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ABSTRACT

Since the introduction of magnetic resonance imaging (MRI), the full extent of its
possibilities has been extensively studied. Diffusion weighted imaging is a specific
MRI protocol that enables the quantitative study of water diffusion in tissue. More
recently, diffusion imaging has been extended to diffusion tensor imaging (DTT),
which can extract detailed information of tissue microstructure. Overall, the most
popular clinical application of DTT is the assessment of human brain white matter
(WM). DTI can reveal changes in the brain WM microstructure that are not visible
by other means of medical imaging. This microstructural resolution allows DTT to
be used for the detection of several neuropathologies affecting the brain’s neural
network, such as traumatic brain injuries and various types of neurodegenerative
disorders.

Mild traumatic brain injury (mTBI) can be defined as a traumatically induced
brain function disruption which, in most cases, is not detectable by conventional
medical imaging. mTBIs are grievous ailments due to high occurrence and a lack of
distinct quantitative diagnostic tools and biomarkers. This signifies that the diagnosis
of mTBI is based on subjective clinical measures. Extensive research has been
carried out in order to find a clear correlation between DTI derived quantitative
metrics and the post-mTBI brain WM. No uniform evidence of absolute conditions
of pathology or association with post-injury prognosis has yet been found. However,
many previous studies report different correlations between DTI metrics and post-
injury brain WM. Unfortunately, the observed changes vary between studies, and
final conclusions on the effects of mTBI on brain WM have yet to be made. One
source of variation is the incoherency of the analysis methods used in the assessment
of mTBI patients. Additionally, the heterogeneity of the studied patient cohorts
hinders the chances of drawing a generalisable clinical conclusion.

Our work aims to overcome the issues in quantitative mTBI analysis methods by
introducing a simple yet robust automated analysis method for human brain WM
analysis. Our research began by applying a novel third-party group level analysis
method, tract-based spatial statistics (TBSS), to an mTBI patient sample. We tested
the whole sample and several subgroups for abnormal WM, but the results were
negative. It was also noted during the study that TBSS would not be a suitable tool



for clinical mTBI diagnostic purposes as the method is not fully modifiable for the
assessment of individual patients and involves an excessive amount of complex
image data manipulation. An additional study of traumatic spinal cord injury (SCI)
patients was successfully performed applying TBSS. We found widespread
neurodegenerative changes in the post-SCI cerebral WM, but also signs of possible
neuroplasticity. The results further confirmed the method’s applicability to
neuropathologic conditions with homogeneous effects on the brain WM
microstructure.

Based on our findings, we began to create an automated analysis method using a
region of interest (ROI) approach. We utilised human brain atlas-based ROIs in the
analysis, which were automatically registered to the analysed subjects. The procedure
ensures that the subjects’ images are not heavily processed. This in turn minimises
the bias caused by image manipulation. The patients were compared against a normal
population DTIT reference value model created from our control subjects. The
preliminary normal population DTT model created for the purpose was a successful
quantitative model of D'TT reference values. The normal population model could be
used in a variety of clinical applications if a large enough number of control subjects
were introduced to the model. The normal model would be especially useful in
support of mTBI diagnosis methods.

In summary, this thesis has three conclusions. First, we found no DTI measurable
associations between WM integrity and acute mTBI when applying TBSS. Second,
we found extensive WM changes in the post-SCI brain, which imply an ongoing
neuroplastic process in addition to the initial SCI-induced changes. These cerebral
WM changes were far more extensive than previously reported. Third, an automated
quantitative DTT brain analysis method with prospective clinical applications was
introduced. The sensitivity and specificity of the automated method is at an
acceptable level when used in conjunction with our preliminary control population
set. For clinical applicability, the method requires minor refinements to its usability.
More importantly, the normal population model needs to be updated to clinical
standards by increasing its statistical power. A large enough normal population data
pool could be achieved through an MRI data collection scheme resembling that of a
biobank data collection method. In addition, machine learning could be applied in
future to create better statistical models for the analysis with more accurate model
predicted DTT scalar values.
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TIVISTELMA

Jo magneettikuvantamisen (MK) alkuajoista lihtien kyseinen kuvantamismodaliteetti
on herittinyt runsasta mielenkiintoa sen laajojen mahdollisuuksien ansiosta. MK:ta
kiytetidn laajalti sekd rutinoidusti potilastutkimuksissa ettd edistyksellisissd
tutkimuksissa. Diffuusiopainotteisella kuvantamisella voidaan arvioida kudoksen
mikroskooppista rakennetta veden diffuusiota mittaamalla. Myohemmaissi vaiheessa
diffuusiokuvauksen rinnalle saapui tarkempi tapa mairittdd kudoksen rakennetta:
diffuusiotensorikuvantaminen (DTI). DTLn avulla voidaan tutkia aivojen
hienorakennetta sekd mikroskooppisia rakenteenmuutoksia, joita ei voida havaita
muilla kuvantamismenetelmilli. DTT on mahdollistanut useiden neuropatologisten
sairauksien kvantifioinnin ladketieteellisen kuvantamisen avulla, ja varsinkin
hermoston rappeumasairauksia voidaan evaluoida DTTL:1I4.

Lievd aivovamma on ulkoisen voiman aiheuttama aivotoiminnan hairié tai
rakenteellinen vaurio, jota usein ei pystyta havaitsemaan kuvantamisen avulla. Suuren
ilmaantuvuutensa, yhteisollisten kustannusten sekd haastavan diagnostiikan takia
lievien aivovammojen ennaltachkdisy on tirkedd. Lievien aivovammojen
diagnostiikka perustuu kliinisen arviointiin, jota perinteiset kuvantamistutkimukset
(tietokonetomografia ja MK) tiydentivit. Perinteisten aivokuvantamistutkimusten
ollessa useimmiten 16ydoksettomida vammamuutosten suhteen, diagnostiikka jaa
virhealttiin kliinisen arvioinnin varaan. Objektiivisille diagnostisille menetelmille olisi
huutava tarve. DTI-menetelmid on tutkittu pitkddn mahdollisena objektiivisena
diagnostisena tyokaluna. Paljon tutkimusta on tehty DTI skalaarien ja lievien
aivovammojen vilisen yhteyden 16ytimiseksi. Nykyisten tutkimustulosten valossa ei
voida vield todeta yksiselitteisen DT indikaattorin olemassaoloa. DTT:1ld nihtdvien
aivojen valkean aineen muutoksien on kuitenkin tutkimuksissa todettu olevan
kytkoksissé lievien aivovammojen patologiaan. Valitettavasti tutkimustulokset ovat
osittain ristiriitaisia, joten lopullista johtopditostd ei vield voida kirjallisuuden
perusteella tehdd. Ristiriitaisten tulosten mahdollinen selitys tosin lienee
huomattavasti vaihtelevat tutkimukselliset metodit seki aineistot.

Tutkimuksellamme pyrimme yhteniistiméidn aivojen kvantitatiivisen kuva-
analyysin menetelmid tuomalla kehittelemdmme automatisoidun menetelmin
kliiniseen ympiristoon. Analyysimme on tehty mahdollisimman yksinkertaiseksi,
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jotta menetelmd olisi lipindkyvid, toistettava ja kiytint66n implementoitava.
Tutkimuksemme alussa sovelsimme hiljattain julkaistua analyysimenetelmai, Tract-
based spatial statisticsia (TBSS) potilaisiin, joilla on todettu lievd aivovamma.
Vertasimme aivovammapotilaita verrokkeihin eri tutkimusasetelmissa, mutta emme
l6ytineet eroa ryhmien wvililli. Negatiivisten tulosten valossa pdddyimme
johtopiddtokseen, ettd TBSS ei ole sopiva menetelmi lievien aivovammojen
analyysiin. Vertasimme seuraavaksi selkdydinvammapotilaiden aivojen valkeaa
ainetta verrokkien valkeaan aineeseen hyédyntien muutamaa eri tutkimusasetelmaa.
Tutkimuksemme paljasti laaja-alaisia degeneratiivisia sekd mahdollisia aivojen
muuntautumiskykyd indikoivia muutoksia selkdrankavammapotilaiden aivoissa.
Tulokset myds varmistivat TBSS:n soveltuvuuden kollektiivisia valkean aineen
muutoksia aiheuttavien neurodegeneratiivisten sairauksien analyysiin.

Saatujen  kliinisten tulosten perusteella lihdimme kehittimddn uutta
analyysimenetelmai, joka olisi sovellettavissa lievien aivovammojen lisiksi my6s
muihin erityyppisiin neurologisiin sairauksiin. Pdidyimme mielenkiintoalueisiin
(region of interest, ROI) perustuvaan analyysiin, jota voidaan kdyttdd yksittdisten
potilaiden analyysiin. ROIL:na kdytimme valmiita rakenteellisia aivokartastoja, joiden
ROIt rekisterdidddn lineaarisesti sekd epdlineaarisesti kohteiden DTT kuviin. Tdmi
lihtokohtaisesti auttaa vihentimidin kuvankdsittelyn —atheuttamaa virhettd
kvantitatiivisiin arvoihin, silli kuvattua dataa ei kasitelld. Potilaiden DTI-kuvien
kvantitatiivisia ~ arvoja  vertailllan  verrokkiaineiston ~ avulla  luotuun
referenssiarvomalliin. Muodostimme alustavan normaalipopulaatioon perustuvan
DTTI mallin verrokkidatamme avulla, ja testasimme mallin herkkyyttd ja tarkkuutta,
jotka molemmat olivat tyydyttivalldi tasolla. Jatkossa riittivin isolla
verrokkiaineistolla voitaisiin luoda tarkempi malli normaalipopulaatiosta, jolla
voitaisiin mallintaa aivojen DTT-arvoja idn funktiona. Eritoten tima olisi hy6dyllistd
lievien aivovammojen tunnistamisessa.

Viitoskirjan yhteenveto voidaan jakaa kolmeen johtopaitékseen. Ensiksi; emme
loytineet TBSS:n avulla eroja lievin aivovamman saaneiden potilaiden ja
verrokkiaineistomme valkean aineen mikrorakenteessa. Toiseksi; loytimdmme
poikkeamat  selkidydinvammapotilaiden  aivojen  valkeassa  aineessa  ovat
huomattavasti laajemmat kuin on aiemmin raportoitu. laaja-alaiset muutokset
viittasivat vamman jilkeen esiintyvin neuroplastisiteetin jatkuvan vield pitkdan
akuutin trauman jilkeen. Kolmanneksi; esittelemdmme automatisoitu DTI-
analyysimenetelmd on monikiyttéinen tyokalu, jonka kliinistd kayttokelpoisuutta
voidaan parantaa lisidamalld verrokkiaineiston kokoa sekd parantelemalla yleistd

kiytettivyyttd. Riittdvin verrokkiaineiston keruu voitaisiin taata esimerkiksi
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biopankkityyliselli DTI-datankeruujirjestelmalld. Lisdksi tarkempaa tilastollista
mallia varten voitaisiin soveltaa tekoilyd koneoppimisen muodossa, jolloin my6s

DTI skalaarien ennustearvot tarkentuisivat verrokkiaineiston kasvamisen myota.
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17 INTRODUCTION

The human brain has been extensively studied through various measures for an
extensive period of time. In addition to the structure and functional anatomy of the
brain itself, various distinct changes in the cerebral microstructure and the causalities
of these changes have been of great interest to the medical research community for
centuries (Finger, 2001; Gross, 1987). While the macroscopic structure and basic
functions of the brain are well known, the detailed microstructural properties and
their associations with functional qualities are still largely undefined. Different types
of pathologies can alter the microstructure of the cerebrum, and these changes are a
potential biomarker for the disease and its possible progression.

Brain structure and function can be studied using various methods. The study of
brain structure, for example, is mostly associated with X-ray computed tomography
(CT) or magnetic resonance imaging (MRI), while, in addition to functional imaging,
brain activity can be assessed using encephalography measurements. At present, the
most reliable manner to study white matter histopathologies is to study the brain
post mortem (Benes, 1994; Peter R., 1979). Recently, however, diffusion tensor
imaging (DTT) has enabled the accurate study of the human brain white matter (WM)
microstructure in vivo.

DTT can be used to estimate the microscopic movement of water in the human
body. The measured water diffusion is hypothesised to directly reflect the underlying
microstructure of the tissue. This type of information is of value, especially in tissues
with organised microscopic structures, such as white matter and muscle tissue. Thus,
DTT is most frequently used in the field of neuroscience. DTT data can be analysed
by various means, with the most popular ones being region of interest (ROI), voxel-
wise, histogram and tractography-based methods, each of which has its own
advantages and disadvantages. The aim of this thesis was to evaluate the possible
applicability of a voxel-wise analysis and an applied ROI analysis method in the
context of neurotrauma. An additional objective was to improve the current clinical
diagnostic methodology in quantitative DTT brain analysis.
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1.1 Motivation

Traumatic brain injuries (ITBI) are woefully common in Europe, with an incidence
rate of approximately 260 per 100 000, the majority of which are under 25 years of
age (Brazinova et al., 2016; Peeters et al., 2015). While some of the TBIs are severe
and may even cause death (prevalence approximately 1 to 8 per 100 000), a notable
majority of trauma-based head injuries are mild traumatic brain injuries (mTBI)
(Peeters et al., 2015). In Finland, the rate may be slightly lower (S. Koskinen &
Alaranta, 2008; Puljula, Mikinen, Cygnel, Kortelainen, & Hillbom, 2013), but the
financial effects of mTBI can still be considered significant (Humphreys, Wood,
Phillips, & Macey, 2013). To tackle the unnecessary financial strain, a reliable
diagnostic method for the successful classification of the severity of TBI is required.
Appropriate diagnostics and adequately focused follow-up procedures lead to
efficient rehabilitative measures and substantial savings at a societal level
(Humphreys et al., 2013). In addition, suitable rehabilitation will have a significant
impact on the patients’ quality of life.

In addition to conventional imaging modalities, DTT is used in some specific
circumstances as an adjunct measure for detecting white matter damage in mTBIL
The lack of proper baseline values and the arduous quantitative D'TT analysis process
can, however, hinder the overall effectivity and value of this method. The lack of
agreement on normal values and the pathological limit of the DTT scalars mean that
the interpretation is often made based on qualitative measures. Qualitative
interpretations are observer-dependent, and thus subject to error. In the quantitative
freehand ROI method, the subjectivity is introduced during the ROI drawing phase.
These issues signify that the interpretations of DTT findings are based on subjective
methodology. It is this subjectivity that this thesis aims to overcome by introducing
a clinically relevant, robust and automated DTI brain analysis method.

Our studies were part of two larger prospective studies carried out at Tampere
University Hospital: Tampere Traumatic Head and Brain Injury Study (TheBrainS)
and Spinal Cord Injury Series of Tampere — Retrospective Study (SCISSORS). The
research questions of the studies were elaborate and well-structured, and with the
good quantity of valuable patient and control data, our research proved to be highly
interesting. Additionally, the increased scientific attention towards a novel voxel-wise
analysis method, tract-based spatial statistics (I'BSS), made it an interesting choice
for the assessment of mTBIs. The method had received attention due to its different
approach to the registration problem in voxel-wise analysis techniques.
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1.2 Aims and Objectives

This thesis aims to answer the question: “Can quantitative DTT analysis be used for
clinical mTBI interpretation?”. The overall agenda can be divided into three primary
objectives:

1. To study the possibility to evaluate human brain WM changes in acute mTBI
by diffusion tensor imaging.

2. To quantitatively study the comprehensive effect of spinal cord injuries on
the human cerebral WM, and to evaluate the applicability of TBSS to spinal
cord injuries.

3. To create a clinically viable individually applicable DTT analysis method by

using a ROI-based approach and reference values obtained via modelling of
normal population diffusion metrics.
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2 BACKGROUND

2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the latest additions to field of medical
imaging and the most technically advanced imaging modality to date. Its origins date
back to the early 1970’s, and the MRI’s triumphant journey has continued ever since
(Damadian, 1971; Lauterbur, 1989). MRI is one of the safer imaging methods
because it is based on non-ionizing electromagnetic radiation. Several physical and
physiological factors affect image formation in MRI, but the main physical
phenomenon behind MRI is nuclear magnetic resonance (NMR). In this chapter,
some of the basic principles of NMR and MR image formation will be discussed,
after which the focus will be on diffusion imaging.

211 Nuclear Magnetic Resonance

The concept of NMR is based on quantum spins and their interaction with external
electromagnetic radiation in a static magnetic field. Disturbing nuclei with a nonzero
spin magnetic moment in a constant magnetic field with photons of a certain energy
causes the nucleus to absorb the photons’ energy, and later to release the absorbed
energy to its near surroundings (Meyers & Myers, 1997). This phenomenon was
originally discovered in the 1930’s by several researchers, but the one usually credited
with its invention, due to successful experiments with a molecular beam in a
magnetic field, is Nobel prize winning physicist Isidor Rabi (Rabi, 1937; Rabi,
Zacharias, Millman, & Kusch, 1938). Although it was only slightly later when NMR
was applied to liquid and solid matter instead of to a beam of particles (Bloch,
Hansen, & Packard, 1946; Purcell, Torrey, & Pound, 1946).

Elementary particles, such as electrons, protons and neutrons, have a spin angular
momentum. Atomic nuclei have a spin that equals the vector sum of the spins of the
elementary particles in the nucleus. Nuclei that have an even number of protons and
neutrons have no net spin, and thus cannot experience NMR interactions. According

to the Zeeman effect, when a nucleus with a spin is placed in a constant external
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magnetic field By, its energy states become quantised with a limited number of
possible values when measured. These energy states are observable in the presence

of an external magnetic field:

E = —myhB,, M

where E is the energy level corresponding to the energy state, mis the magnetic
quantum number, Y is the gyromagnetic ratio, A is the reduced Planck constant and
B, is the external magnetic field flux density (Suetens, 2009).

The hydrogen nucleus is mainly used in MRI applications. While other nuclei may
have several spin states, the hydrogen nucleus has only two, and thus only two
possible energy values. The states of spin up and down correspond to states where
the proton’s magnetic vector moment is either parallel or antiparallel (respectively)
to the magnetic field. When observing a proton in a constant external magnetic field,
the preferred and most probable state will be the spin up state, which corresponds
to the state of lowest energy. For a proton, the values of m for the possible energy

levels up and down are m,, = % andmy = — %, and the energy difference is:
E; — E, = yhB,, 2)

where E,, and Ej; are the energies of spin up and down states, respectively. A photon
with the energy equal to the difference of the two energy levels can switch the proton
from the lower energy state to the higher (see Figure 1). However, the energy states
described by the equation (1) are in fact the maximum and minimum values that the
spins can have, and the spin energies reside between these states, defined by the
probability density of the wave function. Due to thermal energy, all the spins do not
reside in the lower energy state, as would be intuitive. Instead, the distribution of
spins follow the Boltzmann distribution (Boltzmann, 1877). As per quantum theory,
it is only when the spins are individually measured that their wavefunction will
collapse to one of the eigenstates. Indeed, in NMR, the magnetisation of a single
spin is never measured. Instead, we measure the total magnetisation of many nuclei
(Hanson, 2008). Because further quantum mechanics are not necessary to explain
NMR and MRI phenomena, classical mechanics will be used in the following
description of NMR, and the spinor property of protons will be simplified as vectors.
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Figure 1. Hydrogen nucleus (spin quantum number %2) spin energy level splitting in an external
magnetic field Bo according to the Zeeman effect. The energy level difference AE is
directly related to the external field strength Bo.

The spins will precess around the external magnetic field’s axis, due to the resulting
torque caused by interaction between the external magnetic field and the intrinsic
magnetic moment of the proton. The precession rate (frequency) depends on the
Larmor frequency of the nucleus and is proportional to the strength of the external
magnetic field. The Larmor equation gives us the precession frequency:

w = yhB,, 3

where w is the angular frequency of the precession. This is the frequency that
corresponds to the photons that can be used in NMR to disturb the protons and
cause the resonance effect. The required frequencies can be calculated with the
known values of gyromagnetic ratios for each nucleus. For the proton, the
gyromagnetic ratio is 42.58 MHz/T (Hanson, 2008; Hendee & Ritenour, 2003;
Larmor, 1897).

In the absence of an external magnetic field By, the sum of multiple proton
magnetic moments, the net magnetic moment vector (NMV) is a null vector.
However, the NMV in the B, will be a rotating vector pointing in the direction of
the By. Due to the incoherence of the precessing spins, the sum vector itself will not
precess, but the rotation rate, or angular frequency of the vector, is 42.58 MHz in an
external field of 1 T. By exciting the protons with the appropriate resonance
radiofrequency (RF) radiation, the NMV is rotated around the RF field vector (see
Figure 2). It is this interaction of RF energy with the nuclei that forms the basis of
nuclear magnetic resonance applications.
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Figure 2. Visualisation of spin distributions in an external magnetic field. The graphic on the left
represents the rotation of the NMV in the direction of the Bo (up), where the orientation of
the spins is slightly skewed in the direction of the Bo. The graphic on the right shows the
effect of a resonant RF field on the NMV, which rotates toward the transverse plane while
precessing about the Bo vector. The RF field vector in this case is pointed towards the
reader. Reprinted with permission from John Wiley & Sons (Hanson, 2008).

21.2 MR Image Formation

Credit for the original theory behind the NMV and relaxation times is given to Felix
Bloch (Bloch, 1946). The Bloch equations are the basis of MRI and its imaging
sequences which take advantage of the various relaxation times of the NMV in
different types of tissues. When the spins are excited with an RF pulse and the NMV
has a transverse component in relation to the By, the NMV will precess around the
Bg and induce a signal in MRI receiver coils. The absorbed energy is released to the
close environment of the proton and the magnetic moment vector begins to relax to
its original longitudinal plane (Bloch, 1946; Hendee & Ritenour, 2003; Suetens,
2009).

The resonance phenomenon in MRI refers to the absorption of Larmor
frequency RF energy by the proton nucleus, while the application of the Larmor
frequency pulse is called excitation. The flip angle refers to the angle between the B,
field and the excited NMV (see Figure 3). The NMV can be flipped to various angles,
but the signal is originated from the transverse plane, i.e., the larger the portion of
NMYV in the transverse plane, the larger the receivable signal (Westbrook, Roth, &
Talbot, 2011).
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Figure 3. Different flip angles with different amounts of longitudinal and transverse magnetisation.
On the left, the flip angle is between zero and 90 degrees, and the NMV is precessing
around the Bo likely causing some signal in the receiver coils. On the right, the NMV is fully
flipped (90°) to the transverse plane and will create a maximal signal in the receiver coils.

When the NMV is flipped to the transverse plane either partly or completely, the
vector will precess in the transversal plane. This precession can be measured by MR
receiver coils that are positioned perpendicular to the By (in the transverse plane).
NMYV relaxation is caused by thermal energy transfer from the spins to the close
environment (T1) and by interactions between spins and local magnetic fields (T2).
Another way of describing the relaxations is by their effect on the NMV: T1
relaxation refers to the growth (returning) of the longitudinal component of the
NMV after excitation, and T2 relaxation refers to the decay of the transverse
component. In general, any process causing T1 relaxation causes T2 relaxation
(Hanson, 2008; Westbrook et al., 2011). Tissues have varying, complex
microstructutres that influence the trelaxation times, and, as such, enable their
differentiation in MRI. By applying different excitation pulses in a pulse train, the
NMYV can be manipulated in a preferable way to induce the required signal to the
receiver coil.

Spatial encoding of the MRI signal is performed by using gradient fields. These
gradient fields change the static magnetic field slightly in the imaging plane.
Frequency encoding gradients cause a slight static spatial variation to the field
strength in the imaging plane that allows spatial separation of the acquired signal.
Frequency encoding can be used for slice selection or spatial encoding in an image
slice and are on during signal acquisition. Phase encoding gradients, on the other
hand, are turned on temporarily before signal acquisition, and they induce a spatial
phase shift in the orthogonal direction of the frequency encoding gradient. These
small differences in the signal’s frequency and phase can be used to map the acquired
signals to the correct spatial locations. (Hendee & Ritenour, 2003; Westbrook et al.,
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2011) Because the acquisition is based on frequency and phase encoding, the
acquired image is originally in k-space. Hence, instead of spatial coordinates referring
to a distinct physical cartesian coordinate location, the signal intensity information is
stored in a matrix with frequency and phase coordinates (Hendee & Ritenour, 2003;
Suetens, 2009). To obtain the “normal” MRI image, a Fourier transform needs to be
applied to the acquired k-space image.

Because the time scale of Brownian motion of water, the basis of diffusion
imaging, is extremely short compared with the physical and physiological motion of
a living subject, the MRI sequence utilised in diffusion imaging needs to be
significantly shorter than sequences used in common structural MR imaging.
Extremely short acquisition times (approximately 20 ms to 100 ms) can be achieved
through a special MRI imaging technique called echo-planar imaging (EPI)
(Poustchi-Amin, Mirowitz, Brown, McKinstry, & Li, 2001; Stehling, Turner, &
Mansfield, 1991). EPI was first described by Sir Peter Mansfield in 1977 (Mansfield,
1977). However, due to hardware restrictions, EPI acquisition was not possible at
the time. EPI allows for the collection of multiple k-space lines during a single
repetition time (TR), and it can be utilised in both spin echo and gradient echo
imaging. Instead of merely collecting multiple k-space lines of an image slice within
a TR (multi shot EPI), the frequency and phase encoding gradients can also be
fluctuated in such a manner that the entire k-space is filled in a single excitation
(single shot EPI) (Poustchi-Amin et al., 2001). An EPI sequence without a diffusion
gradient is shown in Figure 4.
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Figure 4. A schematic presentation of a single TR of a spin echo EPI sequence. RF indicates the
90° and 180° excitation pulses, Gpos shows the repeated phase encoding gradient, and Gr
the oscillated frequency encoding gradient that is applied during signal acquisition. Slice
selection gradient is not visible in the diagram. The sequence shown is “blibbed”, where
the phase encoding gradient is repetitively turned on and off while the frequency encoding
gradient oscillates. The k-space image to the right illustrates how the k-space is filled in a
zigzag pattern.
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2.1.3  Brain Diffusion Tensor Imaging

DTT is an imaging method based on a special MRI pulse sequence. DTT is, in
principle, an extension of diffusion weighted imaging (DWI), which is performed by
applying a diffusion-sensitising imaging sequence. Diffusion imaging can be used to
quantify the microscopic diffusion of hydrogen nuclei originating from Brownian
motion of water molecules (P.J. Basser, Mattiello, & LeBihan, 1994; D Le Bihan et
al., 19806). The modern diffusion weighted sequence was first introduced by Tanner
and Stejskal in the 1960’s, when they described a pulsed gradient spin echo sequence
using diffusion sensitising gradients (Stejskal & Tanner, 1965; Sugawara & Nikaido,
2014). These gradients act in a way that alters the signal obtained from moving spins
compared with stationary ones in a manner that is similar to magnetic resonance
angiography, only on a microscopic scale. It was not until the early 1990’s that the
first “real” diffusion images were created (Filler et al., 1993; Howe, Filler, Bell, &
Griffiths, 1992).

In general, DWI uses two paired pulsed (diffusion) gradients in a T2* imaging
sequence between a 180° RF pulse before signal acquisition. This type of
arrangement causes diffusing spins to phase out (spin precessions move out of phase
resulting in a smaller transverse NMV) in a degree dependent on the strength of
diffusion, while the effect is cancelled for stationary spins that retain their signal
strength (Dietrich, Biffar, Baur-Melnyk, & Reiser, 2010; Hagmann et al., 2000;
Stejskal & Tanner, 1965). An extremely simplified visualisation of a diffusion
sequence is shown in Figure 5. For diffusion weighted images, at least three
(orthogonal) diffusion gradient images are required to obtain isotropic diffusion
images. Another important factor in the creation of diffusion images is the b-value,
which is proportional to the gradient field strength and time between the gradients
(Dietrich et al., 2010; Hagmann et al., 2006). In practice, the b-value defines the
amount of diffusion weighting in the acquired image. With zero diffusion weighting
(bo), the diffusion sequence will produce a T2* image, and with small diffusion
weighting (b-value) the images will suffer from T2 shine-through, i.e., the contrast
on the image will be mainly due to T2 effects. Different direction diffusion gradient
images are combined to create trace diffusion images or apparent diffusion
coefficient (ADC) images. ADC images are “pure” diffusion images that are further
mathematically enhanced to get rid of the possible T2 effects. ADC images require
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a bp image and at least three diffusion gradient directions to accurately reflect the
mean diffusion (Hagmann et al., 2006). Examples of the different image types
obtainable through diffusion imaging are shown in Figure 6.
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Figure 5. Simplified schematic of a diffusion sensitised pulsed gradient spin echo sequence. RF
indicates the 90° and 180° excitation pulses, Gpos is the phase encoding gradient, Gui
shows the diffusion gradients with an interval A, amplitude G and duration & and Gr the
frequency encoding gradient applied during signal acquisition. Slice selection gradient is
not visible in the diagram. Diffusion sequences use EPI in practice and resemble the
sequence shown in Figure 4.

Diffusion coefficient, D, describes the diffusion of molecules in a liquid or gas, and
is described by the Finstein equation (Einstein, 1905):

dZ
=% )
where d is the mean displacement of the molecules and t is the diffusion time. As
an example, the diffusion coefficient of water at room temperature is approximately
0.002 mm?2/s. The diffusion signal in an isotropic medium is defined by the Stejskal-
Tanner equation, by by image signal, Sy, b-value, b, and the diffusion coefficient, D
(Stejskal & Tanner, 1965):

S(D,b) = S,ePP. (5)

The b-value is defined by the amplitude, G, duration, §, and interval between the
opposite diffusion gradient pulses, A:
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b= (yG8)2(A —2), ©)

where y is the gyromagnetic ratio of the hydrogen spins. B-values have units of
s/mm?2, and a typical value for diffusion imaging is about 1000 s/mm? (Dietrich et
al,, 2010). However, b-values in the range of several thousand can be used for more

complex diffusion imaging, e.g., high angular resolution diffusion imaging.

Figure 6. Different types of diffusion images taken from the same subject. From left to right: gradient
image, bo image, coloured FA map, MD map.

DTTI is an advanced form of DWI, and it can be used to visualise the anisotropic
diffusion caused by different tissue microstructures. For DTT images, a b image and
at least six acquisitions with different diffusion gradient directions are required to
calculate the diffusion tensor. The diffusion tensor D can be described as a 3%3

matrix with six degrees of freedom (P.J. Basser et al, 1994; Peter J. Basser &
Pierpaoli, 1996):

Dy ny Dy,
D = |Dyx, Dy, Dy, (7
Dy, Dyz D,,

where the elements Dyy, Dy, and D,, represent diagonal elements of the diffusion
and equal to the diffusion eigenvalues A4, 4,, and A3, respectively. Using diffusion
ellipsoid to describe diffusion in a frame of reference independent of the scanners
will simplify the diffusion tensor by causing all the non-diagonal elements to be zero.
Basically, this means defining the three-dimensional diffusion with a vector basis of
orthogonal eigenvectors, one of which points in the direction of the highest rate of
diffusion. In this way, the diffusion can be defined by the eigenvalues 4, 4, and A5
(for which 4; > A, > A3) and their corresponding eigenvectors (see Figure 7 for
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visual details). The anisotropic property of diffusion will make only minor changes
to equations (5) and (6), due to the vector notation of the gradient amplitude.

In addition to the axial diffusivity (AD, A;) and radial diffusivity [RD,
(A, + A3/2)], several scalars of interest can be derived from the diffusion tensor.
The most important are mean diffusivity (MD) and fractional anisotropy (FA) (Peter
J. Basser & Pierpaoli, 1996):
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FA and MD are the most used scalars in quantitative DTT analysis (Hulkower, Poliak,
Rosenbaum, Zimmerman, & Lipton, 2013), but RD and AD are also often used

FA =

today. In addition, some novel scalar metrics, e.g., kurtosis imaging or neurite
orientation dispersion and density imaging (Cox et al., 2016; Norhoj Jespersen, 2018;
Tuch et al., 2002; Wu & Alexander, 2007) are derived from the diffusion tensor but
have not yet gained the popularity of the FA, MD, RD and AD scalars.

Axial and radial diffusivities indicate the amount of diffusion in the direction of
the first eigenvector and the mean diffusion in the direction of the second and third
eigenvectors, respectively. See Figure 7 for a demonstrative visualisation of the
diffusion ellipsoid. Mean diffusivity is the average of the eigenvalues, indicating
overall magnitude of diffusion. FA, however, is a slightly more complex scalar,
representing the degree of anisotropy and overall directionality of the diffusion: the
larger the FA value, the more anisotropic the diffusion. The overall strength of
diffusion does not affect FA, since it is a measure of the degree of directionality. FA
is higher in orderly structured tissues, such as muscle or nervous tissue, and it can be

used to track neural pathways.
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Figure 7. Diffusion ellipsoids, eigenvalues, FA approximations and diffusion tensors of three
different types of diffusion. Left: unrestricted diffusion, diffusion is equal in each direction
and each eigenvalue is equal. Middle: diffusion equally restricted in each direction, like the
case on the left, with the exception D1 > D2. Right: anisotropic tissue, e.g., in neural tracts
running in the direction of A,. Note that here FA is closer to one than zero. The diffusion
tensor in the anisotropic diffusion is defined in the scanner frame of reference and can be
reduced to a diagonal matrix by change of the vector basis.

The diffusion scalars have the following clinical interpretations in brain tissue.
Diffusion anisotropy, particularly FA, is one of the most used properties and is
thought to be correlated with neural tract properties, such as axonal density, axonal
myelination, axon diameter and the packing density of neuroglial cells (P.]. Basser et
al., 1994; Minati & Weglarz, 2007; C Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro,
1996). Changes in FA is a possible sign of neuropathologies causing inflammation,
demyelination, oedema or damage to the axons themselves (Alexander, Lee, Lazar,
& Field, 2007). Higher FA suggests a more structured geometry, and thus most likely
a healthy axonal structure, whereas a drop in FA may suggest degenerative changes
in the neural tracts (Carlo Pierpaoli et al., 2001). FA is often used due to its high
sensitivity to microstructures and neuropathologies. Its specificity, however, is less
than ideal and additional information is required to draw conclusions on possible
pathologic findings. FA is generally considered to be a marker of white matter
integrity (Alexander et al., 2007).

MD is a measure of the overall diffusion strength and will reflect changes in the
level of water diffusion restriction. Increased MD has been associated with neural

tract degeneration and pathologies, and it can be a sign of inflammation, oedema or
tissue necrosis (Alexander et al., 2007; Beaulieu, 2002). The change in MD is highly
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susceptible to the time of imaging, and the direction of change can be either negative
or positive depending on whether the subject was imaged in the acute or chronic
stage (possibly also applicable to other DTI metrics). In general, MD can be
considered to be a marker of neural fibre density and/or white matter health, and it
can also be used to help specify different pathologic events in WM when used in
conjunction with FA (Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008; Carlo
Pierpaoli et al., 2001).

The eigenvalues of the diffusion tensor, along with AD and RD, are less utilised
than FA and MD. AD and RD are more specific diffusion scalars, and they can be
used to further specify the cause of changes to FA or MD (C Pierpaoli et al., 1990).
Looking at the eigenvalues alone can give an accurate description of diffusion, but it
is slightly more challenging to interpret compared with FA and MD (C Pierpaoli et
al., 1996). RD is considered to reflect demyelination, whereas AD is slightly
controversial and harder to interpret per se (Song et al., 2002). The use of AD and
RD can increase specificity, but it is important to observe the situation in its entirety.
While the DTT metrics give a good insight into the WM microstructure of the brain,
it is important to understand that the scalars do not reflect the direction of the
eigenvectors, and thus the direction of the anisotropic diffusion (Song et al., 2002;
Wheeler-Kingshott & Cercignani, 2009). It is therefore crucial to take note of
multiple different measures instead of concentrating on only a single scalar.

2.2 Quantitative Diffusion Image Data Analysis

Common DTT analysis methods currently in use are ROI, voxel-wise, histogram and
tractography-based methods (Hulkower et al., 2013; Jorge et al, 2012; Lange,
Iverson, Brubacher, Madler, & Heran, 2012; Levin et al., 2010; M. E. Shenton et al.,
2012; Toth et al., 2013; Wilde et al., 2012). While each of the analysis methods have
their uses, tractography (fibre tracking) is not recommended for quantitative analysis.
Due to several limitations, e.g., crossing fibres and seed point inter-observer
repeatability, tractography will, in most cases, result in unstandardised and
unrepeatable tract volumes of interest, which makes it unreliable as a quantitative
analysis method (Jones, 2010). Histogram analysis has its uses, but it is either highly
unspecific or requires accurate ROIs to give detailed and meaningful results. We will
concentrate more on a special case of voxel-wise analysis, TBSS and on ROI-based
methods in the following chapters.
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Studies generally concentrate on using a single DTI analysis technique,
predominantly ROI. However, studies using multiple parallel techniques have been
published (Jorge et al., 2012). DTT parameters are extremely susceptible to different
distorting factors, and particular care should be taken to control the effects of age in
statistical analyses (Stadlbauer, Salomonowitz, Strunk, Hammen, & Ganslandt, 2008;
Yoon, Shim, Lee, Shon, & Yang, 2008). In addition, gender (Chou, Cheng, Chen,
Lin, & Chu, 2011; Kanaan et al., 2012), intracranial procedures and neurological
disorders, e.g., Alzheimer’s disease (Pitel, Chanraud, Sullivan, & Pfefferbaum, 2010)
can affect white matter microstructure. Even attention-deficit hyperactivity disorder
(Lawrence et al., 2013), dyslexia (Vandermosten et al., 2012), depression (de Diego-
Adelifio et al., 2014), alcoholism (Pitel et al., 2010), drug abuse (Bora et al., 2012) and
online gaming addiction (Weng et al., 2013) are associated with white matter changes
detectable with DTI. However, as previously mentioned, the single most important
factor to consider is age. Accounting for the effects of ageing in statistical brain

analyses is often an adequate way to suppress a main source of bias.

221  Tract-Based Spatial Statistics

Tract-based spatial statistics (ITBSS) is a newer method for whole brain DTT analysis
developed by the Oxford Centre for Functional MRI of the Brain (FMRIB) analysis
group (Smith et al., 2006). TBSS is a part of the FMRIB Software Library (FSL)
(Mark Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; Smith et al., 2004),
which includes several image processing and mathematical analysis tools for
structural MRI, functional MRI and DTT brain data. FSL is Linux based, but it can
be run on modern Windows computers via a virtual machine.

One of the benefits of using a whole brain approach is that a priori information
is not required in the analysis; in contrast to ROI analysis, the whole white matter is
examined. TBSS analysis, however, differs substantially from other voxel-wise
analyses by its registration and skeletonisation stages. TBSS aims to solve problems
in subject-wise registrations by using nonlinear registration and a unique
skeletonisation stage that effectively reduces the need for perfect alignment in the
registration process. The subject-wise statistical comparisons are made between the
generated WM skeleton images rather than all the voxels in the brain images.

The skeletonisation stage creates a wire model of the brain’s WM tracts, and uses
only the thin skeleton area for voxel-wise comparisons. The skeleton is created by
finding the voxels in the middle of the WM neural tract structures. For each subject,
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the voxels with the highest FA values are then searched in a perpendicular direction
from the middle points of the obtained tract. An example of the skeleton created
from our control subject data is shown in Figure 8. The voxels with the highest

values are then projected to the skeleton and used in the analysis.

Figure 8. Mean FA map and its FA skeleton created from our control subject data. The FA skeleton
is shown as green and represents the tract centres.

The analysis itself is based on nonparametric permutation tests utilising general linear
model (GLM) design for statistics. The GLM can be defined as ¥ = X with a null
hypothesis Hy: ¢ = 0, where ¥ is the original data to be tested, X is the design
matrix (regressors), 8 is the model parameters and € is defined depending on the
research question one wants to answer with the analysis. For example, when testing
two groups (A and B) for differences with TBSS, one would need two different
randomisation tests with¢ = [1 —1]andc =[1 —1]. The two tests correspond
to situations where group A > B and B < A.

2.2.2  Region of Interest Based Analysis

ROI-based methods use the scalar values inside predefined regions in single subject
or group comparisons. The regions of interest are actually volumes of interest, and
even the freehand ROIs drawn on a single image slice have a volume equal to the
area of the ROI times the slice thickness. The term ROl is associated here with these
volumes, regardless of their three-dimensional nature. There are multiple ways to
define the ROIs, the freehand method being just one of many. Other methods to
determine the ROIs include circular or spherical ROIs (Hakulinen et al., 2012), the
use of fibre tracking to determine individualised ROIs (Farquharson et al., 2013) and
structural and functional anatomic ROIs based on relevant brain atlases (Oishi et al.,
2009, 2008; Peng et al., 2009). The use of atlases requires warping of the subject
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image to the standard space of the atlas, or vice versa. Different types of analyses
can be applied to the defined regions, including mean value comparison (Froeling,
Pullens, & Leemans, 2016), different types of statistical analyses or histogram
analyses (Young, Babb, Law, Pollack, & Johnson, 2007).

A limitation of most ROI methods is the need for a priori data for the placement
of the ROIs. The placement can be done according to structural or functional
information, according to prior knowledge of the assumed location of pathology,
according to prior voxel-wise analysis results or by using an anatomical atlas. Apart
from the use of atlases, each method requires a certain type of a priori knowledge.
Furthermore, manually defined ROIs will always include a significant inter-observer
variability and a mediocre intra-observer variability (Hakulinen et al., 2012), which
affect the repeatability of the method. With a standardised use of atlases together
with a robust registration process, the variability of the ROI method can be
minimised and potentially reduced to zero.

2.2.3  Age Association

Several studies (Cox et al., 2016; Kodiweera, Alexander, Harezlak, McAllister, & Wu,
2016; Madden et al., 2012; Moseley, 2002; Rathee, Rallabandi, & Roy, 2016; Westlye
et al,, 2010) have shown a statistically significant correlation between ageing and
various diffusion parameters in the majority of the brain volume. Age is the most
prominent factor affecting the DTI metrics of a healthy brain, although its impact
on the DTI metrics is neither linear nor unidirectional throughout the human
lifespan. The correlation between age and FA, MD and RD can be considered
quadratic (U-shaped), especially when dealing with a younger population (Lebel &
Beaulieu, 2011; Westlye et al., 2010). Due to their still maturing brains, the younger
population will experience WM development, seen as an increase in FA and a
decrease in MD, up until about the age of 25 (Lebel & Beaulieu, 2011). For adult
populations, with subjects aged over twenty years, a linear approximation of the age
effect is sufficient (Westlye et al., 2010).

For more accurate clinical results, the age association should be further
acknowledged in analyses. By applying an appropriate method to model the normal
values of human white matter in terms of age and other possible confounding
factors, accurate reference values may be derived.
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2.3 Mild Traumatic Brain Injury

In 2010, an expert group formed by the Demographics and Clinical Assessment
Working Group of the International and Interagency Initiative toward Common
Data Elements for Research on Traumatic Brain Injury and Psychological Health
proposed the following definition of TBI: “IBI is defined as an alteration in brain
function, or other evidence of brain pathology, caused by an external force” (Menon,
Schwab, Wright, & Maas, 2010). While slightly vague, the definition is superior to
the earlier consensus where concussion was considered to be a completely reversible
disorder (Peetless & Rewecastle, 1967).

Currently, the diagnosis of TBI is based on subjective clinical signs and
conventional neuroimaging. The clinical signs include any period of loss of or a
decreased level of consciousness, any loss of memory for events immediately before
(retrograde amnesia) or after the injury (post-traumatic amnesia), neurologic deficits
(e.g., weakness, loss of balance, change in vision, dyspraxia patesis/plegia [paralysis],
sensory loss, aphasia, etc.) and any alteration in mental state at the time of the injury
(confusion, disorientation, slowed thinking, etc.). Clinical signs are accompanied by
acute traumatic lesions on brain imaging (CT and MRI) (Menon et al., 2010).

Cerebral microhaemorrhages (see Figure 9) are often associated with TBI and can
be identified by susceptibility weighted MRI (SWI). However, microhaemorrhages
are often absent in mTBI (Trifan, Gattu, Haacke, Kou, & Benson, 2017). The lesion
type mainly associated with mTBIs is diffuse axonal injury (DAI), which cannot be
reliably identified through conventional medical imaging (M. E. Shenton etal., 2012).
DTT is being utilised for research purposes in an attempt to objectively differentiate
DATIs and to obtain evidence of mTBIs through medical imaging,.

Since the first DTT studies of TBI (Benson et al., 2007; Werring et al., 1998), the
research community has considered DTT to be a promising and valuable tool for the
detection of post traumatic WM injury (Hulkower et al., 2013; Wallace, Mathias, &
Ward, 2018). Most publications have reported a decrease in FA and an increase in
MD values following TBI (Hulkower et al., 2013; M. E. Shenton et al., 2012; Wallace
et al, 2018), while a notable number of publications have reported opposite
behaviour in WM DTI (Hulkower et al., 2013). In addition, altogether negative
findings have been published (Jorge etal., 2012; Lange et al., 2012; Levin et al., 2010).
In the recent literature, more emphasis has been given to the chronological nature
of the findings, since DTI metrics have been shown to vary considerably depending
on the time of imaging (Hasan et al., 2014; Lancaster et al., 20106). It is therefore

crucial to understand the complex effect of TBI on the DTT metrics, and to always
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consider the TBI stage (acute, sub-acute, and chronic) at the time of imaging. The
time of imaging is an even more essential factor in mTBI where the changes in WM

are even more subtle.

Figure 9. Two examples of susceptibility weighted MR images taken from TBI patients. The black
dots seen in the images (arrow in the right subject image) are signal voids caused by TBI
induced microbleeds.

Numerous studies have established a relation between symptomatic mTBI and
abnormal diffusion metrics (Aoki, Inokuchi, Gunshin, Yahagi, & Suwa, 2012).
Within and between samples, heterogeneity is a possible explanation for the
inconsistent DTT results, while another possible cause for the incoherency are the
various unstandardised analysis methods. With different subject inclusion and
exclusion criteria, different image processing methods and varying statistical
analyses, the inconsistency between mTBI DTI analysis results is to be expected.

24 Traumatic Spinal Cord Injury

Traumatic spinal cord injury (SCI) refers to damage caused by an external force to
the vertebrae-shielded neural tracts of the central nervous system. SCIs can be of
different severity. For example, the neural tracts may be completely damaged at the
site of trauma or the damage may only be partial (Kakulas, 1987). In addition to the
immediate damage to the trauma site, secondary degeneration of WM tracts often
commences in both anterograde and retrograde directions from the primary injury
site (Beirowski et al., 2005; Buss, 2004). This degenerative process can take years,
causing slow progressive demyelination leading to gliosis (Buss, 2004). The
secondary degeneration may also extend to the cerebrum, especially to the motor
and sensory pathways, such as the corticospinal tract (Freund et al, 2011;
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Henderson, Gustin, Macey, Wrigley, & Siddall, 2011; Yamamoto, Yamasaki, & Imai,
1989).

After a SCI, remedial mechanisms are initiated in the brain and parts of the whole
central nervous system. This repair mechanism is called neuroplasticity, and it is
similar to the constructive process that occurs in normal brain development and
during learning processes (Keyvani & Schallert, 2002; Zatorre, Fields, & Johansen-
Berg, 2012). Neuroplasticity remodels the neural structure of the brain and spinal
cord so that functional parts of the central nervous system can take over at least parts
of the disabled regions (Nudo, Plautz, & Frost, 2001). This regenerative process
should, in theory, be observable by DTT.

Spinal cord DTT has been shown to be sensitive to SCl-induced neural damage
to the spine near the site of injury, but also further away from the trauma site (Chang,
Jung, Yoo, & Hyun, 2010; E. Koskinen et al., 2013). This suggests that DTI is also
sensitive to the secondary Wallerian degeneration caused by the primary lesion.
While there have been a few DTT studies of SCI, most have only focused on the
corticospinal tract (Gustin, Wrigley, Siddall, & Henderson, 2010; E. A. Koskinen et
al., 2014; Wet et al., 2008). In a study by Wrigley et al. (2009), however, DTI changes
were found outside the corticospinal tract, suggesting the more widespread effects
of SCIs on the cerebral WM. The study by Wrigley et al. served as inspiration for
our SCI study.
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3 IMAGE DATA AND ANALYSIS METHODS

For the research, we used two different patient groups with different central nervous
system injuries (MTBI and SCI), and a total of 70 control participants. All subjects
provided written informed consent according to the Declaration of Helsinki. The
subject material will be discussed in detail in the following sections, and
demographical information of all the clinical subject groups is presented in Table 1.
In addition, a brief overview on the human brain atlases used in the research will be

given. After the imaging material, the different analysis methods are reviewed.

Table 1. Demographics of the different subject groups used in the study.
Publication | Publication Publication | Publication Il
n&iv mTBI SCI
Controls c | Pati Pati
(n = 40) ontrols atients atients
(n=70) (n=75) (n=32)

Age, years 40.6 +£12.2 395+ 118 37.2+120 56.5 + 14.2
mean + SD (range) (20 - 59) (18 - 60) (18 - 60) (24 -75)
Gender, male / female 20/20 29/41 45/30 2517

3.1 Clinical Subject Data

3.1.1  Imaging

All the subjects were imaged with an identical image protocol at Tampere University
Hospital. Brain MRI was performed with a 3 Tesla MRI scanner (Siemens Trio)
using a 12-channel head matrix coil. The protocol included the following sequences:
sagittal T1-weighted 3D inversion recovery prepared gradient echo, axial T2 turbo
spin echo, conventional axial and high-resolution sagittal FLLAIR, axial T2*, axial
susceptibility-weighted imaging and diffusion-weighted imaging series. In addition,
the DTT image data were collected by a single-shot, spin echo-based and diffusion-
weighted EPI sequence. The parameters for the DTI sequence were TR 5144 ms,
echo time (TE) 92 ms, field of view 230 mm, matrix 128 X 128, 3 averages, slice/gap
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3.0/0.9 mm, and voxel dimension of 1.8 mm X 1.8 mm X 3.0 mm. Two diffusion
weighting b-values were used, 0 and 1000 s/mm2, with 20 diffusion gradient
orientations.

The image data were natively in Digital Imaging and Communications in
Medicine (DICOM) format but were converted into Neuroimaging Informatics
Technology Initiative (Nifti) for image processing purposes. All conversions were
performed using MRIConvert (developed at the Lewis Center for Neuroimaging at
the University of Oregon). All post-conversion image manipulations were executed
with tools included in the FSL software package, including diffusion tensor fitting to
derive DTT scalars, eddy current correction and all the registrations. The overall
mean signal-to-noise ratio (SNR) of our data was approximately 25, which can
generally be considered to be good and sufficient for reliable quantitative analysis
(Hakulinen et al., 2012). The SNR was calculated from the bo images according to
the National Electrical Manufacturers Association (NEMA) standards 1-2008,
defining SNR by the following equation:

s s
SNR === —,
N 5P/ 66

(10)
where S is mean signal measured from in vivo freechand ROIs, and N is noise

measured from separate background ROIs.

3.1.2  Patient Material

3.1.2.1  Mild Traumatic Brain Injury Subjects

The mTBI patients in our study (used in Publications I and IV) were prospectively
enrolled from the emergency department of Tampere University Hospital between
August 2010 and July 2012 for the TheBrainS study. All consecutive patients with
head CT due to acute head trauma (n = 3023) formed the initial population of the
study. The population was carefully screened to obtain a sample of working-aged
adults without pre-injury medical or mental health problems. The aim was to
examine ‘pure’ mTBI patients who could probably be reached for an outcome visit.
The final sample included 75 patients. Of the 75 patients, 45 (60%) were men and
30 (40%) were women, and the mean age was 37.2 years (SD = 12.0, median = 36.0).
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The enrolment protocol for the mTBI patients is described in detail in previous
publications (Isokuortti et al., 2016; Luoto et al., 2013).

For Publication IV, ten of the mTBI patients, including five complicated and
five uncomplicated cases, were handpicked to represent the mTBI subject pool.
Complicated MTBI refers to patients with traumatic lesions on conventional brain
MRI. This cohort was chosen to test the applicability of the method described in our
study.

3.1.2.2  Spinal Cord Injury Subjects

The SCI patients used in Publication II were collected from all patients with a
chronic traumatic cervical spine injury at Tampere University Hospital for the
SCISSORS study. The primary SCIs were sustained between 1989 and 2010 (n =
88). The patients were contacted about participation in the study in 2011. The final
population used in our study comprised 32 SCI patients. Of the 32 patients, 25 (78%)
were men and 7 (22%) were women, and the mean age was 56.5 years (SD = 14.2,
median = 60.6). Further details on the collection of the SCI data is presented in the
publication of Koskinen et al. (2014).

3.1.3  Control Subjects

The control group in Publication I comprised the original 40 subjects enrolled for
the TheBrainS study in Tampere. The subjects were orthopaedically injured patients
evaluated in the emergency department of Tampere University Hospital. Patients
with ankle injury (n = 609) were screened for inclusion in the study as controls. The
subjects were enrolled in an age and gender stratified manner, resulting in four age
groups: 18 — 30, 31 — 40, 41 — 50 and 51 — 60 years, with five women and five men
in each group. Of the 40 control subjects, 20 (50%) were men and 20 (50%) were
women. The mean age for the control subjects was 40.6 years (SD = 12.2, median =
41.7).

For Publications II and IV, the control subject pool was increased by 30 to a
total of 70 subjects. The additional subjects comprised previously imaged healthy
volunteers from members of Tampere University Hospital staff. Of the 30 control
subjects, 9 (30%) were men and 21 (70%) were women. The mean age for the control
subjects was 37.8 years (SD = 11.2, median = 34.5). For the total 70 controls, the
corresponding figures were: 29 (41%) men, 41 (59%) female, mean age 39.5 (SD =
11.8, median = 39). All the control subjects’ head MRI’s were interpreted as normal.
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3.2 Human Brain Atlases

Human brain white matter atlases were used in Publications II, III and IV. The
atlases were used to differentiate the brain regions with WM anomalies and in a
complementary atlas-based analysis approach in Publication II. In Publications
ITI and IV, the use of atlases in the analysis was the basis of our research, and
therefore played an important role.

We used the following atlas image data in our research: the International
Consortium for Brain Mapping (ICBM) DTI-81 WM labels atlas (Mori, Wakana,
Nagae-Poetscher, & Van Zijl, 2005; Oishi et al., 2008), FA map of the Johns Hopkins
University (JHU), Montreal Neurological Institute, Single Subject (MNI-SS) atlas
(Oishi et al., 2009), JHU WM probabilistic tractography atlas (Hua et al., 2008) and
the Illinois Institute of Technology (IIT) Human Brain atlas v. 4.1 with its
probabilistic tractography maps (Zhang & Arfanakis, 2018). All the atlases used in
our research have an isotropic voxel size of 1 mm3. The atlas ROIs are listed in Table

2, and the atlases are visualised in Figure 10.
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Figure 10. Different atlases used in the study. A) IT Human Brain atlas with its major fibre bundles
overlaid on top, B) ICBM DTI-81 mean FA map and the JHU WM probabilistic atlas, C)
ICBM DTI-81 mean FA map and the ICBM DTI-81 WM labels atlas on top, D) JHU-MNI-
SS FA map.
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Table 2. Human brain white matter structures included in the applied standard brain atlases.

ICBM DTI-81 JHU probabilistic IIT Atlas

Anterior corona radiata X

Anterior thalamic radiation X

Anterior limb of internal capsule X

Body of corpus callosum X

Cerebral Peduncle X

Cingulum (cingulate gyrus) X X X
Hippocampal Cingulum X X X
Corticospinal tract (CST) X X X
External capsule X

Forceps major (F major) X X
Forceps minor (F minor) X X
Fornix (column and body of fornix) X X
Fornix (cres) / Stria terminalis X

Genu of corpus callosum X

Inferior cerebellar peduncle X

inferior fronto-occipital fasciculus (IFOF) X X
inferior longitudinal fasciculus X X
Medial lemniscus X

Middle cerebellar peduncle X

Pontine crossing tract X

Posterior corona radiata X

Posterior limb of internal capsule X

Posterior thalamic radiation X

Retrolenticular part of internal capsule X

Sagittal stratum X

Splenium of corpus callosum X

Superior cerebellar peduncle X

Superior corona radiata X

Superior fronto-occipital fasciculus X

Superior longitudinal fasciculus X X X
Tapetum X

Uncinate fasciculus (UF) X X X
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3.3  Application of Tract-Based Spatial Statistics

The application of TBSS was done in a standardised way in Publications I and II,
using the steps recommended by the Oxford Analysis Group in the analysis. These
steps include data pre-processing, preparing data for the analysis and linear and
nonlinear registrations. After the registrations, the data are skeletonised and fed to
the provided statistical program (randomise) for GLM modelling and significance
testing. These results can be presented visually, and they can be further refined into
quantitative measures. The p-value limit for statistical significance in the TBSS
analyses was chosen at p < 0.01 due to multiple comparisons.

3.3.1  Normal Ageing

In addition to patient tests, we performed a secondary age effect analysis for the
control group in Publication I for future purposes. We used TBSS to compare the
three older age groups against the youngest age group. The age effect was determined
by direct comparison of the age groups, with no confounding factors used as
covariates. This was due to the age and gender stratification of the control group.
The comparison for an age group pair was done by using two one-sided GLM tests
with null hypothesis of no differences between the groups. The test was done twice
in order to test the difference both ways, i.e., younger groups minus older, and vice

versa.

3.3.2  Mild Traumatic Brain Injury

To test whether mTBI patients would have congruent WM structural properties in
comparison with healthy subjects, several group comparisons between the mTBI
patients and the healthy controls were performed in Publication I. First, the entire
patient group (n = 75) was compared against the controls (n = 40), by controlling
for age and gender effects. Then, the comparison was done by age- and gender
matching the groups (n = 40). The patient group was also divided into subgroups
with varying mTBI severity indexes, and the subgroups were compared against
matched controls. The patients were divided into subgroups based on loss of
consciousness (n = 7), post-traumatic amnesia (n = 25), conventional imaging
findings (n = 15), Glasgow Coma Scale (GCS) (n = 6) and combinations of the
previous criteria (n = 29, 20, 12). All the comparisons were done for FA; MD, RD
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and AD diffusion measures, and by either age and gender matching or using age and
gender as covariates. The one-sided GLM tests were repeated to test the differences

both ways.

3.3.3  Traumatic Spinal Cord Injury

In Publication II we studied SCI and its collective effect on the brain by comparing
the group of 32 SCI patients and a subgroup of ten patients with more severe SCI
(American Spinal Injury Association Impairment Scale, grade A), against the control
group of 70 healthy subjects. In addition, we performed partial regression analyses
for several SCI related clinical variables. Partial correlation analyses were performed
between DTI metrics and total motor score, upper and lower extremities motor
score, total sensory score and time between injury and MRI. Each analysis was
performed for FA, MD, RD and AD diffusion measures. Group comparisons were
performed by two one-sided GLM tests, and correlation was assessed by testing
linear regression both ways. All the analyses were done by controlling for age and
gender effects in the GLM design.

3.4  Minimising Bias in Brain Analysis

To counter some sources of bias, the manipulation of the original subject image data
was kept at a minimum for the created analysis pipeline in Publications III and IV.
To achieve this, we did not use smoothing, resizing, registration or any other image
manipulation methods on the subject DTI data. Instead, we operated on the
template images and atlases. The subject data underwent pre-processing similar to
the TBSS method; eddy current correction, head movement correction, brain
masking and tensor fitting.

341  Atlases and Templates

We included a complimentary atlas-based analysis (ABA) in Publication II in
addition to the TBSS analysis. In the ABA, the TBSS skeleton was divided into
anatomical WM ROIs based on the ICBM DTI-81 WM labels atlas regions. The
derived regions’ DTT metrics were compared by analysis of covariance (ANCOVA),
and the correlations were assessed by linear regression analysis with JASP (JASP
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Team, 2016, version 0.8). This type of complementary analysis increased the overall
sensitivity of the study. The atlas was also used to localise the findings. In
Publications III and IV, the atlases were the core of the research, and the analyses
were performed exclusively using the atlas-based approach. We did not use the
atlases in a conventional way, i.e., register subject data to a standard template.
Instead, we registered the atlases to each subject resulting in the WM atlas regions in
the patients’ standard space.

3.4.2  The Automated Analysis Process

All the registrations in the research were executed with the inherent tools of the FSL.
software package. In Publications I and II, the TBSS analysis used inbuilt sections
which ran linear and nonlinear registration programs of the software package. For
the automated ABA in Publications III and IV, we included the same linear and
nonlinear registration subprograms that were used in the TBSS pipeline. The linear
registration tool FLIRT (FMRIB's Linear Image Registration Tool) (M Jenkinson &
Smith, 2001; Mark Jenkinson, Bannister, Brady, & Smith, 2002) was applied for
affine registrations, and the nonlinear tool FNIRT (FMRIB's Linear Image
Registration Tool) (Mark Jenkinson et al., 2012) for the warp field applications.

The process described in Publication III begins with an affine registration (12
degrees of freedom, trilinear interpolation and correlation-ratio-based cost function)
of the high-resolution standard template to each of the subjects. The linear
transformation matrices are saved in the process. Next, the linearly transformed
template is nonlinearly (cubic b-spline, trilinear interpolation, 10 mm warp base
resolution, 2 mm Gaussian smoothing) registered to the subject, and the warp field
is saved. Then, the ROIs included in the template’s atlas are transformed one by one
to the subject’s space by first applying the affine transformation to the ROI, and
then applying the warp field to the linearly transformed ROI. Nearest neighbour
interpolation is used to preserve the probabilistic nature of the ROI After the
registrations, the ROIs are in the native subject space, and are ready to be used in
statistical analyses. The registration process is visualised as a flowchart in Figure 11.
Automation of the whole analysis process is crucial for its usability and repeatability.
Therefore, the registration phase is compiled in a way that requires no user input.
Applying the pipeline to the same subject using the same atlas regions and the same
DTT template in the registration will result in the exact same results each time.
Registrations can be done by running a single pipeline which includes the pre-
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processing and registrations of the ROIs. Currently, the choice of statistical analysis
method and software is not fully integrated to the process, and the user may choose
different statistical software.

Input: Output:
Atlas +ROls Subject atlas ROIs in subject space

000

Linear and nonlinear
reg. variables

0-6-0

Atlas FA map Linear reg. Nonlinear reg.

Figure 11. Flow chart of the registrations used in the automated pipeline.

In Publication III, we tested whether the registration method could be successfully
and reliably applied to frechand ROIs, and whether the results would be directly
comparable with previously executed freehand measurements. A set of nine
freehand ROIs was drawn to the JHU-MNI-SS atlas in an exact manner as previous
DTTI freehand measurements made at Tampere University Hospital. Fach of the
ROIs lay only on a single slice, which can be seen in Figure 12. The binary ROIs
were registered to the normal subjects linearly and nonlinearly, using linear
interpolation, and the ROIs were transformed back to binary masks after the
registrations by discarding voxels with values less than 0.15. Within subject ROIs,
means were compared from manually drawn regions and the ROIs automatically
registered to the subject.

In Publication IV, the use of freehand ROIs was discarded, and the focus was
shifted mainly to anatomical brain atlases with probabilistic 3D ROIs: the JHU WM
probabilistic atlas and the II'T Human Brain atlas. Probabilistic ROIs were chosen
for the creation of a normal population model because they can be considered to be
slightly more forgiving of the registration accuracy. Probabilistic ROIs give more
weight to the voxels that are more likely to be inside a neural tract and less weight to
voxels in the peripheral regions. This is a significant advantage of the probabilistic
ROIs. The use of different interpolation methods based on the type of the input
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ROIs would unnecessarily complicate the pipeline and lead to the use of nearest
neighbour interpolation. Registering binary ROIs to lower resolution using the
nearest neighbour interpolation instead of trilinear interpolation results in the
possibility that a voxel outside the WM is included inside the ROI. However, the
choice of utilising the nearest neighbour as the interpolation method allows for the
use of both probabilistic and binary ROIs in the analysis without modifications to

the pipeline.

Figure 12. Manually drawn freehand ROIs used in Publication Ill. The ROls are shown in red on top
of the JHU-MNI-SS FA map.

3.4.3 DTl Reference Value Analysis

In order to obtain reference values using normal population modelling in
Publication IV, the registrations were performed on the whole control subject pool
(n = 70), and the mean values of the ROIs were stored in a spreadsheet. Using
statistical software (JASP), the regions’ association with age was examined, and
simple linear regression functions (of the form y = ax + b) were formed for each
region. For increased accuracy, multiple linear regression with additional covariates
should be used with a larger subject pool. The model essentially predicts age-
dependent mean DTT scalar values for each ROI, with a variability calculated as the
root-mean-square error (RMSE). RMSE can be used to assess an individual subject’s

fit to the model by treating it as a Z-score:

= e (10)

T RMSERo;’

where Z,. is the RMSE associated standard score, My is the subject’s ROI mean, M,
is the model’s predicted ROI mean, adjusted for age, and RMSEg,; is the ROI
dependent RMSE of the model. In addition, the statistical significance of the model

is predicted as a p-value.
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The normal model was tested for specificity by dividing the subject pool into a
training set (n = 65) and a test set (n = 5). Only those ROIs with statistically
significant linear regression functions were considered in the specificity test. The
training set subjects” ROI means were compared with the values predicted by the
model, and a limit of acceptance for the specificity analysis was chosen at |Z, | <
1.645. For further validation of the normal model, we did a small-scale comparison
with the results obtained by Cox et al. (2010).

The control population derived data were also used to analyse ten mTBI patients
in Publication IV. This was done by comparing the mTBI patients’ data against the
normal population (n = 70) model’s predicted ROI DTT values. The model predicted
values were compared with the patient ROI means using a limit for pathologic
finding of |Z,| = 2. The analysis process is shown as a flowchart in Figure 13. To
evaluate the sensitivity of the method to DTI metric changes induced by mTBI, we
performed standard freehand ROI measurements for the same ten mTBI patients
and compared the findings between the two methods. The frechand ROI analysis
included 14 ROIs: the genu and splenium of the corpus callosum, thalamus, forceps
minor, uncinate fasciculus, centrum semiovale, posterior corona radiata and
posterior limb of the internal capsule. Left and right hemispheric regions were
measured separately, except for the corpus callosum. The freehand ROI comparison
was made against 40 control subjects instead of 70, due to limitations in the
commercial software. Because the ROIs and the methodology differ slightly between
the two methods, the comparison was not straightforward. However, the possible
diffuse axonal injuries, if present, should be distinguishable with various types of
ROIs. Comparing the number and extent of the findings should be enough to
effectively compare the success rates of the current standard method of brain DTI
analysis method and our automated analysis method.

DTI data ROT set Control data === Normal model

preprocessing .
‘ \ Analysis
. o e — results

Registration: Quantitative  __ o it ot — L,
ROIS to subject == OT] measures (data comparison)

images

Figure 13. The quantitative brain analysis process as a flow chart. Following the bolded arrows, the
statistical power and accuracy of the normal population model can be improved by adding
control subjects. Blue rectangles present data, pink rectangles present work phases and
green indicates results (adapted from Publication IV).
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4 RESULTS

Microstructural changes in the brain were studied in patient groups with two
fundamentally different central nervous system injuries, as well as in a normal aging
population. Pathological changes were assessed at a group level to understand the
possible common behaviour of the neuropathology, and by a single subject approach
for a better clinical utilisation. Changes associated with normal aging were studied in
a between-group design comparison and by continuous correlation analysis. The
results of the group analyses are presented below. In addition, we present results
from our automated single subject brain analysis application to mTBI subjects,
including normal population model testing.

41  Tract-Based Spatial Statistics

In Publication I, our first application of TBSS was to test the effect of age on the
normal human brain. The analysis was carried out with a between-group design in
which the youngest age group (age 18-30) was used as a baseline for comparison
against the older age groups (3140, 41-50, 51-60). The comparisons against the age
group 18-30 yielded statistically significant (p < 0.01) lower FA values in the age
groups 41-50 and 51-60, higher MD values in the age group 51-60, and lower AD
values and higher RD values in the age groups 41-50 and 51-60. The mean whole
brain skeleton DTT metrics are plotted against subject age in Figure 14, which gives
a good indication of how age affects the whole brain volume’s DTT scalars in a
healthy population. The effect can be considered linear throughout the age interval
of our control population. The main objective in Publication I was, however, to
study our mTBI patient pool with TBSS. In the study, we found no statistically
significant (p < 0.01) differences between the control group and the mTBI patient
group, independent of the age correction method (age matching or covariate
control). In addition, none of the patient subgroup analyses reached statistical
significance.

50



y =-0,001x +0,5391 y =0,0004x + 0,723

FA R2=0,3421 MD R?2=0,0602
0,56 0,8
0,54 o o 0,78 ¢ 3
—.a® @0 ° ®e
0,52 o. ¢ o . 0,76 ° ’ ® .,0_.\..
05 0. 090 o 0,74 . gy
' * o & . ’ e LAl ‘&. °

0,48 o S oS 0,72 oo oo
0,46 - < 07 o
0,44 0,68

10 30 50 70 10 30 50 70

y =0,001x +0,4769 y = -0,0008x + 1,2155
RD R2=0,2207 AD R2=0,2505
0,58 1,24 .
0.56 ° - L] 1,22
) L) (N 12 - pe. :. Py )
0,54 ¢ & e% 141 S o 3. 2O
0,52 ° o ... - 18 i o Mo N
’ «®° "“6 .. 1,16 ® e o
05 SRR
' Ve dy g 11 '

0,48 o o 1,12
0,46 1,1

10 30 50 70 10 30 50 70

Figure 14. Whole brain DTI metric data of the 40 control subjects calculated from the skeleton mean.
A linear fit is made to the graph points, and its equation and R-squared value is given in
the upper right corner of each graph. The horizontal axis in the graphs represents age,
while the vertical axis is dimensionless for FA and of units 10-> mm?/s for MD, RD and AD.

Performing TBSS analyses on SCI patients in Publication II resulted in a
completely different outcome to what we saw with mTBI patients. Comparing the
SCI patients (n = 32) against the controls (n = 70) resulted in vast areas with
significant differences (p <0.01) in FA, MD, RD and AD. FA was significantly lower
and MD, RD and AD were higher in SCI patients compared with controls. For FA,
MD and RD, one third of the examined volume was significantly different from the
controls, whereas AD was increased in only 13% of the examined WM volume. The
whole-brain skeleton means of the patients and controls are presented in Figure 15.
Significant changes in the patient group with more severe SCI were also found in
FA, MD and RD, though the results were spatially more restricted. The sensory and
motor scores of the SCI patients did not correlate with DTT metrics in our study.
However, time since injury had a statistically significant positive correlation with FA,
and a negative correlation with MD, RD and AD measurable with TBSS.
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Figure 15. Whisker plots created from whole brain skeleton mean data for the 70 control subjects and
32 SClI patients. The vertical axis is dimensionless for FA and of units 10-* mm2/s for MD,
RD and AD.

42  Atlas-Based Approach

4.2.1  Spinal Cord Injury Group Comparison

The use of atlases was integrated in the analysis for the first time in Publication II,
where we complemented the TBSS analysis by using DTT metrics derived from atlas
ROIs. The ABA applied to the SCI population was a group-wise comparison that
used the TBSS’s heavily modified skeleton data. In the complimentary ABA of the
SCI patients, we found 36 atlas regions, from a total of 48, that had significant
differences (p < 0.01) compared with normal subjects. The differences were
analogous to the TBSS results in FA, MD and RD. However, both higher and lower
AD values were found in the regions of the SCI patients. Also, similar to the TBSS
correlation results, time since injury was associated with DTT metrics in several atlas
regions, and FA showed positive correlation and MD, RD and AD negative
correlation. In contrast to the TBSS results, the sensory and motor scores of the SCI
patients correlated in a few regions in the ABA. Positive correlation was found
between FA and upper extremities motor score, total motor score and total sensory
score. Negative correlations were found between MD and upper extremities motor

score and total sensory score, and between RD and upper extremities motor score.
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42.2  Single Subject Application

Publication ITI was the first to concentrate on the single subject ABA, and mainly
focused on describing the registration process. At the time of the third publication,
trilinear interpolation was used in the registrations instead of the nearest neighbour
interpolation used in Publication IV. However, the obtained results were
considered acceptable at the time. To verify the success of the registration, we
compared the scalar values inside the ROIs with each other. The registered freehand
ROIs were mainly within 10% of the original drawn freehand ROIs, and only a few
differed over 20%. While the approach resulted in fair quantitative results, the
similarity of the ROIs should have been measured by their region overlap instead.
The registrations were also executed on the ICBM WM labels atlas, which seemed
to have an overall higher deviation in scalar values compared with the freehand
ROIs.

In Publication IV, we concentrated primarily on the atlas regions. The registered
anatomical ROIs were visually assessed by healthcare professionals, and their
accuracy was deemed sufficient for the purpose. After setting up the registration
process, we could feed the ROIs quantitative data to any statistical software for
analysis.

4.3  Normal Population Modelling

In Publication IV, we created a normal population model using the pool of 70
control subjects with two different probabilistic atlases. Of the two atlases, the JHU
atlas had better success with the linear regression. All the JHU atlas ROIs had
statistically significant (p < 0.05) regression models for FA, and most of the ROIs
had significant regression models for MD and RD. Only eight of the ROIs had
significant regression functions for AD. While FA, MD and RD correlation were
logical in the sense of degrading neural tracts with age, AD correlations were less
coherent with positive and negative correlations. The IIT atlas had consistently fewer
significant ROIs for each DTI metric, which was why we chose the JHU
probabilistic WM atlas for further applications. Linear regression models of the
forceps major and minor and the corticospinal tract for the DTI metrics are shown
in Table 3, including p-values and the RMSE of the regression models. Additionally,
some of the FA and MD regressions are visualised in Figure 16 for the JHU
probabilistic atlas.
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Our results from Publication IV were quite similar to those of Cox et al. The
correlation directions were equal in both studies, although some differences arose in
AD correlation. Furthermore, while we had both positive and negative correlations
between age and AD in different ROIs, Cox et al. reported only a positive
correlation. For the comparison, we combined our right and left hemispheric regions
to achieve identical areas in both studies.

Table 3. Examples of the normal value model linear regression functions obtained for both JHU
and IIT atlases. Statistical significance and root-mean-square error is also given in the
table for the ROIs. The level of significance was p < 0.05.

JHU probabilistic atlas IIT Human Brain atlas

CSTL CSTR | Fmajor | Fminor | CSTL CSTR F major | F minor

0.56731 | 0.55445 | 0.52563 | 0.49042 | 0.63411 0.62543 | 0.72740 | 0.65173
FA | -0.00102 | -0.00098 | -0.00092 | -0.00138 | -0.00155 | -0.00143 | -0.00108 | -0.00193
xage xage xage xage xage xage xage xage

P <0.001 <0.001 | 0.001882 | <0.001 <0.001 <0.001 <0.001 <0.001

E 0.02022 | 0.02050 | 0.02808 | 0.02265 | 0.02430 | 0.02518 | 0.02863 | 0.02848

0.78061 | 0.77839 | 0.88413 | 0.76858 | 0.73175 | 0.73833 | 0.77335 | 0.73059
MD | +0.00013 | +0.00052 | +0.00028 | +0.00105 | +0.00015 | +0.00032 | +0.00082 | +0.00061
xage xage xage xage xage xage xage xage

P 0.60033 | 0.05821 | 0.59285 | <0.001 | 0.56722 | 0.26913 | 0.01888 | 0.01715

E 0.02449 | 0.02654 | 0.05074 | 0.02509 | 0.02523 | 0.02789 | 0.03352 | 0.02472

0.50642 | 051172 | 0.60020 | 0.53344 | 0.41955 | 0.42984 | 0.36638 | 0.40233
RD | +0.00084 | +0.00109 | +0.00089 | +0.00177 | +0.00120 | +0.00122 | +0.00152 | +0.00171
xage xage xage xage xage xage xage xage

P 0.00502 | <0.001 | 0.09153 | <0.001 <0.001 <0.001 <0.001 <0.001

E 0.02861 | 0.02955 | 0.05093 | 0.03069 | 0.02898 | 0.03171 0.0413 | 0.03095

1.32901 1.31166 | 1.45201 1.23887 | 1.35616 1.35533 1.58729 | 1.38710
AD | -0.00130 | -0.00061 | -0.00094 | -0.00039 | -0.00195 | -0.00148 | -0.00057 | -0.00158
xage xage xage xage xage xage xage xage

P <0.001 | 0.049677 | 0.188967 | 0.178079 | <0.001 <0.001 | 0.268619 | <0.001
E 0.02846 | 0.03021 | 0.06977 | 0.02803 | 0.03795 | 0.03788 | 0.05014 | 0.04026

FA = fractional anisotropy (dimensionless), MD/RD/AD = mean/radial/axial diffusivity (10-3
mm?2/s), E = root-mean-square etror, F major/minor = forceps major/minor, CST = corticospinal
tract, L/R = left/right.

The specificity of our normal model was tested by creating a separate training set (n
= 65) and a test set (n = 5). The linear regression functions were highly similar in the
training set when compared with the functions obtained from the whole population
(Table 3), and the deviation between the training set and the full (n = 70) model was
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always less than 2%. Only ROIs with statistically significant (p < 0.05) training
models were considered in the specificity testing. Factoring in all the significant ROIs
from all the test set subjects, with the acceptance limit of |Z,| < 1.645, the
specificity of the DTI metrics for the JHU atlas regions were: FA 78.9%, MD 95%,
RD 89.5% and AD 91.1%. For the IIT atlas, the corresponding figures were 78.3%,
90%, 83.3% and 100% for FA, MD, RD and AD, respectively. However, the number
of ROIs with significant linear regression was considerably lower for the IIT atlas
than for the JHU atlas.
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Figure 16. JHU atlas regressions of the forceps major and minor for FA and MD. The model is plotted
as a dashed line with + 1.645 RMSE values as dotted lines. The horizontal axis represents
age and the vertical axis is dimensionless for FA and of units 10- mm?/s for MD (adapted
from Publication IV).

1) Not a statistically significant regression model.

4.3.1  Brain Injury Analysis Applying the Normal Model

For the mTBI analysis in Publication IV, only regions that had a statistically
significant (p < 0.05) linear model were considered. The limit for abnormal findings
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in the diffusion metrics was twice the model’s RMSE of the region in question. The
IIT atlas had considerably fewer ROIs with a statistically significant linear model and
is disregarded here. Several JHU atlas areas had differences in more than one DTI
metric in the same region. Results of both freehand and JHU normal model analysis
are presented in Table 4 on a per-subject basis, while a more detailed, region-based
review of the results can be seen in Table 5. Regions with abnormal findings for
patients 4 and 5 are shown in Figure 17.

Table 4. Results from both freehand ROI and our automated normal model (JHU atlas)
comparison analyses of the mTBI patients. X indicates abnormal DTI metric value
(1Z,] > 2 for automated analysis and |Z| > 2 for freehand ROI) in comparison with
the normal population (automated analysis n = 70, freehand n = 40).

Automated analysis Freehand ROI

FA MD RD AD FA MD RD AD
Patient 1 X
Patient 2 X X X X X
Patient 3 X X X X
Patient 4 X X X X X
Patient 5 X X X X X
Patient 6 X X X X X
Patient 7 X X X
Patient 8
Patient 9
Patient 10 X X X

FA = fractional anisotropy, MD/RD/AD = mean/radial/axial diffusivity.

Patient 4 Patient 5

Figure 17. Regions with abnormal DTI metrics (+ 2 RMSE) when compared with the normal model for
patients 4 and 5. The regions are shown in red on top of the patients’ FA maps. The
analysis was done using the JHU atlas.

&>
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Table 5. Normal value model analysis (JHU atlas) results of the 10 mTBI patients. Table values
are presented as Z,., i.e., difference from the model predicted value as multiples of the
model’s root-mean-square error. The difference was considered significant if |Z,.| >

2.

Region FA MD RD AD
Cingulate gyrus L Pat 5t: -2.175

) ) Pat 5t: +2.623 .
Cingulate gyrus R Pat 5t: -2.416 Pat 6: -2 139 Pat 5t: +2.758
I-!lppocampal portion of the Pat 2+ +2.031
cingulum R

) Pat 3t: -2.177 )
CSTR Pat 3t: +2.064 Pat 6 -3.178 Pat 6: -4.205
Forceps minor Pat 2t: +2.198
IFOF R Pat 41: +2.081
Pat 41: -2.086 . )

Temporal part of the SLF L Pat 5t -2.353 Pat 51: +2.099 Pat 51 +2.306
Temporal part of the SLF R Pat 41: +2.222 Pat 41: +2.282
SLFR Pat 4t: +2.078 Pat 41: +2.185
UFL Pat 7:-2.911 Pat 7. +3.074 Pat 7: +3.385 Pat 11: +2.449
UFR Pat 5t: -2.258

FA = fractional anisotropy, MD/RD/AD = mean/radial/axial diffusivity, CST = corticospinal tract,
IFOF = inferior fronto-occipital fasciculus, SLF = superior longitudinal fasciculus, UF = uncinate
fasciculus, L = left, R = right.

T) Patients with complicated mild traumatic brain injury.

The freehand ROI measurements included in Publication IV also revealed regions
with abnormal DTI metrics for most of the patients (see Table 4). The freehand
method found abnormal FA values in four patients and the automated analysis in
five patients. The number of abnormal ROIs for freehand and automated analysis
for MD was two and five, for RD it was three and five and for AD it was five and
two. Apart from AD, the automated analysis was able to identify a larger number of
patients with abnormal DTT metrics. Patient 10 was an exception with abnormalities
found in FA, RD and AD in the freehand measurement, but none in the automated

analysis.
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5 DISCUSSION

5.1  Tract-Based Spatial Statistics

We had objectives associated with TBSS that were addressed in Publications I and
II. Publication I focused on revealing the effects of mTBI on the cerebral WM,
while also validating the effects of ageing on the healthy human brain. Our group-
wise TBSS analysis implied prominent DTT detectible ageing-related abnormalities
in the human brain WM especially from age 40 onwards, which is in line with
previous studies with similar objectives (Bennett, Madden, Vaidya, Howard, &
Howard, 2009; Cox et al., 2016; Lebel & Beaulieu, 2011). Ageing generally
contributes negatively to FA and AD and positively to MD and RD, an effect which
was evident in our results. Due to the strong correlation between age and DTI
metrics, it was crucial to mitigate the effect in our mTBI analysis to allow the study
of the mTBI effect exclusively. The effects of ageing were considered by age-
matching the patient and control groups or by including age as a covariate in the
GLM.

We adopted a strict criterion of statistical significance in our first study (p < 0.01)
to correct for multiple comparisons. Even with the strict methodological control and
a highly homogeneous patient sample, we could not associate acute mTBI with
collective microstructural changes in the brain WM by DTI. Perhaps partly due to
the strict p-value, no abnormalities were found with TBSS. With a more liberal p-
value (p < 0.05) some of the mTBI subgroup analyses would have indeed reached
significance in a pattern similar to some previous studies (Hulkower et al., 2013;
Wallace et al., 2018). As a conclusion of the results of Publication I, we inferred
that even though the results were nearly significant, TBSS is not the preferred tool
for mTBI analysis.

The heterogeneous study methodologies may be a significant explanatory variable
for the highly variant results of previous mTBI studies. For the quantitative DT1
study of mTBI, a different approach should be considered, and the focus should be
on individual differences in brain WM caused by mTBI. Due to the variability in
trauma mechanisms, the region and extent of the induced changes will differ
considerably from patient to patient. Therefore, using group comparison may cause
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these individual abnormalities to average out and cause the witnessed negative
findings in brains that are evidently pathologic. Finally, age is a considerable
confounding factor to be accounted for in DTT WM analyses.

In publication II, we continued to utilise TBSS, but instead of brain trauma we
assessed traumatic spinal cord injuries. While previous publications had mainly
concentrated on the motor and sensory pathways of the brain and the spinal cord
itself, we wanted to focus on the whole volume of the brain to fully examine the
extent of SCI induced WM abnormalities. In addition to the TBSS analysis, an
ancillary ABA was included in the study to compliment the results and to increase
sensitivity. The results were extensive and revealed WM changes commonly
associated with neural tract degeneration (Guleria et al., 2008) in the majority of the
brain. In addition to the degeneration related findings, increased AD was found in
parts of the brain. This indicates a possible increase of neural connections, suggesting
post SCI neuroplasticity (Keyvani & Schallert, 2002; Nudo et al., 2001; Schallert,
Leasure, & Kolb, 2000). Furthermore, the regenerative changes were associated with
time since injury, implying a possible continuous neuroplastic process. Hence,
positive correlation with FA and negative with MD and RD may be a sign of axonal
regeneration or synaptogenesis (Keller & Just, 2016; Sagi et al., 2012). These findings
suggest that after the initial Wallerian type degeneration (Carlo Pierpaoli et al., 2001),
cerebral neuroplastic changes may occur continuously even in the late chronic stages
after SCI.

With the successful application of TBSS to SCI patients in Publication II, we
concluded that methodologically TBSS was best used in pathologies that are not
brain trauma related and have minimal inter-subject variability in the
neuropathological process. In addition, TBSS cannot generally be considered as a
viable option for clinical single subject analysis, and a different approach was needed.

2.2  Atlas-Based Analysis

Atlas regions were used in Publication II as a complimentary method for the TBSS
analysis. The ABA findings mostly confirmed the TBSS results for FA, MD and RD,
while AD results were unclear with regions of higher and of lower values compared
with controls. This inconsistency may be attributed to possible regional differences
in the post-SCI brain. Some regions exhibit low AD due to tract degeneration while
some exhibit higher AD due to neuroplastic effects (Freund et al., 2012; Nudo et al.,
2001). Further studies on the effects of SCI on the brain WM may reveal possible
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biomarkers for patient outcome and can potentially aid in the decision of different
rehabilitative measures. However, chronological studies would be required to
increase the understanding of the possible ongoing degenerative and neuroplastic
mechanisms in the post-SCI brain WM.

After the results from both of our initial publications, we came to a conclusion
on the applicability of TBSS and similar group-wise analysis methods. In order to
continue the study of mTBI, we needed to re-evaluate the fundamentals of the
analysis method. After some consideration and a few trial and error iterations, we
chose a ROI-based method as the basis for our automated DTT analysis. We tested
different ways to use ROIs and tried to incorporate the skeletonisation from TBSS
in the analysis. For increased accuracy and robustness, the analysis stages were
minimised and TBSS was omitted from our method.

Subjects are often registered to a template in analysis pipelines, but we decided to
register the template to subjects instead. Because registration of the subject image
data distorts the image data and creates additional smoothing and further partial
volume artefacts, we wanted to minimise the subject image data processing and work
with the template and atlas ROIs instead. A similar approach has been successfully
introduced by Radoeva et al. (2012). Registering the high-resolution standard FA
templates to the subjects’ lower resolution FA maps is a robust procedure that
includes both linear and nonlinear registrations. Any type of ROI can be used in the
registration process, as long as the underlying standard FA map is included.

Initially, in Publication III, we attempted to use freechand ROIs in the analysis
pipeline in a manner that would allow direct comparison between previously
conducted frechand ROI analyses and the automated analysis method results. While
the quantitative DTI metric results seemed very promising, qualitatively the
registration results would not be fully comparable to freehand ROIs. This is because
freehand ROIs are drawn to a single image slice, whereas the registrations transform
the ROIs into volumes that cross over several slices. Because of this difference, the
freehand ROIs drawn by an operator and the freehand ROIs registered to a subject
are not comparable.

For Publication IV, we discarded the possibility of using freehand ROIs in the
analysis due to a lack of any additional benefits. Instead, we focused on existing well-
known human brain atlases and their included anatomical ROIs. We used the created
pipeline to analyse a selected group of ten mTBI patients and compared the results
in a semi-quantitative way against results obtained from a freehand ROI comparison.
Our analysis found more regions with abnormal DTI metrics, reflecting higher
sensitivity compared with the freehand ROI measurement. Application of our
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automated analysis to mTBI patients successfully identified regions with WM
abnormalities, leading to a highly positive outlook for the method. The possibility to
use different ROIs in the analysis makes the method versatile enough to be a
prospective clinical tool in the near future. In conclusion, a versatile automated

quantitative DTT brain analysis pipeline was created.

9.3  Normal Population Model

An intriguing aspect of our study was the creation of a normal population model in
Publication IV. Accurate reference values for human brain DTT would allow direct
evaluation of a subject’s WM integrity, independent of the studied pathology.
Normal values would be especially sought after in mTBI-related DTT assessment,
due to the lack of distinct visual cues of brain WM trauma. In practice, none of the
patients who have suffered mTBI have prior medical images to compare to, and
having a quantitative reference database to compare the acquired DTT data would
therefore significantly improve the accuracy of DTT assessment of mTBI.

Our normal population DTI model was highly successful for the JHU atlas,
especially for the relevant FA model. Results for AD were mostly non-significant
and heterogeneous in the JHU atlas. This finding is, however, in line with previous
studies (Bennett et al., 2009; Burzynska et al., 2010). In contrast, almost half of the
IIT atlas ROIs did not reach significance, which makes the IIT atlas
unrecommendable to be used in the pipeline. The low success rate of the IIT atlas
model may have been due to the smaller ROIs compared with the JHU atlas, or
simply due to the difference in the anatomical locations of the ROIs. The smaller
ROIs of the IIT atlas may render it more suitable for specific analyses, but its
usefulness may be hindered by low statistical power due to the small control
population. Based on our findings, we discarded the IIT atlas and concentrated on
the use of the JHU atlas. We tested the specificity of our normal population-based
method by creating separate training and test sets. The specificity of our method was
sufficiently high for all DTT metrics in the JHU atlas, with false positive rates of 21%,
5%, 11% and 9% for FA, MD, RD and AD, respectively. Specificity should increase
when applying a multiple regression model. Sensitivity would be more important for
a supportive analysis method, which was the original agenda for our automated
analysis. The sensitivity can be increased with relative ease by adding more control
subjects to the normal population pool.
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Cox et al. had notably larger subject material in their study from which they
derived age association plots and age- and gender-based DTI models. With the larger
pool of subjects, Cox et al. were able to use multiple regression in their models with
increased statistical power. In addition, they used more novel neurite orientation
dispersion and density imaging measures, including estimates of neurite density,
extracellular water diffusion and tract complexity. We compared our results to Cox
et al.’s where applicable.

Comparing our normal model with the results obtained by Cox et al. (2016)
revealed identical results when accounting for the ROIs’ direction of correlation with
DTI metrics. Only AD differed from the trend. Our correlations were partly positive
and partly negative, while Cox et al. observed only positive correlation between age
and AD. This difference may be characterised by the differences in the control
population age distributions and sample sizes or by the difference in the definition
of statistical significance (Cox et al. used a limit of p < 0.001). While the comparison
was not exhaustive, we concluded that the linear regression model was mostly

equivalent to what was achieved by Cox et al.

54 Limitations

TBSS uses statistical methods to compare groups of subjects and can thus identify
common features of WM microstructure inside a group of subjects. This is likely a
confounding factor in the analysis of mTBI, where the patients have been subjects
of different blunt head traumas. Generally, these head traumas are inherently varying
(not controlled) in nature, and thus the variation in the trauma mechanics is a factor
to be considered in patient grouping. Pooling together patients with different trauma
mechanics may distort the results and even average out the findings in an
inhomogeneous patient group (Kenzie et al., 2017). Because some WM regions, e.g.,
the corpus callosum (Aoki et al., 2012), are more prone to the effects of mTBI, it is
possible TBSS can detect the abnormalities in these areas, but cannot distinguish
individual differences dependent on trauma mechanisms and patient characteristics.
Thus, analysing mTBI patients with TBSS may lead to a loss of sensitivity by
averaging out possible focal abnormalities in different anatomical regions.

An important factor in the study of mTBI is the time of imaging, which can cause
confusion and heterogeneity between mTBI study results. The heterogeneity in the
reported mTBI study results can at least be partly explained by the variation in the
time of imaging of the patients. The effect of mTBI on the WM is not linear through
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time, and DTT metrics can fluctuate between high and low depending on the time
since injury (Hasan et al., 2014; Lancaster et al., 2016). Our results are thus valid only
for mTBI patients imaged in the acute stage.

Our subject data were limited in numbers, which creates limitations to the
statistical power of the analyses and can directly impact the quality of inferences
drawn from the results. While our patient pools are reasonably large, for more
reliable results, the number of control subjects should be larger. In some cases, age-
and gender matching can alleviate the deficiency, but overall the analyses would
benefit from a larger control pool. In general, the same limitations apply to our SCI
study as were noted for the mTBI TBSS study. In addition to these limitations, the
possibility of a concomitant mTBI cannot be ruled out when dealing with traumatic
spinal injuries (Wei et al., 2008). In defence of our study, the abnormal findings in
the post-SCI brain WM were located in regions less frequently associated with TBIs
(Hulkower et al., 2013). The time of imaging in our sample was not an optimal one,
and for more clinically relevant results the imaging should be done in the acute phase
of the injury.

The limited control subject data used to create our normal model led to a few
prior conclusions concerning the modelling process. First, instead of more advanced
nonlinear or piecewise regression models, we felt compelled to use linear regression
in the age-dependency model, which, nevertheless, has been postulated to be a
sufficient predictor of age-dependency (Kodiweera et al., 2016; Salat et al., 2005;
Sullivan, Rohlfing, & Pfefferbaum, 2010). Second, the only demographical parameter
taken into account in the model was age, while variables, such as gender and
education, may have a significant effect on DTI metrics (Hsu et al., 2008; Kanaan et
al., 2012; Noble, Korgaonkar, Grieve, & Brickman, 2013). A considerably larger
control pool would be needed to create a prospective normal population model. In
their study, Knofczynski and Mundfrom (2007) concluded that a minimum sample
size of approximately 300 subjects is required for a good prediction level in multiple
regression analysis. Collecting a control sample of this magnitude is, however, too
expensive and time-consuming.

Additionally, there are multiple universal limitations in DTT that need to be taken
into account when considering the results of any type of quantitative DTT analysis.
The first and one of the most important restriction is the imaging process. While the
acquisition of DTT data using EPI minimises motion artefacts, the collected data
suffers from low spatial resolution and a medium to low signal-to-noise ratio due to
current hardware limitations (Tournier, Mori, & Leemans, 2011). The use of low

spatial resolution in an application where the objective is to examine microstructural
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qualities is, in my opinion, a sort of paradox. The DWI EPI sequence is also highly
susceptible to several imaging artefacts, such as magnetic field inhomogeneity
induced geometric distortions, eddy current artefacts, chemical shift artefacts, T2
shine-through artefact and point spread function artefacts (Jones & Cercignani,
2010; Denis Le Bihan, Poupon, Amadon, & Lethimonnier, 2006; Soares, Marques,
Alves, & Sousa, 2013; Tournier et al., 2011). If the image artefacts cannot be avoided,
or if dealing with retrospective data, a possible solution is to exclude the affected
volume from the analysis (Soares et al., 2013). The applied imaging parameters will
affect the accuracy and quality of the collected diffusion data, some of the most
important of which are the number of diffusion gradient directions, applied diffusion
weighting (b-value), physical size of the imaging matrix (field of view, acquisition
matrix) and the used TE and TR (Soares et al., 2013). In addition, the acquisition
parameters need to be identical for the images to be comparable, for a slight change
in any of the parameters will cause a deviation in the quantitative DTT scalars.
Diffusion data obtained with identical parameters from different scanners are also
not comparable.

In addition to the standard image quality control steps, there is also a number of
things to account for in the DTT image processing stage. The first real issue with the
image processing is that no consensus has yet been reached for a standardized DTI
processing pipeline. This is an issue similar to the variation in imaging parameters,
and in practice leads to the fact that most current studies are not directly comparable
with each other. Possible sources of bias in the results include different diffusion
tensor estimation algorithms, varying pre-processing methods, various registration-
based differences and distortions, and the possible spatial and quantitative distortion
caused by lesions (Jones & Cercignani, 2010). A significant source of bias specific to
DTT are crossing fibres, which are partly countered by acquiring diffusion data with
a high diffusion gradient direction count (HARDI, high angular resolution diffusion
imaging), and by using an appropriate g-ball imaging reconstruction (Tuch, 2004).
Crossing fibres are neural pathways that cross inside an image voxel, causing the
diffusion to seem isotropic inside the voxel. Crossing fibres are a notable source of
error, especially in tractography where they can potentially cause disconnections in
the visualised tracts (Denis Le Bihan et al., 20006; Soares et al., 2013).

While TBSS claims to solve some of the registration-based issues in DTT analysis,
it also adds some specific issues to the analysis process. One of the issues with TBSS
is that it includes a vast number of image processing and mathematical calculation
steps, which should be understood before interpreting the results. While the
skeletonisation step reduces registration bias, it is only a coarse simplification of the
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fibre bundle it represents and, due to its wireframe model property, the majority of
diffusion information in thick fibre bundles is ignored by the analysis (Bach et al.,
2014). Brain lesions may produce invalid FA skeleton geometry or give rise to false
low FA wvalues in the skeleton (Jones & Cercignani, 2010). For more detailed
information on possible diffusion MRI analysis pitfalls, I suggest the reader takes a
look at the publications by Jones and Cercigani (2010), Le Bihan et al. (2006), Soares
et al. (2013), and Bach et al. (2014).

The diffusion data used in this thesis may be considered dated. For example, the
spatial resolution and the number of diffusion-encoding gradient directions are lower
than in current state-of-the-art studies. The slice thickness of 3 mm can be
considered to be one of the main issues with the data. The slice thickness also means
that the voxels are non-isotropic. In addition, the slices include a small 0.9 mm gap,
which would cause possible issues with tractography (Soares et al., 2013). The use of
non-isotropic voxels has benefits in terms of higher SNR and lower imaging time,
but can also lead to issues with partial volume averaging and the possible orientation
dependence of FA values (Jones, Kndsche, & Turner, 2013; Oouchi et al., 2007).
The quality of the diffusion data is a potential limitation and a possible source of
error that likely resulted in a loss of sensitivity in the analyses.

9.5 Further Aspects

Additional research on both mTBI and SCI would be warranted, and the single most
important aspect to consider is chronologicity, i.e., changes in DTI metrics with
regards to the time between injury and imaging. While the DTT observable changes
in brain WM induced by mTBI have a complex pattern of alteration dependent on
the time of imaging, SCI is likely to have a more straightforward pattern. In both
cases, it would be important to examine the chronological post-injury brain WM
alteration patterns to be able to understand the microstructural pathologic process
and to associate changes possibly linked to clinical recovery. Additionally, the whole
brain should be targeted in SCI DTT studies instead of concentrating only on the
somatosensory tracts.

In its current state, the analysis pipeline is missing a reliable, clinical-grade
reference value model. Also, if young subjects are to be analysed with the pipeline, a
piecewise linear or a parabolic model should be applied. This is because the young
brain is still developing into early adulthood, and an appropriate break point for a
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piecewise solution would be at the age of about 25 (Lebel & Beaulieu, 2011; Westlye
et al., 2010). Because the normal population model presented in our study was a
preliminary one, an important future research prospect is to complete the control
subject pool by adding to the number of control subjects. With a larger control
subject pool, a more advanced regression model can also be applied. However, due
to high costs of recruiting a massive volunteer control pool, an inexpensive and
conveniently executable alternative for the control population gathering must be
presented. A possible alternative could be the use of any clinical subjects whose brain
MRI are interpreted as normal, and who have not suffered previous brain trauma
nor have neurodegenerative disease. The collection method should seamlessly fit the
standard clinical MRI procedure in the current golden age of biobanks. However,
the applicability of clinical subjects as a control sample is highly questionable, and
the mandatory exclusion criteria may render the method unusable.

A highly intriguing aspect would be to include artificial intelligence (Al) in the
pipeline. Possible areas where machine learning could be utilised are the registration
step and regression analysis. Al could be used to increase the registration accuracy
by teaching a deformable image registration framework based on deep learning
algorithms (Wang, Kim, Wu, & Shen, 2017). This type of approach has the potential
to continuously increase the registration accuracy with practically minimal human
interaction required. The second use for Al is in the core of our analysis. Accurate
correlations between subject demographics and DTI metrics could be effortlessly
and more accurately determined with deep learning algorithms. Even the whole
foundation of the analysis could be based on Al (Vieira, Pinaya, & Mechelli, 2017),
but that is far beyond the scope of our current research. However, the addition of
Al aspects to parts of the pipeline is something that should be considered in the near
future.

An important clinical aspect that should also be dealt with in the future is mTBI
litigation and the use of DTI-based evidence in jurisprudence. In the few past years
in Finland, there has been an increasing interest in the use of DTT as a method for
differentiating brain injury from the healthy brain. Quantitative DTT values have
been utilised to some extent in the discrimination of possible brain injury in brain
trauma cases. This type of approach may sometimes be used by insurance companies
to determine the possibility of a trauma induced brain injury. Due to this, medical
experts are being asked for reports based on DTI imaging for evidence in mTBI
litigation. The use of quantitative DTT values as evidence of mTBI causes a problem
due to the various pitfalls of diffusion imaging that were explained in the previous

chapter. In addition to the issues concerning the DTI data in general, a common
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misinterpretation of previous mTBI studies is that the group-wise analysis results
could be applied directly to individual level diagnostics. According to Wortzel et al.
(2011), objective DTT based evidence of mTBI in the past literature is mainly
achieved in cases where other types of evidence of mTBI are already present and
observable. Additionally, they advise against using DTT as evidence of mTBI until
the acquisition and analysis processes are standardised. Another study on the subject
by Shenton et al. (2018) concluded with similar views concerning the use of DTT in
the courtroom. While DTI seems promising in the detection of mTBIs, the
methodology is not yet standardised or even matured to the point where the obtained
quantitative data could be unambiguously interpreted.

Due to the findings of the aforementioned studies and based on the experience
obtained in the course of this thesis, I would conclude that the use of an objective
means of assessing brain injuries is more than advisable. However, DTT analysis as
an instrument for individual level mTBI assessment requires further research and
standardisation to reach a level of unambiguousness suitable for mTBI litigation. It
is plausible that diffusion imaging will continue to bring forth an increasing amount
of important quantitative information on mTBI, and further enhance the objectivity
and robustness of clinical mTBI assessment. In order for the method to become a
universally accepted diagnostic tool, however, advances in the imaging techniques
and analyses are required. The reliability of DTI or even HARDI is currently not
quite at the level it should be, but the future does seem promising for quantitative
diffusion imaging as an assessment tool for central nervous system integrity.
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6 CONCLUSIONS

We evaluated the applicability of existing DTT analysis methods through different
stages of the thesis and achieved important results and inferences in the process. We
obtained intriguing new information on the microstructural effects of mTBI and SCI
on the human brain and created a potentially clinically relevant automated
quantitative DT analysis method. The main outcomes of the thesis can be
summarised as follows:

1. The effects of mTBI on the human brain WM cannot be reliably assessed
by TBSS even in a strictly controlled dataset. However, with a
methodological consensus and further research, the utilisation of DTT in

clinical mTBI assessment is plausible in the near future.

2. Traumatic SCls cause extensive changes in the cerebral WM detectable by
DTI. The observed changes suggest wider degenerative and neuroplastic
changes in the post-SCI brain than previously reported.

3. An automated quantitative DTT analysis pipeline was created with clinical
versatility via the possibility of arbitrary choice of ROIs. The analysis uses
reference values derived from a normal population DTI metric model for
delineation of pathologies.
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This study was designed to (i) evaluate the influence of age on diffusion tensor imaging measures of white matter assessed
using tract-based spatial statistics; (ii) determine if mild traumatic brain injury is associated with microstructural changes in
white matter, in the acute phase following injury, in a large homogenous sample that was carefully screened for pre-injury
medical, psychiatric, or neurological problems; and (iii) examine if injury severity is related to white matter changes. Participants
were 75 patients with acute mild traumatic brain injury (age = 37.2 + 12.0 years, 45 males and 30 females) and 40 controls
(age =40.6 + 12.2 yrs, 20 males and 20 females). Age effects were analysed by comparing control subgroups aged 31-40, 41-
50, and 51-60 years against a group of 18-30-year-old control subjects. Widespread statistically significant areas of abnormal
diffusion tensor measures were observed in older groups. Patients and controls were compared using age and gender as
covariates and in age- and gender-matched subgroups. Subgroups of patients with more severe injuries were compared to
age-and gender-matched controls. No significant differences were detected in patient-control or severity analyses (all
P-value > 0.01). In this large, carefully screened sample, acute mild traumatic brain injury was not associated with diffusion
tensor imaging abnormalities detectable with tract-based spatial statistics.

Keywords: concussion; traumatic brain injury; magnetic resonance imaging; diffusion tensor imaging; statistical analysis
Abbreviations: DTI = diffusion tensor imaging; TBI = traumatic brain injury; TBSS = tract-based spatial statistics

i f attention for the last decade (Hulkower et al., 2013). Many
ntroduction o :

studies have reported white matter changes in patients with a

In mild traumatic brain injury (TBI) research, white matter integrity history of mild TBI, recently or remotely, although heterogeneous

assessment by diffusion tensor imaging (DTI) has been the centre and inconsistent conclusions have been drawn. This heterogeneity
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Table 1 A brief summary of previous DTI studies that focus on the acute phase of mild TBI

Findings

Analysis

ROI

Control (gender; age)

(5 M, 5F; 28.9+7.6)
6 (4 M, 2 F; mean 21.7, range

Patients (gender; age)
53 M, 2 F; 35.6+14.8)

Magnet

Time frame*

Reference

Decreased FA

10

15T
3T

<24h

<72h

Arfanakis et al., 2002

Bazarian et al.

WBA: Decreased trace

6 (4 M, 2 F;, mean 21.7, range WBA, ROI

2007

Increased FA
Increased FA, Decreased RD

18-31 years)
0(4M, 6F 157 +1.83)

8 (8 M; 22.8 £1.5)

18-31 years)

WBA, ROI
WBA
WBA

R

1

(4 M, 6 F; 15.7 +1.18)

10
16 (16M; 22.1 £1.7)

3T
3T
3T
3T
3T

Range 1-6 days
81.9+46.7h

Chu et al., 2010

Increased FA and AD, Decreased MD

Decreased FA, Increased MD

Henry et al., 2011

20 O M, 11 F; 34.2+£9.3)

20 (9 M, 11 F; 33.4 £823)

Range 2-14 days
12 £5.7 days

Lipton et al., 2009

Increased FA, Decreased RD

21 (8 M, 13 F; 26.81 + 6.68)

40 (28M, 12 F; 36.3 £ 12.5)

21 (8 M, 13 F; 27.45 £ 7.39)

Mayer et al., 2010

Decreased FA, Increased MD and RD

Decreased FA, Increased MD

TBSS
ROI

(35 M, 18 F; 35,5+ 11.0))
17 (11 M, 6 F;, mean 33.44, range

Range 8-21 days 53

Messé et al., 2012

29 (15 M, 14 F; mean 35, range

15T

Range 1-10 days

Miles et al., 2008

18-61 years)
14 9 M, 5 F; 358+ 18.5)

18-58 years)
14 (9 M, 5 F; 34.9 +18.4)

Decreased FA, Increased MD

TBSS,

<72h 3T

Toth et al., 2013

volumetric
ROI (fornix)

Decreased FA, Increased nADC

11 (6 M, 6 F;, 15.82 £1.78)

11 (5 M, 6 F; 15.09 & 1.14)

3T

Range 1-16 days

Yallampalli et al., 2013

mean diffusivity (= apparent diffusion

male; MD =

fractional anisotropy; M

*Time from injury to imaging. Reported as mean time + SD, maximum time or time range. ADC = apparent diffusion coefficient; F = female; FA

coefficient); ROI = region of interest; WBA

whole brain analysis.

T. llvesmaki et al.

can partly be explained by methodological differences and limita-
tions, such as small sample sizes, failure to control for pre-injury
health factors, major differences in time from injury to imaging,
diverse patient characteristics, and differing DTI analysis tech-
niques. A brief summary of previous DTI studies that focus on
the acute phase of mild TBI are presented in Table 1.

The current study had three objectives: (i) to evaluate the influ-
ence of age on DTI measures and axonal integrity assessed by
tract-based spatial statistics (TBSS); (i) to determine if mild TBI is
associated with microstructural changes in white matter in the
acute phase following injury, in a large homogenous sample that
was carefully screened for pre-injury medical, psychiatric, or
neurological problems; and finally (iii) to examine if mild TBI sever-
ity is related to white matter changes. Through rigorous inclusion
and exclusion criteria, the goal was to reduce or eliminate numer-
ous confounding variables to study a relatively ‘pure’ sample of
civilian patients with acute mild TBIs.

Materials and methods

This work is part of the Tampere Traumatic Head and Brain Injury
Study. Subjects were enrolled from the emergency department of
the Tampere University Hospital between August 2010 and July
2012; all met mild TBI criteria of the World Health Organization's
Collaborating Centre for Neurotrauma Task Force (Holm et al.,
2005). The enrolment protocol included three inclusion criteria and
nine exclusion criteria, as described in our previous publication
(Luoto et al., 2013), that resulted in a small percentage of patients
with head trauma being enrolled (the majority of eligible adults were
excluded due to comorbidities). Ethics approval was obtained from the
Ethical Committee of Pirkanmaa Hospital District, Finland. All patients
and controls provided written informed consent according to the
Declaration of Helsinki.

Subjects

Of the 75 patients with mild TBI, 45 were male and 30 were female.
The mean age was 37.2 + 12.0 years. Of the 40 control subjects, 20
were male and 20 were female. The mean age for the control subjects
was 40.6 + 12.2 years. The mean time interval between injury and
acute clinical assessment was 48.1 & 45.4 h. The clinical characteristics
of the mild TBI sample are presented in Table 2. For mild TBI severity
analyses, mild TBI subgroups were formed based on clinical markers as
follows: (i) loss of consciousness > 5min, n = 7; (i) post-traumatic am-
nesia > 3h, n=25; (i) acute traumatic lesion on CT and/or MRI
(complicated mild TBI), n=15; (iv) Glasgow Coma Scale =14, n=6;
and (v) a group of patients with a combination of any of the previous
criteria (definite mild TBI), n = 29.

Control subjects were patients evaluated in the emergency depart-
ment of Tampere University Hospital who suffered ankle injuries.
The same study criteria used with the mild TBI sample were applied
in the enrolment of the controls when applicable. Control subjects
were enrolled in an age and gender stratified manner, with five
males and five females in the following age groups: (i) 18-30 years,
(ii) 31-40 years, (i) 41-50 years; and (iv) 51-60 years. All 40 control
subjects underwent a head MRI with the same sequences as the mild
TBI sample. With controls, all MRI findings were interpreted as normal.
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Table 2 Characteristics of classic clinical mild TBI severity markers

Presence, n (%) Duration
Yes No Mean Median sD IQR

Loss of consciousness (min) 28 (37.3) 47 (62.7) 0.9 0 2.2 0-1.0
Post-traumatic amnesia (h) 69 (92.0) 6 (8.0) 2.66 1.5 34 0.1-4.5
Retrograde amnesia (h) 17 (22.7) 58 (77.3) 0.4 0 1.7 0
Disorientation 53 (70.7) 22 (29.3)
Focal neurological deficit 17 (22.7) 58 (77.3)
GCS, 15 points 69 (92.0) 6 (8.0)
GCS, 14 points 6 (8.0) 69 (92.0)
Acute traumatic lesion on CT* 7 (9.3) 68 (90.7)
Acute traumatic lesion on MRI 15 (20.0) 60 (80.0)

Diffuse axonal injury 7 (9.3)

Diffuse axonal injury and subdural haemorrhage 1(1.3)

Subdural haemorrhage 1(1.3)

Subdural effusion 1(1.3)

Subarachnoid haemorrhage 1(1.3)

Contusion and subdural haemorrhage 2 (2.7)

Contusion 2 (2.7)

*All traumatic lesions were also visible on MRI.
GCS = Glasgow Coma Scale; IQR = interquartile range.

Clinical assessment

A broad clinical assessment of the patients in the final sample was
performed by T.L. The patients were interviewed regarding past
health including diagnosed medical conditions, medication use, head
injury history, alcohol consumption according to the Alcohol Use
Disorders Identification Test (Saunders et al., 1993), and drug and
narcotics abuse history. The presence and duration of retrograde am-
nesia and post-traumatic amnesia were assessed using the Rivermead
Post-Traumatic Amnesia Protocol (King et al., 1997) together with the
Galveston Orientation and Amnesia Test (GOAT) (Levin et al., 1979).
All patients scored >80 points on the GOAT (normal 76-100).
Persistent post-traumatic amnesia was screened using the revised
Westmead Post-Traumatic Amnesia Scale (Shores et al., 1986) and
all the patients scored a flawless 12 points at the time of assessment.
Glasgow Coma Scale (Teasdale and Jennett, 1976) scores were col-
lected from ambulance forms (if applicable) and the emergency de-
partment records (the lowest scores were recorded). The clinical
assessment included a complete neurological examination.
Participants were determined to have met ICD-10 diagnostic criteria
for post-concussional syndrome if they endorsed symptoms on the
Sports Concussion Assessment Tool (SCAT2) (McCrory et al., 2009)
22-item symptom scale in at least three of the ICD-10 symptom cate-
gories. The time duration criterion was not applied to the acute ana-
lyses. The SCAT2 was added later in the study, so only a subset of
patients were administered the test (n =51 at emergency department,
and n =50 at 1 month due to a patient dropping out of the follow-up
evaluation).

Neuroimaging

In the emergency department, a non-contrast head CT was performed
with a 64-row CT scanner (GE, Lightspeed VCT) for all consecutive
patients with head injury. Head MRI was done with a 3 T MRI scanner
(Siemens Trio). The MRI protocol included sagittal T4-weighted 3D
inversion recovery prepared gradient echo, axial T, turbo spin echo,

conventional axial and high resolution sagittal FLAIR, axial T,*, axial
susceptibility weighted, and diffusion weighted imaging series. Head
MRIs were done within 14 days after injury (mean 5.8 &+ 2.5 days). All
head MRIs were analysed and systematically coded by two
neuroradiologists.

The DTI data were collected by a single-shot, spin echo-based and
diffusion-weighted echo planar imaging sequence. The parameters for
the DTI sequence were repetition time 5144 ms, echo time 92 ms, field
of view 230 mm, matrix 128 x 128, three averages, slice/gap 3.0/
0.9mm, and voxel dimension of 1.8 x 1.8 x 3.0mm. Two b-factors
were used, 0 and 1000 s/mm? with 20 diffusion gradient orientations.
A 12-channel head matrix coil was used. Finally, the signal to noise
ratio value was well above the limit of acceptance for diffusion ima-
ging, following the group's previous work (Hakulinen et al., 2012).

Tract-based spatial statistics

Whole brain voxel-wise statistical analysis was carried out using TBSS
(Smith et al., 2006), a part of FSL, version 5.0.1 (Smith et al., 2004). A
threshold for fractional anisotropy values for the creation of the skel-
eton was chosen at >0.3 to exclude peripheral areas from the skel-
eton and to reduce bias in the results. Effects of age and gender were
controlled by adding them as covariates of no interest (nuisance vari-
ables) to general linear model setup in non-matched group analysis.
No covariates were used in the analyses with matched groups.

Statistical analysis

Non-parametric, permutation-based tests were carried out by
Randomize (included in FSL) (Nichols and Holmes, 2002) with 5000
permutations and threshold-free cluster enhancement. To reduce ex-
periment-wise type 1 errors associated with multiple comparisons, the
threshold for statistical significance was set at P < 0.01, adjusted for
multiple comparisons. Two-sided, two-sample Wilcoxon-Mann-
Whitney tests were used for each age- and gender-matched analysis
to test the groups' ages for significant differences.
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Results

Effect of age on diffusion measures

In the control subjects, comparison of fractional anisotropy values
among the four age groups yielded significantly (P < 0.01) lower
fractional anisotropy values in age groups 41-50 years and 51-60
years in comparison with control subjects aged between 18 and 30
years. The areas with fractional anisotropy deviations extended
widely across the whole cerebral white matter (Fig. 1A).
Statistically significant (P < 0.01) differences in apparent diffusion
coefficient values were obtained only in the oldest of the age
groups, 51-60 years. Apparent diffusion coefficient values were
elevated in the anterior parts of the right cerebral hemisphere
(Fig. 1B).

Axial diffusivity was found to decrease with age. In the second
oldest age group, 41-50 years, lower axial diffusivity values ex-
tended from the brainstem to the posterior part of the cerebrum.
Similar areas of lower axial diffusivity were found in the oldest age
group (Fig. 1C). Radial diffusivity values were increased in the two
oldest age groups in a widespread manner (Fig. 1D). See
Supplementary Table 1 for quantitative information for the age
effect analyses.

Group comparison between controls
and patients

The age- and gender-covaried TBSS analysis between the patients
with mild TBI and controls did not reveal statistically significant

A FA

51-60
yrs yrs
0.3 K: 0.01

Skeleton FA value

P-value, variable increase

T. llvesmaki et al.

differences in fractional anisotropy, apparent diffusion coefficient,
axial diffusivity or radial diffusivity. For the age- and gender-
matched analyses, 40 patients with mild TBI were carefully
matched on age and gender to the 40 control subjects. No stat-
istically significant differences in fractional anisotropy, apparent
diffusion coefficient, axial diffusivity, or radial diffusivity were
found.

The association between mild traumatic
brain injury severity and diffusion
measures

Subgroup analyses were conducted based on injury severity char-
acteristics. For patients with a loss of consciousness for >5min
(n=7) compared with matched control subjects, no statistically
significant differences were found in fractional anisotropy, appar-
ent diffusion coefficient, axial diffusivity or radial diffusivity. A
subgroup of 25 patients with post-traumatic amnesia >3h was
compared with 25 matched control subjects. There were no stat-
istically significant differences in fractional anisotropy, apparent
diffusion coefficient, axial diffusivity or radial diffusivity. A sub-
group of 15 patients with complicated mild TBIs (i.e. all had a
trauma-related structural abnormality on CT and/or MRI) was
compared to 15 matched control subjects. There were no statis-
tically significant differences in fractional anisotropy, apparent dif-
fusion coefficient, axial diffusivity or radial diffusivity. Six patients
with Glasgow Coma Scale = 14 were compared to six matched
control subjects. There were no statistically significant differences
in fractional anisotropy, apparent diffusion coefficient, axial

41-50 41-50
yrs yrs yrs yrs

0 0.01 0
P-value, variable decrease

Figure 1 Qualitative results of age effect on DTI measures; the mean fractional anisotropy skeleton is presented in green and laid on top
of greyscale MNI152 1 mm T, image. Colour coding is used to differentiate whether values on the skeleton increase (red-yellow) or
decrease (blue-light blue) in the older age group. The youngest age group (18-30 years) is used as a reference for the other age groups in
the analyses. Slice coordinates (MNI152 aligned anatomical) x = 15mm, y = 20 mm, z = 23 mm. Radiological convention (Left is Right).
AD = axial diffusivity; ADC = apparent diffusion coefficient; FA = fractional anisotropy; RD = radial diffusivity.
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coefficient values (Hulkower et al., 2013; Toth et al., 2013). From
a neurometabolic view, statistical unification of neuroimaging data
obtained acutely (e.g. 2 days) and post-acutely (e.g. 1 month)
after injury does not seem justifiable. More research is needed
to better understand acute versus post-acute changes in DTI
measures after mild TBI.

This study was larger and more tightly methodologically con-
trolled than most previous DTI studies of acute mild TBI. The pa-
tients were clinically assessed by the same physician using
structured instruments and strict clinical enrolment criteria were
applied to both patient and control groups. A specific time interval
was used in imaging to reduce the possible effect of diverse neu-
rometabolic stages of mild TBI recovery.

The negative main outcome of this study can be partly caused by
the statistical group-wise nature of TBSS. The current result does not
rule out individualized patterns of focal white matter changes in
different anatomical regions. Moreover, some of the non-significant
findings in mild TBI severity subgroups may be explained by the
lower statistical power of these analyses. For post-concussional syn-
drome analyses, patient matching was limited to age-matching due
to lack of uniformity in gender distributions. Lack of gender-match-
ing is a methodological limitation in the post-concussional syndrome
analysis. Indeed, the heterogeneous nature of brain trauma, com-
bined with methodological differences across studies, likely underlies
the fact that the anatomical areas showing DTI differences vary con-
siderably across past mild TBI studies. Therefore, TBSS as a supple-
ment to region of interest analysis could be an appropriate
alternative for a comprehensive DTI analysis.

In conclusion, in this large homogeneous, premorbidly healthy
sample, acute mild TBI was not associated with obvious DTI
abnormalities detectable with TBSS. Clear differences in DTI find-
ings were associated with age, even in healthy subjects in their
40s. Therefore, age should always be considered a potential con-
founder in DTI studies.
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Abstract: Traumatic spinal cord injuries (SCIs) lead to axonal damage at the trauma site, as well as dis-
connections within the central nervous system. While the exact mechanisms of the long-term patho-
physiological consequences of SCls are not fully understood, it is known that neuronal damage and
degeneration are not limited to the direct proximity of the trauma. Instead, the effects can be detected
even in the cerebrum. We examined SCl-induced chronic brain changes with a case-control design
using 32 patients and 70 control subjects. Whole-brain white matter (WM) tracts were assessed with
diffusion tensor imaging (DTI). In addition, we analysed associations between DTI metrics and several
clinical SCI variables. Whole-brain analyses were executed by tract-based spatial statistics (TBSS), with
an additional complementary atlas-based analysis (ABA). We observed widespread, statistically signifi-
cant (P <0.01) changes similar to neural degeneration in SCI patients, both in the corticospinal tract
(CST) and beyond. In addition, associations between DTI metrics and time since injury were found
with TBSS and ABA, implying possible long-term post-injury neural regeneration. Using the ABA
approach, we observed a correlation between SCI severity and DTI metrics, indicating a decrease in
WM integrity along with patient sensory or motor scores. Our results suggest a widespread neurode-
generative effect of SCI within the cerebrum that is not limited to the motor pathways. Furthermore,
DTI-measured WM integrity of chronic SCI patients seemed to improve as time elapsed since injury.
Hum Brain Mapp 38:3637-3647, 2017.  © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

In a traumatic spinal cord injury (SCI), an external force
causes immediate damage and death of the neural cells at
the injury site, resulting in a secondary neuropathological
process that further aggravates neuronal damage. Secondary
degeneration of white matter (WM) tracts has been shown to
spread in both anterograde and retrograde directions from
the injury site over several years after the injury [Beirowski
et al., 2005; Buss et al., 2004]. Degeneration includes a slow
and progressive demyelination, which eventually leads to
gliosis [Buss et al., 2004].

Secondary degeneration of the corticospinal tract (CST)
in humans after SCI has been shown histologically to
reach cerebral regions. Furthermore, histological evidence
supports atrophy of the CST neurons [Yamamoto et al.,
1989]. In line with these findings, atrophy-related changes
have been detected on volumetric MRI scans in the CST
and the sensorimotor cortex in SCI patients [Freund et al.,
2011; Wrigley et al., 2009].

After an injury to the central nervous system, complex
neuroplastic mechanisms are initiated, similar to those asso-
ciated with learning processes that occur during normal
development of the brain [Keyvani and Schallert, 2002;
Zatorre et al., 2013]. Neuroplasticity involves several under-
lying mechanisms, including changes in myelin structure,
axon diameter and packing density changes, axonal sprout-
ing, rerouting, and elimination [Zatorre et al., 2013]. These
processes can potentially alter the functional and structural
fabric of the brain’s neural network to compensate for at
least part of the possible damage to the brain [Nudo et al.,
2001; Zatorre et al., 2013]. Functional MRI has provided
evidence of cortical reorganization that compensates for
sensorimotor loss after SCI [Freund et al., 2011; Henderson
etal., 2011; Jurkiewicz et al., 2007]. The changes in activation
observed by functional MRI after SCI can be explained by
both functional and structural alterations in nervous tissue.
After experimental SCI structural alterations, the remodel-
ling of synaptic structures and axonal sprouting and the for-
mation of new connections have been demonstrated
together with reorganisation in both the cortex and subcorti-
cal regions [Florence et al., 1998; Kim et al., 2006; Ramu
etal., 2008].

Diffusion tensor imaging (DTI), which measures the dif-
fusion of water molecules in tissues, provides quantitative
information on tissue microstructures. In nervous tissue,
the orientation of fibre bundles, axonal diameter, density,
and myelination affect diffusion metrics [Beaulieu, 2002;
Sen and Basser, 2005]. Spinal DTI has been shown to have
potential for quantifying the extent of clinical disability
following SCI and radiological SCI severity [Chang et al.,
2010; Koskinen et al., 2013]. Additionally, DTI could detect
diffusion changes at a distance from the macroscopic
spinal lesions seen on conventional MRI, suggesting
secondary degeneration of WM tracts in the spinal cord
[Chang et al., 2010; Cohen-Adad et al., 2011; Koskinen
et al., 2013; Petersen et al., 2012]. Degeneration-associated

abnormalities in cerebral DTI values after SCI have also
been demonstrated in humans, although only in a few
studies that were mostly focused on the CST [Freund
et al., 2012; Gustin et al., 2010; Koskinen et al., 2014; Wei
et al., 2008; Wrigley et al., 2009]. Wrigley et al. [2009]
found volumetric and DTI metrics changes in multiple
cortical areas beyond the primary sensory and motor
cortices, indicating that subcortical WM changes after SCI
could also extend beyond the CST.

Fractional anisotropy (FA) and mean diffusivity (MD) are
currently the most commonly used DTI metrics [Guleria
et al., 2008; Hulkower et al., 2013; Wei et al., 2008], and both
reflect WM integrity in various pathological conditions
[Alexander et al., 2007]. FA is mostly lower and MD higher
in pathological regions compared to healthy tissue. Addi-
tionally, radial diffusivity (RD), and axial diffusivity (AD)
can be examined. RD is thought to be largely affected by the
integrity of the myelin sheath, while changes in AD reflect
the degree of axonal degeneration [Alexander et al., 2007;
Song et al., 2002]. With pathological tissue, RD is usually
higher in myelin degradation, while AD can be lower in
axonal disruption.

In this study, we applied tract-based spatial statistics
(TBSS) [Smith et al., 2006], which is a whole-brain group com-
parison analysis method, adapting a unique approach on
whole-brain analysis by its registration and “skeletonisation”
phases. Previously, only one study [Wei et al., 2008]
addressed cerebral WM changes after SCI with TBSS.
Contrary to the Wei group’s region of interest findings, they
found no structural between-group differences in their TBSS
analyses.

The purpose of this study was to investigate the effects of
SCI on the entire cerebral WM, detectable by DTI. We also
investigated the association between cerebral DTI values
and clinical SCI parameters, including injury severity, and
time since injury (TSI), and applied an atlas-based analysis
(ABA) method to supplement the TBSS results. We hypothe-
sized that (i) SCI-induced WM changes would be detectible
beyond the CST with TBSS and (ii) that the motor and
sensory functions of chronic SCI patients would be related
to brain WM integrity.

MATERIALS AND METHODS
Subjects

All consecutive patients with a chronic traumatic cervical
spine injury (1 = 88) who were admitted to either the ward or
an outpatient clinic at Tampere University Hospital between
1989 and 2010 (the annual incidence rate of SCI in Finland
mirrored the area of responsibility of Tampere University
Hospital, leading to ~8.3 new tetraplegia patients per year
[Ahoniemi et al., 2008], of which not all are sent to Tampere
University Hospital) were contacted in 2011 to participate in
the study. The inclusion criteria were as follows: (i) over 18
years of age, (ii) resident of the hospital district, (iii) clinically
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TABLE I. Subject demographics

Controls Patients AIS A
Group comparisons (n=70) (n=32) (n=10) P (con v. pat) P (con v. AIS A)
Age (yrs, mean *+ SD) 39.5+11.8 56.5*14.2 51.3+15.7 <0.001 0.008
Gender (male/female) 29/41 25/7 7/3 <0.001 0.089
TSI (yrs, mean * SD) 13.8+12.3 23.5+13.1
ASIA impairment scale
AIS A 10 10
AIS B 1
AIS C 4
AIS D 16
AISE 1
Injury etiology
Fall 13 3
Transport 11 5
Sports 6 2
Assault 1
Other 1

The gender distribution between the controls and the patients was tested with a chi-squared test and the age distribution with a Mann-

Whitney U test.

significant neurological findings due to a traumatic cervical
SCI after 24 h of monitoring in the hospital, and (iv) TSI was
greater than 1 year. The exclusion criteria were as follows: (i)
known neurological illness other than SCI (including trau-
matic brain injury), (ii) respiratory arrest, (iii) contraindication
for MRI, and (iv) refusal to participate in the study. In addi-
tion to the exclusion criteria, two subjects were dismissed due
to severe microangiopathy on brain MRI. The final SCI popu-
lation sample consisted of 32 patients.

The control subject sample comprised two separate
groups of DTI study controls, both imaged at Tampere
University Hospital using the same scanner and imaging
protocol. We enrolled a total of 70 control subjects, of
which 40 were orthopedically injured patients evaluated in
the ED of Tampere University Hospital. This group of con-
trol subjects was categorised in an age- and gender-
stratified manner, with five men and five women in the
following age groups: (i) 18-30 years, (ii) 3140 years, (iii)
41-50 years, and (iv) 51-60 years. The remaining 30 control
subjects were healthy voluntary hospital staff members.
Conventional MRI findings of the control subjects were
interpreted as normal by a neuroradiologist (A.B.). All
subjects included in this study provided written informed
consent according to the Declaration of Helsinki.

Clinical Data

All patients with SCI were examined at an outpatient
clinic at Tampere University Hospital. The collection of
clinical data was performed by a neurologist (E.K.). The
aetiology of the SCI was classified using the International
SCI Core Data Set [DeVivo et al., 2006]. The International
Standards for Neurological Classification of Spinal Cord
Injury (ISNCSCI) were used to evaluate and classify the

neurological consequence of SCI [Waring et al., 2010]. Ten
of the SCI patients had complete injury [American Spinal
Injury Association Impairment Scale (AIS), grade A]. See
Table I for demographic information on the control and
patient groups.

Imaging

A head MRI was done with a 3 Tesla MRI scanner (Sie-
mens Trio, Siemens AG Medical Solutions, Erlangen, Ger-
many). A 12-channel head coil and a 4-channel neck coil
were used simultaneously for the SCI patients, but only
the head MRI data were used in this study. The MRI pro-
tocol included sagittal T1-weighted 3D inversion recovery
prepared gradient echo, axial T2 turbo spin echo, conven-
tional axial and high-resolution sagittal FLAIR, axial T2,
axial susceptibility-weighted imaging, and diffusion-
weighted imaging series.

The brain DTI data were collected by a single-shot, spin
echo-based and diffusion-weighted echo planar imaging
sequence. The parameters for the DTI sequence were TR
5144 ms, TE 92 ms, field of view 230 mm, matrix 128 X
128, 3 averages, slice/gap 3.0/0.9 mm, voxel dimensions
of 1.8 X 1.8 X 3.0 mm, and b-factors 0 and 1000 s/mm?
with 20 diffusion gradient orientations. Diffusion tensors
were calculated from the gradient data and further
derived into DTI scalars used in the analyses (FA, MD,
RD, and AD).

Statistical Analysis

Whole-brain voxel-wise statistical analysis for the DTI
data was carried out using TBSS [Smith et al., 2006], a part
of FSL, version 5.0.6 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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) [Smith et al., 2004]. After pre-processing the data, a mean
FA image was derived and thinned to create a mean FA
skeleton. The threshold for FA values for the creation of
the skeleton was chosen as >0.25. Each subject’s aligned
data were then projected onto this skeleton for each DTI
parameter, and the resulting skeletonised data were fed
into voxel-wise cross-subject statistics.

Statistical group comparison analysis was performed
using FSL with TFCE [Smith and Nichols, 2009]. Nonpara-
metric two-sample permutation test using general linear
model (GLM) design was used for statistics [Winkler et al.,
2014]. Inference was obtained through 50,000 permuta-
tions, testing the resulting clusters for significance at
P<0.01 (one-sided), corrected for multiple comparisons
across space. The type I error caused by multiple analyses
on the same dataset was potentially minimized by adopt-
ing a more conservative significance level (P <0.01). Statis-
tical regression was performed in a similar manner, using
a GLM to check the DTI data for partial regression with
clinical parameters. Effects of age and gender were con-
trolled by adding them as covariates to the design matri-
ces in all analyses.

Two group analyses were performed: (i) a comparison
between the whole SCI group (1 = 32) and the healthy con-
trol subjects (n=70) and (ii) a comparison between
patients with complete SCI (AIS grade A, n=10) and
healthy control subjects (n=70). The clinical variables
used in the partial correlation analyses were (i) the
ISNCSCI-derived total motor score (TMS), (ii) motor sub-
score for upper extremities (UEMS), (iii) motor subscore
for lower extremities, (iv) total sensory score (TSS), and (v)
the TSI =time between injury and MRI. Due to the find-
ings in stepwise linear regression analyses performed on
the significant clusters in the group comparison, we
decided to control TSI analysis with UEMS and motor and
sensory subscores with TSI, respectively.

To further specify our findings, we utilised the JHU-
ICBM-DTI-81 WM labels atlas in an ABA approach, which,
in theory, should complement the TBSS results [Faria
et al., 2010]. Additionally, it can help to further localize
the findings. Regional DTI metric values were derived for
each atlas tract by taking the arithmetic mean of the skele-
ton voxels inside the corresponding atlas volume. The
mean values were then fed to JASP (JASP Team, 2016, Ver-
sion 0.8) for statistical analysis. The group comparison was
carried out using analysis of covariance (ANCOVA), con-
trolling for age and gender, and correlation analyses by
linear regression. To distinguish between the anatomical
regions in general and the volume defined by the JHU
atlas, the abbreviated atlas volumes will be referred to
with a subscript JHU (e.g., CSTjuy).

RESULTS

Both group comparisons [i.e., patient group (n=32) vs.
control subjects (1 =70) and full injury patients (1 =10) vs.

control subjects (1 =70)] resulted in statistically significant
differences at a significance level of P <0.01. The ABA
group comparison results were mostly in concordance
with the TBSS results. Most linear regression analyses did
not reach statistical significance in TBSS; TSI was the only
variable that produced a statistically significant correlation
with DTI metrics. The ABA, however, revealed individual
correlations that did not reach significance in the TBSS
analysis. The complete list of results from the ABA are
displayed in Table II. Detailed information on the ABA
results are provided as Supporting Information.

Group Comparison

The TBSS group comparison between all SCI patients
(n=232) and control subjects (1 =70) yielded statistically
significant (P <0.01) differences in FA, MD, RD, and AD
values. The FA values were found to be lower and the
MD, RD, and AD values higher in the patients when com-
pared with the control subjects.

Instead of being mainly focused on the CST as expected,
the changes related to SCI were more widespread. The
coverage of statistically significant voxels in FA was 30.3%
of the skeleton’s total volume, 32.9% in MD, 38.7% in RD,
and 13.0% in AD, respectively. The areas with significantly
decreased FA and increased MD can be seen in Figure 1,
and the actual differences in DTI values are displayed as
bar graphs in Figure 2. The significant areas with
increased RD and AD are presented as Supporting Infor-
mation. Due to the widespread nature of the findings, we
also created images with the P-value threshold set to 0.002
to emphasize the areas with the most change in DTI val-
ues. The areas of FA, MD, and RD with P <0.002 can be
seen in the Supporting Information.

The significant findings were extensive, with clusters
spread nearly throughout the whole cerebrum. Areas of
WM affected by SCI in the group analysis included projec-
tion, commissural, and association fibres. From the projec-
tion fibres, the majority of the CST and the thalamocortical
projections were affected. Between-group differences in
the area of the CST extended from the cerebral peduncle
(CP), through the posterior limb of internal capsule
(PLIC), up to the subcortical WM underneath the primary
motor and sensory cortices. The genu and the anterior part
of the body of the corpus callosum (CC) were the most
affected of the commissural fibres. The association fibres
were widely affected, with most prominent findings in the
inferior and superior longitudinal fasciculi, inferior fronto-
occipital fasciculus, and uncinate fasciculus. The anterior
cingulum was also affected. The findings in MD are nota-
bly similar to FA, although with slightly wider coverage.

As an addition to the TBSS analyses, we utilised the
JHU-ICBM-DTI-81 WM atlas to extract parts of the skele-
ton and ran statistical tests on the areas” mean values. We
compared the patient group with the control subjects via
ANCOVA. Statistically significant (P <0.01) lower FA
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0.001
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Figure I.
Statistically significant clusters of lower FA acquired in the TBSS group comparison analysis
shown in the two upper rows (A), with the significant clusters of higher MD shown in the two
lower rows (B). Results are limited to P-values <0.01. The results are overlaid on the MNII52
standard-space template, with corresponding MNI coordinates below the slices. Neurological
convention, left = left. [Color figure can be viewed at wileyonlinelibrary.com]

values were found in several locations, along with higher
MD and RD values. Several atlas locations included changes
in more than one DTI metric: changes in both FA and MD
were found in the anterior corona radiata (CRyyy), the ante-
rior limb of internal capsule (ALICjyy), the genu of the
CCju, the right posterior CRyyyy, the left posterior thalamic
radiation, the left sagittal stratum, and in the superior
fronto-occipital fasciculus. According to our analysis, AD
correlated positively in the left ALICyy, the body of the
CCjyu, and in the fornix, whereas negative correlation was
found in the right CSTjyy and in the inferior CPyyy. The
complete list of locations is shown in Table II.

Complete SCI

Patients with AIS grade A (n =10) were compared with
the healthy control subjects (n=70) with TBSS. Age and
gender were used as covariates in the GLM setup. The
analysis resulted in statistically significant (P <0.01) differ-
ences in FA, MD, and RD: patients had lower FA and
higher MD and RD values compared with the control sub-
jects. AD did not reach statistical significance at the 0.01
level. The results were reminiscent of the group compari-
son (whole SCI group and control subjects), but consider-
ably more spatially restricted. Significant clusters covered
9.2% of the skeleton volume in FA and only 2.8% in MD,
while the coverage was 10.4% in RD.

Differences in FA were somewhat asymmetric, occurring
predominantly on the left side of the cerebrum. Statisti-
cally significant areas of FA and MD can be seen in Figure
3, with the absolute DTI values of the significant clusters
displayed in Figure 4. The affected areas in FA were
mostly in the projection fibres, including the PLIC, the
anterior limb of the internal capsule, the posterior thalamic
radiation, and the subcortical CST. While higher MD
values were found mostly in the genu of the CC, a small,
significant cluster was located near the subcortical CST.
The significant clusters of RD can be seen in the Support-
ing Information.

Comparing the complete (AIS A) SCI patient group
(n=10) with the control subjects (n=70) in an ABA, we
found significantly lower FA and AD values and higher
MD and RD values. Again, there were some locations with
findings in multiple DTI metrics: FA was found lower and
MD higher in the ALICyy, the genu of CCjyy, and in the
left posterior thalamic radiation. See Table II for listing of
the ABA results.

Partial Correlations with Injury Parameters

None of the sensory or motor score variables correlated
significantly (P <0.01) with the DTI metrics in our TBSS
analyses. Of all the tested clinical parameters, only the TSI
produced a statistically significant partial correlation with
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Figure 2.

The differences in absolute DTI values taken from the statisti-
cally significant clusters in the group comparison for each DTI
metric (P<0.01; FA, MD, RD, and AD). The bar graph values
represent mean values of the significant voxels, with error bars
showing the = SD for the volume’s mean. [Color figure can be
viewed at wileyonlinelibrary.com]
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the DTI metrics in the patient group. The TSI correlation
analysis was conducted using age, gender, and UEMS as
covariates.

The TSI correlated positively with FA and negatively
with MD, RD, and AD at the 0.01 P-value level. Statisti-
cally significant clusters in positive correlation between FA
and the TSI covered 5.0% of the skeleton volume, while
coverages were 26.3% for MD, 31.5% for RD, and 2.4% for
AD. Partial correlation maps for FA and MD can be seen
in Figure 5. Correlation maps for RD and AD are provided
as Supporting Information. Partial correlation coefficients
for the significant clusters of FA, MD, RD, and AD were
0.378, —0.331, —0.328, and —0.366, respectively.

A positive correlation between the TSI and FA was spa-
tially concentrated to the commissural fibres: virtually the
whole volume of the CC was affected. No correlations
were found in the caudal parts of the projection fibres. For
MD, the areas with correlation were similar to the FA find-
ings, but with additional correlation findings widely in the
association fibres and subcortically in the projection fibres.

In addition to TSI, we found a correlation between DTI
metrics and the UEMS motor subscore, TMS, and TSS in
ABA. TSI correlated positively with FA and negatively
with MD, RD, and AD in our analysis. UEMS correlated
positively with FA and negatively with MD and RD. TSS

correlated positively with FA and negatively with MD,
and TMS correlated positively with FA. See Table II for a
complete list of the ABA results.

DISCUSSION
Group Comparison

The direction of the differences found in FA and MD
were in agreement with previous studies, but the spatial
extent of the findings was significantly larger than has
been previously reported [Guleria et al., 2008; Koskinen
et al, 2014; Wrigley et al, 2009]. The results suggest
degenerative-type changes in the majority of the cerebral
WM, with the bulk of lower FA and higher MD extending
beyond the CST. These changes could signify large-scale
post-SCI secondary anterograde (Wallerian) and retrograde
cerebral degeneration [Beirowski et al., 2005; Buss et al.,
2004; Guleria et al., 2008].

Previous studies focusing on separate pathological con-
ditions have hypothesized that areas of WM containing
increased RD and AD values in addition to lower FA are
associated with axonal degeneration [Della Nave et al.,
2011; Metwalli et al.,, 2010; Roosendaal et al., 2009; Song
et al., 2002]. In light of these previous studies, the rise in
RD and AD found in our TBSS results may be associated
with post-SCI axonal degeneration. However, the increase
of AD beyond the spinal cord and brain stem, which
include mainly coherent WM tracts, could also be a conse-
quence of crossing WM fibres, causing fictitious change in
directional diffusivities [Wheeler-Kingshott and Cer-
cignani, 2009].

The CSTjyy and the inferior CPjyy had significantly
lower AD in contrast to the otherwise found higher AD in
our ABA. This is, however, convergent with previous DTI
studies of chronic SCI which have reported a reduction of
AD associated with axonal degeneration in areas like CP
and CST [Freund et al., 2012; Wrigley et al., 2009], as well
as in the spinal cord remote from the site of injury
[Cohen-Adad et al., 2011]. The inconsistency in AD results
may be linked to post-SCI neuroplasticity [Nudo et al.,
2001; Schallert et al.,, 2000] and secondary degeneration
[Beirowski et al., 2005; Buss et al., 2004; Guleria et al.,
2008] associated with different regions of the cerebrum.
Unfortunately, this type of speculation based only on AD
cannot fully be confirmed with our current results and
requires further research.

AIS Grade A

The absolute differences between the groups in the AIS
A analysis were slightly larger for FA and MD compared
with the full-group comparison, but the lower sample size
may distort the results. However, low power, along with
the strict P-value limit, may imply an even larger effect
size of the findings compared with the group comparison.
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Figure 3.
Areas with statistically significant (P < 0.01) differences between patients with full injury and control sub-
jects. Areas with lower FA values are shown above (A), and areas with higher MD are below (B). The
results are overlaid on the MNI152 standard-space template, with corresponding MNI coordinates below
the slices. Neurological convention, left = left. [Color figure can be viewed at wileyonlinelibrary.com]

Future studies with a larger sample of AIS grade A
patients could provide interesting results.
The ABA results of AIS A seem logical due to findings in

areas of the brain often associated with secondary
AIS grade A (n = 10)
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Figure 4.

The differences in absolute DTI values for the full injury group,
taken from the statistically significant clusters for each significant
DTl metric (P<0.01; FA, MD, and RD). The values represent
mean values of the significant voxels, with error bars showing
the = SD for the volume mean. Note the apparent increase in
difference compared to the whole-group comparison. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

degeneration [Beirowski et al., 2005; Buss et al., 2004]. Unfortu-
nately, no definite conclusions can be made with the current
sample size.

Correlations

Contrary to previous studies with chronic SCI patients
[Freund et al., 2012; Koskinen et al., 2014; Wrigley et al.,
2009], we found a correlation between DTI scalars and TSI
with both TBSS and ABA. However, owing to the limited
sample of patients, the regression analyses could only reli-
ably detect large effect sizes. While TSI correlations with
DTI metrics have not been previously detected in the cere-
brum [Freund et al., 2012; Koskinen et al., 2014; Wrigley
et al., 2009], these studies have concentrated on the CST
instead of the whole brain volume. It is worth noting that
Guleria et al. [2008] observed increased FA and decreased
MD values in the rostral part of the CST in SCI patients
compared with control subjects, and this trend seemed to
increase with TSI during the first 12 months after injury.
According to experimental studies [Ramu et al, 2008],
these types of changes have been suggested to reflect post-
SCI subcortical regeneration.

Previous studies have suggested a connection between
DTI scalars and neuroplasticity (axonal regeneration, glial
processes, or synaptogenesis), detectible as an increase in
FA and/or decrease in MD and RD [Keller and Just, 2016;
Sagi et al., 2012; Steele et al., 2013]. Due to the restrictions
in our study setting, it is difficult to draw a solid causal
conclusion on the findings. Hypothetically, positive corre-
lation with FA and negative with MD over time suggest
axonal regeneration or other plastic mechanisms. How-
ever, it is uncertain whether post-SCI neuroplasticity could
affect the brain over a decade post-injury, and whether the
observed correlation is actually associated with the post-
injury neurophysiology.
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Figure 5.

Partial correlations maps (P<0.01) for TSI obtained from TBSS analysis. FA correlated positively
with TSI (above, A), and MD correlated negatively (below, B). The results are overlaid on the
MNI 152 standard-space template, with corresponding MNI coordinates below the slices. Neurological
convention, left = left. [Color figure can be viewed at wileyonlinelibrary.com]

The directions of the correlations between UEMS, TMS,
and TSS and DTI scalars in the ABA are in agreement
with our previous study [Koskinen et al., 2014], where FA
was found to correlate positively and MD negatively with
UEMS, TMS, and TSS, suggesting that the clinical state of
the patient tends to be better with higher FA and lower
MD values. These findings imply that the severity and
extent of SCI have an effect on the cerebral WM micro-
structure, detectable with DTI in the chronic phase.

Study Design and Limitations

In our study, we decided to combine two separate con-
trol groups to form a single larger pool of controls in
favour of statistical power. After some consideration, we
deemed the groups sufficiently homogeneous, and compa-
rable from a pathological point of view, for them to be
combined. Had we opted to create a pool of age- and
gender-matched controls, the raw statistical power of our
group analysis would have been lower than in our current
setup. Regarding the effect of ageing on DTI scalars, previ-
ous studies have suggested that the slight quadratic trend
of the relationship between age and DTI metrics can be
modelled as linear with sufficient precision [Kodiweera
et al., 2016; Westlye et al., 2010]. It should thus be possible
to reliably control for the effect of age in a GLM. In addi-
tion, controlling for gender in the analyses is straightfor-
ward, as it is a binary categorical variable. Nevertheless,
our study would have benefited from a large pool of age-
and gender-matched subjects.

While our patient data were screened carefully to
exclude any previous neurological diseases, including
traumatic brain injury, the possibility of a concomitant
mild brain injury with SCI cannot fully be ruled out [Wei
et al.,, 2008]. However, it has been generally postulated
that the traumatic brain injury mechanism affects the larg-
est axon bundles, of which the CC is a perfect example

[Hulkower et al., 2013], while our results were concen-
trated in areas less severely affected by brain trauma.
Additionally, the different types of medication and reha-
bilitation methods possibly adapted to various patients in
our sample could influence the magnitude of neuroplastic-
ity [Schallert et al., 2000] and cause slight bias when not
controlled for. In general, numerous physical and mental
factors can affect DTI results, and while these cannot all
be controlled for, several known confounding factors were
used as exclusion criteria for our subject pool.

In terms of clinical relevance and rehabilitation, the
acute phase is the most crucial stage of SCI, and while
studies on neuroplasticity mostly focus on the acute to
sub-acute phase, our study focused on the chronic phase
of SCI. Another concern is the large deviation of the mean
TSI of our patient population, which could distort our
results.

The fundamental microstructural mechanisms of neuro-
degeneration and plasticity are diverse, and the changes
perceived by a single imaging modality are the combined
effects of these mechanisms [Zatorre et al.,, 2013]. DTI
alone is not sufficient to fully classify the mechanisms
affecting WM post-SCI, and multimodal imaging would be
preferred. In addition, glial processes are likely to be pre-
sent in post-SCI cerebral WM [Keyvani and Schallert,
2002], and the presence of gliosis may cause increased FA
values [Budde et al., 2011]. A known limitation of DTI is
the crossing fibre problem, which may lead to anomalous
DTI scalars in voxels containing neural tracts of different
orientations [Wheeler-Kingshott and Cercignani, 2009].
While crossing fibres may be considered as a fixed attri-
bute of DTI, a possible solution could be acquiring the
data with a high angular resolution diffusion imaging
(HARDI) suited imaging sequence [Berman et al., 2013;
Frank, 2001; Tuch, 2004; Tuch et al., 2002]. However, no
direct replacement for DTI scalars, mainly FA, as the
measure for axonal integrity currently exist for HARDI
and finding such a measure may prove time-consuming.
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Future Prospects

Based on the results of our group comparison, future
studies of the effects of SCI on the human brain WM
should be extended outside the CST. Examining brain WM
outside the sensorimotor tracts may also give a more thor-
ough outlook on the link between neural structure and
clinical function in chronic SCI. Nevertheless, additional
evidence, especially longitudinal studies, is needed in the
future to evaluate the presumptive change in DTI metrics
with time after an acute injury and the association of that
change with clinical recovery. This knowledge could facili-
tate the prognostication of recovery and our ability to
understand and monitor the changes induced by treatment
and rehabilitative interventions beyond clinical disability
scales and conventional MRI. However, it should be noted
that group-level research results are not directly applicable
to individual clinical cases.

CONCLUSION

Patients with chronic SCI were found to show changes
detectable with DTI in their cerebral WM, extending
widely beyond the motor cortex and sensorimotor tracts,
and those changes were associated with TSI and clinical
parameters indicating the severity of injury. Primarily, the
changes manifested as reduction of FA and increase of
MD. Furthermore, DTI-measured WM integrity of chronic
SCI patients altered as time elapsed since injury.

In the future, additional evidence, especially longitudi-
nal studies from the acute stage of SCI, is required to eval-
uate the presumptive change in DTI values with time after
injury and the association of that change with clinical
recovery. Optimistically, DTI metrics could serve as
adjunct biomarkers in the evaluation of an individual
patient’s susceptibility to different types of rehabilitative
interventions.
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Abstract—Diffusion tensor imaging (DTI) has become a rela-
tively common MR imaging technique in only 10 years. DTI can
provide important information of brain microstructure in vivo.
Many quantitative DTI analysis methods utilize either region of
interest (ROI) or voxel-wise whole-brain methods. ROI meth-
ods do not require potentially bias-inducing image data altering,
e.g., resampling and smoothing, and are the preferred method
in clinical settings. We present an automated pipeline for quan-
titative ROI analysis of brain DTI data. The pipeline includes
pre-processing, registrations, and calculation of mean (and SD)
DTI scalar values from the automated ROIs. In addition to atlas
regions, the pipeline accepts freehand ROIs, as long as the frame
of reference is also provided. By the uniquely designed pipeline,
we ensure that the results can be retrospectively compared to
previously conducted manual freehand ROI measurement re-
sults, if desired. We validated the feasibility of the pipeline by
comparing manual freehand ROI measurement results from 40
subjects against the results obtained from automated ROIs. A
single set of freehand ROIs (drawn similarly to the original free-
hand manual ROIs in the population) was input to the pipeline,
and the resulting scalar values from the automated ROIs were
compared to the manual freehand ROIs’ data. Adopting a limit
for goodness of fit of z =+ 1.6 resulted in 94 % success rate for
the pipeline’s automated ROI registrations in the whole popu-
lation. The pipeline can reduce the time taken in clinical ROI
measurements.

Keywords— DTI, image analysis, pipeline, atlas, ROI

1. INTRODUCTION

The amount of research focusing on the use of diffusion
tensor imaging (DTI) has rapidly increased since the begin-
ning of the 21% century. DTI has the potential to noninva-
sively quantify water diffusion in microscopic structures, es-
sentially providing a method for observing changes in the
neural network [1]. A potentially unlimited set of scalars can
be calculated from the obtained diffusion tensor data, but cur-
rently the most used diffusion scalars are fractional anisot-
ropy (FA) and mean diffusivity (MD), with the more recent
addition of axial diffusivity (AD) and radial diffusivity (RD).
These scalars can be more or less linked to certain patholo-

gies (e.g. demyelination or axonal degeneration), but espe-
cially the interpretation of AD and RD is still slightly debat-
able [1, 2].

Most common methods used in quantitative analysis of
diffusion images are region of interest (ROI), tractography,
and voxel-wise whole-brain analysis [3]. Each method has its
flaws; ROI method is susceptible to intra- and inter-observer
variability, tractography is slightly unreliable and hard to de-
lineate, whereas whole-brain methods rely on image registra-
tion and smoothing, a potential source of bias [4, 5].

Various procedures have been suggested to overcome
these problems, such as atlas-based ROI analyses, and tract-
based spatial statistics for whole-brain approach. Atlas-based
image analysis has been successfully applied as an alternative
to manual ROI studies [6—8], but the results of these analyses
are not comparable to previously conducted manual ROI
studies due to the shape differences of the ROIs themselves.
Additionally, registration to a standard template may intro-
duce a bias to the atlas-based ROI analyses.

The purpose of this study is to create an automated ROI
analysis pipeline, which can produce quantitative ROI data
comparable to previously conducted manual freehand ROI
measurements. In addition, the pipeline is capable to utilize
atlas-based ROIs, which can be of clinical use after a solid
normal value database has been established for the atlas re-
gions.

Additionally, we aim to validate the compatibility of the
method with manual freehand ROI measurement results by
comparing quantitative DTI metric values between the man-
ual freehand and automated ROIs.

1. MATERIALS AND METHODS

A. Pipeline

The pipeline created for the analysis can be fully auto-
mated from the pre-processing step to the extraction of quan-
titative diffusion metrics. Only minimal user involvement is
required in the process, and the most important measure is to
visually inspect the accuracy of the automated ROIs. The sta-
tistical analysis process can be altered, and a multitude of



analyses can be performed based on the extracted quantita-
tive image data. The pipeline uses tools included in FSL [9,
10] for pre-processing, registration, and the extraction of
quantitative metrics from the ROIs.

We executed the automated ROI analysis by using a single
set of manual freehand ROIs. The manual ROIs and the FA
map (frame of reference) were fed to the pipeline. We used
the control subject pool (n = 40) as the data to be analyzed,
and no patient subject was chosen in the analysis for the val-
idation process.

Pre-processing: First the control subject image data were
corrected for eddy currents and minor head movements, and
a brain mask was created to remove any non-brain tissue
from the data. After brain masking, the scalar diffusion data
was calculated from the tensor data. After the pre-processing
steps, the diffusion metric data (FA, MD, AD and RD maps)
is ready for the analysis.

Regions of Interest: The set of ROIs used in our research
were manually drawn on the JHU-DTI-SS “Eve” atlas [8] FA
map, which was first resampled to the spatial resolution of
the acquired control DTI data to simulate the original manual
freehand ROI drawing process. The drawn manual freehand
ROIs were converted back to the original space of the high
resolution JHU FA map by inverse transformation. The ROIs
used in the validation were: the genu of the corpus callosum
(CCy), the splenium of the corpus callosum (CCs), the cere-
bral peduncle (CP), the posterior limb of internal capsule
(PLIC), the corona radiata (CR), the centrum semiovale (CS),
the uncinate fasciculus (UF), the forceps minor (FM), and the
thalamus. Examples of the ROIs are shown in Fig. 1. Due to
image slice orientations, identical ROI regions are not visible
on subject 1 and the JHU FA map. Also, the atlas ROIs differ
substantially from the freehand based automated ROIs.

All of the manual ROIs were drawn by the same person
(U.H.) in order to minimize ROI variability.

Registration: In order to extract values from each individ-
ual subject, the manual freehand ROI set was transferred to
each subject’s native space. First, the frame of reference was
linearly registered (FLIRT [11]) to each subject, followed by
anonlinear transformation (FNIRT [12]). The affine registra-
tion matrices and the nonlinear registration warp fields were
saved for each subject, which were then applied to the ROIs.
This effectively placed the ROIs in the desired locations for
each individual subject.

In order to improve the ROI accuracy, trilinear interpola-
tion was used in the transformations (instead of nearest-
neighbour interpolation often used in ROI registrations). The
registered ROIs were then transformed back into binary
masks by thresholding them at > 0.15, which produced good
results based on visual evaluation (i.e. good accuracy, no
overlapping, or too small ROIs). The threshold may differ
depending on the used ROIs.
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Fig. 1 A: Manual freehand ROIs drawn by U.H. on the JHU-DTI-SS FA
map: FM (green), CC, (red), PLIC (blue), thalamus (magenta). B: Corre-
sponding slice of subject 1 with automated ROIs: UF (red), PLIC (blue),
thalamus (magenta), CC, (green). C: Same slice of subject 1 with auto-
mated atlas ROIs: CC, (magenta), external capsule (red, EC), PLIC (blue),
CC; (green).

Quantitative Analysis: Once the ROIs were transferred to
the subjects’ space, quantitative DTI metrics were derived
from the automated ROIs. Mean FA, MD, RD, and AD val-
ues along with standard deviations were calculated for each
RO, for each subject.

The extracted quantitative data can be fed to a statistical
software of choice. For research and method validation pur-
poses we collected FA data in a table to compare it with the
freehand ROI data collected by U.H.

B. Validation

In order to validate the feasibility of the automated regis-
tration step, we compared the automated ROI data obtained
through our pipeline to that of the manual freechand ROI
measurements. The ROIs’ congruency was validated by com-
paring the manual freehand ROI mean FA values against the
pipeline’s automated ROI mean FA values. In addition, we
tested the difference between the automated ROIs and the
manual freehand ROIs by z-scores and a two-tailed t-test. As-
suming the ROI voxel values are normally distributed is de-
batable, but due to the representation of the results, a Mann-
Whitney U test could not be performed. The resulting p-value
from the t-test is thus only an approximate indication of the
possible statistically significant difference.

C. Imaging Data

The DTI data used in the validation of our pipeline con-
sisted of 40 control subjects imaged in the Tampere Univer-
sity Hospital. The subjects were originally gathered as a con-
trol group for the Tampere Traumatic Head and Brain Injury
Study between August 2010 and July 2012.

Head MRI was done with a 3 Tesla MRI scanner, using a
12-channel head matrix coil. The DTI data were collected by
a single-shot, spin echo-based and diffusion-weighted echo



planar imaging sequence. The parameters for the DTI se-
quence were TR 5144 ms, TE 92 ms, field of view 230 mm,
matrix 128 x 128, 3 averages, slice/gap 3.0/0.9 mm, voxel
dimension of 1.8 x 1.8 x 3.0 mm, and two b-factors: 0 and
1000 s/mm?2 with 20 diffusion gradient orientations.

Conventional MRI findings of the control subjects were
interpreted as normal.

1. RESULTS

The described pipeline was applied to the control subject
pool, and the utilization value of the pipeline was evaluated
with respect to automated ROI compatibility with manual
freehand ROI measurements. Additionally, the pipeline was
executed with atlas ROIs, but the obtained quantitative data
could not be plausibly validated.

A. Freehand ROI

The manual freehand ROIs drawn by U.H. to the low res-
olution JHU-DTI-SS FA map were transformed to the native
resolution of the atlas, and the FA map and the ROIs were
then used to run the described pipeline.

We visually inspected the automated ROIs and altered the

pipeline parameters iteratively in order to gain adequate reg-
istration results for the current dataset. Mean and SD values
were then extracted from the ROIs and saved to a table for
comparison. Due to the large amount of data, we chose four
example subjects to be reported in the paper. The registration
validation data for FA of the four subjects is shown in Table
1.
We compared the subjects’ automated ROIs’ mean FA val-
ues, and used z-scores and a statistical t-test to evaluate the
accuracy of the pipeline. The SD values used in the calcula-
tions were taken from the manual freehand ROIs. We adapted
a z-score of 1.6 as a limit for significant difference. Z-values
over 1.6 are highlighted with an asterisk in the table, along
with p-values less than 0.05, but the significance of the t-test
is slightly questionable. The ROIs with best correspondence
were the PLIC (mean absolute difference in the population
2.9 %) and CC; (mean absolute difference in the population
3.9 %). The ROIs with the poorest correspondence were the
CP (mean absolute difference in the population 9.5 %) and
the CR (mean absolute difference in the population 9.2 %).
Of all the ROIs (n=360), a total of 338 had FA values within
the limit of -1.6 <z < 1.6, which can be considered as a 94 %
success rate of the registration. The mean absolute difference
in FA across all ROIs and subjects was 6.6 %, and the mean
absolute z-value was 0.581.

Table 1 Manual freehand ROI vs. pipeline’s automated ROI comparison
for FA values. Manual freehand ROI values are considered as reference.

Subject I Subject2  Subject3  Subject 4
Age 32 56 22 39
CC genu
Difference (rel, %) -5,0 -2,9 -1,1 1,8
Z-value -0,793 -0,336 -0,218 0,165
P-value 0,020* 0,544 0,534 0,513
CC splenium
Difference (rel, %) -2.6 2.4 -8.,1 2,7
Z-value -0,338 0,325 -1,154 0,694
P-value 0,363 0,334 0,001* 0,152
Cerebral peduncle
Difference (rel, %) -0,4 -11,2 -0,7 -5,1
Z-value -0,040 -1,740% -0,095 -0,415
P-value 0,883 0,001* 0,808 0,160
Corona radiata
Difference (rel, %) 28,6 39 23,9 7.4
Z-value 1,975* 0,261 1,764* 0,387
P-value <0,001* 0,092 <0,001* 0,016*
Centrum semiovale
Difference (rel, %) 0,3 -4.8 0,1 0,5
Z-value 0,019 -0,276 0,004 0,028
P-value 0,868 0,058 0,974 0,826
Forceps minor
Difference (rel, %) -1,5 4,7 -20,6 6,2
Z-value -0,081 0,233 -1,508 0,276
P-value 0,787 0,546 <0,001* 0,331
PLIC
Difference (rel, %) 7,6 -1,7 24 4,0
Z-value 0,607 -0,162 0,173 0,364
P-value 0,001* 0,375 0,320 0,053
Thalamus
Difference (rel, %) -1,3 2.4 -6,0 -2,5
Z-value -0,046 -0,089 -0,238 -0,109
P-value 0,677 0,447 0,046* 0,405
Uncinate fasciculus
Difference (rel, %) -14,2 6,1 24 -0,2
Z-value -1,054 0,335 0,122 -0,013
P-value <0,001* 0,214 0,574 0,957

*) Significant difference.

B. Atlas Based

In addition to the freehand ROIs, we ran the pipeline using
the ICBM-DTI-81 white matter atlas regions. While it is not
possible to straightforwardly validate the registration and



DTI metric accuracy of the atlas regions, we visually verified
the registration accuracy, and reviewed the standard devia-
tion of each atlas region ROI. We compared the atlas ROIs’
deviation against the manual freechand ROIs’ SD. The mean
SD for all the automated atlas FA ROIs was 28.1 %, whereas
the automated freehand ROIs had a mean SD of 13.8 %.

1v. DiscussioN

Though the pipeline is configured for both manual free-
hand ROI and atlas usage, further validation and mirroring to
previous measurements needs to be done prior to clinical use
in both cases. An alternative clinical application could be use
of the registration step to speed up freehand ROI drawing.
Due to the accuracy of the automated ROIs with respect to
the manual freehand ROIs, the registration step alone could
save a considerable amount of time in clinical ROI measure-
ments.

While the registration seems reasonably accurate, alterna-
tive methods should be studied in the future. Especially in
pathologic cases, the lowered FA values may confound the
registration. Tensor based registration (DTI-TK) might im-
prove the accuracy of the pipeline with DTI data [13]. The
registration accuracy should also be validated through the
ROIs themselves in the future, e.g., by overlap percentage or
other segmentation comparison metrics.

The high SD obtained from the atlas ROIs could indicate
either low SNR, or inclusion of grey matter inside caused by
bad registration. This may imply that the use of freehand
ROIs in the pipeline would be more robust. Although, due to
the notably larger size of the atlas ROls, the difference in SD
cannot be so straightforwardly interpreted.

In the future, we aim to create a standard value library
based on a normal population. The standard values would
first be collected based on the clinic specific manual freehand
ROIs, but also on the ICBM-DTI-81 atlas later on. The auto-
mated freehand ROIs can be validated through previous ROI
measurement results, and the possible future studies utilizing
our pipeline will be comparable to previously conducted clin-
ical ROI studies. Use of the pipeline in clinical settings at
Tampere University Hospital will be researched.

v. CONCLUSIONS

We have presented and validated the accuracy of an auto-
mated pipeline for quantitative ROI analysis. What makes the
pipeline unique is its compatibility to previous manual ROI
analysis results within a clinic.
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ABSTRACT

Freehand region of interest brain analysis is laborious and time-consuming, with limited
reproducibility even with substantial expertise. We attempted to overcome the issue with an
automated analysis pipeline, and by modelling normal population diffusion metrics. We describe an
automated analysis method that can be used to (i) create a scanner-specific normal population
model and (ii) to analyse individual diffusion data by comparing it against the model. We registered
atlas-based regions of interest separately to each participant. Mean diffusion metrics of the
registered regions were calculated for each participant and then used in the analysis. Our model was
most successful when we applied the Johns Hopkins University probabilistic diffusion brain atlas to a
normal sample of 70 participants with a mean age of 39.5 + 11.8 years. Linear regression models
between age and fractional anisotropy were statistically significant (p < .05) in each of the atlas brain
region, and in majority of the regions between other diffusivity measures. Additionally, we analysed
ten mild traumatic brain injury patients by comparing each against our normal model. Compared to
freehand analysis, our automated method showed a greater number of abnormal regions in the mild
traumatic brain injury patients. The automated analysis method is promising and may be applicable

in clinical research with minor refinements.

Keywords: Diffusion Tensor Imaging; Neuroimaging; Image Processing, Computer-Assisted;

Regression Analysis; Brain Concussion
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INTRODUCTION

There is enormous interest in using diffusion tensor imaging (DTI) to draw inferences about
the integrity of white matter in the human brain. Numerous published studies have examined brain
microstructure using DTl in people with (i) neurological disorders and neurodegenerative diseases,
such as amnestic mild cognitive impairment (Yu, Lam, & Lee, 2017), Parkinson’s disease (Atkinson-
Clement, Pinto, Eusebio, & Coulon, 2017), and traumatic brain injuries (TBI) (Wallace, Mathias, &
Ward, 2018); (ii) neurodevelopmental conditions, such as attention-deficit/hyperactivity disorder
(ADHD) (Aoki, Cortese, & Castellanos, 2018), dyslexia (Moreau, Stonyer, McKay, & Waldie, 2018),
and autism spectrum disorder (Di, Azeez, Li, Haque, & Biswal, 2018); (iii) general medical conditions
such as hypertension (Power et al., 2017), metabolic syndrome (Alfaro et al., 2018), and HIV
infection (O’Connor, Jaillard, Renard, & Zeffiro, 2017); and (iv) psychiatric disorders such as
depression (Jiang et al., 2017; Kambeitz et al., 2017) and posttraumatic stress disorder (Siehl, King,

Burgess, Flor, & Nees, 2018).

DTl metrics quantify the directional coherence of water diffusion in tissue using magnetic
resonance imaging (MRI) sequences. DTI metrics commonly reported in the literature include
fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). FA is
a measure of the diffusion anisotropy and AD can be considered as a measure of diffusion along the
main fibre axis. RD is believed to reflect the total diffusion perpendicular to the main fibre axis. RD
and AD are thus orthogonal metrics. MD is a measure of total diffusion in all directions. FA and MD
are composite metrics that are derived from combinations of RD and AD, and MD will increase if either

RD or AD increase.

Image registration is an essential part of most standard DTI brain analysis pipelines. In this
post-processing step, scans acquired in one space (e.g., individual patient space) are converted to a
different space (e.g., a common atlas space) through a series of transformations. Image registration

process can introduce bias to the results through imperfect registration or possibly even due to
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excessive blurring caused by over smoothing. Some investigators will examine DTl metrics of the
brain inside specific structures, regions of interest (ROl). Manually performed ROl measurements in
native space obviate the need for image registration, but the process can be laborious, time-
consuming, and have low inter-rater reproducibility (Hakulinen et al., 2012). Various different
approaches have been suggested to reduce or eliminate the bias introduced by image data
registration. While most attempts to reduce the registration bias have focused on enhancing the
registration methods (De Groot et al., 2013; Newlander, Chu, Sinha, Lu, & Bartzokis, 2014; Schwarz
etal., 2014; Wang et al., 2011, 2017), there are also those who approach the problem differently.
Suri et al. (2015) used a participant-based registration approach where all the control participants
were registered to the patient instead of to a common template. Radoeva et al. (Radoeva et al.,
2012) studied velo-cardio-facial syndrome by successfully applying a method where they registered
ROIs to the study participants, instead of registering the participants’ image data to a ROl template.
Applying the registration matrices to the atlas ROls instead of the participant image data eliminates
bias associated with image registrations and may be a better approach.

To create an objective and reproducible method for quantitative human brain DTl analysis,
we chose to pursue a method that would require minimal end-user interaction. In addition, because
we intend for the method to be robust to a wide range of clinical scenarios, we strived to create a
method independent of the initial chosen ROI set. Our method transfers the chosen ROl set to the
current participant’s native space, leaving the participant’s brain data spatially unmodified. In
theory, any quantitative diffusion measures can be used for the required analyses. The mean DTI
scalar value is calculated if the ROl volume is deterministic, or a weighted average of the DTl scalar
value is calculated if the ROl is probabilistic. This type of approach allows the user to rapidly
compare an individual participant’s diffusion metrics against normal population DTl metrics in order
to infer pathology.

Reference values are essential for testing of pathologies, and therefore it is compulsory to

create a normal value model to compare the patient’s DTl values against. A large sample of control
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participants is required for accurate age-dependent reference value ranges, and should be collected
for possible diagnostic purposes. Cox et al. (Cox et al., 2016) studied the ageing human brain and
attempted to create quantitative models relative to brain WM microstructure. They used a pool of
3513 participants from the UK biobank resource, which allowed them to derive accurate and
statistically powerful models of the associations between demographical factors and DTl metrics. We
compared our results to the findings of Cox et al. in attempt to further validate our findings.

The purpose of this study was to (i) partially replicate the recent findings of Cox et al. (Cox et
al., 2016) of white matter (WM) age associations, (ii) create a preliminary age-dependant human
brain WM DTI model that is applicable applied in native participant space, and (iii) test the model’s
diagnostic accuracy in a small sample of people who have sustained mild TBIs. There are dozens of
published studies relating to DTI findings following MTBI in athletes, civilians, active duty service
members, and veterans (Asken, DeKosky, Clugston, Jaffee, & Bauer, 2018; Oehr & Anderson, 2017;
Wallace et al., 2018). Moreover, there is considerable interest in techniques that would allow
researchers or clinicians to examine DTl metrics in individual participants and determine if those

participants show evidence of possible hetero-spatial changes in brain microstructure.

MATERIALS AND METHODS

Participants

The control participants were 70 people originally from two separate groups of DTI study
controls, imaged at the Tampere University Hospital (age M = 39.5, SD = 11.8, Range = 18 — 60;
58.6% women). Forty were orthopedically injured patients evaluated in the emergency department
of the Tampere University Hospital and were used in our previous study (llvesmaki et al., 2014). The
other 30 control participants consisted of volunteer hospital staff members. The combined group of
70 control participants was also used in a previous study (llvesmaki et al., 2017). All control
participants completed a structured health questionnaire and they did not report a chronic

neurological or psychiatric disease. All participants were scanned using the same scanner and
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imaging protocol. Conventional MRI findings of the control participants were interpreted as normal
by a neuroradiologist (A.B.). All participants included in this study provided written informed consent
according to the Declaration of Helsinki. To compare our automated algorithm against a ROI
method, we selected 10 patients with mTBIs including five complicated and five uncomplicated cases
from the pool of mTBI patients used in one of our previous studies (llvesmaki et al., 2014). Patients
with a complicated mTBI were defined as having traumatic lesions on conventional brain MRI.
Demographics for the participant groups used in this study are presented in Table 1.
Imaging

Brain MRI images were acquired using a 3 Tesla MRI scanner (Siemens Trio, Siemens AG
Medical Solutions, Erlangen, Germany). The MRI protocol included sagittal T1- weighted 3D
inversion recovery prepared gradient echo, axial T2 turbo spin echo, conventional axial and high-
resolution sagittal FLAIR, axial T2*, axial SWI (susceptibility weighted imaging), and DWI (diffusion
weighted imaging) series. The DTI data were collected by a single-shot, spin echo-based and
diffusion-weighted echo planar imaging sequence. The parameters of the DTl sequence were TR
5144 ms, TE 92 ms, FOV (field of view) 230 mm, matrix 128 x 128, 3 averages, slice/gap 3.0/0.9 mm,
and voxel dimension of 1.8 x 1.8 x 3.0 mm. Two diffusion weightings were used; b-value 0 and 1000

s/mm?, with 20 diffusion gradient orientations. A 12-channel head matrix coil was used.

Image Processing and Analysis

The acquired image data was converted to the Neuroimaging Informatics Technology
Initiative (Nifti) format for the analysis using MRIConvert 2.0.7. The data was corrected for eddy
currents and possible motion artefacts. Diffusion tensor data, including FA, MD, AD, and RD, were
derived from the original diffusion gradient images. No further modifications were made to the
participant MR images. Image manipulations were executed entirely with tools included in FSL
(v5.0.10) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), allowing us to create a simple

and relatively easy implementation of the process.
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In addition to the acquired imaging data, we used two probabilistic adult human brain WM
atlases in our analysis: the Johns Hopkins University (JHU) DTI atlases (Hua et al., 2008; Oishi et al.,
2008) and the lllinois Institute of Technology (lIT) Human Brain atlas (v. 4.1) (Zhang & Arfanakis,
2018). Specifically, we used the JHU WM tractography atlas (20 ROls) in conjunction with the 1 mm
isotropic mean FA map, including the following ROls: anterior thalamic radiation (left and right
hemispheres), corticospinal tract [CST; Left (L) & Right (R)], cingulate gyrus (L & R), hippocampal
portion of the cingulum (L & R), forceps major, forceps minor, inferior fronto-occipital fasciculus
(IFOF; L & R), inferior longitudinal fasciculus (ILF; L & R), superior longitudinal fasciculus (SLF; L & R),
uncinate fasciculus (UF; L & R), and temporal part of the SLF (L & R). We used the IIT major fibre-
bundles (17 ROIs) with the IIT mean FA map as the base, including the following ROIs: forceps major,
forceps minor, fornix, cingulate gyrus (L & R), hippocampal portion of the cingulum (L & R), CST (L &
R), IFOF (L & R), ILF (L & R), SLF (L & R), and UF (L & R).

The atlas ROl volumes were transferred to the participant’s native space via affine and
deformable transformations. The high-resolution base image of the ROIs, i.e., the underlying
standard FA map, was first linearly transformed (affine; 12 DOF), then nonlinearly transformed
(cubic B-spline) to the participant’s low-resolution FA map, saving the linear transformation matrix
and the warp field coefficients separately. These linear and nonlinear transformations were then
applied to each ROl volume, using nearest neighbour interpolation in order to preserve the
probabilistic or binary values of the ROIls. Examples of the registered probabilistic tracts in
participant native space are shown in Figure 1.

The quantitative values obtained from the ROIs of the normal sample (N = 70) were used to
create a normal population linear regression model, along with the training and test sets for
specificity analysis. The values obtained from the mTBI participants were used to identify
abnormalities by comparing them against the predicted normal population DTl metrics from the

normal model. The analysis pipeline is visualized as a flow chart in Figure 2.

Statistics
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Statistical analyses were performed with JASP (JASP Team, Version 0.8.5.1). To obtain
normal values for a chosen ROI template set, the linear relationship between age and DTl scalars
was modelled for each ROl using linear regression. This resulted in an age-dependent model for
mean values, and a root-mean-square error (RMSE) for each ROI.

To test the specificity of our method, we first created a trial with 65 control participants as
the training set, and the remaining five participants as a test set. The five control participants for the
test set were chosen pseudo-randomly (i.e., the five participants who were born closest to the 1 of
their respective birth month). For the training set participants, the mean DTl values of the specific
regions and the ages of the participants were entered into the linear regression. The method was
repeated for each ROI for each DTI metric (FA, MD, RD, and AD). This produced a simple model for
the DTl scalar’s age dependence inside the specific region, along with a p-value for possible
statistical significance of the model, and the RMSE of the linear fit.

We then compared the test participants’ ROl mean values against the model’s predicted

values using the parameter Z,. (named here as the regression standard score),

Ms—Mm
ZT ——
RMSERor

where M is the participant’s ROl mean, M,,, is the model’s predicted ROl mean, adjusted for age,
and RMSER, is the ROl dependent root-mean-square error of the model. The regression standard
score acts as an indicator of deviation from the model, and a limit of acceptance for the specificity
analysis was chosen at |Z,.| < 1.645 (similar to the 90% confidence level). For the specificity
analysis, we included only the ROIs with statistically significant linear regression models in the
training set. Additionally, we compared our model to the regression models obtained by Cox et al
(Cox et al., 2016). Because Cox et al. combined left and right hemisphere ROIs, we similarly averaged
those ROIs with bilateral representation into single ROls. Due to the much larger participant pool
and a slightly different data reporting method of Cox et al., we decided to compare only the
significance and direction of the associations inside the tract regions.

To test the method against freehand ROl measurements, we compared 10 patients who had

10
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sustained an mTBI against a normal value model created from the entire normal sample (N = 70).
The limit for abnormal findings was chosen at |Z,.| = 2 for each ROI. Methods similar to those in the
specificity analysis were used in this mTBI analysis. Each of the 10 patients with mTBIs were
compared against the model created using the 70 controls. The patients with mTBIs were also
assessed by U.H. with the freehand ROI DTl analysis procedure used in Tampere University Hospital.
Several freehand ROIs were drawn to the patient FA maps (i.e., genu and splenium of the corpus
callosum, thalamus, forceps minor, uncinate fasciculus, centrum semiovale, posterior corona radiata,
and posterior limb of the internal capsule). Left and right hemispheric regions were measured
separately for each ROI, apart from the corpus callosum. Then, the ROl values were compared
against mean values calculated from a carefully selected control sample (N = 40, the orthopedically
injured patients) with a criterion of abnormal findings defined as |Z| > 2 for each ROI. The control
sample for the freehand ROl analysis is smaller than the one used in the linear regression model (40

participants) due to a compatibility issue caused by an update to the hospital’s DTI software.

RESULTS

Registrations of the WM tract ROIs were successful, and the registered probabilistic ROI
regions were representative of the tracts in the participants’ native anatomical spaces according to
visual inspection. The registration accuracy was deemed adequate for clinical use by a
neuroradiologist (A.B.) and a neurosurgeon (T.L). In the following sections we will report the
statistical significance of the models in each ROI, and carry out a brief comparison between our
results and the results obtained by Cox et al. We then present the results of the specificity test, and

finally the results of the mTBI analysis in comparison to the manual ROl measurements.
Normal Sample Linear Model

We created an age-based normal sample model with both IIT and JHU probabilistic WM
atlases using the amalgamated sample set of all controls (N = 70). Implementation with the JHU atlas

was considerably more successful than the IIT atlas, with all of the 20 ROIs showing a statistically

11
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significant (p < .05) linear regression between age and FA. The percentage of ROIs with statistically
significant linear models for MD, RD, and AD, was 85%, 95%, and 40%, respectively, out of a total of
20. For the IIT atlas the percentage of ROls with statistically significant linear models for FA, MD, RD,
and AD were 80%, 35%, 80%, and 30%, respectively, out of a total of 17 ROIs. The correlations
between age and FA were negative in all significant ROIs, and positive for MD and RD in all
significant ROIs for both atlases. AD correlated positively in all significant ROls except for the left and
right CST in the JHU atlas, and the correlation was negative for all significant ROls except for the
fornix in the IIT atlas. Details of the JHU atlas age-based FA model is shown in Table 2.
Representative examples of age association graphs for the JHU atlas are shown in Figure 3, with full
details of all metrics for both atlases and other graphs available as supplementary material.
Specificity

Linear regression models for the training set were similar to the ones created from the total
combined control sample, with only minor differences. Details of the specificity models are shown in
the supplementary material. Specificities of the model per DTl metric were defined as the percentages
of the ROIs with |Z,.| < 1.645 out of the cumulative total amount of ROIs of the five test participants.
However, only the ROIs with statistically significant linear regression models in the training set were
included in the comparison. For the JHU atlas, the specificity of the FA model was 78.9%, of a total of
95 ROIs with statistically significant linear model in the training set. The specificity of MD, RD, and AD
models were 95% of a total of 80 ROIs, 89.5% of 95 ROIs, and 91.1% of 45 ROIs, respectively. For the
IIT atlas, the corresponding figures were 78.3% of 60 ROIs, 90% of 20 ROlIs, 83.3% of 60 ROIs, and 100%

of 30 ROIs, for FA, MD, RD, and AD, respectively.
Mild Traumatic Brain Injury

The freehand ROl measurements performed on the selected mTBI sample (N = 10) revealed
abnormal FA (|Z| = 2) in the corpus callosum for three patients and in the forceps minor for two

patients. One patient had abnormal MD in in the corpus callosum, and one in the posterior internal

12
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capsule. Abnormal AD and RD values were found in the corpus callosum, forceps minor, UF, centrum
semiovale, and posterior corona radiata. Most of the abnormalities were found in patients with
complicated mTBI: 75% of the patients with abnormal FA were participants with complicated mTBI,
while the numbers for MD, RD, and AD were 50%, 67%, and 60%, respectively. Data from the mTBI
ROI comparison is shown in Table 3.

ROIs with non-significant linear regression model were discarded from the automated
analysis. Examining the mTBI sample with the JHU atlas, abnormal FA values were found in the
temporal portion of the left SLF, right CST, left and right cingulate gyrus, left and right UF, and
forceps minor. Differences in MD were found in the right ILF, temporal part of the left and right SLF,
right SLF, right hippocampal cingulum, right cingulate gyrus, and left UF. Abnormal RD values were
found in right cingulate gyrus, right CST, temporal part of the left and right SLF, right SLF, and left UF.
Abnormal AD values were found in the right CST and left UF. A majority of the abnormalities were
again found in patients with complicated mTBI: 80% of the patients with abnormal FA were
participants with complicated mTBI, while the number for MD, RD, and AD was 60%, 60%, and 50%.
Details of the analysis for the JHU atlas are shown in Table 4. A quick comparison between the
results of the ROl measurements and the automated analysis using JHU atlas is shown in Table 5.
Apart from AD, the automated analysis identified a larger number of patients with abnormal DTI
metrics. Patient 10 was an exception, showing abnormalities in FA, RD, and AD in the freehand
measurement, but none in the automated analysis.

Using the IIT atlas, abnormal FA values in the patients with mTBIs were found in the left
superior longitudinal fasciculus, left IFOF, and fornix. Differences in MD were found in the left
superior longitudinal fasciculus, right IFOF, and fornix. Abnormal RD values were found in the left
superior longitudinal fasciculus, right hippocampal cingulum, and fornix. Abnormal RD values were

found in the forceps minor, left and right CST, and fornix.

DISCUSSION
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Registration

Image registration is a crucial step in the DTI post-processing pipeline. After several
iterations, we feel that we have substantially improved the registration of high resolution standard
FA maps to the participant’s lower resolution image. The use of FA images as the source of the linear
registration coefficients and the warp field was obvious due to the clear delineation of brain white
and grey matter. Also, traditional structural images may not always depict the small underlying
variances in neural tract structures, which are essential when using WM tract-based regions of
interest.

Our current registration methods allow any combination of ROIs to be used in the analysis,
as long as the ROIs are provided with the underlying FA image. This is an advantage from a clinical
perspective as different ROl may be desirable for studying different pathologies. In theory one could
also use hand drawn ROIs in the analysis, but the results would not be directly comparable to
previously made freehand ROl measurements due to differences in MRI slice positioning and the
effects of 3D registration to the ROl volumes. Because they are not comparable, the choice of using
manually drawn ROIs in the analysis pipeline, e.g., a set of clinically used ROIs, will not grant any

additional benefits and is thus unadvisable.
Age Effects

For the limited participant sample available for the study, linear regression is a sufficient
approximation of the correlation between age and DTI metrics (Kodiweera, Alexander, Harezlak,
McAllister, & Wu, 2016; Westlye et al., 2010). Several publications describe a linear correlation
between age and WM diffusion (Cox et al., 2016; Kodiweera et al., 2016; Westlye et al., 2010); more
precisely, a negative correlation between age and FA, and a positive correlation between age and
MD/RD. However, AD has been shown to both correlate negatively and positively with age. Although
axial and radial diffusivities have often been of less interest, they include valuable information which

can complement FA and MD analyses to further specify the cause of abnormal diffusion values in the
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brain (Alexander et al., 2011). Our method fared quite well for FA, MD and RD, and we were able to
derive age-dependent models for the JHU atlas. On the other hand, the results examining AD were
heterogeneous and did not reveal a specific pattern. Similar heterogeneity has been observed in
previous studies (Bennett, Madden, Vaidya, Howard, & Howard, 2010; Burzynska et al., 2010), and
the phenomenon could be explained by the specific effects that various age-related pathologic
mechanisms have on AD, e.g., demyelination, Wallerian degeneration, fibre degeneration and fibre
structural reorganization (plasticity) (Madden et al., 2012). For younger individuals with developing
brains, age may show opposite correlations of FA, MD and RD as compared to the aged brain,
perhaps justifying a separate linear model for people below the age of approximately 25 (Lebel &
Beaulieu, 2011; Westlye et al., 2010). Therefore, a possible future implementation would be a
parabolic or two-part regression model.

Similar to our results, Cox et al. reported a negative correlation between FA and age, and a
positive correlation between MD/RD/AD and age in all of the tested regions with significant
regression (p <.001). In fact, with a more liberal P-value (e.g. p <.01), both positive and negative
correlations between age and AD would have emerged, identical to our findings. Regions with non-
significant correlation (p > .001) in the study by Cox et al. included the parahippocampal cingulum
(FA), cingulate gyrus (AD), superior thalamic radiation (FA), acoustic radiation (FA, AD), middle
cerebellar peduncle (FA), medial lemniscus (FA, RD), forceps major (RD), and forceps minor (RD).
While our comparison with the results obtained by Cox et al. was far from comprehensive, the
direction of correlation was in perfect agreement for FA, MD and RD in across all ROIs. The only
differences were with respect to AD, which correlates positively with age in most of Cox et al.’s
study, but in our sample several regions had negative correlation between AD and age. The
difference may be attributed to the different age distribution of the samples, or from the difference
in sample sizes. The only significant region (at p < .05) in our atlases that was non-significant in Cox
et al.’s study was the cingulum; however, this region was not statistically significant when we used

the same stricter requirement for statistical threshold as Cox et al. (p < .001). Overall, there were
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more areas with non-significant differences in our study, which is at least partially attributable to the

lower sample size.
Deviations from the Linear Model

A smaller number of ROIs reached statistical significance in the linear model fit for the IIT
atlas compared to the JHU atlas; while regression models of FA and RD were statistically significant
for most ROIs, MD models were mostly non-significant. This could be a consequence of the ROI sizes.
The IIT atlas contains smaller regions than the JHU atlas, and ageing has been shown to cause global
change in the entire WM area (Hsu et al., 2008; Salat et al., 2005; Sexton et al., 2014). It may also be
possible that the IIT atlas is more suited for accurate analysis but is hindered by the low statistical
power of our analysis. The use of IIT atlas in the model should be revisited in the future with a larger
normal participant pool.

The specificity analysis resulted in a satisfactory percentage of true negatives, but the specificity would
most likely have been better with a multiple regression model. However, the purpose of the analysis
was not initially to be a standalone clinical method, but to serve as a supporting method for clinicians
in assessing possible changes in WM integrity due to brain insult or disease. As a standalone method,
our analysis would require higher specificity, but for a supporting method the most important aspect
would be sensitivity, which is already acceptable, and can likely be further improved by increasing the

statistical power by adding to the number of controls.
Study Design and Limitations

For consistency, we used the same protocol to compare the freehand measurements against
our automated model, comparing the freehand ROI data against 40 control participants instead of all
the controls (N = 70) used in this study. The smaller control group for the freehand measurements is
due to an update on the DTI processing software which occurred in the timeframe between the

collections of our two control groups. The smaller control group may relatively disadvantage the
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freehand ROI method but using the complete control participant pool would have deviated from the
original freehand ROI procedure.

Furthermore, most of the freehand ROIs do not correspond to the atlas ROIs, additionally
frustrating comparison efforts. We can, however, make general claims about the sensitivity of our
normal model analysis based on the detection of abnormalities on a patient level. The automated
analysis found abnormalities in more patients than the freehand ROl measurement in FA (5 vs. 4), MD
(5vs. 2) and RD (5 vs. 3) measures, while for AD, freehand ROl measurements indicated abnormalities
in five and automated analysis in two patients. Therefore, the sensitivity may be slightly higher in the
automated analysis than in the freehand measurement. The larger number of ROIs in the automated
analysis also contributes to a higher sensitivity.

There are important limitations to consider when interpreting our data. Although our chosen
registration process is sufficient for our study goals, other methods of registration may be more
accurate under certain conditions. Common registration methods work well with normal population,
but a tensor-based registration could yield greater registration accuracy especially on patients with
large neuroanatomical abnormalities. Patients with mTBI patients seldom have such severe lesions,
so it is unclear how our method may function in more neuroanatomically compromised populations.
We do not perform a separate WM segmentation on our DTI data. The use of WM segmentation
before calculating the ROl mean values might be a beneficial addition to the analysis pipeline and is
a prospect that should be studied and tested if the pipeline is to be used clinically. Another limitation
is related to the size of our normal sample. Gender was not used as a covariate because of this.
However, in our previous research, there were no statistically significant differences were found
between male and female participants using TBSS analyses with the same sample. Another limitation
is that simple one predictor linear model is not an efficient way to model the population’s DTI
metrics, and multiple linear regression should be used with a larger participant pool. For a viable
regression model, a sample of at least 300 participants should be used with multiple predictor

variables (Knofczynski & Mundfrom, 2007). Another potential limitation is that the specificity test
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was performed by creating a test set pseudo-randomly. While unlikely, it is a potential source of
bias. However, the results of the specificity test’s results seem sensible, without exaggerations in
terms of excessively high or low sensitivity.

One important factor to discuss about our current method is the analysis method itself and
the characteristics of the results produced by the analysis. Most of the existing DTl analyses produce
voxelwise results, where the abnormalities can in principal be pinpointed with the accuracy of a
single voxel. Our analysis, however, can be considered to yield results that are similar to those of ROI
measurements. This causes a possible loss of sensitivity due to averaging of the DTl values inside the
analysed region. The WM abnormalities may also lie between the chosen analysis regions, which
causes a loss of sensitivity and can lead to false negative findings. The problem can be partly
countered by utilizing smaller ROIs in the pipeline. However, due to the methodology of our analysis,
the possible decrease in sensitivity is a permanent component of the method, analogously to ROI
analysis.

A final limitation is related to choosing mTBI as the initial clinical disorder to test. While mTBI
patients may not be an optimal choice due to their lack of large-scale pathology, it is one of the most
important and relevant clinical entities to study. Because the most prominent traumatic changes
induced by mTBI are diffuse axonal injuries, the exact locations of the ROls are not as crucial.
Comparisons between our method and the freehand ROl measurements is challenging, due to the
discrepancies between the atlas-defined regions and freehand regions, as well as the fundamental
differences in the approaches. Both of the methods should at least be able to distinguish a clinically

significant mTBI case with a diffuse axonal injury from a control participant.

CONCLUSION

We created a quantitative brain analysis pipeline that can be used in conjunction with
various ROl datasets. The analysis is simple to conduct due to its dependence only on a single
software package for image processing. Despite the small sample size, our regression model for the

normal population was successful in confirming age-DTI scalar correlations, notably with FA. Further

18



Corresponding author: Tero llvesmaki

work to enhance the utility and accuracy of the automated analysis is needed before our algorithms
can be useful for clinical purposes.

The results of our normal sample regression model were largely similar to the regression
presented by Cox et al. (Cox et al., 2016), and thus can be considered a successful partial replication
of the study. In addition, we applied our analysis method to mTBI patients with results comparable
to commonly utilised freehand ROl measurements. With increased statistical power, further
validation of the analysis method, and the additional prospect of combining machine learning and
custom deep-learning algorithms with our models, this method may possess the potential to
complement or replace freehand ROl measurement as the gold standard brain DTl analysis method

in the near future.
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TABLES

Table 1. Demographics of the control participants and patients with complicated and uncomplicated

mild traumatic brain injury.

Traumatic MRI imaging
Gender ..
Age (yrs, LOC findings on delay from
(male / . PTA (h) X
mean + SD) female) (min) conventional trauma
brain MRI (days)
Normal data (N=70) | 39.5+11.8 29/41 - - - -
Training dataset (N = 39.8+117 39/26 i ) i -
65)
Test dataset (N = 5) 344+116 2/3 - - - -
Contusion 5
. 1_ 7
Patient 1 22 male 5 .083 SDH
Patient 2t 29 male 15 1 DAI 6
Patient 3t 49 male 5 .083 DAI 2
Patient 4t 28 male 2 6.5 DAl 5
Patient 5t 33 male 0.5 2.5 DAI 6
Patient 6 38 male 0 3 No lesions 3
Patient 7 19 male 0 .033 No lesions 10
Patient 8 28 male 0 .017 No lesions 5
Patient 9 48 male 0 .5 No lesions 7
Patient 10 26 male 0 0 No lesions 3

LOC = loss of consciousness, PTA = post-traumatic amnesia, SDH = subdural hematoma, DAI = diffuse

axonal injury.

t) Patients with complicated mTBI
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Table 2. Details of the FA normal value model for the JHU white matter probabilistic atlas.

Region FA regression function p RMSE

Anterior thalamic radiation L 4216953 - .0007476 x age <.001 0.0200335
Anterior thalamic radiation R 4000638 - .0008487 x age <.001 0.0202835
Cingulate gyrus L 4067053 - .000975 x age <.001 0.026084
Cingulate gyrus R .3960036 - .0009912 x age <.001 0.0274607
Hippocampal portion of the cingulum L .3197929 - .0007011 x age .0042055 0.0232557
Hippocampal portion of the cingulum R .3432481 - .0006444 x age .0184947 0.0262355
Corticospinal tract (CST) L .5673051 - .001023 x age <.001 0.0202251
Corticospinal tract (CST) R .5544531 - .0009758 x age <.001 0.020501
Forceps major .5256287 - .0009244 x age .0018824 0.0280815
Forceps minor 14904246 - .0013848 x age <.001 0.022653
Inferior fronto-occipital fasciculus (IFOF) L 4555804 - .0012634 x age <.001 0.0174475
Inferior fronto-occipital fasciculus R (IFOF R) | .4473206 -.0010437 x age <.001 0.0165715
Inferior longitudinal fasciculus (ILF) L 4245957 - .0009795 x age <.001 0.0203935
Inferior longitudinal fasciculus (ILF) R 4194901 - .0008494 x age <.001 0.0182781
::Szgs:jsl I(o:Lr;)O: the superior longitudinal 4615694 - .0010949 x age <.001 0.0203335
::S:'[C)Slrjsl f:[:)og the superior longitudinal 447034 - 0011284 x age <001 | 0.0184707
Superior longitudinal fasciculus (SLF) L 4116664 - .0010241 x age <.001 0.0187179
superior longitudinal fasciculus (SLF) R -4034946 - .0011602 x age <.001 0.0170947
Uncinate fasciculus (UF) L 1421141 - .0010389 x age <.001 0.0212249
Uncinate fasciculus (UF) R .3983145 - .0007049 x age .0010712 0.020269

FA = fractional anisotropy, RMSE = root-mean-square error, L = left, R = right.
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Table 3. Results of the freehand ROl analysis of 10 patients with mild traumatic brain injuries. Z-values

and the corresponding patient is shown in the table, if |Z| = 2, when compared against a control

group of 40 selected normal participants.

Region FA MD RD AD
Posterior internal Patient 6: -
capsule R 2.027
Posterior corona Patient 2t:
radiata L +2.643
. Patient 6: -
Centrum semiovale R 2118
. . Patient 37: -
Uncinate fasciculus R 2 265
Patient 2t:
Forceps minor L +2.273 Patient 2t: - Patient 10:
Patient 10: 2.043 +2.440
+2.424
Patient 5t:
Corpus callosum G Patient 10: - Patient 5t: Patient 10: - +.2.135
3.038 +2.576 3.062 Patient 10: -
3.062
Patient 37: -
Corpus callosum S 2.195 Patient 47: Patient 27: -
Patient 4t: - +2.215 2.272
2.603

FA = fractional anisotropy, MD/RD/AD = mean/radial/axial diffusivity, L = left, R = right, G = genu, S =

splenium.

t) Patients with complicated mild traumatic brain injury.

28



Corresponding author: Tero llvesmaki

Table 4. Normal value model analysis results of from the 10 patients with mTBIs. The JHU atlas was

used for the analysis, where participants with mTBIs were compared against predicted values obtained

from the linear model created with 70 normal participants. Table values are presented as Z,., i.e.,

difference from the model predicted value as multiples of the model’s root-mean-square error. The

difference was considered significant if |Z,.| > 2.

Region

FA

MD

RD

AD

Cingulate gyrus L

Patient 51:-2.175

Cingulate gyrus R

Patient 51:-2.416

Patient 5t: +2.623
Patient 6: -2.139

Patient 5t: +2.758

Hippocampal portion
of the cingulum R

Patient 2t: +2.031

corticospinal tract
(CST)R

Patient 3t: +2.064

Patient 31:-2.177
Patient 6: -3.178

Patient 6: -4.205

Forceps minor

Patient 2t: +2.198

Inferior fronto-
occipital fasciculus
(IFOF) R

Patient 4t: +2.081

Temporal part of the
superior longitudinal
fasciculus (SLF) L

Patient 41: -2.086
Patient 51:-2.353

Patient 5t: +2.099

Patient 5t: +2.306

Temporal part of the
superior longitudinal
fasciculus (SLF) R

Patient 4t: +2.222

Patient 4t: +2.282

Superior longitudinal
fasciculus (SLF) R

Patient 4t: +2.078

Patient 4t: +2.185

Uncinate fasciculus
(UF) L

Patient 7:-2.911

Patient 7: +3.074

Patient 7: +3.385

Patient 1t: +2.449

Uncinate fasciculus
(UF) R

Patient 51:-2.258

FA = fractional anisotropy, MD/RD/AD = mean/radial/axial diffusivity, L = left, R = right.

t) Patients with complicated mild traumatic brain injury.
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Table 5. Comparison of the abnormal findings between the freehand ROl measurement and the
automated analysis with JHU atlas. Plus and minus signs signify whether the abnormal findings are
larger or smaller than the normal sample predicted value.

FA

MD

RD

AD

Patient

ROI

Autom

ROI

Autom

ROI

Autom

Autom

1t

21

3t

4t

5t

10

+

+/-

FA = fractional anisotropy, MD/RD/AD = mean/radial/axial diffusivity.

t) Patients with complicated mild traumatic brain injury.
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Figure 1. Two example participants with probabilistic DTI atlases shown on top of their FA maps as
red. A) The original JHU probabilistic atlas on top of the JHU mean FA map, B) the JHU atlas registered
to control X, C) the JHU atlas registered to control Y, D) the original IIT probabilistic atlas on top the IIT
mean FA map, E) the IIT atlas registered to control X, F) the IIT atlas registered to control Y. The
probabilistic atlases’” ROl areas are limited to probabilities > 10% for visualization purposes.

Neurological convention; left = left.
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Figure 2. The quantitative brain analysis presented as a flow chart. Following the bolded arrows, the
statistical power and accuracy of the normal model can be improved by adding more control
participants. Blue rectangles present data, pink rectangles present work phases, and green indicates

results.
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Figure 3. Age associations of the left and right SLF and forceps major and minor for FA and MD in the
JHU atlas. The linear regression model is plotted as dashed line, and + 1.645 RMSE values are plotted
as dotted lines above and below the model line. The horizontal axis in the graphs represents age in
years, while the vertical axis is dimensionless for FA and of units 10 mm?/s for MD. SLF = superior
longitudinal fasciculus, L = left, R = right.

t) Not a statistically significant regression.
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