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Abstract

Nowadays, the problem of image retrieval and classification plays an important role in 

the fields of image analysis and pattern recognition. With an increasing amount of 

real-world image data to be processed and stored, the development of powerful 

retrieval tools has also become a central problem in various industrial machine vision 

applications. The goal of finding similar objects from large and often distributed 

image collections is shared by the developers and users of machine vision systems. 

The focus of this thesis is on the field of surface defect imaging that has been applied 

to paper and metal manufacturing. Current surface inspection systems are capable of 

detecting various defects and producing gray level images of them. The defect images 

are collected into large image databases. Effective retrieval and classification methods 

are necessary to analyze the defects stored in the database.

The goal of this thesis is to present visual descriptors that characterize the defect 

shape and gray level distribution. The majority of the methods presented consider the 

shape using Fourier description of the boundary line of the defect. For this kind of 

shape description, novel Fourier-based approaches are presented. These approaches 

add a multiresolution property to conventional Fourier shape descriptors. This is 

achieved by combining discrete wavelet transform with discrete Fourier transform in 

shape description. Another approach to multiresolution shape description uses 

boundary smoothing combined with Fourier shape description. In addition, a method 

to combine defect boundary with defect’s gray level information in Fourier 

description is presented. The gray level distribution of a defect image is described 

using binary co-occurrence matrix that outperforms commonly used second order 

statistical measures in defect image retrieval. 

The proposed shape descriptors provide a significant improvement over the 

conventional Fourier shape description of the defects. The experimental results reveal 

that retrieval accuracy can be easily improved by using the proposed multiscale 

Fourier descriptors. The descriptors which use a combination of defect shape and gray 

level provide a novel method that is capable of improving retrieval performance 

without increasing descriptor dimensionality       
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1 Introduction 

The rapid development of digital and information technologies has brought about the 

modern multimedia world. The amount of digital multimedia information available to 

ordinary people has increased enormously during the last decade. This development 

has been the result of the exponential growth of the Internet. In addition, different 

types of digital libraries and archives have made it possible to collect vast amounts of 

information in digital form. In addition to textual databases, multimedia data such as 

images, videos, or audio are nowadays often collected into digital archives. However, 

in order to make effective use of the available multimedia content, one needs to be 

able to find and locate the desired information from the huge variety of available 

information. The wealth of available digital information has given rise to a problem 

that is also shared by users of World Wide Web (WWW) as well as those seeking 

information in digital libraries. In consequence, the organization and search of 

multimedia content have become important issues.    

Digital libraries and archives consist of one or several databases. The databases 

and the information stored in them have a great significance in several areas of current 

information technology. Different types of databases contain a wide variety of 

information that is part of everyone’s daily life, such as personal, medical, financial, 

or consumer information. On the other hand, it is also common that people create their 

own databases containing multimedia content in digital form like photographs, music 

or videos. Another rapidly growing area is in industrial databases that contain 

information, such as measurement data, from different manufacturing processes.  

Information retrieval means the storage, organization, retrieval and presentation of 

information (Baeza-Yates and Ribeiro-Neto, 1999). The basic requirement for a 

successful query is that the user defines the desired information in such a manner that 

the retrieval system is capable of understanding it. Hence, an essential problem with 

information retrieval is to define the information requirement and reply to it (Baeza-

Yates and Ribeiro-Neto, 1999). A traditional approach is to use keywords that 

describe the desired information or document to be retrieved. This approach is still 

valid in the case of text documents such as books or journal articles, whose central 

content can be described using a few keywords. On the other hand, it is obvious that 

the whole content cannot be described using a limited number of keywords, which 

means that this information is omitted in the document search. Consequently, all 
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available information cannot be retrieved from the database. This example illustrates 

one of the most essential problems for a retrieval system: how to find all the 

interesting information from the database.  Another and equally important problem is 

how to limit the recalled information so that only the information on the user’s 

interest is recalled. 

1.1 Content-based retrieval in image databases

Images can be used in human communication to illustrate almost anything. Some 

typical areas can be, for example, enrichment of textual information by illustrations 

and images in writing, diagnosis and monitoring in health-care as well as different 

kinds of documentation, visual inspection, and recognition tasks. In recent years, the 

development of digital imaging tools has caused a rapid increase in image archives 

throughout the world and in several areas of modern life. These areas include 

education, entertainment, Internet, person identification, and industrial imaging 

solutions, to name just a few. Digital imaging has also meant that imaging costs have 

decreased significantly and this has caused strong growth in the sizes of the image 

databases. It is not unusual for current image archives to contain hundreds of 

thousands or even millions of images.   

With the increase of digital image archives, the problem of image retrieval has 

become more pronounced. As a result, during the last decade, much research effort 

has been directed to this area. Early image retrieval applications used textual 

information i.e. keywords that were used to describe image content. The keywords 

had to be defined manually and this involves an enormous amount of work if the 

database is large. Another drawback with the keyword-based image retrieval is that 

the content description is always subjective. This means that the selection of 

keywords describing a particular image is dependent on the personal opinion of the 

person selecting the keywords. Moreover, it is often difficult to describe the visual 

content of an image using words. 

Due to the serious drawbacks of keyword-based image retrieval systems, a new 

approach has been adopted to describe image content in retrieval applications. This 

approach employs visual features that are extracted from the image to describe its 

content. This is called image database indexing. In addition to images, this kind of 

indexing has been utilized in all kinds of multimedia, such as in videos and audio. 

Hence, the use of visual features makes it possible to describe effectively image 

content without the need for keywords. The most common visual features are the 

shapes, colors and textures occurring in the images. It is essential in using such a 

method that indexing can be performed automatically to make it suitable for large 

image databases. Furthermore, the use of automated indexing eliminates the problems 

caused by subjectivity in the indexing. The methods that use this approach are 

generally referred to as content-based image retrieval (CBIR) methods. The 

development of CBIR methods including visual features, image database indexing, 

similarity measures, semantic analysis, and system design have received much 

attention in the research community as well as in commercial applications. From the 

beginning of the 1990s a significant number of conference papers and journal articles 

as well as several books have been published on the topic, see (Gudivada and 

Raghavan, 1995; Gupta and Jain, 1997; Rui et al., 1997, 1999; Smeulders et al., 2000; 

Del Bimbo, 2001), for example. 
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In a CBIR system, the goal is to recall from the image databases those images that 

bear closest similarity to the query image provided by the user. As with information 

retrieval in general, the essential problem in image retrieval is to obtain a response to 

the user’s query as accurately as possible. To fulfill this requirement, the recalled 

images should correspond to the query image in terms of their content. This is 

possible only if the selected features correspond to the visual content of the images. 

Selection of the features is, therefore, the essential problem in image retrieval. The 

retrieval is usually an on-line operation, and hence the features should be 

computationally inexpensive. This is particularly important in the case of large image 

databases. Successful indexing of an image database is a challenging task that is 

dependent on the nature of the database images. The research areas that are closely 

related to content-based image indexing are image analysis and pattern recognition.

Feature selection in image retrieval tasks is quite similar to that in image 

classification. This is due to fact that in content-based image classification the same 

features can often be utilized as in the case of retrieval. This means that the 

performance of particular visual features can be indicated and compared by means of 

simple image classification experiments.  

1.2 Objectives of the thesis

Current image retrieval methods have been developed to make queries in different 

kinds of image archives. These archives may, for example, contain consumer 

photographs, medical images, satellite images, or newspaper images. This thesis 

presents the problem of image retrieval from an industrial viewpoint. Digital imaging 

tools are nowadays widely used in the process industry to monitor quality and 

production. Imaging tools can be used to acquire images of defects occurring in the 

production. Due to the speed of industrial processes such as those of a paper machine, 

the volume of acquired images is huge, and therefore effective retrieval methods are 

necessary for finding defects of a certain type from the database. 

In defect image retrieval, as with image retrieval in general, shape, color and 

texture can be used to describe the image content. This thesis focuses on the defect 

image indexing and retrieval on the basis of shape and gray level features. The goal of 

this study is to develop effective visual features that are capable of describing the 

defect images in retrieval. The study shows that the defect image description can be 

significantly improved using the developed description methods.  

This thesis concentrates on contour-based shape description and particularly on 

Fourier descriptors (FD). FD’s are widely used and effective methods for shape 

description and they are well suited to on-line image retrieval because of their 

computational efficiency and compactness. Methods to enhance the retrieval 

performance of FD’s are also presented. Another topic area of the thesis is defect 

image description using gray level distribution. For this purpose, a novel statistical 

measure, binary co-occurrence matrix, is presented. In addition to retrieval, the image 

classification aspect of the particular features is also considered. The image 

description methods developed in this research are such that they can be directly 

applied to defect image retrieval applications. 
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1.3 Organization of the thesis  

The application area of the present study is defect image analysis. The defect images 

that are collected from industrial processes are stored in image databases, in which 

retrieval and classification operations are carried out. In Chapter 2 the area of defect 

imaging and the problems related to defect image recognition and classification are 

discussed. This discussion deals with paper and metal surface images obtained from 

industrial processes. 

The principles of image retrieval and classification are covered in Chapter 3. The 

Chapter begins with a short historical review of image database indexing and content-

based image retrieval methods. The principles of image retrieval using visual features 

are discussed in Section 3.1. The special characters of image retrieval and 

classification, as well as their differences are also discussed in this section. Section 

3.2 considers the performance measurement of image retrieval and classification, 

including performance measures and validation methods. 

Chapter 4 covers the area of shape description. The purpose of the Chapter is to 

give an overview of common shape description methods. The main focus is on the 

shape descriptors that are based on the boundary line of an object. The organization of 

the Chapter is based on the common taxonomy of shape description techniques. 

In Chapter 5, the principle of Fourier descriptors is discussed. Section 5.1 presents 

the well-known discrete Fourier transform (DFT) and Section 5.2 discusses its 

application to boundary-based shape description.

Chapter 6 presents the subject of statistical gray level features. Beginning with 

general first and second order statistics, general statistical color description methods 

used in image retrieval are discussed. 

Chapter 7 presents the contributions of this thesis in terms of publications dealing 

with the methods of defect image retrieval. The content of the publications is 

summarized and the author’s contributions are presented. Chapter 8 contains the 

conclusions to this thesis.  



2 Industrial defect images 

The use of machine vision applications is common in several areas of industry being 

utilized, for example, in quality and process control. Visual inspection systems are 

widely used in the process industry for inspecting goods and materials. Typical 

examples are the analysis of defects occurring in the paper manufacturing process 

(Rauhamaa and Reinius, 2002; Rauhamaa and Järvinen, 2002; Rauhamaa, 2004), the 

surface inspection of metals (Stolzenberg et al., 2003; Chen, 2004), wood inspection, 

(Niskanen, et al., 2001), and quality and defect control in the textile industry (Kumar, 

2003), to name just a few. In this thesis, the focus is on the visual inspection of web 

materials, which include paper, metals, textiles, and plastics. In many cases the image 

material collected from a manufacturing process is stored in an image database. In the 

process industry these image databases are usually very large because of the huge 

number of images produced by inspection systems. 

2.1 Surface inspection of web materials   

This thesis examines two industrial visual inspection tasks, paper and metal defect 

analysis. Both defect types are related to the problem of surface inspection of web 

materials, which is a somewhat challenging problem. Iivarinen et al., (2004a) divide 

this problem to three parts, image acquisition, defect detection, and defect 

classification. In this thesis, the classification of the surface defects is considered, but 

the other elements of the problem are also briefly discussed here. 

Paper defect imaging

There are various methods of quality control in use in paper mills. Laboratory tests 

have been the traditional way of precisely measuring the different chemical and 

physical properties of paper. These tests, however, are off-line operations and 

therefore cannot provide real-time feedback on paper properties. This has prompted 

the rapid growth in on-line scanning measurement systems that are capable of 

providing feedback on certain paper properties in real-time. Holes and other surface 

defects have been found to be the essential quality and productivity problems in the 

paper industry (Landry (2000)). This has led to the need for visual inspection systems  
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Figure 2.1. Paper web inspection system. 

on the production line. In a typical paper inspection system the whole area of the 

paper web surface is inspected in real-time (Rauhamaa and Reinius, 2002). This is a 

challenging task due to the speed of the paper web, which may be up to 40m/s. The 

task of a paper surface inspection system is the detection of surface anomalies that 

deteriorate the quality of the final products or which are critical to the runnability and 

condition of production equipment (Iivarinen et al., 2004a). Holes, wrinkles or 

different kinds of thin or dirt spots are typical examples of paper surface defects. 

Figure 2.1 shows the main parts of a modern paper surface inspection system. The 

light source beam provides strong illumination to the web area under inspection. The 

light is transmitted through the paper and the cameras above the web detect variations 

in its brightness. The transmission-based illumination (as in Figure 2.1) is suitable for 

paper grades of low opacity. With the paper grades of high opacity, the illumination is 

reflected so that both the camera beam and light source beams are on the same side of 

the web. The camera beam contains an array of CCD (charge-coupled device) 

cameras. The signal provided by CCD sensors can nowadays be converted to digital 

form in real-time. Therefore, the web imaging system is capable of producing high-

quality gray level images of the defects. Additional devices include pulse encoder for 

speed measurement and color markers that are used to mark the defect locations. 

The defect images obtained from a modern inspection system are like photographs 

with 256 gray levels. In early defect imaging methods, the defects were detected as 

simple holes or spots, with no precise information about their shape or structure 

(Rauhamaa and Reinius, 2002). Nowadays, due to advanced defect imaging, it is 

possible to use the shape and the internal structure of the defect as descriptors in 

defect recognition and classification.

The defect images are utilized in paper manufacturing process in several ways. 

They give immediate information to the process operators about the severity of the
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Figure 2.2. Examples of paper defect images. The number above the images indicates 

the class of the defect.

defects and, in many cases, their origin. On the basis of this information, the operators 

are able to make decisions about process control or possible maintenance shutdown. 

The images are also collected into databases, from which they can be later retrieved. 

This is particularly beneficial, because the occurrence of certain defect types can be 

analyzed afterwards by making queries in the database. It should be noted that a web 

inspection system may produce hundreds of even thousands of defect images in a day. 

Even though most defects do not necessitate immediate action, they are still stored 

into the database for future analysis tasks, making them very large sources of data. 

There is a wide variety of different defects occurring in the paper web. Many 

defect types are common to all paper grades whereas some defects are specific to 

certain paper grades only. This is because different raw materials and equipment are 

used to manufacture different papers. For example, while making coated magazine 

paper, a coating layer is applied to the surface of the base paper. It is obvious that this 

process produces a different kind of defect from those arising in the manufacture of 

base paper. In addition, coating may even remove certain minor defects in the base 

paper by covering them over.  

The defect images collected into the database vary greatly in size. The size of a 

paper defect may range between fractions of a millimeter to tens of centimeters. 

Figure 2.2 presents examples of typical paper surface defects. On the basis of manual 

inspection, these defects have been divided into 14 classes. The first two defect types 

are both caused by loose paper scrap. However, they are very dissimilar. Class 1 

represents those cases where loose paper pieces are flying under a camera. In class 2 

the paper scrap is run through a machine calender. Class 3 consists of dirt spots, but in 

this case, they are encircled by a wet collar.  Sometimes most of a dirt spot may fall 

off, leaving a hole in the web, and the result will be a defect type represented by class 

5, dirt holes. Class 4 contains images of paper fluttering, which is typically caused by 

a severe defect at the paper edge.  Various effects in the wet end of a paper machine 

may cause disturbances in the web formation, and the results can be detected as thin 

areas or as a bad formation represented by class 7. The most probable cause of a clean 

hole (class 8) is most probable cause of a clean hole (class 8) is pitch or most probable 
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Figure 2.3. A surface inspection system monitoring metal strip quality.  

cause of a clean hole (class 8) is pitch or some other material which plugs the wire in 

the forming area. The appearance of this defect type is quite clear.  Wrinkles (class 9) 

are similar to web fluttering, but the folds are much narrower and sharper. Classes 10 

and 11 are both the result of the same cause, i.e. by slime or also by slippery like mass 

of paper raw material that replaces fibers in the wet end. The result is a fairly weak 

area in the sheet.  These two classes are almost the same in appearance; the only 

difference is that the defects in class 10 also contain at least one hole. It is often 

difficult to identify the causes of the small light spots in class 12 because there are 

many possible explanations for them, for example printing due to material sticking to 

a calender roll, or any random disturbance on the web, felt or roll. Class 13 contains 

marks caused by falling drops of water caused by condensation of water vapor in the 

hood of a drying section, for example. Defects are elliptical in shape and sometimes 

become so weak that holes can develop at the center. Oil spots (class 14) are similar to 

water spots, but smaller and more translucent.

Metal defect imaging

Another type of web material inspection considered here is related to the metal 

manufacturing process. Producers of metal materials use various methods to control 

the quality of their products. In the case of metal production, quality control is 

directed towards surface inspection (Chen, 2004; Henkemeyer, 2003, Stolzenberg et 

al., 2003). Traditionally, this has been carried out by human inspectors. However, the 

increasing speed of production lines has made it difficult to control such surface areas 

manually. Nowadays, machine vision systems are used to carry out surface inspection 

automatically. Current camera-based vision systems can detect anomalies occurring 

on metal surfaces, from small pimples to large area discoloration (Iivarinen et al., 

2004b). Its speed, consistency, and reliability make the machine vision system a 

powerful inspection tool for metal strip manufacturing plants.  
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Figure 2.4. Examples of metal defect images. The number above the images indicates 

the class of the defect. 

Figure 2.3 presents a metal surface inspection system installed on a strip handling 

line. There are two camera beams and a light source beam in the figure. The camera 

beam consists of several line-scan cameras utilizing CCD technology. The cameras 

are able to continuously monitor the whole width of the metal strip. Because certain 

defects are very small, the resolution of the imaging system needs to be of the order of 

fractions of a millimeter, both in the machine direction and the cross direction. As in 

the case of paper surface inspection, metal inspection systems also report defect 

information on the screen of the operator station. All detected defects are also stored 

into databases for future analysis. 

There are dozens of defect types recognized in metal surface analysis. Common 

defect classes are shells, slag inclusions, scratches, roll imprints, pimples, 

indentations, flecks and holes (Iivarinen et al., 2004b). Figure 2.4 shows three 

examples of metal surface defects which are manually divided into 14 classes on the 

basis of defect cause. 

2.2 Defect image analysis 

Image segmentation 

The defect images stored in the image databases need to be described using visual 

features to make possible their classification and retrieval. Certain texture and gray 

level features can be extracted from the defect images in a straightforward way, but in 

order to obtain shape representation, image segmentation phase is necessary. The 

defective area in the image needs to be separated from its background by a boundary 

line. Defect image segmentation is a challenging task because it is often difficult to 

distinguish the border outline of the defect from its background. There are several 

approaches to defect image segmentation (Rauhamaa and Reinius, 2002). The easiest 

approach is to draw a rectangle around the defect in a thresholded image. By means of 

this approach, the simplest measurements such as length, width, aspect ratio, and area 

of the defect can be defined. Such an approach, however, cannot be used for shape
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                 a)           b)           c)           d) 

Figure 2.5. a) Paper defect image, b) segmentation mask, c) defect extracted from 

the background, d) boundary line. 

description. Therefore, the segmentation line should correspond to the actual defect 

boundary. There have been a number of image segmentation methods presented in the 

literature, most of which are computing intensive and therefore unsuitable for real-

time processing. Iivarinen et al. (1996) proposed a defect segmentation approach that 

was based on texture analysis. The defect contours used in the experiments in this 

thesis have been extracted from the images using ABB Oy’s proprietary defect image 

segmentation algorithm.  

Irrespective of the selected approach, the segmentation results in a binary mask. On 

the basis of this mask, the defect area can be distinguished from the other regions in 

the image. The defect boundary line can also be easily defined on the basis of the 

mask using some common algorithm (Gonzalez and Woods, 1993). Figure 2.5 

presents a defect image, its segmentation mask, extracted defect region, and the 

boundary line of the defect. 

Analysis methods 

Active academic research work in the field of defect image analysis started at the 

beginning of 1990s. Since then, a variety of descriptors have been introduced to 

describe the visual content of defect images. The visual features used in defect image 

analysis and classification include texture and gray level descriptors. This section 

gives an overview of these three feature types in defect image analysis. 

In defect shape description, simple descriptors (see section 4.2) have been used 

(Iivarinen, 1998). These descriptors, compactness, convexity, principle axis ratio, 

circular variance and elliptic variance were used in defect classification in (Iivarinen 

and Visa, 1998). Chain code histogram (CCH) was also tested in surface defect 

classification in (Iivarinen and Visa, 1996), in which CCH was proved to be fast but 

not a rotation invariant method for defect shape description. Recently, Rautkorpi and 

Iivarinen (2004) have obtained promising defect classification results with edge co-
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occurrence matrix (ECM). The ECM method indicates the joint probability of edge 

directions at a certain displacement in the image. 

Various texture descriptors have been applied to surface defect images. Iivarinen 

and Visa (1998) used features extracted from a gray level co-occurrence histogram 

(Haralick, 1973) in defect classification. MPEG-7 standard (Manjunath et al., 2002) 

provides visual descriptors for defect characterization. Pakkanen et al. (2003) used 

MPEG-7 color and texture descriptors in defect image classification with good results. 

These descriptors have been applied to content-based image retrieval with PicSOM 

system (Laaksonen et al., 2000) in several papers, such as in (Iivarinen et al., 2004a, 

2004b).

The gray level distribution of the surface defect image is also a significant feature 

in describing the defect. In this area, image histograms are used in the defect 

description (Iivarinen and Visa, 1998). Image histogram, however, is a first order 

statistical measure which ignores the spatial relationships between the gray levels in 

the image. Therefore, second order measures, like gray level correlograms are used in 

image characterization (Kunttu et al., 2003b). Gray level distribution has also been 

utilized in binary form, in which the effect of the defect image background can be 

minimized. The binary approaches have been applied to first order statistics (Kunttu et 

al., 2003a) as well as to second order co-occurrence matrix (Kunttu et al., 2002). In 

Publication VI, the binary co-occurrence matrix outperformed the correlograms in the 

retrieval of paper surface images. A simple unsupervised defect image classification 

based on gray level and shape is presented in (Kunttu et al., 2003c). 
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3 Principles of image retrieval and classification 

In content-based image database indexing, the goal is to automatically describe the 

images in such a manner that it is possible to compare the visual content of the images 

and define the similarity between two images. It is possible to divide the whole image 

database into categories based on their visual features. However, it is more practical to 

retrieve only a limited number of images with the desired content from the database. 

The former approach is known as classification whereas the latter refers to image 

retrieval. The purpose of the current Chapter is to present the common principles of 

image retrieval and classification. 

3.1 Image database indexing and organization 

The indexing of the image databases has been a subject of research since the late 

1970s (Rui et al.,1997). In early solutions, the database was indexed textually using 

keywords, which were used in retrieval. Chang and Fu (1980) used keywords to 

describe satellite images. In the late 1980s an iconic indexing method was presented 

by Chang et al. (1987, 1988) in which image content was described using two-

dimensional strings. The keyword-based indexing methods have been compared in 

two articles. The article of Tamura and Yokoya (1984) compared early techniques 

whereas Chang and Hsu (1992) made a survey of more recent textual image indexing 

methods. The keyword-based methods have severe drawbacks including the labor 

intensive nature of the manual indexing of large image databases and the subjective 

judgment of a person who decides the keywords to be used in the indexing. Therefore, 

in the early 1990s the increase in computing resources as well as the strong growth of 

digital image archives caused the manual indexing methods to be replaced by 

automated ones. Since then, intensive research efforts have directed towards the area 

of content-based image indexing and retrieval. In the mid-1990’s, the first commercial 

solutions were introduced. Among the first ones were QBIC (Flickner, 1995) and 

Photobook (Pentland, 1996). Other well-known content-based image indexing and 

retrieval systems include Pictoseek (Gevers and Smeulders, 2000), VisualSEEk (Smith 

and Chang, 1996a), Virage (Gupta and Jain, 1997), Netra (Ma and Manjunath, 1996), 

MARS (Mehrotra et al., 1997), PicSOM (Laaksonen et al., 2000), and MUVIS 
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(Cheikh, 2004). Several surveys and comparisons of the CBIR systems have been 

published (Rui et al., 1997, 1999; Smeulders et al., 2000). 

In content-based image database indexing, the manual text-based content 

description is replaced by visual features that are automatically extracted from the 

images. The purpose of image database indexing is to present the content of the 

database image I using a feature vector f. Visual features p have been extracted from 

the images. In database indexing, the features extracted from the ith database image Ii
are collected into a feature vector fi:

ni ppp ,,, 21
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f       (3.1) 

in which n is the number of the features. This n-dimensional feature vector can be 

regarded as a point in an n-dimensional feature space.  

Similarity measurement  

In order to perform retrieval and classification operations in an image database, it is 

necessary to define the similarity or dissimilarity between two images. This can be 

done by evaluating the distance between their feature vectors. The distance measure 

should usually correspond to human perception which means that perceptually similar 

images should have a small distance between each other whereas perceptually 

dissimilar images have a larger distance between them. In addition, the computational 

efficiency of the selected distance metrics plays a role, especially in the case of on-

line retrieval. The selection of the distance metrics is dependent on the feature vector 

type. A wide variety of metrics for different visual descriptors have been developed 

(Santini and Jain, 1999). For the shape descriptors, similarity measures have been 

reviewed in (Veltkamp, 2001). 

All the distance metrics obey certain rules (Duda et al., 2001). The distance metric 

is defined as a function that defines a generalized scalar distance between two 

patterns. Hence the distance between two vectors, say a and b can be defined as:

baab ,dfD     (3.2) 

where fd is a distance function. Duda et al. (2001) define four general properties: 
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A commonly used distance metric between two n-dimensional feature vectors is 

Minkowski distance: 
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When k is selected to be one, L1-norm, known as Manhattan- or city block distance, is 

obtained. L1-norm defines the distance between two vectors along the coordinate axes. 
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L1-norm has been used in image retrieval in (Swain and Ballard, 1991; Stricker and 

Orengo, 1995) L2-norm is known as Euclidean distance: 
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Euclidean distance is the best-known distance metrics and it is commonly used in the 

similarity measurement of Fourier shape descriptors (Mehtre et al., 1997; Zhang and 

Lu, 2003a, 2003b). 

Image retrieval 

Visual information retrieval (Del Bimbo, 2001) is an extension of traditional 

information retrieval (Baeza-Yates and Ribeiro-Neto, 1999). A query image is 

selected by the user. The retrieval process is carried out by comparing the database 

images to the query image. The similarity between the images is based on the feature 

vectors that have been selected to describe the image content. The database images 

which are most similar to the query image are recalled and presented to the user.  

The benefit of the retrieval approach is that it is not necessary to divide the whole 

image database into categories because only a subset of the database images is 

searched. This is particularly important in the case of large image databases. 

Image classification 

Classification operations can be divided into two categories: supervised and 

unsupervised. The supervised classification divides the database images into 

predefined categories whereas the unsupervised one makes the division without prior 

knowledge of the categories or even the number of them. In this thesis, the 

classification experiments are used to make comparisons between different visual 

descriptors in the classification of predefined defect types; hence, the use of the 

supervised approach. 

In the supervised image classification task, the goal is to divide the database 

images into a fixed number of classes. The user has also defined the classes 

beforehand such as by using some selected example images to represent the content of 

each class. The set of example images is called a training set. A wide variety of 

different algorithms have been developed to train classifiers (Duda et al., 2001). In 

image classification, the division into classes is based on the visual features extracted 

from the images using selected distance metrics. Hence the database can be classified 

on the basis of the same feature vectors as in the case of retrieval. Therefore, the 

database indexing is not dependent on the selection between retrieval and 

classification.  

Retrieval vs. classification 

As noted in the two previous sections, image retrieval and classification obey different 

principles in the image database organization. However, retrieval and classification 

share certain common features. When the classification is carried out according to  the 

visual content of the image, it is based on the visual indexing of the database. As in 

the case of image database retrieval, there are classification algorithms that seek the 

images most similar to the query image. An example of this type of classification 

technique is k-nearest neighbor classification (k-NN) principle (Duda et al., 2001) in 
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which an unknown sample is assigned into the class, which is represented by the 

majority of its k nearest known samples. 

Because there is a clear relation between image retrieval and k-NN classification, 

the image retrieval problem can be regarded as a classification problem as well. This 

is beneficial when different visual features are compared. A simple comparison can be 

carried out by making classification experiments. 

3.2 Performance analysis 

To make an evaluation between different features in image retrieval and classification, 

it is necessary to make a performance comparison between them. This performance 

evaluation, known as validation, is based on retrieval and classification experiments in 

the indexed image database.  

Retrieval performance 

When the retrieval performance of the content-based image retrieval techniques is 

measured, the validation methods of general database retrieval can be used. Perhaps 

the most widely used method for performance measurement of a particular retrieval 

task is to present precision as a function of recall (Baeza-Yates and Ribeiro-Neto, 

1999). The information retrieval process can be modeled in the following manner. Let 

us consider a database (figure 3.1) that includes a set of objects of the user’s interest 

R. Let the number of the objects in R be |R|. When the user performs a retrieval 

operation, the resulting recall set A contains |A| objects. The size of the recall set |A|

can be defined by the user. Thus the intersection of the sets A and R can be defined as 

Ra, in which the number of objects is |Ra|. The set Ra consists of the recalled objects 

that are of the user’s interest. On the basis of these sets it is possible to define the 

commonly used performance measures for information retrieval: 

R

Ra
Recall      (3.9) 

A

Ra
Precision                (3.10) 

It is common that the objects in the recalled set are ranked according to their 

similarity to the query image. Hence the precision value varies with the size of the 

recall set. As a result, precision is usually presented as a function of recall. 

Consequently, the retrieval performance can be expressed by means of 

precision/recall curve. In practical retrieval experiments, several consequent queries 

are carried out. An average precision with fixed recall levels can be defined as: 

qN

i q

i

N

rP
rP

1

)(
)(           (3.11) 

in which )(rP corresponds to average precision at recall level r, Nq is the number of the 

queries and Pi(r) means the precision of the i:th query at recall level r. The average 

precision of equation (3.11) is a common way of measuring the retrieval performance  
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Figure 3.1. The sets A, R, and Ra in the database (Baeza-Yates and Ribeiro-Neto, 

1999).

(Baeza-Yates and Ribeiro-Neto, 1999). The precision and recall values can be 

expressed as percentages. The selection of recall area is dependent on the application 

and the number of the images in the database. With small databases the whole recall 

area between 0 and 100% is usually used. In the case of large image databases it is 

unnecessary and often impractical to use the whole recall area because in real retrieval 

tasks the amount of the recalled images is usually limited to a small number of best 

matching images.    

Classification performance 

The measurement of classification performance is a straightforward operation based 

on the classification results. The result of the classification is compared to the real 

classes of the sample images. In this manner the classification rate can be defined. 

The classification rate can be expressed as an average value for the whole database or 

as an average classification rate of each image class. In addition, in the case of 

classification, the average classification rate is usually expressed in terms of 

percentages.

In practice, the classification experiments are carried out by dividing the available 

image data into training and testing data. It is usual that roughly 2/3 of the data is for 

training and the rest is used as testing data. When the classifier has been trained using 

training data, its classification ability is tested using testing data. The classification 

rate is then defined on the basis of these tests.  

Cross validation 

In validation, the retrieval and classification methods are experimentally tested. The 

problem of training and testing datasets is shared by both types of method. The 

division of the image database into these two datasets is sometimes impractical for 

two reasons. In the first place, the division into two sets should be such that both sets 

are equally representative. This is not always the case, especially with small or non-

homogenous databases. By selecting certain type of data to be used in training or 
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testing, the classification results can be corrupted and the testing is not repeatable. 

Secondly, in the case of retrieval the whole database is interesting; if it has been 

divided into testing database and a distinct set of query images, the results can be 

easily manipulated on the basis of the selection of the query images. 

A simple and effective solution for the validation is the use of the leave-one-out 

validation principle (Hand et al., 2001). In this method each database image is 

employed as a query image in turn, whereas the rest of the database serves as a testing 

database. This principle can be applied to retrieval and classification. When all the 

images have been used as query images in retrieval or they have been classified, it is 

possible to calculate an average result from all the experiments. 



4 Shape description 

The goal in this thesis is to find effective shape descriptors for shape retrieval. The 

descriptors are used in image database indexing. This Chapter discusses the common 

methods of shape description. The focus of this study is on contour-based shape 

description methods, especially those which are based on transforms. Therefore, these 

methods also receive most attention in this Chapter, although other methods, 

including region-based approaches are also touched on briefly. There are several 

reasons to prefer contour-based shape descriptors in shape-based image retrieval 

(Zhang and Lu, 2005). Firstly, the contour-based descriptors are computationally less 

expensive than region-based ones and they are also easy to derive. Secondly, most 

real world objects have clear contours, which are readily available. Moreover, human 

beings are also able to discriminate shapes on the basis of their outlines. For reasons 

such as these, the contour-based methods are also popular also in the literature on 

shape description.

4.1 Shape description in image retrieval

In addition to texture and color, shape is one of the most essential visual features used 

in image retrieval. For humans and animals, shape is a dominant characteristic for the 

identification of similar objects (Belongie et al., 2002). The definition of perceptual 

shape features is a difficult task. It is even more difficult to perceptually measure the 

similarity between shapes. Furthermore, real-world shapes are often more or less 

noisy and distorted, which makes the shape recognition even more challenging. In 

recent decades, numerous approaches and solutions have been presented to 

characterize different shapes. The primary purpose of the early shape descriptors was 

based on object recognition and classification based on shape, whereas during recent 

years the use of shape description in image retrieval has received increasing interest 

among the research community.  

 In current CBIR systems, one of the problems is to answer the question: “Which 

of the database images contain the most similar shapes to the query image?” This type 

of image retrieval is called shape similarity-based retrieval (Mehtre et al., 1997). In 

this kind of retrieval, the aim is to find similar shapes from the database as accurately 
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as possible. There are several principles that characterize a good shape descriptor 

(Carlin, 2001; Li and Edwards, 2004):

1. Invariance: If two boundaries have the same shape, irrespective of translation, 

scaling, rotation, and the boundary starting point, they will have the same 

descriptor.

2. Uniqueness: If two boundaries do not have the same shape, they will not have the 

same descriptor. 

3. Stability: Reflection of shape differences between boundaries should be 

appropriate in their representations. For example, if two boundaries have small 

perceptual shape differences, the difference in descriptors will be small. 

4. Comprehensible: Descriptors must fit the descriptive model of the shape, and 

hence must be aligned with our shape terminology. 

5. Invertibility: If a boundary is given, its shape description should be computable; if 

a shape description is given, the boundary representation should be computable. 

6. Efficiency: The representation should be efficient to compute and store. This is 

especially important when a retrieval or recognition is to be performed in real-

time. 

Hence, due to the increasing number of online retrieval solutions, computational 

efficiency is nowadays considered to be equally important as effectiveness, which 

refers to accuracy. A recently introduced multimedia standard, MPEG-7 (Manjunath 

et al., 2002), has also set six principles for measuring a shape descriptor (Kim and 

Kim, 2000): 

1. Good retrieval accuracy: Shape descriptor should be able to effectively find 

perceptually similar shapes from the database. Rotated, translated, affinely 

transformed and scaled versions of a shape are usually regarded as perceptually 

similar.  

2. Compact features: Small memory should be required for storing the descriptor. 

Low dimensionality is desirable especially in on-line retrieval. 

3. General application: The descriptor should be able to effectively describe shapes 

in general, not only a specific shape type. 

4. Low computational complexity: In addition to descriptor efficiency in feature 

extraction and similarity calculation, low computational complexity also refers to 

minimizing the effect of any uncertain factor on the computation processes (Zhang 

and Lu, 2004).

5. Robust retrieval performance: The robustness of a shape descriptor means that  

noise affected and distorted shapes are also tolerated. In addition, no drastic 

performance degradation should take place when the size of the database is 

increased.  

6. Hierarchical coarse to fine representation: The descriptor should be able to 

describe the shape with incremental accuracy. That is, coarse level description can 

be used to eliminate clearly irrelevant shapes from the query results, and finer 

level description can be added to refine the result.

These principles were used as criteria in the study of Zhang and Lu (2004), in which 

common shape description techniques were reviewed. Another review of the state of 

the art in shape description techniques is provided by Loncaric (1998). Thorough 

discussion on methods and algorithms of certain areas of shape description is 

presented in (Costa and Cesar, 2001). 
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Figure 4.1. A taxonomy of shape representation techniques. 

Shape description techniques 

Several types of taxonomy have been presented for shape description techniques. The 

basic categorization into region-based and contour-based techniques is common to 

most of them. The region-based methods consider the entire area of the object 

whereas the contour-based methods use only the object boundary to characterize its 

shape. These are also known as boundary-based methods. In addition to these two 

main categories, Costa and Cesar (2001) consider transform-based shape descriptors 

as a separate category. In most of the other taxonomies, the transform-based methods 

are included in the two main categories. In the classification of Safar et al. (2000) the 

contour-based and region-based techniques have been divided into subcategories 

depending on their spatial or transform-based nature. This classification has also been 

adopted in the study of Cheikh (2004). Mehtre et al.  (1997) also use this division for 

region-based techniques, but they further subdivide the spatial domain into geometric 

and structural methods. In the taxonomy introduced by Zhang and Lu (2004) region-

based and contour-based approaches are divided into structural and global 

subcategories. Structural methods use segments as shape primitives whereas global 

methods consider the whole shape. This taxonomy, presented in figure 4.1, was 

selected for use in this thesis. It has been somewhat simplified by ignoring some less-

known shape description methods and combining the region-based approaches into a 

single category as in (Zhang and Lu, 2003b).
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Figure 4.2. Simple shape descriptors (Iivarinen and Visa, 1998). 

4.2 Overview of contour-based shape descriptors 

The contour-based shape descriptors can are divided into global and structural 

domains, as presented in figure 4.1. 

Global methods 

The global domain methods can be further divided into four subclasses: simple 

descriptors, parametric contours, models, and transforms. Some simple shape 

descriptors can be considered to belong to the category of contour-based methods. 

Simple descriptors such as circularity (Costa and Cesar, 2001), eccentricity, 

convexity, principle axis ratio, circular variance and elliptic variance (Iivarinen and 

Visa, 1998) belong to this descriptor type as shown in Figure 4.2. These simple shape 

descriptors have been applied to defect image classification in (Iivarinen and Visa, 

1998).

In the case of parametric contour methods, the shape outline is represented as 

parametric curves or signals (x(t), y(t)). The parametric contour is first extracted using 

some contour following algorithm. A simple vector representation uses the x and y

coordinates of the contour as vectors. To form a one dimensional vector, the 

coordinates can be expressed as a set of complex numbers x(t)+jy(t) (Persoon and Fu, 

1977). This kind of one-dimensional function which is used to describe two-

dimensional shape is called shape signature. Other common shape signatures include  

tangent angle versus arc length function (Zahn and Roskies, 1972) and centroid 

distance function in which the boundary points are expressed in terms of their distance 

from the object centroid (Chang at al. 1991). Wang et al. (1994) used a sequence of 

line segment moments as a boundary function. The signature can be also expressed as 

a histogram, which is rotation invariant and therefore easy to match (Squire and 

Caelli, 2000). A general drawback of direct matching of shape signatures is their 

sensitivity to noise and distortions in the boundary line. Furthermore, the signature 

matching is computationally expensive. Therefore, it is common for the signatures to 

be applied by some transform or model-based method rather than used in shape 

matching directly. The previously presented parametric methods express the boundary 

line using some given order. On the other hand, it is also possible to present the 

boundary points without any given order, i.e. as a set. The use of set of contour points, 

however, often yields poorer shape representation than parametric methods (Costa and 

Cesar, 2001).

The third of the subclasses is the class of models. The object boundary can be 

modeled using autoregressive models (AR). These models are based on stochastic 

modeling of the one dimensional shape signature. An AR-model is a parametric 

equation that expresses each sample as the linear combination of a certain number of 

previous samples. The general form of an AR-model (Kashyap and Chellappa, 1981) 

of a closed boundary function f with m previous samples can be defined as: 
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where j correspond to the AR-model coefficients to be estimated and to be used as 

features. The model also produces values for two constants,  is proportional to the 

mean of the function values and t is the error term. The algorithms for the 

estimation of the coefficients can be found in (Dubois and Glanz, 1986). The 

parameters { , 1,…, m, } can be estimated using least square (LS) criterion 

(Dubois and Glanz, 1986). The estimated coefficients j as well as ratio /a  are 

translation, rotation, and scale invariant, and therefore they are used as features 

describing the object shape. The drawback of an AR-based shape description is that in 

the case of complex boundaries, a small number of parameters does not yield accurate 

shape description.

Snakes and active contours have received a certain amount of research interest in 

shape classification and retrieval. These methods belong to the shape transformation 

models (Widrow, 1973), which has been the basis of the snake model (Kass et al., 

1988) and elastic matching (Del Bimbo and Pala, 1997) method. In the shape 

transformation models, the shape is regarded as a template which is deformed in order 

to match it with a target image. 

In transform-based approaches, the parametric boundary function is transformed 

using some linear or non-linear transform. Spectral transforms form a subset of 

transform domain methods. These methods analyze the shape in spectral domain, 

which is beneficial because the problems with noise sensitivity and boundary 

variations can be minimized this way.  

One of the most popular boundary-based shape representations is Fourier

descriptor (FD). Instead of being a single shape representation method, FD refers to a 

class of methods that use Fourier transform to describe the shape (Costa and Cesar, 

2001). The basic idea is to transform the selected shape signature using Fourier 

transform and use the obtained transform coefficients as shape descriptors. For a 

boundary function z(k) of length N, the discrete Fourier transform (DFT) can be 

defined as:
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for n=0,1,2,…,N-1 and F(n) are the transform coefficients of z(k). Typically the low 

frequency coefficients are used as shape descriptors because most of the boundary 

information is concentrated along them. The coefficients are usually normalized to 

achieve invariance to rotation and scaling. The descriptors can be made rotation 

invariant by ignoring the phase information and using only the magnitudes of the 

transform coefficients |F(n)|. The scale can be normalized by dividing the magnitudes 

of the transform coefficients by |F(0)| or |F(1)|, depending on the application. The 

normalization process is discussed in more detail in Chapter 5.

FD’s were originally introduced in the 1960s by Cosgriff (Zahn and Roskies 

(1972)). The first papers in this field were published by Granlund (1972) and Zahn 

and Roskies (1972) which were followed by the study of Persoon and Fu (1977). In 

addition to closed curves, Fourier description can be applied to partial shapes (Lin and 

Chellappa, 1987; Mitchell and Grogan, 1984). Affine shape description for three-

dimensional shapes using Fourier descriptors was proposed by Arbter et al. (1989, 
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1990). Short time Fourier descriptor was introduced by Eichmann et al. (1990) but it 

has been found to be less accurate than conventional FD methods (Zhang and Lu, 

2001). Different shape signatures used for Fourier shape description were compared 

in (Zhang and Lu, 2002, 2005). A good review and comparison of Fourier-based 

shape descriptor methods is provided by Zhang and Lu (2005).  

The Fourier-based shape representations are easy to implement and they are 

computationally inexpensive methods, which is due to the use of efficient FFT 

algorithms (Gonzalez and Woods, 1993). The descriptors are also compact and low-

dimensional, when a small number of low-frequency coefficients are considered. 

Furthermore, the FD’s are easy to normalize and their matching is a very simple 

process. In addition, their sensitivity to noise is low when only low frequency Fourier 

coefficients are used as descriptors. A major disadvantage is that the frequency-based 

shape representation does not have a clear connection with human vision. The spatial 

relationships of the details in the boundary line are also ignored in shape description 

in frequency domain.  

Another type of transform domain approach are wavelet descriptors (WD) (Ohm et 

al., 2000; Tieng and Boles, 1997; Yang et al., 1998). These descriptors are based on 

wavelet transform (Chui, 1992) that is a commonly used approach in signal 

processing and image analysis. The WD’s have a multiresolution property that is of  

certain benefit in shape description applications. On the other hand, however, the 

wavelet transform coefficients of the boundary function are not scale or rotation 

invariant (Pfeiffer and Pandit, 1995). Normalization is more complicated than that of 

Fourier descriptors due to the spatial information included in the wavelet coefficients. 

Khalil and Bayoumi (2001) used affine invariant transform to normalize the 

coefficients whereas Kashi et al. (1996) proposed a normalization in frequency 

domain using Fourier transform and its inverse applied to boundary function before 

wavelet transform. Li and Edwards (2004) also presented a normalization method for 

wavelet coefficients that utilizes DFT. In this case, the rotation invariance is achieved 

by removing phase information from the wavelet coefficients. Chen and Bui (1999) 

presented the object shape using polar coordinates (r, ). The rotation invariance was 

achieved by Fourier transforming the polar angle  whereas the radius r was wavelet 

transformed. In addition to normalization, the matching scheme of the wavelet 

representations is more complicated and time consuming than that of Fourier 

descriptors. In addition, the dimensionality of WD’s is usually higher than that of 

FD’s.

In recent years, scale space shape description approaches first introduced by 

Witkin (1983) have received a certain amount of attention among the research 

community. In the scale space methods the problems caused by noise and variations 

in the boundary have been avoided by describing the boundary line on the basis of its 

extreme points. Asada and Brady (1986) first utilized the scale space method using 

tree structure which yields multiscale shape representation. In the Curvature scale 

space (CSS) method introduced by Mokhtarian and Mackworth (1986, 1992) the 

boundary line is iteratively smoothed using a low-pass Gaussian filter.  In the CSS-

method, the boundary is iteratively smoothed until the curvature function has no 

inflection points; i.e. the boundary is convex. The inflection points of the boundary 

line are sought using curvature function. When (xk, yk), where k=0,1,2,…,N-1, 

represent the object boundary coordinates, the curvature function of the boundary can 

be defined as: 
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Figure 4.3. The smoothing process of a leaf contour. The CSS representation is 

formed on the basis of the zero-crossing points of the contours at each scale 

(Mokhtarian and Abbasi, 2004). 
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where )(kx , )(kx , )(ky  and )(ky  are the first and second derivatives of the boundary 

coordinates, respectively. The zero-crossing points of the curvature function are 

regarded as inflection points. During the smoothing process, insignificant inflection 

points are eliminated whereas the significant ones remain. Figure 4.3 presents the 

smoothing process of a leaf contour as presented in (Mokhtarian and Abbasi, 2004). 

In this figure, the leaf is iteratively smoothed with one dimensional Gaussian kernel of 

width . Different scales of the shape are obtained as  increases and the boundary 

becomes smoother. The shape descriptor obtained is a contour map that consists of the 

zero-crossing points that are presented at different degrees of boundary smoothness. 

The peaks in the contour map caused by the zero-crossing points are detected and they 

are used in shape matching. The matching is a complicated operation due to the 

varying number of contour peaks to be matched. Furthermore, the contour maps have 

to be scaled and shifted at each matching operation. The CSS method has been further 

developed for shape retrieval purposes (Abbasi et al., 1999, 2000). In these 

approaches the CSS matching has been made simpler by taking only the two highest 

peaks (maxima) of the CSS representation into account in the matching process. The 

scaling of the boundary line is also made beforehand, before applying the CSS 

method. The minima of the CSS contours are also included in the matching procedure 

in (Mokhtarian and Abbasi, 2004). 

Structural methods 

Common structural methods include run-length codes (Kim et al., 1988) and chain

codes (Freeman, 1961; Freeman and Davis, 1977). Chain code representation is a 

well-known method for shape description. It represents the object boundary using a
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Figure 4.4. The principle of chain code. 

sequence of small vectors of unit length. The set of possible directions is usually 

limited to 4 or 8. N-directional (N>8 and N=2
k
) chain code is also possible (Freeman 

and Saghri, 1978). The object boundary is superimposed with a grid and the boundary 

points are approximated to the nearest grid points. From a selected starting point, a 

chain code can be generated by using code words, each corresponding to the direction 

of the vector drawn between the consecutive grid points. Figure 4.4 presents the 

principle of the chain code method. The matching of the chain codes is not 

straightforward because they are dependent on their starting points. Furthermore, the 

chain code method is sensitive to object scale and rotation and it is also a noise-

sensitive approach. The problems with starting point dependence and rotation 

variance can be overcome by using chain code histogram (CCH) introduced by 

Iivarinen and Visa (1996). Translational and rotational invariant chain code approach 

is also vertex chain code as proposed by Bribiesca (1999). 

The third of the spatial domain methods uses boundary approximation or 

interpolation. The inspiration behind these techniques is that rather than describing the 

whole boundary with a single function, it is more convenient to piecewise 

approximate each portion of the boundary (Costa and Cesar, 2001). The portions can 

be approximated using geometric primitives (Pavlidis, 1986). Polygonal 

Approximations (Ramer, 1972) uses straight segment lines as shape primitives. Such 

an approach yields a polygon-like shape approximation. The problem with the 

polygonal approaches is the selection of the boundary points which serve as endpoints 

of segment lines so that the polygonal approximation corresponds to the original 

boundary as closely as possible. A simple example of polygonal representation of a 

contour is presented in figure 4.5. A common approach is to draw the lines between 

high curvature points of the boundary line. This is motivated by human perception 

(Tsang et al., 1994). In the approach of Groskey et al. (1990, 1992), the polygon 

vertices are described with four parameters: internal angle, distance from the next 

vertex, and its x and y coordinates. 

4.3 Overview of region-based shape descriptors 

In region-based methods, the whole area of the object is considered. Hence, the pixels 

belonging to the object interior are of equal importance to those belonging to the 

boundary. The simplest area-based methods include the area and holes of the object. 

The Euler number (Gonzalez and Woods, 1993) is defined as a difference between the 

numbers of connected regions and of holes in an object. 
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Figure 4.5. Polygonal contour representation.

Perhaps the most popular region-based shape description methods are moment

invariants, first introduced by Hu (1962). The moment invariants are based on non-

linear combinations of geometric moments: 

,...2,1,0,,),( qpdxdyyxyxm qp

pq    (4.4) 

which are usually utilized using low orders. The obtained set of geometric moments is 

translation, scaling, and rotation invariant. The geometric moments have received a 

significant amount of interest (Teague, 1980; Liao and Pawlak, 1996). A drawback, 

however, is their increase in complexity with increasing order. The use of orthogonal 

moments, like Zernike moments (Teague, 1980) has been found to improve shape 

description (Teh and Chin, 1988). Zernike moments have also been selected for use as 

region-based shape descriptors of MPEG-7 standard (Zhang and Lu, 2003b). Shen and 

Ip (1999) used wavelet moment invariants in shape description. This approach 

outperformed those such as  Zernike moments in shape classification.  

Grid-based methods (Lu and Sajjanhar, 1999) use a binary grid structure that 

defines the image area covered by the shape. The grid needs to be normalized to be 

invariant for rotation, translation, and scaling. Shape matrix method (Goshtasby, 

1985) uses normal raster sampling in a grid formed by concentric circles and radial 

lines. The binary value of the shape is sampled in the intersections of the circles and 

radial lines.

4.4 Comparisons

The area of shape description has been the subject of intensive research work for the 

past three decades. As a result, a wide variety of shape descriptors for various 

purposes have been presented and these have also been compared in several 

comprehensive comparisons. The retrieval performance of the most common 

boundary-based shape descriptors, Fourier descriptor and chain codes were compared 
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with different moment invariants by Mehtre et al. (1997). In this study, the testing 

database consisted of 500 trademark images and the best results were obtained by 

using moments and Fourier descriptors whereas chain codes gave the lowest result. In 

the comparison made by Kauppinen et al. (1995) FD’s were compared to 

autoregressive models in the boundary-based classification of planes and characters. 

In most cases, FD’s outperformed autoregressive models. In the recent study of Zhang 

and Lu (2003a), FD’s and CSS were compared in the retrieval of simple shapes. The 

conclusion of this study was that FD clearly outperforms CSS in terms of retrieval 

accuracy. The CSS is also computationally heavier than FD due to its complicated 

matching scheme. The retrieval performance of the MPEG-7 shape descriptors were 

compared to that of FD’s in (Zhang and Lu, 2003b). In this comparison, FD proved to 

be a better boundary-based shape descriptor than CSS. In the case of region-based 

descriptors, Zernike moment descriptor (ZMD) outperformed geometric moments and 

grid descriptors. The ZMD also slightly outperformed FD in terms of retrieval 

effectiveness (Zhang and Lu, 2003b). However, the computational efficiency FD 

showed a clear advantage over ZMD. 

The retrieval and classification performance of the shape descriptors is always 

dependent the image data used in testing. On the other hand, in the comparisons 

presented above, the performance of FD’s was proved with several types of image 

data. It is obvious that boundary-based descriptors are not adequate shape descriptors 

for shapes with complicated interiors, such as trademarks. Therefore, a more suitable 

shape description for them is region-based representation. On the other hand, Mehtre 

et al. (1997) showed that Fourier description gives quite good results with trademarks, 

too. It is also important to note that region-based descriptors, such as moments, have 

significantly lower computational efficiency than FD’s. This may limit their usability 

in on-line retrieval.



5 Fourier-based shape representation 

The shape representation methods presented in this thesis are based on Fourier 

transform. This Chapter presents the general Fourier methods for boundary-based 

shape description. 

5.1 Fourier transform 

Fourier transform, originally introduced by the French mathematician Joseph Fourier 

at the beginning of 19th century, is a powerful tool for several types of signal analysis. 

The Fourier-based signal representation is based on the fact that any periodic
1
 signal 

f(t) of finite extension
2
 can be expressed in terms of complex exponentials (Bigun, 

1995):
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The series can also be expressed as: 
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in which 1=2 /T. The basis of equation (5.3) is called the Fourier basis. The 

complex exponentials are orthogonal. On the basis of this, the well-known formulas 

                                                
1 A function is deemed periodic function if there is a positive constant T, called a period, such that 

f(t)=f(t+nT) for all integers n.

2 A function f(t) is a finite extension if there exist finite real constants a and T such that 
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for Fourier transform (synthesis) and inverse Fourier transform (analysis) can be 

formed: 

dtetfF tj)(
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Function F represents the Fourier transform of the function f.

The discrete Fourier transform (DFT) for an N dimensional vector containing a 

function f(t) of limited length is defined as: 
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and it has an inverse transform: 
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The DFT produces a sequence of complex numbers F(n) of limited length (N). Hence, 

this sequence is also discrete-valued. To reduce the computation of DFT, several 

types of algorithms have been introduced to make Fast Fourier Transform (FFT). The 

most widely known of these is the algorithm proposed by Cooley and Tukey in 1961. 

Its performance is at maximum when the length of the signal N is 2
p
 in which p is a 

positive integer (Myers, 1990; Orfanidas, 1996).    

5.2 Shape description 

Discrete Fourier transform is a popular tool in the description of object boundary line 

(Zahn and Roskies 1972; Granlund, 1972; Persoon and Fu, 1977). Using DFT, the 

boundary can be expressed in frequency domain and in this way, the frequency 

content of the boundary line can be described.

Shape signatures for Fourier description 

When the boundary line of an object is considered, the Fourier description is based on 

a selected shape signature f(k) (i.e. a one dimensional function that describes a two-

dimensional object boundary). A variety of complex-valued and real shape signatures 

for boundary representation have been introduced (see Section 4.2). In this discussion, 

three of those functions are presented.

Complex coordinate function is a simple and probably the best-known signature 

used in the Fourier-based shape description. Let (xk, yk), k=0,1,2,…,N-1 represent the 

object boundary coordinates, in which N is the length of the boundary. The complex 

coordinate function z(k) expresses the boundary points in an object centered 

coordinate system in which (xc, yc) represents the centroid of the object: 
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)()()( ckck yyjxxkz       (5.8) 

Hence, the complex coordinate function includes two real-valued functions that are 

combined to a complex function. This way the resulting function is one-dimensional, 

and therefore easily applicable with DFT. Centroid distance function is a real-valued 

function that is defined as the distance between the boundary points and the object 

centroid:  

22 )()()( ckck yyxxkr               (5.9) 

Another real-valued shape signature is area function (Zhang and Lu, 2002) that is 

defined as the area of the triangle formed by two boundary points and centroid in the 

object centered coordinate system: 
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Hence, all three signatures represent the boundary irrespective of the location of the 

object in the image. Therefore, these signatures can be considered as translation 

invariant shape representations. 

Discrete Fourier transform of an object shape 

Irrespective of the selection of the signature, the boundary functions are closed 

curves, which mean that they are periodic. Since the functions are discrete signals, 

they can be easily transformed using DFT. For a selected real or complex-valued 

boundary function f(k), DFT can be written as: 
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for n=0,1,2,…,N-1. The obtained coefficients F(n) form a Fourier spectrum of the 

boundary function f(k) and they are usually called Fourier descriptors (FD’s). It is also 

possible to synthesize the original f(k) from F(n) via inverse DFT:
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Figure 5.1 demonstrates the effect of DFT and its inverse in the shape description. 

Here, a defect boundary is transformed and inverse transformed. The inverse 

transform is performed using a reduced number of the coefficients F(n). The 

coefficient numbers are reduced to 50%, 10%, 5%, and 2% of their original number so 

that high frequencies are omitted. Hence, the figure shows that the greater the number 

of coefficients used to reconstruct the original boundary function, the greater is the 

amount of fine detail preserved. On the other hand, the general shape can be 

reconstructed with a small set of low frequency coefficients.
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Figure 5.1. Reconstruction of a defect shape using limited number of Fourier 

transform coefficients. 

Invariance of the Fourier descriptors 

The Fourier transform coefficients F(n) have several desirable properties for use in 

shape description (Bigun, 2005). Although the translation invariance of the obtained 

shape descriptors is due to the shape signature as discussed in section 5.2, the 

translational invariance is also one of the properties of Fourier coefficients F(n). Let 

the boundary line be described by complex coordinate function of equation (5.8). In 

DFT, the object centroid is represented by F(0) that is also known as DC component:   
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that is the mean of z(k), i.e. the object centroid. On the other hand, all other Fourier 

coefficients than F(0) are translation invariant. This can be proved by applying a 

translation z= x+j y to the boundaries. Hence, new boundary coordinates 

z’(k)=z(k)+ z are obtained. The DFT is applied to this new boundary function: 
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in which (n) is Kronecker delta function. Hence, to obtain translation invariant 

Fourier boundary description, only F(0) should be omitted. 

In addition to translation invariance, the FD’s should be made invariant to scale 

(Bigun, 2005). Let z’ represent a scaled boundary so that z’= z, in which  is a 

positive real scalar. Then the DFT of z’ is defined as: 
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Hence, all the descriptors F’(n) can be normalized by scaling them by one of them, 

e.g. F’(1):
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when |F’(1)| 0.

In shape description, invariance to rotation is usually also necessary. In other 

words, the shape description of an object should be the same irrespective of its 

rotation angle. This matter is related to the starting point of the boundary function. 

Hence, in the shape description, it is essential that the selection of the starting point 

has no influence on the description. It follows that the FD’s have to be normalized in 

terms of rotation. When the boundary function is rotated at an angle  so 

that zez j' is a rotated version of the boundary function. Then the DFT of z’ is:      
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The rotation invariance can be achieved in several ways in Fourier description. The 

simplest approach is to omit the phase information by using only the magnitudes of 

FD’s, |F(n)|, which is based on the fact that |F(n)| and |F’(n)| are the same (Mitchell 
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and Grogan, 1984). However, as presented in (Bigun, 1995), the use of the 

magnitudes is not necessary, because FD’s can also be normalized by using 

F*(1)/|F(1)| as a normalizing factor for the coefficients F(n).

Feature vectors for Fourier descriptors 

As discussed in section 5.2, a translation, scaling and rotation invariant descriptor for 

coefficients F(n) can be formed as: 
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provided that |F(1)| >>0. The general shape of the object is represented by the low 

frequency coefficients, whereas high frequency coefficients represent the fine details 

of the object shape. A common approach to shape representation is to use a subset of 

the low frequency coefficients as a shape descriptor. In this way the shape can be 

effectively presented using a relatively short feature vector.

For the coefficients obtained from complex valued signals, such as complex 

coordinate function, the coefficients at the positive and the negative frequency axis 

are essential. Therefore, the feature vector is formed as: 
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in which L is a length of the feature vector. This method is known as Contour Fourier

method (Kauppinen et al., 1995). It should be noted that the feature vector length can 

be decided in two ways, either by sampling the boundary function to L samples before 

DFT, or by selecting L samples from the transform coefficients F(n), provided that 

L N.

For real-valued boundary functions, the Fourier spectrum is symmetrical, i.e. the 

coefficients F(n) are the same in both the positive and the negative frequency axes. 

An example of this kind of approach is the Radius Fourier method (Kauppinen et al., 

1995) that uses the centroid distance function of equation (5.9) as a shape signature: 
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In the case of this feature vector type, Kauppinen et al. (1995) have used F(0) in scale 

normalization. This is based on the fact that in the Fourier spectrum obtained from the 

centroid distance function, F(0) represents the mean of the signal and therefore it can 

be used as a normalizing factor. The feature vector for area function of equation 

(5.10) is equivalent to the Radius Fourier method. 



6 Statistical gray level features 

In addition to texture and shape, the distribution of image colors (or gray levels) is an 

essential feature in content-based image retrieval. In color-based image retrieval, the 

goal is to find images whose colors are similar to those of a query image. In early 

retrieval systems, simple statistical measures such as average color and color 

histogram were employed; whereas recently second order statistics have received 

growing interest due to their ability to characterize the spatial relationships between 

the colors in the image, as well. The statistical measures used in image database 

indexing have been adopted from the areas of image analysis and pattern recognition. 

Some of the statistical methods are also closely related to texture analysis, which also 

uses statistical measures to describe textured areas in the image (Conners and Harlow, 

1980; Ohanian and Dubes, 1991). On the other hand, in color description the 

statistical features are typically used to describe the color distribution of the whole 

image. The statistical measures can be divided into first, second and higher order 

measures. 

6.1 First order statistical measures 

First order measures consider the values of image pixels individually. The best-known 

first order feature is a histogram that characterizes the distribution of the colors or 

gray levels in the image
3
. Image histogram is a first order statistical measure that has 

been traditionally used in characterization of the global color distribution of the 

image. Let an image I consist of pixels p(x,y), each pixel corresponding to level g.

Thus a set of levels [G] contains the levels g1... gG. Let I(p) correspond to a level of 

pixel p, and Ig refers to a pixel, for which I(p)=g. Image histogram h is defined as: 
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l
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g
,)(            (6.1)

                                                
3 The statistical measures can be applied to gray levels and color components of the image.  

Henceforth the term level refers to colors and gray levels.   
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Figure 6.1. Two images with identical histograms. 

where lg and l are the numbers of pixels of level g and all the pixels in the image, 

respectively. Histogram can also be expressed as a probability of a certain level in the 

image: 
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Image histogram is a simple and computationally effective statistical measure for the 

description of image level distribution. The dimensionality of the histogram is equal 

to the number of levels, G. In image retrieval, histograms are widely used (Flickner et 

al., 1995; Pentland et al., 1996; Ogle and Stonebraker, 1995). The similarity between 

histograms can be defined using histogram intersection introduced by Swain and 

Ballard (1991) or a weighted distance measure used in QBIC system (Hafner et al., 

1995). Also L1 and L2 distances have been used in histogram matching (Del Bimbo, 

2001)

The drawback of the histogram is the fact that it ignores the spatial relationships 

between the pixels. This is illustrated in figure 6.1, in which two images with totally 

different spatial organizations have identical histograms. Due to this drawback, the 

spatial relationships between the levels have been found to be essential in image 

description. Certain histogram-based techniques have been presented that also 

consider the spatial organization of the colors. Pass and Zabih (1996) introduced color 

coherence vector (CCV) that partitions the histogram bins by the spatial coherence of 

pixels. A pixel is considered to be coherent if it is a part of some similar colored 

region. Like histograms, CCV’s are computationally fast methods, but they 

outperform histograms in color-based image classification. Rickman and Stonham 

(1996) used histograms that contain color tuples. Another approach to capture the 

spatial organization of the colors is the use of color sets (Smith and Chang, 1996b), 

which partition the image into regions of a certain color. Stricker and Dimai (1996) 

have used moments to describe the color regions in the image.   

6.2 Second order statistical measures 

The difference between second order and first order statistical measures is that  

second order measures utilize the spatial relationships between the pixel values. 

Hence, in addition to the level difference between two pixels, their spatial 
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organization is also taken into account. Second order measures have traditionally been 

used in texture analysis, in which texture has been characterized in terms of 

correlation function or co-occurrence matrix, for example. In addition, correlograms 

and autocorrelograms have also been used in image retrieval. The use of second order 

measures in image analysis already started in the 1950s, when Kaizer (1955) applied 

correlation function to granularity measurement of aerial photographs. 

Co-occurrence matrix 

Since the early 1970s there has been wider use of second order measures when 

Haralick (1973) introduced gray level co-occurrence matrix (GLCM). The matrix 

indicates the joint probability of a gray level occurrence of two pixels at a certain 

displacement in the image. Let d=(dx, dy) be a displacement vector which determines 

the distance and direction of levels i and j in the image I. The (i,j)th element of the co-

occurrence matrix is the number of times that levels i and j occur in the relative 

position d in the image I. The matrix is usually normalized, i.e. by the number of all 

occurrences in the image, #I. Haralick (1973) used the matrix to texture description by 

calculating certain features based on it. The most common of these 14 features are 

contrast, entropy, energy, correlation, and homogeneity. Shim and Choi (2003) have 

used the co-occurrence matrix in image retrieval to describe the relationships of color 

(hue) pairs in an image.   

Correlogram 

Correlation function has been utilized in image retrieval since the mid-1990s. In 

image retrieval, the correlation-based features are called correlograms. Huang et al. 

(1997) presented the first results of correlogram-based color description. In (Huang et 

al., 1998), they developed the method by introducing methods for querying objects 

and regions from the images. Ma and Zhang (1998) made a comparison between 

correlograms, histograms, color moments, and color coherence vectors in color-based 

image retrieval. The best results were obtained using correlograms. Ojala et al. (2001) 

proved that a correlogram also performs well in HSI color space. In their further 

research, HSI correlogram gave almost equal retrieval performance as MPEG-7 color 

descriptors (Ojala et al., 2002).

 Image correlogram represents the correlations between the image pixel values. 

Hence, its principle is quite similar to co-occurrence matrix. The main difference 

between them is that instead of using a single displacement vector d, the correlogram 

uses a set of distances. The definition of image correlogram is the following (Huang et 

al., 1997; Ojala et al., 2001). Let [D] denote a set of fixed distances d1 ... dD. Hence, 

the number of the distances in this set is D. The correlogram of the image I is defined 

for level pair (gi, gj) at a distance d:
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which gives the probability that given any pixel p1 of level gi, a pixel p2 at a distance d

from the given pixel p1 is of level gi. In other words, the correlogram is a matrix that 

gives the probability that a certain level will occur at the distance d from each other. 

Correlogram is defined for several values of d defined in the set [D]. The size of the 

correlogram-based feature vector is G
2
D. In image retrieval and classification, a 
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commonly used distance measure between image correlograms is L1-norm (Huang et 

al., 1997). 

Autocorrelogram

Correlograms are high dimensional and therefore autocorrelograms have been 

proposed for use instead of correlograms (Huang et al., 1997; Ojala et al., 2001). 

Autocorrelogram is the subset of the correlogram. It captures only the spatial 

correlation of the identical levels. The autocorrelogram can be defined as: 
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and it gives the probability that a pixel p2, d away from the given pixel p1, is of level 

g. In the case of the autocorrelogram, the size of the feature vector is GD.

6.3 Comparisons

The image histogram is the best-known statistical measure with low computational 

cost. However, several studies (Huang et al., 1997; Ma and Zhang, 1998; Ojala et al., 

2001) have shown that its ability to describe image content is inadequate for image 

retrieval purposes. Therefore, more effective second order statistics have been 

adopted for use in image retrieval. The correlogram is an accurate measure, but high 

dimensionality limits its usability in on-line retrieval. Though the autocorrelogram is 

computationally more efficient, it does not capture the whole probability distribution 

of the image, which decreases its performance. There is, however, a method for 

decreasing the dimensionality of the second-order statistics. Kunttu et al. (2003b) 

divided the images in the areas of similar level. This is near the principle of color sets 

(Smith and Chang, 1996b). The division was made by re-quantizing the color space of 

the images which yields a decreased number of image levels G. Such an approach 

makes it possible decrease the dimensionality of the correlogram significantly. The 

quantization can also be used to generalize the image content which yields better 

retrieval performance (Kunttu et al., 2003b). 



7 Applications in defect image classification and 

retrieval 

This thesis is a result of research work done in the DIGGER
4
 research project in co-

operation with industry. The author has been involved in the surface defect image 

analysis and retrieval part of the project since 2001. The goal was to develop effective 

and efficient visual descriptors for defect image classification and retrieval. The 

author’s research area was defect image description in terms of shapes and gray level 

distributions. This thesis presents the main results of the research work undertaken by 

the author. In the present Chapter, the methods developed as well as their significance 

in defect image description are discussed.     

7.1 The development of shape descriptors   

The shape description was based on the boundary line of the defect extracted from its 

background. The shape description used Fourier-based methods, which were 

combined with a multiresolution property. This novel method can be achieved using 

two approaches: using wavelets or iterative boundary smoothing. The proposed 

multiresolution Fourier descriptors, Multiscale Fourier and Boundary Scale Fourier,

consider the shapes in multiple scales, which make them more insensitive to fine 

details in the contour than conventional single-scale Fourier descriptors. This 

improves the shape classification and retrieval performance of the defect images. 

Previous work in the shape description of defect images has been confined to simple 

shape descriptors and chain code-based approaches (see section 2.2). The Fourier-

based shape characterization is, therefore, a new approach in the field of defect 

description. By employing the multiresolution methods proposed, the Fourier-based 

shape description can be further improved. In addition, these methods provide a novel 

way for effectively describing any kind of complicated shape.      

Multiscale Fourier descriptor uses wavelet transform to produce a multiresolution 

Fourier descriptor. However, a rotation, translation, and scale invariant wavelet-based 

                                                
4 Knowledge Mining and Managing in a Distributed Image Datawarehouse 
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shape descriptor can also be obtained at single scale by applying discrete Fourier 

transform to the wavelet coefficients of the boundary line. This kind of approach 

outperforms conventional Fourier description in defect shape retrieval without 

increasing descriptor dimensionality. 

In Fourier-based defect shape description, small defects having short boundary 

function may cause problems. This is because the Fourier spectrum of short boundary 

functions does not have adequate frequency resolution. The performance of Fourier-

based shape description can be improved by interpolating new values to the Fourier 

spectrum by using a zero-padding method, which provides a simple and fast way of 

obtaining a more accurate shape representation in frequency domain.  

7.2 The developed gray level descriptors

The proposed description of the gray level distribution of the defect images was based 

on second order statistics, which have been found to be accurate descriptors in image 

retrieval. Compared to the former histogram-based defect image description, second 

order statistics represents a marked improvement in classification accuracy. The 

drawback with the correlation-based descriptors is the fact that they are 

computationally heavy methods for on-line image retrieval. Therefore, a new 

statistical descriptor for gray level characterization was developed. This descriptor, 

Binary co-occurrence matrix, represents the footprint distribution of the co-

occurrence matrix. It is a computationally less expensive and more accurate 

description method than image correlogram. It is also essential that the binary co-

occurrence matrix considers all the correlations occurring in the image equally, which 

means that image segmentation can be avoided in defect image description.

7.3 Combining defect shape and gray level information    

In defect image description, it is also possible to combine the shape and gray level 

information into a single descriptor. In this way, matching and dimensionality 

problems caused by the use of separate shape and gray level descriptors can be 

overcome. This is facilitated by using Fourier-based techniques, which are powerful 

tools for the boundary-based object description. Using a novel technique, the 

boundary signature is combined with gray level information of the defect and the 

obtained signal is Fourier transformed. As a result, a new kind of object descriptor 

Color Fourier descriptor is obtained. This descriptor is as low dimensional and easy 

to match as any other shape-based Fourier descriptor. Such a descriptor provides an 

innovative approach to combining the shape and gray level information of the defect 

image.  

7.4 Summary of publications

Publication I: A novel shape descriptor, Multiscale Fourier descriptor is presented. 

This descriptor is formed by applying Fourier transform to the coefficients of wavelet 

transform of the object boundary. In this way the Fourier descriptor can be presented 

in multiple resolutions. Classification experiments are carried out using paper and 

metal image databases. In addition, a set of general shapes is used. The classification 

results of Multiscale Fourier descriptor are compared to those of Fourier descriptors. 
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Publication II: The Multiscale Fourier descriptor is applied to the shape-based 

retrieval of paper and metal defect images. The retrieval results show that Multiscale 

Fourier is capable of outperforming conventional Fourier descriptors as well as CSS 

descriptors in defect image retrieval. 

Publication III: In addition to Multiscale Fourier descriptor, another novel technique 

for Fourier-based multiresolution shape description for defect image retrieval is 

presented. This technique uses boundary smoothing (Boundary Scale Fourier) to 

produce the multiresolution property to the Fourier descriptor. The experimental 

results show that Multiscale Fourier and Boundary Scale Fourier descriptors 

outperform the most powerful single-scale Fourier descriptor, Contour Fourier in 

paper defect image retrieval. This can be done without increasing computational cost 

of retrieval, i.e. with feature vectors of equal dimensionality. 

Publication IV: A wavelet-based shape descriptor for defect shapes at single scale is 

presented. In contrast to Multiscale Fourier, the proposed combination of wavelet and 

Fourier shape description uses single scale, which yields the same dimensionality as 

ordinary Fourier descriptors. However, the classification and retrieval experiments 

with paper defect shapes reveal that the proposed single scale descriptor clearly 

outperforms the most powerful single-scale Fourier descriptor, Contour Fourier

method.  

Publication V: A method for improving Fourier-based shape description of objects 

with short boundary line is presented. The frequency resolution of the Fourier 

spectrum calculated for the boundary function can be easily increased by using a zero-

padding method. This method is used to improve the frequency resolution by adding 

zeros to the boundary function to be Fourier transformed. Consequently, new points 

are being interpolated to the spectrum. The experimental results show that by applying 

the zero-padding method, defect shape description can be easily improved in 

classification tasks.   

Publication VI: A new statistical measure for the characterization of gray level 

distribution of the defect images is presented. This measure, Binary co-occurrence 

matrix is capable of accurate defect image description and it clearly outperforms 

image correlogram in the retrieval of paper and metal defect images.    

Publication VII: The principle of Color Fourier descriptor is presented. In the 

proposed approach, the gray level distribution of the object is added to the Fourier-

based contour description using area function. The Fourier descriptor using gray level 

and shape outperforms clearly shape based Fourier descriptors in defect image 

retrieval. However, the color information does not increase the dimensionality of the 

proposed descriptor. 

7.5 Author’s contributions to the publications

In all the above publications, the author has played the major role in developing the 

proposed methods. In all of them, the author developed the proposed defect image 

description methods and carried out the experiments with Ms. Leena Lepistö. In all 
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but publications IV and V, Mr. Juhani Rauhamaa from ABB Oy has been a co-author 

responsible for the sections describing the surface defect images. Professor Ari Visa 

has acted as supervisor to verify the methods used in the publications. 



8 Conclusions

Content-based image retrieval is nowadays an area of active research, which has 

generated a large amount of published research work and results. The main focus in 

the present study is the field of content-based image indexing. This has necessitated 

considerable research effort to find effective features for describing the content of the 

images to be retrieved. The majority of the existing content-based image retrieval 

systems have been developed for general image archives, such as newspaper images 

or consumer photographs. However, current machine vision systems are capable of 

producing vast amounts of images that are stored into databases. This has given rise to 

a growing need for image retrieval systems in industrial applications.  

In an industrial process, different measurements play an essential role in the 

process and quality control. Visual inspection is one part of this measurement process. 

Nowadays, image-based automatic inspection has replaced manual inspection in 

several industrial areas. Industrial imaging systems are on-line applications, which set 

their own special requirements for retrieval system. In addition, the content of 

industrial images is often very specific and the images cannot be divided in a 

straightforward way into categories by human skill, like most of the photographs used 

in general image archives. For these reasons, the industrial defect image databases 

considered in this thesis constitute a challenging practical image retrieval task. 

In practical defect inspection, the basic problem for the user is to find images of a 

certain defect type in the database. This is performed by providing an example image 

of the desired defect type. To satisfy this information requirement, the retrieval 

system should recall a set of defects that are as similar to the query image as possible. 

Therefore, effective visual descriptors that are able to describe the image content are 

necessary. Improved defect description provides a better understanding of the defect 

causes. This is because the information of the retrieved defect image can be combined 

with the knowledge of the defect location and other process measurements. It is, 

therefore, essential that the visual descriptors are capable of describing the special 

character of various defect types.

The main contribution of this thesis is the development of effective and 

computationally efficient visual descriptors for defect image classification and 

retrieval. The descriptors selected for study in this research consider shape and gray 

level distribution of the defect images. These features have not been studied earlier to 
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the same extent as, for example, the texture features of the surface defects. The shape 

features developed in this thesis are based on well-known and effective boundary 

description that uses Fourier transform. However, a novel approach to the 

characterization of complicated shapes is to use multiresolution shape description 

based on Fourier description. The multiresolution property is capable of significantly 

increasing the classification accuracy of the defects. Moreover, the computational 

costs of the proposed multiresolution approaches are reasonable which makes them 

suitable for on-line retrieval. The gray level distribution of the defect images is 

described using a novel second order statistical measure, binary co-occurrence matrix. 

The experimental results show that its accuracy in defect image retrieval is higher 

than that of conventional correlation-based statistics. The developed methods are 

directly applicable in real defect image retrieval tasks.          
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Abstract

The description of the object shape is an important 

characteristic of the image. In image processing and 

pattern recognition, several different shape descriptors 

are used. In human visual perception, the shapes are 

processed in multiple resolutions. Therefore multiscale 

shape representation is essential in the shape based 

image classification and retrieval. In the description of 

the object shape, the multiresolution representation 

provides also additional accuracy to the shape 

classification.    

In this paper we introduce a new descriptor for shape 

classification. This descriptor is called multiscale Fourier 

descriptor, and it combines the benefits of Fourier 

descriptor and multiscale shape representation. This 

descriptor is formed by applying Fourier transform to the 

coefficients of wavelet transform of the object boundary. 

In this way the Fourier descriptor can be presented in 

multiple resolutions.  

We make classification experiments using three image 

databases. The classification results of our method are 

compared to those of Fourier descriptors.     

1. Introduction 

The description of the object shape is an important 

task in image analysis and pattern recognition. The shapes 

occurring in the images have also a remarkable 

significance in image retrieval [4]. The basic problem in 

shape classification is to define the similarity between 

two shapes. In many cases, this similarity measurement 

should obey the human shape perception. Images can be 

classified based on their shape content using different 

types of shape descriptors [3]. In the field of 

psychophysics, it has been found that the human visual 

system processes and analyzes image information at 

different resolutions. Therefore multiscale shape 

representation is essential in the classification of the 

shapes occurring in the images. 

Several methods for shape description have been 

developed. The shape description techniques can be 

divided into two types, boundary based and region based 

techniques [7]. The region based methods consider the 

whole area of the object whereas the boundary based 

methods concentrate merely on the object boundary line. 

In this paper we consider the boundary based methods. 

The most common boundary based shape descriptors are 

chain codes [6] and Fourier descriptors [15]. Also 

autoregressive (AR) [5],[12] models have been used to 

represent the boundaries of curves. During recent years,  

curvature scale-space (CSS) [14] shape representation has 

also been widely used. Kauppinen et al. [11] made a 

comparison between autoregressive models and Fourier-

based descriptors in shape classification. In this 

comparison, Fourier-descriptors proved to be the best in 

the classification of different shapes. In the comparison 

made by Mehtre et al. [13], retrieval ability of chain 

codes, Fourier-descriptors, and different moments were 

compared in shape similarity-based retrieval. In this case, 

the best results were obtained using moments and 

Fourier-descriptors, whereas the lowest retrieval results 

were given by chain codes. 

In this paper, we apply wavelet transform to the 

classification of different shapes. Wavelet transform has 

been widely used in multiscale image and signal analysis. 

It is used for example in image and signal compression 

and noise reduction. However, wavelet transform has 

only a few applications in the field of shape description. 

In [1] Chuang and Kuo used one-dimensional discrete 

periodized wavelet transform (DPWT) to describe planar 

curves. The same transform was used also in [9], in which 

the method was made rotation invariant.  

In contrast to these studies, we use complex wavelet 

transform. In our approach, the boundary of the object is 

presented in complex form like in the case of Fourier 

descriptors. Using complex wavelet transform, the 

multiscale representation of the shape can be achieved. 

The multiscale Fourier descriptor is obtained by applying 

the Fourier transform to the coefficients of the multiscale 

wavelet transform. Using Fourier transform, the wavelet 
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coefficients can be presented in frequency domain, which 

makes the descriptor invariant for rotation and starting 

point of the boundary. The use of Fourier transform 

makes it also possible to present the descriptor in fixed 

length, independent on the length of the object boundary.  

In section two, the general principle of Fourier 

descriptors and complex wavelet transform are presented. 

In the same section we show how the multiscale Fourier 

descriptor for object shape can be formed using complex 

wavelet transform. The classification ability of the 

descriptors is tested in section three using three sets of 

testing images. The results of the classification are 

discussed in section four.  

2. Shape descriptors 

The use of Fourier descriptors is common in pattern 

recognition and image analysis. The benefits of the 

Fourier descriptors are invariance to the starting point of 

the boundary and rotation [13]. However, the use of 

Fourier-based multiscale representation of shape is a new 

application in shape representation. In this section we 

present a multiscale shape descriptor based on the 

complex wavelet transform and Fourier transform. It is a 

simple descriptor that combines the benefits of Fourier 

representation of the object shape and the multiresolution 

nature of wavelet transform. 

2.1. Representation of the object boundary 

In this paper the shape description methods are based 

on the boundary of the object. Therefore, the boundary of 

the object has to be extracted from the image. In the 

presentation of the object boundary, we use the complex 

coordinate function [11]. This function is simply the 

coordinates of the boundary pixels in an object centered 

coordinate system, represented as complex numbers:  

)()()( ckck yyjxxkz −+−=        (1) 

for k=0,1,2,…,N-1, in which N is the length of the 

boundary and (xc, yc) is the centroid of the object. Using 

complex coordinate function, the boundary can be 

represented independent on the location of the object in 

the image. In this way the translation invariance can be 

achieved. 

2.2. Fourier descriptors 

The shape descriptor based on the object boundary can 

be formed in several ways. Fourier transform [15] is the 

most common method for this purpose. Fourier 

transformation of a boundary function generates a set of 

complex numbers which are called Fourier descriptors. 

Fourier descriptors characterize the object shape in 

frequency domain. The Fourier descriptors can be formed 

for a complex boundary using discrete Fourier transform 

(DFT) [7]. Fourier transform of z(k) is:
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for n =0,1,2,…,N-1. The general shape of the object is 

represented by the lower frequency descriptors, whereas 

high frequency descriptors represent the small details of 

the object shape. A common approach to shape 

classification is to use only a subset of the descriptors. 

These subsets can be formed in several different ways. 

Kauppinen et al. [11] have compared Curvature Fourier,

Radius Fourier, Contour Fourier, and A-invariant

methods for Fourier-based shape representation. 

According to their experimental results, Contour Fourier

and A-invariant methods were best approaches in shape 

classification. In this work, we selected Contour Fourier

method for testing purposes. 

The Contour Fourier method makes the Fourier 

transform directly for the complex coordinate function of 

the object boundary. In this method, the descriptors are 

taken both positive and negative frequency axis. The 

scaling of the descriptors is made by dividing the absolute 

values of the selected descriptors by the absolute value of 

the first non-zero component. The feature vector for this 

method is: 
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in which L is a constant value that defines the number of 

the samples selected from the Fourier coefficients. 

2.3. Complex wavelet transform 

The multiscale representation of the object boundary 

can be achieved using wavelet transform. The boundary 

function is transformed using some wavelet Ψ. Complex 

wavelet transform is based on the continuous wavelet 

transform (CWT) [2]. In CWT, the wavelet coefficient of 

the boundary z(k) at a scale a and position b is defined by: 

−=
R

a dk
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bk
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a
bC ψ)(

1
)(          (4) 

As in the Fourier transform, also in case of CWT we 

obtain a set of complex coefficients Ca(b) of scale a. The 

coefficients are defined for all the positions b=0,1,2,...,N-

1.
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2.4. Multiscale Fourier descriptor 

The problem with the coefficients obtained from the 

complex wavelet transform is the fact that they are 

dependent on the starting point of the object boundary. 

Also the length of the feature vector depends on the 

length of the object boundary. Therefore, the coefficient 

vectors of different shapes cannot directly be matched in 

the image classification. The solution for this problem is 

to apply the Fourier transform to the coefficients obtained 

from the complex wavelet transform. In this way the 

multiscale shape representation can be transformed to the 

frequency domain. As a result, a multiscale Fourier 

descriptor is obtained. The descriptor is formed by 

applying the discrete Fourier transform of equation 2 to 

the set of complex coefficients Ca(b):
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The multiscale descriptor xa of each scale a is then 

formed from coefficients Fa(n) using Contour Fourier

method presented in equation 3: 
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The multiscale representation of the object shape can then 

be formed by defining the descriptor xa using several 

different scales a, and combining the descriptors into a 

single feature vector, FW of length R. Let the set of 

scales be A={a1, a2,..., ar}. So the number of the scales in 

the descriptor is r.

3. Classification experiments 

In this section, we make classification experiments 

using our method, multiscale Fourier descriptor. The 

classification results are compared to those of Contour 

Fourier approach. 

3.1. Testing databases 

For testing purposes, we used three image databases. 

Two of these databases were industrial defect image 

databases, which are quite difficult to classify. However, 

in these images, shape is one essential classifying feature 

and therefore these databases are used in the experimental 

part of this paper. In addition to these industrial 

databases, we had also a database of very simple shapes. 

Using these three databases, we can show that our method 

can be used in the shape-based classification of several 

different image databases.    

Testing database I consisted of paper defect images. 

The images were taken from the paper manufacturing 

process using a paper inspection system [16]. The defects 

occurring in the paper can be for example holes, wrinkles 

or different kinds of dirt spots. The test set consisted of 

1204 paper defects, which represented 14 defect classes 

so that each class consisted of 27-103 images. An 

example image of each class is presented in figure 1. 

Within the classes, there were differences in the size and 

orientation of the defects. This fact can be seen in figure 

2, in which the variations of the defect class 1 are 

presented.

The second industrial image set, testing database II, 

contained 1943 metal defect images. Also this database 

contained 14 defect classes. In each class, there were 100-

165 images. Figure 3 presents an example of each class 

and the variations in the defect class 1 are presented in 

figure 4.  

Different defect types in both industrial databases can 

be distinguished using their shape or gray level. In this 

paper we concentrate on the shape information of the 

defects. The classification of the defect images is a 

demanding task, because in some classes the shapes are 

very similar. In the case of some defect classes, the 

shapes are also overlapping, which reduces the 

classification. The defects can be extracted from their 

background using an image segmentation method 

presented in [10]. 

The third test set, testing database III, consisted of 30 

image classes selected from the MPEG-7 image database. 

Each class contained 20 images, so that the size of the 

whole testing database was 600 images. The images were 

silhouettes of some simple objects. An example of each 

image class in testing database III is presented in figure 5. 

In each class, the images were variations of the same 

object. In these images, shape, size, and orientation are 

varying. An example of the variations within the class 

“deer” is presented in figure 6. In all images, the object is 

deer, but the size, shape, and orientation of the deer varies 

significantly.  

3.2. Classification 

The database images were indexed by calculating the 

feature vector xa for them. The selected wavelet ψ was 

complex gaussian wavelet of order two. The multiscale 

presentation was achieved using a set of three scales. The 

scale sets A were selected to be [10,15,20], [10,20,30], 

and  [50,80,110] for testing databases I, II, and III, 

respectively. For comparison, also the feature vector x of 

Contour Fourier method was calculated for each test set 

image.    
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Figure 1. The example images of each paper defect image class of testing database I. 

Figure 2. 10 examples of class 1 paper defect images in the testing database I. 

Figure 3. The example images of each metal defect image class of testing database II. 

Figure 4. 10 examples of class 1 metal defect images in the testing database II. 

The classification was made using nearest neighbor 

algorithm. The distance measure between the feature 

vectors was selected to be Euclidean distance. This 

distance can be calculated between the feature vectors 

(FW) of a query image Q and a database image D in the 

following way: 

( )
=

−=
R

i

DQ

E iiDQD
1

2
)()(),( FWFW                (7) 

The validation of the shape-based classification was 

made using leaving one out method [8]. In this method 

each image in turn is left out from the test set and used as 

a query image, whereas the other images in the test set 

form a testing database. The average classification rate 

was measured for both testing databases using three 

values for L. The results are presented in tables 1, 2, and 

3.

The computational characteristics of the classification 

in both databases are presented in table 4. The 

computation was made using Matlab on a PC with 804 

MHz Pentium III CPU and 256 MB primary memory. 

Table 1. The average classification rate of test set I. 

L
Contour 

Fourier 

Multiscale 

Fourier 

16 37.1 % 43.7 % 

32 39.0 % 45.1 % 

64 40.8 % 43.9 % 

Table 2. The average classification rate of test set II. 

L
Contour 

Fourier 

Multiscale 

Fourier 

16 26.6 % 31.6 % 

32 27.8 % 30.4 % 

64 29.2 % 30.5 % 
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Figure 5. The example images of each defect image class of testing database II. 

Figure 6. 20 examples of deer images in the testing database II. 

Table 3. The average classification rate of test set III. 

L
Contour 

Fourier 

Multiscale 

Fourier 

16 93.5 % 96.3 % 

32 93.5 % 94.7 % 

64 94.2 % 94.2 % 

4. Results and discussion 

In this paper we presented a new shape representation 

method, multiscale Fourier descriptor, for shape-based 

image classification. This descriptor combines wavelet 

transform and Fourier transform. In this way, the benefits 

of both transforms can be utilized. Therefore, when the 

wavelet transform is applied to the object boundary, the 

shape description is obtained in multiple resolutions. This 

is remarkable because human vision system uses 

multiresolution representation of shape. This 

representation improves also the classification of the 

shapes occurring in the images.  

Table 4. The Computational characteristics of the 

methods. The computing times are presented for the 

classification of the whole databases. 

Classification timeFEATURE Vector 

length DB I DB II DB III

Multiscale 

Fourier  

L=16

L=32

L=64

L*r

48

96

192

56 sec 

81 sec 

128 sec 

67 sec 

97 sec 

159 sec 

28 sec 

36 sec 

49 sec 

Contour 

Fourier  

L=16

L=32

L=64

L

16

32

64

44 sec 

47 sec 

64 sec 

46 sec 

56 sec 

83 sec 

10 sec 

25 sec 

29 sec 
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In our approach, the obtained multiscale shape 

representation is transformed into frequency domain 

using Fourier transform. In this way, our shape 

description approach is invariant for rotation and the 

starting point of the boundary line.   

According to the results presented in tables 1, 2, and 3, 

our method, multiscale Fourier, gives better classification 

results than Contour Fourier method in all testing 

databases. The classification accuracy was very high in 

case of the database III, in which the object shapes were

quite simple and easy to distinguish from each other. On 

the other hand, the classification rate was relatively low in 

the industrial image databases I and II. This is because the 

shape classes of these databases are much harder to 

distinguish from each other. In fact, the classification of 

the defect images is a demanding task even to an expert. 

However, the results show that our method is applicable 

in several types of image databases.

The computational cost of multiscale Fourier is also 

reasonable. Compared to the Contour Fourier, multiscale 

approach demands more computation time due to the 

increased feature vector length. On the other hand, the 

difference between the classification times is not 

remarkable, and in the case of small values of L, the 

whole databases can be classified in the less than 100 sec.  

In conclusion, the multiscale Fourier descriptor proved 

to be an effective tool for classifying different types of 

shapes. The classification results show that when 

multiscale representation is combined to the commonly 

used Fourier-based shape description, the classification 

results can be easily improved.  
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Abstract 

The shapes occurring in the images are important in 

the content-based image retrieval. In this paper we 
introduce a new Fourier-based descriptor for the 

characterization of the shapes for retrieval purposes. This 

descriptor combines the benefits of the wavelet transform 

and Fourier transform. This way the Fourier descriptors 

can be presented in multiple scales, which improves the 

shape retrieval accuracy of the commonly used Fourier-
descriptors. The multiscale Fourier descriptor is formed 

by applying the complex wavelet transform to the 

boundary function of an object extracted from an image. 

After that, the Fourier transform is applied to the wavelet 

coefficients in multiple scales. This way the multiscale 
shape representation can be expressed in a rotation 

invariant form. The retrieval efficiency of this multiscale 

Fourier descriptor is compared to an ordinary Fourier 

descriptor and CSS-shape representation. 

1. Introduction 

In addition to color and texture, shape is one of the 

most important features in characterization of image 

content in content-based image retrieval systems [6]. In 

these systems, the problem is to answer the question: 

“Which of the database images contain the most similar 

shapes to the query image?” This type of image retrieval 

is called shape similarity-based retrieval [13]. In this kind 

of retrieval, it has been found that shapes can be 

effectively characterized using a description that uses 

multiple resolutions [5],[14]. Therefore, multiscale shape 

representation [5] is essential in the shape-based 

classification and retrieval. 

The shape description techniques can be divided into 

two types, region-based and boundary-based techniques 

[5]. The region-based methods consider the whole area of 

the object. In this paper we concentrate on the boundary-

based shape descriptors that use only the object boundary 

in the description of the object shape. The most common 

boundary-based shape descriptors are chain codes [8] and 

Fourier descriptors [12]. Recently, growing research 

interest has been focused on Curvature Scale Space (CSS) 

shape representation [14] that has been selected to be used 

in the contour-based shape description of MPEG-7 

standard [2]. Kauppinen et al. [11] made a comparison 

between autoregressive models [7] and Fourier-based 

descriptors in shape classification. In this comparison, 

Fourier descriptors proved to be best in the classification 

of different shapes. In the comparison made by Mehtre et 

al. [13], the retrieval ability of chain codes, Fourier 

descriptors, and different moments were compared in 

shape similarity-based retrieval. In this case, the best 

results were obtained using moments and Fourier 

descriptors. In the recent study of [17] Zhang and Lu, 

Fourier descriptors gave better experimental results in 

image retrieval than CSS-representation. These 

experimental results show that Fourier descriptor is an 

effective tool in the shape classification and retrieval.  

In this paper, we apply wavelet transform to the 

retrieval of different shapes. Despite the fact that wavelet 

transform has been widely used in multiscale image 

analysis, it has only a few applications in the shape 

description. In [3] Chuang and Kuo used one-dimensional 

discrete periodized wavelet transform (DPWT) to 

describe planar curves. The same transform was used also 

in [10], in which the method was made rotation invariant. 

In contrast to these studies, we use complex wavelet 

transform. In our approach, the object boundary is 

presented in complex form like in the case of Fourier 

descriptors. Using complex wavelet transform, the 

multiscale representation of the shape can be achieved. 

Our method, Multiscale Fourier descriptor is obtained by 

applying the Fourier transform to the coefficients of the 

multiscale wavelet transform. This approach has given 

promising results in the shape classification in [12]. 

2. Shape description 

The use of Fourier descriptors is common in pattern 

recognition and image analysis. The benefits of the 

Fourier descriptors are invariance to the starting point of 

the boundary and rotation [5]. However, the use of 

Fourier-based multiscale representation of shape is a new 

application in shape representation. In this section, we 

present a multiscale shape descriptor based on the 

complex wavelet transform and Fourier transform  

In this paper, the shape description methods are based 

on the boundary of the object. In the presentation of the 

object boundary, we use the complex coordinate function 

[11]. This function represents simply the coordinates of 
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the boundary pixels in an object centered coordinate 

system, presented as complex numbers: 

)()()( ckck yyjxxkz −+−=             (1) 

for k=0,1,2,…,N-1, in which N is the length of the 

boundary and (xc, yc) is the centroid of the object. Using 

the complex coordinate function, the boundary can be 

represented independent of the location of the object in 

the image. In this way the translation invariance can be 

achieved. 

2.1. Fourier descriptors

The shape descriptor based on the object boundary can 

be formed in several ways. Fourier transform [15] is a 

commonly used method for this purpose. Fourier 

transformation of a boundary function generates a set of 

complex numbers which are called Fourier descriptors. 

Fourier descriptors characterize the object shape in a 

frequency domain. The Fourier descriptors can be formed 

for a complex boundary using discrete Fourier transform 

(DFT) [9]. Fourier transform of z(k) is: 
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for n=0,1,2,…,N-1. The general shape of the object is 

represented by the lower frequency descriptors, whereas 

high frequency descriptors represent the small details of 

the object shape [11]. A common approach to shape 

classification is to use only a subset of the descriptors. 

These subsets can be formed in several different ways. 

Kauppinen et al. [11] have compared Curvature Fourier,

Radius Fourier, Contour Fourier, and A-invariant

methods for Fourier-based shape representation. 

According to their experimental results, Contour Fourier

and A-invariant methods were the best approaches in the 

shape classification. In this work, we selected Contour 
Fourier method for testing purposes. 

The Contour Fourier method [11] makes the Fourier 

transform directly for the complex coordinate function of 

the object boundary. In this method the descriptors are 

taken both positive and negative frequency axis. The 

scaling of the descriptors is made by dividing the absolute 

values of the selected descriptors by the absolute value of 

the first non-zero component. The feature vector for this 

method is: 
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In which L is a constant value that defines the length of 

the feature vector.  

2.2. Multiscale Fourier descriptor 

The multiscale representation of the object boundary 

can be achieved using wavelet transform. The boundary 

function is transformed using some waveletΨ. Complex 

wavelet transform is based on the continuous wavelet 

transform (CWT) [4]. In CWT, the wavelet coefficient of 

the boundary z(k) at a scale a and position b is defined as: 
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As in the Fourier transform, also in case of CWT we 

obtain a set of complex coefficients Ca(b) of scale a. The 

coefficients are defined for all positions b=0,1,2,...,N-1.

The problem with the coefficients obtained from the 

complex wavelet transform is the fact that they are 

dependent on the starting point of the object boundary. 
Also the length of the feature vector depends on the 

length of the object boundary. Therefore, the coefficient 

vectors of different shapes cannot directly be matched in 

the image retrieval. The solution for this problem is to 

apply the Fourier transform to the coefficients obtained 
from the complex wavelet transform. In this way, the 

multiscale shape representation can be transformed to the 

frequency domain. Hence the benefits of multiscale 

representation and Fourier shape representation can be 

combined. The Multiscale Fourier descriptor is formed by 

applying the discrete Fourier transform of equation 2 to 
the set of complex coefficients Ca(b):
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The multiscale descriptor xa of each scale a is then formed 

from coefficients Fa(n) using Contour Fourier method 
presented in equation 3: 
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The multiscale representation of the object shape can then 

be formed by defining the descriptor xa using several 

different scales a, and combining the descriptors into a 

single feature vector, FW of length R. Let the set of scales 

be A={a1, a2,..., ar}. So the number of the scales in the 
descriptor is r.
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Figure 1. Examples of the boundaries extracted 
from each class of database I paper defects. 

Figure 2. Average precision/recall curves of the 
database I paper defect images. 

Figure 3. Average precision/recall curves of the 
database II metal defect images. 

3. Retrieval experiments 

For testing purposes, we used paper and metal defect 

images that were collected from industrial processes. The 

reason for the collection of the defect image databases in 
the process industry is the practical need of controlling 

the quality and production [16]. In the industrial imaging 

solutions, there is a need to retrieve the defect images 

from the databases. In these images, the defect shape is 

one essential feature that describes the defect type. 
Therefore, effective methods for the shape representation 

are needed in the retrieval and classification of the defect 

images. 

Testing database I consisted of paper defect images. 
The images were taken from the paper manufacturing 

process using a paper inspection system [16]. The defects 

occurring in the paper can be for example holes, wrinkles 

or different kinds of dirt spots. The test set consisted of 

1204 paper defects, which represented 14 defect classes 

so that each class consisted of 27-103 images. An 
example contour of each defect class is presented in 

figure 1. Testing database II consisted of 1943 metal 

defect images. Also this database contained 14 defect 

classes. In each class, there were 100-165 images. Within 

the classes of both defect databases, there were 

differences in the size and orientation of the defects.
The indexing of the testing databases was carried out 

by calculating the feature vectors xa of Multiscale Fourier 

method for each image. The selected wavelet ψ was 
complex gaussian wavelet of order two. The multiscale 

presentation was achieved using a set of three scales. In 

this experiment, the scale sets A was selected to be 

{10,15,20} and {10,20,30} for the database I and II, 
respectively. For comparison, also the feature vector x of 

Contour Fourier method was calculated for each test set 

image. We compared our method also to CSS-

presentation [14] that has recently received lot of attention 

in the research of shape description. The method for 

measuring the similarity between the CSS-presentations 
was presented in [14]  

In the retrieval experiments, the distance measure 

between the feature vectors was selected to be Euclidean 

distance. The retrieval experiments were made using 

leaving one out method. In this method, each image in 
turn is left out from the test set and used as a query image, 

whereas the other images in the test set form a testing 

database. The performance of the retrieval was measured 

by calculating a precision versus recall curve [1] for each 

query. Figures 2 and 3 present the average precision-

recall curves for the images in both databases using two 
different values for L. In both databases, the best retrieval 

performance is achieved using Multiscale Fourier. In the 

figures 2 and 3, the precision values are not significantly 

high for two reasons: 1) shape is only one of the features 

(in addition to gray level distribution and texture) that 

describe the defect and 2) the defect classes are often 
fuzzy and overlapping, which makes it difficult to 

distinguish them from each other. However, the results of 

figures 2 and 3 present the practical comparison between 

the methods in the shape-based retrieval. Also the 

retrieval accuracy of the metal defect shapes (database II) 

is lower than in the case of paper defect shapes of 
database I. This is due to the nature of metal defects, 

which are more difficult to classify based on their shapes. 

However, figure 3 shows that Multiscale Fourier is the 

most effective method also in the shape-based retrieval of 

metal defect images.   

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04) 
1051-4651/04 $ 20.00 IEEE 



When we compare the computational cost of 

Multiscale Fourier to the Contour Fourier method, the 

computational cost of the Multiscale Fourier descriptor is 
larger due to the dimensionality of the feature vectors of 

multiscale representation. The dimensionality is 

dependent on the number of the scales, r. Hence, the 

length of the feature vector is r*L, However, using three 

scales the cost is still reasonable, which makes the 

Multiscale Fourier suitable for indexing of large image 
databases. 

4. Discussion

In this paper, we presented Multiscale Fourier method 

for shape description in image retrieval. In this method, 

the object boundary is transformed using complex 

wavelet transform. The obtained multiscale shape 

representation is then transformed into the frequency 
domain using Fourier transform. Therefore, the resulting 

descriptor is independent on rotation as well as the 

starting point of the boundary. Multiscale Fourier method 

combines the benefits of the wavelet transform and 

Fourier transform. When the wavelet transform is applied 
to the object boundary, we obtain the shape description in 

multiple resolutions. This is important, because multiscale 

shape representation improves the shape retrieval 

accuracy.  

We made also a comparison between CSS-

representation that has been selected to be the basis of 
contour-based shape representation of MPEG-7 standard. 

In our comparison, CSS-representation was outperformed 

by both Multiscale and Contour Fourier descriptors. This 

result supports the conclusion of Zhang and Lu [17], 

which is that Fourier descriptors give more accurate 

retrieval results than CSS-representation. However, the 
experimental results of this paper show that even better 

results can be achieved using Multiscale Fourier method. 

The computational cost of Multiscale Fourier remained 

still reasonable. 
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Abstract

Shape is an essential visual feature of an image and it is widely used to describe image content in image classification and retrieval. In
this paper, two new Fourier-based approaches for contour-based shape description are presented. These approaches present Fourier
descriptors in multiple scales, which improves the shape classification and retrieval accuracy. The proposed methods outperform ordin-
ary Fourier descriptors in the retrieval of complicated shapes without increasing computational cost.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Shape retrieval; Shape classification; Fourier descriptor; Multiresolution shape description

1. Introduction

The description of the shapes in image is an essential
task in the field of pattern recognition. During recent
decades, a number of approaches and solutions have been
presented to characterize different shapes. The primary
purpose of the early shape descriptors was shape classifica-
tion, whereas during recent years the use of shape descrip-
tion in image retrieval has received increasing interest (Del
Bimbo, 2001). For example, in multimedia applications,
content-based image retrieval (CBIR) plays a significant
role.

In CBIR systems, one of the problems is to answer the
question: ‘‘Which of the database images contain the most
similar shapes to the query image’’? This type of image
retrieval is called shape similarity-based retrieval (Mehtre
et al., 1997). In this kind of retrieval, the aim is to find sim-
ilar shapes from the database as accurately as possible. On
the other hand, the classification accuracy (effectiveness) of
a certain descriptor is not an adequate measure for its use-

fulness in the retrieval. Due to the increasing number of on-
line retrieval solutions, computational lightness (efficiency)
is nowadays considered equally important as effectiveness
(Zhang and Lu, 2004). A recently introduced multimedia
standard, MPEG-7 (Manjunath et al., 2002), has set several
principles for measuring a shape descriptor. The principles
are good retrieval accuracy, compact features, general
application, low computational complexity, robust retrie-
val performance, and hierarchical coarse to fine representa-
tion (Kim and Kim, 2000). These principles were used as
criteria in the study of Zhang and Lu (2004), in which com-
mon shape description techniques were reviewed. Another
review of the state of the art in shape description tech-
niques is provided by Loncaric (1998).

Shape description techniques can be divided into two
types: region- and boundary-based techniques (Costa
and Cesar, 2001). Region-based methods consider the
whole area of an object. Different moments (Hu, 1962),
including for example Zernike moments (Teague, 1980)
are popular descriptors. Boundary-based shape descriptors
use only the object boundary in the description of the
object shape. The most common boundary-based shape
descriptors are chain codes (Freeman and Davis, 1977),
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Fourier descriptors (Persoon and Fu, 1977) and simple
descriptors such as circularity (Costa and Cesar, 2001),
eccentricity, convexity, principle axis ratio, circular vari-
ance and elliptic variance (Iivarinen and Visa, 1998).
Recently, growing research interest has been focused on
curvature scale space (CSS) shape representation (Mokh-
tarian and Mackworth, 1986) that has been selected to be
used as the boundary-based shape descriptor of MPEG-7
standard (Bober, 2001). However, despite the fact that
the Fourier descriptor method is over 30 years old (Gran-
lund, 1972; Persoon and Fu, 1977), it is still found to be
a valid shape description tool. In fact, Fourier descriptor
has proved to outperform most other boundary-based
methods in terms of retrieval accuracy and efficiency. This
has been verified in several comparisons. Kauppinen et al.
(1995) made a comparison between autoregressive models
(Dubois and Glanz, 1986) and Fourier-based descriptors
in shape classification. In most cases, Fourier descriptors
proved to perform better than autoregressive models. In
a comparison made by Mehtre et al. (1997), the retrieval
ability of chain codes, Fourier descriptors, and different
moments were compared in shape similarity-based retrie-
val. In this case, the best results were obtained by using
moments and Fourier descriptors. In the recent studies of
Zhang and Lu (2003a,b), Fourier descriptors and Zernike
moments outperformed CSS-representation in terms of
retrieval accuracy and efficiency. Similar results were also
obtained by Kunttu et al. (2004).

In addition to good retrieval and classification accuracy,
there are also other reasons which make Fourier descrip-
tors probably the most popular of the boundary-based
shape representations. The main advantages of the Fou-
rier-based shape representations are that they are compact
and computationally light. Furthermore, they are easy to
normalize and their matching is a very simple process. Also
their sensitivity to noise is low when only low frequency
Fourier coefficients are used as descriptors.

It has been found that complicated shapes can be effec-
tively characterized by using a description with multiple
resolutions (Costa and Cesar, 2001; Mokhtarian, 1995).
CSS-representation uses multiple resolutions that are
achieved by smoothing the boundary. However, the draw-
backs of CSS are relatively low shape classification
accuracy and efficiency compared to Fourier descriptors
(Zhang and Lu, 2003a,b). Also the matching procedure
of the CSS-features is not as straightforward as that of
Fourier descriptors. Wavelet transform (Chui, 1992) has
been widely used in multiscale image analysis. However,
it has only a few applications in the shape description
(Yang et al., 1998; Tieng and Boles, 1997). The obtained
descriptors are not rotation invariant. Furthermore, the
matching scheme of these wavelet representations is more
complicated and time consuming than that of Fourier
descriptors. This reduces their usability in on-line retrieval
solutions.

In this paper, two multiresolution approaches to shape
description are presented. The first one, called here Multi-

scale Fourier, utilizes a combination of wavelet and Fourier
transforms. Multiscale Fourier descriptor is obtained by
applying the Fourier transform to the coefficients of the
multiscale wavelet transform. Consequently, the Fourier
descriptor is formed from multiresolution representation
of the shape. The Multiscale Fourier approach has given
promising results in the classification of general shapes
as well as shapes of industrial defects in (Kunttu et al.,
2003). In (Kunttu et al., 2004), this method also outper-
formed CSS-representation and Contour Fourier descriptor
(Kauppinen et al., 1995) in the shape-based retrieval of dif-
ferent kinds of defect images. The second multiresolution
approach presented in this paper is called Boundary Scale

Fourier descriptor. This descriptor is obtained by using dif-
ferent scales of the boundary line. The scales are achieved
by smoothing the boundary line iteratively and applying
the Fourier transform to the boundary of different degrees
of smoothness. In both of these descriptors, the matching is
as simple as in the case of Fourier descriptors, which is a
benefit in the on-line retrieval.

The outline of this paper is the following. Section 2 pre-
sents the methodology of shape description using Fourier-
based methods. In addition to ordinary single-scale Fourier
descriptors, both of the proposed multiresolution methods
are presented in that section. Section 3 is the experimental
part of this paper. In the experiments, the proposed meth-
ods are evaluated and compared to ordinary Fourier
descriptors in retrieval. For retrieval experiments, a data-
base of real industrial defect shapes is used. In Section 4,
the results and performance of the methods are discussed.
Section 5 concludes this study.

2. Shape description

In this paper, the shape description methods are based
on the object boundary. In shape description, a boundary
is usually presented using some shape signature i.e. a func-
tion derived from the boundary coordinates. Complex
coordinate function (Kauppinen et al., 1995) is a simple
and probably the best-known signature used in the Fou-
rier-based shape description. Let (xk, yk), k =0,1,2, . . . ,
N � 1 represent the object boundary coordinates, in which
N is the length of the boundary. The complex coordinate
function z(k) expresses the boundary points in an object
centered coordinate system in which (xc,yc) represents the
centroid of the object:

zðkÞ ¼ ðxk � xcÞ þ jðyk � ycÞ ð1Þ
Hence, using this function, the boundary is represented
independent of the location of the object in the image. In
this way the translation invariance can be achieved.

2.1. Fourier descriptors

Fourier descriptors characterize the object shape in a
frequency domain. The descriptors can be formed for the
complex-valued boundary function using the discrete Fou-

2 I. Kunttu et al. / Pattern Recognition Letters xxx (2005) xxx–xxx

ARTICLE IN PRESS



rier transform (DFT) (Gonzalez and Woods, 1993). The
Fourier transform of z(k) is

F ðnÞ ¼ 1

N

XN�1

k¼0

zðkÞe�j2pnk=N ð2Þ

for n = 0,1,2, . . . ,N � 1 and F(n) are the transform coeffi-
cients of z(k). The translational invariance is based on
the shape signature. Furthermore, the coefficients have also
to be normalized to achieve invariance to rotation and scal-
ing. The descriptors can be made rotation invariant by
ignoring the phase information and using only the magni-
tudes of the transform coefficients jF(n)j. In the case of
complex-valued boundary function, the scale can be
normalized by dividing the magnitudes of the transform
coefficients by jF(1)j (Kauppinen et al., 1995).

The general shape of the object is represented by the low
frequency coefficients, whereas high frequency coefficients
represent the fine details of the object shape. A common
approach to shape representation is to use a subset of the
low frequency coefficients as a shape descriptor. This way
the shape can be effectively presented using a relatively
short feature vector. In our experiments, the feature vector
is formed using Contour Fourier method (Kauppinen et al.,
1995), which applies the complex coordinate function. In
this method the descriptors are taken from positive and
negative frequency axis. The feature vector for this method
is

x ¼ jF �ðL=2�1Þj
jF 1j � � � jF �1j

jF 1j
jF 2j
jF 1j � � �

jF L=2j
jF 1j

� �T
ð3Þ

In which L is a constant value that defines the dimension-
ality of the feature vector. Fig. 1a presents the outline of
the Contour Fourier method.

2.2. Multiscale Fourier descriptor using wavelet transform

The multiscale representation of the object boundary
can be achieved using wavelet transform (Kunttu et al.,
2003, 2004). The boundary function is transformed using
some wavelet W (Chui, 1992). Complex wavelet transform
is based on the continuous wavelet transform (CWT)

(Teolis, 1998). In continuous wavelet transform (CWT),
the wavelet coefficient of the boundary z(k) at a scale a

and position b is defined as

CaðbÞ ¼ 1ffiffiffiffiffiffijajp
Z
R
zðkÞw k � b

a

� �
dk ð4Þ

As in the Fourier transform, in the case of CWT we obtain
a set of coefficients Ca(b) of scale a. The coefficients are de-
fined for all positions b = 0,1,2, . . . ,N � 1. The families of
complex wavelets include e.g. complex Gaussian, complex
Morlet, and complex Shannon wavelets (Teolis, 1998). In
the experiments of this paper we have used complex Gaus-
sian wavelets (Misiti et al., 2001).

The problem with the coefficients obtained from the
wavelet transform is the fact that they are dependent on
the starting point of the object boundary. Hence the ob-
tained descriptor is not rotation invariant. Also the dimen-
sionality of the feature vector depends on the boundary
length. Therefore, the coefficient vectors of different shapes
cannot be directly matched in the image retrieval. The pro-
posed solution for this problem is to apply the Fourier
transform to the coefficients obtained from the wavelet
transform. In this way, the multiscale shape representation
can be transformed to the frequency domain, in which nor-
malization and matching are straightforward operations.
Hence the benefits of multiscale representation and Fourier
shape representation can be combined. TheMultiscale Fou-

rier descriptor is formed by applying the discrete Fourier
transform of Eq. (2) to the set of complex coefficients Ca(b):

F aðnÞ ¼ 1

N

XN�1

b¼0

CaðbÞe�j2pnb=N ð5Þ

The multiscale descriptor xa of each scale a is then formed
from coefficients Fa(n) using Contour Fourier method pre-
sented in Eq. (3):

xa ¼ jF a
�ðL=2�1Þj
jF a

1j
� � � jF

a
�1j

jF a
1j

jF a
2j

jF a
1j
� � � jF

a
L=2j

jF a
1j

� �T
ð6Þ

The multiscale representation of the object shape can then
be formed by defining the descriptor xa using several differ-

Fig. 1. The outlines of different Fourier-based shape description methods used in the comparison.
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ent scales a, and combining the descriptors into a single
feature vector. If the set of scales is defined as A =
{a1,a2, . . . ,ar}, the number of the scales in the descriptor
is r. The dimensionality of the obtained feature vector is
r*L. The outline of the Multiscale Fourier method is pre-
sented in Fig. 1b.

2.3. Boundary scale Fourier descriptor

Another approach to multiresolution Fourier-based
shape representation is related to the scaling of the object
boundary. Hence, when the boundary signature is pre-
sented in multiple scales and the descriptors are formed
for each scale, the resulting Fourier representation has a
multiresolution property. The multiresolution boundary
representation can be achieved in several ways. A simple
method for this is the CSS-representation (Mokhtarian
and Mackworth, 1986), which uses smoothing of the
boundary. In the CSS-method, the object boundary is iter-
atively smoothed until the curvature function has no zero-
crossing points, i.e. the boundary is convex. Hence the
multiresolution representation is achieved based on bound-
ary lines of different curvatures. In the proposed approach,
the Fourier descriptors are defined for the boundaries of
different smoothnesses. This way a more robust shape
description can be obtained, because fine details and
distortions in a shape are likely to be removed during
the smoothing process. When (xk,yk), where k = 0,1,
2, . . . ,N � 1, represent the object boundary coordinates,
the curvature function of the boundary can be defined
as

cðkÞ ¼ ð _xðkÞ€yðkÞ � €xðkÞ _yðkÞÞ
ð _x2ðkÞ þ _y2ðkÞÞ3=2

ð7Þ

where _xðkÞ, €xðkÞ, _yðkÞ and €yðkÞ are the first and second deriv-
atives of the boundary coordinates, respectively (Mokh-
tarian and Mackworth, 1986). The boundary curvature is
iteratively smoothed and the zero-crossing points are de-
fined for each scale. When the contour becomes smoother,
the number of curvature zero-crossing points is decreased.
The boundary at each degree of smoothing represents a
different scale. Therefore, in the Boundary Scale Fourier

descriptor, the shape descriptors are defined for the bound-
aries at the desired scales. The smoothness of the boundary
can be indicated based on the number of the zero-crossing
points. If p is the original number of the zero-crossing
points and pf is the number of these points in a smoothed
boundary, the degree of smoothness or scale can be ex-
pressed as the ratio s = pf/p. Unlike in the CSS-representa-
tion, in this approach it is not necessary to smooth the
boundary until it is convex, but the smoothing is stopped
when the desired scale is achieved. This saves the computa-
tion time. An example of smoothing process of a boundary
extracted from a defect image using different values of s is
presented in Fig. 2. Thus the Fourier descriptor for shape
signature at a selected scale s is defined by Eqs. (1)–(3).
The final feature vector is a combination of the Fourier
descriptors obtained from the signatures at different scales.
If the set of scales is defined as S = {s1, s2, . . . , sr}, the num-
ber of the scales in the descriptor is r. Hence, the dimension-
ality of the feature vector is r*L. The outline of the Boundary
Scale Fourier descriptor is presented in Fig. 1c.

Fig. 2. Smoothing process of a defect boundary using three values of s. The zero-crossing points are marked on the boundaries.
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3. Experiments with industrial defect shapes

In the experimental part of this paper the accuracy and
efficiency of the proposed methods are tested and com-
pared to those of the commonly used Fourier descriptors
using a real defect shape database. The proposed descrip-
tors are compared to the Contour Fourier method, because
it has been found to be accurate in shape classification
(Kauppinen et al., 1995). Furthermore, the preliminary
experiments carried out in the testing database of this study
showed that Contour Fourier method outperforms the
other Fourier-based shape representations. Being simple
and computationally light method, Contour Fourier is suit-
able for on-line shape retrieval tasks. The CSS-representa-
tion is not included in the comparison, because previous
results indicate that it performs with lower retrieval accu-
racy than any of the Fourier-based methods. This conclu-
sion was drawn from experiments with databases of
general shapes (Zhang and Lu, 2003a,b) and with defect
shapes (Kunttu et al., 2004).

The validation presented in this section is twofold. Sim-
ple classification experiments are first carried out to show
the influence of scale selection on the shape description.
Furthermore, the classification results are used to show
that the proposed shape descriptors outperform the Con-

tour Fourier descriptors in shape classification. The second
part of the validation presents the shape retrieval experi-
ments, in which the retrieval accuracy of the proposed
methods is compared to that of Contour Fourier method.

3.1. Testing database

For testing purposes, we used defect images that were
collected from a real industrial process using a paper
inspection system (Rauhamaa and Reinius, 2002). A
reason for collecting defect image databases in process in-
dustry is a practical need for controlling the quality of
production (Rauhamaa and Reinius, 2002). When retriev-
ing images from a database, the defect shape is one essen-
tial property describing the defect class. Therefore, effective
methods for the shape representation are necessary. The
defects occurring in paper can be for example holes, wrin-
kles or different kinds of thin or dirt spots. The test set con-
sisted of 1204 paper defects which represented 14 defect
classes with each class consisting of 27–103 images. Exam-
ple contours of each defect class are presented in Fig. 3.
Within each class, there are defects of different size and ori-
entation. Furthermore, in some classes the boundaries are
very varying and sometimes distorted (classes 2, 4 and
10, for example).

3.2. Classification and retrieval

The feature extraction in the testing database was car-
ried out by calculating all descriptors for the images in
the database. In the case of Multiscale Fourier method,
the selected wavelet w was Gaussian wavelet of order
two (Misiti et al., 2001). To select of the scale sets, we
made preliminary k-nearest neighbor (k-NN) classification

Fig. 3. Three example contours of each 14 paper defect classes in the testing database.
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experiments with different scales. In the classification
experiments the proposed methods were applied using each
scale separately. In other words, the methods used single-
scale wavelet transform and boundary smoothing com-
bined with Fourier transform as described in Section 2.
Fig. 4 presents the average classification rates of Multiscale
Fourier and Boundary Scale Fourier methods at different
scales using 5-NN classifier. In this figure, also the classifi-
cation rate of the Contour Fourier descriptor (41.87%) is
presented.

The scales that produce the highest classification rates
were selected to be used in the retrieval experiments. On
the other hand, the classification errors of the selected
scales were wanted to be as decorrelating as possible.
Therefore, the selected scales were not close to each other.
To reduce the dimensionality of the features, the number of
scales was selected to be two in the both multiresolution
approaches. The approach of using three scales was tested
in (Kunttu et al., 2003, 2004). However, in the retrieval
experiments of this paper, the scale set A was selected to
be {6,14}. In the case of the Boundary Scale Fourier

descriptor, the scale set S for the defect shapes was
{1,0.05}. Thus the scale 1 corresponds to the boundary
without smoothing i.e. it is equal to Contour Fourier. In
the Boundary Scale Fourier method, the boundary smooth-

ing was carried out by application of a low-pass filtering
with the kernel [0.25,0.5,0.25] to coordinates (xk,yk) of
the boundary line (Manjunath et al., 2002). The filtering
was applied repetitively until a desired scale was achieved.
To demonstrate the classification performance of the
selected scale combinations, their classification rates
(48.42% and 43.85% for Multiscale Fourier and Boundary

Scale Fourier, respectively) are marked in Fig. 4.
In the retrieval experiments, the distance measure be-

tween the feature vectors was selected to be Euclidean dis-
tance, which is the most common distance metrics for
Fourier descriptors. The retrieval and classification experi-
ments were made using leaving one out method. In this
method, each shape in turn is left out from the test set
and used as a query shape; whereas the other shapes in
the test set form a testing database. The performance of
the retrieval was measured by calculating a precision versus

recall curve (Baeza-Yates and Ribeiro-Neto, 1999) for each
query. Let jAj and jRj be the number of all retrieved shapes
and the number of query class shapes in the whole testing
database, respectively. If jRaj is the number of retrieved
query class shapes, precision and recall are defined as
jRaj/jAj and jRaj/jRj, respectively. The retrieval perfor-
mance of each feature can be presented by calculating the
average precision-recall curve for each query.

Fig. 4. The average 5-NN classification rates of the proposed methods using different scales. The classification rates of Contour Fourier and the selected
scale combinations are marked into the figure.
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3.3. Results

The results of the classification are presented in Fig. 4,
which shows that the scale selection has essential impact
on the classification results. In the Multiscale Fourier

descriptor, small scales give the best classification rates
and they clearly outperform Contour Fourier in classifica-
tion. In the case of Boundary Scale Fourier descriptor, the
large scales are preferable. Furthermore, the classification
rates of selected multiscale combinations outperformed
clearly the descriptors at any single scale in classification.
In addition, both of the proposed descriptors are capable
of outperforming Contour Fourier in shape classification
also at single scales.

Fig. 5 presents the average precision-recall curves for the
images in the testing database using different values of
Fourier coefficients selected to be used in the shape descrip-

tion (L). The best retrieval performance is achieved using
Multiscale Fourier at the whole recall scale. The results ob-
tained from the Boundary Scale Fourier descriptor outper-
form Contour Fourier with low recall values. It is important
to note that in real defect image retrieval only the most sim-
ilar images to the query image are usually recalled from the
database. Therefore, it is not necessary to retrieve all the
images in a particular class. For this reason, with a data-
base of about 1000 images or more, the recall area up to
30% is the most interesting from the user�s viewpoint. This
comparison is performed using fixed values of L, which
means that the dimensionalities of the multiresolution
approaches are higher than those of Contour Fourier.
However, it is essential to note that in the multiresolution
approaches, the number of Fourier coefficients is not neces-
sary to be as large as in the ordinary Fourier descriptors.
This fact is proved in Fig. 6, in which different descriptors

Fig. 5. Average precision/recall curves of the queries made in paper defect shape database.
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of the same dimensionality are compared. Hence, the mul-
tiresolution descriptors, Multiscale Fourier and Boundary

Scale Fourier of two scales are compared to Contour Fou-

rier descriptor, whose length is similar. The comparison is
made with two feature vector lengths. The results presented
in Fig. 6 show that Boundary Scale Fourier is better than
Contour Fourier of the same length with low recall values.
In the case of Multiscale Fourier, the result outperforms
the Contour Fourier at the whole recall scale. This com-
parison shows that increased retrieval accuracy can be
achieved using multiresolution property of Fourier descrip-
tors without increasing dimensionality.

3.4. Computational efficiency and implementation

The computational cost of the image retrieval methods
can be divided into the cost of retrieval process and the cost
of feature extraction. When the retrieval process is in all the
methods identical (i.e. the same distance metrics is used),
the retrieval time is completely dependent on the dimen-
sionality of the feature vectors if the feature values are cal-
culated before the actual retrieval.

In the multiresolution approaches, the dimensionality is
dependent on the number of the scales, r. Hence, the
dimensionality of the feature vector is r*L, However, using
small number of scales the cost is still reasonable, which
makes the Multiscale Fourier and Boundary Scale Fourier

suitable for indexing of large image databases. Further-
more, as discussed in the previous section, the dimensional-
ity of the multiscale approaches does not need to be higher
than in the case of the ordinary Fourier descriptors to ob-

tain better retrieval accuracy. Therefore, the use of multi-
resolution approaches does not necessarily increase the
computational cost of retrieval.

Another part of the discussion about the computational
cost is related to the complexity of feature extraction. The
computational time required by the wavelet transform is
relatively low. Being a standard signal processing opera-
tion, the computationally efficient implementation of wave-
let transform is available in the most common computing
tools (Misiti et al., 2001). On the other hand, boundary
smoothing that uses conventional filtering tools is also a
fast and straightforward operation that is easy to imple-
ment.

4. Discussion

An essential matter of the usability of the proposed mul-
tiresolution shape descriptors is their capability of being
used in on-line retrieval systems. As mentioned in the intro-
duction, six principles (Kim and Kim, 2000) have been set
to measure the shape descriptors. The properties of the
descriptors presented in this paper are discussed in the
terms of these principles.

Several different studies, (among others Zhang and Lu,
2003a,b; Mehtre et al., 1997; Kauppinen et al., 1995) have
shown that Fourier descriptor has a very good shape retrie-
val and classification accuracy also in the case of rotated,
translated and scaled shapes. The retrieval results obtained
in this study and in (Kunttu et al., 2004) show that the mul-
tiresolution property still increases the accuracy of Fourier
descriptor. The proposed descriptors provide good retrie-

Fig. 6. Comparison of average precision/recall of the descriptors of similar lengths.
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val accuracy when only a small number of scales is used.
Therefore, they are relatively compact features. As the or-
dinary Fourier descriptors also the multiresolution Fourier
descriptors can be regarded as general tools, because they
are capable of classifying several types of complex shapes.
In addition to defect shapes, also a common shape data-
base has been used in testing of the multiresolution ap-
proach in (Kunttu et al., 2003).

As discussed in Section 3.4, the computational complex-
ity of the methods is reasonable. The computational cost of
feature extraction with the multiresolution approaches is
somewhat heavier than in the case of ordinary Fourier
descriptors. This is particularly a drawback of Boundary

Scale Fourier descriptor. However, the dimensionality of
the descriptors is more essential than the feature extraction
time, because in retrieval applications the feature extrac-
tion is usually an off-line operation. As discussed in Section
3.3, the dimensionality of the proposed descriptors is not a
problem. A significant benefit of the proposed multiresolu-
tion descriptors is their straightforward matching. Like the
ordinary Fourier descriptors, also the methods presented in
this paper can be matched using Euclidean distance. Com-
pared to the complex matching of other multiresolution
shape descriptors, like CSS and wavelet descriptors, the
use of Euclidean distance is computationally very light
operation, especially when the dimensionality is low.

The robustness of a shape descriptor means that the
descriptor is able to find also noise-affected, defective and
distorted shapes (Zhang and Lu, 2004). In general, when
Fourier descriptor is formed using low frequency coeffi-
cients, the noise occurring in the high frequencies can be
effectively removed. This makes Fourier descriptors in-
sensitive to noise. The proposed multiresolution Fourier
descriptors consider the shapes in multiple scales, which
make them more insensitive to fine details in the shape
boundary than the single-scale Fourier descriptors. In
addition, good accuracy in retrieval of quite noisy and in
some cases distorted paper defect shapes can perhaps be
regarded as an adequate proof of robustness. The hierar-
chical coarse to fine representation is related to shape
matching efficiency (Zhang and Lu, 2004). In the matching
process, clearly dissimilar shapes can be eliminated at
coarse level, whereas detailed matching is performed at
finer levels. This kind of representation can be achieved
by selection of the number of the Fourier coefficients and
scales. Coarse representation can be obtained using only
a few low frequency coefficients and scales. When their
number is increased, the representation is finer and the
shape is characterized in more details in the descriptor.

5. Conclusions

In this paper, two types of approaches for Fourier-based
multiresolution shape descriptors were presented. The
methods combine the commonly used and effective Fourier
shape description with multiple resolutions, which im-
proves the shape classification and retrieval performance.

The multiresolution approaches use wavelet transform
and boundary smoothing to produce the multiresolution
property to the Fourier descriptor. The proposed descrip-
tors, Multiscale Fourier and Boundary Scale Fourier pro-
duced better retrieval accuracy in experiments than the
most powerful single-scale Fourier descriptor, Contour
Fourier.

In the experiments, a database of complex shapes was
used. The shapes in the database represent defects that
occur in an industrial process. Using this real-world shape
retrieval problem, the proposed methods were validated
based on the common criteria that are required in shape
similarity-based retrieval. The experiments showed that
applying the multiresolution property to Fourier descrip-
tor, additional retrieval accuracy can be achieved without
increasing computational cost of retrieval. Therefore, the
multiresolution Fourier descriptors presented in this paper
are effective and efficient ways of describing complicated
shapes in image retrieval.
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1 Introduction

The recognition and classification of objects based on their
visual similarity has become a central task in current indus-
trial imaging systems. With increasing amounts of real-
world image data to be processed and stored, the develop-
ment of powerful retrieval tools also has become necessary
in machine vision applications. Along with texture and
color, shape is an essential feature used to describe the
objects in the images. Therefore, effective shape descrip-
tion is essential in retrieval systems.

Due to the increasing number of on-line solutions, com-
putational lightness is nowadays considered equally impor-
tant as classification accuracy. In retrieval, computational
efficiency of a particular descriptor is generally dependent
on two matters, descriptor dimensionality and matching
procedure.

The Fourier descriptor �FD�1 is probably the best-known
boundary-based shape descriptor. It has been proven to out-
perform most other boundary-based methods in terms of
retrieval accuracy and efficiency.2 In addition to good re-
trieval and classification performance, the main advantages
of FDs are that �1� they are compact and computationally
light, �2� they are easy to implement, �3� their matching is
straightforward, �4� they are very easy to normalize to be
scale and rotation invariant, and �5� their sensitivity to
noise is low.

Wavelet transforms3 have been widely used in multi-
scale image analysis and also have a few applications in
shape description. In Ref. 4, the wavelet descriptors �WDs�
are based on zero-crossing points of wavelet approximation
of the shape and hence the similarity measurement is de-
pendent on the shape complexity. In Ref. 5, moment invari-
ants are employed in shape description using wavelets. It is
also possible to combine wavelets with Fourier descriptors,
which yields to rotation and scale invariance. This can be
made based on polar coordinates of a shape6 or by Fourier
transforming the wavelet coefficients obtained from the
complex-valued boundary function.7 On the other hand,
when WDs are formed using several scales, the resulting
feature vector is typically high dimensional due to spatial
information caused by multiple scales.

In this paper, we present an effective approach to
wavelet-based shape representation at single scale. We
show that it is possible to form rotation and translational
invariant WDs, whose matching is as simple and fast as that
of FDs. The proposed approach is applied to a practical
industrial image retrieval and classification problem.

2 Shape Description

The contour-based shape description is based on one-
dimensional boundary function �shape signature�. Let
�xk ,yk�, k=0,1 ,2 , . . . ,N−1 represent the object boundary
coordinates, in which N is the boundary length. Complex
coordinate function z�k� �Ref. 2� expresses the boundary
points in an object centered coordinate system:

z�k� = �xk − xc� + j�yk − yc� �1�

in which �xc ,yc� is the object centroid.

2.1 Fourier Descriptors
Fourier descriptors can be formed for the boundary func-
tion z�k� using the discrete Fourier transform �DFT�:

Fn =
1

N
�
k=0

N−1

z�k�e−j2�nk/N �2�

for n=0,1 ,2 , . . . ,N−1 and Fn are the transform coeffi-
cients of z�k�. The descriptors can be made rotation invari-
ant using the magnitudes of the transform coefficients, �Fn�.
The scale can be normalized by dividing the magnitudes of
the coefficients by �F1�.

The general shape of the object is represented by the
low-frequency coefficients, which are usually selected to be
the descriptor. In the contour Fourier method,2 the feature
vector of length L is formed as:

x = � �F−�L/2−1��

�F1�
, ¯ ,

�F−1�
�F1�

,
�F2�
�F1�

, ¯ ,
�FL/2�
�F1� �T

. �3�

2.2 Wavelet Shape Descriptor Using Fourier
Transform

In the wavelet-based approach, the boundary function z�k�
is transformed using some wavelet �.3 The complex wave-
let transform8 is based on the continuous wavelet transform
�CWT�. The CWT of the boundary z�k� is defined as:0091-3286/2005/$22.00 © 2005 SPIE
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Ca�b� =
1

��a�
�

R

z�k��	 k − b

a

dk . �4�

In the case of CWT, a set of coefficients Ca�b� of scale a
are obtained. The coefficients are defined for all positions
b=0,1 ,2 , . . . ,N−1.

The problem with the CWT coefficients is that they are
dependent on the starting point of the object boundary.
Hence, the obtained descriptor is not rotation invariant.
Also the dimensionality of the feature vector depends on
the boundary length. Therefore, the coefficient vectors of
different shapes cannot be directly matched. The proposed
solution for this problem is to apply the Fourier transform
to the whole set of wavelet coefficients. This way the nor-
malization and matching are straightforward operations.
The proposed descriptor is formed by applying the DFT to
the coefficients Ca�b�:

Fn
a =

1

N
�
b=0

N−1

Ca�b�e−j2�nb/N. �5�

In this paper, we use the wavelet shape descriptor at a
single scale to keep the descriptor dimensionality as low as
in the case of Fourier descriptors. The feature vector of this

new descriptor is equal to that of the contour Fourier de-
scriptor presented in Eq. �3�.

3 Experiments with Industrial Defect Shapes

The validation presented in this section is twofold. Simple
classification experiments are first carried out to show the
influence of scale selection on the shape description. The
second part of the validation, the retrieval accuracy of the
proposed methods, is compared to that of an ordinary FD
�contour Fourier�. In all the experiments, Euclidean dis-
tance and the “leave one out” validation principle are used.

3.1 Testing Database
For testing purposes, we use defect images that are col-
lected from an industrial process using a paper inspection
system.9 A reason for collecting defect image databases in
process industry is a practical need for controlling the qual-
ity of production.9 When retrieving images from a database,
the defect shape is one essential property describing the
defect class. Therefore, effective methods for the shape rep-
resentation are necessary. The test set consisted of 1204
paper defect shapes, which represented 14 defect classes
with each class consisting of 27–103 images �Fig. 1�.

3.2 Classification and Retrieval
The feature extraction in the testing database was carried
out by calculating the descriptors for the images in the da-
tabase. The dimensionality �L� was 8 with all the descrip-
tors �Eq. �3��. In the case of the wavelet-based approach,
the selected wavelets � were first and second order com-
plex Gaussian wavelets that have been implemented in the
Matlab wavelet toolbox.8 To compare different scales, we
made preliminary k-nearest neighbor �k-NN� classification
experiments. Figure 2�a� presents the average classification
rates of the proposed wavelet descriptors at different scales
using a 5-NN classifier. In this figure, the classification rate

Fig. 1 Example contours of each 14-paper defect class in the test-
ing database.

Fig. 2 �a� The average 5-NN classification rates of the proposed methods using different scales of the
first and second order complex Gaussian wavelets. �b� Average precision/recall curves of the queries
using proposed descriptors that employ the first and second order complex Gaussian wavelets the
scales 16 and 2, respectively.
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of the contour Fourier descriptor �41.87%� is also pre-
sented. The scales that produce the highest classification
rates were compared to contour Fourier in the retrieval ex-
periment by calculating average precision versus recall
curves for the queries �Fig. 2�b��.

4 Discussion

In this paper, we showed that it is possible to overcome the
difficulties with shape description using wavelet coeffi-
cients �rotational variance and complicated matching� by
Fourier transforming the coefficients. The results of the
classification and retrieval experiments reveal that the pro-
posed wavelet-based shape description approach clearly
outperforms ordinary FDs in defect shape description. It is
also essential to note that the proposed descriptors have the
same dimensionality and matching procedure as FDs. The
computational cost of the feature extraction is somewhat
higher than that of FDs due to the wavelet transform. How-
ever, the dimensionality of the descriptors is more essential
than the feature extraction time, because in retrieval appli-
cations the feature extraction is usually an off-line opera-
tion. If the computational efficiency of feature extraction is
critical, the cost of wavelet transform can be decreased us-
ing the algorithm presented in Ref. 10.
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Abstract. The shapes occurring in the images are essential features in image 
classification and retrieval. Due to their compactness and classification accu-
racy, Fourier-based shape descriptors are popular boundary-based methods for 
shape description. However, in the case of short boundary functions, the fre-
quency resolution of the Fourier spectrum is low, which yields to inadequate 
shape description. Therefore, we have applied zero-padding method for the 
short boundary functions to improve their Fourier-based shape description. In 
this paper, we show that using this method the Fourier-based shape classifica-
tion can be significantly improved.  

1   Introduction 

The description of the object shape is an important task in image analysis and pattern 
recognition. The shapes occurring in the images have also a remarkable significance 
in image classification and retrieval. The basic problem in shape classification is to 
define similarity between two shapes. Therefore, different visual features (descriptors) 
have been developed to characterize the shape content of the images. Common shape 
description techniques have been reviewed in a recent study of Zhang and Lu [17]. 
Another review of the state of the art in shape description techniques is provided by 
Loncaric [9]. 

The shape description techniques can be divided into two types, boundary based 
and region based techniques [1]. The region based methods consider the whole area of 
the object whereas the boundary based shape descriptors use only the object boundary 
in the shape description. The most popularly used region-based methods are different 
moments [5],[15]. The best-known boundary based shape descriptors include chain 
codes [3] and Fourier descriptors [13]. Also autoregressive (AR) [2] models have 
been used in shape description. Simple shape features such as circularity [1], eccen-
tricity, convexity, principle axis ratio, circular variance and elliptic variance [6] in-
clude boundary-based descriptors. Recently, growing research interest has been fo-
cused on Curvature Scale Space (CSS) shape representation [11] that has been se-
lected to be used as the boundary-based shape descriptor of MPEG-7 standard. 
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However, despite the fact that Fourier descriptor is over 30 years old method 
[4],[13], it is still found to be valid shape description tool. In fact, Fourier descriptor 
has proved to outperform most other boundary-based methods in terms of  
classification accuracy and efficiency. This has been verified in several comparisons. 
Kauppinen et al. [7] made a comparison between autoregressive models and Fourier 
descriptors in shape classification. In most cases, Fourier descriptors proved to be 
better in the classification of different shapes. In the comparison made by Mehtre et 
al. [10], the accuracy of chain codes, Fourier descriptors, and different moments was 
compared in the shape retrieval. In this case, best results were obtained using mo-
ments and Fourier descriptors. In a recent study of Zhang and Lu [16], Fourier de-
scriptors and Zernike moments outperformed CSS representation in terms of retrieval 
accuracy and efficiency. Similar results were obtained also in [8], in which Fourier 
descriptors outperformed CSS in defect shape retrieval. 

In addition to good classification and retrieval performance, there also other rea-
sons which make Fourier descriptors probably the most popular of the boundary-
based shape representations. The main advantages of the Fourier-based shape descrip-
tors are that they are compact and computationally light methods with low dimen-
sionality. Furthermore, they are easy to normalize and their matching is a very simple 
process. Also their sensitivity to noise is low when only low frequency Fourier coeffi-
cients are used as descriptors. 

In this paper, the area of Fourier shape descriptors is revisited. We present a 
method for enhancing the performance of Fourier-based shape description by increas-
ing frequency resolution of the Fourier spectrum calculated for the boundary function 
of an object shape. Using this method, a more accurate shape representation in fre-
quency domain can be achieved. This is particularly beneficial in the case of objects 
with relatively short boundary function, in which cases the spectrum estimate has low 
resolution. The experiments presented in this paper prove that using this technique, 
the shape classification accuracy can be easily improved.           

2   Shape Representation Using Fourier Descriptors 

In this paper, the shape description methods are based on the boundary line of the 
object. The boundary can be presented using some shape signature i.e. function de-
rived from the boundary coordinates of the object [1]. Complex coordinate function is 
a well-known shape signature [7]. It presents the boundary coordinates in an object 
centered complex coordinate system. Let (xk, yk), k=0,1,2,…,N-1 represent the bound-
ary coordinates, in which N is the length of the boundary. The complex coordinate 
function z(k) expresses the boundary points in an object centered coordinate system in 
which (xc, yc) represents the centroid of the object:  

 

)()()( ckck yyjxxkz −+−=        (1) 

 
Hence, using this function, the boundary is represented independent of the location of 
the object in the image. In this way the translation invariance can be achieved. 
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2.1   Fourier Description of the Boundary Function 

Fourier descriptors characterize the object shape in a frequency domain. The descrip-
tors can be formed for the complex-valued boundary function using the discrete Fou-
rier transform (DFT). The Fourier transform of a boundary function generates a set of 
complex numbers, which characterize the shape in frequency domain. Fourier trans-
form of z(k) is: 
  

�
−

=

−=
1

0

/2)(
1

)(
N

k

Nnkjekz
N

nF π                    (2)  

for n=0,1,2,…,N-1. The transform coefficients F(n) form the Fourier spectrum of the 
boundary function. The translational invariance of this shape representation is based 
on the object centered shape signature. Furthermore, the coefficients have also to be 
normalized to achieve invariance to rotation and scaling. The descriptors can be made 
rotation invariant by ignoring the phase information and using only the magnitudes of 
the transform coefficients |F(n)|. In the case of complex-valued boundary function, the 
scale can be normalized by dividing the magnitudes of the transform coefficients by 
|F(1)| [7]. 

2.2   Zero-Padding Method 

Even if Fourier descriptor is a powerful tool of boundary-based shape description, its 
performance is somewhat dependent on the frequency resolution of the Fourier spec-
trum. When the boundary function z(k) is Fourier transformed, the resulting Fourier 
spectrum is of the same length as boundary function. Therefore, in the case of short 
boundary functions the frequency resolution is also low. To obtain better resolution, 
the number of the datapoints in the boundary function should be increased. In prac-
tice, this is not always feasible, because the boundary lines of the objects are usually 
defined pixel-by-pixel, and the number of the boundary points depends on the image 
resolution. However, there is an alternative approach for this purpose. Zero-padding 
[12] is a commonly used method in signal processing. It can be used to increase the 
frequency resolution by adding zeros to the function to be Fourier transformed. 
Hence, a new function is defined as: 
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in which Nzp is the length of a desired frequency spectrum. By using additional zeros 
in the input signal of DFT, new spectrum values are being interpolated among the 
original values in the spectrum. This way, the density of the frequency samples is 
increased in the spectrum. In practice, the desired spectrum length is selected such 
that Nzp=2p in which p is a positive integer. This is beneficial because DFT is usually  
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implemented using FFT algorithm, in which input functions of length 2p are preferred 
to decrease computing time. 

2.3   Descriptors 

The Fourier spectrum represents the frequency content of the boundary function. 
General shape of the object is represented by the low frequency coefficients of F(n), 
whereas high frequency coefficients represent the fine details in the object shape. A 
common approach to shape representation is the use of a subset of low-frequency 
coefficients as a shape descriptor. Consequently the shape can be effectively repre-
sented using a relatively short feature vector. In our experiments, the feature vector is 
formed using Contour Fourier method [7], which applies the complex coordinate 
function. In the case of complex valued boundary functions, the coefficients are taken 
both positive and negative frequency axis. The feature vector is formed as: 
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where L is a constant value that defines the feature vector length (dimensionality). 

3   Experiments 

In this paper, we make experiments to demonstrate the effect of the zero-padding on 
the shape classification performance. In this experimental part we use a database of 
industrial defect shapes as a test set. 

3.1   Testing Database 

For testing purposes, we used defect images that were collected from a real industrial 
process using a paper inspection system [14]. A reason for collecting defect image 
databases in process industry is a practical need for controlling the quality of produc-
tion [14]. When retrieving images from a database, the defect shape is one essential 
property describing the defect class. Therefore, effective methods for the shape repre-
sentation are necessary. The defects occurring in paper can be for example holes, 
wrinkles or different kinds of thin or dirt spots. The test set consisted of 1204 paper 
defects which represented 14 defect classes with each class consisting of 27-103 im-
ages. Three example contours of each defect class are presented in figure 1. Within 
each class, there are defects of different size and orientation. Furthermore, in some 
classes the boundaries are very varying and sometimes distorted (classes 2, 4 and 10, 
for example). 
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Fig. 1. Three example contours of each 14 paper defect class in the testing database 

3.2   Classification 

The feature vectors for the shapes in the database were calculated for ordinary Con-
tour Fourier descriptors as well as for the same descriptors using zero-padding. The 
lengths of the boundary lines of the defect shapes were very varying, which can be 
seen in figure 2. In this figure, the lengths of each 1204 defect boundaries are pre-
sented. In our experiments, the boundaries of lower lengths than Nzp were inserted 
with zeros. Two values of Nzp were used, namely 512 and 1024. However, prelimi-
nary experiments have showed that in some cases zero-padding also decreases the 
Fourier-based shape distinction. This can be avoided by emphasizing the zero-
padding only to the shortest boundaries in the test set. Therefore, we made an addi-
tional experiment, in which only very short boundaries whose length was less than 
100 points, were used. These boundaries were zero-padded quite strongly, to 1024 
points. The length of the Fourier descriptor (L) was selected to be 16 in all the ex-
periments. It is important to note that the use of zero-padding has no influence on the 
descriptor dimensionality. 

In classification, we used 5-nearest neighbor classifier and leave-one-out valida-
tion. The distance metrics was selected to be Euclidean distance, which is a standard 
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Fig. 2. The lengths of the boundary functions of 1204 paper defects in the testing database. The 
numbers above the plot correspond to the classes 

approach with Fourier descriptors. We carried out the classification using four se-
lected methods, which were ordinary Contour Fourier, Contour Fourier with zero-
padding to 512 of 1024 points, and Contour Fourier with zero padding of very short 
boundaries to 1024 points. Average classification rates of the descriptors are pre-
sented for each 14 defect class in figure 3.  

3.3   Results 

The results presented in figure 3 show that the zero-padding method is able to im-
prove the shape classification rates in most of the defect classes. Particularly, in the 
classes containing short boundaries the overall result was improved. Therefore, the 
application of the zero-padding was capable of increasing the average classification 
performance from 41.2 % to 52.2 %. The best average result was achieved using the 
adaptive zero-padding of very short boundaries to 1024 datapoints. However, all the 
zero-padding approaches were able to improve the classification results, especially in 
the classes with short boundaries. For example, in class 11 the classification rate was 
improved from zero to over 30 %. 

According to the obtained results, it seems that the most recommendable approach 
is to use the zero-padding method only to the shortest boundaries, though the other 
presented approaches produce clear improvement in classification performance  
as well.     
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Fig. 3. The average results of 5-NN classification in each 14 defect class 

4   Discussion 

In this paper, a method for improving Fourier-based shape description was presented. 
The proposed method is a simple and fast tool for improving the shape distinction 
ability of Fourier descriptors. It is particularly beneficial in the case of short boundary 
functions, which do not produce adequate frequency resolution to their Fourier spec-
trum. The zero-padding method as itself is not a novel method, because it has been 
applied to different kinds of signal processing problems before. However, the new 
way in which it has been employed to improve shape description has a certain practi-
cal value in different shape classification problems. 

For experimental purposes, we used industrial defect images, which are quite com-
plicated shape classification task. This is due to the irregularities and variations in the 
defect shapes. Some of the classes are also somewhat overlapping. It is essential to 
note that in real defect image classification the shape is not the only classifying fea-
ture, because also texture and gray level distribution play a role in defect image de-
scription.  

The experimental results obtained from this real-world shape classification prob-
lem show that using zero-padding the classification performance can be significantly 
improved. This, on the other hand, does not increase the computational cost, because 
the dimensionality of the feature vectors remains the same. Zero-padding method  
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does not require additional computational capacity in feature extraction, either. This is 
due to the advanced FFT algorithms [12]. 

In conclusion, the zero-padding method has proved to an effective tool for enhanc-
ing Fourier-based shape description. It is especially effective with short boundary 
functions of complicated shapes.  
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Abstract. The use of the second order statistical measures has became popular 

in the image database indexing and retrieval. Unlike the common approach, im-

age histogram, second order statistics like image correlogram and autocorrelo-

gram consider also the spatial organization of the image colors or gray levels. 

Recently, correlograms and autocorrelograms have been widely used in the im-

age database indexing. In this paper we present binary co-occurrence matrix, a 

new statistical measure for image indexing. This measure represents the foot-

print distribution of the co-occurrence matrix. Compared to image correlogram, 

this approach provides better retrieval accuracy at lower computational cost. 

We make retrieval experiments using two industrial image databases. These da-

tabases contain images collected from paper and metal manufacturing proc-

esses. In the experiments, we compare the retrieval performance of our ap-

proach to that of correlograms and autocorrelograms. 

1 Introduction

In addition to texture and shape, the distribution of image colors (or gray levels) is an 

essential feature in content-based image retrieval. Image histogram is a first order 

statistical measure that has been traditionally used in characterization global color 

distribution of the image. The benefit of the image histogram is its low computational

cost. However, histogram describes only the global distribution of the colors ignoring 

their spatial organization. This drawback has a remarkable effect on the image re-

trieval accuracy. 

A simple improvement to the color-based image retrieval is the use of second order 

statistics. The second order statistical measures utilize the spatial organization be-

tween the pixel pairs occurring in the image. Correlation-based methods have been 

used in texture analysis since 1950’s. Kaizer [6] was the first who used autocorrela-

tion function to measure texture coarseness. Co-occurrence matrix introduced by 

Haralick [4] is a correlation-based tool for texture analysis. Correlation function has 

J. Bigun and T. Gustavsson (Eds.): SCIA 2003, LNCS 2749, pp. 1090−1097, 2003.
© Springer-Verlag Berlin Heidelberg 2003



been used also in the field of image retrieval. Huang et al. [5] introduced color corre-

logram, a measure that describes the spatial correlation of image colors as a function 

of their spatial distance d. In fact, the principle of correlogram is the equal to co-

occurrence matrix. The difference between these measures is that whereas co-

occurrence matrix uses a single distance d, correlogram is calculated for a set of dif-

ferent distances. Because of its computational lightness, Huang et al. preferred auto-

correlogram to correlogram in image indexing. Autocorrelogram is a subset of corre-

logram. It defines the probability of finding identical colors at distance d. In [5] re-

trieval experiments showed that autocorrelogram gives significantly better retrieval 

results than image histogram. For computational reasons, also Ojala et al. [9] chose 

autocorrelogram instead of correlogram in image indexing. However, the information 

carried by correlogram covers the image color content significantly better than auto-

correlogram. In [8], we showed retrieval results achieved using correlogram were 

remarkably better than in the case of autocorrelogram.  

In this paper we apply binary co-occurrence matrix in image database indexing. 

The method was introduced in [7] as a tool for image retrieval without segmentation. 

The binary co-occurrence matrix is a simple and effective second order statistic for 

image database indexing. We compare the binary matrix to correlogram-based image 

retrieval tools. In section two, we present the principles of correlation-based statistical 

tools and the binary co-occurrence matrix. The retrieval ability of these methods is 

measured in section three.  

The number of digital imaging and image databases in industry has strongly in-

creased during recent years. For example, in process industry, digital imaging solu-

tions are used to control the process and quality. In many cases, these solutions store 

the image data in image databases. These industrial image databases containing real 

image data are a challenging retrieval task. In this paper, we use two industrial image 

databases for testing purposes. The first of these databases is collected from the paper 

manufacturing process, and it contains 1308 paper defect images. The second testing 

database is from metal industry. In this database there are 1955 images of defects 

occurring in the metal surface.  

2 Image Database Indexing Using Second Order Statistics 

Statistical methods for the analysis of image gray levels or colors are commonly used 

tools for characterization of the image content. First order statistical methods, like 

histogram, consider image pixels separately ignoring their spatial relationships. Sec-

ond- and higher order measures estimate the relationships between two or more pixel 

values occurring at specific locations relative to each other. In this section, we con-

sider second order statistical measures for image retrieval. In addition to the com-

monly used methods, we present our approach, binary co-occurrence matrix. 
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2.1 Statistical Tools for Image Retrieval  

Second order statistical measures have traditionally been used in texture analysis. In 

addition, correlograms and autocorrelograms have also been used in image retrieval. 

In this part, we present commonly used second order statistical measures. 

Image correlogram represents the correlations between the image pixel values. The 

definition of image correlogram is the following [5] [9]. Let I be an XxY image which 

comprises of pixels p(x,y). Each pixel has a certain color- or gray level (henceforth 

level). Let [G] be a set of G levels g1 ... gG that can occur in the image. For a pixel p, 

let I(p) denote its level g, and let Ig correspond to a pixel p, for which I(p)=g. Let [D] 

denote a set of fixed distances d1 ... dD. Hence, the number of the distances in this set 

is D. The correlogram of the image I is defined for level pair (gi, gj) at a distance d: 
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which gives the probability that given any pixel p1 of level gi, a pixel p2 at a distance 

d from the given pixel p1 is of level gi. In other words, the correlogram is a matrix 

that gives the probability of certain level to occur at the distance d from each other. 

Correlogram is defined for several values of d defined in the set [D]. The size of the 

correlogram-based feature vector is G2D. 

Autocorrelogram [5], [9] is the subset of the correlogram. It captures only the spa-

tial correlation of the identical levels. The autocorrelogram can be defined as: 
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and it gives the probability that a pixel p2, d away from the given pixel p1, is of level 

g. In case of the autocorrelogram, the size of the feature vector is GD. 

Co-occurrence matrix introduced by Haralick et al. [4] is the basis of the statistical 

texture analysis. It is a matrix that express the probability of two pixels to occur at 

certain distance from each other. In fact, co-occurrence matrix is the same as image 

correlogram defined for a single distance d.  

2.2 Binary Co-Occurrence Matrix 

A new second order statistical feature to be used in the image retrieval is binary co-

occurrence matrix [7]. It is formed by means of the co-occurrence matrix (or a corre-

logram calculated for a single distance d). In the binary form of the matrix, all the 

occurrences between the image pixel levels are considered equally. This is done by 

quantizing the matrix into two levels, “zero” and “non-zero” values. In this way, a 

binary matrix containing only zeros and ones is formed. The size of the binary co-

occurrence matrix is hence G2. 
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Table 1. The computational cost based on the length of the feature vectors 

FEATURE FEATURE VECTOR LENGTH 

BINARY CO-OCCURENCE MATRIX 

32 gray levels 

16 gray levels 

G2 

1024 

256 

CORRELOGRAM 

32 gray levels 

16 gray levels 

G2D 

4096 

1024 

AUTOCORRELOGRAM 

32 gray levels 

16 gray levels 

GD 

128 

64 

Binary co-occurrence matrix has two benefits that make it effective in the image 

retrieval. First, it is computationally light method compared to the image correlogram

(that in our experiments in [8] proved to be the more powerful statistic in image re-

trieval than image autocorrelogram and histogram). However, the retrieval results of 

binary co-occurrence matrix are at the same level or better than correlogram. The 

second reason for the use of binary co-occurrence matrix is the fact that it considers 

all the correlations occurring in the image equally, which means that in many cases 

image segmentation can be avoided [7]. 

2.3 Statistical Measures in Image Database Indexing 

Computational cost is an essential property of the indexing methods used in image 

retrieval. The computational cost of each method is proportional to the length of the 

feature vector, and therefore short vectors are preferred. The lengths of the feature 

vectors used in this paper are presented in table 1. In this table, the number of dis-

tances (D) is selected to be 4, as in [5] and [9].  

Computational cost has been a reason in [5] and [9] for the use of the image auto-

correlograms instead of correlograms in the image database indexing. However, in 

the description of image content, tools based on the whole probability distribution of 

the image (like correlogram and co-occurrence matrix) are clearly better. In [8] we 

solved the problem of the computational cost by dividing the database images in the 

areas of similar color (or gray level). This method is near the principle of color sets 

presented in [11]. In our approach, this division was made by re-quantizing the color 

space of the images. This way the number of the image levels G was decreased. Also 

the quantization of the image generalizes the image content and yield to better re-

trieval results [8]. Therefore, this quantization is used also in the experiments pre-

sented in this paper.  

In image retrieval the similarity between the query image Q and the database im-

age I is measured by distance metrics. In [5] and [9], the distance measure between 

the autocorrelograms is L1 norm [2]: 
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Fig. 1. An example of each paper defect image class in testing database I 

Fig. 2. An example of each metal defect image class in testing database II 
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We use the same distance measure also in case of the correlograms. In case of binary 

co-occurrence matrices, binary distances are required. When comparing two binary  

matrices, B1 and B2, let n1,1 denote the number of the elements, whose value is 1 in 

both matrices. In a similar way, n1,0, n0,1 and n0,0 denote numbers of matrix elements, 

which have values 1 and 0, 0 and 1, 0 and 0, respectively. Jaccard coefficient [3] is a 

popular similarity measure for binary data. This coefficient is defined as: 
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nnn
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3 Experiments 

In this section we test our approach to the correlogram-based image retrieval using 

real industrial image databases. For testing purposes we had two sets of defect im-

ages. In testing database I, the defects were collected from the paper web using a 

paper inspection system [10]. The objects in the images were typical paper surface 

defects. The test set consisted of 1308 paper defects, which represented 14 defect 

classes so that each class consisted of 32-100 defect images. An example image of 

each paper defect image class is presented in figure 1. The second test set, testing 

database II, there were 1955 metal surface defect images. Also in this case, there were 

14 defect classes (figure 2). Each class contained 100-150 metal defect images. In 

both databases, the images were intensity images containing 256 gray levels. The 

image size had also strong variations (dimension of the image varied from 100 to 

2000 pixels).  
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Fig. 3. Average retrieval performance of the features in case of paper defect images in testing 

database I

Fig. 4. Average retrieval performance of the features in case of metal defect images in 

testing database II 

We calculated the correlograms, autocorrelograms as well as the binary co-

occurrence matrices for the database images quantized to 32 and 16 gray levels. In the 

calculation of the autocorrelogram and the correlogram we used the set of distances 

[D]={1,3,5,7}, which is the same as in [5] and [9]. Both databases were indexed us-

ing these features. The purpose of the retrieval experiments was to test the retrieval 

ability of each feature. The retrieval experiments were made using leaving one out

method [3]. In this method, each image in turn is left out from the test set and used as 

a query image, whereas the other images in the test set form a testing database. In the 

queries, the nearest images to the query image are retrieved based on their feature 

vectors. The performance of the retrieval was measured by calculating a precision 
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versus recall curve [1] for each query. If |A| is the number of all retrieved images, |R| 

is the number of query class images in the whole testing database and |Ra| is the 

number of retrieved query class images, precision and recall can be defined in the 

following way [1]: 

A

Ra
Precision                 (5) 

R

Ra
Recall               (6) 

The retrieval performance of each feature can be presented by calculating the average 

precision-recall curve for each query.

In the retrieval experiments, the similarity measure for the binary co-occurrence 

matrices was the Jaccard coefficient. For the correlograms and the autocorrelograms, 

L1 norm was used. Figures 3 and 4 present the average precision-recall curves for the 

images in both testing databases.

4 Discussion 

In this paper we presented a new approach to the statistical image retrieval. Our 

method, binary co-occurrence matrix is a simple tool for the characterization of the 

gray level distributions of the database images. The experimental results presented in 

figures 3 and 4 show that the binary co-occurrence matrix is an effective method in 

image retrieval. Compared to the correlogram and autocorrelogram, our method gives 

clearly better results in retrieval accuracy. Binary co-occurrence matrix is also com-

putationally lighter method than image correlogram. 

     For testing purposes, we had two industrial image databases. The testing databases 

contained 1308 paper defect images and 1955 images of metal defects. These kinds of 

industrial databases provide a good opportunity to test the retrieval methods with real 

image data. On the other hand, retrieval of the defect images is a quite demanding 

task. This is because some defect classes are very similar to each other and also over-

lapping. In these classes, the retrieval results could be improved by using some shape 

descriptors together with the statistical tools.   

     In this work, the testing databases contained only gray level images. Our method, 

binary co-occurrence matrix could be applied also to the classification and retrieval of 

color images. In that case the color quantisation can be made using tools presented in 

[11]. This could be a subject of further studies in the field of statistical image retrieval 

methods. 
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Abstract. The shapes of the objects in the images are important in the content-
based image retrieval systems. In the contour-based shape description, Fourier 
descriptors have been proved to be effective and efficient methods. However, in 
addition to contour shape, Fourier description can be used to characterize also 
the color of the object. In this paper, we introduce new Color Fourier descrip-
tors. In these descriptors, the boundary information is combined with the color 
of the object. The results obtained from the retrieval experiments show that by 
combining the color information with the boundary shape of the object, the re-
trieval accuracy can be clearly improved. This can be done without increasing 
the dimensionality of the descriptor. 

1   Introduction 

Nowadays, the problem of image retrieval plays a remarkable role in the fields of 
image analysis and pattern recognition. With increasing amount of real-world image 
data to be processed and stored, the development of powerful retrieval tools has be-
come an essential subject of research work. The description of the objects occurring 
in the images is based on visual features extracted from them. In addition to color and 
texture, shape is one of the most important features used to characterize the objects 
occurring in the images as accurately as possible. These features are widely used in 
content-based image retrieval systems [1],[8].   

On the other hand, classification accuracy (effectiveness) of a certain descriptor is not 
an adequate measure for its usefulness in the retrieval. Due to the increasing number of 
online retrieval solutions, computational efficiency is nowadays considered equally 
important as effectiveness [10]. In retrieval applications, the matter of computational 
complexity is twofold, namely the cost of image database indexing and retrieval. In the 
indexing, the features (descriptors) are extracted from the database images. Although 
this part is not always online operation, the feature extraction should not be a computa-
tionally heavy. More importantly, retrieval is always performed in real time. Therefore, 
the descriptors used in retrieval are required to be compact. The compactness of a de-



416 I. Kunttu et al. 

scriptor depends on its dimensionality, because the retrieval time is proportional to the 
descriptor dimensions. Consequently, low-dimensional descriptors are preferred. 

In this paper, we concentrate on object description that is based on Fourier trans-
form. Fourier-based methods are widely used in shape description [6]. Fourier de-
scriptors have been found to be accurate in shape classification in several compari-
sons, [2],[3],[4],[9]. In addition to good retrieval and classification accuracy, there are 
also other reasons which make Fourier descriptors popular among the contour-based 
shape representations. The main advantages of the Fourier-based shape representa-
tions are that they are compact and computationally light methods. Furthermore, they 
are easy to normalize and their matching is very simple. Also the sensitivity to noise 
is low, when only low frequency Fourier coefficients are used as descriptors. 

In addition to object shape, its color is often equally important feature. In retrieval 
systems, colors are usually characterized using relatively high-dimensional descrip-
tors, like histograms [1] or other statistical measures. On the other hand, the number 
of descriptors that efficiently combine color and shape is very small. In the work of 
Mehtre et al., [5] color and shape of the object were combined. This approach, how-
ever, was based on quite complicated clustering method. Furthermore, the approach 
used moment-based shape features that are computationally more expensive than for 
example Fourier descriptors.   

In this paper, we present a new approach to the use of Fourier descriptors in the 
characterization of image content. Hence, we show that the Fourier descriptor is ca-
pable of describing also other features of the object than its contour. In our approach, 
we add the object color to the Fourier-based contour description. In this way, the 
obtained descriptor is able to more accurate object description in the retrieval process. 
However, the color information does not increase the dimensionality of the obtained 
descriptor. 

The organization of this paper is the following. In section two, the principles of 
Fourier descriptors and our approach, Color Area Fourier, are presented. Section 
three reports the retrieval experiments carried out using real industrial defect images. 
The proposed method is discussed in section four. 

2   Object Description 

In this section, the common methods for shape description using Fourier-based meth-
ods are presented. In addition to that, our approach to combine object color informa-
tion with its contour in Fourier description is presented. 

2.1   Fourier Descriptors 

Shape signatures. Shape signature is a 1D boundary function f(k) that represents the 
boundary of a 2D object. The functions are either real-valued or complex. Complex 
coordinate function [2] is the simplest and best-known boundary presentation. It pre-
sents the coordinates of the boundary (xk, yk) in an object centered complex coordinate 
system: 
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)()()( ckck yyjxxkz −+−=               (1) 

for k=0,1,2,…,N-1, in which N is the length of the boundary and (xc, yc) is the centroid 
of the object. Area function [11] is an example of real-valued shape signatures and it 
is defined as the area of the triangle formed by two boundary points and centroid in 
the object centered coordinate system: 
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Hence, both signatures represent the boundary independent of the location of the 
object in the image. 

Signatures for color and shape. The object signatures of the proposed descriptors 
use the same basic approach as the complex-valued shape signatures of equation (1). 
Hence, by combining two real-valued 1D signals it is possible to form a 1D complex 
signal. In this paper, we combine the object color to its boundary information. This is 
made by combining the color of the object region defined by the shape signature 
with the signature itself. The color value Ck can be e.g. the mean of the selected color 
component at each object region k. In the case of area function, the region 
corresponds to the image pixels covered by the area of the triangle defined by 
equation (2). The signature for color and shape of an object is expressed as complex 
numbers:  

kka jCakc +=)(                                                (3) 

Hence the signature of equation (3) combines the real-valued boundary information 
with object color distribution.  

Fourier description. The descriptor based on a signature function can be formed in 
several ways. Fourier transform is a commonly used method for this purpose. Fourier 
transformation of a boundary function generates a set of complex numbers which are 
called Fourier descriptors. Fourier descriptors characterize the object shape in a 
frequency domain. The discrete Fourier transform for a boundary function f(k) is: 
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F π                      (4)  

for n=0,1,2,…,N-1. The general shape of the object is represented by the lower fre-
quency descriptors, whereas high frequency descriptors represent the fine details of 
the object shape. The descriptors have to be normalized to achieve invariance to trans-
lation, rotation, and scaling. Translation invariance of is based on the object centered 
shape signatures. The descriptors can be made rotation invariant by ignoring the phase 
information and using only the magnitudes of the transform coefficients |Fn|. The 
scale can be normalized by dividing the magnitudes by |F0| or |F1|, depending on the 
shape representation method [2]. 
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Feature vectors. A common approach to object description is to use only a subset of 
low frequency coefficients that carry the most of the object information. This way the 
shape can be effectively presented using a relatively short feature vector. For 
complex-valued shape signatures, the coefficients are taken from positive and 
negative frequency axis:
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in which L is a constant value that defines the dimensionality of the feature vector. 
When this description is formed for the transform coefficients obtained from complex 
coordinate function of equation (1), it is called Contour Fourier method [2]. In this 
paper, this kind of feature vector is applied also to Color Area Fourier descriptor that 
uses complex-valued signature of equation (3). However, in the case of Color Area 
Fourier descriptor, the normalization is carried out using |F0| instead of |F1|: 
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The difference between the feature vectors can be explained by differences between 
the signatures. In the case of Contour Fourier method of equation (5), the signature 
uses merely boundary information that is represented in location-independent manner. 
Therefore, scale is normalized using the first non-zero coefficient, |F1|. On the other 
hand, Color Area Fourier descriptor uses complex-valued signature of equation (3) in 
which contour shape is represented by centroid distance. Therefore, the mean value of 
the signature function differs from zero. This causes the normalization by |F0|, which 
is the transform coefficient representing the mean value of the signal.   

The real-valued shape representation, Area Fourier [2] uses the area function as 
shape signature. Because this signature is real, only half of the transform coefficients 
are needed to characterize the shape [2]: 

T

L

F

F

F

F

F

F
x =

00

2

0

1 ,,,                                     (7) 

Also with this descriptor type, the normalization is carried out using the mean com-
ponent, |F0|, to remove the effect of the mean of the area function.    

Fig. 1. An example image of each paper defect class in the testing database 
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3   Retrieval Experiments 

In this section, we present the retrieval experiments carried out using a real defect 
image database. We compare the retrieval performance of the proposed Color Area 
Fourier approach to the ordinary Fourier shape description methods, which describe 
only the boundary line of the object. 

3.1   Defect Image Database 

For testing purposes, we used paper defect images that were collected from an in-
dustrial process. The images were taken from the paper manufacturing process 
using a paper inspection system [7] that produces gray level images of the defects. 
The reason for the collection of the defect image databases in the process industry is 
the practical need of controlling the quality and production [7]. In industrial imag-
ing solutions, there is a need to retrieve the defect images from the databases. In 
these images, the defect shape and gray level are the most essential features that 
describe the defect type. Therefore, effective methods for the shape and gray level 
representation are needed in the retrieval and classification of the defect images. 
The defects occurring in the paper can be for example holes, wrinkles or different 
kinds of dirt spots. The test set consisted of 1204 paper defects, which represented 
14 defect classes so that each class consisted of 27-103 images. An example image 
of each paper defect class is presented in figure 2. Within the classes of the defect 
database, there were differences in the gray levels, size, and orientation of the  
defects. 

Fig. 2. The principle of Color Area Fourier descriptor applied to a paper defect image 
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3.2   Retrieval 

In this paper, we compare our Color Area Fourier approach to Area Fourier method 
and Contour Fourier method that have been proved to be effective Fourier-based 
shape descriptors in retrieval of defect shapes [3].  

The Fourier-based shape descriptors (Area Fourier and Contour Fourier) were 
calculated based on the defect contours. The descriptors used triangular color regions 
that were defined from the defect images so that the triangle was drawn between ob-
ject centroid and two consequent boundary points (figure 2). The feature vectors of 
the descriptors were formed using equations (7) and (5), respectively. In the case of 
Color Area Fourier descriptor, the color information was added to the area-based 
shape description. The defects are presented as gray level images, which means that 
only the intensity component was used to represent the color. The color value Ck was 
selected to be the mean gray level of the triangular region. The descriptors were 
formed using feature vector of equation (6). 

In the comparison, low-dimensional descriptors were preferred, and hence we used 
two lengths of the vectors (L), namely 8 and 16. In the retrieval experiments, the dis-
tance measure between the feature vectors was selected to be the Euclidean distance. 
The retrieval experiments were made using leaving one out method. In this method, 
each image in turn is left out from the test set and used as a query image; whereas the 
other images in the test set form a testing database. The performance of the retrieval 
was measured by calculating a precision versus recall curve for each query.  

The average precision/recall curves for the database are presented in figure 3. The 
results show that the Fourier descriptors combined with object color (Color  
Area Fourier) outperform clearly the Area Fourier descriptor. On the  other  hand, the  

Fig. 3. The average precision/recall curves of the retrieval experiments calculated for each 
descriptor type  
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proposed descriptors outperform also Contour Fourier method that is the most accu-
rate shape-based Fourier descriptor in defect image retrieval [3]. It is essential to note 
that this improvement does not increase dimensionality of the feature vectors, when 
Color Area Fourier  and Contour Fourier descriptors are compared. Furthermore, 
when the same distance metrics is applied, the computational cost of retrieval is equal 
with the proposed descriptors and the conventional Fourier shape descriptors. 

4   Discussion 

In this paper, a new approach to Fourier-based object presentation was introduced. 
Our approach, Color Area Fourier descriptor, combines the color and shape informa-
tion of an object into a single feature vector. The obtained vector is as low dimen-
sional and easy to match as any other shape-based Fourier descriptor. However, our 
experiments showed that Color Area Fourier descriptor outperforms the other Fou-
rier-based shape descriptors in terms of retrieval accuracy. 

In the experiments, a database of complex shapes was used. The shapes in the da-
tabase represent defects that occur in an industrial process. Self-evidently, the accu-
racy of the descriptors is the most important criterion also in this retrieval problem. 
On the other hand, the matter of computational efficiency is essential in this case, like 
in the most of the real-world image retrieval tasks. Therefore, compact features are 
required. The experiments showed that combining the color information to a Fourier 
descriptor, additional retrieval accuracy can be achieved without increasing computa-
tional cost of retrieval. Therefore, the Color Area Fourier descriptor presented in this 
paper is an effective and efficient tool for describing complex objects in image re-
trieval and classification. 
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