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ABSTRACT

Personal positioning is a challenging topic in the area of navigation mainly because
of the cost, size and power consumption constraints imposed on the hardware. Satel-
lite based positioning techniques can meet the requirements for many applications,
but cover well only outdoor environment. Problems like weak satellite signals make
the positioning impossible indoors. Urban canyons are also difficult areas for GNSS
based navigation because of large multipath errors and satellite signal outages. Many
applications require seamless positioning in all environments. However, there is no
overall solution for navigation in GNSS denied environment, which is reliable, ac-
curate, cost effective and quickly installed. Recently developed systems for indoor
positioning often require pre-installed infrastructure.

Another approach is to use fully autonomous navigation systems based on self-con-
tained sensors and street or indoor maps. This thesis is concerned with autonomous
personal navigation devices, which do not rely on the reception of external informa-
tion, like satellite or terrestrial signals. The three proposed algorithms can be integ-
rated into personal navigation systems.

The first algorithm computes positioning for a map aided navigation system designed
for land vehicles traveling on road network. The novelty is in application of particle
filtering to vehicle navigation using road network database. The second algorithm
is aimed at map aided vehicle navigation indoors. The novelty is in the method
for correction of position and heading. The third algorithm computes solution for
pedestrian navigation system, which is based on body mounted inertial measurement
unit and models of human gait.
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1. INTRODUCTION

A Personal Navigation Device (PND) is a portable electronic product which com-
bines a positioning capability and navigation functions. PNDs can be designed for
different applications and come in different types and forms. The typical applica-
tions will be car and pedestrian navigation, sport and fitness applications, location
based services (LBS) and assets tracking. The examples of PNDs include vehicle
navigation systems, smartphones, and other navigation enabled mobile devices.

The latest generation of PNDs has sophisticated navigation functions and features a
variety of user interfaces including maps, turn-by-turn guidance and voice instruc-
tions. Most of the currently available PNDs are based on global navigation satellite
system (GNSS), which can provide required position accuracy under open sky when
many GNSS satellites are available. However, GNSS receiver performance may be
lower than expected. For example, in urban areas, GNSS positioning suffers from
degraded satellite availability or multipath error arising from signals reflected by the
buildings. Moreover indoors the GNSS signals can be very weak and not suitable for
navigation computations.

In many applications, it is desirable to have navigation everywhere including indoors.
Therefore, significant efforts have been invested into improvements of navigation
in difficult environments. First and foremost some approaches seek to enhance the
reception of GNSS receiver by a number of means: high-sensitivity GNSS receivers
that use integration across the 50 Hz data bit, anti-jam antennas, assisted GNSS.

Unfortunately, improvements of GNSS receiver performance in difficult environ-
ments are limited. Ultimately there will be times when all enhancements to GNSS
signal reception fail. In these situations, a number of approaches to GNSS denied
navigation have been proposed. These approaches include: use of radio frequency
(RF) signals, either those already present or those generated by new and dedicated
infrastructure such as wireless local area networks (WLAN), ultra-wideband (UWB),
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etc; making measurements with respect to local landmarks or features, which can be
optical, acoustic, or RF; self-contained navigation systems based on inertial or speed
sensors; map matching using street or indoor maps.

1.1 Scope of the Thesis

This thesis is concerned with improvement of positioning capabilities of PND in
GNSS denied environments. The primary objective is to develop a methodology
for autonomous personal navigation, which assures reliable and accurate position-
ing in GNSS denied environment, in particular indoor. In this thesis, the required
navigation performance for indoor navigation is a room level, for street navigation,
it is desired to identify the correct road segment and location of a vehicle on this
segment within 10-20 m. The examples of the applications where such accuracy is
sufficient are discovering the nearest banking cash machine or the whereabouts of a
friend or employee. The navigation system cannot rely on external infrastructure and
can be complementary to GNSS. It may include self-contained sensors and maps or
building floor plans. A self-contained sensor block might consist of inertial sensors
(gyroscopes and accelerometers), barometric altimeter, and speed sensor (odometer,
Doppler radar etc). While GNSS is available the system has all the excellent at-
tributes of the GNSS and autonomous sensors combination. When GNSS is denied
the system devolves into a relative navigation (or an ”instrumented dead reckoning
(DR)”). The thesis is focused on the following two problems:

• How indoor and street maps can be combined with autonomous sensors to
obtain reliable and accurate navigation in GNSS denied environments.

• How low-cost inertial sensors can be used in autonomous pedestrian navigation
system.

The autonomous sensor data can be processed to obtain position, velocity, and at-
titude. A major problem with this approach is accumulation of error: small errors
in velocity (acceleration) and angular rate result in large errors in position. There-
fore, position and heading update as well as calibration of autonomous sensors are
required. Street or indoor maps can possibly be the source of position and head-
ing information to an autonomous navigation system. Thus the navigation solution
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calculated based on measurements from autonomous sensors can be corrected and
improved by imposing additional constraints on possible vehicle trajectories.

A map can be another major component of an autonomous navigation system. The
process of improving navigation through more accurate positioning with the help of a
map is called map matching. In this approach the user trajectory, which is computed
based on sensor data is compared with the elements of the map in order to improve
position and heading estimation. Then the map matching corrections are applied to
the trajectory calculated by the dead reckoning system. The map-aided dead reckon-
ing system can potentially provide accurate vehicle positioning for long periods of
time without using GNSS data.

State of the art autonomous pedestrian navigation systems use foot-mounted iner-
tial measurement unit (IMU) and apply zero velocity update (ZUPT) to reduce error
accumulation. These navigation systems can show good performance. Although
foot-mounted sensors are impractical in many applications and alternative methods
are needed.

1.2 Thesis Contributions

The thesis’s contribution is in improvement of positioning capabilities for autonom-
ous personal navigation systems for ”on-foot” and ”in-vehicle” applications, which
include the following tasks: combination of road network database and car naviga-
tion system; combination of building plans with navigation system; improvement of
pedestrian dead reckoning system performance. The main contributions of the thesis
can be stated as follows:

• A novel method for performing map matching based on information contained
in road network database. The proposed mathematical framework for solving
the map matching problem is based on recursive implementation of Monte-
Carlo based statistical signal processing, also known as particle filtering. The
algorithm is robust and has ability to correct position and heading of the dead
reckoning system.

• Algorithm that combines navigation data with building floor plan for autonom-
ous navigation systems operating indoor. The proposed method prevents un-
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bounded error growth by correcting position and heading errors of dead reck-
oning system.

• A novel approach to autonomous pedestrian navigation, which combines the
data from body-mounted IMU with human gait models. The algorithm has all
the advantages and high performance of the foot-mounted IMU approach, but
it overcomes its major drawback of impractical location.

1.3 Author’s Contribution

The work reported in this thesis has been partially published in publications: Dav-
idson et al. (2008, 2009b,a, 2010a, 2011a, 2010c,b, 2011b); Davidson and Takala
(2013); Oshman and Davidson (1999). In all these publications, the author has played
a significant role in providing novel ideas and implementing them. The author acted
as the first author in 9 publications, in which he provided the ideas, created simulation
programs in Matlab, verified performance of the algorithms and wrote manuscripts.

The following algorithms were proposed and developed by the author: data fusion
from the accelerometers, gyroscope and GPS for car navigation system (Davidson
et al. (2008)), fusion of data from inertial sensors and road map (Davidson et al.
(2009b)), adding stop detection module to the car navigation system based on low-
cost inertial sensors (Davidson et al. (2009a)), map matching algorithm for vehicle
navigation using road network database (Davidson et al. (2010a, 2011b)), map match-
ing algorithm for indoor navigation using building floor plan based on simulated
measurements and maps (Davidson et al. (2010c)), indoor map matching algorithm
with real-word data (Davidson et al. (2011a)), algorithm for pedestrian navigation
combining data from body-mounted IMU and gait models (Davidson and Takala
(2013)).

Nevertheless, the publications would not have been possible without the contributions
of my co-authors Jussi Collin, Jani Hautamäki, Jarmo Takala, John Raquet, Yaakov
Oshman, Manuel Vázquez Lopez and Robert Piché who provided invaluable help
with the design of hardware and real-time software, making measurement setup and
carrying field tests, validating algorithms and methodology, and finalizing the text.
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1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 describes the state of the art technolo-
gies applicable to personal navigation devices. Chapter 3 presents a novel approach
for map matching algorithm applicable to vehicle navigation using dead reckoning
sensors and street map. In Chapter 4 the map aided navigation system for indoor
aplication is described including a novel algorithm for position and heading error
correction. Finally, Chapter 5 presents a novel approach for pedestrian navigation
with IMU strapped to upper body. In Chapter 6, concluding remarks and a summary
will be presented. Chapter 6 also presents some recommendations for future research.
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2. POSITIONING CAPABILITY OF PERSONAL NAVIGATION
DEVICES

PNDs have become ubiquitous over the last 15 years, mainly because of the devel-
opment of low cost GNSS chipsets. Most modern consumer market PNDs are GNSS
driven. However, some applications such as first responders, firefighters, soldiers,
and industrial workers require navigation in GNSS denied environment. All PNDs
can be generally categorized into two classes according to their positioning capab-
ilities: the devices that require external infrastructure (signals), and devices, which
in addition to GNSS include self-contained sensors, and can perform autonomous
navigation during GNSS outages. We will call these groups a standard mass market
PND and an advanced PND. This thesis is focused on improvement of positioning
capabilities for advanced PNDs.

2.1 Modern Mass Market Personal Navigation Devices

Most of the modern commercially available PNDs are small handheld devices, which
have been developed primarily to provide positioning and route-guidance informa-
tion to the user. They can be incorporated into mobile phones or dedicated navigation
devices and used for both pedestrian and vehicle navigation. Positioning is based on
GNSS or assisted GNSS and, in some cases, on WLAN. This position is compared
with the digital map and the most likely position of the vehicle on the road is estim-
ated.

The same device can be used for pedestrian and vehicle navigation. These devices
work only when GNSS or WiFi positioning is available. In this case they provide
positioning accuracy of about 10 m under open skies, which satisfies the requirements
of many consumer applications such as vehicle and pedestrian navigation and LBS.
These systems are designed in a way that they fit the computed GNSS positions into
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GNSS On-foot
navigation

In-vehicle
navigation

Road network
database

Building
floor plan

Map
matching

WiFi

Position, Velocity, Heading
Location on the map

Fig. 2.1. Typical architecture of a modern mass-market PND.

a digital map for user interpretation. However, map is used only for display purposes.
Fig. 2.1 shows major components and data flow in a standard PND.

These systems are useful as long as the GNSS receiver has a direct line of sight to four
or more satellites. In many urban navigation scenarios the GNSS signal availability
is limited due to a variety of reasons. For example, a tunnel will completely stop
the GNSS based navigation while a typical downtown area with tall buildings will
significantly limit the visibility of the number of satellites. In some cases GNSS
signals are not completely blocked, but seriously degraded because of multipath. In
indoor navigation scenarios GNSS signals are usually not available and WLAN can
be the only option.

2.2 Advanced Personal Navigation Devices

Some intelligent transportation system (ITS) and car telematics applications require
accurate and reliable positioning with 100% availability. The example of such ap-
plications can be lane keeping, and collision avoidance, which require higher pos-
ition accuracy and update rates, than a commercial GNSS receiver can provide. In
addition to this it is also desired to have good integrity for fast detection of sensor and
subsystem failures (Skog and Händel (2009)). Positioning technologies based on a
single GNSS receiver are vulnerable and cannot meet the positioning requirement for
all ITS applications and services, especially, in dense urban areas. Therefore, GNSS
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GNSS On-foot
navigation

In-vehicle
navigation

Road network
database

Building
floor plan

Map
matching

WiFi

Position, Velocity, Heading
Location on the map

gyros

accelerometers

speed sensor magnetometer

barometric
altimeter

Map correctionMap correction

Fig. 2.2. Typical architecture of an advanced PND.

has to be supported by additional sensors.

The architecture of a typical advanced PND is shown in Fig. 2.2. The navigation
sensors, which require preinstalled infrastructure such as GNSS and WiFi are shown
by the red blocks. Autonomous sensors are shown by the green blocks. The blocks
”In-vehicle navigation”, ”On-foot navigation”, ”Map matching” represent sensor data
processing and navigation computations.

Not necessarily all of these sensors have to be present in the PND. A device designed
for pedestrian navigation usually contains accelerometers, gyros, magnetometer and,
barometric altimeter as autonomous sensors. For vehicle navigation the optimal com-
bination of dead reckoning sensors includes odometer and gyro. The speed data
and, in some cases, the gyro data can be taken from a vehicle’s on-board diagnostics
(OBD) system and wirelessly transmitted to a PND. Thanks to the self-contained
sensors advanced PNDs can work during GNSS outages and indoors by switching to
autonomous mode. High performance pedestrian and vehicle navigation systems are
able to operate autonomously and provide reliable navigation for long period of time.
In addition to standard navigation functions and route guidance, advanced in-vehicle
PNDs contain navigation systems that are designed to provide highly reliable input
for ITS applications with higher accuracy, update rates.
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The first step of navigation algorithm is processing data from the self-contained
sensor to obtain position, velocity and attitude. Depending on the number of sensors
and their kind, quality and application this algorithm can be implemented as a stand-
ard INS, a 2D dead reckoning navigator, pedestrian dead reckoning system, etc. We
will generally call all these alsgorithms a dead reckoning solution. The main draw-
back of dead reckoning is unlimited error growth with time. No matter how accurate
the sensors are, the residual errors will accumulate and eventually cause large po-
sition errors. The following methods can be implemented to improve positioning
capabilities of PND for GNSS denied environments:

• Fusion of GNSS and autonomous sensors (Farrell and Barth (1999); Salychev
(2004)).

• Fusion with maps including corrections from the map (Dmitriev et al. (1999);
Gustafsson et al. (2002)).

• Implementation of navigation algorithms considering constraints specific to
pedestrians or vehicles (El-Sheimy (2008); Groves et al. (2007); Foxlin (2005)).

• Vision-aided INS, which employs cameras to extract motion information from
images of the surroundings and provide corrections to the inertial estimates
(Keßler et al. (2012)).

For consumer market PNDs the challenge is to develop high-performance navigation
system solutions using low-cost sensor technology. Advanced car navigation systems
usually apply the augmentation of GNSS with one gyro and odometer (Hollenstein
et al. (2008); Somieski et al. (2010)). If the odometer data is unavailable the accel-
erometers can be used instead to estimate vehicle’s speed (Chowdhary et al. (2007)).
Although this approach is less accurate and reliable (Davidson et al. (2009a)). Ex-
amples of advanced commercially available PNDs include TomTom 940 in which a
GPS receiver is augmented with a gyro and 2D accelerometer, and u-blox NEO-6V
and LEA-6R GPS modules with dead-reckoning based on gyro and odometer. These
positioning systems provide continuous positioning everywhere even in tunnels with
the output rate of 1 Hz. They also include automatic sensor calibration and temper-
ature compensation.
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2.3 Fusion of GNSS and Autonomous Sensors

The goal of autonomous sensor fusion with GNSS is to obtain accurate position es-
timates with high integrity, full availability and continuity of service. Fig. 2.3 shows
the strategy employed for blending the self-contained sensor data with GNSS or other
absolute positioning systems (Brown and Hwang (1996)). This process is used to cor-
rect the dead reckoning position, velocity and attitude estimates as well as the sensor
errors. The autonomous subsystem of PND can be comprised of some of the fol-
lowing sensors: gyroscopes, accelerometers, speed sensor (odometer, Doppler radar
etc), barometric altimeter, and magnetometer. It also includes the navigation pro-
cessor that calculates the vehicle position, velocity and attitude. In 2D case, the atti-
tude contains only heading. The fusion is often based on loosely coupled algorithm
in which the autonomous subsystem and absolute positioning system (GNSS, WiFi
etc.) can operate as stand alone systems.

In feedforward implementation, which is shown in Fig. 2.3a, the Kalman filter com-
pares output from the dead reckoning navigator with external independent measure-
ments of some of the states and estimates errors in the dead reckoning solution. Then,
these estimated errors are subtracted from the dead reckoning solution, thus improv-
ing the accuracy. The dead reckoning system operates as if there was no aiding: it
is unaware of the existence of the filter or the external data. Corrections to the dead
reckoning system output are utilized externally. Acceptable Kalman filter perform-
ance is subject to the adequacy of a linear dynamics model, which requires the errors
in the dead reckoning solution to remain of small magnitude (Brown and Hwang
(1996)).

In feedback implementation, which is shown in Fig. 2.3b, the Kalman filter generates
estimates of the errors in the dead reckoning system, but they are fed back into the
INS to correct it. In this way, the errors are not allowed to grow unchecked, and the
adequacy of a linear model is enhanced. Since the dead reckoning solution now de-
pends on the corrections from the Kalman filter it is important to detect the external
aid or filter failures. This failure detection is possible because of the slow dead reck-
oning solution error dynamics. If such failures are detected the corrections can be
removed before significant performance deterioration is caused (Brown and Hwang
(1996)).

An odometer provides information on the traveled distance of a vehicle by measuring
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Fig. 2.3. Sensor fusion algorithm: (a) feedforward implementation and (b) feedback imple-
mentation.

the number of full and fractional rotations of the vehicle’s wheels. This is done by
an encoder that outputs an integer number of pulses for each revolution of the wheel,
which are converted to the traveled distance through multiplication with a scale factor
depending on the wheel diameter. If separate encoders are used for the left and right
wheel an estimate of the heading change of the vehicle can be found through the
difference in encoders output. Information on the speed of the different wheels is
often available through the sensors used in the antilock breaking system (ABS).

Accelerometers and gyroscopes measure motion parameters with respect to the iner-
tial space and can be used for both vehicle and pedestrian navigation. Acceleromet-
ers sense linear inertial displacement, and gyroscopes measure rotational movement,
which is usually represented by angular rate. The displacement, velocity and angles
are computed by integrating the output of accelerometers and gyroscopes respect-
ively. Therefore the measurement errors will always accumulate. This is where the
GNSS part of the fusion algorithm is required. The GNSS receiver provides vehicle
position, velocity and heading at regular intervals. Some GNSS receivers may also
output a measure of how good the receiver thinks its solution is.
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Barometer measures the altitude above a fixed level. It is more reliable, and of-
ten more accurate, than GNSS in measuring altitude. Because barometric pressure
changes with the weather, it must be periodically recalibrated at the locations, in
which the altitude is known. Barometric altimeters are also sensitive to an operating
air-conditioning system when it is used indoors, and, therefore, these limitations have
to be taken into account.

Magnetometers measure the absolute azimuth with respect to the magnetic north.
The main drawback of the magnetic compass is unpredictable perturbations of the
magnetic field caused by the disturbances, which are usually high indoors because of
electric fields and steel structures. Magnetometers can be used in pedestrian naviga-
tion outdoors, in the places where magnetic disturbances are small.

The first step in the blending process is to create an error signal which is the difference
between the GNSS variables and the dead reckoning variables. In the ideal case this
difference would be zero because the dead reckoning solution would perfectly track
the GNSS solution. However, there are may reasons why the error is non-zero and,
in fact, it will always diverge over time. Also, it is worth noting that the sources of
error in both systems display quite different properties. GNSS errors are absolute and
are less than 10 m for 95% of the time under open skies. In contrast, dead reckoning
errors are cumulative and increase without bound at a rate determined by the quality
of the sensors and the signal processing algorithms. However, when low-cost sensors
are applied their measurements are often corrupted by large errors. Thus implying
the need for digital signal processing as an enabler for post-processing of the raw
sensor data, including integrity monitoring.

The error signal (which is the GNSS and dead reckoning errors combined) is passed
into the navigation filter, which is usually a Kalman filter (Parviainen et al. (2011)).
The job of the navigation filter is to estimate the value of the dead reckoning error
variables from the combined error input signal. The resulting dead reckoning error
estimate is then subtracted from the inertial solution to produce the corrected position
solution.

This thesis is focused on navigation systems which require no external infrastructure
and can be complementary to GNSS. GNSS and WiFi, which are used in PND have
similar positioning accuracy and, therefore, fusion of WiFi and autonomous sensors
is quite similar, besides the fact that the heading is not measured when WiFi is used.
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While GNSS is available the system has all the excellent attributes of the GNSS/INS
combination. When GNSS is denied the system devolves into a relative navigation
(or an instrumented dead reckoning).

2.4 Integration of Navigation System with Map

In order to increase the performance of a positioning system, map matching can be
added. The idea of map matching is to compare the estimated trajectory of a vehicle
with roads or building plans stored in a map database, and the best match is chosen
as the position of the vehicle. The implementation of map matching algorithm is
different for vehicles on the street and pedestrians indoor and on street.

If vehicle is traveling on the road, its location and trajectory is restricted by the road
network. Therefore, a digital map of the road network can be used to impose con-
straints on the vehicle navigation system solution. Vehicle navigation indoors is quite
different from car navigation on the street because their movements are less con-
strained. In this thesis, it is assumed that the movements indoors are restricted only
by walls of a building and non-holonomic constraint.

Implementation of map matching on PND can reduce the accumulation of DR er-
rors. Assuming sufficient map quality, the results of the map matching can be fed
back into the system to correct sensor errors and enhance system accuracy. Indeed,
in Dmitriev et al. (1999); Gustafsson et al. (2002), for example, a vehicle navigation
system is solely based on wheel speed sensors and a probabilistic map matching. A
digital road map is used to constrain the possible positions, where a dead reckoning
of wheel speeds is the main external input to the algorithm. Gustafsson et al. (2002)
acknowledged that by matching the driven path to a road map, a vague initial position
(order of kilometers) can be improved to a meter accuracy. This principle can be used
for improvement, or even replacement of GNSS.

Standard map matching algorithm is a unidirectional process, where the position and
trajectory estimated by the GNSS receiver and/or dead reckoning system, is used to
display a vehicle’s location on the map. Advanced map matching algorithms have the
possibility for bidirectional information (Gustafsson et al. (2002); Skog and Händel
(2009)), viewing map information as additional observation in the sensor fusion al-
gorithm.
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2.5 Difference in Pedestrian and Vehicle Implementations

The standard GNSS based PNDs can be used for both vehicle and pedestrian nav-
igation without significant modifications of navigation data processing. However, if
additional self-contained sensors are used, the navigation system can take advant-
age of different implementation for pedestrian and vehicle navigation. Vehicle nav-
igation algorithm usually incorporate the non-holonomic constraint (NHC) and odo-
meter, if 6-DOF IMU is used (El-Sheimy (2008)). Pedestrian dead reckoning systems
(PDR) usually apply motion constraints based on models of human gait (Groves et al.
(2007)) and ZUPT for foot mounted IMU (Foxlin (2005)). Inertial sensors in a PDR
can be used for step detection and step segmentation. The advanced PND can also
detect the mode of transit and switch the ”in-vehicle” and ”on-foot” implementations
of the navigation algorithm.

The approaches for pedestrian navigation will be discussed in Chapter 5. A high per-
formance pedestrian navigation system usually contains three gyroscopes and three
accelerometers and can also use ZUPT and models of human gait. It is a com-
mon practice to distinguish between Inertial Navigation Systems (INS) and Step-
and-Heading Systems (SHS) (Harle (2013)). An INS is a system that tracks position
by estimating the full 3D trajectory of the sensor at any given moment. In the case
of pedestrian navigation, an external constraint in a form of ZUPT can be applied at
every stride (Foxlin (2005)). Another form of constraint is imposed by kinetic model
of human gait (Groves et al. (2007)). In SHS, accelerometers are used to detect steps
and sometimes step length, which can be assumed constant in simple systems. Mag-
netometer and gyro can be used to determine heading. SHS computes position by
accruing steps.

Methods for vehicle navigation can also include odometer as an additional speed
sensor. If standard INS is used, the NHC can be applied to improve the navigation
performance (El-Sheimy (2008)). NHC refers to the fact that the velocity of the
vehicle in the plane perpendicular to the forward direction is almost zero. This con-
straint can be regarded as virtual velocity measurement for cross-track and vertical
velocity components.
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3. MAP AIDED VEHICLE NAVIGATION USING ROAD NETWORK
DATABASE

A map database is a source of valuable information that can be used to improve
the position accuracy given by a vehicle navigation system. In the case of street
navigation, a map is represented by the road network and only two dimensional planar
movement is considered. It is also common to assume that the vehicle is travelling
on the road, which is part of this road network. Therefore, the real position of the
vehicle is on the network at any moment. Map matching refers to the procedure of
comparing the user’s location with the underlying map and verifying the location of
a vehicle on a road.

When both the user’s location and the road network database are very accurate, the
map matching algorithm is straightforward. The estimation of vehicle location on the
map can be obtained by snapping the position fix to the nearest road segment in the
network. Most of the existing algorithms have been developed under assumption that
the vehicle position and the map are known with a high degree of accuracy. However,
there are many situations in which this is unlikely to be the case. Hence, this research
considers map matching algorithms that can be used to reconcile inaccurate position
data with an inaccurate road network.

In addition to more accurate position estimation and displaying vehicle location on
the map, the computed position can be used to correct the output of vehicle navig-
ation system. This is important in the case of autonomous navigation systems and
GNSS receivers in high multipath areas. This thesis shows how the accumulated po-
sition and heading errors of the dead reckoning system can be compensated via an
interaction with the map database and association of the measured position with the
street network.



18 3. Map Aided Vehicle Navigation Using Road Network Database

3.1 State of the Art Methods

One of the first map-aided navigation systems was proposed by French and Lang
(1973). It was called the Automatic Route Control System (ARCS). The goal was to
direct the operation of a conventional motor vehicle over predetermined routes and
control activities (such as the delivery or pickup of items) performed along the route.
The approach used in ARCS to determine the vehicle’s position along the route and
to detect deviations is based on the fact that any route driven from a given starting
point has a unique direction-distance signature.

A few years later Lezniak et al. (1977) developed a dead reckoning system combined
with a map based on correlation, for automatic vehicle tracking. In this approach, the
measured vehicular heading is monitored all the time to determine when the vehicle
is turning from its assigned street segment. At those times the aiding from the map
stops and tracking switches to the open-loop mode based only on dead reckoning
sensors. After a good match between the vehicle trajectory computed by the dead
reckoning system and the map is established, the algorithm searches the library of
street segments and the vehicle is assigned to the proper new street segment. Tracking
then switches back to the closed-loop mode with correction from the map. The map
correlation provides an accurate means of correcting the cumulative increasing errors
usually characteristic of a dead reckoning system. It also provides a display of vehicle
location in a format readily usable by the dispatcher.

The large amount of map matching algorithms was developed in the last twenty years.
According to Zhao (1997) and Quddus (2006) the existing map matching algorithms
can generally be classified as (a) semi-deterministic approaches including geometric
and topological algorithms, (b) probabilistic algorithms, (c) fuzzy-logic algorithms,
and (d) pattern recognition algorithms. The type and complexity of the map match-
ing algorithms depends on the application and the available navigation data. Simple
algorithms perform well when the user travels on a fixed network similar to those
described in French and Lang (1973). The example of such applications can be a
bus travelling on known bus route. In this application, the algorithm assumes that the
user follows the suggested route and matching is performed to that route. However,
if the user deviates from the suggested route, the system detects a large discrepancy
between the location computed by the navigation system and the matched location,
and algorithm can fail. More sophisticated algorithms do not assume any knowledge
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about the route or expected location of the user.

The semi-deterministic algorithms require that the initial vehicle location and a dir-
ection of travel will be provided. Another requirement of this algorithm is that vehicle
is moving along a predefined, known route. Various conditional tests described in
French (1996) can be performed to determine whether the vehicle is travelling on
the known road network. Semi-deterministic algorithms work well in situations in
which there is fairly good navigation data such as with GPS receivers under open
skies or in environments with low multipath. However, if sensors less accurate than
GPS are to be used (such as low-cost gyroscopes, differential odometry, etc.), then
improvements in existing map matching algorithms may be necessary.

Many modern personal navigation systems use geometric and topological approaches
to perform map matching. If only geometric information is used, the algorithm relies
only on the shape of the arcs and not on the way they are connected (White et al.
(2000)). When the topological information is used in addition to geometrical inform-
ation, the connectivity, proximity, and contiguity of the arcs are also considered. Thus
the match is done in context and in relationship to the previous established matches.
That makes the topological solution more likely to be correct.

One of the commonly used geometric approaches is point-to-curve matching (Bern-
stein and Kornhauser (1996); White et al. (2000)). In this approach, the position fix
obtained from the navigation system is matched onto the closest road segment in the
network as shown in Fig. 3.1. The true vehicle path is shown by the thick green line,
position fixes and results of map matching are shown by the circles and triangles re-
spectively. In practice point-to-curve matching can give very unstable results in dense
road network because the closest link may not always be the correct link (White et al.
(2000)). This approach may fail if the user is travelling on a nearby parallel street
and near intersections as shown in Fig. 3.1 by the hollow triangles.

Improvement of the point-to-curve algorithm can be achieved by taking into account
not only the current position fix but also the previous fixes. This leads curve-to-
curve matching as was proposed in Bernstein and Kornhauser (1996) and White
et al. (2000). In this approach, the vehicle’s trajectory is compared against known
road network. For given candidate node, it constructs piecewise linear curves com-
prised from road segments and originating from that node. Then the distance between
measured trajectory and candidate curve, usually in terms of weak Fréchet distance,
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Incorrectly identified road 
segments

Fig. 3.1. Point-to-curve map matching algorithm. Measurements (circles), map matching
(triangles), true path is shown by the thick green line.

is computed. The closest curve is chosen as the one on which the vehicle is apparently
travelling. This approach is quite sensitive to outliers and depends on point-to-point
matching, sometimes giving unexpected results (Quddus (2006)).

An enhancement of the point-to-curve and curve-to-curve map matching algorithms
is generalized in the weighted topological algorithms which was first proposed
by Greenfeld (2002). This algorithm is based on assessing the similarity between
the characteristics of the street network and the positioning pattern of the user. The
weighting scheme is based on the perpendicular distance of the position fix from the
link (proximity), the degree of parallelism between the user’s track as it is computed
by GPS and the link (orientation), and the intersecting angle (intersection). It is based
on topological analysis and it uses only coordinate information for the observed pos-
ition of the user. It assumes no knowledge of the expected travelling route and it does
not use any GPS determined heading and/or speed information. A weighted score
for several candidate road segments is computed and the match is determined by se-
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lecting the highest score or the most likely candidate for the correct match. Some
measures to remove outliers due to GPS errors and to handle skipping of unmatched
arcs have been implemented as well. However, the algorithm solves only the problem
of identifying the correct link and the location of the traveller on the correct link is
not computed.

Fouque et al. (2008) used the Mahalanobis distance computed between the candidate
segment and the estimated vehicle position and heading. It can be computed as a
weighted sum of vehicle-to-segment distance and difference in orientation between
vehicle and segment headings as
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where d is the distance from the vehicle to the chosen segment, θs is the segment’s
heading. σd , σθs are the standard deviations associated with these measurements, σθu

is the standard deviation of vehicle heading measurement, λmax is the maximum ei-
genvalue of the position covariance. The road segment with the lowest ∆

j
seg is chosen

as the one where the vehicle is travelling.

The weights are computed based on variances associated to these measurements. Dif-
ferent versions of weighted topological algorithm were proposed also by Srinivasan
et al. (2003); Quddus (2006). In their algorithms, they not only checked the distance
between the position fix and the candidate road segments but also heading difference
between the instantaneous vehicle heading and the bearing of the candidate road seg-
ment. They state that the enhanced point-to-curve algorithm improves the correct
link identification. According to Quddus (2006), the correct road detection rate of
topological algorithms based on GNSS positioning data can reach in urban areas
92%. The probabilistic approach gives the most reliable solution to map matching
problem compared to other methods. It also overcomes the disadvantage of semi-
deterministic methods: assumption that vehicle is moving on predefined route. The
conventional probabilistic map matching algorithm considers all links that fall within
an error ellipse around a position fix as candidate links. The dimensions of the er-
ror ellipse are chosen based on the error variance-covariance matrix associated with
position error of vehicle navigation system. The size of the error ellipse normally de-
pends on the probability (95% or 99%) that the ellipse contains a true link (Quddus
(2006)).
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The probabilistic algorithm calculates probabilities of vehicle traveling on different
road segments to select a correct road segment and then estimates vehicle position on
the selected road link. This approach differs from the semi-deterministic approach in
that it does not perform any explicit map matching step, and has advantage in both
robustness and flexibility. Different versions of this algorithm were proposed in Scott
(1994); Dmitriev et al. (1999); Hall (2001); Gustafsson et al. (2002). They acknow-
ledged that correct road segment identification is a key component of any map-aided
estimator, because the performance derived from the map matching algorithm can be
misleading if the vehicle location is projected to an incorrect road.

Dmitriev et al. (1999) proposed a mathematical framework for solving the map match-
ing problem based on the recursive Bayesian estimation and non-linear filtering the-
ory. In this work it was mentioned that during the turn a posteriori distribution of
the vehicle position on the road is non-Gaussian and non-linear filtering methods are
required to solve this problem.

Hall (2001); Gustafsson et al. (2002) implemented particle filtering for map aided
car navigation. The performance of the algorithm was evaluated on a simple ima-
ginary map using simulated measurement data. Hall (2001) acknowledged that the
particle filter showed disappointing performance: ”The frequency of filter divergence
was about 20%. Even after convergence the filter could suddenly loose the track of
the vehicle, resulting in divergence.” He also mentioned a phenomenon, which was
referred to as particle clustering, i.e. when the initial distribution does not spread the
particles on the road well. To improve the particle filter reliability Gustafsson et al.
(2002) proposed to split up the measurements to a filterbank, which includes several
independent filters. Voting can be used to restart each filter when necessary.

Fuzzy-logic based map matching is an example of the use of a qualitative decision
making process to identify the correct road segments among the candidate segments.
In fuzzy logic, linguistic terms with vague concepts can be expressed mathematically
by making use of fuzzy sets. Fuzzy sets represent expert knowledge and experience to
draw inferences through an approximate reasoning process. The basic characteristics
of this approach to map matching is to build various knowledge-based IF-THEN
rules comprising the speed of the vehicle, the heading, the historical trajectory of the
vehicle, the connectivity and the orientation of road links. Examples can be found
in Syed and Cannon (2004); Kim and Kim (2001).
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Fu et al. (2004) proposed a map matching algorithm that uses a fuzzy logic model
to identify the correct link among the candidate links. There are two inputs to the
Fuzzy Inference System (FIS): (1) the minimum distance between the position fix and
the link, and (2) the difference between the vehicle direction and the link direction.
The single output of their fuzzy inference system is the possibility of matching the
position fix to a link. Quddus (2006) showed that this simple fuzzy logic model is
sensitive to measurement noise. Moreover, the vehicle heading obtained from GPS is
inaccurate at low speed, as speed has not been taken into account. As the algorithm
selects a link for each position fix with no reference to the historical trajectory, there
is a high possibility of selecting incorrect link, especially at junctions.

Quddus et al. (2003) developed another fuzzy logic-based map matching algorithm
for land vehicle navigation. In this algorithm, the factors considered to build vari-
ous knowledge-based IF-THEN rules were the speed, heading, and historical traject-
ory of the vehicle, the connectivity and the orientation of the links and the satellite
geometric contribution to the positioning error (HDOP). A Sugeno-type fuzzy infer-
ence system was used to develop the algorithm and the membership functions were
trained and modified using a given input/output dataset obtained from GPS carrier
phase observations. Quddus claimed that their map matching algorithm outperforms
the other algorithms including those algorithms that were also based on fuzzy logic
methods. This improvement is primarily due to the use of additional information,
such as speed, error sources associated with navigation sensors and map data, and
more sophisticated fuzzy rules.

The map matching algorithm proposed in this thesis overcomes various shortcomings
of existing algorithms. Most of the existing algorithms cannot reduce the along-track
position error because they apply only perpendicular projection from the measured
position on the road link. The rate of incorrect road link identification for many al-
gorithms is also high even when user position is known with high degree of accuracy.
This is mainly due to the fact that the history of position and heading data is not taken
into account. The proposed algorithm is formulated by taking into account the his-
torical trajectory of the vehicle and topological information of the road network, e.g.,
connectivity and orientation of links, to precisely identify the correct link on which
the vehicle is travelling. The algorithm avoids explicit map matching and decision
making.
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3.2 A Novel Probabilistic Approach to Map Matching

In this section, a probabilistic, numerical approach to the map matching problem is
proposed. The algorithm is based on recursive implementation of Monte-Carlo based
statistical signal processing known also as particle filtering. The basic principle is to
use random samples (also referred to as particles) to represent the posterior density of
the car position in a dynamic state estimation framework where road map information
is used. Since particle filters have no restrictions on the type of models and noise
distribution, the velocity and heading measurement errors can be modeled accurately.

The major advantage of a particle filter for this particular application is that it pro-
vides a natural way for road map information to be incorporated into vehicle position
estimation by applying the direct constraint on the state vector (which affects each
particle). Another advantage is its ability to capture multi-modal distributions which
tend to occur when there is uncertainty in which road the user is on. By considering
multiple candidate roads, the particle filter is able to quickly adapt if an initial guess
at the proper road is found to be incorrect.

This thesis presents both simulation results and results from real-world data col-
lection in a city environment. In field tests, both GNSS and non-GNSS position
measurements were collected and simulated. These measurements were combined
with OpenStreetMap (a freely-available map database) to calculate the position of
the vehicle on the road as it drove through a city. A precision DGPS position solu-
tion was used as the reference trajectory in order to evaluate the accuracy of the
particle-filter based solution. The results shown in this chapter demonstrate that the
proposed particle filter approach is reliable and accurate. It is able to correct large
(about 200 m) errors in dead reckoning position by applying the map constraints. It
is also demonstrated that the particle filter based map matching algorithm is robust to
errors in the predetermined map.

3.3 Digital Maps

Digital map data for map matching algorithms is usually based on a single-line road
network representing the centerlines of the roads. Multiple lanes are usually shown as
separate road segments. Some databases, for example, OpenStreetMap also include
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additional road attributes such as roadway classification (one-way or two-way) and
type of the road. Road attributes such as width, turn restrictions at junctions may
not exist in the map data. Nevertheless, the accuracy and uncertainty of digital road
network data can be a critical issue if the data is used for high accuracy land vehicle
navigation.

A digital map is created by converting a paper map into a vector-encoded structure.
Road network can be represented by its features expressed as vectors using Cartesian
geometry. A feature is denoted as an existing item in the real world. The digitized
road network typically represents the road data using line segments whose endpoints
(nodes) and shapes are defined in terms of latitude and longitude. According to Zhao
(1997), nodes, segments, and shape points can be defined as follows:

• A node is a cross point or an end point of a street and is used to represent an
intersection or a dead-end of a road.

• A segment is a piece of roadway between two nodes and is used to represent
fragments of roadways and other features.

• Shape points are ordered collections of points, which map the curved portion
of a given segment to a series of consecutive straight-line pieces. Road of any
curvature can be approximated by a sequence of straight lines (called poly-
lines).

Topology is the arrangement of nodes and segments in a network defining their loc-
ation, direction, and connectivity. Topological features on the road network include
both nodes and segments. Curved roads are normally represented as polylines and
straight roads are represented as lines in a digital map. In other words, arcs (roads)
without shape points are referred to as lines and arcs with shape points are referred
to as polylines. Each polyline consists of a series of lines depending on the number
of shape points within the arc. Each arc is assumed to be piecewise linear. For sim-
plicity, each shape point is assumed to be a node. Connectivity information among
segments at a junction can be derived from the road network database and can then
be used as an important input to the map matching algorithm.

The map of Tampere (OpenStreetMap) is shown in 3.2. The digital road network
corresponding to the same area is shown in Fig. 3.3. This map covers the area of
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Fig. 3.2. Street map of Tampere.

approximately 100 square kilometers. There are about 1300 roads and streets in this
area. Some streets are represented by several segments. The total number of seg-
ments in this area is approximately 8000. In addition to road links a digital map may
include the following parameters about each road: geometry (’Point’, ’Multipoint’,
’PolyLine’, or ’Polygon’), ID within the map database, and attribute fields such as
name, type and driving restrictions (for example, oneway).

In the work described in this thesis, a public domain database OpenStreetMap was
used. The geographical information stored in navigable road maps (e.g., maps from
OpenStreetMap) is usually expressed in geographic coordinates. As proposed in
Fouque et al. (2008), only a limited area (called ”road cache”) around the estim-
ated location need be considered. After the road cache extraction, the points of
the polylines that describe the roads are converted into a local tangent East-North-
Up (ENU) frame. Then, by choosing a reference point, the transformation between
ECEF (WGS84 Earth-Centered, Earth-Fixed) and ENU is computed. Since the elev-
ation is usually not available in a navigable map, we convert the map points in the
working frame by supposing that they are all located at the ellipsoidal height. As the
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Fig. 3.3. Digital road network of Tampere.

ENU frame is attached to a road cache, it should be noted that the working frame is
temporary and valid only for small regions.

There is imprecision associated with the GIS based digital road map due to errors
in map creation and digitization. As a result of such inaccuracies in the positioning
systems and a flawed GIS digital base map, actual vehicle positions do not match
with the spatial road map although the vehicle is known to be restricted on the road
network. This phenomenon is known as spatial mismatch. The spatial mismatch is
often more severe at junctions, roundabouts, complicated flyovers, and built-up urban
areas with complex route structure environments.

3.4 Applying Road Network Constraints

A vehicle is restricted to move within the boundaries of streets and parking spaces
under normal circumstances and this is especially true for urban areas. Assume that
the vehicle is located at certain point on the road. The position fix computed by the
vehicle navigation system deviates from the road centerline due to error in the map
and the navigation data. The map matching algorithm can apply constraint assum-
ing that the vehicle is on the road network by snapping vehicle’s position to a road
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centerline of identified road segment. But this only eliminates the cross-track error
of the position fix. The along-track error can be reduced when vehicle is turning or
moving on a curved road. When the vehicle executes a turn, the distance or along-
track error accumulated up to that time is reduced to zero if the turn was correctly
identified. The correction of along-track errors during turns can be performed when
the algorithm assigns the vehicle to a new street segment.

3.5 Proposed Algorithm

It is assumed that the vehicle is moving on the roads, which are known from the
digital database. The objective of map matching algorithm is to estimate recursively
the position of the vehicle from a set of measurements. The state vector consists of
a vehicle’s northern and eastern coordinates, and heading: xk = [Nk Ek ψk]

T . Here,
the k subscript corresponds to the tk time instant. The evolution of the state in time
is described with the aid of a constant velocity model in form of the following dead-
reckoning equations (Zhao (1997)) and is subject to the road network:Nk+1

Ek+1

ψk+1

=

Nk

Ek

ψk

+
Lkcosψk

Lksinψk

∆ψk

 (3.2)

where Lk is the distance traveled from time instance tk to tk+1, ∆ψk is the change in
vehicle’s heading during this time. It is assumed that the distance traveled is estimated
based on sensor measurements. The heading is assumed to be the same as road
segment’s heading when a vehicle is moving along straight parts of the road. When a
vehicle is turning or moving along curved parts of the road the heading is measured
by the sensors. This will be explained in details in Section 3.5.1. The measurements
of the vehicle’s position and heading are available at time instants tk from the on-
board DR navigation systems:

yk =

Ñk

Ẽk

ψ̃k

=

Nk +δNk

Ek +δEk

ψk +δψk

= xk +χk + vk (3.3)

where δNk,δEk,δψk are the measurement errors that can be assumed a combination
of Markov first-order processes χk and zero-mean white Gaussian noise vk (χk and vk

are three-dimensional vectors).
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As proposed in Dmitriev et al. (1999), roads can be described by an implicit nonlinear
function ρh (x) in the form of

Rh =
{

x : ρ
h (x) = 0

}
,h = 1, . . . ,M (3.4)

where M is the number of roads. For the purpose of map-aided estimation, each road
Rh in the road network can be approximated by a set of road segments Ri,i+1, each of
which is a straight line between the nodes ξi, ξi+1 that satisfy Eq. 3.4.

It is assumed that the state can be described by partially observable discrete-time
Markov chains. Furthermore, the state xk depends on the previous state xk−1 ac-
cording to the probabilistic law p(xk|xk−1). This problem can be stated as the es-
timation of the sequence of states x0...k = {x0, . . . ,xk} given the series of obser-
vations y1...k = {y1, . . . ,yk} subject to the motion model p(xk|xk−1), measurement
model p(yk|xk), and constraints on the state vector given in the form of a road net-
work. The prior probability at t0, p(x0) is assumed to be known. The goal is to find
the best trajectory in terms of the minimum mean square error (MMSE) criterion.

This problem can be solved within the framework of the Bayesian estimation theory
(Dmitriev et al. (1999)). According to the Bayesian view, the posterior probability
density function (pdf) p(x0...k|y1...k) contains all the statistical information available
about the xk state vector, based on the information in the y1...k measurements. The al-
gorithm is derived from the recursive decomposition of p(x0...k|y1...k) based on Bayes
rule and the law of total probability as follows (Arulampalam et al. (2002)):

p(x0...k|y1...k) =
p(yk|x0...k,y1...k−1)p(x0...k|y1...k−1)

p(yk|y1...k−1)

=
p(yk|x0...k,y1...k−1)p(xk|x0...k−1,y1...k−1)p(x0...k−1|y1...k−1)

p(yk|y1...k−1)
.

(3.5)

If the probabilistic model of the transitional density is described by a Markov process
of the first order, such as p(xk|x0...k−1,y1...k−1) = p(xk|xk−1) then the calculation of
Eq. 3.5 can be simplified. It is calculated recursively as

p(x0...k|y1...k) =
p(yk|x0...k,y1...k−1)p(x0...k|y1...k−1)

p(yk|y1...k−1)

∝ p(yk|xk)p(xk|xk−1)p(x0...k−1|y1...k−1).

(3.6)

Since the distribution in (3.6) cannot be solved analytically in general nonlinear and
non-Gaussian case, a particle filter will approximate it by using a cloud of particles
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and their associated weights. The ith particle is a candidate state vector x(i) and has
a weight w(i) ∈ [0,1], and each particle is propagated in a procedure analogous to
Kalman-type filters:

1. Prediction step: The particles are projected to the next time step by sampling
from a proposal distribution which we choose to be the transitional model
p(xk|x

(i)
k−1).

2. Update step: The weights are updated according to

w(i)
k ∝ w(i)

k−1 p
(

yk|x
(i)
k

)
. (3.7)

If multiple types of measurements y are available, a separate update step can
be taken for each type.

Eq. 3.7 is expressed as a proportion instead of an equality because we normalize the
weights to sum to unity; this way, it is straightforward to estimate, e.g., the mean and
covariance of the posterior distribution.

The resulting set of weighted trajectories
{

x(i)0...k,w
(i)
k

}
, i = 1, . . . ,N with normalized

weights provides an approximation to the distribution p(x0...k|y1...k). Based on the
discrete approximation of the posterior pdf, an estimate of the best trajectory at step
k+1 can be obtained. The weighted mean of the particles represents a Monte Carlo
approximation of the posterior pdf expectation, which gives the best trajectory in
terms of the MMSE.

3.5.1 Particle Filter Implementation

The proposed system model has two operational modes: (1) a vehicle is moving along
straight parts of the road and (2) a vehicle is turning or moving along curved parts of
the road. Switching between these two modes is performed based on an analysis of
the vehicle’s heading rate data from the sensors. During the first operational mode,
the particles are propagated using only the speed information from the onboard speed
sensors (odometer, GNSS, etc.). The ith particle’s heading is assumed to be the same
as the heading of the road segment where this particle is located and which is known
from the map:

ψ
(i)
k = ψ

(i)
seg. (3.8)
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In this case the propagation of i th particle can be described by the following equation[
N(i)

k+1

E(i)
k+1

]
=

[
N(i)

k

E(i)
k

]
+(Lk +∆L(i)

k )

[
cosψ

(i)
k

sinψ
(i)
k

]
(3.9)

where Lk is the distance traveled from time instance tk to tk+1 as it measured by the
odometer. For each particle the heading is given by (3.8), and distance traveled by
this particle is perturbed using some model for distance measurement error ∆L(i)

k .
This distribution does not have to be Gaussian. However, in our case the particles
are drawn from Gaussian distribution with zero mean and constant variance. The
variance of this distribution is one of the design parameters, which can influence
diversity of the particles. This propagation model can guarantee that the particles
will always stay on the road. However, different particles can move on different road
segments. The road segment with the highest probability (with more particles on it) is
selected as the most likely road segment where vehicle is located. If the particles are
moving on the correct road segment then estimated position cross-track error can be
reduced substantially by applying a simple perpendicular projection of the position
fixes onto the selected link. The estimated vehicle position can also be calculated as
the weighted average of all the particle coordinates from this segment.

During the second operation mode when the vehicle is turning, its heading and speed
are required; the propagation model can be described by the dead-reckoning equa-
tions N(i)

k+1

E(i)
k+1

ψ
(i)
k+1

=

N(i)
k

E(i)
k

ψ
(i)
k

+
Lkcosψ

(i)
k

Lksinψ
(i)
k

∆ψ
(i)
k

 (3.10)

where the change in heading is measured by the vehicle’s navigation system. The
road segment identification is not performed at this step. During the turn the vehicle
and the particles are moving along some trajectories as illustrated in Fig. 3.4. There
are some important features of these trajectories that help to reduce the along-track
error of vehicle position estimation after the turn:

• The vehicle and the particles start turning at the same time since the turn is
sensed by some heading-rate measuring device, e.g., gyroscope.

• The vehicle and the particles stop turning at the same time.
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Fig. 3.4. Propagation of particles during the turn. True vehicle path is shown by the red
dotted line; Particles trajectories are shown by the black dotted lines; The asterisks
designate the true vehicle location before and after the turn; the diamonds designate
the particles locations before and after the turn.

If gyro and odometer are used as dead-reckoning sensors the accumulation of position
errors during the turn is small. Therefore, all these trajectories are parallel and can be
obtained by parallel translation of the actual vehicle trajectory along the horizontal
road link.

In ideal case, when propagation of particles during the turn is error free, the particles
at the end of the turn will be on the same line parallel to the road link where they
started the turn. Applying perpendicular projection of the particles position fixes
onto the selected link will eliminate the along-track error of the estimated vehicle
position accumulated before the turn.

Note that this approach of eliminating along-track error works for turns at any kind
of road junction (not only 90 degrees) and also on curved roads. However, in reality,
because of position errors accumulated during the turn, there will be some residual
along-track error of the estimated vehicle position after the turn. The magnitude of
this error depends on the quality of dead-reckoning sensors and curvature of the turn.
For road links with small curvature, the reduction of along-track error is negligible.

The particle weights are updated using the recurrent formula given in Eq. (3.7) where
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p(yk|x
(i)
k ) is the likelihood calculated for each particle based on the proximity between

the position fix and the particle and the difference between the measured vehicle
heading and the heading associated with this particle. The likelihood is calculated
according to

p(yk|x
(i)
k ) ∝

−
(

ψ
(i)
k −ψmeas

k

)2

2σ2
hdg

−
(N(i)

k −Nmeas
k )2

2σ2
pos

−
(E(i)

k −Emeas
k )2

2σ2
pos

 (3.11)

where ψ
(i)
k is the ith particle’s heading, ψmeas

k is the vehicle’s measured heading, σ2
hdg

is the heading measurement variance, x(i)k is the ith particle’s coordinates and heading,
Nmeas

k ,Emeas
k are the measured vehicle North and East position coordinates, and σ2

pos

is the position measurement variance.

When estimating the posterior distribution in the way described above, there will
eventually be only few, or even zero, samples that have a nonzero weight. This
both wastes computational resources and causes the filter to fail if all samples have
zero weight. This problem is called degeneracy and can be avoided by resampling
(Arulampalam et al. (2002)). Resampling procedure eliminates particles with small
weights and multiply particles with large weights. During the resampling step a new
set of particles is constructed by drawing them N times from the discrete distribution
defined by the old set of particles and their respective weights. Finally, all weights are
reset to 1/N. This new set of particles represents the same distribution as the previous
set but makes use of all N particles. Various methods for drawing the new particles
have been developed. The examples of systematic, multinomial, residual and strati-
fied resampling algorithms are given in Gordon et al. (1993); Kitagawa (1996); Liu
and Chen (1998); Douc and Cappé (2005); in this study, the approach of multinomial
resampling was used.

A common strategy is to resample whenever the effective number of particles defined
as (Ristic et al. (2004))

Ne f f =
1

∑
N
i=1

(
w(i)

k

)2 (3.12)

is lower than a predefined threshold. Here N is the total amount of particles. The
threshold lies between 1≤ Nthr ≤ N and can be chosen from the field tests to obtain
desired performance. In our tests it was set to N/2. When Ne f f is small then only
small number of particles have substantial weight which indicates a case of severe
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degeneracy. Note that if no other updates than the map update in Eq. (3.11) are
being applied, Ne f f equals the number of particles with nonzero weight if the initial
particles are uniformly weighted.

If resampling is applied at each update step, the relationship in (3.7) can be reduced
to

w(i)
k ∝ p

(
yk|x

(i)
k−1

)
. (3.13)

3.5.2 Correcting the Dead Reckoning Solution

The current algorithm requires position and heading measurements as described in
Eq. (3.11). If any means to obtain position and heading are available, e.g., GPS,
then it is used for these measurements. However, if only dead-reckoning sensors
are available (such as a gyro and odometers), then some sort of position and heading
measurement must be generated in order to use the algorithm proposed in Section 3.5.

The approach taken here is to use the map-based solution (based upon the weighted
mean of the particles) to calculate the error in the dead-reckoning solution on an oc-
casional basis, e.g., every 1000 m and immediately after each turn. Then, at every
epoch, a corrected dead-reckoning solution (i.e., the raw dead-reckoning solution,
after correcting for the error) is used as a pseudo-measurement for the update de-
scribed in Eq. (3.11).

When a map is available it can provide such correction to dead reckoning solution.
The accuracy of map matching is limited mainly by digital map accuracy which is
about 2−5 m in Europe. If the road is identified correctly, then the cross-track error
is always about the same as the accuracy of the map. The along track error is usually
smaller after vehicle turned. Therefore, it is better to perform the correction of the
dead reckoning solution after the turn. The error in the dead-reckoning solution is
calculated on an occasional basis as follows. First, the estimation of vehicle position
is determined as a weighted average of dead reckoning and map matching solutions:

Ê =
(

σ2
DR

σ2
map+σ2

DR

)
Emap +

(
σ2

map

σ2
map+σ2

DR

)
EDR

N̂ =
(

σ2
DR

σ2
map+σ2

DR

)
Nmap +

(
σ2

map

σ2
map+σ2

DR

)
NDR

(3.14)

where Emap and Nmap are the east and north positions based on the weighted mean of
the particles, EDR and NDR are the east and north positions of the raw dead-reckoning
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solution, Ê is the estimated vehicle position (easting), N̂ is the estimated vehicle po-
sition (northing), σ2

map is the variance of position errors of map matching algorithm,
and σ2

DR is the variance of position errors of dead reckoning algorithm. Note that if
σ2

map is small (such as after a turn), then Ê and N̂ will be very close to Emap and Nmap.

Next, the error in the dead-reckoning solution is calculated as

δE = Ê−EDR

δN = N̂−NDR.
(3.15)

These error terms are then held constant and are used to correct the dead-reckoning
solution to generate position updates until the next time they are recalculated (typic-
ally at a km of travel or after a turn, whichever comes first). An alternative approach
for dead reckoning position and heading errors correction will be shown in the next
chapter.

3.6 Simulations and Field Tests

This section presents both simulation results and results from real-world data col-
lection in a city environment. We start from the simulation results. To demon-
strate the performance of the proposed algorithm the road network, vehicle trajectory,
and vehicle position measurements were simulated (Fig. 3.5). It was assumed that
the vehicle is traveling along the road (which is typically the case) and its heading
matches the heading of the current road segment when the vehicle is travelling along
straight stretches of road. We also assume that the terrain is flat and, therefore, the
altitude will not be estimated. The road network consists of a set of parallel lines.
The triangles and circles denote the true vehicle position and the estimated position,
respectively. The stars indicate the position measurements. For illustration purposes
only, the corresponding measurement is connected with true position via a dotted line
and with corresponding estimated position via a solid line (Fig. 3.5).

In this example it was assumed that the speed over ground and heading measurements
are available, but they are corrupted by measurement noise with standard deviation
of 2 m/sec and 3 deg, respectively. The position measurement errors include com-
bination of constant offset and random noise with the total distance root mean square
(DRMS) of horizontal position errors approximately 40 m. Such large position errors
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Fig. 3.5. Map matching results for simulated vehicle path. Triangles show the true vehicle
position. Circles show the estimated position. Stars show the position measure-
ments. For each time instant, the corresponding star, triangle, and circle are con-
nected.

may correspond, for example, to performance of a GPS receiver in high-multipath
urban environment.

The performance of the particle filter was evaluated when the vehicle was moving
along the trajectory that included several intersections with left and right turns. The
simulation results are based on 200 particles. A part of this trajectory and the results
of map matching are shown in Fig. 3.5. These results show that cross-track error
is always reduced to a level of digital map error. The along-track error is reduced
after vehicle turned on intersections. For example before the second intersection the
along-track error was approximately 10 m. After the turn the along-track error was
reduced to approximately one meter. The distribution of particles along the road
segment before and after the turn is shown in Fig. 3.6. Before the turn, the deviation
of estimated position from the true position is about 10 m and the standard deviation
is about 4 m. In the histogram the horizontal axis represents the deviation of the
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Fig. 3.6. Distribution of particles along the road segment before (a) and after (b) the turn.

particles from the true position in meters. After the turn, the deviation from the true
position is less than 1 m and the standard deviation is about 2 m.

This example shows that the map matching based on a particle filter can improve
substantially the positioning by reducing both along-track and cross-track errors. The
cross-track error can be eliminated when the vehicle is not turning. In this case, if
the road segment is correctly identified, the vehicle position calculated by GNSS
or another navigation system can be corrected by projecting it onto a chosen road
link since we know that the vehicle is located on this segment. But this does not
eliminate the along-tack error, which can be removed only when the vehicle is turning
at intersections or moving on curved roads. In this case, the particle filter is switched
to the second operational mode in which the vehicle heading is measured by an on-
board sensor. After the turn the vehicle position estimate was substantially improved
by reducing the along-track error to sub-meter level.

3.6.1 Field Test

The proposed map matching algorithm was also tested with actual digital maps and
real-world heading rate and ground speed data. The heading rate was measured by the
Murata SCR-1100-D04 low-cost MEMS gyro. The speed data was collected from the
standard speed sensor installed in the car using the standardized digital communic-
ation port and on-board diagnostics (OBD) interface. The algorithm position accur-
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1 km

Fig. 3.7. The 12 km test route.

acy was analyzed against the vehicle position as determined from the high accuracy
Novatel differential GPS receiver with carrier phase capability. It should be men-
tioned that GPS was not used for navigation, although GPS signals were available
most of the time. The purpose of these tests was to show that map aided low-cost
dead reckoning navigation system can provide accurate navigation for long period
of time without using any GPS data. The 12 km test route included a mix of high-
speed multilane highways, road interchanges, regular street, roads, and several turns
(Fig. 3.7). The actual car location is shown by blue dots. The uncorrected dead
reckoning solution is shown by red dots.

An example of map matching algorithm performance during the turn is shown in
Fig. 3.8. The progression of the original uncorrected dead reckoning solution is
shown by the green squares. The output rate of this solution is 1 Hz, and the last
square corresponds to the currently estimated vehicle position. The magenta aster-
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Fig. 3.8. Map matching algorithm performance during the turn. (Squares: original, uncor-

rected DR solution; Points: particle locations; Large asterisk: weighted mean of
particles; Diamond: true location from DGPS).

isk designates the corrected dead reckoning position estimate. Black points are the
particles with their weighted mean location shown by the star. The cyan diamond
shows the true vehicle location as it determined by the high accuracy DGPS receiver.
This example shows that before the turn the along track error of the map matching
algorithm was approximately 60 m. This error was reduced after the turn to less
than 5 m. The corrected dead reckoning solution was updated after the turn so its
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Fig. 3.9. Comparison of DRMS of horizontal position errors for dead reckoning only and
map aided dead reckoning navigation algorithms.

error becomes less than 10 m. The calculated position offset will be now added to
the original dead reckoning solution until next position offset. The corrected dead
reckoning position will be used as a position measurement when performing position
update of the particles.

Fig. 3.9 shows the DRMS of horizontal position errors for dead reckoning only and
map aided dead reckoning navigation algorithms during the 12 km urban test drive.
The performance of map aided dead reckoning algorithm depends very much on the
vehicle trajectory, especially turns. When vehicle is moving along the straight or
slightly curved stretches of the road only cross track errors can be eliminated. After
the turn also the along track error can be reduced. During the first 250 sec when
the vehicle was moving on the highway the position accuracy improvement was not
significant. After the exit from the highway the position error of the map matching
algorithm was significantly reduced.

The final part of the test route included several turns. Therefore, the position error
was relatively small: 5− 10 m after the turn and increasing gradually because of
distance error accumulation. The odometer accuracy has significant impact on along
track error growth.
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Another potential source of errors is error in digital road map. One road along our
test route was built recently. This road was not included in our map database. There-
fore, the map matching algorithm identified the wrong road segment and the position
estimation error suddenly increased from 5 m to approximately 120 m. It took for the
algorithm about two minutes to recover from this incident, identify the correct road
link, and start accurately estimating vehicle position again.

3.7 Conclusions

This chapter has shown how map matching algorithm can improve car navigation
system performance. This becomes very important when the position calculation is
based on dead reckoning sensors. The examples show that the position errors of
map aided dead reckoning navigation system can be kept bounded as opposed to the
unbounded error growth of the conventional dead reckoning. The accuracy depends
on how often turns occur. It was also demonstrated that the particle filter-based map
matching algorithm is robust to errors in the predetermined map.

The performance of the proposed particle filter based map matching algorithm is
limited by the following factors:

• Position errors in digital road network. Based on the results of road tests we
estimated that in Finland this errors usually do not exceed 2−5 m.

• Uncertainty of vehicle location on the road. The road link is described by its
centerline but the actual vehicle location can be slightly different.

• Errors in velocity and heading-rate sensors limit the along-track error estima-
tion during turns and along straight stretches of the route.

• Amount of turn and frequency at which these turns occur.

The particle filter performance can be adjusted by changing ground speed noise and
position and heading variances. Increasing ground speed noise improves the particles
diversity. Position and heading variances have to match the position and heading
measurement errors of onboard sensors. If GPS is used to measure heading, the
heading errors can be quite large during the turns and when the vehicle speed is low.
This can also limit the accuracy of along-track error estimation.
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Compare to other particle filter based algorithms (Hall (2001); Gustafsson et al.
(2002)) our algorithm gives reliable and robust solution, which is able to cope with
some inaccuraces in map database. During 12 km test route the algorithm never di-
verge from the correct path. One of the biggest advantages is that the algorithm does
not include any explicit decision making process.

Compare to topological (Greenfeld (2002); Srinivasan et al. (2003); Quddus et al.
(2003); Quddus (2006); Fouque et al. (2008)) and fuzzy logic algorithms (Syed and
Cannon (2004); Kim and Kim (2001); Fu et al. (2004)) the proposed method has the
following advantages:

• Can reduce the along-track position error

• Works reliably even when position measurements are less accurate than those
of GNSS under open skies

• Can work with dead reckoning sensors in autonomous mode for long period of
time. Provide position and heading correction to the dead reckoning system



4. MAP AIDED AUTONOMOUS NAVIGATION INDOORS

The previous chapter described the land vehicle navigation algorithm, which fuses
the autonomous sensors data and road network database. Map matching was used
to fit an estimated path into the maps. It was shown that the road network data can
improve the accuracy of positioning and correct the position and heading computed
by the autonomous vehicle navigation system. The goal of this chapter is to extend
the map aided autonomous navigation algorithm to indoor applications. The proposed
algorithm can be applied to vehicular navigation systems under certain assumptions:

• The displacement and heading are obtained using autonomous sensors such
as accelerometers, gyroscopes, odometer or speed sensor, magnetometer, or
combination of several sensors.

• The non-holonomic constraint is valid.

• The indoor maps or building floor plans are known before the actual deploy-
ment.

Similar to the case of street navigation the fusion of autonomous sensor data with
building plans helps to curb the divergence of position and heading errors and achieve
long term stability for fully autonomous navigation systems. The major focus will be
on correction of position and heading errors of the dead reckoning solution.

Mobile robot navigation indoors is quite different from vehicle navigation on the
street because their movements are less constrained and, therefore, much more diffi-
cult to model than the movement of a typical car on the street. They can move across
a much more diverse area, quickly change direction, use lateral movement, or back
step. In the case of indoor navigation the movement is restricted only by the walls of
a building. The ability to correctly identify the true path stems from the fact that any
path originated from a given starting point has a unique signature.
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In this thesis, we consider only 2D planar movement but the results can be extended
to include the case of vertical movement by adding vertical links in the map database
such as elevators, staircases, and escalators. The proposed algorithm is formulated
by taking into account the historical trajectory of the vehicle and topological inform-
ation of the building floor plan (e.g., connectivity and orientation of walls and other
obstacles) to precisely identify the user location. In this chapter, the numerical ap-
proach that was described in Chapter 3 is modified to solve a map matching problem
indoors. The solution is also based on particle filtering.

In addition to more accurate position estimation and displaying vehicle location on
the map, the computed position can be used to correct the output of navigation sys-
tem. This is important in the case of autonomous navigation systems and GNSS
receiver in high multipath areas. It is also shown how the accumulated position and
heading errors errors of the dead reckoning system can be compensated via an inter-
action with the map database and association of the measured position with the street
network. The proposed algorithms serve to compute position and heading corrections
to the vehicle navigation system as well as recalibration of the autonomous sensors
in the case of dead reckoning system. If it is known that the vehicle is located in a
certain room of the building then the position of the dead reckoning system can be
updated.

4.1 State of the Art Methods

There are currently several approaches to map aided navigation indoors: topological
map matching, probabilistic map matching based on particle filtering, reduction of
heading error by comparison with building cardinal heading. The purpose of these
algorithms is to improve positioning and heading by fitting the estimated path into
building plans.

Similar to the street map matching the topological algorithms for indoor applications
use a link-node representation of a building plan Gilliéron et al. (2004). A node is a
point defined by its coordinates including altitude. The altitude can be given in terms
of a floor number. The nodes correspond to the junctions and to the points of interest
in the building. A link is a straight line connecting two consecutive nodes. The links
may correspond to the corridors, staircases, entrances to elevators, passages between
buildings, etc. The consecutive links are connected and represent a network similar to
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a road network. The link-node model can be obtained from AutoCAD building floor
plan. However, developing a set of map matching functions for pedestrian navigation
is a challenge because the trajectory of people is not always similar to the geometry
of the mapping data. Development of algorithms indoors is based on the comparison
of topological elements from the trajectory and the database. The goal is to identify
the correct link and then location of a user on this link.

The topological map matching approach for indoor applications was proposed by
Gilliéron et al. (2004); Spassov (2007). Both of these methods rely on the similarity
of the trajectory geometry and the topological features of the link-node graph. The
first method is based on the Bayesian inference where the estimation is computed
considering the walked distance and azimuth. The second method represents a new
application of the Fréchet distance as a degree of similarity between two polylines.

Indoor versions of probabilistic map matching algorithm, which are based on particle
filtering were developed by Klepal and Beauregard (2008); Beauregard (2007); Wood-
man and Harle (2008); Ascher et al. (2012); Krach and Robertson (2008); Khider
et al. (2008). These algorithms use a set of random samples (particles) to represent
the posterior density of the unknown position in a dynamic state estimation frame-
work where floor plan information is used. The particles are distributed over the
digital building plan where walls represent impassable obstacles and give an approx-
imation of the probability density function of the user’s position. If a particle collides
with a wall, it is excluded from the Monte Carlo simulation.

In this particular application, a particle filter provides a natural and intuitive way
of incorporating building plan information into position estimation, by applying the
direct constraint to each particle as was implemented in Beauregard (2007); Klepal
and Beauregard (2008); Woodman and Harle (2008); Ascher et al. (2012). All these
approaches use the same method of building constraints implementation. The dif-
ferences lie in the transitional prior and measurement update computation. These
algorithms also use inertial sensors to compute the transitional prior.

Klepal and Beauregard (2008) investigated the use of partial mapping for indoor nav-
igation. They described the scenario of a first responder arriving at an incident with
knowledge of only the building footprint. This work demonstrates that the use of only
minimal constraints in a particle filter can also be very useful. A weighting model
that was used in this work, simply eliminates particles, which crossed walls. The
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performance improvement can be obtained if a more subtle weighting approach is
applied. Khider et al. (2008) use different movement models to increase the robust-
ness. Among the models were the stochastic behavioral model, the diffusion move-
ment model and map-enhanced combined model. However, elevators or ladders for
industrial facilities are not addressed.

Khider et al. (2009) uses 3D diffusion movement models and building plans for ped-
estrian navigation indoors. He also proposes an intermediate virtual floor between
staircases, which he calls x1/2 level, to compute altitude. The new floor level is set
depending on the model based information. User motion inside the staircase is rep-
resented by an extended Markov model. For this algorithm the map must be known
well, since the direction of the stairs helps the map aided algorithm to find a user
position inside the staircase. Even the speed is adjusted in the staircase, depending
on the user climbing up or down. In this approach the height information is not used
although it could increase the robustness of the floor transition estimation.

Kaiser et al. (2011) proposed the use of an angular probability density function for
weighting particles within the particle filter. In this work, wall crossing constraints
were not the only constraint. First, the particles were weighted according to their dir-
ection with respect to an angular movement model, derived from complete mapping
of a building. Second, particles, which crossed walls were naturally de-weighted
in this model. The authors stated that use of weighting based on particles heading
performs better than an equal particle weighting approach, especially when dealing
with multiple particle groups. However, this method works well only when the walls
are closely spaced. The performance of this method degrades in open areas or when
using maps with no internal wall constraints.

In Woodman and Harle (2008); Ascher et al. (2012) the map matching algorithm is
also based on particle filters. They extended the algorithm by taking into account
multiple floors. In Woodman and Harle (2008) the differential height information of
the foot mounted pedestrian navigation system is used to watch the transition from
one step to another. For very detailed maps, this approach seems to be a good solu-
tion. However, obtaining maps with that level of detail in a real-world mission might
be a problem, as every step in a staircase needs to be known; if one step is missing in
the map, the proposed map matching algorithm might fail in a staircase. Woodman
and Harle (2008) did not address ladders and elevators.
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To reduce computation time, the degree of freedom of this 3D problem often is re-
duced to 2D, so the height of a trajectory is not considered. In Ascher et al. (2012)
staircases are represented as sloping rectangles and elevators and ladders as vertical
rectangles that can be crossed by the user. The accurate height estimation from
IMU and barometer measurements allows to impose an additional constraint for
each particle, finally matching the estimated trajectory to the multi-floor map. Even
slightly inaccurate height profiles due to barometric drift lead to correct estimation
results, which shows the robustness of this approach.

Woodman (2010) investigated the use of building constraints for an unknown initial-
ization and convergence of the path to a uni-modal position solution. In this work,
a large number of particles were used, especially at initialisation, with numbers ran-
ging from 2.5 · 104 to 4 · 106. Adaptive resampling was used to vary the number of
particles used depending on the complexity of the PDFs, thus fewer particles were
used after initialization and in the ”tracking” mode. In this work, the filter weight-
ing scheme was based upon the agreement of the height change from the INS with
the height change obtained from the map data. However, no attempt was made to
investigate cases of incomplete or incorrect mapping.

In Krach and Robertson (2008) the importance of having the map of the environ-
ment to reduce position drift of an inertial bases navigation system is pointed out
again. Depending on the map and walked path, particle filter based map matching
can completely eliminate estimation drift. Even an unknown starting point can be es-
timated after some time. The indoor maps can be also used for position and heading
correction.

Building floor plan data can help not only obtain better positioning but it also can cor-
rect inertial navigation system position and heading used under GNSS-denied condi-
tions. The idea of using Cardinal Heading Aided Inertial Navigation (CHAIN) was
proposed by Abdulrahim et al. (2011a,b) and later by Pinchin et al. (2012). This
algorithm generates heading measurements from the basic knowledge of the orienta-
tion of the building in which the navigation system is operating. This measurement
is used in an Extended Kalman Filter in the form of an observation of heading error.
The solution is based on the assumption that most buildings are constructed with a
rectangular layout where most rooms and corridors are also rectangular, thus con-
straining the direction in which the user can move throughout the building into one
of four principal headings. Another assumption is that error in the INS Course Over
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Ground (COG) over one step is identical to the error in the INS heading state. A
measurement of this error is obtained by differencing the INS COG with the cardinal
headings. The minimum difference is taken as a measurement of heading error and
weighted before being used as a filter input. The disadvantage of these methods is
that the user can actually move in a different direction than the ”cardinal heading” of
the building. Therefore the method may fail in the following cases (Abdulrahim et al.
(2011a)): continuous walking in circles or curvilinear lines for long period of time, if
the building does not conform to the simple geometry, and when internal rooms and
corridors are not parallel to external walls.

The robustness of CHAIN algorithm can be improved by weighting the heading
measurements to reflect the degree to which the assumptions hold in a particular
environment. In a tightly constrained environments, e.g., narrow corridors the meas-
urements are highly weighted while in a more loosely constrained environment, e.g.,
a car parking the observations can be given a lower weight. Since heading is the
primary source of position error in a foot mounted INS aided by zero-velocity ob-
servations, CHAIN is very effective at controlling position accuracy drift. Tests have
demonstrated that an EKF with the CHAIN observations is capable of controlling
heading drift over long periods of navigation, keeping position error below 5 m in
40 minutes walk for unaided foot mounted INS (Abdulrahim et al. (2011b)).

Borenstein et al. (2009) introduced a method called “Heuristic Drift Reduction” (HDR).
HDR makes use of the fact that many streets or corridors are at least partially recti-
linear. At any moment, the HDR method estimates the likelihood that the user is
walking along a straight line; if that likelihood is high, HDR applies a correction to
the gyro output that would result in a reduction of drift if indeed the user was walk-
ing along a straight line. If the algorithm decides that the user is not walking along a
straight line, then HDR does nothing. According to Borenstein and Ojeda (2010) the
limitation of the HDR method is that when not moving straight, at best we can expect
HDR to notice that and suspend its operation. During that time, gyroscope drift accu-
mulates and the integration of the rate of turn results in heading errors. Then, when
moving straight again, new heading errors are prevented, but those heading errors
that were accumulated while HDR was suspended remain in the system and cannot
be eliminated. The effect of the HDR method is thus that it reduces heading errors
due to drift substantially, but cannot totally prevent the unbounded growth of heading
errors.
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Jiménez et al. (2011) analyzed the shortcomings of HDR algorithm, which can even
degrade the navigation solution when used in complex buildings where corridors are
curvilinear and not aligned to a rectangular layout or where there are large open areas.
They proposed a method, called improved Heuristic Drift Elimination (iHDE), that
includes a motion analysis block to detect straight-line paths and an adaptive on-line
confidence estimator for the heading corrections.

4.2 Novel Map Aided Indoor Navigation Algorithm

The thesis contribution to map aided autonomous indoor navigation is in development
of an approach for position and heading correction. A method for preventing the
unbounded error growth by correcting position and heading errors of autonomous
navigation systems operating indoor has been proposed. This method can be applied
to vehicle navigation and it comprises three steps: (a) the autonomous sensor data is
processed to obtain position, velocity, and attitude, (b) map matching corrections are
applied to the trajectory calculated by the dead reckoning system, and (c) the most
accurate estimation of vehicle’s path is computed as optimal fusion of map matching
and dead reckoning solutions. The proposed algorithm consists of two parts: (a)
particle filter based map matching, and (b) novel algorithm for position and heading
correction. The map matching algorithm is based on the two dimensional algorithm
presented by Woodman and Harle (2008); Beauregard et al. (2008).

The chapter presents also test results with actual digital building floor plan and real-
world heading rate and ground speed data. The position measurements were calcu-
lated by vehicle dead reckoning system. These measurements were combined with
the floor plan to correct the position of the vehicle inside the building. The results
shown in this chapter demonstrate that the proposed map-aided navigation algorithm
is reliable and accurate. It is able to correct significant errors in dead reckoning posi-
tion and heading by applying the map constraints.

Woodman (2010) showed that map data can be used to solve the initialization prob-
lem by only applying wall constrains on the path. The position solution converges
from an unknown position to an actual location. However, this method of initial-
ization often requires large number of particles in the filter and may be impractical
for real time applications. For this reason we investigate a more realistic scenario
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whereby the initial position and orientation is roughly known and only requires re-
finement. In many situations, the location of vehicle inside the building is known
with some position error, which depends on circumstances, navigation equipment,
and scenario. For example, when vehicle enters the building the position can be
known because GNSS was available prior to the entrance. In this case, since the
position error is relatively small, the particles weight computation may include the
condition of wall crossing and also proximity to the position measurement computed
by the navigation system.

4.3 Indoor Maps

Currently, there is no common standard for indoor map data. In most practical cases,
it is still necessary to compile a digital map suitable for map matching using different
sources like 2D or 3D plans in a computer-aided process supervised by a human
operator. Most of the databases for the maintenance of buildings are based on a 2D
graphical representation inherited from design plans. The content of such a database
is composed of many objects (corridor, room, elevator, etc.), which are useful for
positioning purposes.

The minimum requirements to the indoor map include information about the walls,
doors and staircases. In addition to this, the topological algorithms require inform-
ation about transitions between rooms and other topological relationships. Gilliéron
et al. (2004) proposed to use link/node representation created with the aid of graph
theory. An alternative approach, which considers a Voronoi diagram of the envir-
onment was proposed by Woodman (2010). A Voronoi diagram consists of a set of
points with a locally maximal distance from all surrounding objects. Such points nat-
urally form the edges of a graph-like structure. According to Woodman (2010), Voro-
noi diagram can make the map matching algorithm more efficient since the particles
are more constrained and far fewer are required. The main drawback is that it is not
possible for the particle cloud to represent positions that lie near the edge of a room or
corridor. However, this limitation may not have a significant effect on the positioning
accuracy, especially when the path is staying clear of nearby obstacles.

For unmapped buildings, laser based Simultaneous Localization and Mapping (SLAM)
methods for indoor navigation can be used to create 2D or 3D maps. The example of
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commercially available mapping system includes the Trimble Indoor Mapping Solu-
tion (TIMMS). This technology does not rely on GNSS and can capture the spatial
data indoor enabling the creation of accurate, real-life representations (maps, models)
of interior spaces and all of its contents. Every object in the interior space, including
desks, chairs, stairs, and doors appear in the plan. The created maps are geo-located,
meaning that the real world positions of each area of the building and its contents
are known. TIMMS is a manually operated push-cart designed to accurately model
interior spaces without accessing GNSS. It consists of 3 core elements: LiDAR and
camera systems engineered to work indoors in mobile mode, computers and electron-
ics for completing data acquisition, and data processing workflow for producing final
2D/3D maps and models.

Currently available indoor map databases include the indoor OpenStreetMap (OSM)
and Google indoor map. Indoor OSM utilizes existing OSM methodologies (nodes,
ways, relations and keys) and include the following features: mapping of indoor
spaces including different levels (floors), mapping of doors and windows (inside as
well as facade), 3D properties (e.g. height etc. are also included). Currently there
are thousands of locations available including airports, hotels, universities, schools,
museums, train stations, shopping malls.

Google indoor maps include over 10,000 locations available around the world and
the number is growing. Indoor Google Maps create a more convenient and enjoyable
visitor experience. Visitors can access a building’s floor plan when indoor maps are
available. For buildings with multiple floors, visitors can switch between floors to
see the respective layouts. Floor plan labels help visitors easily find different stores
within shopping malls, departments within retail stores, gates within airports, as well
as ATMs and restrooms. Visitors can spend more time enjoying their experience, dis-
cover new points of interests, and avoid time spent searching for building directories.

4.4 Particle Filter Based Map Matching for Indoor Navigation

The map matching algorithm is an essential part of the proposed concept. Constrain-
ing the estimated user trajectory onto a building plan leads to strongly non-Gaussian
and possibly multimodal distributions, which makes application of the common Kal-
man filter, or its nonlinear extensions, impractical. Although map matching has been
shown to be possible using Kalman-type filters (Perälä and Ali-Löytty (2008)), we
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will use an approach based on particle filtering similar to the algorithm that was de-
scribed in Chapter 3.

The goal of the particle filter is to find an approximation for the posterior distribu-
tion p(x0...k|y1...k), i.e., the conditional distribution of the states x at time instants 0,1, . . . ,k
given the sequence of observations y1, . . . ,yk. Suppose that the state can be described
as a discrete-time Markov process such that the state at time step k depends on the
previous state according to the probabilistic model p(xk|xk−1). Then, we can decom-
pose the conditional probability of the states given the measurements y similar to
Eq. (3.6)

p(x0...k|y1...k) ∝ p(yk|xk)p(xk|xk−1)p(x0...k−1|y1...k−1). (4.1)

Because the distribution in (4.1) cannot be solved for in closed form in the general
nonlinear and non-Gaussian case, a particle filter will approximate it by using a cloud
of particles. The ith particle is a candidate state vector x(i) and has a weight w(i) ∈
[0,1]. The propagation of i th particle can be described by the following equationN(i)
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where the distance traveled from time instance tk to tk+1, Lk and increment in vehicle’s
heading during this time ∆ψk are measured by the vehicle’s navigation system. For
each particle the distance traveled by this particle ∆L(i)

k and heading ∆ψ
(i)
k are per-

turbed using some model of measurement errors. In our case they are drawn from
Gaussian distribution with zero mean and constant variance. The variance of this
distributions for both distance and heading is one of the design parameters, which
affects diversity of the particles.

4.4.1 Options for Measurement Update

Most of the previous papers include only the measurement update based on building
floor plan constraint (impassable walls). In this case, the idea of the map matching
algorithm is to fit trajectory into the building plan. If the trajectory is long enough
and it includes turns the process of fitting this trajectory into the map will be unique
and it will result in a trajectory, which is close to the user’s actual path. However, in
some cases this can create the ambiguity and a solution may be not unique.
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It is not always possible to determine the user’s position because the user has not yet
passed through a sufficient number of asymmetries, or because the environment is not
sufficiently asymmetric to make localization possible. Typically, buildings exhibit
high degree of symmetry. In particular, it is common for multi-storey buildings to
have very similar layouts on each floor. This limitation of particle filter based map
matching algorithms was outlined in Woodman and Harle (2008); Woodman (2010).

In such cases it is necessary to provide more information to the filter to allow it to
complete the localization process. One option is to use some form of absolute posi-
tioning to obtain an approximate position for the user. Unfortunately, this is not al-
ways possible. If the positioning provided by the dead reckoning is accurate (position
error is smaller than 10 m) then this information can be also used for measurement
update.

When only building plan information is used as a measurement update it can be
incorporated into map matching algorithm through the weight computation for each
particle according to Eq. (3.7). In this case, the measurement likelihood p

(
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k

)
is defined as

p
(
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(i)
k

)
=

{
0 if there is a wall between x(i)k−1 and x(i)k
1 otherwise.

(4.3)

In other words, particles that cross walls are discarded. Alternatively, the likelihood
of wall-crossing particles can be set to a small positive number in order to account
for possible errors in the map. However, in the tests conducted in this study, zero
likelihood was used for these particles.

Another option is to consider in addition to map information the measurements of the
user’s position from the on-board DR navigation system. In this case, the likelihood
is calculated for each particle based on the proximity between the position fix and the
particle according to
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where x(i)k is the ith particle’s coordinate, xmeas
k is the measured user position, and

σ2
pos is the position measurement variance. In addition to the measurement update the

condition of not crossing the walls is also checked. The path increment x(i)k − x(i)k−1
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for each particle is checked for crossing the walls. The particle’s weight is reduced
to zero according to Eq. (4.3) if it crossed the wall. The second option requires fairly
accurate position measurements with the position error not exceeding 10−15 m. In
this case the navigation algorithm can keep track of the user’s position and heading,
and improve the dead reckoning solution applying map constraints. Correction of
the dead reckoning solution is based on the approach, which will be presented in
Section 4.5.

4.4.2 The Map Matching Algorithm Indoor Test

The proposed navigation algorithm was tested with actual digital building floor plan
and real-world heading rate and ground speed data. The test vehicle was a four-
wheeled cart described in Pekkalin et al. (2010) that was pushed around in an office
building environment. A 15 deg/hr Murata SCR1100-D04 MEMS gyroscope was
measuring the heading changes of the cart while the speed was measured using two
encoder-based odometers with separate measurement wheels. The encoders were
thus not connected to any of the cart wheels, but the measurement wheels were moun-
ted using spring-loaded arms in order to ensure a constant floor contact and to avoid
slippage. Both encoders were available, but only one of them was used to compute
the results presented in this paper.

The test route used here was a 150 m path inside a building shown in Fig. 4.1. The
true vehicle path is very close to a map matching solution shown by the crosses. The
estimated path computed by the vehicle dead-reckoning system is shown by the solid
line. The initial heading error of 10 deg was intentionally added to the dead reckoning
solution. The dead reckoning solution is also used as the position measurement for
the particle filter. The speed and ground track are also computed based on the dead
reckoning solution.

The particle filter solution is shown in Fig. 4.1 by the crosses. It is represented by
the weighted mean of the particles. The particle filter calculations are based on
100 particles. The algorithm position accuracy was analyzed against known land-
marks along the test route. The DRMS of horizontal position errors for dead reck-
oning only and map aided dead reckoning navigation algorithms during the test is
shown in Fig. 4.2. From Figs. 4.1, 4.2 it is clear that the knowledge of floor plan can
improve the accuracy of position estimation calculated by the dead reckoning system.
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Fig. 4.1. Dead reckoning solution (thick line) and position estimates from map matching
(crosses).

From these results, it can be seen that the position error of the particle filter solution is
smaller than the width of the corridors and doorways. The cross-track position error
during this test did not exceed 1.7 m. The approximate limit on the possible position
accuracy of this approach is set by the size of the rooms and level of floor plan details.
This section has shown how the map matching algorithm can improve the dead reck-
oning system performance. This becomes very important in the case of autonomous
navigation. The dead reckoning solution can be corrected occasionally. Section 4.5
will describe how this correction can be calculated based on the map matching and
dead reckoning solutions. The performance of the proposed particle filter based map
matching algorithm depends on the following factors:

• Vehicle’s movement. The long walking path covering different rooms of the
building improves the accuracy of position estimation.

• Size of the rooms and hallways affects the accuracy. The smaller the dimen-
sions the better accuracy can be achieved.

The particle filter performance can be adjusted by changing the ground speed and
heading noise in the proposal distribution p(xk|xk−1). Increasing ground speed noise
improves the particles diversity. Position and heading variances have to match ap-
proximately the position and heading measurement errors of onboard sensors. Using
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inertial measurements and building plans only makes the process of positioning en-
tirely autonomous and gives promising results. This method of positioning can be
applied to vehicle or pedestrian navigation tasks. In particular, it suits the needs of
firefighters and rescue services. The algorithm is suitable for real-time implementa-
tion on personal navigation devices.

4.5 Position and Heading Correction

This section describes the fusion algorithm that combines navigation data with build-
ing floor plan. The output of this algorithm is the optimal estimation of navigation
system position and heading errors.

4.5.1 Motivation

The proposed algorithm provides an accurate means of correcting the accumulation
of dead reckoning position and heading errors. The idea is based on the fact that
the vehicle’s movement indoors is constrained by the walls; if the trajectory is long
enough and includes turns, it will be quite unique and it can be identified among

Fig. 4.2. DRMS of horizontal position errors.
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Fig. 4.3. Block diagram of the feedforward implementation of the algorithm.

other trajectory candidates. The position and heading extracted from this traject-
ory are usually more accurate than those computed by the dead reckoning system
since they do not suffer from error accumulation which is inherent to dead reckon-
ing navigators. The different error properties and little correlation between these two
navigation solutions can be explained by the fact that building floor plans represent a
new source of information and map matching is a non-linear operation.

An example of a typical dead reckoning solution for indoor vehicle navigation is
shown by a thick solid line in Fig. 4.1. It can be seen that the solution does not
match the corridors of the underlying map because of a heading offset of approxim-
ately 10 deg. The position accuracy of this solution was significantly improved after
applying a map matching algorithm (Fig. 4.2), which is mostly due to the elimination
of the heading error; the map-matched position estimates are shown by crosses. This
example demonstrates the capabilities of map matching in improving the accuracy of
dead reckoning navigation. However, the dead reckoning solution is smoother than
its map-matched counterpart which shows larger short-term variations. Therefore, a
better estimate of the trajectory is obtained by fusing these two solutions. Since the
errors in the two estimates have complementary properties, the fusion algorithm can
be, for example, a Kalman filter.

4.5.2 Fusion algorithm

A block diagram of the proposed navigation algorithm is shown in Figs. 4.3, 4.4. In
these diagrams, N and E refer to North and East position, respectively, and ψ is the
heading; the subscripts M and DR refer to quantities obtained from map matching
and dead reckoning, respectively. δψ̂, δN̂, δÊ are estimates of the dead reckoning
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Fig. 4.4. Block diagram of the feedback implementation of the algorithm. All corrections fed
back to the navigation processor.

system’s heading and position errors computed by the Kalman filter. The navigation
solution is corrected using the computed estimations of the position and heading
errors.

The proposed algorithm consists of the following steps. First, the autonomous sensors
data is processed to compute vehicle’s position and heading. Then, the map matching
algorithm is applied; we used the particle filter based approach, which was described
in Section 4.4. Once the map matching has been applied, the resulting trajectory is
more accurate than the original dead reckoning solution since constraints imposed
by the building walls are accounted for. Finally, the position and heading from the
map matching solution is compared with position and heading computed by the dead
reckoning system by taking the difference between the respective parameters. This
difference is fed to the Kalman filter as a measurement.

If autonomous navigation is performed for a long period of time the navigation para-
meters of the dead reckoning system can be also corrected. In this configuration,
the estimated dead reckoning errors δψ̂, δN̂, and δÊ along with an estimate of the
gyroscope bias δω̂ are computed by the Kalman filter and fed back into navigation
computer to compensate for the gyro measurement errors, as illustrated in Fig. 4.4.
The rate at which this correction can be applied depends not only on accuracy of the
sensors but also on the building layout. For example, long narrow corridors constrain
the heading efficiently and result in a more accurate map matching solution. Since
with our sensors, the influence of odometer errors on navigation solution is negligible
compared to influence of gyro errors, the estimation of odometer measurement errors
were not used to correct the output of odometer.
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The Kalman filter is implemented as an error-state filter. The state vector includes the
dead reckoning system’s North and East position errors, ground speed and heading
error along with the gyro drift and odometer scale factor error. The system model is
approximated by the linearized error equations for dead reckoning navigation systems
based on speed sensor and heading gyro, expressed in continuous time as

d
dt
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(4.5)

where V denotes the vehicle speed, δS is odometer scale factor error and τg is the cor-
relation time of the gyroscope bias. ng is a zero-mean random variable with variance
matching the instability properties of the gyroscope. An estimate of the position and
heading errors is computed by taking the difference between the position and heading
computed by the dead reckoning system and the position and heading from the map
matching solution. Hence the measurement model is given by

z =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0




δN
δE
δV
δS
δψ

δω


+v (4.6)

where v is a white Gaussian measurement noise with zero-mean and known covari-
ance which is not necessarily constant because the precision of map matching de-
pends on the local geometry of the building. Although the presented algorithm is
based on two-dimensional dead reckoning navigation system, it is possible to modify
this approach to accommodate other types of navigation systems, for example, a six
degrees-of-freedom INS.

4.5.3 Field Tests and Results

To test and validate the proposed position and heading correction algorithms we used
the same heading rate and ground speed data, which was described in Section 4.4.2.
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Fig. 4.5. Dead reckoning solution (thick line) and Kalman filter corrected trajectory (thin
line). The Kalman filter solution is fed back to the dead reckoning processing once
(dashed ellipse).

The purpose of these test is to show how the same DR solution can be improved
after position and heading corrections are applied. The field test demonstrates how
the initial heading error in the dead reckoning computations can be estimated and
corrected by using the proposed algorithm. The test route is shown in Fig. 4.5. The
actual path followed the marks on the floor and was very close to the path shown
by the thin line. The initial heading error of 10 deg was intentionally added to the
computed dead reckoning navigation solution which is shown in Fig. 4.5 by a thick
line. The test begins with a stationary period of approximately 38 sec. During this
time the heading estimation is not possible. Then the cart is moved and the estimation
of heading began. The heading error estimation performance is illustrated in Fig. 4.6.
It shows that approximately 20 sec after the cart moved the Kalman filter estimation
of heading error converged to the actual heading error of 10 deg. After the transition
time the uncertainty of heading estimation error did not exceed 1 deg. Note that the
estimation performance depends on the building layout and trajectory of the vehicle
which set the limit for the accuracy of position and heading error estimation. The
position accuracy during this test was approximately 1.5 m and DRMS of horizontal
position errors is shown in Fig. 4.2. The optimal estimation of the vehicle’s path is
computed by correcting the dead reckoning solution using computed by the Kalman
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Fig. 4.6. Estimated vs. actual heading error.

filter corrections and it is shown in Fig. 4.5 by the thin line.

During the first minute of vehicle’s movement the Kalman filter only estimated the
number of parameters including position and heading errors of the dead reckoning
computations without correcting these errors. Nevertheless, it is possible to correct
the dead reckoning solution by eliminating position and heading offsets as it is shown
in Fig. 4.5. If the autonomous navigation continues for long time the correction of the
dead reckoning computation can be repeated when the accumulated errors become
large and map correction can improve the accuracy of navigation. In this way it is
possible to keep the positioning errors bounded.

4.6 Conclusions

This chapter has shown how the map corrections can improve performance of autonom-
ous dead reckoning navigation system by offsetting the initial errors as well as accu-
mulated errors of the dead reckoning system. The approach can be applied to vehicle
navigation systems operating indoors. Using only self-contained sensors and building
plans makes the process of positioning entirely autonomous and gives promising res-
ults. The assumption of indoor map availability is justified since nowadays in many
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countries the digital building floor plans are mandatory for critical infrastructure and
in the future they will be available for most of building. Fire-fighters, rescue services
and police have real-time access to this information.

The map matching algorithm generates position and heading pseudo-measurements
from knowledge of the building floor plan where the navigation system is operat-
ing. Using these pseudo-measurements the Kalman filter calculates errors in dead
reckoning system’s position and heading. Then these estimated position and head-
ing corrections are held constant and are used to correct the dead-reckoning solution
until the next time they are recalculated (typically 40-60 seconds). If the building
layout and movement of the vehicle are suitable it is possible to keep small position
errors and heading errors for long periods of time. The performance of the proposed
navigation algorithm depends on the following factors:

• Vehicle trajectory. The long path covering different rooms of the building im-
proves the accuracy of position estimation.

• Size of the rooms and hallways affects the accuracy. The smaller the dimen-
sions the better accuracy can be achieved.

• The initial position and heading errors of the dead reckoning system. The large
errors might cause the map matching algorithm to fail.

• Quality of a gyro and ground speed sensor.

Compare to other approaches for aiding IMU with building heading (Borenstein et al.
(2009); Borenstein and Ojeda (2010); Abdulrahim et al. (2011a,b); Jiménez et al.
(2011); Pinchin et al. (2012)) the proposed method has the following advantages:

• It can work when the building does not conform to the simple geometry

• It allows continuous walking in circles or curvilinear lines for long period of
time

• It can correct not only the heading errors but also position errors as well



5. A NOVEL APPROACH TO AUTONOMOUS PEDESTRIAN
NAVIGATION

High-performance autonomous pedestrian dead-reckoning (PDR) systems usually in-
clude 6 degrees-of-freedom (DOF) inertial measurements unit (IMU) to calculate
position of the user. These systems do not rely on GPS signals or preinstalled in-
frastructure such as RF beacons, Wi-Fi routers, ultrasonic transmitters etc. Standard
inertial navigation system (INS) calculates position by temporal integration of IMU
data that comes from three accelerometers and three gyroscopes. Estimated posi-
tion is calculated at regular time intervals. The unaided INS’s position, velocity and
attitude errors grow with time and can be quite significant especially when IMU con-
sists of low-cost MEMS sensors. Therefore, traditional unaided INS mechanization
is impractical for pedestrian navigation.

One way to curb the divergence of errors in INS is to use external velocity and po-
sition aiding. In indoor scenarios without preinstalled infrastructure, the options for
external velocity and position aiding are very limited: building floor plans can be
used for position update, Doppler radars for velocity update. However, even these
options are not always available.

An alternative navigation method takes advantage of biomechanics of walking. Re-
cognizing that people move one step at a time, the pedestrian mechanization restricts
error growth by propagating position estimates in a stride-wise fashion, rather than
on a fixed time interval. Inertial sensors in a pedestrian dead reckoning system are
used to detect the occurrence of steps, and provide a means of estimating the distance
and direction in which the step was taken. In this way, position error is proportional
to the number of steps or traveled distance.

Most current PDR systems use foot mounted IMU, which allows for zero-velocity
update at every stride. However, the foot-mounted IMU is not practical in many
applications. In this thesis we propose a novel approach for velocity update based
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on knowledge of human walking process. It can be applied to body-mounted IMU at
waist or torso, which in most applications is advantageous compare to foot-mounted
sensors.

Our approach gives an alternative way to calculate traveled distance and velocity
averaged during the step, which can be considered as a virtual measurement. The
different characteristics of errors in INS output and in this virtual measurement make
it possible to apply complementary filter methodology and significantly improve INS
performance by keeping the horizontal velocity and tilt errors small. The processing
of corrected IMU output results in accurate estimation of stride length and direction.
This chapter presents the real-world results from pedestrian indoor walking tests.

5.1 State of the Art Methods

There are several approaches to the use of the inertial sensors for pedestrian naviga-
tion, which according to Groves et al. (2007) may be characterized by

• The location, whether the sensors are mounted on the shoes or the body;

• The number and quality of inertial sensors to be used;

• Whether to use conventional inertial navigation algorithms, supported by zero
velocity updates (ZUPT), pedestrian dead reckoning (PDR) or both.

All recent developments in navigation systems for pedestrians use either body moun-
ted or foot mounted inertial sensors. In both cases, the navigation algorithm can
be based on traditional INS mechanization with ZUPT or PDR, which is a step and
heading type algorithm. There are also examples (Groves et al. (2007); Soehren and
Hawkinson (2008)) when inertial navigation and PDR are used together, sharing the
same inertial sensors, in which case, inertial navigation is incorporated within the
multi-sensor integration architecture as the reference system and PDR as an aiding
sensor. In spite of the fact that PDR systems are based on very low cost sensors they
perform much better than a traditional INS with the same sensors. This is because
of applying additional constraints on the user movement, which are derived from the
models of human gait.
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Fig. 5.1. Horizontal speed during walking. Fig. 5.2. Vertical acceleration during walking.

5.1.1 Biomechanics of Walking

Analysis of the human gait shows that the basic pattern of human motion during a
walk is cyclical, repeatable and remarkably consistent between individuals (Stirling
et al. (2003)). At normal constant walking speed, the vertical and horizontal com-
ponents of the body’s centre of gravity velocity oscillate smoothly with the frequency
equal to the step frequency. Examples of horizontal speed and vertical acceleration
during normal walking are shown in Figs. 5.1, 5.2. The vertical acceleration was
recorded by the torso mounted accelerometers and the horizontal velocity was meas-
ured by a Novatel DGPS receiver.

The previous work related to human gait and motion analysis provides significant in-
sight into biomechanics of walking. Most of the existing research was carried by the
medical community for purposes of orthopedic surgery, prosthetic limb design and
treatment of neuromuscular disorders (Aminian and Najafi (2004)). Additionally,
there is an intense effort at understanding human biomechanics and bipedal motion
using MEMS inertial sensor technology. For example, Kwakkel et al. (2007) eval-
uated the performance of MEMS IMU technology to analyze in situ foot/ankle kin-
ematics. Taki et al. (2004) investigated bipedal motion for the purpose of designing
bipedal robots.

Matthews et al. (2010) developed a mathematical model of the human walking pat-
tern, or gait, and determined what kind of navigation information can be extracted.
A related application of this model is in the field of biometrics where a gait model
can be used to characterize the motion of different individuals, so called biometric
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gait recognition. He suggested that the natural walking pattern of a human may vary
slightly depending on the situation. For example, people walk differently while in a
hurry than while on a leisurely stroll. Additionally, a person’s size, mass, level of fit-
ness, etc. have a significant effect on their gait profile. For example, an athlete walks
differently from a non-athlete; taller persons have a longer natural stride length;

According to Matthews et al. (2010), consistent motion patterns exist for most if not
all modes of bipedal motion such as walking and running. An individual’s personal
walking pattern is a variation on this overall basic pattern. The existence of a personal
walking pattern that is similar across individuals means that a single model only
needs to be developed that includes a set of parameters such as limb lengths which
can be tuned to accommodate different individuals. Identifying these patterns alone
can provide meaningful information to the personal navigator.

The kinetic models developed by Ladetto (2000); Groves et al. (2007) can be used
to provide a real-time estimate of stride length. These models use an empirical re-
lationship between a step length and step frequency and take into account individual
differences between people. Therefore, they can potentially augment other dead reck-
oning algorithms commonly used in personal navigation.

Many kinetic models use a single-axis accelerometer to estimate stride length in-
situ for straight forward walking. The amplitude of vertical acceleration and vertical
displacement are proportional to the step length. As a result, the stride events as
well as stride length can be estimated using models of gait dynamics and measured
motion parameters. When a foot hits the ground significant vertical acceleration is
generated by the impact. Therefore the algorithms for stride occurrence detection can
be based on the analysis of the acceleration pattern during walking. Furthermore, the
combination of the kinetic model and accelerometer yields a navigation solution of
comparable or better performance when compared to the step counting approach.

Average speed during the step can be calculated as the ratio between the step length
and step duration. This ground speed can be also resolved into the north and the east
velocity components using INS computed heading averaged over the same step. Thus
the estimation of pedestrian velocity during the step is obtained. Since the velocity
error of this kinetic model based estimator is a result of several independent error
sources such as model error, measurement error and inaccuracy in step occurrence
events it has a random distribution and can be approximated as Gaussian noise.
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5.1.2 Pedestrian Dead Reckoning Systems

A PDR system computes position by integrating the displacement vectors, which
represent steps. Most personal dead-reckoning systems detect steps using an accel-
erometer and move the position estimate forward by the step length in the direction
determined by a magnetic compass or yaw gyro (Judd (1997); Ladetto and Merminod
(2002)). If no steps are detected, the system is assumed to be stationary. Any PDR
system performs the following tasks (Harle (2013)):

• Step count or step segmentation

• Step length estimation

• Step direction estimation

The first task of a PDR is the identification of steps or strides within the data. Simple
PDR algorithms only count the steps assuming that the step length is just the average
for that user. Advanced systems also perform accurate step segmentation and have
the ability to analyze the accelerometer signals to estimate the magnitude of each step
individually. After step segmentation is complete next task is to estimate the step
length and direction. Step length estimation is usually based on the accelerometer
signals. The body-mounted accelerometers detect steps using the vertical component
of the acceleration vector, which exhibit cycles typical of a human’s walking motion.
Some algorithms model step length as a function of the step frequency, acceleration
variance and slope (Ladetto (2000)). PDR system can work with a single accelero-
meter, though better accuracy and robustness are obtained with triaxial sensors. The
performance is largely insensitive to the sensor quality, so PDR is suited to operation
with very low-cost sensors. However, most of these systems require calibration to an
individual user because everyone’s gait has different acceleration profiles. The step
direction is usually determined based on magnetometers or gyros, or both.

Step Segmentation Methods

Most step segmentation methods utilize the fact that pedestrian motion has a cycling
nature. The algorithms search for the repeating data patterns. According to Harle
(2013), most step segmentation methods are based on step cycle detection and can be
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categorized into following groups: zero crossings, peak detection, auto-correlation,
and spectral analysis.

• In a zero-crossing algorithm, the decision on step being made is done by ana-
lyzing the sign of magnitude of the acceleration vector, which can be computed
by subtracting the local gravity from the measured magnitude of the specific
force. When the sign changes from negative to positive, a new step is counted.
The zero-crossing method is based on the cyclic movement of the human body
and requires a triaxial accelerometer. Since the norm of the acceleration vector
is used the orientation of the sensor unit has no effect on the measurement.
This is a popular choice for pedometers or activity monitors due to its simpli-
city (Käppi et al. (2001); Leppäkoski et al. (2002); Weinberg (2002); Saarinen
(2009)).

• The body-mounted systems can detect the peaks (maximum or minimum de-
tection) of the vertical acceleration caused by heel impacts (Ladetto (2000);
Fang et al. (2005)). The difficulty with this approach is that each foot im-
pact may generate multiple local peaks. This can significantly increase the
algorithm complexity, especially, in the case of foot mounted sensors due to
the higher forces resulting in sensor bounce.

• Similar to peak detection, auto-correlation based algorithms detect peaks in the
mean-adjusted autocorrelation of a sequence of magnitude of measured accel-
eration vector. This approach can be used for body-mounted or foot-mounted
IMU. If a sample sequence of walking data for the same person has previously
been collected, cross-correlation with this ”template” data can also identify
steps or strides using the same process (Harle (2013)).

• Another version of peak detection algorithm involves computing the frequency
spectrum of the cyclic data and identifying strong peaks at typical stepping
frequencies (Ladetto (2000)). In this approach the subsets of the data (with a
width that includes at least two cycles) are converted to the frequency domain
and the dominant frequency taken as the walking frequency (Judd (1997)).

It should be noted that most implementations claim to use only the vertical accelera-
tion, but do not compensate for changes in the global pose of the sensor during a step.
Instead they assume that one of the accelerometer axes remains vertical throughout.
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This assumption is valid, in particular, for inertial sensors attached to the torso of the
body. Another common assumption that most algorithms are developed and tested
for its operation on flat surfaces. This is appropriate for the majority of buildings.
However, Ladetto (2000) reports that the assumptions used by many PDR systems
break down on inclines of 10% or more. More recently, Wang et al. (2009) have
demonstrated that different gait patterns corresponding to different inclines can be
distinguished autonomously with accuracy exceeding 90%. From this we can con-
clude that a modified PDR system could cope with long ramps such as those for
wheelchair access, which can be found in many buildings.

Step Length Estimation

Step length can be defined as the distance from the heel print of one foot to the heel
print of the other foot. This is the distance traveled forward by a single leg. Stride
length can mean the distance traveled by the heel of one foot to the next time that
same foot strikes down – in other words, two steps, since in that time the other foot
has also touched down once. During symmetric walking stride length is approxim-
ately twice the step size, therefore the terms stride length, step length and step size
can be used interchangeably in most of the cases related to pedestrian navigation.
The stride length depends on several factors such as walking velocity, step frequency
and height of walker etc.

The algorithms for step length estimation generally fall into two groups: (1) al-
gorithms based on biomechanical models and (2) algorithms based on empirical re-
lationships. The example of the step length estimator based on biomechanical model
is a kneeless biped, which is modeled as inverted pendulum with leg length l, and
vertical displacement of the center of gravity h. In this case, the estimation of step
length is given by Jahn et al. (2010)

∆L = K
√

2lh−h2 (5.1)

where K is a calibration constant. Body-mounted accelerometers can detect max-
imum or minimum of the vertical acceleration, which corresponds to the step occur-
rences. Empirical relation between the vertical acceleration and the step length is
given by Weinberg (2002)

∆L = K 4
√

amax−amin (5.2)
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where amax, amin are the maximum and minimum values of the vertical acceleration
during the step. This formula is based on the bounce movement of the hip while
walking. These algorithms show good performance during normal walking on flat
terrain. According to Fang et al. (2005), Eq. 5.2 computes the step length with estim-
ation error of 3% of traveled distance for the same subject and 8% across the variety
of subjects. The performance of these algorithms degrades rapidly when a person is
walking, for example, on non-flat terrain or climbing on stairs.

Ladetto (2000) proposed the formula for step length estimation using acceleration in
the direction of movement measured by a body-mounted IMU. In this work, it was
shown that there is a strong correlation between the step length and step frequency.
Estimation of the step length was performed using

∆L = K1 +K2 f +K3 Var+w (5.3)

where K1,K2,K3 are precomputed parameters, f is a step frequency, Var is a variance
of the measured acceleration, and w is a white noise. Ladetto (2000) also analyzed
the variation in step length by experimenting with 20 persons who walked with a
constant frequency. The results indicate that accuracy of step length estimation com-
puted by Eq. 5.3 varies with step frequency from 15% (60 steps/min) to 4% (130
steps/min). From the same tests he concluded that there is a correlation between the
step length and step frequency. For example, a mean length of 60 cm was obtained
with 60 steps/min and one of 90 cm was obtained with 130 steps/min.

Estimation of the Step Heading or Change in Heading

In personal navigation indoors the main source of error in position comes from the
errors in the determination of the azimuth of walk, which is usually computed based
on gyros and/or magnetometers. Magnetometers measure the absolute azimuth with
respect to the magnetic north. The main drawback of the magnetic compass is un-
predictable perturbations of the magnetic field caused by the disturbances, which are
usually high indoors because of electric fields and steel structures. Gyros measure a
change in heading and, therefore, require initialization. The drawback of a gyroscope
is that the angular error accumulates. Thus the update of the azimuth computed by
the gyro with external information is necessary. The frequency of this update depends
on the gyro’s quality. However in the short term, the gyroscope can provide a reliable
measure of the change in azimuth.
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Combining a gyro and a magnetic compass can be beneficial. The magnetic compass
is able to provide the external azimuth to update the parameters of the gyro and the
gyro can be used to detect the disturbances that can be as large as tens of degrees.
Ladetto and Merminod (2002) proposed using Kalman filter for coupling a magnetic
compass with a low-cost gyroscope. In this case, the advantage of one device can
compensate the drawback of the other. If we compare the rate of change of both
signals while measuring the strength of the magnetic field, it is possible to detect
and compensate magnetic disturbances. In the absence of such disturbances, the
continuous measurement of the azimuth allows to estimate and compensate the bias
and the scale factor of the gyroscope. The reliability of indoor and outdoor navigation
improves significantly thanks to the redundancy in the information.

PDRs with one gyro, which measures heading and attached to a torso, always apply
the step motion in the forward direction determined by the body-mounted sensor.
Even if a person makes step in a different direction, the position will be propagated
in the direction where the torso faces. Some implementations attempt to identify
backward or sideways steps by the acceleration profiles, but they can never determine
the exact direction of individual steps as precisely as the 6 DOF IMU.

5.1.3 Foot-Mounted IMU

At each step the foot-mounted IMU is temporarily motionless and the sensor velocity
in the local frame is zero. This can be utilized as a pseudo-measurement of INS
velocity in the Kalman filter to update state errors, which is usually called ZUPT.
The application of ZUPT means that unaided INS computations only occur during
the swing phase of the foot to which the sensor is attached. For such short durations,
drift accumulation is small and error grows much slower than in the case of standard
unaided INS.

Foxlin (2005) mentioned that the first implementation of foot-mounted sensors for
navigation was done for a DARPA project in 1996. It was proposed using foot-
mounted inertial sensors with zero-velocity updating, but results were never pub-
lished. Stirling et al. (2003) described an experiment using a prototype foot-mounted
sensors that measure stride length with accelerometers and direction with magneto-
meters. Instead of gyros, their system measures angular acceleration using pairs of
accelerometers. They also did not use a Kalman Filter to make optimal use of zero-
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velocity updates; the system simply stops integrating and resets the velocity before
each step. Stirling et al. (2003) reported that the error in traveled distance for this
system is about 10 to 20%.

Foxlin (2005) was the first who introduced ZUPTs as measurements into the EKF
instead of simply resetting the velocity to zero in the shoe-mounted INS. He achieved
good performance with small low-cost MEMS gyros with the drift of about 100 deg/hr.
He has confirmed experimentally that operating this foot-mounted INS with ZUPTs
alone results in good short-term navigation performance but gradually loses hori-
zontal position accuracy because of heading drift.

In addition to horizontal velocities, the EKF is also able to correct pitch and roll
using the fact that tilt errors are correlated with horizontal velocity errors through the
system dynamics matrix. At certain conditions accelerometer and gyro biases can
also be corrected. Yaw (heading) and the yaw gyro bias are the only important EKF
states that are not observable from zero-velocity measurements.

Foxlin (2005) explained how EKF uses ZUPT pseudo-measurements to correct the
position drift that occurs during the stride phase: ”EKF tracks the growing correla-
tions between the velocity and position errors in certain off-diagonal elements of the
covariance matrix. For example, at the end of a stride, a high correlation between the
uncertainty in north velocity and the newly accumulated uncertainty in northing po-
sition will exist. If the ZUPT indicates that the velocity error at the end of the stride
was positive in the north direction, the EKF knows that it has been drifting north and
will correct the position to the south and the velocity toward zero”.

Jiménez et al. (2010) tried to improve the algorithm described by Foxlin by reducing
the gyro drifts. They proposed a method called zero angular rate update (ZARU),
which assumes that the angular velocity of foot during stance phase is zero, and use
this condition as a measurement in EKF. In many cases, this assumption is false since
the angular velocity of foot is not zero. Thus, if one were to apply a ZARU, the
input standard deviation would be so high that it would have no ability to observe the
bias. Obviously, this method does not give any significant improvement in heading
accuracy, which is seen from the results given in Jiménez et al. (2010). Bancroft
and Lachapelle (2012) investigated ZARU and came to conclusions that because of
the high angular velocities and low bias stabilities, ZARU is not a viable option for
sensors mounted on foot, except, may be the case when the gyros are mounted in the



5.1. State of the Art Methods 73

sole of the shoe.

For shoe-mounted sensors step detection is straightforward as the readings are con-
sistent during the stance phase of a step and varying during the swing phase, as op-
posed to body-mounted sensors, in which the vertical acceleration or norm of accel-
eration vector exhibits a double-peaked oscillatory pattern during walking. Various
methods of detecting the stance phase exists. However, the experimental results also
suggest that it often suffices to use gyro information only.

The major disadvantages of foot-mounted IMU based PDR system are the following:

• Impractical location

• Exposure of IMU to high accelerations and angular velocities

• Quality of ZUPT

Note that shoe-mounted inertial sensors are not practical for soldier and firefighter
applications because of impractical location. The forefoot, which is the easiest loca-
tion to temporarily mount sensors, is an unrealistic location for practical military or
first responder applications since it is the most exposed. The upper heel, ankle and
shin are also somewhat exposed, but it is conceptually possible to mount the sensors
there. However, the quality of ZUPT at these locations is not high. A next alternative
would be to mount the sensors in the sole of the boot. In this case the IMU experi-
ences additional movements and high accelerations associated with shoe deformation
and bounce.

Another difficulty is that the sensor package must be connected to the GNSS re-
ceiver and navigation processor, while a shoe-mounted battery may limit the mission
duration. Regardless of wired or wireless connection this is not desired. Connect-
ing cables are too cumbersome for use on a long-term basis where the user may be
required to run, climb or crawl as well as walk. Wireless connection has its own
disadvantages since it increases power consumption and can be a reason for missing
samples during the data transmission from sensor unit to a navigation processor.

According to Bancroft and Lachapelle (2012) the maximum angular velocity and ac-
celeration experienced by foot-mounted sensors during running can reach 2000 deg/sec
and 24g respectively. Typically, a higher acceleration and angular velocity range
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causes more sensor noise and coarser resolution. Gyro performance can also deteri-
orate because of increased effect from g-dependent bias.

For reliable output ZUPTs must only be applied when the foot (and consequently
the IMU) is completely static. Therefore, performance of foot-mounted INS depends
significantly on the location of IMU on foot because the foot is not completely mo-
tionless when it is on the ground. Issues can arise when the IMU is attached any
higher than the ball of foot. The peeling motion associated with the transition from
stance to swing means that the heel rises soon after the foot-down event and hence
a sensor in the mid-foot will start experiencing an acceleration as the foot levers up
(Bancroft and Lachapelle (2012)). These small accelerations occur before the strict
end of the stance phase and it is necessary to account for these non-zero velocities by
applying a corresponding covariance for the ZUPT pseudo-measurement.

5.1.4 Body-Mounted IMU

Body-mounted IMU overcomes most disadvantages of foot-mounted IMU such as
high dynamic range for gyros and accelerometers, impractical location and wires
connecting a sensor unit located on foot with a navigation computer which is nor-
mally fixed to a jacket. The whole navigation system can be packaged as one unit.

In the case of body-mounted IMU, there are two methods of processing the inertial
sensor measurements: PDR, which was described earlier, and standard INS with pos-
sible aiding from PDR. The latter requires a complete IMU with three accelerometers
and three gyroscopes must be used. Whenever the system is stationary, ZUPT may
be used to correct the INS velocity and attitude computations. With a body-mounted
IMU, ZUPTs are infrequent, thus in many works the tactical-grade IMU was used to
bridge GNSS outages.

Groves et al. (2007) suggested to use position solution computed by PDR as a meas-
urement in EKF. Inertial navigation and PDR may also be used together, sharing the
same inertial sensors, in which case, inertial navigation is incorporated within the
multi-sensor integration architecture as the reference system and PDR as an aiding
sensor. When PDR measurements are detected, a separate, PDR-only, measurement
update is performed. The measurement innovation comprises the difference between
the PDR-indicated step length and the INS-indicated position change between the
step start and stop times.
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5.2 Novel Approach for Fusion of IMU Data and Pedestrian Dynamics

In our pedestrian navigation system, the body-mounted IMU contains three gyros and
three accelerometers that measure the projections of absolute angular rate and spe-
cific force on their sensitivity axes. The navigation computations are performed in
the local-level coordinate frame. The transformation matrix from the sensor frame to
the local-level frame is calculated using output from gyroscopes. The mechanization
equations are implemented as local-level terrestrial navigator without vertical chan-
nel. Position, velocity, and attitude errors in a stand-alone INS grow with time. For
short period of autonomous operation (1− 1.5 hours) the propagation of horizontal
velocity errors and tilts can be approximated by the Schuler oscillations (Farrell and
Barth (1999)). When the INS is assumed to be nominally level with altitude com-
pensation and constant low speed, the single north channel error model is described
by the following equations (Salychev (2004))

δV̇E =−gφN +BE

φ̇N = δVE
Re

+ εN

δV̇N = gφE +BN

φ̇E =− δVN
Re

+ εE

(5.4)

where δVN ,δVE are the north and the east components of velocity error, φN ,φE are the
horizontal tilt errors, BN ,BE ,εN ,εE are the projections of accelerometer biases and
gyro drifts on the local-level frame, Re is distance to the Earth center. The equations
for the east channel are similar to Eq. (5.4). Note that under above assumptions the
north, east and vertical channels are not coupled and can be processed separately.
The block diagram representation of INS’s north channel is shown in Fig. 5.3 by
solid lines (Salychev (2004)).

A well known in control theory approach for oscillation damping is based on feed-
back loop to control the dynamic behavior of the system. A partially measured output
is fed back to the controller where the difference between the reference and the output
is amplified to change the input in desired way and obtain improved system perform-
ance. The damping of INS errors can be implemented using the external velocity
information. The control inputs are shown in Fig. 5.3 by the dashed lines. The gains
K1 and K2 can be pre-computed or calculated online.

In the case of pedestrian navigation, the kinetic model of gait is considered as a virtual
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Fig. 5.3. Diagram of the INS’s north channel error damping.

sensor that can be used to estimate the step events and step size for a person while
walking. As a result, the estimations of step size and step duration can be used to
calculate average velocity over each step. The error of calculated average velocity
consists of the errors in step length model, inaccuracy in determining step duration,
and accelerometer measurement errors. The error components are not correlated with
each other thus making the error in velocity random with little correlation in time.
Since the error of this estimated average velocity is also not correlated with INS
velocity error it can be used as an external velocity measurement for INS.

Even when a person is walking with almost constant speed, the velocity profile within
each step reveals variations of about 0.3 m/sec around the average walking speed
(Fig. 5.1). Since the indicated INS velocity follows the same profile, the comparison
of momentarily INS velocity with average velocity is not appropriate. Instead the
indicated INS velocity averaged over one step can be compared with average velocity
from an external measurement. As a result of this comparison, an estimation of the
INS velocity error can be obtained.

Since the INS velocity error changes slowly it can be assumed constant during one
step if the gyro drift does not exceed 50 deg/hr. In this case, averaged over one step
INS indicated velocity is calculated as the true average velocity plus the velocity
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error. The north component is given by

V INS
N =

1
(tk+1− tk)

∫ tk+1

tk

(
V true

N +δV INS
N
)

dt =V true
N +δV INS

N (5.5)

where δV INS
N is the north component of INS velocity error, V INS

N is the average north
velocity calculated from the INS indicated velocity. Computations for the east com-
ponent of the INS velocity error are similar to that of the north component. The meas-
urement of the INS velocity error can be obtained by taking the difference between
INS velocity, averaged over one step and the kinetic model computed velocity as
follows:

z =

[
V INS

N −V step
N

V INS
E −V step

E

]
=

δV INS
N +wN

δV INS
E +wE

(5.6)

Here V step
N is the average north velocity over one step calculated from the kinetic

model, wN , wE are the velocity errors of the kinetic model based velocity estimator.
While calculating the INS velocity error using Eq. (5.6) it was also assumed that the
velocity estimated based on the kinetic model has a random error which is assumed to
be distributed as a random Gaussian noise. This virtual measurement of INS velocity
error can be performed at every step.

Let us formulate the mathematical system model for horizontal velocities and tilts
in terms of error state space. Only the north channel equations are described since
the data processing for the east channel is similar. Since in pedestrian navigation
systems the accelerometer bias has smaller effect than the other error sources there
will be three variables of primary interest for each channel: error in INS indicated
velocity, tilt error, and gyro drift rate. In terms of these variables, the state differential
equations for the north channels become:

d
dt

δVN

φE

εE

=

 0 g 0
−1/Re 0 1

0 0 0


δVN

φE

εE

+
na

0
ng

 (5.7)

where na, ng, is the measurement noise in accelerometer and gyro output respectively.
The measurement to be used as the input to the Kalman filter is the difference between
average velocities given by Eq. (5.6). In terms of the error state notation it becomes

z(tk) =
[
1 0 0

]δVN (tk)
φE (tk)
εE (tk)

+w(tk) (5.8)
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Based upon system and measurement models the Kalman filter can be specified. First
consider propagation from sample time tk−1 to time tk. It is assumed that when the
measurement is obtained the update computations are performed and the corrective
signal applied to the INS. The optimal error estimate at time tk is

x̂(tk) =

δV̂N (tk)
φ̂E (tk)
ε̂E (tk)

 (5.9)

This estimate serves as the corrective signal to the INS, which is applied at time tk.
Thus the predicted state at time tk+1 before the new measurement is obtained is

x̂
(
t−k+1

)
=

δV̂N
(
t−k+1

)
φ̂E
(
t−k+1

)
ε̂E
(
t−k+1

)
= 0. (5.10)

So there is no need to compute the predicted state explicitly. The covariance propaga-
tion equation is

P
(
t−k
)
= Φ(tk, tk−1)P

(
t+k−1

)
Φ

T (tk, tk−1)+Q(tk) (5.11)

where P is an error covariance, Φ is the state transition matrix, Q is a process noise
covariance. To update the estimate at the time when new measurement is obtained
the filter gain is calculated

K (tk) = P
(
t−k−1

)
HT (HP

(
t−k−1

)
HT +R

)−1
(5.12)

here H is a matrix in measurement equation (Eq. (5.8)), and R is a measurement noise
covariance matrix. The covariance update is

P
(
t+k
)
= P

(
t−k
)
−K (tk)HP

(
t−k
)

(5.13)

Since x̂
(
t−k
)

is zero the optimal state estimate update becomes

x̂
(
t+k
)
= K (tk)z(tk) . (5.14)

The last formula represents the control inputs that are fed back into INS to reduce
the horizontal velocity and tilt errors. Horizontal gyro drift can be also corrected in
similar way.
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Fig. 5.4. The walking path inside the building: The true path is shown by the green solid line.
The INS computed path is shown by the magenta asterisks.

5.3 Experimental Results

The proposed method for INS velocity aiding was tested with actual data from the
indoor walking tests. The 170 meter test route inside the typical office building is
shown in Fig. 5.4. The true pedestrian path is shown by green solid line. The test
scenario included different types of movement: walking with variable step length
and frequency, going up or down stairs, standing, making sharp turns and opening
the doors. The total time of the test was about 5 minutes.

The pedestrian dead-reckoning system included 6 DOF IMU, which is composed of
three Murata SCR-1100 combined gyroscope and accelerometer. This system is a
self-contained device for inertial data collection. In addition to three gyros and ac-
celerometers it includes also the batteries, memory card and all necessary electronics
for data collection. The complete unit is shown Fig. 5.5 and the location of the IMU
during the test is shown in Fig. 5.6.

The INS computed path is shown in Fig. 5.4. by the magenta asterisks. Our method
can reduce only the distance error in PDR systems. Along-track (distance) error
during this test did not exceed 2% of travelled distance. The results can be improved
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Fig. 5.5. The assembly of 6 DOF IMU, batteries and readout electronics.

when horizontal gyros’ drifts are compensated. However, the largest error is caused
by heading error. Heading cannot be corrected with this algorithm and other methods,
for example, map-matching can be used to reduce the heading error.

Location of IMU
during the test

Fig. 5.6. Location of the IMU on the body during the tests.
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5.4 Conclusions

We proposed a novel approach for INS external velocity aiding in pedestrian naviga-
tion systems. The velocity update is based on knowledge of human walking process,
which provides an alternative way to calculate traveled distance and velocity aver-
aged during the step. Our approach can be applied to pedestrian navigation systems
that include IMU mounted at waist or torso.

The kinetic model of gait is considered as a virtual sensor that can be used to estim-
ate the step events and step size for a person while walking. The term ”virtual” em-
phasizes the fact that there is no separate instrument for direct speed measurement.
The speed is estimated using accelerometer measurements and additional informa-
tion about pedestrian’s movement, which is derived from the model of human gait
kinematics. The different characteristics of errors in INS output and in this virtual
measurement make it possible to apply complementary filter methodology and signi-
ficantly improve INS performance by keeping the horizontal velocity and tilt errors
small.

The processing of corrected IMU output results in accurate estimation of stride length
and direction. The navigation system output is based on strapdown INS and, there-
fore, there are no restrictions on pedestrian movement and body orientation. How-
ever, reliable velocity update is possible only during normal walking or standing. The
results from pedestrian walking tests showed that the proposed navigation algorithm
computes traveled distance with error of about 2% at normal walking conditions on
flat terrain.

Compare to foot-mounted IMU the proposed method has the following advantages:

• It solves the problem of impractical location

• The inertial sensors are not exposed to high accelerations, angular velocities
and shocks. This allows to reduce the dynamic range for the sensors and,
hence, reduce the measurement noise. Besides, gyroscopes perform better in
benign dynamics because of linear acceleration effect on drift.

• Motion classification is easier to perform

• ZUPT quality, which is important for foot-mounted IMU can be not good on
slippery and spongy surfaces.
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Compare to SHS methods with one gyro or magnetometer for heading measurements
the proposed method solves the following problems:

• Limitations on person’s body orientation. The SHS methods work well only
when upper body is in upright position.

• Heading can be different from the direction of movement. Always apply the
step motion in the forward direction determined by the body-mounted sensor.
The position is propagated in the direction where the torso faces.

• Work not only for walking, but other movements like crawling and climbing
on ladder.



6. CONCLUSIONS

In this thesis we proposed three algorithms that can improve performance of PNDs
in GNSS denied environments. Two algorithms are concerned with map aided posi-
tioning for street and indoor navigation. The third algorithm improves performance
of the pedestrian navigation system with body mounted sensors.

The map matching algorithms compare the estimated trajectory of a vehicle or ped-
estrian with roads or building plans stored in a map database, and the best match
is chosen as the position of the vehicle. The first algorithm solves the map match-
ing problem for a car traveling on known road network. The algorithm is based on
particle filtering. Compare to the existing algorithms, which solve the map matching
problem in the case when the positioning data is fairly accurate (for example GNSS
under open skies, or combined GNSS/INS solution). These algorithms are usually not
reliable in GNSS denied environment when sensors less accurate than GNSS have to
be used. The proposed algorithm is designed for autonomous navigation based on
dead reckoning sensors. The algorithm has the ability to correct both cross-track and
along track position errors. Along-track errors can be corrected when the vehicle is
turning on intersections. After each turn the position error is reduced to below 10 m.
The accumulated position errors of the dead reckoning system can be corrected based
on the results of map matching. If a vehicle path includes turns at least every 2-3 km
the position error will be kept small and the navigation will continue indefinitely.

The second algorithm provides the map matching solution for autonomous naviga-
tion systems operating indoors. The major contribution of our algorithm is in method
for correction of the autonomous navigation system position and heading errors. The
proposed algorithm provides an accurate means of correcting the accumulation of
dead reckoning position and heading errors. The idea is based on the fact that the
vehicle’s movement indoors is constrained by the walls; if the trajectory is long
enough and includes turns, it will be quite unique and it can be identified among other
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trajectory candidates. The map-matching algorithm generates position and heading
measurements from knowledge of the building floor plan where the navigation system
is operating. These position and heading corrections are computed by the Kalman fil-
ter and can be used to offset the initial errors as well as accumulated errors of the dead
reckoning system. If the building layout and movement of the vehicle are suitable it
is possible to keep small position errors and heading errors for long periods of time.

The third algorithm improves pedestrian navigation system performance in the case,
when the IMU is mounted at waist or torso. The approach uses knowledge of human
walking process to reduce the horizontal velocity and tilt errors. The processing of
corrected IMU output results in accurate estimation of stride length and direction.
The navigation system output is based on strapdown INS and, therefore, there are no
restrictions on pedestrian movement and body orientation. However, reliable velocity
update is possible only during normal walking or standing. The proposed algorithm
overcomes the shortcomings of the existing methods such as foot-mounted INS with
ZUPT and SHS. These improvements are listed in Section 5.4.

6.1 Recommendations and Future Work

The following recommendations can be made for the future research based on the
results of this thesis.

The map matching algorithm for vehicle navigation discussed in Chapter 3 could be
modified in a number of ways to improve performance. For example, by detecting
when a vehicle goes off road network. This is important because if vehicle is not
traveling on the road and map matching algorithm is applied it can result in inaccurate
results. Another possible extension is adaptation of the algorithm to operate with less
accurate gyroscope. In this case the algorithm will have a potential to be used in mass
market consumer products.

The extension of the map matching algorithm for autonomous indoor navigation de-
scribed in Chapter 4 can include seamless navigation capability from outdoors to
indoors. This will enable a wide variety of navigation applications and value-added
services. Also more tests in different environment have to be done to improve the
robustness of indoor map matching algorithm and heading and position correction

As discussed in Chapter 5, performance of the pedestrian navigation algorithm is
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currently limited by two types of movement: walking and standing. The algorithm
can be also modified to operate with all kind of movements, in particular, vertical
movements such as climbing on stairs or ladder. In addition to this more tests have
to be made to determine how the kinetic model of gait will change when a person is
waking on non-flat terrain or tilted surfaces. Finally, the possibility of application of
the proposed algorithm to very low-cost inertial sensors (similar to those, which are
used in smartphones) has to be also investigated.
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T. Judd. A personal dead reckoning module. In Proc. ION GPS, pages 47–51, 1997.

S. Kaiser, M. Khider, and P. Robertson. A human motion model based on maps for
navigation systems. EURASIP Journal on Wireless Communications and Network-
ing, 2011(1), Dec. 2011.
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