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Abstract

The main objective of this thesis is to study various information theoretic methods
and criteria in the context of statistical model selection. The focus in this research is
on Rissanen’s Minimum Description Length (MDL) principle and its variants, with
a special emphasis on the Normalized Maximum Likelihood (NML).

We extend the Rissanen methodology for coping with infinite parametric com-
plexity and discuss two particular cases. This is applied for deriving four NML-
criteria and investigate their performance. Furthermore, we find the connection be-
tween Stochastic Complexity (SC), defined as minus logarithm of NML, and other
model selection criteria.

We also study the use of information theoretic criteria (ITC) for selecting the
order of autoregressive (AR) models in the presence of nonstationarity. In particular,
we give a modified version of Sequentially NML (SNML) when the model parameters
are estimated by forgetting factor LS algorithm.

Another contribution of the thesis is in connection with the new approach for
composite hypothesis testing using Optimally Distinguishable Distributions (ODD).
The ODD-detector for subspace signals in Gaussian noise is introduced and its per-
formance is evaluated.

Additionally, we exploit the Kolmogorov Structure Function (KSF) to derive a
new criterion for cepstral nulling, which has been recently applied to the problem of
periodogram smoothing.

Finally, the problem of fairness in multiaccess communication systems is inves-
tigated and a new method is proposed. The new approach is based on partitioning
the network into subnetworks and employing two different multiple-access schemes
within and across subnetworks. It is also introduced an algorithm for selecting
optimally the subnetworks such that to achieve the max-min fairness.
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Giurcăneanu and Prof. Ioan Tabus for their continuous support and encouragement
during last four years. Especially, I wish to thank Ciprian for his wise and highly
professional guidance, and his effort in all steps of elaboration of this Thesis.

I am thankful to the pre-examiners of this Thesis, Dr. Teemu Roos and Dr.
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Chapter 1

Introduction

A principled method used to select a particular model from a class of models is based
on the evaluation of the stochastic complexity (SC) for which the very first formula
was introduced in [43]. The method is rooted in information theory and relies on a
coding scenario for transmitting the available measurements from an hypothesized
encoder to a decoder. The selection procedure chooses the model that allows the
data to be encoded with the shortest code length, or equivalently, to minimize SC.
This thesis is focused on new developments in both the theory and the applications
of the main concepts related to SC.

The most recent advances in the theoretical basis of the SC emerge from a
happy union between the algorithmic complexity theory (ACT) [36] and the coding
theory [9]. As the central notions from the ACT, namely Kolmogorov complexity
(KC), universal distribution and the structure function are non computable, their
use in practical applications poses troubles. To circumvent such difficulties, Rissanen
extended all these notions to statical models by replacing the set of programs from
the algebraic theory of complexity with classes of parametric models. With the
understanding that each model class is a likelihood function, the role of the universal
model is played by the normalized maximum likelihood (NML) density function
[5, 45]. Furthermore the KC is replaced by the SC that is defined as the minus
logarithm of the NML. To construct the Kolmogorov structure function (KSF), the
parameter space is partitioned into rectangles such that the Kullback-Leibler (KL)
divergence between any two adjacent models is constant [48]. To the center of each
rectangle it is assigned a special probability distribution function which takes value
zero outside the rectangle and inside the rectangle coincides with the likelihood
function properly normalized such that to integrate to one. This introduces a set
of so-called optimally distinguishable distributions (ODD). Note that the idea of
distinguishability is borrowed from the differential geometry [4]. Moreover, the
distance between the “real” models and the distinguishable models depends on a
parameter d. By applying the Central Limit Theorem (CLT), it can be shown that

1



2 Chapter 1.

there exists a unique d which minimizes this distance [48].
This PhD thesis is centered on the following lines of research:

• For most of the models which are commonly used in signal processing, the
NML does not have a finite value because the term which corresponds to the
parametric complexity is not finite. This problem was addressed in [47], where
its was proposed an elegant solution based on a particular constraint of the
parameter space. We investigate some of the properties of the resulting SC-
formula [P2], and we also extend the approach from [47] for a general family
of constraints [P1].

• We also consider the problem of order estimation in the case of piecewise
autoregressive (AR) models. For such applications, we alter the sequentially
normalized maximum likelihood (SNML) criterion from [51] such that to be
compatible with the forgetting factor least-squares algorithms [25]. In [P3],
we provide a solid analysis for the performance of the modified criterion as
well as the performance of other criteria which have been introduced in the
previous literature.

• The findings on ODD from [48,49] can be applied almost straightforwardly for
composite hypothesis testing and, more importantly, they define a totally new
framework for this problem. In the new paradigm, the decisions are based on
how well the models can be fitted to the data, and it is not necessary to resort
to the level of the test, which is generally taken to be 0.05. The approach
is very promising, but because it is so new, it was utilized only for very few
examples in order to illustrate the concept [46, 48]. In this Ph.D. thesis, it is
shown how this paradigm can be applied to the detection of subspace signals
in Gaussian noise [P4]-[P5].

• We also demonstrate in [P6] how the KSF can be used in cepstral analysis [68].

• Another result included in the thesis and which was published in [P7] concerns
a novel approach for improving fairness in multiaccess communication systems.

The thesis comprises two parts. The first one is an introductory part, while the
second one consists of seven publications. The structure of the first part is as follows.
Chapter 2 introduces the fundamental notions like NML, KC, KSF. In Chapter 3,
we elaborate on the computation of the NML such that to help the understanding
of the content within publications [P1, P2, P3]. Chapter 4 is devoted to the ODD
detector: We outline briefly the results from [P4], and we also include the complete
proofs for some of the results from [P5]. The cepstral nulling problem is addressed
in Chapter 5, where we discuss a modified version of the criterion used in [P6] for
threshold selection. The performance of various criteria are illustrated by numerical
examples. The aim of Chapter 6 is to gain more insight into the capabilities of
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the methods from [P7]. Chapter 7 presents the summary of the publications and
highlights the contributions of the author, while Chapter 8 concludes the thesis.
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Chapter 2

A happy union: Algorithmic
Complexity Theory and Coding
Theory

Algorithmic Complexity Theory (ACT) emerged as a new branch of computer sci-
ence in early sixties due to the seminal works of Kolmogorov, Solomonov and
Chaitin [7, 29, 63, 64]. Because the central notions from ACT, namely Kolmogorov
Complexity (KC), universal model, and the Kolmogorov Structure Function (KSF)
are noncomputable, their use in practice poses troubles. To circumvent such dif-
ficulties, Rissanen extended all the notions from ACT to statistical models, which
led to a novel method of inference [48]. The most important concepts of the newly
introduced methodology are presented in this chapter.

2.1 Key definitions from ACT

Kolmogorov complexity and universal model: The algorithmic complexity of a
string written with letters from a given alphabet is defined as the shortest program
that can produce the string. When there exist infinite many programs that can
produce any given string, one program will always be the shortest. To clarify the
ideas, let us start with a simple example.

Example 2.1. Consider the following three strings:

5



6 Chapter 2.

• STRING1:
ABABABABABABABABABABABABABABABABABABABABAB-
ABABABABABABABABABABABABABABABABABABAB

• STRING2:
RFGNAUWXTFXPQZMKIEUTGYQETQRBCTYFYBXMETDFAF-
OICGHDWLBYARIBHXGQTREXJWEOVJMVXBYWSTXF

• STRING3:
ABABABABABABABABABABABABABABABABABABABABCZ-
AUVWCKGULXEGDDWPODWQJNKBGDEGKBXYMMIXJC

STRING1 has a nice pattern and can be easily generated with the following
Matlab program:

txt =’’;

for i=1:40

txt=[txt,’AB’];

end

disp(txt)

STRING2 is quite random and, apparently, the easiest way to describe it is to
write it down. Equivalently, the string is the output of the following Matlab program:

txt=’RFGNAUWXTFXPQZMKIEUTGYQETQRBCTYFYBXMETDFAFOICGHDWLBYAR

IBHXGQTREXJWEOVJMVXBYWSTXF’;

disp(txt)

The length of the program above equals the length of string itself plus an over-
head which is independent of the length of string. Therefore, for long strings, the
overhead is negligible in comparison with the string length.

STRING3 comprises two parts: the first one can be programmed in an easy way
and therefore can be seen as a modelable string, but the second part is random and
is treated as noise. This string can be seen as the output of the following Matlab
program:

txt =’’;

for i=1:20

txt=[txt,’AB’];

end

txt=[txt,’CZAUVWCKGULXEGDDWPODWQJNKBGDEGKBXYMMIXJC’];

disp(txt)

Example 2.1 provides intuition on how the notions from computer programming
can be exploited to find regularities in arbitrary strings. In our examples, we use
Matlab code because it is known that the length of the shortest program is language-
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independent up to a constant [9].
Now we are prepared to introduce the KC [49]:

Definition 2.1. Kolmogorov complexity K(x) of an object x is the length of the
shortest program p (in some universal programming language U) which generates x
as an output and terminates. More formally:

K(x) = min{|p| : U(p) = x}. (2.1)

Suppose that we are interested in the class of binary programs such that binary
program p is analogous to a codeword for data x. The assumption that a program
terminates after generating the string x as output implies that the countable set of
data generating programs has the prefix property, i.e. no program can be a prefix of
another one. In other words, if the programs are placed in a binary tree, then each
program is a leaf of the tree. This implies that the set of Kolmogorov complexities
(which is the KC of the elements of the set of all finite strings X ) satisfy the Kraft
inequality [9]:

∑

x∈X
2−K(x) ≤ 1. (2.2)

By normalizing we can get the following universal model for the set of finite binary
strings:

PU (x) =
2−K(x)

∑

y∈X 2−K(y)
. (2.3)

Kolmogorov structure function: Consider any finite set S that includes x. Note
that S defines a model for x in the following sense: All the members of S share
some of the properties of x, but not necessarily all of its properties. In general,
the cardinality |S| is an inverse measure of the amount of properties shared by the
members of S. The smaller is the amount of properties, more objects have those
properties and, therefore, the larger is |S|. On contrary, the smaller is |S|, more
properties are likely to be common for the few elements of S. In the very extreme
case of |S| = 1, the string x is the only member of the set S, which means that
the model S describes all properties of x. In general, for every finite set S ∋ x we
have [73,74]

K(x) ≤ K(S) + log |S|+O(1). (2.4)

Kolmogorov proposed the following KSF for a given data x [73, 74]:

hx(α) = min
S∈S

{log |S| : S ∋ x,K(S) ≤ α}, (2.5)

where α is a parameter which controls the complexity of model S, and S is a set
restricting the desirable properties. The structure function hx(α) can be seen as a
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measure of noise that is not modeled by a finite set of complexity not exceeding α.

2.2 From Algorithmic Complexity to Stochastic Complexity

Because KC is not computable, the KSF cannot be used for determining the optimal
model. In this section we follow the approach of Rissanen to show how statistical
models can be utilized to define computable structure functions as well as universal
models. As a prepatory step, we give some definitions which are taken from [9,22].

2.2.1 Key definitions

Consider a random variable X with possible outcomes x1, x2, ..., xm and corre-
sponding probabilities p(x1), p(x2), ..., p(xm). A binary code C is a mapping from
X = {x1, x2, . . . , xm} to a set of finite-length strings of bits. Let C(xi) denote the
codeword corresponding to xi, and let l(xi) denote the length of C(xi).

A code is called a prefix code or an instantaneous code if no codeword is a prefix
of any other codeword. For any prefix code over a binary alphabet, the codeword
lengths l1, l2, . . . , lm must satisfy

m
∑

i=1

2−li ≤ 1.

This is the Kraft inequality which we have already given in (2.2) for Kolmogorov
complexities of finite strings. An optimal code is a prefix code whose expected code
length

∑m
i=1 p(xi)li is minimum, where p(xi) is the probability of occurance of word

i. It can be shown that the optimal code length is

l∗i = − log p(xi). (2.6)

Since l∗i is not necessarily an integer, we cannot always set the optimal code lengths
as in (2.6). Instead, we should apply the Huffman algorithm.

However, in this thesis we are not focused on efficiently compressing the data, but
rather in the code length interpretation of the probability distributions. Thus, we
will refer to − log p(xi) as the code length assigned to the probability of xi. Moreover,
we assume that the available measurements are not symbols from a finite alphabet,
but instead they are real numbers. Therefore, the probability distributions involved
are not discrete, but continuous. One can apply a quantization process (with a
certain precision) so as to transform the continuous distribution to a discrete one.
This aspect will be discussed next in the context of the modelling problem.
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2.2.2 Universal models

Let us consider the parametric models

Mk = {f(xn;θ, k) : θ = [θ1, . . . , θk]
⊤ ∈ Ω}, (2.7)

M = {Mk : k ≥ 0}, (2.8)

where xn = x1, . . . , xn are the observations and k denotes the number of parameters
of the model. We assume that Ω is a subset of Rk. Note that given observations
xn, each model defines a likelihood function, f(xn;θ, k), that is here considered a
function of the parameter vector θ.

By definition, f̂(xn; k) is a universal model for Mk if

lim
n→∞

1

n
log

f(xn;θ, k)

f̂(xn; k)
(2.9)

for all parameters θ ∈ Ω [10]. The convergence is in a probabilistic sense, either
in the mean taken with respect to f(yn;θ, k), in probability or almost surely. We
consider next two well-known universal models.

2.2.3 Mixture Model

One possibility to define a universal model is to take the mixture model [44]

fω(x
n; k) =

∫

Ω
f(xn;θ, k)ω(θ)dθ (2.10)

where ω(θ) is a prior distribution. Note that fω(x
n; k) is a solution of the following

optimization problem [8]

min
q

∫

ω(θ)D(f(xn;θ, k)‖q(xn))dθ. (2.11)

Let
J(θ) = lim

n→∞
Jn(θ), (2.12)

where

Jn(θ) = − 1

n
E

[

∂2 ln f(xn;θ, k)

∂θ∂θ⊤

]

(2.13)

is the Fisher information matrix (FIM). Then

ω(θ) =
|J(θ)|1/2

∫

Ω |J(η)|1/2dη (2.14)

is the Jeffreys’ prior, and it can be shown that asymptotically we have [8]
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Eθ log
f(xn; θ̂(xn), k)

fω(xn; k)
=

k

2
log

n

2π
+ log

∫

Ω
|J(η)|1/2dη + o(1). (2.15)

2.2.4 Normalized maximum likelihood

Let θ̂(xn) be the maximum likelihood (ML) estimate which minimizes the ideal code
length − log f(xn;θ, k) for a fixed k. The normalized maximum likelihood (NML)
is expressed as

f̂(xn; k) =
f(xn; θ̂(xn), k)

Cn,k
(2.16)

where

Cn,k =

∫

yn:θ̂(yn)∈Ω
f(yn; θ̂(yn), k)dyn. (2.17)

NML was originally obtained as the solution to Shtarkov’s minmax problem [61]:

min
q

max
xn

log
f(xn; θ̂(xn), k)

q(xn)
. (2.18)

More recently, it was proved that NML is also the unique solution of the following
maxmin problem [48]:

max
g

min
q

Eg log
f(xn; θ̂(xn), k)

q(xn)
= max

g
min
q

D(g‖q) −D(g‖f̂(xn; k)) + logCn,k.

(2.19)
The quantity

− log f̂(xn; k) = − log f(xn; θ̂(xn), k) + logCn,k (2.20)

is called stochastic complexity (SC) of the data xn given the model Mk. The term
logCn,k is called parametric complexity and is a measure of learnable information [5].

In the case when the ML estimate satisfies the CLT, i.e.
√
n(θ̂(xn)−θ) converges

in distribution to Nk(0,J
−1(θ)), we have the following asymptotic formula for SC

[45]:

− log f̂(xn; k) = − log f(xn; θ̂(xn), k)+
k

2
log

n

2π
+log

∫

Ω
|J(η)|1/2dη+ o(1), (2.21)

where J(·) is defined in (2.12).

By comparing the formulas in (2.15) and (2.21) one can notice immediately that

Eθ log
f(xn; θ̂(xn), k)

fω(xn; k)
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coincides with

− log
f̂(xn; k)

f(xn; θ̂(xn), k)

up to a constant which goes to zero as n → ∞. We refer to [48, Section 5.2.2] for
a much more elaborated analysis which clarifies the relationship between (2.15) and
(2.21).

It is not straightforward to apply the approximation above for all model classes.
For example, it has been proved in [45] that the NML of the Markov models can be
evaluated with the formula in (2.21), but the very first results were published only
in 2007. More precisely, the case of order-1 Markov chains for binary strings was
investigated in [18], where it was shown that the integral term in (2.21) equals 4G.

We mention that G is the Catalan constant defined by G =

∞
∑

j=0

(−1)j

(2j + 1)2
and is

usually approximated by G ≈ 0.915965594177 [6]. Additionally, by utilizing results
from [3], it was shown in [18] that the evaluation of the integral is very difficult for
models whose order is larger than one. Hence, as it was pointed out in [17], for
Markov models, it is preferable to resort to the approaches from [30] or [52] instead
of using (2.21).

Note that, for many models used in signal processing, the value of the integral in
(2.21) is not finite if the domain of integration is the entire parameter space. This
problem is well-known and some of the proposed solutions involve specifically chosen
restrictions for the ranges of the parameters. A comprehensive discussion on this
issue can be found in [24]. For the important case of AR models, the reference [19]
and the recently published article [57] are the only attempts to work out the NML-
approximation from (2.21).

In the rest of the thesis, we employ methods for the calculation of the NML
which do not involve this asymptotic approximation. However, publication [P1]
investigates shortly how (2.21) can be used in the particular case of Gaussian linear
regression.

2.2.5 Kolmogorov structure function

This section is based on [46,48,49] and contains only the most important definitions
and notations. A more comprehensive presentation of the topic can be found in the
aforementioned references.

Consider the finite partition Λn = {Bi : i = 1, 2, . . . , Nn} of the compact param-
eter space Ω for the model Mk. Let θ

i be the representative of the equivalent class
Bi for all i ∈ {1, 2, . . . , Nn}. Let fi = f(·;θi, k) denote the quantized model. Addi-
tionally, assume that the Kullback-Leibler (KL) divergence D(fi‖fi+1) is constant
for the adjacent models. This partitioning can be done by the following strategy:
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Take Bi = Bd/n(θ
i) as the maximal rectangle within the hyperellipsoid

(θ − θi)⊤J(θi)(θ − θi) = d/n, (2.22)

centered at θi. The volume of equivalence class Bd/n(θ
i) is given by

|Bd/n(θ
i)| =

( 4d

kn

)k/2
|J(θi)|−1/2. (2.23)

After observing xn, we first obtain the ML estimate θ̂(xn) and then take the center
of the rectangle in which θ̂ lies as the quantized version of θ̂. Remark that due to
(2.22) the centers of rectangles depend on the size parameter d.
To define the structure function, it is necessary to recast the notions from ACT in
terms of stochastic models. So,

• A set of programs is to be replaced by a model class.

• A set S is to be replaced by a quantized model f(xn;θi, k).

• KC is to be replaced by SC.

• K(S) is to be replaced by the shortest code length for θi which is denoted by
L(θi).

• log |S|, which is the maximum code length of y ∈ S is to be replaced by
the maximum or the mean code length of observations xn for which θ̂(xn) ∈
Bd/N (θi).

For an arbitrary Bd/n(θ
i), we define

Qd/N (i) =

∫

xn:θ̂(xn)∈Bd/n(θi)
f(xn; θ̂(xn), k)dxn. (2.24)

The calculation of the integral above is easier in the case when f(xn;θ, k) can be
factored as

f(xn;θ, k) = f(xn | θ̂)g(θ̂;θ), (2.25)

where f(xn | θ̂) is the conditional density of xn which does not depend on the
unknown parameter vector θ and g(θ̂;θ) is the marginal density of θ̂. It follows
from (2.24) and (2.25) that

Qd/n(i) =

∫

θ̂∈Bd/n(θi)

[

∫

xn:θ̂(xn)=θ̂

f(xn | θ̂)dxn
]

g(θ̂; θ̂)dθ̂ (2.26)

=

∫

θ̂∈Bd/n(θi)
g(θ̂; θ̂)dθ̂, (2.27)
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where the last identity is a consequence of the fact that the inner integral in (2.26)
equals one. From [48, Section 6.2], we have

lim
n→∞

Qd/n(i) →
( 2d

πk

)k/2
. (2.28)

More importantly, it is possible to define a discrete prior for the rectangles,

W (θi) =
Qd/n(θi)

Cn,k
, i = 1, . . . , Nn, (2.29)

whereCn,k is defined in (2.17). This makes the code length to be Ld(θ
i) = − lnW (θi).

Based on these findings, Rissanen introduced two structure functions [48,49]:

• For the first one, the amount of unexplained noise is taken to be the maximum
code length for the data sequences xn, having the property that θ̂(xn) ∈
Bd/n(θ

i). This happens when the ML estimate falls in a corner of the rectangle.

Applying Taylor’s expansion to − ln f(xn;θi, k) about the point θ̂(xn) and
truncating after the third term yields

− ln f(xn;θi, k) ≈ − ln f(xn; θ̂(xn), k) + d/2. (2.30)

In the equation above we have used the fact that the second term of the
Taylor’s series equals zero, while the third term equals d/2 due to (2.22).

The approximation from (2.30) leads to the structure function

h
(1)
xn (α) = min

d
{− ln f(xn; θ̂(xn), k) + d/2 : Ld(θ

i) ≤ α}. (2.31)

Relying on the minimum description length (MDL) principle, the value of the
parameter d is chosen such that to minimize the two-part code length

− ln f(xn; θ̂(xn), k) +
d

2
+ Ld(θ

i). (2.32)

After some algebra it can be shown that asymptotically the optimum value of
d is d̂ = k. Remark in (2.31) that Ld(θ

i) represents the amount of learnable
information in data.

• The second structure function is defined by taking the unexplained noise to
be the average code length for the data xn which satisfies θ̂(xn) ∈ Bd/n(θ

i).

Let L̄i(d) denote

1

|Bd/n(θ
i)|

∫

θ̂(xn)∈Bd/n(θi)
ln

f(xn; θ̂(xn), k)

f(xn;θi)
dxn.
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Then we have

h
(2)
xn (α) = min

d
{− ln f(xn; θ̂(xn), k) + L̄i(d) : Ld(θ

i) ≤ α}. (2.33)

Asymptotically, we get d̂ = 3k, which makes the amount of learnable informa-
tion to be given by

lnCn,k +
k

2
ln

π

6
,

while the amount of unexplained noise is

− ln f(xn; θ̂(xn), k) +
k

2
.

Remark that the difference between the two above-mentioned formulas comes
from the fact that in the second, instead of calculating the structure function
for the worst code length in the set Bd/n(θ

i), we calculate it for the average
code length over the same set.



Chapter 3

NML and its applications in signal
modelling and detection

As already told in the previous chapter, the computation of the NML with formula
(2.21) poses troubles because, in most of the cases, it is difficult to evaluate the
integral term. Another drawback of (2.21) is its asymptotic nature which does not
recommend it to be used where only a small number of measurements are available.

In this chapter, we focus on the calculation of the NML, as well as on its perfor-
mance as an yardstick for model selection. First, we study the problem of variable
selection in linear regression using the NML. A major challenge in this case is to
cope with infinite parametric complexity.

We address also a topic which was seldom treated in the previous literature,
namely the calculation of the code length for the model structure. Then, we in-
vestigate the relationship between NML and the generalized likelihood ratio test
(GLRT). The last section of the chapter is devoted to a particular form of the NML,
which is dubbed SNML (sequentially normalized maximum likelihood) [50, 54] or
SNLS (sequentially normalized least squares) [51].

3.1 NML when the parametric complexity is not finite

To circumvent the difficulties related to the fact that the parametric complexity
is not finite when parameter space is unbounded, Rissanen proposed the following
solution [47, 48]: First restrict the parameter space to a subset Θ0 ⊂ Θ to achieve
a well-defined universal model as a function of Θ0 boundaries, and then treat the
boundaries of Θ0 as hyperparameters and compute a new universal model by another
round of normalization. This approach was applied to variable selection in Gaussian
linear regression. To fix the ideas, let the measurements y ∈ R

n×1 be modeled by:

y = Xβ + ǫ, (3.1)

15
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where X ∈ R
n×m is the regressor matrix having more rows than columns (n > m),

β ∈ R
m×1 is the vector of unknown parameters, and ǫ ∼ Nn(0, τI).

Because in most of the practical applications, not all the parameters β1, . . . , βm
are equally important in modelling y, one wants to eliminate those that are deemed
to be irrelevant. This reduces to choosing a subset of the regressor variables indexed
by γ ⊆ {1, . . . ,m}.

Let βγ ∈ R
k×1 be the vector of the unknown regression coefficients within the

γ-subset. The matrix Xγ is given by the columns of X that correspond to the
γ-subset. Similarly to (3.1), we have:

y = Xγβγ + ǫγ , (3.2)

where ǫγ ∼ Nn(0, τγI) and the variance τγ is unknown. Under the hypothesis

that Xγ has full-rank, the ML estimates are [59]: β̂γ(y) =
(

X⊤
γ Xγ

)−1
X⊤

γ y and

τ̂γ(y) = ‖y − Xγβ̂γ‖2/n. It is customary to select γ by using either the Akaike
Information Criterion (AIC) [1]

AIC(y; γ) =
n

2
ln τ̂γ + k, (3.3)

or the Bayesian Information Criterion (BIC) [58]:

BIC(y; γ) =
n

2
ln τ̂γ +

k

2
lnn. (3.4)

We denote the cardinality of γ by k, and we make the assumption that k > 0.
Remark that BIC coincides with a crude form of the SC, which was originally in-
troduced in [43]. The main difficulty in computing SC comes from the fact that the
parametric complexity is not finite when taking the data space to be

{y : (β̂γ(y), τ̂γ(y)) ∈ Θ},

where Θ = {(β̂γ , τ̂γ) : β̂γ ∈ R
k, τ̂γ > 0}. To solve the problem, Rissanen considered

the data space such that

{y : (β̂γ(y), τ̂γ(y)) ∈ Θ0},

where Θ0 = {(β̂γ , τ̂γ) : β̂
⊤
γ Σγβ̂γ < R, τ̂γ > τ0} ⊂ Θ, Σ = X⊤

γ Xγ/n, and the strictly
positive constants R and τ0 are chosen arbitrarily.

After two rounds of normalization and by taking the negative logarithm of the
resulting NML, the following SC-formula is obtained:

SCγ(y) =
n− k

2
ln τ̂γ +

k

2
ln

||Xγβ̂γ ||2
n

− ln Γ

(

n− k

2

)

− ln Γ

(

k

2

)

+
n

2
ln(nπ).
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The result was extended in [37] by utilizing two other constraints. In [P1] we
generalized Rissanen’s methodology for the case when the data constraint is given
by {y : ρ(β̂) ≤ R, τ̂ ≥ τ0}, where R and τ0 are strictly positive, and the mapping
ρ : Rk → R is chosen so that the set Bρ(R) = {β̂ : ρ(β̂) ≤ R} is convex and its

volume Vρ(R) =
∫

Bρ(R) dβ̂ has the expression

Vρ(R) = ηRζk, (3.5)

where the constants η and ζ are strictly positive. In some cases, η might depend on
Xγ . Note that ζ depends on the shape of Bρ(R), but is independent of the number
of parameters.

It was shown in [P1] that the Rissanen constraint as well as the two constraints
from [37] can be interpreted as particular cases of the general framework. We have
also compared in [P1] the performance of the NML (with three different constraints),
AIC, BIC, Conditional Model Estimator (CME) [26] and two variants of the Min-
imum Massage Length (MML) [56] by running experiments with simulated and
real-life data sets. The summary of this comparison can be seen in Table 1 and
Table 2 from [P1].

3.2 Description length for the γ-structure

The complete SC-formula should also include the description length, or equivalently,
the code length for the γ-structure, which is conventionally denoted by Lγ . This
term has a marginal effect in most of the applications, but not in all of them (see [53]
for a more elaborated discussion). Next we derive the expression of Lγ by following
the main lines from [48]. To this end, we have to consider some possible scenarios
for transmitting from an hypothetized encoder to a decoder the entries of the γ-set.
This amounts to inform the decoder which entries of the vector β are nonzero. For
the sake of simplicity, we assume that the value of m is apriori known by the decoder.
Additionally, γ 6= ∅, which implies that k ∈ {1, . . . ,m}.
Scenario A Let j ∈ {1, . . . ,m}. We send a zero to the decoder if the j-th entry
of β equals zero. Otherwise, we send a one. Hence, if we want to let the decoder
know which are the non-zero entries of β, we have to transmit a binary string whose
length is m. Because k > 0, the string cannot contain only zeros. Therefore, the
current string is one out of 2m − 1 possible strings. By assuming that all strings are
equally probable, we get the code length:

LA
γ = − ln

1

2m − 1
= ln(2m − 1). (3.6)

Scenario B First we need to transmit to the decoder the value of k. Because it is
already known at the decoder site that k ∈ {1, . . . ,m}, we resort to an encoding
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method which has been introduced in [48, Section 2.1]. More precisely, we define

w(k) = k−1/Ξ, where Ξ =
m
∑

j=1

j−1. The code length for k is given by − lnw(k), but

the result can be approximated by using the following upper bound [41, Section 3.1]:
Ξ < 1 + lnm. Like in [48, Section 2.1], the expression of the code length for k is:

LB
k = ln k + ln(1 + lnm). (3.7)

It remains to inform the decoder which are the indexes of the k non-zero entries.
The code length for transmitting this information is ln

(

m
k

)

[53]. By considering the
result from (3.7), the code length for γ has the expression:

LB
γ = ln

(

m

k

)

+ ln k + ln(1 + lnm). (3.8)

The strategy of the encoder is to select either scenario A or scenario B such that
to minimize the code length. By employing (3.6) and (3.8), we readily obtain

Lγ = min

{

ln(2m − 1),

[

ln

(

m

k

)

+ ln k + ln(1 + lnm)

]}

. (3.9)

Note that the part of the code which tells to the decoder the name of the current
scenario can be ignored since it only adds a constant to all code lengths.

Remark 1 Under the hypothesis that, in Scenario B, all possible values of k are
equally probable, the code length for k is lnm. If, addittionally, Scenario A is never
applied by the encoder, then the expression of the description length for γ becomes
ln
(m
k

)

+ lnm. Obviously, this is equivalent, up to a constant term, to the formula
Lγ = ln

(m
k

)

that was introduced in [53].

Remark 2 To reduce the computational burden in (3.9), we notice for k < m that

ln

(

m

k

)

= ln
mΓ(m)

[kΓ(k)] [(m− k)Γ(m− k)]
.

Then we apply the Stirling approximation [2, 48,53],

ln Γ(r) =

(

r − 1

2

)

ln r − r +
1

2
ln(2π),
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Figure 3.1: Comparison between LA
γ (solid line) and LB

γ (dashed line) for various
values of k and m. The red dotted line represents the term ln

(m
k

)

computed with the
formula from (3.10).

and after some algebra we get

ln

(

m

k

)

≈ (m+
1

2
) lnm− (k +

1

2
) ln k − (m− k +

1

2
) ln(m− k)− ln(2π)

2
. (3.10)

Remark 3 To gain more insight on how the code length for Scenario A compares
with the one for Scenario B, we plot in Fig. 3.1 LA

γ and LB
γ versus k when k ∈

{1, . . . ,m} and m ∈ {10, 100, 1000}. Note that LB
γ is computed by applying the

approximation from (3.10).

3.3 Selecting between two nested models

In this section, we address the problem of selection between two nested models, Mp

and Mq by using the measurements y. With the notations from (2.7) and (2.8), we
have M = {Mp,Mq} and conventionally we take p < q. One possible approach is
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to decide between the two models by applying the GLRT [28]:

2 ln
f(y; θ̂1,Mp)

f(y; θ̂0,Mq)

Mp

≶
Mq

η, (3.11)

where the two-way inequality denotes that we select the model Mp if the term
in the left-hand side is smaller than η. Otherwise, we select the model Mq. For

k ∈ {p, q}, f(y; θ̂k,Mk) is the likelihood function when the model is Mk, and θ̂k
denotes the ML estimate. The threshold η determines the level of performance,
which is expressed in terms of probability of detection (PD) and probability of false
alarm (PFA) with a terminology borrowed from detection theory.

Another possibility is to choose the model by solving the minimization problem
[69]:

min
k∈{p,q}

[GIC(k) = −2 ln f(y; θ̂k,Mk) + ζk], (3.12)

where GIC is a generalized information criterion. A simple comparison of (3.3) and
(3.12) shows that GIC is equivalent with AIC when ζ = 2. Similarly, GIC reduces
to BIC for ζ = lnn (see (3.4)). From (3.11) and (3.12), we can notice the connection
between GLRT and GIC, which was carefully investigated in [62] for the particular
case when GIC coincides with AIC. More recently, the equivalence between GLRT
and GIC was analyzed by assuming that the number of competing models is larger
than two (see [69] and references therein).

In the previous literature, the relationship between GLRT and SC has been
studied for deciding whether a Poisson or a Geometric model better fits the available
measurements [11,34]. Apparently, the only published attempt to relate GLRT and
SC in the context of Gaussian linear regression is the paper [P2]. More precisely,
we have investigated the selection between model M0 which corresponds to γ = ∅
in (3.2) and the model Mm which is the equivalent of γ = {1, . . . ,m} in the same
equation.

One of the most interesting results from [P2, Proposition 3.1] is that SC is

equivalent with GLRT only if the F-statistic ‖PXy‖2/m
‖P⊥

X
y‖2/(n−m)

is larger than one. Note

that X and y are like in (3.1), PX denotes the orthogonal projection onto the column
space of X, and P⊥

X = I−PX.

In the same framework of linear regression, we have compared SC and BIC when
selecting between two nested models [P2]. In our study, we have assumed that
the matrix X in (3.1) is deterministic and its number of columns (m) is finite. In
another research on connection between various model selection criteria, Hansen and
Yu have proven that an information theoretic criterion which is akin to SC combines
the strength of AIC and BIC [23]. The main difference between our result and the
one from [23] is that Hansen and Yu assumed the entries of X to be random and
m → ∞.
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3.4 Sequentially Normalized Universal Models

As we have already pointed out, the calculation of the normalizing coefficient in
(2.17) is a non-trivial task for most commonly used models. An alternative solution
is the SNML [50,51,54]. We prefer to use the notation f(yn;θ) instead of f(yn;θ, k)
for writing the equations more compactly. For each t ∈ {1, . . . , n}, let yt = y1, . . . , yt
denote the observations up to time moment t. Additionally, θ̂(yt) denotes the ML
estimate.

With the convention that m′ is such that θ̂(yt) can be computed for all t ∈
{m′ + 1, . . . , n}, the expression of SNML is given by

fSNML = fm′

(ym
′

)

n
∏

t=m′+1

f̂(yt|yt−1), (3.13)

f̂(yt|yt−1) =
f(yt; θ̂(yt))

Kt(yt−1)
, (3.14)

Kt(y
t−1) =

∫

f(yt−1, y; θ̂(yt−1, y))dy, (3.15)

where fm′

(·) is a suitably chosen initial distribution. We refer to [P3, Section 2] for
a discussion on how m′ can be selected.

The simplification in computing the complexity term is evident from (3.15),
where the integration is over one data point only. For the linear regression problem
in (3.1), the integral can be expressed in closed form [51]. To give the formula of
the universal model which in this case is dubbed SNLS, we need some supplemetary
notations. Let xt be the column vector obtained by transposing the t-th row of X.
For t ≥ m′ + 1 we define:

Xt = [xt, . . . ,x1],

yt = [yt, . . . , y1]
⊤,

Vt = (XtX
⊤
t )

−1,

β̂t = VtXtyt, (ML estimate which belongs to R
k×1)

êt = yt − β̂
⊤
t xt, (forward a posteriori prediction error)

ct = x⊤
t Vt−1xt.
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Then according to [51, Eq. (15)], we have

SNLS(k) =
n−m′

2
ln
( 2πe

n−m′

n
∑

t=m′+1

ê2t

)

+

n
∑

t=m′+1

ln(1 + ct) +
1

2
lnn+O(1). (3.16)

For the selection of m′, we refer to [51, Section 1]. More interestingly, the formula
above can be applied not only when the matrix X is fixed as in (3.1), but also when
it is random. This makes it possible to employ the SNLS criterion for choosing the
order of autoregressions, as it was clearly shown in [51].

The results have been extended further in [P3] by modifying the criterion so that
it can be applied when the coefficients of the AR models are estimated by forgetting
factor least-squares (LS) algorithms [25]. With the convention that the forgetting
factor λ is positive and less than one, the following criterion was introduced in [P3]:

SNMLλ(k) =
nef

2
ln
( 1

nef

n
∑

t=m′+1

λn−tê2λ,t

)

+

n
∑

t=m′+1

ln[(1 + cλ,t)λ
k] +

1

2
lnnef (3.17)

where

nef =

n−1
∑

t=0

λt, (effective number of samples)

Vλ,t = (

t
∑

i=1

λt−ixix
⊤
i )

−1,

β̂λ,t = Vλ,t

t
∑

i=1

λt−ixiyi, (weighted LS estimate which belongs to R
k×1)

êλ,t = yt − β̂
⊤
λ,txt,

cλ,t = λ−1x⊤
t Vλ,t−1xt.

The performance of SNMLλ was compared with that of other five criteria and
the conclusions are outlined in [P3, Section 6].



Chapter 4

Application of optimally
distinguishable distributions to the
detection of subspace signals in
Gaussian noise

In Section 2.2.5 the concept of optimally distinguishable distributions (ODD) was
already mentioned in connection with the partition of the parameter space which
allows to define KSF.

In this chapter, we show how the ODD methodology from [48] can be applied
to solve the following detection problem [28,55]. Let the vector of measurements be
x = [x0, . . . , xN−1]

⊤, where x0, . . . , xN−1 ∈ R are samples from a time series. Based
on these data, one selects between the hypotheses specified by the model classes:

{

M0 = {f(x;θ, τ) : θ = 0},
M1 = {f(x;θ, τ) : θ 6= 0}. (4.1)

We adopt the convention that 0 is a null vector of appropriate dimension. The
Gaussian density function f(x;θ, τ) is given by

f(x;θ, τ) =
1

(2πτ)N/2
exp

(

− 1

2τ
‖x−Hθ‖2

)

, (4.2)

where H ∈ R
N×k is a known matrix of rank k (N > k + 1), and θ ∈ R

k×1 is the
vector of linear parameters which are unknown.

Remark that, in this chapter, we use some notations which are slightly different
by those from Chapter 2 and Chapter 3. For instance, to be in line with the previous
notations, we should employ Mk instead of M1 in (4.1). We operate these small
modifications for the sake of simplicity.

23
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In [P4], it is shown how the detection problem in (4.1) can be solved by optimal
distiguishability. However, the results from [P4] are restricted to the case when the
noise variance τ is known. Here, as a preparatory step, we first outline briefly the
results from [P4], and then move to the case of unknown variance. The treatment
of this case is based on the solution which we have proposed in [P5, Theorem 3.1].

4.1 ODD detector when the noise variance is known

Partition of parameter space: In the case of the model class M1, the FIM in
(2.13) takes the particular form [27]:

JN (θ) =
1

Nτ
H⊤H. (4.3)

Obviously, FIM does not depend on the values of the linear parameters, which allows
us to use the notation JN instead of JN (θ). Consider the hyper-ellipsoid centered
at θ0 = 0 and defined by (θ−θ0)⊤JN (θ−θ0) = d/N , where d is a parameter whose
optimal value we will find next. Let Bτ

d/N (0) be the largest rectangle within the
hyper-ellipsoid. This rectangle lies parallel to the eigenvectors of JN , and its side

lengths are 2µ1, . . . , 2µk. For i ∈ {1, . . . , k}, we have µi =
(

d
Nkλi

)1/2
, where λi is

the i-th eigenvalue of the matrix JN [48]. We assume that the parameter space Θ is
a bounded closed subset of Rk. Furthermore, Θ is partitioned by filling it up with
adjacent copies of Bτ

d/N (0). The construction is done in such a way that, for any
two adjacent rectangles, the straight line connecting their centers is parallel to one
of the eigenvectors of JN .

Optimum value of parameter d: Let Nd/N be the number of rectangles

within the partition of Θ. We denote by θj the center of the j-th rectangle Bτ
d/N (j).

For all j ∈ {0, . . . ,Nd/N − 1}, the probability density f̂(x | θj) is defined by [48]

f̂(x | θj) =

{

f(x; θ̂(x))/Qτ
d/N (j), θ̂(x) ∈ Bτ

d/N (j)

0, otherwise
(4.4)

where Qτ
d/N (j) =

∫

x:θ̂(x)∈Bτ
d/N

(j)
f(x; θ̂(x))dx and

θ̂(x) = (H⊤H)−1H⊤x (4.5)

are the ML estimates of the linear parameters.

The theoretical results from [48, 49] lead to the conclusion that f̂(x | θj),
j ∈ {0, . . . ,Nd/N − 1}, are optimally distinguishable distributions. The parame-

ter d is selected so as to minimize the KL divergence D(f̂(x | θj) ‖ f(x;θj))
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between the “artificial” model f̂(x | θj) and the “natural” model f(x;θj) for all
j ∈ {0, . . . ,Nd/N − 1}. In [P4], it is proved that the optimum value of d is d̂ = 3k,
which is in perfect agreement with the findings from [48,49].

Detection strategy: The ODD criterion selects the model class M0 whenever
θ̂(x) ∈ Bτ

d̂/N
(0) [48]. This is equivalent to choose M0 if

max (|z1|, . . . , |zk|) <
√
3, (4.6)

where

zj =
(v⊤

j H
⊤x)/

√

ℓj√
τ

∀j ∈ {1, . . . , k}, (4.7)

with the convention that ℓ1, . . . , ℓk are the eigenvalues of the matrix H⊤H, and
v1, . . . ,vk are the corresponding eigenvectors. Remark that we can write

H⊤H = VDV⊤, (4.8)

with

V = [v1, . . . ,vk], (4.9)

D =







ℓ1
. . .

ℓk






.

Confidence indices: The outcome of the ODD method is assessed by two
indices conventionally denoted E1 and E2. According to the definition from [49],
we have E1 = 1−P0|0. Notice that, for an arbitrary pair (i, j), Pi|j is the probability
mass function of Bτ

d̂/N
(i) induced by the model f(x;θj). Additionally, for j 6= 0, E2

is defined as E2 = P0|j. To be in line with the definitions above, we have computed
in [P4,P5] the indices E1 and E2.

Even if there are some problems with the interpretation of E1 and E2, the ODD
partition is an important concept, and the decision rule implied by ODD makes
perfect sense. This is why in both [P4] and [P5], we assessed the outcome of the
ODD method by computing the probability of detection (PD) and the probability
of false alarm (PFA). For the sake of clarity, we mention that, with the notations
from (4.1), PD is the probability to choose M1 when M1 is true, whereas PFA is
the probability to choose M1 when M0 is true [28]. This terminology is the one
used in the engineering literature, and we refer to [28, Table 3.1] for the equivalent
terms from the statistical literature. Apparently, the only published results on the
PD and the PFA for the ODD-based detector are those from [P4,P5]. It is interesting
to remark that PFA = E1, even if E1 was introduced by Rissanen from a different
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interpretation. We also note that ODD method does not seek to maximize the PD

for a given PFA like in the Neyman-Pearson methodology [28].

The rest of the chapter is focused on solving the hypothesis testing problem
(4.1) by using the ODD method when the variance τ is unknown. The problem was
studied in [P5], where we did not give the complete proofs because of the limited
typographic space.

4.2 ODD detector when the noise variance is unknown

We treat τ as a nuisance parameter, and we assume 0 < τ1 < τ < τ2, where τ1 and
τ2 are arbitrary. It will become clear from the results outlined below that τ1 and τ2
do not have any influence on the outcome of ODD detector.

As already told in Section 4.1, the first step in the ODD methodology is to use
the FIM that corresponds to the model class M1 for defining a partition of the
parameter space. In the case of the detection problem which we discuss, FIM has
the well-known expression [27]:

JN (ψ) =

[

(H⊤H)/(Nτ) 0
0 1/(2τ2)

]

, (4.10)

where ψ = [θ⊤τ ]⊤. By comparing (4.3) and (4.10), we remark that JN (θ) does
not depend on the parameters θ, whereas JN (ψ) depends on ψ. More precisely,
JN (ψ) depends explicitly on the noise variance τ . This makes the construction of
the partition to be much more difficult than the one from [P4].

To circumvent the difficulties, we have proposed the following solution [P5].
With the notations from Section 4.1, Bτ

d/N (0) is the rectangle corresponding to the
null hypothesis when the value of τ is fixed. Because in the case of interest for us
the noise variance τ is a nuisance parameter, we assign to the model class M0 the
region Bd/N (0) of the parameter space which is given by the union of all Bτ

d/N (0)

with τ ∈ (τ1, τ2). More formally,

Bd/N (0) =
⋃

τ1<τ<τ2

Bτ
d/N (0) =

{

(θ, τ) : θ ∈ Bτ
d/N (0), τ ∈ (τ1, τ2)

}

.

The definition can be extended for all j 6= 0 by taking Bd/N (j) =
⋃

τ1<τ<τ2

Bτ
d/N (j),

where the significance of Bτ
d/N (j) is the same as in Section 4.1. The center of the

rectangle Bτ
d/N (j) is θj(τ) =

√
τVD−1/2(2

√

d/kmj), where all entries of the vector

mj = [mj
1, . . . ,m

j
k]

⊤ are integers. We emphasize that θj(τ)/
√
τ does not depend on

the value of τ . To enhance intuition, we show in Fig. 4.1 a graphical representation
of Bd/N (0) together with the equivalence classes which are located in its vicinity.
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Figure 4.1: Partition of the parameter space: equivalence classes that correspond to
Bd/N (0) and its neighbors. Note that θ0 = 0 and the number of linear parameters
is k = 2. The matrix H is assumed to have orthonormal colums, and the parameter
d equals 3k. The noise variance bounds are conventionally taken to be τ1 = 1 and
τ2 = 10. For τ ∈ [τ1, τ2] and i ∈ {0, 1, . . . , 8}, Bd/N (i) is a square with side length

2
√
3τ .

By analogy with (4.4), we define the PDF:

f̂j(x) =

{

f(x; θ̂(x), τ̂ (x))/Qd/N (j), θ̂(x) ∈ B τ̂
d/N (j), τ̂ (x) ∈ (τ1, τ2)

0, otherwise

where j ∈ {0, . . . ,Nd/N − 1} and

Qd/N (j) =

∫

x:θ̂(x)∈Bτ̂
d/N

(j),τ̂(x)∈(τ1,τ2)
f(x; θ̂(x), τ̂ (x))dx. (4.11)

The formula for θ̂(x) is given in (4.5) and

τ̂(x) =
1

N
‖x−Hθ̂(x)‖2 (4.12)

is the ML estimate of the variance when the model class is M1.

Next we need to choose d such as to minimize the KL divergence between the
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“artificial” model f̂0(x) and the “natural” model which corresponds to M0. Recall
that, for known τ , M0 contains a single density function and it is straightforward
to select it as the “natural” model. However, when τ is unknown, M0 contains an
infinite number of density functions, and it is not so obvious how to decide which
one is the “natural” model. As it was suggested in [46], one possibility is to take
the “natural” model for M0 to be the NML defined by

f̃0(x) = f(x;θ0, τ̂0(x))/C0,

C0 =

∫

x:τ̂0(x)∈(τ1,τ2)
f(x;θ0, τ̂0(x))dx. (4.13)

We will prove in Appendix 4.4 that choosing the ML function f(x;θ0, τ̂0(x)) as
the “natural” model leads to the same optimum value for the parameter d as in
the case when the “natural” model is the NML function. Note that, for M0 class,
τ̂0(x) = ||x||2/N is the ML estimate of the variance. Whenever it is clear from
the context which measurements are used for estimation, the simpler notation τ̂0 is
preferred to τ̂0(x). The same applies for θ̂(x) and τ̂(x) which are defined in (4.5)
and (4.12), respectively.

After these preparations, we are ready to formulate the principal theorem.

Theorem 4.2.1. For the data sequence x = [x1, . . . , xN ]⊤, consider the ODD testing
between the hypotheses specified by the model classes

M0 = {f(x;θ, τ) : θ = 0, τ1 < τ < τ2},
M1 = {f(x;θ, τ) : θ 6= 0, τ1 < τ < τ2},

where f(x;θ, τ) is given in (4.2). We have the following results:
a) Optimum value of parameter d: Let θ0 = 0. If d ≪ N , then the KL
divergence D(f̂0(x) ‖ f̃0(x)) is minimized by d̂ = 3k.

b) Detection strategy: After observing x, select M0 if

max (|t1|, . . . , |tk|) <
√
3, (4.14)

where tj =
(v⊤

j H
⊤x)/

√

ℓj√
τ̂

∀j ∈ {1, . . . , k}. The role of ℓ1, . . . , ℓk, v1, . . . ,vk is

analogous to that in (4.7), and τ̂ is defined in (4.12).

c) Confidence indices: Let t = [t1, . . . , tk]
⊤, and let ϕ(t; δ) be the PDF given by

ϕ(t; δ) =
exp

(

−||δ||2/2
)

(πN)k/2Γ ((N − k)/2)

∞
∑

α=0

2α/2
(

t⊤δ
)α

Γ ((N + α) /2)

Nα/2 α!
(

1 + ‖t‖2/N
)(N+α)/2

, (4.15)

with parameter vector δ ∈ R
k×1.
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If the condition in (4.14) is satisfied, then

E1 = 1−
∫

(−ξ,ξ)
ϕ(t;0)dt. (4.16)

Otherwise,

E2 =

∫

(−ξ,ξ)
ϕ(t; 2

√
3m)dt, (4.17)

where ξ =
√
3[1, . . . , 1]⊤ and (−ξ, ξ) = {t : −ξj < tj < ξj, 1 ≤ j ≤ k} in which

ξj is the j-th component of vector ξ. The vector m = [m1, . . . ,mk]
⊤ is such that

mj =
⌊

tj+
√
3

2
√
3

⌋

∀j ∈ {1, . . . , k} .

The proof is deferred to Appendix 4.4. �

In the same Appendix, the meaning of the parameter δ from (4.15) is clarified. To
gain more insight on the condition d ≪ N , we refer to the numerical examples in
Section 4.3.
Remark 1 It is straightforward to derive the expressions of PFA and PD for the
decision rule (4.14). Obviously, we have

PFA = E1. (4.18)

Under the hypothesis that x ∼ NN (Hθ, τ ), where θ has at least one entry which is
nonzero and τ > 0, Result 4 from Appendix 4.4 implies

PD = 1−
∫

(−ξ,ξ)
ϕ
(

t;D1/2V⊤θ/
√
τ
)

dt. (4.19)

Remark 2 The condition in (4.14) can be obtained from (4.6) by using the ML
estimate τ̂ instead of the unknown variance. A slightly different decision rule can
be devised by replacing in (4.6) the unknown value of τ with the unbiased estimate
ν̂ = N

N−k τ̂ . Based on this approach, the M0-class is selected if

max (|t̄1|, . . . , |t̄k|) <
√
3, (4.20)

where t̄j =
√

N−k
N tj for all j ∈ {1, . . . , k}. Note that the random vector t̄ =

[t̄1, . . . , t̄k]
⊤ is related to the random vector t by the linear transformation t̄ = ct,

where

c =

√

N − k

N
. (4.21)

Therefore, it is easy to compute the confidence indices which are analogous to E1
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and E2 from Theorem 4.2.1. When the condition in (4.20) is satisfied, we have

Ē1 = 1−
∫

(ξ,ξ)
ϕ̄(t̄;0)dt̄,

where

ϕ̄(t̄; δ) =
exp(−||δ‖|2/2)

(π(N − k))k/2Γ((N − k)/2)

×
∞
∑

α=0

2α/2
(

t̄⊤δ
)α

Γ((N + α)/2)

(N − k)α/2α! (1 + ‖t̄‖2/(N − k))(N+α)/2
. (4.22)

We refer to Appendix 4.4 for more details on ϕ̄(t̄; δ). If (4.20) is not satisfied, then
we get

Ē2 =

∫

(−ξ,ξ)
ϕ̄(t̄; 2

√
3m̄)dt̄, (4.23)

where m̄ = [m̄1, . . . , m̄k]
⊤ with the convention that m̄j =

⌊

t̄j+
√
3

2
√
3

⌋

∀j ∈ {1, . . . , k}.
The closed-form expressions for PD and PFA can be also obtained without difficulties.

4.3 Numerical aspects

4.3.1 Calculation of the confidence indices

Because we want to apply a similar methodology for both E1 and Ē1, let us observe
that

E1 = 1−
∫

(−cξ,cξ)
ϕ̄(t̄;0)dt̄, (4.24)

where c is given in (4.21). It can be also easily verified that ϕ̄(t̄;0) coincides with
the central multivariate t-distribution having N −K degrees of freedom [31]. This
makes the calculation of E1 and Ē1 to become a simple exercise of using the Matlab
function mvtcdf.

Similarly with (4.24), we can write

E2 =

∫

(−cξ,cξ)
ϕ̄(t̄; 2

√
3m)dt̄, (4.25)

where m is defined in Theorem 4.2.1. However, the computation of E2 and Ē2 is
much more difficult than evaluating E1. For providing some numerical examples, we
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consider the particular case k = 2. Then we apply the following formula from [65]:

∫

(−a,a)
ϕ̄
(

t̄; [δ1 δ2]
⊤
)

dt̄

= 2
∞
∑

i=0

∞
∑

j=0

(

exp(−δ21/2)(δ
2
1/2)

i/i!
) (

exp(−δ22/2)(δ
2
2/2)

j/j!
)

B(i+ 1/2, j + 1/2)
(4.26)

×
∫ π/4

0
(sin2i v cos2j v + sin2j v cos2i v)IV1(i+ j + 1, N/2)dv, (4.27)

where a = [A A]⊤ with A > 0, B(·, ·) is the complete beta function, IV1(·, ·) is the
incomplete beta function ratio, and V1 = A2 sec2 v/(N +A2 sec2 v).

In our implementation, the double series from (4.26) is truncated by constraining
i and j to take values from zero to one hundred. The integral from (4.27) is computed
by using the quadgk Matlab function, which is based on an adaptive quadrature
algorithm [60]. The results obtained for various sample sizes are shown in Table 4.1.
In the same table, we reproduce from [P4] the values of the confidence indices for
the case when τ is known. As it was already pointed out in [P4], if τ is known,
then the confidence indices do not depend on the sample size N . On contrary, if τ
is unknown, E1 and E2 as well as Ē1 and Ē2 depend on N , and for N ≫ 1, they
approach the values corresponding to known variance.

Observe in Table 4.1 that almost all the indices decrease whenN increases. There
exists one single exception, namely E2 when (m1,m2) ∈ P1. This erratic behavior
can be explained by the fact that τ̂ is a biased estimate of τ , which makes the limits
of the integration domain in (4.25) to vary with N . The integration domain expands
from (−0.949ξ, 0.949ξ) to (−0.999ξ, 0.999ξ) when N increases from 20 to 1000. It
is evident that the integration is done on the same domains also when evaluating
E2 for (m1,m2) ∈ P2. However, the main difference between computing E2 for
(m1,m2) ∈ P1 and (m1,m2) ∈ P2 is the following: ||2

√
3m||2 = 12 if (m1,m2) ∈ P1,

whereas ||2
√
3m||2 = 24 if (m1,m2) ∈ P2. So, for the points within P2, the effect

produced by the dependence of the integration domain on N is diminished because
2
√
3m is located at larger distance from the null vector θ0.

4.3.2 Calculation of PD and PFA

We focus on the case k = 2. From (4.19), we have:

PD = 1−
∫

(−cξ,cξ)
ϕ̄ (t̄; ζ) dt̄,

where c is given in (4.21) and

ζ = D1/2V⊤θ/
√
τ . (4.28)
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N 20 50 100 500 1000
Known
variance

E1 0.2177 0.1819 0.1706 0.1618 0.1607 0.1596

E2

(m1,m2) ∈ P1 0.0345 0.0367 0.0374 0.0380 0.0381 0.0382
(m1,m2) ∈ P2 0.0020 0.0018 0.0018 0.0017 0.0017 0.0017

Ē1 0.1873 0.1702 0.1648 0.1606 0.1601 0.1596

Ē2

(m1,m2) ∈ P1 0.0426 0.0398 0.0390 0.0383 0.0382 0.0382
(m1,m2) ∈ P2 0.0029 0.0021 0.0019 0.0018 0.0018 0.0017

Table 4.1: Confidence indices for the detection rules from (4.14) and (4.20) when the
number of linear parameters is k = 2. The results for E2 and Ē2 correspond to the equiv-
alence classes Bd̂/N (i) which are located in the vicinity of Bd̂/N (0). With the notations

from Fig. 4.1, we consider Bd̂/N (i) for which i ∈ {1, 3, 5, 7}. This is equivalent with se-

lecting, in (4.23) and (4.25), the vectors m̄ = m = [m1 m2]
⊤ such that (m1,m2) ∈ P1,

where P1 = {(−1, 0), (0,−1), (1, 0), (0, 1)}. Similarly, we choose m̄ = m to have the
entries (m1,m2) ∈ P2 with P2 = {(−1,−1), (1,−1), (−1, 1), (1, 1)} for calculating E2
and Ē2 when the equivalence classes are Bd̂/N (2), Bd̂/N (4), Bd̂/N (6) and Bd̂/N (8) (see

Fig. 4.1).

Remark that ‖ζ‖2 = ||Hθ||2/τ is the energy-to-noise ratio (ENR) [28]. A closer
look to the formula in (4.26)-(4.27) reveals that PD depends on the entries of ζ and
not only on ||ζ||2. A similar property has been demonstrated to hold true for the
ODD detector when τ is known [P4]: PD is maximized when either ζ21 = ENR or
ζ22 = ENR, and it is minimized when ζ21 = ζ22 = ENR/2. When τ is unknown, PD

depends also on the sample size N , as we can see from (4.27).

To illustrate the performance of the ODD detector introduced in Theorem 4.2.1,
we take N = 50 and d equals its optimum value, namely d = 6. Then we compute
PD when ENR increases from 0 dB to 20 dB. To be in line with the experiments from
[P4]-[P5], for each value of ENR, we evaluate PD when ζ21 = ENR and ζ21 = ENR/2,
respectively. By relying on (4.18), we have from Table 4.1 that PFA = 0.1819. The
results are shown in Fig. 4.2, where we also plot the PD achieved by the GLRT
when PFA = 0.1819. The results for GLRT are produced by applying Theorem 9.1
from [28]. From the same theorem, one can notice that the performance of GLRT
depends on ENR, but it does not depend on how ENR is “distributed” between the
entries of the vector ζ.

Next we consider the detection rule which is obtained by re-writing the condition
(4.14) for an arbitrary d instead of the optimum d̂ provided at the point a) of the
Theorem 4.2.1. Therefore, after observing x, M0 is selected if

max (|t1|, . . . , |tk|) <
√

d/k. (4.29)
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Figure 4.2: Comparison of the GLRT with the ODD detector in (4.29) for two cases:
(i) d equals the optimum value given by Theorem 4.2.1; (ii) d is chosen such that
PFA = 10−4. The sample size is N = 50 and the number of linear parameters is k = 2.
Graphical conventions: solid line - GLRT, dashed line - ODD when ζ21 = ENR, and
dash-dotted line - ODD when ζ21 = ENR/2. Note that ζ1 is the first entry of the
vector ζ which is defined in (4.28), and ENR is the acronym for the energy-to-noise
ratio (||ζ||2 = ENR). Remark for d = 6 that the PD curves of GLRT and ODD when
ζ21 = ENR are very close and one cannot easily distinguish between them.

It is straightforward to prove that the PFA for (4.29) is given by

1−
∫

(−cω,cω)
ϕ̄(t̄;0)dt̄,

where ω =
[

√

d/k
√

d/k
]⊤

. Then we fix the PFA to be 10−4, and by applying a grid

search method we find out that the corresponding value of d is approximately 41.36.
By using this value of d, we compute the PD for (4.29) with the same experimental
settings that have been employed for the ODD detector with d = d̂ = 3k. The
results are plotted in Fig. 4.2, together with the PD for GLRT when the PFA takes
the predefined value of 10−4.
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Figure 4.3: GLRT and ODD for which PFA equals 10−4: decrease of PD when τ is
unknown. All the experimental settings as well as the graphical conventions are the
same like in Fig. 4.2.

These numerical examples suggest that the conclusions which have been drawn
in [P4] for the case when the variance is known can be extended to the case with
unknown variance. So, the selection d = d̂ leads to PFA = 0.1819, which is too large
for many practical applications. For this PFA, the ODD and GLRT detectors have
similar performance. If the PFA is fixed to a much smaller value like for example 10−4,
then ODD is superior to GLRT when the whole ENR is “concentrated” only in ζ1.
However, ODD becomes clearly inferior to GLRT when ENR is equally “distributed”
between ζ1 and ζ2.

All that remains is to clarify how the performance is lowered due to lack of
knowledge on the noise variance. We illustrate this aspect by comparing in Fig. 4.3
the results of (4.29) with those of the modified ODD from [P4], which selects M0

whenever

max (|z1|, . . . , |zk|) <
√

d/k,

where the definition of zj is given in (4.7) for all j ∈ {1, . . . , k}. We show in the
same figure how the performance of the GLRT changes when τ is unknown. For the
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GLRT, the comparison reduces to subtract from the PD computed with [28, Theorem
9.1] the PD given by [28, Theorem 7.1]. Remark that, for both GLRT and ODD,
the performance is the same as in the known case when ENR is either very small or
very large.

4.4 Appendix: Proof of Theorem 4.2.1

We briefly outline some results which are instrumental in our proof. The notation
χ2
f is used for the chi-square distribution with f degrees of freedom.

Result 1 [59, Theorem 3.5] If x ∼ NN (Hθ, τI) then (1) θ̂ ∼ Nk(θ, τ(H
⊤H)−1),

(2) (Nτ̂)/τ ∼ χ2
N−k, and (3) θ̂ is independent of τ̂ . Note that θ̂ and τ̂ are defined

in (4.5) and (4.12), respectively.

Result 2 [38, 48] The Gaussian density function whose formula is given in (4.2)
can be factored as follows:

f(x;θ, τ) = f(x|θ̂, τ̂)g(θ̂, τ̂ |θ, τ) (4.30)

where the conditional density f(x|θ̂, τ̂) does not depend on the unknown parameters
θ and τ , and

g(θ̂, τ̂ ;θ, τ) = g1(θ̂;θ)g2(τ̂ ; τ),

g1(θ̂;θ) =
|H⊤H|1/2
(2πτ)k/2

exp

(

− 1

2τ
‖H(θ̂ − θ)‖2

)

,

g2(τ̂ ; τ) =
(N/2)(N−k)/2

Γ ((N − k)/2)

(

τ̂

τ

)(N−k)/2 1

τ̂
exp

(

−N

2

τ̂

τ

)

. (4.31)

Result 3 [31, 32] (Kshirsagar noncentral multivariate t-distribution) Let x′ ∼
Np(µ

′, σ2I) and let u = fs2/σ2 be distributed independently of x′ according to a
χ2
f distribution, so that s2 is an estimate of σ2. Then the distribution of t′ = x′/s

is given by

ϕksh(t
′; δ′, f) =

exp
(

−||δ′||2/2
)

(πf)p/2Γ(f/2)

∞
∑

α=0

2α/2
(

t′⊤δ′
)α

Γ ((f + p+ α)/2)

fα/2α! (1 + ||t′||2/f)(f+p+α)/2
, (4.32)

where δ′ = µ′/σ.

a) Optimum value of parameter d

With the convention that X0 = {x : (θ̂(x), τ̂ (x)) ∈ Bd/N (0)}, the KL divergence
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can be computed as follows:

D(f̂0(x) ‖ f̃0(x))

=
1

Qd/N (0)

∫

X0

f(x; θ̂, τ̂ ) ln
f(x; θ̂, τ̂ )/Qd/N (0)

f(x;θ0, τ̂0)/C0
dx

= ln
C0

Qd/N (0)
+

1

Qd/N (0)

∫

X0

f(x; θ̂, τ̂ ) ln
f(x; θ̂, τ̂ )

f(x;θ0, τ̂0)
dx. (4.33)

First we find closed-form expressions for C0 and Qd/N (0). Then we evaluate the
integral term in (4.33). Similarly with the calculations from [46], we have:

C0 =

∫

τ̂0∈(τ1,τ2)

[

∫

x:τ̂0(x)=τ0

f(x|θ0, τ̂0)dx
]

g2(τ̂0, τ̂0)dτ̂0 (4.34)

=

∫ τ2

τ1

g2(τ̂0; τ̂0)dτ̂0 (4.35)

=
(N/2)N/2 exp(−N/2)

Γ(N/2)
ln

τ2
τ1
. (4.36)

The identity in (4.34) is obtained by applying Result 2 (for k = 0) to the definition
of C0 from (4.13). Then we get (4.35) by noticing that the inner integral in (4.34)
gives unity.

For an arbitrary pair (θ̂, τ̂) with τ1 < τ̂ < τ2, we denote Xθ̂,τ̂ = {x : (θ̂(x), τ̂ (x)) =

(θ̂, τ̂ )}. The definition from (4.11) together with Result 2 produce the following chain
of identities:

Qd/N (0) =

∫

(θ̂,τ̂)∈Bd/N (0)

[

∫

X
θ̂,τ̂

f(x|θ̂, τ̂)dx
]

g(θ̂, τ̂ ; θ̂, τ̂ )dθ̂dτ̂

=

∫

Bd/N (0)
g(θ̂, τ̂ ; θ̂, τ̂)dθ̂dτ̂

= hH,N,k

∫

Bd/N (0)

1

τ̂k/2+1
dθ̂dτ̂

= hH,N,k

∫ τ2

τ1

2k

τ̂k/2+1

[

∫

Md/N (0)
dη̂

]

dτ̂ (4.37)

= dk/2h′H,N,k ln
τ2
τ1
, (4.38)
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where

hH,N,k =
|H⊤H|1/2(N/2)(N−k)/2 exp(−N/2)

(2π)k/2Γ ((N − k)/2)
,

h′H,N,k =

(

2

kπ

)k/2 (N/2)(N−k)/2 exp(−N/2)

Γ ((N − k)/2)
.

Remark that (4.37) is obtained by changing the variables (θ̂, τ̂ ) to (η̂, τ̂), where
η̂ = V⊤θ̂ and V is the matrix from (4.9). In (4.37) we use also the notation
Md/N (0) = [0, µ̂1]× · · · × [0, µ̂k], where

µ̂j =

(

dτ̂

kℓj

)1/2

∀j ∈ {1, . . . , k}. (4.39)

Now we focus on the evaluation of the integral term from (4.33):

∫

X0

f(x; θ̂, τ̂ ) ln
f(x; θ̂, τ̂)

f(x;θ0, τ̂0)
dx

=

∫

Bd/N (0)

[

∫

X
θ̂,τ̂

f(x | θ̂, τ̂)dx
]

g(θ̂, τ̂ ; θ̂, τ̂ ) ln

(

τ̂0
τ̂

)N/2

dθ̂dτ̂

=
N

2

∫

Bd/N (0)
g(θ̂, τ̂ ; θ̂, τ̂) ln

(

1 +
‖Hθ̂‖2
Nτ̂

)

dθ̂dτ̂

=
NhH,N,k

2

∫ τ2

τ1

2k

τ̂k/2+1

[

∫

Md/N (0)
ln

(

1 +

∑k
j=1 η̂

2
j ℓj

Nτ̂

)

dη̂

]

dτ̂

Most of the calculations above are straightforward. The last result is obtained after
applying the same change of variables like in (4.37).

We take

εN =
k
∑

j=1

η̂2j ℓj

Nτ̂
,

where |η̂j | ≤ µ̂j for all j ∈ {1, . . . , k}. By using (4.39), we get

εN ≤
k
∑

j=1

µ̂2
jℓj

Nτ̂
=

d

N
.

As d ≪ N , we employ the approximation ln(1 + εN ) ≈ εN , which leads to
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∫

X0

f(x; θ̂, τ̂ ) ln
f(x; θ̂, τ̂ )

f(x;θ0, τ̂0)
dx

≈ NhH,N,k

2

∫ τ2

τ1

2k

τ̂k/2+1

[

∫

Md/N (0)

∑k
j=1 η̂

2
j ℓj

Nτ̂
dη̂

]

dτ̂

=
dk/2+1

6
h′H,N,k ln

τ2
τ1

=
d

6
Qd/N (0). (4.40)

Combining the results from (4.33), (4.36), (4.38) and (4.40), we get

D(f̂0(x) ‖ f̃0(x)) ≈ k

2
ln

kπ

2d
+

d

6
+ ln

(

(N/2)k/2Γ ((N − k)/2)

Γ(N/2)

)

. (4.41)

It is clear from (4.41) that D(f̂0(x) ‖ f̃0(x)) is minimized for d̂ = 3k.

The calculations above also show that selecting the “natural” model for M0 to
be the ML function f(x;θ0, τ̂0) instead of the NML function f(x;θ0, τ̂0)/C0 leads
to the same optimum d̂ = 3k. The KL distance between the “artificial” and the
“natural” models will be different when choosing ML instead of the NML, but this
is less important for our detection problem.

b) Detection strategy: After observing x, the model class M0 is selected when
(θ̂, τ̂ ) ∈ Bd̂/N (0). This reduces to verifying for all j ∈ {1, . . . , k} that

|v⊤
j θ̂| < µ̂j.

By using (4.5), (4.8) and (4.9), one can easily prove that the condition above is
equivalent to

|v⊤
j H

⊤x|
ℓj

< µ̂j,

which becomes

|v⊤
j H

⊤x|
ℓj

<

(

3τ̂

ℓj

)1/2

(4.42)

by employing (4.39) for d = d̂ = 3k. The condition in (4.14) is obtained straightfor-
wardly from (4.42).
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c) Confidence indices

First we prove the following result on the distributional properties of the vector
t = [t1, . . . , tk]

⊤.
Result 4 If x ∼ NN (Hθ, τI), then the PDF of the random vector t is the one

from (4.15), where

δ = D1/2V⊤θ/
√
τ . (4.43)

Proof Let t̄ = D1/2V⊤ ˆθ√
ν̂

, where ν̂ = N
N−k τ̂ is the unbiased estimator of the unknown

variance τ . Based on Result 1, we have θ̂ ∼ Nk(θ, τ(H
⊤H)−1), which leads

to D1/2V⊤θ̂ ∼ Nk(D
1/2V⊤θ, τI) (see, for example, [40, Theorem 3.2.1]). We

have also from Result 1 that (N − k)ν̂/τ ∼ χ2
N−k, and θ̂ is independent of ν̂.

Then we operate the following substitutions in Result 3: p = k, µ′ = D1/2V⊤θ,
σ2 = τ , s2 = ν̂ and f = N − k. So, u = (N − k)ν̂/τ , and the distribution of t̄
is given by

ϕ̄(t̄; δ) = ϕksh(t̄; δ, N − k),

where δ is defined in (4.43). The expression of ϕ̄(t̄; δ) is presented in (4.22).
The distribution of t is readily obtained by applying the change of variables

t =
√

N
N−k t̄. �

By definition, Bd̂/N (i) =
⋃

τ1<τ<τ2

Bτ
d̂/N

(i) for an arbitrary index i. Given τ ∈

(τ1, τ2), the center of the rectangle Bτ
d/N (i) is θi(τ) =

√
τVD−1/2(2

√
3mi), where

all entries of the vector mi = [mi
1, . . . ,m

i
k]

⊤ are integers. So, θi(τ)/
√
τ does not

depend on the value of τ . Based on Result 4, we have that, for all τ ∈ (τ1, τ2), the
PDF of t is ϕ(t; 2

√
3mi) if x ∼ NN

(

Hθi(τ), τ
)

.

When the condition in (4.14) is satisfied, we have (θ̂, τ̂) ∈ Bd̂/N (0), and by
applying the result above for i = 0, we obtain:

E1 = 1− P0|0

= 1− P
(

Bd̂/N (0) | θ/√τ = 0
)

= 1− Prob{−ξ < t < ξ;θ/
√
τ = 0}

= 1−
∫

(−ξ,ξ)
ϕ(t;0)dt.

If the condition in (4.14) is not satisfied, then (θ̂, τ̂) falls within Bd̂/N (i) which has

the property that mi = m. It is evident that at least one entry of mi is nonzero.
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So,

E2 = P0|i

= P
(

Bd̂/N (0) | θ/√τ = VD−1/2(2
√
3m)

)

= Prob
{

−ξ < t < ξ;θ/
√
τ = VD−1/2(2

√
3m)

}

=

∫

(−ξ,ξ)
ϕ(t; 2

√
3m)dt,

which concludes the proof. �



Chapter 5

Cepstral nulling: selection of the
threshold via Kolmogorov
structure function

One of the classical problems in statistics is the following. Consider a vector of
independent Gaussian random variables with unknown means but known variances.
A possible approach for reducing the total variance (TV) of these random variables
is to exploit the (a priori) information that most of them have “small” means [68].
A similar problem occurs in cepstral analysis. More precisely, under the assumption
that the observed signal is stationary, the estimated cepstral coefficients have neat
distributional properties which allow to recast the reduction of their TV in the
mathematical framework which was shortly discussed above [67].

This line of thinking led to the thresholding procedure from [68], where two
different schemes have been applied for the selection of the threshold: the first one
is based on a carefully designed most powerful unbiased test (UMPUT), while the
second one uses a modified form of BIC. In [P6], we have introduced a threshold
selection method which is based on the KSF. The estimated cepstrum resulting after
thresholding can be further utilized to smooth the periodogram.

We note that KSF and BIC are fully automatic procedures, whereas UMPUT
requires supplementary information provided by the user. Next we briefly outline
the three selection methods and compare their performance.

5.1 Cepstral nulling

Periodogram For a stationary, discrete time, real-valued signal, consider the es-
timation of the spectrum Φ(ω) from the measurements y0, . . . , yN−1. With the
convention that ωp = (2πp)/N , p ∈ {0, . . . , N − 1}, are the Fourier frequency grid
points, we use the notation Φp for Φ(ωp). The estimate of the spectrum at point ωp

41
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is [66]:

Φ̂p =
1

N

∣

∣

∣

∣

∣

N−1
∑

t=0

yt exp(−iωpt)

∣

∣

∣

∣

∣

2

,

where i =
√
−1.

Cepstral coefficients We assume that N , the number of samples, is even and take
M = N/2 + 1. Under the hypothesis that min{Φp, Φ̂p} > 0 for all p, the first M
cepstral coefficients and their estimates are given by [68]:

cj =
1

N

N−1
∑

p=0

ln(Φp) exp(iωjp),

ĉj =
1

N

N−1
∑

p=0

ln(Φ̂p) exp(iωjp) + γδj,0,

where j ∈ {0, . . . ,M − 1} and γ = 0.577216 . . . is the Euler-Mascheroni constant.
The Kronecker indicator δj,0 takes value one if j = 0, and otherwise takes value zero.
The rest of the coefficients can be obtained without difficulties because cN−j = cj
and ĉN−j = ĉj for j ∈ {1, . . . ,M − 2}.
Theorem 5.1.1. [13, 21, 67] When N ≫ 1, the normalized vector of estimation
errors

√
N(ĉ− c) converges in distribution to the normal distribution of mean zero

and covariance matrix

C =
π2

6
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. (5.1)

For clarifying the meaning of N ≫ 1, we mention that, according to [68], the
distribution of the estimation errors may differ significantly from the one in Theorem
5.1.1 if N < 128. It was also pointed out in [68] that, in most of the practical
applications, the number of measurements is not larger than 2048. Hence, we focus
on the cases when

128 ≤ N ≤ 2048. (5.2)

Thresholding schemes Based on the distributional properties of

ĉ = [ĉ0 . . . ĉM−1]
⊤,
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the following thresholding scheme was introduced [20,68]:

čj =

{

0, |ĉj | < µ [C(j + 1, j + 1)/N ]1/2 ,
ĉj , otherwise,

(5.3)

where j ∈ {0, . . . ,M −1} and C(j+1, j+1) is the (j+1)-th diagonal element of the
matrix C which is defined in (5.1). The parameter µ > 0 determines the threshold
level.

The statistical properties of the thresholding scheme have been investigated
in [16]. Based on Theorem 5.1.1, the following method for smoothing the peri-
odogram was proposed in [33]. First, the empirical cepstrum is plotted by tracing
the points {(k, ĉk)}M−1

k=0 in the plane. Then a so-called grid-transformation is ap-
plied which re-scales the coordinates so that the horizontal distance between ĉk and
ĉk+1 becomes larger for small values of k, and smaller for large k. After transfor-
mation, the coefficients are smoothed with local linear regression. In comparison
with thresholding, the solution from [33] has a higher degree of complexity, both
conceptually and computationally.

Threshold selection We present below two different methods which have been
proposed for the selection of parameter µ.

UMPUT [68] - The formula is derived by combining the UMPUT test [35] with
some empirical evidence, and it is given by:

µUMPUT = (5− Ist) +
N − 128

1920
. (5.4)

Ist is a parameter to be chosen according to the signal type:

• Ist = 1 for broadband signal with small dynamic range;

• Ist = 2 for broadband signal with medium dynamic range;

• Ist = 3 for narrowband signal with large dynamic range.

The application of µUMPUT is restricted to data sets for which N is an integer power
of two and satisfies the condition in (5.2).

BIC [68] - In this case, the choice of the threshold relies on BIC [58]. The
expression of µ is:

µBIC = 1 + (lnM)1/2. (5.5)

5.2 An approach based on KSF

The key point is to recast the thresholding as a protocol for transmitting {ĉj}M−1
j=0

from an hypothesized encoder to a decoder. However, the methods based on the
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MDL principle [47,53] cannot be applied straightforwardly because we do not want
to identify the coefficients which are deemed to be noninformative, but rather to
test the statistical hypothesis [68]:

c2j ≤ C(j + 1, j + 1)/N, j ∈ {0, . . . ,M − 1}. (5.6)

Note that nulling some of the coefficients {ĉj}M−1
j=0 is similar to a quantization

process. This observation makes the connection between the thresholding procedure
defined in (5.3) and the formula from (2.32). However, for re-deriving (2.32) in the
particular case of our problem, we need to consider the following steps: (1) Define
a partition for the space of the cepstral coefficients; (2) Quantize the estimated
cepstral coefficients to the values given by the centroids of the equivalence classes
to which they belong; (3) Evaluate the code length for the quantized coefficients, as
well as the distortion produced by quantization.

For the sake of brevity, we do not outline all the derivations which can be found
in [P6]. It was also pointed out in [P6] that it is more convenient to apply the
transformation

xj = ĉj [N/C(j + 1, j + 1)]1/2 , j ∈ {0, . . . ,M − 1},

and then to perform all the calculations by using {xj}M−1
j=0 instead of {ĉj}M−1

j=0 . The
outcome of Steps (1) and (2) is the operator Q(·) which gives, for and arbitrary
x ∈ R

M , the centroid of the hyper-cube to which x belongs. According to [P6],
Q(x) = [q(x0) . . . q(xM−1)]

⊤, where

q(xj) =

{

0, |xj | < 1 + ℓ

sgn(xj)
(

1 + 2ℓ+ 2ℓ
⌊

|xj |−1−ℓ
2ℓ

⌋)

, otherwise.
(5.7)

The nonnegative number ℓ ≥ 0 is a parameter. To draw a parallel to the parametriza-
tion from Section 2.2.5, we mention that ℓ =

√

d/M . Note from the equation (5.7)
that the volume of the equivalence class centered at zero is larger than the volumes
of all other equivalence classes. This makes us to apply a special strategy in the
evaluation of the term Ld(θ

i) from (2.32). Recall that Ld(θ
i) is the code length for

the center of the equivalence class where the ML estimate falls.

It is helpful to introduce some definitions. Let η = {j : 0 ≤ j ≤ M−1, q(xj) 6= 0}.
The cardinality of η is denoted by k, and we assume that 0 < k < M . Additionally,
we have:

η = {j0, . . . , jk−1},
z = [xj0 , . . . , xjk−1

]⊤,

z̃ = [q(xj0), . . . , q(xjk−1
)]⊤.
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The decoder will have full information on the quantized values of {xj}M−1
j=0 if the

encoder transmits the entries of η and z̃.

The code length for η, which is denoted Lη(ℓ), can be evaluated by applying the
same method which was used to derive (3.9). The major difference is that we force
at least one of the values {xj}M−1

j=0 to be turned to zero. Hence, we get:

Lη(ℓ) = min
{

LA
η , L

B
η (ℓ)

}

, (5.8)

LA
η = ln(2M − 2), (5.9)

LB
η (ℓ) = ln

(

M

k

)

+ ln k + ln[1 + ln(M − 1)]. (5.10)

Obviously, the approximation from (3.10) can be applied when evaluating LB
η (ℓ).

Notice also that the expression of Lη(ℓ) is slightly different from the formula em-
ployed in [P6]. We mention that the formula from [P6] is based on [48, Eq. 9.41].

From [P6], we have that the code length for z̃ is

Lz̃(ℓ) =
k

2
ln

( ||z̃||2/k
ℓ2

πe

2

)

+
1

2
ln k. (5.11)

Moreover, instead of measuring the distortion by considering the worst case scenario
which corresponds to the term d/2 in (2.32), we take the distortion to be given by

Dx(ℓ) =
1

2

M−1
∑

j=0

[xj − q(xj)]
2 . (5.12)

Because in our settings the first term within (2.32) is a constant, we obtain the
following KSF-based criterion:

Lc(ℓ) = Lη(ℓ) + Lz̃(ℓ) +Dx(ℓ). (5.13)

If one increases the value of the parameter ℓ, then it is likely that k decreases, Lz̃(ℓ)
decreases as well, whereas Dx(ℓ) increases. The optimum value ℓ∗ is chosen from a
pre-defined set of nonnegative numbers such as to minimize the expression in (5.13),
or equivalently,

ℓ∗ = argmin
ℓ

Lc(ℓ).

This result together with (5.7) lead to the following threshold to be used in cepstral
nulling:

µKSF = 1 + ℓ∗. (5.14)
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5.3 A modified KSF criterion

The assumption for the derivation of the criterion in (5.13) is that all cepstral co-
efficients are quantized, and not only those which are turned to zero. Because this
hypothesis is not in total agreement with (5.3), we propose to modify the KSF
criterion such that z̃ is replaced by z. More precisely, the formula in (5.11) becomes:

L̄z(ℓ) =
k

2
ln

( ||z||2/k
ℓ2

πe

2

)

+
1

2
ln k.

In this situation, it is not longer necessary to consider the distortion produced to
the coefficients which are not turned to zero. Hence, instead of (5.12), we have

D̄x(ℓ) =
1

2

∑

j∈{0,...,M−1}\η
x2j ,

and the modified KSF criterion (KSFM) is given by

L̄c(ℓ) = Lη(ℓ) + L̄z(ℓ) + D̄x(ℓ). (5.15)

To gain more insight, let us assume that

|x(M−1)| > |x(M−2)| > · · · > |x(0)|. (5.16)

If parameter ℓ satisfies the condition

|x(M−k)| ≥ 1 + ℓ > |x(M−k−1)|, (5.17)

then KSFM has the expression:

L̄c(ℓ) = Lη(ℓ) +
k

2
ln

(

Sk/k

ℓ2
πe

2

)

+
1

2
ln k +

1

2

M
∑

j=k+1

x2(M−j). (5.18)

The formula for Lη(ℓ) is given in (5.8)-(5.10) and, for all k ∈ {1, . . . ,M − 1}, we
denote

Sk =

k
∑

j=1

x2(M−j). (5.19)

It is easy to observe that among all ℓ which satisfy (5.17), the one which minimizes
L̄c(ℓ) is ℓ = |x(M−k)| − 1. This property allows us to re-write L̄c(ℓ) as a function of
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k:

L̄c(k) = Lη(k) +
1

2
ln k (5.20)

+
k

2
ln

[

Sk/k

(|x(M−k)| − 1)2
πe

2

]

(5.21)

+
1

2
(SM − Sk), (5.22)

where we re-denoted the formula in (5.8) as Lη(k). Additionally, SM =

M−1
∑

j=0

x2j .

Therefore, finding the optimum µ by using KSFM reduces to select from {1, . . . ,M−
1} the value of k which minimizes L̄c(k). Because we want to draw a parallel be-
tween KSFM and BIC, we discuss briefly the following interpretation of the BIC-
based thresholding scheme. The use of (5.3) when µ has the expression from (5.5)
is equivalent with choosing k ∈ {1, . . . ,M − 1} so as to minimize:

BIC(k) =
1

2

M−1
∑

j=0

x2j −
1

2

k
∑

j=1

[

x2(M−j) − µ2
BIC

]

=
1

2
(SM − Sk) +

k

2
µ2
BIC

=
1

2
(SM − Sk) +

k

2

(

1 +
√
lnM

)2
. (5.23)

The most important difference between BIC(k) and L̄c(k) is that, in (5.23), the term
k

2

(

1 +
√
lnM

)2
depends only on k and the number of samples, whereas in (5.21) the

term
k

2
ln

[

Sk/k

(|x(M−k)| − 1)2
πe

2

]

depends on k and x(M−1), . . . , x(M−k). This makes

the analysis of L̄c(·) to be much more complicated than that of BIC(·).

5.4 Numerical examples

The criterion for evaluating the performance of the thresholding-based scheme de-
fined in (5.3) is the ratio ρ = TV(ĉ)/TV(č), where

TV(ĉ) =

N−1
∑

j=0

E
[

(ĉj − cj)
2
]

, (5.24)

TV(č) =
N−1
∑

j=0

E
[

(čj − cj)
2
]

. (5.25)
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It is clear that a large value of ρ means a significant reduction of the TV. Like
in [68], we calculate TV(ĉ) and TV(č) by replacing in (5.24)-(5.25) the expectation
operator with an average over 1000 Monte Carlo simulations.

For N ∈ {128, 256, 512, 1024, 2048}, we generate data according to the following
models:

• Example 1 - broadband MA with a small dynamic range of the log-spectrum
[68]:

yt = et + 0.55et−1 + 0.15et−2; (5.26)

• Example 2 - broadband MA with a medium dynamic range of the log-
spectrum [33,68]:

yt = et + 0.4574et−1 + 0.2157et−2 + 0.3951et−3 + 0.1383et−4 ; (5.27)

• Example 3 - narrowband ARMA with a large dynamic range of the log-
spectrum [33,68]:

yt = 1.55yt−1 − 0.95yt−2 + et + 0.75et−1 + 0.35et−2; (5.28)

In Eqs. (5.26)-(5.28), et is zero-mean white Gaussian noise with variance one, and
t ∈ {0, . . . , N−1}. The interested reader can find in [33,68] plots with the log-spectra
of the three models outlined above.

Note that the same models have been also used for the experimental results
reported in [P6]. The main reason for which we consider them also here is because
we want to illustrate the effect of the modifications operated on the KSF criterion
from [P6].

The thresholds µUMPUT, µBIC and µKSF are computed with formulas from (5.4),
(5.5) and (5.14), respectively. The value of ℓ∗ in (5.14) is chosen from the set
{0.0, 0.1, . . . , 9.0} so as to minimize the KSF in (5.13). Note that Lc(ℓ) → ∞ when
ℓ = 0. The following property is worth mentioning: if k = 0 for a particular value
ℓ0 > 0, then k = 0 for all ℓ ∈ {ℓ0 + 0.1, . . . , 9.0}. This observation can be used to
make the algorithm faster. The parameter ℓ is initialized with value 0.1, then it is
increased at each step with 0.1, and the algorithm is stopped when either k = 0 or
ℓ = 9.

For the sake of comparison, we compute ρ also for the case when one knows the
values of the true cepstral coefficients and selects µ ∈ {1.0, 1.1, . . . , 10.0} such that
to minimize TV(č). The outcome of this procedure is named µgenie because we have
assumed knowledge of the ground truth. Remark that, for a given model, µKSF

changes from one realization to another, whereas µUMPUT, µBIC and µgenie are the
same for all realizations.
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The results of the experiments are shown in Fig. 5.1. For completeness, we plot,
in the same figure, the average number of the retained coefficients (ν). Note that ν
represents the average number of the cepstral coefficients {ĉj}N−1

j=0 which have not
been set to zero by the thresholding scheme.

For Example 1, the results obtained when thresholding with µ = µBIC are very
modest, whereas for µ = µUMPUT and µ = µKSF the TV reduction is almost the same
as the one obtained by µ = µgenie. Observe that BIC performs so poorly because it
retains too many coefficients. For Example 2, all threshold-selection methods lead
to similar results, as we can notice from Fig. 5.1. It is interesting that BIC is nearly
optimal for the Example 3. For Examples 2 and 3, the average number of coefficients
retained by KSF tends to be smaller than the values of ν for the other methods.

Remark how the maximum value of ρ varies from one example to another. It is
about 500 for Example 1, becomes about 50 for Example 2, and is as small as 7 for
Example 3.

Furthermore, we use the same examples to compare the capabilities of KSF and
KSFM. As in the previous experiments, we take µKSF to be the one given by (5.14),
and its selection is done as it was already explained before. We define µKSFM = 1+ℓ̄∗,
where ℓ̄∗ is chosen from the set {0.0, 0.1, . . . , 9.0} so as to minimize L̄c(ℓ) (see Eq.
(5.15)). The results are plotted in Fig. 5.2. Observe that, for all sample sizes,
KSFM retains more coefficients than KSF when the signal is broadband with a small
dynamic range of the log-spectrum. This leads to a decrease of the performance in
the case of Example 1, where the measurements are outcomes from an MA process.
We also note that, in Example 1, KSFM is inferior to KSF, but it is much better
than BIC.

Remark that the threshold for the KSFM-based cepstral nulling was selected
by picking-up from {0.0, 0.1, . . . , 9.0} the value ℓ̄∗ which minimizes the formula in
(5.15). As we already know from Section 5.3, there exists an alternative procedure,
namely the value of k is chosen from {1, . . . ,M−1} so as to minimize the criterion in
(5.20)-(5.22). For the numerical examples considered in this chapter, both methods
lead to similar reduction of the TV. However, in most practical applications, M is
much larger than the number of points on the ℓ-grid, which makes the method based
on the selection of k to have higher computational complexity than the method based
on the selection of ℓ.



50 Chapter 5.

128 256 512 1024 2048
0

100

200

300

400

500

N

ρ

Example 1

128 256 512 1024 2048
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

N

ν

128 256 512 1024 2048
5

10

15

20

25

30

35

40

45

50

N

ρ

Example 2

128 256 512 1024 2048
2.5

3

3.5

4

4.5

5

5.5

6

6.5

N

ν

128 256 512 1024 2048
1

2

3

4

5

6

7

8

N

ρ

Example 3

128 256 512 1024 2048
0

5

10

15

20

25

30

35

N

ν

Figure 5.1: Experimental results for the Examples 1-3. First row: the ratio ρ =
TV(ĉ)/TV(č) versus the sample size N for various selections of the threshold µ. Sec-
ond row: the average number of retained cepstral coefficients ν versus the sample size.
The following values of the threshold are employed in experiments (we indicate in paren-
theses the color, the line type and, in some cases, the marker symbol used in plots):
µgenie (green-dashed line-asterisk), µKSF (red-solid line), µBIC (black-dotted line-circle),
µUMPUT (blue-dashdot line).
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Figure 5.2: Examples 1-3: comparison of the results obtained with KSF (red-solid line)
and KSFM (blue-dashdot line). First row: the ratio ρ = TV(ĉ)/TV(č) versus the sample
size N . Second row: the average number of retained cepstral coefficients ν versus the
sample size. Remark in Example 3 that the graphs for KSF and KSFM almost coincide.
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Chapter 6

Fairness in multiaccess
communication systems

Radio resource management (RRM) is a key function in wireless communication
systems which involves strategies and algorithms for admission control, scheduling,
subcarrier allocation, rate control, transmit power allocation, choosing the modula-
tion scheme, etc. RRM is essential for utilizing the limited spectrum resources as
efficiently as possible and providing quality of service (QoS) in wireless networks.

It is known that, in many cases, the performance measures (e.g., overall through-
put) can be optimized if opportunistic algorithms (e.g, opportunistic beamform-
ing [70, Chapter 6]) are employed. However opportunistic RRM techniques always
disfavor the users with poor channel conditions or high level of interference, which
leads to unfair allocation of resources (e.g., rate) especially under low mobility con-
ditions.

In this chapter, we focus on fairness in rate allocation. We investigate the prob-
lem in an information theoretic framework.

6.1 Capacity region of multiaccess channels

6.1.1 Key definitions and concepts

The capacity of a channel is the maximum rate of communication over the channel
for which arbitrary small error probability can be achieved. Denoting the input
variable to a channel by X and output by Y , the capacity of the channel is given
by [9]

C = max
p(x)

I(X;Y ),

where p(x) is the distribution of X and I(X;Y ) is the mutual information between
X and Y . It is well-known that the capacity of a real Gaussian channel with received

53
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signal power P and noise power N0 is [9]

C =
1

2
log2(1 +

P

N0
), bits/sec/Hz.

This means that over a Gaussian channel, the reliable rate cannot exceed this value,
regardless of the decoding method used. By decoding we mean the process which
translates the received message to the codewords of a given code. For the complex
Gaussian channel the capacity formula becomes C = log2(1 + P

N0
) due to the fact

that we can independently transmit on real and imaginary dimensions.

The capacity region of a multiuser system includes all reliable rates that the
users can achieve. Consider the uplink of a multiuser system when K users are
transmitting to a base station. Denoting the received power of k-th user by Pk, the
capacity region includes all the rate vectors r = [R1, R2, . . . , RK ]⊤ which satisfy the
condition [9, 70]:

K
∑

i=1

Rk ≤ C
(

∑K
i=1 Pi

N0

)

bits/sec/Hz, (6.1)

where the function C(·) is defined as C(x) = log2(1 + x). Like in the previous
definitions, N0 is the variance of additive white Gaussian noise. The term in the
right-hand side of (6.1) is the sum-capacity of multiuser system.

We refer to [9, Chapter 14] for more details on multiuser information theory.

6.1.2 Capacity region as a polymatroid

Polymatroid structure has been used in some resource allocation problems to obtain
greedy optimization algorithms (see e.g. [14]). Later on, Tse and Hanley exploited
it to characterize the capacity region of multiaccess systems [71].

Here, we first define a polymatroid structure and then show that the capacity
region of a multiuser system can be described by a polymatroid.

Definition 6.1. [12,71] Let E = {1, 2, . . . ,K} and f : 2E → R
+ be a set function.

The polyhedron

B(f) ≡ {(x1, . . . , xK) : x(S) ≤ f(S) ∀S⊆E, xi ≥ 0 ∀i}, (6.2)

where x(S) =
∑

i∈S xi, is a polymatroid if f(·) satisfies the following three condi-
tions:

(1) f(∅) = 0 (normalized);

(2) f(S) ≤ f(T ) if S ⊂ T (nondecreasing);

(3) f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) (submodular).
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To show that the capacity region is a polymatroid structure, we introduce the

function fc(S) = C
(

∑

i∈S
Pi
N0

)

, where S is an arbitrary subset of E, and E =

{1, 2, . . . ,K} is the index set of users. Now, we should prove that the function
fc(·) satisfies the three conditions in Definition 6.1. Conditions (1) and (2) are
trivial to check. Let us denote ti = Pi

N0
and g(S) = 1 +

∑

i∈S ti for an arbitrary
S ⊆ E. Consider two subsets S, T ⊆ E and, without loosing the generality, assume
g(S) ≤ g(T ). It is easy to see that g(S ∩ T ) ≤ g(S) ≤ g(T ) ≤ g(S ∪ T ) and
g(S) + g(T ) = g(S ∩ T ) + g(S ∪ T ). Therefore, there exists z such that 0 ≤ z ≤
g(S) ≤ g(T ), g(S ∪ T ) = g(T ) + z and g(S ∩ T ) = g(S)− z. From this, we have

g(S ∪ T )g(S ∩ T ) =
(

g(T ) + z
)(

g(S)− z
)

= g(T )g(S) −
(

g(T )− g(S)
)

z − z2

≤ g(T )g(S), (6.3)

where the last inequality is a consequence of the fact that g(T ) − g(S) and z are
both non-negative. Applying log2(·) to both sides of (6.3) we get

log2 g(T ) + log2 g(S) ≥ log2 g(S ∪ T ) + log2 g(S ∩ T ). (6.4)

The proof that fc(·) satisfies Condition (3) is concluded by substituting fc(·) =
log2(g(·)) in the inequality above.

To gain more insight, we give an example of a function which satisfies conditions
(1) and (2) but does not satisfy condition (3). For simplicity, we keep the framework
from the proof for capacity function and we define h(S) = (

∑

i∈S
Pi
N0

)2. It is a simple
exercise to verify that

h(S) + h(T ) ≤ h(S ∪ T ) + h(S ∩ T ), (6.5)

where S and T are arbitrary subsets of E. For the sake of completeness, we mention
that the set functions which satisfy conditions (1) and (2) and the inequality in (6.5)
are called supermodular [75].

6.2 Multiple-access techniques and their achievable rates

Successive Interference Cancellation: SIC is known to achieve the sum-capacity
of a multiuser system [9,70]. The decoding is done in as many stages as the number
of users, where in each stage one user is decoded. Let us denote the decoding order
by σ(1) → σ(2) → . . . → σ(K), where σ(·) is a permutation on the set of users E.
In the first stage, the receiver decodes the signal of user σ(1) treating all the other
users as Gaussian noise. This means that the aggregate noise power seen by the first
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decoded user is Nσ(1) = N0+
∑K

j=2 Pσ(j) which gives the rate Rσ(1) = C(
Pσ(1)

Nσ(1)
). The

decoder cancels the successfully decoded signal from the composite received signal
and continues the procedure by decoding the next user and so on.

It is clear that the achievable rate for a specific user in SIC depends on its
decoding order. The rate of user σ(i) ∈ {1, 2, . . . ,K} is expressed by the following
formula [70]:

Rσ(i) = C
( Pσ(i)

N0 +
∑

j>i Pσ(j)

)

. (6.6)

The K! rate vectors obtained by K! different decoding orders of K users in SIC
method, correspond to K! corner points of sum-capacity facet. The other points
within sum-capacity facet cannot be achieved by SIC.

Time-sharing and rate-splitting: TS is a method for achieving the other points
on sum-capacity facet via sharing the whole transmission time between different
decoding orders corresponding to different corners of the facet [70]. Referring to
Fig. 6.1, all the points on the sum-capacity facet can be achieved by time sharing
between the two SIC points. Assuming that K = 2 and 0 < α < 1, time sharing
means that in α fraction of time the SIC decoder first decodes user 2 and in 1 − α
fraction of time the SIC decoder first decodes user 1.

In general, when there are K users, the sum-capacity facet has K! corner points
each corresponding to a decoding order. Then TS means to choose K! positive
numbers {αi}K!

i=1, each for a corner point, such that
∑K!

i αi = 1, and then to allocate
αi fraction of time to the i-th corner point.

Another equivalent way to achieve the points on sum-capacity facet is rate split-
ting [42]. Consider a simple multiaccess system with K = 2 users, having powers
P1 and P2 and rates R1 and R2, where R1 + R2 = C(P1+P2

N0
). The idea behind

rate-splitting is that either of users or both of them split their powers (and therefore
rates) into two or more parts, where each part is treated as a virtual user and is de-
coded using SIC in the receiver. Suppose that user 1 is transformed into two virtual
users 1a and 1b with powers P1a and P1b = P −P1a, but user 2 remains unchanged,
and also suppose that the decoding order is 1a → 2 → 1b. Then the rates of three
users are r1a = C( P1a

N0+P2+P1b
), rb = C( P2

N0+P1b
), r1b = C(P1b

N0
), and the total rate of

user 1 is r1 = r1a + r1b. It is easy to see that r1 + r2 = R1 +R2, which means that
the new rate vector (r1, r2) is on sum-capacity facet.

Orthogonal Multiple Access: OMA is another modality for accessing the channel
by K users. In OMA, user i gets a fraction αi of degrees of freedom (DOF), where
∑K

i αi = 1. Note that it is irrelevant for the capacity analysis whether the parti-
tioning in DOF is accross time or frequency. This means that the maximum rate
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Figure 6.1: Capacity region in the case when K = 2. Note that the capacity region
includes all the points inside the pentagon area whose sides are the two axes, the two
black lines and the blue line. This area corresponds to a polymatroid structure. All
points inside this region are reliably achievable. Blue line shows the sum-capacity facet,
i.e., the points with maximum achievable sum-rate. The two extreme points of blue line
are points achievable by SIC, where the black square is obtained if user 2 is decoded
first and black diamond is obtained if user 1 is decoded first. The red curve shows the
OMA achievable rates. As it can be seen, OMA curve intersects with the sum-capacity
facet only in one point (red circle), namely the point in which the DOF allocated to
users are proportional to their received powers. All other points on sum-capacity facet
can be achieved by time-sharing of corner points (SIC points) or by using rate splitting.
In our settings P1

N0
= 20 and P2

N0
= 10. The figure is adapted from [70].

the user i can achieve is [70]:

R
(OMA)
i = αiC

(

Pi

αiN0

)

bits/sec/Hz. (6.7)

OMA is suboptimal in rate, meaning that
∑K

i=1R
(OMA)
i < C

(∑K
i=1 Pi

N0

)

, except for

one point: When the amount of DOF allocated to each user is proportional to its
received power, i.e. αi =

Pi∑K
j=1 Pj

.

The achievable rates of above-mentioned multiaccess schemes have been shown
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in Fig. 6.1.

6.3 Fairness, efficiency and heterogeneity

It is worth mentioning that, our aim is to improve fairness without sacrificing the
overall throughput. Equivalently, we are looking for a point on sum-capacity facet
which guarantees fairness and, at the same time, satisfies a certain level of perfor-
mance.

Max-min as a measure of fairness: Among different notions of fairness, we con-
sider the max-min fairness which is defined as follows:

Definition 6.2. [39] A vector of quantities (e.g., rates) is called max-min fair if
and only if an increase in any component makes a decrease in at least one other
component with smaller or equal value.

Based on optimization of submodular functions [15] a recursive algorithm for
finding the time-sharing coefficients of the fairest rate vector (in terms of max-min
fairness) inside sum-capacity facet was derived in [39]. We call the method proposed
in [39] fairest TS.

Asymptotic multiuser efficiency as a measure of performance [72]: The main
performance measure in communication systems is the bit-error-rate (BER). Here,
we discuss an alternative measure of performance which is well-known in the context
of multiuser detection.

The effective energy of user k in the presence of background noise N0, denoted
by ek(N0), is defined as the energy that this user would require to achieve BER
equal to the BER in a single-user Gaussian channel with the same background noise
level. It is clear that the effective energy is always upper bounded by the actual
energy:

ek(N0) ≤ PkTs, (6.8)

where Ts is the signal duration.
The multiuser efficiency (ME) defined as the ratio between the effective and ac-

tual energies, ek(N0)
PkTs

, is an alternative measure of performance in multiuser systems.
ME depends on the correlation between signature waveforms, background noise and
the detector employed. Signature waveform of a user is the waveform which is used
for spreading the signals of that user along time axis.

To remove the effect of background noise, which is of less interest in the study
of multiuser systems, Verdu defined the asymptotic multiuser efficiency (AME) as

ηk = lim
N0→0

ek(N0)

PkTs
. (6.9)
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Figure 6.2: AME versus interference-to-signal ratio in a multiuser system with K = 2
users (blue: ρ1,2 = 0, black: ρ1,2 = 0.2, red: ρ1,2 = 0.5, green: ρ1,2 = 1). The figure is
a slightly modified variant of [72, Fig. 3.17], where only the case ρ1,2 = 0.2 was shown.

AME is usually very close to ME except for low signal-to-noise ratios. In fact, AME
quantifies the performance when the interferer users are present and the background
noise vanishes. It is a function of users’ signatures and the detector employed.
When the conventional (matched-filter) decoder is used, the AME can be written in
the following way

ηck = max2
{

0, 1−
∑

j 6=k

√

Pj

Pk
|ρj,k|

}

, (6.10)

where ρj,k is the cross-correlation between signature waveforms of users k and j
which satisfies 0 ≤ ρj,k ≤ 1. For OMA we have ρj,k = 0, ∀j 6= k. In SIC the signals
of all users are transmitted and superposed over the same DOF, therefore users’
signal are fully correlated, i.e. ρj,k = 1, ∀j, k.

Effect of heterogeneity on fairness The fairness of multiaccess methods depends
on the disparity of users’ received powers. If multiuser system is homogeneous or
almost homogeneous, in the sense that the users’ received powers are very close,
then the OMA method provides higher degree of fairness than SIC. If the system
is heterogeneous, i.e. the received powers are very disparate, then SIC (when the
stronger user is decoded first) outperforms OMA [70, Chapter 6].
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Figure 6.3: Fairness versus heterogeneity in a multiuser system with K = 2 users for
the following multiaccess methods: OMA, SIC when the stronger user is decoded first,
SIC when the weaker user is decoded first, and fairest TS. The normalized minimum
rate is considered as fairness measure and the SNR difference | P2

N0
− P1

N0
| is considered

as heterogeneity measure : the larger is the difference, the more heterogeneous is the
network. The total SNR is kept fixed: P1

N0
+ P2

N0
= 100. Normalization has been done

with respect to fairest TS.

For SIC, it is known that among all decoding orders, the fairest scenario in
terms of max-min (or, in other words, the fairest corner point of sum-capacity facet)
happens when in each decoding step the strongest user is decoded [39]. This can be
seen from Fig. 6.3 in the particular case when K = 2 users.

Effect of heterogeneity on performance In OMA scenario, because users are send-
ing in non-overlapping fractions of DOF, maximum value of AME is always achieved.
But the situation is not similar in SIC scenario, where the AME usually shows poor
performance especially when the network is homogeneous or the number of users is
high.

When the network is heterogeneous and the number of users is small, the situa-
tion improves slightly if the decoding order is from stronger users to weaker users.
The performance of fairest TS is almost the same as SIC.

Fig. 6.4 presents the average performance of different multiaccess scenarios ver-
sus the heterogeneity of network.
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Figure 6.4: Average AME versus heterogeneity in a multiuser system with K = 2 users
for the following multiaccess methods: OMA, SIC when the stronger user is decoded
first, SIC when the weaker user is decoded first, and fairest TS. The total SNR is kept
fixed: P1

N0
+ P2

N0
= 100.

New method for achieving a trade-off between fairness and AME Based on the
above-mentioned observations, in [P7] we proposed a new multiaccess scheme which
exploits and combines the beneficial aspect of both OMA and SIC methods such that
to provide a reasonable fairness over both homogeneous and heterogeneous networks.
At the same time, the novel method is superior in performance when compared with
fairest TS [39], which represents the state-of-the-art of fairness in multiuser systems
with polymatroid capacity regions.

In [P7], the key idea is to partition the network into (almost) homogeneous sub-
networks such that the users within each subnetwork employ OMA, which provides
high degree of fairness and ideal performance within each subnetwork, and then
utilize SIC across subnetworks which have disparate total powers.

Given that the number of subnetworks is T ∈ {1, . . . ,K}, the newly-proposed
scheme is equivalent to partition the K users into T ordered groups. Note that the
order matters because it corresponds to the order in which the groups are decoded.
Remark for T = 1 that the grouping method is the same with OMA. Moreover,
the grouping method is identical with SIC for T = K. Similarly to conventional
SIC, the max-min rate achieved in this case depends on the order in which the
groups are decoded. We consider the family of all ordered partitions of the K users
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into T non-empty groups. Then we pick-up the ordered partition for which the
minimum rate is maximized, and we name it BORGK/T (basic ordered grouping of
K users into T groups). Conventionally, BORGK/1 coincides with OMA, and we
write BORGK/1 ≡ OMA. Obviously, BORGK/K ≡ SIC.

Furthermore, one can select again from BORGK/1,BORGK/2, . . . ,BORGK/K

the ordered partition which maximizes the minimum rate. The new selection is
dubbed BORG∗

K . Remark that the rate-vector which corresponds to BORG∗
K is not

necessarily the same with the max-min fair rate-vector that was defined in Section
6.3. However, BORG∗

K is guaranteed to be max-min fair among all possible user
groupings for which the sum-capacity is achieved.

In [P7], we investigated how the fairness can be evaluated for OMA, SIC and
BORG. In this context we demonstrated for BORGK/T a fundamental property,
which allowed us to introduce a low-complexity search method for choosing BORGK/T

from all ordered partitions of K users into T groups [P7, Theorem 1].
We gave also a geometrical interpretation for the rate-vector yield by our algo-

rithm. More exactly, we pointed out the connections between the outcome of the
proposed method and the polymatroid structure of the capacity region.

We compared the proposed method against multiaccess methods discussed in
previous section by considering four different heterogeneity models. Simulation re-
sults show that the novel method provides a good trade-off between fairness and
performance [P7, Figs. 2-5].



Chapter 7

Summary of publications and
author’s contribution

This thesis consists of seven publications including four published journal papers
([P1, P3, P4, P7]) and three conference papers ([P2, P5, P6]).

In this chapter, we first summarize each paper and then explain the author’s
contribution to them.

7.1 Summary of publications

Publication [P1] addresses the problem of variable selection in Gaussian linear re-
gression using NML. In this article, we extend the Rissanen methodology for com-
puting the parametric complexity and discussed two particular cases, namely the
rhomboidal and the ellipsoidal constraints. The new findings are used to derive
four NML-based criteria. For three of them which have been already introduced
in the previous literature, we provide a rigorous analysis. We also compare them
against five state-of-the-art selection rules by conducting Monte Carlo simulations
for families of models commonly used in signal processing. Additionally, for the eight
criteria which are tested in [P1], we report results on their predictive capabilities
for real-world data sets.

In [P2], we investigate the problem of selection between nested models using the
SC. For better understanding of the properties of the SC, we relate it to the GLRT.
We also compare SC with BIC.

Publication [P3] studies the use of information theoretic criteria (ITC) for select-
ing the order of AR models when the model parameters are estimated by forgetting
factor LS algorithms. Because the ITC are derived under the strong assumption
that the measured signals are stationary, it is not straightforward to employ them in
combination with the forgetting factor LS algorithms. In the previous literature, the
attempts for solving the problem were focused on the AIC, the BIC and the predic-
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tive least squares (PLS). In connection with PLS, an ad hoc criterion called SRM was
also introduced. In [P3], we modify the predictive densities criterion (PDC) and the
SNML criterion such that to be compatible with the forgetting factor least-squares
algorithms. Additionally, we provide rigorous proofs concerning the asymptotic ap-
proximations of four modified ITC, namely PLS, SRM, PDC and SNML. Then, the
four criteria are compared by simulations with the modified variants of BIC and
AIC.

In [P4], we derive the ODD detector for the classical linear model. In this
framework, we provide answers to the the following problems that have not been
previously investigated in the literature: (i) the relationship between ODD and
GLRT; (ii) the connection between ODD and ITC applied in model selection. We
point out the strengths and the weaknesses of the ODDmethod in detecting subspace
signals in broadband noise. Effects of subspace interference are also evaluated. All
the derivations in [P4] are based on the assumption that the level of Gaussian noise
is known.

Publication [P5] consists of two main parts. The first one is a preliminary version
of [P4], and the second one is devoted to the extension of the results to the case
when the noise variance is unknown. The solution provided in [P4] was explained
with more details in Chapter 4 of this thesis.

In [68], it was shown how the periodogram can be smoothed by thresholding the
estimated cepstral coefficients. In [P6], we use the KSF to derive a new criterion
for selecting the threshold. For the numerical examples taken from the previous
literature, the KSF selection rule compares favorably with the existing schemes.
Some possible extensions were discussed in Chapter 5 of the thesis.

Publication [P7] studies a different problem. In this paper, a novel approach for
improving fairness over (possibly heterogeneous) multiaccess channels is introduced.
It is known that the Orthogonal Multiple-Access (OMA) guarantees for homoge-
neous networks, where all users have almost the same received power, a higher
degree of fairness (in rate) than that provided by Successive Interference Cancel-
lation (SIC). The situation changes in heterogeneous networks, where the received
powers are very disparate, and SIC becomes superior to OMA. In [P7], we pro-
pose to partition the network into (almost) homogeneous subnetworks such that the
users within each subnetwork employ OMA and SIC is utilized across subnetworks.
The newly-proposed scheme is equivalent to partition the users into ordered groups.
The main contribution is a practical algorithm for finding the ordered partition that
maximizes the minimum rate. We also give a geometrical interpretation for the
rate-vector yield by our algorithm. Experimental results show that the proposed
strategy leads to a good trade-off between fairness and the asymptotic multiuser
efficiency.
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7.2 Author’s contribution

The author’s contribution to [P1] is threefold: (I) He proposed the use of rhomboidal
constraint and worked out the criterion in Section 2.3; (II) He also contributed to
the proofs of Proposition 3.1, Proposition 3.2, Proposition 3.3 as well as Lemma 3.1
and Lemma 3.2; (III) He implemented part of the Matlab code used in numerical
examples within Section 4.

For [P2], the author brought the idea of using SC for the detection of interferer
in multiuser communication systems. However, it was not possible to explain the
outcome of the experimental results obtained by the author in this context. This
made it necessary to perform the theoretical analysis from [P2]. The author has
also assisted in the derivations of all results within the paper.

For [P3], the author implemented a preliminary version of the Matlab code used
in simulation examples. He also assisted in the derivations of the main results.

Regarding [P4], the author contributed substantially to all the theoretical results
within the paper. He also generated all the figures included.

The author’s contribution to [P5] can be described with the same words as in
the case of [P4].

For the preparation of [P6], the author assisted in all the derivations within the
paper as well as in Matlab implementation for the experimental results. He also
improved the final form of the publication.

In [P7], the author has had the main contribution in all steps of the paper
elaboration from proposing the key idea to implementation and final writing.
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Chapter 8

Conclusions

The main focus in this research was on the use of information theoretic techniques
for signal modelling and hypothesis testing. The following points are concluded
based on the publications, which are the major outcome of this work.

ODD-based hypothesis testing: We investigated the use of the ODD detector for
the linear model by emphasizing the strengths and the weaknesses of the method in
[P4] and [P5]. In our work, we have obtained the expressions of PD and PFA for
ODD, and we used them to compare ODD and GLRT by numerical examples. It is
worth mentioning that the GLRT is invariant to a “natural” class of transformations,
whereas the ODD detector does not share the same invariances. Furthermore, we
demonstrated in [P5] how the ODD methodology can be extended to accommodate
models with nuisance parameters.

NML in Gaussian linear regression: Because the parametric complexity is not
finite, the only possibility for obtaining NML-based selection rules is to constrain
the data space. Even if this was recognized more than one decade ago, the solutions
proposed so far are only punctual results which treat some particular constraints. In
[P1], we have introduced a general methodology for addressing the problem. Based
on the new findings, we demonstrated how the rhomboidal constraint yields a new
NML-based formula. Additionally, we used the ellipsoidal constraint to re-derive
three criteria that have been introduced in the previous literature.

Comparison of SC with other rules of selecting between two nested models: In
[P2], we investigated the relationship between SC and GLRT. This analysis has
shown the importance of the hyper-parameters within SC-formula. The comparison
between SC and BIC revealed the robustness of SC for families of models commonly
used in signal processing.
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ITC for AR order selection in the presence of nonstationarity: Transforming the
ITC which have been derived for the stationary case such that to become compatible
with the forgetting factor least-squares algorithms is not a trivial task. In [P3],
we focused on five ITC which can be seen as embodiments of the MDL principle.
Additionally, a modified variant of AIC was considered. For decomposing each MDL-
based criterion into the goodness-of-fit term and the penalty term, we resorted to
an asymptotic analysis. Both the theoretical and experimental results led to the
conclusion that the modified SNML performs well in this type of application.

Cepstral nulling via KSF: In [P6], we focused on a thresholding-based method for
TV-reduction and the main contribution was to show how the KSF can be used to
derive a criterion for selecting the threshold µ. In the framework of cepstral anal-
ysis, we compared the newly proposed selection rule with other two schemes which
are considered state-of-the-art. The first one chooses µ with a carefully designed
UMPUT, while the second one relies on BIC for the selection of µ. It was shown
experimentally that KSF is much better than BIC when the signal is broadband
MA with a small dynamic range of the log-spectrum. It was also noticed that, for
all numerical examples, the KSF-based criterion and UMPUT have similar perfor-
mance. However, UMPUT requires a priori information on the type of the observed
signal, whereas the KSF thresholding is fully automatic.

Subnetwork selection for improving fairness in multiaccess communications: In
[P7], we investigated how OMA and SIC can be combined to improve fairness in
Gaussian wireless networks. The newly-proposed method divides the network into
(almost) homogeneous subnetworks such that the users within each subnetwork em-
ploy OMA, and SIC is utilized across subnetworks. Equivalently, the K users are
partitioned into T ordered groups. The main theoretical result which we proved
for any T ∈ {2, . . . ,K − 1}, shows that the ordered partition which maximizes the
minimum rate can be found with a low-complexity algorithm. Moreover, it was
demonstrated experimentally that the user grouping strategy guarantees a good
trade-off between fairness and the asymptotic multiuser efficiency.
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