailasapathy, 2003), or gene expression (Ya-
mamoto and Ishihama, 2005; Allen and Tresini, 2000).

Studies suggest that organisms such as Escherichia coli
can adjust the reception of some external signals. For exam-
ple, in normal conditions, transcription of the genes of the
lac operon (Elf et al., 2007; Hansen et al., 1998) is inhib-
ited by the native lac repressor. When allolactose is present
in the environment, it is absorbed by passive intake trans-
port and triggers the expression of the lac genes. One of
the proteins expressed, lacY, enhances the intake of allolac-
tose further, thus forming a positive feedback. Such feed-
back mechanisms are particularly useful in saving cellular
resources in periods when inducers are not present(Jacob
and Monod, 1961). On the other hand, negative feedback

mechanisms are appropriate for, e.g., quickly pumping un-
wanted substances out of the cell (Schnappinger and Hillen,
1996). One example is the tetracycline intake system, as
the tetracycline-induced proteins tetA actively transport the
tetracycline out of cell (Beck et al., 1982).

A recent study (Megerle et al., 2008) showed that the
timing of intake of inducers differs widely between cells in
monoclonal populations of E. coli. Such variability in intake
times was visible in the differing timings for the appearance
of proteins in cells following the introduction of the inducer
in the media even though, after a transient period, all cells
exhibited the same rate of protein production. Another re-
cent study (Makela et al., 2013) supported this hypothesis,
by showing that there is a wide variability in the timing of
activation of transcription following the appearance of the
inducer in the media that is not due to noise in gene expres-
sion but causes high cell to cell variability in RNA numbers
for long periods of time (i.e. longer than several cell cycles).
This source of phenotypic diversity is likely to be of particu-
lar relevance in fluctuating environments (Acar et al., 2013;
Ribeiro, 2008).

Here, using detailed stochastic models of gene expression
and intake processes in E. coli, we investigate if differing in-
take kinetics results in differing kinetics of expression of the
target gene both in the transient period for protein numbers
to reach near-equilibrium, as well as in the subsequent sta-
ble phase. Next, we investigate how fluctuations in inducer
numbers in the environment affect this variability. Finally,
we investigate whether the intake kinetics of inducers can
affect the behavior of a small genetic circuit, namely, a tog-
gle switch.

Methods
We compare the kinetics of expression when the inducer
of the target gene enters cells via positive feedback mecha-
nisms, passive diffusion, or negative feedback mechanisms.
While varying the intake kinetics, the mean number of pro-
teins expressed by the target gene is kept invariant in the
stable phase.

The dynamics of the models is driven by the delayed



Stochastic Simulation Algorithm (delayed SSA) (Roussel
and Zhu, 2006). This algorithm, unlike the original SSA
(Gillespie, 1977), allows delaying the release of products,
following a reaction. Furthermore, it differs from previ-
ous algorithms that can accommodate delays (e.g. (Bratsun
et al., 2005; Barrio et al., 2006)) in that it can handle mul-
tiple delayed events in one reacting event, which facilitates
the modeling of genetic circuits(Ribeiro, 2010). The delayed
SSA uses a wait list to store delayed output events. The wait
list is a list of elements (e.g., proteins being produced), each
to be released after a time interval has elapsed (also stored
in the wait list).

Each model includes an extracellular environment, which
contains inducers, a cellular intake mechanism of inducers,
and a gene expression mechanism that requires activation.
The proteins produced can affect the intake kinetics, so as
to model positive or negative feedback mechanisms. The
models are simulated by SGNSim (Ribeiro and Lloyd-Price,
2007). All parameter values are extracted from measure-
ments in E. coli, unless stated otherwise.

Environment and passive transport of inducers
We assume that the inducers in the environment are inex-
haustible. To model passive diffusion of inducers into cells,
we set a rate constant of intake (kIin) and an extracellular
amount of inducers (Ie) equal to 1, for simplicity. The in-
take is modeled by the following reaction:

∅ Ie×kI in−−−−−→ I (1)

where I is the number of inducers inside a cell. Note that, in
all cases, even when an active mechanism is present, there is
always passive intake.

To model fluctuations in inducer numbers in the environ-
ment, we assume that these follow a Gaussian distribution
with standard deviation σe and unity mean. The fluctuations
are set to occur at a rate slow enough to allow for one fluc-
tuation to have a visible effect in the protein numbers before
the next one occurs. For that, we use a first order autore-
gressive model to restrict the degree of change in inducer
numbers from one moment to the next, with the following
update rule:

Ie(t) = 1− ϕ+ Ie(t− δt) ∗ ϕ+ ϵt (2)

where ϕ is constant, ϵt is white noise with standard devia-
tion of σt, and δt is the update interval. The model gener-
ates values for the extracellular inducer numbers according
to Ie ∼ N(1, σ2

e), where:

σ2
e =

σ2
t

1− ϕ2
(3)

The inducers’ extracellular concentration thus has the auto-
correlation function’s decay rate of −ln(ϕ)/δt. By tuning

ϕ, one can adjust the rate of change in this concentration.
Finally, cells can dispose of inducers via diffusion, modeled
as a first order reaction event:

I
kI out−−−−→ ∅ (4)

Reaction 4 is assumed to account also for possible degra-
dation events of inducers when inside the cell.

Active transport mechanisms
We assume that the active transport rate is proportional to
the number of proteins of the target gene. Let such transport
be done by a protein P .

Positive feedback mechanisms are modeled by reaction
5a, where one inducer I is introduced in the cell by a protein
P , while negative feedback mechanisms are modeled by re-
action 5b, where one inducer is pumped out of the cell by a
protein P :

P
Ie×kP in−−−−−−→ P + I (5a)

P + I
kP out−−−−→ P (5b)

These two mechanisms are never present simultaneously.

Gene expression
We assume that the gene only expresses once activated. An
inducer I interacts with the operator site O at the promoter
region of the gene via the following reactions:

O + I
ka−⇀↽−
kd

O.I (6)

where ka and kd are the association and the disassociation
rate constants, respectively. We assume half lives of induc-
ers much longer than the expected time for disassociation
to occur. Thus, we do not model degradation of inducers
when bound to the operator. Additionally, we assume that
leaky expression is negligible and that the operator site is
not overlapped by the RNA polymerase for any significant
time, so that the interaction between promoter and inducer
is independent of the transcription process, particularly ini-
tiation.

The model of gene expression used was proposed and val-
idated in (Ribeiro et al., 2006; Zhu et al., 2007), by compar-
ing its kinetics with the real-time production of tsr-venus
proteins under the control of a lac promoter in E. coli (Yu
et al., 2006). The model consists of transcription (7), in this
case of the activated gene, and translation of the resulting
RNA molecules (8). Also modeled are first order degrada-
tion processes of RNA (9) (Bernstein et al., 2002) and pro-
teins (10). Transcription events can occur when the operator-
inducer complex O.I is formed. RNA polymerases are not
explicitly modeled, as it is assumed that these exist in suf-
ficient amount so that fluctuations in their numbers are not



significant. The transcription start site (TSS) is modeled ex-
plicitly so that transcription initiation events do not interfere
with operator-activator reactions:

O.I + TSS
∞−→ TSS(τ) +O.I +M(τ) (7)

M
kP−−→ M + P (8)

M
dM−−→ ∅ (9)

P
dP−−→ ∅ (10)

Reaction 7 describes the process of transcription. In par-
ticular, τ (which follows a Gamma distribution (Kandhavelu
et al., 2011)) accounts for the finding of a promoter region
by an RNA polymerase, the formation of the closed complex
at the transcription start site, the open complex formation,
and finally, the promoter escape (DeHaseth et al., 1998) and
elongation. Of these, in general, the most rate limiting steps
are the isomerization steps and the open complex formation
(McClure, 1985; Lutz et al., 2001). To model this multi-step
process, we set the reaction rate to infinity, which causes the
reaction to occur the moment the reactants become avail-
able. Thus, in this model, τ determines the interval between
consecutive productions of transcripts when the gene is in-
duced.

Also, given the short duration of the elongation time in
comparison to transcription initiation (Kandhavelu et al.,
2011), the transcript (M ) is released at the same time as the
TSS (i.e. the elongation time is assumed negligible). This
allows for translation events of the RNA to initiate (reaction
8) as soon as the assembly of that RNA begins (Miller et al.,
1970).

Genetic Toggle Switch
The toggle switch consists of a network of two genes (here,
B and C), whose proteins (PB and PC , respectively) repress
the other gene’s activity. We assume that these two genes are
only active when bound by a protein produced by an operon,
‘A’, which is itself activated by the extracellular inducer. The
transcription and translation processes in each of these genes
are modeled as described in the previous section.

In this model, the operon A, once activated by the in-
ducer, expresses two proteins, PA1 and PA2. The former
is involved in the intake of the inducer via a feedback mech-
anism (described in a previous section), while the latter ac-
tivates genes B and C via the following reaction:

PA2 +ORi
ka−→ Oi (11)

where PA2 is the activator, ORi is an operator site at the pro-
moter of either gene B or C in the inactive state (i = B,C),
ka is the association rate constant, and Oi is the operator
region with the activator bound to it.

The interactions between genes B and C form a switch.
Namely, each of these genes, once activated by PA1, is free

Figure 1: Model switch and activation mechanism. Inducers
enter the cell by the intake mechanism, whose kinetics is
determined by Ω (dashed box). Protein PA1 is responsible
for the feedback mechanism, while PA2 activates genes B
and C, whose mutual interactions form a switch.

to express or to be repressed by the protein of the other gene
(PB represses gene C while PC represses gene B). Such re-
pressions occur at a second operator site at the promoter re-
gions, via:

Pj +Oi
kai−−→ OiPj (12)

where Pj is the repressor, Oi is an active operator site of ei-
ther gene B or C, OiPj is the operator region with a repres-
sor bound to it, and kai is the association rate constant of
that repressor. Importantly, this rate differs in the two genes,
being higher for gene C, which biases the choice of noisy
attractor made by the switch, when first initialized (Ribeiro
and Kauffman, 2007). The noisy attractor favored is “gene
C on and gene B off”. In Fig. 1 we show a schematic repre-
sentation of this model.

Characterization of the intake process
To compare the effects of different active intake systems we
modeled these such that, for the same extracellular concen-
tration of inducers, one has the same mean protein number
of the inducible gene at steady state ([P ]), for varying ac-
tive transport kinetics. To achieve this, the mean number of
inducers in the cells at steady state ([I]) has to be kept con-
stant for varying intake kinetics, which is done by tuning the
kinetics of passive intake.

In the stable phase, the influx and outflux rates of induc-
ers are identical. Let f1 and f2 be the passive influx and
outflux of inducers, respectively. These occur, respectively,
via reactions 1 and 4. Given these, f1 = Ie × kI in while
f2 = [I]kI out. Let f3 be the flux due to the active transport.
Since the flux (f ) from active and passive transports, in the
stable phase, must equal zero, then:

f = f1 − f2 + f3 (13)
= [Ie]kI in − [I]kI out + f3 = 0



The active transport flux f3 can thus be calculated as fol-
lows, in each condition:

f3 =


[Ie][P ]kP in > 0 positive feedback
−[P ][I]kP out < 0 negative feedback
0 passive diffusion

(14)

Finally, we define Ω as the log ratio between the passive
disposal flux and the passive intake flux. The value of Ω
informs on the rate at which inducers are transported into
cell by passive intake when in the stable phase:

Ω = lg(
f2
f1

) = lg(
f3
f1

+ 1) = lg(
[I]kIout
kIin

) (15)

Ω can take positive values in the presence of positive feed-
back (i.e. f3 > 0), and negative values in the presence of
negative feedback (f3 < 0). Given passive intake alone
(f3 = 0), Ω = 0.

Results
The models used to study the effects of the kinetics of the
intake of inducers on the dynamics of gene expression are
stochastic. Thus, to assert if their dynamics changes as a
function of a parameter’s value, we perform tests of statisti-
cal significance. Also, the models are initialized without any
proteins of the target gene, so as to assess the kinetics both
at the stable phase, as well as during the transient to reach
the stable phase.

Gene expression and intake kinetics
We first study the dynamics of protein numbers of a tar-
get gene as a function of the intake kinetics of the inducer,
both in the transient phase and in the near-equilibrium or
stable phase. In all cases, we use the following parame-
ter values for the model of gene expression: kP = 0.005
s−1 (Taniguchi et al., 2010), dM = 0.002 s−1(Bernstein
et al., 2002), and dP = 0.0005 s−1(Taniguchi et al., 2010).
Also, we let τ be a random variable following a gamma dis-
tribution Γ(α, θ), with the shape α equal to 2 (Kandhavelu
et al., 2011) and the scale θ equal to 25 s. The value of θ
was set so that, given the other parameter values, the mean
RNA number in the stable phase is ∼ 10, in accordance
with in vivo measurements in E. coli (Taniguchi et al., 2010).
The reaction rates of inducer-operator interactions are set to:
ka = 10−5s−1 and kd = 0.02, so that the expected time for
inducers to bind to the promoter is in accordance with mea-
surements reported in (Elf et al., 2007).

We vary Ω, while maintaining constant the mean pro-
tein ([P ] ∼ 30) and mean inducer numbers within the cells
([I] ∼ 1400), when in the stable phase. For this, the range
of variation of Ω was constrained between -1 and 1. This
range complies with measurements of the intake kinetics of
known inducers (namely, of tet and lacY) in E. coli (Brown
and Hogg, 1972; Hansen et al., 1998; Beck et al., 1982).

For each value of Ω, we simulate 500 cells, each for 60
000 s, sampling their state every 60 seconds. We define the
stable phase as the phase in which the mean protein numbers
in the cells do not differ, in a statistical sense, for different
values of Ω. We found that all cells reach the stable phase
after, at most, t = 4 × 104 s. In Table 1, we show the p-
values of the Kolmogorov-Smirnov (KS) test comparing the
distribution of mean protein numbers when Ω = 0 (passive
intake) with each of these distributions for the other values
of Ω, in the stable phase.

Table 1: p-values of the KS test comparing the distribution
of mean protein numbers when Ω = 0 and when Ω takes
other values, in the stable phase (t > 4× 104 s)

Ω -1 -0.4 1 0.4 1
p-value 0.03 0.19 1.00 0.26 0.34

The p-values from likelihood ratio tests with the null hy-
pothesis that the distributions are identical are larger than
0.01, thus, we cannot reject that they are identical in a sta-
tistical sense. Therefore, in this range of values of Ω, the
models have identical mean protein numbers over time, in a
statistical sense, when in the stable phase.

We next study the intracellular dynamics of inducer num-
bers as a function of Ω. In Fig. 2a we show the mean number
of inducers in the cells over time, from the start of the sim-
ulations. These vary significantly as a function of Ω, before
reaching the stable phase. In particular, for Ω < 0 (negative
feedback), there is a rapid influx of inducers, followed by
a steady decrease towards the numbers at near-equilibrium.
For Ω > 0 (positive feedback), the inducer numbers take
longer time to reach near-equilibrium. The passive intake
mechanism (Ω = 0) is, of the cases modeled, the one for
which the intracellular inducer numbers stabilizes faster. We
found by inspection that this mean time is minimized for val-
ues of Ω close to, but slightly smaller than 0. Finally, from
Fig. 2b we observe that the proteins reach slower the num-
bers observed in the stable phase the greater is Ω.

In Fig. 3, we show the mean transient time (t0) for each
value of Ω, along with the square of the coefficient of vari-
ation (CV 2(t0)), obtained from the multiple simulations in
each condition. We find that the mean t0 is shorter for neg-
ative intake mechanisms. However, the CV 2(t0) does not
change significantly with Ω.

Next, we assess the fluctuations in protein and inducer
numbers in the stable phase as a function of Ω. Fig. 4 shows
the variance over the mean (σ2/µ) ratio (i.e. the fano fac-
tor) of these numbers. This quantity is minimized for Ω = 0
in the case of intracellular inducer numbers. In the absence
of feedback, these follow a Poisson distribution, as expected
since both the passive intake and disposal are first-order pro-
cesses. When there is an active feedback mechanism, the
noise in protein numbers causes an noise in the intracellular
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Figure 2: Mean numbers of inducers (top) and proteins (bot-
tom) over time: Ω < 0 corresponds to negative feedback,
Ω = 0 corresponds to passive intake, and Ω > 0 corre-
sponds to positive feedback mechanisms.
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Figure 4: Noise in protein and intracellular inducer numbers
in the stable phase as a function of Ω.

inducer numbers to be higher, then when only passive intake
is present. The stronger the feedback mechanism (larger de-
viation from Ω = 0), the stronger is this effect.

On the other hand, the noise in protein numbers in-
creases for increasing Ω, being lower for negative feed-
back mechanisms and higher for positive feedback mech-
anisms. To investigate this, we calculated the normalized
cross-correlation between protein and intracellular inducer
numbers in the stable phase for varying Ω (Fig 5). For pos-
itive feedbacks (Ω > 0), the protein and inducer numbers
are positively correlated. This means that the noise in intra-
cellular inducer numbers will be propagated to the protein
numbers, causing it to be higher than in the passive diffusion
case. In the regime of negative feedbacks, the numbers of in-
tracellular inducers and proteins are anti-correlated, and the
noise in the numbers of proteins is suppressed, when com-
pared to passive diffusion case. Finally, as expected, in the
absence of feedback mechanisms, the noise in intracellular
inducer numbers does not affect the protein numbers, which
is indicated by zero cross-correlation at Ω = 0.

Finally, we study how the intake mechanisms behave in
environments with fluctuating number of inducers. We as-
sume that the extracellular number of inducers follows a
Gaussian distribution with variance σ2

e = 0.2 and unity
mean, generated by the autoregressive model (see methods).
We set δt to 30 s. We set the rate of environmental change,
ϕ, from 0.5 to ∼ 1. The closer the value of ϕ to 1, the
slower the decay rate of the autocorrelation function of the
extracellular inducer concentration. For ϕ ∼ 1, the extra-
cellular inducer concentration is constant, corresponding to
σe = 0. For each pair of values [ϕ,Ω], we simulate one cell
for 5×106 s, sampling every 60 s. Fig. 6 shows the changes
in fluctuations in protein numbers in the stable phase (as as-
sessed by the CV 2) due to the fluctuations in the inducer
numbers, relative to when in stable environments.

From Fig. 6, with values of ϕ larger than 0.8, the noise
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amplification in the protein numbers appears to increase
with increasing Ω. For each value of ϕ > 0.8, we performed
tests of statistical significance between the protein numbers
when Ω is 0, and when is -1 and 1, respectively. In both tests,
we found that the distributions are distinct (p-values smaller
than 10−10), confirming that the increase in the noise ampli-
fication effect with increasing Ω is statistically significant.

For positive feedback mechanisms, the noise amplifica-
tion ratio for different values of ϕ resembles a band pass
filter (Fig.7). As ϕ increases up to 0.9, the fluctuations in the
external inducer numbers propagate more efficiently to the
protein numbers of the induced gene (as shown in Samoilov
et al. (2002)). When ϕ increases beyond 0.9, the noise am-
plification ratio decreases as the positive feedback, affected
by the extracellular inducer numbers, loses the ability to re-
flect the fluctuations in protein numbers. Interestingly, for
Ω = 1, ϕ = 0.5, σe = 0.2, the protein CV 2 is reduced by
∼ 10% when compared with the noiseless case (i.e. σe = 0).
This reduction is significant, namely the resulting distribu-
tions of protein numbers in the two cases are statistically
distinct (p-value smaller than 10−10).

Inducible genetic switch
We study the behavior of a biased genetic switch as a func-
tion of the intake kinetics of an inducer. The model consists
of two genes, B and C, which form a switch via mutually
repressing interactions, and of a third gene, A, responsible
for, once activated by the inducer, activate both genes B and
C (figure 1).

In this model, PA2 activates the expression of genes B
and C in the same fashion as reaction 6, with the association
rates: kA2B = 0.001 s−1, kA2C = 0.002 s−1. The other
parameters of genes B and C are: kPB = kPC = 0.05s−1,
dMB = dMC = 0.002 s−1, dPB = dPC = 0.0005
s−1. The formation of the open complex is regulated by:
τB, τC ∼ Γ(1, 100s). Finally, we denote [tB ] and [tC ] as the
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mean elapsed times from the introduction of inducers to the
first closed complex formation in each promoter. The bias in
the association rate constants biases the moments of forma-
tion of the closed complex. Namely, on average, these occur
at moments that differ in time by: ∆t = [tB ]− [tC ] > 0.

Given these parameter values, we observed that both
noisy attractors of the switch are stable enough so that, once
a noisy attractor is reached, the switch will remain there un-
til the end of the simulation. Also, as noted in the methods
section, the association rate of the activator protein PA2 is
higher in the case of gene C, which biases the first choice
of noisy attractor of the switch. For Ω = 0, the first noisy
attractor selected by the switch will be “gene C on” ∼ 65%
of the times (see Fig. 8).

We study the bias in the choice of noisy attractor as a func-
tion of Ω. For each value of Ω, we simulate 1000 indepen-
dent cells, each in 30 000 s, sampled every 5 seconds. The
results are shown in Fig. 8. From this figure, for increasing
values of Ω, the bias in choice of noisy attractor is reduced
from ∼ 67% to ∼ 62%.

We performed statistical tests of significance comparing
the distribution of ∆t when Ω = 0 to the same distribution
when Ω = −1 and 1 respectively. The test results show that
all tested pairs of distributions are distinct (p-values smaller
than 10−10).

This result can be explained as follows. As Ω is increased,
PA reaches the stable phase slower. Thus, both [tB ],[tC ]
increase, but not by equal amounts (e.g. for half the number
of proteins A, each of these times is doubled). Accordingly,
∆t increases and the distribution of chosen noisy attractors
becomes more biased.

Discussion
Many genes in E. coli, as well as other single-celled organ-
isms, only become active in response to an external signal,

either individually, or as part of a small network. Addition-
ally, even when active, in the stable phase, most genes ex-
hibit very small mean RNA numbers (from one to a few)
(Taniguchi et al., 2010). This implies that differences in the
intake time of inducers between sister cells can have signif-
icant implications on phenotypic differences between them.
Similarly, differences in the kinetics of the intake process
of different inducers may lead to significant differences on
the mean and variability of response times to those induc-
ers. Relevantly, Recent measurements in vivo showed that
the intake time of inducers can be of the same order of mag-
nitude as the cell division time and transcription initiation
(Kandhavelu et al., 2011). The degree of cell-to-cell vari-
ability in these times is also equally high (Megerle et al.,
2008; Makela et al., 2013).

Using a stochastic model with parameter values extracted
from measurements in E. coli, we showed that the nature
of the intake mechanism, that is, whether it is based on pas-
sive diffusion, positive feedback or negative feedback mech-
anism, has a significant impact on the dynamics of gene ex-
pression, both in the transient phase, as well as in the sta-
ble phase. The intake kinetics not only affects mean and
variability of the transient time to reach the stable phase but
also the degree of fluctuations in these numbers once it that
phase. These effects are tangible in the behavior of small
genetic circuits.

The results presented here show that the kinetics of the re-
sponse, in terms of gene expression, of single-celled organ-
isms to external signals, depends to great extent not only on
the intake mechanism of the inducer/repressor molecule as
well as on the mechanisms of transcription and translation.
Also relevant is the observation that the intake mechanism
also has an effect on the kinetics of gene expression, long
after the transient period. This implies that the kinetics of
genes responsive to environmental signals ought to be stud-
ied accounting for the effects of the intake mechanism on
RNA and protein numbers dynamics. In the future, it would
be of interest to further explore how active transport mech-
anisms, able of positive or negative feedback processes, can
be used to tune the behavior and adaptability of small ge-
netic circuits to fluctuating environments.
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Kinetics of the cellular intake of a gene expression
inducer at high concentrations†

Huy Tran, Samuel M. D. Oliveira, Nadia Goncalves and Andre S. Ribeiro*

From in vivo single-event measurements of the transient and steady-state transcription activity of a single-

copy lac-ara-1 promoter in Escherichia coli, we characterize the intake kinetics of its inducer (IPTG) from

the media. We show that the empirical data are well-fit by a model of intake assuming a bilayer membrane,

with the passage through the second layer being rate-limiting, coupled to a stochastic, sub-Poissonian,

multi-step transcription process. Using this model, we show that for a wide range of extracellular inducer

levels (up to 1.25 mM) the intake process is diffusive-like, suggesting unsaturated membrane permeability.

Inducer molecules travel from the periplasm to the cytoplasm in, on average, 31.7 minutes, strongly

affecting cells’ response time. The novel methodology followed here should aid the study of cellular intake

mechanisms at the single-event level.

1. Introduction

Many genes in Escherichia coli are kept inactive by constitutive
repressors, unless specific inducers appear in the media.1–3 The
kinetics of the transcriptional response to the introduction of
inducers into the media depends both on the genetic target
system4–6 as well as on the mechanisms of the intake of the
inducer into cells’ cytoplasm. By regulating the kinetics of
the intake as a function of the inducer numbers in the media,
the intake system allows cells, among other things, to adjust to
fluctuations in the inducer extracellular concentration. One
of the best studied intake mechanisms is the one responsible
for the intake of lactose and its analogues, such as isopropyl
b-D-1-thiogalactopyranoside (IPTG).7–11

Early studies of this system focused on the observation of
the target gene’s expression at the steady state, as a function of
the inducer concentration in the media.1,8,9 More recent studies
have focused on the transient dynamics of the inducible gene,
following the introduction of inducers into the media10 so as to
study the intake mechanism of the inducer molecules. These
studies were, in general, conducted in the regime of low IPTG
concentration (usually below 0.5 mM), where the mean expres-
sion rate of the target gene exhibits a close-to-linear dependence
on the intracellular inducer level.8,9,11 In this regime, the
dynamics of intake of IPTG is in agreement with the existence
of positive feedback, i.e., upon entering cells, IPTG activates the

lac operon, thus triggering the production of lacY, a permease
protein that enhances the intake of IPTG.8,9,11

Meanwhile, in the regime of high concentrations, in which
lacY no longer is the major contributor of intake,8,9 the behavior
of the intake process of IPTG is less explored, as the transient
period is shorter and thus less well captured using standard
measurement techniques (e.g. qPCR or GFP expression). Also,
direct measurements of inducer levels in cells and media12 are
only accurate on high-density cultures able to deplete the media
of inducers, which causes the cellular intake kinetics to vary
over time.

The advent of in vivo single RNA molecule measurement
techniques, based on the tagging of RNA by MS2d-GFP fluorescent
proteins,13 now allows exploring this regime in detail, since it
allows measuring fast responses due to detecting RNA molecules
as soon as these are produced. In addition, it is possible to
maintain a constant concentration of inducers in the media
during measurements. This technique has recently been used to
characterize the transcription kinetics of some promoters in
E. coli,6,14 revealing that, e.g., Plac-ara-1 transcription initiation is a
multi-stepped process and IPTG mainly affects one of the two
rate-limiting steps, likely the closed complex formation.15,16

Here, using live, single-cell, time-lapse microscopy and MS2-
tagging of RNA that allows the detection of each RNA soon after
production,13,17 we measure the time that it takes cells to produce
the first target RNA, following the introduction of inducer into the
media, as a function of the extracellular inducer concentration in
the regime of high concentrations (from 0.25 mM to 1.25 mM).5

We then use methods of statistical inference to derive from the
empirical data a deterministic model of inducer intake through
a bilayer membrane,18 coupled with a stochastic, multi-step
model of transcription.19 By fitting the model to the moments
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of appearance of the first RNA in each cell, we evaluate the
significance of the time it takes inducers to cross the two layers
of the cells’ wall in the waiting times for RNA appearances, as a
function of the extracellular inducer concentration. Given this,
we characterize the intake mechanism of IPTG, in the range of
IPTG concentrations tested.

2. Methods
Bacterial strain and plasmids

The E. coli strain used here is DH5a-PRO, generously provided
by Ido Golding, University of Illinois, USA. This strain contains
two genes, lacI and tetR, which are constitutively overexpressed
under the control of Pq

laci and PN25 promoters.20 The native lac
operon (lacZYA) is mutated to prevent the production of additional
permease proteins (lacY) and the activation of the lactose metabolic
system. The cells also contain two constructs: pROTET-K133 carrying
PLtetO-1-MS2d-GFP and pIG-BAC, a single-copy plasmid, containing
Plac-ara-1-mRFP1-MS2-96bs (see Fig. 1).

Media and growth conditions

Cells were grown overnight at 30 1C with aeration and shaking
in Luria-Bertani (LB) medium, supplemented with the necessary
antibiotics. Cells were then diluted in fresh M63 medium. When
reaching an optical density of OD600 E 0.3–0.5, cells were pre-
incubated for 45 min with 100 ng ml�1 anhydrotetracycline
(aTc) to produce enough matured MS2d-GFP proteins to detect
RNAs at the start of the microscopy measurements. During
microscopy, cells were kept in M63 (ESI†) as, by inspection, we
observed that it reduces leaky expression (compared to LB
media).

Microscopy and image analysis

Protocols for microscopy sessions are fully described in ref. 5.
Time series are 3 hours long, with cells being imaged once per
minute. For image analysis, we use semi-automatic cell seg-
mentation and RNA spot detection strategies21,22 (ESI†).

The moment when the first RNA appears in each cell
(denoted as t0) and the subsequent intervals between consecu-
tive RNA production events (denoted as Dt) are extracted from
the time series of total spot intensities as in ref. 5, 6, 14,
15, 23 and 24. The method is described in the ESI.† Also, in
Section VII of the ESI,† we provide an empirical validation for
the method of detecting, from the time series of total spot
intensity in each cell, the moments when novel RNA molecules
first appear. Data for t0 were collected from the first 2 hours of
the measurements, while data for Dt are collected from the
third hour alone, in order to ensure that cells are fully induced
by the time these intervals are collected.

Data analysis

Our empirical data, extracted from the microscopy, consist of
the time for the appearance of the first RNA (t0) and the
subsequent intervals between consecutive transcription events
(Dt) in each cell. Due to cell divisions and limited measurement
time, along with t0 and Dt being of the order of hundreds of
seconds,5,15 larger values of t0 and Dt might not be detectable,
resulting in the underestimation of their mean values. To
exemplify this consider that, in the absence of induction, the
measured leaky RNA production of Plac-ara-1 is o0.1 RNA per h
per cell,5 suggesting a Dt’s true mean of (at least) 10 hours.
However, since our measurement time for Dt is 1 hour long, the
mean of the few measured intervals would be smaller than 1 hour,
resulting in the underestimation of the true mean value of Dt.

To address this problem, we make use of the information
from the lack of production events. Namely, we make use of
‘right censored’ data from each cell, which consists of the time
from the last production event until cell division or until the
end of the time series. Combining the data from observed
production events (actual sampled values of t0 and Dt) with the
right-censored data (from the lack of productions) results in
data that more properly inform on the true distributions of t0

and Dt (Fig. 2). This happens because, as one conditions the
actual samples with censored data (ESI†), the bias on the actual
samples (favoring shorter durations) is removed.

The methodology followed in the collection of the censored
data is described in the ESI.† For t0, the actual and censored
samples are denoted as t0

0 and c0
0, respectively. For Dt, the

denotations are Dt0 and Dc0, respectively. When fitting the
theoretical models of t0 and Dt to the empirical data using
the maximum likelihood estimation, we search for the model
parameters that maximize the probability of obtaining both the
actual samples and the censored samples.25,26 To measure the
goodness of fit of the estimation, we find the model distribution
of t0 and Dt subject to censoring and use statistical tests to verify
whether the actual samples can be drawn from the distribution
with the estimated parameters (ESI†).

Fig. 1 Diagram of the inducer intake system, target gene and RNA tagging
system: IPTG molecules (I) in the media enter the cytoplasm by passing
through two membrane layers, with a periplasmic space in between. When
in the cytoplasm, they neutralize lacI repressors (R) by forming inducer–
repressor complexes (RI). Once the repression of Plac-ara1 is hampered, the
target gene is free to express. It codes for an RNA that includes an mRFP1
coding region and an array of 96 MS2-binding sites.17 MS2d-GFP expres-
sion is controlled by PLtetO-1 promoters and anhydrotetracycline (aTc).
Once transcribed, the target transcript is bound by multiple tagging MS2d-
GFP proteins (G) and rapidly appears as a bright spot under the confocal
microscope.13

Paper Molecular BioSystems



This journal is©The Royal Society of Chemistry 2015 Mol. BioSyst., 2015, 11, 2579--2587 | 2581

Model of transcription

Recent evidence suggests that transcription dynamics in E. coli at
optimal temperatures (37 1C) from the lac-ara-1 promoter, as
well as in a few other promoters, is well modeled by a multi-step
sequential process with two rate-limiting elementary steps,6,15 at
least when these are inserted on single-copy plasmids. Namely
no significant ‘bursts’ in transcription were reported.5,6,15,23,24

This may be because, under these conditions, the recently
reported phenomenon of buildup of positive supercoiling with
transcription events, which may lead to short-length transcriptional
bursts,27 is too weak due to the ‘lack of topological barriers’ on the
plasmid.27 Further, this phenomenon is expected to affect tangibly
only highly expressed genes, while in our measurements we
recorded mean intervals between transcription events longer than
1000 s under full induction.

As such, and following the modeling strategy used in ref. 6,
15, 19 and 28, we model transcription as a non-bursty, two rate-
limiting step process, with the following set of reactions (1)–(3):

Rþ Pr !KR
PrR (1)

Pr �!kc Prc (2)

Prc �!ko Pro �!1 PrþM (3)

Reaction (1) models the fast binding/unbinding with a dis-
sociation constant, KR, of a single lacI tetramer, denoted as R, to
Plac-ara-1,20,29 which is denoted as Pr when free for transcription
and as PrR when in the repressed state, i.e. bound by a repressor.

Transcription initiation is modeled as a two-rate-limiting-
step process14 by reaction (2), which models the formation of
the closed complex (Prc) at a rate kc, and by reaction (3) which
models the formation of an open complex (Pro), from the closed

complex, at a rate ko, followed by the promoter escape (assumed to
be infinitely fast following the completion of the open complex30).
Since the duration of both the promoter escape and of transcription
elongation is negligible when compared to transcription initiation,31

we assume that a complete RNA molecule (M) is released
‘immediately’ after the formation of an open complex.

From (1), the probability that the promoter will be in the
unrepressed state equals:

fRðtÞ ¼
KR

RðtÞ þ KR
(4)

where fR(t) takes values from 0 to 1, representing the activity
level of the promoter at time t.

Assuming that the binding/unbinding of repressors is a much
faster process than the closed complex formation, reactions (1)
and (2) can be combined as follows:32

Pr ����!kc�fRðtÞ
Prc (5)

where the regulation function fR(t) is a hill function with
coefficient 1 and parameter KR. This assumption is supported
by recent in vivo measurements of the binding/unbinding rates
of lacI from its operator sites at the Lac promoter (mean binding
time to the DNA of 59 s and mean residence time on the DNA of
the order of milliseconds31) along with estimations of the
duration of the closed complex formation of Plac-ara-1 in vivo
(mean higher than 300 s 15).

Given this model, the mean RNA production interval, follow-
ing a transient induction time, is given as:

Dt ¼ 1

fRð1Þkc
þ 1

ko
(6)

Note that this model of transcript production dynamics
assumes that the promoter copy number equals 1, since the
plasmid coding for the RNA target for MS2d-GFP is a single-
copy plasmid (see ‘‘Bacterial strain and plasmids’’ section).

Model of inducer number dynamics

E. coli being Gram-negative, the membrane has two layers: the
outer membrane and the inner membrane, with the periplasmic
space in between.33 Given high IPTG extracellular abundance, in the
absence of feedback mechanisms,11,20 the inducer levels in the
periplasm (Im) and cytoplasm (I) can be accurately estimated34 from:

dIm
dt
¼ kouter � Im � kinner (7)

dI
dt
¼ Im � kinner � I � dI (8)

Eqn (7) and (8) describe the irreversible intake of inducers from
the media into the periplasm at the rate kouter and the subsequent
transport of inducers from the periplasm to the cytoplasm at a rate
kinner. kouter varies with extracellular inducer concentration but, for
each measurement condition, it remains constant during the
measurement period, due to the absence of lacY permease.

Meanwhile, dI is the decay rate of intracellular IPTG. Note that,
since IPTG is not hydrolysable by the cells and is inefficiently

Fig. 2 Collection of t0 and Dt samples subject to censoring: from cells in
the initial population that do not produce any RNA during their lifetime (a),
we obtain censored samples of t0, denoted c0

0, whose value equals the cell
lifetime. From cells that produce at least one RNA (b), we obtain actual
samples, denoted t0

0, of t0 equal to the earliest moment of RNA appear-
ance. Regarding the samples of Dt, the actual samples (Dt0) are the intervals
between consecutive transcription events, whereas the censored samples
(Dc0) are the intervals between the moment of appearance of the last RNA
and either the moment of division or the end of the measurement.
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transported out due to the weak expression of sugar efflux
transporters,35 its concentration in the cytoplasm is expected to
dilute mostly through cell growth,36 rather than consumption
or efflux. As such, dI is estimated from the cell growth rate alone
(ESI†). Given this, by solving (7) and (8) (ESI†), one finds the
inducer level in the cytoplasm over time to be:

IðtÞ ¼
kouter dIe

�kinnert � kinnere
�dIt þ kinner � dI

� �
dI kinner � dIð Þ

¼ kouter

dI
� S kinner; tð Þ

(9)

where S, the normalized function of the inducer level ranging
from 0 to 1, describes the shape of I(t):

S kinner; tð Þ ¼ dIe
�kinnert � kinnere

�dIt þ kinner � dI

kinner � dI
(10)

The inducer level at equilibrium (t - N) is therefore given by:

Ið1Þ ¼ kouter

dI
� S kinner;1ð Þ ¼ kouter

dI
(11)

From eqn (11), the transport rate at the inner membrane,
kinner, does not affect intracellular inducer levels and, conse-
quently, the induction strength at equilibrium. However, a
finite kinner’s value results in a delay in the entrance of inducers
into the cells, which increases the ‘‘waiting time’’ for the synthesis
of the first RNA, t0, following the introduction of inducers into
the media.

Model of inducer repressor interactions

IPTG is an indirect activator, as it binds to lacI tetramers
reducing greatly their binding affinity to the promoter.37 Reaction
(12) describes the fast binding/unbinding between inducers and
repressors with the dissociation constant KI:

I þ R !KI
RI (12)

As the number of intracellular inducers (even under weak induc-
tion) is much greater than that of repressors,12,38 the number of
free inducers at any given time can be approximated by the total
amount of inducers in the cells, I(t). Due to the high rate of the
forward reaction and inducer abundance, when the intracellular
inducer concentration changes, we assume that reaction (12)
reaches equilibrium before any binding event between R and Pr
(1) can occur. The amount of repressors at any given time is
therefore expected to be:

RðtÞ ¼ KI � RIðtÞ=IðtÞ ¼ KI � Rmax � RðtÞð Þ=IðtÞ

¼ KIRmax

KI þ IðtÞ
(13)

Here R, I, Pr and PrR are considered ‘fast species’, due to
their fast rates of interaction. Thus, their impact on the dynamics
of the slow species, Prc, and consequently M, is determined solely

by their mean level.32 The inducible promoter’s activity level over
time is thus:

fRðtÞ ¼
KR

RðtÞ þ KR
¼ KI þ IðtÞð ÞKR

KIRmax þ KI þ IðtÞð ÞKR
(14)

We define RK and IK as the relative level of repressors and
inducers (both bound and unbound) at equilibrium, respec-
tively, as follows:

RK ¼
Rmax

KR
(15)

IK ¼
Ið1Þ
KIRK

¼ kouter

dIKIRK
(16)

Combining eqn (9), (14), (15) and (16), we obtain:

fRðtÞ ¼
1þ IKRKS kinner; tð Þ

RK þ 1þ IKRKS kinner; tð Þ (17)

In (15), RK is the ratio between the total number of repressors
and the amount required to repress the promoter’s activity
to half in the absence of inducers. For the strain studied
(DH5a-PRO), RK is much greater than 1.20 Meanwhile, IK is
the ratio between the total number of intracellular inducers at
equilibrium (I(N)) and the amount required to induce the
promoter’s activity to half. With dI, KI, RK being invariant to
extracellular inducer concentrations, IK is determined only by
kouter. Both prior to induction and when steadily induced, the
promoter’s activity is therefore given by:

fRð0Þ ¼
1

RK þ 1
(18)

fRð1Þ ¼
1þ IKRK

RK þ 1þ IKRK
� IK

1þ IK
(19)

From (18) and (19), we can learn about the leakiness in the
expression system and the mean RNA synthesis rate (1/Dt) for a
given level of induction.

Model distribution of t0

From the hybrid model of deterministic inducer and repressor
dynamics coupled with stochastic transcription dynamics, we
use the chemical master equation (CME)34 to calculate the first
moment of an open complex formation completion in each cell,
which is immediately followed by the release of a transcript30,31

(ESI†).
We have also simulated an all-stochastic model of inducer

and repressor dynamics (with the extracellular inducer number
(Im) at 1 mM and the repressor number (Rmax) set arbitrarily
high), coupled with stochastic transcription using the stochastic
simulation algorithm.39 We did not observe any statistical
difference between the sample distributions acquired from
the simulations (with 1000 samples of t0) and the distribu-
tions calculated using the CME, assuming the hybrid model,
indicating that the intrinsic noise in the dynamics of inducers
and repressors does not affect the expression dynamics of the
target gene.
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By finding the time evolution of the promoter state described
by the CME for each pair of values of RK and IK, one can calculate
the time distribution of the appearance of the first RNA in each
cell, following the formation of the open complex.

3. Results and discussion

As described in ref. 5, the time for the appearance of the first
RNA in a cell, following the introduction of inducers in the
media, includes not only the ‘‘intake time’’ (time for the
inducer to enter the cell), but also the time for a promoter to
produce a single RNA. The latter can be extracted from the
distribution of intervals between consecutive RNA productions
by an active promoter.5

3.1 Kinetics of transcription of the active Plac-ara-1

To characterize the kinetics of transcription initiation of the
single-copy promoter Plac-ara-1 under full induction, we observed
for 1 hour 1463 cells induced by 1 mM IPTG and 1052 cells
induced by 1.25 mM IPTG in M63 media. We performed a KS
test comparing the two distributions of intervals between RNA
productions and found no significant difference between them
( p-value larger than 0.01). As such, we consider these two sets
of cells to be equally fully induced and merged the two sets of
data. The resulting distribution of actual intervals is shown in
Fig. 3.

To the merged collection of the 759 actual samples and 1083
censored samples (Methods) of intervals extracted from both sets,
we fitted a 2-step model of transcription initiation (Methods). The
pair of steps B1751 s and B337 s long was the best fit ( p-value
B1 from Pearson’s chi-squared test (dashed line in Fig. 3)). The
margin of error of the inferred value for each step was B15%,
with a confidence of 90%. Notably, the inferred mean of Dt
(B2088 s, from actual and censored samples) agrees with reports

of the in vivo RNA synthesis rate of this promoter under full
induction in LB media,15 confirming the reaching of a fully
induced state in M63 media.

Finally, based on the conclusions from previous studies,4,15

here onwards we assume that the longer of the two steps
inferred is the closed complex formation, while the shorter is
the open complex formation. Accordingly, we set in the model
the rates of formation of these complexes in reactions (2) and (3),
respectively, as: kc B 1/1751 s�1, ko B 1/337 s�1.

3.2 Time of appearance of the first RNA

To introduce empirical information regarding the intake
mechanism into the model, we use the time for the appearance
of the first RNA in each cell for different inducer concentrations
(denoted [IPTG]media), following the introduction of the inducer in
the media. In particular, these concentrations were: 0.25 mM,
0.5 mM, 0.75 mM, 1 mM and 1.25 mM. Note that cells grew
exponentially40 during the measurements at a rate of dI of B8.25�
10�5 s�1 (corresponding to a doubling time of B140 minutes)
under all conditions (ESI†), thus it is reasonable to assume that the
analyzed cells’ physiology is unaffected by the inducer levels in the
range tested.

From the time lapse microscopic images, we recorded when
the first RNA appeared in each cell following induction. The
data are shown in Table 1, for each condition. As expected, the
mean t0

0 (mt0
0) decreases with increasing [IPTG]media. We per-

formed KS tests of comparison between the empirical distribu-
tions in each condition. The resulting p-values are smaller than
10�4, indicating that these differ in a statistical sense.

We also performed measurements at higher IPTG concentra-
tions (2 and 4 mM), but the cells exhibited numerous inclusion
bodies (ESI†), likely due to an increase in the rate of protein
misfolding.41 As these may introduce pleiotropic effects,42 the
data were not used.

3.3 Inference of the intracellular relative levels of repressors
and inducers and of the intake rates

Given the rates of dilution, dI, and closed and open complex
formations (kc and ko, respectively) derived in the previous
sections, the model distribution of t0 can be fully characterized
by the intracellular relative numbers of repressors (RK) and
inducers (IK) along with the transport rate of the inner
membrane (kinner).

Fig. 3 Distribution of the actual samples of RNA production intervals Dt0

(bars) and distribution curve (dashed line) inferred from the transcription
model of two sequential steps. The samples are obtained from cells
subject to 1 mM and 1.25 mM of IPTG in the media.

Table 1 Measurements of t0 for different IPTG concentrations ([IPTG]media).
For each condition, the table shows the number of actual samples (t0

0) and
censored samples (c0

0) collected, along with the mean (mt0
0), standard

deviation (st0
0) and the normalized variance m

t0
0 2
.
s
t0
0 2

� �
calculated from

the actual samples

[IPTG]media (mM) No. of t0
0 No. of c0

0 mt0
0 (s) st0

0 (s) m
t0
0 2
.
s
t0
0 2

0.25 114 60 4056 1703 0.18
0.50 210 128 3713 1599 0.19
0.75 120 129 3054 1413 0.21
1.00 199 105 3248 1550 0.23
1.25 80 38 3253 1311 0.16
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RK and kinner are defined by the cell strain and thus are
invariant between conditions. Meanwhile, IK is determined by
the inducer intake rate kouter at the outer membrane, determined
by the external inducer concentration. Using the maximum
likelihood method, we fitted the model of intake to the data
(including both actual and censored samples). The parameters
to infer are RK, kinner and IK for each condition. The inferred
values are shown in Table 2.

Note that, for all conditions, the inferred values of IK are
significantly greater than 1 (Table 2). Using eqn (19), we find
that the promoter activity fR(N) is close to full induction under all
conditions studied, from 84% (at 0.25 mM) to 93% (at 1.25 mM).

Using these inferred values of RK, kinner and IK for each
condition, we estimated the distribution of t0 subject to censoring
(ESI†). We plotted these in Fig. 4. Also shown are the distributions
of the actual samples, t0

0.

Transport rate of IPTG through the inner membrane

We inferred the transport rate of IPTG through the inner
membrane, kinner, to be 5.3 � 10�4 s�1 (with 90% confidence,
kinner is between 1.6 � 10�4 s�1 to 8.9 � 10�4 s�1). Thus, each
inducer takes on average 31.7 min (with 90% confidence,
between 18 min and 104 min) to travel from the periplasm to the
cytoplasm. These numbers show that this event is time-consuming,
in that it affects RNA numbers at early stages of induction.5,43 As a
side note, the stochasticity of these events is also visible from the
data. E.g., we observed RNAs first appearing as early as 5 min and
as long as 120 min, after the introduction of inducers (note that the
upper bound is also affected by variability in transcription time
length).6

The relative repressor level, RK

From the inferred repressor level (RK B 42 and, with 90%
confidence between 21 and 120), we expect the promoter
activity to change by B43 fold between no induction and full
induction (12). This is in the same order of magnitude as the
data from in vitro measurements on Plac-ara-1’s range of activity
in DH5a-PRO (B100 fold20). Meanwhile, the leaky expression of
the target gene (prior to induction) can be estimated to be
B0.03 RNA per h per cell (using (12)), in agreement with the
measured leakiness (o0.1 RNA per h per cell).

Finally, we also derived alternative models of inducer-
repressor interactions (reaction (12)), where more than one
(namely two, three and four) inducer molecules are required
to neutralize one repressor molecule.37 In all models tested, the
likelihood ratio test comparing the original model with the
alternative ones yielded p-values smaller than 0.01, favoring
the model of the first-order inducer–repressor interaction. For
example, the fourth-order model, which assumes that the
tetramer lacI requires exactly four inducer molecules to lose
its binding affinity to the promoter, was rejected by the Pearson
chi-squared test ( p-value smaller than 0.01).

Intake mechanisms of IPTG at the outer membrane

We next studied the nature of the dominant intake mechanism
of IPTG (i.e. whether it has feedback or is diffusive-like). To
assess whether the intake of IPTG through the outer membrane
is consistent with a process of pure diffusion (i.e. IK and kouter

proportional to [IPTG]media), we compared the values of IK as a

Table 2 Results of fitting the model of intake with t0 measurements in five
conditions. The table shows the estimation of RK and kinner for the strain
used, and then the inferred value of IK per condition. Also shown is the
p-value of the Pearson’s chi-squared test for estimation of the goodness
of fit. We assume that for p-values greater than 0.01, the distributions
cannot be distinguished

Variables Inferred value p value

kinner 5.3 � 10�4 s�1

RK 42
IK (0.25 mM) 5.37 0.07
IK (0.50 mM) 5.41 0.77
IK (0.75 mM) 10.93 0.79
IK (1.00 mM) 9.94 0.19
IK (1.25 mM) 14.34 0.25

Fig. 4 Distribution of the actual samples t0
0 (bars) and distribution curves

inferred from the model (dashed lines). Data for (A) 0.25 mM, (B) 0.50 mM,
(C) 0.75 mM IPTG, (D) 1.0 mM and (E) 1.25 mM IPTG concentrations.
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function [IPTG]media (as inferred in the previous section from
empirical data) to the values of IK that would be expected from a
purely diffusive mechanism, with a diffusion rate constant equal
to kouter/[IPTG]media, averaged over all conditions (eqn (16)).

In Fig. 5, we plotted the inferred values of IK along with the
90% margins of error from the empirical data. Note that, as the
inducer concentration increases and, thus, the promoter
reaches close-to-full induction faster, the margins of error for
the inference of IK also increase. Also plotted are the values of
IK expected from a pure diffusive model. We assume that, in the
absence of IPTG in the media, the inducers are absent from
the cells (origin of the plot). From 0 mM up to 1.25 mM, the
diffusion curve (grey dashed line) is not excluded from the
confidence interval of IK and therefore the inferred model and
the pure diffusion model are indistinguishable.

4. Conclusions

From the transient dynamics of transcription initiation upon
the introduction of the inducer at different concentrations into
the media, we characterized the mechanism of intake of IPTG, a
synthetic inducer of Plac-ara-1. We made use of in vivo measure-
ments of the moments of occurrence of individual transcrip-
tion events in multiple cells. Namely, we measured the intervals
between consecutive RNA production events and the waiting
time, t0, for the first target RNA to appear in each cell following
induction. Then, we fitted a deterministic model of inducer
intake through a bilayer membrane, coupled with a stochastic
multi-step model of transcription, and we studied how the
kinetics of intake changes as a function of extracellular inducer
concentrations.

We found that a model of a bilayer membrane fits the data
well, for a transport rate of inducers through the second
membrane layer as slow as B5.3 � 10�4 s�1. This suggests
that the entrance of inducers into the cytoplasm, after crossing
the outer membrane, is a time-consuming event that causes

tangible effects on single-cell RNA numbers following the
introduction of an inducer into the media, in agreement with
ref. 43. A recent study on the in vivo intake kinetics of the MG+ ion,
whose mass is similar to that of IPTG (B300 Da), reported similar
transport times (B15 to 75 min).44 This is surprising, given their
different hydrophobicity18 and suggests that this property might
not always be the main factor determining intake times.

Finally, we found that, at high concentrations, the intake at
the outer membrane can be well approximated by a model of
diffusion, where the intake rate is linearly dependent on the
external inducer concentration. This suggests that inducers can
cross the outer membrane with a dynamics similar to that of a
Michaelis–Menten process, when the amount of pores contributing
to the intake process is a small portion of the total amount of pores
capable of intake (i.e. for amounts of IPTG that do not saturate the
pores). In support of this hypothesis, at 2 mM or higher IPTG
concentrations in the media, there are observable changes in cells,
namely the formation of inclusion bodies.

Our results, aside from the empirical ones, are drawn from
deterministic models of inducer intake and repressor dynamics,
combined with a stochastic model of transcription. As such, the
cell-to-cell diversity generated by the model (e.g. in the values of t0)
is only due to noise in transcription. This approximation was made
based on the intake of inducers and the interactions between
inducers and repressors having much shorter time scales (of the
order of tens of seconds29,45) than the closed and open complex
formations (of the order of hundreds of seconds4,15,28).

Intake processes can nevertheless generate tangible, transient
phenotypic diversity (see, e.g., ref. 5, 11 and 46), for example, due
to the cell-to-cell diversity in membrane properties (such as the
number of pores and permease proteins responsible for the
IPTG intake) or in intracellular numbers of repressors, among
others. Here, to minimize the role of such factors, we employed
the strain DH5-aPRO, whose lac repressor is overexpressed. In
the future, it would be of interest to investigate the contribution
of noise in the intake process to the diversity in cellular
responses to, e.g., environmental shifts.

Even though DH5-aPRO cells cannot produce lacY permease20

and, thus, cannot regulate the intake kinetics of inducers as a
function of extracellular inducer concentration (shown by the
linear increase in Ik as a function of IPTG concentration), note
that our results are also applicable to E. coli strains able to
produce lacY permease, as they apply to the regime of high IPTG
concentrations, where lacY’s contribution to the total influx of
inducer is negligible.8,9

In this regard, in general, the method employed here can be
used to study the intake mechanisms of other inducers, by
altering the target promoter and removing cellular disposal
systems of the inducer (e.g., the araBAD operon which catalyzes
the arabinose metabolism47 or the tetA gene responsible for aTc
efflux48), so as to eliminate negative feedbacks controlled by the
target gene.38

In general, the findings on the kinetics of the intake system
of an inducer can be used to establish a lower bound for the
response time of genetic systems to external stimuli. As such,
knowledge of this process aids in understanding how cells

Fig. 5 Intracellular inducer level, IK, as a function of external inducer
concentration [IPTG]media. The vertical bar indicates the margins of error,
for a-value of 90%. The diffusion curve (grey dashed) is the approximation
of IK using a line through the origin (0, 0). The slope of the diffusion curve is
set as the mean of IK/[IPTG]media under all conditions.
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constantly adapt to fluctuating environments. This knowledge
will also be of use in the construction of synthetic circuits. For
example, when designing circuits capable of decision making
or filtering based on environmental conditions (e.g. switches49

or frequency filters50), intake times will influence the rate of
decision making or the filter response. Added to that, knowl-
edge of the intracellular inducer level as a function of the media
composition aids in understanding different modes of activity
of genetic circuits and, as such, we may be able to expand the
ranges of applicability of the synthetic circuits. For example,
using promoters of the same family with different inducer
affinities (e.g. Plac and Plac-ara-1,20 or PBAD, PE and PGFH

47), one
should be able to construct synthetic genetic circuits exhibiting
different behaviors that will be selectable by the inducer
concentration in the media.
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K. Jung, J. O. Rädler and U. Gerland, PLoS One, 2014, 9, e89532.

47 C. M. Johnson and R. F. Schleif, J. Bacteriol., 1995, 177,
3438–3442.

48 P. McNicholas, I. Chopra and D. M. Rothstein, J. Bacteriol.,
1992, 174, 7926–7933.

49 T. S. Gardner, C. R. Cantor and J. J. Collins, Nature, 2000,
403, 339–342.
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I. Measurements and data extraction 

Media and growth condition 

Cells were grown overnight at 30°C with aeration and shaking in Luria-Bertani (LB) medium, supplemented 

with the necessary antibiotics. Cells were then diluted in fresh M63 medium. When reaching an optical density of 

OD600≈0.3–0.5, cells were pre-incubated for 45 min with 100 ng/ml anhydrotetracycline (aTc) to produce enough 

matured MS2d-GFP proteins to detect RNAs at the start of the microscopy measurements. During the microscopy 

measurements, cells were kept in M63 media, so as to extend cells’ division time, which increases the chances for 

each cell present at the start of the measurements to produce at least one target RNA before it divides. The contents 

of (i) LB and (ii) M63 media are:  

(i) 10g/L of Tryptone (Sigma Aldrich, USA), 5g/L of yeast extract (LabM, UK) and 10g/L of NaCl (LabM, UK);  

(ii) 2mM MgSO4.7H2O (Sigma-Aldrich, USA), 7.6mM (NH4)2SO4 (Sigma Life Science, USA), 30µM 

FeSO4.7H2O (Sigma Life Science, USA), 1mM EDTA (Sigma Life Science, USA), 60mM KH2PO4 (Sigma Life 

Science, USA) pH 6.8 with Glycerol 0.5% (Sigma Life Science, USA) and Casaminoacids 0.1% (Fluka Analytical, 

USA). 

Microscopy 

After pre-incubation with aTc, cells are placed on a microscope slide with 3% agarose gel to restrict movements. 

A peristaltic pump is used to provide cells with a constant flow of fresh, pre-warmed M63 media and of IPTG at 

specified concentrations throughout the measurement period. With the pump initialized at a speed of 0.3 mL/min, 

the collection of time lapse images by confocal microscopy is initiated as soon as the flow reaches the microscope 

slide (detected visually).  

Microscopy time series were 3 hours long, with cells being imaged once per minute. The data from the first ~5 

minutes following induction is not recorded (although time is) as the gel slide slightly shifts due to the initialization 

of flow of fresh media by the pump, hampering a proper cell tracking.  

During the microscopy measurements, the cells’ fluorescent background was found to be stable, which indicates 

that the ability of target RNA counting of the MS2d-GFP system does not change during the course of 

measurements. Also, from previous studies
1–4

, the amounts of fluorescence in the cell background observed suffice 

to accurately report the appearance of new target RNA molecules in the cells. 

Image and data analysis 

Image analysis was performed as in 
1
. We use a semi-automated cell segmentation strategy 

5
 as in 

6
. Afterwards, 

fluorescent spots in each cell at each time moment are detected automatically (Figure S1) as in 
7
, by estimating the 

cell background intensity distribution using its median and median absolute deviation, and then performing 

thresholding with a given confidence level assuming that this distribution is Gaussian. Finally, we extracted the 



2 
 

moment when the first RNA appears in each cell and the time intervals between consecutive RNA production events 

are extracted from the time series of total spot intensities. 

We fit a monotonically increasing piecewise-constant function to the corrected total spot intensity in a cell over 

time using least squares and infer on the moments of appearance of novel target RNAs as in 
2,3,8

. The number of 

terms for the fit was selected by an F-test with a p-value of 0.01. Each discontinuity, i.e. jump, corresponds to the 

production of one target RNA
3
. An example of the results of applying these methods is shown in Figure S1. 

Validation of this method is provided in section VII of this document. 

 
Figure S1. Tagged RNAs in E. coli cells. (A) Unprocessed frames and segmented cells and RNA spots. The 

moments when images were taken are shown for each frame. (B) Examples of time series of scaled spot intensity 

levels from one cell (circles) and the corresponding estimated RNA numbers (solid lines). 

 

II. Collection and analysis of censored data 

The problem of right censored data is well described in 
9,10

, where each individual in the population has a limited 

life time drawn from a random variable Y. We measure from each individual of the population the time for a certain 

event X to occur. We assume that the time for this event to occur, without the effect of limited life time, is a random 

variable T. Given that X has no effect on the ‘health’ of the individuals under observation, T and Y are independent 

of one another. 

Collection of censored data 

For the i
th

 individual in the population, we draw from the bivariate variable <T, Y> a pair <ti, yi> , where yi is the 

life time of that individual and ti is the time for event X to occur. We define δi and zi as follow: 

𝛿𝑖 = [𝑡𝑖 < 𝑦𝑖] and 𝑧𝑖 = min(𝑡𝑖 , 𝑦𝑖) 
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where δi is the type of sample and zi is the value of the sample of the i
th

 individual. If the event occurs before the 

death of the individual, we obtain an actual sample (δi=1), else we obtain a censored sample (δi=0). 

Measurements of the time for the first RNA to appear in each cell, t0, are obtained from cells present at the start 

of the microscopy sessions. For measurements of Δt, the intervals between consecutive RNA productions in each 

cell, the individuals under the observation are any cells that produce one or more RNAs during the last hour of the 

measurements. For both measurements of Δt and of t0, the event X to observe is the appearance of the next novel 

RNA molecule in the cell. Cell ‘death’ is due to division or the end of the measurement time. 

Likelihood function of censored data 

To find the likelihood function of the parameter set θ characterizing the model of T, we calculate the possibility 

to obtain the outcome <δ1..n, z1..n> from n individuals in the population with this model: 𝛬(〈𝛿1..𝑛, 𝑧1..𝑛〉|𝜃). With each 

parameter set θ, the model of T is defined by the probability distribution function 𝑃𝑇|𝜃(𝑡|𝜃) and the cumulative 

distribution function 𝐹𝑇|𝜃(𝑡|𝜃).  

The life time Y of individuals in the population has the probability distribution function 𝑃𝑌(𝑦) and the 

cumulative distribution 𝐹𝑌(𝑦). These distribution functions can be obtained directly by measuring the life time of 

the individuals in the population. 

The likelihood function of the parameter set θ of T’s model with the outcome <δ1..n, z1..n> is given by
9
: 

𝛬(〈𝛿1..𝑛, 𝑧1..𝑛〉|𝜃) = ∏[𝑃𝑇|𝜃(𝑧𝑖|𝜃)(1 − 𝐹𝑌(𝑧𝑖))]
𝛿𝑖 [𝑃𝑌(𝑧𝑖) (1 − 𝐹𝑇|𝜃(𝑧𝑖|𝜃))]

1−𝛿𝑖
𝑛

𝑖=1

 

 

(2) 

Here, 𝑃𝑇|𝜃(𝑧𝑖|𝜃)(1 − 𝐹𝑌(𝑧𝑖)) is the probability of obtaining an actual sample with the value zi (<δi=1, zi>), and 

𝑃𝑌(𝑧𝑖) (1 − 𝐹𝑇|𝜃(𝑧𝑖|𝜃)) is the probability of obtaining a censored sample with the value zi (<δi=0, zi>). 

While probing for the value of θ that maximizes the likelihood function, the functions 𝑃𝑌(𝑦) and 𝐹𝑌(𝑦), which 

are independent of T, remain constant. Therefore, the objective function to maximize can be simplified to: 

𝑂𝑏𝑗(𝜃|〈𝛿1..𝑛, 𝑧1..𝑛〉) = ∏[𝑃𝑇|𝜃(𝑧𝑖|𝜃)]
𝛿𝑖[1 − 𝐹𝑇|𝜃(𝑧𝑖|𝜃)]

1−𝛿𝑖

𝑛

𝑖=1

 

 

(3) 

Model distribution of T subject to censoring 

With the inferred parameter set θ, the probability distribution of T is given as 𝑃𝑇|𝜃(𝑡|𝜃). 

The life time of an individual cell in the measurement depends on various factors, such as the division moment 

and the duration of the measurements. Here, the distribution of the life time Y is obtained directly from the 

observations of cell life times during the microscopy measurements, rather than being modeled. The inferred 

distribution of actual samples T’ with the distribution of life time Y known is: 

𝑃𝑇′|𝜃(𝑡|𝜃) = 𝑃𝑇|𝜃(𝑡|𝜃) × 𝑃(𝑌 > 𝑡) = 𝑃𝑇|𝜃(𝑡|𝜃)(1 − 𝐹𝑌(𝑡)) 

 

(4) 

By comparing 𝑃𝑇′|𝜃(𝑡|𝜃) with the empirical distribution of the actual samples (δi=1, zi) using Pearson’s chi-

squared test, we can calculate the goodness of fit of θ’s estimation. 

III. Solving the deterministic model of inducer dynamics 
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Model of inducer dynamics 

The model of inducer dynamics is described (as in equations (7) and (8) in the manuscript) as follows: 

/m o m iI t k I k      (5) 

/ m i II t I k I d       (6) 

We first find the solution for the inducer level in the periplasmic space (Ip): 

𝛿𝐼𝑚
𝑘𝑜 − 𝐼𝑚𝑘𝑖

= 𝛿𝑡 

 

(7) 

By integrating both sides of the equation, we obtain: 

−
ln(𝑘𝑜 − 𝐼𝑚𝑘𝑖)

𝑘𝑖
= 𝑡 + 𝐶1 

↔ 𝑘𝑜 − 𝐼𝑚𝑘𝑖 = 𝐶1. 𝑒
−𝑘𝑖𝑡 

↔ 𝐼𝑚 =
𝑘𝑜 − 𝐶1𝑒

−𝑘𝑖𝑡

𝑘𝑖
 

 

(8) 

 

(9) 

 

(10) 

At t=0, Im(0)=0, thus C1=ko. The solution for Im is: 

𝐼𝑚(𝑡) =
𝑘𝑜(1 − 𝑒−𝑘𝑖𝑡)

𝑘𝑖
 

 

(11) 

The differential equation for I(t) becomes a first order linear differential equation: 

𝛿𝐼

𝛿𝑡
+ 𝐼. 𝑑𝐼 = 𝑘𝑜(1 − 𝑒−𝑘𝑖𝑡) 

 

(12) 

The general solution for this equation is: 

𝐼(𝑡) =
∫𝑢(𝑡)𝑘𝑜(1 − 𝑒−𝑘𝑖𝑡)𝑑𝑡 + 𝐶2

𝑢(𝑡)
 

 

(13) 

in which 𝑢(𝑡) = 𝑒∫𝑑𝐼𝑑𝑡 = 𝑒𝑑𝐼𝑡. C2 is a constant determining the initial condition I(0). Thus: 

𝐼(𝑡) =
∫𝑒𝑑𝐼𝑡𝑘𝑜(1 − 𝑒−𝑘𝑖𝑡)𝑑𝑡 + 𝐶2

𝑒𝑑𝐼𝑡
 

=
𝑘𝑜(∫ 𝑒

𝑑𝐼𝑡𝑑𝑡 − ∫𝑒(𝑑𝐼−𝑘𝑖)𝑡𝑑𝑡) + 𝐶2
𝑒𝑑𝐼𝑡

=
𝑘𝑜
𝑑𝐼

−
𝑘𝑜𝑒

−𝑘𝑖𝑡

𝑑𝐼 − 𝑘𝑖
+

𝐶2
𝑒𝑑𝐼𝑡

 

=
𝑘𝑜(𝑑𝐼 − 𝑘𝑖) − 𝑑𝐼𝑘𝑜𝑒

−𝑘𝑖𝑡 + 𝐶2𝑑𝐼(𝑑𝐼 − 𝑘𝑖)𝑒
−𝑑𝐼𝑡

𝑑𝐼(𝑑𝐼 − 𝑘𝑖)
 

=
𝑘𝑜(𝑑𝐼𝑒

−𝑘𝑖𝑡 + 𝐶2𝑑𝐼(𝑘𝑖 − 𝑑𝐼)𝑒
−𝑑𝐼𝑡 + 𝑘𝑖 − 𝑑𝐼)

𝑑𝐼(𝑘𝑖 − 𝑑𝐼)
 

 

(14) 

At t=0, I(0)=0, 𝐶2𝑑𝐼(𝑘𝑖 − 𝑑𝐼) = −𝑘𝑖. 

The final solution for the intracellular inducer quantity over time is therefore: 

𝐼(𝑡) =
𝑘𝑜(𝑑𝐼𝑒

−𝑘𝑖𝑡 − 𝑘𝑖𝑒
−𝑑𝐼𝑡 + 𝑘𝑖 − 𝑑𝐼)

𝑑𝐼(𝑘𝑖 − 𝑑𝐼)
 

 

(15) 
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IV. Model distribution of t0 

From the models of inducer intake and of transcription, we use the Chemical Master Equation (CME) 
11

 to 

calculate the first moment of open complex formation in each cell, which is followed, shortly after, by the release of 

a transcript 
12,13

. For this, we assume that, upon this release, the promoter is unable to transcribe any subsequent 

RNA. Given this approximation, the master equation for the promoter in each of its three possible states is given by: 

)(Pr,)(/)(Pr, tPtfkttP Rc   (16) 

),(Pr)(Pr,)(/),(Pr tPktPtfkttP coRcc   (17) 

),(Pr/),(Pr tPkttP coo   (18) 

P(Pr,t), P(Prc,t) and P(Pro,t) are the probabilities that the promoter is in its primary state, in closed complex state 

and in open complex state, respectively, at time t. Due to the high amount of repressors in the cells 
14

, we ignore the 

leakiness of the target gene (from our measurements, we observed that, on average, it takes more than 1 hour for 

~10% of the cells to produce one spurious RNA, when not induced). Given this, we set the probability of the 

promoter to be in its primary state, P(Pr,0), to 1 and to be in the other two states (P(Prc,0) and P(Pro,0)) to 0. 

V. Dilution rate of regulatory molecules at various induction levels 

The dilution rate of regulatory molecules (dI) is calculated from the expansion rate of the cells’ volume. As E. 

coli grows mostly by elongating through its major axis length, while leaving its minor axis length unchanged, the 

relative increase in cell’s volume can be approximated by the increase in the cell’s major axis length. 

Cell growth in liquid media 

To test for the effect of IPTG induction on the cells growth rate at 37 ˚C, we first measured cell growth in liquid 

media. Cells were grown overnight at 30 ˚C with aeration and shaking in LB media, supplemented with the 

appropriate antibiotics, before being diluted in fresh LB medium until an OD600 ≈ 0.1 and pre-incubated for 2 hours 

without inducers. In the remaining hours, cells were either left to grow normally or grown in the presence of IPTG at 

the concentration of 0.25mM and 1mM. The optical density (OD) curves at 0mM, 0.25mM and 1mM IPTG 

concentrations were sampled every 30 minutes for 5 hours (Figure S2). 

From Figure S2, during the first 4 hours of the measurements there is little difference between the normalized 

OD curves, indicating that, in the range of concentrations tested, IPTG does not have any notable effect on cell 

growth. 

Cell growth on agarose gel 

Next, we obtained the cell growth rate during the microscopy measurements, where cells are kept on agarose gel 

as described in the Methods section of the main manuscript. As only a few cell cycles were observed in M63 media 

during 2 hour-long measurements, we estimated the cell growth rate from the elongation rate of all cells’ major axis 

rather than the cells’ doubling time. 

From the time lapse confocal images, cells were segmented and the length of the major axis was extracted at 

each frame. For each cell, we fitted a linear function to the logarithm of the major axis length over time and obtained 

the slope coefficient dI’, equivalent to the cell’s elongation rate. The doubling time Td’ of each cell is inferred from 

dI’ as follows: 
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𝑇𝑑 ′ =
ln(2)

𝑑𝐼′
 

 

(19) 

The distributions of Td’ at different induction levels spans over a wide range of durations, suggesting a noisy 

dilution rate when cells are on the 3% agarose gel. The distributions share a mode of around ~8400 seconds. To 

eliminate any effects of noise in the dilution rate of regulatory molecules, for the analysis of t0, we selected ‘normal’ 

cells with a doubling time Td’~8400 s, using a margin for selection of 15% of the mode’s value. Finally, from the 

value of Td’, the dilution rate dI of the selected cells is found to be: 

𝑑𝐼 =
𝑙𝑛(2)

𝑇𝑑 ′
= 8.25 × 10−5(𝑠−1) 

 

(20) 

Since cells grew exponentially during the measurements at a rate of dI ~8.25ˣ10
-5

 s
-1

 (doubling time of ~140 

minutes) in all conditions, it is reasonable to assume that the cells were unaffected by the inducer in the range of 

concentrations tested (in this regard see, e.g. 
15

). 

 

Figure S2. Normalized optical density (OD) curve at 0.25mM (diamond) and 1mM (square) IPTG and without 

IPTG (cross). Inducers are added at the end of the second hour, where the normalized OD’s values equal 1. 

VI. Formation of inclusion bodies at high inducer concentrations 

We use phase contrast microscopy to examine the fraction of cells with inclusion bodies as a function of IPTG 

concentration in the media. Cells were grown overnight at 30 ˚C with aeration and shaking in LB media, 

supplemented with the appropriate antibiotics, before being diluted in fresh LB medium until an OD600 ≈ 0.1 and 

pre-incubated for 2 hours without inducers. In the remaining hours, cells were incubated in the presence of aTc at 

100ng/L and IPTG at 1mM, 2mM and 4mM before being placed under the microscope. From the phase contrast 

images, we manually detected the presence of inclusion bodies (shown as a bright spot) in each cell. Example 

images of cells with marked inclusion bodies are shown in Figure S3. 

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0 1 2 3 4 5

N
o
rm

a
liz

e
d
 O

D
 (

a
t 
6
0
0
 n

m
) 

Time [h] 

No IPTG

0.25mM IPTG

1mM IPTG



7 
 

  

     

A 

B 



8 
 

 

Figure S3. Phase contrast images with cells with marked inclusion bodies (appears as a bright spots), when induced 

with IPTG concentrations of (Top) 1mM, (Middle) 2mM and (Bottom) 4mM. 

VII Temporal fluorescence intensity of MS2d-GFP tagged RNA molecules 

The technique of detecting new RNA molecules in individual cells as these appear in time lapse 

microscopy images using the MS2d-GFP RNA-tagging system (ref. 6 in main manuscript) consists of 

fitting the total corrected RNA spot intensity with a step-increasing function (see section I of this 

document).  

For this method to be valid, it is necessary that new RNA molecules appear nearly fully-tagged when first 

detected, so as to cause a significant “jump” in the total spots fluorescence intensity of the cell
7
. This is 

possible if the speed of elongation at the target gene and MS2d-GFP binding is not much longer than the 

interval between consecutive images, which in our measurements is 1 minute long.  

Also, it is necessary that an MS2d-GFP tagged RNA, once tagged, does not degrade significantly (neither 

abruptly nor gradually) during the measurement period (so as to allow using a step increasing function). 

Note that, nevertheless, the method can tolerate infrequent “blinking” of the tagged RNAs, due to moving 

out of focus transiently, without loss of information
7
. 

To validate the two assumptions, we observed the fluorescence intensity of individual, RNA spots over 

time (1 min
-1

). As newly produced RNA spots could appear and compensate for the loss of intensity 

(abrupt or gradual) of the existing spots (resulting in the underestimation of the spots’ degradation rate), 

we conducted the observation on a non-induced target gene. Namely, following the protocol described in 

the main manuscript (except for the induction of expression of the RNA target for MS2d-GFP), we 

observed sufficient cells during a period of 3 hours so that at least 40 RNA spots appearances could be 

detected (during that period of time, less than 1 in 10 cells produced an RNA spot). Note that, by 

C 
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inspection, we never observed the appearance of two new fluorescent spots in a cell at the same time 

moment and no cell ever contained 2 spots. 

To test the first assumption, from the time-lapse images, we obtained the fluorescence intensity of 40 

individual tagged RNAs for 30 minutes, since first detected. From these, we found that there is no 

significant RNA fluorescence increase after its detection. That is, new RNA molecules are nearly fully-

tagged when first detected, as expected from the frequency of image acquisition (1 min
-1

) and the 

expected speed of transcription elongation and MS2d-GFP binding (tens of seconds
16,17

). This is visible in 

Figure S4, where the mean spot fluorescence over time is shown. Note how, following the detection of the 

spots at moment 0 (synchronized for easier visualization), their mean fluorescence over time does not 

increase further in subsequent time moments. 

To test the second assumption, we fitted the intensity of each RNA spot over time with a decaying 

exponential function and inferred the degradation rate of the spot intensity. We obtained a mean decaying 

rate of ~8.1˟10
-5

 s
-1

, corresponding to a mean half-life of ~144 mins, which is much longer than our 

observation window for Δt (60 mins). As such, we conclude that, during the measurement period, the 

fluorescence of tagged RNAs does not decrease significantly over time (gradually or abruptly), in 

agreement with previous reports using the same RNA detection system
2,3,16,17

. 

 

Figure S4. Fluorescence of tagged RNAs in E. coli cells over time. Each of the five thin lines shows the 

fluorescence of a single tagged RNA molecule (randomly selected from the data) since first detected, for a period of 

30 minutes. The solid black line shows the mean fluorescence intensity of individual tagged RNA molecules (40 

molecules tracked), along with the sample standard deviation (vertical bars). 

 

-5 0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

2

2.5

3

Time from -rst spot appearances (mins)

S
ca

le
d

In
te

n
si
ty

Averaged Intensity

Spots' Intensity



10 
 

The above results are in agreement with previous studies. Regarding the dynamics of RNA production, 

the present results agree with previous data on the rate of transcription elongation in E. coli. Namely, at 

37
o
C, this rate is expected to be between ~60 and ~90 base pairs (bp) per second

18–20
. Given that the target 

gene is ~3200 bp long
16

, the RNA polymerase should produce a complete transcript in ~35 to ~50 s, 

which is faster than our imaging interval (60 s).  

Meanwhile, regarding the lack of degradation of tagged RNAs, our results are expected given previous 

studies on the coat protein of bacteriophage MS2
16,21,22

, which showed that most of the MS2 binding sites 

are constantly occupied by (at least 70) MS2d-GFP proteins, which results in the ‘immortalization’ of the 

target RNA due to isolation from RNA-degrading enzymes 
16,17

. 
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ABSTRACT  

Background 

In Escherichia coli, stress-responding expression of a specific σ factor indirectly downregulates some, but 

not all genes expressed by other σ factors, due to the σ factor competition for a limited pool of RNA 

polymerase core enzymes. We studied the unknown mechanisms of selectivity of indirect regulation of 

promoters whose transcription is primarily initiated by RNAP holoenzymes carrying RpoD.  

Results 

We performed qPCR and in vivo single-RNA measurements of transcription kinetics in various conditions, 

along with stochastic simulations of σ factor population-dependent models of transcription initiation. We 

provide empirical and theoretical evidences that the responsiveness of RpoD dependent promoters’ kinetics 

to changes in σ factor numbers other than RpoD, decreases widely as the duration of their closed complex 

formation decreases and the duration of its open complex formation increases.  

Conclusions 

We conclude that, in E. coli, promoter responsiveness to indirect regulation by σ factor competition is 

determined by its sequence-dependent and dynamically regulated multi-step initiation kinetics. Finally, we 

argue that a similar mechanism may exist in eukaryotes. 

 

BACKGROUND 

 In Escherichia coli, cell growth arrests by starvation affect the numbers of several components of the 

transcription machinery, such as RNA polymerase (RNAP) core enzymes (1, 2) and σ factors (3). It has been 

mailto:andre.ribeiro@tut.fi
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suggested that the active regulation of σ factor numbers is one of the means by which E. coli cells implement 

genome-wide changes in expression rates (4–7) and, consequently, alter growth phase. 

 Studies (4, 5, 8, 9) reported that, during stationary growth, while most genes have reduced activity 

compared to that during exponential growth, some have more stable or even enhanced expression. This 

diversity in responses is, to an extent, made possible by differences in the promoters’ selectivity for σ factors 

(5, 10, 11) and/or changes in transcription factor numbers (5). 

Another means by which changes in σ factor numbers cause genome-wide changes in the 

expression rates is the mechanism of indirect negative regulation (5), which affects rates of transcription 

initiation (12), where most gene expression regulations occur (13–16). For example, in the stationary growth 

phase, rpoS (σ
38

) expression is enhanced (11), while in exponential growth it is silenced (3, 17). Since RpoS
 

competes with the house-keeping RpoD (σ
70

) for a limited pool of RNAP core enzymes (2, 3, 17), increasing 

its numbers decreases the fraction of RNAP holoenzymes carrying RpoD (5, 18). Consequently, there is a 

decrease in the transcription rate of most, but not all genes that are expressed by RNAP-RpoD 

holoenzymes. It is so far unknown why some of these genes are impervious to this change in RpoS
 
numbers 

(4, 5, 8, 9). 

In E. coli, transcription initiation is a sequential process (19–22). The first step is the ‘closed complex 

formation’, and consists of the binding of the RNAP to the promoter region and the finding of the transcription 

start site (TSS) (23). It is followed by the ‘open complex formation’ (19, 20, 24), which consists of the 

isomerizations of the closed complex, starting with the DNA untwisting at the TSS (22) (this step is usually 

well approximated as irreversible (25)). Next, the RNAP escapes the promoter and transcription elongation 

begins (26), ending with the release of a nascent RNA (27).  

In vitro measurements of the duration of the events at the promoter region (22, 28) and of elongation 

and termination (29), showed that in E. coli the rate-limiting steps between consecutive RNA productions by 

active promoters are the closed and open complex formations. Recent in vivo measurements using MS2-

GFP tagging of RNA (30), which can detect target RNA molecules rapidly and efficiently (28, 31, 32), are in 

agreement, supporting the existence of 2 to 3 rate-limiting steps between consecutive RNA productions (32–

35). 

The multi-step nature of transcription initiation and the sequence dependence of the duration of each 

step allow active promoters to differ widely in dynamics (22, 36). In vitro measurements on fully induced 

variants of the lar promoter, showed that the mean interval between transcription events of these variants 
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differs by hundreds of seconds (22). Further, promoters also differ widely in range of induction (ratio of 

production rate between zero and full induction), even when differing only by a couple of nucleotides (21, 22, 

37). E.g. while PlarS17 has an induction range of 500 fold, PlarconS17 has an induction range of 4.5 fold, even 

though it only differs by 3 point mutations (37). Genome wide studies suggest that most genes in E. coli have 

an activity such that only less than one to a few RNAs are found in the cell at any given moment (13, 38), in 

agreement with direct observations that, in several promoters, even when fully induced, it takes hundreds of 

seconds between transcription events (19, 22, 24, 28, 33, 34), due to the rate-limiting steps, i.e. the closed 

and open complex formations (19, 39, 40).  

The duration of the closed complex formation of any promoter is partially determined by how fast a 

free promoter is bound by a free floating RNAP holoenzyme carrying the appropriate σ factor (20). Being the 

number of RNAP core enzymes limited (18), the σ factor numbers are expected to affect the kinetics of 

transcription initiation of all promoters in a cell (2, 5, 41). For example, increasing the numbers of a given σ 

factor should increase the number of holoenzymes carrying it. This should not only directly increase the 

transcription rate of promoters responsive to that σ factor, but also indirectly decrease the transcription rate 

of all other promoters, by reducing the numbers of RNAP carrying other σ factors (5). 

However, as noted above, while some genes are indirectly affected by changes in σ factor numbers, 

others are not (4, 5, 8, 9). The mechanisms underlying this selectivity are unknown but in silico studies using 

an equilibrium model of σ factor competition suggest that this could be related to promoter strength (2, 41). 

Here, we address this issue. First, we measure the effects of changes in RpoS numbers on the in 

vivo transcription dynamics of the promoter PBAD, whose transcription is primarily initiated by RNAP-RpoD 

holoenzymes (see (38, 42–44) and Supplement). For this, we perform measurements of time intervals 

between consecutive RNA productions in individual cells of the strain BW25113 in the exponential and 

stationary growth phases, as the RpoS numbers differ in these two conditions (3, 11, 17), and also observe a 

deletion mutant for rpoS, JW5437-1. We find that PBAD is heavily responsive to changes in RpoS numbers. 

Next, we perform both measurements by qPCR of the relative durations of the closed and open 

complex formation under full induction in each condition as well as an in silico analysis of a stochastic model 

of transcription, and conclude that the high responsiveness of PBAD to changes in RpoS numbers is due to 

having a closed complex formation with longer duration than its open complex formation. 

To support our conclusion, we subject PBAD to lower induction levels and, first, show that the duration 

of the open complex formation increases more than the duration of the closed complex formation with 
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decreasing induction. Then, we show that the difference in PBAD’s transcription rates between exponential 

and stationary phase is smaller when weakly induced, as expected from the smaller duration of the closed 

complex relative to the open complex formation.  

Afterwards, we study another promoter, PtetA, whose transcription is also primarily initiated by RNAP-

RpoD (Supplement) but that, unlike PBAD, it has a short-length closed complex formation compared to the 

open complex formation. We show that, in agreement with our hypothesis, its activity does not differ between 

exponential and stationary growth phase, neither it is affected by the deletion of the RpoS-coding gene. 

Finally, we present a stochastic model of transcription initiation with σ factor dependency based on the 

empirical data, and perform simulations to explore the degree of dependency of transcription dynamics on σ 

factor numbers as a function of the relative duration of the closed and open complex formation. In end, we 

discuss the role of the sequence-dependent, multi-step initiation kinetics of promoters in E.coli as a 

determinant factor in their selectivity for regulation by σ factor competition, and the possibility of existence of 

similar mechanisms in eukaryotes. 

 

RESULTS AND CONCLUSIONS 

σ factor numbers in the wild type strain, rpoS
+
, and in the deletion mutant rpoS

-
 

 We first measured the protein levels of rpoS, rpoD, and rpoC genes in rpoS⁺ (BW25113) and rpoS
-
 

(JW5437-1) cells in the exponential and stationary growth phases. From previous studies (3–5, 11, 17, 18), 

we expect the RpoS numbers to differ between these phases in rpoS⁺ cells, but little differences are 

expected in the RpoD or RpoC numbers (3–5, 17, 18). Meanwhile, in rpoS
-
 cells no difference is expected 

due to the deletion of the rpoS gene. 

After inducing the specific growth phase (Methods), we performed Western blot of RpoS, RpoD, and 

RpoC protein levels (Methods). Figure 1 shows that, as previously observed (3, 11, 17), in rpoS⁺ cells, the 

RpoS levels are higher in the stationary phase. Meanwhile, the protein levels of rpoC and rpoD genes do not 

differ greatly between growth phases in either rpoS⁺ or rpoS
- 

cells. Given this limited changes in RpoC 

numbers, any difference in PBAD’s dynamics between growth phases should not be due to changes in core 

enzyme numbers. Meanwhile, the lack of changes in RpoD levels implies that, in rpoS⁺ cells, the ratio 

between RpoS and RpoD numbers differs between the growth phases. Finally, note that, aside from RpoS, 

the numbers of other σ factors existing in some abundance in E. coli (specifically, RpoN, and RpoF) are not 

expected to differ between these growth phases in this strain (3, 45). 
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Figure 1. Protein levels of rpoC, rpoS, and rpoD genes in BW25113 (rpoS⁺) and in JW5437-1 (rpoS
-
) cells in 

the exponential and stationary growth phases, as measured by Western blot. The values are relative 

 

Dynamics of transcription of PBAD as a function of growth phase 

 Having established the differences in σ factor numbers between conditions, we studied the in vivo 

dynamics of RNA production under the control of PBAD in rpoS⁺ and rpoS⁻ cells in the exponential and 

stationary growth phases.  

For each condition, we performed time-lapse microscopy measurements (2 hours long, with 30 s 

intervals between consecutive images). The photo-toxicity caused by the confocal microscopy was accessed 

and found to be insignificant (Supplementary Material). From the time-lapse images, we extracted the 

duration of the intervals between consecutive RNA appearances in individual cells (Methods) and calculated 

their mean (µ) and coefficient of variation squared (CV
2
=σ

2
/µ

2
). Finally, we performed Kolmogorov-Smirnov 

(KS) tests of statistical significance to assess whether there is a significant difference between the interval 
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distributions in the two growth phases (usually it is accepted that, for p-values smaller than 0.01, the null 

hypothesis that the two distributions are identical is rejected). Results are shown in Table 1. 

Table 1 

Strain – Phase No. 
samples 

µ (s) CV
2
 Relative RNA 

level (qPCR) 
p-value  
(rpoS⁺ vs rpoS⁻) 

p-value  
(Exp. vs Stat.) 

rpoS⁺ – Exp 624 700 0.79 1 0.548 
<10

-5
 

rpoS⁺ – Stat  342 1595 0.69 0.11 <10
-5

 

rpoS⁻ – Exp 368 679 0.76 0.66  
<10

-5
 

rpoS⁻ – Stat  244 1053 0.72 0.17  

 

Table 1. In vivo transcription dynamics of PBAD in rpoS⁺ (BW25113) and rpoS⁻ (JW5437-1) cells when in the 

exponential growth phase and when in the stationary growth phase. Shown are the number of samples of 

intervals between consecutive transcription events in individual cells, mean intervals duration (µ), coefficient 

of variation squared (CV
2
=σ

2
/µ

2
) of the intervals duration, and p-values of KS tests comparing the interval 

distributions between growth phases and between rpoS⁺ and rpoS⁻ cells Also shown are the relative RNA 

levels as measured by qPCR. 

From Table 1, both in rpoS⁺ and rpoS⁻ cells, the RNA production dynamics of PBAD differs in the 

exponential and stationary growth phases (p-value smaller than 10
-5

), having a much higher mean rate and 

noise in the former. However, while in rpoS⁺ cells the intervals between consecutive RNA productions are 

~2.3 times longer in mean duration in the exponential phase, in rpoS⁻ cells this difference is only of ~1.55 

fold, which is significantly smaller than the ~2.3 fold in the rpoS⁺ strain (p-value < 10
-5

). qPCR measurements 

of the activity of PBAD in the four conditions are in qualitative agreement with the results from the microscopy 

measurements (Table 1 and Supplementary Figure S3).  

 

Kinetics of transcription initiation of PBAD 

Another important result in Table 1 is that, in all conditions, the CV
2
 of the intervals between 

transcription events is smaller than 1, in agreement with previous reports on the dynamics of this promoter, 

where no tangible transcriptional bursting was observed (46). The sub-Poissonian nature of the transcription 

dynamics of this promoter is expected due to the mean length of the intervals between consecutive RNAs 

(10
2
-10

3
 seconds), which should allow the buildup of DNA positive supercoiling around the target gene 

segment to be resolved by DNA gyrases in between events (47, 48).  

Given that the transcription dynamics of PBAD is a sub-Poissonian process it can be well-fitted by a 

model of multiple rate-limiting steps, each exponential in duration (32–35, 46). In Table 2 we show the 
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results of the statistical inference of the best fit multi-step model of transcription initiation for each condition 

(Methods). In all conditions, the best fit models have two rate-limiting steps (in agreement with the existence 

of a closed and an open complex formation, both of which rate-limiting), with one step being significantly 

longer than the other (Figure S4). As such, transcription initiation of PBAD can be well described by reactions 

(1), with the last step not being rate limiting (see also reactions (6) and (7) in Supplement). 

 

Table 2 

Strain - Phase No. steps 
of the best 
fit model 

Duration of steps (s) 
(95% confidence interval) 

p-value Ratio between longest and 
shortest inferred step 

rpoS⁺ – Exp 2 109 (±35)  591 (±59) 0.43 5.4 

rpoS⁺ – Stat 2   182 (±112)  1413 (±199) 0.35 7.7 

rpoS⁻ – Exp 2 137 (±51)  542 (±75) 0.37 4.0 

rpoS⁻ – Stat 2   212 (±100)    841 (±147) 0.92 4.0 

 

Table 2. Results of the best fit, for each condition, of the inference of the number and duration of the rate-

limiting steps in transcription from the in vivo distribution of time intervals between consecutive RNA 

productions in individual cells under the control of PBAD. For each condition, it is shown the number of steps 

of the best fit model along with the number and duration of the steps of the model and the 95% confidence 

interval of the duration of the steps. Also, the results of the KS test comparing the model and the empirical 

data are shown. As the temporal order of the rate-limiting steps cannot be found by the inference method, 

we opted for sorting them ascendingly according to their duration. Finally, the ratio between the durations of 

the longest and shortest inferred steps is shown for each condition.  

Finally, from Table 2, the differences between mean transcription intervals (µ (s) in Table 1) in the 

two growth phases (particularly, in rpoS⁺ cells) appear to be caused by changes in the duration of the 

longest rate-limiting step alone. Along with the fact that this difference is much smaller in rpoS⁻ cells, we 

hypothesized that the longest rate-limiting step ought to correspond to the closed complex formation. 

Next, we assess whether the longest rate-limiting step in PBAD’s transcription initiation dynamics thus 

in fact correspond to the closed complex formation. 

 

Relative durations of the closed and open complex formations of PBAD 

 In order to identify which of the two rate-limiting steps of PBAD, the close or the open complex 

formation, has longer duration, we make use of the methodology proposed in (49), so as to determine the 
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duration of the open complex formation (cc) relative to the duration of the closed complex formation (oc). We 

performed this test both in rpoS⁺ and rpoS⁻ cells in the exponential growth phase (Methods).  

 Measurements are performed in cells in exponential phase, in 0.25x, 0.5x and 1x media conditions, 

so that cells differ in intracellular RNAP concentrations (49). Results are shown in the “ plot” (Methods) in 

Figure 2. Also shown is the best fit line, from which we inferred the ratio between cc and oc for each strain 

(Methods). 

 

Figure 2.  plot for PBAD for rpoS⁺ cells and rpoS⁻ cells in the exponential growth phase. All data is shown 

relative to the RNA and RNAP levels in condition 1x. The lines are Weighted Least Squares fits. The error 

bars represent the SEM of the estimate of the inverse of the relative level of transcription for the target RNA 

(vertical bars) in each condition. All errors are calculated including the uncertainty in the first, right-most point 

in the plot (thus removing the error from that point). The ratio cc/oc equals ~2.4 for rpoS⁺ cells and ~11.0 for 

rpoS⁻ cells. 

 

 From the best fit lines in Figure 2, the ratio cc/oc was determined. It equals 2.4 for rpoS⁺ cells and 

11.0 for rpoS⁻ cells (Methods). As such, we conclude that cc is the rate-limiting step with longest duration. 
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Note that, qualitatively, the results are in agreement with the microscopy measurements in that this ratio is 

larger in rpoS⁺ cells than in rpoS⁻ cells (5.4 for rpoS⁺ and 4.0 for rpoS⁻, Table 2). 

 

Relative durations of the closed and open complex formation in PBAD under medium and weak 

induction in the stationary and the exponential growth phases 

From the above, differences in the mean transcription rate of PBAD between growth phases in rpoS⁺ 

cells (Table 2) are caused by changes in the duration of the longest rate-limiting step, which is the closed 

complex formation (in agreement with the fact that changes in RpoS numbers should only affect the closed 

complex formation (reactions (6) and (7) in Supplement)). As such, it is reasonable to hypothesize that the 

degree of adaptability of the kinetics of transcription of PBAD to changes in RpoS numbers depends on the 

ratio between cc and oc. This can be tested, provided that this ratio can be altered, which should be possible 

by regulating the activation of PBAD by arabinose. 

In the absence of arabinose, AraC binds two half-sites on the DNA (I1 and O2), promoting the 

formation of a DNA loop that blocks the access of RNA polymerases to PBAD. When bound by arabinose, 

AraC binds instead to the adjacent I1 and I2 half-sites, which promotes transcription initiation of PBAD (25). It 

is also known that changing the induction strength of PBAD by altering arabinose concentration in the media 

alters tangibly its RNA production rate (here verified in Figure 7A). This is known to derive from a change in 

the rate of transcription initiation, but it is yet not well established whether it occurs due to changes in the 

duration of the open complex formation, of the closed complex formation, or of both closed and open 

complex formation. Studies using in vitro techniques suggest that both steps are altered as they indicate that 

AraC can enhance both the binding of holoenzymes (which affects the closed complex formation) as well as 

the transition from the closed to the fully open complex state (22, 25, 35). 

Thus, we first assessed whether the closed and open complex formation change by a different 

amount with changing arabinose concentration. For that, we measured RNA transcription rates by qPCR in 

cells differing in intracellular RNAP concentrations (as in the previous section), when induced by 0.001%, 

0.01% and 0.1% (i.e. full induction) arabinose concentrations. Measurements are performed in rpoS
+
 cells in 

the exponential phase. 



10 
 

  

Figure 3.  plot for PBAD for rpoS⁺ cells in the exponential growth phase in three media conditions (0.001%, 

0.01% and 0.1%, i.e. full induction, arabinose concentrations). All data is shown relative to the RNA and 

RNAP levels in condition 1x. The lines are Weighted Least Squares fits. Error bars represent the SEM of the 

estimate of the inverse of the relative level of transcription for the target RNA (vertical bars) in each 

condition. All errors are calculated including the uncertainty in the left-most point in the plot (thus removing 

the error from that point). The ratio cc/oc equals ~2.4 at 0.1%, and ~1.2 at 0.01% and ~0.2 at 0.001%. 

 

Results in Figure 3 show that the lower the arabinose concentration, the smaller is the change in 

RNA production as a function of RNAP concentration (weaker inclination as a function of 1/[RNAP]). This 

indicates that, as the induction strength is decreased, the duration of the open complex formation increases 

more than the duration of the closed complex formation. Namely, cc/oc equals 2.4 for 0.1% arabinose, 1.2 

for 0.01% arabinose and 0.2 for 0.001% arabinose. 

Given this result, it is possible to make the following prediction. If the effects of changing RpoS 

numbers are stronger in promoters whose closed complex formation is longer than the open complex 

formation, then the weaker the induction strength of PBAD, the smaller should become the difference in RNA 

production between exponential and stationary phases.  
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We tested this in rpoS
+
 cells, and the results (Figure 4) verify that our hypothesis is accurate. Visibly, 

from Figure 4, the weaker the induction by arabinose, the smaller is the difference in expression levels 

between the exponential and stationary phases. Namely, the fold change in RNA levels when changing from 

the exponential to the stationary phase equal 9.2 for 0.1% arabinose, 2.5 for 0.01% arabinose and 1.8 for 

0.001% arabinose. 

 

Figure 4: Relative levels of RNA under the control of PBAD in BW25113 (rpoS
+
) cells when in the exponential 

and stationary growth phases for 0.1% arabinose, 0.01% arabinose and 0.001% Arabinose in the media, as 

measured by qPCR using the 16S RNA housekeeping gene for internal reference. The mean and SEMs 

(error bars) of relative RNA numbers per cell in each condition were estimated from 3 technical replicates 

 

Dynamics of transcription of PtetA as a function of growth phase 

 We concluded that the effects of changing RpoS numbers are stronger in promoters whose closed 

complex formation is longer than the open complex formation. To test this further, we searched for a 

promoter whose closed complex formation is much shorter in duration than the open complex formation, so 

as to assess if, in this case, no changes are observed when RpoS numbers, either by changing growth 

phase, or by deleting the gene coding for RpoS. 
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In E. coli, resistance to tetracycline is conferred by the extra-chromosomal Tn10 transposon encoded 

class B molecular determinants, forming the tet operon (37, 50–52). This operon consists of two structural 

genes, tetA and tetR. tetA is essential for tetracycline resistance (53), as it encodes for a membrane-targeted 

antiporter protein, TetA, responsible for active efflux of tetracycline, whereas tetR codes for TetR that 

regulates the tet operon. In the absence of tetracycline, TetR binds to the operator sites of PtetA and inhibits 

transcription (54). In the presence of tetracycline, TetR binds as a dimer to the biologically active 

tetracycline–Mg2+ complex, causing an allosteric conformational change in the repressor protein (55). This 

releases the repressor from the DNA, allowing the RNAP to bind and initiate transcription of tetA and tetR.  

Previous in vitro measurements (39) suggest that, for RNAP concentrations similar to those in the E. 

coli cytoplasm (56), PtetA has a much larger oc than cc. As such, its dynamics should differ neither between 

growth phases, nor between rpoS⁺ and rpoS⁻ cells. 

To test this, we first verified if, in vivo, oc is indeed longer than cc. We conducted these tests in both 

rpoS⁺ and rpoS⁻ cells in the exponential growth phase (Methods). Results are shown in Figure 5. Also shown 

are the best fit lines, from which we inferred the ratio cc/oc (Methods). 

 

Figure 5.  plot for PtetA for rpoS⁺ cells and rpoS⁻ cells in the exponential growth phase. All data is shown 

relative to the RNA and RNAP levels in condition 1x. The lines are Weighted Least Squares fits. The error 

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Inverse of relative RNAP level

In
ve

rs
e
 o

f 
tr

a
n
s
c
ri

p
ti

o
n
 r

a
te

 

 

P
tetA

 rpoS
+
 - data

P
tetA

 rpoS
+
 - fit

P
tetA

 rpoS
-
 - data

P
tetA

 rpoS
-
 - fit



13 
 

bars represent the SEM of the estimate of the inverse of the relative level of transcription for the target RNA 

(vertical bars) in each condition. All errors are calculated including the uncertainty in the first, right-most point 

in the plot (thus removing the error from that point). The ratio cc/oc equals 0.08 for rpoS⁺ cells and 0.12 for 

rpoS⁻ cells. 

 

First, from Figure 5, the solid and dashed lines of the best fit are nearly superimposed. Also, in both 

rpoS⁺ and rpoS⁻ cells, for PtetA, the open complex formation is much longer in duration than the closed 

complex, as cc/oc equals 0.08 for rpoS⁺ cells and 0.12 for rpoS⁻ cells. 

We thus hypothesized that there should be no tangible differences in the dynamics of transcription of 

PtetA between cells in the exponential and stationary phase neither between rpoS⁺ and rpoS⁻ cells. To test it, 

we performed measurements of intervals between consecutive transcription events in individual cells 

(Methods) from time lapse microscopy measurements for PtetA in the two growth phases in rpoS⁺ and rpoS⁻ 

cells. Results are shown in Table 3, along with the results of tests of statistical significance of the differences 

between conditions. From the results, we conclude that the dynamics of PtetA does not exhibit tangible 

differences between the conditions, as predicted. 

Table 3:  

Strain –Phase No. 
samples 

µ (s) CV
2
 relative 

RNA level 
(qPCR) 

p-value  
(rpoS⁺ vs. 

rpoS⁻) 
 

p-value  
(Exp. vs. Stat.) 
 

rpoS⁺ – Exp 435 982 0.59 1 0.188 
0.014 

rpoS⁺ – Stat  447 1157 0.56 0.92 0.994 

       

rpoS⁻ – Exp 160 996 0.63 0.90 0.188 
0.142 

rpoS⁻ – Stat  192 1156 0.58 0.93 0.994 

 

Table 3. In vivo transcription dynamics of PtetA in rpoS⁺ and rpoS⁻ cells in the exponential and in the 

stationary growth phase. Shown are the number of samples, mean duration (µ), coefficient of variation 

squared (CV
2
=σ

2
/µ

2
) of the intervals between transcription events. Also shown are the p-values of KS tests 

comparing the intervals’ distributions between growth phases, the relative transcription rates, inferred from 

the mean production interval, and the relative levels of RNA, as measured by qPCR, in the different growth 

phases. 

Also, from the distribution of intervals between consecutive transcription events obtained from cells 

in the exponential conditions the ratio cc/oc equals 0.48 for rpoS⁺ cells and 0.32 for rpoS⁻ cells, which in 
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qualitative agreement with the qPCR measurements (in that they are much smaller than 1, indicating a 

longer open complex formation). 

Finally, as in the case of PBAD, we performed the statistical inference of the best fit multi-step model 

of transcription initiation for each condition (Methods). Results in Table 4 show that, in all conditions, the best 

fit model has two rate-limiting steps (in agreement with the existence of a closed and an open complex 

formation, both of which rate-limiting) (Figure S4), with one step being significantly longer than the other (in 

this case, the open complex formation). 

Table 4: 

Strain - Phase No. steps of the 
best fit model 

Duration of steps (s) 
(95% confidence interval) 

p-value 

rpoS⁺ – Exp 2 321 (±78)  660 (±88) 0.10 

rpoS⁺ – Stat  2 364 (±93)  793 (±104) 0.60 

rpoS⁻ – Exp 2 240 (±60)  757 (±75) 0.88 

rpoS⁻ – Stat  2 349 (±150)  807 (±173) 0.85 

 

Table 4. Results of the best fit, for each condition, of the inference of the number and duration of the rate-

limiting steps in transcription from the in vivo distribution of time intervals between consecutive RNA 

productions in individual cells under the control of PtetA. For each condition, it is shown the number of steps of 

the best fit model along with the number and duration of the steps of the model and the 95% confidence 

interval of the duration of the steps. Finally, the results of the KS test comparing model and empirical data 

are shown. As the temporal order of the rate-limiting steps is unknown, we opted for sorting them according 

to their duration. 

 

Estimation of the differences in relative expression rates due to changes in σ factor numbers as a 

function of cc/oc 

 Using the model described by reactions (1) to (8) in Supplement, it is possible to predict, for a given 

value of cc/oc, the change in transcription rate of a given promoter (whose transcription is primarily initiated 

by RpoD) has a function of changes in the fraction of RNAP-RpoD holoenzymes. Supplementary Figure S5 

shows the predicted results for a wide range of realistic parameter values (i.e. for cc/oc ranging from 10
-2

 to 

10
2
), along with the predicted results using the measured values of cc/oc for PBAD and PtetA.  

 These predictions suggest that altering the kinetics of the rate-limiting steps in initiation (namely, 

varying cc/oc) results in a wide range of different behavioral responses to changes in σ factor numbers. 
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Importantly, examples exist showing that the required changes in cc/oc are possible either by changing the 

promoter sequence by a few nucleotides (see e.g. (22) or by changing the induction scheme (e.g. the 

induction mechanism of Plar allows altering the durations of closed and open complex formation separately 

by at least 2 orders of magnitude each (37)). 

 

DISCUSSION 

One of the global regulatory mechanisms of the transcriptional program of E. coli is the population of 

σ factors (8, 9, 57). Evidence shows that it acts via direct positive regulation as well as by indirect negative 

regulation. Regarding the former, once a specific σ factor is expressed and forms holoenzymes, a specific 

array of genes will be activated. Meanwhile, regarding the latter, as different σ factors compete for RNAP 

core enzymes, increasing the numbers of one σ factor and its corresponding holoenzyme decreases the 

numbers of other holoenzymes. Consequently, all genes expressed by those other holoenzymes should be, 

indirectly, downregulated. However, measurements show that not only not all genes expressed by the other 

holoenzymes are downregulated, but also the degree of down-regulation differs between genes. Given that 

this selection for down-regulation is not random, there should be a controlling mechanism. 

We investigated this by studying the relationship between the dynamics of transcription initiation of 

promoters whose transcription is primarily initiated by RNAP-RpoD and the degree of indirect regulation 

caused by changes in the numbers of RpoS. Our findings, based on measurements of PBAD (for three 

induction regimes), a promoter with a closed complex longer than the open complex, and PtetA, a promoter 

with a closed complex shorter than the open complex, indicate that the ratio between the durations of the 

closed and the open complex formation is responsible for promoter selectivity for indirect down-regulation 

and for the degree of change in transcription rates due to changes in σ factor numbers. Thus, we concluded 

that the sequence-dependent, multi-step initiation kinetics of promoters in E.coli influences their degree of 

regulation by σ factor competition. 

Relevantly, the kinetics of closed and open complex formation are sequence dependent, implying 

that they are evolvable. Also, they are subject to regulation by, e.g., transcription factors, meaning that the 

relationship between their time lengths can be readily and widely altered (as shown here for PBAD) to provide, 

at least to an extent, adaptability to different conditions.  

According to our analysis of an in silico model, the ‘elasticity’ in the kinetics of the two rate-limiting 

steps in transcription initiation is expected to provide genes the ability of performing a wide range of different 
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behaviors in response to changes in σ factor numbers. Nevertheless, we expect this elasticity to vary widely 

between promoters and to be weaker in genes essential for survival, while being stronger in genes 

associated to stress or environmental changes responses (as is the case of PBAD). 

It is worth noting that the ability to select which genes are responsive to changes in σ factor numbers 

by indirect negative (or positive) regulation (via the control of the relative durations of closed and open 

complex formation) may have significant selective advantages when compared to other regulatory 

mechanisms (e.g. transcription factor regulation). For example, it does not require the production of 

regulatory molecules and, thus, saves energy, cellular components, and it is not subject to errors in 

production (a common problem in protein production in E. coli). 

We find plausible the existence of a similar mechanism in eukaryotic cells. In these, for transcription 

to be initiated, a TFIID factor must first bind to the TATA box. This factor is composed of both a TBP (TATA 

binding protein) as well as 1 out of at least 15 different TAFs (TBP associated factors), and has been 

described as being a ‘relative’ of σ factors in E. coli (58). It has also been proposed that the needed 

association between TAFs and TBP allows for the coordinated regulation of transcription in eukaryotes, 

similar to σ factors in bacteria (59), as distinct sets of TAFs likely dictate the type of promoter at which a 

given TFIID will function. By regulating the intracellular numbers of one TAF, it should be possible to 

indirectly up/down regulate the speed of transcription initiation of a promoter not transcribed by that TAF, 

provided that there is competition in the cell for TBP factors. Evidence for such competition exists, in that 

TBP is not found in an isolated form in vivo (60). In that case, promoters whose first rate limiting step is 

longer in duration than subsequent steps would likely have their transcription activity indirectly affected by 

changes in the numbers of TAF not necessary for its transcription.   

We note that we do not expect the differences in RpoS numbers to be the only cause for the 

differences in transcription dynamics of PBAD between the conditions observed. An evidence for this is the 

difference in PBAD’s dynamics between the exponential and stationary growth phases in rpoS
-
 cells. 

Nevertheless, the differences in RpoS numbers are certainly one of the main causes, as the difference 

between exponential and stationary growth phases is much weaker in the deletion mutants than in the 

control strain. In the future, it should be of interest to study what other factor (not necessarily a σ factor) is 

responsible for the ‘remaining’ difference in dynamics between growth phases. Whatever it is, it does not act 

on PtetA, which exhibited no dynamical changes between growth phases in either rpoS⁺ or rpoS⁻ cells. 
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Finally, as a side issue, previous analysis of time-lapsed, single RNA detection data allowed 

extracting the distributions of intervals between consecutive RNA productions in individual cells (33–35), 

which, by being sub-Poissonian, can be modeled by a multi-step process with each step being exponentially 

distributed in duration and allow extracting from them the number and duration of the rate-limiting steps in 

transcription initiation of a promoter (33–35). However, it is not possible to extract the order of occurrence of 

these steps studying the distributions of the wild type strain alone. The present work shows that studying the 

same dynamics in single deletion mutants of a specific σ factor solves this problem, by allowing the 

identification of which of the steps is the closed complex formation. Relevantly, we expect this methodology 

to have significant genome wide applicability (i.e. to any promoter primarily expressed by RNAP-RpoD 

holoenzymes). 

 

MATERIALS AND METHODS 

Strains and plasmids 

 The E. coli strains used are BW25113 (61) and a deletion mutant, JW5437-1 (62), lacking the gene 

encoding for RpoS (62), were obtained from the Keio single-gene knockout collection. For simplicity, we 

denote BW25113 as rpoS⁺ and JW5437-1 as rpoS⁻. Note that these strains do not contain the araB-araD 

genes. As such, the negative feedback loop of the arabinose utilization system is inactive (63), which allows 

attaining maximum RNA production when fully inducing PBAD by arabinose.  

 We inserted an MS2-GFP RNA tagging system (64) into both strains to monitor the dynamics of 

transcript production of the promoter of interest. The tagging system consists of a low-copy reporter plasmid 

(pZS12MS2-GFP) carrying Plac-ms2-gfp (generously provided by Philippe Cluzel, Harvard University, MA, 

USA) and a single-copy target plasmid (pTRUEBLUE-BAC) coding for mRFP1 protein and an RNA 

sequence with 96 target binding sites (96bs) for MS2-GFP, controlled by the promoter of interest, which is 

either PtetA (33) or PBAD (46). Given their sequences, both promoters are expected to be transcribed by RNAP 

holoenzymes carrying RpoD (Supplement). 

 

Media conditions and growth phase induction 

 The method used here to reach specific growth phases was proposed in (65). Cells were grown in 

LB media (10 g/l tryptone, 5 g/l yeast extract and 10 g/l NaCl) overnight in an orbital shaker at 30°C with 

aeration at 250 rpm. Afterwards, to induce exponential growth phase, cells were diluted in fresh LB media to 



18 
 

reach an optical density (OD600) of ~0.05 and then grown at 37°C with aeration at 250 rpm for 1 hour. 

Meanwhile, to induce the stationary growth phase, cells were diluted in a stationary phase inducing media. 

Namely, the cells were placed on a media obtained by centrifuging the overnight cultured cells at 10000 rpm 

for 10 minutes. Next, cells were allowed to growth at 37°C with aeration at 250 rpm for 1 hour. As shown by 

the growth curve analysis, this halts cell growth (Figure S1). Finally, to assess whether the addition of 

arabinose alters cell growth rates, we measured the cells’ OD600 over time using a spectrophotometer. 

From the OD curves, we verified that the growth phases of neither the wild-type nor the deletion mutant 

strain were altered significantly for at least 2 hours after the addition of arabinose to the media (Figure S1). 

 

Intracellular RNA polymerase concentrations 

 The concentration of RNA polymerases in the cells, which includes both core enzymes and 

holoenzymes, differs with media richness (49). Since all measurements are carried out in LB medium, to 

obtain cells with differing RNAP concentrations, we placed them in modified LB media. These media have 

lower tryptone and yeast extract concentrations in order to reduce the RNAP concentration in the cells. The 

media used are denoted as 0.25x, 0.5x, and 1x, and their composition per 100 ml is, respectively: (0.25x) 

0.25 g tryptone, 0.125 g yeast extract and 1 g NaCl (pH – 7.0); (0.5x) 0.5 g tryptone, 0.25 g yeast extract and 

1 g NaCl (pH – 7.0); and (1x) 1 g tryptone, 0.5 g yeast extract and 1 g NaCl (pH – 7.0). 

The resulting concentrations of RNAP were assessed by measuring the level of RpoC protein, a core subunit 

of RNAP (66) using Western blot (see Method). These measurements confirmed that the RNAP levels are 

reduced in the poor media (Figure S6). 

 

Time-lapse microscopy 

 One hour after incubation in the respective phase-inducing media, for both cells containing PBAD or 

PtetA, we induced the MS2-GFP reporter, under the control of Plac, with 1 mM IPTG for 45 minutes in liquid 

culture. We verified by inspection that, at this stage, cells contained sufficient, uniformly distributed MS2-GFP 

in the cytoplasm to detect target RNAs (30, 32–35, 46). To activate PBAD, we added 0.1% of arabinose for 5 

minutes while in liquid culture. Cells were then placed under the microscope. PtetA does not require induction, 

as cells from BW25113 and JW5437-1 strains lack the gene coding for TetR, the repressor of PtetA (62). 

We used the following microscopy setting to image cells. We used an inverted microscope body 

Nikon Eclipse (Ti-E, Nikon, Japan) for all experiments. In the left port of the body, we used a confocal C2+ 
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scanner connected to LU3 laser system (Nikon) with a 488 nm argon ion laser. The laser shutter was open 

only during the exposure time, to minimize photobleaching. For phase-contrast, we used an external phase-

contrast setting (Nikon) with a DS-Fi2 CCD-camera. For both phase-contrast and confocal imaging, we used 

a 100x oil-immersion objective (Apo TIRF, Nikon). The software used to capture both image types and 

control the microscope was NIS-Elements (Nikon). To maintain, during microscopy, stable growth conditions 

and induction of the promoters controlling the production of the RNA target for MS2-GFP and of MS2-GFP, a 

peristaltic pump was used to introduce a constant flow of the appropriate media and inducers.  

For imaging, a few µl of culture was placed between a glass coverslip and a slab of 3% agarose 

containing the respective media and inducers. During image acquisition, the slide was kept in a temperature-

controlled chamber (Bioptechs, FCS2) at 37 °C. Cells were imaged by the confocal microscope every 30 

seconds for 2 hours, for the purpose of cell segmentation and detecting the MS2-GFP tagged RNA 

molecules (which appear as a bright spots in the image). Example images of cells along with the results of 

cell segmentation, spot detection, and extraction of the spots total fluorescence intensity over time are 

shown in Figure 6. 

 

Figure 6. Tagged RNAs in E. coli cells over time. (A) Unprocessed frames (top) along with segmented cells 

and RNA spots (bottom). The moment when the images were captured is shown at the top of each frame. 



20 
 

(B) Example time series of a scaled spot intensity level in a cell (circles) and the corresponding estimated 

RNA numbers (solid line).   

 

Image processing and data extraction 

 Image analysis was performed as in (33, 35, 46). We used a semi-automated cell segmentation 

strategy as in (67), which uses the software MAMLE (31) followed by manual correction. Afterwards, 

fluorescent spots in each cell, at each time moment, are detected automatically as in (34), by estimating the 

cell background intensity distribution using its median and median absolute deviation, and then performing 

thresholding with a given confidence level and assuming that this distribution is Gaussian. 

For time-series analysis, since the MS2-GFP tagged RNA molecules do not degrade during the 

measurement time (33, 68, 69), the moments of appearance of novel target RNAs in each cell were obtained 

as in (35), by least squares fitting a monotonically increasing piecewise-constant function to the corrected 

total spot intensity in that cell over time (Supplement, section 7). The number of terms for the fitting was 

selected by an F-test with a p-value of 0.01. Each discontinuity, i.e. jump, corresponds to the production of 

one target RNA (Figure 6) (32–35, 46). Finally, the time intervals between consecutive RNA production 

events in each cell were extracted (events separated by cell divisions are not considered). This method, first 

proposed in (70) and subsequently improved in (71), allows estimating the accuracy of the estimation based 

on the number of cells observed and the level of noise of the ‘spot fluorescence’ signal from individual cells 

(71).  For a set of 300 cells and a noise level of 1 in the fluorescent signal (as measured by the coefficient of 

variation and in agreement with the present measurements), we expect an accuracy of 0.8 (71). 

An example of the application of this method to the signal from one cell is shown in Figure 6. 

 

Inference of the number and durations of the sequential rate-limiting steps in transcription from the 

measured intervals between transcription events in individual cells  

The number and durations of rate-limiting steps in transcription initiation are inferred by fitting a multi-

step model, where the steps are sequential and exponentially-distributed, to the intervals between 

consecutive transcription events in individual cells using maximum likelihood (72). For a given number of 

steps, d, the distribution to fit is the sum of d exponential variables with mean durations µi (i=1..d). The model 

with smallest d is selected that cannot be rejected at the significance level 0.01 in favor of a higher order 

model. To assess the error of the inference, we also computed the 95% confidence interval of the step 
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durations inferred from time intervals. Note that this method does not allow us to determine the temporal 

order of the sequential steps inferred. Only their number and durations can be assessed. 

 

Quantitative PCR  

Cells (5 ml) at different phases were harvested as described previously, followed by an addition of 10 

ml of RNA protect bacteria reagent and mixed immediately by vortexing for 5 seconds. The samples were 

incubated for 5 minutes at room temperature, and then centrifuged at 5000 × g for 10 minutes. The 

supernatant was discarded and any residual supernatant was removed by inverting the tube once onto a 

paper towel. The entire RNA content was isolated by using RNeasy kit (Qiagen) according to the instructions 

of the manufacturer. Samples were then quantified using a Nanovue plus spectrophotometer (GE Healthcare 

life sciences), and the quality of the isolated RNA was checked by measuring the ratio of the absorbance at 

260 and 280 nm (A260/A280 ratio) of the sample (2.0 – 2.1). DNaseI treatment was then performed to avoid 

DNA contamination. cDNA was synthesized (Fermentas, Finland) from 1 µg of RNA with iScript Reverse 

Transcription Supermix. The cDNA templates with a final concentration of 10 ng/µl were added to the qPCR 

master mix containing iQ SYBR Green supermix (Fermentas, Finland) with primers for the target and 

reference genes at a final concentration of 200 nM. We used the 16S RNA housekeeping gene for internal 

reference. The primer set for the target mRNA (mRPF1) was (Forward: 5’ TACGACGCCGAGGTCAAG 3’ 

and Reverse: 5’ TTGTGGGAGGTGATGTCCA 3’) and for the reference gene (16S RNA) was (Forward: 5’ 

CGTCAGCTCGTGTTGTGAA 3’ and Reverse: 5’ GGACCGCTGGCAACAAAG 3’).  For rpoS, rpoD and rpoC 

RNA quantification, we used a specific set of primers, i.e. for the rpoS gene  (Forward:  

5’TATTCGTTTGCCGATTCACA 3’ and Reverse: 5’ CTTGGTTCATGGTCCAGCTT 3), the rpoD gene 

(Forward:  5’GATCTGATCACCGGCTTTGT 3’ and Reverse: 5’ TCTTCCTGGGAAAGCTCAGA 3’) and the 

rpoC gene (Forward: 5’ CGTCAGATGCTGCGTAAAGC 3’ and Reverse: 5’ GCGATCTTGACGCGAGAGTA 

3’). The qPCR experiments were performed using a Biorad MiniOpticon Real time PCR system (Biorad, 

Finland). The following thermal cycling protocol was used: 40 cycles of 95°C for 10s, 52°C for 30 s, and 72°C 

for 30 s for each cDNA replicate. These reactions were performed in three replicates for each condition with 

a final reaction volume of 25 µl. We use no-RT controls and no- template controls to crosscheck non-specific 

signals and contamination. PCR efficiencies of these reactions were greater than 95%. The data from CFX 

Manager TM Software was used to calculate the relative gene expression and its standard error (73). 
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Western blotting 

E.coli strains were grown as described above and cells were harvested by centrifuging at the OD600 

of 0.3. Cells were then lysed with the B-PER Bacterial protein extraction reagent (Thermo Scientific) 

containing the protease inhibitors. Cell lysate was incubated in the room temperature for 10 mins and then 

centrifuged at 15000 ×g for 5 mins to remove the debris and collected the supernatant. The samples 

containing the total protein were diluted with the 4X lamella sample loading buffer containing the β 

mercaptomethanol and boiled for 5 mins at 95°C. 30 μg of the total protein in each sample was resolved by 4 

– 20 % TGX gels (Biorad). Proteins were separated by electrophoresis and then electro-transferred on the 

PVDF membrane (Biorad). Membranes were incubated with respective primary antibodies for RpoC, RpoS 

and RpoD (Biolegend) of 1:2000 dilution overnight at 4°C followed by the appropriate HRP-secondary 

antibodies (Sigma Aldrich) 1:5000 dilution for 1 hour at room temperature. Detection was done by the 

chemilumiscence reagent (Biorad). Images were generated by the chemidoc XRS system (Biorad). Band 

quantification was done by using Image Lab software version 5.2.1. 

Estimation of the ratio between the closed and open complex formation  

 To estimate the ratio between the durations of closed and open formation of a target promoter, we 

followed a strategy similar to the one used in (49). Given the multi-step model of transcription described in 

(19, 23, 28). 

cc ock k

c oRNAP Pr Pr Pr Pr RNAP M        (1) 

where RNAP is the active RNA polymerase, Pr is a free promoter, Prc is a closed complex, Pro is an open 

complex (fully formed). Here, promoter escape and transcription elongation are assumed to be infinitely fast 

due to their duration being at least one order of magnitude smaller than the duration of transcription initiation 

(26, 29, 74). The duration of the closed complex formation (cc) is inversely proportional to the abundance of 

RNAP ( [ ]RNAP ): 

1

[ ]
cc

cck RNAP
      (2) 

Here, cck  is the rate constant of the closed complex formation in the condition when [ ] 1RNAP  . 

Provided that the closed and open complex formations are the only main rate-limiting steps in transcription 

(19, 22, 23, 28) the interval between consecutive RNA production events can be given by: 
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1 1

[ ]
cc oc

cc oc

t
k RNAP k

         (3)  

where Δt are the intervals between consecutive transcription events, while oc is the duration of the 

open complex formation. 

The variables in equation (3) whose values can be obtained from the measurements are [RNAP] and 

Δt. In particular, as Δt is inversely proportional to the target RNA production rate, it can be extracted by 

qPCR measurements (13, 16). Similarly, relative values of [RNAP] can be obtained by protein immunoblot. 

Then, it is possible to estimate the value of cc/oc, by weighted least square fit of a line to the measured Δt 

values when plotted against the 1/[RNAP] relative numbers. 

In practice, we obtain the value of cc/oc by measuring both [RNAP] and 1/Δt, in three conditions, 

differing in the abundance of RNAP in cells. To alter the abundance of RNAP, we place cells in different 

media, with chemical compositions of 1x, 0.5x and 0.25x (see above). The growth curves show that the cells 

are in the exponential phase in all three conditions (Figure S2). As the RNA degradation rates are not 

affected by the growth conditions (16), the relative transcription rates (proportional to 1/Δt) at 0.5x and 0.25x 

when compared to that in 1x media are assessed from the RNA levels, as measured by qPCR. 

 

Validation of promoter activity for PBAD and PtetA in BW25113 

 To confirm the presence of PBAD in BW25113, a derivative of E. coli K-12, and to determine the 

minimum concentration of arabinose needed to maximize its induction, we measured from microscopy 

images, for varying inducer concentration, the mean number of RNAs per cell. Results are shown in Figure 

7A. We also measured the fold change in the RNA synthesis rate by qPCR, which is in agreement with the 

microscopy measurements (Figure 7A). From the measurements, 0.1% arabinose suffices to reach 

maximum induction of PBAD. Also, from both measurement methods, we observe a change of ~10 fold 

induction ratio in RNA production (similarly to the data reported in (46)). 
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Figure 7. (A) Induction curve of PBAD with varying inducer concentration obtained from images of cells 

carrying PBAD and the MS2-GFP tagging system (white) and from qPCR (grey). The data from qPCR was 

normalized so as to match the microscopy measurements at 0% arabinose. In both measurement 

procedures, the mean and standard errors of the means (SEMs) (error bars) of RNA numbers per cell in 

each condition were estimated from 3 technical replicates. (B) Cells with the plasmid containing PtetA-mrfp1-

96bs under confocal microscope and no target gene inducer. White circles were placed around fluorescent 

spots identified by the spot detection algorithm. (C) Cells without the plasmid containing target genes under 

confocal microscope and no target gene inducer. No fluorescent spots were identified 

 

In the case of PtetA, it is only possible to observe its dynamics at full induction, since tetR is absent in 

BW25113 (61). To verify that the promoter is active, we compared, by inspection, the number of fluorescent 

spots in cells with and without the target plasmid carrying PtetA-mrfp1-96bs, 1 hour after inducing the reporter 

plasmid. While for cells with the target plasmid (example Figure 7B), spots appear under the confocal 

microscope (on average ~0.5 spot per cell), in the absence of the target plasmid (example Figure 7C) we 

detected no spots (500 cells observed), from which we conclude that PtetA is active. From this, it is also 

possible to infer that the number of false positives in cells containing the target plasmid is negligible. 

Given these results, in experiments on both rpoS⁺ as well as rpoS⁻ we used arabinose concentration 

of 0.1% to fully induce PBAD, unless stated otherwise. Note that the transcription rate of this promoter for 

concentrations of 0.1%, 0.01% and 0.001% differs significantly between conditions. As for PtetA, we only 

induce the MS2-GFP reporter system. Finally, note that the mean RNA numbers as measured by the MS2-

GFP tagging system does not differ significantly between replicates. 
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Supplement for “Degree of regulation by σ factor competition in 

Escherichia coli depends on the kinetics of transcription initiation” 

1. Promoter sequences 

Sequences of PtetA (1, 2) and PBAD (3) with the consensus boxes (in red) at the -10 and -35 elements: 

PBAD: 

ccataagattagcggatcctacctgacgctttttatcgcaactctctactgtttctccatA  

                       -35                     -10         +1        

PtetA: 

ccagatgattaattcctaatttttgttgacactctatcattgatagagttattttaccacT 

                          -35                     -10      +1        

Both promoters have very conserved consensus at position -10, suggesting that they are transcribed 

by RNAP holoenzymes carrying factors of the σ
70

 family (4–6). Also, their binding affinity to 

holoenzymes carrying RpoD is expected to be much higher than to those carrying RpoS (4, 7), due 

to the conserved consensus at position -35 for RpoD recognition (8, 9). Furthermore, both 

promoters lack the consensuses for recognition by the σ
54

 family at positions -12 and -24 (10). We 

thus assume that their transcription initiation is triggered only by RNAP holoenzymes carrying 

RpoD. 

2. Bacterial growth rates  

We used the method proposed in (11) to induce exponential and stationary growth phases. To 

validate the method, we measured the cultures’ optical density (OD600) every 30 minutes using the 

spectrophotometer for each growth media (Figure S1). The strains tested are BW25113 (wild type, 

or WT) and a deletion mutant, JW5437-1, both of which containing the MS2-GFP tagging system 

(with PBAD as the target promoter and Plac as the reporter promoter). Both strains were obtained 

from the Keio single-gene knockout collection (12). 

All measurements were performed with and without 0.1% arabinose, added to the media after 2 

hours of measurements at 37°C, to ensure that cells were adapted to the conditions. This 

comparison allows testing whether the cells are under stress, by comparing their growth rate in the 

presence and absence of arabinose. 
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Figure S1. OD curves of bacterial populations in exponential growth-inducing media (black lines) 

and stationary growth-inducing media (grey lines). The media either contained 0.1% arabinose 

(solid lines and circles) or not (dashed lines and crosses). The moment t = 0 min. corresponds to the 

moment when arabinose was added to the media (2 h after the start of the experiment). The E. coli 

strains used are (A) BW25113 and (B) JW5437-1. 

Figure S1 shows that the cell growth rates differ widely between the two different phase-inducing 

media. Also, it shows that, in both cases, the growth rates are not altered significantly by the 

addition of 0.1% arabinose in the media, for (at least) 2 hours following its addition. 

We also assessed whether the confocal imaging of the cells (for 2 hours with images taken every 30 

seconds), caused significant photo-toxicity. For this, we compared the division times of BW25113 

cells in the exponential growth phase under the microscope, when and when not exposed to 

confocal microscopy (cells imaged by phase contrast in both cases).  

We observed doubling times of 72 min. and 68 min. with and without confocal microscopy, 

respectively, from which we conclude that the confocal imaging does not introduce significant 

photo-toxicity. Media richness in these tests was 1x (see main manuscript). 

In addition, the tests were also performed in two other media, differing in richness, as described in 

the main manuscript and referred to as 0.25x and 0.5x media. From Figure S2, we observe that the 

mean growth rate decreases slightly with decreasing media richness, from 1x to 0.25x. 
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Figure S2. OD curves of bacterial populations in exponential growth-inducing media with 0.25x, 

0.5x, and 1x richness. The E. coli strains used are (A) BW25113 and (B) JW5437-1. 

 

3. qPCR measurements of relative RNA levels under the control of PtetA and PBAD 

 

Figure S3. Relative levels of RNA under the control of PtetA and PBAD in BW25113 (rpoS
+
) and 

JW5437-1 (rpoS
-
) cells when in the exponential and stationary growth phases, as measured by 

qPCR using the 16S RNA housekeeping gene for internal reference. 

 

4. Empirical distributions of intervals between consecutive RNA productions in individual 

cells and the models that best fit the data 
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Figure S4. Distributions of intervals between consecutive RNA productions in individual cells from 

(A) PBAD in rpoS⁺ cells, (B) PBAD in rpoS⁻ cells, (C) PtetA in rpoS⁺ cells, and (D) PtetA in 

rpoS⁻ cells. Results from both cells in the exponential growth phase (dark grey bars) and the 

stationary growth phase (grey bars) are shown. Also shown are the fitted models of transcription 

with two exponentially-distributed rate-limiting steps, the closed and open complex formation (dark 

grey and grey solid curves). 

 

5. Model of transcription initiation with σ factor dependency 

Our model first accounts for the competition between different σ factors for binding to an RNAP 

core enzyme which exists in limited numbers in E. coli (13–16). Since the promoters studied are 

transcribed by σ
70

, this reaction is modeled explicitly (reaction 1). Since the mutant strain studied 

lacks σ
38

, this reaction is also modelled explicitly (reaction 2). Other σ factors are all referred to as 

σ
i
 and their interactions with RNAPs are modeled by a single reaction, for simplicity (reaction 3): 

𝜎70 + 𝑅𝑁𝐴𝑃 
𝐾70
↔ 𝑅𝑁𝐴𝑃. 𝜎70 

(1) 

𝜎38 + 𝑅𝑁𝐴𝑃 
𝐾38
↔ 𝑅𝑁𝐴𝑃. 𝜎38 

(2) 

𝜎𝑖 + 𝑅𝑁𝐴𝑃 
   𝐾𝑖
↔ 𝑅𝑁𝐴𝑃. 𝜎𝑖 (3) 

Reactions 1, 2 and 3 describe the binding/unbinding of RpoD (σ
70

), RpoS (σ
38

)  and other σ  factors 

(σ
i
) to RNAP core enzymes (RNAP) respectively, in order to form corresponding RNAP 
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holoenzymes (RNAP.σ
70

, RNAP.σ
38

, and RNAP.σ
i
, respectively). These reactions have a ratio 

between association and dissociation rate constants that are given by K70, K38 and Ki, respectively. 

We assume that in wild-type E. coli, the numbers of functional σ factors (either free floating or in a 

holoenzyme form) are [σ
70

], [σ
38

], [σ
i
] for RpoD, RpoS and the other factors, respectively. The 

number of free floating RNAP core enzymes (i.e not bound to DNA) equals [RNAP]. 

Due to a limited pool of core enzymes when compared to the σ factor numbers, most RNAPs are 

expected to be in the holoenzyme form (14, 15, 17). Therefore, the number of RNAP.σ
70

 in wild-

type E. coli (here, the rpoS
+
 strain) is given by: 

[𝑅𝑁𝐴𝑃. 𝜎70]𝑟𝑝𝑜𝑆+ ~ [𝑅𝑁𝐴𝑃] 
[𝜎70] × 𝐾70

[𝜎70] × 𝐾70 + [𝜎38] × 𝐾38 + [𝜎𝑖] × 𝐾𝑖
 

 

(4) 

Meanwhile, in the mutant strain JW5437-1 (rpoS
-
), the number of RNAP.σ

70
 is given by: 

[𝑅𝑁𝐴𝑃. 𝜎70]𝑟𝑝𝑜𝑆− ~ [𝑅𝑁𝐴𝑃] 
[𝜎70] × 𝐾70

[𝜎70] × 𝐾70 + [𝜎𝑖] × 𝐾𝑖
 

 

(5) 

Provided that [σ
38

] is significantly greater than 0 in the wild type strain (which occurs when, e.g., 

these cells are in the stationary growth phase), then: [𝑅𝑁𝐴𝑃. 𝜎70]𝑟𝑝𝑜𝑆+< [𝑅𝑁𝐴𝑃. 𝜎70]𝑟𝑝𝑜𝑆−. 

Consequently, the transcription initiation rate of promoters transcribed by RNAP.σ
70

 should be 

slower in the stationary growth phase. 

The model also accounts explicitly for the multi-step transcription process, based on the modelling 

strategy proposed in (18), which follows from the empirical models proposed in (19–21): 

𝑅𝑁𝐴𝑃. 𝜎70 + 𝑃𝑟  
𝑘𝑐𝑐
→ 𝑃𝑟𝑐𝑐 

(6) 

𝑃𝑟𝑐𝑐  
𝑘𝑜𝑐
→ 𝑃𝑟𝑜𝑐 + 𝜎

70 
(7) 

𝑃𝑟𝑜𝑐  
  ∞ 
→ 𝑃𝑟 + 𝑀 + 𝑅𝑁𝐴𝑃 (8) 

Reaction 6 models the closed complex formation, which consists of the binding of RNAP 

holoenzymes with σ
70 

to the promoter region (Pr). Note that only σ
70

 is assumed to be able to bind 

stably to Pr, i.e., it is assumed that other holoenzymes either only bind very rarely to the promoter 

or, when doing so, do not remain bound for a significant amount of time. As this process is modeled 

by a first order reaction, the expected time to occur follows an exponential distribution. 

Reaction 7 models the formation of the open complex, which, once complete, is followed by the 

release of σ
70

 from the promoter-RNAP complex (22) and by the escape of this complex from the 

promoter region (23), which allows initiating the elongation process and, subsequently, the 

termination and RNA release (24). All steps following the open complex formation are modeled by 

a single reaction (reaction 8). Their duration is not accounted for since they are expected to be much 

shorter in duration than the closed and open complex formation in normal conditions (23, 25). 

From reactions 6-8, and assuming one and only one Pr promoter in each cell, the mean time to 

produce one RNA molecule is given by: 
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𝜏𝑐𝑐 + 𝜏𝑜𝑐 =
1

𝑘𝑐𝑐[𝑅𝑁𝐴𝑃. 𝜎70]
+
1

𝑘𝑜𝑐
 

 

(9) 

From equations 5 and 9 it is deducible that, the absence of a given σ factor (other than σ
70

) will 

decrease (𝜏𝑐𝑐 + 𝜏𝑜𝑐) of a promoter preferentially transcribed by RNAp.σ
70

. The magnitude of this 

decrease depends on the magnitude of the various rate constants (some of which are unknown, such 

as kcc), and thus it cannot be determined analytically. This was therefore assessed empirically for 

PBAD and PtetA (main manuscript).  

 

6. Changes in transcription rate due to changes in σ factor numbers as a function of the 

duration of the closed and the open complex formation. 

The model described by reactions 1-3 and to 6-8 can be used to explore, within realistic intervals of 

parameter values, the degree to which the duration of closed and open complex formation determine 

the degree of changes in transcription rate as a function of σ factors numbers.  

For that, we use equation 9 to estimate the RNA production rate for different values of (cc/oc) as a 

function of the fraction of RNA polymerases occupied by σ
70

, normalized by the expression rate 

when all holoenzymes are RNAp.σ
70

. Results are shown in Figure S5.  

Also shown are the expected relative transcription rates of PtetA and PBAD under full induction, based 

on the empirical values of (cc/oc). As expected, PtetA is within the region of the parameter space of 

promoters whose closed complex is longer in duration than the open complex formation, while PBAD 

is found in the opposite region of the parameter space. 
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Figure S5. Relative RNA expression rate as a function of the fraction of RNA polymerases 

occupied by σ
70

, for model promoters with differing empirical values of cc/oc and for two model 

promoters with values of cc/oc identical to those measured for PBAD and PtetA. 

 

From Figure S5, the larger is cc/oc, the larger will the change in the relative expression rate of the 

target gene as a function of the change in σ factor numbers. 

On the other hand, this figure suggests that too large changes in [RNAP.σ70] / [RNAp] are needed 

for the observed changes in transcription rates. Namely, for PBAD we measured a change in 

transcription rate of ~50%, which would demand that the [RNAP.σ70] / [RNAp] would have 

changed by ~50% as well (which is not in accordance with the results in Figure 3). As such, and in 

agreement with differences in transcription dynamics of PBAD between exponential and stationary 

phases in the mutant strain lacking RpoS, we expect that additional factors are contributing to the 

changing dynamics of transcription of PBAD between cells these two growth phases. 

 

7. Temporal fluorescence intensity of MS2-GFP tagged RNA molecules 

The technique of detecting new RNA molecules in individual cells as these appear in time lapse 

microscopy images using the MS2-GFP RNA-tagging system consists of fitting the total corrected 

RNA spot intensity with a step-increasing function (26).  

For this method to be valid, new RNA molecules need to appear nearly fully-tagged when first 

detected, so as to cause a significant “jump” in the total spots fluorescence intensity of the cell. This 

is possible if the speed of elongation (expected to be ~60 and ~90 base pairs per second, at 37
o
C 

(27–29)) and the MS2-GFP binding to the target RNA do not take much longer than the interval 

between consecutive images, which in our measurement settings is 30 seconds long. Second, it is 

necessary that an MS2-GFP tagged RNA, once tagged, does not degrade significantly (neither 

abruptly nor gradually) during the measurement period (to allow using a step-increasing function). 

These two assumptions were recently tested (30), by observing the fluorescence intensity of 

individual, tagged RNA molecules for 30 minutes (1 image per minute) in individual cells.  

From the data, first, it was found that new RNA molecules are nearly fully-tagged when first 

detected, as no significant RNA fluorescence increases are observed after the detection of the 

complex. Second, by fitting the intensity of each tagged RNA over time with a decaying 

exponential function and inferring its intensity degradation rate, a mean decaying rate of ~8.1˟10
-5

 

s
-1

 was measured, corresponding to a mean half-life of ~144 mins, which is longer than our 

observation window (120 mins).  

These measurements agree with previous studies of the coat protein of bacteriophage MS2 (31, 32), 

which showed that most MS2 binding sites are constantly occupied by MS2-GFP proteins, resulting 

in the ‘immortalization’ of the target RNA due to isolation from RNA-degrading enzymes (33, 34). 

We thus assume that the fluorescence of tagged RNAs does not decrease significantly over time 

(gradually or abruptly) during the measurement period, in agreement with previous reports using the 
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same RNA detection system (26, 34–36). Finally, it is noted that this method of single RNA 

counting can tolerate infrequent “blinking” of the tagged RNAs, due to moving out of focus 

transiently, without loss of information (26). 

 

8. Measurements of RpoC protein levels in the exponential growth phase when in 0.25x, 0.5x, 

and 1.0x media and in the stationary phase 

 

Figure S6. RpoC levels in BW25113 (rpoS
+
) and JW5437-1 (rpoS

-
) cells in the exponential growth 

phase when in 0.25x, 0.5x, and 1.0x media and in the stationary phase (stat), as measured by protein 

immunoblot. The protein levels are shown in relative to that in 1x media for rpoS
+
 cells. 
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