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Abstract

Many signaling and regulatory molecules within cells exist in very few copies per
cell. Any process affecting even limited numbers of these molecules therefore has
the potential to affect the dynamics of the biochemical networks of which they are
a part. This sensitivity to small copy-number changes is what allows stochasticity
in gene expression to introduce a degree of randomness in what cells do. While
this randomness can be suppressed, it does not appear to be so in many biological
systems, at least not to the maximum degree possible. This suggests that this
randomness is not necessarily detrimental to cell populations, as it can produce
qualitatively new behaviours in genetic networks which may be utilized by cells.

In this thesis, two other mechanisms are investigated which, through their interac-
tion with low copy-number molecules, are able to produce qualitatively different
dynamics in genetic networks: the stochastic partitioning of molecules in cell
division, and the direct interaction of two low copy-number molecules. For this, a
novel simulator of chemical kinetics is first presented, designed to simulate the
dynamics of genetic circuits inside growing populations of cells. It is then used to
study a genetic switch where one repressive link is formed by direct interaction
between RNA molecules. This arrangement was found to decouple the stability of
the two noisy attractors of the network and the speeds of the state transitions.
In other words, it allows the network to have two equally-stable noisy attractors,
but differing state transition speeds.

Next, the cell-to-cell diversity in RNA numbers (as quantified by the normalized
variance) of a single gene over time in a growing model cell population was studied
as a function of the division synchrony. In the model, synchronous cell divisions
introduce transient increases in the cell-to-cell diversity in RNA numbers of the
population, a prediction which was verified using single-molecule measurements
of RNA numbers. Finally, the effects of the stochastic partitioning of regulatory
molecules in cell division on the dynamics of two genetic circuits, a switch and
a clock, were studied. Of these two circuits, the switch has the most dramatic
changes in its dynamics, brought on by the inevitable negative correlation in
molecule numbers that sister cells inherit. This negative correlation can allow
a cell population to partition the phenotypes of the individual cells with less
variance than a binomial distribution.
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iv Abstract

These results advance our understanding of the different behaviours that can be
produced in genetic circuits due to these two mechanisms. Since they produce
unique behaviours, these mechanisms, and combinations thereof, are expected
to be used for specialized purposes in natural genetic circuits. Further, since
the downstream effects of these mechanisms may be more predictable than,
e.g., modifying promoter sequences, they may also be useful in the design and
implementation of future synthetic genetic circuits with specific behaviours.
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1 Introduction

Many RNAs and regulatory proteins exist within cells in very low copy-numbers
(Paulsson 2004; Kaern et al. 2005). Since these molecules are discrete entities, any
process that affects their numbers and involves some randomness will inevitably
introduce a level of noise in their numbers. Though this noise can, to some
extent, randomize the actions of a cell, and thus disrupt cellular functioning, it
is not always detrimental to cell populations. This noise can be exploited to
produce new and interesting behaviours in biochemical networks (Arkin et al.
1998; Elowitz and Leibler 2000; Kaern et al. 2005; Bratsun et al. 2005; Lipshtat
et al. 2006), and cell populations have been shown to use this source of diversity
to their advantage. Stochastic switching between phenotypes serves as a means to
cope with fluctuating environments (Kussell and Leibler 2005; Kussell et al. 2005;
Acar et al. 2008), or to maintain a random subset of a population in a particular
phenotype (Siiel et al. 2006). Stochastic differentiation underlies the retinal mosaic
behind colour vision in Drosophila melanogaster (Wernet et al. 2006). Random,
though coordinated decisions between infecting A phages determine a new host
FEscherichia coli’s fate (Arkin et al. 1998; Zeng et al. 2010).

While stochasticity in the processes underlying gene expression is sufficient to
explain these observations, it is not the only mechanism acting on low copy-number
molecules with the potential to change the dynamics of circuits. One other such
mechanism is the random partitioning of molecules during cell division (Huh and
Paulsson 2011b; Huh and Paulsson 2011a). In bacteria, the unequal partitioning
of macromolecules such as plasmids clearly has the potential to create significant
differences between sister cells (Huh and Paulsson 2011b; Reyes-Lamothe et al.
2013). Further, the unequal partitioning of damaged and/or non-functional
proteins has been implicated in the aging process of E. coli (Lindner et al. 2008;
Gupta et al. 2014b; Gupta et al. 2014d), which can result in a significant difference
in population vitality (Ackermann et al. 2003; Gupta et al. 2014c¢). However,
whereas non-functional proteins merely reduce the vitality of the cells, RNAs
and regulatory proteins can have a myriad of other downstream effects in their
respective genetic networks. This leads to the first question motivating this thesis:
in what way does the stochastic partitioning of the RNAs and regulatory proteins
that compose a genetic network affect its dynamics?

1



2 Chapter 1. Introduction

Another means by which noise, from any source, can be amplified to produce
phenotypic variation is to have two or more low copy-number molecules interact
directly. Such a scheme is ubiquitous, and is found in all kingdoms of life: gene
silencing or activation by small non-coding RNA molecules. There are at least 2000
microRNAs in humans (Friedlédnder et al. 2014), which is comparable to the amount
of Transcription Factors (TFs) (Vaquerizas et al. 2009). Prokaryotes employ a
similar regulatory mechanism, whereby a Small Regulatory RNA (strRNA) can
tightly bind to its complementary Messenger RNA (mRNA) to either silence
or stabilize it (Gottesman and Storz 2011). This form of interaction can lead
to a highly non-linear function: a threshold-linear regulation function (Levine
et al. 2007; Levine and Hwa 2008). This regulatory function has non-trivial noise
characteristics, capable of both suppressing and amplifying noise (Levine et al.
2009). Thus, the second question motivating this thesis: in what way does the
direct interaction between RNA molecules affect the dynamics of a stochastic
genetic network (specifically, a switch)?

Though the stochastic dynamics of even simple genetic networks is often too
complex to describe analytically, it can be studied with the aid of stochastic
simulation (Gillespie 2007). Thus, in order to study the effects of the above
mechanisms, a simulation method that accurately captures the sources and effects
of this noise must be employed. The Stochastic Simulation Algorithm (SSA) is the
gold standard simulation algorithm for such systems, providing statistically exact
samples of trajectories from the distribution prescribed by the Chemical Master
Equation (CME), which in turn can be rigorously derived from microphysical
arguments (Gillespie 1992). This has been extended to incorporate delayed
reactions which have enabled the time taken by the individual processes in gene
expression to be efficiently modelled without explicitly representing each individual
step (Roussel and Zhu 2006; Ribeiro 2010).

1.1 Objectives

In this thesis, the impact on the dynamics of genetic circuits of the two above
mechanisms was examined. First, a new stochastic simulation tool is presented,
constructed to enable the simulation of the models that were used in the remainder
of this thesis. This simulator was built based on the SSA, with the ability to
dynamically create and destroy interlinked compartments at runtime to introduce
transient spatial restrictions on the interactions between molecules. Next, the
behaviour of a genetic switch when one of the links is mediated by RNA-RNA
interactions was studied. Finally, the effects of deviations from a perfectly
symmetric partitioning of RNA and other low copy molecules during cell division
were studied. These effects were first characterized at the single-gene level, using
both simulations and single-cell measurements in live cells. This was then studied
at the network level for two genetic circuits: a switch and a clock.
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The thesis has three objectives:

I To construct a simulation tool capable of simulating the above mechanisms.
Specifically, this simulator must account for the inherent stochasticity in gene
expression, the time taken by the involved processes, while also supporting
the creation of new cells during which selected molecule partitioning schemes
can be applied to different molecules.

IT To study the dynamics of a stochastic genetic circuit utilizing direct inter-
action between RNA molecules as a regulatory connection, and to identify
new dynamical features that can result from this kind of interaction.

IIT To characterize the differences that arise in the dynamics of single genes
and genetic circuits when placed in a growing and dividing population of
cells with stochastic partitioning of molecules in division.

Objective I was completed in Publication I. Objective IT was completed in
Publication II. Finally, Objective III was completed in Publications III and
IV.

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 briefly introduces the necessary bio-
logical background, as well as the in vivo single-molecule measurement techniques
against which model predictions were tested. Chapter 3 introduces the modelling
strategies and simulation algorithms employed in the publications of the thesis.
Chapter 4 presents the necessary background on the genetic networks, focusing
on the Toggle Switch and the Repressilator. Finally, the conclusions and final
discussion are presented in chapter 5.






2 Biological Background and
Methods

2.1 Bacterial Growth and Division

The publications in this thesis focus on E. coli, a common rod-shaped bacterium
found in the guts of many warm-blooded organisms (Alberts et al. 2002). It is also
ubiquitous in molecular biology labs, and a wealth of knowledge about its structure
and behaviour has accumulated over many years of study, making it the most
intensively studied prokaryotic model organism. Bacteria have the advantage of
being somewhat simpler than eukaryotic systems - they are unicellular organisms
with no discernible organelles apart from the nucleoid. Their gene expression
systems are also simpler, lacking the physical separation afforded by the eukaryotic
nucleus as well as the complex RNA processing that occurs in eukaryotes. It is
for these reasons that the first synthetic genetic circuits have been constructed in
these cells (see, e.g. (Elowitz and Leibler 2000; Gardner et al. 2000)), and it is
in these organisms that studies of gene expression at the single-event level are
being conducted (see e.g. (Lutz et al. 2001; Golding and Cox 2004; Golding et al.
2005; Muthukrishnan et al. 2012; Kandhavelu et al. 2012a)). An example image
of E. coli cells, taken with phase contrast microscopy is shown in Figure 2.1.

In suitable media, E. coli cells grow exponentially by repeatedly elongating,
and then dividing in two (Alberts et al. 2002; Scott et al. 2010; Osella et al.
2014). During elongation, the chromosome is duplicated, and the two copies
are segregated to the quarter points of the cell in structures known as nucleoids
(Fisher et al. 2013). The division septum is then formed from the protein FtsZ
(Weiss 2004), which is positioned in the center of the cell by a combination of
nucleoid occlusion and an oscillatory protein-based system called the Min system
(Margolin 2006). The septum then constricts the cell wall, dividing the cell into
two new cells.

This division process results in a remarkably precise division point in the center of
the cell, though there does exist some variance in this point (Méannik et al. 2012;
Gupta et al. 2014d). Molecules in the cytoplasm of the cell are therefore frequently
assumed to be partitioned into the new cells equally and independently, resulting

5



6 Chapter 2. Biological Background and Methods

Figure 2.1: Image of E. coli cells taken by phase contrast microscopy.

in a binomial molecule partitioning distribution upon division (Berg 1978; Rigney
1979). However, this may be affected by a number of factors including, but not
limited to, the following. Additional variance in the division point (e.g. due
to stress (Méannik et al. 2012)) will bias the partitioning of molecules towards
the larger cell (Huh and Paulsson 2011a; Huh and Paulsson 2011b; Gupta et al.
2014d). That is, one cell will likely receive more of the contents of the parent cell
than the other. The limited diffusion of macromolecules can further bias their
partitioning towards the cell inheriting the region where they were synthesized
or trapped (Lindner et al. 2008; Montero Llopis et al. 2010; Gupta et al. 2014b).
Lastly, clustering of the partitioned molecules will bias the partitioning towards
the cell inheriting the largest clusters. All these effects increase the variability in
the numbers of molecules inherited by daughter cells.

In general, to decrease this variability, energy must be spent by the cell (Huh and
Paulsson 2011a). For example, molecules may form pairs which are segregated
evenly into the daughter cells, as is the case with the genome (Fisher et al. 2013),
and other large single-copy structures within cells such as F-plasmids (Schumacher
et al. 2010). Molecules may also bind to a central structure, which is partitioned
evenly between the daughters, such as the spindle apparatus employed during
mitosis in eukaryotes (Alberts et al. 2002; Huh and Paulsson 2011b). Finally, cells
may rely on the sheer size of macromolecules to distribute them evenly between
the cells (Huh and Paulsson 2011b).

The population-level effects of events which occur in division, such as asymmetric
partitioning of cellular components, will change based on the timing of the divisions
in the population. In particular, if all cell divisions occur synchronously, the
added cell-to-cell diversity will be introduced simultaneously. Thus, an experiment
measuring the cell-to-cell diversity at that moment will overestimate the variability
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between the cells. Likewise, if this variability affects the way the population
interacts with its environment, the population’s behaviour will drastically change
at that point, whereas an asynchronous population will not. Division synchrony
can be induced by a number of different mechanisms in F. coli, which generally
relate to stressful conditions such as heat shock (Smith and Pardee 1970) and
nutrient deprivation (Cutler and Evans 1966). Once synchronized, cell populations
can maintain division synchrony for numerous generations (Hoffman and Frank
1965).

In Publication IV, the effects of the aforementioned partitioning schemes on the
dynamics of genetic networks were studied. In Publication III, this partitioning
was additionally studied as a function of cell division synchrony.

2.2 Gene Expression

Genes are the unit of heredity of living organisms (Alberts et al. 2002). In general,
this refers to stretches of DNA containing the information necessary to produce
proteins, the functional components within cells. The process by which this
information is read to produce these proteins is called gene expression. There
are two main steps involved in gene expression, transcription and translation,
which together form the Central Dogma of Molecular Biology, and are depicted in
Figure 2.2.

Structurally, each gene is composed of two functionally distinct sequences in the
DNA. The first is the “promoter”, a region of DNA upstream from the coding
region where transcription is initiated. Since gene expression begins in this region,
it is also the point where many regulatory molecules bind to alter the expression
level of the gene. The second consists of the sequence coding for the protein itself.
Briefly, transcription begins with the binding of an RNA polymerase enzyme to
the promoter of a gene. The polymerase then copies the coding part of the DNA
molecule into a complementary RNA molecule, until the terminator is reached.
The resulting protein-coding RNA molecule, called a Messenger RNA (mRNA),
is then bound by a Ribosome to initiate translation. Note that prokaryotes lack
a delimited nucleus, and therefore translation can initiate immediately after the
ribosome binding site on the mRNA has been transcribed by the RNA polymerase.
During translation, the mRNA’s nucleotides are read in triplets, called codons,
which each correspond to a particular amino acid to append to the new protein.
When the stop codon, a special codon denoting the end of the protein, is reached,
the new protein is released. The new protein will then fold into its active shape
to finally perform its function within the cell.

The DNA within each cell of an organism contains the information required to
produce all proteins needed by the organism at any point of its life. At a given
point in time, it is the particular subset of proteins which are expressed by a
given cell which determines what behaviour it will have, i.e. its phenotype. To
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Post-transcriptional regulation
(SRNA)

Translation

Figure 2.2: The Central Dogma of Molecular Biology: DNA is transcribed into RNA,
which is translated into proteins. Also shown are two points of regulation: transcriptional
regulation (DNA-TF interactions) and post-transcriptional regulation (small RNAs). The
image is modified from http://2011.igem.org/Team:DTU-Denmark/Background_ sRNA,
under the CC BY 3.0 license.

understand why a cell behaves in a certain way, then, we must understand why
that particular set of genes was expressed. Gene expression can be regulated
by several means, which behave differently based on which step during gene
expression they affect. This thesis focuses on two levels: transcriptional (i.e.
regulation at the promoter by transcription factors), and post-transcriptional
regulation.

Transcription Factors (TFs) are proteins which affect the expression of their
target gene by binding at specific sites at or near the target gene’s promoter.
Such regulation is presented in Figure 2.2 as Transcriptional regulation. The
simplest form of interaction is when a TF bound at the promoter region blocks
the RNA polymerase from initiating transcription, such as the regulation of the
Lac operon by Lacl in E. coli (Schlax et al. 1995). Since the gene cannot be
transcribed, no protein is produced, and the gene is said to be repressed or turned
off. Other transcription factors can increase the rate of transcription by bending
the DNA such that the RNA polymerase is more likely to recognize and bind to
the promoter, such as the AraC protein when bound to arabinose, which regulates
the araBAD operon in E. coli (Schleif 2000). This kind of TF-based regulation is
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found in the models in all four publications in this thesis.

Post-transcriptional regulation takes place at the level of the mRNA, as pictured
in Figure 2.2. Though regulation at this level is more common and complex in
eukaryotes, it is not absent in prokaryotes. In F. coli, numerous genes produce
small non-coding RNA molecules which are complementary to a stretch of the
mRNA of another gene, their target. These small RNA molecules are first
bound by a chaperone protein HfQ, which is thought to both protect the srRNA
from degradation, and to increase the chances that it meets its target mRNA
(Gottesman and Storz 2011). Upon binding to the target, the s'RNA can either
up- or down-regulate the translation of the target protein, depending on where
in the target the srRNA binds (Gottesman and Storz 2011). Up-regulation is
achieved by active recruitment of Ribosomes to the Ribosome Binding Site (RBS)
of the target. Down-regulation is achieved by either blocking the RBS of the
target, or by utilizing the cell’s double-stranded RNA degradation machinery
to degrade both RNA molecules. An example of this mechanism in FE. coli is
the regulation of the iron storage regulator fur by the stRNA ryhB (Massé and
Gottesman 2002; Massé et al. 2003).

srRNA
— <1
lan ’-f‘ - 2 :
- $
repressor gene o t':'. = |
H _> 1 S |
~r N\~ g |
~~ \) % oy !
target gene YA @
target T 2
mRNA =0
target 0 0.5 1 1.5 2
protein Relative transcription rate

(a) Hlustration of the regulation of a gene
by an stRNA. When the stRNA (red) is
produced, it binds to the target mRNA
(black), and both molecules are subse-
quently degraded. When the srRNA is not
produced, the target mRNA is translated
into the target protein. Image is modified
from (Levine et al. 2007) under the CC BY
3.0 license.

(b) Threshold-linear regulatory function.
The blue line represents an ideal regula-
tion function when srRNA-mRNA binding
is very fast (Levine et al. 2007). Target
expression is completely suppressed when
the srRNA is produced at a greater rate
than the mRNA. Expression increases lin-
early beyond that. The red line represents
a more realizable function. Image is modi-
fied from (Levine et al. 2007) under the CC
BY 3.0 license.

Figure 2.3: Gene regulation by a small regulatory RNA.

The down-regulation of a gene by srRNA is illustrated in Figure 2.3a. This
interaction results in a highly non-linear gene regulation function: a threshold-
linear function, pictured in Figure 2.3b. This regulation function can be exploited
to reduce (Levine and Hwa 2008) or increase (Elf et al. 2003; Levine et al. 2009)
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the amount of noise in gene expression, or to sharpen spatial patterns in gene
expression (Levine et al. 2007). These interesting noise properties result from the
facts that, when the srRNA is produced in greater abundance than the target
mRNA, expression of the target protein will approach Poissonian; meanwhile,
when the mRNA is produced in greater abundance, expression of the target
protein will be as noisy as without the srRNA, approaching a constant based on
the number of proteins produced per mRNA (Levine et al. 2009). In between these
two regimes, the noise is dramatically increased due to critical phenomena (EIf
et al. 2003; Levine et al. 2009). Altogether, these properties make the resulting
dynamics of any circuit containing this type of regulation non-trivial.

The dynamics of a network utilizing this kind of RNA-mediated regulation was
studied in Publication II.

2.3 Single-molecule Measurements of mRNA

Advances in microscopy and fluorescent reporters have given rise to a number of
RNA visualization techniques with single-molecule precision, which can be used
to study the dynamics of the processes mentioned in the previous sections. In
Publication III, one such method, invented for use in Saccaromyces cerevisiae
(Fusco et al. 2003) and adapted for use in E. coli (Golding and Cox 2004), was
used to characterize the cell-to-cell diversity in the number of produced mRNA
molecules in a synchronous population of cells. This method is described here.

2.3.1 MS2 System

Single RNA molecules can be detected in vivo by a method that utilizes the MS2
bacteriophage’s coat protein’s ability to specifically bind to specific sequences of
RNA (Fusco et al. 2003; Golding and Cox 2004). In this system, a multi-copy
plasmid carrying a fusion protein MS2-GFP is inserted into the cells. An array of
MS2 binding sites is then placed downstream of the promoter of interest. When
the two constructs are co-expressed, the MS2-GFP proteins rapidly bind to the
array of binding sites on the RNA molecules transcribed from the promoter of
interest (Golding and Cox 2004), drastically increasing the local concentration
of fluorescent molecules. This system is depicted in Figure 2.4a. The result is a
bright “spot” when seen with a fluorescence microscope. An example image of
cells with fluorescently labelled RNA molecules within is shown in Figure 2.4b.

By imaging the same cells over time and tracking the total spot fluorescence inside
each cell, this system can be used to study the dynamics of transcription (see e.g.
(Golding and Cox 2004; Golding et al. 2005; Kandhavelu et al. 2011; Kandhavelu
et al. 2012a)). Further, once the RNA has been wrapped by a sufficient number of
MS2-GFP molecules, it becomes immune to degradation (Golding and Cox 2004;
Montero Llopis et al. 2010), resulting in a large fluorescent molecule diffusing
through the cytoplasm of the cell. This property has been exploited to study
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L DL

(a) Tlustration of the MS2-based system
to detect RNA in vivo with single-molecule
precision. MS2-GFP molecules (blue/green
balls) are produced from a high-copy plas-
mid (blue). Target RNA carrying 96 MS2
binding sites (black) is produced from a

(b) Example image from an epifluorescence
microscope of E. coli cells co-expressing
MS2-GFP and target RNA. Cells are visible
due to being flooded uniformly with MS2-
GFP. Individual RNA molecules are visible
as fluorescent spots.

single-copy F-plasmid (red). When a tar-
get RNA is produced, MS2-GFP molecules
bind to it, forming a bright spot when im-
aged with a fluorescence microscope.

Figure 2.4: In vivo detection of RNA molecules using MS2-GFP.

the physical properties of the cytoplasm by way of the movement of these large
fluorescent particles (Golding and Cox 2006; Gupta et al. 2014b; Gupta et al.
2014d).

2.3.2 Image Analysis

Publication III examined the diversity of behaviours within a population of
cells. For this, it was necessary to examine the behaviours of many different cells
over time. To gather sufficient data, a semi-automated image analysis pipeline
was used to analyze many images of cells, taken at different timepoints after
synchronization. This section describes these methods.

The first step in any single-cell analysis pipeline is to segment the cells from the
background. While several automated methods exist, for snapshots of cells (i.e.
only a single moment in time), this step can be rapidly performed by the use of
image manipulation software. This was favoured in Publication III due to the
high level of background noise present in the images, visible in Figure 2.4b. An
example segmentation used in Publication III for the image shown in Figure 2.4b
is shown in Figure 2.5a.
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(a) Segmentation of the cells from the image (b) Segmentation of the fluorescent spots

in Figure 2.4b. from the image in Figure 2.4b by KDE
(red) superimposed on the image from Fig-
ure 2.4b. The green and red in the spots
mixes to produce yellow.

Figure 2.5: Image analysis of cells expressing MS2-GFP and target RNA.

Fluorescent spots can be detected from the image by a method based on Kernel
Density Estimation (KDE) (Ruusuvuori et al. 2010). This method begins by
applying the following transformation to the image:

H(iaj):C(IN) Z K(I(i,j)—[(i@—i—m,j—i—n)) (2.1)

m,neN

where N is the set of neighbour pixels to include, C is the cardinality of the set, K
is the chosen kernel, « is the bandwidth, and (i, j) is the intensity of the image
at coordinates (i, 7).

H(i,j) can informally be thought of as the local smoothness of the image, and
ranges from 0 to 1. Spots are features with low local smoothness, i.e. the intensities
of the pixels in the local neighbourhood of a spot are distinct from the intensities
within the spot. Thus, spots can be segmented from the transformed image by
defining a threshold ¢, and labelling areas with H (7, j) < t as spots.

In Publication III, N was set to a circular neighbourhood with a radius of r,
and set K to a Gaussian kernel. The parameters «, r and ¢t were tuned by eye to
produce a good segmentation, an example of which is shown in Figure 2.5b.



3 Modelling and Simulation of
Stochastic Gene Expression

All publications in this thesis include models of gene expression and genetic
circuits, and analyses thereof. Here, the construction of these models is described,
along with the simulation algorithms used to simulate their dynamics.

3.1 Chemical Master Equation

The models presented here account for the non-negligible amount of noise in the
biochemical processes underlying gene expression. This noise originates from the
randomness in the timings of the individual births and deaths of the molecules
involved. When this noise affects the numbers of molecules in low copy-number,
it has the potential to impact the dynamics of downstream regulatory circuits.
For example, if a reaction happens to occur due to the random collision of two
molecules within a cell, which produces a molecule of which there were only two
before, this single random event has just increased the population of that molecule
by 50%. This drastic change will have downstream repercussions if this molecule
is involved in other reactions, since those reactions will (at least temporarily) have
50% increased propensity to occur.

The processes which we are interested in, namely gene expression and regulation,
involve such low-copy molecules. Specifically, RNA molecules are only present
in limited quantities per cell (Gillespie 2007), and there is only one copy of the
genome. Thus modelling strategies and simulation techniques which ignore this
biochemical noise will miss important features of the dynamics. One way to
accurately simulate the dynamics of such a noisy system would be to model it
at a painstaking level of detail: model the space of the system explicitly, track
the positions and momenta of every single molecule, and detect and react to
collisions between them. While technically correct, this approach is extremely
computationally demanding (Gillespie 2007).

Instead, we make the assumption that for each reaction u, we can write a function
a,(x) of the state of the system x at the current time ¢, such that a,(x)dt is the
probability that a combination of its reactants will meet and react in the next

13
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infinitesimal time interval (¢,¢ 4 dt) (Gillespie 2007). Here, the elements of x
are the current numbers of each of the molecular species, and a,(x) is called the
propensity of reaction p. From this assumption alone, it is possible to write the
time-evolution of the probability P(x) that the system is in state x, as a master
equation called the Chemical Master Equation (CME):

dP(x)

dt = ; (CLM(X - Vu)P(X — Vu) — CLM(X)P(X)) (3.1)

where v, is the stoichiometry of reaction p, i.e. the vector representing the
difference in molecule numbers when reaction p occurs.

The justification behind the existence of the propensity function depends on the
type of reaction it represents. For unimolecular reactions, this justification is often
from quantum mechanics (Gillespie 2007), which dictates that such a probability
should exist for each molecule which can react via that channel. Therefore, there
exists some constant ¢, for which the propensity function can be written as
(Gillespie 2007):

au(x) =c, X (3.2)

where X is the number of molecules which can react via this reaction.

For bimolecular reactions, additional assumptions must be made. Specifically, the
molecules must be in thermal equilibrium at a constant temperature, and must be
uniformly distributed within the reaction volume. The latter can be achieved either
by direct stirring or if the number of non-reactive collisions between molecules
outnumber the reactive collisions (Gillespie 2007). Given these assumptions, it is
possible to rigorously derive a constant ¢, from microphysical arguments for the
bimolecular reaction propensity (Gillespie 1992):

au(x) = CMXlXQ (33)

where X7 and X5 are the populations of the two reacting molecule species. Note
that if two of the same molecular species react, the propensity function changes,
since a molecule cannot react with itself:

X (X —1)

5 (3.4)

au(x) =

Lastly, while they do not represent a “real” reaction, zero-order reactions are also
extremely useful in models. For example, these can be used to represent reactions
where the reactants are not explicitly represented in the modelled system, such
as water or other molecules assumed to be pervasive and in constant abundance.
They can also represent the entry of molecules into the reaction volume from an
outside source. Since these reactions do not depend on the population of any of
the modelled molecules within the reaction volume, their propensity function is
simply:

au(x) = (3.5)
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Since the CME for a model is often too complex to present, let alone solve, it
is often simpler and more intuitive to present models built in the stochastic
formulation by the set of reactions which compose them. In the following sections,
various sets of reactions representing the different processes involved in gene
expression and gene regulation will be presented, which form the basis of the
models used in the publications of this thesis. The reactions are presented in the
following form:

A+B-tscC (3.6)

Here, a molecule of species A reacts with a molecule of species B to form a
molecule of species C, with stochastic constant ¢, = k.

3.2 Modelling Gene Expression

Gene expression is the process by which a protein is constructed based on the
amino acid sequence encoded in DNA (for details, see 2.2). To remind the reader,
this process begins when an RNA polymerase binds to the promoter sequence of
a gene, and initiates transcription of that gene. This produces a complementary
RNA molecule, to which a Ribosome binds to produce the final proteins.

The above process can be summarized in a very compact, high-level reaction
(Ribeiro et al. 2006):

Pro + RNAp % Pro + RNAp + nP (3.7)

Here, Pro is the promoter of the gene, RNAp is the RNA polymerase, P is the
produced protein, and n is the mean number of proteins produced per mRNA.
Though this reaction does not change the amount of Pro, its presence as a reactant
in this reaction allows other reactions to change the production rate of P, e.g.
those in section 3.2.2.

The next step is to model both transcription and translation explicitly, accurately
recreating measured protein burst distributions (Zhu et al. 2007):

Pro + RNAp 5 Pro + RNAp + RBS (3.8)
RBS + Rib -~ RBS + Rib + P (3.9)

where RBS is the Ribosome Binding Site (RBS) on the mRNA, and Rib repre-
sents a Ribosome. Note that RNAp and Ribosomes are high-copy housekeeping
molecules in the cell, and are often considered to be in constant concentration.
They are thus sometimes dropped from these reactions (e.g. (Zhu et al. 2007;
Loinger and Biham 2007)). Note that here, we have represented the RNA molecule
by its RBS, and not by the complete molecule, since in prokaryotes, translation
of an mRNA can initiate before the RNA has been fully transcribed.
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RNA and protein turnover rates are also extremely important to the dynamics
of genetic circuits, if not more than the production rates since these determine
how quickly the system will approach a steady-state. In both eukaryotes and
prokaryotes, many proteins have been shown to exhibit exponential degradation
(Belle et al. 2006). In prokaryotes, mRNA also degrades exponentially (Bernstein
et al. 2002), though in eukaryotes, this is altered by polyadenylation (Pedraza
and Paulsson 2008). In the publications in this thesis, degradation of RNA and
proteins is therefore modelled with first-order reactions:

RBS 4 o (3.10)
p M, o (3.11)

3.2.1 Delays

The above reactions assume that the processes involved in gene expression are
instantaneous. For example in reaction (3.9), the protein produced by translation
appears immediately upon initiation of the reaction. However, translation takes
a non-negligible amount of time to complete, requiring the stepwise elongation
of the nacent polypeptide chain. Further, the new protein is not immediately
functional upon the addition of the final amino acid - it must fold into its final
conformation, a process that can take minutes to hours (Cormack et al. 1996).

Such delays are commonly modelled in two ways. First, it is possible to explicitly
represent every individual step required for the process to complete. This approach
is fruitful when studying the effects of events that can occur during those steps
(Rajala et al. 2010; Ribeiro 2010; Mékel4 et al. 2011). However, this approach
results in the need to simulate a greatly increased number of reaction events,
and can only be applied to smaller systems (Potapov et al. 2011). It becomes
impractical when the number of intermediate steps is large or when a larger
network of interacting genes is simulated.

The second approach is to introduce “delayed reactions” - reactions where the
products are not immediately released into the system (Roussel and Zhu 2006).
Such reactions have the additional advantage that the nature of the intermediate
steps do not need to be known; only the statistics of the delay, such as the mean
and variance, are required. The drawback is that the delay cannot be affected
by events that occur after the reaction has initiated. We write such a delayed
reaction as follows:

A+B— C(7) (3.12)

This represents the reaction between an A molecule and a B molecule, but while
the reacting molecules are immediately removed from the system, the produced C
molecule is not available to react with other molecules until 7 time has elapsed.
In the context of gene expression, delays are introduced to model the time taken
by transcription, translation, and protein maturation.
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During transcription, there are at least two important steps which take a non-
negligible amount of time (McClure 1985; Hsu 2009; Mékel4 et al. 2011). First, to
read the DNA template, after the RNA polymerase binds to the promoter region,
it must unwind the DNA double helix. This process, called the Open Complex
Formation, is non-trivial and requires a number of isomerization steps to occur
before completion (McClure 1980; McClure 1985; Saecker et al. 2011), and can
take on the order of 100 s to 1500 s to occur (McClure 1980; Bertrand-Burggraf
et al. 1984; Kandhavelu et al. 2012b; Muthukrishnan et al. 2012). Second, the
RNA polymerase must initiate elongation and clear the promoter region. Some
promoters, however, do not allow the polymerase to escape easily, causing a large
number of “abortive transcripts” to be produced as the polymerase transcribes the
initial nucleotides of the gene, but then aborts and returns to the Transcription
Start Site (T'SS), releasing the short initial transcript (Hsu 2009). If this effect is
strong enough, it can introduce another delay before the polymerase initiates a
successful production. During both of the above steps, the polymerase is situated
at the start site of the promoter, blocking any other polymerase from initiating
transcription.

Since these steps must occur in sequence, they are potentially rate-limiting steps
in the production of mRNA, and can thus significantly alter the dynamics of
gene networks. Further, since the time taken by a sequence of reactions has
less variability than a single reaction with the same rate (Ribeiro et al. 2010),
the regulation of the durations of these steps can also alter the amount of noise
resulting from transcription initiation (Kandhavelu et al. 2012a).

The final step in transcription is the elongation of the RNA molecule, which takes
on the order of several minutes (Davenport et al. 2000; Golding and Cox 2004).
However, since transcription and translation are coupled in prokaryotes, this
delay will only introduce dynamical differences if transcription elongation occurs
slower than translation elongation. In the absence of long sequence-dependent
transcriptional pauses (Herbert et al. 2006), these two processes proceed at roughly
the same rate (Mékeld et al. 2011). If these are present, a more detailed model
such as the one presented in (Mékeld et al. 2011) is required. In the absence of
such special conditions, the time to produce the complete RNA can be ignored,
and the representation of the RNA molecule by the RBS (presented in section
3.2), is sufficient.

Including the above delays into the transcription reaction (3.8) results in the
following reaction (Ribeiro and Lloyd-Price 2007):

Pro + RNAp -4 Pro(7,) + RBS(7p) + RNApP(7rna) (3.13)
Here, 7, represents the sum of the open complex formation and promoter escape,
and T,p, represents the time to complete the elongation of the new mRNA.

There are non-negligible delays in translation as well, and though it proceeds in a
manner reminiscent of transcription, the dynamically-relevant delays are different.
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Translation begins with the binding of a Ribosome to the mRNA’s RBS. Unlike
in transcription, however, the Ribosome does not need to open a double-helix,
and can initiate elongation of the new Protein almost immediately (after ~ 3 s
(Mitarai et al. 2008)). After initiation, the new protein must be elongated, after
which it must fold into its active conformation. Both of these processes take time
to complete, and introduce a delay between the initiation of gene expression and
the appearance of the first active proteins.

Including the above delays into the translation reaction (3.9) results in the following
(Ribeiro et al. 2006):

RBS + Rib 25 RBS(755) + Rib(7i5) + P(Tprotein) (3.14)

where 7,45 is the time to release the RBS after initiating translation, 7,;, is the
time to complete translation of the protein, and 7,rotein iS 7rip plus the additional
time for the protein to fold.

The above model of transcription and translation has been used to investigate,
among others, the importance of the open complex formation in gene expression
(Ribeiro et al. 2010), and the dynamics of several genetic circuits with delays,
including the Toggle Switch and the Repressilator (Zhu et al. 2007; Ribeiro 2007a;
Ribeiro 2007b; Ribeiro 2008). Delayed reactions, including the above model of
transcription and translation, can be found in all publications in this thesis.

3.2.2 Regulation

The previous sections have dealt with modelling the expression of a single gene.
To form a network of genes, we must model gene regulation. As described in
section 2.2, many genes are regulated by one or more TFs which bind to specific
operator sites in the promoter region of a gene. For example, the Lac promoter
in E. coli can be bound by two TFs: Lacl and CAP. The former is a repressor
which unbinds from the promoter in the presence of lactose, while the latter is
an activator in the presence of cAMP. Combined, these two regulators allow the
expression of the lacZYA operon under appropriate conditions.

Regulation of a gene by a TF can be modelled as follows (Roussel and Zhu 2006;
Ribeiro and Lloyd-Price 2007):

Pro + TF - Pro - TF (3.15)
Pro- TF -5 Pro + TF (3.16)

Here, the TF repeatedly binds and unbinds from the operator site at the promoter
region of the gene. While in the Pro - TF state, the RNAp cannot bind to the
promoter to initiate transcription with reaction (3.8). These reactions will thus
reduce the expression rate of the gene by the fraction of time the TF is bound
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to the promoter, making this a repressive interaction. To model activation, an
additional reaction is required (Ribeiro and Lloyd-Price 2007):

kact

Pro-TF + RNAp —— Pro - TF + RBS + RNAp (3.17)

where kfet > k.

Generally, the effects of TF-based interactions such as these are well-approximated
by a Hill function, a function which smoothly interpolates from full production to
full repression (or vice-versa) as the number of TFs is increased. In particular,
provided that the bind-unbind reactions are fast, the reactions given above result
in a Hill function with a hill coefficient of 1 (see section 3.4.1 for a derivation):

-

_ Ka
K+ [Rep]’

U

P(Pro=1) = =

Kq (3.18)

Using the above modelling strategy, multiple TF binding sites can be modelled
for a single promoter (for an example, see the supplementary information in
Publication III). Further, any combinatorial effects between them can also
be modelled (see e.g. (Arkin et al. 1998)). Genetic networks using these kinds
of interactions were studied in Publication IV, and were used as examples in
Publication I.

In Publication II, however, the dynamics was investigated of a network which
utilized a post-transcriptional regulatory mechanism: direct RNA-RNA interac-
tion resulting in the silencing of the target gene (described in section 2.2). To
summarize, the RNA molecule produced by one gene does not code for a TF.
Instead, it is the complement of the mRNA of its target gene. When the two
bind, they are both degraded, thus silencing the target. This interaction can be
modelled with the following reactions (Levine and Hwa 2008):

ksrR,NA

Pro_pzna + RNAp —— Pro gy + sTRNA + RNAp (3.19)
RBS + stRNA 2 & (3.20)

where RBS is that of the target gene, and Progrna is the promoter of the srRNA
gene. Here, reaction (3.19) represents the transcription of the srRNA, and reaction
(3.20) represents the silencing of its target. In contrast to the TF-based regulation
described above, these reactions result in a threshold-linear regulation function,
as depicted in Figure 2.3b.

3.3 Simulation Algorithms

The preceding models are all built within the stochastic formulation of chemi-
cal kinetics. As such, their dynamics is described by the CME built from the
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set of reactions in the model. However, even for the simplest models involving
only a few interacting molecular species, directly solving the CME becomes an
intractable problem, having only been solved analytically for systems containing
only monomolecular reactions (Jahnke and Huisinga 2007). Instead, we opt to
stmulate the dynamics of the model by sampling trajectories from the distribu-
tion described by the CME. The algorithm underlying these simulations is the
Stochastic Simulation Algorithm (SSA) (Gillespie 1976; Gillespie 1977; Gillespie
1992; Gillespie 2007).

3.3.1 Stochastic Simulation Algorithm

The SSA produces a sample from the distribution of trajectories through the
chemical system’s state space. It does so by repeatedly answering two questions:
when does the next reaction occur? and which reaction is it? Formally, this means
selecting a time 7 until the next reaction occurs, and the reaction to occur u,
from suitable probability distributions described by the CME.

To answer these questions, first consider only a single reaction . At the current
time ¢ and state x, this reaction has propensity a,(x). We can then ask: assuming
that no other reactions occur before u, how long must we wait until this reaction
occurs? This question is answered by the product of Py(7,), the probability that
reaction p does not occur between ¢t and ¢ + 7, and the probability that it then
does occur in the next infinitesimal time interval (¢t + 7,,¢ + 7, + d7,). From
the definition of a,(x), 7, can be shown to follow an exponential distribution
(Gillespie 1976):

P(1,)d7, = Po(1,) - au(x)dr, = a,(x)e”# X dr, (3.21)

It would then be possible to construct a simulation algorithm by sampling a “next
reaction time” for all reactions, and then answering the two questions from the
reaction with the earliest next reaction time. This approach is called the First
Reaction Method (FRM) (Gillespie 1976). In this method, however, all next
reaction times must be regenerated every time these questions are answered, since
we assumed above that no other reaction occurs before the next reaction time.
This therefore requires a significant amount of work to be done every iteration of
the algorithm.

Instead, in the original formulation of the SSA, another approach was proposed
based on a direct sampling the distributions of the two answers, and is therefore
called the Direct Method (DM) (Gillespie 1976; Gillespie 1977). An informal
derivation of this method is as follows (see (Gillespie 1976) for details). The
distribution of the earliest next reaction time is the distribution of the minimum
of all next reaction times. The minimum of a set of independent exponential
distributions with different rates happens to itself be an exponential distribution
with a rate equal to the sum of the individual exponentials’ rates (Gillespie
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1976). Therefore, the distribution of 7, the time until the next reaction occurs,
independent of which reaction it happens to be, is:

P(7)dr = ag(x)e" ™) dr, (3.22)
ap(x) = Zau(x)
n

Further, the probability that a given exponential is the minimum is proportional
to the rate of the exponential (Gillespie 1976). Thus, the next reaction to occur,
1, follows a multinomial distribution:

P(u) = - ) (3.23)

Samples for 7 and p can therefore be generated from two uniformly distributed
random numbers in (0,1), U; and Us, as follows:

Y (3.24)
ao(x)
Z am (x) < Usap(x) < Z am (X) (3.25)
m<p m<p

Using these formulas, we can sample from the ezact distribution that is described
by the CME, i.e. we have made no approximations in their derivation. In that
sense, since both the CME and the SSA are derived from the same set of theorems,
they can be considered to be logically equivalent (Gillespie 1992).

Algorithm 1 Stochastic Simulation Algorithm (Direct Method)

1: T+ tp

2: X < X

3: while t < ty,, do

4: ap < 3, au(x)

5: U1, Uy < Independent uniform random numbers in (0, 1)
6: T 4 —aal In Uy

7: < psuch that 3, o am(x) < Usag < 3o,,<, am(X)

8: t—t+71

9: X4~ X+ vy

Given a starting time g, a stopping time Z4,,, and an initial vector of species
populations xg, the DM of the SSA is given in Algorithm 1 (Gillespie 1977).

3.3.2 Next Reaction Method

Both the DM and the FRM must perform an O(R) operation for every reaction
actually performed, where R is the number of possible reaction channels in the
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system being simulated. In the case of the FRM, this is the generation of all
the next reaction times and selection of the earliest, while in the DM, this is the
calculation of ag(x) (hereafter abbreviated as ag), and the selection of y (lines 4
and 7 of Algorithm 1). Clearly, this will cause the simulation to run slowly when R
is large. Several alternative algorithms have thus been suggested to accelerate the
simulation without compromising the exactness of the algorithm. The simulator
in Publication I uses an optimization of the FRM called the Next Reaction
Method (NRM) (Gibson and Bruck 2000).

The NRM is based firstly on the observation that not all of the next reaction
times generated by the FRM need to be discarded when a particular reaction
occurs. If the propensity of a reaction m does not change due to the occurrence
of reaction p, then the distribution of the next reaction time of m, given that 7,
time has passed since it was last generated and this reaction has not occurred yet,
is the same as the distribution before that time had passed. This is due to the
memoryless property of the exponential distribution from which 7, was drawn.
That is, from equation (3.21), for reaction m # p, the distribution of time until
reaction m occurs after reaction p is:

P(Tpm, — 7,)dTm,
P(Tm > 1)
B am(x)e*“m(x)(Tm*Tﬂ)dTm
e—am(x)'ru
= am(x)efam(x)”" drm,

= P(7y)dmm (3.26)

P(Tm — Tu| T > 10)dTm =

Therefore, if we store the putative next reaction times for each reaction as absolute
times t,,, rather than relative times 7, the majority will not need to be regenerated
from one iteration of the algorithm to the next. The NRM therefore proceeds
as follows (Gibson and Bruck 2000). In a priority queue, we store the absolute
putative reaction times of all reactions. The reaction at the front of the priority
queue, which can be found in O(1) time, is then always the next reaction to
occur. Upon execution of this reaction, it and any reaction whose propensity has
been changed by the occurrence of this reaction then have their putative next
reaction times regenerated, and reinserted into the priority queue. To accelerate
this process, the reaction dependency graph, i.e. the list of reactions which will
require their propensities to be updated for every possible occurring reaction, is
calculated and stored beforehand.

Since this algorithm requires the possibility to remove an arbitrary reaction from
the priority queue, a simple implementation such as a binary heap will not suffice.
Instead, we must maintain the mapping between the reactions and their present
location in the priority queue. The resulting data structure is called an indexed
priority queue (Gibson and Bruck 2000), an example of which is illustrated in
Figure 3.1.
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Figure 3.1: Example indexed priority queue used by the Next Reaction Method, partway
through a simulation with 10 reactions. Top: Binary heap structure with nodes are
labelled with letters A-J. Each node contains the index of the reaction to occur (i), and
the putative reaction time of that reaction (¢,). Bottom: Index structure, containing
the mapping from reaction indices to the current position in the heap of that reaction.
Reprinted with permission from (Gibson and Bruck 2000). Copyright (2000) American
Chemical Society.

Finally, even in the case where the propensity of a reaction does change due to
the occurrence of another reaction, it is possible to reuse the previously-generated
putative reaction time. Since the time until the next occurrence of a given
reaction, after the occurrence of the currently executing reaction, is exponentially-
distributed (from equation (3.26)), and the distribution from which we generate
the time until the next putative reaction time is also exponentially-distributed,
we can simply scale the old exponential distribution to match the rate of the new
exponential distribution, rather than generating an entirely new putative reaction
time. The scaling factor required is the ratio between the new propensity and the
old propensity (Gibson and Bruck 2000). This can be seen by first transforming
the old exponential distribution from equation (3.26) to a uniform distribution,
and using that as U; in equation 3.24. After scaling, rather than removing and
reinserting the reaction into the priority queue, the reaction is simply moved
up/down in the priority queue to its appropriate position, an operation termed
“bubbling up/down”. When the ratio between the old and new propensities is near
1, this has the advantage that the reaction will not need to be bubbled far from
its current location, thus reducing the cost of this operation in practice (Gibson
and Bruck 2000). Combining all of the above, we get the NRM, presented in
Algorithm 2.

If the NRM’s indexed priority queue is implemented based on a binary heap,
as depicted in Figure 3.1, insertion, deletion, and bubbling operations all take
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Algorithm 2 Stochastic Simulation Algorithm (Next Reaction Method)
1: t 1o
2: X < X
3: @ + Empty indexed priority queue
4: for each reaction y do

5: U < Uniform random number in (0, 1)

6: tyt—au(x)"'InU

7 Insert reaction u into ) with putative reaction time ¢,
8: while t < {4, do

9: i, t, < Earliest reaction in @

10: Pop the earliest reaction from @

11: tty,

12: X4 X+,

13: U < Uniform random number in (0, 1)

14: ty < t, —a,(x)"'InU

15: Insert reaction p into ) with putative reaction time ¢,
16: for each reaction m for which m # p and am,(x) # am(x —v,) do
17: ti <t + (X — V) am () " (t — 1)

18: Bubble up/down reaction m in ) as necessary

O(log R) time. Thus, so long as the reaction dependency graph is sparse, i.e.
the maximum number of reactions that must have their putative reaction time
updated when a given reaction is executed is independent of R, the inner loop of
the NRM runs in O(log R) time (Gibson and Bruck 2000). When R is large, this
results in a significant boost to the speed of the simulation compared to the DM
and the FRM. Further, since the NRM utilizes a general priority queue, it is has
the additional advantage of being able to simulate events with non-exponential
waiting times. For these reasons, along with the ease of adding and removing
reactions from the system, the NRM was used as the basis of the simulation in
Publication 1.

3.3.3 Delayed Stochastic Simulation Algorithm

The SSA does not allow for explicit delays to be simulated (i.e. reactions like
those presented in section 3.2.1). Delays can be incorporated into the SSA with
the use of a “wait list”, a priority queue maintained in parallel to the SSA where
the products from delayed reactions in the past are stored until the appropriate
release time (Roussel and Zhu 2006). The Delayed SSA (DSSA) proceeds by
repeatedly executing a reaction or releasing a delayed product from the wait list,
whichever event is earlier. The DSSA is presented in Algorithm 3.

Using a simple binary heap to implement the DSSA’s wait list results in an
O(log W) addition to the runtime of the simulation’s main loop, where W is
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Algorithm 3 Delayed Stochastic Simulation Algorithm

1: t 1o

2: X < Xg

3: L < Empty wait list

4: while t < 14, do

5: T, ) < SSA

6: if L is empty then

7 tr, < o0

8: else

9: t;, < Earliest time in L

10: if t; <t+ 7 then

11: Pop the earliest molecule in L and add it to x
12: t+tg

13: else

14: t—t+71

15: X< x+y,

16: if Reaction p has delayed products then
17: Add them to L

the number of elements on the wait list. However, except for pathological wait
list-heavy models, the reaction events will generally outweigh the wait list events,
whatever implementation of the SSA is chosen. Thus the SSA’s runtime will
eclipse the DSSA’s additional overhead. The NRM is particularly well-suited to
be paired with the DSSA, since both the reactions and wait list events can share
the same priority queue, unifying the two algorithms into one.

3.4 Approximate Simulation

Several publications in this thesis employ approximate simulation techniques.
These techniques make simplifying assumptions about the model to reduce the
computational complexity of the simulation, in the same manner as the CME can
be derived from a full molecular dynamics simulation by making the simplifying
assumptions given in section 3.1, e.g. that all molecules are uniformly distributed
within the reaction volume.

One such technique has already been applied informally in the preceding sections.
In section 3.2, it was noted that it is possible to remove one of the species from
consideration in a reaction if it can be considered to be in constant concentration
in the cell. In general, simplification of models in this way uses information known
by the modeller that some feature of the detailed model is not relevant (or has
little relevance) to the features under study. An approximation of this feature is
then made, resulting in a new, simpler model.

Two pieces of information frequently used in model reduction for models of genetic
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circuits are timescale separation, and the knowledge that a particular molecule
will not significantly change concentration during the simulation. Such techniques
were applied in Publication III to produce a “reduced” model of gene expression
to simplify the parameter fitting procedure (see the supplementary information),
and in publication Publication IV to produce a simple enough model of a
Toggle Switch so that extremely large populations of cells could be simulated
simultaneously.

3.4.1 Timescale Separation

The different subsystems of a genetic network do not operate on the same timescale.
For example, TFs can interact with the promoter region of their target gene very
rapidly - on the order of tens of seconds (Dunaway et al. 1980) - while transcription
initiation occurs on a timescale of several minutes (McClure 1980). When two
subsystems operate on sufficiently different timescales, the system is amenable to
simplification by timescale separation (Gunawardena 2014). In this, the faster
process is assumed to always be in steady state, and downstream slow components
are affected by only considering the expected behaviour of the fast components.
In principle, this means that the faster components, and the many reaction events
they create in the SSA, do not need to be simulated explicitly, and the model can
be simulated considerably faster.

A common application of timescale separation is the example given above: the
regulation of a target gene by a transcription factor. Recall that the reactions for
repression are as follows (equivalent to reactions (3.15) and (3.16)):

Pro + Rep s Pro- Rep (3.27)
Pro - Rep s Pro+ Rep (3.28)

These two reactions interact with transcription by intermittently removing the
gene’s promoter from from the system. If the repressor bind-unbind reactions
occur far more frequently than the transcription reaction (i.e. k, > [RNAp]k;),
then timescale separation can be applied, and the system can be simplified as
follows (Cao et al. 2005). First, we write the CME for the Rep-Pro subsystem for
a fixed population of Rep, which only contains two states:

dP(Pro = 1)

" = ~k:[Rep] P(Pro = 1) + k, P(Pro = 0) (3.29)
CUD(P;)—O) = &, [Rep]P(Pro = 1) — k,P(Pro = 0) (3.30)

where [Rep] is the population of Rep molecules.
Solving for steady state, and using the fact that the total probability must be 1
(i.e. P(Pro=0)+ P(Pro=1)=1), we get:

Kd u
L Ky=— 3.31
Kq+ [Rep] a Ky ( )

x>

P(Pro=1) =
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The fast species (Pro and Pro- Rep) are then removed from the rest of the system.
This is done by replacing all reactions involving them, such as transcription,
with reactions with the stochastic constant modified to be the expectation of the
stochastic constant of the original reaction, given the steady-state probability
distribution of the fast species (Cao et al. 2005). In this case, the transcription
reaction (3.8) becomes:

_kiKg
Kd+[Rep]

RNAp 2 RBS + RNAp (3.32)

The above is the justification behind the use of Hill functions to represent the
effects of a TF on its target gene. For this reason, reactions with a Hill function
term are made available in the simulator presented in Publication I, and this
facility is used to simplify the models employed in Publication IV.

3.4.2 Constant Concentrations

In addition to taking advantage of timescale separation, models can also be
simplified if it is known that the concentration of a molecule will be approximately
constant for the duration of the simulation. This implies that the molecule is in
high copy number, and thus fluctuations in its numbers as it reacts with the other
molecules in the system will be negligible. It can then be removed from explicit
consideration in the system by factoring its contribution into the propensities of
each reaction it takes part in.

This technique has already been informally mentioned earlier when referring to
the RNA polymerase and Ribosome concentrations in section 3.2. Both of these
are housekeeping molecules which are constitutively expressed by cells, and can
therefore be considered to be in roughly constant concentration. For example,
if the RNAp concentration is considered to be constant, then the transcription
reaction (3.8) becomes:

Pro FENAPL b L RBS (3.33)

This was applied in all publications to remove non-dynamically-relevant molecules
from explicit representation in the simulation. As an example, see the derivation
of the “reduced model” in the supplementary material of Publication III.

3.4.3 Approximate Simulation Algorithms

Another means to simplify the simulation procedure is to make approximations
in the simulation algorithm itself. That is, we compromise the exactness of the
SSA using a simplifying assumption, in order to gain a payoff in speed. If the
assumption is valid for the model being simulated, then the resulting speedup frees
computational resources which might be spent, e.g. providing a more exhaustive



28 Chapter 3. Modelling and Simulation of Stochastic Gene Expression

exploration of the parameter space, or performing more simulations to gain more
certainty of the results. An optimal strategy, then, would be to select a simulation
method that makes as many simplifying assumptions as possible, yet accurately
captures all the dynamics of interest. Often, however, a simulation strategy is
chosen without regard to the dynamics that may be relevant. Specifically, the
traditional means to model and simulate systems like those presented here is to
set up a system of Ordinary Differential Equations (ODEs), called Reaction Rate
Equations (RREs), without regard for the assumptions that are implicit in their
use (Gillespie 1992). For an example of the differences observed in a model built
with RREs compared to a full simulation with the SSA, see Publication II, in
which the RREs for the model of the srRNA-mediated switch are referred to as
the “deterministic model”. The relationship between the RREs and the CME
(Gillespie 2007; Gillespie 2009) is thus described here.

In the derivation of the RREs from the CME, the first simplifying assumption to
make is that there is some time 7 over which the propensities of all reactions do not
change significantly (Gillespie 2001). The number of times each reaction occurs
in this time window will therefore follow a Poisson distribution with rate a,(x)7.
It is then possible to “leap” over 7-sized blocks of time by generating a random
Poisson-distributed number for each reaction, which are then performed that many
times. Meanwhile, the SSA would have had to perform one iteration for every
occurrence of every reaction. In this manner, this method, called 7-leaping, lumps
together many occurrences into a single operation, accelerating the simulation for
highly-propense reactions.

Simplifying further, if we assume that the number of times each reaction occurs
within the time 7 is large, i.e. a,(x)7 > 1, then the Poisson distribution can
be well-approximated by a Normal distribution (Gillespie 2007). The result is
a set of coupled stochastic differential equations known as Chemical Langevin
Equations (CLEs) (Gillespie 2000). In this, the molecule populations become
continuous, though the dynamics remains stochastic. Similar to the relationship
between the SSA and the CME, the evolution of the CLE can be described by a
partial differential equation called the Chemical Fokker-Planck Equation (CFPE),
describing the evolution of the probability density over all the state space (Gillespie
1996; Gillespie 2000).

The final simplification is termed the “thermodynamic limit”, wherein both the
reaction volume and all molecular populations are taken to infinity, but in a way
such that the concentrations of the molecules remain constant (Gillespie 2007;
Gillespie 2009). Since the deterministic term of the CLE scales linearly with
the molecular populations, this term approaches a non-zero value in this limit.
However, the stochastic term scales as the square root of the populations. In this
limit, therefore, this term disappears and we are left with a set of coupled ODEs
describing the time-evolution of the concentrations of all molecules, called the
RREs.
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a;dt = probability that R will fire in next dt I

{aj = constant during T, Vj}
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Figure 3.2: Logical relationship between the various descriptions of chemical kinetics
and their simulation algorithms. Dotted arrows represent approximations, with their
simplifying assumptions beside them. Solid arrows represent exact derivations. Methods
in solid boxes are exact, i.e. derived from the fundamental assumption that a function
a,(x) exists, while dashed boxes are approximate methods. Here, ) represents the
reaction volume. Reproduced with permission from (Gillespie 2007).

The chain of assumptions required to derive the RREs from the CME, and the
simulation methods resulting from each assumption, are depicted in Figure 3.2.
Methods higher in the hierarchy make fewer assumptions about the model, and
are thus more computationally-demanding than those lower in the hierarchy.
Since they produce the most physically-meaningful results, it may be tempting to
always attempt to use a simulation method that makes the minimum number of
assumptions, regardless of the potential speed increases they can bring. However,
beyond showing that these assumptions are justifiable for the given model, forcing
oneself to work at a higher level of detail than necessary can be detrimental.

First, fewer assumptions also require the modeller to provide more information
to the simulation, in the form of additional parameters and initial conditions,
which may be difficult to acquire and which is not relevant to the dynamics under
study. Further, these methods produce a correspondingly larger amount of output
which must be properly analysed. Second, when the assumptions are reasonable,
the time taken to simulate and analyse an excessively detailed model would be
better spent providing a more in-depth study of the simplified model, such as
the study of the high-level model of the Toggle Switch in populations of growing
and dividing cells in Publication IV. The optimal strategy would therefore be
to select the maximum number of assumptions that can be justified for a given
model, and to then simulate it with the corresponding method.

Unfortunately, none of the simulation methods are easily parallelizable in general,
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and cannot be since it is always possible that a change in a given molecular
species rapidly propagates to other molecular species. Thus, the simulation
of large reaction systems cannot be efficiently split across multiple computers
for any but the most loosely-coupled systems. This limits the use of parallel
computational resources such as clusters or computational grids to running large
amounts of independent simulations. For some system size, therefore, it will
always be impractical to perform the simulation at the highest levels of detail,
and some simplifying assumptions will become necessary to achieve any results.
For example, we cannot simulate an entire cell using the level of the CME/SSA,
but by applying the above assumptions where appropriate, it is starting to be
possible to perform whole-cell simulations which yield useful predictions (Karr
et al. 2012).

3.5 Compartments

Real cells are not homogeneous, and instead have an intricate internal spatial
structure and organization with volumes delineated by membranes and with
molecules tethered together by macromolecules (Alberts et al. 2002). This or-
ganization can affect the probabilities that certain reactions occur, and violates
the assumption of spatial homogeneity made by the CME and SSA. However, as
noted earlier, simulating every particle explicitly in space is too computationally
demanding. A commonly-taken middle ground is to divide the space into com-
partments, with a CME-based simulation running in each compartment. This
partitioning of space can be done based on the actual physical separations in
the cell, resulting in stochastic P-systems (Paun 2001; Spicher et al. 2008), or
a more refined partitioning can be performed, resulting in the Inhomogeneous
SSA (ISSA) for reaction-diffusion systems (Lampoudi et al. 2009).

In P-systems, compartments are organized in a hierarchical manner (Paun 2001;
Spicher et al. 2008). Within each compartment, the usual CME assumptions
are made, allowing the SSA to be used. Further, all communication between
compartments occurs by diffusion reactions between a parent compartment and a
child compartment, i.e. there is no direct child-child communication. This implies
that both the molecules within a compartment, as well as all compartments
contained within a compartment are always uniformly distributed. As examples,
in a model of a eukaryotic cell, molecules within a Nucleus compartment might
be able to diffuse out into the containing Cell compartment (representing the
cell cytoplasm), which then diffuse into a Mitochondrion compartment. However,
molecules cannot diffuse directly from the Nucleus compartment to the Mito-
chondrion compartment. An example hierarchically compartmentalized system
representing cells with structures within is shown in Figure 3.3a. Examples of
allowed reactions between molecules in compartments, as described above, are
shown in Figure 3.3b.
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(a) Example of a hierarchically compart-
mentalized system: two cells (blue) with
different structures inside (white and or-
ange), all containing interacting and diffus-
ing molecules (black).
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(b) Compartment hierarchy for the exam-
ple cells pictured in Figure 3.3a. Examples
of some possible reactions (solid green ar-
rows) and diffusion reactions (dotted green
arrows) in P-systems are shown. Exam-

ples of additional reactions made possible
in SGNS2 are shown in yellow. Invalid re-
actions and diffusion reactions are shown
in red.

Figure 3.3: Example of a compartment hierarchy.

On the other hand, in the ISSA, an explicit spatial model of the reaction volume
is divided into subcompartments. As with P-systems, molecules are assumed to
be homogeneously distributed within each compartment, however here there is
no compartment hierarchy. Molecules are instead allowed to diffuse from one
compartment to adjacent compartments. In theory, as more subcompartments
are used to represent the reaction volume, the simulation becomes more accurate,
however the diffusion reactions will quickly dominate the time taken to simulate
the system (Lampoudi et al. 2009).

While the ISSA is more physically accurate, P-systems are considerably easier to
set up and reason about. Further, since they do not explicitly model space, the
division of compartments in P-systems is simple to implement - a new compartment
is simply created in the parent compartment of the dividing compartment. For
these reasons, the simulator presented in Publication I is based on P-systems,
with one important limitation removed. Bimolecular reactions are allowed to
occur between molecules in a child compartment and molecules in a parent
compartment (the yellow interactions in Figure 3.3b). This enhancement allows
compartments to be used to simulate the spatial restrictions created by interactions
with a single macromolecule. For example, this ability was used to simulate
coupled transcription and translation in (Maikeld et al. 2011), where the global
compartment contained the DNA and individual nacent RNA molecules were each
contained within their own subcompartments. Such cross-compartment reactions
were used in the transcription elongation reaction, Ribosome-RNAp interaction,
and when Ribosomes in the global compartment interacted with the RNA, while
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intra-compartment reactions ensured that Ribosomal traffic on individual RNA
molecules was correctly modelled.

3.5.1 Partitioning of Molecules

P-systems provide a formalism in which dynamic cell populations can be simulated.
As mentioned, compartments can be divided by creating new compartments at the
same level in the compartment hierarchy as the original compartment. To correctly
model cell partitioning using such a methodology, one additional rule must be
defined: how the molecules are partitioned between the two new compartments
upon division. The partitioning schemes mentioned in section 2.1, and summarized
in Figure 3.4, are presented here as “mock processes” that resemble the process
resulting in the partitioning, and generate the appropriate distribution, as in
(Huh and Paulsson 2011b).

Random Size Random Accessible Volume  Clustered

P0® e
!
Pair Formation  Self Volume Exclusion Utilizing Spindles

R

Figure 3.4: Molecule partitioning schemes in cell division presented in (Huh and
Paulsson 2011b). Top: “Disordered” partitioning schemes, resulting in greater-than-
binomial partitioning error. Bottom: “Ordered” partitioning schemes, resulting in more-
even-than-binomial partitioning. Reprinted with permission from (Huh and Paulsson
2011b). Copyright Dann Huh, 2011.

These mock processes are presented here as reaction systems where the molecule
M refers to the molecule being partitioned. To determine how the molecules
are partitioned, the mock processes are run in isolation from the rest of the
system until ¢ = oo, and the number of L and R molecules at that point are
then taken to be the number of molecules partitioned into the “Left” and “Right”
daughter compartments, respectively. For example, consider the mock process for
an independent partitioning:

M5 L (3.34)
M5 R (3.35)



3.5. Compartments 33

Every M molecule has an independent and equal chance of being partitioned into
either new compartment. After this mock process has been run to t = oo, the
number of L molecules will thus follow a binomial distribution with N set to the
number of molecules which were partitioned and p = 0.5.

The Random Size partitioning scheme, in which the daughter cells inherit a
different amount of the parent cell’s cytoplasm, can be simulated by a mock
process which biases the molecule partitioning towards the larger cell. If Q is the
volume of the cell, and vy, is the volume of the Left daughter in this particular
division, then this partitioning scheme’s mock process is as follows:

M 5 L (3.36)
M 27 R (3.37)

Large molecules or structures such as vacuoles reduce the space available for other
molecules in the cell. If these structures are partitioned randomly between the
two daughter cells (likely by the Volume Exclusion scheme below), this will be
an additional source of variability in the partitioning of other molecules. This
partitioning scheme, labelled as Random Accessible Volume in Figure 3.4, is
identical to the Random Size partitioning scheme, with €2 replaced with the total
accessible volume in both cells, and vy replaced with the accessible volume in
the Left daughter cell, after the vacuoles and other large structures have been
partitioned by their partitioning schemes.

If the molecules cluster before partitioning, the cell inheriting the larger clusters
will likely inherit more molecules than its sibling. Molecule clustering can be
simulated as follows. If the number of clusters formed by the molecules is C' > 1,
then we first run a mock process partitioning the clusters into the two daughter
cells:

c sy (3.38)
c -5 Cg (3.39)

The partitioned molecules are then partitioned into the cells, biased towards the
cell which gained the most clusters:

M- L (3.40)
M -5 R (3.41)

This order of operations (partitioning clusters first, followed by partitioning of
molecules into clusters), is equivalent to first partitioning the molecules into
clusters, and then partitioning the clusters into cells (Huh and Paulsson 2011b).
Note that all of the above partitioning schemes are variants of a biased (i.e.
Preferential) independent partitioning scheme, where the bias is drawn from a
distribution rather than fixed.
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Molecules which are partitioned non-binomially due to limited diffusion must be
handled separately, since their location before partitioning, a feature lost in these
mock processes, is required. These can be simulated, for example, by tracking
where these molecules are in the cell, and partitioning them appropriately, as was
done in (Gupta et al. 2014c).

The Pair Formation partitioning scheme is the first partitioning scheme considered
here which can result in lower than binomial variance in the partitioning. This
scheme is parametrized by the probability r that a given pair of molecules will
form a pair, and by p, the probability that a pair will partition evenly into the
two daughter cells. An independent partitioning scheme is therefore realized when
r = 0. Further, for » > 0,p < 1, it is possible for this scheme to result in greater
variance than binomial, similar to clustered partitioning. This partitioning scheme
can be simulated with the following mock process:

2M = ProtoPair (3.42)
M1 (3.43)
151 (3.44)
ISR (3.45)
ProtoPair —— 21 (3.46)
ProtoPair M> Pair (3.47)
Pair —— 2L (3.48)

Pair — 2R (3.49)

Pair 2070 1L R (3.50)

Partitioning by a spindle apparatus, which has Sy, binding sites for the Left cell,
and Sy binding sites for the Right cell, can be simulated by first assigning each
molecule to a spindle binding site:

SL+M—— L (3.51)
Sk +M >R (3.52)

Any remaining molecules are then partitioned independently using reactions (3.34)
and (3.35).

Volume Exclusion, i.e. the partitioning of molecules so large that only a limited
number fit into a given cell, results in a partitioning scheme very similar to
the spindle binding sites. The primary difference is that the different “binding
sites” represent the limited possible locations within the new cells that each
macromolecule can occupy, and thus St, + Sg must be at least as large as M.
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The simulator in Publication I was designed with the capability to generate
these partitioning schemes, based on the mock processes presented here. These
capabilities were used in Publication III and Publication IV to study the
effects of molecule partitioning on the dynamics of single genes and on genetic
circuits, as well as in (Gupta et al. 2014c; Gupta et al. 2014a) to study the effects
of asymmetric partitioning of non-functional protein aggregates on population
vitality in E. coli.






4 Genetic Networks

It has been proposed that the “programming” of cells is encoded in the network of
interactions between genes (Waddington 1957; Kauffman 1969). This section first
presents the current view as to how a single genetic network can give rise to its
diverse behaviours, and introduces theoretical concepts which appear frequently in
Publication IT and Publication I'V. Subsequently, two specific genetic networks
and their dynamics are presented: the Toggle Switch and the Repressilator. The
behaviour of these two networks was studied in Publication 1T and Publication
IV, where their behaviour was modified by stochastic partitioning in cell division
and direct RNA-RNA interaction.

4.1 Noisy Attractors and Ergodic Sets

Boolean networks were one of the first dynamical representations of genetic
networks studied (Kauffman 1969). In a Boolean network, each gene is represented
by a Boolean variable, which is True when the gene is expressing (i.e. its product
is present), and False when it is not. Connections between genes are represented
by a Boolean function for each gene which determines what value that gene
should have based on the states of all genes which might influence it. Time is
discrete in this model, and at each time moment, each gene’s state is set to the
state prescribed by its Boolean function based on the states of its inputs in the
preceding time moment.

Though very simple, this model allowed several key insights to be made about
how genetically identical cells might give rise to different phenotypes. First, notice
that a given Boolean network with /N nodes has a large, though finite state space
of 2V states. Therefore, if the network is run long enough, at some point it must
revisit a state which has already been visited. From this point on, it will continue
to repeat the same sequence of states, since the update function is deterministic.
Since there are many possible starting states which will eventually lead to a given
repeating sequence of states, these loops in state space are called “attractors”.

Since a given Boolean network can have multiple attractors, these have been
proposed as a model of how the interactions between genes in a pluricellular
organism’s genetic network can give rise to many different cell types, each with
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its own set of expressed proteins. This interpretation has, however, been called
into question, given the importance of stochasticity in gene expression. Boolean
networks with noisy dynamics do not have attractors (Aldana et al. 2003). A
related concept was therefore invoked to generalize this hypothesis to stochastic
networks: Ergodic sets (Ribeiro and Kauffman 2007).

Ergodic sets are the sets of states which, once entered, cannot be left given some
level of noise (Ribeiro and Kauffman 2007). Under the right conditions, Boolean
networks subject to a given level of internal noise can have multiple such regions
of the state space (Ribeiro and Kauffman 2007). Thus, Ergodic sets recapture
the features necessary to explain how a single network can give rise to multiple
behaviours, even in a stochastic setting. However, the definition of an Ergodic
set is very harsh: a single noisy transition from one attractor of the non-noisy
network to another suffices to merge both regions of the state space into a single
Ergodic set. Nevertheless, noisy networks can remain in restricted regions of the
state space for long periods of time. If this length of time is, on average, longer
than the lifetime of a cell, then for all practical purposes, this region is an Ergodic
set. Such regions of the state space, which exhibit long-term stability in the face
of noise, are equivalently called “noisy attractors” (Dai et al. 2009) or “metastable
states”.

In this thesis, noisy attractors feature prominently in the analysis of stochastic
genetic circuits in Publication II and Publication IV. In the former, a network
with two noisy attractors was analyzed, and the stabilities of the two attractors
was quantified. In the latter, the effects of stochastic partitioning of molecules
in cell division were found to differ in networks with differing numbers of noisy
attractors: networks with one noisy attractor did not change their behaviour
significantly, whereas networks with two noisy attractors gained qualitatively new
features.

4.2 Toggle Switch

The Toggle Switch is an extensively studied genetic network (see e.g. (Arkin et al.
1998; Gardner et al. 2000; Atkinson et al. 2003; Lipshtat et al. 2006; Loinger et al.
2007; Zhu et al. 2007; Ribeiro 2007b)), comprised of two genes which mutually
repress one another, as illustrated in Figure 4.1. The Toggle Switch is bistable,
that is, it has two noisy attractors in which the system will tend to remain unless
forced to change by an external signal or by spontaneous fluctuations in the RNA
and transcription factors that compose the switch.

The canonical example of a Toggle Switch in nature is the “A-switch” in the
bacteriophage A\, composed of the TFs CI and Cro. In a landmark study which
demonstrated the importance of stochasticity in gene expression, this phage was
shown to exploit this stochasticity to make a randomized decision early during
infection, between lysing the cell and turning it into a lysogen (Arkin et al. 1998).
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Figure 4.1: Illustration of the structure of the genetic Toggle Switch. Gene A produces
transcription factor A, which binds to the promoter of gene B and represses it. Likewise,
Gene B produces transcription factor B, which represses gene A.

If the virus’s lytic pathway is disabled, populations of E. coli can be cultured for
long periods of time with the switch in either state (Neubauer and Calef 1970),
demonstrating how this circuit can also be used to store one bit of heritable
epigenetic information.

To understand the dynamics of this circuit, first consider the following deterministic
model (Gardner et al. 2000):

dlA]  aaK}

dB]  apK)}

= R e (4.2)
~State 1

’

(high state)

.

du/dt =0 .- "Separatrix
dvidt =0 .°
State 2
(low state)

Unstable
,R_steady-state

Figure 4.2: Phase space of the Toggle Switch. u and v refer to the populations of the
two TFs. Solid lines represent the nullclines of the model. The switch has two steady
states, labelled State 1 and State 2, separated by a separatrix. A third, unstable steady
state lies between the two stable states. Reproduced with permission from (Gardner et al.
2000).
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In this model, the parameter a, controls the production rate of the protein for
gene x, 3, controls the protein’s degradation rate, K, controls the number of
repressors required to reduce the other gene’s expression by half, and ~, controls
the cooperativity of that interaction (explained below). The phase space of this
model is shown in Figure 4.2 for a parameter set which results in bistability. As
visible, there are two stable steady states, where one of the genes is expressing
and the other gene is repressed. If the system is initialized anywhere in the upper
triangle of the state space, the system will asymptotically approach the upper
steady state, and vice-versa for the lower triangle and lower steady state. Note
that in this case, the switch is symmetric, though this does not have to be the case
in the likely scenario where ay # ap, K4 # Kp, or 4 # Sp. A separatrix lies
in between the two stable states. In this deterministic model, initial conditions
lying on this line will lead the system to the unstable steady state in the middle
of the diagram.

The parameter 7y, controls the cooperativity between TFs when repressing the
target gene. When ~, = 1, this corresponds to a single repressor protein bind-
ing/unbinding from the promoter (this function was derived in section 3.4.1).
When ~, # 1, TFs interact at the promoter regions of their target genes to
produce a non-linear gene regulation function. In the limit of highly-cooperative
binding, v, will equal the number of binding sites for the TF, but can, in practice,
take non-integer values. To achieve bistability in the deterministic model, v, must
be greater than 1 (Gardner et al. 2000).

In a discrete stochastic simulation, however, bistability can be achieved without
cooperative interactions (Lipshtat et al. 2006). Further, while the deterministic
model accurately predicts that the circuit can be bistable, it cannot predict how
stable the steady states will be to noise since, if a steady state is reached, the
system will remain there forever.

The delayed stochastic model of the Toggle Switch using the modelling strategy
given in section 3.2 is as follows, where i represents either gene A or gene B, and
7 represents the other gene:

Pro; + RNAp LN Proi(Tpro) + RBS;i(Tpro) + RNAD(Trna)
RBS; + Rib 25 RBS;(7y5s) + Rib(Tya) + Pi(Tprotein)
RBS; frsd, o
P, kproteind
Pro; + P; - Pro; - P,
Pro; - P; k—“> Pro; +P;

Typical stochastic dynamics of a Toggle Switch is shown in Figure 4.3. The system
is seen to stably remain in one of two states, with spontaneous switching events
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Figure 4.3: Typical dynamics of the stochastic model of a Toggle Switch given by
reactions (4.3)-(4.8). Stochastic switching events can be seen (e.g. at t = 0.8 x 10° s), in
addition to failed switching events (e.g. at t = 1.2 x 105 s).

between them. Further, some “failed” switching events can be seen. Thus, unlike
in the deterministic model, the two possible states of the switch have a long, but
limited lifetime. The stability S of the stochastic switch is defined as the mean
time that the switch can remain in one of its two noisy attractors, quantified as
follows (Ribeiro 2007b):

- Tobs

W1
where T, is the total observation time and W is the number of times Py — Pg
changed sign in that observation time. However, a large amount of switching
events (i.e. sign changes) are frequently generated when the switch’s state lies
near the unstable fixed-point attractor, e.g. at 0.88 x 10° s in Figure 4.3. Thus,
switches that occur too soon after another switch should not be counted in W.
Note that this definition of stability assumes a symmetric switch. If not, the state
space of the switch must be characterized first in order to classify which noisy
attractors the switch is in at a given point in time.

(4.9)

In general, stronger repressive interactions increase the stability of the switch
(Loinger et al. 2007). Similarly, cooperative repressive interactions can greatly
increase the stability of the switch (Loinger et al. 2007). Meanwhile, the various
delays (see section 3.2.1) have differing effects, with the promoter open complex
formation having the most complex interaction with the stability of the switch.
When this delay is large, the mean TF population will decrease, thus decreasing
the repression strength and destabilizing the switch. However, if k; is compensated
so as to produce the same mean production rate (and thus the same mean protein
level when unrepressed), the stability of the switch is still reduced. This is due
to the weaker relative repression strength. That is, reaction (4.7) becomes less
competitive with reaction (4.3). Lastly, coupling between Toggle Switches, either
within the same cell, or due to communication between cells, will increase the
stability of the switch (Ribeiro 2007b). This would therefore be one viable way to
build a stable switch out of unstable switches.

The Toggle Switch can be seen as an example of epigenetic memory, which, when
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stable, can “store” one bit of information (Wolf and Arkin 2003). As such, circuits
such as this have been proposed to underlie cell differentiation, where cells commit
to one pathway over another (Gardner et al. 2000). This circuit can also be used
to make randomized decisions, such as the “X switch” (Arkin et al. 1998). Lastly,
a switch does not need to be perfectly stable to be useful. Unstable switches, i.e.
those with a stability on the order of the length of the cell cycle or shorter, can be
used as a survival strategy for a population of cells in a fluctuating environment
(Acar et al. 2008). In this case, it is advantageous to have a stability such that
the cell’s phenotype switches at the same frequency as the environment.

In this thesis, the Toggle Switch appears in two publications: the A switch is used
as an example application in Publication I, and it is one of the two networks
studied in Publication IV.

4.2.1 RNA-Mediated Toggle Switch

A variation of the Toggle Switch, using RNA-RNA interactions rather than
TF-DNA interactions, is the sscRNA-mediated Double Negative Feedback Loop
(MDNFL in (Zhou et al. 2012)). In this variant, one gene does not produce a TF,
instead producing a srRNA which binds to, and silences the other gene’s mRNA.
This network motif can be found in both prokaryotes and eukaryotes (Zhou et al.
2012). The circuit is illustrated in Figure 4.4.
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Figure 4.4: Illustration of the model of the srRNA-mediated double feedback loop from
(Zhou et al. 2012). A TF-coding gene g,’s product interacts with the srRNA-coding gene
gs, which represses g,’s mRNA. The TF-coding gene can either repress or activate the
stRNA gene, depending on the sign of p, — py. Reproduced with permission from (Zhou
et al. 2012).

When the TF in the circuit behaves as a transcriptional repressor, this circuit
exhibits bistability, and can produce dynamics very similar to the Toggle Switch
(Zhou et al. 2012). Interestingly, in a deterministic model, this network does not
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require cooperative interactions between repressors to exhibit bistability, due to
the nonlinearity in the srRNA regulation function (seen in Figure 2.3b). Lastly,
if the TF acts as a transcriptional activator rather than repressor, this circuit
exhibits oscillatory dynamics.

In Publication II, the stochastic dynamics of this circuit was investigated, using
realistic copy numbers for all molecules.

4.3 Repressilator

Circuits such as the Toggle Switch are capable storing one bit of memory - more
if the circuit has more stable states. Logic and information processing can be
performed by repressive and activatory interactions such as those presented in
sections 2.2 and 3.2.2. One final control component necessary to produce an
information processing machine is a clock (Hasty et al. 2002). The Repressilator
is a synthetic genetic circuit with oscillatory dynamics (Elowitz and Leibler 2000),
which can therefore function as such a clock.
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Figure 4.5: Structure and Deterministic Dynamics of the Repressilator

The term “Repressilator” is a combination of “Repression” and “Oscillator”, due to
its structure: three genes repressing each other in a ring, as shown in Figure 4.5a.
The Repressilator from (Elowitz and Leibler 2000) used the Lacl, CI, and TetR
transcription factors. When one of these genes is expressed, it represses the
next gene in the ring. Since this next gene is repressed, it cannot prevent the
gene responsible for repressing the first gene from expressing. In this way, the
three genes will be repeatedly expressed in sequence. The RRE model of the
Repressilator, built in a similar manner to the Toggle Switch’s RRE in equations
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(4.1) and (4.2), has a single fixed point attractor which becomes unstable in suitable
parameter ranges, leading to the sustained limit cycle oscillations described above.
This behaviour is shown in Figure 4.5b.
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Figure 4.6: Stochastic dynamics of the Repressilator

When stochasticity in gene expression is included in the model, both the amplitude
of each rise of a TF, as well as the delay between rises vary from one oscillation to
the next. The net result is a decrease in the precision with which the Repressilator
can keep track of time. A timeseries of a model of the Repressilator, built by
extending the model of the Toggle Switch from the preceding section (with one
additional alteration, mentioned below), is shown in Figure 4.6a.

Ideally, to quantify the period of the Repressilator in the stochastic setting, we
would use the Power Spectral Density (PSD) (e.g. as in (Garcia-Ojalvo et al.
2004)) - the Fourier transform of its autocorrelation function. Due to difficulty
in measuring the PSD for real timeseries, the distance between the zeros of its
autocorrelation function is often used instead (Chandraseelan et al. 2013). This
function is shown in Figure 4.6b for the timeseries in Figure 4.6a. By far, the
most important parameter governing the period of oscillation is the protein decay
rate (Loinger and Biham 2007). For this reason, in the Repressilator synthesized
in (Elowitz and Leibler 2000), the TF decay rates were accelerated, and made
more uniform, by attaching a tag to each of the TFs which is recognized by the
proteases in the cell.

One additional feature of the model has a significant impact on the Repressilator’s
dynamics: the possibility of a TF to degrade while bound to its target promoter.
If it cannot, as in the model of the Toggle Switch presented above, then the
bound TF is ‘protected’ from degradation, and will likely take considerably longer
to finally disappear from the system. If this single molecule event takes a non-
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negligible amount of time, it will delay the rise of the next gene in the Repressilator
by a long, exponentially-distributed amount of time, ultimately destroying the
periodicity of the dynamics (Loinger and Biham 2007). For this reason, the model
which produced the timeseries in Figure 4.5b included the following reaction
representing the degradation of a bound repressor for each TF:

k rotein
Pro; - P; —22"% Pro, (4.10)

An example of a fluorescence timeseries from cells containing the Repressilator
as depicted in Figure 4.5a is shown in Figure 4.7. First, note that an upward
trend is visible in the timeseries. This is likely simply due to the accumulation
of the reporter protein, which has a longer half-life than the TFs which compose
the circuit (Elowitz and Leibler 2000). Despite this trend, oscillations are clearly
observed in the fluorescence, indicating that the underlying circuit is functioning.
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Figure 4.7: Cells containing the constructs depicted in Figure 4.5a. Top: Fluorescence
and phase contrast images. Bottom: Fluorescence timeseries of one cell (marked with
an arrow in the upper images). Reproduced with permission from (Elowitz and Leibler
2000).

In this thesis, the Repressilator is one of the two networks studied in Publication
IV, where the effects of partitioning of its regulatory molecules in division were
explored.






5 Conclusions and Discussion

This thesis has focused on two mechanisms that can qualitatively change the
dynamics of genetic networks: the stochastic partitioning of regulatory molecules
during cell division, and the direct interaction between low copy-number regulatory
molecules. The four publications work towards this by first presenting the tool to be
used in these studies (Publication I), followed by a study of a bistable circuit with
a link composed of the direct interaction of two low-copy molecules (Publication
IT), a study of the expression of a single gene with stochastic partitioning of its
mRNA molecules in cell division (Publication III), and a study of a Toggle
Switch and a Repressilator subject to this partitioning (Publication IV).

The new simulator presented in Publication I, SGNS2, is based on the NRM
of the SSA (see Section 3.3.2), which has been augmented to efficiently simulate
stochastic reaction systems within dynamic, hierarchically-linked compartments
(see Section 3.5). In this thesis, the primary use of these compartments is to
properly simulate the dynamics of stochastic genetic circuits within growing cell
populations, however three additional use cases were also considered during its
development:

Single-nucleotide transcription and translation: The ability of molecules
within compartments at a lower level of the compartment hierarchy to
interact with molecules at a higher level was used to simulate a model
of coupled transcription and translation at the single nucleotide level. A
preliminary version of the simulator was used for this purpose in (Mékela
et al. 2011; Potapov et al. 2011; Martins et al. 2012).

Infection by )\ phage: A compartmentalized model of the infection of E. coli
cells by the A phage, was presented in Publication I. In this, the individual
phages infecting a cell each existed in their own compartments within each
cell’s compartment, allowing them to make their own lysis/lysogeny decisions,
as was shown in (Zeng et al. 2010).

Asymmetric disposal of protein aggregates: F. coli have been shown to
accumulate protein aggregates in the older pole of the cell (Lindner et al.
2008). SGNS2’s ability to partition molecules in division based on different
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partitioning schemes has thus been used to model and study this process
(Gupta et al. 2014c).

SGNS2 was built using the NRM since it allows the reactions for each compartment
to be grouped into their own Indexed Priority Queues, simplifying their creation
and destruction. Further, it forms the basis of a general discrete event simulation,
allowing both the delayed products from reactions and the reactions themselves
to coexist within the same framework. Nevertheless, in the future, it would be
advantageous to implement the Markovian subset of the reaction system (i.e.
the part that does not include delays) using the Composition-Rejection method
(Slepoy et al. 2008), which scales better to larger system sizes.

Though SGNS2 was designed to simulate compartmentalized systems, it does
not explicitly model the spatial relationships between the compartments. This is
simultaneously a drawback and a benefit — a drawback since effects deriving from
the exact spatial relationship between compartments cannot be studied, such as
quorum sensing in a population of bacteria (Waters and Bassler 2005). However,
it can be advantageous since it frees the modeller from having to explicitly give
these often extraneous details for all models. Models in SGNS2 are therefore
simpler to set up and reason about. This design choice makes the simulator a
valuable contribution to a field filled with explicitly spatial simulations (Loew and
Schaff 2001; Hattne et al. 2005; Andrews et al. 2010) and more fixed simulators
of unchanging chemical interactions (Sanft et al. 2011; Ramsey et al. 2005; Hoops
et al. 2006; Ribeiro and Lloyd-Price 2007). The source code of the simulator has
been released under an open source license, the New BSD License, such that other
researchers can improve on it, and/or modify it for their own use.

In Publication II, the stochastic dynamics of an srRNA-mediated Toggle Switch
(presented in section 4.2.1) was investigated. First, it was found that in order to
achieve long-term bistability, a switch in this configuration requires the repressive
interactions to be rather strong, to compensate for the sensitivity of the circuit
to noise. Nevertheless, these were well within the realistic range of interaction
strengths. Additional features such as cooperative binding, which were not
considered, make this repression strength easily achievable in real cells. Second,
for realistic copy-numbers, a deterministic representation of the system using
RREs was found to greatly overestimate the region in parameter space where
long-term bistability is achieved.

Next, the initiation dynamics at the promoter was found to have a strong influence
on the dynamics of the switch, as would be expected given the srRNA link’s
susceptibility to any extra noise in this dynamics. More noisy than Poissonian
(super-Poissonian) dynamics disrupts the srRNA’s ability to silence the target.
Nevertheless, low-noise production does not negate the need for strong repression
strengths. Finally, it was shown that the use of the srRNA in one of the repressive
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interactions allows the network to rapidly switch from one of the two states to
the other in response to an environmental signal, but the same is not true in the
other direction. This property exists independent of the normal stability of the
two noisy attractors of the network, i.e. both states can be equally resistant to
stochastic switching.

This property could be used by organisms to make a switch which is highly
sensitive to a specific external input, but requires prolonged exposure to the
opposite environmental signal to switch back to the first state. This property may
be used, for example, in several bacterial species to regulate iron storage genes
since the major iron storage regulator fur is arranged in this network motif (Zhou
et al. 2012). In this case, the st RNA RyhB represses the fur gene, whose protein
represses RyhB in the presence of Fe?*, and which regulates the downstream iron
storage genes. The model in Publication II therefore predicts that iron storage
genes will activate rather quickly when the bacteria are placed into an iron-rich
environment, while they will take longer to deactivate after transitioning to an
iron-deficient environment.

In Publication III, the effects of stochastic partitioning of RNA molecules in
cell division were examined using a delayed stochastic model of gene expression
coupled with SGNS2’s ability to randomly segregate molecules when creating
new compartments. In a synchronously dividing population of cells, stochastic
partitioning was found to cause transient increases in the phenotypic diversity of
the population. The length of this transient is dependent on the degradation rate of
the RNA, and for long enough RNA lifetimes (or short enough cell division times),
this diversity can accumulate over generations. Meanwhile, in asynchronously
dividing populations, partitioning errors manifest themselves as a simple increase
in the phenotypic diversity at all time points. Finally, the amplitude of the
transient increase can be controlled if the RNA is partitioned in a biased manner,
i.e. one of the two daughter cells is more likely to inherit more RNA. The dynamic
range in normalized variance which is realistically achievable by the combination
of the above mechanisms was found to be on the order of ~16 fold, of which the
contribution from cell synchrony was ~3 fold.

The predictions of this model were then compared to measurements with single-
molecule precision in live E. coli cells. In a population of cells synchronized by
heat shock, the distribution of the number of mRNA tagged with MS2-GFP was
measured (see section 2.3), before and after the expected division point. After
division, a significant increase in the normalized variance across the population
was found. Further, when measuring this value over time in a synchronized
population of cells, transient increases were observed where expected given the
division rate of the cells, which were not observed in a population which had not
been synchronized. Evidence for a bias in the partitioning of the RNA molecules
was discovered, which exacerbated the size of the observed transient increases.
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Though in this case, the bias is likely an artifact of the immortalization of the
mRNA molecules by a large mass of MS2-GFP molecules (Lindner et al. 2008;
Montero Llopis et al. 2010), it is still possible that untagged mRNA is partitioned
asymmetrically if, for example, it diffuses slowly when being translated by a large
amount of ribosomes and thus they tend to remain near their site of transcription
(Montero Llopis et al. 2010).

Cell synchrony can be induced by a number of different conditions, mainly related
to stress such as starvation or heat shock (Cutler and Evans 1966). Curiously,
it is in these periods of stress where population diversity is most advantageous
(Kirschner and Gerhart 1998). This suggests that cell synchrony, and a bias in
partitioning of RNA molecules may be a form of reproductive bet hedging, used
by bacterial populations to increase the amount of phenotypic diversity in times
of hardship.

Finally, in Publication IV, the different behaviours that two genetic networks
exhibited when subject to the random partitioning of their molecules in cell division
were studied. Several interesting results were found for the Toggle Switch. First,
though the stability of the switch decreased with increasing partitioning errors,
anti-correlations between sister cells, an inevitable by-product of the partitioning
errors, increase the chances that two daughter cells will end up in different noisy
attractors. The result is that a particular balance between the two states in
the population is more reliably achieved. For the Repressilator, increasing the
partitioning errors was found to decrease the robustness of the period of oscillation.
However, the rate of desynchronization of a population of cells was remarkably
slow, only significantly accelerating for the strongest errors in partitioning.

These results show that the effects of partitioning of low copy-number molecules in
division are not trivial to predict at the population level. The differences observed
between the effects that it had in the two genetic circuits show how the interplay
between the topology of the state space of a network and high-variance partitioning
can result in qualitatively different behaviour. In the switch, a network with two
noisy attractors, the increased variability resulted in a counter-intuitive decrease of
the variance in the phenotype distribution. Meanwhile the clock, a network with
only one noisy attractor, did not show any new features — merely an acceleration
of its desynchronization over generations. This means that any new effects that are
considered, such as the inclusion of more spatial information, must be considered
from the point of view of many different network types, since the details of the
added mechanism may result in qualitatively new features in different networks.

Biological systems have evolved not only the ability to cope with the stochasticity
inherent in gene expression, but also the ability to use it to their own advantage.
Both of the mechanisms studied in this thesis modify the noise within gene
networks. It is therefore likely that cells also utilize these mechanisms to control
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or enhance diversity, especially if these are easy to regulate and/or evolve.

Even if this is not the case in real cells, it will be advantageous to make use of these
mechanisms in synthetic biology, where the design of circuits with desired dynamics
is complicated by the difficulty of predicting those dynamics. In the past, this
problem has been overcome by constructing large libraries of different parts (e.g.
promoters), and measuring the dynamical properties of each to find one suitable for
the present application (Ellis et al. 2009). Creating targeted mutations to produce
desired behaviour is still difficult since, for example, predicting the dynamics of
DNA-protein interactions involved in TF-based regulation is complicated by the
myriad of interactions that can occur between the TF and any nearby molecules,
including other proteins and other features of the DNA (Kim et al. 2013). On
the other hand, it is simpler to predict RNA-RNA interactions from sequence
alone (Wright et al. 2014). It may also be possible to control, at least to some
degree, the variance in partitioning by relying on e.g. limited diffusion (Montero
Llopis et al. 2010), clustering of molecules (e.g. membrane receptors (Sourjik
and Berg 2004)), or the positioning of macromolecules within cells (Gupta et al.
2014b). It may therefore be advantageous in synthetic biology to utilize these
more predictable and controllable mechanisms to generate the desired behaviours.

It will also be of interest to study whether there are behaviours that can be
achieved only with the combination of the studied mechanisms. For example, if
srRNA molecules are partitioned in a high-variance manner, what new behaviours
can this confer in a circuit? When there is an abundance of either the target mRNA
or the srRNA, this partitioning is unlikely to cause large differences, however
when both the target mRNA and the srRNA are produced at approximately the
same mean rate, critical phenomena result in a significant increase in the level
of noise (EIf et al. 2003). In this scenario, stochastic partitioning of the srRNA
has the potential to cause drastic phenotypic differences between sister cells. This
might thus be a means to construct a circuit which is sensitive to partitioning
errors only in a narrow set of circumstances.

The random partitioning of molecules in division poses an additional interesting
problem for genetic circuits where noise is not advantageous, since this source
of noise is unavoidable. Correcting for both the natural fluctuations in gene
expression and errors in partitioning is energetically expensive, involving negative
feedback loops (Becskei and Serrano 2000) and complex partitioning schemes
(Huh and Paulsson 2011b; Huh and Paulsson 2011a), respectively. However, if one
of these sources of noise is not compensated for, then it will render any work spent
reducing the other moot. Thus, we expect that noise reduction mechanisms will
only be present for molecular species for which cell-to-cell diversity is extremely
disadvantageous and, when this is the case, there ought to be multiple mechanisms
at play to reduce the variability.

Many small-scale mechanisms can significantly alter the behaviour of genetic
circuits, and thus cells, due to their interaction with the molecules in low copy-
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number that compose them. The studies in this thesis extend our knowledge
to include the effects at the gene network level of two such mechanisms. Since
small changes in the population counts of these molecules have large changes in
the phenotype of the cells, these low-copy molecules are prime targets for other
low-energy mechanisms to change the behaviour of cells. We therefore predict
that many more such mechanisms will be found in nature, which are utilized by
cells to produce specific behaviours, e.g. when interacting with the environment
or to optimize a specific cellular function. These molecules and mechanisms will
also be of use in future synthetic circuits, where they will be employed to produce
entirely new behaviours in cells.
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ABSTRACT

Motivation: Cell growth and division affect the kinetics of internal cel-
lular processes and the phenotype diversity of cell populations. Since
the effects are complex, e.g. different cellular components are parti-
tioned differently in cell division, to account for them in silico, one
needs to simulate these processes in great detail.

Results: We present SGNS2, a simulator of chemical reaction systems
according to the Stochastic Simulation Algorithm with multi-delayed
reactions within hierarchical, interlinked compartments which can be
created, destroyed and divided at runtime. In division, molecules are
randomly segregated into the daughter cells following a specified dis-
tribution corresponding to one of several partitioning schemes, applic-
able on a per-molecule-type basis. We exemplify its use with six models
including a stochastic model of the disposal mechanism of unwanted
protein aggregates in Escherichia coli, a model of phenotypic diversity
in populations with different levels of synchrony, a model of a bacterio-
phage’s infection of a cell population and a model of prokaryotic gene
expression at the nucleotide and codon levels.

Availability: SGNS2, instructions and examples available at www.cs.
tut.fi/~lloydpri/sgns2/ (open source under New BSD license).
Contact: jason.lloyd-price@tut.fi

Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on July 31, 2012; revised on August 30, 2012; accepted on
September 6, 2012

1 INTRODUCTION

Recent evidence suggests that even in cellular organisms whose
division is morphologically symmetric, there are a number of asym-
metries between daughter cells. These arise, among other things,
from the stochasticity in the partitioning of components in division
(Huh and Paulsson, 2011) and from biased partitioning schemes for
some components. For example, in Escherichia coli, unwanted pro-
tein aggregates follow biased partitioning schemes dependent on
the age of the daughter cells’ poles (Lindner et al., 2008).

These and other recent findings suggest that the phenotypic di-
versity of cell populations, among other factors, depends on errors
and biases in the partitioning of RNA, proteins and other mol-
ecules. This is of relevance since most RNAs exist in small numbers
(Bernstein et al., 2002) and small fluctuations in these numbers can
alter the behavior of genetic circuits (Ribeiro and Kauffman, 2007)
and trigger visible phenotype changes (Choi e al., 2008).

*To whom correspondence should be addressed.

These sources of phenotypic heterogeneity are difficult to dis-
tinguish from, e.g. noise in gene expression (Huh and Paulsson,
2011). Although some effects can be assessed analytically (Huh
and Paulsson, 2011), others are too complex and must be assessed
numerically. A simulator is thus needed that accounts for noise
and delays (Kandhavelu et al., 2012) in gene expression and for
compartmentalization of processes and components.

Presently, simulators of the dynamics of noisy biochemical sys-
tems rely on the Stochastic Simulation Algorithm (SSA) (Gillespie,
1977), e.g. (Blakes et al., 2011; Hattne et al., 2005; Hoops et al.,
2006; Lok and Brent, 2005). Some support compartmentalization,
simulating reaction-diffusion systems in either static (Hattne ez al.,
2005) or dynamically sized compartments (Blakes e al., 2011;
Versari and Busi, 2008). Others support rule-based creation of
reactions at runtime (Lok and Brent, 2005; Spicher et al., 2008),
and thus can simulate a dynamic cell population. Very few support
delays on the release into the system of one or more products of a
reaction (Roussel and Zhu, 2006). These delays are essential to
accurately model the kinetics of some processes, e.g. transcription,
as RNA production is mostly regulated by the duration of events
in transcription initiation (Muthukrishnan ez al., 2012).

Here, we present SGNS2, an extension of SGN Sim (Ribeiro
and Lloyd-Price, 2007) that incorporates dynamic compartments
and multiple partitioning distributions at cell division, applicable
on a per-molecule-type basis.

2 METHODS

SGNS2 is an extension of SGNS, the stochastic simulator of SGNSim
(Ribeiro and Lloyd-Price, 2007). It contains all the features of SGNS,
such as reactions with multi-delayed events. The two key additions in
SGNS2 are (i) it supports dynamic, interlinked, hierarchical compartments
and (ii) it supports multiple molecule and compartment partitioning
schemes, applicable on a per-molecule-type basis. The novel features con-
siderably extend the class of models that can be simulated.

SGNS?2 uses a modified version of the Next Reaction Method (NRM)
(Gibson and Bruck, 2000). Namely, the NRM was adapted to stochastic
P-systems (Spicher er al., 2008) by using a hierarchy of indexed priority
queues (IPQ, an ordered list of elements that keep track of their position in
the list) and further modified to allow multiple delays in reactions. The IPQ
data structure, implemented with a binary heap, is described in Gibson and
Bruck (2000). We use a separate IPQ for each compartment, which publish
a ‘tentative next event time’ to an overall IPQ which determines the next
event time in the entire simulation. We optimize the update step when
molecule populations in a parent compartment change by using a hierarch-
ical refinement of the IPQs with appropriate scaling of tentative firing times
(see Supplementary Material). Delayed events were implemented by creat-
ing wait lists, implemented by binary heap-based priority queues, whose
carliest event is published to each compartment’s indexed priority
queue. The simulation’s elementary SSA steps scale logarithmically with
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the number of reactions, compartments and delayed events, allowing com-
plex models to be simulated in reasonable time.

To simulate cell division, we introduced a special reaction event, whose
timing follows the SSA rules. When executed, instead of subtracting sub-
strates from the system, a random number is generated based on one of the
several partitioning distributions available, including some of those listed in
Huh and Paulsson (2011). Each of these mimics a specific molecule parti-
tioning process during cell division. SGNS2 allows both biased and unbiased
partitioning of molecules and sub-compartments. The results of these events
can be instantaneous or be placed on the wait list. Compartment division
and molecule partitioning are represented in the following form:

split(p) : Protein@ Cell & (@Cell+ : Protein@Cell

When this reaction occurs, a new cell compartment is created (@Cell in the
product list). Proteins in the original cell are partitioned according to a
biased binomial partitioning scheme. In this, each protein is independently
partitioned into the new cell with probability p. Other common partitioning
distributions include the independent partitioning of molecules into daugh-
ter cells with random (beta-distributed) sizes and the binding of molecules
to spindle binding sites which are segregated evenly between daughter cells
such as during mitosis. Available distributions are listed in the manual.

SGNS2 is a command line utility, designed to fit into a toolchain, sup-
porting various input and output formats. Input can be specified in two
formats: SBML (Hucka et al., 2003) and SGNSim’s native format (Ribeiro
and Lloyd-Price, 2007). A subset of SBML Core level 3 version 1 is sup-
ported, allowing simulation of most SBML models. Output can be in csv,
tsvorin binary format. A text editor may be used to write models in SGNSim
format. SBML-based graphical interfaces such as CellDesigner (Funahashi
et al.,2008) or Cytoscape (Smoot et al.,2011) may be used to manage SBML
models. The results of simulations are interpretable by programs like
MATLAB, R or Excel. An example of running a model in SGNSim
format of a growing cell population is shown in Supplementary Figure S1.

3 DISCUSSION

SGNS?2 is the first stochastic simulator that includes multi-delayed
events, dynamic compartments and molecule partitioning schemes
in division. To test its correctness, we simulated models from the
Discrete Stochastic Model Test Suite (Evans e al., 2008). All
showed the expected behavior (Supplementary Figs S2 and S3).

SGNS2, though making use of existing and slightly modified
versions of existing algorithms, can simulate an array of biological
processes not previously possible. For example, it is ideal for simu-
lating gene expression at the nucleotide and codon levels (see
‘Availability’ section) and study features such as how events in
transcription elongation affect protein production kinetics
(Mikeld et al., 2011).

SGNS2 is also suited to study partitioning in cell division, which
affects aging, among other processes, and is of particular relevance
when modeling populations over multiple generations. To exemplify
this, we modeled the biased partitioning of protein aggregates in E.
coli, known to accumulate in cells with older poles, reducing vitality
(Lindner et al., 2008). The results in Supplementary Figure S4 agree
with measurements (Stewart et al., 2005). We further studied how
cell-cycle synchrony affects the population-level statistics of RNA
numbers [Supplementary Fig. S5, in agreement with measurements
in Lloyd-Price ez al. (2012)]. As a side note, we expect the partition-
ing of RNA and proteins to affect the dynamics of genetic circuits,
particularly the stability of their noisy attractors (Ribeiro and
Kauffman, 2007). To further demonstrate the simulator’s utility,
we modeled the viral infection of a dynamic bacterial population.

In conclusion, SGNS2 provides novel functionalities to model
and simulate cellular processes not previously possible, as seen
from the examples. In general, SGNS2 enables the modeling of
stochastic processes in live cells that require compartmentaliza-
tion, multi-delayed complex processes and complex stochastic par-
titioning schemes at a per-molecule type in cell division. These
features are necessary to study in silico, among other phenomena,
phenotypic diversity in cell populations.

Funding: Work supported by Academy of Finland (126803).
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Supplement to “SGNS2: A Compartmentalized Stochastic

Chemical Kinetics Simulator for Dynamic Cell Populations”
Jason Lloyd-Price, Abhishekh Gupta, and Andre S. Ribeiro

Implementation Details

SGNS2 uses the Next Reaction Method[1] (NRM) to simulate the dynamics according to the
Stochastic Simulation Algorithm[2] (SSA). This method is an efficient implementation of the SSA, which
begins by randomizing a ‘next firing time’ for each possible reaction in the system and storing these
tentative reaction times in an indexed priority queue (IPQ). The reaction with the soonest tentative
firing time is then taken from the queue, performed, and its next firing time is re-randomized. Any
reaction whose propensity depends on the set of molecule species affected by this reaction then have
their tentative firing times transformed to follow the new distribution of firing times prescribed by the
Chemical Master Equation. Then, their positions in the priority queue are updated. These reactions are
determined by pre-generating the graph depicting which reactions potentially affect the propensities of
other reactions (the reaction dependency graph). We implement the NRM’s IPQs using array-based
binary heaps, which provide logarithmic scaling of the runtime with the number of reactions for the SSA
steps in a sparsely-coupled model (i.e. a model whose reaction dependency graph is sparse).

To allow compartments to be quickly created and destroyed, a separate IPQ is created for each
compartment. These IPQs are inserted into a higher-level IPQ which acts as a “Next Compartment
Method”, allowing us to determine which compartment the next reaction will occur in, in logarithmic
time with the number of compartments. Creating/destroying compartments is then done by
constructing/destructing these IPQs and inserting/removing them from the overall IPQ. In this
arrangement, compartment creation takes O(logC + RlogR) time, while compartment destruction takes
O(log C) time, where R is the number of reactions in the new compartment and C is the current number
of compartments in the simulation.

Communication between compartments is accomplished by reactions that affect molecules in
both a ‘parent’ and a ‘child’ compartment. Since the propensity of each instance of such a reaction
depends on the population of the reactant in the parent compartment, O(C) propensities must be
recalculated when this quantity changes, an O(ClogR) operation. Since each reactant of a reaction
factors independently into the propensity of the reaction, the reactant in the parent compartment can
be factored out from all of the instances of the reactions in the sub-compartments. This calculation is
similar to the partial propensity methods [3]. To accomplish this without requiring an O(C) operation, we
create a separate IPQ for the sub-compartment’s reaction instances in which the local simulation time,
tsup, IS advanced such that dt;,, = Xdt, where X is the current population size of the reactant in the parent
compartment and t is the global simulation's time variable. This sub-simulation then publishes a next
firing time to the parent compartment's IPQ, adjusted according to the NRM’s propensity update
formula. When the parent compartment reactant's population changes, only the adjusted next firing
time must be recalculated and only one element of an IPQ may change position, reducing the cost of
this operation to O(logR). SGNS2 assumes that there are no direct interactions between compartments
at the same level of the hierarchy.



To include multi-delayed reactions as well, which are simulated according to the Delayed SSA[4],
we implement a wait list using a binary heap-based priority queue. The transient nature of
compartments makes it necessary for each to contain its own wait list. The earliest event in a
compartment’s wait list is then inserted into the compartment’s IPQ. All operations on the wait lists are
therefore O(logW + logR + logC), where W is the number of delayed events on that wait list. When a
compartment is destroyed, all 