

Tampereen teknillinen yliopisto. Julkaisu 982
Tampere University of Technology. Publication 982

Jarno Vanne

Design and Implementation of Configurable Motion
Estimation Architecture for Video Encoding

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 23rd of September 2011, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2011

ISBN 978-952-15-2628-2 (printed)
ISBN 978-952-15-2679-4 (PDF)
ISSN 1459-2045

 i

Abstract

A key factor behind the success of video products and services is video compression that
makes digital video practical in the current communication networks and storage devices.
However, video compression involves complex encoding algorithms whose real-time
execution is particularly challenging in portable devices due to strict constraints on cost,
size, and power consumption. In addition, modern devices are expected to be flexible
enough to support plethora of video coding standards.

This Thesis focuses on motion estimation (ME) that is the main coding tool for removing
temporal redundancy of video scenes and it typically accounts for 50 - 90% of the video
encoding complexity. Due to these two reasons, hundreds of algorithms and architectures
have been proposed for non-standardized ME. However, most of the current ME
architectures are limited to a single video coding standard or ME algorithm, whereas
existing flexible architectures are realized with large silicon area, limited processing
speed, unsustainable power budget, or over restricted ME parameters.

The main contribution of this Thesis is a novel ME architecture that overcomes all the
crucial limitations faced by the contemporary approaches. The designed and implemented
hardware architecture is compatible with all inter coding modes of H.261/3, MPEG-1/2,
MPEG-4 Visual, H.264/AVC, and VC-1 standards. In addition, it can perform rate-
constrained integer ME (IME) with various fast ME algorithms such as BBGDS, CDS,
DS, HEXBS, and TSS. It also reduces the complexity of the subsequent fractional ME
(FME) by conducting mode decision jointly with IME. The flexibility of the architecture
is based on a parametrizable search strategy control and associated separable search path
generation through which different ME algorithms and inter coding modes are easily
implemented and efficiently executed. The architecture is composed of the three
accurately optimized and seamlessly coupled components: a control unit, a memory
system, and distortion computation unit.

The results illustrate that the architecture can process real-time (30 fps) single reference
frame ME up to 1080p format (1920 1080× pixels) with H.261/3, MPEG-1/2, MPEG-4
Visual, and VC-1 standards. When processing CIF, D1, and 1080p formats at 30 fps, the
architecture consumes only 22.3 - 25.1 kgates, 20.5 KB of memory with 123 123× pixel
search range, and 3 - 184 mW of power with a 0.13-micrometer CMOS standard cell
technology. Supporting ME for H.264/AVC 1080p video at 30 fps requires a duplicated
architecture whose respective metrics are 49.7 kgates, 41.0 KB of memory, and 364 mW
of power. The performance comparison shows that the designed architecture consumes 39
- 89% less logic gates than the existing approaches.

 iii

Preface

The research work for this Thesis has been carried out in the Department of Computer
Systems at Tampere University of Technology during the years 2003 - 2011.

I would like to express my gratitude to my supervisor Prof. Timo D. Hämäläinen for his
guidance, motivation, and successful efforts that have made this research work possible.
Sincere acknowledgements go also to Prof. Holger Blume and Prof. Janne Heikkilä for
reviewing and providing constructive comments on the manuscript of this Thesis.

I would like to thank all my colleagues for assistance, fruitful discussions, and inspiring
atmosphere. I express my special thanks to Kimmo Kuusilinna, Dr. Tech., for co-authoring
publications and providing thorough guidance especially in the first years of my academic
career. In addition, I am deeply grateful to my closest colleague Eero Aho, Dr. Tech., who
has co-authored publications and given valuable support during these years. Special
thanks also to Mr. Marko Viitanen, Olli Lehtoranta, Dr. Tech., Antti Rasmus, M.Sc., Ari
Kulmala, Dr. Tech, Juha Pirttimäki, M.Sc., and Tero Arpinen, M.Sc., for their technical
and less technical contribution to my research work. In addition, I would like to thank the
deceased Mr. Jussi Uusitalo whose promising research career was over far too early.

This Thesis was financially supported by Tampere Graduate School in Information
Science and Engineering (TISE), Academy of Finland, Nokia Foundation, Emil Aaltonen
Foundation, Heikki and Hilma Honkanen Foundation, and HPY foundation. They are all
gratefully acknowledged.

Finally, I would like to thank my parents Riitta and Arto for all their support during my
whole life and my parents-in-law Liisa and Erkki for assistance during busy times. The
warmest thanks are dedicated to my wife Tarja for her endless love, understanding, and
support and my daughter Nelli for giving me so much fun and happiness every day. You
two are the sunshines of my life.

 Kangasala, August 2011

 Jarno Vanne

 v

Table of Contents

ABSTRACT ... I

PREFACE ... III

TABLE OF CONTENTS .. V

LIST OF PUBLICATIONS ... IX

LIST OF FIGURES .. XI

LIST OF TABLES ... XIII

ABBREVIATIONS .. XV

SYMBOLS .. XXI

1. INTRODUCTION ... 1

1.1 OBJECTIVE AND SCOPE OF RESEARCH ... 4

1.2 MAIN CONTRIBUTIONS ... 4

1.3 SUMMARY OF PUBLICATIONS .. 6

1.4 OUTLINE OF THESIS .. 6

2. VIDEO ENCODING ... 7

2.1 DIGITAL VIDEO ... 7

2.1.1 Digitization of natural video ... 7

2.1.2 Color spaces ... 8

2.1.3 Motivation for video compression ... 9

2.1.4 Lossless and lossy compression .. 9

2.1.5 PSNR ... 10

2.2 INTERNATIONAL VIDEO CODING STANDARDS ... 10

2.2.1 MPEG-1, MPEG-2, and MPEG-4 Visual ... 11

2.2.2 H.261, H.262, and H.263 .. 11

2.2.3 H.264/AVC .. 11

2.2.4 VC-1 .. 12

2.2.5 Future international video coding standards .. 12

2.3 VIDEO ENCODER ... 13

2.3.1 MCP stage .. 14

 Table of Contents

vi

2.3.2 TC stage .. 15

2.3.3 EC stage .. 15

2.3.4 Decoding path ... 16

2.3.5 MB coding modes .. 16

2.3.6 Encoder control .. 17

2.4 STATE-OF-THE-ART ENCODERS ... 17

2.4.1 H.264/AVC encoders .. 17

2.4.2 Practical implementation constraints ... 18

2.4.3 Software implementations ... 19

2.4.4 Hardware/software implementations .. 20

2.4.5 Academic hardware implementations ... 21

2.4.6 Commercial hardware implementations ... 23

2.4.7 Discussion ... 23

3. MOTION ESTIMATION ... 25

3.1 CONCEPT OF MOTION .. 25

3.1.1 True and apparent motion .. 25

3.1.2 Practical usage of apparent motion .. 26

3.2 MOTION MODEL FOR MOTION-COMPENSATED PREDICTION ... 26

3.2.1 Spatially translational and temporally linear motion model .. 27

3.2.2 Motion modeling, estimation, and compensation ... 27

3.2.3 Motion compensated prediction in video encoders ... 29

3.2.4 Region of support .. 30

3.3 BLOCK-BASED MOTION ESTIMATION AND COMPENSATION ... 31

3.3.1 Fixed and variable block-size motion estimation .. 32

3.3.2 Integer and fractional motion estimation .. 34

3.3.3 Motion vector coding and prediction .. 36

3.3.4 Reference frames in motion estimation ... 38

3.3.5 Summary of standard-specific techniques and emerging trends ... 40

3.4 BLOCK MATCHING .. 41

3.4.1 Basic operating principle .. 42

3.4.2 Motion vector prediction for block matching .. 43

3.4.3 Matching criteria in block matching ... 44

3.4.4 Rate-constrained block matching.. 46

3.4.5 Rate-constrained inter mode decision ... 47

4. CONTEMPORARY MOTION ESTIMATION ALGORITHMS AND ARCHITECTURES ... 49

4.1 CONTEMPORARY BLOCK MATCHING ALGORITHMS ... 49

4.1.1 Lossless speed-up techniques .. 50

 Table of Contents

vii

4.1.2 Lossy speed-up techniques .. 51

4.1.3 Reduction of checking points .. 52

4.2 EXISTING VARIABLE BLOCK-SIZE MOTION ESTIMATION ARCHITECTURES 55

4.2.1 FFS -based architectures .. 55

4.2.2 Fast BMA -based architectures... 56

4.2.3 Flexible architectures ... 57

4.2.4 Summary of architectures ... 58

5. DESIGNED CONFIGURABLE MOTION ESTIMATION ARCHITECTURE 59

5.1 PROPOSED MOTION ESTIMATION FRAMEWORK ... 59

5.1.1 Rate-constrained motion estimation ... 59

5.1.2 Inter mode decision ... 63

5.1.3 Inter mode delivery ... 63

5.2 PROPOSED MOTION ESTIMATION IMPLEMENTATION ... 65

5.2.1 Control unit ... 67

5.2.2 Memory system ... 70

5.2.3 RD cost unit .. 71

5.3 ARCHITECTURE SUMMARY ... 74

6. PERFORMANCE ANALYSIS .. 75

6.1 FRAMEWORK EVALUATION .. 75

6.1.1 Rate-Distortion performance analysis .. 76

6.1.2 Search speed analysis ... 77

6.2 IMPLEMENTATION RESULTS .. 79

6.3 PERFORMANCE COMPARISON ... 81

7. CONCLUSIONS .. 83

7.1 MAIN RESULTS ... 83

7.2 FUTURE WORK .. 84

REFERENCES ... 85

PUBLICATIONS .. 95

 ix

List of Publications

This Thesis consists of an introductory part and a part containing the following
publications. In the text, these publications are referred to as [P1], [P2], and [P3].

[P1] J. Vanne, E. Aho, T. D. Hämäläinen, and K. Kuusilinna, “A high-performance
sum of absolute difference implementation for motion estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 16, no. 7, Jul. 2006, pp. 876-883.

[P2] J. Vanne, E. Aho, T. D. Hämäläinen, and K. Kuusilinna, “A parallel memory
system for variable block-size motion estimation algorithms,” IEEE Trans.
Circuits Syst. Video Technol., vol. 18, no. 4, Apr. 2008, pp. 538-543.

[P3] J. Vanne, E. Aho, K. Kuusilinna, and T. D. Hämäläinen, “A configurable motion
estimation architecture for block-matching algorithms,” IEEE Trans. Circuits
Syst. Video Technol., vol. 19, no. 4, Apr. 2009, pp. 466-476.

 xi

List of Figures

FIGURE 1.1. CONSUMER IP TRAFFIC FORECAST [22]. ... 2

FIGURE 2.1. GENERALIZED BLOCK DIAGRAM OF THE HYBRID VIDEO ENCODER. .. 13

FIGURE 3.1. A TRAJECTORY OF AN IMAGE POINT AND ASSOCIATED LINEAR DISPLACEMENT VECTOR. 28

FIGURE 3.2. SEVEN INTER CODING MODES AND ASSOCIATED MB PARTITIONS. ... 33

FIGURE 3.3. INTERPOLATION OF LUMINANCE SAMPLES IN H.264/AVC. .. 35

FIGURE 3.4. BASIC PRINCIPLE OF THE MOTION VECTOR PREDICTION. .. 38

FIGURE 3.5. MULTIPLE REFERENCE FRAME MOTION ESTIMATION IN H.264/AVC. ... 39

FIGURE 3.6. BLOCK MATCHING PROCESS. .. 43

FIGURE 3.7. EXAMPLE OF THE HARDWARE-ORIENTED MOTION VECTOR PREDICTION. 44

FIGURE 4.1. EXAMPLE SEARCH PATHS OF THE WELL-KNOWN BLOCK-MATCHING ALGORITHMS. 54

FIGURE 5.1. PROPOSED SEPARABLE COMPOSITION OF A BLOCK ADDRESS IN THE SEARCH AREA. 60

FIGURE 5.2. SCAN SEQUENCES FOR THE CANDIDATE AND CURRENT MBS. .. 61

FIGURE 5.3. RETRIEVING PIXELS OF A 16 × 16 BLOCK TO FME. ... 65

FIGURE 5.4. AN EXEMPLARY SYSTEM ARCHITECTURE FOR A VIDEO ENCODER. ... 66

FIGURE 5.5. THE IMPLEMENTED MOTION ESTIMATION ARCHITECTURE. ... 67

FIGURE 5.6. CONTROL UNIT. .. 67

FIGURE 5.7. FLOWCHART OF THE VBSME CONTROLLER. ... 68

FIGURE 5.8. VBSME CONTROL TABLE. ... 69

FIGURE 5.9. MVI CIRCUIT. ... 70

FIGURE 5.10. RD COST UNIT. ... 71

FIGURE 5.11. RATE COMPUTATION UNIT.. 72

FIGURE 5.12. MODE SELECTION CIRCUIT. .. 73

FIGURE 5.13. STORAGE LOGIC FOR PARTITION COSTS. ... 74

 xiii

List of Tables

TABLE 2.1. ENCODING PERFORMANCE OF THE WELL-KNOWN PROCESSORS. .. 20

TABLE 2.2. ENCODING PERFORMANCE OF THE STATE-OF-THE-ART VIDEO-ORIENTED MPSOCS. 21

TABLE 2.3. ENCODING PERFORMANCE OF THE STATE-OF-THE-ART ACADEMIC HW ENCODERS. 23

TABLE 2.4. ENCODING PERFORMANCE OF THE STATE-OF-THE-ART INDUSTRIAL HW ENCODERS. 24

TABLE 3.1. STANDARD-SPECIFIC KEY CHARACTERISTICS OF MOTION ESTIMATION AND COMPENSATION. 41

TABLE 4.1. CHARACTERISTICS OF CONTEMPORARY MOTION ESTIMATION ARCHITECTURES. 58

TABLE 6.1. RD PERFORMANCE COMPARISON OF FAST BMAS AND FS IN JM 17.0 ... 77

TABLE 6.2. SEARCH SPEEDS OF BMAS AND MINIMUM OPERATING FREQUENCIES FOR REAL-TIME IME. 78

TABLE 6.3. IMPLEMENTATION RESULTS OF THE ARCHITECTURE CONFIGURATIONS. .. 80

TABLE 6.4. COMPARISON OF THE PROPOSED AND EXISTING STATE-OF-THE-ART ME ARCHITECTURES. 82

 xv

Abbreviations

1080p Video format (1920 1080× pixels, progressive scan)

720p Video format (1280 720× pixels, progressive scan)

1D, 2D, 3D One-, Two-, Three-Dimensional

3DTV Three-Dimensional Television

4SS Four-Step Search

ABS Absolute

ADSL Asymmetric Digital Subscriber Line

ALUT Adaptive Look-Up Table of Altera

ARM Advanced RISC Machine

ASIC Application-Specific Integrated Circuit

ASP Advanced Simple Profile of MPEG-4 Visual

AVC Advanced Video Coding

AVS Audio Video coding Standard of China

B Bidirectional prediction

BBGDS Block-Based Gradient Descent Search

BD-PSNR Bjøntegaard Delta Peak Signal-to-Noise Ratio

BD-rate Bjøntegaard Delta bit rate

BMA Block-Matching Algorithm

BP Baseline Profile of H.264/AVC

CABAC Context-Adaptive Binary Arithmetic Coding

CAVLC Context-Adaptive Variable Length Coding

CBEA Cell Broadband Engine Architecture

CD Compact Disc

CDS Cross-Diamond Search

CIF Common Intermediate Format (352 288× pixels)

CMOS Complementary Metal Oxide Semiconductor

 Abbreviations

xvi

CPU Central Processing Unit

CRT Cathode Ray Tube

CS Cross Search

CSA Carry-Save Adder

CSP Cross-shaped Search Pattern

D1 Video format (720 576× pixels for PAL)

DCT Discrete Cosine Transform

DE Disparity Estimation

DF Deblocking Filter

DFD Displaced Frame Difference

DFD’ Reconstructed Displaced Frame Difference

DPB Decoded Picture Buffer

DS Diamond Search

DSP Digital Signal Processor

DVB-C, -S, -T Digital Video Broadcasting, -Cable, -Satellite, -Terrestrial

DVD Digital Versatile Disc

EC Entropy Coding

EPZS Enhanced Predictive Zonal Search

FBSME Fixed Block-Size Motion Estimation

FFS Fast Full-Search

FIR Finite Impulse Response

FME Fractional Motion Estimation

FPGA Field Programmable Gate Array

fps Frames per second

FS Full-Search

FTV Free viewpoint Television

GIPS Giga Instructions Per Second

GFLOPS Giga Floating Point Operations Per Second

GPP General-Purpose Processor

GPU Graphics Processing Unit

H.261, H.262, H.263 Video coding standards issued by ITU-T

H.264/AVC Video coding standard issued by ITU-T and ISO/IEC

 Abbreviations

xvii

HD High Definition

HDTV High-Definition Television

HEVC High Efficiency Video Coding

HEXBS Hexagon-Based Search

HIBI Heterogeneous IP Block Interconnection

HiP High Profile of H.264/AVC

HVS Human Visual System

HW Hardware

I Intra

ICT Integer Cosine Transform

IEC International Electrotechnical Commission

IEEE The Institute of Electrical and Electronics Engineers

IME Integer Motion Estimation

INV Inversion

IP Intra Prediction, also Internet Protocol

IPP Integrated Performance Primitives

IPTV Internet Protocol Television

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

ITRS International Technology Roadmap for Semiconductors

ITU International Telecommunication Union

ITU-T Telecommunication Standardization Sector of ITU

JCT-VC Joint Collaborative Team on Video Coding

JM Joint Model of H.264/AVC

JVT Joint Video Team

LCD Liquid Crystal Display

LDSP Large Diamond Search Pattern

LSB Least Significant Bit

LUT Look-Up Table

MAD Mean Absolute Difference

MAE Mean Absolute Error

MB Macroblock

 Abbreviations

xviii

MBD Minimum Block Distortion

MC Motion Compensation

MCP Motion-Compensated Prediction

ME Motion Estimation

MPEG Moving Picture Experts Group

MPEG-1, -2, -4 Video coding standards issued by ISO/IEC

MRFME Multiple Reference Frame Motion Estimation

MP Main Profile of MPEG-2

MPSoC Multiprocessor System-on-Chip

MSB Most Significant Bit

MSD Mean Squared Difference

MSE Mean Squared Error

MV Motion Vector

MVC Multiview Video Coding, Annex H of H.264/AVC

MVD Motion Vector Difference

MVP Motion Vector Predictor

NoC Network-on-Chip

NRE Non-Recurring Engineering

NTSC National Television System Committee

P Prediction

P4EE Pentium 4 Extreme Edition

PAL Phase Alternate Line

PC Personal Computer

PE Processing Element

PMVFAST Predictive MV Field Adaptive Search Technique

PPE Power Processor Element of CBEA

PSNR Peak Signal-to-Noise Ratio

Q Quantization

Q-1 Inverse Quantization

QCIF Quarter Common Intermediate Format (176 144× pixels)

QFHD Quad Full High Definition format (3840 2160× pixels)

QP Quantization Parameter

 Abbreviations

xix

QVGA Quarter Video Graphics Array format (320 240× pixels)

WQHD Wide Quad High Definition format (2560 1440× pixels)

RC Rate Control

RD Rate-Distortion

RDO Rate-Distortion Optimization

RGB Red Green Blue color space

RISC Reduced Instruction Set Computer

RM Reference Model of H.261

ROS Region Of Support

SAD Sum of Absolute Differences

SATD Sum of Absolute Transformed Differences

SAE Sum of Absolute Errors

SD Standard Definition

SDTV Standard-Definition Television

SEA Successive Elimination Algorithm

SECAM Sequential Color with Memory

SIF Source Input Format (352 240× pixels for NTSC)

SIMD Single Instruction Multiple Data

SDSP Small Diamond Search Pattern

SMPTE Society of Motion Picture and Television Engineers

SoC System-on-Chip

SP Simple Profile of MPEG-2 or MPEG-4 Visual

SPE Synergistic Processor Element of CBEA

SRAM Static Random Access Memory

SSD Sum of Squared Differences

SSE Sum of Squared Errors

Sub-QCIF Sub-Quarter Common Intermediate Format (128 96× pixels)

SVC Scalable Video Coding, Annex G of H.264/AVC

SW Software

T Transform

T-1 Inverse Transform

TC Transform Coding

 Abbreviations

xx

TCOEFF Transform Coefficient

TI Texas Instruments

TM Test Model of MPEG-1/2

TMN Test Model Near-term of H.263

TSS Three-Step Search

TV Television

UHDTV Ultra High Definition Television (7680 4320× pixels)

UMHexagonS Unsymmetrical-cross Multi-Hexagon-grid Search

UVLC Universal Variable Length Coding

VBS Variable Block-Size

VBSME Variable Block-Size Motion Estimation

VC-1 Video Codec-1, informal name of the SMPTE 421M video
coding standard

VCD Video Compact Disc

VCEG Video Coding Experts Group

VGA Video Graphics Array format (640 480× pixels)

VHDL VHSIC Hardware Description Language

VHS Video Home System

VHSIC Very High Speed Integrated Circuit

VLC Variable Length Coding

VLSI Very Large Scale Integration

VM Verification Model of MPEG-4 Visual

VoD Video on Demand

WMV-9 Windows Media Video 9 codec

XP Extended Profile of H.264/AVC

YCbCr Luminance, Blue chrominance, Red chrominance color space

YUV Color space

 xxi

Symbols

(,)r ri rjα α αΔ Δ Δ Initial offset of rRR in the 2D search area memory

(,)r ri rjβ β βΔ Δ Δ Prediction-based offset of rRR in the 2D search area memory

(,)r ri rjδ δ δΔ Δ Δ Checking point offset of rRR in the 2D search area memory

(,)r ri rjε ε εΔ Δ Δ Base block offset of rRR in the 2D search area memory
dlvr dlvr dlvr(,)r ri rjε ε εΔ Δ Δ Base block offset of dlvr

RRr in the 2D search area memory

(,)r ri rjχ χ χΔ Δ Δ BMA movement offset of rRR in the 2D search area memory

η Index of the partition

*η Index of the best matching block

Λ Sampling grid (orthogonal lattice)

λ Lagrange multiplier

MDλ Lagrange multiplier in mode decision

MEλ Lagrange multiplier in ME

ρ Number of the reference frames

σ 4 4× pixel block index of the MB
ψ
ησ The first 4 4× pixel block index of pψη

*
*

ψ
ησ The first 4 4× pixel block index of *

*pψη

xσ Bit x of σ

ψ Index of the inter coding mode

*ψ Index of the best ψ

ψ x Index of the inter coding mode in left (x = 1), top-left (x = 2),
top (x = 3), and top-right (x = 4) candidate of MVPψη

 D Distortion between a current pψη and its reconstruction

1 1 1(,)k k k
k k kd di dj− − − Linear displacement vector in the 2D field (from Fk-1 to Fk)

 Symbols

xxii

1 1 1(,)k k k
k k kd di dj− − −

 Linear displacement vector in the 2D field (from Fk to Fk-1)

 dCI Current frame data (current block memory input data)

 dCO Current block data (current block memory output data)

 dRI Reference frame data (search area memory input data)

 dRO Search area data (search area memory output data)
*
ROd The best matching block (search area memory output data)

 Ek Error of the pixel(s) predicted for Fk

 FC Current frame

 Fk The kth frame of a video sequence

 FR Reconstructed reference frame(s)

 h Height of the search area (in pixels)

 Hd Diagonally interpolated ½-pixel value

 Hh Horizontally interpolated ½-pixel value

 Hv Vertically interpolated ½-pixel value

 I Integer-pixel value

 i Horizontal pixel coordinate of the frame

 ik Horizontal pixel coordinate in Fk

 J RD optimized cost function

Jψ RD cost of mψ
*Jψ RD cost of *mψ

Jψη RD cost of pψη

*Jψη RD cost of *pψη

*
*

ψ
ηJ RD cost of *

*
ψ
ηp

16 16Jψ × RD cost of a MB

8 8Jψ× RD cost of a sub-MB

tmpJψ Unfinished 16 16Jψ × or 8 8Jψ× value

 j Vertical pixel coordinate of the frame

 jk Vertical pixel coordinate in Fk

 K Number of the frames in a video sequence

 Symbols

xxiii

 k Index of a frame in a video sequence

 Lx Quality level x of the ME architecture
y
xL ME architecture configuration for format y and quality level x

/ 20y
xL The first instance of the dual-instance y

xL

/ 21y
xL The second instance of the dual-instance y

xL

 MV(MVi, MVj) MV in 2D Fk

MV (MV ,MV)i jψ ψ ψ
η η η MV of pψη in the 2D search area (a top-left corner of pψη)

* * *MV (MV ,MV)i jψ ψ ψ
η η η MV of *pψη in the 2D search area (a top-left corner of *pψη)

* * *
* * *MV (MV ,MV)ψ ψ ψ

η η ηi j MV of *
*

ψ
ηp in the 2D search area (a top-left corner of *

*
ψ
ηp)

MV1ψη
x
x

Left (x = 1), top-left (x = 2), top (x = 3), and top-right (x = 4)
candidate of MVPψη

MVD (MVD ,MVD)i jψ ψ ψ
η η η MVD for pψη in the 2D search area

MVP (MVP ,MVP)i jψ ψ ψ
η η η MVP for pψη in the 2D search area

mψ Inter coding mode ψ

*mψ
 The best mψ

ψ xm Inter coding mode ψ x in left (x = 1), top-left (x = 2), top (x =
3), and top-right (x = 4) candidate of MVPψη

nψ The number of partitions in mψ

 Pk Predicted pixel(s) for Fk

pψη Partition η of mψ

*pψη The best matching block for the current pψη

*
*pψη Partition η of *mψ

 ph Horizontal search range in the positive/negative direction

 pw Vertical search range in the positive/negative direction

 Q Height of the frame (in pixels)

 q Horizontal pixel coordinate of pψη

Qψ Height of pψη (in pixels)

*Qψ
 Height of *

*
ψ
ηp (in pixels)

 Symbols

xxiv

 Qd Diagonally interpolated ¼-pixel value

 Qh Horizontally interpolated ¼-pixel value

 Qv Vertically interpolated ¼-pixel value

 R Bit count of the encoded prediction error
ψR 16 16Rψ

× or 8 8Rψ
×

16 16Rψ
× Bit count of the MB header

8 8Rψ
× Bit count of the sub-MB header

(,)CR CR CRr ri rj Scanning point to read dCO from the 2D current block
memory

(,)CW CW CWr ri rj Scanning point to write dCI into the 2D current block memory

RMV (RMVi, RMVj) Bit count of the MVDψ
η

(,)RR RR RRr ri rj Scanning point to read dRO from the 2D search area memory
dlvr dlvr dlvr(,)RR RR RRr ri rj Scanning point to read *

ROd from the 2D search area memory

(,)RW RW RWr ri rj Scanning point to write dRI into the 2D search area memory

 s Index of the sub-MB

 tk Discrete time instant k

 U Width of the frame (in pixels)

Uψ Width of pψη (in pixels)

*Uψ
 Width of *

*
ψ
ηp (in pixels)

 u Vertical pixel coordinate of pψη

 w Width of the search area (in pixels)

 1

1. Introduction

The evolution of digital technology has made possible to process, transmit, and store video
in a digital form. In the past two decades, digital video has penetrated a wide range of
industries, especially in the area of entertainment, communications, and broadcasting. The
widespread applications of digital video include products in consumer electronics, digital
cinema, video on demand (VoD), video conferencing, digital television, and surveillance.
These products and services have huge revenue potential since the amount of end users
increases continuously. Currently, online video communities have reached over one
billion users [22] who, among others, watch two billion Youtube videos daily [139]. In
addition, the shortened product life cycle drives consumers and companies to replace their
obsolete digital products with newer ones. For example, feature phones are often replaced
with smartphones that are forecast to be sold 2.5 billion units during the years 2010 - 2015
with the annual growth rate of 24% [24]. To ensure continuous growth in the long term,
digital video industry invests a lot in the research and development of video technology.

In the video applications, the vast amount of video data is the major challenge for efficient
video storage and communication. Therefore, digital video compression (video coding)
has been actively developed by researches, companies, and standard bodies since the
1980s [54]. The purpose of video compression is to represent a digital video with reduced
amount of data but still with acceptable visual quality.

Video compression involves two processes: a video encoder encodes (compresses) the
original video material for storage and transmission after which the encoded video is
decoded (decompressed) by a video decoder back to the displayable video before playback
and editing. In two-way applications such as video communication, both ends of the
system encode and decode videos. Instead, in one-way applications such as broadcast and
streaming, only one end encodes and the other end decodes videos. International
standardization work ensures that these applications can interoperate between different
platforms, storage devices, and communication networks. The well-known video coding
standards include former H.261 [55], MPEG-1 [49], MPEG-2 [50], H.263 [56], and
MPEG-4 Visual [51] as well as state-of-the-art H.264/AVC [57] and VC-1 [109].

Video compression makes digital video practical in the current communication networks
and storage devices that have to cope with steadily increasing volume of digital material.
According to Cisco [22], global IP (Internet Protocol) traffic was 14.7 exabytes

18(14.7 10× bytes) per month (EB/month) in 2009 and it is estimated to reach 63.9
EB/month in 2014 with the annual growth rate of 34%. The majority of the global IP
traffic is and will be consumer video data that is produced by households, university
populations, and Internet cafes. Figure 1.1 depicts a global consumer traffic forecast and
portions of the popular video services. The forecast assumes that 7% annual gain will be
attained in video compression.

 1. Introduction

2

Figure 1.1. Consumer IP traffic forecast [22].

In 2014, the overall consumer video traffic will be over five times higher that it was in
2009. Actually, it will be over 3.5 times the whole consumer IP traffic in 2009. The
largest traffic type, Internet video to PC/TV, includes all free TV, pay TV, and VoD data
delivered via Internet to PC or TV. It will increase eightfold from 2009 to 2014. Managed
IP video represents traffic generated under control of TV service providers (IPTV and
cable TV). The amount of managed IP video data will quadruple from 2009 to 2014.
Traffic caused by the exchange of video files is covered by video file sharing, whose
amount will almost triple during the examined period. It is estimated that video file
sharing accounts for 70 - 80% of the whole file sharing traffic. The smallest fraction is
video communications which includes services like Internet video calling, video
monitoring, and webcams. It will increase sevenfold from 2009 to 2014. Due to
popularization of smartphones and other portables, mobile video traffic will be 70 times
higher and it will account for almost 66% of the overall mobile data traffic by 2014 [23].
In 2014, the portion of non-video traffic (web browsing, email, instant messaging, file
transfer, Internet gaming, etc.) will be below 20%.

There are several drivers for the growth of digital video material. Firstly, digital video
capture and playback are nowadays standard features in numerous personal and
professional electronic products. The price erosion has and will accelerate sales of these
products. Secondly, the expansion of digital screens together with user demand for better
quality drive video resolutions to grow from standard definition (SD) to high definition
(HD) and beyond. Finally, the proliferation of 3D applications such as 3DTV will further
augment the amount of video data since several video signals are needed per a single 3D
video sequence. Compared to 2009, HD and 3D traffic are assumed to be 23-fold in 2014
[22].

0

10

20

30

40

50

60

2009 2010 2011 2012 2013 2014

E
B

/m
on

th

Year

Internet video to PC/TV

Managed IP video

Video file sharing

Video communications

Mobile Video

Non-video services

 1. Introduction

3

Advances of the underlying transmission, storage, and processing technologies ease
proliferation of high-resolution video content. For example, the global average broadband
speed is assumed to quadruple from 2009 to 2014 [22] and the similar growth rate is
expected in the amount of logic and main memory of the portable devices [48]. Since
advances in technology cannot completely compensate the explosion of video traffic,
efficient video coding algorithms have been and will be needed [34], [92]. For example,
H.264/AVC and VC-1 have made high quality video services possible. However, the new
algorithms typically improve coding efficiency at a cost of higher computational
complexity.

Real-time video coding is extremely sensitive to complexity increase, since the processing
result has to appear without user-perceivable delay once the input becomes available [6],
[64]. The importance of real-time video coding will emphasize in the future [22] and the
modern devices are expected to be compatible with plethora of video coding standards.
These two requirements are particularly challenging for portable devices which also have
to satisfy strict constraints on cost, size, and power consumption.

A standard-compliant video encoder is usually about 5 - 10 times more complex than a
respective video decoder and the complexity ratio can grow up to two orders of magnitude
if all encoder options are applied [68], [96]. The encoder/decoder complexity ratio has
significantly augmented with state-of-the-art standards. For example, H.264/AVC encoder
is at least ten times more complex than MPEG-4 Visual encoder, but respective decoder
complexity has increased only by a factor of two [96]. The encoder/decoder complexity
gap is mainly caused by a single encoder tool: block-based motion estimation (ME). ME is
only included in the encoder and its complexity accounts for 50 - 90% of the total encoder
complexity [11], [44], [68]. Hence, ME is the main challenge for implementing real-time
encoding with low cost and low power consumption.

The video encoder utilizes ME in motion compensated prediction (MCP) to reduce
temporal redundancy of video sequences. MCP has been included in all international
video coding standards. However, ME is excluded from these standards, so it is open for
competition. Due to its extensive complexity and importance in video encoding, hundreds
of architectures and algorithms have been proposed for ME since its introduction in 1981
[58].

Majority of the real-time ME architecture proposals have been implemented in hardware
(HW) instead of more flexible software (SW) in order to meet real-time requirements in
allowed power budget [6], [11], [68]. Introduced ME algorithms have mainly concentrated
on speeding-up the original exhaustive ME algorithm, whose estimation strategy produces
excellent compression performance but at a cost of intensive computation [42], [68]. With
a specific motion content (low, medium, or high) and resolution, single fast ME
algorithms have proved to be competitive with the original exhaustive ME. However, their
compression efficiency decreases more clearly below the exhaustive ME when diverse
motion contents and resolutions are processed [41]. In addition, most of the fast ME
algorithms have been considered to complicate HW implementation.

 1. Introduction

4

1.1 Objective and scope of research

The scope of this Thesis is on MCP in video encoding. The coding tools and options of
MCP are examined in the context of the following underlying video coding standards:
H.261/3, MPEG-1/2, MPEG-4 Visual, H.264/AVC, and VC-1. The emphasis is on state-
of-the-art standards, especially in H.264/AVC. Among the coding tools of MCP, this
Thesis primarily focuses on integer ME (IME) and its practical HW implementation in
portable devices. The proposed techniques are particularly designed for progressively
scanned natural videos.

The problem addressed in this Thesis is how to overcome the computational complexity of
ME. Most of the contemporary ME architectures are tailored to the exhaustive ME
algorithm whose inherent complexity requires lots of HW resources. On the other hand,
fast ME algorithms are typically implemented with dedicated algorithm-specific
architectures, whose compression performance is vulnerable to variation of video
resolutions and contents.

The objective of this Thesis is to illustrate that the best trade-off between HW complexity
and ME compression performance is reached with a configurable ME architecture that
can adaptively select the most appropriate fast ME algorithm at run time. Another goal is
to ensure that the same architecture can be applied to all well-known video coding
standards without noticeable overheads. In the literature, a couple of configurable HW
approaches have been presented before, but they contain standard-specific limitations. In
addition, their flexibility is realized at a cost of large silicon area, limited processing
speed, unsustainable power budget, or over restricted ME parameters.

The main claim of this Thesis is that a single configurable HW architecture is able to
support multiple video coding standards and various fast ME algorithms at adequate
processing speed, low cost, and acceptable power consumption. The claim is proved by
the presented configurable ME architecture that overcomes all the critical limitations of
the existing flexible ME architectures.

1.2 Main contributions

The main contribution of this Thesis is the design and implementation of configurable ME
architecture for video encoding. The architecture can be divided into three main
components: a control unit, a memory system, and a distortion computation unit. In
summary, the most significant contributions are:

1. The overall ME architecture that performs rate-constrained IME with fast ME
algorithms such as BBGDS, CDS, DS, HEXBS, and TSS. The architecture is
configurable to different ME algorithms and inter coding modes at run time. It
achieves low area cost by reusing the HW as much as possible. It also reduces the
complexity of the subsequent fractional ME (FME) by conducting inter mode
decision jointly with IME. To the best of Author’s knowledge, the designed HW
architecture is the first one that supports fast rate-constrained IME algorithms and

 1. Introduction

5

is compatible with all inter coding modes of H.261/3, MPEG-1/2, MPEG-4 Visual,
H.264/AVC, and VC-1 standards.

2. The ME framework behind the joint rate-constrained IME and inter mode decision.
The framework replaces fixed search strategies of the individual ME algorithms
with a single generic search strategy that is parametrizable to algorithm-specific
coding modes, search centers, and search patterns. The parametrizable search
strategy is realized by composing the search paths of the algorithms from five
mutually independent offsets so that each offset is a function of the associated
parameter(s). The separable search path generation provides easy access to
individual algorithm-specific parameters which can be modified without changing
other features of the algorithm. In addition, the control and computation of each
offset can be modularly designed and optimized. All the coding modes of the
algorithm undergo similarly parameterized search. The mode decision monitors the
serially executed coding modes and selects the best one.

3. The control unit of the ME architecture. The unit implements control for the ME
framework. A chosen framework configuration determines ME algorithms
available at run-time and reparametrization of the framework can be done at
design-time. The execution time of each ME algorithm is almost directly
proportional to the number of tested search points, so the implementation is very
tolerant of different algorithm-specific search strategies.

4. The memory system of the ME architecture. It includes a novel combination of
two parallel memory architectures, in which the distribution of data among the
memory modules is improved over contemporary approaches. In addition, memory
address generation and data permutation scheme are optimized for ME. The
memory system provides efficient data storage and supports arbitrary memory
accesses needed by fast ME algorithms.

5. The distortion computation unit of the ME architecture. The unit implements a
HW-oriented rate-distortion (RD) cost function. It contains several new algorithm-
level and circuit-level optimizations for RD cost computation and minimum RD
cost selection. The optimizations of RD cost function are primarily focused on sum
of absolute difference (SAD) computation.

Besides the designed ME architecture, the contributions of this Thesis include:

6. A survey of existing real-time H.264/AVC video encoders.

7. An overview and feasibility evaluation of the essential coding tools in MCP.

8. A survey of ME algorithms and state-of-the-art ME architectures.

9. Performance comparison between several ME algorithms and architectures.

 1. Introduction

6

1.3 Summary of publications

The distortion computation unit, the memory system, and the control unit of the ME
architecture have originally been introduced in the included publications [P1], [P2], and
[P3], respectively.

The Author acted as the first author and the main contributor in [P1]-[P3]. Eero Aho, Dr.
Tech., provided valuable criticism and comments according to which [P1]-[P3] were
improved. Prof. Timo D. Hämäläinen and Kimmo Kuusilinna, Dr. Tech, assisted in
writing and supervised the research work.

1.4 Outline of Thesis

The introductory part of this Thesis is organized as follows.

Chapter 2 introduces the basic concepts of digital video encoding and analyzes state-of-
the-art video encoders. Besides providing the relevant background information for this
Thesis, the need for HW-accelerated video encoding and ME is justified.

Chapter 3 considers fundamentals of MCP in which the main focus is on ME. Relying on
the experiments in the literature, it is shown that many ME parameters can be simplified
or completely excluded without compromising compression performance.

Chapter 4 surveys contemporary ME algorithms and architectures. Related works on
distinct components of the ME architecture are presented in [P1]-[P3].

Chapter 5 provides an overview of the designed ME architecture whose components are
more thoroughly considered in [P1]-[P3]. In addition, new architecture features introduced
after publishing [P1]-[P3] are considered in detail.

Chapter 6 presents performance comparisons between the proposed and contemporary ME
architectures. The component-specific performance comparisons are available in [P1]-
[P3].

Chapter 7 concludes the introductory part of Thesis.

 7

2. Video Encoding

This chapter presents the basic principles of digital video representation and video
encoding. In addition, a brief overview is given about international video coding standards
and associated video encoders. Finally, state-of-the-art encoders and their implementations
in the current platforms are analyzed.

2.1 Digital video

Digital video represents a visual scene in a binary format in which intensities and colors of
the scene are specified with strings of bits (logical 0s and 1s). The visual scene describes a
real world, an imaginary world, or a hybrid of them. The real world visual information is
obtained from natural video material whereas the imaginary world represents computer-
generated visual scenes or objects (synthetic video). This Thesis focuses on natural video.

2.1.1 Digitization of natural video

Current digital video cameras capture natural video scenes via image sensors that convert
the arriving light into spatially and temporally continuous analog video signals.
Digitization of these signals is accomplished by sampling them in spatial and temporal
domains and quantizing the obtained continuous-valued samples to a discrete range of
intensities and colors.

The produced spatio-temporal samples are referred to as picture elements, pels, or pixels.
The simultaneously sampled pixels reconstruct a two-dimensional (2D) digital still image,
whose maximum resolution is determined by the sampling grid. Limited spatial resolution
may cause spatial aliasing, i.e., details of the original scene are missing or they are
incorrectly represented in the reconstructed image. To avoid spatial aliasing, the well-
known Nyquist sampling theorem states that the sampling grid in horizontal and vertical
directions has to be two times denser than the upper frequency bound in the respective
directions. The current consumer applications typically utilize resolutions from Sub-QCIF
(128 96× pixels) up to high-definition television (HDTV) formats such as 1080p
(1920 1080× pixels). In the future, the resolutions will evolve towards WQHD
(2560 1440× pixels) and QFHD (3840 2160× pixels) formats and even up to UHDTV
(7680 4320× pixels) format. This Thesis mainly considers QCIF (176 144× pixels), CIF
(352 288× pixels), D1 (720 576× pixels), 720p (1280 720× pixels), and 1080p formats
that are the current mainstream.

Digital video can be seen as a sequence of still images (frames) which are displayed at a
certain frame rate. A temporal sampling rate (temporal resolution) determines the

 2. Video Encoding

8

maximum frame rate. The sampling rate below the Nyquist criterion causes temporal
aliasing. I.e., motion may seem jerky and unnatural if the frame rate is too low with
respect to object motion. Applications of low data rate typically use 10 - 20 frames per
second (fps), standard-definition TV (SDTV) supports 25 - 30 fps, and high-end
applications require up to 50 - 60 fps. Humans perceive continuous motion if screen
updates occur at 30 fps [64], so 30 fps is often considered as a minimum frame rate for
real-time video. The refresh rate at which a display device redraws images in a second is
typically higher (e.g., 50 Hz, 60 Hz, 100 Hz, or 200 Hz) than a frame rate since the human
eye detects flicker if the refresh rate is below 50 Hz [6]. The frame rate is accommodated
to refresh rate by repeating the same frame multiple times.

The displays utilize progressive scan or interlaced scan. The progressive scan traces all
the lines of the frame simultaneously. The interlaced scan halves the data rate by
displaying odd- and even-numbered lines of frames (fields) alternately. Hence, the field
rate can be doubled over frame rate without bandwidth increase, so that flicker effect is
removed. However, interlacing introduces artifacts such as interline twitter, i.e., an
aliasing effect perceived as a scintillation or rapid up-and-down motion. Traditional
cathode ray tube (CRT) TV displays and all three SDTV standards (NTSC, PAL, and
SECAM) are interlaced. However, HDTV formats such as 720p and 1080p as well as
modern displays, e.g., plasma and LCD displays, are progressive. Currently, the
progressive scan is dominating technique since it doubles the resolution with the same
frame rate and avoids interlace artifacts. This Thesis concentrates on progressively
scanned video sequences whose frame rates are 25 - 30 fps.

2.1.2 Color spaces

The color space of digital video determines how the brightness (luminance) and color are
described. The RGB color space is suitable for video capture and display, whereas YCbCr
(YUV) [52] color space is better suited for storage and transmission. In the RGB space,
colors are created by combining red (R), Green (G), and Blue (B) in varying proportions.
The YCbCr space separates the luminance (Y) from the color information, where Cb and
Cr represent color difference (chrominance) components. If the YCbCr color space has
the same resolution for Y, Cb, and Cr components, the associated sampling pattern is
referred to as 4:4:4. However, Cb and Cr components are typically represented with lower
resolution than Y, since the human visual system (HVS) is more sensitive to luminance
than color. A 4:2:2 sampling pattern halves the horizontal resolution of Cb and Cr,
whereas a 4:2:0 pattern reduces the resolution of Cb and Cr to one fourth (halves
horizontal and vertical resolution) without essentially sacrificing visual quality.

This Thesis considers designs that operate only on brightness information, so they are
independent on the selected color sampling pattern. I.e., pixels are assumed to contain
only the Y component of the YCbCr color space. In typical consumer applications, the
used bit depth for pixels (Y component only) is 8 bits which equals 256 (0 - 255) different
intensity levels from black (weakest) to white (strongest).

 2. Video Encoding

9

2.1.3 Motivation for video compression

A raw (uncompressed) video requires impractical high transfer capacity. For example, a
raw bit rate for QCIF format (frame rate: 30 fps, bit depth: 8, sampling pattern: 4:4:4) is
30 (176 144) 8 3 17.4× × × × = megabits per second (Mbit/s). The respective bit rates for
CIF, D1, and 1080p formats are 69.6 Mbit/s, 285 Mbit/s, and 1.39 Gbit/s. At the current
technology [108], it would be impossible to deliver raw 1080p real time video over any of
the normal Internet Protocol TV (IPTV), cable (DVB-C), satellite (DVB-S), or terrestrial
(DVB-T) TV networks. For example, ADSL2+ [53] has a maximum downstream
bandwidth of 24 Mbit/s, so it could theoretically be able to transmit a single QCIF stream
in real time, whereas 1080p would require 60 times more bandwidth. The bandwidth
problem is emphasized with wireless networks [61].

Another obstacle is insufficient capacities of storage devices. For example, the storage
requirement of one hour raw QCIF format is 3600 17.4 Mbit/s 7.6GBs× = and the
respective values for CIF, D1, and 1080p are 31 GB, 125 GB, and 626 GB. A typical
single-layer Digital Versatile Disc (DVD) having a capacity of 4.7 GB would be sufficient
for less than 3 minutes of D1 format instead of a whole movie. On the other hand, a two
hour movie in 1080p format would need 25 dual-layered Blu-ray discs.

Although the price per transmitted or stored bit is continually falling, the capacities of
communication networks and storage devices are growing much more slowly than the
amount of produced video material. Therefore, video compression will also play a
significant role in the future [34], [92], [132].

2.1.4 Lossless and lossy compression

Video compression is performed by a video codec that contains a complementary pair of
systems: a video encoder and a video decoder. This Thesis focuses on the encoder.

The objective of the encoder is to achieve high compression ratio with minimum visual
quality degradation. It uses different video coding algorithms to detect and remove
statistical, spatial, and temporal redundancies inherent in video [104]. The statistical
redundancy can be efficiently compressed with lossless (reversible) compression methods
but the compression ratios are only about 3:1 or 4:1 in the best case [104]. Lossy
(irreversible) compression methods remove perceptually irrelevant parts from the video. In
a normal video sequence, removable temporal and spatial redundancies occur between
adjacent frames and adjacent pixels, respectively. The stronger the compression, the more
original information is lost. Typical lossy compression ratios are from 50:1 to 200:1 and
even above [67]. The inverse of compression ratio is called coding efficiency, i.e., the
degree to which the encoder reduces the bit rate. The encoder is typically evaluated with
rate-distortion (RD) performance that describes a trade-off between the coding efficiency
(bit rate) and loss of information (distortion).

 2. Video Encoding

10

2.1.5 PSNR

The distortion is typically measured by computing Peak Signal to Noise Ratio (PSNR)
between original video sequence and its reconstruction after compression. PSNR between
original 8-bit luminance frame (FC) and its reconstruction (FR) is computed as

2

10
255PSNR(,)= 10 log

MSE(,)
⎛ ⎞

× ⎜ ⎟
⎝ ⎠

C R
C R

F F
F F

. (2.1)

In (2.1), the square of the maximum available 8-bit brightness value is divided by the
mean square error (MSE) between FC and FR. For FC and FR of size Q U× pixels, MSE is
defined as

()
1 1

2

0 0

1MSE(,) (,) - (,)
(1) (1)

− −

= =

=
− × − ∑ ∑

Q U

C R C R
i j

F F F i j F i j
Q U

, (2.2)

where FC(i, j) and FR(i, j) indicate individual pixels of FC and FR, respectively. In practice,
PSNR between original and reconstructed sequences is measured by computing PSNR
separately for each frame and taking the arithmetic mean of the frame-specific PSNRs.

PSNR is an objective mathematical measure, which produces results independent of
viewers’ opinions, viewing conditions (viewing distance, illumination, etc.), and display
technologies. However, MSE used in PSNR is sensitive to the energy of errors instead of
structural image distortions, so PSNR does not necessarily correlate with subjective video
quality perceived by HVS. It is roughly approximated in [74], that 40 dB, 33 dB, and 30
dB are minimum PSNR values for high, good, and adequate video qualities, respectively.

The most reliable measure for visual quality would require subjective assessments with
large number of human observers, but subjective tests are cumbersome, expensive, and
time-consuming to organize. Therefore, developers typically rely on automatic and
repeatable objective quality measures of which PSNR is by far the most widely used
technique. PSNR is also used in this Thesis. As suggested in [2], RD performance of the
encoders is compared either as Bjøntegaard delta PSNR (BD-PSNR) for the same output
bit rate or, alternatively, Bjøntegaard delta bit rate (BD-rate) for the same PSNR.

Besides high RD performance, the encoder has to produce a decoder-compatible bit
stream that is often determined by some video coding standard. This Thesis considers only
widespread international video coding standards and omits proprietary compression
schemes (e.g., Sorenson Video 3), nonstandard open codecs (e.g., VP8), as well as
national standards (e.g., AVS China [10]).

2.2 International video coding standards

The international standardization work on video coding is mainly coordinated by ISO/IEC
Moving Picture Experts Group (MPEG), ITU-T Video Coding Experts Group (VCEG),
and Society of Motion Picture and Television Engineers (SMPTE).

 2. Video Encoding

11

2.2.1 MPEG-1, MPEG-2, and MPEG-4 Visual

The widely used MPEG standards for audio/video coding are MPEG-1 [49], MPEG-2
[50], and MPEG-4 Visual (Part 2) [51]. MPEG-1 is optimized to VHS-quality video at bit
rate of 1.5 Mbit/s. Its applications include Video Compact Disc (VCD).

As an extension to MPEG-1, MPEG-2 is targeted to compress higher quality video at bit
rates of 2 - 100 Mbit/s. The main feature distinguishing MPEG-2 from MPEG-1 is the
efficient coding of interlaced videos. MPEG-2 is a commonly used compression scheme in
DVD as well as in DVB-C, DVB-S, and DVB-T broadcasting standards. It is capable of
coding SDTV and HDTV at bit rates of 3.5 Mbit/s and 15 Mbit/s, respectively [39].
MPEG-2 classifies the group of application specific features into profiles (subsets) which
specify a set of coding tools that can be used to generate a bit stream. The most widely
used profiles are simple profile (SP) and main profile (MP) which are targeted for low
delay and high quality applications, respectively.

MPEG-4 Visual achieves 20 - 30% BD-rate savings over MPEG-2 [133]. The target bit
rates of MPEG-4 Visual are 5 - 64 kbit/s in mobile applications, but it is able to support bit
rates of about 1 Gbit/s in studio editing resolutions (4K 4K× pixels). Its most popular
profiles are SP and ASP (Advanced Simple Profile). Nowadays, MPEG-4 SP is widely
supported feature in Internet-based videos and mobile applications [6], whereas MPEG-4
ASP is used in surveillance cameras and other higher quality video systems. Besides
coding rectangular frames, MPEG-4 Visual also supports object-based coding that enables
access and manipulation of individual objects in a video scene. At least so far, the object-
based coding has been impractical solution due its huge complexity.

2.2.2 H.261, H.262, and H.263

The ITU-T standards H.261, H.262, and H.263 are primarily developed for video
communication over telecommunication and computer networks. They share many
identical features with MPEG standards.

H.261 is targeted for videophone and video conferencing over Integrated Services Digital
Network (ISDN). It was designed to support target bit rates of multiples of 64 kbit/s (64 -
1920 kbit/s). H.262 is omitted here, because its functionality is equivalent to MPEG-2.
H.263 was primarily developed to support low bandwidth applications on telephony and
data networks. Although its target bit rate is below 30 kbit/s, it also offers good
performance at higher bit rates (up to 16 Mbit/s).

2.2.3 H.264/AVC

The latest video coding standard of ISO and ITU-T is entitled as H.264/AVC (Advanced
Video Coding) [57] and it is published jointly by MPEG (MPEG-4 Part 10) and VCEG
(H.264). Contrary to MPEG-4 Visual, H.264/AVC omits the complex object-based coding
and focuses only on traditional coding of rectangular frames. It supports bit rates from 5
kbit/s to 960 Mbit/s. The most popular profiles of H.264/AVC are Baseline Profile (BP),
High Profile (HiP), and Extended Profile (XP). BP is widely used in videoconferencing

 2. Video Encoding

12

and mobile applications, HiP is targeted for broadcast and disc storage applications, and
XP is intended for streaming and error prone environments such as wireless networks.

H.264/AVC achieves about 50 - 60% BD-rate reduction over MPEG-2, whereas the BD-
rate decrease over MPEG-4 Visual and H.263 is at least 30% [133]. Due to its high
compression and error resilience capabilities, H.264/AVC has become a widely deployed
coding technique in various products and services such as Blu-ray Disc, YouTube videos,
Adobe Flash, and DVB standards. For example, H.264/AVC is able to code SDTV and
HDTV at bit rates of 2 - 3.2 Mbit/s and 7.5 - 13 Mbit/s, respectively [39].

H.264/AVC has been recently extended by two amendments that consider scalable video
coding (SVC) and multiview video coding (MVC) [57]. SVC provides a compressed video
with two or more quality options (spatial resolution, temporal resolution, and fidelity)
from which the most suitable one is selected according to available transmission, display,
or storage capability. MVC, in turn, operates on multiview video that is captured by
synchronized cameras from different viewpoints. Multiview video provides three-
dimensional (3D) depth impression of the observed scenery. It is utilized by emerging 3D
applications such as 3DTV and free viewpoint TV (FTV) [116] in which the user can
control the viewpoint and generate new views from any 3D position.

2.2.4 VC-1

SMPTE 421M [109] is another state-of-the-art video coding standard. SMPTE 421M is
informally referred to as VC-1 and it was initially developed as a proprietary video format
by Microsoft. Depending on the applied compression options and source content, the BD-
rate of VC-1 over H.264/AVC is approximately ± 10% [73]. Therefore, VC-1 is widely
characterized as an alternative to H.264/AVC.

VC-1 has target bit rates of 96 kbit/s - 135 Mbit/s and its applications include Blu-ray
Discs, Windows Media Video 9 (WMV-9), and Microsoft Silverlight framework. VC-1
contains three profiles: Simple profile for low-complexity applications, Main profile for
high data rate Internet applications, and Advanced profile for broadcast applications.

2.2.5 Future international video coding standards

Although H.264/AVC and VC-1 significantly outperform the older video coding
standards, their compression efficiencies tend to be inadequate for the wireless and wired
transmission of the next generation resolutions (QFHD and beyond) [92]. Therefore,
MPEG and VCEG have established a Joint Collaborative Team on Video Coding (JCT-
VC) to develop a successor to H.264/AVC.

This forthcoming international video coding standard is tentatively referred to as High
Efficiency Video Coding (HEVC) [34], [132]. HEVC focuses on coding of progressively
scanned rectangular frames whose resolution can vary at least between QVGA (320 240×
pixels) and UHDTV formats. JCT-VC is currently integrating and refining the features of
the best-performing HEVC proposals [5], [35], [63], [89], [124]. The combination of these
most promising proposals roughly halves the bit rate over H.264/AVC with the same

 2. Video Encoding

13

subjective perceptual quality, whereas their respective BD-rate savings are measured to be
around 30 - 40% [132]. The coding gain tends to increase as a function of resolution. To
obtain better trade-off between complexity and compression efficiency, the coding tools of
HEVC are separately specified for high efficiency and low complexity applications [92].

The plan of JCT-VC is to publish draft versions of HEVC in 2012 and the first version of
the final standard in early 2013. Since HEVC is still a moving target with many uncertain
elements and open questions, this Thesis mainly focuses on the existing ratified standards.

2.3 Video encoder

All the considered standards (MPEG-1/2, MPEG-4 Visual, H.261/3, H.264/AVC, and VC-
1) only specify the decoding process and output bit stream (syntax and semantics) of the
encoder. Provided that the encoder design is kept compatible with the decoder
specification, manufacturers can freely optimize encoding efficiency, quality, and speed.
This approach allows industrial competition and further evolution of technology in the
non-normative parts of the standard.

Figure 2.1 depicts an exemplary hybrid video encoder for these standards. They are all
based on hybrid video coding scheme [6], [10], [104], which combines motion
compensated prediction (MCP), transform coding (TC), and entropy coding (EC). These
three stages are described in detail in Sections 2.3.1, 2.3.2, and 2.3.3, respectively. The
blocks and data flows illustrated with dashed lines are only supported by H.264/AVC
and/or VC-1. The respective model for a decoder is presented, e.g., in [6], [10], and [104].

Figure 2.1. Generalized block diagram of the hybrid video encoder.

T Q

Q-1

T-1

EC

Quantized
TCOEFF

IP

Bit stream

DF

+
+

IP mode

FRMC

ME

FC +

_

P

MV

Inter/Intra
mode decision

DFD TCOEFF

DFD’

 2. Video Encoding

14

The encoder receives a current frame (FC) as an input. It processes FC in the units of a
macroblock (MB). FC is usually captured in the RGB color space but it is converted into
the YUV color space before encoding in order to reduce storage and transmission
requirements. In the YUV color space, each of the processed MBs consists of 16 16×
luminance samples and associated chrominance samples, whose amount depends on the
used sampling pattern (4:4:4, 4:2:2, or 4:2:0). For example, 4:2:0 format includes 8 8×
blocks of blue and red chrominance.

2.3.1 MCP stage

MCP stage of the encoder reduces temporal redundancy by exploiting similarities between
consecutive video frames. This stage is denoted by the grey components in Figure 2.1.

All the considered standards utilize block-based MCP. H.261 and MPEG-1/2 operate on
the 16 16× pixel block, whereas H.263, MPEG-4 Visual, and VC-1 support block sizes of
16 16× and 8 8× . H.264/AVC implements the most complex MCP which makes use of
seven block sizes (16 16× , 16 8× , 8 16× , 8 8× , 8 4× , 4 8× , and 4 4×).

The first phase of MCP is motion estimation (ME) which searches for the best matching
counterpart for the processed current MB from the previously encoded and reconstructed
reference frame(s) (FR). In forward prediction, FR equals a single past frame or a set of
several past frames. Similarly, FR represents one or more future frames in backward
prediction. In order to apply future frames as reference, they have to be encoded before FC
(out of display order). H.261 supports only forward prediction with a single past frame.
MPEG-1/2, MPEG-4 Visual, H.263, and VC-1 allow forward and backward prediction
with one past and one future frame, respectively. Instead, H.264/AVC supports up to 16
reference frames in forward and backward prediction. In addition, MVC amendment of
H.264/AVC extends ME to disparity estimation (DE) which performs inter-view
prediction between parallel processed views.

The search technique of ME is called block-matching and a displacement between the
positions of the processed MB and the best match is known as a minimum motion vector
(MV). ME is performed only on luminance blocks and associated chrominance MVs are
derived from luminance MVs. The chrominance-based ME is omitted since HVS is
relatively insensitive to color information. Hence, it would provide only small gains
compared with increase in complexity.

The second phase of MCP is block-based motion compensation (MC) during which a
MCP block (P) of the processed MB is generated. P is a direct copy of the best match
whose position in FR is indicated by MV.

In the third phase of MCP, a displaced frame difference (DFD), i.e., residual prediction
error, is computed by subtracting P from the processed MB. Hence, MVs are used to
compensate motion and only DFD is encoded.

This Thesis focuses on MCP stage that is introduced in detail in Chapter 3. In the
following, the remaining parts of the encoder are shortly considered.

 2. Video Encoding

15

2.3.2 TC stage

The first phase of TC stage is transform (T). It reduces spatial redundancy in DFD by
exploiting similarities between neighboring pixels of DFD. DFD is transformed from a
spatial domain into a transform domain in which the energy associated to DFD is
represented more compactly with a small number of transform coefficients (TCOEFFs).
Typically, perceptually more significant information is concentrated on low-frequency
TCOEFFs whereas higher frequency TCOEFFs can be discarded. MPEG-1/2, MPEG-4
Visual, and H.261/3 implement T with a block-based 2D Discrete Cosine Transform
(DCT) [102] which successively operates on 8 8× luminance and chrominance blocks.
Instead, H.264/AVC and VC-1 employ Integer Cosine Transform (ICT) which is an
integer approximation of the floating point DCT. Exact ICT reduces complexity of inverse
transform computations and eliminates mismatches between inverse transforms of the
encoder and decoder. H.264/AVC supports either 4 4× or 8 8× ICT (4 4× ICT always
for chrominance), whereas VC-1 adaptively supports 4 4× , 4 8× , 8 4× , and 8 8× ICT.
DCT-based transforms have high transform coding gain and low computational
complexity, but they tend to suffer from artifacts at block edges (blockiness). Discrete
Wavelet Transform as a frame-based transform would provide better energy compaction
over DCT-based transforms, but it has not replaced DCT due to its higher computational
complexity and memory requirements [104]. DCT is also better compatible with block-
based MCP.

The second phase of TC stage is quantization (Q) that maps the dynamic range of
TCOEFFs to the limited range of quantized TCOEFFs. The irreversible Q only retains a
reduced number of quantized TCOEFFs by converting insignificant TCOEFFs to zero. As
a lossy operation, Q is the primary source of the compression gain. All the considered
standards support scalar quantization that quantizes each TCOEFF independently [6]. The
quantization parameter (QP) controls a tradeoff between compression efficiency and
quality. QP of H.264/AVC takes integer values from 0 to 51, whereas the other considered
standards use QP values from 1 to 31. Larger QP value increases quantization step size
which improves compression efficiency, but reduces quality. In H.264/AVC, example QP
values for high, medium, and low bit rates are 20, 30, and 40, respectively [44].

2.3.3 EC stage

EC stage removes statistical redundancy from outputs of MCP (MVs) and TC (quantized
TCOEFFs) stages. The quantized TCOEFFs are typically converted to a one-dimensional
(1D) array by substituting low frequency TCOEFFs before high frequency ones (zigzag
scanning). EC converts MVs, quantized TCOEFFs, and other syntax elements (e.g., MB
and slice headers) to binary codewords which are multiplexed together to a bit stream.

The widely used lossless entropy coding techniques are variable length coding (VLC) and
arithmetic coding. All the considered standards support VLC, whereas arithmetic coding
is additionally supported by H.263 and MPEG-4 Visual. H.264/AVC also contains two
entropy coding modes. The first mode has two entropy coding tools: context-adaptive VLC
(CAVLC) and universal VLC (UVLC). TCOEFFs are encoded with CAVLC and the other
syntax elements with UVLC. The other mode is context-adaptive binary arithmetic coding

 2. Video Encoding

16

(CABAC) that is used for all syntax elements. Compared to CAVLC, CABAC typically
provides 5 - 15% reduction in BD-rate, but at a cost of higher complexity [134].

2.3.4 Decoding path

In parallel with the EC stage, the decoding path (feedback loop) of the encoder
reconstructs the processed MB to provide a decoder-compatible reference for future
predictions. The quantized TCOEFFs are inverse quantized (Q-1) and inverse transformed
(T-1) in order to reproduce DFD (DFD’) after which a reconstructed MB is yielded by
adding P to DFD’ (P + DFD’). The reconstructed MB data equals MB data that is
available for the decoder.

All the reconstructed blocks of the processed frame are stored in FR which is used by MCP
stage when a subsequent frame is processed. The blockiness of reconstructed blocks tends
to lead inaccurate MCP. Therefore, H.264/AVC and VC-1 apply an in-loop deblocking
filter (DF) which removes blockiness by smoothing the sharp edges of the reconstructed
blocks. In the other considered standards, the deblocking filter is optional.

2.3.5 MB coding modes

All the considered standards support at least intra, inter, and skip MB coding modes. The
best mode is chosen according to applied mode decision function.

The intra mode operates without MCP. The intra mode is chosen for a MB if the inter
mode cannot meet its coding cost threshold or is not available. H.264/AVC performs intra
prediction (IP) for an intra MB in the spatial domain and only the spatial prediction error
is forwarded to the TC stage. IP predicts P from previously encoded and reconstructed
neighboring blocks of the current frame. IP supports luminance block sizes of 16 16× ,
8 8× , and 4 4× so that one type can be used per MB. H264/AVC provides four spatial
prediction modes for block size of 16 16× , and nine prediction modes for block sizes of
8 8× and 4 4× . In addition, prediction is separately performed for 8 8× chrominance
blocks. The other considered standards conduct an intra MB directly to the TC stage
without prediction (P = 0) and perform intra prediction in transform domain.

The inter mode uses MCP and it is further classified as unidirectional prediction mode (P
mode) and bidirectional prediction mode (B mode). In MPEG-1/2, MPEG-4 Visual,
H.263, and VC-1, the P mode is restricted to forward prediction whereas the B mode
allows bidirectional (forward and backward) prediction. In addition, the B mode can select
an average of forward and backward predictions as a predictor candidate. Through
averaging, noise can be reduced. H.261 supports only the P mode. The P mode of
H.264/AVC enables also backward prediction, so the only difference between the P and B
modes of H.264/AVC is the support for the average predictor in the B mode.

In the skip mode, the encoder does not transmit prediction error or MVs for a MB, but a
MB can be simply replicated from the previously decoded frame. To improve compression
ratio, the encoder can increase the occurring rate of skip MBs by skipping also MBs that
have only a diminutive effect on distortion.

 2. Video Encoding

17

H.261/3, MPEG-1/2, MPEG-4 Visual, and VC-1 determine available coding modes for a
MB in a frame level. They all support intra-coded frames (I-frames) and unidirectionally
predicted frames (P-frames). I-frame can contain only intra MBs. P-frames are predicted
from the closest preceding I/P-frame and they provide more compression than the I-
frames. In addition, H.263, MPEG-1/2, MPEG-4 Visual, and VC-1 improve compression
efficiency further with bidirectionally predicted frames (B-frames) which can reference to
the closest past and/or to the closest future I/P-frames. The usage of intra and skipped
MBs in P/B-frames is specified in detail by the standard [49]-[51], [55], [56], [109].

H.264/AVC defines available prediction modes for a MB in a slice level. A slice is a
group of MBs. The sizes and shapes of slices are highly flexible in H.264/AVC. I-slices
can only contain intra MBs. MBs in P-slices can be coded in the intra, inter, or skip mode,
whereas MBs in B-slices can be coded in the intra, inter, skip, or direct modes. The direct
mode resembles the skip mode, except that the prediction error is sent. Each slice is coded
separately and I, P, or B-slices can be mixed within a single frame.

2.3.6 Encoder control

With constant coding parameters, the output bit rate of the encoder changes depending on
the frame content. This variation tends to be a problem for practical applications which
typically necessitate a constant or at least a constrained bit rate output. Encoder rate
control (RC) ensures that a video sequence is encoded at the target bit rate without
violating the channel bandwidth, timing constraints, or encoder/decoder buffer sizes. An
RC algorithm is needed to allocate bits among all coding units (e.g., frame, slice, and MB)
and to determine an optimum QP that can properly encode each coding unit with allocated
bits. The sophisticated RC algorithms use RD optimization (RDO) techniques to jointly
consider the quality degradation and number of bits used. In order to find the best possible
RD trade-off, RDO techniques are also adopted to other encoding functions such as mode
decision and ME.

The standards recommend their own non-normative RC schemes [73]. H.264/AVC adopts
the most complex schemes, because it supports various MB coding modes and RDO-based
mode decision. In the literature, several optimized RC schemes have been presented
especially for H.264/AVC [88], [123], but they are out of the scope of this Thesis.

2.4 State-of-the-art encoders

The state-of-the-art video codecs are primarily designed for H.264/AVC and VC-1.
Although VC-1 is simpler to implement, the lack of public reference implementation has
limited the activity on open VC-1 encoder development [73]. Therefore, this section only
examines encoders that are compatible with more popular H.264/AVC.

2.4.1 H.264/AVC encoders

The platform-independent reference SW implementation of H.264/AVC is referred to as
Joint Model (JM) whose current version is JM 17.0 [59]. JM has low performance since it

 2. Video Encoding

18

contains all features of H.264/AVC. According to [43], Baseline Profile (BP) of JM 7.3
requires 3600 giga instructions per second (GIPS) computation and 5570 gigabytes per
second (GBytes/s) memory access when encoding 720p format at 30 fps. Hence, it is
mainly used in conformance testing and research rather than practical real-time encoders.

The other publicly available SW encoder is x264 [136], which has been adopted by
popular web video services such as Youtube and applications including VLC media
player. Due to various algorithmic-level optimizations, x264 is approximately 50 times
faster than JM at a maximum BD-rate increase of 5% [90].

Commercial H.264/AVC encoders have been released, e.g., by Apple Computer
(Quicktime), Ateme (Nero Digital AVC), Intel Corporation (Intel IPP), MainConcept, and
Sony (Blu-code). However, the comparisons such as [125] between practical SW encoders
have shown that the publicly available x264 encoder achieves the lowest average BD-rate.

2.4.2 Practical implementation constraints

Selecting an appropriate profile and level of H.264/AVC encoder requires a trade-off
between RD performance, encoding delay, and computational complexity. The best
available RD performance is usually applied only in nonreal-time applications. They
allow multi-pass encoding in which the first encoding pass analyzes the video and the
subsequent pass(es) use the results of the first pass to adjust the best possible video quality
within the bit rate limits. Since multi-pass encoding is normally performed only once, the
complexity and delay of the encoding are less critical issues.

The importance of encoding delay is emphasized whenever live events are being broadcast
or streamed. The live applications require that transmitting and/or receiving end(s) are
equipped with real-time encoders. The complexity of real-time encoding becomes very
critical issue in portable devices due to their limited size, weight, and cost. In these
devices, the growing convergence of video, audio, and graphics functionalities further
limits the computation power and memory space available for encoding.

Power consumption is particularly essential in portable devices, since their usage and
standby times are often dependent on battery life. The growing gap between battery
capacity and the needed power accelerates battery depletion in these devices. In addition,
typical handheld devices such as mobile phones restrict heat dissipation to be below 3 W
of which less than 1 W is reserved for the application processing and memories [94],
[107]. Intelligent mobile devices request power-aware encoders that can adjust the set of
the utilized coding tools according to existing conditions such as processed video content,
battery capacity, environmental condition, and user preferences [16], [79]. Non-battery
powered embedded systems are also limited by power, since power consumption
influences the system cost and lifetime of the chip. The power consumption of below 2 W
enables the usage of a cheap plastic chip package and external cooling is avoided if power
dissipation is below 10 W [95]. In addition, the density of parts on the board is minimized
when the power dissipation of each individual chip is restricted to around 10 W [62].

Companies and academic institutions have introduced various approaches for H.264/AVC
video encoding [71]. They are here classified as SW, HW/SW, and HW implementations.

 2. Video Encoding

19

2.4.3 Software implementations

A single-core general-purpose processor (GPP) provides a traditional platform for a SW
implementation of H.264/AVC encoder [17]. The modern GPPs are extended with single
instruction multiple data (SIMD) instructions and multithreading capabilities which can
accelerate video encoding through data and task level parallelism, respectively. However,
despite these extensions, GPP performance tends to be insufficient for real-time
H.264/AVC encoding. For example, Intel Pentium 4 Extreme Edition (P4EE) [47] is one
of the fastest single-core GPP. With two simultaneous threads, it achieves theoretical peak
performance of approximately 10 GIPS, or alternatively, 6 giga floating point operations
per second (GFLOPS) in single precision when operating at 3.2 GHz. According to x264
benchmark [117], P4EE is ideally able to encode 720 480× resolution x264 video at 18
fps when operating at 2.4 GHz. In addition, its power consumption of 92 W at 3.2 GHz
(130 nm process technology) is far beyond the requirements of handheld devices.

In the recent years, the single GPPs have evolved into homogeneous multiprocessor
system-on-chip (MPSoC) platforms [62], [135] that replicate the processor cores on a
single die. For example, Intel Core i7 Extreme Edition 980X [46] contains six cores and
up to 12 simultaneous threads with multithreading. It is able to achieve theoretical peak
performance of 109 single-precision GFLOPS at 3.3 GHz. With x264 HD benchmark
[117], it encodes 720p format at 87 fps. Although this performance corresponds encoding
of 1080p format at 38 fps in an ideal case, the power consumption of 130 W (32 nm
process technology) is very high.

The computation load of GPPs can be alleviated by accelerating H.264/AVC encoding
with graphics processing units (GPUs) that have become an integral part of current
mainstream GPPs [20]. The GPUs have traditionally been tailored to 3D graphics
acceleration, but recently they have evolved into programmable special-purpose MPSoCs
[97]. For example, the high-end Nvidia Tesla S2050 GPU computing card has 4 GPUs,
each of which contains 448 processor cores. Due to huge number of fine-grained parallel
processors, GPUs deliver order-of-magnitude performance gains over GPPs. For example,
Tesla S2050 GPU has theoretical peak performance of over 4000 single-precision
GFLOPS at a cost of 900 W (40 nm process technology). The GPU can assist GPP by
executing the most computation-intensive SIMD-oriented tasks of H.264/AVC encoding,
such as ME, MC, and IP (Figure 2.1), whereas control-intensive tasks, such as EC, are
typically allocated to GPP [20]. Unfortunately, performance figures of GPU-accelerated
H.264/AVC encoder are not publicly available.

The Cell Broadband Engine Architecture (CBEA) [98] is an example of general-purpose
heterogeneous MPSoC, in which computation can be divided between different types of
cores in a single die. CBEA has one dual-threaded power processor element (PPE) and
eight synergistic processor elements (SPEs). The PPE runs the operating system and
controls SPEs which are designed for SIMD execution. The peak performance of CBEA is
about 200 single-precision GFLOPs at 3.2 GHz and the power consumption is estimated
to be close to 20 W (45 nm process technology) [3], [114]. CBEA is able to encode x264
video in 1080p format at 30 fps [38].

 2. Video Encoding

20

Although general-purpose multicore processors can execute DSP algorithms successfully,
they are not suitable for use in embedded systems because of power supply and space
constraints. In embedded systems, video is typically encoded with digital signal
processors (DSPs), whose architecture is particularly designed for signal processing tasks.
However, the performance of single-core DSP platforms tends to be insufficient for real-
time H.264/AVC encoding. For example, Texas Instruments (TI) DaVinci family contains
video-oriented processors such as a single-core TMS320DM642 DSP [118]. At maximum
operating frequency of 720 MHz, it achieves almost 6 GIPS performance and its typical
power consumption is diminished close to 2 W (90 nm process technology). However, its
peak encoding speed of x264 VGA (640x480) resolution video is only 22 fps [80].

Table 2.1 summarizes publicly available characteristics and x264 encoding performance
of the examined processors. Although Core i7-980x and CBEA can provide enough
performance for 1080p encoding, their power consumption is far beyond the requirements
of handheld devices. Therefore, HW acceleration is used either for the encoding assistance
or for the whole encoding process.

2.4.4 Hardware/software implementations

Let us first consider HW acceleration in heterogeneous MPSoC platforms that are targeted
for embedded applications. These MPSoCs include a specific set of programmable GPPs,
DSPs, GPUs, and nonprogrammable HW accelerators for standardized signal processing
tasks such as video encoding. The GPP is typically a reduced instruction set computer
(RISC) processor that runs the operating system and executes control-intensive tasks. For
example, the high-end ARM Cortex A9 processor can contain 1 - 4 cores and a power-
optimized dual-core configuration of it achieves 4 GIPS performance with power
consumption of 0.5 W (40 nm process technology).

State-of-the-art video-oriented MPSoCs such as Renesas SH-MobileHD1 [103],
Qualcomm Snapdragon QSD8672 [101], TI TMS320DM368 [119], and Liu’s encoder
[86], [87] are able to encode H.264/AVC 1080p video at 30 fps. SH-MobileHD1 contains
500 MHz RISC processor, two DSPs for audio, as well as a HW accelerated unit for video
processing. QSD8672 has two 1.5 GHz ARM-based cores, a GPU, and HW accelerators
for video encoding. TMS320DM368 includes 432 MHz ARM core and HW-accelerated
video/imaging coprocessor. Liu’s encoder contains one configurable HW-accelerated
RISC processor and dedicated HW accelerators.

Table 2.1. Encoding performance of the well-known processors.

Device P4EE Core i7-980X CBEA TMS320DM642
Manufacturer Intel [47] Intel [46] Sony/Toshiba/IBM [98] Texas Instruments [118]
Year 2003 2010 2008 2004
Encoder x264 x264 x264 x264
Process 130 nm 32 nm 45 nm 90 nm
Transistors 178 M 1170 M 241 M n.a.
Clock Frequency 2400 MHz 3300 MHz 3200 MHz 720 MHz
Max. Resolution 720p@87fps 1080p@30fps
Power 90 W (@3200 MHz) 130 W ≈ 20 W 2 W
n.a. = not available

720 480@18fps× 640 480@22fps×

 2. Video Encoding

21

To obtain a good balance between programmability and efficiency, SH-MobileHD1,
QSD8672, TMS320DM368, and Liu’s encoder realize real-time H.264/AVC encoding of
1080p format by partitioning the encoding functions between HW and SW. They off-load
most of the encoding functions to associated HW accelerators, whereas programmable
control-intensive parts are managed in SW. In addition, programmability is typically
needed to adjust the supported feature set, profiles, and standards.

TMS320DM368 realizes all multi-standard kernel functions of ME, MC, T, Q, Q-1, T-1, IP,
EC, and DF in HW (Figure 2.1) [127]. It only uses programmable DSP to execute
standard-specific functions such as ME algorithm control, rate control, and mode decision.
When encoding 720p at 30 fps, TMS320DM368 consumes power close to 1 W. In Liu’s
encoder, the RISC implements overall control and memory management, whereas DF and
EC are realized with HW extensions of the RISC. The rest of the functions are mapped to
the associated HW accelerators. When operating at 200 MHz, the architecture is able to
encode 1080p format at 30 fps. The encoder core is realized with 1140 Kgates and 108.3
KB of static random access memory (SRAM). Its power consumption is about 1.2 W.

The available characteristics of these four MPSoCs are summarized in Table 2.2. The
transistor count of Liu’s design is computed by supposing four transistors per a single 2-
input NAND-gate and six transistors per an on-chip SRAM bit. As a conclusion, the
current MPSOCs enable HW accelerated H.264/AVC encoding up to 1080p format with
reasonable power budget without losing programmability.

2.4.5 Academic hardware implementations

Encoding performance and/or power economy can be further improved by implementing
encoders completely in HW as an application-specific integrated circuit (ASIC).

Huang et al. [12], [43], introduced the first single-chip HW encoder (H.264/AVC BP) in
2005. It runs at 108 MHz and supports 720p format at 30 fps without quality degradation
compared with JM reference encoder. The architecture consumes 923 Kgates, 35 KB of
SRAM, and 785 mW of power (180 nm process technology). Huang’s encoder adopts 4-
stage MB-level pipeline architecture, since the MB-level pipeline reduces data buffer sizes
needed between modules when compared with processing in frame units. Later on, several
power and performance optimized HW encoders have been announced. They all utilize
MB-level pipelining.

Table 2.2. Encoding performance of the state-of-the-art video-oriented MPSoCs.

Device SH-MobileHD1 Snapdragon QSD8672 TMS320DM368 MPSoC
Manufacturer Renesas [103] Qualcomm [101] Texas Instruments [119] Liu et al. [86] [87]
Year 2009 2009 2010 2007
Encoder H.264 H.264 MP H.264 HiP H.264 BP
Process 65 nm 45 nm 65 nm 180 nm
Transistors n.a. n.a. n.a. 10 M
Max. Resolution 1080p@30fps 1080p@30fps 1080p@30fps 1080p@30fps
Clock Frequency 500 MHz (1080p@30fps) 1500 MHz (1080p@30fps) 432 MHz (1080p@30fps) 200 MHz (1080p@30fps)
Power n.a. 1400 mW (1080p@30fps) 1027 mW (720p@30fps) 1219 mW (1080p@30fps)
n.a. = not available

 2. Video Encoding

22

Chen et al. [13], [16], Chang et al. [8], [9], and Mochizuki et al. [91] presented power-
efficient H.264/AVC BP encoders for power-limited portable devices. The power
dissipation of these architectures were lowered through HW-oriented algorithmic
optimizations (particularly for ME, IP, and mode decision), data reuse at the algorithm and
architecture levels (to save memory power), and circuit-level optimization (clock gating).
Chen’s and Chang’s approaches support power-adaptive encoding via power modes that
fulfill different power constraints. They lower power consumption at a cost of reduced
encoding quality. Chen’s architecture realizes multiple power modes by adjusting the
complexities of ME, IP, and DF modules. The 3-stage encoder consumes 453 Kgates and
17 KB of SRAM, its maximum operating frequency is 54 MHz, and it can encode
720 480× pixel resolution at 30 fps in which case power consumption is 44 - 67 mW
(180 nm process technology) in different power modes. Chang’s encoder contains quality-
adjustable ME and IP modules in order to configure power consumption with four power
modes. The 3-stage implementation is able to encode 720p format at 30 fps with a power
mode-specific operating frequency of 72/108 MHz and power consumption of 122 - 183
mW. Mochizuki’s encoder has only one power mode. However, the 3-stage architecture is
still very power-efficient consuming only 64 mW for encoding of 720p format at 30 fps.

Lin et al. [81] proposed the first H.264/AVC HiP real-time HW encoder for 1080p format.
Despite high performance and HiP compatibility, the 3-stage architecture has relative low
resource and power consumption. The reported optimization methods include complexity
reduction of ME, IP, and mode decision. In addition, the architecture utilizes increased
parallelism, cross-stage resource sharing, and data reuse. When running at 145 MHz, it
encodes 1080p at 30 fps with quality loss of 0.1 dB and consumes power 242 mW (176
mW for H.264/AVC PB). The required resources are 593 Kgates and 22 KB of SRAM.

Among the existing implementations, the peak encoding performance is provided by Ding
et al. [25], [26]. Ding’s 8-stage architecture supports MVC amendment of H.264/AVC
(Multiview HiP) and HiP for 3D and 2D applications, respectively. It supports view
scalability for encoding single-view 4096 2160× pixel resolution at 24 fps, three-view
1080p videos at 30 fps, and seven-view 720p format at 30 fps. These properties are
realized through extending ME to support DE, optimizing IP, doubling EC modules,
increasing pipelining, and rescheduling the encoder functions to support MVC. Compared
to previous approaches, the gate count of Ding’s architecture is more than doubled, but
memory and power consumptions are comparable to other approaches.

Table 2.3 gathers the characteristic of most competitive implementations that support at
least 720p format. Compared to HW/SW approaches, HW encoders achieve relative
performance with much less resources and power dissipation. For example, Lin’s encoder
(Table 2.3) consumes about one third of Liu’s encoder (Table 2.2) resources. In addition,
Lin’s encoder consumes one fifth of power, if an assumed 30% decrease of power per
CMOS process generation [4] (from 180 nm to 130 nm) is taken into account (constant
voltage scaling).

Among all the evaluated encoders, Chang’s encoder is the most cost-effective solution for
CIF-sized videos and below due to its smallest amount of resources and low power
consumption. For 720p and 1080p formats, Lin’s encoder provides the smallest
implementation. On the other hand, Ding’s approach has the smallest power consumption,
when 30% decrement of power from 130 nm to 90 nm is assumed.

 2. Video Encoding

23

Table 2.3. Encoding performance of the state-of-the-art academic HW encoders.

2.4.6 Commercial hardware implementations

H.264/AVC HW encoders have also been unveiled by several companies such as
Imagination Technologies (POWERVR VXE382 encoder [45]), CAST (H264-MP-E
encoder [7]), EyeLytics [29], and Jointwave (E760 encoder [60]). Their publicly available
performance figures on ASIC are tabulated in Table 2.4. In summary, E760 encoder
provides twice the encoding speed with equal resources than the other industrial
approaches. E760 is also competitive with Lin’s and Ding’s encoders (Table 2.3).
However, its search quality is not reported.

Among the considered ASIC-based encoder approaches, H264-MP-E, EyeLytics, and
E760 encoders are additionally designed for field programmable gate array (FPGA).
Although current FPGAs are not suitable for power-sensitive designs, the latest FPGAs
are still sufficient for real-time H.264/AVC encoders. H264-MP-E encoder has been
implemented on Altera Stratix IV logic device. It encodes 1080p at 30 fps in which case
the required resources are 79 K adaptive look-up tables (ALUTs), 67 embedded DSPs
blocks, and 109 embedded memory blocks of size 9 Kb (M9K). Eyelytics achieves the
similar performance on Altera Stratix III at a cost of 20 K ALUTs, 5 DSPs, and 154
M9Ks. E760 is reported to perform 1080p encoding at 60 fps with 58 K ALUTs.

2.4.7 Discussion

In conclusion, high-end multicore processors are able to encode 1080p H.264/AVC video
at 30 fps. However, their power consumption is one to two orders of magnitude higher
than the power budget of handheld devices. Power efficiency of direct-mapped HW can be
up to four orders of magnitude greater than those of GPPs [48]. With HW acceleration,
real-time encoding of 1080p H.264/AVC video can be performed below 1 W power
budget. HW acceleration also makes real-time encoding feasible with higher resolutions.

Device HW encoder HW encoder HW encoder HW encoder
Manufacturer Chang et al. [8][9] Mochizuki et al. [91] Lin et al. [81] Ding et al. [25][26]
Year 2007 2008 2008 2009
Encoder H.264 BP H.264 BP H.264 HiP H.264 Multiview HiP/HiP
Process 130 nm 90 nm 130 nm 90 nm
Gate count 470 K n.a. 593 K 1732 K
On-chip SRAM 13.3 KB 56.0 KB 22.0 KB 20.1 KB
Transistors 2.6 M n.a. 3.5 M 8.1 M
Max. Resolution 720p@30fps 720p@30fps 1080p@30fps
Quality loss < 0.6 dB < 0.5 dB 0.1 dB < 0.1 dB

72/108MHz (720p@30fps) 144MHz (720p@30fps) 145 MHz (1080p@30fps) 280MHz ()
10-28MHz (CIF@30fps) 63 MHz (720p@30fps) 81MHz (1080p@30fps)

7 MHz (CIF@30fps) 36MHz (720p@30fps)
122-183mW (720p@30fps) 64mW (720p@30fps) 242 mW (1080p@30fps) 522 mW ()
7-25mW (CIF@30fps) 116 mW (720p@30fps) 148 mW (1080p@30fps)

7 mW (BP CIF@30fps) 58 mW (720p@30fps)

n.a. = not available

Clock Frequency

Power

4096 2160@24fps×

4096 2160@24fps×

4096 2160@24fps×

 2. Video Encoding

24

Table 2.4. Encoding performance of the state-of-the-art industrial HW encoders.

The current and next generation approaches use special-purpose HW either for the whole
encoding process or for the encoding assistance in a processor-controlled environment.
Hardwired, ASIC-based encoders outperform other approaches in terms of performance,
silicon area, and power consumption. Due to their limited flexibility and high non-
recurring engineering (NRE) costs [69], ASICs are the most optimal solution for low-cost
and high-volume products that support a single standard. The ever-increasing
computational complexity of encoding and low-power limitations ensure that hardwired
encoders will be one of the practical solutions also in the future.

When there is a room for a slight overhead in performance and power consumption, more
flexible solutions are preferred, since the rising trend is to support plethora of standard,
nonstandard, and proprietary video codecs. Multi-standard support can be accomplished
with modern reconfigurable FPGAs and video-oriented MPSoCs that are viable
alternatives for ASICs in less power-sensitive encoders. Compared to ASICs, the current
FPGAs have higher per unit costs, but as off-the-shelf products they offer faster time to
market [69]. MPSoCs are built by the combination of validated processing elements, so
they have short design and validation times as well as low design and manufacturing costs.
In addition, derivative MPSoC designs can be created with rapid time-to-market and even
the same platform can be reusable for a different set of applications. The reuse rate of a
typical MPSoC design is estimated to linearly grow from the current 46% (in 2009) to
96% by 2024 [48]. MPSoCs will probably be the most popular approach for the next
generation video encoding.

Although the allocation of encoding tasks between HW and SW varies in the considered
encoder implementations, they all share the common feature of using HW acceleration for
motion estimation (ME). Since ME is the most compute-intensive part of video encoding,
the performance of the whole video encoding is dependent on ME implementation.
Hereafter, this Thesis will focus on design and implementation of ME.

Device POWERVR VXE382 H264-MP-E EyeLytics E760
Manufacturer Imagination Technologies [45] CAST [7] EyeLytics [29] Jointwave [60]
Year 2010 2011 2011 2009
Encoder H.264 HiP H.264 MP H.264 MP H.264 HiP
Process n.a. 90 nm 130 nm 90 nm
Gate count n.a. 600 K 300 K 730 K
On-chip SRAM n.a. 88.5 KB 166.4 KB 26.9 KB
Transistors n.a. 6.8 M 9.4 M 4.3 M
Max. Resolution 1080p@30fps 1080p@30fps 1080p@30fps 1080p@60fps
Clock Frequency 200 MHz (1080p@30fps) 333 MHz (1080p@30fps) 300 MHz (1080p@30fps) 304 MHz (1080p@60fps)
Power n.a. n.a. n.a. 260 mW (1080p@60fps)
n.a. = not available

 25

3. Motion Estimation

This chapter presents the basic concepts of motion and its modeling. The emphasis is on
the motion model of motion compensated prediction (MCP). Among the coding tools of
MCP, the main focus is on block-based ME whose characteristics and practical limitations
are considered in the context of H.261/3, MPEG-1/2, MPEG-4 Visual, H.264/AVC, and
VC-1. In addition, the basic operating principle of block-based ME and its realization
through rate-constrained block matching is explained. Finally, rate-constrained mode
decision is considered.

3.1 Concept of motion

Motion is an integral part of our visual experience. The capture of motion is the main
reason for the popularization of video. A still image provides only a snapshot of a scene,
but video also records dynamics of a scene by relating spatial image features to temporal
changes.

In a 3D scene, the differences between frames may be induced by rigid object motion
(e.g., a moving vehicle) and/or deformable object motion (e.g., a moving arm). A moving
camera can also cause several types of desired 3D scene motions through rotation, pan,
tilt, and zoom functionalities or undesired motions due to camera shake. The object-
induced motion is referred to as local motion, whereas camera motion (also called ego-
motion) is considered as global motion, since it occurs across the entire image.

3.1.1 True and apparent motion

A video sequence is captured by a camera that projects a 3D scene onto 2D image plane.
Similarly, the relative true 3D motion between a camera and a scene is projected onto 2D
image plane in which a 2D motion field is perceived through intensity variations. The
perceivable motion of intensity patterns is referred to as an optical flow [40] or apparent
motion [111].

The apparent motion typically differs from the true 2D motion field due to several well-
known reasons. Firstly, occlusions between moving objects such as appearance and
disappearance of object parts introduce uncovered and covered regions whose intensities
are not visible all the time. Secondly, transparent objects induce multiple independent
motions in a single image point. Thirdly, a uniform intensity region may be interpreted as
a stationary even if it is moving because of an aperture problem. I.e., only the velocity
component that is perpendicular to the moving edge of region can be measured. Fourthly,
the correspondence problem prevents apparent motion to unambiguously reveal the
original relation of corresponding features in successive frames. For example, the rotation

 3. Motion Estimation

26

direction of the wheel is ambiguous due to temporal aliasing that results from the limited
frame rate. Finally, camera noise, quantization noise, illumination variations, rain/snow,
and shadows also induce intensity changes that are incorrectly interpret as true motion.

Although apparent motion is only an approximation of the true 2D motion field, it is
widely used by motion-related tasks, since it is the only accessible motion parameter from
2D motion sequences. Apparent motion is beneficial for two reasons. Firstly, it contains
information about spatio-temporal relationships between objects. Secondly, the temporal
correlation of intensities (and color) is high in the direction of motion. For example, the
intensity of the moving object tends to be close to constant over time.

3.1.2 Practical usage of apparent motion

The apparent motion information is typically used to recover object-induced motion in the
scene or to remove temporal redundancy in video compression. These motion-related
tasks can be further classified as motion segmentation, motion detection, and ME. The
purpose of motion segmentation is to identify independently moving objects from the
background motion, whereas motion detection attempts to separate moving image points
from stationary ones. Motion detection is actually a special case of motion segmentation
with only two regions: changed/unchanged regions with a static camera and global/local
motion regions in the case of a moving camera.

The idea of ME is to identify the movement of image points. It can be used to search for
true motion (e.g., to counteract camera motion in motion segmentation or detection) or to
reduce the bit rate in video compression. The inherent differences between the real 3D
motion field and apparent motion complicate the recovery of true motion. The task is
extremely challenging if surfaces of objects have little texture (uniform luminance).
Instead, the compression-optimized ME need not resemble the true motion of image points
as long as the best RD performance is achieved. Hence, it can be efficiently implemented
although the actual motion field is inaccessible.

This Thesis considers only compression-optimized ME that is a central part of MCP in all
the considered video coding standards (Section 2.3). In order to estimate and compensate
object-induced local or camera-induced global motion, underlying motion model has to be
determined for MCP.

3.2 Motion model for motion-compensated prediction

The choice of a motion model depends on a target application. Therefore, various
application-dependent models have been developed for the local and global motions [111].
This Thesis focuses on spatially translational and temporally linear motion model [6]. All
the considered standards use this compression-oriented model to estimate and compensate
local motion during MCP. The global motion models are omitted here since global motion
can be separately compensated with low effort [70].

 3. Motion Estimation

27

3.2.1 Spatially translational and temporally linear motion model

A 2D model for apparent motion can be derived from the 3D models that describe camera
projection geometry, motion of 3D object, and surface of 3D object. The spatially
translational and temporally linear motion model (abbreviated as translational/linear
model) is applied under the orthographic projection in which all the projection lines are
perpendicular to the projection plane. Orthographic projection discards depth information
totally. It projects 3D scenes onto 2D image planes with pixel coordinates (,)i j ∈Λ ,
where Λ is a sampling grid (orthogonal lattice). Upon the orthographic projection, each
frame (F0, F1, …, FK-1) of a K-frame video sequence can be interpreted as a 2D image that
is projected from a 3D scene at a discrete time instant (t0, t1,…, tK-1). The interval between
tk-1 and tk depends on the temporal sampling rate.

In practice, individual image points between any contiguous frames Fk-1 and Fk can move
along arbitrary trajectories following object motion. However, the translational/linear
model estimates apparent motion of visible objects through rigid 3D translation model. It
supposes that motion of 3D objects (arbitrary surface) is only translational without
rotation, scaling, or any 3D deformation. In addition, the translational/linear model
assumes that object trajectories between any Fk-1 and Fk are temporally linear and all the
points on a rigid object move with the same velocity. In discrete frames, the object
velocity is presented by displacements. As a result, the model has only two parameters:
the horizontal and vertical components of the displacement.

Since objects have more degrees of freedom than just the translational one, more complex
motion models with a higher number of motion parameters would provide more precise
description of a motion field. For example, a six-parameter affine motion model yields
smaller prediction error than translational/linear model when non-translational motion
such as rotation is approximated [111]. However, compression-optimized ME is not so
vulnerable to inaccuracies in a motion model since ME is an ill-posed problem, i.e., local
motion approximations are inherently ambiguous. A higher number of motion parameters
can even increase overall coding cost, since the translational/linear model provides a close
enough approximation for most natural images with two parameters. Therefore, the
translational/linear model serves as the basis for ME and motion compensation (MC) in all
the considered standards.

3.2.2 Motion modeling, estimation, and compensation

For the sake of simplicity, let us derive the translational/linear motion parameters for a
single image point that moves from Fk-1 to Fk. The image point is assumed to be located at
pixel coordinates -1 -1(,)k ki j ∈Λ in Fk-1 and (,)k ki j ∈Λ in Fk.

Figure 3.1 a) presents an example motion trajectory of the image point (a dashed arrow
from Fk-1 to Fk) and a modeled translational/linear motion for it. The translational/linear
model describes the inter-frame movement from (ik-1, jk-1) to (ik, jk) with a linear
displacement vector

 1 1 1 1 1(,) (,)k k k
k k k k k k kd di dj i i j j− − − − −= − − , (3.1)

 3. Motion Estimation

28

which is measured in the positive direction of time (from tk-1 to tk). To better illustrate 1
k
kd −

in Figure 3.1 a), the tail -1 -1(,)k ki j of 1
k
kd − is projected along a dotted line from Fk-1 to co-

located position in Fk.

The respective motion parameters can be utilized in temporal prediction to estimate and
compensate the inter-frame displacement of the image point. Figure 3.1 b) shows how the
linear displacement vector is used to predict the pixel intensity value (,)k k kF i j from Fk-1.
In practice, a linear displacement vector is determined by ME that searches from Fk-1 an
image point that closely matches (,)k k kF i j . In Fk-1, the search center is assigned by (ik, jk),
so an yielded linear displacement vector is set to point from (ik, jk) to a candidate position.
For example, when -1 -1(,)k ki j is tested,

1 1 1

1 1(,) (,)k k k
k k k k k k kd di dj i i j j− − −

− −= − − . (3.2)

Since the prediction occurs in the negative direction of time (from tk to tk-1), 1k
kd − in (3.2)

is in opposite direction to 1
k
kd − in (3.1).

If the intensity of the image point remains close to constant along its motion trajectory,
locations -1 -1(,)k ki j and (,)k ki j have approximately equal pixel intensity values, i.e.,

 1 1 1(,) (,)k k k k k kF i j F i j− − −≈ . (3.3)

Under this assumption, 1 1 1(,)k k kF i j− − − can be regarded as the best match for (,)k k kF i j .

a) Motion model of image point b) Temporal prediction of pixel value

Figure 3.1. A trajectory of an image point and associated linear displacement vector.

i

j

Fk

Fk-1

(ik-1, jk-1)

(ik, jk)
k k
k-1 k-1(di ,dj) t

tk-1

tk

i

j

Fk

Fk-1

(ik-1, jk-1)

(ik, jk)

k-1 k-1
k k(di ,dj)

t

tk-1

tk

 3. Motion Estimation

29

In order to compensate the movement of the image point, MC selects the best match
1 1 1(,)k k kF i j− − − as a prediction (,)k k kP i j for (,)k k kF i j . 1 1 1(,)k k kF i j− − − can be addressed

from the search center (,)k ki j with (3.2), so

 ()1 1
1(,) ,k k

k k k k k k k kP i j F i di j dj− −
−= + − . (3.4)

However, according to (3.3), (,) (,)k k k k k kF i j P i j≠ due to a small prediction error. The
prediction error (,)k k kE i j is computed by subtracting (3.4) from (,)k k kF i j as

 (,) (,) (,)k k k k k k k k kE i j F i j P i j= − . (3.5)

As a result, (,)k k kF i j equals the sum of (3.4) and (3.5). Let us assume that a system
contains the transmitter and receiver ends. The receiver end can accurately resolve

(,)k k kF i j from Fk-1 without having access to Fk, if the transmitter end computes and
transmits (3.2) and (3.5) to the receiver end.

This simplified prediction example can be generalized to MCP technique that is used in
the existing video coders. The encoder performs the prediction whereas the decoder uses
the prediction result in reconstruction of original data. Using prediction result instead of
original data is reasonable, since prediction result can be compressed more efficiently for
data storage and transmission. In the following, MCP in the general video encoding
scheme is considered.

3.2.3 Motion compensated prediction in video encoders

MCP is introduced in the 1960s [37]. As described in Section 2.3.1, the current video
encoders implement MCP in three phases: ME, MC, and DFD computation.

MCP predicts pixel values from previously encoded and reconstructed reference frame(s)
FR instead of original frames. By that way, the effects of lossy encoding are avoided and
the encoder and decoder access identical reference data during MC. FR can contain a
single frame or a set of multiple frames. In addition, the coding order of the current frame
FC and FR may deviate from the original (display) order of frames. Hence, the time
interval and chronological order of FC and FR can vary arbitrarily in the range of the
underlying standard. Due to aforementioned reasons, FC and FR symbols are not mapped
to any specific time instants, i.e., FC, FR, and (,)i j ∈Λ are indentified without previously
used time indexes k and k-1, respectively.

The first phase of MCP is ME. It searches for the best match and addresses search
locations with displacement vector. ME replaces the location-specific notation of (3.2)
with a generalized displacement vector that is called a motion vector

 MV = (MV , MV)i j . (3.6)

 3. Motion Estimation

30

MV specifies the displacement between a search center (,)i j and an arbitrary search
location in FR. The output of ME is a MV that represents the best match for (,)CF i j .

After ME, MC uses the best match as a prediction (,)P i j for (,)CF i j . It addresses the
best match from FR with the minimum MV. For MCP, (3.4) can be rewritten as

 (,) (MV , MV)RP i j F i i j j= + + , (3.7)

MCP uses (,)P i j in DFD computation. In MCP, (,)k k kE i j is referred to as DFD(i, j), so
(3.5) can be rewritten as

 DFD(,) (,) (,)Ci j F i j P i j= − . (3.8)

So far, MCP has only concentrated on a single pixel. However, the same principles can be
extended to other regions of support as well.

3.2.4 Region of support

Region of support (ROS) is the set of image points to which motion models apply. The
common sizes of ROS are: a single pixel ()(,)i j , the whole image (Λ), irregular-shaped
region of pixels, and rectangular region of pixels ()Q U× [111].

The least constrained approach is obtained when ROS = (i, j). In this case, each pixel has
an individual MV (as in Figure 3.1). This approach provides the smallest prediction error
[111]. However, the computational complexity of this approach is intolerable, since the
movement of each image point is described with at least two parameters. In addition,
transmitting a MV for each pixel would outweigh the gain of small residuals in practice.
Hence, the pixel-based MV field is too dense for global or local ME/MC.

The opposite extreme is reached when ROS = Λ in which case a single motion model
refers to all pixels. In this approach, the motion of the whole image is approximated with a
small set of motion (warping) parameters. Since ROS = Λ , the frame is not partitioned at
all, so artifacts at the borders of adjacent partitions are avoided. In general, the
representable motion field of this approach is too constrained and sparse for local
ME/MC. Instead, it can be used to predict global motion, according to which all image
points are considered as inliers by default, i.e., points that follow global motion. However,
a typical video sequence also contains image points (outliers) that move independently of
the global motion. Outliers may have a crucial influence on the accuracy of global
ME/MC, so they should be eliminated. Global MC has been adopted in MPEG-4 ASP.
Although the share of warping parameters is negligible in total transmission bit rate,
global ME/MC induces substantial computational overhead during encoding. H.264/AVC
replaces global ME/MC by allowing a non-zero MV for the skip mode [70] whose MV
has conventionally been set to zero. This modification can be implemented without
additional encoding complexity and it achieves even better performance than global
ME/MC. In addition, part of the global motion is typically counteracted before
compression by physically measuring it at the camera. For example, many professional

 3. Motion Estimation

31

and consumer camcorders incorporate image stabilization systems that automatically
compensate camera shake. Due to these reasons, the importance of global ME/MC is not
high in video encoding nowadays, so further examination of it is omitted in this Thesis.

Irregular-shaped ROS applies to irregular region of pixels. Its motivation is to find a trade-
off between prediction accuracy and the number of motion parameters. In a typical video
scene, irregular-shaped moving objects are rarely aligned along the boundaries of a regular
ROS. Therefore, the irregular-shaped ROS is needed to address these arbitrarily located
objects. Region-based ME/MC with irregular-shaped ROS is used in object-based video
coding. In region-based ME/MC, a square block is divided into arbitrarily shaped regions
and each of them is allowed to undergo independent translational motion. In this case,
motion representation includes a set of motion parameters and description of region
boundary. Object-based coding has been included in MPEG-4 Visual, but it has not been
popularized, since it is a complex task to segment a video scene into meaningful objects
and encode them. The benefit of smaller prediction residual is also easily lost due to more
complex motion representation. These practical difficulties prevent the efficient usage of
irregular-shaped ROS which remains primarily interest of research purposes today.

Hereafter, this Thesis concentrates only on the rectangular ROS that refers to rectangular
region of pixels. Although it is more rigid than irregular-shaped ROS, it has still proved to
be the most powerful approach for local ME/MC in practice.

3.3 Block-based motion estimation and compensation

All the practical standard-compliant encoders implement MCP with block-based ME/MC
that uses translational/linear model over the rectangular ROS. Block-based ME/MC has
proved to predict a variety of different motions accurately enough, if the rectangular ROS
is applied to small region of pixels. Block-based ME/MC is well suited for video
encoding, since it is compatible with rectangular video frames and with block-based
transforms such as DCT and ICT (Section 2.3.2). In addition, it can be relatively easily
implemented in HW due to its regularity. In the existing video encoders, block-based
ME/MC is capable of the largest reduction of the output bit rate. It outperforms pure
spatial encodings at least by a factor of three [6].

In block-based ME/MC, the current frame is divided into non-overlapping luminance
blocks of 16 16× pixels, i.e., MBs whose union tiles the whole current frame. Block-based
ME/MC processes current MBs individually. For each MB, block-based ME searches for
the best match in the reference frame(s). After the best match has been found, block-based
MC applies it as a prediction for the current MB.

Block-based ME belongs to the non-normative part of the considered standards. However,
only limited freedom is allowed to its realization, since the standardized block-based MC
sets several normative rules and constrains that also impact on ME. These standard-
specific rules and constraints include definitions for the reference block sizes, prediction
accuracy (IME/FME), MV prediction/coding schemes, and the amount of reference
frames. All these aspects are considered in this section.

 3. Motion Estimation

32

3.3.1 Fixed and variable block-size motion estimation

The standards specify block sizes of ME through inter coding modes, so that each mode is
tailored to a single block size. In progressively-coded frames, let us denote inter coding
modes of the encoder with mψ

 and associated block sizes as

 { }16 16,8 16,16 8,8 8,8 4,4 8,4 4Q Uψ ψ× ∈ × × × × × × × , (3.9)

where [1,7]ψ ∈ is the index of the inter coding mode.

Figure 3.2 depicts m1,…, m7. The pixel blocks called partitions (pψη) of each mψ are

presented in 2D coordinates (q, u) and identified with [0, 1]nψη∈ − , where
256 /()n Q Uψ ψ ψ= × . For example, m3 is composed of 3 256 /(8 16) 2n = × = partitions

denoted as 3
0p and 3

1p . These two 8 16× pixel blocks of m3 are indicated with numbers 0

and 1 in Figure 3.2. In this Thesis, MV of pψη is denoted as MV (MV ,MV)i jψ ψ ψ
η η η and it is

assumed to point to the top-left corner of pψη . For example, MVs of 3
0p and 3

1p are
3
0MV and

3
1MV , respectively. Only a single MV is defined per pψη , since the pixels of

the same pψη are expected to undergo uniform motion.

The considered standards implement block-based ME with different subsets of (3.9).
H.261 and MPEG-1/2 are compatible with fixed block-size ME (FBSME). FBSME
operates only on MBs that are partitioned according to m1 (1ψ =). For each current MB,
FBSME searches for the best matching MB (1

0p) and yields a single MV (1
0MV) for it.

Since moving objects rarely follow boundaries of MBs, smaller partition sizes may
improve prediction accuracy of ME. H.263, MPEG-4 Visual, and VC-1 address this
possibility by specifying two inter coding modes: 1MV mode and 4MV mode. 1MV mode
equals m1, whereas 4MV mode divides a MB into four 8 8× pixel blocks according to m4.
Particularly, m4 tends to obtain smaller prediction error than m1 when the covered area
contains complex or non-uniform motion such as object boundaries. However,
transmitting four MVs (4 4 4 4

0 1 2 3MV , MV , MV , MV) instead of one can easily outweigh the
benefit of the reduced prediction error. Therefore, H.263, MPEG-4 Visual, and VC-1
adapt the block size to the content of video by supporting either m1 or m4 on a MB by MB
basis { }()1,4ψ ∈ .

 3. Motion Estimation

33

Figure 3.2. Seven inter coding modes and associated MB partitions.

H.264/AVC increases the amount of inter coding modes further by introducing variable
block-size ME (VBSME) that covers the entire set of (3.9). At MB level, a 16 16× pixel
block can be partitioned into 16 16, 8 16, 16 8, or 8 8× × × × blocks according to m1,…, m4. In
addition, 8 8× blocks (sub-MBs 0 - 3) obtained with m4 can be further sub-divided into
disjoint 8 4,4 8, or 4 4× × × blocks according to m5,…, m7. A single MB or sub-MB can
only contain partitions of the same size. For example, 2

0p cannot be combined with 4
2p

and 4
3p . Instead, each of the four sub-MBs can be partitioned according to m4, m5, m6, or

m7.

VBSME improves the prediction accuracy over the previous approaches, since adaptively
selected partition sizes accommodate better of different object movements. A large
partition size is often suitable for homogeneous areas whereas a small partition size tends
to be beneficial for detailed areas. However, m1 is typically the dominating mode in
VBSME, since the coding cost of MVs and other side information restrains the selection
of smaller partitions. For example, ten widely used CIF sequences have been tested with
H.264/AVC encoder in [44]. When QP = 20, average shares of m1, m2/m3, m4, and intra
MBs are 60%, 10%, 28%, and 2%, respectively. The respective shares are 76%, 11%,
11%, 2% with QP = 30 and 89%, 6%, 2%, 3% with QP = 40. The proportion of m1
increases with QP, since the coding cost of MVs and other side information is emphasized
at low bit rates.

As the large share of m1 suggests, restricting the inter coding modes to smaller subset of
(3.9) does not necessarily degrade the coding quality. In [75], six well-known CIF

0 4 8 12
0
4
8

12
0

q

u

m1 (16 16)
0 4 8 12

0
4
8

12

0

q

u

m2 (16 8)

1

0 4 8 12
0
4
8

12
0

q

u

m3 (8 16)

1

0 4 8 12
0
4
8

12

0

q

u

m4 (8 8)

1

2 3

Sub-MB 0

m4 (8 8)
0 4

0
4 0

q

u

m5 (8 4)
0 4

0
4 0

q

u
1

m6 (4 8)
0 4

0
4 0

q

u
1

m7 (4 4)
0 4

0
4 0

q

u

1
2 3

Sub-MB 1

8 12
0
4 1

q

u

8 12
0
4 2

q

u
3

8 12
0
4 2

q

u
3

8 12
0
4 4

q

u

5
6 7

Sub-MB 2

0 4
8

12 2

q

u

0 4
8

12 4
q

u
5

0 4
8

12 4

q

u
5

0 4
8

12 8
q

u

9
1011

Sub-MB 3

8 12
8

12 3

q

u

8 12
8

12 6
q

u
7

8 12
8

12 6

q

u
7

8 12
8

12 12
q

u

13
1415

× × × ×

× × × ×

 3. Motion Estimation

34

sequences were executed with H.264/AVC encoder using eight different QPs (QP = 12,
16, …, 40) and three different sets of modes: m1, m1,…, m4, and m1,…, m7. Constraining
modes of complete VBSME (m1,…, m7) to m1,…, m4 and to m1 increases average BD-rate
by 2.8% and 11.8%, respectively. Hence, removing m5,…, m7 increases BD-rate only
slightly. Furthermore, m5,…, m7 become less significant with higher resolutions. For
example, with 1080p format, VBSME seldom selects m5,…, m7 and they typically do not
improve coding result at all (especially when RDO is off) [87].

In the progressive video considered above, a coded picture always represents a complete
progressively-coded frame. In turn, a coded picture in an interlaced video represents either
an entire frame (frame-picture) or a single field (field-picture). In the frame-picture, odd-
and even-numbered fields are interleaved and coded together as a single picture, whereas a
single field-picture only contains either odd- or even-numbered fields.

MPEG-2, MPEG-4 Visual, VC-1, and H.264/AVC define two MCP techniques for
interlaced video formats: frame-based MCP and field-based MCP. Frame-based MCP
obtains prediction based on the frame-pictures. It uses the same predictive method as MCP
for the progressive frames. For example, a MB is considered as a 16 16× pixel block. In
field-based MCP, prediction is obtained based on reference fields. Field-based MCP can
be applied either for the frame-pictures or field-pictures. It processes the frame-picture as
two separate fields and performs independent predictions for them. Respectively, field-
based MCP obtains prediction from two field-pictures by performing separate predictions
for them. In both cases, a MB is considered as two 16 8× pixel blocks (one block per
field). The standard-specific details [50], [51], [57], [109] of frame-based MCP and field-
based MCP are omitted here, since this Thesis only focuses on MCP for the progressive
frames.

3.3.2 Integer and fractional motion estimation

Integer ME (IME) assumes that inter-frame displacement of objects always equals integer
number of pixels. However, objects often move horizontally and vertically to a position
that is not on an integer-pixel grid but between the integer pixels in a fractional-pixel
position. Therefore, most of the considered standards are compatible with fractional ME
(FME) that refines integer-pixel accurate MVs to fractional-pixel (sub-pixel) accuracy.
MPEG-1/2 and H.263 allow half-pixel (½-pixel) accurate MVs, whereas MPEG-4 Visual,
VC-1, and H.264/AVC extend MVs to a quarter pixel (¼-pixel) accuracy.

The original reference frame FR contains only integer-pixel values. Hence, reference pixel
values on fractional-pixel grids have to be artificially generated before FME. MPEG-1/2
and H.263 obtain pixel values at ½-pixel positions with simple bilinear interpolation from
the pixel values at the nearest integer-pixel locations. In MPEG-4 Visual, ½-pixel values
are interpolated from the surrounding integer-pixel values using eight-tap Finite Impulse
Response (FIR) filter after which ¼-pixel values are obtained with bilinear interpolation
between the nearest ½ or integer-pixel values. Interpolation scheme in H.264/AVC
resembles that of MPEG-4 Visual, except six-tap FIR filter is used to generate ½-pixel
locations. VC-1 supports two interpolation methods: bilinear and bicubic [73], [109]. They
can be adaptively selected. Bilinear interpolation is primarily targeted for resource
constrained environments, whereas more complex bicubic interpolation is recommended

 3. Motion Estimation

35

for high quality video applications. For chrominance samples, all the considered standards
use bilinear interpolation.

Figure 3.3 shows luminance interpolation scheme of H.264/AVC as an example. All ½-
pixel values (Hh, Hv, and Hd) are interpolated from integer-pixel values (I) using a 1D six-
tap FIR filter with weights of 1/32, -5/32, 5/8, 5/8, -5/32, and 1/32. For example, Hh value
at (i.5, j) is filtered from the six horizontally adjacent integer-pixel values and rounded as

 ()()(.5,) (2,) (1,) (,) (1,) (2,) (3,)5 20 20 5 16 /32h
i j i j i j i j i j i j i jH I I I I I I− − + + += − × + × + × − × + + , (3.10)

Respectively, Hv value at (i, j.5) is filtered from vertically adjacent integer-pixel values
and rounded as

 ()()(, .5) (, 2) (, 1) (,) (, 1) (, 2) (, 3)5 20 20 5 16 /32v
i j i j i j i j i j i j i jH I I I I I I− − + + += − × + × + × − × + + , (3.11)

Figure 3.3. Interpolation of luminance samples in H.264/AVC.

i

Qd

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Hv Hv Hv Hd Hv Hv Hv

Hh

Hh

Hh

Hh

Hh

Hh

Qh

Qd

Qv Qd

Qh

QdQv

i+1 i+2 i+3i-1i-2 i.5

j-2

j-1

j

j+1

j+2

j+3

j.5

i.75i.25

j.75

j.25

 3. Motion Estimation

36

After all Hh and Hv values have been computed according to (3.10) and (3.11), the
remaining ½-pixel values (Hd) can be filtered either from the six horizontally adjacent
(unrounded) Hv values or from the six vertically adjacent (unrounded) Hh values.

Once all Hh, Hv, and Hd values are available, the ¼-pixel values (Qh, Qv, and Qd) are
obtained through bilinear interpolation. I.e., two immediately adjacent integer or ½-pixel
values are averaged and rounded. In Figure 3.3, the arrows indicate averaged values. For
example, Qd value at (i.25, j.25) is produced by interpolating between a diagonally
opposite Hh and Hv values as

 ()(.25, .25) (.5,) (, .5) 1 /2d h v
i j i j i jQ H H= + + . (3.12)

In the considered standards, the primary purpose of the interpolation filter is to
compensate prediction error caused by spatial aliasing [85], [129]. Spatial aliasing occurs
between high frequency signals that represent sharp edges in the observable image. Its
impact vanishes at integer-pixel displacements, but grows to maximum at ½-pixel
displacements. Therefore, accurate interpolation of pixel values at fractional-pixel
positions has a crucial role in reducing the impact of aliasing. MPEG-4 Visual, VC-1, and
H.264/AVC have addressed the importance of interpolation by adopting more accurate
interpolation filters at a cost of increased complexity.

FME lowers the overall bit rate significantly compared with plain IME, although
fractional MVs consume more bits than integer MVs. In [75], the effect of FME has been
evaluated with six well-known CIF sequences and with eight different QPs. Compared to
plain IME, FME with ½ and ¼-pixel accuracies decreases average BD-rate by 24.6% and
37.3%, respectively. Interpolating luminance samples to 1/8-pixel accuracy would reduce
prediction error further [129]. However, none of the considered standards supports 1/8-
pixel accuracy, since it increases the complexity of interpolation. In addition, coding
overheads of 1/8-pixel accurate MVs would easily outweigh the bit savings in prediction
error especially with higher QP values.

This Thesis focuses only on IME stage in MCP. However, the subsequent FME stage is
also considered when design decisions at IME stage are made.

3.3.3 Motion vector coding and prediction

The considered standards limit the allowed MV range in the reference frame by defining
the maximum number of bits per MV. For example, H.263 limits the ranges of MV
components (at fractional pixel accuracy) to MV ,MV [16,15.5]i j∈ − by default. Although
the MV range of H.263 can be optionally extended to MV ,MV [31.5,31.5]i j∈ − , the other
standards excluding H.261 allow significantly larger MV ranges. For example,
MV [2048,2047.75]i∈ − in H.264/AVC, whereas the level-specific range of MVj varies
between MV [-64, 63.75]j∈ and MV [-512, 511.75]j∈ . The specified MV range is
unsymmetrical, since typical video scenes have stronger horizontal movement than
vertical movement.

 3. Motion Estimation

37

In a typical video scene, object motion easily extends across large regions of a frame.
Therefore, MVs of neighboring blocks are often highly correlated. The correlation is
particularly strong for small blocks and large moving objects. Hence, the compression of
the MV field can be improved by predicting each MV from spatially adjacent, previously-
processed MVs.

In the considered standards, an actual MVψ
η of each partition pψη is differentially encoded

as

 MVD MV - MVPψ ψ ψ
η η η= , (3.13)

where MVP (MVP ,MVP)i jψ ψ ψ
η η η is a MV predictor (MVP) for pψη and

MVD (MVD ,MVD)i jψ ψ ψ
η η η indicates MV difference (MVD). MVDψ

η is encoded and

transmitted as a pair of variable length codewords, one for MVDiψη and the other for

MVDjψη . Each MVD value is assigned a unique codeword, so that the shorter the MVD
value, the shorter the codeword. In addition, none of the codewords is a prefix for the
other. Encoding MVDs instead of MVs typically reduce output bit rate of the encoder,
since MVDs tend to require less bits for their VLC than the associated MVs. Each video
coding standard specifies VLC syntax for MVD in detail [49]-[51], [55]-[57], [109]. These
standard-specific syntax specifications are omitted in this Thesis.

Video coding standards also describe the computation of MVP which depends on the
current block size and the availability of MVP candidates (MVs of adjacent partitions).
Figure 3.4 illustrates the MVP and associated MVP candidates when the current block as
well as all the adjacent blocks equal MBs, i.e., they are partitioned according to m1 (Figure
3.2). In this case, MVP for the current 1

0p is denoted as 1
0MVP . The possible MVP

candidates are located immediately to the left (1
0MV1), top-left (1

0MV2), top (1
0MV3), and

top-right (1
0MV4).

H.261 and MPEG-1/2 use a simple prediction by assigning 1 1
0 0MVP MV1= . If 1

0MV1 is

unavailable, 1
0MVP 0= . Common reasons for unavailability of the MVP candidate are that

the neighboring partition is outside the frame boundaries or it is coded as an intra mode.
The newer video coding standards predict 1

0MVP through median prediction of three
MVP candidates as

1 1 1 1
0 0 0 0MVP median(MV1 , MV3 , MV4)= , (3.14)

where the median value is independently computed for 1
0MVPi and 1

0MVPj . If all MVP
candidates are not available, (3.14) is modified according to underlying standard. Usually,
missing 1

0MV1 is set to zero and missing 1
0MV4 is replaced by 1

0MV2 . If only 1
0MV1 is

available, 1 1
0 0MVP MV1= . When none of the MVP candidates is available, 1

0MVP 0.=

 3. Motion Estimation

38

Figure 3.4. Basic principle of the motion vector prediction.

H.263, MPEG-4 Visual, and VC-1 specify 1
0MVP in 1MV mode and separate MVPs (

4
0MVP , …, 4

3MVP) for 4
0p , …, 4

3p in 4MV mode. Correspondingly, H.264/AVC

supports individual MVPψη for each pψη .

EC stage of the encoder (Figure 2.1) computes standard-specific MVPs for the best
matching partitions and applies them to yield MVDs according to (3.13). MVs for (3.13)
are received from ME. The accurate computation of each MVPψη is omitted here but
specified in detail by the underlying video coding standard [49]-[51], [55]-[57], [109].

3.3.4 Reference frames in motion estimation

As discussed in Section 2.3.1, H.261/3, MPEG-1/2, MPEG-4 Visual, and VC-1 limit ME
to reference to the closest past and/or to the closest future frame. Instead, H.264/AVC
extends the set of available reference frames by introducing multiple reference frame ME
(MRFME). For MRFME, H.264/AVC specifies a decoded picture buffer (DPB) that can
contain up to 16 reference frames. MCP of each MB can be derived from one or more of
the reference frames in the DPB. MBs in P-slices can have four reference frames at
maximum, i.e., one reference frame per sub-MB (Figure 3.2). Correspondingly, MBs in B-
slices can reference to eight frames due to double references in each sub-MB.

The H.264/AVC encoder marks an encoded frame as short-term, long-term, or unused
reference frame. Classification of reference frames depends on the encoder. By default, an
encoded frame is marked as a short-term frame, i.e., a recently-coded frame available for
prediction. Long-term frames are selected based on temporal correlation impact over a
relatively long range in time. The encoder can assign a short-term frame to a long-term
frame or any frame to an unused frame that can be replaced from the DPB. If the DPB is
full, the oldest short-term picture is removed from the buffer, whereas long-term frames
remain in the DPB until explicitly removed or replaced. The encoder transmits DPB
control commands as side information in the slice header.

The DPB is organized into two lists of reference frames denoted as list 0 and list 1. These
possibly overlapping lists can be arbitrarily constructed from the available past or future
reference frames in the DPB. P-slices reference only list 0, whereas B-slices can use both
lists. However, the usage of arbitrarily constructed lists decouples the prediction direction
and the slice type. Hence, the only difference between P and B slices is that the blocks of
B-slice can additionally support average of two distinct predictions. Figure 3.5 illustrates
an example of MRFME in which list 0 and list 1 contain four and five reference frames,
respectively. Reference frames in the lists are identified by a reference index (refidx).

1
0MVP1

0MV1

1
0MV2 1

0MV3 1
0MV4

 3. Motion Estimation

39

Figure 3.5. Multiple reference frame motion estimation in H.264/AVC.

By default, H.264/AVC uses ordinary reference frame data in MCP. In addition,
H.264/AVC supports weighted prediction, in which the pixel values of the candidate
blocks are scaled by weighting factors prior to MCP. Weighted prediction allows
controlling relative contributions of reference frames in P/B-slice encoding. An encoder
can use customized weighting factors that are explicitly transmitted in the slice header.
When encoding B-slices, weighting factors can also be implicitly derived for each
reference frame (list 0 and list 1) as an inverse proportion to its temporal distance from the
current frame. Weighted prediction provides coding gains in scenes that contain
illumination change and fade transitions, i.e., when one scene fades into other.

The potential benefits of MRFME over single reference frame ME are listed, e.g., in [75]
and [112]. MRFME may find a better match for image regions that are invisible in the
immediately previous frame but visible two or more frames ago. The discontinuous
appearance of objects and backgrounds may be caused by repetitive object motion and
occlusions. Secondly, camera-induced periodic global motion such as camera shake or
alternating camera angles may be better predicted from the set of previous frames.
Thirdly, illumination and shadow conditions as well as noise and environmental
characteristics may be more reliable predicted from the multiple references. In all these
cases, the common reason behind possible improvement of MRFME is that the larger
number of tested candidates increases the probability for a better match. However, the
drawback of MRFME is huge computational complexity and memory consumption.

MRFME with ρ reference frames requires ρ times the memory capacity over ME with a
single reference frame. Similarly, the computational complexity increases linearly with ρ ,
if the same search scheme is used for each reference frame. Although MRFME may be
useful in the cases listed above, it still typical that the closer reference frame has higher
correlation with the current frame. For example, ten widely used CIF sequences have been
tested with five reference frames in [44] and averagely 68%, 81%, and 92% of the optimal
MVs belong to the nearest reference frame with QP values of 20, 30, and 40, respectively.
The probability increases with QP, since the coding cost of reference indices is
emphasized at lower bit rates.

In [75], MRFME has been tested with six well-known CIF sequences and with eight
different QPs. Compared to single reference frame ME, MRFME with 2, 4, 8, and 16
reference frames reduced the average BD-rate by 4.0%, 6.9%, 7.7%, and 7.6%,

List 0: refidx=2 refidx=1 refidx=0 refidx=3Current frame

List 1: refidx=3 refidx=2 refidx=0 refidx=1refidx=4

 3. Motion Estimation

40

respectively. Hence, the highest BD-rate gain per additional frame is achieved when
incrementing the amount of reference frames from one to two after which the impact of an
additional reference frame degraded exponentially. Utilizing more than eight frames had
negligible or even slightly negative effect on BD-rate.

The bit rate gain of MRFME is mainly due to removal of spatial aliasing [85], so it
compensates the same source of prediction error than interpolation filter (Section 3.3.2).
MRFME is the most powerful with low-motion video sequences, since motion reduces
spatial aliasing by smoothing sharp edges of the image [75], [85]. Spatial aliasing is also
inherently diminished through denser sampling grid, so the benefit of MRFME is
significantly degraded at higher resolutions [87]. Three popular 1080p test sequences have
been tested in [87] according to which MRFME with five reference frames only provided
0.1 dB PSNR gain over single reference frame ME at maximum. Therefore, spatial
aliasing can be adequately removed at higher resolutions with interpolation filter without
increasing the amount of reference frames from one.

Since considerable RD performance gains of MRFME are limited to low-resolution and
low-motion sequences with small QP, only single reference frame ME is considered
hereafter. However, the proposed principles can be extended to MRFME on demand.

3.3.5 Summary of standard-specific techniques and emerging trends

Table 3.1 gathers the essential standard-specific ME/MC characteristics considered in this
section. MPEG-4 Visual, H.264/AVC, and VC-1 specify several MV ranges of which the
minimum and maximum are reported.

The best-performing proposals for the future HEVC standard [5], [35], [63], [89], [124]
are all based on the conventional hybrid video coding scheme applied already in H.261.
These proposals also adopt the basic principles of MCP from the prior standards without
fundamental changes. I.e., they rely on block-based ME/MC with variable block sizes and
pixel accuracies. In general, ME/MC characteristics of these HEVC proposals are close to
that of H.264/AVC (Table 3.1). However, compared with H.264/AVC, the following
essential upgrades are introduced to achieve additional coding gain.

Firstly, the majority of the HEVC proposals extend the available inter coding modes to
also cover 32 32× and 64 64× pixel blocks [63], [89], [124] or even 128 128× pixel
blocks [35]. Larger partitions exploit spatial correlation more efficiently, so they are well
suited to represent large homogeneous areas that are common in high resolution videos.
The HEVC proposals divide these enlarged partitions into smaller ones according to
flexible [35], [63], [89] or simplified [124] multi-depth quadtree structure. Typically, they
also support symmetric rectangular partitions [35], [63], [124], asymmetric rectangular
partitions [35], and/or non-rectangular geometric partitions [63] in MCP. Instead, none of
the proposals suggests special partitions for the obsolete interlaced video format.

 3. Motion Estimation

41

Table 3.1. Standard-specific key characteristics of motion estimation and compensation.

Secondly, HEVC proposals improve the generation of ¼-pixel luminance values by using,
e.g., more accurate interpolation filters [35], multiple interpolation filters [63], [124],
and/or adaptive interpolation filters [5]. Some of the proposals also consider adaptive
selection of MV resolution, so that MVs at ¼-pixel accuracy can be optionally refined to
1/8-pixel [5], [63] or 1/12-pixel [35] accuracies.

Thirdly, conventional median MV prediction is enhanced through MV competition [5],
[35] which selects the best one of the several MVP candidates. The candidates can be
obtained from spatially-located neighboring partitions or temporally co-located partitions.

Generally speaking, the common trend of these HEVC proposals is to increase the amount
of the adaptive inter coding tools whose parameters are adjustable at run time [36]. The
adaptive tools achieve bit rate savings over the contemporary fixed-parameter tools
especially in high resolution video scenes that tend to contain strong signal variations in
spatial and temporal domains. Since HEVC is still in an unfinished state, the final tool set
for MCP can deviate more or less from the current draft versions. Therefore, further
considerations on MCP in HEVC are omitted in this Thesis.

3.4 Block matching

In block-based ME, the search for the best match is realized with block matching [58].
This search technique compares the current block (current pψη) to a set of candidate blocks

(candidate pψη) in the reference frame(s) and selects one of the candidates as the best
matching block for the current pψη . In this Thesis, the best matching block is denoted as

*pψη and its MV as *MVψ
η .

Standard H.261 MPEG-1 MPEG-2 H.263 MPEG-4 Visual H.264/AVC VC-1

Year of standardization 1990 1993 1996 1996 1999 2003 2006

MVP non-median non-median non-median median median median median

Supported modes 1 1 1 1 and 4 1 and 4 1-7 1 and 4

Global ME/MC no no no no yes no no

Region-based ME/MC no no no no yes no no

Support for interlace no no yes no yes yes yes

ME/MC accuracy integer pixel ½-pixel ½-pixel ½-pixel ¼-pixel ¼-pixel ¼-pixel

No. of reference frames 0-1 0-2 0-2 0-2 0-2 0-16 0-2

Bidirectional prediction no yes yes yes yes yes yes

Weighted prediction no no no no no yes no

8-tap FIR/
Bilinear

6-tap FIR/
Bilinear

Bicubic,
BilinearInterpolation - Bilinear Bilinear Bilinear

MVi range

MVj range

[-64, 63.75] to
[-1024, 1023.75]

[-15, 15] [-512, 511.5] [-2048, 2047.5]
[-16, 15.5],
[-31.5, 31.5]

[-16, 15.5] to
[-1024, 1023.5]

[-64, 63.75] to
[-512, 511.75]

[-32, 31.75] to
[-256, 255.75]

[-15, 15] [-512, 511.5] [-2048, 2047.5]
[-16, 15.5],
[-31.5, 31.5]

[-16, 15.5] to
[-1024, 1023.5] [-2048, 2047.75]

 3. Motion Estimation

42

3.4.1 Basic operating principle

The actual search range of *pψη
is normally much smaller than the standard-specific

maximum MV range (Table 3.1), since the computational complexity of the block
matching tends to grow drastically when the search range is enlarged. However, the
limited search area can still be sufficient, if it is properly selected as a function of the
motion content, resolution, and time between FC and FR. Common test conditions for JM
suggest that MVP-centered search range shall be MV ,MV [32,32]i j∈ − for QCIF/CIF/D1
formats (30 fps) and MV ,MV [64,64]i j∈ − for 720p (60 fps) and 1080p (24 fps) formats
[115]. Especially in the real-time encoders, the search range may be further limited [6].

Figure 3.6 depicts a basic operating principle of the block matching. The current pψη is

assumed to be a Q Uψ ψ× pixel block, whose top-left pixel is located at coordinates (i, j) in
FC. In FR, *pψη

is sought from the w h× pixel rectangular region that is commonly referred
to as a search area or a search window. In Figure 3.6, the corner pixels of the search area
are separately identified for clarity.

There is a high probability that the best match is located close to the current pψη position,
so the search area is typically centered according to (i, j) and the block matching is started
either from MVP or from (i, j). The search range of Q Uψ ψ× pixel block is determined as
[-pw, pw] horizontally and [-ph, ph] vertically, where () / 2wp w Qψ= − and

() / 2hp h Uψ= − . A more compact representation of the search range is yielded by
combining horizontal and vertical ranges as

 (2 1) (2 1) (1) (1)w hp p w Q h Uψ ψ+ × + = − + × − + . (3.15)

In Figure 3.6, the current pψη (in FC) contains three black objects: a square, a circle, and a

triangle. In FR, *pψη found for the current pψη is pointed by *MVψ
η , i.e., it is located at

* *(MV , MV)i i j jψ ψ
η η+ + . The missing triangle describes the prediction error associated to

*pψη .

The block matching is typically conducted in 1 - 3 steps. The number of available steps
depends on the standard. At the first step, the block-matching is performed at IME stage
and the search range equals (3.15). At the second step, the block-matching is conducted at
FME stage with ½-pixel accuracy. Since interpolating ½-pixel values for the entire search
range would be too complex in practice, the search range typically covers the interpolated
positions that are immediately adjacent to the best integer-pixel match. At the third step,
the block matching is continued at FME stage with ¼-pixel accuracy. In this case, the
search range often covers the interpolated positions that are located around the best ½-
pixel match.

 3. Motion Estimation

43

Figure 3.6. Block matching process.

3.4.2 Motion vector prediction for block matching

Starting the block matching from MVP instead of (i, j) usually improves search result,
speeds up the search, and increases the correlation between adjacent *MVψ

η [122].

However, computing individual MVPψη for each pψη of a MB increases ME complexity
and complicates its parallelization. Therefore, typical HW implementations of ME such as
[11] and [27] replace exact MVP computation by a HW-oriented MV prediction, which
only uses a single MVP per MB.

The most obvious choice for common MVP is 1
0MVP , since it predicts MV of the whole

MB. The correlation between MVPs of different pψη is usually strong, so 1
0MVP is a good

estimate for other MVPψη . A common MVP is used to predict a search center, so the

search may result in different *pψη
than with real standard-compliant MVP. In the worst

case, the suboptimal *pψη
increases coding cost, but the compatibility with the underlying

standard is still maintained.

This Thesis relies on HW-oriented MV prediction, which uses 1
0MVP as a common MVP

for each pψη of a MB. The computation of 1
0MVP is derived from (3.14) and realized as

1 1 3 4
0 1 3 4MVP median(MV1 , MV3 , MV4)ψ ψ ψ

η η η= , (3.16)

where neighboring MBs are partitioned according to 1mψ ,
3mψ , and 4mψ . The ranges of

1ψ , 3ψ , and 4ψ comply with standard-specific ranges of ψ . In (3.16), integer MVP
candidates are used instead of fractional MVP candidates. By that way, MVP candidates
are available immediately after IME. The utilized MVP candidates are unambiguously
defined as a function of 1ψ , 3ψ , and 4ψ as

Current frame (FC)Reference frame (FR)

(i, j)

(i-pw, j-ph)

(i, j) ψ(i+Q -1, j)

ψ ψ(i+Q -1, j+U -1)ψ(i, j U -1)+

ψ ψ
η* η*(i+MVi , j+MVj)

ψ
w h(i+Q +p -1, j-p)

ψ ψ
w h(i+Q +p -1, j+U +p -1)

ψ
w h(i-p , j+U +p -1)

ψ
η*MV

h

w

ψU

ψQ

Search area

 3. Motion Estimation

44

 { }1 1 2 3 4 5 6 7
1 0 0 1 1 2 3 5MV1 MV1 , MV1 , MV1 , MV1 , MV1 , MV1 , MV1ψ

η ∈ ,

 { }3 1 2 3 4 5 6 7
3 0 1 0 2 5 4 10MV3 MV3 , MV3 , MV3 , MV3 , MV3 , MV3 , MV3ψ

η ∈ ,

 { }4 1 2 3 4 5 6 7
4 0 1 0 2 5 4 10MV4 MV4 , MV4 , MV4 , MV4 , MV4 , MV4 , MV4ψ

η ∈ .

The selection of these MVP candidates for 1
0MVP is adopted from H.264/AVC. An

example prediction of 1
0MVP is depicted in Figure 3.7 in which the neighboring MBs

(Figure 3.2) are partitioned according to m2, m6, and m5 (1 2ψ = , 3 6ψ = , and 4 5ψ =). In
(3.16), missing 1

1MV1ψη and 3
3MV3ψη are set to zero. If 4

4MV4ψη is unavailable, it is replaced

by { }2 1 2 3 4 5 6 7
2 0 1 1 3 7 7 15MV2 MV2 , MV2 , MV2 , MV2 , MV2 , MV2 , MV2ψ

η ∈ (Figure 3.4).

3.4.3 Matching criteria in block matching

In block matching, the selection of
 *pψη is done by minimizing a cost function which is

typically based on similarity criterion. Various similarity criteria have been proposed for
the block distortion computation in the literature [68].

In IME, the most widely used distortion criteria are the sum of squared differences (SSD)
and the sum of absolute differences (SAD). At the current block location (i, j), SSD and
SAD are defined as

 () ()
1 1 2

SSD , (MV) (,) - (MV , MV)
i Q j U

C R C R
q i u j

F F F q u F q i u j
ψ ψ

ψ ψ ψ
η η η

+ − + −

= =

= + +∑ ∑ (3.17)

 ()
1 1

SAD , (MV) | (,) - (MV , MV) |
i Q j U

C R C R
q i u j

F F F q u F q i u j
ψ ψ

ψ ψ ψ
η η η

+ − + −

= =

= + +∑ ∑ (3.18)

where FC(q, u) and (MV , MV)RF q i u jψ ψ
η η+ +

indicate pixels of the current frame and
reference frame, respectively. A tested location of FR is addressed by a candidate motion
vector MVψ

η which equals a displacement of a candidate pψη from a location (i, j) of FR.

The size of the current and candidate pψη is Q Uψ ψ× .

Figure 3.7. Example of the hardware-oriented motion vector prediction.

1
0MVP

2
0MV1

6
4MV3 5

5MV4

 3. Motion Estimation

45

SAD and SSD are also referred to as the sum of absolute errors (SAE) and the sum of
squared errors (SSE), respectively. Furthermore, dividing SAD by Q Uψ ψ× results in the
well-known mean absolute difference or error (MAD or MAE). Respectively, the mean
squared difference or error (MSD or MSE) is obtained by dividing SSD by Q Uψ ψ× . The
division by Q Uψ ψ× is often omitted in practice, i.e., SSD and SAD are used rather than
their derivatives.

Sometimes, SAD and SSD criteria yield unequal result. For example, 1 1 6 3 3 4+ + < + + ,
but 2 2 2 2 2 21 1 6 3 3 4+ + > + + . In general, SSD tends to end up with better PSNR than
SAD [32]. As shown in (2.1), PSNR is based on MSE, so there is a strong correlation
between PSNR and SSD. In SSD, possible outliers (e.g., value 6 in the example above) are
heavily weighted when squared. Hence, a block with homogeneous values often yields
smaller SSD value than a block with outliers. In SAD, the quadratic function of SSD is
replaced by an absolute value function that is less sensitive to outliers. Hence, SAD selects
heterogeneous block as the best match more easily.

Although SSD yields better PSNR, it requires a multiplication per difference, whereas
SAD can be implemented without multiplication. The range of SSD values is also larger
than that of SAD values. For example, SSD value between two 8-bit pixels consumes 16
bits, whereas respective SAD value uses 8 bits. SAD processes each pixel pair separately,
so it is also easily parallelizable. Due to these reasons, SAD is the most widely used
criterion in HW encoders.

In FME, a common alternative to SAD is to use the sum of absolute transformed
differences (SATD) as the distortion criterion. SATD implementations are typically based
on 4 4× pixel blocks. In SATD computation, a residual block between corresponding
pixels of FC and FR

is first computed through subtraction as in (3.17) or (3.18) except that
interpolated pixels of FR are used in FME. The residual block is then Hadamard
transformed through multiplication of Hadamard matrices. The matrix multiplications can
be implemented with additions and shifts [128]. Finally, SATD cost is yielded by
accumulating the absolute values of the Hadamard transformed residuals and dividing the
sum by two.

Hadamard transform is a simplified approximation of the more complex ICT transform
that H.264/AVC and VC-1 utilize in the subsequent TC stage of the encoder. Therefore,
SATD emulates frequency characteristics of the prediction error better and provides more
accurate estimation of the RD cost than SAD [99]. Higher estimation accuracy is
beneficial in FME since it is the final refinement stage of ME. As a drawback, the
computational complexity of SATD is increased over SAD.

JM supports alternatively SAD, SSD, or SATD in ME and inter mode decision. By
default, it selects SAD for IME, SATD for FME, and SATD for inter mode decision. In
order to balance the prediction result between distortion and consumed bits, modern
encoders such as JM consider distortion measures jointly with bit rate [113], [133]. I.e.,
they implement rate-constrained block matching and inter mode decision by utilizing
Lagrangian optimization techniques [28].

 3. Motion Estimation

46

3.4.4 Rate-constrained block matching

Lagrangian RD optimization (RDO) techniques [113], [133] provide a systematic way to
minimize RD cost function (J) that is generally expressed as

=J D Rλ+ × , (3.19)

where D is the distortion between a current pψη
and its reconstructed prediction. D is

introduced by quantization and it can be measured with distortion criteria discussed above.
R represents the total bit consumption (bit rate) of an encoded prediction error. The error
is computed between the current pψη and its non-reconstructed prediction. The Lagrange
multiplier (0λ ≥) is used to control a trade-off between D and R. Decreasing λ increases
bit rates (and PSNR) and vice versa.

In practice, the computation of (3.19) necessitates execution of the entire encoding loop.
I.e., DFD has to be processed through T, Q, and EC to derive R from the encoded bit
stream (Figure 2.1). R accounts for the encoded bits consumed by the quantized
TCOEFFs, MVs, and headers (reference frame index, inter coding mode, etc.). The
reconstructed prediction of the current pψη , in turn, is obtained by processing quantized
TCOEFFs through Q-1 and T-1 and adding P to the result (P + DFD’).

In block matching, computing an actual RDO cost for each prediction candidate as in
(3.19) would be impractical due to huge amount of candidates. Therefore, all practical
encoders implement rate-constrained ME without complete RDO. I.e., RDO is disabled
and block matching is conducted between the current pψη and its non-reconstructed

prediction candidates. For efficiency reasons, D between the current pψη
and each

candidate pψη is typically measured with SAD in IME and SATD in FME. Since SAD and
especially SATD value indirectly approximates the bit rate of TCOEFFs also [106], R is
often reduced to rate term RMV that represents bits of MVDψ

η only (Section 3.3.3). RMV can
be determined without encoding the DFD, so entire encoding loop is avoided. Inclusion of
RMV in RD cost computation is essential since its portion can be 20 - 30% of the overall bit
rate [141].

A popular method is to estimate RMV with a look-up table (LUT) that is constructed
assuming that UVLC coding scheme is applied in MVDψ

η encoding [59], [78]. UVLC
scheme (Section 2.3.3) obtains codewords from a simple and regular Exp-Golomb code
table [33]. Hence, RMV can be computed as a function of the length of Exp-Golomb
codeword as

 MV MV
2

1, | MVD | 0
(MVD)= (MV MVP)=

2 log | MVD | 3, | MVD | 0
R R

ψ
ηψ ψ ψ

η η η ψ ψ
η η

⎧ =⎪− ⎨
⎢ ⎥× + >⎪ ⎣ ⎦⎩

. (3.20)

 3. Motion Estimation

47

This method favors smaller MVDψ
η lengths, so more regular MV fields are obtained.

The respective method is also introduced for CABAC coding scheme [78]. In UVLC and
CABAC schemes, the bit consumption of reference frame index can be added to RMV if
MRFME is supported.

When D is computed with SAD, optimized RD cost computation can be derived for rate-
constrained ME by substituting (3.18) and (3.20) to (3.19) as

() ()ME ME MVMV , =SAD , (MV) (MV MVP)C RJ F F Rψ ψ ψ ψ ψ

η η η η ηλ λ+ × − , (3.21)

where MEλ changes as a function of QP. Experiments in [113] and [133] have determined
efficient standard-specific relationships between QP and MEλ as

(QP-12)/3

ME
2

0.85×2 , with H.264/AVC
=

0.85×QP , with H.263 and MPEG-4 Visual
λ

⎧⎪
⎨
⎪⎩

 (3.22)

when SAD or SATD is applied.

The rate-constrained ME selects a candidate pψη whose MVψ
η minimizes (3.21) as the

best matching candidate *()pψη for the current pψη . The minimum cost yielded by *pψη is

denoted as ()ME* *MV ,Jψ ψ
η η λ . The minimization of (3.21) is first conducted at IME stage

after which the obtained IME result is refined at FME stage. FME results approximate
actual RD costs more accurately, if SAD is replaced with SATD in (3.21).

The rate-constrained IME and FME are likewise conducted for each pψη belonging to the

same candidate mψ
 (Figure 3.2). After all valid candidate modes are entirely processed,

the inter mode decision selects the best one (*mψ) of them. The decision is based on the
computed mode costs (Jψ) of which the smallest one (*Jψ) represents *mψ .

3.4.5 Rate-constrained inter mode decision

In the RDO mode decision scheme [113], [133], the RDO costs of each candidate mψ are
computed according to (3.19). At MB-level (1 4ψ≤ ≤), RDO costs are computed for

entire MBs to obtain MB mode costs. For example, RDO cost of 2m is composed of RDO
costs of 2

0p and 2
1p . At sub-MB level (4 7ψ≤ ≤), RDO costs are separately computed for

each 8 8× pixel sub-MB. Hence, the lowest mode cost can be obtained with a single MB
mode cost (1 4)ψ≤ ≤ or the combination of four sub-MB mode costs (4 7ψ≤ ≤). RDO
mode decision suggests SSD in computation of D due to which 2

MD MEλ λ= .

 3. Motion Estimation

48

Since ME has already selected the best matching blocks for each mψ , only a single RDO
cost per mψ

 has to be computed for each MB (1 4ψ≤ ≤) or sub-MB (4 7ψ≤ ≤).
However, the complexity of RDO mode decision tends to be still too high for real-time
video encoders. Therefore, RDO is typically disabled and encoders implement a low-
complexity mode decision [59], in which FME results are directly utilized without
conducting the encoding loop at all.

In the low-complexity mode decision, MB mode cost (16 16Jψ ×) of an entire mψ can be

composed of the associated *Jψη values. When 1 4ψ≤ ≤ , 16 16Jψ × is derived for mψ
 as

()

-1

16 16 ME 16 16 ME* *
0

= MV ,
n

J R J
ψ

ψ ψ ψ ψ
η η

η
λ λ× ×

=

× + ∑ , (3.23)

where ()ME* *MV ,Jψ ψ
η η λ values are resolved by minimizing (3.21) at FME stage. 16 16Rψ

×

represents mψ -specific header bit consumption that can be optionally added in (3.23).

When 4 7ψ≤ ≤ , sub-MB mode costs (8 8Jψ×) are separately determined for each sub-MB s
as

 ()
(1) (/ 4)-1

8 8 ME 8 8 ME* *
(/ 4)

()= MV ,
s n

s n
J s R J

ψ

ψ

ψ ψ ψ ψ
η η

η
λ λ

+ ×

× ×
= ×

× + ∑ , (3.24)

where [0,3]s∈ . As in the RDO mode decision scheme, the best inter mode can be one of
the MB modes (1 4ψ≤ ≤) or the combination of four sub-MB modes (4 7ψ≤ ≤). As
discussed in Section 3.3.1, MB modes are dominating ones in typical encoded video
sequences and their impact increase further at higher resolutions.

 49

4. Contemporary Motion Estimation
Algorithms and Architectures

This chapter surveys the related work on ME algorithms and architectures. Among the
hundreds of algorithm and architecture proposals in the literature, the emphasis here is on
the most well-known ones. The considered ME algorithms are classified based on their
speed-up techniques. The main focus is on lossy fast ME algorithms that complete block-
matching without testing all available search positions. ME architectures are examined
according to their target ME algorithm(s). Previous work on FBSME architectures is
considered in [P3], so this chapter concentrates only on existing VBSME architectures for
H.264/AVC.

4.1 Contemporary block matching algorithms

The well-known full-search (FS) is the simplest, but the most computation-intensive
block-matching algorithm (BMA), which exhaustively tests all the checking points (search
positions) in the search area (Figure 3.6). When searching for the best match for a
Q Uψ ψ× pixel block with FS, the amount of checking points equals (3.15). For example,
with the recommended search ranges for QCIF/CIF/D1 formats (MV ,MV [32,32]i j∈ −)
and 720p/1080p formats (MV ,MV [64,64]i j∈ −) [115], FS consumes 4225 and 16641
checking points per search, respectively.

FS was originally introduced to FBSME, but it can also be extended to VBSME by
repeating FS for each pψη (Figure 3.2). Implementing FS in VBSME requires
approximately sevenfold computational complexity over FBSME, since the number of
inter coding modes is increased from one (m1) to seven (m1, …, m7). However, the
VBSME overhead involved in traditional FS can be almost totally avoided with fast FS
(FFS) that is specially tailored for VBSME. FFS computes SADs of all 4 4× blocks for
m7 and then derives SADs of the larger pψη by reusing and merging SADs of the 4 4×
blocks. This SAD reusing scheme can be realized without search quality degradation over
traditional FS. FFS is implemented, e.g., in JM reference encoder.

Although the complexity of FFS has been reduced close to traditional FS in FBSME, the
relative complexity of FFS is still huge in H.264/AVC encoder. In [44], JM (BP) was
profiled and MCP (IME, FME, and interpolation) was reported to consume 97% of the
total encoding time. IME was executed with FFS having the search range of
MV ,MV [16.75,16.75]∈ −i j and five reference frames. Despite the usage of FFS, the
runtime percentage of IME was still 52%. The search range (the amount of tested

 4. Contemporary Motion Estimation Algorithms and Architectures

50

checking points) applied in the profiling can be roughly assumed to equal
MV ,MV [36,36]∈ −i j in the case of one reference frame. Hence, the complexity of IME
would be about three times higher with the search range of MV ,MV [64,64]i j∈ − .

To reduce the computation load of FS and FFS, numerous fast BMAs have been
developed in the literature [42], [68]. The speed-up techniques utilized by these BMAs can
be roughly classified into lossy and lossless ones. This Thesis provides only a concise
overview of these techniques. More comprehensive surveys are presented, e.g., in [42],
[68], and [121].

4.1.1 Lossless speed-up techniques

Lossless speed-up techniques enhance FS/FFS by eliminating unnecessary checking points
as early as possible without search quality compromises. In general, a simple pre-criterion
is used to test whether the checking point can be the optimum one and only the potential
checking points are further processed through detailed distortion computation. The
popular lossless speed-up techniques include successive elimination [30], [77] and partial
distortion elimination (PDE).

Successive elimination algorithm (SEA) [77] is a two-level recursive BMA. At the first
level, it computes the difference between the sum norms of the current and the candidate
block pixels. I.e., the matching criterion is subsampled to compare a single sum norm pair
instead of multiple individual pixel pairs. For example, the subsampling factor is 1:256 for
a MB. The yielded (subsampled) result is compared with the current (non-subsampled)
minimum block distortion (MBD). If the result is smaller than the current MBD, the
candidate block cannot be skipped and a complete distortion is computed between it and
the current block at the second level. SEA is reported to reduce computation over FS by
75 - 85% [42], [77]. At a cost of additional computational complexity, the elimination
percentage of the first level can be improved by lowering the subsampling factor, e.g., to
1:64 or 1:16 for a MB [30]. MV prediction and a spiral scanning order of the checking
points also increase elimination percentage, since they often find the final MBD earlier
[42].

Multilevel SEA (MSEA) [30] extends SEA to multiple hierarchy levels. MSEA uses
several subsampling factors in a coarse-to-fine manner so that the computation load
increases as a function of the level. The subsampling factors associated to three successive
levels can, e.g., be 1:256, 1:64, and 1:16, respectively. In MSEA, a complete distortion is
computed only if a candidate block passes all prior levels. MSEA is reported to reduce
computation over FS by 95% [42].

PDE is a halfway-stop technique developed to speed up distortion computation of a tested
checking point. It can be used if a complete distortion between two blocks is composed of
sequentially computed partial distortions. PDE monitors the accumulation of partial
distortions and skips the tested checking point immediately, if the intermediate result
exceeds the current MBD. As in SEA, MV prediction and the spiral scanning order of the
checking points increase the effect of PDE.

 4. Contemporary Motion Estimation Algorithms and Architectures

51

4.1.2 Lossy speed-up techniques

Lossy speed-up techniques include simplification of matching criterion [66], [83],
reduction of the bit width [1], MV prediction [140], [143], hierarchical search [93], and
reduction (decimation) of the checking points [58].

Simplification of matching criterion is a speed-up technique that reduces the number of
pixels involved in distortion computation. For example, the subsampling factor of the
pixels can be 1:2 [66] or 1:4 [83] and the subsampling pattern can be regular or irregular.
Typically, neighboring pixels have high correlation in homogeneous areas, in which
subsampling can be done without search quality degradation. However, the spatial aliasing
makes subsampling less accurate technique in highly textured areas. The subsampling can
be also done hierarchically in coarse-to-fine manner.

Reducing the bit width of the pixels from the original eight bits simplifies pixel
comparison and accumulation of partial distortions. The simplest way to reduce the bit
width is truncation. According to [1], 8-bit pixels can be averagely truncated to four MSBs
in FBSME without significantly reducing RD performance of H.261. In [11], FFS was
evaluated with truncated 4-bit and 5-bit pixels. 4-bit pixels caused PSNR degradation of
0.1 - 0.2 dB and the PSNR gap was almost converged to zero with 5-bit pixels.

MV prediction can be divided into spatial [140] and temporal [143] prediction. Spatial
prediction was already considered in Sections 3.3.3 and 3.4.2 in which robust median
predictor was recommended for block matching. Existing BMAs also exploit other spatial
MV predictors of which the most popular ones are a search center (i, j) and individual
MVs composing the widely used median predictor [122]. Temporal MV prediction utilizes
MVs of the previous frame(s). It is often limited to use the MV of the collocated block in
the previous frame [122]. A single BMA may test all these spatial and temporal predictor
candidates out of which it typically selects the best one as a search center. However, MV
prediction can also return several MV candidates if multiple search centers are allowed
[14], [122].

Hierarchical search uses a multiresolution (pyramid) structure in which the first level
operates on the lowered resolution and the resolution is gradually increased to the original
one at the subsequent levels. The multiresolution structure is constructed either with
simple subsampling or filtering [93]. A hierarchical BMA proceeds through the levels in a
coarse-to-fine manner so that the initial estimate of the MBD point is searched at the first
level and the estimate is refined at the subsequent levels [93]. Typically, a lossy
hierarchical BMA contains two or three hierarchy levels [42], [93] and each level defines
the search center(s) for the next level. Entering the next level diminishes the search range,
e.g., by half, in order to compensate the computational overhead of the finer search. A
multiresolution BMA in [82] deviates from the traditional hierarchical approach since it
parallelizes the hierarchy levels by making the levels independent on each other.

Reduction of the checking points is based on the assumption that the distortion
monotonically decreases towards the global minimum [58]. Under this unimodal error
surface assumption, the best match can be found without testing all the checking points in
the search area. This speed-up technique is the most popular one. Therefore, it is
considered next in more detail.

 4. Contemporary Motion Estimation Algorithms and Architectures

52

4.1.3 Reduction of checking points

Majority of fast BMAs are optimized to test only a fraction of the checking points in the
search area. Since 1981 [58], hundreds of this kind of fast BMAs have been introduced.
The well-known fast BMAs include 2D logarithmic search [58], three-step search (TSS)
[66], cross search (CS) [31], four-step search (4SS) [100], block-based gradient descent
search (BBGDS) [84], diamond search (DS) [120], [145] hexagon-based search (HEXBS)
[144], cross-diamond search (CDS) [19], predictive MV field adaptive search technique
(PMVFAST) [122], enhanced predictive zonal search (EPZS) [122], unsymmetrical-cross
multi-hexagongrid search (UMHexagonS) [18], and Simplified UMHexagonS [138]. Some
of these fast BMAs are also adopted by JM (EPZS, UMHexagonS, and simplified
UMHexagonS) and x264 (DS, HEXBS, and UMHexagonS).

In these kinds of fast BMAs, the location of the search center, the applied search patterns,
and available early termination mechanisms are an essential part of the search strategy.
Firstly, the conventional BMAs [19], [31], [58], [66], [84], [100], [120], [144], [145] start
the search from the search area center (i, j), but more sophisticated BMAs [18], [122],
[138] use MVP or the best one of the several MVP candidates as a search center.
Secondly, the sequence of the applied search patterns determines the accessible checking
points during the search. Each search pattern has a specific shape (rectangle, diamond,
hexagonal, cross, etc.), size (4, 6, 8 points etc.), and type (single-pass or recursive).
Thirdly, more sophisticated BMAs terminate the search if certain threshold value(s), MBD
point position(s), or the maximum number of checking points are met.

Although the search strategies vary between these BMAs, they still mainly follow the
generalized BMA flow below:

Step 1 The initial search pattern is positioned at the search center. The search center is
tested and selected as the initial MBD point. If early termination occurs, the search
proceeds to Step 3. Otherwise, the search proceeds to Step 2.

Step 2 All the valid checking points surrounding the pattern center are tested. A checking
point is invalid, if it is out of the search area boundary or if it has already been
tested by the previous pattern. The search proceeds to Step 3, if at least one of the
following conditions holds: no new MBD point is found, a single-pass pattern is
used, or early termination occurs. Otherwise, the recursive search pattern is re-
positioned so that the new MBD point is at the center of the pattern and Step 2 is
recursively repeated.

Step 3 If all the available search patterns have already been executed or early termination

occurs, the current MBD point is selected as the final MBD point and the search is
stopped. Otherwise, the search pattern is switched to a next search pattern which is
positioned so that the MBD point found in Step 2 is in the center of it and the
search proceeds to Step 2.

Most of the fast BMAs are originally introduced for FBSME, but they can be extended to
VBSME by repeating the similar search for each pψη . Although this method was
considered impractical for traditional FS, the sevenfold increase in computation is not

 4. Contemporary Motion Estimation Algorithms and Architectures

53

such crucial issue with fast BMAs, since the total amount of checking points still remains
moderately low. In addition, conducting a BMA individually for each pψη enables that

motion is properly traced when motion directions of adjacent or nested pψη diverge. More

sophisticated VBSME-compatible BMAs also use already processed pψη to adjust search

centers and patterns of the unprocessed pψη [21]. Some of them reduce overall

computation further by processing overlapped search paths of different pψη in parallel
[110], even if 100% reuse of search paths cannot be reached as in FFS.

Most of these fast BMAs [19], [31], [58], [84], [120], [144], [145] are based on the
assumption that the final MBD point is close to the search area center (i, j). In many cases,
this assumption holds, since real-world sequences tend to have centrally biased MV
distribution. Six popular CIF/SIF (352 240× pixels) sequences with various motion
contents have been tested in [19]. According to those tests, approximately 45% of the final
MBD points are at the search area center (stationary) and about 81% of the final MBD
points are enclosed in a window of size 2± pixels around the search area center. However,
in the cases when the final MBD point is far from the search area center and the unimodal
error surface assumption is violated, these heuristic fast BMAs may drop into the local
minimum point. Selecting a local minimum often reduces the search quality of the BMA.
The probability to find a local minimum increases when the motion of the objects is high
or irregular [18] and the sizes of the search patterns are small.

Since low, medium, and high motion contents are often mixed together in real video
sequences, the search accuracy of the conventional fast BMAs can be improved by using
MVP as their search center. In addition, the advanced RD cost criterion (3.21), early
termination mechanisms, and other speed-up techniques considered in this chapter can be
combined with these conventional BMAs. More sophisticated BMAs refine the search
result further with multiple fixed search patterns [18], [138] or adaptively selected search
patterns [21], [41], [122]. For example, UMHexagonS uses various search patterns, MVP
candidates, and early termination mechanisms. It requires 90% less computation than FFS
with average PSNR loss of 0.056 dB [18]. Simplified UMHexagonS enhances
UMHexagonS further by reducing its computation by 55% (94% less than FFS) without
compromising search quality [138].

The features of these sophisticated BMAs are best utilized in SW implementations, but
they are not easily mapped to HW. Particularly, their highly irregular execution flows
would require complex control circuits. Instead, the enhanced conventional BMAs can be
better mapped to HW.

Hereafter, this Thesis uses TSS, BBGDS, DS, HEXBS, and CDS as examples of the fast
BMAs, so they are here considered in detail. Figure 4.1 depicts example paths of these
BMAs. Their search centers are set to (0, 0) and search ranges are limited to
MV ,MV [7,7]∈ −i j for simplicity. All these examples conduct only FBSME but they can
be respectively extended to VBSME. The initial search patterns are denoted by black
circles and the final search patterns by white circles. The final MBD point (*MVψ

η) is
marked by a square. For the sake of uniformity, it is located at (5, -2) in each case.

 4. Contemporary Motion Estimation Algorithms and Architectures

54

a) TSS [66] b) BBGDS [84] c) DS [120], [145]

d) HEXBS [144] e) CDS [19]

Figure 4.1. Example search paths of the well-known block-matching algorithms.

Figure 4.1 a) presents TSS [66] which uses single-pass search patterns and a coarse-to-fine
search strategy with several search steps. The step size of the initial search pattern is
approximately half of the search area (the closest power of two). Each search step halves
the step size of the pattern and the search is continued until the step size converges to zero.
The size of the search area determines the amount of the repeated steps, so TSS can
contain more than three steps. In each search step, the resized pattern is positioned so that
the MBD point found by the previous search step is in the center of it. The search covers
the search center and eight additional checking points per search step.

Figure 4.1 b) visualizes BBGDS [84] which utilizes a square pattern of 3 3× checking
points. The pattern moves recursively until MBD point is located at the center of it. MBD
at the corner of the pattern causes the pattern to move diagonally and five new checking
points are tested. If MBD occurs at the horizontal/vertical edge of the pattern (corners
excluded), the pattern moves horizontally/vertically involving three new checking points.
The search is limited by the search window boundaries. In Figure 4.1 b), *MVψ

η is found
after the pattern has moved right once, up-right twice, and right twice, respectively.

Figure 4.1 c) depicts DS [120], [145] which applies two diamond-shaped patterns: a large
diamond search pattern (LDSP) with eight checking points and a small diamond search

-5-6-7 -4-3
-7
-6
-5

-2 -1 0 1 2 3 4 5 6 7

-4
-3
-2
-1
0
1
2
3
4
5
6
7

-5-6-7 -4-3
-7
-6
-5

-2 -1 0 1 2 3 4 5 6 7

-4
-3
-2
-1
0
1
2
3
4
5
6
7

-5-6-7 -4-3
-7
-6
-5

-2 -1 0 1 2 3 4 5 6 7

-4
-3
-2
-1
0
1
2
3
4
5
6
7

-5-6-7 -4-3
-7
-6
-5

-2 -1 0 1 2 3 4 5 6 7

-4
-3
-2
-1
0
1
2
3
4
5
6
7

-5-6-7 -4-3
-7
-6
-5

-2 -1 0 1 2 3 4 5 6 7

-4
-3
-2
-1
0
1
2
3
4
5
6
7

 4. Contemporary Motion Estimation Algorithms and Architectures

55

pattern (SDSP) with four checking points. The LDSP moves similarly than the pattern of
BBGDS. MBDs at the corner and edge points of the LDSP involve five and three new
checking points, respectively. The LDSP is switched to the SDSP when the MBD point is
located at the center of the LDSP. The SDSP is a single-pass pattern that yields *MVψ

η .

Figure 4.1 d) shows HEXBS [144] which replaces the LDSP of DS with the hexagon-
shaped search pattern of six checking points. Each time the pattern is moved three new
checking points are tested. HEXBS adopts the SDSP and the search strategy of DS.

Figure 4.1 e) illustrates CDS [19] which begins with a cross-shaped search pattern (CSP).
If the MBD point occurs at the center of the CSP, the search stops. Otherwise, CDS tests
two additional checking points among (1, 1± ±) of which the selected ones are located
around the CSP wing that contains the MBD point. For example, (1, 1±) are tested in
Figure 4.1 e), since the MBD point is located at (2, 0). If the MBD point is found at
(0, 1),± (1,0±), or in the additional points, the search stops. Otherwise, five new checking
points are tested as in DS when MBD occurs at the corner of the LDSP. Next, the search
continues as DS.

4.2 Existing variable block-size motion estimation architectures

In the literature, numerous academic HW architectures have been proposed for VBSME,
but the publicly available information of the commercial VBSME architectures is very
limited. Therefore, this Thesis surveys only academic HW architectures.

The academic HW architectures can be classified as BMA-specific and flexible
architectures. The former can be further divided into FFS-based architectures and fast
BMA -based architectures.

4.2.1 FFS -based architectures

The majority of contemporary BMA-specific VBSME architectures implement FFS due to
its regular data flow and low control overhead. FFS is typically implemented with a 1D or
2D systolic mesh-connected array which provides high throughput through parallel
processing, pipelining, and data reuse. Since FFS enables parallel SAD computation for
m1,…, m7 by reusing and merging SADs of the 4 4× blocks, the only impact of extending
traditional FBSME architectures to support VBSME is an additional SAD merging logic.
All the considered FFS-based architectures [11], [65], [76], [130], [137] output 41 MVs
and cost values per MB without mode decision. Only [11] implements rate-constrained
IME, i.e., it searches for *MVψ

η according to RD cost criterion, whereas the other
architectures rely on simpler SAD criterion.

Yap and McCanny [137] proposed a 1D systolic FFS-based architecture for VBSME. The
architecture reuses SADs of 4 4× blocks by incorporating shuffling and combining
mechanisms within each processing element (PE).

 4. Contemporary Motion Estimation Algorithms and Architectures

56

Chen et al. [11] introduced a FFS-based architecture that is composed of eight parallel
SAD trees. Each SAD tree consists of a 2D PE array and a 2D adder tree. The HW cost
and memory bandwidth of the architecture are reduced by simplifying the matching
criterion with pixel truncation and pixel subsampling [66] techniques. The architecture can
support up to four reference frames. The encoder presented by Huang et al. (Section 2.4.5)
contains this IME architecture.

Li et al. [76] and Wei et al. [130] presented FFS-based architectures that utilize flexible
2D PE arrays to enable efficient data reuse. The architectures support one and two
reference frames, respectively. They both achieve 100% PE utilization with low memory
bandwidth requirement.

Kim and Park [65] developed a FFS-based 1D architecture that is scalable to different
search area sizes and PE configurations. The HW complexity of the implementation is
reduced by accessing the 4 4× blocks with a new scan order that enhances SAD reusing
during computation.

Despite many optimizations introduced in the considered FFS-based architectures,
inherent complexity of FFS either increases HW cost [11], [76], [130] or limits
performance [65], [137]. Therefore, architectures with fast BMAs have been presented.

4.2.2 Fast BMA -based architectures

The fast BMA -based architectures [14], [82], [87] are tailored to execute a single fast
BMA. They all utilize SAD reusing when computing SADs of the larger pψη . However,
none of them performs rate-constrained IME.

Liu et al. [87] designed a VBSME architecture that supports only m1,…, m4 and one
reference frame, since experiments in [87] show that m5,…, m7 and multiple reference
frames do not provide any significant coding gain in HDTV resolution. Computational
complexity of the architecture is also reduced with pixel subsampling and coarse-to-fine
BMA that first predicts a coarse MV and then refines it with a fine search.

Lin et al. [82] presented an architecture for a multiresolution BMA. The first level of
BMA performs MVP-centered local FS for each pψη to cover the most likely locations of
the best matching blocks. The second and third BMA levels perform coarser searches with
wider search ranges to trace high motion. However, search area subsampling restricts their
usage to m1,…, m4 and m1, respectively. The BMA is mapped to the implementation that is
able to process all these three independent resolution levels in parallel. The architecture
also performs initial mode decision by sending only two best modes (one among m1,…, m3

and the other among m1,…, m7) to the subsequent FME stage.

Chen et al. [14] developed a HW-oriented fast BMA called content-adaptive parallel-VBS
4SS. It realizes a modified 4SS that is executed multiple times with different search
centers. The amount of the search centers is adjusted according to the motion activity of
neighboring blocks. Search path decisions of 4SS are made according to costs of m1. An
architecture for the BMA is composed of a systolic array and a 2D adder tree. The

 4. Contemporary Motion Estimation Algorithms and Architectures

57

implementation can operate in three modes. In high-quality and low-power modes, BMA
with multiple search centers is performed with two and one reference frames, respectively.
In an ultralow-power mode, the BMA has only one search center and one reference frame.

These three IME architectures have been integrated in the encoders presented by Liu et al.
(Table 2.2), Lin et al. (Table 2.3), and Chen et al. (Section 2.4.5), respectively. Although
these implementations meet the requirements of the specific application with smaller cost
[82], [87] or power consumption [14] than the FFS architectures, they are too rigid for a
broad range of applications [72], [126], [131], [142]. To increase flexibility, architectures
supporting multiple BMAs have been introduced.

4.2.3 Flexible architectures

The flexible architectures [72], [126], [131], [142] have a wide application range. They
have been designed to accommodate different restrictions on image quality, timing
constraints, and power consumption. None of them supports mode decision and only [142]
implements rate-constrained IME.

Lee et al. [72] proposed a HW-oriented BMA with a related architecture. The BMA
utilizes several search centers in which local searches are iteratively started. The local
searches can be performed with FFS or fast BMAs. In addition, the number and positions
of the search centers are adjustable. The architecture is composed of five parallel
computation units. Each unit processes a separate checking point of the BMA. The
architecture supports two reference frames.

Verma and Akoglu [126] applied a network-on-chip (NoC) -based approach for VBSME.
Their reconfigurable architecture utilizes NoC routers that manage communication
between application-specific PEs. The architecture can be configured for FFS and several
fast BMAs such as DS and HEXBS.

Wei et al. [131] developed a reconfigurable architecture that can operate at three
complexity levels (high, medium, and low) to trade off between image quality and power
consumption. Besides FFS, the architecture is compatible with many fast BMAs. FFS is
processed at the high level, pixel subsampling algorithms are executed in the medium
level, and BMAs utilizing reduction of checking points (e.g., TSS and DS) are available in
the low complexity level. At the high level, all the PEs participate in computation,
whereas only half and quarter of the PEs can be exploited in the medium and low levels,
respectively.

Zhang and Gao [142] introduced a combined architecture for IME and FME. It supports
DS and CS during IME. The architecture is able to allocate execution cycles between IME
and FME in order to find the best trade-off between coding efficiency and operating
cycles. The implementation achieves the relatively best search result by executing DS with
m1,…, m4 at first, then refining the search result of m1 with CS, after which FME is
performed for m1,…, m4. The architecture is able to process nine checking points of m1 in
parallel. However, there are unused PEs if under nine checking points are simultaneously
tested or m2,…, m7 are computed. The architecture does not utilize SAD reusing as the
others [72], [126], [131], but each ψ

ηJ is computed individually.

 4. Contemporary Motion Estimation Algorithms and Architectures

58

4.2.4 Summary of architectures

Table 4.1 gathers the essential characteristics of the considered ME architectures. The
search ranges of the architectures are reported according to (3.15).

 Table 4.1. Characteristics of contemporary motion estimation architectures.

Supported # of Ref. SAD Distortion Mode
Modes Frames Reuse Function Decision

Yap [137] 2004 FFS 16 1-7 1 Yes SAD No
Chen [11] 2006 FFS 2048 1-7 4 Yes RD cost No
Li [76] 2007 FFS 256 1-7 2 Yes SAD No
Wei [130] 2008 FFS 256 1-7 1 Yes SAD No
Kim [65] 2009 FFS 16 1-7 1 Yes SAD No
Liu [86] [87] 2007 Coarse-to-fine 2048 1-4 1 Yes SAD No
Lin [82] 2008 Multiresolution 192 1-7 1 Yes SAD 2 best modes
Chen [14] 2007 Parallel-VBS 4SS 256 1-7 2 Yes SAD No
Lee [72] 2008 FFS/Fast BMAs 1280 1-7 2 Yes SAD No
Verma [126] 2008 FFS/Fast BMAs 21 1-7 1 Yes SAD No
Wei [131] 2007 FFS/Fast BMAs 64 1-7 1 Yes SAD No
Zhang [142] 2007 DS + CS 144 1-4 1 No RD cost No

of PEsYearArchitecture Supported BMAs Search Range

65 33×

33 33×

16 16×

64 32×

16 16×

32 32×

192 128×

4096 128×

129 65/65 33× ×

256 256,...,16 16× ×

75 39,...,13 13× ×

16 16×

 59

5. Designed Configurable Motion
Estimation Architecture

This chapter presents the proposed ME framework and an overview of the designed
configurable ME architecture. A part of the ME framework is originally introduced in
[P3]. In addition, the distortion computation unit, the memory system, and the control unit
of the architecture are initially proposed and thoroughly considered in [P1], [P2], and [P3],
respectively. The content available in [P1]-[P3] is only summarized here and the emphasis
is on the novel features added to the architecture after publishing [P1]-[P3].

5.1 Proposed motion estimation framework

The proposed ME framework contains four alternative quality levels (L0,…, L3). The
chosen level can be changed on MB basis. The levels are specified as:

• At L0, an executed BMA only processes m1, so the operation equals FBSME. The
utilized RD cost criterion can be replaced with SAD criterion by setting ME 0λ =
in (3.21). The framework in [P3] supports only this level with ME 0λ = .

• At L1, m1 and m4 are serially tested and the best one (*mψ) is selected. Mode costs
(1

16 16J × and 4
16 16J ×) are computed from associated 1

*Jη and 4
*Jη values that are

resolved one by one for m1 and m4.
• At L2, m1,…, m4 are serially tested after which *mψ is selected. 16 16Jψ ×

values are

computed from associated *Jψη values as at L1.

• At L3, an executed BMA first tests m1,…, m4 like at L2. If *mψ is found among
m1,…, m3, the operation is terminated. Otherwise, the BMA continues at sub-MB
level with four sequentially executed branches, each of which processing one sub-
MB. Each branch serially tests m5,…, m7 and selects *mψ among m4,…, m7.

At L0,…, L3, the level-specific set of modes undergo three phases: rate-constrained ME,
inter mode decision, and the best inter mode delivery.

5.1.1 Rate-constrained motion estimation

In the proposed ME framework, rate-constrained ME and associated search path
generation are based on (3.21). ME is individually conducted for each pψη (Figure 3.2) in

order to trace motion better when motion directions of adjacent or nested pψη diverge. The
framework determines the set of available BMAs and provides a common search center
for all pψη of the same MB. Arbitrary search center can be used, but choosing the search

 5. Designed Configurable Motion Estimation Architecture

60

center according to (3.16) is recommended. The search center and the BMA (among the
available BMAs) can be selected on MB basis.

The proposed approach operates on blocks of 4 4× pixels, since a 4 4× block is the
greatest common divisor of supported pψη sizes. Let a size of a search area be w h×
pixels, where , {48, 80, 112, 144,...}w h∈ represent i- and j-directions, respectively. A
4 4× block located in (i, j) is addressed by a scanning point ()(,)RR RR RRr ri rj , where

[0, 1]RRri w∈ − and [0, 1]RRrj h∈ − .

As presented in [P3], a search path of a BMA can be individually generated for each pψη
by composing rRR from five mutually independent offsets. Figure 5.1 presents the search
path generation when w = h = 48.

An initial offset ()(,)r ri rjα α αΔ Δ Δ points to the center of the search area and a prediction-

based offset ()(,)r ri rjβ β βΔ Δ Δ equals MVP that increments rαΔ . The displacement
between r rα βΔ + Δ and a center of the moving search pattern is indicated by a BMA

movement offset ()(,)r ri rjχ χ χΔ Δ Δ . An adjustable checking point offset ()(,)r ri rjδ δ δΔ Δ Δ
determines a displacement of a tested checking point from the pattern center. BMA-
specific address composition is presented in detail in [P3].

Figure 5.1. Proposed separable composition of a block address in the search area.

16

16

j

i

βΔr
χΔr

δΔr

εΔr

αΔr

rRR

 5. Designed Configurable Motion Estimation Architecture

61

A base block offset ()(,)r ri rjε ε εΔ Δ Δ is responsible for pψη -specific offsets. rεΔ represents
a displacement of a 4 4× block from rδΔ that addresses a top left corner of the MB to

which a tested candidate pψη belongs. Each candidate pψη is accessible through

() /16Q Uψ ψ× accesses when {0,4,8,12}riεΔ ∈ and {0,4,8,12}rjεΔ ∈ . In Figure 5.1, the
smallest grid illustrates the accessed 4 4× block that is one of the four 4 4× blocks of
candidate 4

2p (marked with a solid line).

To minimize temporal data storages, 4 4× blocks belonging to the same pψη have to be
sequentially accessible. Therefore, special scan sequences of 4 4× blocks are introduced
for m1,…, m7. Since every pψη of each mψ

 is processed in the numerical order shown in
Figure 3.2, the available scan sequences for m7 are restricted to one. This scan sequence is
depicted in Figure 5.2 a), where rεΔ of each 4 4× block is logically mapped to the 4-bit
index 3 2 1 0()σ σ σ σ σ .

The similar sequence is also utilized by [65], except that it accesses pixels of 4 4× blocks
row by row. Besides m7, the same order can be adapted to m1, m2, m4, and m5. Instead, m3

and m6 require special scan sequences described in Figure 5.2 b) and Figure 5.2 c),
respectively. However, these two sequences can be converted to that of Figure 5.2 a) by
swapping two MSB bits of 2 3 1 0()σ σ σ σ σ in Figure 5.2 b) and two LSB bits of

3 2 0 1()σ σ σ σ σ in Figure 5.2 c). Hence, only one LUT with index swapping logic is
sufficient for rεΔ generation. The same LUT can also be used to address current MB data.

a) Modes 1, 2, 4, 5, and 7 b) Mode 3 c) Mode 6

Figure 5.2. Scan sequences for the candidate and current MBs.

Δriε Δrjε
0 0 0
1 4 0
2 0 4
3 4 4
4 8 0
5 12 0
6 8 4
7 12 4
8 0 8
9 4 8

10 0 12
11 4 12
12 8 8
13 12 8
14 8 12
15 12 12

σ Δriε Δrjε
0 0 0
1 4 0
2 0 4
3 4 4
4 0 8
5 4 8
6 0 12
7 4 12
8 8 0
9 12 0

10 8 4
11 12 4
12 8 8
13 12 8
14 8 12
15 12 12

σ Δriε Δrjε
0 0 0
1 0 4
2 4 0
3 4 4
4 8 0
5 8 4
6 12 0
7 12 4
8 0 8
9 0 12

10 4 8
11 4 12
12 8 8
13 8 12
14 12 8
15 12 12

σ

 5. Designed Configurable Motion Estimation Architecture

62

When the search for
ψ
ηp is started, σ is initialized to () /16ψ ψ ψ

ησ η= × ×Q U that indexes

the address (εΔr) of the top-left 4 4× block of ψ
ηp . All 4 4× blocks of ψ

ηp are indexed

by incrementing σ by one until () /16ψ ψ×Q U blocks have been accessed. Then, δΔr is

updated and σ reinitialized to ψ
ησ . For example, 4

2 (2 8 8) /16 8σ = × × = and σ iteratively

has the values from 8 to 11 when searching the best match for 4
2p as in Figure 5.1.

In a horizontally circular search area, rRR(riRR, rjRR) is yielded as

 ()modRRri ri ri ri ri ri wα β χ δ ε= Δ +Δ + Δ + Δ + Δ (5.1)

.RRrj rj rj rj rj rjα β χ δ ε= Δ +Δ + Δ + Δ + Δ (5.2)

The circularity is realized by mod w in (5.1). A horizontal search area reuse can be
supported by restricting riαΔ to be a multiple of 16 ([0, 1]ri wαΔ ∈ −) and incrementing it
by 16 after each search. Vertically, the center of the search area is fixed, i.e.,

(16) / 2rj hαΔ = − is constant in (5.2).

As a modification to [P3], MVψ
η related to rRR is computed without rαΔ and rεΔ as

 MVi ri ri riψ
η β χ δ= Δ +Δ +Δ (5.3)

 MVj rj rj rjψ
η β χ δ= Δ +Δ +Δ . (5.4)

Excluding rεΔ from (5.3) and (5.4) makes MVψ
η determination independent of pψη size.

For simplicity, the search range of each MVψ
η is restricted to that of 1

0MV . In addition, the
search ranges are reduced by three pixels in each direction. The excluded outermost pixels
are reserved for interpolation before FME (Section 3.3.2). Hence, rβΔ , rχΔ , rδΔ , and

MVψ
η are limited in (5.1)-(5.4) as

 [] [], , , MV 3, 3 (16) / 2 3, (16) / 2 3ψ
β χ δ ηΔ Δ Δ ∈ − + − = − − + − −w wri ri ri i p p w w (5.5)

 [] [], , , MV 3, 3 (16) / 2 3, (16) / 2 3ψ
β χ δ ηΔ Δ Δ ∈ − + − = − − + − −h hrj rj rj j p p h h . (5.6)

Modifying (3.15) according to (5.5) and (5.6) yields

 () ()2(3) 1 2(3) 1 (21) (21)w hp p w h− + × − + = − × − . (5.7)

I.e., the (i, j)-centered search range of MVψ
η is (21) (21)w h− × − pixels. Otherwise, MVψ

η
exceeds the boundaries of the search range.

 5. Designed Configurable Motion Estimation Architecture

63

5.1.2 Inter mode decision

In the proposed framework, inter mode decision needed at L1,…, L3 is jointly performed
with rate-constrained ME. Although a selection of the best mode after IME stage may
somewhat reduce the search quality [15], it simplifies the FME stage considerably
especially at L3.

At MB-level, mode decision is based on MB mode costs (16 16Jψ ×) which are used to select
*mψ among m1 and m4 (at L1) or among m1,…, m4 (at L2 and L3). When 1 4ψ≤ ≤ , 16 16Jψ × is

derived for mψ as in (3.23). The header bits of each mψ are assumed to be encoded with
UVLC scheme. Hence, the amount of header bits (16 16Rψ

×) included in (3.23) is obtained
from the LUT similarly than RMV values. As in [123], the lengths of Exp-Golomb coded

16 16Rψ
× values assigned for m1, m2, m3, and m4 are 1, 3, 3, and 9, respectively.

With L3, the mode decision is continued at sub-MB level, if m4 is selected as *mψ at MB
level. In that case, sub-MB mode costs (8 8Jψ×) are computed according to (3.24) and 8 8Jψ×
values are used to select *mψ among m4,…, m7. The respective header bit counts (8 8Rψ

×)
for m4, m5, m6, and m7 are 1, 3, 3, and 5.

Since 4
8 8 1R × = is added to each 4

8 8J × in (3.24), the respective cost (4 1)× is already

recognized in (3.23) by assigning 4
16 16 5 (4 1) 9xR = + × = for m4. By that way, m4 is not

favored in mode decision at MB level. The incremented 4
16 16xR does not affect on (3.24),

so 4
8 8 1R × = can be added to each 4

8 8J × .

5.1.3 Inter mode delivery

After mode decision, partitions (*
*pψη) of *mψ are returned one by one. Retrieval of each

*
*pψη is composed of associated MV (*

*MVψ
η), RD cost (*

*Jψη), and pixels of *
*pψη . In the

modern video encoders, the subsequent stage after the IME stage is FME (Section 3.3.2),
so the interface of IME is accommodated to that of FME.

It is assumed that the FME stage applies a six-tap FIR filter first horizontally as in (3.10)
and then vertically as in (3.11) to obtain reference pixels at ½-pixel accuracy. Typically,
FME tests eight ½ -pixel points around *

*MVψ
η , so a search area has to be [-½, ½], both

horizontally and vertically. Interpolating search area pixels for * *Q Uψ ψ× block with the
six-tap filter requires that * *(3 3) (3 3)Q Uψ ψ+ + × + + pixels per *

*pψη are fetched to the
FME stage (Figure 3.3).

 5. Designed Configurable Motion Estimation Architecture

64

The 4 4× block access format would require several data accesses per row before the
requested pixels are retrieved for horizontal interpolation. Therefore, a row format of
16 1× pixels is used instead of it. For *

*pψη of size * *Q Uψ ψ× , the 16 1× row format needs

* * * *(3 3) /16 (3 3) (6) /16 (6)Q U Q Uψ ψ ψ ψ⎡ ⎤ ⎡ ⎤+ + × + + = + × +⎢ ⎥ ⎢ ⎥ (5.8)

accesses to retrieve pixels to FME. In (5.8), { }* 4,8,16Qψ ∈ limits that
*(6) /16 [1,2]Qψ⎡ ⎤+ ∈⎢ ⎥ . I.e., the pixels can always be accessed with one *(4,8)Qψ = or two

*(16)Qψ = 16-pixel wide data strips of height *(6)Uψ + pixels.

The row format requires vertically adjacent scanning points from (* *
* *MV 3, MV 3i jψ ψ

η η− −)

to * * *
* *(MV 3, MV 3 1)i j Uψ ψ ψ

η η− + + − in order to access the first strip. With the second

strip, the scanning points are located between (* *
* *MV 8 3, MV 3i jψ ψ

η η+ − −) and
* * *

* *(MV 8 3, MV 3 1)i j Uψ ψ ψ
η η+ − + + − . I.e., a second data strip has a horizontal offset of

eight pixels compared with the first strip.

Accessing the first and the second strips of a 16 16× block is illustrated in Figure 5.3 a)
and Figure 5.3 b), respectively. In both cases, the pixels inside a dashed rectangle are
needed in interpolation and the grey pixels represent 8 16× partitions of the original
block.

When pixels of *
*pψη are delivered, a scanning point in the search area (dlvr

RRr) is composed
as

 ()dlvr * dlvr
*MV modRRri ri i ri wψ

α εη= Δ + +Δ (5.9)

dlvr * dlvr

*MV ,RRrj rj j rjψ
α εη= Δ + + Δ (5.10)

where dlvr dlvr dlvr(,)r ri rjε ε εΔ Δ Δ represents a displacement of the 16 1× row format from
* *

* *(MV , MV)i jψ ψ
η η which is derived according to (5.3) and (5.4). When σ is set to

* * *
* (*) /16Q Uψ ψ ψ

ησ η= × × (Figure 5.2), dlvrriεΔ is yielded as a function of riεΔ as
dlvr 3ri riε εΔ = Δ − for the first strip and dlvr 8 3ri riε εΔ = Δ + − for the second strip. During

data delivery, dlvr *3, 3 1rj Uψ
ε ⎡ ⎤Δ ∈ − + −⎣ ⎦ is incremented one by one from -3 to * 3 1Uψ + − .

The proposed result retrieval has a small overhead on the whole IME execution time.
However, it enables that the FME stage does not need to operate on the whole search area
data but it can store and process only a single *

*pψη at a time.

 5. Designed Configurable Motion Estimation Architecture

65

a) The first strip b) The second strip

Figure 5.3. Retrieving pixels of a 16 × 16 block to FME.

The control of the proposed ME framework is mapped to the control unit of the ME
architecture. The control unit is seamlessly coupled to a parallel memory system and RD
cost unit which are customized for pψη -specific data storage and RD cost computation,
respectively. The overall ME architecture is considered in the following.

5.2 Proposed motion estimation implementation

The proposed ME architecture can be integrated into the H.261/3, MPEG-1/2, MPEG-4
Visual, H.264/AVC, and VC-1 encoders. The most flexible approach is to realize the ME
architecture as an intellectual property block that is connected to other encoder
components via an on-chip communication network.

Figure 5.4 presents an exemplary system architecture in which the on-chip communication
network is used to connect the proposed ME architecture to other system components
(CPU, frame memory, and other HW accelerators). The other function-specific
accelerations may include HW modules for FME, IP, DCT, Q, or EC, etc. The ME
architecture is best suited for a communication network that is composed of 128-bit wide
data and 9-bit wide command buses. Depending on the system requirements, a network
topology can vary from a shared bus to highly scalable network such as HIBI [105].

The network-specific wrappers are used to integrate the system components to the
network. The ME architecture requires a wrapper that reconciles its unidirectional data
buses (dataIN , dataOUT) and control/status signals (ctrlIN , ctrlOUT) to the bidirectional data
and command buses of the system, respectively. Besides integration, the wrapper of the
ME architecture implements protocols to retrieve reference and current frame data directly
from the frame memory. It also forwards the ME result to the CPU and other components.

ψ* ψ*
η* η*(MVi -3,MVj -3)

ψ* ψ* ψ*
η* η*(MVi -3,MVj +U +3-1)

ψ*U

ψ*Qψ* ψ*
η* η*(MVi ,MVj)

16 1×

ψ* ψ*
η* η*(MVi +8-3,MVj -3)

ψ* ψ* ψ*
η* η*(MVi +8-3,MVj +U +3-1)

16 1×

ψ*U

ψ*Q
ψ* ψ*
η* η*(MVi ,MVj)

 5. Designed Configurable Motion Estimation Architecture

66

Figure 5.4. An exemplary system architecture for a video encoder.

Figure 5.5 depicts the designed ME architecture. The main components of it are a control
unit, a memory system, and an RD cost unit. The quality level (L0 - L3) and the BMA can
be selected at run time with 2-bit level and BMA_id inputs, respectively. The dataIN bus is
time multiplexed between reference frame data (dRI), current frame data (dCI), and two
input parameters: MEλ and 1

0MVP , which are recommended to be computed as in (3.22)
and (3.16), respectively. The control unit asserts the one-hot coded 3-bit new signal to
request new dRI, dCI, and 1

ME 0&MVPλ . It detects valid input data (dRI, dCI, or 1
ME 0&MVPλ)

by monitoring the 3-bit vld signal. The reuse signal determines whether to reuse part of
the previous search area. For valid dRI or dCI, the control unit generates scanning points
(rRW or rCW) and respective storage control signals (ctrlM) for the memory system. The
architecture has a separate two-stage pipeline for data storage. After dRI, dCI, and

1
ME 0&MVPλ have been stored, the control unit asserts all bits in the 3-bit stored signal.

For an executed BMA, the control unit composes BMA-specific scanning points (rRR and
rCR) to access search area data (dRO) and current block data (dCO) from the memory system.
The control unit controls data retrieval (ctrlM) and RD cost computation (ctrlJ). It also
delivers 1

ME 0&MVPλ and MVψ
η to the RD cost unit which computes Jψη , 16 16Jψ × , and

8 8Jψ× according to (3.21), (3.23), and (3.24), respectively. The RD cost unit informs the

control unit of Jψη and Jψ
 (16 16Jψ × and 8 8Jψ×) completions with J_rdy0 and J_rdy1 signals,

respectively. In addition, it uses J_min0 and J_min1 signals to identify *
*Jψη and *Jψ . The

control unit and the memory system contain three pipeline stages. The RD cost unit
applies three stages to compute a single Jψη and one additional stage for Jψ computation.

After *mψ
 has been found, the control unit requests permission for data delivery with the

rdy signal. The permission is acknowledged with the ack signal after which the RD cost
unit outputs the info data. It also sends *

*MVψ
η to the control unit that uses *

*MVψ
η to

access the respective best matching block (*
ROd) from the memory system. The info and

*
ROd are identified with the one-hot coded 2-bit id signal. The sMB signal is active when

sub-MBs are delivered. Since sub-MBs are processed one at a time, four separate sub-MB
deliveries are needed per MB.

Communication network

Frame
memory

Other
acceleratorsCPU

ME architecture

Wrapper

ctrlIN ctrlOUT data IN dataOUT

Wrapper Wrapper Wrapper

 5. Designed Configurable Motion Estimation Architecture

67

Figure 5.5. The implemented motion estimation architecture.

5.2.1 Control unit

The main components and essential signals of the control unit are presented in Figure 5.6.
A VBSME controller comprises a core of the ME control together with a BMA control
table and a VBSME control table. These tightly coupled components control an rRR
computation unit that computes dlvr/RR RRr r and MVψ

η . The BMA control table is presented
in detail in [P3]. The rest of the components are refined after publishing [P3], so they are
considered here more thoroughly.

Figure 5.7 presents a flowchart of the VBSME controller that is extended from the original
controller introduced in [P3]. The grey blocks represent operations analogous to the
original controller, whereas the white blocks depict extensions explained here.

The VBSME controller stays in the data store mode until the ME architecture has received
all the input data (dRI, dCI, and 1

ME 0&MVPλ). After data storage, the VBSME controller is

initialized to test 1
0p with the BMA assigned by the BMA_id input.

Figure 5.6. Control unit.

rRR

Control unit

Memory system [P2]

RD cost unit

rRW rCR rCWctrlM ctrlJ

J_rdydCO

ack

BMA_id

dataOUT rdy

new vld storedreuse

id

dRI/dCI
1

ME 0λ &MVP

dataIN level

sMB

J_min ψ*
η*MV

info/

ψ
ηMV1

ME 0λ &MVP

*
RO ROd /d

*
ROd

δΔrαΔr

rRR/

βΔrJ_rdy J_minBMA_idlevel

VBSME controller BMA control
table [P3]

VBSME
control table

ψ*
η*MV

init iMV

riRR circuit [P3]

rRR computation unit

rjRR circuit [P3] MVi circuit MVj circuit

accdlvr
ε εΔr /Δr dlvr

dlvr
RRr ψ

ηMV

 5. Designed Configurable Motion Estimation Architecture

68

Figure 5.7. Flowchart of the VBSME controller.

The processed mψ is ready when each pψη of it has been tested and Jψ has been
computed for it (J_rdy1 = ‘1’). As the first mode, m1 is always selected as a new minimum
after 1

0p has been tested. At L0, the search is completed and result data related to m1 is
delivered. During the result delivery, the VBSME controller asserts the dlvr signal and the
VBSME control table produces an associated dlvrrεΔ for 1

0p .

At L2 and L3,
2
0p and 2

1p are tested one by one like 1
0p . After 2

1p is ready, m2 is selected as
a new minimum, if J_min1 signal is asserted together with J_rdy1 signal. Next, m3 and m4

are tested similarly. At L1, m1 and m4 are tested as in L2 and L3, but m2 and m3 are skipped.
At L1 and L2, result data related to

*mψ is delivered after m4 has been completed.
Otherwise (L3), sub-MB 0 is tested with m5,…, m7 and the result data related to *mψ is
sent. The operation continues likewise with the other sub-MBs.

Figure 5.8 depicts the VBSME control table that operates in a search mode (dlvr = ‘0’) or
in a result delivery mode (dlvr = ‘1’). It receives all data from the VBSME controller.

When dlvr = ‘0’, an input ψ
ησ is set to () /16Q Uψ ψη× × according to a processed pψη . The

content of a LUT equals Figure 5.2 a). It is indexed by σ which is a sum of ψ
ησ and a

counter (cntr). The VBSME controller initializes the cntr to 0 and increments it by one per

Mode ready?

Level 0?

Mode 4?

Mode 7?

Increase mode
by one

Select
partition 0

Deliver
result

Data store
mode

Select
mode 1

Level 1-2?

Increase
sub-MB by one

Select
sub-MB 0

Select
mode 5

Increase
partition by one Initialize BMA

Test search
center

Test checking
point

Move search
pattern

Ignore checking
point

Yes

No

Change search
pattern

No

Yes

Last pattern?

Minimum point
updated?

Single-pass
pattern?

Whole
pattern
tested?

Select next
checking point

Yes

Yes

NoYes

No

No

Valid
checking
point?

New
minimum

point?

No

Update
minimum point

Yes

No

YesYes

No

Yes

Yes

No

Yes

No

No

New
minimum

mode?

Update
minimum mode

No Yes

No

Yes

Yes

Level 2?

Whole MB
delivered?

Select
mode 4

No

Yes

 5. Designed Configurable Motion Estimation Architecture

69

4 4× block access until (Q Uψ ψ×)/16 blocks have been accessed. The unit swaps two
MSBs of σ with m3 as in Figure 5.2 b) and two LSBs of σ with m6 as in Figure 5.2 c).
The output of the unit (,)ri rjε εΔ Δ is directly obtained from the LUT.

When dlvr = ‘1’, the index of the LUT is merely derived from *
*

ψ
ησ (

*
* 0ψ

ησ σ= +). The

unit outputs dlvr 3ri riε εΔ = Δ − for the first strip (strip = ‘0’). Since 0riεΔ = for each *
*pψη

accessed with two strips, dlvr 3 (0 8) 3 5ri riε εΔ = Δ − = + − = is constant for the second strip

(strip = ‘1’). For both strips, the unit outputs dlvr 3rj rj cntrε εΔ = Δ + − . In this mode (dlvr =
‘1’), the cntr equals the amount of accessed 16-pixel wide rows. The VBSME controller
increments the cntr from 0 to * 5Uψ + in * 6Uψ + cycles.

The rRR computation unit (Figure 5.6) includes riRR and rjRR circuits which compute (5.1)
and (5.2), respectively. These circuits have been earlier introduced in [P3]. As a new
feature, the circuits also compute dlvr

RRr according to (5.9) and (5.10) during data delivery.
This is realized by additional input multiplexers that select either operands of (5.1)-(5.2)
or (5.9)-(5.10) for the circuits.

In parallel with rRR determination, the rRR computation unit also computes (5.3) and (5.4)
with mutually identical MVi and MVj circuits, respectively. Figure 5.9 depicts the MVi
circuit. It computes MViψη for the search center (init = ‘1’) as MVi ri riψ

η δ β= Δ + Δ and the
result is stored in the register (Reg). Since 0riδΔ = for the search center, Reg riβ= Δ .

Figure 5.8. VBSME control table.

0 11 0

0 1

1 0

+

0 cntr ψ = 6ψ = 3

dlvr
ε εΔri /Δri

εΔrj

-3 5

dlvr strip

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Δriε 0 4 0 4 8 12 8 12 0 4 0 4 8 12 8 12
Δrjε 0 0 4 4 0 0 4 4 8 8 12 12 8 8 12 12

ψ
ησ

εΔri

dlvr
ε εΔrj /Δrj

dlvr
εΔrjdlvr

εΔri
dlvr

10 10

+

σ

3 2σ σ 2 3σ σ 1 0σ σ 0 1σ σ

-3

 5. Designed Configurable Motion Estimation Architecture

70

Figure 5.9. MVi circuit.

When init = ‘0’, the circuit computes MViψη for a tested checking point around the pattern

center as MV Regi riψ
η δ= Δ + . After the first search pattern has been completed, riδΔ

corresponding to temporary *MViψη is redelivered to the circuit and Reg is accumulated

(acc = ‘1’) with it as Reg Regriδ= Δ + . Now, the updated Reg points to the center of the
next search pattern, i.e., Reg ri riβ χ= Δ +Δ (Figure 5.1).

The rRR computation unit includes an additional monitoring logic that asserts an
invalidation signal (iMV), if tested MViψη violates (5.5) or (5.6). In that case, the VBSME
controller selects a next valid checking point.

5.2.2 Memory system

The memory system (Figure 5.5) is introduced in [P2]. It contains two separate local on-
chip memories: a search area memory for dRI and a current block memory for dCI that
include 16 1-pixel (8-bit) wide and four 4-pixel (32-bit) wide single-port parallel memory
modules, respectively. The search area memory is configurable for the search areas of

, {48, 80, 112, 144,...}w h∈ at design time. Besides the memory modules, the memory
system includes two data rotators (one for dRI /dC1 and the other for dRO / *

ROd) and an
address computation unit which composes memory addresses from rRR, rRW, rCR, and rCW.

The pixel addressable search area memory supports an arbitrary placement of the 4 4×
block access format during data retrieval. Hence, it is able to provide data for any pψη
through the desired scan sequence (Figure 5.2) in () /16Q Uψ ψ× cycles. As a new feature,
the refined result delivery scheme also requires an unrestricted placement set for the 16-
pixel row format. Therefore, the addressing of the search area is upgraded from [P2] in
which the placement set of the row format is restricted. Further description of this
modification is omitted here, since it causes only slight changes in the original
computation structures without practical effect on the memory system operation.

1 0

βΔriδΔri

Reg

accinit

ψ
ηMVi

1
0

 5. Designed Configurable Motion Estimation Architecture

71

5.2.3 RD cost unit

Figure 5.10 shows a high-level structure and essential signals of the RD cost unit. An ABS
unit, a compression array, and a min RD cost unit are initially introduced in [P1], whereas
a rate computation unit and a min mode cost unit are presented here for the first time.

The ABS unit computes absolute values (ABS) between current (dCO) and reference (dRO)
pixels. It completes 16 ABS values per cycle, so a 4 4× block can be processed in
parallel. The compression array adds subsequent groups of 16 ABS values together.
Hence, it is able to compute Jψη for pψη in () /16Q Uψ ψ× passes. The array is initialized
(init = ‘1’) during the first pass. The initialization does not set the previously accumulated
result to zero as in [P1], but it replaces the previous result by ME MVRλ × . This
modification enables the accumulation array to compute (3.21) instead of (3.18).

The completed Jψη is delivered to the min RD cost unit which compares it to the stored

minimum RD cost (*Jψη) when cmpr = ‘1’. If *J Jψ ψ
η η< , the unit activates J_rdy0 and

J_min0 signals and replaces the stored *Jψη with Jψη . Otherwise, only J_rdy0 signal is

asserted. In the case of the search center (sc = ‘1’), Jψη is always stored as a new *Jψη .

Figure 5.11 presents the rate computation unit that produces ME MVRλ × for the
compression array. For each pψη , the unit computes absolute MV difference

()|MVD | |MVD |,| MVD |ψ ψ ψ
η η ηi j between MV (MV , MV)ψ ψ ψ

η η ηi j and 1 1 1
0 0 0MVP (MVP ,MVP)i j .

|MVD |ψ
ηi and |MVD |ψ

ηj address a LUT1 that outputs lengths of respective Exp-Golomb
codewords (RMVi and RMVj) for them. RMVi and RMVj are added together to yield RMV that is
multiplied by MEλ .

Figure 5.10. RD cost unit.

ABS unit [P1]

dCOdRO

ABS

Compression array [P1]

Rate computation unit

ψ
ηMV MEλm_rdyinit

Min RD cost unit [P1]

sc

ME MVλ × R

ψ
ηJ

ψ
η*J

J_rdy0 J_min0

Min mode cost unit

ψ*
η*MVinfo/J_rdy1 J_min1

ψ
ηMV

nxt

m

p_rdy

m_rdyMEλ

cmpr

pop

Mode storage circuitMode selection circuit

ψ
MEλ × R

*
ROd

*
ROd

1
0MVPψ

 5. Designed Configurable Motion Estimation Architecture

72

Figure 5.11. Rate computation unit.

When mψ
 is completed (m_rdy = ‘1’), the unit outputs ME Rψλ × instead of ME MVRλ × .

Rψ is produced by accessing a LUT2 with input ψ . Rψ represents 16 16Rψ × in (3.23) when

1 4ψ≤ ≤ and 8 8Rψ
× in (3.24) when 5 7ψ≤ ≤ . The missing 4

8 8 1R × = is assigned for 4
8 8J ×

in the min mode cost unit (Figure 5.10).

The min mode cost unit selects *mψ after which it sequentially outputs info data (*,ψ *,η
*

*Jψη , and *
*MVψ

η) and *
ROd related to each *

*pψη
of *mψ . The unit contains a mode

selection circuit for *mψ selection and a mode storage circuit for *
*Jψη and *

*MVψ
η storage.

It also has a separate output for *
*MVψ

η according to which an associated *
ROd is sent to its

input from the memory system (Figure 5.5).

The mode selection circuit is depicted in Figure 5.12. It computes (3.23) for m1,…, m4 in
1nψ + passes and (3.24) for m5,…, m7 in (/ 4) 1nψ + passes. For these operations, the unit

receives *Jψη values from the min RD cost unit and ME Rψλ × from the rate computation

unit (Figure 5.10). Each time *pψη is ready (p_rdy = ‘1’ and m_rdy = ‘0’), a temporary

mode cost value (tmpJψ) is incremented by the input *Jψη and the sum is stored in a register

Reg2. The accumulation of tmpJψ takes nψ passes with m1,…, m4 and / 4nψ passes with

m5,…, m7. For example, two passes are needed to compute 2 2 2
tmp 0 1J J J= + for m2.

During the last pass (m_rdy = ‘1’ and p_rdy = ‘0’), ME Rψλ × input is added to tmpJψ . The

produced sum (Jψ) equals 16 16Jψ × at MB level and 8 8()J sψ
× of the sub-MB s at sub-MB

0 1

LUT1
|MVD| 0 1 2 3 4 5 6 7 …
RMV 1 3 5 5 7 7 7 7 …

LUT2
ψ 1 2 3 4 5 6 7

1 3 3 9 3 3 5&ψ ψ
16×16 8×8R R

×

m_rdy

ψ
ME MV MEλ × R /λ × R

MEλ

RMV

RMVi RMVj
ψR

ψ
MVR / R

ψψ
ηMVi

ABS

-
ψ
ηMVj

ABS

-

+

1
0MVPi 1

0MVPj

ψ
ηMVDi ψ

ηMVDj

ψ
η|MVDi | ψ

η|MVDj |

 5. Designed Configurable Motion Estimation Architecture

73

level. In 4
8 8()J s× computation, the unit reuses 4

*Jη values that have already been computed

for m4 at MB-level, i.e., 4 4
*sJ Jη= when s η= . 4

sJ values are stored in the mode storage
circuit from which the mode selection circuits obtains them and computes

4 4
8 8 ME() λ× = +sJ s J (4

8 8 1R × =).

The last pass also triggers comparison between Jψ and *Jψ that is stored in Reg3.
However, 0

16 16J × (0ψ =) and 4
8 8()J s× (nxt = ‘1’) are the first values at MB and sub-MB

levels, respectively, so they are stored in Reg3 without comparison due to the absence of
valid *Jψ . In other cases, the comparison is performed. For the comparison, tmpJψ ,

ME
ψλ ×R , and the bit-inverted (INV) *Jψ are added together with carry-save adder

(CSA) that yields two difference vectors (d_s and d_c). They are added together. To
convert the bit-inverted *Jψ to two’s complement representation, the carry-in of the adder
is ‘1’. The adder outputs only MSB of the sum. If MSB = ‘0’ after the comparison,

*J Jψ ψ< and *Jψ is replaced by Jψ in Reg3. In this case, both outputs (J_rdy1 and
J_min1) are asserted. Otherwise, *Jψ is maintained in Reg3 and J_rdy1 is only activated.
In both cases, Reg2 is set to zero for the next tmpJψ accumulation.

Figure 5.13 shows a part of the mode storage circuit: a storage logic for *Jψη values. *MVψ
η

values are stored respectively. The storage for *Jψη values contains three buffers (Buf1,…,

Buf3) of depth four (indexes 0 - 3). When p_rdy = ‘1’, the associated *Jψη is pushed into
Buf1(0) and the other values in Buf1 are shifted forward by one position. When J_min1 =
‘1’, the content of Buf1 is copied to Buf2.

Figure 5.12. Mode selection circuit.

1 0

1 01 0

1 0

m_rdy

J_rdy1

MSB

Reg1

+
CSA

ψ = 0 ψ
η*J ψ

MEλ × R MEλp_rdy

INV

ψ*J

4
sJ

Reg0

0

J_min1

0 1

+
0

Reg2 Reg3

nxt

ψ
tmpJ

1

d_c d_s

+

 5. Designed Configurable Motion Estimation Architecture

74

Figure 5.13. Storage logic for partition costs.

In Buf2, the copied values are shifted forward (one position per cycle) until Buf2(3)
contains valid data. The amount of shifting is defined by ψ . The values are shifted by

4 nψ− positions when 1 4ψ≤ ≤ and 4 / 4nψ− positions when 5 7ψ≤ ≤ . For example,
3
0J and 3

1J are copied to Buf2(1) and Buf2(0) from which they are shifted by 4 - 2 = 2
positions to Buf2(3) and Buf2(2), respectively. During data delivery (pop = ‘1’), *

*Jψη
values are popped one by one from Buf2.

To enable testing of each sub-MB s at L3, 4
*Jη values are also stored in Buf3 when p_rdy =

‘1’. When a testing of a new sub-MB is started (nxt = ‘1’), 4
sJ for it is popped from Buf3

and sent to the mode selection circuit (Figure 5.12). 4
sJ is also stored to Buf2(3) which is

replaced by new *Jψ
η values if smaller 8 8Jψ× is found among m5,…, m7.

5.3 Architecture summary

In summary, the designed ME architecture has the following three main features:

1. It supports H.261/3, MPEG-1/2, MPEG-4 Visual, H.264/AVC, and VC-1 standards

2. It can perform rate-constrained IME with various fast BMAs

3. It conducts mode decision/delivery jointly with IME

The architecture realizes multi-standard and multi-BMA support by executing all BMAs
with a single generic search strategy that is parametrizable to specific coding modes,
search centers, and search patterns. The generic search strategy is implemented in the
control unit by composing the search paths of the BMAs from five mutually independent
offset. The separable search path generation provides easy access to individual BMA
parameters which can be modified without changing other BMA features. Each coding
mode of a BMA undergoes similarly parameterized search and the mode decision selects
the best one of the serially executed modes.

Integrating the flexible control with the efficient memory system and RD cost unit enables
that the architecture can operate at adequate processing speed, low cost, and acceptable
power consumption. The performance of the architecture is analyzed in the next chapter.

J_min1pop

ψ*
η*J

nxt p_rdyψ
η*J

4
sJ

ψ

0
1
2
3

Buf1

0
1
2
3

Buf2

0
1
2
3

Buf3

 75

6. Performance Analysis

This chapter presents experimental results for the proposed ME framework and for the
implemented ME architecture. The framework is evaluated in terms of its impact on
overall RD performance and its search speed is benchmarked with well-known fast
BMAs. The best framework configurations are selected after which the ME architecture is
configured according to their requirements. The implementation results of the architecture
configurations are presented and compared with the state-of-the-art ME architectures.

6.1 Framework evaluation

The performance of the ME framework was evaluated with five well-known fast BMAs:
TSS, BBGDS, DS, HEXBS, and CDS, whose search strategies and patterns are described
in Section 4.1.3. The experiments were accomplished by integrating the framework
functionality in JM 17.0 reference encoder [59] and each BMA was individually tested as
a part of JM. RD performances and search speeds of the BMAs were measured and
compared in order to find the best ones for different resolutions and motion contents.

JM was limited to use BP setting (level 4.0), the IPPPP coding structure, and a single
reference frame in MCP. The prediction residuals of intra/inter frames and MVs were
entropy coded using CAVLC/UVLC. IME and FME applied SAD and SATD criteria for
distortion computation, respectively. RDO and rate control were disabled.

The experiments covered nine popular test sequences: three CIF sequences (“Salesman”
“Foreman”, and “Football”), three D1 sequences (“Barcelona”, “Mobile & Calendar”
(“MobCal”) and “F1 Car”), and three 1080p sequences (“Station”, “Pedestrian”, and
“Speed Bag”). For each resolution, the sequences represent scenes with low, medium, and
high motion contents, respectively. Test sequences were encoded with architecture quality
levels L0 - L3 and { }20,28,36QP∈ . CIF and D1 sequences were encoded entirely, but only
50 frames were encoded with 1080p sequences to speed-up measurements. The “Station”
and “Pedestrian” sequences cover the first 50 frames, whereas the last 50 frames of the
“Speed Bag” sequence were encoded since its motion content is higher in the end.

The search areas were centered around (i, j) as in Figure 3.6. The BMAs were started from
MVP that was computed as in Section 3.4.2. The search ranges were 59 59× pixels
()MV ,MV [29,29]x y∈ − with CIF/D1 formats and 123 123× pixels ()MV ,MV [61,61]x y∈ −
with 1080p format, so they are close to guidelines of [115].

 6. Performance Analysis

76

6.1.1 Rate-Distortion performance analysis

BMAs were compared in terms of JM output BD-rate. According to the measurements,
BBGDS yields the lowest output BD-rate for all low-motion sequences independent of the
format. It also suits best for the medium-motion sequences up to D1 resolution. DS
outperforms BBGDS in high motion sequences and it is also better for medium-motion
sequences at 1080p resolution. DS is reasonable to replace with TSS if the motion content
is high and complex. Among the test sequences, TSS performs best only in the “F1 Car”
sequence.

Table 6.1 tabulates the sequence-specific encoding results for the best BMAs. Each BMA
is also compared with the default FS algorithm in JM 17.0 and the BD-rates between them
are reported for each QP value. In addition, average BD-rates per level are computed from
QP-specific bit rates. Fast BMAs perform mode decision at IME stage (Section 5.1.2),
whereas a complete mode decision is conducted at FME stage after FS. Hence, the effect
of the early mode decision at IME stage is also included in BD-rates.

Let us first examine compression ratios of these sequences. For each sequence, average
compression ratios per QP can be derived from QP-specific output bit rates at L0 - L3. I.e.,
an average of them is compared with the data rate of the uncompressed sequence. The
highest average compression ratios among the sequences are 43:1 at QP = 20, 286:1 at QP
= 28, and 678:1 at QP = 36. They are attained with the high-motion “Speed Bag” (QP =
20), low-motion “Salesman” (QP = 28), and low-motion “Station” (QP = 36) sequences.
On the other hand, the low-motion “MobCal” sequence has the lowest average
compression ratios (4:1 at QP = 20, 8:1 at QP = 28, and 35:1 at QP = 36) due to its various
sharp details. These examples illustrate that the compression performance cannot be
merely deduced from the motion content, but texture has also essential impact on it.

Secondly, the BD-rate differences are considered between the quality levels. For each
format, the average inter-level differences can be derived from the nine QP-specific BD-
rate differences (three per sequence). With CIF sequences, the compression ratio increases
as a function of the quality level. Compared to L0, the average decrement of the BD-rate is
3.5%, 5.4%, and 5.5% at L1, L2, and L3, respectively. However, the respective BD-rate
variations with D1 sequence are 0.7%, 1.3%, and 0.7%. I.e., L3 has negative effect (-0.6%)
on the BD-rate compared with L2. The benefits of L1, L2, and L3 are further degraded with
1080p sequences in which the average BD-rate differences are -0.1%, -0.7%, and -0.7%,
respectively. These measurements imply that merely L0 would be adequate for 1080p.
However, more thorough experiments in [87] recommend that only L3 is excluded with
1080p resolutions and above.

Finally, the average BD-rates are computed between the selected fast BMAs and FS. With
CIF format, the BD-rate overhead of BBGDS/DS

is -0.3 - 4.9%. The highest individual

gap (7.8%) exists with the “Salesman” sequence at L3 when QP = 20. With D1 sequences,
the average gain of FS is converged to -4.1 - 3.4%. Although the BD-rate gap is slightly
widened with 1080p sequences to 0.8 - 4.5%, the upper bound of the range is still lower
than with CIF format. Hence, these experiments state that the fast BMAs are also
competitive with high resolution sequences. Among all considered test sequences, the
average BD-rate between fast BMAs and FS is only 1.9%.

 6. Performance Analysis

77

Table 6.1. RD performance comparison of fast BMAs and FS in JM 17.0

6.1.2 Search speed analysis

In the analyzed test sequences, the computational complexity of ME increases as a
function of resolution and motion content. Hence, the high-motion sequences are the most
computation-intensive ones with each resolution. Table 6.2 gathers these worst-case
sequences from Table 6.1 and reports the search speeds of the selected BMAs with them.

The architecture-independent search speeds of the selected BMAs are tabulated as an
average number of checking points per current MB (points/MB) at QP values of 20, 28,
and 36. A checking point tested with m1 increments points/MB value by one, a checking
point tested with m2 increments points/MB value by ½, etc. TSS applies the same fixed
search pattern for each mψ , so its points/MB value is directly proportional to the amount
of modes at L0 - L2. I.e., compared with L0, the points/MB value of TSS is doubled at L1

Average

PSNR Bit Rate BD-rate PSNR Bit Rate BD-rate PSNR Bit Rate BD-rate BD-rate
(dB) (Mbit/s) (%) (dB) (Mbit/s) (%) (dB) (Mbit/s) (%) (%)

L0 42.07 2.96 0.12 36.21 0.24 -1.01 30.97 0.06 -0.09 -0.33
Salesman L1 42.04 2.83 3.47 36.19 0.23 2.86 30.96 0.05 -0.09 2.08

(449 frames) L2 42.04 2.78 3.31 36.22 0.22 3.51 31.03 0.05 1.08 2.63
L3 42.04 2.78 7.82 36.22 0.22 6.67 31.03 0.05 -0.30 4.73
L0 42.86 2.56 0.41 36.93 0.68 1.04 31.57 0.18 2.26 1.24

Foreman L1 42.84 2.49 2.86 36.92 0.65 3.69 31.56 0.18 3.21 3.26
(300 frames) L2 42.84 2.47 3.79 36.94 0.64 1.06 31.62 0.17 5.14 3.33

L3 42.84 2.46 4.72 36.94 0.64 5.42 31.62 0.17 4.40 4.85
L0 43.28 4.25 1.04 37.13 1.83 2.06 31.43 0.70 4.85 2.65

Football L1 43.27 4.13 2.03 37.13 1.77 3.38 31.41 0.68 5.60 3.67
(260 frames) L2 43.27 4.11 2.19 37.13 1.75 3.68 31.41 0.67 6.60 4.16

L3 43.26 4.13 -3.25 37.12 1.75 -0.43 31.42 0.67 4.62 0.31
L0 42.51 29.22 -0.01 35.60 10.39 0.01 29.34 2.52 -0.51 -0.17

Barcelona L1 42.50 29.01 0.40 35.60 10.25 0.97 29.34 2.47 0.51 0.63
(220 frames) L2 42.50 28.94 0.76 35.61 10.18 1.53 29.39 2.41 0.59 0.96

L3 42.50 28.99 -1.52 35.61 10.18 0.32 29.39 2.41 1.00 -0.07
L0 42.65 40.34 0.02 35.12 18.14 0.12 27.90 4.31 0.04 0.06

MobCal L1 42.64 40.38 -0.29 35.12 18.07 0.79 27.89 4.24 2.01 0.84
(220 frames) L2 42.64 40.30 -0.05 35.12 18.00 1.36 27.91 4.19 3.42 1.58

L3 42.64 40.62 -5.54 35.11 18.04 -1.64 27.91 4.19 3.10 -1.36
L0 42.84 33.65 0.76 35.77 14.19 2.17 29.90 4.05 7.20 3.38

F1 Car L1 42.84 33.65 -0.36 35.77 14.19 1.19 29.90 4.05 6.45 2.43
(220 frames) L2 42.84 33.67 -0.07 35.77 14.18 1.75 29.90 4.02 7.76 3.14

L3 42.84 34.79 -9.56 35.77 14.34 -7.66 29.90 4.03 4.80 -4.14
L0 42.78 24.10 0.23 39.32 2.59 0.91 34.98 1.29 3.76 1.63

Station L1 42.77 24.12 0.99 39.32 2.60 -0.21 34.98 1.29 3.28 1.35
(50 frames) L2 42.78 24.01 2.57 39.37 2.67 3.26 35.04 1.31 4.21 3.35

L3 42.78 24.00 2.53 39.36 2.67 2.69 35.05 1.31 3.70 2.97
L0 43.63 28.99 1.03 40.52 7.25 3.06 36.78 3.11 5.77 3.29

Pedestrian L1 43.62 29.05 1.16 40.52 7.26 2.55 36.78 3.10 5.67 3.13
(50 frames) L2 43.63 29.00 2.14 40.53 7.24 4.32 36.85 3.13 7.14 4.53

L3 43.63 29.03 0.86 40.53 7.25 3.09 36.84 3.12 6.95 3.63
L0 45.42 17.42 0.93 43.14 4.82 1.82 39.83 2.31 0.42 1.05

Speed Bag L1 45.42 17.42 0.90 43.14 4.83 1.37 39.82 2.30 0.23 0.83
(50 frames) L2 45.42 17.36 1.29 43.17 4.85 2.52 39.92 2.33 1.20 1.67

L3 45.42 17.36 0.70 43.17 4.84 1.72 39.92 2.33 1.26 1.23

BBGDS

DSMedium1080p

High DS

Low

CIF

BBGDS

TSS

D1

Low BBGDS

DSHigh

BBGDS

Low

Medium

Medium

High

Format
Search
Range Sequence

Selected
BMA

Quality
Level

Motion
Content

QP = 28 QP = 36

BBGDS

QP = 20

59 59×

59 59×

123 123×

 6. Performance Analysis

78

and quadrupled at L2. The respective ratios are lower with DS (1.7 - 1.8 and 3.3 - 3.6)
whose variable-length search paths happen to converge earlier with m2,…, m4 than with
m1. The conditional execution of m5,…, m7 significantly restrains the increase of
points/MB at L3. For example, the points/MB ratio of TSS is only 5.0 between L3 and L0
although seven times more modes are available. With DS, the respective ratio is 3.4 - 4.2.

The average speed-up ratios tabulated for DS and TSS are computed over FFS which
computes coding modes in parallel by reusing Jψ

η values. Although TSS and DS execute
coding modes serially, they are one to two orders of magnitude faster than FFS in all the
examined cases. The serial execution decreases the average speed-up ratios of DS and TSS
when the quality level is incremented, but the worst-case speed-up ratio is still almost 18.

A total clock cycle count per MB (t/MB) reports the search speeds of the BMAs on the
designed ME architecture. In the search speed simulations, the ME architecture is
configured to use QP = 20 since it is the worst case of the tested QP values. The t/MB
value is composed of cycles in data storage, distortion computation, and data delivery. The
cycle count of distortion computation increases almost linearly with points/MB value if
the block size remains constant. Averagely, the architecture computes distortion between
two 16 16× pixel blocks in 18 cycles. The BMA-specific variation is approximately 1±
cycles among TSS, DS, BBGDS, CDS, and HEXBS. Computing distortion between two
16 8× or 8 16× pixel blocks elapses 10 cycles on average, so their relative cycle count is
about 1.1 times higher than that of 16 16× pixel blocks. The respective ratios for 8 8× ,
8 4 / 4 8× × , and 4 4× pixel blocks are 1.3, 1.7, and 2.5.

The increased cycle counts of the smaller blocks imply that the cycle count of distortion
computation grows faster than the points/MB value if the quality level is incremented.
However, the increment of the quality level causes only a small overhead in data delivery
and no overhead in data storage, so the relative increase in the overall t/MB value is still
quite moderate. The correlation between t/MB and points/MB values is illustrated by a
cycle count per checking point (t/point) value which is derived by dividing t/MB value by
points/MB value. Compared with L0, the average change in t/point value is 4% at L1, -5%
at L2, and 18% at L3. Hence, the overall t/MB value follows points/MB value quite closely
also at the higher quality levels.

Table 6.2. Search speeds of BMAs and minimum operating frequencies for real-time IME.

Average t/MB t/point
Speed-up (QP=20) (QP=20)

L0 19.3 180.6 570 29.6 7
Football L1 34.9 99.6 1060 30.3 13

(260 frames) L2 69.1 50.4 1875 27.1 23
L3 81.0 43.0 2809 34.7 34
L0 38.8 89.7 861 22.2 42

F1 Car L1 77.8 44.8 1761 22.6 86
(220 frames) L2 155.7 22.4 3278 21.0 160

L3 194.9 17.9 5519 28.3 269
L0 36.9 409.7 1048 28.4 257

Speed Bag L1 61.0 248.0 1846 30.3 452
(50 frames) L2 121.3 124.7 3403 28.1 834

L3 126.3 119.8 3893 30.8 954

MHz @ 30 fps
(QP=20)

Quality
Level

Points/
MB

CIF DS

SequenceFormat
Selected

BMA
Search
range

D1 TSS

DS1080p

59 59×

59 59×

123 123×

 6. Performance Analysis

79

Table 6.2 also tabulates minimum operating frequencies for real-time (30 fps) IME. The
frequencies are derived for the designed ME architecture as a function of t/MB value and
resolution. With each format, L0 specifies minimum operating frequency of real-time IME
for H.261 or MPEG-1/2. Respectively, L1 represents H.263, MPEG-4 Visual, and VC-1.
H.264/AVC -compatible real-time IME adopts the frequencies of L3 with CIF and D1
resolutions. However, it was concluded in Section 6.1.1 that L2 is adequate with 1080p
resolution. Hence, the operating frequency needed by H.264/AVC -compatible real-time
IME is reduced from 954 MHz to 834 MHz.

6.2 Implementation results

The designed architecture was described in VHDL at the register transfer level and
synthesized to the gate level using Synopsys Design Compiler. Table 6.3 tabulates the
implementation results for the selected nine example architecture configurations. They are
grouped as { }

CIF
0,1,3L , { }

D1
0,1,3L , and { }

1080p
0,1,2L according to their capability of process CIF, D1,

and 1080p formats at 30 fps, respectively. The supported BMAs, operating frequencies,
and search ranges of these configurations are obtained from the experimental results in
Table 6.1 and Table 6.2.

In each group, the standards-specific properties of these configurations are realized
through the quality level adjustment. Since the quality level can always be lowered
without violating the real-time constraints, the configurations also cover the quality levels
that are below the specified one. For example, CIF

3L , D1
3L , and 1080p

2L can be reconfigured
at run time to other addressed standards without performance compromises. The search
range of the architecture is adjustable at design time through VHDL generics.

In Table 6.3, the reported frequency, area, and power consumption values are yielded from
logic synthesis on a 0.13-micrometer HCMOS9 standard cell library by
STMicroelectronics. The synthesis results are reported under the nominal operating
conditions (1.2 V, 25 oC). The area values (gate counts) are based on equivalent 2-input
NAND gates. The gate count metric includes the pipeline registers and all the units except
the SRAM modules. The clock frequencies represent the critical path delay in the
pipelined architectures. The frequency values are derived from Table 6.2 and the
frequencies are adjusted with Synopsys Design Compiler by using different delay
constraints. The power consumption of the configurations was estimated with Synopsys
Power Compiler that uses both synthesized gate level net lists and simulated switching
activities of the cells to produce power estimates. The power consumption values are
separately reported for logic and SRAMs.

{ }
CIF
0,1,3L and { }

D1
0,1,3L configurations contain one architecture instance which consumes 22.3

- 22.5 kgates and 6.5 KB of SRAM with 59 59× pixel search range. The needed operating
frequency is between 7 - 275 MHz depending on the target resolution and standard. The
power consumption varies as a function of operating frequency from 3 mW to 68 mW,
from which approximately 65% is consumed by the memories.

 6. Performance Analysis

80

Table 6.3. Implementation results of the architecture configurations.

1080p
0L

and 1080p

1L

configurations also contain a single architecture instance. They are

implementable with 23.7 - 25.1 kgates and 20.5 KB of SRAM memory when the search
range is 123 123× pixels. Their respective power consumptions are 92 mW and 184 mW,
from which about 73% is consumed by the memories.

With a single architecture instance, 1080p
2L configuration would require 834 MHz operating

frequency which is not reached with the applied implementation technology. Therefore,
1080p
2L is composed of two identical architecture instances (1080p/2

20L

and 1080p/2

21L) that

divide the computation burden in a data parallel manner. 1080p
2L uses the search range of

123 123× pixels and has a total gate count of 49.7 kgates. The instances operate at 434
MHz, since allocating and balancing the computation between them increases operating
frequency about 4%. Altogether, 1080p

2L dissipates power 364 mW, from which 267 mW is
consumed by the memories.

1080p
2L is able to support search area reuse only if the horizontally consecutive MBs of a

reference frame are processed by the same architecture instance. Therefore, a reference
frame has to be sub-divided into horizontal slices which are evenly assigned to the
instances. The MB dependencies of MVP computation can be resolved by allocating odd
rows to 1080p/2

20L and even rows to 1080p/2
21L . When 1080p/2

20L starts to process the first row,
1080p/2
21L waits until 1080p/2

20L has completed at least left-most three MBs of the first row.
After that delay, the MVP for the left-most MB of the second row is computable. The
respective delay is needed through the whole frame.

Besides these example configurations, the designed ME architecture could also be
configured to other sets of framework-compatible BMAs. Comparing points/MB values of
new potential BMAs with the presented results (Table 6.2) provide a good approximation
of the required configuration, i.e., the number of instances and operating frequency. For
example, supporting TSS with 1080p

2L would need about 500 MHz operating frequency with
two architecture instances.

As a proof of concept, the designed ME architecture has also been prototyped on an FPGA
using Altera Stratix II EP2S180 DSP development board. On Stratix EP2S180F1020C3

of
instances Logic SRAM

H.261, MPEG-1/2 L0 1 7 6.5 22.3 1 2
H.263, MPEG-4 Visual, VC-1 L1 1 13 6.5 22.3 2 3
H.264/AVC L3 1 34 6.5 22.3 4 7
H.261, MPEG-1/2 L0 1 43 6.5 22.3 5 9
H.263, MPEG-4 Visual, VC-1 L1 1 91 6.5 22.3 10 18
H.264/AVC L3 1 275 6.5 22.5 25 43
H.261, MPEG-1/2 L0 1 268 20.5 23.7 25 67
H.263, MPEG-4 Visual, VC-1 L1 1 455 20.5 25.1 49 135
H.264/AVC L2 2 434 41.0 49.7 97 267

Power (mW)

CIF

Format Search
Range

Freq.
(MHZ)

SRAM
(KB)

Area
(kgates)

Addressed Standard Quality
Level

Supported BMAs

BBGDS/DS1080p

Config.

D1

BBGDS/DS

BBGDS/DS/TSS

CIF
0L
CIF
1L
CIF
3L
D1
0L
D1
1L
D1
3L

1080p
0L

1080p
1L
1080p
2L

59 59×

59 59×

123 123×

 6. Performance Analysis

81

logic device, the architecture configured for TSS, DS, and BBGDS can operate at 192
MHz. It is realized with 2323 ALUTs. Embedded DSP blocks on the FPGA are not used.
When the search range is 59 59× pixels, the architecture consumes twenty embedded
SRAM blocks of size 4 Kb. This configuration is able to execute D1 format at L2 in real-
time.

6.3 Performance comparison

The characteristics of the designed ME architecture are compared with the contemporary
ME architectures (Table 4.1) that are dedicated to the state-of-the-art H.264/AVC. The
proposed configurations chosen for the comparison are H.264/AVC -compatible CIF

3L ,
D1
3L , and 1080p

2L (Table 6.3).

Table 6.4 tabulates the performance metrics (frequency, memory, area, power, and
throughput) and associated ME parameters (a search range, a set of modes, and a number
of the reference frames) of the evaluated ME architectures. The architecture comparison is
primarily based on three criteria: logic gate count, throughput, and normalized memory
consumption. Throughputs of the architectures have been derived from their maximum
resolution and frame rate (Max Res.) values, so throughputs represent normalized
architecture performances. Normalized memory consumption equals a ratio of the reported
search range and overall memory consumption, i.e., it specifies the amount of memory bits
required per a search range pixel. The comparison of normalized power consumption
would require that an assumed 30% decrease of power per CMOS process generation [4]
is included in the reported power values. However, a detailed comparison of power
consumption is excluded here due to absence of most of the power values.

Let us first consider FFS-based architectures. Chen’s [11] and Li’s [76] architectures
achieve the same throughput as D1

3L , but they consume 7.5 and 15 times the gate count of
D1
3L and their normalized memory consumptions are 1.6 and 5.9 times that of D1

3L ,
respectively. Wei’s [130] implementation has over 30% lower throughput and its gate
count is tripled over 1080p

2L . In addition, its search range is far below the recommendations
[115] for 720p resolution. Yap’s [137] and Kim’s [65] architectures are more competitive
in terms of gate count, but their search ranges are too limited even for QCIF format.

Chen’s [14], Liu’s [87], and Lin’s [82] fast BMA-specific architectures achieve the target
processing speed with lower cost or power than FFS-based architectures. However, for the
same throughput, normalized memory consumption of Chen’s approach is more than
doubled and its gate count is almost 6 times that of CIF

3L . Correspondingly, Liu’s

architecture uses almost 10 times as much gates as 1080p
2L . Lin’s implementation supports

very large search range for m1, whereas reduced search ranges are used for the other
modes. For example, the search range for m5,…, m7 is only 16 16× pixels. Compared with

1080p
2L , Lin’s architecture doubles the throughput, consumes less memory, but its gate

count is quadrupled.

 6. Performance Analysis

82

Table 6.4. Comparison of the proposed and existing state-of-the-art ME architectures.

The rest of the reference architectures support multiple BMAs. Zhang’s [142] flexible
approach combines IME and FME. It supports adequate search range for m1, but the
search ranges of the other supported modes are significantly smaller. For example, m4 has
a search range of 13 13× pixels. In addition, its logic gate count (IME+FME) is almost 5
times that of 1080p

2L . Verma’s [126] flexible solution doubles the throughput with 65%

gate count overhead compared with 1080p
2L , but its search range is too restricted even for

QCIF sequences. Lee’s [72] architecture outperforms the other architectures in terms of
performance, but its HW cost is enormous. Wei’s [131] flexible architecture achieves 25%
lower throughput than D1

3L , consumes over 3.6 times the gate count of D1
3L , and supports

impractical small search range.

CIF
3L , D1

3L , and 1080p
2L offer two additional features that are not available in the reference

ME architectures: rate-constrained ME with fast BMAs and multi-standard support at run
time. Despite these features, CIF

3L , D1
3L , 1080p

2L consume 43%, 42%, and 39% less gates
than any reference ME architecture targeted for CIF, D1, and 1080p resolution,
respectively. Exclusion of the architectures with impractical search ranges increases the
gate count savings of CIF

3L , D1
3L , and

1080p
2L to 83%, 86%, and 76%, respectively. The

only comparable architecture [72] that supports multiple BMAs, adequate search range,
and 1080p resolution consumes 9 times the gate count of 1080p

2L .

Freq Memory Area Power Process Supported # of Throughput
(MHz) (KB) (Kgates) (mW) (nm) Modes Ref. (Mpixels/s)

BBGDS/DS 34 6.5 22.3 11 130 1-7 1 CIF@30fps 3

BBGDS/DS/TSS 275 6.5 22.5 68 130 1-7 1 D1@30fps 12

BBGDS/DS 434 41.0 49.7 364 130 1-4 1 1080p@30fps 62

Yap [137] FFS 294 n.a. 61.0 570 130 1-7 1 4CIF@45fps 18

Chen [11] FFS 81 25.4 330.2 n.a. 180 1-7 4 D1@30fps 12

Li [76] FFS 216 23.8 168.0 n.a. 180 1-7 2 D1@30fps 12

Wei [130] FFS 200 3.3 160.0 423 180 1-7 1 720p@45fps 41

Kim [65] FFS 416 n.a. 39.0 n.a. 180 1-7 1 CIF@256fps 26

Liu [86] [87] Coarse-to-fine 200 n.a. 486.0 n.a. 180 1-4 1 1080p@30fps 62

Lin [82] Multiresolution 124 6.0 213.7 n.a. 130 1-7 1 1080p@60fps 124

Chen [14] Parallel-VBS 4SS 27 8.0 131.2 17 180 1-7 2 CIF@30fps 3

Lee [72] FFS/Fast BMAs 266 540.0 450.0 n.a. n.a. 1-7 2 1080p@60fps 124

Verma [126] FFS/Fast BMAs 124 n.a. 82.0 n.a. 90 1-7 1 1080p@60fps 124

Wei [131] FFS/Fast BMAs 157 2.0 81.0 47-247 180 1-7 1 VGA@30fps 9

Zhang [142] DS + CS 117 n.a. 238.0 n.a. 180 1-4 1 720p@30fps 28

Architecture Supported BMAs Search Range

n.a. = not available

Max Res.

CIF
3L
D1
3L

1080p
2L

59 59×

59 59×

123 123×

65 33×

33 33×

16 16×

64 32×

16 16×

32 32×

192 128×

4096 128×

129 65/65 33× ×

256 256,...,16 16× ×

75 39,...,13 13× ×

16 16×

 83

7. Conclusions

Modern video encoders involve complex algorithms whose real-time execution
necessitates efficient encoder implementations. The emerging trend is that the same
encoder is compatible with several video coding standards, so real-time encoding
performance has to be met without compromising flexibility. In mobile handheld devices,
real-time constraints and flexibility expectations of the encoders are further combined with
strict limitations on cost, size, and power consumption.

Implementing an encoder completely in SW is flexible, but typically too inefficient
approach. Although high-end multicore processors would be able to reach acceptable
encoding speed (e.g., H.264/AVC 1080p video at 30fps), their power consumption tend to
be one to two orders of magnitude higher than the assumed 1W power budget of handheld
devices. Therefore, low-power encoders need special-purpose HW either for the whole
encoding process or for the encoding assistance in a processor-controlled environment.
Complete HW encoders are often implemented in custom ASICs in order to meet the real-
time performance with the smallest possible silicon area and power consumption.
However, the limited flexibility of ASICs suits best for high-volume encoders that are
dedicated to a single standard. FPGAs and video-oriented MPSoCs are viable alternatives
for ASICs when encoders need multi-standard support. Particularly, state-of-the-art
MPSoCs are flexible, power economical, and efficient enough for real-time encoding.

The allocation of encoding tasks between HW and SW varies in HW-accelerated encoder
implementations. However, they all share the common feature of using HW acceleration
for ME since it typically accounts for 50 - 90% of the total encoder complexity. Most of
the contemporary HW architectures for ME are tailored to a single standard and/or a single
BMA. Existing configurable HW architectures support several BMAs, but they also
contain standard-specific limitations and are realized with large silicon area, limited
processing speed, unsustainable power budget, or over restricted ME parameters.

7.1 Main results

This Thesis introduced a configurable HW architecture that overcomes all the crucial
limitations faced by the existing ME architectures. The designed ME architecture supports
all inter coding modes of H.261/3, MPEG-1/2, MPEG-4 Visual, H.264/AVC, and VC-1.
In each inter coding mode, the architecture is able to perform rate-constrained IME with
various fast BMAs such as BBGDS, CDS, DS, HEXBS, and TSS. It can change the target
standard, an executed BMA, and a search center of the BMA at run time, whereas the
supported set of BMAs and the search range can be adjusted at design time. The
architecture also conducts mode decision jointly with IME and returns only the best inter
coding mode, so it reduces the complexity of the subsequent FME stage significantly. Its
high flexibility and low cost facilitate its usage as a reusable intellectual property block.

 7. Conclusions

84

The flexibility of the architecture was demonstrated with example architecture
configurations that can process real-time single reference frame ME with different
standards, resolutions, and search ranges. Configurations for CIF format are
implementable with 22.3 kgates and 6.5 KB of SRAM when the search range is 59 59×
pixels. Depending on the target standard, they consume 3 - 11 mW of power with a 0.13-
micrometer CMOS standard cell technology. The respective performance metrics with D1
format are 22.3 - 22.5 kgates, 6.5 KB of memory, and 14 - 68 mW of power. The
configurations targeted for 1080p format use 123 123× pixel search range. They consume
23.7 - 25.1 kgates, 20.5 KB of SRAM, and 92 mW - 184 mW of power when the
underlying standard is H.261/3, MPEG-1/2, MPEG-4 Visual, or VC-1. Supporting
H.264/AVC with 1080p format requires a duplicated architecture, whose respective
metrics are 49.7 kgates, 41 KB of SRAM, and 364 mW of power.

This Thesis verified the search quality of the ME architecture by integrating the
introduced IME functionality in JM reference encoder. The experiments with different
resolutions (CIF, D1, and 1080p), motion contents (low, medium, and high), and QP
values ()QP {20, 28,36}∈ show that average output bit rate of JM increases only by 1.9%
if the set of available fast BMAs include BBGDS, DS, and TSS.

The main conclusion of this Thesis is that an accurately designed and optimized
configurable HW architecture can support multiple standards and process various
resolutions and motion contents at adequate processing speed, low cost, acceptable power
consumption, and competitive RD performance.

7.2 Future work

In the future, the feasibility of the designed ME architecture will be analyzed with the
forthcoming HEVC standard. According to initial evaluations, the ME framework is well
suited for the HEVC proposals that use square [5], [89] or symmetric rectangular [124]
partitions. It also supports asymmetric rectangular partitions [35] if they can be composed
of 4 4× blocks. Instead, the inclusion of non-rectangular partitions [63] in HEVC would
require the redesign of the framework.

The future research will also examine the framework compatibility with MVC amendment
of H.264/AVC. MVC has been recently popularized due to the emerging 3D and FTV
applications. In MVC, the computation load of ME is increased since each view has to
undergo temporal or inter-view prediction [26]. The low area cost of the designed ME
architecture would enable its duplication in performance-critical MVC architectures. A
viable alternative could be to process each view with a separate ME architecture.

To enhance performance of the ME architecture with future standards and resolutions, the
research will also consider SAD reuse techniques between overlapped inter coding modes
and partitions. Inclusion of these techniques would cause a moderate increase in the
complexities of the control and distortion computation units, but they would also augment
the throughput of the architecture without increasing the operating frequency. Through
SAD reuse, power consumption would be restrained and the designed ME architecture
would better meet the needs of MVC and HEVC applications also in the portable devices.

 85

References

[1] Y. Baek, H. S. Oh, and H. K. Lee, “Efficient block-matching criterion for motion
estimation and its VLSI implementation,” IEEE Trans. Consumer Electron., vol.
42, no. 4, Nov. 1996, pp. 885-892.

[2] G. Bjøntegaard, “Calculation of average PSNR differences between RD curves,”
document VCEG-M33, Austin, TX, USA, Apr. 2001, pp. 1-4.

[3] G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore processors,”
IEEE Signal Processing Mag., vol. 26, no. 6, Nov. 2009, pp. 26-37.

[4] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4,
Jul. 1999, pp. 23-29.

[5] F. Bossen, V. Drugeon, E. Francois, J. Jung, S. Kanumuri, M. Narroschke, H.
Sasai, J. Sole, Y. Suzuki, T. K. Tan, T. Wedi, S. Wittmann, P. Yin, and Y. Zheng,
“Video coding using a simplified block structure and advanced coding techniques,”
IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 12, Dec. 2010, pp. 1667-
1675.

[6] A. Bovik, The Essential Guide to Video Processing. Elsevier, Burlington, MA,
USA, 2009, p. 755.

[7] CAST, Inc., “H264-MP-E: H.264/AVC HD & ED video encoder core,” Available
online: http://www.cast-inc.com/ip-cores/video/h264-mp-e/.

[8] H. C. Chang, J. W. Chen, C. L. Su, Y. C. Yang, Y. Li, C. H. Chang, Z. M. Chen,
W. S. Yang, C. C. Lin, C. W. Chen, J. S. Wang, and J. I. Guo, “A 7 mW to 183
mW dynamic quality-scalable H.264 video encoder chip,” in Proc. IEEE Int. Solid-
State Circuits Conf., Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2007, pp.
280-281.

[9] H. C. Chang, J. W. Chen, B. T. Wu, C. L. Su, J. S. Wang, and J. I. Guo, “A
dynamic quality-adjustable H.264 video encoder for power-aware video
applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 12, Dec.
2009, pp. 1739-1754.

[10] C. W. Chen, Z. Li, and S. Lian, Intelligent Multimedia Communication:
Techniques and Applications. Springer, Berlin, Germany, 2010, p. 506.

[11] C. Y. Chen, S. Y Chien, Y. W. Huang, T. C. Chen, T. C. Wang, and L. G. Chen,
“Analysis and architecture design of variable block-size motion estimation for
H.264/AVC,” IEEE Trans. Circuits Syst. I, vol. 53, no. 3, Mar. 2006, pp. 578-593.

[12] T. C. Chen, S. Y. Chien, Y. W. Huang, C. H. Tsai, C. Y. Chen, T. W. Chen, and L.
G. Chen, “Analysis and architecture design of an HDTV720p 30 frames/s
H.264/AVC encoder,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 6,
Jun 2006, pp. 673-688.

[13] T. C. Chen, Y. H. Chen, C. Y. Tsai, S. F. Tsai, S. Y. Chien, and L. G. Chen, “2.8 to
67.2mW low-power and power-aware H.264 encoder for mobile applications,” in

 References

86

Proc. IEEE VLSI Circuits Symp., Dig. Tech. Papers, Kyoto, Japan, Jun. 2007, pp.
222-223.

[14] T. C. Chen, Y. H. Chen, S. F. Tsai, S. Y. Chien, and L. G. Chen, “Fast algorithm
and architecture design of low-power integer motion estimation for H.264/AVC,”
IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 5, May 2007, pp. 568-577.

[15] T. C. Chen, Y. W. Huang, and L. G. Chen, “Fully utilized and reusable architecture
for fractional motion estimation of H.264/AVC,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., vol. 4, May 2004, pp. 9-12.

[16] Y. H. Chen, T. C. Chen, C. Y. Tsai, S. F. Tsai, and L. G. Chen, “Algorithm and
architecture design of power-oriented H.264/AVC baseline profile encoder for
portable devices,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 8, Aug.
2009, pp. 1118-1128.

[17] Y. K. Chen, E. Q. Li, X. Zhou, and S. Ge, “Implementation of H.264 encoder and
decoder on personal computers,” J. Vis. Commun. Image R., vol. 17, no. 2 , Apr.
2006, pp 509-532.

[18] Z. Chen, J. Xu, Y. He, and J. Zheng, “Fast integer-pel and fractional-pel motion
estimation for H.264/AVC,” J. Vis. Commun. Image R., vol. 17, no. 2, Apr. 2006,
pp. 264-290.

[19] C. H. Cheung and L. M. Po, “A novel cross-diamond search algorithm for fast
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no.
12, Dec. 2002, pp. 1168-1177.

[20] N. M. Cheung, X. Fan, O. C. Au, and M. C. Kung, “Video coding on multicore
graphics processors,” IEEE Signal Processing Mag., vol. 27, no. 2, Mar. 2010, pp.
79-89.

[21] W. Choi and B. Jeon, “Hierarchical motion search for H.264 variable-block-size
motion compensation,” SPIE Opt. Eng., vol. 45, no. 1, Jan. 2006, pp. 1-9.

[22] Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2009-2014,
Jun. 2010, p. 17.

[23] Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2009-2014, Jun. 2010, p. 15.

[24] Coda Research Consultancy Ltd., Worldwide Smartphone Sales Forecast to 2015,
May 2010, p. 36.

[25] L. F. Ding, W. Y. Chen, P. K. Tsung, T. D. Chuang, H. K. Chiu, Y. H. Chen, P. H.
Hsiao, S. Y. Chien, T. C. Chen, P. C. Lin, C. Y. Chang, and L. G. Chen, “A 212
MPixels/s 4096 x 2160p multiview video encoder chip for 3D/quad HDTV
applications,” in Proc. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, San
Francisco, CA, USA, Feb. 2009, pp. 154-155.

[26] L. F. Ding, W. Y. Chen, P. K. Tsung, T. D. Chuang, P. H. Hsiao, Y. H. Chen, H.
K. Chiu, S. Y. Chien, and L. G. Chen, “A 212 Mpixels/s 4096 x 2160p multiview
video encoder chip for 3D/quad full HDTV applications,” IEEE J. Solid-State
Circuits, vol. 45, no. 1, Jan. 2010, pp. 46-58.

[27] L. Deng, W. Gao, M. Z. Hu, and Z. Z. Ji, “An efficient hardware implementation
for motion estimation of AVC standard,” IEEE Trans. Consumer Electron., vol.
51, no. 4, Nov. 2005, pp. 1360-1366.

 References

87

[28] H. Everett, “Generalized Lagrange multiplier method for solving problems of
optimum allocation of resources,” Oper. Res., vol. 11, no. 3, May-Jun 1963, pp.
399-417.

[29] Eyelytics, Inc., “Main/baseline profile HD H264 encoder FPGA/ASIC IP,”
Available online: http://www.eyelytics.com/download/H264Encoder.pdf, Eyelytics
datasheet.

[30] X. Q. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel successive elimination
algorithm for block matching motion estimation,” IEEE Trans. Image Processing,
vol. 9, no. 3, Mar. 2000, pp. 501-504.

[31] M. Ghanbari, “The cross-search algorithm for motion estimation,” IEEE Trans.
Commun., vol. 38, no. 7, Jul. 1990 pp. 950-953.

[32] H. Gharavi and M. Mills, “Blockmatching motion estimation algorithms - new
results,” IEEE Trans. Circuits Syst. Video Technol., vol. 37, no. 5, May 1990, pp.
649-651.

[33] S. W. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory, vol. 12, no.
3, Jul. 1966, pp. 399-401.

[34] H265.net, Available online: http://www.h265.net/.
[35] W. J. Han, J. Min, I. K. Kim, E. Alshina, A. Alshin, T. Lee, J. Chen, V. Seregin, S.

Lee, Y. M. Hong, M. S. Cheon, N. Shlyakhov, K. McCann, T. Davies, and J. H.
Park, “Improved video compression efficiency through flexible unit representation
and corresponding extension of coding tools,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 12, Dec. 2010, pp. 1709-1720.

[36] H. M. Hang, W. H. Peng, C. H. Chan, and C. C. Chen, “Towards the next video
standard: high efficiency video coding,” Asia-Pacific Signal and Information
Processing Association Annual Summit and Conf., Dec. 2010, pp. 609-618.

[37] B. G. Haskell and J. O. Limb, “Predictive Video Encoding using Measured
Subjective Velocity,” U.S. Patent 3 632 865, Jan. 1972.

[38] X. He, X. Fang, C. Wang, and S. Goto, “Parallel HD encoding on CELL,” in Proc.
IEEE Int. Symp. Circuits Syst., Taipei, Taiwan, May 2009, pp. 1065-1068.

[39] F. J. Hens and J. M. Caballero, Triple Play: Building the Converged Network for
IP, VoIP and IPTV. John Wiley & Sons Ltd, Chichester, UK, 2008, p. 416.

[40] B. K. P. Horn and B. G. Schunk, “Determining optical flow,” Artificial
Intelligence, vol. 17, 1981, pp. 185-203.

[41] S. Y. Huang, C. Y. Cho, and J. S. Wang, “Adaptive fast block-matching algorithm
by switching search patterns for sequences with wide-range motion content,” IEEE
Trans. Circuits Syst. Video Technol., vol. 15, no. 11, Nov. 2005, pp. 1373-1384.

[42] Y. W. Huang, C. Y. Chen, C. H. Tsai, C. F. Shen, and L. G. Chen, “Survey on
block matching motion estimation algorithms and architectures with new results,”
J. VLSI Signal Processing, vol. 42, no. 3, Mar. 2006, pp. 297-320.

[43] Y. W. Huang, T. C. Chen, C. H. Tsai, C. Y. Chen, T. W. Chen, C. S. Chen, C. F.
Shen, S. Y. Ma, T. C. Wang, B. Y. Hsieh, H. C. Fang, and L. G. Chen, “A
1.3TOPS H.264/AVC single-chip encoder for HDTV applications,” in Proc. IEEE
Int. Solid-State Circuits Conf., Dig. Tech. Papers, San Francisco, CA, USA, Feb.
2005, pp. 128-129.

 References

88

[44] Y. W. Huang, B. Y. Hsieh, S. Y. Chien, S. Y. Ma, and L. G. Chen, “Analysis and
complexity reduction of multiple reference frames motion estimation in
H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 4, Apr. 2006,
pp. 507-522.

[45] Imagination Technologies, Ltd. “VXE382 video encoder IP core family,”
Available online: http://www.imgtec.com/powervr/powervr-vxe.asp.

[46] Intel Corp., “Core i7-980X processor extreme edition,” Intel Product Information,
Available online: http://ark.intel.com/Product.aspx?id=47932.

[47] Intel Corp., “Pentium 4 processor extreme edition,” Intel Product Information,
Available online: http://ark.intel.com/Product.aspx?id=27489.

[48] International Technology Roadmap for Semiconductors (ITRS), 2009 Update:
system drivers.

[49] ISO/IEC 11172-2, “Information technology - coding of moving pictures and
associated audio for digital storage media at up to about 1.5 Mbits/s - part 2:
video,” MPEG-1, ISO, 1993.

[50] ISO/IEC 13818-2, “Information technology - generic coding of moving pictures
and associated audio information - part 2: video,” MPEG-2, ISO, 1996.

[51] ISO/IEC 14496-2, “Information technology - coding of audio-visual objects - part
2: visual,” MPEG-4, ISO, 1999.

[52] ITU-R Recommendation BT.601-6, “Studio encoding parameters of digital
television for standard 4:3 and wide-screen 16:9 aspect ratios,” International
Telecommunication Union, 2007.

[53] ITU-T Recommendation G.992.5, “Asymmetric digital subscriber line (ADSL)
transceivers - extended bandwidth ADSL2 (ADSL2+),” International
Telecommunication Union, Jan. 2005.

[54] ITU-T (formerly CCITT) Recommendation H.120, “Codecs for videoconferencing
using primary digital group transmission,” International Telecommunication
Union, 1989.

[55] ITU-T Recommendation H.261, “Video codec for audiovisual services at px64
kbits/s,” International Telecommunication Union, Mar. 1993.

[56] ITU-T Recommendation H.263, “Video coding for low bit rate communication,”
International Telecommunication Union, Mar. 1996.

[57] ITU-T Recommendation H.264, “Advanced video coding for generic audiovisual
services,” International Telecommunication Union, Mar. 2009.

[58] J. R. Jain and A. K. Jain, “Displacement measurement and its application in
interframe image coding,” IEEE Trans. Commun., vol. 29, no. 12, Dec. 1981 pp.
1799-1808.

[59] Joint Video Team Reference Software, ver. JM 17.0, Available online:
http://iphome.hhi.de/suehring/tml/.

[60] JointWave, Inc., “Jointwave E760: H.264 encoder IP core,” Available online:
http://www.jointwave.com/intro_doc/Jointwave%20H.264%20Encoder%20Brochu
re%20E760.pdf, JointWave datasheet.

[61] C. Kappler, UMTS Networks and Beyond. John Wiley & Sons, Chichester, UK,
2009, p. 386.

 References

89

[62] L. J Karam, I. AlKamal, A. Gatherer, G. A. Frantz, D. V. Anderson, and B. L
Evans, “Trends in multicore DSP platforms,” IEEE Signal Processing Mag., vol.
26, no. 6, Nov. 2009, pp. 38-49.

[63] M. Karczewicz, P. Chen, R. L. Joshi, X. Wang, W. J. Chien, R. Panchal, Y.
Reznik, M. Coban, and I. S. Chong, “A hybrid video coder based on extended
macroblock sizes, improved interpolation, and flexible motion representation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 12, Dec. 2010, pp. 1698-
1708.

[64] N. Kehtarnavaz and M. N. Gamadia, Real-time Image and Video Processing: from
Research to Reality. Morgan and Claypool Publishers, USA, 2006, p. 96.

[65] J. Kim and T. Park, “A novel VLSI architecture for full-search variable block-size
motion estimation,” IEEE Trans. Consumer Electron., vol. 55, no. 2, May 2009,
pp. 728-733.

[66] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-compensated
interframe coding for video conferencing,” in Proc. National Telecommunication
Conf., New Orleans, LA, USA, 1981, pp. G5.3.1-5.3.5.

[67] H. Kruegle, CCTV Surveillance: Analog and Digital Video Practices and
Technology. Elsevier, Burlington, MA, USA, 2007, p. 656.

[68] P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4
Motion Estimation. Kluwer Academic Publishers, Dordrecht, The Netherlands,
1999, p. 239.

[69] I. Kuon and J. Rose, Quantifying and Exploring the Gap Between FPGAs and
ASICs. Springer, 2010, p. 180.

[70] J. Lainema and M. Karczewicz, “Skip mode motion compensation,” document
JVT-C027, Fairfax, VA, USA, May 2002, pp. 1-2.

[71] G. G. Lee, Y. K. Chen, M. Mattavelli, and E. S. Jang, “Algorithm/architecture co-
exploration of visual computing on emergent platforms: overview and future
prospects,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 11, Nov. 2009,
pp. 1576-1587.

[72] J. Lee and K. Yoo, ”Multi-algorithm targeted low memory bandwidth architecture
for H.264/AVC integer-pel motion estimation,” in Proc. IEEE Int. Conf.
Multimedia and Expo, Hannover, Germany, Jun. 2008, pp. 701-704.

[73] J. B. Lee and H. Kalva, The VC-1 and H.264 Video Compression Standards for
Broadband Video Services. Springer, 2009, p. 496.

[74] O. Lehtoranta, Parallel Encoder Implementations for High Quality Video. PhD
Thesis, Tampere University of Technology, Finland, Jan. 2007.

[75] A. Leontaris, P. C. Cosman, and A. M. Tourapis, “Multiple reference motion
compensation: a tutorial introduction and survey,” Foundations and Trends in
Signal Processing, vol. 2, no. 4, Apr. 2009, pp. 247-364.

[76] D. X. Li, W. Zheng, and M. Zhang, ”Architecture design for H.264/AVC integer
motion estimation with minimum memory bandwidth,” IEEE Trans. Consumer
Electron., vol. 53, no. 3, Aug. 2007, pp. 1053-1060.

[77] W. Li and E. Salari, “Successive elimination algorithm for motion estimation,”
IEEE Trans. Image Processing, vol. 4, no. 1, Jan. 1995, pp. 105-107.

 References

90

[78] Z. Li and A. M. Tourapis, “Motion estimation with entropy coding considerations
in H.264/AVC,” in Proc. IEEE Int. Conf. on Image Process., San Diego, CA,
USA, Oct. 2008, pp. 2140-2143.

[79] C. J. Lian, S. Y. Chien, C. P. Lin, P. C. Tseng, and L. G. Chen, “Power-aware
multimedia: concepts and design perspectives,” IEEE Circuits Syst. Mag., vol. 7,
no. 2, 2007, pp. 26-34.

[80] D. T. Lin and C. Y. Yang, “H.264/AVC Video encoder realization and acceleration
on TI DM642 DSP,” Lecture Notes in Computer Science, vol. 5414, Springer,
Berlin, Heidelberg, Jan. 2009, pp. 910-920.

[81] Y. K. Lin, D. W. Li, C. C. Lin, T. Y. Kuo, S. J. Wu, W. C. Tai, W. C. Chang, T. S.
Chang, “A 242 mW 10 mm2 1080p H.264/AVC high profile encoder chip,” in
Proc. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, San Francisco, CA,
USA, Feb. 2008, pp. 314-315.

[82] Y. K. Lin, C. C. Lin, T. Y. Kuo, and T. S. Chang, “A hardware-efficient
H.264/AVC motion-estimation design for high-definition video,” IEEE Trans.
Circuits Syst. I, vol. 55, no. 6, Jul. 2008, pp. 1526-1535.

[83] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion
vectors,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, no. 2, Apr. 1993, pp.
148-157.

[84] L. K. Liu and E. Feig, “A block-based gradient descent search algorithm for block
motion estimation in video coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, no. 4, Aug. 1996, pp. 419-422.

[85] Z. Liu, L. Li, Y. Song, S. Li, S. Goto, and T. Ikenaga, “Motion feature and
Hadamard coefficient-based fast multiple reference frame motion estimation for
H.264,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 5, May 2008, pp.
620-632.

[86] Z. Liu, Y. Song, M. Shao, S. Li, L. Li, S. Ishiwata, M. Nakagawa, S. Goto, and T.
Ikenaga, “A 1.41W H.264/AVC real-time encoder SoC for HDTV1080p,” in Proc.
IEEE VLSI Circuits Symp., Dig. Tech. Papers, Kyoto, Japan, Jun. 2007, pp. 12-13.

[87] Z. Liu, Y. Song, M. Shao, S. Li, L. Li, S. Ishiwata, M. Nakagawa, S. Goto, and T.
Ikenaga, “HDTV1080p H.264/AVC encoder chip design and performance
analysis,” IEEE J. Solid-State Circuits, vol. 44, no. 2, Feb. 2009, pp. 594-608.

[88] S. Ma, W. Gao, and Y. Lu, “Rate-distortion analysis for H.264/AVC video coding
and its application to rate control,” IEEE Trans. Circuits Syst. Video Technol., vol.
15, no. 12, Dec. 2005, pp. 1533-1544.

[89] D. Marpe, H. Schwarz, S. Bosse, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H.
Lakshman, T. Nguyen, S. Oudin, M. Siekmann, K. Sühring, M. Winken, and T.
Wiegand, “Video compression using nested quadtree structures, leaf merging, and
improved techniques for motion representation and entropy coding,” IEEE Trans.
Circuits Syst. Video Technol., vol. 20, no. 12, Dec. 2010, pp. 1676-1687.

[90] L. Merritt and R. Vanam, “Improved rate control and motion estimation for H.264
encoder,” in Proc. IEEE Int. Conf. on Image Process., vol. 5, San Antonio, TX,
USA, Sep. 2007, pp. 309-312.

[91] S. Mochizuki, T. Shibayama, M. Hase, F. Izuhara, K. Akie, M. Nobori, R. Imaoka,
H. Ueda, K. Ishikawa, and H. Watanabe, “A 64 mW high picture quality

 References

91

H.264/MPEG-4 video codec IP for HD mobile applications in 90 nm CMOS,”
IEEE J. Solid-State Circuits, vol. 43, no. 11, Nov. 2008, pp. 2354-2362.

[92] MPEG, ” Vision, applications and requirements for high efficiency video coding
(HEVC),” ISO/IEC/JTC1/SC29/WG11 N11872, Daegu, South Korea, Jan. 2011.

[93] K. M. Nam, J. S. Kim, R. H. Park, and Y. S. Shim, “A fast hierarchical motion
vector estimation algorithm using mean pyramid,” IEEE Trans. Circuits Syst.
Video Technol., vol. 5, no. 4, Aug. 1995, pp. 344-351.

[94] Y. Neuvo, “Cellular phones as embedded systems,” in Proc. IEEE Int. Solid-State
Circuits Conf., Dig. Tech. Papers, vol. 1, San Francisco, CA, USA, Feb. 2004, pp.
32-37.

[95] V. G . Oklobdzija, The Computer Engineering Handbook, CRC Press, Boca Raton,
FL, USA, 2002, p. 1408.

[96] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T.
Stockhammer, and T. Wedi, “Video coding with H.264/AVC: tools, performance,
and complexity,” IEEE Circuits Syst. Mag., vol. 4, no. 1, 2004, pp. 7-28.

[97] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“GPU computing,” Proc. IEEE, vol. 96, no. 5, May 2008, pp. 879-899.

[98] D. C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P.
Harvey, P. M. Harvey, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty,
Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley, D. L. Stasiak, M.
Suzuoki, O. Takahashi, J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa,
“Overview of the architecture, circuit design, and physical implementation of a
first-generation Cell processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1, Jan.
2006, pp. 179-196.

[99] L. M. Po and K. Guo, “Transform-domain fast sum of the squared difference
computation for H.264/AVC rate-distortion optimization,” IEEE Trans. Circuits
Syst. Video Technol., vol. 17, no. 6, Jun. 2007, pp. 765-773.

[100] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion
estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, Jun. 1996, pp.
313-317.

[101] Qualcomm, Inc., “Snapdragon chipsets,” Available online:
http://www.qualcomm.com/snapdragon.

[102] K. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages,
Applications. Academic Press, San Diego, CA, USA, 1990.

[103] Renesas Technology Corp., Available online: http://www.renesas.com/index.html.
[104] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for

Next-Generation Multimedia. John Wiley & Sons Ltd, Chichester, UK, 2003, p.
281.

[105] E. Salminen, T. Kangas, J. Riihimäki, V. Lahtinen, K. Kuusilinna, and T. D.
Hämäläinen, “HIBI communication network for system-on-chip,” J. VLSI Signal
Processing-Systems for Signal, Image, and Video Technology, Springer, vol. 43,
no. 2-3, Jun. 2006, pp. 185-205.

[106] P. Sangi, J. Heikkilä, and O. Silvén, “Selection of the Lagrange multiplier for
block-based motion estimation criteria,” in Proc. IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, vol. 3, Montreal, Canada, May 2004, pp. 325-328.

 References

92

[107] O. Silvén and K. Jyrkkä, “Observations on power-efficiency trends in mobile
communication devices,” EURASIP J. Embed. Syst., vol. 2007, pp. 1-10.

[108] W. Simpson and H. Greenfield, IPTV and Internet Video: Expanding the Reach of
Television Broadcasting. Elsevier, Burlington, MA, USA, 2007, p. 241.

[109] SMPTE Draft Standard for Television, “Proposed SMPTE standard for television:
VC-1 compressed video bitstream format and decoding process,” SMPTE
Technology Committee C24 on Video Compression Technology, Aug. 2005.

[110] Y. Song, Z. Liu, T. Ikenaga, and S. Goto, “Ultra low-complexity fast variable
block size motion estimation algorithm in H.264/AVC,” in Proc. IEEE Int. Conf.
Multimedia and Expo, Beijing, China, Jul. 2007, pp. 376-379.

[111] C. Stiller and J. Konrad, “Estimating motion in image sequences,” IEEE Signal
Processing Mag., vol. 16, no. 4, Jul. 1999, pp. 70-91.

[112] Y. Su and M. T. Sun, “Fast multiple reference frame motion estimation for
H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 3, Mar. 2006,
pp. 447-452.

[113] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Processing Mag., vol. 15, no. 6, Nov. 1998, pp. 74-90.

[114] O. Takahashi, C. Adams, D. Ault, E. Behnen, O. Chiang, S. R. Cottier, P.
Coulman, J. Culp, G. Gervais, M. S. Gray, Y. Itaka, C. J. Johnson, F. Kono, L.
Maurice, K. W. McCullen, L. Nguyen, Y. Nishino, H. Noro, J. Pille, M. Riley, M.
Shen, C. Takano, S. Tokito, T. Wagner, and H. Yoshihara, “Migration of Cell
Broadband Engine™ from 65nm SOI to 45nm SOI,” in Proc. IEEE Int. Solid-State
Circuits Conf., Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2008, pp. 86-87.

[115] T. K. Tan, G. Sullivan, and T. Wedi, “Recommended simulation common
conditions for coding efficiency experiments,” document VCEG-AA10, Nice,
France, Oct. 2005, pp. 1-5.

[116] M. Tanimoto, “Overview of free viewpoint television,” Signal Proces. Image
Commun., vol. 21, no. 6, Jul. 2006, pp. 454-461.

[117] TechArp, “CPU performance comparison guide rev. 1.7,” Available online:
http://www.techarp.com/.

[118] Texas Instruments, Inc., “TMS320DM642: video/imaging fixed-point digital signal
processor,” Texas Instruments datasheet, Available online:
http://focus.ti.com/lit/ds/symlink/tms320dm642.pdf.

[119] Texas Instruments, Inc., “TMS320DM368: digital media system-on-chip
(DMSoC),” Texas Instruments datasheet, Available online:
http://focus.ti.com/lit/ds/symlink/tms320dm368.pdf.

[120] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel unrestricted
center-biased diamond search algorithm for block motion estimation,” IEEE Trans.
Circuits Syst. Video Technol., vol. 8, no. 4, Aug. 1998, pp. 369-377.

[121] T. Toivonen, Efficient Methods for Video Coding and Processing. PhD Thesis,
University of Oulu, Oulu, Finland, Dec. 2007.

[122] A. M. Tourapis, O. C. Au, and M. L. Liou, “Highly efficient predictive zonal
algorithms for fast block-matching motion estimation,” IEEE Trans. Circuits Syst.
Video Technol., vol. 12, no. 10, Oct. 2002, pp. 934-947.

 References

93

[123] Y. K. Tu, J. F. Yang, and M. T. Sun, “Efficient rate-distortion estimation for
H.264/AVC coders,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 5,
May 2006, pp. 600-611.

[124] K. Ugur, K. Andersson, A. Fuldseth, G. Bjøntegaard, L. P. Endresen, J. Lainema,
A. Hallapuro, J. Ridge, D. Rusanovskyy, C. Zhang, A. Norkin, C. Priddle, T.
Rusert, J. Samuelsson, R. Sjöberg, and Z. Wu, “High performance, low complexity
video coding and the emerging HEVC standard,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 12, Dec. 2010, pp. 1688-1697.

[125] D. Vatolin, D. Kulikov, and A. Parshin, MPEG-4 AVC/H.264 Video Codecs
Comparison, The Graphics & Media Lab Video Group, Moscow, Russia, Apr
2010, p. 74.

[126] R. Verma and A. Akoglu, “A coarse grained and hybrid reconfigurable architecture
with flexible NoC router for variable block size motion estimation,” in Proc. IEEE
Int. Parallel & Distributed Processing Symposium, Miami, FL, USA, Apr. 2008,
pp. 1-8.

[127] J. Wang and G. Hua, “Implementing high definition video codec on TI DM6467
SoC,” in Proc. IEEE Int. SoC Conf., Newport Beach, CA, USA, Sep. 2008, pp.
193-196.

[128] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen, “Parallel 4 4× 2D
transform and inverse transform architecture for MPEG-4 AVC/H.264,” in Proc.
IEEE Int. Symp. Circuits Syst., vol. 2, Bangkok, Thailand, May 2003, pp. 800-803.

[129] T. Wedi and H. G. Musmann, “Motion- and aliasing-compensated prediction for
hybrid video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7,
Jul. 2003, pp. 577-586.

[130] C. Wei, H. Hui, T. Jiarong, L. Jinmei, and Min Hao, “A high-performance
reconfigurable VLSI architecture for VBSME in H.264,” IEEE Trans. Consumer
Electron., vol. 54, no. 3, Aug. 2008, pp. 1338-1345.

[131] C. Wei, H. Hui, L. J. Mei, M. Z. Gang, T. J. Rong, and M. Hao, “A novel
reconfigurable VLSI architecture for motion estimation,” in Proc. IEEE Int. Conf.
on ASIC, Guilin, China, Oct. 2007, pp. 774-777.

[132] T. Wiegand, J. R. Ohm, G. J. Sullivan, W. J. Han, R. Joshi, T. K. Tan, and K.
Ugur, “Special section on the joint call for proposals on high efficiency video
coding (HEVC) standardization,” IEEE Trans. Circuits Syst. Video Technol., vol.
20, no. 12, Dec. 2010, pp. 1661-1666.

[133] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan, “Rate-
constrained coder control and comparison of video coding standards,” IEEE Trans.
Circuits Syst. Video Technol., vol. 13, no. 7, Jul. 2003, pp. 688-703.

[134] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 7, Jul. 2003, pp. 560-576.

[135] W. Wolf, “Multiprocessor system-on-chip technology,” IEEE Signal Processing
Mag., vol. 26, no. 6, Nov. 2009, pp. 50-54.

[136] x264, Available online: http://www.videolan.org/developers/x264.html.

 References

94

[137] S. Y. Yap and J. V. McCanny, “A VLSI architecture for variable block size video
motion estimation,” IEEE Trans. Circuits Syst. II, vol. 51, no. 7, Jul. 2004, pp. 384-
389.

[138] X. Yi, J. Zhang, N. Ling, and W. Shang, “Improved and simplified fast motion
estimation for JM,” document JVT-P021, Poznan, Poland, Jul. 2005, pp. 1-20.

[139] YouTube, “YouTube fact sheet,” Available online:
http://www.youtube.com/t/press.

[140] S. Zafar, Y. Q. Zhang, and J. S. Baras, “Predictive block-matching motion
estimation for TV coding - part I: inter-block prediction,” IEEE Trans. Broadcast.,
vol. 37, no. 3, Sep. 1991, pp. 97-101.

[141] J. Zhang, X. Yi, N. Ling, and W. Shang, “Context adaptive Lagrange multiplier
(CALM) for rate-distortion optimal motion estimation in video coding,” IEEE
Trans. Circuits Syst. Video Technol., vol. 20, no. 6, Jun. 2010, pp. 820-828.

[142] L. Zhang and W. Gao, “Reusable architecture and complexity-controllable
algorithm for the integer/fractional motion estimation of H.264,” IEEE Trans.
Consumer Electron., vol. 53, no. 2, May 2007, pp. 749-756.

[143] Y. Q. Zhang and S. Zafar, “Predictive block-matching motion estimation for TV
coding - part II: inter-frame prediction,” IEEE Trans. Broadcast., vol. 37, no. 3,
Sep. 1991, pp. 102-105.

[144] C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based search pattern for fast block
motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 5, May
2002, pp. 349-355.

[145] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block-matching
motion estimation,” IEEE Trans. Image Processing, vol. 9, no. 2, Feb. 2000, pp.
287-290.

 95

Publications

Publication 1

J. Vanne, E. Aho, T. D. Hämäläinen, and K. Kuusilinna, “A high-performance sum of
absolute difference implementation for motion estimation,” IEEE Trans. Circuits Syst.
Video Technol., vol. 16, no. 7, Jul. 2006, pp. 876-883.

© 2006 IEEE. Reprinted with permission.

kulkki
Text Box
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the Tampere University of Technology's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this material, you agree to all provisions of the copyright laws protecting it.

876 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006

A High-Performance Sum of Absolute Difference Implementation
for Motion Estimation

Jarno Vanne, Eero Aho, Timo D. Hämäläinen, and Kimmo Kuusilinna

Abstract—This paper presents a high-performance sum of ab-
solute difference (SAD) architecture for motion estimation, which
is the most time-consuming and compute-intensive part of video
coding. The proposed architecture contains novel and efficient
optimizations to overcome bottlenecks discovered in existing
approaches. In addition, designed sophisticated control logic with
multiple early termination mechanisms further enhance execution
speed and make the architecture suitable for general-purpose
usage. Hence, the proposed architecture is not restricted to a
single block-matching algorithm in motion estimation, but a wide
range of algorithms is supported. The proposed SAD architecture
outperforms contemporary architectures in terms of execution
speed and area efficiency. The proposed architecture with three
pipeline stages, synthesized to a 0.18- m CMOS technology, can
attain 770-MHz operating frequency at a cost of less than 5600
gates. Correspondingly, performance metrics for the proposed
low-latency 2-stage architecture are 730 MHz and 7500 gates.

Index Terms—Early termination mechanism, motion estimation,
sum of absolute difference (SAD), SAD architecture.

I. INTRODUCTION

BLOCK-BASED motion estimation searches for the best
matching block between the current and reference mac-

roblocks (MBs). For the operation, the sum of absolute differ-
ences (SAD) is one of the most frequently employed criteria
[1], [2]. As a result, motion estimation produces a motion vector
(MV), which represents the motion of the MB.

Well known full-search (FS) is the simplest, but the most
computation-intensive block-matching algorithm (BMA). To
decrease the computational complexity, numerous optimized
search algorithms have been developed including three-step
search (TSS) [3] and new diamond search (DS) [4]. However,
motion estimation still clearly dominates the whole encoding
process. With DS algorithm, it is shown to be near 50% of all
the complexity in an MPEG-4 video encoder [5]. Since a major
part of motion estimation is pure SAD computation, it is well
motivated to focus on SAD architectures.

An optimal hardware realization for SAD computation varies
for different BMAs. Systolic architectures are a good match for
FS due to simplicity and regularity [2], [6], but not for irregular
BMAs including DS. Architectures, which are better tailored for
irregular BMAs, are considered in [6]–[11].

Manuscript received May 9, 2005; revised September 9, 2005 and December
22, 2005. This work was supported in part by the Academy of Finland under
Grant 104487, Tampere Graduate School in Information Science and Engi-
neering, Nokia Foundation, Emil Aaltonen Foundation, Heikki and Hilma
Honkanen Foundation, and HPY Foundation. This paper was recommended by
Associate Editor L.-G. Chen.

J. Vanne, E. Aho, and T. D. Hämäläinen are with the Institute of Digital and
Computer Systems, Tampere University of Technology, FI-33101 Tampere, Fin-
land (e-mail: jarno.vanne@tut.fi).

K. Kuusilinna is with Nokia Research Center, FI-33721 Tampere, Finland.
Digital Object Identifier 10.1109/TCSVT.2006.877150

Compared to referenced SAD architectures, our proposal in-
cludes modified elements, which process arithmetic operations
in a novel and efficient way. In addition, the proposed architec-
ture provides several early termination mechanisms and sophis-
ticated SAD computation control.

The rest of the paper is organized as follows. Section II
describes the related work with SAD architectures supporting
irregular BMAs. Section III considers the theory related to the
proposed SAD algorithm. Section IV proposes our novel SAD
architecture unit by unit. Performance comparisons between
contemporary SAD architectures and our architecture are
shown in Section V. Section VI concludes the paper.

II. PREVIOUS WORK

This paper merely concentrates on SAD implementations. At
the current block location , the SAD criterion is defined as

(1)
where and indicate pixels of the
current block and the reference frame, respectively. The size of
the block is and SAD computation is performed in the
search area location which is the displacement of the can-
didate block compared to the current block. The candidate block
yielding the minimum SAD value determines for
the location .

SAD architecture can functionally be divided into three
stages: absolute difference calculation, accumulation of abso-
lute differences, and minimum SAD determination.

A. Absolute Difference Calculation

The purpose of the first stage is to calculate absolute differ-
ences between the candidate and current MB pixels.

Vassiliadis et al. in [7] introduce a unit customized for de-
tecting and inverting the smaller one of the pixel values. This
paper refers to the unit as Vassiliadis’ smaller operand inverter.
The unit calculates inversion with one’s complement arithmetic.
Hence, to obtain finally a proper two’s complement SAD value,
the introduced inversion error has to be compensated afterwards
by an additional correction term.

Another absolute difference unit is presented by Jehng et al.
in [6]. The unit produces an absolute difference with a one’s
complement adder surrounded by a few logic gates. The imple-
mentation is called Jehng’s absolute difference unit.

The third conventional absolute difference unit is presented
by Chen et al. in [10]. It is an improved embodiment of Jehng’s
unit and it is referred to as Chen’s absolute difference unit. In
the unit, the low performance end-around carry chain in one’s

1051-8215/$20.00 © 2006 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006 877

complement adder is removed and the possible one-bit error is
compensated later by a correction bit.

B. Accumulation of Absolute Differences

In the second stage, the produced absolute differences are ac-
cumulated. Parallelization that is exploited in the pixel accumu-
lation can vary from purely serial to fully parallel.

Jehng et al. in [6] present an accumulation unit to be used
with Jehng’s absolute difference units. In this paper, the adder
tree implementation is called Jehng’s adder tree unit.

Despite the additional correction bits, Chen’s absolute differ-
ence units are also well suited for the adder tree. The correction
bit accumulation is implemented by substituting the correction
bits to the carry-in inputs of the adders in the tree. The modified
tree is referred to as Chen’s adder tree unit [8].

The accumulation of absolute differences can also be imple-
mented with CSA tree unit [12], [13]. The carry–save adder
(CSA) tree compresses the incoming absolute differences to
carry and sum vectors. The carry propagation is performed
during the last stage with a fast adder. Designing the CSA tree
structure with more complex calculation elements [14] than
full- and half adders is out of the scope of this paper.

Chen et al. in [9] present a recursive CSA tree for SAD com-
putation. It is hereafter called Chen’s compression array unit.
Besides absolute differences and correction bits, Chen’s com-
pression array is capable of compressing previously compressed
carry and sum vectors which are fed back to the array. Contrary
to the accumulation units presented above, Chen’s compression
array produces two output vectors which are added together in
the minimum SAD determination stage.

Vassiliadis’ smaller operand inverters could also be coupled
to the presented four accumulation units. However, each Vassil-
iadis’ unit produces two output values and a common correction
term. Therefore, the used accumulation unit has to be extended
for input values in order to complete two’s complement
partial SAD value for pixels in one stage.

C. Minimum SAD Determination

Typically, conventional architectures execute the minimum
SAD determination stage in two successive phases. In the first
phase, two partial SAD values are added together to compute
the current SAD value, whereas the resulting SAD value is com-
pared to the minimum SAD value in the second phase. To speed
up the operation, Chen et al. [10] present an enhanced minimum
SAD determination unit here called Chen’s MV determination
unit. It performs SAD value comparison without completing ac-
tual SAD values at all. SAD values are utilized for comparison
purposes only and the MV is the output from the unit.

III. PROPOSED SAD ALGORITHM

Let us consider a single SAD operation performed between
two blocks. In this special case, locations and

are fixed in (1). Therefore, (1) can be rewritten to

(2)

Since all and are nonnegative -bit numbers, all
can also be presented with bits.

The proposed absolute difference calculation stage computes
absolute differences according to Theorem 1.

Theorem 1: For a single operand pair ,
absolute difference can be expressed as

(3)

where and
are one’s complement representations of and ,

respectively.
Proof: For ,

(4)

Since , , i.e.,
generates always a carry . Hence, operand can

be ignored in (4) and 1 has to be added to in order to
yield the correct result .

For , and

(5)

(6)

As shown in (5) and (6), the correct result in this case is obtained
by taking one’s complement of .

Let us assume that the proposed absolute difference calcu-
lation stage completes simultaneously absolute differences,
i.e., for are computed
in parallel. Hence, absolute differences can also be accumu-
lated in parallel. Without loss of generality, let out of accu-
mulated absolute differences be cases and ab-
solute differences be cases. The accumulation yields
a SAD value for absolute differences as

(7)

Since addition of real numbers is an associative operation, the
operands (, in (7) can be in arbi-
trary order.

To complete a SAD value (2) for blocks,
values (for) have to be computed and
added together. As in [9], parallelism and time-multiplexed
hardware reuse of the proposed accumulation stage are
increased by utilizing a recursive implementation. Via recur-
sion, a single value computation and the addition

878 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006

of it to the sum of the already-computed values
can be performed

in parallel.
In practice, the proposed accumulation stage produces two

addition terms called sum and carry vec-
tors, where

. The and values are re-
cursively obtained as

(8)

for with .
The complete SAD value equals

.
In the proposed minimum SAD determination stage,

and values are added together to com-
plete value. In parallel with the computation,

value is also compared against the current
minimum SAD value (MIN_SAD). Theorem 2 determines a
new minimum SAD value.

Theorem 2: A new minimum SAD value has been found, if

(9)

i.e if the addition in (9) generates no carry. In (9),
is two’s complement repre-

sentation of MIN_SAD, ,
, and

.
Proof: The smaller one of the operands

and MIN_SAD is detected with
the following inequality checking:

(10)

(11)

(12)

IV. PROPOSED HARDWARE IMPLEMENTATION

The proposed units are designed for the system in which
and . However, the units can be modified to

support other bit widths and levels of parallelism as well.

A. Proposed Absolute Difference Unit

The proposed absolute difference unit is depicted in Fig. 1.
The unit implements the functionality presented in (3) for the
pixels and , where bit widths are marked with
MSB LSB notation. If , the adder in Fig. 1. yields a
result (5). Hence, no carry bit

Fig. 1. Proposed absolute difference unit.

is generated ' ' and the inverted bit is used to bit-
invert (one’s complement) the result to a correct absolute
difference. Otherwise, and the result

(4) implies that ' '. In that case, the result
and bit can be forwarded as a correction

bit. Notation ’ ' signifies
that the correction bit (’0’/’1’) is missing from the result.

As in Chen’s implementation, a low-performance end-around
carry chain used in Jehng’s absolute difference unit is elimi-
nated in the proposed unit. However, contrary to Chen’s unit, the
carry-in of the adder can also be removed in the proposed im-
plementation. In addition, the structure of the proposed unit en-
ables immediate correction bit addition without increased delay.
As depicted in Fig. 1, the correction bits (C0 and C1) of the
two adjacent absolute difference units are added together with
a half adder (HA) in parallel with output XORs of the units. The
generated 2-bit correction bit vectors (C C) are
well suited to the proposed compression array in the subsequent
stage.

B. Proposed Compression Array Unit

The proposed compression array unit presented in Fig. 2 im-
plements the functionality of (8). It executes absolute difference
and correction bit vector accumulations using separate CSA
trees. A 6-stage CSA tree is designed to receive and compress all
the ’ values, as well as C0 1, , and
vectors. A 3-stage CSA tree is targeted for partial accumulation
of the other correction bit vectors. In all the CSAs, the outputs
on the left produce partial carries, whereas the right-hand out-
puts are for partial sums.

Before a new SAD value accumulation can begin,
and vectors are initialized to zero. In Fig. 2, an ini-
tialization structure controlled by a single signal (INIT) is de-
picted inside the square.

During operation, the sum and carry bits produced by the
3-stage CSA tree are inserted one by one into proper CSA in-
puts available in the 6-stage CSA tree. In Fig. 2, each letter (to

) indicates a connection required between the two CSA trees.
The bit stages are indicated with a bold font. In turn, LSBs of

and vectors are imme-
diately inserted to the first stage of the 6-stage CSA tree. The
intermediate bits of these vectors (and) are indi-
vidually inserted into the tree, whereas the MSBs of these vec-
tors (and) are added in the final stage.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006 879

Fig. 2. Proposed compression array unit.

The proposed compression array reduces the number of
operands at the earliest opportunity. Although this causes some
area overhead, it also diminishes common bit positions involved
in and vectors. In this context, a bit position
is common for two vectors, if the bit position belongs to the
index ranges of both vectors. Due to the enhanced correction
bit accumulation, the proposed compression array is capable
of compressing the number of common bit positions to 13
(i.e., and). Without the correction bit
accumulation, the proposed compression array could reduce
the number of common bit positions to 12. Hence, the inclusion
of the correction bits involves only one additional common bit
position.

C. Proposed Minimum SAD Determination Unit

The proposed minimum SAD determination unit in Fig. 3 in-
cludes a novel structure for a parallel SAD value comparison
and SAD value calculation. Contrary to Chen’s approach, the
proposed unit produces a complete minimum SAD value which
can be exploited by other parts of the video encoder including
INTRA/INTER mode decision [1]. The motion vector determi-
nation is excluded from this paper.

The unit performs the comparison presented in (9) for the
operands , and MIN_SAD. A 2-input OR gate
manages the constant one bit addition which is required to con-
vert the bit-inverted MIN_SAD value to two’s complement rep-
resentation. The CSA compression yields two difference vectors
(and) which are added together. The adder
outputs only the most significant sum bit which signifies
the result of the inequality checking.

Fig. 3. Proposed minimum SAD determination unit without TM0-TM3.

In parallel with SAD value comparison, value is
calculated by adding and values together.
A complete SAD value computation requires 16
passes through the unit. Since an operationally decisive
SAD value comparison is performed between and
MIN_SAD values, a specific control input (CMPR) indi-
cating the proper time for comparison is only asserted during
the final pass. If ' ' after the final pass comparison,

880 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006

Fig. 4. Proposed minimum SAD determination unit with TM0-TM3.

and value is selected by a mul-
tiplexer ' ' and stored in the registers as the
new minimum SAD value.

The first SAD value computed for a zero motion vector
(zero MV) is processed differently due to the absence of the
minimum SAD value. This special case is indicated by one
of the input control signals (ZERO_SAD). Regardless of the
comparison result, the calculated SAD value for the zero MV
is selected as the new minimum SAD value. In the considered
cases, a new minimum SAD value activates two output control
signals (SAD_RDY and MIN_RDY). Otherwise, the minimum
SAD value is maintained in registers and only one control
signal (SAD_RDY) is active after the comparison.

D. Implemented Early Termination Mechanisms

Early termination mechanisms eliminate unnecessary cal-
culations in SAD computation. The proposed architecture
implements four different early termination mechanisms
(TM0-TM3). TM0-TM2 are also considered in [11], but the
implementation techniques differ from the proposed one.

TM0 monitors the temporary SAD value accumulated by the
compression array. The mechanism interrupts the ongoing SAD
computation if the accumulated SAD value exceeds a predeter-
mined threshold value. In the proposed compression array, a de-
sired output bit of vector can be selected as an inter-
rupt signal. As discussed in [11], the utilization of the threshold
value can enable a narrower compression array implementation.
However, the bit width reduction without over restricting SAD
values causes diminutive area savings in the proposed compres-
sion array. In addition, the bit width reduction maintains the
array height, so the delay of the array remains the same. Thus, a
full width compression array is a reasonable solution. The other
mechanisms are included in the proposed minimum SAD deter-
mination unit shown in Fig. 4.

TM1 monitors the most significant sum bit of the adder.
' ' before or during comparison denotes that

. The violation is indicated by a single control signal

Fig. 5. Proposed 3-stage SAD architecture.

(). Due to the absence of the valid minimum SAD
value, the violation is ignored during SAD computation of the
zero MV.

TM2 examines whether the current SAD value is under
the predetermined threshold value. The mechanism is only
supported within SAD computation for the zero MV. Threshold
exceeding detection is accomplished by the logic used normally
for the comparison of and values (9). Hence,
an additional multiplexer is required to select either
value or threshold (TH) value for the comparison logic. In turn,
an activated control signal () indicates an exceeded
TH value.

The proposed unit also supports the use of multiple threshold
values. After the current TH value is exceeded, the subsequent,
larger, TH value can be fed in during the next cycle. The one
cycle delay between successive TH values prevents the exami-
nations of the remaining larger TH values if the TH value is ex-
ceeded during the final cycle before the SAD value completion.
Unexamined, larger, TH values may, in the worst case, induce
unnecessary calculations, but a proper result is still returned. On
the other hand, the detection of the exceeded threshold value
could also be performed completely in parallel by duplicating
the comparison part of the unit. Parallel threshold value detec-
tion would reduce the unit delay due to the avoided multiplexer
and would remove the delay between successive threshold value
examinations. However, the area increase would be relatively
high due to the duplicated comparison logic.

TM3 favors SAD value for the zero MV. In practice, a pre-
defined constant referred to as zero bonus is subtracted from
SAD value for the zero MV. Here, the two’s complemented
zero bonus () is assumed to be determined at
design time, although it could also be one of the unit inputs
being adjustable at run time. Before calculating value for
the zero MV, an additional CSA performs an addition between

, , and . The value is
clipped to 0 if .

E. Proposed Overall SAD Architecture

Fig. 5 depicts the high-level structure containing all the pro-
posed units as well as all the discussed early termination mech-
anisms. The architecture is divided into three pipeline stages.
The first pipeline stage is composed of 16 proposed absolute

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006 881

TABLE I
AREA AND DELAY ESTIMATES FOR THE REFERENCED AND PROPOSED UNITS OF THE SAD ARCHITECTURE

difference units. In turn, the second and third stages include the
proposed compression array and the minimum SAD determina-
tion unit, respectively. The pipeline registers are depicted only
after the first two stages, since the registers of the last stage are
included in the minimum SAD determination unit.

V. PERFORMANCE ANALYSIS

This analysis is restricted to SAD implementations which op-
erate 16 pixels in parallel.

A. Theoretical Analysis

As in [15], the area cost for -input basic gates is assumed to
be cost-units (CUs), expect for XOR and XNOR gates having

CUs. In turn, the delay for all the gates is supposed to be 1
. Registers, interconnections, and fan-out/fan-in related issues

are excluded from the calculations.
Table I tabulates the theoretical delay and area estimates for

the evaluated units. The units are divided into three groups: ab-
solute difference units (), accumulation units
(), and minimum SAD determination units
(). Compatibility between successive units is
tabulated in the third column, e.g., the unit is compat-
ible with the unit.

Available 2-operand adders in the units are analyzed as
being implemented with ripple-carry adders (RCAs) and
carry-lookahead adders (CLAs). Theoretical performance
estimates for CLAs are averages of 2-input and -input
gate versions of CLA. For the compression array units
(and), only single perfor-
mance metrics are reported, since these units are analyzed as
being implemented completely with CSAs.

Let us first consider the reported results of the absolute dif-
ference units. In all the cases, the area cost is calculated for
16 units. The proposed unit attains higher performance
and evidently better area efficiency over Jehng’s () and

Chen’s () implementations. Performance of the proposed
ABS_3 unit is even equal to Vassiliadis’ unit, which
only detects the larger one of the input operands. Hence, the
CLA-based unit is a desirable solution for high-perfor-
mance applications, whereas the RCA-based unit is tar-
geted for area efficient systems.

Three types of compatible accumulation units are evaluated
per each absolute difference unit: adder tree, CSA tree, and com-
pression array. For example, the – units are par-
ticularly designed for the unit. Word “tailored” attached
to the accumulation unit description denotes that the unit is mod-
ified from the original implementation in order to be compatible
with the targeted absolute difference unit. In addition, the func-
tionally essential initialization logic for the sum and carry vector
is attached to Chen’s unit. Although some of the adder
tree and CSA tree configurations have higher area efficiency
than the compression arrays, the , and

units evidently outperform respective approaches in
terms of execution speed. Compared to the other compression
arrays, the unit has significantly lower performance.
In turn, although the unit is as fast as the and

units, the performance of the compatible unit
is not sufficient. Hence, the and units with
the compatible absolute difference units are the most compet-
itive approaches. Compared to the unit, the number of
common bit positions involved in the output vectors is reduced
in the proposed unit. The common bit position reduc-
tion enables the usage of narrower adders and registers in the fol-
lowing minimum SAD determination unit. Hence, the
unit is the best solution since a diminutive area overhead of it is
more than compensated by area savings in the minimum SAD
determination unit.

The analyzed minimum SAD determination units are partic-
ularly tailored for the preferred and units. In
addition, the logic required for the motion vector determination

882 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006

Fig. 6. Pipeline schemes for the proposed SAD architecture.

TABLE II
AREA AND DELAY ESTIMATES FOR THE MOST COMPETITIVE

SAD ARCHITECTURES

is excluded from Chen’s unit. According to reported re-
sults, the proposed unit provides the fastest implemen-
tation. As shown by the unit, the presented early ter-
mination mechanisms can be included in the proposed unit very
efficiently. In addition, delay increase in RCA-based implemen-
tations tends to be far more significant than area savings. Hence,
the CLA-based unit is considered the best.

B. Pipelining

Fig. 6 depicts 2- and 3-stage pipelining schemes for the best
overall SAD architecture . For
illustration purposes, “as late as possible” scheduling is used in
the schemes. The pipeline stages (R) are theoretically balanced
in adder level granularity. In the proposed 2-stage scheme, the
optimal location for the intermediate pipeline stage is after the
fourth CSA stage of the compression array. In turn, the 3-stage
pipelining follows the implementation in Fig. 5. The RCA-based
ABS_3 units are adequately fast to be used in 3-stage schemes,
but faster CLA-based units are required for 2-stage schemes.

The theoretical area and delay metrics for the proposed SAD
architecture are tabulated in Table II, which also summarizes
performance metrics for the most competitive SAD architec-
tures: Chen’s architecture and the
proposed one without early termination mechanisms

. Both 2- and 3-stage pipelining schemes are
analyzed. Registers are also included in the calculations in order
to take pipelining overheads into account.

Compared to Chen’s 2- and 3-stage architectures, the per-
formance improvement of the proposed architectures is over
10% and 5%, respectively. The performance gap is wider with
2-stage architectures, since the proposed architectures can effi-
ciently overlap the execution of successive units (Fig. 6). The
inclusion of early termination mechanisms causes a slight area
overhead in 3-stage architecture. In other cases, the proposed
architecture is also more area efficient than Chen’s approach.

The importance of the proposed optimizations is emphasized
by the major role of SAD computation in video encoding. E.g., if

TABLE III
SYNTHESIS RESULTS FOR THE PROPOSED SAD ARCHITECTURE

DS algorithm is applied for full-pixel block-matching, encoding
16CIF (1408 1152) format at 30 frames per second requires
approximately 3 million SAD operations per second. The pro-
posed 3-stage architecture completes the 3 million SAD values
50 (5%) faster than corresponding Chen’s architecture. The
delay gap is widened to 150 (10%) between 2-stage archi-
tectures. Inclusion of fractional pixel estimation would increase
the delay gap further.

C. Synthesis Results

The area and timing results based on logic synthesis are pro-
vided in Table III for the proposed 2- and 3-stage architec-
tures . The applied technology is

CMOS process. The area values (gate count) are based
on equivalent 2-input NAND gates, whereas the delay values
represent the critical path in the pipelined architectures. Regis-
ters are included in the results.

With the selected technology, the proposed 3-stage SAD ar-
chitecture is capable of operating at a frequency of 770 MHz,
and costs the equivalent of 5600 NAND gates. Correspondingly,
the 2-stage architecture can be clocked at 730 MHz at a cost of
7500 NAND gates. Lowering the operating frequency require-
ments could be used to decrease the silicon area.

To conclude the analysis, the proposed 3-stage architecture
is a very good implementation for high throughput and area ef-
ficient systems in which three cycle latency is acceptable. In
turn, the proposed 2-stage architecture is a feasible solution for
low-latency systems as well as for 400-MHz systems and below.
Very irregular block-matching algorithms and efficient use of
early termination mechanisms favors the selection of 2-stage ar-
chitecture.

VI. CONCLUSION

In a video encoder, motion estimation can consume up to
half of the execution time. To reduce resources and computa-
tion power required for motion estimation, an optimized and ef-
ficient SAD architecture was presented in this paper. In addition,
sophisticated control and several early termination mechanisms
were presented for the architecture. The theoretical analysis of
the paper illustrate that the proposed SAD architecture outper-
forms contemporary approaches. Furthermore, the synthesis re-
sults verify that the proposed architecture achieves very high
execution speed at a cost of manageable silicon area.

REFERENCES

[1] V. Bhaskaran and K. Konstantinides, Image and Video Compression
Standards: Algorithms and Architectures, 2nd ed. Amsterdam, The
Netherlands: Kluwer Academic, 1997.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006 883

[2] P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for
MPEG-4 Motion Estimation. Amsterdam, The Netherlands: Kluwer
Academic, 1999.

[3] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion
compensated interframe coding for video conferencing,” in Proc. Nat.
Telecommun. Conf., New Orleans, LA, USA, 1981, pp. G5.3.1–5.3.5.

[4] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Trans. Image Process., vol. 9, no.
2, pp. 287–290, Feb. 2000.

[5] O. Lehtoranta and T. D. Hämäläinen, “Complexity analysis of spatially
scalable MPEG-4 encoder,” in Proc. Int. Symp. System-on-Chip, Tam-
pere, Finland, Nov. 2003, pp. 57–60.

[6] Y. S. Jehng, L. G. Chen, and T. D. Chiueh, “An efficient and simple
VLSI tree architecture for motion estimation algorithms,” IEEE Trans.
Signal Process., vol. 41, no. 2, pp. 889–900, Feb. 1993.

[7] S. Vassiliadis, E. A. Hakkennes, S. Wong, and G. G. Pechanek, “The
sum-absolute-difference motion estimation accelerator,” in Proc. 24th
Euromicro Conf., Västerås, Sweden, Aug. 1998, pp. 559–566.

[8] Q. Shu and H. Chen, “An efficient implementation of motion estima-
tion algorithms,” in Proc. 4th Int. Conf. Solid-State and Integr. Circuit
Technol., Oct. 1995, pp. 697–699.

[9] H. Chen and Q. Shu, “Apparatus for implementing a block matching al-
gorithm for motion estimation in video image processing,” U.S. Patent
5 864 372, Jan. 26, 1999.

[10] H. Chen and Q. Shu, “Adaptive block-matching motion estimator with
a compression array for use in a video coding system,” U.S. Patent
5 838 392, Nov. 17, 1998.

[11] D. Guevorkian, A. Launiainen, and P. Liuha, “Method for performing
motion estimation in video encoding, a video encoding system and a
video encoding device,” U.S. Patent Appl. Publication 2003/0043911
A1, Mar. 6, 2003.

[12] C. Wallace, “A suggestion for parallel multipliers,” IEEE Trans. Elec-
tron. Comput., vol. EC-13, pp. 14–17, 1964.

[13] B. Parhami, Computer Arithmetic: Algorithms and Hardware De-
signs. Oxford, U.K.: Oxford Univ. Press, 1999.

[14] L. Dadda, “Some schemes for parallel multipliers,” Alta Freq., vol. 34,
pp. 349–356, May 1965.

[15] A. R. Omondi, Computer Arithmetic Systems: Algorithms, Architecture
and Implementations. Hertfordshire, U.K.: Prentice Hall Int., 1994.

Publication 2

J. Vanne, E. Aho, T. D. Hämäläinen, and K. Kuusilinna, “A parallel memory system for
variable block-size motion estimation algorithms,” IEEE Trans. Circuits Syst. Video
Technol., vol. 18, no. 4, Apr. 2008, pp. 538-543.

© 2008 IEEE. Reprinted with permission.

kulkki
Text Box
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the Tampere University of Technology's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this material, you agree to all provisions of the copyright laws protecting it.

538 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 4, APRIL 2008

A Parallel Memory System for Variable Block-Size
Motion Estimation Algorithms

Jarno Vanne, Eero Aho, Timo D. Hämäläinen, and Kimmo Kuusilinna

Abstract—This paper proposes an efficient parallel memory
system for algorithms applied in fixed and variable block-size
motion estimation (VBSME). The proposed system is implemented
by a novel combination of two parallel memory architectures.
The distribution of data among the memory modules is modi-
fied over contemporary approaches and the optimized address
computation unit enables a rapid address generation for accessed
memory locations. Furthermore, the introduced data permutation
scheme organizes data efficiently for storage and retrieval. The
proposed system enables up to speedup in data storage and
retrieves data up to 55% faster for VBSME compared with the
reference implementations. With a 0.18- m CMOS technology,
the proposed memory addressing and data permutation scheme
can be clocked at 980 MHz operating frequency with a cost of less
than 6 kgates. On FPGA, the system can operate at 200 MHz with
less than 700 logic elements. The results show that the proposed
system is applicable to real-time VBSME at HDTV resolution.

Index Terms—Address computation, data permutation, motion
estimation, parallel memory.

I. INTRODUCTION

BLOCK-BASED motion estimation searches for the best
matching block between the current and reference blocks.

In traditional fixed block-size motion estimation (FBSME),
the well-known full-search (FS) is the simplest, but the most
data-intensive is block-matching algorithm (BMA). Numerous
optimized BMAs [1], [2] developed for FBSME operate with
significantly reduced memory bandwidth, but they also need
more arbitrary memory accesses than FS. Furthermore, variable
block-size motion estimation (VBSME) makes use of seven
block sizes (4 4, 4 8, 8 4, 8 8, 8 16, 16 8, and
16 16), which introduces completely new data accessing and
memory bandwidth requirements compared with FBSME.

Contemporary flexible memory systems targeted for FBSME
can retrieve data for various BMAs but they are either inappro-
priate for VBSME [3]–[6] or suffer from limited data storage
capability [7], [8]. In turn, the memories introduced for VBSME
[2], [9] cannot support data accesses of optimized BMAs [10].
This is the motivation for designing an efficient memory system
that supports several BMAs and block sizes.

In our proposal, the reference and current block data are
stored in local on-chip memories which are implemented

Manuscript received July 17, 2006; revised October 24, 2006 and January 10,
2007. This work was supported in part by the Academy of Finland, Tampere
Graduate School in Information Science and Engineering, Nokia Foundation,
Emil Aaltonen Foundation, Heikki and Hilma Honkanen Foundation, and HPY
foundation. This paper was recommended by Associate Editor K.-H. Tzou.

J. Vanne and T. D. Hämäläinen are with the Department of Computer Sys-
tems, Tampere University of Technology, FI-33101 Tampere, Finland (e-mail:
jarno.vanne@tut.fi).

E. Aho and K. Kuusilinna are with the Nokia Research Center, FI-33721 Tam-
pere, Finland.

Digital Object Identifier 10.1109/TCSVT.2008.918273

with two parallel memory architectures. To the best of our
knowledge, the proposed dual parallel memory architecture is
the first memory system that provides maximal data storage
capability and supports multiple optimized BMAs applied
both in FBSME and VBSME. Therefore, it is applicable to
multiple video coding standards including MPEG-4, H.263,
and H.264/AVC.

The remainder of this paper is organized as follows.
Section II describes the related work. Section III introduces
our new methods in on-chip memory data distribution, address
computation, and data permutation. Section IV presents the
implemented dual parallel memory architecture. Performance
comparisons are shown in Section V. Section VI concludes the
paper.

II. RELATED WORK

To reduce the bandwidth from the external memories, the
reference (search area) and the current block data are typi-
cally stored in local on-chip memories [2]–[6]. In FBSME,
a word-addressable memory having word length of pixels

can be an efficient storage for the current
block but not for the search area since optimized BMAs tend to
address the search area in arbitrary (unaligned) locations.

Retrieving an unaligned -pixel data with a single access de-
mands a pixel-addressable memory where an -pixel access can
start from any pixel. The pixel-addressable memories can be im-
plemented with parallel memories [11] in which a module as-
signment function divides the memory space between the

memory modules and an address function defines the ad-
dresses inside the memory modules. The pixels accessed in par-
allel can be defined by an access format whereas a scanning
point assigns the placement of in the memory. If every
pixel accessed by is physically located in a different memory
module, is conflict-free within .

The pixel-addressable search area memories in [3]–[6] sup-
port only conflict-free row access format for adjacent pixels,
so they are incompatible with 4 4 blocks in VBSME, if .
In [2] and [9], the VBSME compatibility for the row access
format with is enabled by partitioning a distortion com-
putation unit to process a single -pixel access as a group of par-
allel 4-pixel accesses. Since the search paths of adjacent blocks
tend to diverge in optimized BMAs [10], such partitioned unit
is only compatible with regular FS.

The block addressable memories in [7] and [12] can support
conflict-free block access formats of 4 4 pixels when

, but they only provide parallel storage of 4 pixels. That is
ineffective in data storage, since data is normally transmitted
from the external memories in the standard row-major order.

Instead, a memory system in [13] can be parametrized to
allow arbitrary access of a 4 4 block and a row of 16 adjacent

1051-8215/$25.00 © 2008 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 4, APRIL 2008 539

Fig. 1. Fundamental operating principle of the proposed memory system.

pixels when . Its complex address computation unit
is partitioned in a shared global address calculation logic and
separate address completion logic for each memory module. In
[14], the address computation of [13] is simplified, but an ad-
dress routing circuit is required for the movement of addresses.

In the proposed dual parallel memory architecture, both mem-
ories adopt and from [13], a compact address computa-
tion unit is implemented without address routing circuit, and the
amount of data permutation networks is the same as in the single
parallel memory architectures in [13] and [14].

III. PROPOSED MEMORY SYSTEM

Fig. 1 depicts an unoptimized block diagram of the proposed
system. It consists of two parallel memory architectures: one for
the search area and the other for the current block data.

In order to store reference frame data to the
memory, along with the respective scanning point
are delivered to the system. With , the circuit produces
control for the network and the memory write
addresses for the permuted write data . Storing
current frame data in the memory is performed
correspondingly.

The system supplies search area data and current block
data simultaneously for distortion computation. In order
to retrieve requested data from the memories, both the and

circuits calculate read addresses (and) from the
respective scanning points (and). The accessed search
area data and current block data are permuted
with the and networks which are controlled (and

) by the and circuits, respectively.

A. Memory Organization

Let the design-time configurable size of the memory be
, where the dimensions and are multiples of 16.

They define the memory area in - -directions, respectively.
To permit efficient row-major ordered data storage, the

memory supports a row access format for 16 adjacent
pixels. Filling the memory along 16-pixel wide vertical
strips requires a nonoverlapping covering placement set

(1)

Fig. 2. Module assignment and address functions for the memory.

for . In (1), the modulo condition implies the allowed con-
flict-free coordinate values for .

Since a row access format is not optimal for VBSME, the
memory supports a 4 4 block access format for the
data retrieval. To support arbitrary accesses of optimized BMAs,

requires an unrestricted placement set

(2)

The linear module assignment function providing (1) for
and (2) for is

(3)

The admissible address function for is

(4)

where and are the mutually orthogonal row
and column address components of , respectively. In
(4), and represent the circular property of
the memory. They make the memory compatible with
the search area reuse schemes presented, e.g., in [6] and [8].

The memory is implementable with 16 1-pixel-wide
modules . Fig. 2 illustrates a part (7
6 pixels) of the memory. An example location for is
indicated with a square and marked
with a dot “ ” is located in the memory module 6 with the
address 0.

B. Memory Organization

Let the size of the memory be , where is
multiple of 16. Like the memory, the memory supports
a 16-pixel-wide row access format for data storage and
4 4 block access format for data retrieval.

Since 4 4 pixel block boundaries in the memory
are not exceeded when executing typical BMAs, the
memory is implementable with four 4-pixel-wide modules

instead of 16 1-pixel-wide modules.

540 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 4, APRIL 2008

In the memory, the placement sets for and are

(5)

(6)

The restrictions in (5) and (6) simplify the module assignment
and address functions which are defined as

(7)

(8)

C. Address Computation

The circuit (Fig. 1) uses (3) and (4) to compute

and

for the pixels accessed by and . Correspondingly, the
circuit (Fig. 1) applies (7) and (8) in

and

computation. Since (1), (6), and (5) restrict the placements of
, , and , the logic for , , and com-

putations is negligible. Hence, only computation is consid-
ered here.

Let us determine an address for a specific memory
module when of is
known. In the memory, let a pixel at location be
stored in , i.e., . Since (3) is conflict-
free with respect to , each of the 16 loca-
tions are mapped in distinct . Now, for a spe-
cific can be individually computed, i.e., each
is properly addressed without additional address routings. Ac-
cording to (4), is the sum of separable
components

(9)

(10)

where and extend the placement of
stored in

to the position stored in . The shape
(4 4 pixels) of limits that and

.

TABLE I
ASSIGNING VALUES AS A FUNCTION OF

The linearity [11] of (3) guarantees that the displacement
is constant in the whole scanning

field for a specific and pair
. For example,

is always valid for (Fig. 2). Hence, the displace-
ment of each from a known can be defined
with static values at design time.

Let us now consider (10), where values could
be separately predefined for each of the 256 combinations
of and . However, the proposed method is
able to reduce the combinations to 64, since each
has always the same value within four successive
values of . E.g., when is
6–9 (Fig. 2). Table I tabulates the unambiguously definable

values for . The modules are
divided into the four groups , where ,

, , and belong to the , ,
, , and belong to the , etc. The

depicted ranges of are appropriate for the whereas
the ranges of used by the are converted to the
depicted ones by incrementing by . E.g., for
in , Table I assigns that when is 3–6
since is 4–7.

A similar approach could also be used to compute (9), but
the regularities of (3) and (4) simplify (9) further. Since is
a multiple of 16 and , (9) can be rewritten as

(11)

where is an address of
and is an offset of a specific . Due
to (3) and (4), all the modules belonging to a same have
an equivalent value that is directly derivable from

.

D. Data Permutation Scheme

Fig. 3(a) presents a data flowchart for the system in Fig. 1. To
store the row-major ordered to the

memory, the network permutes according to (3).
The permutation to attain is

(12)

where and is obtained by shifting
by pixels right and substituting the right-

most pixels of as the leftmost

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 4, APRIL 2008 541

Fig. 3. Data flowcharts. (a) Basic. (b) Shared input. (c) Shared input and
ordered as . (d) Shared input and ordered as .

pixels of . Correspondingly, the network permutes
as

(13)

where .
Since and , the

and networks have equal functionality. Hence, a shared
data permutation network is used for and in
Fig. 3(b). Sharing a data path between and causes
performance penalty equal to the time required for filling the

memory. However, duplication of the data permutation
network is avoided.

In Fig. 3(a) and (b), the and networks permute the
retrieved pixels back to the original (row-major) order. How-
ever, the original order of pixels is unnecessary in distortion
computation because only corresponding pixels are compared
to each other. Hence, only or has to be permuted
to the order of the other. Fig. 3(c) depicts a flowchart which
permutes according to , whereas is permuted
according to in Fig. 3(d). The respective permutations are

(14)

(15)

where and
.

Due to this new idea, only one permutation network is re-
quired for the output data. The selection between the flowcharts
in Fig. 3(c) and (d) depends on an application. In Fig. 3(c), the
retrieved best match can be permuted appropriately for the next

Fig. 4. Implemented memory system.

design level, whereas the computation complexity around the
and memories is better balanced in Fig. 3(d).

IV. PROPOSED MEMORY IMPLEMENTATION

Fig. 4 depicts the implemented memory system. It is based
on Fig. 3(d). The and memories are controlled by read/
write signals (and). The and networks
are implemented with a 0/4/8/12-Right Rotator and a 0..15-Left
Rotator, respectively. The and circuits (Fig. 1) are re-
placed with a single Address Computation Unit which includes
separate units for , , , and decoding.

A. Address Computation Unit

Fig. 5 depicts an Decode Unit. Four adders compute
2 MSBs of and its increments from .
The functionality of Table I is mapped to four Decoding
Circuits, which together consume only 20 basic logic gates. The
circuits decode values that are used to
generate values according to (10).

In Fig. 5, a Decoding Circuit produces
values for the and values are computed
according to (11). Since is always zero, no logic
is used to generate . The Decoding Circuit is
implemented with two basic logic gates.

Finally, the Decode Unit completes by adding
the computed and values together (Fig. 5).
The logic needed for , , and Decode Units is
negligible.

B. Data Rotators

The 0..15-Left Rotator (Fig. 4) consists of 0/8-, 0/4-, 0/2-,
and 0/1—rotator stages, whereas the 0/4/8/12-Right Rotator in-
cludes 0/8- and 0/4-rotator stages. In these 16-input, 16-output
rotators, data is passed through a single -stage without rota-
tion or data is rotated by pixels. A single -stage is realized
with an array of simplified 1-bit 2-to-1 multiplexers [13].

V. PERFORMANCE ANALYSIS

The first evaluation compares the proposed and contempo-
rary flexible search area memories [3]–[7]. In addition, the
implementations in [12]–[14] are evaluated as candidates for
the search area memory. The memories are parametrized to

, if is not limited by the reference memory. A single

542 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 4, APRIL 2008

Fig. 5. Decode Unit.

TABLE II
NUMBER OF SEARCH AREA MEMORY ACCESSES PER SECOND

-pixel data bus from external memories is assumed to be
available for data storage. Reuse of search area data is also
utilized.

Table II tabulates the average number of memory accesses per
second when performing FBSME and VBSME with the DS al-
gorithm [1]. The reported values are based on QCIF (176 144)
size sequences “Container,” “Foreman,” “News,” and “Silent”
encoded at 30 frames/second (fps). The size of the search are is
48 48 pixels and the checking point counts of DS in the se-
quences are obtained from [10].

Compared with Gupta’s [3] and Gong’s [4] approaches,
the proposed memory requires an equal number of accesses
in FBSME, but consumes 55% less accesses in VBSME. The
data accessing capabilities of Chao’s [5] and Tanskanen’s
[6] memories are similar to Gupta’s and Gong’s approaches.
However, they are restricted to .

Jehng’s [7] and Kuzmanov’s [12] memories perform data
retrieval for FBSME and VBSME with a number of memory ac-
cesses that is equal to the proposed one. However, the proposed
memory can store row-major ordered data four times faster
than those approaches. The reductions in total memory access
count in FBSME and VBSME are 37% and 9%, respectively.

Without search area reuse, the respective reductions would
be even higher: 53% and 19%. The speedup in data storage
decreases the time the global data bus is reserved for motion
estimation.

The proposed approach and those of Morrin [13] and Park
[14] require an equal amount of accesses in all the examined
cases. Next, these three implementations are further compared.

A. Address Computation Comparison

The proposed, Morrin’s, and Park’s approaches include two
similar data rotators, but they implement address computation
differently. Hence, only the proposed Decode Unit (Fig. 5)
is compared with Morrin’s and Park’s address computation
units which are parametrized at design time to support
and . The units are configured for .

Table III tabulates the theoretical critical path delay and area
estimates for the units. As in [15], the area cost for -input basic
gates is assumed to be cost-units (CUs), expect for XOR and
XNOR gates having CUs. The delay for all the 2-input gates
is assumed to be 1 . Registers, interconnections, and fan-out/
fan-in related issues are not considered.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 4, APRIL 2008 543

TABLE III
AREA AND DELAY ESTIMATES FOR THE ADDRESS COMPUTATION UNITS

TABLE IV
ASIC AND FPGA SYNTHESIS RESULTS FOR THE PROPOSED MEMORY SYSTEM

Compared with Park’s and Morrin’s units, the proposed unit
computes memory addresses for the used access

format 1.7 and 2.0 times faster and consumes 80% and 45%
less resources, respectively. The proposed unit is also config-
ured for , and for

. Since the search area reuse typically
requires only horizontally circular memory, the Decode
Units supporting merely the horizontal (Hor) memory rotation
(, , and) are also evaluated.
Excluding a vertical (Ver) rotation is of importance when

.

B. ASIC and FPGA Synthesis

The ASIC and FPGA results based on logic synthesis are tab-
ulated in Table IV for the proposed system (Fig. 4). The config-
uration determines the dimensions of the memory.

The technology for ASIC synthesis is 0.18- m CMOS
process. The area (cells) is based on equivalent 2-input NAND

gates and the operating frequency represents the critical path
in the pipelined systems. The ASIC-based system includes
three pipeline stages. The registers and all the units except
memory modules are included in the results. In the 6464,
6464h, and 6448h configurations, pipelining consumes 52%
of all of silicon area, whereas the data rotators and address
computation consume 40% and 8% of the area, respectively. In
4848 configuration, the respective metrics are 46%, 35%, and
19%.

The FPGA-based system is synthesized to Altera Stratix
EP1S40F780C5 logic device. The memory modules are syn-
thesized using the embedded memory modules on the FPGA.
The system includes a balanced four-stage pipeline. All the
configurations consume less than 3% of the FPGA resources.

With optimal 100% utilization, the proposed system clocked
at 1 MHz can deliver data for DS in FBSME at QCIF size
(real-time, 30 fps), whereas D1 (720 576) and HDTV (1280

720) resolutions need operating frequencies of 15 and 33 MHz,
respectively. In VBSME, the respective metrics are 6, 84, and
185 MHz. Hence, the ASIC-based system coupled to an efficient
distortion computation unit such as [16] meets the real-time re-
quirements in all the examined resolutions. At HDTV resolu-
tion, the FPGA-based system targeted for VBSME presumably
needs performance enhancement which can be achieved by in-
creasing the pipeline depth, utilizing faster BMAs [10], or du-
plicating the memory system.

VI. CONCLUSION

This paper proposes a novel dual parallel memory architec-
ture for FBSME and VBSME. Compared with the reference
approaches, the proposed memory addressing doubles the per-
formance and consumes almost half of the silicon area. In addi-
tion, the introduced data permutation scheme halves the number
of permutation networks. Our proposal offers up to four times
speedup in data storage and retrieves data up to 55% faster than
the reference search area memories. It can process FBSME and
VBSME in real-time at HDTV resolution.

REFERENCES

[1] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Trans. Image Process., vol. 9, no.
2, pp. 287–290, Feb. 2000.

[2] P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for
MPEG-4 Motion Estimation. Boston, MA: Kluwer, 1999.

[3] G. Gupta and C. Chakrabarti, “Architectures for hierarchical and other
block matching algorithms,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 5, no. 6, pp. 477–489, Dec. 1995.

[4] D. Gong and Y. He, “A new programmable video signal processor
for motion estimation and motion compensation,” in Proc. SPIE-VCIP,
San Jose, CA, Jan. 2001, vol. 4310, pp. 920–931.

[5] W. M. Chao, C. W. Hsu, Y. C. Chang, and L. G. Chen, “A novel hybrid
motion estimator supporting diamond search and fast full search,” in
Proc. IEEE Int. Symp. Circuits Syst., Phoenix–Scottsdale, AZ, May
2002, vol. 2, pp. 492–495.

[6] J. K. Tanskanen, T. Sihvo, and J. Niittylahti, “Byte and modulo address-
able parallel memory architecture for video coding,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 14, no. 11, pp. 1270–1276, Nov. 2004.

[7] Y. S. Jehng, L. G. Chen, and T. D. Chiueh, “An efficient and simple
VLSI tree architecture for motion estimation algorithms,” IEEE Trans.
Signal Process., vol. 41, no. 2, pp. 889–900, Feb. 1993.

[8] Y. K. Lai, L. G. Chen, H. T. Chen, M. J. Chen, Y. P. Lee, and P. C. Wu,
“A novel video signal processor with programmable data arrangement
and efficient memory configuration,” IEEE Trans. Consumer Electron.,
vol. 42, no. 3, pp. 526–534, Aug. 1996.

[9] C. Y. Chen, S. Y. Chien, Y. W. Huang, T. C. Chen, T. C. Wang, and
L. G. Chen, “Analysis and architecture design of variable block-size
motion estimation for H.264/AVC,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 53, no. 3, pp. 578–593, Mar. 2006.

[10] W. Choi and B. Jeon, “Hierarchical motion search for H.264 variable
block-size motion compensation,” SPIE Opt. Eng., vol. 45, no. 1, pp.
1–9, Jan. 2006.

[11] M. Gössel, B. Rebel, and R. Creutzburg, Memory Architecture & Par-
allel Access. Amsterdam, The Netherlands: Elsevier Science, 1994.

[12] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “Multimedia rectan-
gularly addressable memory,” IEEE Trans. Multimedia, vol. 8, no. 2,
pp. 315–322, Apr. 2006.

[13] T. H. Morrin and D. C. van Voorhis, “Method and apparatus for ac-
cessing horizontal sequences and rectangular sub-arrays from an array
stored in a modified word organized random access memory system,”
U.S. Patent 3 938 102, Feb. 10, 1976.

[14] J. W. Park, “An efficient memory system for image processing,” IEEE
Trans. Comput., vol. C-35, no. 7, pp. 669–674, Jul. 1986.

[15] A. R. Omondi, Computer Arithmetic Systems: Algorithms, Architecture
and Implementations. Hertfordshire, U.K.: Prentice-Hall Int., 1994.

[16] J. Vanne, E. Aho, T. D. Hämäläinen, and K. Kuusilinna, “A high-per-
formance sum of absolute difference implementation for motion esti-
mation,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 7, pp.
876–883, Jul. 2006.

Publication 3

J. Vanne, E. Aho, K. Kuusilinna, and T. D. Hämäläinen, “A configurable motion
estimation architecture for block-matching algorithms,” IEEE Trans. Circuits Syst. Video
Technol., vol. 19, no. 4, Apr. 2009, pp. 466-476.

© 2009 IEEE. Reprinted with permission.

kulkki
Text Box
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the Tampere University of Technology's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this material, you agree to all provisions of the copyright laws protecting it.

466 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 4, APRIL 2009

A Configurable Motion Estimation Architecture
for Block-Matching Algorithms

Jarno Vanne, Member, IEEE, Eero Aho, Member, IEEE, Kimmo Kuusilinna, Member, IEEE,
and Timo D. Hämäläinen, Member, IEEE

Abstract— This paper introduces a configurable motion es-
timation architecture for a wide range of fast block-matching
algorithms (BMAs). Contemporary motion estimation architec-
tures are either too rigid for multiple BMAs or the flexibility in
them is implemented at the cost of reduced performance. The
proposed architecture overcomes both of these limitations. The
configurability of the proposed architecture is based on a new
BMA framework that can be adjusted to support the desired set
of BMAs. The chosen framework configuration is implemented
by an intelligent control logic which is integrated to an efficient
parallel memory system and distortion computation unit. The
flexibility of the framework is demonstrated by mapping five
different BMAs (BBGDS, DS, CDS, HEXBS, and TSS) to the
architecture. The total execution time of the mapped BMAs is
shown to be almost directly proportional to the number of tested
checking points in the search area, so the architecture is very
tolerant of different BMA-specific search strategies and search
patterns. In addition, a run-time switching between supported
BMAs can be done without performance compromises. With a
0.13-μμμm CMOS technology, the proposed architecture configured
for HEXBS, BBGDS, and TSS requires only 14.2 kgates and
2.5 KB of memory at 200 MHz operating frequency. A perfor-
mance comparison to the reference programmable architectures
reveals that only the proposed implementation is able to process
real-time (30 fps) fixed block-size motion estimation (1 reference
frame) at full HDTV resolution (1920 ××× 1080).

Index Terms— Block-matching algorithms (BMAs), BMA
framework, configurable architecture, motion estimation.

I. INTRODUCTION

BLOCK-BASED motion estimation has been widely
adopted by the current video compression standards such

as MPEG-1/2/4 and H.261/263/264. In block-based motion
estimation, a block-matching algorithm (BMA) searches for
the best matching block for the current macroblock from
the reference frame. During the searching procedure, the
checking point yielding the minimum block distortion (MBD)
determines the displacement of the best matching block. For
the block distortion computation, the sum of absolute differ-
ences (SAD) is one of the most frequently employed criteria.

Manuscript received September 28, 2007; revised May 9, 2008. First version
published March 4, 2009; current version published May 20, 2009. This work
was supported in part by the Academy of Finland, Tampere Graduate School
in Information Science and Engineering, Nokia Foundation, Emil Aaltonen
Foundation, Heikki and Hilma Honkanen Foundation, and HPY foundation.
This paper was recommended by Associate Editor L.-G. Chen.

J. Vanne and T. D. Hämäläinen are with the Department of Computer
Systems, Tampere University of Technology, FI-33101 Tampere, Finland
(e-mail: jarno.vanne@tut.fi).

E. Aho and K. Kuusilinna are with Nokia Research Center, FI-33721
Tampere, Finland.

Digital Object Identifier 10.1109/TCSVT.2009.2014012

After finding the MBD point, motion estimation delivers
a motion vector (MV) of the current block and prediction
residues. The MV of the current block equals the displacement
of the best matching block.

The well-known full-search (FS) is the simplest, but the
most computation-intensive BMA, which exhaustively tests
all the checking points in the search area. Numerous fast
BMAs have been developed to reduce huge computation
load of FS [1], [2]. They can be roughly classified into
lossy and lossless BMAs. Lossless BMAs such as successive
elimination-based algorithms [3], [4] have the same search
quality as FS, but they speed up FS by eliminating unnecessary
checking points as early as possible. Techniques utilized by
lossy BMAs include simplification of matching criterion [5]
and decimation of checking points. Particularly, decimation of
checking points is utilized by various fast BMAs including
three-step search (TSS) [6], block-based gradient descent
search (BBGDS) [7], new diamond search (DS) [8], [9],
hexagon-based search (HEXBS) [10], cross-diamond search
(CDS) [11], predictive MV field adaptive search technique
(PMVFAST) [12], and unsymmetrical-cross multi-hexagon-
grid search (UMHexagonS) [13]. Decimation of checking
points may sometimes produce suboptimal result, i.e., BMA
may drop into the local minimum point in the search area.
However, these BMAs achieve clearly faster convergence
than the lossless ones. The latest video compression standard
H.264/AVC further increases complexity of motion estimation
with variable block sizes and multiple reference frames. Dec-
imation of checking points is also an applicable method for
reducing the computation load of variable block-size motion
estimation [14].

Existing motion estimation implementations are mainly tai-
lored to a single BMA [15]–[22], since flexibility normally de-
grades efficiency. However, these tailored architectures are too
rigid for general-purpose usage, since none of the presented
BMAs provides both high search quality and fast processing
speed for a mixture of rapid, moderate, and slow motion.
Therefore, rather than using a single BMA, an intelligent mo-
tion estimation architecture should adaptively [23] select the
most appropriate BMA at run time according to the motion
content being processed.

The contemporary architectures supporting multiple BMAs
are either fixed to a limited set of BMAs [1], [24]–[29] or the
programmability [30]–[32] is implemented at a cost of perfor-
mance and area. Particularly, their performance is a limiting
factor when processing high-resolution video sequences. This

1051-8215/$25.00 © 2009 IEEE

VANNE et al.: A CONFIGURABLE MOTION ESTIMATION ARCHITECTURE FOR BLOCK-MATCHING ALGORITHMS 467

is the motivation for designing a motion estimation architec-
ture that provides real-time (30 fps) processing speed for a
specific BMA up to HDTV resolution, but is still flexible
enough to be used with a wide set of BMAs.

Our proposal presents a new BMA framework that is com-
patible with a predefined set of BMAs at run time. In addition,
it is parametrizable to new BMAs at design time. The proposed
framework is dedicated to fast BMAs that utilize decimation
of checking points, so it is not suited for BMAs that rely
on successive elimination and subsampling. Although this
paper considers only single reference frame motion estimation
with fixed block size (16 × 16 pixels), the basic principles
presented within the framework are also applicable in variable
block-size motion estimation with multiple reference frames.
The flexibility of the proposed framework is based on an
introduced separable search path generation and parametriz-
able search strategy control. Together they enable that an
execution time of each BMA is almost directly proportional
to the number of tested checking points in the search area. In
our motion estimation architecture, the proposed framework
is realized with a control unit that is seamlessly coupled
to an earlier introduced parallel memory system [33] and
distortion computation unit [34]. The memory system and the
distortion computation unit are customized for an optimized
SAD algorithm that is able to provide adequate performance
for the architecture.

The rest of the paper is organized as follows. Section II
describes the related work on motion estimation architectures.
Section III introduces our new BMA framework. Section IV
presents the implemented configurable motion estimation ar-
chitecture. Performance comparisons between the proposed
and contemporary architectures are shown in Section V. Sec-
tion VI concludes the paper.

II. RELATED WORK

Numerous VLSI architectures have been introduced for
motion estimation during the last decades. The presented
architectures can be classified as BMA-specific, flexible, and
programmable architectures [1].

A. BMA-Specific Architectures

BMA-specific architectures support only a single BMA.
The majority of contemporary BMA-specific architectures
implement FS [15]–[17] because of its regular data flow and
low control overhead. FS is typically implemented with a
systolic mesh-connected array which offers high throughput
through parallel processing, pipelining, and data reuse. Due to
the huge inherent complexity of FS, a large array of processing
elements (PEs) is needed to achieve high performance.

Contrary to the FS case, systolic arrays are not well
suited for the fast BMAs, which include unpredictable data
flow, irregular memory addressing, and hardly parallelizable
sequential control. Prior-art BMA-specific architectures for
fast BMAs are mainly concentrated on TSS and its deriva-
tives [18]–[20]. Although these implementations achieve good
cost efficiency over the FS architectures, they are too rigid for
a broad range of applications [25]–[32].

B. Flexible Architectures

Flexible architectures implement a specific set of BMAs.
Jehng et al. [24], Zhang and Tsui [26], and Kuhn [1] in-
troduced architectures that support both FS and TSS. Kuhn’s
architecture also supports half-pixel motion estimation.

Dutta and Wolf [25] developed an architecture that can
change its configurable interconnection network and PEs ac-
cording to used BMA. The architecture is designed to receive
a control sequence for an executed BMA in advance through
simulations. The flexibility of the architecture is demonstrated
by mapping, e.g., FS and TSS, to it.

Chao et al. [27] proposed a flexible architecture for fast FS
and DS. In the DS mode, the implementation uses a ROM-
based approach to reduce redundant testing of checking points.

Li et al. [28] presented an architecture for two predictive
BMAs: PMVFAST and EPZS (enhanced predictive zonal
search). The architecture includes nine PEs. Since each PE
computes distortion of a separate checking point, there are
unused PEs if fewer than nine checking points are tested
simultaneously. Different search patterns are configured with
variable delay units. The architecture does not execute all the
operations of BMAs, but complicated control parts of BMAs
are managed by an RISC processor.

Dias et al. [29] introduced a configurable architecture for
FS and a limited set of fast BMAs such as TSS and DS.
The architecture implements BMAs by filling lookup tables
with predefined data structures that contain all the BMA-
specific information about the search patterns and search paths.
These run-time reconfigurable data structures can simultane-
ously contain multiple BMAs. However, they are not capable
of expressing more complex BMAs such as PMVFAST.

Although flexible architectures are more generic than BMA-
specific architectures, they only support a limited set of BMAs.
Their control and computational structures tend to be incom-
patible with new BMAs or additional BMA features.

C. Programmable Architectures

Programmable architectures are designed to support a prac-
tically unlimited set of BMAs. However, all the reference
architectures consider only BMAs that utilize pixel decimation
techniques.

Lin et al. [30] presented a programmable motion estimation
architecture that applies macro-commands to execute BMAs.
The architecture processes macro-commands interactively in-
stead of executing fixed search patterns in batches. As in [28],
part of the BMA control is managed by a host processor.

Gong and He [31] developed a programmable video signal
processor for fast BMAs. Their BMA framework includes five
parameters per BMA and the control is implemented with an
RISC processor. The programmability is verified by mapping,
e.g., FS and TSS, to the processor. The architecture also
supports half-pixel motion estimation.

Dias et al. [32] introduced an application-specific instruction
set processor (ASIP) that is capable of executing various fast
BMAs. In addition, a set of software tools were developed
to program BMAs on the processor. The implemented ASIP
has an instruction set of eight instructions that are specially

468 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 4, APRIL 2009

tailored for motion estimation. BMAs mapped to the processor
include FS, TSS, DS, and MVFAST. The processor can man-
age both fixed and variable block sizes.

The presented programmable architectures are suitable for
general-purpose usage. However, the programmability in them
is achieved at a cost of increased silicon area and performance
degradation.

The proposed architecture can be categorized as a hybrid
of flexible and programmable architectures. It supports a
predefined set of BMAs at run time, but it is easily upgradeable
to completely new or slightly modified BMAs at design time.
The proposed architecture implements BMAs with predefined
data structures as in [29], but a more compact representation
for these data structures is introduced in this paper. In addition,
compared to the architecture in [29], the proposed exten-
sions to BMA parametrization enable that more sophisticated
BMAs, such as predictive BMAs, can be implemented with
the proposed BMA framework.

III. PROPOSED BMA FRAMEWORK

When a BMA is executed, the parameters of the proposed
BMA framework control the search path generation in the
search area. In addition, the parameters adjust search strategy
control which is responsible for BMA-specific search direc-
tions and search patterns.

A. Proposed Search Path Generation

Typically, the search of the best matching block is restricted
to a search area around the original location of the block [1].
Let a size of a two-dimensional search area be w × h pixels,
where w ∈ {48, 80, 112, 144} and h ∈ {48, 80, 112, 144} are
the practical dimensions of the area in i and j directions,
respectively. For video sequences with small motion content,
w and h are usually 48, whereas an enlarged search area is
beneficial for larger frame sizes and for sequences having rapid
motion content.

The proposed architecture is designed to access a block of
4 × 4 search area pixels simultaneously, so 16 accesses are
required per candidate MB (checking point). In the search
area, the accessed 4 × 4 base block is indicated by a scanning
point (rRR(riRR, rjRR)) [33], where riRR ∈ [0, w − 1] and
rjRR ∈ [0, h − 1]. The proposed fundamental principle of rRR

composition is presented in Fig. 1, where w = h = 48. Since
BMAs find the MBD point via subsequent search steps during
which the search path is updated, rRR can be composed of
several independent and parametrizable partial offsets.

The first partial offset of rRR is an initial offset (�rα(�riα,
�rjα)) that points to the center of the search area. After each
searching procedure, the center of the search area is shifted
according to used search area reuse scheme [18], i.e., �riα is
incremented so that the successive searching procedures can
partially reuse the same search area data. The proposed system
supports search area reuse schemes that are implementable
when �riα ∈ [0, w − 1] and �rjα ∈ [0, h − 1] are multiples
of 16.

With center-biased BMAs (e.g., DS, HEXBS, and
TSS), �rα determines the search center from which the

16

rRR

16

Δrα

Δrβ

Δrχ

Δrδ

j

i

Δrε

Fig. 1. Proposed separable composition of rRR in the 48 × 48 pixel search
area.

searching procedure is started. The predictive BMAs such
as PMVFAST [12] determine the search center according to
the predicted MV. For these BMAs, �rα is incremented with
a prediction-based offset (�rβ(�riβ,�rjβ)). This optional
offset is particularly targeted for non-center-biased video
sequences.

The BMA displacement from �rα + �rβ is indicated by
a BMA movement offset (�rχ (�riχ ,�rjχ)). The offset is
automatically updated by the architecture when the center of
the search pattern is moved.

The support for different search patterns is enabled by an
adjustable checking point offset (�rδ(�riδ,�rjδ)). It points
to the top-left corner of the candidate MB and determines
a displacement of a tested checking point from the pattern
center. An example search pattern resembling a large diamond
search pattern (LDSP) [8], [9] of DS is depicted in Fig. 1,
where �rδ equals the displacement between the pattern center
and the right-most checking point of the pattern.

A base block offset (�rε(�riε,�rjε)) represents a dis-
placement of a 4 × 4 base block from the top-left corner
of the candidate MB. In Fig. 1, the small grid illustrates the
accessed 4 × 4 base block. The size of the MB restricts that
�riε ∈ {0, 4, 8, 12} and �rjε ∈ {0, 4, 8, 12}.

Adding the partial offsets together yields rRR(riRR, rjRR) as

riRR = (�riα + �riβ + �riχ + �riδ + �riε) mod w (1)

rjRR = (�rjα + �rjβ + �rjχ + �rjδ + �rjε) mod h. (2)

When �rε = (0, 0), the respective MV(MVi , MV j) is derived
with �rα and rRR as

MVi =
((

w − 16

2
+ riRR − �riα

)
mod w

)
− w − 16

2
(3)

MV j =
((

h − 16

2
+ rjRR − �rjα

)
mod h

)
− h − 16

2
. (4)

Incrementing �riα after each searching procedure re-
quires that the search area is circular: e.g., when w = 48 and

VANNE et al.: A CONFIGURABLE MOTION ESTIMATION ARCHITECTURE FOR BLOCK-MATCHING ALGORITHMS 469

�riα = 32, riRR may reach w during the searching procedure,
in which case it is clipped to zero. In (1)–(4), the circular
property of the search area is realized by mod w, mod h,
w−16

2 , and h−16
2 . In addition, the following restrictions have

to hold:

�riβ,�riχ ,�riδ, MVi ∈
[
−w − 16

2
+ 1,

w − 16

2
− 1

]

�rjβ,�rjχ ,�rjδ, MV j ∈
[
−h − 16

2
+ 1,

h − 16

2
− 1

]

Otherwise, the MV exceeds the boundaries of the search area.
Composing rRR from the mutually independent partial

offsets enables adaptive and easily controllable search path
generation for BMAs. BMA-specific features related to search
area reuse schemes, search center, search patterns, and base
block accessing can be separately adjusted via �rα , �rβ ,
�rδ , and �rε. A single BMA feature typically applies only
to a single partial offset, and the rest of the offsets can be
maintained constant. As presented later in this paper, the
introduced separable composition of rRR is also beneficial for
hardware implementation.

B. Proposed Search Strategy Control

A flexible architecture having a hardwired control for each
of the supported BMAs achieves high performance, but even a
diminutive BMA modification requires redesigning the control.
Since the search strategies and patterns tend to vary between
BMAs, a parametrizable search strategy control is a necessity
for the proposed configurable architecture.

In the search area (Fig. 1), a generation of �rχ is dependent
on the selected search strategy and search patterns. The
proposed architecture processes all the BMAs according to
the introduced general BMA execution flow which assigns the
available search strategies and search patterns. The first step
in the flow is common for all the BMAs, whereas the next
search steps are BMA specific. The general BMA execution
flow is summarized for a specific BMA as:

Step 1. The first search pattern is positioned in the search
center and only the search center is tested and
selected as the initial MBD point. The searching
procedure proceeds to Step 2.

Step 2. All the valid checking points surrounding the pattern
center are tested. If no new MBD point is found, i.e.,
the MBD point is still found in the pattern center or if
a single-pass pattern is used, the searching procedure
proceeds to Step 3. Otherwise, the recursive search
pattern is repositioned so that the new MBD point is
at the center of the pattern and Step 2 is recursively
repeated.

Step 3. If all the available search patterns have already been
executed, the MBD point found in Step 2 is selected
and the searching procedure is stopped. Otherwise,
the search pattern is switched to a next search pattern
which is positioned so that the MBD point found
in Step 2 is in the center of it and the searching
procedure proceeds to Step 2.

BMA Pattern Point

k Δrδ(k)

Δrδ(0)

Δrδ(1)

Δrδ(9)

Δrδ(10)

Δrδ(14)

Δrδ(15)

Δrδ(16)

Δrδ(22)

Δrδ(23)

Δrδ(30)

Δrδ(34)

Δrδ(31)

*k(k) *V(k)

0 *k(0) *V(0)
1 *k(1) *V(1)

9 *k(9) *V(9)

10 *k(10) *V(10)

14 *k(14) *V(14)

15 *k(15) *V(15)
16 *k(16) *V(16)

22 *k(22) *V(22)

23 *k(23) *V(23)

30 *k(30) *V(30)
31 *k(31) *V(31)

34 *k(34) *V(34)

BMA control table (I)

B0

P0.0 C0.0.0

C0.1.0

C0.1.8

C0.2.0

C0.2.4

C1.0.0

C1.1.0

C1.1.6

C1.2.0

C1.2.7

C1.3.0

C1.3.3

P0.1

P0.2

P1.0

P1.1

P1.2

P1.3

B1

.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Fig. 2. Fundamental operating principle of the proposed BMA control table.

The general BMA execution flow is realized with a proposed
BMA control table, which can consist of bmax number of
BMAs. Each BMA Bb (b ∈ [0, bmax − 1]) can include pmax
number of search patterns which can be either single pass or
recursive. In each Bb, the first search pattern (Pb.0) always
includes only a search center (Cb.0.0) whereas the rest of
the search patterns Pb.p (p ∈ [1, pmax − 1]) can have cmax
checking points Cb.p.c (c ∈ [0, cmax − 1]). Upper limits bmax,
pmax, and cmax are positive integers that are design-time
selectable in an implementation specific range.

Fig. 2 depicts an example of the BMA control table (I)
including two BMAs (B0 and B1) which have three (P0.0, . . . ,
P0.2) and four (P1.0, . . . , P1.3) search patterns, respectively.
Each checking point Cb.p.c is logically mapped to the location
I (k) in the table, where k is resolved as a function of b, p,
and c.

Three parameters are associated with each I (k): �rδ(k) (see
Fig. 1), an index of the next search pattern (*k(k)), and a
vector identifying valid checking points in the next search pat-
tern (*V (k)). According to the general BMA execution flow,
a searching procedure always starts from the search center
that is tested and the next search pattern is selected based
on it. In the consecutive search patterns, only valid checking
points are tested. A valid checking point k yielding the MBD
after a single search pattern iteration is marked with kMBD
and the search pattern is moved in the search area according
to �rδ(kMBD). The used search pattern is either reselected or
switched to the next one according to *k(kMBD) that indexes a
center point of the destination search pattern. Valid checking
points surrounding the destination pattern center are deter-
mined by the vector *V (kMBD) which includes cmax–1 number
of validation flags, one flag for each surrounding checking
point. To avoid redundant testing, a checking point belonging
to the destination pattern is invalidated, if it has already been
tested by the used pattern. In [27], the similar invalidation

470 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 4, APRIL 2009

0

0

0

0–1–2 1 2

–2
–1
0
1
2
3
4

2
3

4

1
5

6
9 7

2 8 6
9 7

8

11
12
10
14

13
1
2
3

0–1 1

BMA Pattern Point Search area
k r (k) *k(k) *V(k)

Center C0.0.0 0 (0, 0)
C0.1.0 1 (0, 0)
C0.1.1 2 (–2, 0)
C0.1.2 3 (–1, –1)
C0.1.3 4 (0, –2)
C0.1.4 5 (1, –1)
C0.1.5 6 (2, 0)
C0.1.6 7 (1, 1)
C0.1.7 8 (0, 2)
C0.1.8 9 (–1, 1)
C0.2.0 10 (0, 0)
C0.2.1 11 (–1, 0)
C0.2.2 12 (0, –1)
C0.2.3 13 (1, 0)
C0.2.4 14 (0, 1)

BMA control table (I)

DS

LDSP

SDSP

1 11111111

00001111
11000111

00000111

00011111

00011100

01111100

01110000

11110001

11000001

00000000

00000000

00000000

00000000

00000000

10
1

1

1

1

1

1

1

1

10

10

10

10

10

Fig. 3. BMA control table parametrized for DS and an example search path.

method is applied with DS and almost all redundant testing is
avoided. In the destination pattern, the pattern center always
overlaps with the MBD point of the previous search pattern, so
the pattern center is never tested. However, the pattern center
is selected as the MBD point, if tested surrounding checking
points do not yield a new MBD point.

The BMA control table is implementable with a ROM and
associated control logic. Storing BMA parameters in the ROM
enables fast and low-cost implementation for a wide range of
BMAs. The search strategy is completely controllable with the
table parameters, so BMAs can be executed without processor
control.

A detailed usage of the BMA control table is presented in
Fig. 3 in which B0 (Fig. 2) is replaced with DS and an example
search path of DS is shown in a two-dimensional search area.
Only the essential coordinates of the search area are presented
within each search pattern. In addition, each location I (k) of
the BMA control table is associated with a checking point k in
the search area.

The searching procedure is started with center pattern that
is used to test the search center (C0.0.0) mapped to I (0). The
pointers k and kMBD are set according to moving condition
*k(0), i.e., kMBD = k = *k(0) = 1, so a center of LDSP
(C0.1.0) mapped to I (1) is selected after C0.0.0 is tested. Since
the current pattern center always overlaps with the MBD point
of the previous search pattern, C0.0.0 and C0.1.0 represent
the same checking point. Hence, the next untested checking
point mapped to I (2) is selected, i.e., k = 2 is set. Besides
the checking point mapped to I (2), the other surrounding
checking points mapped to I (3), . . . , I (9) are valid (‘1’)
according to the respective 1-bit flags of the vector *V (0).
The vector *V (0) is interpreted from right to left, i.e., the
rightmost flag controls I (2) and so on. The checking points
are tested by incrementing k one by one.

In the search path example (Fig. 3), a checking point 8 of
the first LDSP is a new MBD point. To follow the example,
it is assumed that kBDM = 8 is found after the checking
points of the first LDSP are tested. Based on *k(8) = 1, the
center of LDSP is moved by �rδ(8) = (0, 2) and LDSP is
reselected. In addition, kBDM = k = 1 are set. In the reselected

LDSP, the checking points mapped to I (2), I (6), I (7), I (8),
and I (9) are valid according to *V (8), whereas the center of
LDSP and invalid (‘0’) surrounding checking points mapped
to I (3), I (4), and I (5) are omitted. In this example, no new
kBDM is found by the reselected LDSP. Therefore, the center of
LDSP mapped to I (1) is chosen as the MBD point, *k(1) = 10
switches LDSP to SDSP (small diamond search pattern), and
kBDM = k = 10 is set. According to *V (1), the checking
points mapped to I (11), . . . , I (14) are valid. Since SDSP
includes only four checking points in total, the four leftmost
flags in *V (1) are invalid. The checking points mapped to
I (11), . . . , I (14) are tested and kBDM = 11 is found in this
example. Since *V (11) indicates only invalid checking points,
the search stops.

IV. PROPOSED IMPLEMENTATION

Fig. 4 presents an exemplary system architecture for a
video encoder in which the proposed motion estimation ar-
chitecture is connected to other system components (CPU,
frame memory, and other accelerators) via an on-chip com-
munication network. The other function-specific accelerators
may include hardware modules for fractional pixel motion
estimation, DCT, quantization, etc. The motion estimation
architecture is best suited for a communication network that is
composed of 128-bit wide data and 8-bit wide command buses.
Depending on the system requirements, a network topology
can vary from a shared bus to highly scalable network such
as HIBI [35].

The network-specific wrappers are used to integrate the
system components to the network. The motion estimation ar-
chitecture requires a wrapper that reconciles its unidirectional
data buses (dataIN , dataOUT) and control/status signals (ctrlIN ,
ctrlOUT) to the bidirectional data and command buses of the
system, respectively. Besides interface integration, the wrapper
of the motion estimation architecture implements protocols to
retrieve reference and current frame data directly from the
frame memory. It also forwards the result of the motion
estimation directly to the CPU and other target components.

Fig. 5 depicts a high-level structure of the proposed motion
estimation architecture. The main components of the archi-
tecture are a control unit, a memory system [33], and a SAD
unit [34]. The 128-bit wide dataIN and dataOUT buses of the
architecture are controlled with the ctrlIN (BMA_id, vld, reuse,
ack) and ctrlOUT (new, stored, id, rdy) signals.

If the architecture is configured to support multiple BMAs,
BMA switching can be performed at run time with BMA_id
input. The dataIN bus is time-multiplexed between reference
frame data (dRI), current frame data (dCI), and �rβ which
adjusts a search center of a prediction-based BMA. The control
unit uses the one-hot coded 3-bit new signal to request new
dRI , dCI , and �rβ . It detects valid input data (dRI , dCI , or �rβ)
by monitoring the 3-bit vld signal. The reuse signal determines
whether to store the whole search area or only a search area
strip because of search area reuse. During data storage, the
control unit produces scanning points (rRW and rCW) and
respective storage control signals (ctrlM) for the memory
system. The motion estimation architecture has a separate

VANNE et al.: A CONFIGURABLE MOTION ESTIMATION ARCHITECTURE FOR BLOCK-MATCHING ALGORITHMS 471

Communication network

Frame
memory

Other
accelerators

CPU

Motion estimation architecture

Wrapper

ctrlIN ctrlOUT dataOUTdataIN

Wrapper Wrapper Wrapper

Fig. 4. Exemplary system architecture for a video encoder.

rRR

Control Unit

Memory System [33]

SAD Unit [34]

rRW rCR rCWctrlM ctrlS

dRO SAD_rdy

min_SAD

MV

dCO

ack

BMA_id

rdy

vldnew

id

r
dataIN

dataOUT

dRI/dCI

storedreuse

min_rdy

Fig. 5. Implemented motion estimation architecture.

two-stage pipeline for data storage. After dRI , dCI , and �rβ

are stored, all the bits in the 3-bit stored signal are asserted.
During the searching procedure, the control unit composes

BMA-specific scanning points (rRR and rCR) for the search
area data (dRO) and current block data (dCO). The control
unit controls data delivery (ctrlM) from the memory system as
well as SAD computation (ctrlS). Pixels are retrieved from the
memory system so that all the PEs in the SAD unit can always
participate in distortion computation. Hence, moderately high
utilization of PEs is reached. The SAD unit computes partial
distortion of 16 pixels in parallel; i.e., it completes a SAD
value for a candidate MB in 16 clock cycles. The SAD
unit informs the control unit of the SAD value completion
(SAD_rdy) and whether the finished SAD value is the new
minimum (min_rdy). The control unit, the memory system, and
the SAD unit all include three pipeline stages, so the pipeline
depth of the architecture is nine.

After the final MBD point is found, the control unit uses
the rdy signal to request permission for data delivery. The
permission is acknowledged with the ack signal after which
the minimum SAD value (min_SAD), the motion vector (MV),
and the best matching block are delivered. The dataOUT bus is
time-multiplexed between min_SAD, MV, and dRO. They are
identified with the one-hot coded 3-bit id signal.

A. Control Unit

The main components of the control unit and essential
signals during the searching procedure are depicted in Fig. 6. A
main controller together with the BMA control table comprises
a core of the searching procedure control. Fig. 7 presents
a flowchart of the main controller. The BMA control table
implements the functionality described in Fig. 2.

The main controller stays in the data store mode until dRI

and dCI are stored in the memory system (Fig. 5) and �rβ

r

Main Controller

BMA Control Table
Δrβ

Δrα

Δrα

Δrε

MV Unit

MV_exc

MV

*k *Vk

init acc

BMA_id SAD_rdy min_rdy

kBDM

rRR Computation Unit

riRR Circuit

rRR

rjRR Circuit

Fig. 6. Control unit.

Data store
mode

Initialize BMA

Test search
center

Test checking
point

Deliver
result

Move search
pattern

Ignore checking
point

Yes

No

Change search
pattern

No

Yes

Last pattern?

MBD point
updated?

1-pass pattern?
Whole
pattern
tested?

Select next
checking point

Yes

Yes

NoYes

No

No

Valid
checking

point?

New MBD
point?

No

Update MBD
point

Yes

Fig. 7. Flowchart of the main controller.

is delivered to an rRR computation unit. When data storage
is completed, the main controller initializes the searching
procedure for the BMA selected with BMA_id input.

The searching procedure is started by testing the search
center after which all the valid surrounding checking points
of the search pattern are tested. The main controller produces
appropriate�rα , �rε, and control signals (init, acc) for the
rRR computation unit. In addition, it computes the pointer k
that is used to retrieve �rδ from the BMA control table. The
valid checking points are selected according to the vector *V .
The main controller is informed of the SAD value completion
by the SAD_rdy signal. If the min_rdy signal is active simul-
taneously with the SAD_rdy signal, a tested checking point
is a new MBD point and the main controller updates kMBD
accordingly.

The MV unit determines an MV of a tested checking point
according to (3) and (4). If the determined MV exceeds the
boundary of the search area, the unit asserts a signal (MV_exc)
which interrupts the checking point testing and the main
controller selects a next valid checking point.

472 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 4, APRIL 2009

R

accinit

CSA

mod w

1 0 1 0

1

0

riRR

Δriα Δriε Δriδ Δriβ

Fig. 8. riRR circuit.

After the whole search pattern is tested, the main controller
determines whether a single-pass or a recursive search pattern
has been used. If a new MBD point has been found with
a recursive search pattern, the searching procedure continues
with the same search pattern that is repositioned according to
the new MBD point. Otherwise, the search using the current
pattern is completed and the search pattern is switched to
another. In both of these cases, the main controller accesses
the BMA control table with kMBD to retrieve corresponding
�rδ , *k, and *V . In the case of the last pattern, the searching
procedure is completed and the result is delivered.

The rRR computation unit includes identical riRR and rjRR
circuits for (1) and (2) computation, respectively. Fig. 8 depicts
the riRR circuit. The circuit is controlled by the initialize
(init) and accumulate (acc) signals. It selects partial offsets
(Fig. 1) with multiplexers and reduces the selected offsets
with CSA (carry save adder) to two operands before final
addition.

When the riRR circuit determines a search center, the init
signal is set to ‘1’. The circuit computes the search center as
riRR = (�riα + �riδ + �riβ) mod w and the result is stored
in the register (R). Since �riδ = 0 for the search center,
R = riRR = (�riα + �riβ) mod w. In order to determine
the checking points around the pattern center, the init signal
is set to ‘0’, in which case R = (�riα + �riβ) mod w is
maintained constant and a tested checking point is computed
as riRR = (�riε + �riδ + R) mod w.

After the first search pattern is completed, the riRR circuit
modifies the search path by accumulating R. For the ac-
cumulation, �riδ corresponding to the MBD point of the
completed pattern has to be redelivered to the circuit. The
circuit recomputes riRR = (�riε + �riδ + R) mod w, where
�riε = 0. The asserted acc signal updates the register R as
R = riRR = (�riδ + R) mod w. Now, the search path is
prepared for the next search pattern.

Utilizing the same hardware for the rRR computation and
the search path modification makes the circuit very area-
efficient while maintaining high performance. The riRR and
rjRR circuits are able to compute a new rRR in every clock
cycle, and only one clock cycle delay is needed for the search
path modification.

B. Memory System

The memory system (Fig. 5) includes two separate local
on-chip memories: a search area memory for dRI and a

current block memory for dCI [33]. The memories include 16
1-pixel wide and four 4-pixel wide single-port parallel mem-
ory modules [36], respectively. The search area memory is
configurable for the search areas of w ∈ {48, 80, 112, 144}
and h ∈ {48, 80, 112, 144} at design time. In addition, search
area reuse is supported.

To achieve maximal data storage capability, the memory
system supports a 16-pixel wide row access format for data
storage. Data is retrieved from the memories with a 4 × 4
block access format (Fig. 1) which is compatible with variable
block sizes. Since unrestricted memory accesses are vital for
fast BMAs, the block format can be arbitrarily placed in the
pixel-addressable search area memory.

Besides the memory modules, the memory system includes
an address computation unit as well as data rotators for the
write and read data. The memory system is presented in detail
in [33].

C. SAD Unit

The SAD unit (Fig. 5) uses SAD as a block distortion
measure. At the current block location (x , y), the SAD
criterion is defined as

SAD(x, y, i, j) =
Q−1∑
q=0

U−1∑
u=0

|A(x+q,y+u) − B(x+i+q,y+ j+u)|

(5)

where A(x+q,y+u) and B(x+i+q,y+ j+u) indicate pixels of the
current block and the reference frame, respectively. The size
of the block is Q × U and SAD computation is performed in
the search area location (i , j) which is the displacement of
the candidate block from the current block.

The SAD unit implements an optimized SAD algorithm
which processes arithmetic operations of (5) in an efficient
way. A flexible control with multiple available early termi-
nation mechanisms and threshold values enhances execution
speed and makes the architecture compatible with various
BMAs.

The SAD unit is divided into three stages. The first stage
is composed of 16 absolute difference units, the second stage
includes a compression array for a partial SAD value accumu-
lation, and the third stage is for a minimum SAD determination
unit. The SAD unit is thoroughly described in [34].

V. PERFORMANCE ANALYSIS

The performance of the proposed motion estimation ar-
chitecture (Fig. 5) is evaluated with TSS [6], BBGDS [7],
DS [8], [9], HEXBS [10], and CDS [11]. All the five BMAs
follow the proposed BMA execution flow, but the search
strategies and patterns vary between them. TSS uses single-
pass search patterns and a coarse-to-fine search strategy in
which search step size is hierarchically converged. The amount
of repeated steps is determined by the size of the search area.
BBGDS utilizes a square pattern of 3 × 3 checking points
which recursively advances towards the MBD point. The
search strategy and patterns of DS are presented in Fig. 3.
HEXBS resembles DS, expect that it replaces LDSP with

VANNE et al.: A CONFIGURABLE MOTION ESTIMATION ARCHITECTURE FOR BLOCK-MATCHING ALGORITHMS 473

TABLE I

PERFORMANCE OF THE PROPOSED MOTION ESTIMATION ARCHITECTURE

Sequence Format BMA PSNR Points/MB PSNR diff. Speed-up Isize(bits) tT/MB tD/MB tD/point MHz @ 30 fps

Salesman QCIF

TSS 40.28 33.0 −0.03 29 851 685 569 17.2 3
DS 40.30 13.0 −0.01 74 270 345 230 17.6 2
CDS 40.29 9.1 −0.02 106 960 272 156 17.2 1
BBGDS 40.30 9.1 −0.01 106 130 272 156 17.2 1
HEXBS 40.24 11.0 −0.07 87 208 313 197 17.9 1

Foreman CIF

TSS 31.18 33.0 −1.08 29 851 680 569 17.2 9
DS 31.21 18.7 −1.05 51 270 450 338 18.1 6
CDS 31.10 16.8 −1.17 57 960 417 305 18.2 5
BBGDS 31.12 16.6 −1.14 58 130 412 301 18.2 5
HEXBS 30.68 14.1 −1.59 68 208 372 260 18.4 5

F1 Car D1

TSS 22.75 33.0 −1.60 29 851 678 569 17.2 33
DS 22.13 22.1 −2.22 44 270 509 400 18.1 25
CDS 22.08 21.5 −2.27 45 960 502 393 18.3 25
BBGDS 21.65 18.5 −2.70 52 130 448 339 18.3 22
HEXBS 22.00 15.8 −2.35 61 208 404 295 18.6 20

Pedestrian HDTV

TSS 29.93 33.0 −0.52 29 851 677 569 17.2 166
DS 29.00 27.5 −1.46 35 270 623 516 18.7 153
CDS 28.98 26.0 −1.48 37 960 597 489 18.8 147
BBGDS 28.55 27.3 −1.91 35 130 615 507 18.6 151
HEXBS 28.83 19.0 −1.62 51 208 473 365 19.3 116

hexagon-shaped search pattern of six checking points. CDS
has the most sophisticated search strategy, which employs
several search patterns and halfway-stop techniques. CDS
begins with a cross-shaped search pattern after which the
search optionally continues as DS.

A. Experimental Results

The executed four video sequences “Salesman” (176×144,
449 frames), “Foreman” (352 × 288, 300 frames), “F1 Car”
(720 × 576, 220 frames), and “Pedestrian” (1920 × 1080,
50 frames) vary in motion content as well as in frame size.
All the simulations are consistently performed with a single
reference frame and with fixed block size of 16 × 16 pixels.
MV is restricted to [−15, 15] (w = h = 48), and the searching
procedures are always started from the search center without
prediction. The proposed architecture is configured to prefer
a selection of the search center; i.e., the value of 100 is
subtracted from the SAD value of zero MV (zero bonus). Other
thresholds or early termination mechanisms [34] are not used
in the simulations.

Table I tabulates the simulation results. An average peak
signal-to-noise ratio (PSNR) of motion-compensated frames
and an average number of checking points per MB are used
as the measure of BMA search quality and search speed,
respectively. In all the sequences, TSS has a fixed amount
of checking points, whereas the motion content affects the
search path lengths of DS, CDS, BBGDS, and HEXBS. In
addition, average PSNR degradation (PSNR diff.) and speed-
up ratio over FS are reported for each BMA. Compared to FS,
the evaluated BMAs suffer from reduced search quality when
motion content and resolution are higher. However, they also
achieve clearly better search speed in all the examined cases.
For example, HEXBS achieves average speed-up ratio of 67.
More accurate performance comparisons of these BMAs are
presented in [1]–[14].

The size (Isize) of the BMA control table varies between
BMAs. The control tables of BBGDS and HEXBS resemble
that of DS (Fig. 3). The control table of TSS is the most regular
one, whereas CDS requires the most complex table. However,
even the most complex table is implementable with small
overhead (Isize < 1 Kbits). The usage of the parameter *V (k)
enables the proposed control table to be much more compact
than the data structure presented in [29]. For example, the
height of the BMA control table for DS is 15 (Fig. 3), whereas
the corresponding data structure for DS requires 53 positions
in [29].

A total clock cycle count (tT) per MB includes cycles
consumed by distortion computation (tD), data storage, and
data delivery. However, search area extension used in image
boundaries is assumed to be performed beforehand so that
it does not burden the architecture. Derived from tT /MB
and tD/MB, the utilization of the computation units varies
from 57% to 84%. With the evaluated fast BMAs, the time
consumed by data storage and data delivery is emphasized
since only a minority of checking points is tested. Masking
the delays of data storage and delivery would require dual-
port search area and current block memories as well as an
additional data buffer for the best matching block.

Normalized execution times of different BMAs are tab-
ulated as computation cycles consumed per checking point
(tD/point). The proposed architecture is very tolerant of dif-
ferent types of BMAs. It processes all the test cases with
only 12% deviation in tD/point metric, which means that
a total cycle count is almost directly proportional to the
number of checking points tested. Hence, the BMA-specific
metrics (PSNR and points/MB) are the most significant criteria
when determining a preferred set of BMAs for the proposed
architecture.

In the “Salesman” sequence, the small motion content
means that most of the blocks are stationary; i.e., MBD points
are mainly located in the search center. All the evaluated

474 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 4, APRIL 2009

TABLE II

COMPARISON OF THE PROPOSED AND EXISTING ARCHITECTURES

Freq Memory Area Power Process Voltage
Architecture Supported BMAs Avg.tT/MB (MHz) (KB) (kgates) (mW) � of PEs (μm) (V) Search range

Proposed HEXBS/BBGDS/TSS 390/437/680 200 2.5 14.2 59 16 0.13 1.2 [−15, 15]
Jong [18] TSS 794 40 1.7 13.6 n.a. 9 n.a. n.a. [−7, 7]
Chen [20] TSS 851 50 1.5 11.6 350 9 0.80 5.0 [−7, 7]
Lakamsani [19] Enhanced TSS 2 368 40 0.6 4.1 n.a. 3 n.a. n.a. [−5, 5]
Zhang [26] TSS/FS 204/1 591 n.a. 1.9 24.0 n.a. 48 n.a. n.a. [−8, 8]
Kuhn [1] TSS/FS 948/16 399 100 2.4 22.3 n.a. 16 0.25 2.5 [−16, 15]
Chao [27] DS/Fast FS 437/2 879 50 3.5 9.0 224 8 0.35 3.3 [−16, 15]
Li [28] PMVFAST/EPZS 1 042/1 042 200 n.a. 17.5 n.a. 9 0.18 n.a. n.a.
Lin [30] Programmable n.a. 66 0.8 31.3 <300 72 0.50 3.3 Programmable
Gong [31] Programmable 1392 (TSS) 133 39.1 30.0 n.a. 16 0.25 n.a. n.a.
Dias [32] Programmable 5376 (DS) 144 n.a. 13.3 48 1 0.18 1.8 [−8, 7]

n.a. = not available.

BMAs consume the smallest available number of checking
points with stationary blocks, so an average computational
complexity (points/MB) of each BMA is close to its theo-
retical minimum. Since all the BMAs produce almost equal
PSNR values, BBGDS and CDS with the lowest cycle counts
(tT /MB) are the preferred ones. With BBGDS and CDS, the
architecture clocked at 1 MHz meets real-time performance
(30 fps).

The higher motion content in the “Foreman” sequence in-
creases computational complexity of DS, CDS, BBGDS, and
HEXBS over the “Salesman” sequence. HEXBS has the lowest
search quality, but the increase in cycle count is more moderate
with it (19%) than with DS (30%), CDS (53%), and BBGDS
(52%). The cycle count of TSS remains approximately the
same.

The rapid motion content in the “F1 Car” sequence con-
siderably decreases the average PSNR values. In addition,
the computational complexities of TSS and other BMAs are
further converged. Compared to the “Salesman” sequence,
increase in cycle count is the lowest with HEXBS (29%). In
this case, quality favors TSS, but HEXBS is the best in terms
of speed.

When processing the high-resolution “Pedestrian” sequence,
significant increase in cycle count over the “Salesman” se-
quence exists with DS (81%), CDS (119%), and BBGDS
(126%). Instead, HEXBS achieves a reasonable average PSNR
value with moderate growth in cycle count (51%). TSS pro-
duces the highest search quality. Real-time operating frequen-
cies demanded for HEXBS and TSS are 116 and 166 MHz,
respectively.

B. Synthesis Results and Comparison

According to the above analysis, BBGDS is well suited for
sequences with small or moderate motion content, TSS for low
bit rate purposes due to its moderately good search quality,
and HEXBS for fast execution. Hence, the proposed BMA
framework is configured to support HEXBS, BBGDS, and TSS
operating modes.

The area and timing results based on logic synthesis as
well as other characteristics are tabulated for the proposed
configuration in the first row of Table II. A 0.13-μm HCMOS9
standard cell library by STMicroelectronics was applied in

the synthesis and the results are reported under the nominal
operating conditions (1.2 V, 25 ◦C). The area values (gate
count) are based on equivalent 2-input NAND gates, whereas
the clock frequency represents the critical path delay in the
pipelined architectures. The pipeline registers and all the
units except the memory modules are included in the area
results. The average cycle counts (avg. tT /MB) for HEXBS,
BBGDS, and TSS are derived from the simulation experiments
(Table I).

The proposed architecture (Fig. 5) clocked at 200 MHz is
implementable with 14.2 kgates and 2.5 KB SRAM memory
when the search range is [−15, 15]. At 200 MHz, the power
consumption of the implementation is 59 mW, of which
29 mW is consumed by the memories. The BMA control
table configured for HEXBS, BBGDS, and TSS costs only
0.4 kgates which is below 3% of the total gate count.

High-resolution sequences would particularly benefit from
the larger search range. Enlarging the search range of the
proposed architecture clocked at 200 MHz to [−31, 31] in-
creases memory consumption to 6.5 KB and the gate count
to 15.2 kgates. The respective metrics with the search range
of [−47, 47] are 12.5 KB and 15.5 kgates. For higher speed
requirements, the architecture having the search range of
[−15, 15] can be accelerated with a synthesis tool (under
stricter delay constraints) to 500 MHz at a cost of 16.6 kgates.
The power consumption in this case is 123 mW, of which the
memories consume 60 mW.

Table II also summarizes the characteristics of the contem-
porary architectures. The reported results are based on the
given search range and a single reference frame. In addition,
area metrics for all the architectures are tabulated without
memory. The transistor counts reported in [20] and [30] are
converted into gate counts by supposing four transistors per
a single 2-input NAND gate. Correspondingly, six transistors
are assumed per an on-chip SRAM bit.

Compared to Jong’s [18] and Chen’s [20] BMA-specific
architectures, the proposed approach uses over four times
larger a search area and still decreases cycle count (tT /MB)
for TSS by 14% and 20%, respectively. In addition, hardware
overhead is low. Lakamsani’s [19] BMA-specific architecture
implements enhanced TSS with a small silicon area, but at a
cost of considerably increased cycle count.

VANNE et al.: A CONFIGURABLE MOTION ESTIMATION ARCHITECTURE FOR BLOCK-MATCHING ALGORITHMS 475

Zhang’s [26] flexible architecture requires 70% less cycles
with TSS, but it uses approximately a quarter of the search
area and consumes 69% more logic gates than the proposed
architecture. Kuhn’s [1] flexible architecture requires approxi-
mately the same amount of memory for the same search range
than the proposed one. However, Kuhn’s architecture uses only
a quarter of the available search area with TSS and still suffers
from 39% overhead in cycle count. The support for half-pixel
motion estimation increases the gate count in Kuhn’s approach.

Chao’s [27] flexible architecture requires 5.2 k less logic
gates but 1 KB more memory than the proposed approach.
In addition, the proposed architecture (HEXBS mode) con-
sumes 11% less cycles than Chao’s architecture (DS mode).
When the architectures process the same “Foreman” sequence
(CIF) using the same DS mode, the cycle count of the
proposed architecture (Table I) is 8% lower than the respective
metric in [27]. Utilizing all the available early termination
mechanisms in the proposed architecture would increase the
delay gap further. Li’s [28] flexible architecture supports
sophisticated BMAs, but it has 53–167% higher cycle count,
it executes complicated control parts with an RISC processor,
and it requires 23% more logic gates than the proposed
architecture. Dias’ [29] configurable architecture is excluded
from Table II since only implementation results on FPGA are
available for it. In VIRTEX-II Pro device, it consumes 2213
slices and the operating frequency of 66 MHz is reported to
be sufficient for real-time execution of CIF resolution.

Lin’s [30] and Gong’s [31] programmable architectures re-
quire over 110% more logic gates than the proposed approach.
Lin’s architecture has a fully programmable search range
and it has low memory consumption, but cycle count is not
reported for any BMA. In Gong’s approach, cycle count is
separately given for TSS. Although the cycles for half-pixel
motion estimation, prediction, and compensation are excluded,
it still requires twice the number of cycles with TSS than the
proposed approach. In addition, Gong’s architecture consumes
a lot of memory. Dias’ [32] programmable implementation
is evaluated with DS. It consumes less area and power than
the proposed approach, but with a quarter of the search area
it requires approximately 10 times more cycles to execute a
BMA than the proposed one.

According to Tables I and II, the proposed architecture can
perform fixed block-size motion estimation for full HDTV
(1920 × 1080) sequences in real time (30 fps). A fair overall
performance comparison with the other architectures would
require that their operating frequencies and voltages are scaled
to the 0.13-μm technology. However, although an assumed
43% increase [37] in operating frequency per CMOS process
generation would be taken into account, none of the reference
programmable architectures would be able to process full
HDTV sequences at 30 fps with the examined BMAs (Table I).

The proposed architecture outperforms the reference ar-
chitectures in terms of performance because of its efficient
memory system and SAD unit. Furthermore, the control unit
with the parametrizable search strategy control (Fig. 2) and
separable search path generation (Fig. 1) makes the architec-
ture adaptive to various search strategies, search paths, and
search patterns. Despite the support of multiple BMAs, area

cost of the proposed architecture is still close to BMA-specific
architectures.

VI. CONCLUSION

This paper has introduced a motion estimation architecture
with a novel BMA framework that is adjustable for a wide
range of fast BMAs. Parameters of the BMA framework are
responsible for the search path generation and search strategy
control of BMAs, which are processed according to the intro-
duced general BMA execution flow. The architecture supports
a predefined set of BMAs at run time and provides low latency
as well as high throughput for all the mapped BMAs indepen-
dent of the search strategy, search path, or search patterns.
The total execution time of each BMA is almost directly pro-
portional to the number of checking points tested. Hardware
utilization is also moderately high since all the processing
elements always participate in distortion computation.

Experimental results show that the proposed architecture
provides higher performance than the reference BMA-specific,
flexible, or programmable architectures. In addition, the silicon
area cost is close to BMA-specific architectures. Mapping
HEXBS, BBGDS, and TSS to the architecture clocked at
200 MHz costs only 14.2 kgates and 2.5 KB of memory.
The architecture is able to process real-time (30 fps) fixed
block-size motion estimation (1 reference frame) at full HDTV
resolution with all the examined BMAs (BBGDS, DS, CDS,
HEXBS, and TSS). Hence, the requested flexibility is provided
without sacrificing performance.

Mapping a new or modified BMA to the architecture only
requires reparametrization of the BMA framework. Therefore,
the proposed architecture can be applied as a reusable IP block
in the contemporary and future video encoders.

REFERENCES

[1] P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for
MPEG-4 Motion Estimation. Boston, MA: Kluwer, 1999, p. 239.

[2] Y. W. Huang, C. Y. Chen, C. H. Tsai, C. F. Shen, and L. G. Chen, “Sur-
vey on block matching motion estimation algorithms and architectures
with new results,” J. VLSI Signal Process., vol. 42, no. 3, pp. 297–320,
Mar. 2006.

[3] W. Li and E. Salari, “Successive elimination algorithm for motion
estimation,” IEEE Trans. Image Process., vol. 4, no. 1, pp. 105–107,
Jan. 1995.

[4] X. Q. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel successive
elimination algorithm for block matching motion estimation,” IEEE
Trans. Image Process., vol. 9, no. 3, pp. 501–504, Mar. 2000.

[5] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block
motion vectors,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, no. 2,
pp. 148–157, Apr. 1993.

[6] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion-
compensated interframe coding for video conferencing,” in Proc. Nat.
Telecommunication Conf., New Orleans, LA, 1981, pp. G5.3.1–5.3.5.

[7] L. K. Liu and E. Feig, “A block-based gradient descent search algorithm
for block motion estimation in video coding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, no. 4, pp. 419–422, Aug. 1996.

[8] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Trans. Image Process., vol. 9, no. 2,
pp. 287–290, Feb. 2000.

[9] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel
unrestricted center-biased diamond search algorithm for block motion
estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 4,
pp. 369–377, Aug. 1998.

[10] C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based search pattern for fast
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 12, no. 5, pp. 349–355, May 2002.

476 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 4, APRIL 2009

[11] C. H. Cheung and L. M. Po, “A novel cross-diamond search algorithm
for fast block motion estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 12, no. 12, pp. 1168–1177, Dec. 2002.

[12] A. M. Tourapis, O. C. Au, and M. L. Liou, “Highly efficient predictive
zonal algorithms for fast block-matching motion estimation,” IEEE
Trans. Circuits Syst. Video Technol., vol. 12, no. 10, pp. 934–947, Oct.
2002.

[13] Z. Chen, J. Xu, Y. He, and J. Zheng, “Fast integer-pel and fractional-pel
motion estimation for H.264/AVC,” J. Vis. Commun. Image Represent.,
vol. 17, no. 2, pp. 264–290, Apr. 2006.

[14] W. Choi and B. Jeon, “Hierarchical motion search for H.264 variable-
block-size motion compensation,” SPIE Opt. Eng., vol. 45, no. 1,
pp. 1–9, Jan. 2006.

[15] T. Komarek and P. Pirsch, “Array architectures for block matching
algorithms,” IEEE Trans. Circuits Syst. Video Technol., vol. 36, no. 10,
pp. 1301–1308, Oct. 1989.

[16] L. D. Vos and M. Stegherr, “Parameterizable VLSI architectures for the
full-search block-matching algorithm,” IEEE Trans. Circuits Syst. Video
Technol., vol. 36, no. 10, pp. 1309–1316, Oct. 1989.

[17] K. M. Yang, M. T. Sun, and L. Wu, “A family of VLSI designs for the
motion compensation block-matching algorithm,” IEEE Trans. Circuits
Syst. Video Technol., vol. 36, no. 10, pp. 1317–1325, Oct. 1989.

[18] H. M. Jong, L. G. Chen, and T. D. Chiueh, “Parallel architectures for 3-
step hierarchical search block-matching algorithm,” IEEE Trans. Circuits
Syst. Video Technol., vol. 4, no. 4, pp. 407–416, Aug. 1994.

[19] P. Lakamsani, “An architecture for enhanced three step search gen-
eralized for hierarchical motion estimation algorithms,” IEEE Trans.
Consum. Electron., vol. 43, no. 2, pp. 221–227, May 1997.

[20] T. H. Chen, “A cost-effective three-step hierarchical search block-
matching chip for motion estimation,” IEEE J. Solid-State Circuits,
vol. 33, no. 8, pp. 1253–1258, Aug. 1998.

[21] Y. W. Huang, S. Y. Chien, B. Y. Hsieh, and L. G. Chen, “Global
elimination algorithm and architecture design for fast block matching
motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 14,
no. 6, pp. 898–907, Jun. 2004.

[22] C. Y. Chen, S. Y Chien, Y. W. Huang, T. C. Chen, T. C. Wang, and L. G.
Chen, “Analysis and architecture design of variable block-size motion
estimation for H.264/AVC,” IEEE Trans. Circuits Syst. I, vol. 53, no. 3,
pp. 578–593, Mar. 2006.

[23] S. Y. Huang, C. Y. Cho, and J. S. Wang, “Adaptive fast block-matching
algorithm by switching search patterns for sequences with wide-range
motion content,” IEEE Trans. Circuits Syst. Video Technol., vol. 15,
no. 11, pp. 1373–1384, Nov. 2005.

[24] Y. S. Jehng, L. G. Chen, and T. D. Chiueh, “An efficient and simple
VLSI tree architecture for motion estimation algorithms,” IEEE Trans.
Signal Process., vol. 41, no. 2, pp. 889–900, Feb. 1993.

[25] S. Dutta and W. Wolf, “A flexible parallel architecture adapted to block-
matching motion-estimation algorithms,” IEEE Trans. Circuits Syst.
Video Technol., vol. 6, no. 1, pp. 74–86, Feb. 1996.

[26] X. D. Zhang and C. Y. Tsui, “An efficient and reconfigurable VLSI
architecture for different block matching motion estimation algorithms,”
in Proc. IEEE Int. Conf. Acoustic, Speech, and Signal Processing,
Munich, Germany, vol. 1, Apr. 1997, pp. 603–606.

[27] W. M. Chao, C. W. Hsu, Y. C. Chang, and L. G. Chen, “A novel hybrid
motion estimator supporting diamond search and fast full search,” in
Proc. IEEE Int. Symp. Circuits Syst., vol. 2, Phoenix-Scottsdale, AZ,
May 2002, pp. 492–495.

[28] T. Li, S. Li, and C. Shen, “A novel configurable motion estimation
architecture for high-efficiency MPEG-4/H.264 encoding,” in Proc. Asia
and South Pacific Design Automation Conf., vol. 2, Shanghai, China, Jan.
2005, pp. 1264–1267.

[29] T. Dias, N. Roma, L. Sousa, and M. Ribeiro, “Reconfigurable architec-
tures and processors for real-time video motion estimation,” J. Real-Time
Image Process., vol. 2, no. 4, pp. 191–205, Dec. 2007.

[30] H. D. Lin, A. Anesko, and B. Petryna, “A 14-Gops programmable
motion estimator for H.26X video coding,” IEEE J. Solid-State Circuits,
vol. 31, no. 11, pp. 1742–1750, Nov. 1996.

[31] D. Gong and Y. He, “A new programmable video signal processor
for motion estimation and motion compensation,” in Proc. SPIE-VCIP,
vol. 4310, San Jose, CA, Jan. 2001, pp. 920–931.

[32] T. Dias, S. Momcilovic, N. Roma, and L. Sousa, “Adaptive motion es-
timation processor for autonomous video devices,” EURASIP J. Embed.
Syst., vol. 2007, no. 1, pp. 1–10, May 2007.

[33] J. Vanne, E. Aho, T. D. Hämäläinen, and K. Kuusilinna, “A parallel
memory system for variable block-size motion estimation algorithms,”
IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 4, pp. 538–543,
Apr. 2008.

[34] J. Vanne, E. Aho, T. D. Hämäläinen, and K. Kuusilinna, “A high-
performance sum of absolute difference implementation for motion
estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 7,
pp. 876–883, Jul. 2006.

[35] E. Salminen, T. Kangas, J. Riihimäki, V. Lahtinen, K. Kuusilinna, and
T. D. Hämäläinen, “HIBI communication network for system-on-chip,”
J. VLSI Signal Process.- Syst. Signal, Image, Video Tech., vol. 43,
no. 2–3, pp. 185–205, Jun. 2006.

[36] M. Gössel, B. Rebel, and R. Creutzburg, Memory Architecture & Parallel
Access. Amsterdam, The Netherlands: Elsevier, 1994, p. 246.

[37] S. Borkar, “Design challenges of technology scaling,” IEEE Micro,
vol. 19, no. 4, pp. 23–29, Jul. 1999.

Jarno Vanne (M’02) received the M.S. degree in
information technology from Tampere University of
Technology (TUT), Tampere, Finland, in 2002.

He is currently pursuing the Ph.D. degree as
a research scientist in the DACI research group,
the Department of Computer Systems, TUT. His
research interests include video coding systems, mo-
tion estimation, and parallel memories.

Eero Aho (M’02) received the M.S. degree in
electrical engineering and the Ph.D. degree in in-
formation technology, from Tampere University of
Technology, Tampere, Finland, in 2001 and 2007,
respectively.

Currently, he works in the Energy Efficient Com-
puting Group, the Nokia Research Center, Tampere.
His research interests include memory systems and
parallel processing.

Kimmo Kuusilinna (M’02) received the Ph.D. de-
gree in information science from Tampere University
of Technology, Tampere, Finland, in 2001.

He currently works as a Principal Member of Re-
search Staff at the Nokia Research Center, Tampere.
His main research interests include system-level
design for mobile devices, on-chip interconnections,
and parallel memories.

Timo D. Hämäläinen (M’95) received the M.S.
and Ph.D. degrees in electrical engineering from
Tampere University of Technology (TUT), Tampere,
Finland, in 1993 and 1997, respectively.

He has been a Professor in the Department of
Computer Systems, TUT, since 2001. He heads the
DACI research group that focuses on wireless sensor
networks as well as multi-processor system-on-chip
architectures, modeling and design tools. He is the
author of over 50 journal papers and 180 conference
publications and holds several patents on wireless

systems.

	cover_page_first_A4.pdf
	Vanne982.pdf
	PhDThesis_v99.pdf
	PhDThesis_publications_A4.pdf
	cover_page_last_A4.pdf

