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Abstract

Boundary value problems (BVPs) are fundamental in electromagnetic
engineering. The aim of this thesis is to introduce mathematical structures
that can be exploited in a new way to formulate electromagnetic BVPs. The
tools employed come from differential geometry and the theory of manifolds.

The structures offer a way to model electromagnetism in a coordinate-free
manner, which is independent of the chosen metric. Differentiable manifolds
and differential forms are used as models for space and electromagnetic fields,
respectively. Together with the pullback, exterior derivative, and wedge prod-
uct, they can be employed to introduce a formulation of electromagnetism
that is invariant under diffeomorphisms.

Differential geometry enables us to formulate general electromagnetic
BVPs, including static, initial value, and Cauchy problems, in a unified set-
ting. Furthermore, under diffeomorphisms, equivalence of BVPs arises natu-
rally and provides a unified theoretical setting for many traditional, seemingly
different methods and approaches. Because of the diffeomorphism-invariance,
in formulations of electromagnetic BVPs the metric of space is needed only
to make the first connection between the model and the observations. The
thesis introduces also (3 + 1)-decompositions of Maxwell’s equations based
on coordinate- and metric-free observer fields. A major results of this thesis
is this unified aspect to BVPs and its applications to solution methods.

The structures used are also generic to all dimensions, which makes them
natural tools to formulate electromagnetic BVPs of any dimension. In par-
ticular, another main result of this thesis is a symmetry-based theory of
dimensional reduction of electromagnetic BVPs. It includes a dimensional
reduction theorem that gives sufficient conditions for a BVP to be solved as
a lower-dimensional BVP and also formulates the lower-dimensional BVP.
Because the theory is completely independent of coordinates, metric, and
dimension, differential geometric structures are virtually custom-made for it.

The thesis presents several applications and numerical examples, in which
the structures offer new insight and benefits. These applications and exam-
ples include mesh generation problems, speeding up parametric models that
include shape optimization and movement, open-boundary problems, invisi-
bility cloaking, and dimensional reduction of helicoidal geometries.
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Chapter 1

Introduction

Electromagnetic engineering problems often involve solutions of mathemat-
ical problems called boundary value problems (BVP). Formulating an elec-
tromagnetic BVP is about specifying the domain and a set of Maxwell’s
equations that govern the electromagnetic fields inside the domain of the
BVP. Moreover, for a unique solution to this system of equations, the consti-
tutive equations, boundary values of fields, and possibly some constraints on
cohomology classes must be specified. Various approaches and mathematical
formalisms can be used to formulate electromagnetic BVPs. However, these
different approaches and formalisms need not be equally good for formulating
BVPs in different dimensions or for conceptual understanding the underlying
physics and numerical solution methods.

The traditional approach to formulating electromagnetic BVPs is based
on classical vector analysis. With classical vector analysis, the domain of the
BVP is typically modeled with a single coordinate system, and the electric
and magnetic fields are modeled with vector fields, Maxwell’s equations are
written with curls and divergences, and the constitutive equations are given
using scalar or tensor fields. This conventional formalism has its merits, but
it is based on strict initial assumptions. First, one must choose a metric for
the domain at the beginning of the modeling process, after which most of the
mathematical structures used in the formalism are defined with respect to
this metric. Second, all structures of the formalism are built initially on three-
dimensional domains, making the formalism inherently three-dimensional.

The above assumptions often make it challenging to apply the formal-
ism. Because of the metric, expressions of the fields, Maxwell’s equations,

Tt is a particular property of a three-dimensional space that with a metric 2-vectors
can be identified with 1-vectors. Consequently, it is possible to introduce vector analysis
based solely on 1-vectors. This identification of 1- and 2-vectors is not possible in any
other dimensions.



boundary values, and constitutive equations depend on a particular choice
of the metric. Particularly, the differential operators grad, curl, and div
are evaluated separately for each coordinate system. For instance, consider
how the curl and divergence operators are represented in Cartesian and in
cylindrical coordinate systems. The inherent three-dimensionality of vector
analysis also makes it often a challenge to apply this formalism to other di-
mensions, because no natural counterparts exist for all the structures in other
dimensions.

Vector analysis may give an illusion of an unnecessary dependency on
metric and dimension. Particularly, the concept of symmetry has many ap-
plications in electromagnetic modeling and is often used to reduce the size
of the BVP domain. If a BVP is symmetric, the domain consists of copies of
some subdomain. However, symmetry is often not employed to its full po-
tential but is instead understood in the restricted sense that the sizes of the
subdomains that constitute the domain should be the same. Yet symmetry
itself does not depend on such a metric. Furthermore, symmetry principles
are often used without properly identifying them as such. For instance, the
dimension of a BVP can often be reduced, if some component of the fields is
fixed to zero. In summary, assumptions that make a formalism too rigid a
construction can be limiting when one formulates and solves particular BVPs
numerically with computers.

This thesis aims to bring up to date the traditional approach to formu-
late electromagnetic BVPs by introducing an modern alternative approach
based on differential geometry. The needed mathematical structures are in-
troduced and the benefits gained in formulating BVPs are demonstrated in
several ways. The benefits follow from the flexibility that no assumptions are
made about the metric and dimension of the domain. This allows a clear sep-
aration of metric, orientation, and dimension, helping us to recognize those
aspects of electromagnetism that do not depend on them. Therefore, the dif-
ferential geometric approach provides more accurate and precise geometrical
and conceptual tools for modeling physics than the traditional approaches.
For instance, the very idea of the electric field E' is about electromotive forces
along curves, and the electric flux D has to do with surfaces. Consequently,
they should be modeled with objects that naturally correspond to curves and
surfaces. Compare this to vector analysis, where E and D are both modeled
with vector fields, not suggestive of any preferred geometric object.

In the differential geometric approach, space and spacetime are modeled
with a mathematical structure called the differentiable manifold. With the
manifold, the metric can be treated as a separate structure, and the mul-
tivariable and multivalue calculus can be defined without the metric and
in a coordinate-free manner. Calculus employs so-called differential forms



that model electromagnetic fields. The gradient, curl, and divergence are
superseded by the exterior derivative, which is enough to impose Maxwell’s
equations on this formalism. Thus we can formulate most aspects of electro-
magnetic BVPs on a differential topology level. Particularly, this formulation
is invariant under diffeomorphisms, which is an analog for general covariance
under general differentiable change of coordinates.

Diffeomorphism-invariance allows us to define the equivalence of BVPs
under diffeomorphism. The equivalence is a generalization of the traditional
change of the coordinates procedure. Furthermore, the equivalence gives a
unified theoretical explanation for many traditional, seemingly different meth-
ods. For instance, methods to solve open boundary problems and cloaking
or “invisibility” can be explained in a unified manner based on formulations
of equivalent BVPs. The equivalence suggest also new practical possibilities
such as how to speed up parametric modeling.

The tools of differential geometry are not restricted to certain prob-
lems, such as static and time-harmonic problems, initial value problems, and
Cauchy problems; rather they provide us with a unified setting of bound-
ary value problems: all the problems consists of (partial) differential equa-
tions defined on a domain with a boundary such that the fields governed
by the differential equations are pre-defined at the boundary. Consequently,
equivalence under diffeomorphism can be established at once for all types of
problems that accept the unified setting.

In the differential geometric setting of formulating BVPs, the metric is
the tool that together with distance measurements provides a connection
between model and observations: the manifold, its topology and charts, and
the constitutive equations are first constructed using the metric. However,
once the BVP is formulated, an equivalence of BVPs can be defined fully
without the metric. Furthermore, the constitutive equations are relations
between the fields and because the fields can be defined without metric, it
follows that the relations do not depend on the choice of the metric. However,
the representations of the relations with metric-dependent Hodge-operators
do, of course, depend on the choice of the metric.

A general way is also introduced to decompose spacetime to space and
time to derive (3 4 1)-decompositions of Maxwell’s equations. This is done
with the so-called observer structure, which can be characterized as a field of
local observers. The observer structure can be defined in a coordinate- and
metric-free manner.

All the structures introduced are generic to all dimensions, which makes
them convenient for formulating BVPs in any dimension. In particular, this
generality is exploited to derive a theory of dimensional reduction of electro-
magnetic BVPs. The theory provides sufficient conditions for solving a BVP
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as a lower-dimensional BVP and also formulates the lower-dimensional BVPs.
The theory relies on symmetry alone, which implies that some components of
solution fields are not assumed to vanish in some special coordinate system.
In fact, all theories explaining dimensional reduction are based on symmetry,
either implicitly or explicitly. Thus the symmetry of BVPs is here examined
independent of coordinates, metric, and dimension. Consequently, one can
recognize symmetries, such as helicoidal geometries, that are not obvious at
the first glance.

Finally, let us briefly outline the content of this thesis. Chapter 2 discusses
mathematical structures and the concept of symmetry, the key elements in
this thesis. Chapter 3 defines the main differential geometric structures used
in this thesis. After the preliminary chapters 2 and 3, discussion proceeds
to the main engineering content of the thesis: Chapter 4 shows how to for-
mulate general electromagnetic BVPs with the tools introduced in chapter
3 in a unified setting. Then the equivalence of BVPs under diffeomorphism
is derived, and the role of the metric in electromagnetic BVPs is discussed.
Furthermore, chapter 4 defines observer structures and derives general (3+1)-
decompositions of Maxwell’s equations. Chapter 5 presents the theory of di-
mensional reduction of electromagnetic BVPs, and chapters 6 and 7 present
applications and numerical examples thereof.



Chapter 2

Mathematical structures and
symmetry

Mathematical structures are the focus of this thesis; therefore, before in-
troducing any structures, we should briefly explain what is meant by these
structures. Another focus is the concept of symmetry and its uses. We give
a precise meaning of the concept by defining it mathematically. Then we
discuss several applications of symmetry in mathematics and physics.

2.1 Mathematical structures

Mathematical structures are defined using sets and adding more mathemat-
ical objects somehow incorporated in the sets. That is, a mathematical
structure is a set with various mathematical objects such as relations and
operations, which define what one can do with the elements of the set. A
collection of associated mathematical objects is called the structure, and the
set is called the underlying set. Thus mathematical structure is a universal
term for constructions that unify particular mathematical set-constructions
with concrete sets.

As an example of a mathematical structure, we give the definition of an
important algebraic structure called the group:

Definition 2.1. A group (G,x) is a set G together with a binary operation
x : G X G — @G, denoted by *(a,b) = axb, that satisfies the following axioms:

(1) associativity: for all a,b,¢ € G, the equation (a *b) *c = a* (b*c)
holds.

(2) identity element: there exists an element e € G such that for all a € G,
the equation e x a = a * ¢ = a holds.



(3) inverse element: for each a € G, there exists an element b such that
a*b=>bxa = e where e is an identity element.

An Abelian group is a group (G, *) that satisfies an additional axiom:
(4) commutativity: for all a,b € G, the equation a * b = b % a holds.

Thus a group is a structure consisting of a set plus some binary operation
on the set such that the binary operation satisfies certain axioms. That
is, the mathematical object that is incorporated in the underlying set is a
special kind of binary operation. The addition of real numbers is an example
of a group, which is denoted by (R,+). Another example is the addition
of vectors in a three-dimensional vector space. Thus there is a multitude of
instances of groups, and the term group structure refers to what is common
to all possible groups: group structure is an abstract construction that unifies
or captures the essence of particular mathematical set-constructions such as
(R, +) and the addition of vectors.

Even though (R, +) is a group, the particular group structure it has or
the group it defines is not only about real numbers and their additions. That
is, (R, +) defines a particular group using sets as a language to define and
communicate the properties of the group. Similarly, the addition of vectors
in the dimension n defines a totally different group. Hence set-constructions
such as (R, +) are used to define a group, but the mere group itself is more
elementary and abstract in the sense that (R, +) has excess features that the
group it defines does not have, e.g., the order of real numbers.

To make the above point even clearer, let us look at the following example
of two apparently different groups. Let V' be a one-dimensional subspace of a
three-dimensional vector space W. Then for each v € V', there is a mapping
fo o W — W, called translation by v such that f,(w) = w + v holds for
all w € W. The set of all such mappings f, defined on W forms a group
under the composition of mappings, because the composition of two transla-
tions is again a translation. Let us denote the set of all these translations by
T(W,V). Now we can put the real numbers and the translations of T'(W, V')
into bijective correspondence such that the group structures are preserved
under the correspondence: there is a mapping ¢ : R — T (W, V) such that
g(a—+b) = g(a) o g(b) holds for all a,b € R. Clearly, the groups (T'(W,V), o)
and (R, +) are in the group sense structurally fully identical, even though
they have different underlying sets and binary operations. These two exam-
ples of groups are said to be isomorphic, and the mapping ¢ is called an group
1somorphism.

In general we use the term isomorphism for bijective structure-preserving
mappings. The term homomorphism is used for structure-preserving map-
pings that are not bijective, i.e., for mappings that preserve the structures
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of the domain and codomain but that do not allow complete identification
of the structures. If there are no general terms for the isomorphisms and
homomorphisms of a certain structure, such as homeomorphism for the iso-
morphisms of topological space-structure, we add a suitable adjective before
isomorphism and homomorphism, e.g., metrical isomorphism, to distinguish
between different isomorphisms. Thus the term isomorphism is used in this
thesis in the category theoretical sense [19].

Finally, let us comment briefly on the relations of physics and mathemat-
ics. First of all, any mathematical model used in physics is devoid of any
physical significance without some interpretation, which connects the model
to observations. In this sense, there are no “right” or “correct” mathemat-
ical structures to describe a physical phenomenon, because the structures
themselves do not give meaning to physics. For example, even if most of
people consider vector analysis formulation of electromagnetic theory more
natural or intuitive, it does not mean that a formulation based on differential
geometry is less correct a description of electromagnetism than the former.
Of course, not all mathematical structures describe physics equally well or
are even capable of allowing a useful interpretation. One goal of this thesis
is to provide mathematical structures different from those of classical vector
analysis for modeling electromagnetics and for showing that the structures
are useful for numerical modeling and understanding physics.

2.2 Symmetry

The concept of symmetry is very common in physics. Evidently, it is a
mathematical notion, and for this reason we first look at its mathematical
definition. Only afterwards do we discuss its uses in physics.

2.2.1 Mathematical definition of symmetry

Intuitively, for many, symmetry has a strong visual meanings, and it is re-
lated to balance, harmony, and self-similarity. However, in mathematics,
symmetry is a precisely defined concept, which is stripped of visual signif-
icance. Informally speaking, symmetry is about something remaining the
same under some transformations. For example, let us look at Figure 2.1,
which demonstrates “visual symmetry”: the image is said to be symmetric
because after 180-degree rotations and reflections with respect to diagonals,
the figure appears exactly the same. Thus “remaining the same” means here
that the image looks exactly the same, and the transformations are the above
rotations and reflections.



Figure 2.1: A figure that looks symmetric.

Formally speaking, symmetry is described with a set of objects, an equiv-
alence relation on those objects, and a collection of bijective mappings from
the set of objects back to itself. The elements of the set are the objects to
be transformed (the points of the figure), the equivalence relation describes
the notion of “remaining the same” (the points have the same color), and the
mappings from the set back to itself are the transformations of the objects
(the rotations and the reflections of the figure). Accordingly, we say that the
set has a symmetry defined by a relation and a collection of mappings, if the
points are equivalent to their images under the mappings. Thus Figure 2.1
has symmetry, because its points can be mapped to points with the same
color.

Next, we give a proper definition of symmetry. First, we characterize the
transformations: the transformations of a set under which the points may
be equivalent to their images are called symmetry transformations. The re-
flexivity of an equivalence relation (a ~ a) implies that the identity mapping
of the set is always a symmetry transformation. Furthermore, the symme-
try property of equivalence relations (if @ ~ b then b ~ a) implies that the
inverse of a symmetry transformation is again a symmetry transformation.
Finally, the transitivity of equivalence relations (if a ~ b and b ~ ¢ then
a ~ c) implies that the composition of two symmetry transformations is also
a symmetry transformation. Thus all symmetry transformations are bijec-
tions, and they form a group under a composition of mappings. This group is
called the symmetry group of the set with respect to the equivalence relation.

Sometimes there may be multiple different equivalence relations and cor-
respondingly multiple symmetries; for example, a physical model may con-
tain both scalar fields and vector fields over some space. If we talk about
symmetries of scalar and vector fields, then symmetry transformations map
scalar and vectors fields to scalar and vector fields, respectively, over the same
space. An equivalence relation for fields could be such that a field and its
transformed field are pointwise the same. Now it is clear that equivalence re-
lations on scalar and vector fields cannot be the same relations. Furthermore,
the symmetry transformations for scalar and vector fields cannot be the same



mappings either. Thus all equivalence relations may have their own symme-
try groups. However, even if the elements of these symmetry groups are
different and thus not directly comparable, the groups may be isomorphic.
Thus in case of multiple equivalence relations, it is convenient to separate
the group structure or the abstract group from particular symmetry groups.
That is, we consider only some isomorphic copy of the symmetry groups. For
example, a group of translations is isomorphic to (R™, +), and if there are
translations of points and vectors, the symmetry groups of points and vectors
are conveniently and simultaneously described with (R, +). This leads to a
mathematical model of symmetry transformations called the group action:

Definition 2.2. Let (G,-) be a group and M a set. A group action of G on
M is a mapping f : G x M — M, which satisfies the following axioms:

(1) f(g-h,p) = f(g, f(h,p)) for all g,h € G and p € M.
(2) if e is the identity of G, then f(e,p) = p for all p € M.

When we say “G acts on M,” we mean that there is a group action of G on
M. To emphasize that a group action is a model for symmetry transforma-
tions, we define mappings f, : M — M for all g € G such that f,(p) = f(g,p)
for all p € M. The mappings f, are symmetry transformations, and with this
notation the axioms of group actions are (1) f,., = f, 0 fr and (2) fe = idys,
the identity mapping of M. These clearly show that all the mappings f,
form a group under a composition of mappings. With the concept of group
action, we can formalize the notion of symmetry as follows:

Definition 2.3. Let a group G act on a set M by action f and let ~ be an
equivalence relation on M. Then we say that M is G-symmetric with respect
to ~ if f,(p) ~ p holds for all p e M, g € G.

Finally, we give some definitions of group actions that will be useful later
in this thesis.

Definition 2.4. Let f : G x M — M be a group action of G on M and p a
point of M. Then the subset {f,(p) € M |g € G} of M is called the orbit of
p, and it is denoted by Gp.

The orbit of p is thus the set of points where p is mapped by a group action
or by symmetry transformations. All the points of M belong to some orbit,
and two different orbits have no common points. Thus orbits are equivalence
classes of points of M, and each group action induces an equivalence relation
for points, the orbit relation. With the concept of orbit, the G-symmetry
with respect to ~ means that all the points of an orbit are equivalent with
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respect to ~. Notice that the orbit relation and ~ are not the same in general:
it possible that points from different orbits are equivalent with respect to ~.

The mapping g — f, is a structure-preserving mapping from G to the
group of symmetry transformations: g - h — f; o f, holds for all g,h € G by
the first axiom of the group action. This mapping, in general, need not be an
isomorphism: many elements of G may be mapped to the identity mapping of
M. However, we consider only the cases where the two groups are isomorphic.
Then we identify the mapping f, with g and use the shorthand notation gp
for f,(p). If the identification is possible, we call the action effective:

Definition 2.5. A group action f : G x M — M effective if for any two
distinct elements g, h of G there is a point p of M such that f,(p) # fu(p).
The action is free if for any two distinct g,h € G and all p € M we have
fo(p) # fu(p). The action is transitive if for any two p,q € M there exists a
g € G such that f,(p) = q.

Intuitively, if an action is effective, every non-identity element of the
group “moves” at least one point of M, whereas a free action is such that all
the points are “moved.” Notice that a free action is also an effective action.
Transitivity of an action means that all the points of M belong to a single
orbit.

2.2.2 Instances of symmetry

Because it is about something remaining the same under some transforma-
tions, symmetry can be used to characterize invariances and redundancies.
Let us first study the case of invariance which is fundamental for physics.
For example, we require that the laws of physics be invariant under the dis-
placement of the observer. That is, for example the laws of electromagnetics
are the same everywhere on the Earth. Thus it does not matter where we do
experiments, because we should always deduce the same laws. This means
that the basic laws of electromagnetism should be written with mathematical
structures that take this invariance into account. Formally, this means that
the equations describing the laws (Maxwell’s equations) do not change under
some group action on the underlying space where the equations are written.
For example, if the space is modeled as Euclidean space E3, the equations
should be invariant (the same), at least, under the translations of the space.

In addition, the conservation laws of physics are closely related to sym-
metries. For example, if the action or the integral of the Lagrangian [13] of a
mechanical system is symmetric under continuous translations in space and
time, these symmetries account for the conservation laws of linear momentum
and energy within the system, respectively. In electromagnetism, assuming
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time as an independent parameter, the conservation of electric charge is re-
lated to symmetries under continuous translations in time. In mathematics,
Noether’s theorem [47] [48] is the basic result that connects differentiable
symmetries/invariances and conservation laws.

Invariance can also result in redundancies, which can be used to simplify
things mathematically. For example, to characterize the object in Figure 2.1,
one only needs to specify the positions of one red and one blue square, and
then the rest of the figure can be constructed with symmetry transforma-
tions. If the top two squares are specified, the symmetry transformation that
rotates the figure 180 degrees with respect to its center point will produce the
rest of the figure. This is exactly how symmetric electromagnetic BVPs are
solved: if a BVP domain (and all the fields defined in that domain) has some
invariance (symmetry), the BVP needs to be solved only in a small part of
the domain called symmetry cell, and the solution for the whole domain can
be constructed with symmetry transformations [6]. The smaller the symme-
try cell needed to construct a solution for whole domain, the more we save
in time and memory. Continuous symmetries, such as translations and rota-
tions, allow one to reduce the dimension of the problem. Now the symmetry
group is so large that only a lower-dimensional subdomain is needed to con-
struct a solution for the whole domain (for details of this topic, dimensional
reduction, see chapter 5).

All redundancies do not result of invariances such as the above where
objects have repetitions; rather they result from descriptions of physical the-
ory with structures that contain excess degrees of freedom. For example, in
classical electromagnetics, vector potentials are not unique even if their curls
are the same: two potentials A; and A, that differ only in a gradient field
Vf, or Ay = A; + V[, define exactly the same magnetic flux. Thus, in
terms of definition 2.3, M is the set of all possible potentials A;, the equiv-
alence relation ~ for potentials is that they have the same curl or A; ~ A;
if V.x A; =V x Aj, and the group G that acts on M is the group of all
transformations of potentials of type A — A + V f. This symmetry of phys-
ical theory with excess degrees of freedom in the mathematical description is
called gauge symmetry [58]. Another example of gauge symmetries are units
of measurements: the description of a physical system can be given equally
well in terms of meters as in inches. That is, it does not matter what units
are used, because the descriptions correspond to the same physical system.

One type of symmetry, required of a good physical theory, is covariance
[51]. The idea behind it is that exactly the same physical situation can be
described with multiple different coordinate systems. Because the choice of
coordinates is arbitrary, it is clear that all the possible coordinate systems
must be treated as equal from the physical point of view. In general, all
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physics is independent of the choice of coordinates, bases, representations,
and such. Thus it must be possible to write the laws of physics in a form
that does not separate the coordinate systems. Therefore, covariance is the
invariance of the form of laws under some change of coordinates. If the form
of laws is invariant under the general differentiable change of coordinates, we
talk about general covariance. Covariance is thus purely a formal property
of a theory and hence physically vacuous. Furthermore, generally covariant
objects and equations can be written in a coordinate-free manner; i.e., objects
and equations can be written without any reference to coordinates.

The possibility to write physical laws without any coordinates, in fact,
makes covariance, in the form defined above, quite meaningless. However, it
is possible to extend or generalize the idea: coordinate-free formulations of
laws are based on manifolds; i.e., coordinate systems are replaced by man-
ifolds. Then the general differentiable change of coordinates is replaced by
diffeomorphisms of manifolds. Consequently, generalized covariance can be
defined as an invariance of the form of laws under diffeomorphisms.
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Chapter 3

Basic differential geometric
structures

This chapter introduces the most important mathematical structures of this
thesis. These structures arise from a broad mathematical discipline called
differential geometry. As a modeling formalism for electromagnetism, differ-
ential geometry differs from vector analysis in significant ways, in particular
in that most of its structures necessary for electromagnetic modeling are in-
dependent of a metric. Furthermore, its tools are suited for all dimensions.
To emphasize the conceptual and structural character differential geometry
offers to electromagnetic modeling, we first define most of its structures with-
out coordinates and bases.

Before the definitions of the structures, let us look at the central structures
in a totality they form. This is depicted in Figure 3.1, which also shows
some of the essential relations between the structures. The figure shows the
hierarchy of the structures and also gives motivations for them. The totality
we pursue is the analysis on manifolds, which gives us the tools to express
Maxwell’s equations. In a purely mathematical setting, we could start with
a set and just give it some topology and thereby specify an instance of a
topological space. In general, we add structures to lower-level structures and
thus define instances of higher-level structures. Observe that the analysis on
manifolds can be defined without metric. The constitutive equations could
also just be given as an extra structure for manifold, however they are related
to metric structures of manifold (Riemannian manifold and Hodge). Finally,
with a Hodge-operator we can make a connection between the analysis on
manifolds (metric-independent) and the metric-dependent vector analysis.

Physical modeling requires that the topology (and the set) are connected
to observations. To make a connection between model and observations, we
use distance measurements and a mathematical structure called metric space.
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Figure 3.1: Central mathematical structures and their essential relations.
Bold texts in boxes are names for the structures and the smaller texts in
boxes indicate what motivates the structure or what the structure enables.
Texts between boxes with thin arrows are names of the extra structures that
the lower-level structures must be endowed to get the higher-level structures.
The bold arrows indicate connections between the model and observations.

Each metric space induces a canonical topology for the underlying set as in-
dicated with a bold arrow in Figure 3.1 between the structures. Furthermore,
we use manifolds as models for space, and the connection between a manifold
and observations is done with distance measurements and so-called standard
parameterization (Figure 3.1). Finally, the observation-induced metric is
such that it can be represented with a metric tensor (Figure 3.1) and thus
Riemannian manifolds model space and its geometry.

3.1 Topological space

Many concepts that relate to space, such as intuitive notions of the con-
nectedness of space, boundary, convergence, and continuity of mappings, are
independent of metric concepts such as distance. These are topological con-

14



cepts and depend only on the way space is assembled: in a plain set only the
membership of the elements is defined, and it is possible to determine if two
elements are identical. However, when the elements are points of a space,
intuition calls for the notion of points lying close to each other. Thus there
are neighbors and neighborhoods of points, which describe how the space is
connected. Neighborhoods of points are described with so-called open sets,
which are intuitively sets that have no boundary, or that all the points in an
open set are interior points and thus neighbors.

The main subjects in topology are connectedness of sets and continuity
of mappings, and they are defined in terms of open sets. A topology for a
set M is defined by defining the open sets of M. The open sets constitute a
collection of subsets of M, satisfying certain axioms.

Definition 3.1. A topological space is a pair (M, 7T ), where M is a set and
T is a collection of subsets of M, called open sets, satisfying the following
axioms:

(1) the empty set and M belong to 7

(2) the union of any collection of sets in 7" belongs to 7°

(3) the intersection of any finite collection of sets in 7 belongs to 7.
The complement U¢ = M\U of an open set U is called closed set.

Many different topologies can be given for a set. For example, any set
M can be endowed with discrete topology, in which 7 is the collection of all
subsets of M. Another topology that can be given for any set M is the trivial
topology, where 7 contains only empty set and the set M itself.

Topology enables us rigorously to describe and define the neighborhoods
of points and the connectedness of space:

Definition 3.2. A subset V' of a topological space (M, 7T) is a neighborhood
of point p € V if there is an open set U of 7 such that pe U S V.

Definition 3.3. A topological space is connected if it cannot be divided into
two disjoint nonempty closed sets.

The topological space-structure makes it possible to define the continuity
of mappings between spaces. Continuous mappings are structure-preserving
mappings of a topology, and a topological isomorphism is called homeomor-
phism.
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Definition 3.4. A mapping f : (M,7,) — (N,7y) between topological
spaces is continuous if the inverse image [19] f~'(U) of every open set U of
7Ty is an open set of 7,,. If f is also bijective and its inverse is continuous,
then f is called homeomorphism. Topological spaces M and N are called
homeomorphic if there exists a homeomorphism f : M — N.

Let us next define the subspace topology for subsets of topological spaces.
The subspace topology makes a subset a topological space in its own right.

Definition 3.5. Let A C M be a subset of a topological space (M, 7). The
subspace topology for A is the topology 7, = {ANU|U € T}.

Remark 3.1.1. In the literature, the subspace topology is often called relative
topology [11] or induced topology [18].

Topology is defined by open sets. However, in many cases it is not neces-
sary to describe all the open sets but only a subcollection of them such that
the other open sets can be constructed from the subcollection. This leads to
the concept of basis of a topology.

Definition 3.6. Let (M,7) be a topological space. A subset B of 7 is a
basis for the topological space (M, T) if every open set of 7 can be written
as a union of elements of B. A topological space is second countable if it has
a countable basis.

Remark 3.1.2. A set M is countable if there exists an injective mapping from
M to the set of natural numbers N, which are often called counting numbers
[1]. Second countable spaces include most “well-behaved” spaces such as
Euclidean spaces.

Finally, we define some necessary topological concepts. First, compact-
ness, which makes topological spaces similar in some ways to finite sets:

Definition 3.7. Let (M, 7) be a topological space. An open cover of M is
a collection {U;} of open sets of M such that M = U;U;. A subcover of an
open cover C' of M is a subset of C that is still an open cover of M. M is
compact if each open cover of M has a finite subcover.

The points of topological space can be distinguished in the topological
sense with open sets: two points are indistinguishable if they both always
belong or do not belong to a given open set. In other words, points are
indistinguishable if they have exactly the same neighborhoods. For example,
in the trivial topology, all points are indistinguishable whereas in the discrete
topology all points are always distinguishable. Topology thus offers a way to

16



distinguish or separate points, but as the trivial topology shows, not every
topology is useful for separation. The ability of a topology to distinguish
points should be such that the limits of sequences are unique, which leads to
Hausdorff separation [61]:

Definition 3.8. A topological space is a Hausdorff space if for every pair of
distinct points there exists a pair of disjoint neighborhoods.

3.2 Metric space

The intuitive notion of distance between points is a basic notion of how we
perceive the space around us. The corresponding mathematical structure is a
metric, which encodes basic qualities of the intuitive notion of distance. Dis-
tances have the structure of positive real numbers, or at least every property
of distances is also the property of positive real numbers. However, there is
no canonical way to relate distances and real numbers without specifying a
reference distance (a unit of length). A reference distance is usually specified
by some rigid object; consequently, the distance between points corresponds
to the number of objects needed to reach a point from another.

Definition 3.9. A metric space is a pair (M, dis), where M is a set and
dis : M x M — R is a mapping called distance, which satisfies the following
axioms:

(1) non-negativity: dis(x,y) > 0 for all z,y € M

(2) identity of indiscernibles: dis(x,y) = 0 if and only if x =y

(3) symmetry: dis(x,y) = dis(y, x) for all z,y € M

(4) triangle inequality: dis(z,y) < dis(z, z) + dis(z,y) for all z,y,z € M.

Example 3.2.1. A basic example of metric spaces is R™ with its standard
metric: let x = (z1,...,x,) and y = (y1,...,yn) be points of R™; then the
distance between them is given by the formula \/(y; — 21)2 + ... + (yn — 7,)%

Next we define isometries, which are the structure-preserving mappings
of metric spaces.

Definition 3.10. A mapping f : (M, dis,) — (N,disy) between metric
spaces is an isometry if it preserves distances, i.e., if disy(f(x), f(y)) =
disy(x,y) holds for all z,y € M. If f is also bijective, then f is a metrical
1somorphism. Metric spaces M and N are isometric if there exists a metrical
isomorphism f : M — N.
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Every metric space is also a topological space in a canonical way:

Definition 3.11. Let (M, dis) be a metric space. An open ball of radius
r about p is a subset B(p,r) = {q¢ € M |dis(p,q) < r} of M. The metric
topology for (M, dis) is the topology where the set of all open balls is a basis
for the topology. In a metric topology, a subset U of M is open if every point
of U is contained in some open ball that is contained in U [30].

Remark 3.2.1. Because metric spaces are topological spaces in a canonical
way, every property that holds for all topological spaces also holds for metric
spaces but not vice versa. Furthermore, a space with a metric topology is
always a Hausdorff space [27].

In electromagnetic modeling, distance measurements are important in
building our models of space: the points of space we observe are considered
distinct only if a nonzero distance between them can be observed. This is
reflected in the identity of the indiscernibles axiom of the metric. Thus the
points in the set M of the model correspond to observed points. Of course, we
usually idealize this by assuming measurements of arbitrary small distances.
These measurements give the point set M, but they also equip M with a
metric space structure. Then the metric is used to define a topology on M.
Finally, the metric of M and the corresponding distance measurements are
major tools we use to construct manifolds, which are our preferred models
for space.

3.3 Vector space and its orientation

Vector spaces, also known as linear spaces, are very important in physics and
mathematics. In differential geometry, they and their structure-preserving
mappings, i.e., linear mappings, play a fundamental role. This thesis provides
only the basic definitions of this broad subject. The emphasis in this section
is more on an additional structure of vector spaces, i.e., orientation.

The orientation of a vector space is a choice between two classes of
bases. On the other hand, the intuitive interpretation of orientation in one-
dimensional spaces is a positive or right direction to move and is much used
in physics and particularly in electromagnetics.

Definition 3.12. Let the elements of a field [40] F be called scalars. A
vector space over F or F-vector space is a set V together with two binary
operations,

e vector addition: V x V — V, denoted by v + w for v,w € V, and

18



e scalar multiplication: F x V — V' denoted by av fora € F, v € V,

satisfying the following axioms for arbitrary elements v,w € V and scalars
a, B el:

(1) Vector addition establishes a commutative group
(2) Scalar multiplication distributes over the vector and field addition:

(i) a(v+w) =av+aw

(ii) (a4 f)v=av+ Pv

(3) Scalar multiplication is compatible with field multiplication:

a(fv) = (af)v

(4) Scalar multiplication is invariant under the identity of field multiplica-
tion: lv = v.

Definition 3.13. A mapping [ : (V,+,) — (W, +,) between vector spaces
over IF is linear if it preserves the vector space structure, i.e., if f(av+, fw) =
af(v) +w Bf(w) holds for all v,w € V and o, 8 € F. If f is also bijective,
then f is a linear isomorphism. Vector spaces V and W are isomorphic if
there exists a linear isomorphism f:V — W.

The elements of a vector space are called vectors. Each vector space has
a basis or a set of vectors that allows us to write all the other vectors as a
linear combination of the basis vectors:

Definition 3.14. A subset W = {vy,...,v,} of a vector space V' is a basis if

(1) W is linearly independent, i.e., ajv; + ... + a0, = 0 holds if and only
ifa;=...=a, =0,

(2) W spans V| i.e., for every w € V there are scalars ay, ..., a,, such that
w = a1v; + ... + o, v, holds.

Notice that a basis is just a set of vectors without any particular order
in them. However, often the order of basis vectors is also important, and
then we talk about an ordered basis or frame. The number of elements in all
possible bases of a given vector space is the same, and that number is called
the dimension of the vector space [42]. Particularly, finite-dimensional vector
spaces over F with the same dimension are always isomorphic [25]. Further-
more, each ordered basis defines a unique isomorphism of an n-dimensional
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real vector space to R™. Thus once an ordered basis is selected, every vector
can be identified uniquely with an n-tuple of real numbers [25].

The ordered bases of a vector space can be divided into two equivalence
classes. Let V be a real vector space, and let By = (vy,...,v,) and By =
(wy, ..., w,) be two ordered bases for V. Then each w; can be represented as
a linear combination of vectors (vy,...,v,): w; = a;v1 + ... + @;pv,. Thus
there is a unique linear isomorphism A : V — V defined by the matrix
A;; = «ay;; that maps the basis By to the basis By (in the above sense). Bases
By and B, are deemed equivalent if the determinant [25] of A is positive.
Because the determinant of an isomorphism cannot be zero [35], there are
precisely two equivalence classes of ordered bases, and these classes are called
orientations. With this equivalence relation, we can define orientation:

Definition 3.15. The two equivalence classes of ordered bases of a real
vector space are its orientations. An oriented vector space is a vector space
with one of its orientations.

In other words, orientation is a choice of a “privileged” or “positive” or
“direct” equivalence class of ordered bases for a vector space. A basis that
belongs to the positive class is called positively oriented, and similarly a basis
belonging to the negative class is called negatively oriented. The standard
orientation of R™ means that the standard basis of R" is positively oriented,
and in the case of R? this is considered the right-handed choice.

3.4 Euclidean space

The basic model of space in elementary physics and numerical modeling is
the Euclidean space. In general, Euclidean spaces can be of any positive
dimension and they are metric spaces where Euclidean geometry holds. For-
mally, the n-dimensional Euclidean space E™ is defined as an n-dimensional
affine space with a special metric [7]. Furthermore, E™ and R" with its stan-
dard metric can be identified isometrically. However, this identification is
not canonical but involves an arbitrary choice of perpendicular “coordinate
axes” for E™ [5].

Definition 3.16. Let M be a set and V' an n-dimensional vector space. M
is an n-dimensional affine space if there exists a free and transitive group
action of V on M.

Notice that because V' is a group under the addition of vectors, it makes
sense to talk about a group action of a vector space. Now an affine space can
be geometrically interpreted as follows: the elements of M are points of space,
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and if p € M and v € V, then vp is a point where the point p is translated by
v. Thus each vector v induces a translation of the points of M, and because
the action is transitive, all points can be translated to all other points. This
means that all points belong to the same orbit; therefore, all points in an
affine space are equivalent: there is no special point such as the origin in R".
Thus there is a V-symmetry in the affine space, and the equivalence relation
is simply that two points are equivalent if there is a translation between them.
A space where all points are equivalent is called a homogeneous space, which
again emphasizes that there are no special or privileged points [7]. Finally,
notice that the addition of vectors of V' corresponds to a composition of
translations, and that it does not make sense to add points of M.

To make an affine space M a Euclidean space, we need to define a metric
d that is compatible with the group action in the sense that each translation
is an isometry. That is, a compatible metric dis must satisfy dis(p,q) =
dis(vp,vq) for all p,q € M and v € V. This can be done by defining an inner
product (see Definition 3.61 or [25][35]) for V', in which case the norm [66] of
v is the distance between points p and vp.

Definition 3.17. An n-dimensional Euclidean space E™ is an n-dimensional
affine space with a metric dis such that the translations are isometries.

Often, however, E™ just means R"™ with its standard metric. This is rea-
sonable when coordinates are needed, but in a purely geometrical setting the
affine space model is preferable. Euclidean spaces are important and popu-
lar in modeling because they are intuitive and form the stage for standard
calculus [61], which is a basic tool of physics.

3.5 Manifolds

Manifolds are generalizations of Euclidean spaces in the sense that manifolds
can be globally complex though locally they look like an affine space. Man-
ifolds are also locally topologically like Euclidean spaces, but the metrical
properties of Euclidean spaces are ignored. This locally Euclidean property
makes it possible to cover manifolds locally with coordinates, thus making
arithmetic available. Furthermore, the standard calculus of Euclidean spaces
can be generalized to manifolds without a metric, i.e., metric properties can
be totally separated from differential calculus. Finally, manifolds are here
defined abstractly, meaning that they are not embedded in a possibly higher-
dimensional Euclidean space, as they are often defined in literature.
Manifolds will be our models for space because they offer the most generic
coordinate-free model for space. Particularly, in this thesis, electromagnetics
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is presented with a formulation that realizes generalized covariance. More-
over, dimensional reduction can be explained in a coordinate- and metric-free
manner. Finally, the metric aspects of electromagnetics can be separated
from topological and differential aspects.

3.5.1 Topological manifold and charts

Manifolds are defined such that there ezists a local parameterization with
coordinates or tuples of real numbers. In other words, manifolds can be
locally covered with coordinate systems; thus the points of the manifold can
be parameterized or labeled with coordinates. This is why they are locally like
affine spaces and said to be locally Euclidean: every point of a manifold has
a neighborhood homeomorphic to a subset of Euclidean space, but globally
such a homeomorphism is not necessary. To ensure some nice properties,
manifolds are also required to be Hausdorff spaces with a second countable
topology.

Definition 3.18. Let (M, 7) be a topological space. M is locally Euclidean
of dimension n if every point has a neighborhood homeomorphic to an open
subset of the Euclidean space R™. A homeomorphism ¢ from a connected
open set U C M to an open subset of R™ is called a chart. A chart ¢ : U C
M — R™ is often denoted by a pair (U, ¢).

Definition 3.19. A topological manifold M of dimension n is a topological
space that satisfies the following axioms:

(1) M is locally Euclidean of dimension n

(2) M is Hausdorff
(3) M is second countable.

Remark 3.5.1. The Hausdorff-property makes manifolds more like Euclidean
spaces that are Hausdorff spaces, but also it ensures that the limits of se-
quences are unique. Second countable manifolds are metrizable [62], or a
metric exists for the manifold such that its induced metric topology agrees
with the topology of the manifold.

Remark 3.5.2. When we in the next section define differentiable manifolds as
topological manifolds with an extra structure called differentiable structure,
the Hausdorff and second countable properties assure two useful features: a
differentiable manifold that is a Hausdorff space with a countable basis can
be embedded in a higher-dimensional Euclidean space [64], and it admits a
particular system of real-valued functions called partition of unity [12].
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Example 3.5.1. An example of a two-dimensional topological manifold is a
surface such as the sphere. A surface and one of its charts is given in Figure

3.2.

RZ

Figure 3.2: Topological manifold and a chart. The figure shows a topological
manifold M, which is a surface. U is an open set of M, and ¢ is a chart that
maps U to R?.

Because topological manifolds are topological spaces with extra topolog-
ical properties (axioms (1)-(3) in the definition), their structure-preserving
mappings are homeomorphisms. Moreover, a topological manifold is con-
nected or compact if the topology of the manifold makes it connected or
compact, respectively.

The topological manifold M we use to model space is in practice con-
structed with a chart (or charts). But this chart, in turn, is constructed with
the help of the standard metric of R” and distance measurements with some
rigid body: the distance measurements give us the point set M and its metric
topology. Of course, M is also a metric space with a metric dis in the sense
of Definition 3.9. We then label the points we observe with coordinates or
tuples of real numbers such that all the distances measured with a rigid body
are the same when calculated with the standard metric of R™. In other words,
the points of M are labeled with coordinates such that the distance dis(p, q)
between any two points p, ¢ € M is the same as \/(pl — @)+ .+ (pn— qn)?
(the distance between their coordinates). More generally, the distances be-
tween points and the corresponding coordinates must be the same only up
to some scalar multiple. For example, we may use meters for measurements,
but in the chart the calculated distances correspond to inches. Consequently,
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charts constructed with rigid body measurements are not necessarily isome-
tries though they preserve the shapes. Particularly, the images of every
sphere in M under these charts are spheres also in R”, when measured with
the standard metric of R”. We call these charts standard parameterizations.
An example of a standard parameterization is given in Figure 3.3.
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Figure 3.3: Standard parameterization: the line drawing on top refers to a
real coaxial cable and represents also a topological manifold M. The rigid
body we used in distance measurements gave us a pair of dividers and enabled
us to specify spheres. Chart f is a standard parameterization, whereas chart
g is not, because all the images of spheres in M are not spheres in R” in the
sense of the standard metric of R™.
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Definition 3.20. Let M be a topological manifold with a metric space struc-
ture given by distance dis, : M x M — R, which corresponds to distance
measurements with some rigid body, and let ¢ : U C M — R" be a chart of
M. 1If there exists a > 0 such that dis,(p,q) = adiss(¢(p), ¢(q)) holds for
all p,q € U, where dis, is the standard metric of R”, then ¢ is a standard
parameterization.
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3.5.2 Differentiable manifolds

Because the differentiability of mappings is defined in Euclidean spaces, and
because manifolds are locally Euclidean, it is possible to extend the con-
cept of differentiability to mappings between manifolds. At first glance, this
seems straightforward: select charts (U, ¢) of an m-dimensional manifold M
and (V, ) of an n-dimensional manifold N. The (local) representation of a
mapping f : M — N under charts ¢ and ¢ is a mapping ¢ o f o ¢!, which
maps ¢(U) C R™ to ¢(f(U)) € R™. Then the mapping f is deemed differ-
entiable in U C M if its representation in these charts is differentiable in the
classical sense. However, if we use another chart (V1) of N, we can change
the charts with the transition map or change of chart mapping v o p~!; then
the differentiability of f is defined by oo topo fogp ™t =1 o foopt
Now this need not be differentiable anymore because transition maps in a
topological manifold are homeomorphisms, and thus guaranteed to be only
continuous. Thus the differentiability of a function depends on the chosen
charts. To make the definition of differentiability independent of the choice
of charts, we must restrict the set of admissible charts: all the charts in a
set of admissible charts are required to be compatible in the sense that their
transition maps are appropriately differentiable.

Definition 3.21. Two charts (U, ¢1) and (Us, ¢5) of a topological mani-
fold M are C"-compatible if the non-emptiness of U; N U, implies that their
transition map ¢, 0 ¢ ' is r times continuously differentiable.

Admissible or compatible charts constitute a differentiable structure and
a topological manifold together with such a structure is then a differentiable
manifold:

Definition 3.22. A C"-differentiable structure for M is a family
D = {(U;, ¢;)} of the charts of M such that

(1) Y;U; is a cover of M
(2) for any i, j the charts (U;, ¢;) and (Uj;, ¢;) are C"-compatible

(3) if (Ui, ¢;) is C"-compatible with every other chart in D, then (U, ¢;) is
itself in D.

Remark 3.5.3. In the above definition, (1) assures that the whole M can be
covered with charts of D, (2) assures that all the charts in D are compatible,
and (3) means that D is a maximal collection of charts with respect to counts

(1) and (2).
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Definition 3.23. A differentiable manifold M of class C" is a pair (M, D),
where M is a topological manifold and D is a C"-differentiable structure for

M.

Example 3.5.2. A simple example of a differentiable manifold is R with its
standard differentiable structure defined as the maximal collection (in the
sense of Definition 3.22) containing the chart (R™,4), where ¢ is the identity
map of R™. Another example is a finite-dimensional vector space V' with
its natural differentiable structure: select a basis for V', in which case the
basis defines a linear isomorphism from V' to R™. This isomorphism is then
a chart that generates the differentiable structure, which is, furthermore,
independent of the choice of basis [62].

Ezample 3.5.3. Product manifolds [62]: Let (M,D,,) and (N,Dy) be dif-
ferentiable manifolds of dimension m and n, respectively. Then M x N is
an (m + n)-dimensional differentiable manifold if it is given a differentiable
structure that is the maximal collection containing

Ui x Vi, i x @ : Uy x V; — R™ x R") | (Ui, ¢3) € Dus, (Vj, 5) € Dy}

Notice that it is possible to give many different C”-differentiable struc-
tures on the same topological manifold; therefore, a differentiable structure
is truly an additional structure that must be specified [5] [62]. However, if
a topological manifold is coverable with a single chart, then given one such
chart will uniquely specify the differentiable structure (axiom (3) in the def-
inition). In cases where the manifold cannot be covered with one chart, e.g.,
the spheres of any dimension, the differentiable structure can be specified by
a finite covering of charts called atlas:

Definition 3.24. A C"-atlas for M is a family A = {(U;, ¢;) }ica of charts
of M such that

(1) Ujeal; is a cover of M
(2) for any ,j € A the charts (U;, ¢;) and (Uj, ¢,) are C"-compatible.

Remark 3.5.4. A differentiable structure is a maximal atlas.

Two atlases for a topological manifold can define the same differentiable
manifold, and when they do, they are called equivalent:

Definition 3.25. C"-atlases A, = {(Uz‘y¢i)}ieA and A, = {(Uja¢j)}jeB
for M are equivalent, denoted by A; ~ A, if their union A; U Ay =
{(Ui, ¢:) bicaun is a CT-atlas for M.
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Any C"-atlas A for M uniquely specifies the C"-differentiable structure D
for M and the equivalence class [A] of all C"-atlases is naturally comparable
to the differentiable structure D: the atlases in the equivalence class [A]
contain exactly the same charts as the differentiable structure D. From this
point on, we do not explicitly mention the class of differentiability unless
needed; otherwise it is implicitly assumed to be sufficiently high.

Differentiable mappings between manifolds are the structure-preserving
mappings of the differentiable manifold structure, and they are defined next.
The isomorphisms are called diffeomorphisms:

Definition 3.26. Let f : M — N be a continuous mapping between dif-
ferentiable manifolds (M, D,,) and (N, Dy). The mapping f is differentiable
if its representation ¢ o f o ¢p~! for some charts ¢» € D,, and ¢ € Dy is
differentiable in the classical sense. If f is also bijective such that its inverse
is also differentiable, then f is a diffeomorphism. Manifolds M and N are
diffeomorphic if there exists a diffeomorphism f: M — N.

Remark 3.5.5. The definition of differentiability of mappings is independent
of the choice of chart used to check the differentiability [34]. This is a direct
consequence of the definition of differentiable structure.

Next we describe a useful way to induce a differentiable manifold structure
for a topological space from a differentiable manifold via a homeomorphism.

Definition 3.27. Let f : N — M be a homeomorphism from a topological
space N to a differentiable manifold M. Furthermore, let A = {(U;, ¢;)} be
an atlas of M. Then the pullback atlas f* A for N is defined by

FA={(71 (1), 60 f)}-

The pullback preserves the equivalence of atlases, i.e., if A; ~ A, holds,
then f*A; ~ f*A, also holds. Consequently, the differentiable structure can
be also pulled back. A pullback atlas gives a useful and equivalent way to
characterize diffeomorphisms and diffeomorphic manifolds:

Proposition 3.1. Let (M, A;) and (Ms, As) be two differentiable manifolds.
If there exists a homeomorphism f : M; — M, such that A; = f*A,, then f
is a diffeomorphism and the manifolds are diffeomorphic.

Finally, a remark about embedding a differentiable manifold in a higher-
dimensional Fuclidean space. According to Whitney’s theorem, every n-
dimensional differentiable manifold can be smoothly embedded in the Eu-
clidean space R*'*! [64]. Moreover, a historical and still often used way
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to define manifolds is to consider them special subsets of a (usually) higher-
dimensional Euclidean space [32]. However, this approach assumes that there
is some space around the manifold; yet if the manifold itself is the space, what
is then the space around that space? Thus as physical models of space, man-
ifolds assume their most suitable form when they are defined directly via
charts and not as part of some larger space. The direct definition that does
not rely on embeddings is called intrinsic definition.

3.5.3 Tangent space

The fields we are going to define on manifolds have some linearity properties.
For example, differential forms model electromagnetic fields and assign a
linear mapping to each point of a manifold. Linearity requires vector space
structures associated with manifolds, and thus far there have been none.
Fortunately, the differentiable structure gives a manifold so much smoothness
that a vector space can be defined at each point of the manifold that “linearly
approximates” the manifold around the points: the vectors can be thought
of as infinitesimal displacements of the points. This vector space is called
tangent space, and its elements are called tangent vectors. Furthermore,
tangent space is defined with the help of charts but in a manner independent
of the choice of chart.

The literature gives many equivalent definitions for tangent space and
tangent vectors [34][62][58]: the same mathematical structure is defined us-
ing different but isomorphic realizations. We use the “geometric definition”
[34] and define tangent vectors as equivalence classes of smooth curves on a
manifold. The equivalence of the curves intuitively means that at some point
they have the same direction and speed. In other words, under the geometric
definition, curves can be thought of as trajectories of objects moving on a
manifold, and if two curves are equivalent at some point, the objects have
the same velocity at that point (Figure 3.4). Notice that this definition is
intrinsic to manifolds.

Definition 3.28. Let M be a differentiable manifold. A curve on M is a
differentiable mapping ¢ : R — M, and we say that ¢ is a curve through
point p € M if ¢(0) = p holds.

Definition 3.29. Two curves ¢; and ¢y through point p € M are equivalent
if in some chart ¢ the representations ¢ o ¢; : R — R" of the curves have the
same derivative at p = ¢;(0), or if (¢ o ¢;)'(0) = (¢ 0 ¢2)'(0) holds.

The set of all equivalence classes of curves through p is denoted by T,,(M).
If dim(M) = n, then the set T,(M) can be given the structure of an n-
dimensional vector space: let ¢ be a chart containing a neighborhood of p.
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Figure 3.4: Tangent vector. Two equivalent curves on a manifold M that pass
through point p. The arrow at p represents the equivalence class, and it can
be thought of as the velocity vector at p of objects moving along trajectories
defined by the curves.

Then the map (d¢), : T,(M) — R™ defined by (d¢),([c]) = (¢ o ¢)'(0) is
bijective, and we can thus transfer the vector space structure of R™ to T},(M)
by requiring that (d¢), be a linear isomorphism. This induced structure is
canonical in the sense that it is independent of the choice of chart.

Next we outline the proof that (d¢), is bijective, and that the induced
vector space structure is independent of the choice of chart: (d¢), is injective
by the definitions of equivalent curves, and surjectivity can be shown by
constructing a suitable curve (class) for each element of R™. Independence
of choice of chart follows from (1) (¢ o¢)'(0) = (poptopoc)(0) = (¢po
o 1 (p(c(0))) - (¢ o c)(0), where the last equality is due to the chain rule
[61], and (2) ¢(c1(0)) = ¢(c2(0)) holds for all curves ¢; and ¢y through p.

Definition 3.30. An equivalence class of T,(M) is called a tangent vector
at p, and the vector space T,(M) of all tangent vectors is called the tangent

space of p.

Remark 3.5.6. Tangent spaces of different points are not related in any ob-
vious way and it makes no sense to talk about addition of tangent vectors
from different tangent spaces. However, because the dimension of all tangent
spaces is the same as the manifold, all tangent spaces are isomorphic to each
other but, of course, not canonically. The set of all tangent vectors of a
manifold M is denoted by T'(M).

Remark 3.5.7. Because the tangent spaces of all the points of the Euclidean
space R" are canonically identified with the vector space R", all the tangent
spaces are canonically isomorphic.
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A vector field on a manifold is the first example of a field over a manifold
in which tangent spaces are needed. A vector field on M is a mapping from
M to T'(M) such that each point p € M is mapped to one of the tangent
vectors of T,(M) [5][62].

A differentiable mapping f : M — N between manifolds maps the curves
of M to those of N. Thus for each such differentiable mapping, there is a
related mapping that maps the tangent vectors of M to those of N. This
mapping is called the pushforward of f (Figure 3.5).

Figure 3.5: Pushforward. A differentiable mapping f maps a manifold M
to a manifold N; thus f also maps curves on M to curves on N. Then the
pushforward of f at p € M maps equivalence classes of curves at p (tangent
vectors at p) to equivalence classes of curves at f(p) € N.

Definition 3.31. Let f : M — N be a differentiable mapping between
manifolds. Then its pushforward is a mapping f, : T(M) — T(N) such that
at each point p € M the mapping is the linear map f.(p) : T,(M) — Ty (N)
such that f.(p)([c]) = [f o ¢] holds for all [c] € T,(M).

Because the pushforward generalizes the concept of differential [18] [61]
of mappings R™ — R", the mapping f, is also called the differential of f.
Furthermore, for a real valued mapping over a manifold f : M — R, we often
denote the differential (or push forward) of f by df. The pushforward of a
composition of mappings is a composition of pushforwards [5]: If f: M — N
and g : N — O, then (go f). = g. 0 f..

3.5.4 Oriented manifolds

Oriented manifolds are manifolds in which tangent spaces have a positive and
coherent orientation. Orientation is particularly important for the definitions
of integration over manifolds and for the so-called Hodge-operator.

Definition 3.32. Let M be an n-dimensional differentiable manifold. A
family {O,},em of orientations of the tangent spaces is locally coherent if
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around every point of M there is an orientation-preserving chart, i.e., a chart
(U, ¢) with the property that for every ¢ € U the pushforward ¢.(q) takes
the orientation O, to the usual orientation of R".

Locally coherent orientations for a manifold together with the manifold
itself define the oriented manifold:

Definition 3.33. An orientation of a manifold is a locally coherent family
{O,}penr of orientations of tangent spaces. An oriented manifold is a pair
(M, O), where M is a manifold and O is an orientation of M.

Lastly, we define the mappings that preserve orientations:

Definition 3.34. A pushforward f.(p) is orientation preserving if its deter-
minant is positive.

Remark 3.5.8. The determinant of a linear map is defined as the determinant
of the matrix that represents the linear map, and this is well defined because
the result is independent of the choice of representation matrix [25].

Definition 3.35. A diffeomorphism f : M — N between oriented mani-
folds is orientation-preserving (orientation-reversing) if for every p € M the
pushforward f.(p) is orientation-preserving (orientation-reversing).

3.5.5 Submanifolds

Subsets of manifolds, particularly lower-dimensional subsets, which are man-
ifolds themselves, are indispensable for describing the physics of electromag-
netics. For example, the electromotive force is something that can be mea-
sured, and it relates to paths or one-dimensional subsets of space whereas
the magnetic flux relates to surfaces or two-dimensional subsets. Moreover,
lower-dimensional subsets are central for dimensional reduction. Subsets of a
manifold that are also manifolds themselves are called submanifolds (see Fig-
ure 3.6). The literature contains many types and definitions of submanifolds,
but the following are the most useful for us:

Definition 3.36. Let f : N — M be a differentiable mapping between
manifolds N and M. If the rank of f.(p) [42] equals dim(N) for each p € N,
then f is an immersion. If f is an injective immersion, then (N, f) is a
submanifold of M. If f is an immersion that is also a homeomorphism to
its image f(N) with the subspace topology, then f is an embedding and
(N, f) is embedded submanifold of M. If N is a subset of M and if f is the
inclusion map of N to M which is also an embedding, then (N, f) is a reqular
submanifold of M.
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Figure 3.6: Example of a submanifold. A one-dimensional manifold N is
embedded to a two-dimensional manifold M with a mapping f. Thus (N, f)
is an embedded submanifold of M.

Remark 3.5.9. Technically, a submanifold need not be a subset of a bigger
manifold. However, the definitions of submanifolds contain two parts, a
manifold N and a mapping f of that manifold to a bigger manifold M. Then
N can be thought of as a parameter space for the subset f(N), which is also
a manifold. In the literature [5][62], also the term imbedding is used instead
of embedding.

Remark 3.5.10. In case of submanifolds, the differentiable and topological
structures for the image f(N) are induced from N via mapping f whereas
in case of embedded or regular submanifolds the image f(NV) inherits its
structures from M. In general this means that for submanifolds the topology
of the image f(N) may be finer (i.e. it contains more open sets) than the
subspace topology. Thus embedded and regular submanifolds are special
cases of submanifolds.

3.5.6 Manifolds-with-boundary

In electromagnetics, engineering problems are often formulated as BVPs.
Manifolds are the domains of these BVPs, and, as the name suggests, an
essential part of BVPs are boundary values. However, because the manifolds
we have defined so far cannot have boundaries, we need an extended defini-
tion of manifolds that includes the concept of boundary. Such manifolds are
simply called manifolds-with-boundary. They are like n-dimensional man-
ifolds, i.e., locally Euclidean but at their boundary points like half-spaces
of the n-dimensional Euclidean space. Thus the only difference in defini-
tion with manifolds is that the differentiable structure contains charts of a
different kind.
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Let us first define the half-spaces H" that are used in the definition: H" =
{(z1,...,x,) € R"z, > 0} is a subset of R", equipped with the subspace
topology.

Definition 3.37. An n-dimensional manifold-with-boundary is a topological
space M that is a Hausdorff space with a countable basis of open sets and
a differentiable structure D, defined in the following way: D = {U;, ¢;}
is a family of charts, where U; is a connected open set of M, and ¢; is a
homeomorphic mapping of U; to an open subset of H™ such that

(1) U;U; is a cover of M
(2) the charts of D are compatible

(3) D is maximal with respect to properties (1) and (2).

Remark 3.5.11. Compatibility of charts is defined as in 3.21, but now the
change of chart mappings are mappings from subsets of H" to H".

The boundary of H" is the set 0H" = {x = (21,...,x,) € R"|z,, = 0}.
With OH", we can define M, the boundary of a manifold-with-boundary
M:

Definition 3.38. Let M be a manifold-with-boundary. A point p € M is a
boundary point if it is mapped by a chart around p to a boundary point of
H"™. The boundary OM of M is the set of all boundary points of M.

Remark 3.5.12. A differentiable manifold given in Definition 3.23 is a special
case of manifold-with-boundary but without boundary points.

The boundary OM is an (n—1)-dimensional submanifold of an n-manifold-
with-boundary M. Furthermore, all the concepts of manifolds, such as diffeo-
morphism and tangent space, generalize directly to manifolds-with-boundary
[5][34]. The following result is useful for later purposes:

Lemma 3.1. If f : M — N is a diffeomorphism between manifolds-with-
boundary, its restriction to the boundary OM is a diffeomorphism f|,,, :

OM — ON. [34]
3.6 Lie groups

A Lie group is a group that is also a differentiable manifold such that the
two structures are compatible. Because compatibility makes group opera-
tions smooth mappings, Lie groups can be characterized as “smooth groups.”

33



In this thesis, Lie groups are needed for dimensional reduction where the
symmetry groups are Lie groups: dimensional reduction is based on continu-
ous or smooth symmetries, and this is reflected in the manifold structure of
Lie groups.

Definition 3.39. A Lie group is a set G, which has both a group structure
and a differentiable manifold structure such that the structures are compat-
ible in the sense that the group operations

(9,h) eGxGw—gxhed
geG—glted

are smooth mappings.

The dimension of a Lie group is the dimension of the manifold; similarly,
a Lie group is connected or compact if the manifold is connected or compact,
respectively. Before any examples of Lie groups, we define the structure-
preserving mappings and isomorphism of Lie groups:

Definition 3.40. Let f : M — N be a mapping between Lie groups. f
is a Lie group homomorphism if f is a group homomorphism that is also a
smooth mapping between the manifolds. If f is also a diffeomorphism, then
fis a Lie group isomorphism.

There are only two connected one-dimensional Lie groups up to isomor-
phism, [45] and the basic representatives of these classes serve also as good
examples of Lie groups: (R,+,4), i.e., the set of real numbers, where the
group structure is the addition of the numbers, and where the manifold struc-
ture is given by a chart that is the identity mapping. Henceforth, this Lie
group is denoted simply by R, and it is isomorphic to the Lie group of all
translations of a vector space in one direction. The basic representative of
the other class is S*, which is the multiplicative group of all complex num-
bers with the absolute value 1. This Lie group is isomorphic to the Lie group
of all rotations around an axis. Notice that R is a non-compact Lie group
whereas S! is compact. Geometrically, R corresponds to the line and S* to
the circle.

A product of two Lie groups is again a Lie group if the differentiable
structure is chosen to be the product structure, and the group structure is
the direct product structure [62]. The only connected two-dimensional Lie
groups up to isomorphism are the products of the line and circle: R? = Rx R,
R x S, and S! x S!, which geometrically correspond to the plane, cylinder,
and torus, respectively [45].
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3.7 Foliations of manifolds

Sometimes it is convenient if a manifold can be decomposed into a disjoint
union of lower-dimensional submanifolds. For example, it is convenient to
decompose a four-dimensional spacetime manifold to 3-dimensional subman-
ifolds, which are spatial spaces at each time moment. Such decompositions
are called foliations of a manifold, and the submanifolds are called the leaves
of the foliation. The basic property of foliations is that there are special charts
such that the images of the leaves are coordinate isovalue (hyper)surfaces (see
Figure 3.7). This property gives the manifold a local product structure, or in
a sufficiently small neighborhood of every point, the manifold is diffeomorphic
to a product manifold.

| T2
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Figure 3.7: Example of a foliation. A 1-dimensional foliation of a 2-manifold
M. The dotted lines on M represent the leaves of the foliation and their
images under the chart ¢ are the lines x5 = constant.

Definition 3.41. Let M be an n-dimensional manifold. A p-dimensional
foliation of M is a decomposition of M into a union of disjoint connected
subsets { L, }.ca, called the leaves of the foliation, with the following property:
every point of M has a chart (U, ¢) such that the components of U N L, are
described in the chart by the equations x,,; = constant,..., x,, = constant.

Remark 3.7.1. Every leaf of {L,} is a p-dimensional regular embedded sub-
manifold of M. Furthermore, the smoothness of a foliation depends on the
class of differentiability of the differentiable structure of the manifold [41].

Remark 3.7.2. If a Lie group G acts smoothly on a manifold M, and if its
action is free, the orbits of G define a smooth foliation of M; i.e., the orbits
are the leaves of the foliations [41].
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3.8 Analysis on manifolds

Classical vector analysis is often applied multivariable and multivalue calcu-
lus in three-dimensional spaces. Furthermore, most structures are defined or
expressed with respect to the metric of the space. In this section, we present a
very general multivariable and multivalue—and totally metric-free—calculus
based on differentiable manifolds of any dimension. However, instead of vec-
tor fields, this calculus employs differential forms. In this thesis, differential
forms are used to model electric and magnetic fields.

The calculus enables many metric-free and dimension-independent oper-
ators and structures. For example, the differential operators grad, curl, and
div are replaced by a single differential operator for differential forms, called
the exterior derivative. It is defined for all dimensions and forms of all de-
grees. Moreover, the so-called pullback of differential forms generalizes the
“change of coordinates” for manifolds. A particularly convenient feature of
the pullback is its natural compatibility with many essential operators and
structures of this general calculus.

Differential forms are fields in a differentiable manifold, which assign to
each point an antisymmetric multilinear mapping of tangent vectors. There-
fore, the exposition begins with the tangent bundle, which is the set of all
tangent vectors with a canonical manifold structure. Finally, Bamberg’s and
Sternbeg’s book [2] is a good mathematical introduction to differential forms
and their analysis on R™ with applications in physics.

3.8.1 Tangent bundle

The set of all tangent vectors T'(M) of a differentiable manifold (M, D) can
be represented as a disjoint union of tangent spaces indexed with the points
of M: T(M) = UpenT,(M). There is a natural projection « : T'(M) — M,
which maps tangent vectors to their points or 7(v) = p for all v € T,(M).
Notice that the inverse image of p under 7 is 7,,(M). Then with the help of
the pushforward and natural projection, the set T'(M) can be given a natural
differentiable manifold structure induced by D: for each (U, ¢) € D, we define
a chart ¢ : 7 1(U) — R2" by ¢(v) = (¢(m(v)), ¢.(v)) for all v € = 1(U).
With these charts, T'(M) can be shown to be a differentiable manifold with
twice the dimension of M [62].

Definition 3.42. The set T'(M) together with the natural differentiable
structure induced by M is called the tangent bundle.

The points of a tangent bundle T'(M) can be written as pairs (p, v), where
p € M andv e T,(M). A section of T(M) is a mapping o : M — T(M)
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such that 7(o(p)) = p for all p € M; i.e., the section selects exactly one
tangent vector from each tangent space of M [5]. In the literature, sections
are also called cross-sections [58] or lifts [62]. Notice that vector fields on M
are sections of T'(M). Furthermore, because T'(M) and M are differentiable
manifolds and sections are mappings between them, smooth vector fields can
be defined in a coordinate-free way:

Definition 3.43. Let M be a differentiable manifold. A smooth vector field
on M is a smooth section of the tangent bundle T'(M).

3.8.2 Cotangent bundle

The tangent space T,,(M) of a point p is a vector space and has thus a dual
space [35][40], which in this context is called cotangent space. The elements
of the cotangent space of point p are real-valued linear mappings over T,,(M).

Definition 3.44. A covector at p is a linear mapping ¢ : T,(M) — R.

The set of all covectors at p is denoted by T (M), and it can be given
the structure of vector space. The addition and scalar multiplication are
defined elementwise: the sum ¢; + ¢y of covectors ¢; and ¢y is defined by
(c1 + c2)(v) = ¢1(v) + e2(v), and the scalar multiplication ac; of ¢; by «
is defined by (aci)(v) = aci(v). With this vector space structure, T,y (M)
is isomorphic to T,(M) but not canonically. Thus T;(M) has the same
dimension as M.

Definition 3.45. With the vector space structure defined above, T (M) is
called the cotangent space at p.

The set of all cotangent spaces over M is denoted by 7%*(M), and it can be
given a bundle structure in a similar fashion as we defined the tangent bundle.
The set T*(M) of a differentiable manifold (M, D) is a disjoint union of
cotangent spaces indexed with the points of M: T*(M) = U,en/T,; M. There
is a natural projection 7* : T*(M) — M, which maps covectors to their points
or m*(c) = p for all ¢ € T;;(M). Notice that the inverse image of p under 7* is
T(M). Then with the help of the pushforward and natural projection, the
set T*(M) can be given a natural differentiable manifold structure induced
by D: let (eq,...,e,) denote the canonical basis [5] of the Euclidean space
R"™. Then for each (U, $) € D, we define a chart ¢t (7)) W U) — R*" by
o*(c) = (p(7*(c)), c(d (er)), .., (P (en)) for all ¢ € (7*)~1(U). With these
charts, T*(M) can be shown to be a differentiable manifold with twice the
dimension of M [62].
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Definition 3.46. The set T*(M) together with the natural differentiable
structure induced by M is called the cotangent bundle.

Similarly as for the tangent bundle, the points of a cotangent bundle
T*(M) can be written as pairs (p,c), where p € M and ¢ € T;(M). Also
sections of T*(M) can be defined as in the case of the tangent bundle: a
mapping o* : M — T*(M) such that 7*(¢*(p)) = p holds for all p € M is
a section; i.e., the section selects exactly one covector from each cotangent
space of M. Thus covector fields on M are sections of T*(M):

Definition 3.47. Let M be a differentiable manifold. A smooth covector
field or one-form on M is a smooth section of the cotangent bundle T™(M).

The set of all one-forms over M, or the set of all smooth sections of T*(M),
is denoted by Q'(M). This set can be given the structure of a vector space
by pointwise definition: let w; and wy be one-forms over M and o € R. The
sum w; + wy and the scalar multiplication aw; are defined by the formulae
(W1 + w2)p(v) = (w1)p(v) + (w2),(v) and (awy),(v) = a(ws),(v), which hold
forall pe M, v e T,(M).

3.8.3 Differential forms

A differential form over M is a field that assigns to each point p an anti-
symmetric multilinear mapping that maps tangent vectors of T,(M) to real
numbers. The suitability of differential forms as models for electromagnetic
fields is well established (see, e.g., [13]). Here we give only the formal def-
inition and in such a way that first forms are defined at one point, or that
the definitions of the linear mappings that map tangent vectors to reals are
given, and the definition is then extended to the whole manifold.

Before the definition, some preliminary definitions and notations: if V' is
a vector space, its k-fold Cartesian product by itself is denoted by V¥, e.g.,
V3=V xV x V. An element v of V¥ is a family v = (v;|i € I), where the
index set [ is the set {1,2,...,k}. A permutation of I is any bijective mapping
o: 1 — I, and o(v) denotes the family (v,;|i € I). A transposition o is a
special kind of permutation that only interchanges two elements; i.e., there
exist indices i, such that o(i) = j, o(j) = i, and o(n) = n for all other
indices n. Clearly all permutations are compositions of transpositions. A
permutation is even (odd) if it is the composition of an even (odd) number
of transpositions. Define sgn as the mapping that maps even permutations
to 1 and odd permutations to -1. Finally, if (vy,...,v,) is an ordered basis
of V, then (v,,,...,v,, ) is a k-tuple of the basis vectors (vy,...,v,) such that
1<y < pog < ... < g <n (for more on permutations, see [14][25]). With
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these preliminaries, we can define the properties of linear mappings that are
assigned to each point of a manifold:

Definition 3.48. Let V' and W be vector spaces over R. A mapping f :
VE — W is k-linear if it is linear on each of the arguments separately. If
flo(v)) = f(v) holds for all v € V* and for all permutations o(v), then
f is symmetric. If f(o(v)) = sgn(o)f(v) holds for all v € V* and for all
permutations o(v), then f is antisymmetric.

The antisymmetry of k-linear mappings has the following important con-
sequence:

Proposition 3.2. Let f : V¥ — W be k-linear and antisymmetric. If
U1, ..., U is a set of linearly dependent vectors of V', then f(vy,...,vx) = 0.
[34]

The set of all antisymmetric k-linear mappings over V' is an (Z)—dimensional
vector space if V' is n-dimensional [34]; (}) is the binomial coefficient [61].
When a k-linear mapping is assigned to a point p of a manifold M, then the
role of V¥ is played by (T,(M))*. Thus differential forms are defined as fields

of antisymmetric k-linear mappings over a manifold:

Definition 3.49. A differential k-form w on a manifold M is a mapping
that assigns to each point p € M an antisymmetric k-linear mapping w,, :
(T,(M))* — R.

The smoothness of a differential k-form can be defined in a coordinate-
free way [5]: Given any Xj,..., X} smooth vector fields on M, a differ-
ential k-form w is smooth if w(Xy,..., X}), defined by w(Xy,..., Xx)(p) =
wp(X1(p), .., Xi(p)), is a smooth function in M.

We often use a shorthand k-form for the differential k-form. Notice that
zero-forms correspond to real valued mappings on M. Furthermore, if k& >
n = dim(M), all k-forms are zero. The set of all differential k-forms in M
is denoted by QF(M), and the set of all differential forms of any degree is
denoted by Q(M). QF(M) is an infinite dimensional vector space for each k,
and the addition and scalar multiplications are given pointwise.

3.8.4 Pullback

The change of variables of differential forms is the pullback of a differential
form under a differentiable mapping between manifolds. The pullback is a
similar induced mapping for differential forms as the pushforward of tangent
vectors, but it goes in the opposite direction: if f : M — N is differentiable,
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then its pullback f* is a mapping of the type Q%(N) — QF(M). The pullback
is the change of variables because if we have a form w in N, then its pullback
f*w is a form defined in M. In other words, w is a function of the points
of N and the tangent vectors of T'(IV), but its pullback f*w is a function of
the points of M and the tangent vectors of T'(M). The change of variables
is defined by f, which gives the relation between the points of M and N and
by the pushforward f,, which gives the relation between the tangent vectors
of T(M) and T(N). Thus the pullback is a generalization of the change of
coordinates for differential forms on manifolds.

Definition 3.50. Let f : M — N be a differentiable mapping. The pullback
under f is a linear mapping f* : QF(N) — QF(M) for each k > 0 such that
for all w € QF(N) the pullback f*w of w at every p € M is defined by the
formula (f*w)y(v1, ..., vk) = W) (fsv1, .., frvr) where vy, ... v, € T(M).

Notice that the dimensions of M and N need not be the same, and that
the dimension of M may be higher or lower than the dimension of N. This
generalizes the change of coordinates that are always defined between spaces
of equal dimension. Furthermore, if f is a change of coordinate mapping, then
f* defines the change of coordinates for w [5]. Finally, notice that because
the pullback goes backwards, the pullback of a composition of mappings has
a reverse order [5]: if f: M — N and g: N — O, then (go f)* = f*og*:
QOF(0) — QF(M).

With submanifolds, the pullback of the inclusion map offers a way to de-
fine restrictions of differential forms to submanifold: let N be a submanifold
and a subset of M, and let ¢ denote the inclusion map of N to M. Then the
restriction w|y of w € Q(M) to N is defined by w|y = i*w. Particularly, the
restriction wl,,, to the boundary 0M of a manifold-with-boundary M is an
important example of restriction [34], because the boundary values of a BVP
are defined with it. Often the restriction w|y is denoted by tw and called the
trace of w.

3.8.5 Wedge product

Differential geometry has an important operator for differential forms called
the wedge product. It is metric-independent and replaces in vector analy-
sis metric-dependent vector field operators’ cross-product, dot product, and
scalar triple product. The wedge product is defined for all forms in all di-
mensions. When the set Q(M) of all differential forms in M is endowed with
the wedge product, it has an algebraic structure called graded algebra [40].
Particularly, Q(M) together with the wedge product constitutes so-called ez-
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terior algebra [62] a.k.a. Grassmann algebra. The wedge product offers a
simple way to construct new (possibly higher degree) forms from old ones.

Definition 3.51. The wedge product is a bilinear mapping A : Q(M) x
Q(M) — Q(M) satistying the following properties:

(1) the A is associative, i.e., (WAN)ANE=wA (NAE).

(2) the A is graded anticommutative, i.e., (w A n) = (=1)*(n A w) for
w € Q¥(M) and n € Q(M).

(3) the zero-form 1: M — 1 satisfies 1 Aw = w for all w € Q(M).

The following proposition states that the wedge product is uniquely de-
fined by above axioms [65]. Furthermore, the proposition shows how to
calculate pointwise the values of the wedge product of two differential forms
in terms of those forms. For this calculation, we need a special class of per-
mutations of indexes: let P(k,[) denote the set of all such permutations o of
the index set {1, ..., k+(} that have the following property: o(1) < ... < o(k)
and o(k+1) < .. <o(k+1).

Proposition 3.3. The wedge product given in Definition 3.51 is uniquely
defined. Furthermore, if w and 7 are a k-form and an [-form, respectively,
their wedge product w A n is a (k + [)-form that is defined pointwise by the
following formula [34]:

(W ANV, s Vrrt) = Z 8GN0 )Wp(Vo(1)s 5 Vo (k) )p (Vo (k1) -5 Vo(k 1))
ceP(k,)

Example 3.8.1. If w and n are one-forms on M, then w A 7 is a two-form
defined by the formula

(W Am)p(v1,v2) = wy(v1)n,(va) — wp(v2)ny(v1).

Remark 3.8.1. The wedge product of zero-forms w and n is the pointwise
product: (w A1), = w, 1p.

The wedge product is natural in the sense that it is compatible with the
pullback:

Theorem 3.1. The wedge product is compatible with the pullback, i.e.,
fH(wAn) = f*wA f*n holds [34][62].
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3.8.6 Exterior derivative

The differential operators gradient, curl, and divergence of vector analysis
are defined for scalar and vector fields in a three-dimensional space and are
metric-dependent. Differential geometry has a metric-independent differen-
tial operator for differential forms, which generalizes the gradient, curl, and
divergence into a single operator. It is defined for manifold of any dimension
and differential forms of any degree, and the definition has the same form for
all these cases. This operator is the exterior derivative, and it has a crucial
role because with it we can write Maxwell’s equations.

Definition 3.52. The exterior derivative is a linear mapping d : QF(M) —
QFFL(M) for each k > 0 satisfying the following axioms:

(1) Differential property: for f € QY(M), df is the differential of f.
(2) Complex property: dod =0,

(3) Product property: d(w An) =dw An+ (=1)%(w A dn) for w € QF(M).

Proposition 3.4. The exterior derivative is uniquely defined by three axioms
of definition 3.52 [5][17][62].

Remark 3.8.2. The exterior derivative is not defined for all forms but only
for those that are at least once differentiable.

Remark 3.8.3. Generalized Stokes’s theorem for integration of differential
forms (section 3.8.9) provides a connection between the boundary of a mani-
fold and the exterior derivative d. The complex property of d is then related
to the fact that the boundary of a boundary is empty [46], which corresponds
to the complex property of the boundary operator.

The exterior derivative is a natural operator for differential forms in the
sense that it is compatible with the pullback:

Theorem 3.2. The exterior derivative is compatible with the pullback, i.e.,
do f* = f*od holds [17][34][62].

Remark 3.8.4. The compatibility of d and the pullback means that differential
equations expressed with d, such as dw = 7, are generally covariant. In
other words, differential equations are invariant under diffeomorphisms. For
electromagnetism, this implies that Maxwell’s equations are invariant under
diffeomorphisms. This is important for symmetry applications and enables
definition of the equivalence of electromagnetic BVPs under diffeomorphisms.
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The axioms of the exterior derivative shown in Definition 3.52 together
with its compatibility with the pullback define the complex [40] called de
Rham complex [34], i.e., the following sequence of linear maps having the
properties (1)-(3) of Definition 3.52:

d

—>Q1<M) d d

0 — QM) 5 QA(M) 5

Furthermore, the exterior derivative is the only linear map on differential

forms that constitute the de Rham complex [34]. The naturality property of

d makes the pullback f* of f: M — N a chain map [30] between the de

Rham complexes of N and M:; i.e., the following diagram commutates:
0— QY — QYN)

N)
| /
0— QM) -L ol(M) -L QM) — ...

d d

— O*(N) — ...

Maxwell’s equations can be written with the exterior derivative without
the metric structure of M. In vector analysis, Maxwell’s equations are written
with the gradient, curl, and divergence, which are the metric counterparts
of the exterior derivative. However, because the three depend on the metric
structure of M, they cannot yet be defined.

3.8.7 Contraction and extension

In dimensional reduction, we must move from a higher-dimensional manifold
to a lower-dimensional submanifold and vice versa. This decreasing and
increasing dimension often means that also the degree of a form must be
decreased and increased. The coordinate- and metric-free tools for forms
that meet these requirements are contraction and extension.

Definition 3.53. Let X be a vector field on a manifold M. Then X defines
a linear mapping iy : Q¥(M) — QF1(M) for each k > 1, called contraction,
which maps a k-form w to a (k — 1)-form iyw. iy is defined pointwise by the
formula

(ixw)p(v1, oy Vg—1) = Wp(Xp, V1, -y V1),

which must hold for all p € M and vy, .., v4_1 € T,(M).

Definition 3.54. Let a be a one-form on a manifold M. Then «a defines
a linear mapping I, : QF(M) — QF(M) for each k > 0, called extension,
which maps a k-form w to a (k + 1)-form I,w defined by I,.w = o A w.
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Remark 3.8.5. The contraction of differential forms is often called the inte-
rior product, and extension is sometimes called the exterior product. The
contraction of differential forms is related to tensor contraction.

Proposition 3.5. The contraction iy : Q(M) — Q(M) has the following
properties, which are easily proven [5][62]:

(1) The mapping X — iyw is a linear map for fixed w

(2) Product property: iy(wAn) = ixwAn+(=1)%(wAixn) for w € Q¥ (M)
(3) Antisymmetry: iy (iyw) = —iy (ixw)
(4)

4) If Y = fX for a scalar field f, then iy o7, = 0.

Remark 3.8.6. The linearity of iy and X — iyw is, in fact, so-called C'*°(M)-
linearity: ix(w + fn) = ixw + f(ixn), where f € C*(M) is a smooth scalar
field over M. In pointwise terms, this reduces to normal linearity.

Finally a lemma, with several uses later on, about the relationship be-
tween contraction and pullback:
Lemma 3.2. Let f : M — N be a diffeomorphism and let X be a vector
field on M. Then f*oi, x =iy o f*.
Proof: Let w be a (k + 1)-form on N; then

(ffipxw)p(vr, s vr) = (G5 xwW)p(favr, .oy fuvi)
= wp(f*XJf*Ula'-'vf*vk)
= (ff'w)p(X, v, ..., v5)

(ix ffw)p(vr, ..., vp)

holds for all p € M and for all vy, ..., vy € T,(M). O

3.8.8 Lie derivative

The Lie derivative of a differential form is a generalization of the standard
directional derivative of functions R™ — R to forms: the direction is specified
by a smooth vector field over a manifold in contrast to the standard case in
which it is specified by a vector or equivalently by a constant vector field
over R™. The Lie derivative of a k-form is again a k-form, and in the case
of zero-forms over R™, the Lie derivative with respect to a constant vector
field reduces to the standard directional derivative. The Lie derivative plays
a central role in dimensional reduction, and we use it also to represent the
time or temporal derivatives of fields.
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Before any formal definitions, we give a geometric characterization of the
Lie derivative. Think about a flow of incompressible fluid on some manifold.
Its velocity vectors at each point of the manifold form a smooth vector field.
As time passes, the fluid particles move along trajectories, and the velocity
vectors are tangent to these trajectories. Thus a vector field X induces a
curve c¢ for each point p such that the vector X, is the velocity vector of c
at p. These curves are called integral curves, and they fill the manifold. The
totality of integral curves induces a 1-parameter group of transformations ¢;
of the manifold: for each ¢t the mapping ¢; maps the fluid particles at time 0
to the points where they are at time ¢. Now the fluid flow moves a differential
form w at ¢g(p) = p to some other point ¢;(p) along the trajectory, and we
can pullback w at ¢.(p) to the point p, where w and ¢;w can be compared
by subtracting w from ¢;w. This difference is divided by ¢, and the limit as
t approaches to zero is the value of the Lie derivative of w with respect to X
at point p.

Definition 3.55. Let X be a smooth vector field on a manifold M, and let
c¢: 1 — M be a smooth curve on M, where I C R is an open interval. Then
c is an wntegral curve of X if the image of the canonical basis vector e of R
under the pushforward of ¢ for each t is the vector Xy, or c.(t)(e) = X @
holds for all t € I.

If X is a smooth vector field on M, then for each p € M, there exists an
integral curve ¢ for X such that I = (—¢, €) for some € > 0 and ¢(0) = p [62].
Next, the fluid flows (trajectories) are modeled as group actions of the Lie
group R:

Definition 3.56. Let ¢ : R x M — M be a group action of R on M. ¢
is a I-parameter group of transformations of M if ¢, : M — M, where
wi(p) = p(t,p) is a diffeomorphism for each ¢t € R. Let I. = (—¢,¢) C R and
U be an open subset of M. A local 1-parameter group of transformations of
M is a mapping ¢ : I. x U — M such that

1) ¢ is a diffeomorphism of U onto the open set ¢ (U) of M for each
tel.

2) if t,s,t+ s € I and if p, ps(p) € U, then @i s(p) = pi(ps(p))-

Remark 3.8.7. A local 1-parameter group of transformations is also known as
flow [5]. Each 1-parameter group of transformations is a local 1-parameter
group of transformations for which I, = R and U = M. Furthermore, the set
of all transformations ¢, for a local 1-parameter group of transformations is
not really a group despite its name. However, it behaves like a group near
the identity mapping (or near 0 € R) [37].
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Each 1-parameter group of transformations ¢ induces a vector field X
for M: for each p € M, X, is a vector tangent to the curve c(t) = ¢(t,p)
which is an integral curve of X. Similarly, each local 1-parameter group
of transformations induces a smooth vector field for U, and the following
proposition also states that the converse is true.

Proposition 3.6. Let X be a smooth vector field on a manifold M. For
each point p of M, there exists a neighborhood U of p, a positive number e,
and a local 1-parameter group of transformations ¢, : U — M, t € I., which
induces the given X [37].

Now we have all the tools to define the Lie derivative:

Definition 3.57. Let X be a vector field on M and ¢, a local 1-parameter
group of transformations induced by X. The Lie derivative of a k-form w
with respect to X is a k-form denoted by Ly w, which is defined pointwise
for each p € M by the formula

The next theorem shows that the Lie derivative can be expressed using
the exterior derivative and contraction:

Theorem 3.3. (Cartan’s magic formula) £y = doix +ix od [62].

3.8.9 Integration on manifolds and Stokes’s theorem

With charts, the standard Lebesgue integration theory [1][18] of mappings
R™ — R can be generalized to integration of differential forms over manifolds:
we represent a form as a real valued mapping defined over the codomain of a
chart that covers part of the manifold and then apply standard integration.
Consequently, the change of variables formula [61] for standard integration
implies that the integral of the form is independent of the choice of chart.
Notice that the integration of differential forms over manifold, as defined here,
is independent of the metric of the manifold. The definition of integration
we present is from [34].

Definition 3.58. A subset A of an n-manifold is called measurable (set of
measure zero) if it has this property relative to charts, i.e., if for some covering
of A by charts (U, ¢) on M, each ¢(U U A) is Lebesgue-measurable (a set of
measure zero) in R"™. If A is contained in a chart domain, then A is small.
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Definition 3.59. Let M be an oriented n-manifold and w € Q"(M). w is
integrable if for some decomposition (A;);en of M into countably many small
measurable subsets and some sequence (U;, ¢;);en of orientation-preserving
charts (see Definition 3.32) with A; C U;, the following holds: for every i € N,
the component function

a; = w((¢; )x(er), -, (97 )slen)) o (00) ™+ 6i(U;) = R

of w relative to (U;, ¢;) is Lebesgue-measurable on ¢;(A4;), and

Z/ la;(z)|dx < oo.
i(Ai)

Lemma 3.3. Let M be an oriented n-manifold and w an integrable n-form.
Let (U;, ¢i)ien and a; be as in Definition 3.59. Then the value

d
Z/m )da

is independent of the decomposition and charts [34].

Definition 3.60. Let M be an oriented n-manifold and w an integrable n-
form. Let (U;, ¢;)ien and a; be as in definition 3.59. The integral of w over
M, denoted by the [} w, is the value

Z/(A)

Remark 3.8.8. The integral of k-forms is defined only over k-dimensional
manifolds. Thus, e.g., one-forms and two-forms cannot be integrated over the
same manifold, and if one- and two-forms are defined over a three-manifold,
then their integral can be defined only over one- and two-dimensional sub-
manifolds, respectively.

Next we provide two important theorems about the integration of differ-
ential forms on manifolds. The first is an analog for the change of variables
formula for integration on manifolds. The second is the Generalized Stokes’s
theorem for differential forms, which generalizes and unifies Stokes’s and di-
vergence theorems of vector analysis and the fundamental theorem of calculus.
It relates integration, the exterior derivative, and the boundary operator to
each other. For more on integration and the theorems, see [34].
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Theorem 3.4. Let f : N — M be an orientation-preserving diffeomorphism
between n-manifolds and w an n-form on M. Then the following holds:

foe L

Theorem 3.5. (Generalized Stokes’s theorem) Let M be an oriented n-
dimensional manifold-with-boundary and w € Q"~!(M). Furthermore, let tw
denote the restriction of w to the boundary OM. Then the following holds:

/ tw:/ dw.
oM M

3.9 Metric structure for manifolds

A plain differentiable manifold contains no concepts of distance or angle.
These geometric notions must be given with an additional structure called
the metric tensor, which is a generalization of the dot product of vector anal-
ysis. A manifold together with a metric tensor is called a semi-Riemannian
manifold.

Because the metric tensor is a separate structure on manifolds, it allows a
clear separation between those elements of electromagnetic theory that rest
on topology and differentiability from those that are related to a metric. So
far, all the structures defined on manifolds are independent of the metric ten-
sor. Particularly, all the items on electromagnetic BVPs, such as fields and
Maxwell’s equations, except for constitutive equations, can be defined with-
out reference to a metric. The relationship between metric and constitutive
equations is studied in chapter 4. The metric-independence of most struc-
tures necessary in electromagnetic modeling with differential geometry is in
contrast to vector analysis, where the metric is from the beginning embedded
in most structures.

The metric tensor enables us to define the so-called Hodge-operator, which
is often used to express the constitutive equations [8] [56]. Furthermore, a
metric provides a connection between differential forms and the vector fields
of vector analysis: with a metric we can represent one-forms and (n—1)-forms
in an n-manifold as vector fields.

3.9.1 Riemannian and semi-Riemannian manifolds

Riemannian manifolds are differentiable manifolds with an additional struc-
ture called the metric tensor. A metric tensor is a field over a manifold
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that assigns an inner product to each tangent space. The inner product, in
turn, is a generalization of the dot product. Thus because the inner product
gives a norm for tangent vectors, each tangent space is like the n-dimensional
Euclidean space with Euclidean geometry. Because tangent vectors can be
interpreted as infinitesimal or virtual displacements of a point, in the same
manner the geometry of a tangent space can interpreted as a virtual geometry.
Virtual Euclidean geometry can be partly extended to the whole manifold:
we can define geometric concepts for the manifold, but the resulting geometry
is not necessarily Euclidean. Semi-Riemannian manifolds are generalizations
of the Riemannian manifolds in the sense that more general objects than in-
ner products are allowed. A special class of the semi-Riemannian manifolds
is the Lorentz manifolds which are used in the general relativity.

Definition 3.61. Let V' be a real vector space. A bilinear form on V is a
mapping ¢ : V x V — R that is linear in each variable. ® is symmetric if
¢(v,w) = ®(w,v) holds for all v,w € V. @ is nondegenerate if there are
no nonzero v € V such that ®(v,w) = 0 holds for all w € V. ® is positive
definite (negative definite) if ®(v,v) > 0 (®(v,v) < 0) holds for all v € V,
and ®(v,v) = 0 holds if and only if v = 0. An inner product is a symmetric
positive definite bilinear form.

If @ is a symmetric definite (positive or negative) bilinear form on V', then
for any subspace W of V' the restriction ®|y «yw on W is also a symmetric
definite bilinear form on W [49]. With the help of the restriction we can
define an index of a symmetric bilinear form, which then can be used to
define the metric tensor:

Definition 3.62. The inder of a symmetric bilinear form ® on V is the
largest integer that is the dimension of a subspace W C V on which ®|y w
is negative definite.

Remark 3.9.1. If the index of ® is zero then ® is an inner product.

Definition 3.63. A metric tensor is a smooth choice of a nondegenerate
symmetric bilinear form on each tangent space of a manifold such that the
index of the forms are the same over the manifold.

The smoothness of the metric tensor can be defined as follows [5]: let X
and Y be smooth vector fields on M and m be a metric tensor on M. m is
smooth if m(X,Y") is a smooth mapping on M.

Definition 3.64. A semi-Riemannian manifold is a pair (M, m), where M
is a differentiable manifold, and m is a metric tensor on M. If the index of
m is 0 or 1, then (M, m) is a Riemannian manifold or a Lorentz manifold,
respectively.
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Example 3.9.1. The standard dot product - of the vector space R" is an inner
product over R™. Thus (R", ) is a Riemannian manifold.

It makes sense to speak about the pullback of a metric tensor, and the
formula in Definition 3.50 is, in fact, the definition of the pullback of a metric
tensor [5]. Thus if f : M — N is a mapping of a differentiable manifold M
to a semi-Riemannian manifold (V,n), then f*n is a metric tensor for M,
and (M, f*n) is a semi-Riemannian manifold. Particularly, the standard Rie-
mannian structure of a chart (R") can always be pulled back to the manifold,
making it thus a Riemannian manifold. However, the induced metric tensor
in that case is chart-dependent. Furthermore, the contraction of a metric
tensor with respect to a vector field is defined as for differential forms.

It is clear from the definition of the Riemannian manifold that Rieman-
nian manifolds are not structurally metric spaces in the sense of Definition
3.9. However, the metric tensor induces canonically a metric space structure
for manifolds: the length or the norm [|v|| of a tangent vector v € T,(M)
is defined by ||v|| = \/m,(v,v). Furthermore, a metric tensor enables com-
parison of the lengths of tangent vectors of different points. Then with the
help of the norm of tangent vectors, we can define the lengths of smooth
curves, and the distance between a pair of points is defined as the length of
the shortest curve joining the points, i.e., the geodesic. Consequently, every
connected Riemannian manifold is also a metric space:

Definition 3.65. Let ¢ : [a,b] C R — M be a smooth curve on a Riemannian
manifold (M, m) such that ¢ is a diffeomorphism from [a, b] to its range. Then
its length L(c) is defined by

Lie) = [ lle.(t)(e)l] dt,

where e is the canonical basis vector of R.

Remark 3.9.2. The definition of the length of curves is independent of pa-
rameterization and depends only on the metric tensor and the range of ¢

[5].

Theorem 3.6. Let M be a connected Riemannian manifold, and let the
function dis : M x M — R be defined by the formula

dis(p,q) = inf {L(c) | cis a smooth curve joining p and ¢}.
Then (M, dis) is a metric space [5].

Remark 3.9.3. The metric topology of (M,dis) agrees with the manifold
topology of M with any dis that can be defined on M [5].
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Remark 3.9.4. The metric tensor chosen for the manifold may be such that its
induced point-to-point metric is the same that was induced by the distance
measurements, but it need not be the same.

As a corollary, we have a characterization of isometries, which are the
structure-preserving mappings of Riemannian manifolds in terms of metric
tensors:

Corollary 3.1. Let f : M — N be a differentiable mapping between Rie-
mannian manifolds (M, m) and (N, n). If f*n =m, then f is an isometry.

Remark 3.9.5. The structure-preserving mappings of semi-Riemannian man-
ifolds, which are also called isometries, can be defined as in the above corol-
lary: Let f: M — N be a differentiable mapping between semi-Riemannian
manifolds (M, m) and (N,n). If f*n =m, then f is an isometry.

Not only distance but also the concept of orthogonality derives from the
metric tensor: tangent vectors u,v € T,(M) are orthogonal if m,(u,v) = 0
holds. This is similar to the traditional dot product -, where vectors u and
v are said to be orthogonal if u - v = 0 holds. Useful concepts related to
orthogonality are orthonormal basis and basis field:

Definition 3.66. A basis {0y, ...,d,} of a tangent space is orthonormal if
m(0;,0;) = 6;; holds, and a basis field is orthonormal if its orthonormal in
every point. The symbol d;; is the Kronecker delta, defined as follows: ¢;; = 1
if ¢ = j, otherwise 9,; = 0.

3.9.2 Representation of differential forms as proxy vec-
tor fields

In a semi-Riemannian manifold, we can canonically represent differential
forms as vector fields and thus give a connection between differential form
analysis and vector analysis: vector fields on an n-manifold are mappings
that assign to each point of the manifold an element of n-dimensional vector
space (the tangent space of the point). On the other hand, one-forms and
(n — 1)-forms on the same manifold are mappings that assign to each point
of the manifold an element from a vector space whose dimension is n. Thus
these vector spaces are isomorphic, and therefore it is possible to use isomor-
phisms to represent one-forms and (n — 1)-forms with vector fields. Vectors
representing forms are called proxy-vectors. Isomorphisms are not canonical,
but if a metric tensor is defined, it provides a canonical isomorphism from a
tangent space to the corresponding covector and (n — 1)-covector spaces.
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A vector space V' is isomorphic to its dual V* but has no canonical iso-
morphism. However, if an inner product ® is defined on V', then it is possible
to define a canonical isomorphism between V' and V*: by the Riesz repre-
sentation theorem [66], for each v € V', there corresponds a unique element
fo of V* such that equation f,(w) = ®(v,w) holds for all w € V. On the
other hand, all elements of V* can be defined this way. Thus the vector v
together with ® represents the functional f,. However, if ® is changed, the
vector representing the functional is changed.

This procedure can be generalized to semi-Riemannian manifolds: let
(M, m) be an n-dimensional semi-Riemannian manifold. Then a unique
proxy vector field V;,, exists for each one-form w such that w,(v) = m,(V,,.(p),v)
holds for all points p € M and all tangent vectors v € T,(M) [16]. In this
case, we say that the vector field V,, represents the one-form w. Again the
representation of one-forms with vector fields is not unique but depends on
the chosen metric tensor. The isomorphism from one-forms to vector fields
defined by the metric tensor is called sharp, and it is denoted by £ [34]. The
inverse of £ is called flat, and it is denoted by b [34].

The representation of (n—1)-forms with vector fields requires also a metric
tensor, but now the role of the metric tensor remains hidden:

Definition 3.67. Let (X4, ..., X,,) be a positively oriented orthonormal basis
field. An n-form vol is a volume form if vol( X7, ..., X,,) = 1 holds everywhere.

Remark 3.9.6. The volume form is unique for each metric tensor and thus
does not depend on any particular positively oriented orthonormal basis used
in its definition [34]. In the literature [5], also the term volume element is
used instead of volume form.

With the volume form vol we can now represent an (n — 1)-form w
with the unique proxy vector field V,, that satisfies vol,(V,,(p), v, ..., v,) =
wy(va, ..., vy,) for all points p € M and all tangent vectors vs, ..., v, € T,(M).

With the contraction, we can define proxy vectors alternatively as follows:
let m and vol be the metric tensor and the volume form of a semi-Riemannian
manifold, respectively. Let w and n be a one-form and an (n — 1)-form,
respectively. Then their proxy vectors U and V' are those that satisfy the
following equations:

w = iym
n = iyvol.
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3.9.3 Hodge-operator

When electromagnetic theory is formulated with classical vector analysis,
the constitutive equations are relations between vector fields: in the case of
linear materials, permittivity, permeability, and conductivity are modeled as
scalar or tensor fields that map a vector field to a vector field. That is, the
materials are modeled as linear isomorphisms that map vector fields to vector
fields. On the other hand, because the forms representing magnetic field
(one-form) and magnetic flux density (two-form) are of a different degree,
permeability cannot be a scalar field. However, in an n-manifold M the
vector spaces QF(M) and Q" *(M) are isomorphic because the vector space
of all antisymmetric k-linear mappings over 7,,(M) has the same dimension
as the vector space of all antisymmetric (n — k)-linear mappings over T,,(M).
The isomorphism between Q%(M) and Q"~%(M) is not canonical, but on a
semi-Riemannian manifold we can define a canonical isomorphism with the
so-called Hodge-operator (also known as the star-operator).

Definition 3.68. Let M be an oriented semi-Riemannian n-manifold. The
Hodge-operator is the unique linear isomorphism * : Q*(M) — Q"~*(M) for
0 < k < n such that

*wAha) = i,(*xw)
holds for any k-form w and a one-form « and

x1 = wol

holds for the zero-form 1 [13].

Proposition 3.7. The Hodge operator has the following properties [34] [62]:
(1) »x = (=1)*=R1Tido ), where s is the index of metric tensor

(2) definiteness: w A xw is a nonzero n-form that maps bases from the
positive class to positive numbers for all w # 0

(3) symmetry: w Axn=nA*w.

Remark 3.9.7. For each metric tensor, there is a corresponding Hodge-operator,
and the converse is also true: given a linear isomorphism from one-forms to
(n — 1)-forms with the properties of definiteness and symmetry, it induces a
metric tensor [§].
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Remark 3.9.8. The properties of definiteness and symmetry of the Hodge
operator make it possible to define an inner product (-, -) for Q*(M) as follows

[62]:
(w,n)y = /Mw/\*n.

The Hodge-operator helps establish a relation between the exterior deriva-
tive and the differential operators gradient, curl, and divergence: let f be a
scalar field and F' a vector field. Then the formula for the gradient with any
metric tensor is grad f = #(df); i.e., grad f is a vector field that satisfies
df (V) = m(grad f,V) for all vector fields V' and for the given metric tensor
m. Again if the metric tensor is changed, the vector field grad f is changed.
The formula for the curl is curl F' = §[* (d(bF"))], where the vector field F' is
first flattened or mapped to the one-form b F by the isomorphism b. Then the
exterior derivative of bF is taken after, which the resulting two-form d(bF') is
mapped to the one-form x (d(bF’)) using the Hodge operator. Finally, using
the sharp operator f, the one-form * (d(bF")) is mapped to the vector field
8(x (d(bF))). The formula for the divergence is div F' = x(d(x(bF'))). Again
the vector field F' is first flattened to the one-form bF and then mapped to
the two-form x(bF") by the Hodge. The two-form is mapped to the three-form
d(x(bF)) using the exterior derivative, and finally the Hodge maps this to the
scalar field (zero-form) x(d(x(bF"))).

3.10 Calculations in coordinates

In the above, we defined most of the structures without reference to coor-
dinates or bases. This approach emphasized the conceptual characteristics
of the structures and the fact that nature is independent of our choices of
coordinates and bases. However, when we solve problems numerically with
computers, we must, in the end, represent these structures with real numbers.
This representation we achieve by choosing coordinates and bases. In this
section, we give coordinate and basis representations of some of the structures
defined above.

Charts are a convenient way to induce bases for the tangent spaces of a
manifold from a chart: in the Euclidean space R, the tangent space T, (R")
of a point a € R™ is identified with the vector space R™ in an obvious way.
Obvious identification implies that all the tangent spaces of R™ are canoni-
cally isomorphic to each other. Because the vector space R™ has a canonical
(or natural or standard) basis, (ey,..,e,), there is a natural basis field for
the tangent spaces of the Euclidean space R". Now because the codomain
V = ¢(U) of every chart ¢ is a manifold itself and a subset of the Euclidean
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space R™, a natural basis field exists for the tangent spaces of V. Then the
pushforward of ¢! induces a basis field called the coordinate frame in the
tangent spaces of the manifold.

Definition 3.69. Let ¢ be chart of M, and let (ey,..,e,) be the standard
ordered basis of R™. Then the coordinate frame of ¢ is the ordered basis field
of the tangent spaces of M given by ((¢1).eq, .., (071).en).

Let dim(M) = m and dim(N) = n, and let f : M — N be a differen-
tiable mapping. The pushforward f.(p) at p is a linear map f.(p) : T,(M) —
Tty (N), and if we choose bases for T,(M) and T}, (/V), then we can rep-
resent f.(p) as a matrix that maps from R™ to R™. If f is represented with
charts as ¢! o f o, then the pushforward f.(p) is given by the Jacobian
matriz [5] of the representation map ¢~!o f o . In other words, the Ja-
cobian matrix of the representation map is the matrix of f.(p) given in the
coordinate frames ((¢~1).eq, .., (07 1)vem) and ((071).er, .., (971)sen).

Next we define bases for Q'(M) and for each T M using the bases of
(M),

T
Definition 3.70. Let (X7, .., X,,) be a frame field of T'(M). Then its coframe
is the frame field (dwy, ..., dx,) of Q'(M) defined by

1 ifi=y
dwi(X;) _{ 0 ifi#j.

If the frame (X7, .., X,,) is a coordinate frame, then (dz, ..., dz,) is called
the coordinate coframe [5]. The notation (dxy,...,dz,) for the coordinate
coframe comes from the fact that a chart of an n-manifold M can be repre-
sented as an n-tuple of coordinate mappings x; : M — R such that x; gives
the ith coordinate of the points under the chart. Then dz; is the differential
of ;.

Because a k-form is multilinear mapping at each point p, it is completely
determined at p if its values are known for some basis vectors of (T},(M))*.
These values are then the components of the multilinear mapping with re-
spect to the basis. To expand the components to the whole manifold, we
need basis fields, and coordinate frames offer a convenient way to do this:

Definition 3.71. Let w € QF(M) hold and let (X1, ..., X,,) be a coordinate
frame field of T'(M). Furthermore, let 7: {1,....,k} — {1, ...,n} be a mapping
such that 7(1) < 7(2) < ... < 7(k). In the following, we use the shorthand
notation 7; for 7(i). The component functions of w with respect to the frame
(X1, ..., X,) are the functions w,, ,, : M — R defined by

Wryoom (D) = wp( Xy oy X7 ).
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The wedge product provides a convenient way to express higher-degree
forms as products of one-forms. The standard ordered basis of one-forms in-
duced by a chart is its coordinate coframe (dxy, ..., dz,). A basis of two-forms
is given by the set {dx; Adxs, ..., dxy Adx,, dro Ndzs, ..., deg Ndzy, ..., dx, 1 A
dx,}, consisting of all possible wedge products of the coframe, excluding
the reversed products; i.e., either dz; A dx; or dx; A dx; is included but not
both. Particularly, the standard ordered basis of two-forms in a 3-manifold is
(dxg Ndxs, dxs Ndxy,dry Adzy). Similarly, we can define bases for k-forms as
the set of all possible wedge products of k elements of the coframe, excluding
the permuted products. In fact, the component functions of differential forms
defined above are exactly the components of the form given in these bases
[34]: let w,, ., (p) be the component functions of w € QF(M) with respect to
a coordinate frame (X, ..., X,,), and if (dz1, ...,dx,) is the coframe, then w
can be expressed as

w = Z Wryordxe N o ANdg, .

T1<...<Tk

There is an explicit formula for the exterior derivative of a k-form based
on the coordinate coframe and the component functions:

Proposition 3.8. If a k-form w is given in a coordinate coframe as
Zﬁ cn, Wry..7dxs, A ... Adz,, , then its exterior derivative dw is given by
the formula

dv = Z dwry 7 Ndxs, A A dxg,, (3.1)

T1<...<Tg
where dw,, _, denotes the differential of the component function w,, ., [34][62].

We can explicitly calculate the Hodge of a k-form in terms of the form it-
self if we use any orthonormal frame fields, including orthonormal coordinate
frames:

Proposition 3.9. If w is a k-form on a Riemannian manifold M, then its
image *w under * is an (n — k)-form such that

(*w)(Xk+1, ceey Xn> = w(Xl, ciry Xk)

holds for any orthonormal positively oriented frame field (X7, ..., X,,).
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Chapter 4

Electromagnetic boundary
value problems

Electromagnetic BVPs can be formulated with the well established differ-
ential geometry approach [13], instead of the traditional vector analysis ap-
proach. In this chapter, we show how to formulate electromagnetic BVPs
with the tools of differential geometry. The main tools are manifolds-with-
boundary, differential forms, the pullback of forms, the wedge product, the
exterior derivative, the Lie derivative, and the contraction of forms. This
approach and particularly its possibilities for numerical modeling are not
well-known to engineers and architects of modeling software.

The domain of an electromagnetic BVP is a model of space, space and
time, or even spacetime [57] [63]. Maxwell’s equations are normally presented
in the form in which space and time are separated so that time is treated as
an independent parameter. In this so-called (3 + 1)-decomposition of equa-
tions, electromagnetic fields are split into electric and magnetic components.
The decomposition is not absolute, but depends on the observer that splits
spacetime into space and time.

To demonstrate the generality and flexibility of differential geometric
structures, we show in the first three sections below how to derive a very
general (3 + 1)-decomposition of Mazwell’s equations and constitutive equa-
tions. This derivation is based on an additional structure on a manifold,
called the observer structure, which is closely related to one-dimensional fo-
liations of the spacetime manifold but is even more general. Observer is
defined by a pair consisting of a vector field and a one-form over spacetime.
Notice that the general (3 + 1)-decomposition is local and fully coordinate-
and metric-free. Furthermore, the usual splitting of spacetime such that time
can be treated as an independent parameter is a special case of this general
procedure. In addition to (3+ 1)-decompositions, the observer structure con-
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stitutes an important tool in the theory of dimensional reduction introduced
in chapter 5.

The generality and flexibility of differential geometric structures also al-
lows us to formulate many types of problems, such as static BVPs, initial
value problems, and Cauchy problems, in a single setting, simply called
BVPs. For example, initial value problems are plain standard BVPs when
the initial values are interpreted as a special type boundary values. In fact, in
terms of differential geometry, it would be more accurate to say that the ini-
tial values are merely boundary values for which we have given a special name
and separate treatment. In the fourth section in this chapter, we formulate
a general electromagnetic BVP based on the general (3 + 1)-decomposition
of Maxwell’s equations using differential geometry.

The formulation of a general electromagnetic BVP in differential geometry
is invariant under diffeomorphisms of the BVP domain; i.e., the formulation
is generally covariant. Using general covariance, we can naturally derive
the equivalence of BVPs under diffeomorphisms in the fifth section. From
the physical point of view, equivalent BVPs can be thought to correspond
to the same physical situation. Furthermore, if a BVP is formulated with
a coordinate system, the change of coordinates procedure for BVPs is an
instance of the equivalence of BVPs. Particularly noteworthy is the fact that
the equivalence of BVPs does not depend on a metric.

The equivalence of BVPs under diffeomorphisms provides insight into
efficient solutions of BVPs and particular problems: in chapter 6, we show
how several apparently unrelated traditional methods or approaches used to
solve problems are, in fact, simply instances of a general method based on
the equivalence of BVPs. For example, solutions of open-boundary problems
with compact domains and the invisibility cloaking are both instances of a
procedure based on equivalent BVPs. Thus the equivalence of BV Ps provides
unified theoretical explanations for many traditional solution methods and
suggests new ones: in chapters 6 and 7, we show how the equivalence can
be used to speed up parametric modeling. The equivalence of BVPs under
diffeomorphisms and the unified aspects it lends to the solution methods of
BVPs is a major result of this thesis.

The diffeomorphism-invariance of the differential equations and boundary
values is trivial because they are canonically defined for all manifolds-with-
boundary. On the other hand, the diffeomorphism-invariance of the constitu-
tive equations is not trivial: the constitutive equations must first be defined
using a metric because there is no canonical way to define them in manifolds.
However, diffeomorphism-invariance can be defined without a metric such
that it depends only on diffeomorphism. Thus if equivalent BVPs are for-
mulated with charts, the material parameters that describe the constitutive
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equations depend on the charts.

Finally, we study the exact role of the metric in electromagnetic BVPs.
We show, as an another major result of this thesis, that the metric of the
manifold and the constitutive equations are closely connected, but that in
the end, the role of the metric in formulations of electromagnetic BV Ps is
restricted to the initial identification of the BVP.

4.1 Geometric decompositions of fields and
the exterior derivative

The general method to split spacetime into space and time is based on the
choice of observer defined geometrically by a pair (7, 7), where T"is a smooth
nonvanishing vector field, and 7 is a smooth nonzero one-form such that
7(T') = 1 holds everywhere. The pair (T, 7) defines an additional structure
on manifolds called the observer structure, characterizable as a field of local
observers. Observer structures endow a manifold with a local product struc-
ture: an n-manifold can be locally expressed as the product of a 1-manifold
and an (n — 1)-manifold.

A holonomic observer (T, 7) is such that 7 is exact, i.e., there exists a
zero-form A such that 7 = d,,A holds. Holonomic observers correspond to
(3 4+ 1)-foliations of a spacetime M and with them we get the usual form
of Maxwell’s equations. If 7 is not exact or (7',7) does not correspond to
any (3 + 1)-foliation, the observer is nonholonomic. The pair (T, 7) also
defines two complementary projections for fields and the exterior derivative
and decomposes them into complementary components, which correspond to
the local splitting of the manifold. These decompositions are called geometric
decompositions.

4.1.1 Foliations of manifolds and observer structures

Maxwell’s equations are defined in a four-dimensional spacetime manifold
M, whose points are “events.” Usually, a spacetime M is split into a global
product M = M3 x R, where Mj is a 3-manifold modeling space and R mod-
els time. When M is a global product, time is treated as an independent
parameter. We don’t assume M to be a global product of two manifolds;
instead, we use observer structures to split the spacetime M locally into a
product of space and time: an observer (7', 7) divides M into nonintersecting
three-dimensional submanifolds such that each submanifold represents spa-
tial space at some moment of time; i.e., the pair defines a one-dimensional
foliation of M.
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To define a holonomic (7', 7) exactly, we first need a zero-form that de-
fines a one-dimensional foliation of M or decomposes M into nonintersecting
three-dimensional submanifolds. Let us assume that a smooth zero-form A
exists whose level sets form a one-parameter family of three-dimensional hy-
persurfaces A = constant. In other words, the level sets are nonintersecting
three-dimensional submanifolds, and M is the disjoint union of these sub-
manifolds. Then the submanifold \, = {p € M |\(p) = t} is a leaf of the
foliation and can be thought of as a simple model for spatial space at time
t. Figure 4.1 gives an example of a foliation of spacetime.

Aq
As

A2
A

Ao

Figure 4.1: Example of a foliation. A (2+1)-foliation of a 3-dimensional
space, where the two-dimensional surfaces \; are the leaves of the foliation.
In the case of a (3+1)-foliation of spacetime, the leaves are three-dimensional.

The smooth one-form 7 on M is now defined as the exterior derivative of
X or 7 = dy,\. Observe that d,,7 = 0 holds, and that the kernel' of 7 and
the tangent space of the leaves coincide at every point. Then we define T'
as a smooth vector field on M transversal to the leaves such that 7(7") = 1
holds everywhere. Equivalently, T" is such that the Lie derivative of A with
respect to T' is one everywhere: because ir(dy\) = i,7 = 7(T') = 1 holds, it
follows that LA = i7dy, A = 1. In summary, T defines the direction of time
at each event and 7 defines spatial space at every time instant, which in turn
are defined by the foliation {\;}.

If the observer is nonholonomic, then d,,7 # 0 holds, and 7 is thus not a
closed one-form. We consider nonholonomic observers only with remarks.

L7 is a covector at each point of the manifold, and the kernel of a covector at a point

is the subspace of the tangent space of the point mapped to zero by the covector.
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The pair (T,7) decomposes tangent vectors into spatial and time com-
ponents: 7 decomposes M into nonintersecting submanifolds; thus together
with 7" it also decomposes the tangent spaces of M into a direct sum [25][40]:
T,(M) = span(T,) @& ker(t,) holds for all points, where span(T,) = {aT, €
T,(M)|a € R} and ker(r,) = {v € T,(M)|7(v) = 0}. Consequently, there
is a decomposition of all tangent vectors into two components: the component
along the submanifolds, which is the spatial component, and the component
parallel to 7', which is the time component.

The decomposition of tangent spaces also shows that the foliation gives
M locally a product structure: if we take a piece small enough from the
manifold, it is diffeomorphic to a subset of the product manifold R? x R.
Notice also that the global decomposition M = M3 x R of a spacetime M
corresponds to the situation where M is diffeomorphic to M3 x R, and then
M is identified with M3 x R. Furthermore, notice that because no metric is
involved here, T' cannot be assumed to be orthogonal to the submanifolds.

All the above that was introduced to split spacetime locally into space
and time parts can be generalized to other manifolds with a dimension equal
to or greater than two. This generalization is important because dimensional
reduction, introduced in chapter 5, is based on it. The generalization is as
follows:

Definition 4.1. Let M be a differentiable manifold of dimension equal to
or greater than two. An observer structure for M is a pair (T, 1), where T
and 7 are a smooth nonzero vector field on M and a smooth one-form on M,
respectively, such that 7(7") = 1 holds everywhere. Furthermore, if 7 = d,,\
holds for some zero-form A, then (7', 7) is a holonomic observer, otherwise
(T, 7) is a nonholonomic observer

Open Question 1. What is the exact relationship between traditional ob-
server models, such as one assumed by Newtonian mechanics, and the ob-
server structure presented here? Notice that the observer structures defined
above are more general than is used in the general relativity [44], where ob-
servers are based on metric tensors with index 1 (Lorentz manifolds). Metric
tensor based observers allow the definition of causality structures [49]. What
other applications than spacetime splitting to space and time and decompo-
sitions of differential equations the observer structure might offer?

4.1.2 Geometric decomposition of fields

An observer (T, 1) induces two complementary projections on fields that de-
fine the geometric decomposition of the fields: locally a field is decomposed
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into a component parallel to the vector field T (along the integral curves
of T') and into a complementary component along submanifolds defined by
7. These projections play an essential role also in dimensional reduction;
therefore, in this section (7, 7) need not relate to time and space, and 7 need
not be closed, i.e., d,,7 # 0 may hold in general. The basic ideas in this
and the next sections follow closely [15], where 7 is given as the metric dual
of T or where 7 = bT holds, whereas we avoid involving the metric. Our
terminology and notation also differ from those in [15]. Similar ideas about
field decompositions are also presented in [26] and [39].

The geometric decomposition of a k-form w contains two components
specific to w, one a k-form and the other a (k — 1)-form, and these are
called the geometric components of w. Geometric components are spatial
forms (generally called horizontal forms), which means that they map tangent
vectors parallel to T to zero. The geometric components of electromagnetic
fields are E/, D, H, and B, which are all spatial forms. The spatial forms
constitute their own exterior algebra under the wedge product.

Complementary projections are defined with extension and contraction.

Proposition 4.1. Let (T, 7) be an observer for a manifold M and 1 < k < n.
Then Pp = iy : QF(M) — Q¥(M) and P, = i1, : Q¥(M) — QF(M) are
projections for each k. Furthermore, the projections are complementary; or
if I denotes the identity mapping of the forms and 0 denotes the zero-valued
form, then P, + P, = I and P.P, = P, P, = 0 hold.

Proof: P, = 7 Ai; is a projection if it is idempotent or if applying it twice
yields the same result as applying it once. Let w be a k-form, and let P, be
twice applied to it (notice that i,7 = 1 and i,(i;w) = 0 hold):

PrPrw =7 Nip(T Nigw)

The fact that P, is a projection follows from the fact that P, is a projection:

Pw=i;l,w="1i:(T \Nw)

=L TAW—TANw=w—TAlw= (I —Prw.

Thus P, = [ — Py and then P.P, = (I — P.)(I — P;)=1— P, — P, + P2 =
I —P,—P.+P,=1—-P,=P.. Clearly, P. + P, = I now holds, and it is
trivial to show that P. P, = P,P.=0. O

These two projections decompose the forms into complementary parts,
and the decomposition is a geometric decomposition:
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Definition 4.2. The geometric decomposition of w € QF(M), when 1 < k <
n, with respect to the observer (7, 7) is

w=Pw+ Pw.

Remark 4.1.1. The geometric decomposition of w in terms of contraction and
wedge product is w = (w — 7 Aipw) + 7 Adpw.

Remark 4.1.2. The observer (T, 7) need not be holonomic in the definition
of geometric decomposition of fields. In fact, this property is not needed
at all for geometric decompositions of fields. The 7 being exact or not is
important only when we decompose the exterior derivative which is used to
express Maxwell’s equations in spacetime.

Henceforth we adopt the notation w, = P.w = w — 7 A iyw, whereby
the geometric decomposition is w = w, + 7 A irw. Because 7 is given, the
information specifying w is given by the components w, and i,w, which we
call the geometric components of w . The definition of w, does not make
sense for zero-forms because the contraction is not defined. However, the
definition that is in line with the original definition makes use of the part
that does make sense: we set w, = w for the zero-forms. For n-forms on an
n-dimensional manifold, the situation is reversed: because w = 7 Ai,w holds
for all n-forms w, then w, = 0 holds for all n-forms.

Remark 4.1.3. In the dimensional reduction of BVPs, geometric components
are the fields governed by lower-dimensional BVPs.

Because T,(M) = span(T,) & ker(7,) holds for all points, every tangent
vector v € T,(M) decomposes as v = v + vy, where v € ker(7,) is the
component tangent to the hypersurface through p defined by 7, and v, €
span(T),) is the component parallel to 7. We call vy and v, the horizontal
and the vertical component of v, respectively. The tangent vectors belonging
to ker(7) are called horizontal vectors. In the case of time and space splitting,
horizontal vectors are called spatial vectors. A submanifold of M whose
tangent vectors are all horizontal vectors in T'(M) is a horizontal submanifold.
Next we define the horizontal or spatial forms that have closely connected to
horizontal vectors and horizontal submanifolds:

Definition 4.3. A k-form w is horizontal if P.w = w holds. f w =w, +7A
ipw, then w, is the horizontal component of w.

The following proposition characterizes horizontal (or spatial) forms.

Proposition 4.2. w is horizontal if and only if i;w = 0 holds.
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Proof: If w is horizontal, then

brw = lp(W — T N ipw) = ipw — (T A ipw)

=W — ipT N ipw + T Nig(ipw) = ipw — iyw = 0.

On the other hand, if i;w = 0 holds, then 7 A 7,w = 0, and thus w = w,
holds. O

Remark 4.1.4. The geometric components w, and irw of w are both hori-
zontal forms. This is crucial for time and space splitting, because geometric
components are then spatial forms, as is expected: the fields F, D, H, and B
are all spatial forms. The fact that geometric components are horizontal is
also crucial for dimensional reduction, because they are the fields to be solved
in the lower-dimensional BVP, which is defined on a horizontal submanifold.

If the dimension of M is n, then the horizontal component of a form is
exactly the component of the form that restricts to the (n — 1)-dimensional
horizontal submanifolds defined by 7: let ¢ : N — M be the inclusion map
of a horizontal submanifold N to M. Then clearly the pushforward of ¢
maps the tangent vectors of N to the horizontal vectors of M. Then the
pullback of i is a restriction of forms to N, and because i*w(vy,...,v;) =
WiV, ...y 1,0y ), Where i,v1, ..., 3,0, are always horizontal vectors, it follows
that the horizontal component is the component that restricts to N without
loss of nontrivial information. Observe that these horizontal submanifolds
are regular embedded submanifolds, which in spacetime splitting correspond
to space at some moment of time and which is why horizontal forms are
called spatial forms.

It is easy to show that the projection P. is compatible with the exterior
algebra structure of Q(M):

Lemma 4.1. The projection P, satisfies equations

P(w+an) = Pw+aPn wmnecQ(M),acR
PwAn) = PwAPn wmneQM).

Let us denote the set of all horizontal forms on M by €, (M) and the set
of all horizontal k-forms by QF(M). Then Lemma 4.1 shows that QF (M) is
a vector subspace of QF(M) for each k: the sum of two horizontal k-forms
is a horizontal k-form, and the scalar multiple of a horizontal k-form is a
horizontal k-form. Furthermore, Lemma 4.1 shows that the wedge product
of horizontal forms is again a horizontal form. Thus (M) has its own
exterior algebra structure under the wedge product.
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4.1.3 Geometric decomposition of the exterior deriva-
tive

When we apply the projections P, = [.i; and P, = i1, to the exterior
derivative, we produce the geometric decomposition of the exterior deriva-
tive. Particularly, with P. we can produce the horizontal or spatial exterior
derivative, which takes the role of the curl and divergence in the four familiar
Maxwell’s equations. The horizontal exterior derivative operates nontrivially
only to the horizontal components of differential forms, and the horizontal
exterior derivative of a form is again a horizontal form. Generally speaking,
in an n-manifold, the horizontal exterior derivative reduces to the exterior
derivative of the (n — 1)-manifold, or the horizontal exterior derivative is the
exterior derivative of horizontal forms.

Definition 4.4. Let d,, be the exterior derivative of an n-manifold M, where
(T,7) defines an observer structure for M. Then the horizontal exterior
derivative of d,, with respect to the observer (T, 7) is the operator d, on M
defined by

dT = PTd]\J7
and the geometric decomposition of the exterior derivative d,, is defined by

d]\/[ = P‘rd]W + PTdM-

Remark 4.1.5. In terms of contraction, wedge product, and d,, the horizon-
tal exterior derivative is given by d, = d,; — 7 A ird,; and the geometric
decomposition of the exterior derivative is given by d,, = d, + 7 A izd,,.

Proposition 4.3. The horizontal exterior derivative of a k-form is a hori-
zontal (k + 1)-form or if w € QF(M), then d.w € Q5+ (M).

Proof: d,w clearly is a (k4 1)-form. To show that it is a horizontal form, we
use the characterization of Proposition 4.2 or show that i,d.w = 0 holds:

Z-TdTUJ = Z’T(dlww — T /\ ,L.Td]\/[w) — de]ww - deA/Iw + T /\ iTdeA{w — O. |:|

If (T, 1) defines a splitting of spacetime to space and time, then the hori-
zontal exterior derivative is called the spatial exterior derivative. The spatial
exterior derivative reduces to the exterior derivative of a 3-manifold: let
i : N — M be the inclusion map of a horizontal 3-submanifold N (defined by
7) to M. Then i*dyw = i*d,w + *(7 A irdyw) = i*d,w holds since i*7 = 0.
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It is easy to show that the horizontal exterior derivative d, satisfies the
product rule for horizontal forms, i.e., the following equation

d.(wAn)=dwAn+(=1)wAdn

holds for all w € QF(M) and n € Q,(M). In case of holonomic observers,
the complex property d.d. = 0 holds for the horizontal exterior derivative
d,. Then also Stokes’s theorem holds for d, and horizontal submanifolds: let
w € QF(M) and let N be a horizontal (k+1)-submanifold of M. Now, by
definition, the restriction of d,,w to NN is the same as the restriction of d,w.

Thus we have
/ d,w = / dyw.
N N

Then because Stokes’s theorem holds for d,,, we have Stokes’s theorem also
for the horizontal forms and the horizontal exterior derivative:

/dTw:/ w.
N ON

4.2 Maxwell’s equations

With geometric decompositions of fields and the exterior derivative, we can
derive a (3 4 1)-decomposition of Maxwell’s equations with separate spatial
and time derivatives. However, to derive a (3 + 1)-decomposition, we must
first introduce Maxwell’s equations in a spacetime with no separation of space
and time. Hence there is no separation between electric and magnetic fields
either, and we must talk about electromagnetic fields. When an observer
(T, 7) is introduced, the fields and the exterior derivative get decomposed
along with Maxwell’s equations in spacetime. Because the decomposition is
local, and because time is not an independent parameter, time derivatives
are expressed as Lie derivatives with respect to T

4.2.1 Maxwell’s equations in spacetime

In this section, we introduce Maxwell’s equations in spacetime. Our goal
is not to study this model or justify it, but to show how to derive (3 4 1)-
decompositions from it. Thus the model is assumed valid, and the reader may
consult [26]. The model can be built from the classical form of Maxwell’s
equations or based on certain axioms stating, e.g., the conservation of the
charge and magnetic flux as in [26].
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Let M be a four-dimensional spacetime manifold, i.e., a differentiable
manifold, whose points are “events.” Let F be the electromagnetic field two-
form, G the excitation two-form, and 7 the source three-form in M. These
fields are governed by Maxwell’s equations

d]uf — O (4'1)
dug = J,
where d,, denotes the exterior derivative of M. The first equation contains
Faraday’s law and Gauss’s law for the magnetic field. The second equation

contains Ampere’s law and Gauss’s law for the electric field. To peel these
laws out, we must decompose the spacetime into a product of space and time.

4.2.2 (3 + 1)-decomposition of Maxwell’s equations

Let (T, 7) be an observer defining a local splitting of spacetime into space
and time. Now the geometric decompositions of the fields F, G, and J are

F = F.+17NipF

G = G.+7NiG

j = jT +T7TA ZTj
The decomposition of fields F, G, and J into magnetic and electric parts
depends on the choice of observer, i.e., the choice of the pair (T, 7). Therefore,

we rename the geometric components F,, i F, G., i:G, J., and irJ as
follows:

F, = -B (4.2)
i F = E
g. =D
iG = H
T =
irJ = —J.

Then the geometric decompositions are

F = —-B+7TAE
G = D+7NH
J = p—T1NJ

The derivation of the (3 4 1)-decomposition of Maxwell’s equation in
(4.1) is based on geometric decompositions of the fields (Definition 4.2) and
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the exterior derivative (Definition 4.4) in the equations of (4.1) under an
observer (T, 7). Let us first derive Faraday’s law and magnetic Gauss’s law
from equation d,,F = O:

de = (PTdM + PTdM)(PTf + PT.F)
P.dy P.F + P.dy PrF + Ppdy P.F + Prdyy PoF.  (4.3)

Now if (T, 7) is holonomic, then the next lemma shows how to simplify the
above decomposition of d,,F.

Lemma 4.2. Let M be a manifold with a holonomic observer structure
(T,7), and let w = w, + 7 Ai;w hold. Then the following equations are
satisfied:

Pd,Pw = 0
PrdyPw = [.Lyw.
PTdMPTw = _ITdTiTw.

Proof: The first and third equation need the assumption of holonomy, i.e.,
d,; 7 = 0 must hold:
P.dyPrw = ipl.dy(T Nigw)
= il (dyT Nigw — T A dyizw)
= —ir (T Ndyizw)
= —ir(TATANdyirw)
=0

PrdyPrw = Lirdyl irw
= Lip(dyT Nigw — T A dyizw)
= —Lir (T Ndyirw)
= —L(dyirw — T Nirdyizw)
= —I.diw.
The second equation follows from Cartan’s formula and Proposition 4.2:

PrdyPw=11:dyw. =1Lrw,. O

Next we apply the results of the above lemma to equation (4.3) and use
definitions 4.3 and 4.4:

P.dy P.F + P.dy PrF + Ppdy P,F + Ppdy PoF = 0O
A.F, + L(LoF, — dinF) = 0. (4.4)
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In (4.4) the three-form d.F, and the two-form £, F, —d.i;F are spatial forms.
Furthermore, the three-forms d,F, and I.(L;F, —d.i;JF) are complementary
which can be seen by applying the complementary projections P, and Py to
equation (4.4):

PT(deT)+PT(IT<£TfT_dTiT‘F>) = dT‘FT
Po(d.F) + PoI(LaF. —d. isF)) = L(LoF. — d. iy F).

Thus both d.F, and I.(L;F, — d.izF) must be zero so that equation (4.4)
holds. Besides, because L,F, — d.irF is a spatial form and 7 is nonzero,
the three-form 7 A (L, F, — d, i, F) is zero only if L, F, — d. i;F = 0 holds.
Hence the following equations hold in M:

d.F, = 0
LrF, —d. i F 0.

If M is a global product or M = M3 x R, and if time is an independent
parameter, then with the renamings in equation (4.2) and notation % for L,
we recover the familiar form of the laws:

d.B = 0

0B
d.F = ——.
’ ot

Next we derive Ampere’s law and electric Gauss’s law from equation dG =
J. For this, we use the geometric decompositions of the fields G and J and
the exterior derivative d,;:

dMg - j
(PTdM + PTd]\/I>(P7—g + PTg) - Prj + PTJ
PrdMPrg + PTdJVIPTg + PTdMPTg + PTdMPTg — $ + ITiTj.

If we assume holonomic observer and use Lemma 4.2, the last equation above
simplifies to the following equation:

d‘rgT + IT(LTQT - d‘rZTg) - \77' + ‘[TZ'TJ'
The above equation implies the following two equations:

d.g. = J.
LG, —d. irG irJ.

69



Again if time is an independent parameter, then using the renamings and
notation % for L, we recover the familiar form of the laws:

d.D = p
oD
d.H = J+ —.
’ M
Remark 4.2.1. If 7 was not exact, in which case we deal with a nonholonomic
observer, the above derivations would yield the following equations:

d.F. = —d.rNinF
A irF = LoF. + Lom NigF

.G, = J. —d, 7 NizG
d.i;G = i+ LG, + LT NigG.

Thus the essential difference between holonomic and nonholonomic systems
is that in the latter the states of the system depend on the paths taken to
achieve them (e.g. d,.F, depends on d.7 and d, i, F depends on L,7). That
is, a conservative potential function for electric and magnetic fields is possible
only in holonomic systems.

In summary, the (3+1)-decomposition of Maxwell’s equations correspond-
ing to a holonomic observer (T, 7) is

d.F = —L;B
d.D = p

d,H = J+L;D
d,B = 0.

4.3 Decomposition of constitutive equations

In this section we briefly show how to use the observer-induced projections
to derive (3 + 1)-decomposition of constitutive equations. We first introduce
a linear constitutive relation between fields F and G in spacetime M. The
relation is written with a linear operator x that maps the two-form F to
the two-form G. Then we show how an observer decomposes the operator y
and thereby gives constitutive relations between the geometric components
of F and G. Furthermore, the Ohm’s law that connects J to E and B is
introduced.
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4.3.1 Constitutive equations in spacetime

We only present a suitable relation between fields F and G and show how to
derive (3 + 1)-decompositions from it. Thus the model is assumed valid, and
the reader may consult [26] [56].

Let M be a four-dimensional spacetime manifold, i.e., a differentiable
manifold, whose points are “events.” Let F be the electromagnetic field two-
form and G the excitation two-form in M. These fields satisfy the constitutive
equation

G = XxF, (4.5)

where x : Q*(M) — Q?(M) is a linear operator that satisfies the following
two axioms:

(1) symmetry: w A xn = xw A1 holds for all w,n € Q*(M),
(2) closure: y oy = —1I, where I is the identity mapping of Q*(M).

Observe that these properties (linearity, symmetry, closure) are independent
of any metric of spacetime. However, given x with these properties will
induce a metric tensor with index one (Lorentz metric) to spacetime M [56].

4.3.2 (3 + 1)-decomposition of constitutive equation

Let (T, 7) be an observer defining a local splitting of spacetime M into space
and time. The decomposition of the operator x is based on the geometric
decompositions of the fields F and G in (4.5) and on the linearity of x:

G = xF
PG+PG = \P.F+\P,F. (4.6)

Now if we apply P, to equation (4.6), we get an equation for P.G:

P.P.G+P.P,G = (PXP.)(F)+ (PXP)(F)
PG = (PXP)(P.F)+(PxP)(PF).  (47)

By applying P to equation (4.6) we get an equation for P.G:

PrP.G+ PrPrG = (PoxP)(F)+ (PrxPr)(F)
PG = (PTXPT)(PT‘F) + (PTXPT)(PT‘F)' (4'8)
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Because of the complementarity of the projections P. and Py, equations (4.7)
and (4.8) show that the constitutive equation G = xF can be written as the
following formal matrix equation:

{ P.g } _ { PXP. PP } { P.F } |

P.G P.xP. PrxPr P.F
Thus x has the following block decomposition:
P.xP, P.xPr
= A . 4.9
X { Prx P, PrxPr ] ( )

Let us next look at the decompositions of y and the constitutive equa-
tion G = xF in terms of the geometric components G,, i:G, F,, and i.F.
Particularly, we want separate constitutive equations for G, and i,:G in terms
of F, and i.F. By applying the projection P, to equation (4.6), we get the
following equations for G.:

PPG+P.P.G = PxP.F+ PxP:F
Prg - PTXPTPTf + PTXITZ.Tf
G. = (PxP.)(F,)+ (PxI.)(irF). (4.10)
Observe that equation (4.10) is equivalent to equation (4.7). Next, we apply
the contraction i, to equation (4.6) to get the equation for i;.G:

1+P.G+i:PrG = i;xP.F +irxPrF
irPyG = ipXP.P.F +ipxLisF

irG (tox P)(F.) + (irx ) (ipF). (4.11)
Notice that if we apply I, to equation (4.11), then it is equivalent to equation
(4.8). Thus equations (4.10) and (4.11) define a decomposition of x which is
equivalent to the decomposition in (4.9).

We see that operators x7 = —P.xP., x,. = P.xI,, x! = —irxFP,, and

X+ = trxI, map horizontal forms to horizontal forms. Precisely we have:

X7 QG (M) — Q5(M)

Xp (M) — Q5 (M)

X7 (M) — (M)

X7 (M) — Q(M).

In terms of the renamings in (4.2), the equations (4.10) and (4.11) are as
follows:

D = \B+x.E (4.12)
H = x]B+x;E.
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Comparing the above equations to the well-known constitutive equations
D = ¢F and H = vB which hold e.g. in some static cases, we obtain the
following relations:

€ = X (4.13)
v = x.
The operators x7 and x7. describe the so-called magneto-electric media.
Observe that € and v as well as x7 and xI. are observer-dependent. In
some cases, but not always, it is possible to choose an observer such that

D = €eF
H = vB

holds everywhere in M.
If conductors are present, then Ohm’s law connects the current J to E
and B:

J = 0.E+0,B, (4.14)

where o, and o, are linear mappings o, : QL (M) — Q2 (M) and op :
Q2(M) — Qi(M). Because J, B and E are observer dependent, o, and
oy are also observer dependent. If the observer is attached to the conduc-
tors, then a simpler form of Ohm’s law holds:

J = oxFb.

4.4 Electromagnetic BVPs with differential
geometry

An electromagnetic BVP is a mathematical model for some physical situa-
tion and its electromagnetic fields. A BVP itself consists of a domain with a
boundary, differential equations governing the fields over the domain, bound-
ary values of the fields, source fields, and constitutive equations. Further-
more, some global data of the topology of the domain must be specified to
fix the homology /cohomology classes and to ensure uniqueness of the solu-
tion. When a BVP corresponds to an electromagnetic problem, the domain
is a model of space or more generally of space and time or even spacetime.
The differential equations are Maxwell’s equations, which govern the electric
and magnetic fields over the domain. The constitutive equations model the
material effects on the fields.
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Our aim is to formulate general electromagnetic BVPs using the mathe-
matical structures of differential geometry. These general BVPs can include
the full system of Maxwell’s equations and, therefore, wave-propagation prob-
lems. Thus we include the initial value problems and the Cauchy problems
(extended initial value problems that have the initial value and the time
derivative of the field given at the initial time). Included are also the mixed
problems or the initial-boundary value problems and the Cauchy-boundary
value problems. We call these problems by the generic name boundary value
problem because they all consist of differential equations over a manifold-
with-boundary such that the fields are pre-defined at the boundary. Observe
that the domain may not be fully bounded by the boundary but it can be
partly “open” (e.g., no final time). This term is also arguable because wave-
propagation problems can be formulated simply by giving boundary values
for the fields: only field values at boundaries, including the initial boundary
and thus initial values, must be specified.

In the following, we assume that M is a four-dimensional manifold-with-
boundary modeling spacetime. A holonomic observer (7, 7) induces a decom-
position of the fields F, G, and J into electric and magnetic parts, which are
governed by Maxwell’s equations on M:

d.F = —-L;B
d,H = J+L;D
d.D = p

d,B = 0.

If the problem is static or time-harmonic, then M is three-dimensional mani-
fold modeling space: a static or time-harmonic BVP has invariance /symmetry
with respect to time, and this makes it possible to reduce the dimension of the
domain. Of course the differential equations are simplified by this reduction
of the dimension (more on this in chapter 5).

The boundary values for the fields F, D, H, and B are usually given only
on a part of the boundary OM; e.g., the boundary values of magnetic fields
are given such that the “tangential” component of H is given for a part of the
boundary, and the “normal” component of B is given for the complementary
part of the boundary. Thus we assume that the boundary OM is a union of
two disjoint parts O, M and 9y M. Then let i, : ;M — M be the inclusion
map of the part d; M of the boundary OM to M. Similarly, 2 is the inclusion
map of the part 9, M. Then their pullbacks, denoted by ¢! and ¢? and called
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trace, enable us to define boundary values for the fields £, D, H, and B:

tE =
tHH =
’D =
t’B =

Q> o

Of course, boundary separation need not coincide for magnetic and electric
fields. Furthermore, with wave-propagation problems, a need may arise to
give more boundary conditions at the initial boundary: if 0; M is the initial
boundary, we may need to specify also D and B at 0; M to give sufficient
boundary conditions to specify a unique solution. However, since these wider
generalities do not add anything essential to the topic, we continue with the
above.

In linear materials, the constitutive equations are expressed with lin-
ear isomorphisms ¢, u, and ¢ which are observer-dependent mappings from

QL (M) to Q2 (M):

D = ¢F
B = uH
J = oF.

Furthermore, to assure uniqueness of the solution of BVPs, operator € (also u
and o) must together with the wedge product define a positive energy density
as EAD = E AeE. This requires that € be definite in the sense that £ A eF
is a nonzero horizontal 3-form that maps direct triplets of horizontal tangent
vectors to positive numbers for all £ # 0. Hodge operators are definite
linear isomorphisms, which map one-forms to two-forms in three-dimensional
Riemannian manifolds (see Definition 3.68 and Proposition 3.7) and that is
why they are often used to describe the constitutive relations. Observe that
there may not be any holonomic observer such that the constitutive equations
have the above simple form, but in general we must consider more general
equations (4.13) and (4.14). Finally, in general, operators €, u, and ¢ need
not be linear (nonlinear materials), in which case they are definite bijective
mappings that map one-forms to two-forms.

Specification of differential equations, boundary values, and constitutive
equations, even if not contradictory, does not generally guarantee a unique
solution to a problem. For instance, consider the domain of a resistor model
(Figure 4.2). Inside the domain, the current stationary equations dE = 0
and dJ = 0 hold as does the constitutive equation J = o E. The trace of £
is set to zero at the resistor terminals, and the trace of J is set to zero at the
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t'E=0

2] =0

Figure 4.2: Boundary values and relative cohomology classes of a resistor
model. To fix the relative cohomology class, we must fix either the value of
the integral of £ over the curve ¢ or the value of the integral of J over the
surface S.

resistor casing. However, this problem is not yet well-posed, because it has
multiple solutions. To ensure a unique solution, we must fix either the value
of the integral of F over some curve ¢ that connects the terminals or the
value of the integral of J over some surface S, through which all the current
passes. Thus we must specify either the potential difference between the
terminals or the total current through the resistor. Formally, this specifies
the cohomology class [38] of E or J, and these topological conditions are
not local. Furthermore, by de Rham’s theorem [24] the cohomology classes
can always be specified by fixing proper integrals of the fields. Observe
that using a potential often fix the cohomology classes automatically: if we
formulate the resistor problem using the scalar potential, we must set the
values of the potential at the terminals and therefore we automatically fix
the cohomology classes. Because the topology of the domain in the resistor
is trivial (no holes), only relative cohomology classes are defined. However,
in general with nontrivial topologies also absolute cohomology classes must
be considered. In summary, the well-posedness of a BVP requires that we
consider cohomology, a topic not discussed in detail in this thesis.

Observe that differential forms and their exterior derivative and bound-
ary values as well as cohomology classes are defined without any Riemannian
structure. Thus Maxwell’s equations and boundary values are independent
of a metric. Though the constitutive equations are often modeled as lin-
ear isomorphisms—this does not yet call for a metric—yet to identify the
relations for the first time, we need a metric. The exact relation of the con-
stitutive equations to a metric and role of the metric in BVPs are discussed
in the rest of the chapter.
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4.5 Equivalent formulations of a BVP

We now show that the above formulation of a general electromagnetic BVP
with differential geometry is invariant under diffeomorphisms of the domain.
This naturally defines an equivalence of BVPs under diffeomorphisms. This
equivalence with its many applications is a generalization of the change of
coordinates procedure: the role of the coordinate systems is played by mani-
folds and the change of coordinates mappings is replaced by diffeomorphisms
between manifolds. Furthermore, the equivalence is defined completely with-
out a metric.

In many applications it is advantageous to formulate BVPs for comput-
ers differently from the standard parameterization approach. These appli-
cations are all described with the same general theoretical setting: a BVP
is formulated in some Riemannian manifold that corresponds to rigid body-
measurements, but to gain in numerical solutions, an equivalent problem is
posed on another diffeomorphic manifold. Thus the equivalence of BVPs
gives a unified explanation for traditional methods of solving BVPs such as
change of coordinates, solving open boundary problems with compact do-
mains, and invisibility cloaking. Furthermore, the equivalence of BVPs can
generate brand new methods. In chapter 6 and 7, we explain the possibility
of accelerating parametric modeling.

Assume that M is a four-dimensional manifold-with-boundary, and (T, 7)
is a holonomic observer providing a decomposition of M into space and time.
We denote the restriction to the boundary by ¢,,. Then we assume that the
following BVP is formulated on M:

d.E = —-L,B (4.15)
d-H = J+L;D
;D = p
d,B =
tE = e
tH = h
2D = d
2B = b
D = e¢,F
B = puuH
J = oukF.

Next we aim to formulate an equivalent BVP on another manifold N
which is diffeomorphic to M via mapping F': N — M. Observe that M and
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N may be semi-Riemannian manifolds, but that the diffeomorphism F' need
not be an isometry; i.e., if M and N are semi-Riemannian manifolds, they
need not be isomorphic semi-Riemannian manifolds. In fact, this is often
exactly what is sought.

The observer (T, 7) and map F' induce a pullback observer, a pair (I", ),
for N, which decomposes N into space and time:

Definition 4.5. Let F': N — M be a diffeomorphism and (7', 7) an observer
in M. The pullback observer on N under F'is the observer (I',~y) such that
I'=(F1),T and v = F*r.

Observe that v(I') = (F*7)(I") = 7(F.I') = 7(T") = 1 holds as it should.

The following proposition shows that the holonomy/nonholonomy of the ob-
server is preserved under the pullback F*:

Proposition 4.4. If (T, 7) is a holonomic observer in M, then the pullback
observer (I',7) on N is also holonomic.

Proof: If 7 is exact, or 7 = d,, A\ holds for some zero-form A, then by the
naturality of the exterior derivative, v = F*r = F*d,;A = dyF*\ holds for
the zero-form A. Thus ~ is also exact. O

Now we have the observers (T',7) and (I', ) for M and N, respectively.
The decomposition of the fields induced by an observer and its pullback
observer are compatible with the pullback F™:

Fran) = (F'w),
Fli;w) = iF*w
F* (1t Nipw) = yANipF w.

Because the corresponding or equivalent fields on N are the pulled-back fields
or F*E, F*H, F*D, F*B, F*J, and F*p, the compatibility of the decompo-
sitions and the pullback simplifies things, as we will see.

The essence of formulating an equivalent problem to another manifold is
the compatibility of the pullback and the operators d,, L+, t., €y, ty, and

o- Compatibility is described as an appropriate commutation rule of the
pullback F* with the other operators.

4.5.1 Equivalent differential equations

To derive the equivalent differential equations, we need the following com-
mutation rules for d, and L;:

Theorem 4.1. F*od, =d, o F*
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Proof: Use the naturality of the exterior derivative d,, (see Theorem 3.2) and

Lemma 3.2:

F*d, = F*(d, —

T /\ deI\/I)

= F*dy — F* (1 Nigdy)

= dyF*— F*1 N F*(iprdy)
= dyF"—yNirF*dy,

= dyF*" —y Nipdy F*

— 4 F

Theorem 4.2. F*o L, = Lo F™*

a

Proof: Use the naturality of d,, and Lemma 3.2:

F*L; = F*(dyir +irdy)
= F'dyis + Friprdy
= dyFipr +irF dy,
= dyipF* +irdy F”
= LpF” O

Differential equations are derived for the pulled-back fields from the orig-

inal equations such that both sides
with F™:

B

“(d.E
“(d.H
“(d,D
*(d,B

T

~— — ' ~——

T

Using the above two theorems, we
pulled-back fields on N:

(F7E
(F*H
d,(F*D
(F*B

~

of the equations are pulled back to N

—F*(L;B)
F*J+ F*(L;D)
F*p

0.

then get differential equations for the

—L.F*B
F*J+ L. F*D
F*p

0.

Observe that the pulled-back fields satisfy the same differential equations as

the originals.
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Remark 4.5.1. If the chosen observer is nonholonomic, in which case addi-
tional terms appear in the differential equations, as shown in remark 4.2.1,
then the additional terms could be treated exactly as shown here. Particu-
larly, the terms involving the wedge product are simple because the pullback
is naturally compatible with the wedge product.

Remark 4.5.2. If the observer in N were not a pullback observer, the equa-
tions for the pulled-back fields would be different because the geometric de-
compositions of the pulled-back fields and the exterior derivative dy would
not be compatible with the pullback.

4.5.2 Equivalent boundary values

Equivalent boundary values for pulled-back fields are easy to derive. Because
the mapping F' is diffeomorphic, by Lemma 3.1 the restriction of F' to the
boundary dN is a diffeomorphism F, : 9N — OM. Consequently, we have
the following commutation rule:

Theorem 4.3. Let F : N — M be a diffeomorphism and F}, : ON — oM
the restriction of F' to boundaries ON and M. Furthermore, let ¢, and
ty denote the restrictions of the fields to boundaries 0N and OM. Then
Fot, =ty oF”* holds.

Proof: Let i,, and iy be the inclusion mappings of the boundaries OM and
ON to M and N, respectively. Thus ¢,, = 4, and ¢ty = 7,* hold. Then the
mapping F}, satisfies, by definition, the following equation

7:1\/[ (0] Fa — F (¢] iN‘
Then using the rule (go f)* = f* o g*, we get the desired result:

(i}u OFB)* — (FOZN)*
Fa* © Z]\:Ik = ZN* © F*
FB* O t]w — tN o F* D
Now if we apply the pullback F to the boundary conditions we get
Fit,E = F)e
FEftyH = FJh

Ef2,D = F,jd
F*t2,B = Fb.



Then applying the above proposition to the above equations yields boundary
conditions for the pulled-back field:

tiF*E = Fe
tLF*H F)h
t2F*D = Fd
t2F*B = F,*.

4.5.3 Equivalent constitutive equations

Now we derive a suitable commutation rule for the pullback with operators
€ry M, and o,,: we need a new operator py such that

F'B = uxF*H

holds. The operator p, can be given in terms of the pullback and the original
operator fi,, as follows:

/,LNF*H — F*B - F*(ILLA{H>.

We require that this equation holds for all one-forms H. Thus p, must satisty
the following equation:

py o F* = F*op,,. (4.16)

This is the commutation for the operator .

The operator iy differs from the operators d,, £, and ty in a crucial
way: its commutation rule is its definition, i.e., the operators d., Ly, and ty
are defined without d,, £;, and t,,, and their commutation rules with the
pullback hold as theorems. But p, cannot be defined without p,,, and the
commutation rule with the pullback holds by definition. From (4.16), we can
produce the equations for €y, iy, and oy:

ex = Fjoeyo(FN)™ (4.17)
py = Fyopyo(Fy)™
O_N — FQ*OO-IMO(Fl*)il,

where F} and F} denote the pullbacks of one-forms and two-forms, respec-
tively. In general, if M and N are m-manifolds and v,, maps k-forms to
(n — k)-forms, then the equivalent operator vy is defined by the following
equation:

vy = Frouvyo(F)7h (4.18)

n
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Remark 4.5.3. 1f the constitutive equations are more general, e.g. D depends
linearly on £ and B as in (4.13), then the equivalent operators are also defined
by equation (4.18).

Finally, let us show that if u,, is definite, then so is py:

F*HANuyF*H = F*HAFu,(F)'F*H
= F'HANF'uyH
— F*(H/\ /,L]MH).
Clearly, F*(H A pyH) is nonzero for nonzero H, and if F' induces an ori-

entation for N from M, then F' is orientation-preserving and F*(H A p, H)
maps direct triplets of tangent vectors to positive numbers.

4.5.4 Equivalent BVP

In summary, the BVP on M described in (4.15) can be equivalently expressed
as the following BVP on N:

d,F*E = —L.F'B (4.19)
d,F*H = F*J+L.F*D
d,F*D = F*p

A F*B = 0

L FE = Fe

t\F*H = Fh

2FD = Fd
2F*B = F,b
F*D = e F°E

F*B = uyF*H
F*] = oy F'E.

Remark 4.5.4. If N = M, in which case F'is a diffeomorphism from M to
itself, then we can talk about invariance of physical laws. The differential
equations and the equations determining the boundary condition in (4.19)
hold for all diffeomorphism F' : M — M. Thus these equations (Maxwell’s
equations) are invariant under the full diffeomorphism group. On the other
hand, the maximal symmetry group under which the constitutive equations
are invariant is the Poincare group, which is the group of all isometries of the
Minkowski spacetime [44]. Minkowski spacetime is an example of a Lorentz
manifold (see Definition 3.64). Observe that we have defined the equivalence
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of the constitutive equations under the full diffeomorphism group, but this
is only possible by defining a suitable corresponding relation case by case.

The equivalence of BVPs is defined without the assumption that a unique
solution exists. However, for the equivalence to be useful, it must preserve
the existence of a unique solution, or if a BVP on M has a unique solution,
an equivalent BVP on N has also a unique solution: Assume that the generic
BVP on M defined in (4.15) has a unique solution. Using the pullback, we
have shown (the commutation rules with the pullback) that the pulled-back
fields form a solution to the equivalent BVP on N. A solution thus exists
for the BVP on N. Conversely, for each solution on N, we can construct a
solution on M using the pullback. But because the BVP on M has a unique
solution, all the solutions on N must be mapped to the unique solution
on M. Furthermore, because the pullback of a diffeomorphism is a linear
isomorphism, only one solution on N can be mapped to the unique solution
on M. Thus the equivalent BVP on N has a unique solution. In addition, if
the generic BVP has multiple solutions or no solutions at all, then the same
holds also for the equivalent BVPs.

We have presented the equivalence of BVPs under diffeomorphism but
without formal rigor; i.e., formally, we should define the set of all BVPs and
then define an equivalence relation for the set of all BVPs. Because the
equivalence we have derived is clearly reflexive, symmetric, and transitive, it
is, in fact, an equivalence relation. However, full formalization of equivalent
BVPs is not pursued in this thesis, though we recognized that such formal-
ization would be highly valuable in understanding BVPs and in designing
solver software systems. However, the author does realize that BVPs can be
formulated in myriad of ways.

Open Question 2. How to define rigorously the set of all BVPs to make
the equivalence of BVPs rigorous?

4.6 Equivalent BVPs: Material parameters
and chart

In the previous section, we derived the equivalence of BVPs under diffeomor-
phisms. Because the codomains of charts of a given manifold are also man-
ifolds, the above description of equivalent BVPs holds also for the ranges of
the charts. Furthermore, if the range of the charts are considered coordinate
systems, the above procedure expresses the change of coordinates-procedure:
F'is the change of coordinates mapping from a coordinate system N C R"
to a coordinate system M C R™. The pulled-back fields (F'*H, etc.) are the

83



fields expressed in the new coordinate system N. Similarly, if y,, is the matrix
(given in standard bases of forms in R") containing the material parameter
values for M, then py is the matrix containing the material parameter values
for the new coordinate system V.

As already explained, the spatial exterior derivative, the Lie derivative,
and the trace are canonically defined for each manifold and thus for each
chart (i.e., ranges of charts). Therefore, for new chart, we need to define only
material parameter values. In practice, material parameters and constitutive
equations are related to spatial forms. Hence we now assume that M is a
two- or three-dimensional spatial manifold, i.e., the problem is static, time-
harmonic, or time is separated independent parameter.

First, M is endowed with a metric structure given by distance measure-
ments with a rigid body. Let f and g be two charts of M such that f is
a standard parameterization, where distances are given in some length-unit-
system (e.g., meters or inches) so that we know the values of the material
parameters in f. Let (dz, dzs, dxs) be the coframe of the standard frame field
in f(M) C R®. Then (dx1, dxs,dxs) is the standard ordered basis of the one-
forms in f(M). The corresponding standard ordered basis for two-forms is
(dzyNdzxg, drsNdxy, dzy Adxy). The one-form H and the two-form B are then
given in the standard bases of the chart f as Hy = Hidx, + Hadxy + Hadws
and By = Bydzy Adxs + Badrs Adxy 4+ Bsdxy Adxs. 1f the constitutive equa-
tion By = pyHy holds, it can be written in a component form using matrix
formalism as follows:

By M1l 2 H3 H,y
By | = | po1 pa2 pos Hy | . (4-20)
Bs M31  M32 33 H;

Because the matrix of ji; is given in the standard bases of the standard pa-
rameterization f corresponding to some length-unit-system, the matrix is
known from the literature such as handbooks, books of tables, and specifica-
tion sheets of manufacturers.

Let ' = f o g~ ! be the change of chart mapping from g to f given in
coordinates by

Y1 Fl(y17y27y3) X1
Y2 | — Fz(yh Y2, yS) = | X2
Y3 FB(iUl, Y2, ys) X3

The pulled-back fields B, = F*B; and H, = F*H satisfy the constitutive
equation By = ugH,, and our task now is to solve the matrix of y, in terms

of the matrix of y1y. For this, we need the pullback of F' as shown in equation
(4.17).
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Let (dy,dys, dys) and (dys A dys, dys A dyy, dy; A dys) be the standard
ordered bases of one- and two-forms in g corresponding to the standard frame
field of g. Now the matrix of FY is given by

Ox1  Omy  Ozs
dy dy dy
o | on om om | _ g7
1 — 8y2 ayg ayg — YF)
Oz Oza  Ozs
dys OJys  Oys

where J7 is the transpose of the Jacobian matrix of F' [5]. The matrix of Fy
1s

Oxz Ozz _ Owo Oxy Ox3 Oz _ Oy Oy Oz1 dzz _ Oy dxp |
Oy2 Y3 Oy Jy2 Oy2 Jy3 dy3 y2 dy2 Jy3 dyz y2
Fr = Oxy Oxz _ Oxp Oz Ox3 Ox1 _ Oxs Oxy Ozy Oxy _ Oz Oxp
2 = Oyz Oy1 Oy1 Oy3 Oyz Oy1 dy1 Oy3 dy3 Oy1 Oy1 Oy3
Owg Ozz _ Oxg Oxs Ox3 Oy _ Oxz Oxy Ox1 Ozp _ Oz Oxo

| Oy Oy2 0y2 Oy1 Oy1 Oy2 Jy2 0y1 0y1 0y Oy2 Oy1

Equivalently, if J, is the Jacobian matrix of F', then the matrix of Fy is given
by the formula

Fio= el (4:21)

where |Jg| is the determinant of J,. Thus the matrix p, is given by the
following equation:

g = |JelJotup i T (4.22)

Instead of the mapping F' = f o ¢!, we may want to give the mapping G =
F~1 = go f~! which gives the coordinates of g in terms of the coordinates
of f. Because F' and G are diffeomorphisms, the Jacobian matrix J; of G is
the inverse of J, or J; = J;'. Then the matrix p, is given by the formula

1
PR (4.23)
7

We can derive the matrix p, also for proxy vectors: if ®¢ is the standard
metric tensor of f and vol; the corresponding volume forms, the proxies Hy
and By of H; and By are defined by the following equations (see section
3.9.2):

ig,voly = By.
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As expressed by the coordinates of f, the proxies H; and By satisfy the
constitutive equation By = psHy, where iy is a linear isomorphism. If Hy
and B/ are represented as component vectors in the standard frame field of
f, then the matrix of 1y is known from the literature and is the same as in
equation (4.20).

To derive an equation for the matrix ji4, we need to know how to express
the proxies H, and B, in terms of the proxies H; and By: the proxies By
and B, satisfy the following equation:

By = ig,voly = F*By = F*(ig, voly) = iy-15 Fv0l;
Because F*vol; = |Jx|vol, holds [5], we get
iF;1BfF*volf = iF;1Bf\JF|volg = Uy, 1m, V0l
Thus we must have
B, = |JF|F*_1Bf.

Because the pushforward Fi is given in coordinate frames by the Jacobian
matrix J,, the component vectors satisfy

B, = |J:|J.'By.

which is the same equation as for two-forms in the 3d case given in equation
4.21. This is not surprising because the standard metric tensor of a chart
is such that the coordinate frame is orthonormal, and it follows that the
components of B in any coordinate frame are the same as those of B in the
corresponding dual frame. Similarly, the components of H in any coordinate
frame are the same as those of H in the corresponding dual frame. Conse-
quently, the same equation holds also for the component vectors of H as for
those of H:

H, = J H;.

We can now derive the matrix ji4 in the constitutive equation B, = u,H,
of the component vectors:

B, = pH,
| Je|J By = p,JEH;
| Jel I ugHy = g JEHy.

This holds for all Hy if and only if
g = |Jel Tt g2t (4.24)
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holds. Because of the orthonormality of the coordinate frames, the result is,
of course, the same as for the forms in equation (4.22).

Derivation of (4.24) with proxy vectors and physical arguments for quasi-
static cases is presented in [54]: the pullback of one-forms can be thought
of as an invariance of virtual work under change of charts. The constitutive
equations are related to total system energy (e = [,, H A pH), which must
be invariant under change of charts.

In a 2d case, change of chart formulae are different for forms and their
proxy vectors: let (dzy, dzy) and (dyy, dys) be the standard basis of one-forms
for f and g, respectively. Notice that B must be a one-form so as to have a
Hodge-like isomorphism B = pH. Then the equivalent operator p, is given
by the equation

pg = Floppo(F)™
Thus the matrix of p, is given by the formula
Hg = JZNfJ;T-

As shown in [54], the matrix of p, for proxy vectors in 2d quasi-static cases
is given by the formula

1 _ -
Hg = mJGufJg = [Je|Jx 1:uf‘]FT' (4.25)
e

Let us next study why the change of chart formulae differ so much for
forms and proxy vectors in 2d. In terms of forms, both B and H are one-
forms and have thus the same transformation rules. However, the proxy H
of H is defined with respect to the metric tensor whereas the proxy B of B
is defined with respect to the unit area form. If the metric tensor is denoted
by ®, and the corresponding volume form by A, the proxies are defined as
follows:

B — ZBA
H = iy,

Thus because proxies are defined differently for H and B, their proxies trans-
form differently under change of chart.

4.7 Metric and electromagnetic BVPs

In the above, equivalence of BVPs was defined without a metric of the mani-
fold. Furthermore, only the constitutive equations have any connection to the
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metric structure of the manifold. Thus the role of the metric in electromag-
netic BVPs is not so restrictive and omnipresent as it appears in formulations
based on vector analysis. This section shows that a metric is necessary only
for the initial identification of a BVP, after which it can be disregarded. Par-
ticularly, we show that although initial identification of the operators €, u,
and o is done with a specific metric, the operators do not depend on any
particular Riemannian structure used in the manifold, but that only their
representations with Hodge-operators depend on the Riemannian structure.
However, if diffeomorphic manifolds correspond to physically distinct situa-
tions, a distinction between the manifolds must be made. This distinction
can be made only with a physical reference that exists outside the model: the
manifolds are recognize as different by the modeler using external metric, i.e.,
distance measurements with some rigid body.

4.7.1 Formulation of BVPs in practice

The formulation of a BVP on a manifold M, as in section 4.4, is abstract
in the sense that it is devoid of numbers. However, in practice, numbers
are needed to represent the objects of the BVP and to apply arithmetic
in calculations. To get these numbers, metric and geometry are used to
produce a standard parameterization f (see Definition 3.20). The metric and
geometry of f are features of space that we observe with our sight and rigid
body measurements (and time measurement with clocks). Thus the metric
and geometry are part of a systematic process of producing a model of reality.

By identifying the observed reality with a chart f, we produce a manifold
M: f defines the points of M by labeling them with coordinates and also fully
defines a differentiable manifold structure for M. Furthermore, the standard
metric tensor of the chart f can be pulled back to M thereby to induce a
Riemannian structure on M.

In addition, the operators €, u, and o, which characterize materials, are
described with numbers specific to f: The differential forms on the range of f
are represented in the standard bases of R"™. Thus the linear isomorphisms e,
1, and o are represented as matrices with respect to standard bases. Observe
that the numbers found in the literature for the operators €, u, and o, are
always represented in standard bases and are specific to a class of standard
parameterizations that are defined by the same unit of length. To get €, u,
and o on M, we use coordinate coframes, and in these bases the operators
have the same matrices as in f.

Maxwell’s equations can be defined directly on M without a metric. The
boundary values are first specified with the chart f, after which they can be
pulled back to M with f.
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4.7.2 Constitutive equations and metric

In the constitutive equations, the operators ¢, u, and o are definite linear
operators, and as such, independent of a metric. However, their construction
or identification in practice requires a metric: the vector space of covectors
on a point of a 3-manifold M is isomorphic to the vector space of two-
covectors at the same point. This pointwise isomorphism can be extended to
the whole manifold such that the vector spaces of one-forms and two-forms
on M are isomorphic. Similarly, the vector space of horizontal one-forms
Ql (M) on a 4-manifold M, is isomorphic to that of horizontal two-forms
Q2(M,). However, no unique isomorphism exists between them. On the
other hand, if a metric tensor m is defined on M, we can define a Hodge-
operator x,, that yields a unique definite isomorphism, such that it can be
also used to define energy. With the Hodge-operator *,,, we can represent
the linear isomorphism € as a composite of the linear isomorphisms e, :
D2(M) — Q*(M) and %, : QY(M) — Q*(M). The operator ¢, is needed
because the metric m is defined globally and usually in a manner independent
of the materials occupying the space. Thus the operator €,, characterizes the
materials. A similar representation holds for p and o, and we have the
following decompositions:

€ = €, 0%, (4.26)
= fl O %y,
o = 0, 0%,,.

Notice that both operators ¢, and x,, depend on the metric m whereas
€ does not: if we change the metric m of M to m/; i.e., if we formulate an
equivalent problem for M using the identity mapping of M and change the
metric, then clearly the fields, Maxwell’s equations, boundary values, and
constitutive relations do not change. That is, the same operator e describes
a constitutive relation for both metrics m and m'. However, the decompo-
sition of the operator € is changed by changing the metric. Thus for each
definite linear isomorphism ¢, there exists an equivalence class of pairs of lin-
ear operators {€,,, x,, }, where each pair corresponds to some metric tensor:
the pairs {€;,x,} and {¢,,*,} are equivalent if €, o x, = ¢, o *, holds.

The above discussion based on the equivalence of BVPs may give an im-
pression that the operator € is completely independent of the metric. How-
ever, this is not true, on the contrary: if BVP domains have physically mea-
surable metrical differences, but are topologically the same, the differences
between the domains are shown in the operator €. Thus diffeomorphic do-
mains can be physically different, i.e., the domains are recognized as different
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with an external metric (distance measurements with some rigid body). Fur-
thermore, the initial identification of € is always done with a standard param-
eterization, which is based on some external metric. However, even though e
recognizes metrical differences, the equivalence relation defined above shows
that € does not depend on any particular external metric used to identify it.

Even though the operators €, 1, 0 do not depend on any particular metric
of M, given the operator € (or p or o), we can canonically choose a metric
for M. The choice of metric is based on the decomposition shown in (4.26):
consider a decomposition where ¢, is the identity mapping of Q*(M). We
then have € = x,, with a metric m, whose induced Hodge-operator x,, is
exactly € [8]. This metric is called the e-metric. Obviously, it is different
for distinct operators €, and in general does not correspond to any rigid
body-metric used in the formulation of a BVP. Furthermore, the e-metric is
generally defined only locally because the operator € need not be smooth over
the whole M (material interfaces).

The above discussion shows that the constitutive equations do not depend
on the metric chosen to represent/identify them. However, because they
imply a metric, they contain the structure of metric. Thus the constitutive
equations are not completely independent of the metric in the same way as
Maxwell’s equations, but they are independent of the instance of the metric.
The decompositions in (4.26) and the above discussion suggests the following
useful definition:

Definition 4.6. Let M be an n-dimensional oriented manifold. A definite
linear isomorphism v : QF(M) — Q"=%(M) is Hodge-like operator, if there
exists a metric tensor m of M and a linear isomorphism v,, : Q" *(M) —
Q"=*(M) such that v = v,, o %, holds, where x,, is the Hodge-operator
induced by m.

A Hodge-like operator v is a kind of generalization of Hodge-operator
x: both v and * are definite linear isomorphisms from QF(M) to Q" *(M),
but v need not be globally identifiable with any Hodge-operator x,, in the
sense that v = x,, holds globally, but they are only identifiable up to a linear
isomorphism v,, : Q"7 F(M) — Q""%(M) in the sense that v = v,, ox,, holds.

Finally, if the operators €, u, o are not linear, but acceptable in the
energy sense for describing the constitutive equations, still the above kind of
decomposition (e = €,,x,,) holds for any metric m. A difference is that the
mappings €,,, (.., and o,, are not linear anymore.
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4.7.3 Role of metric

The role of metric and geometry in formulating electromagnetic BVPs is
to provide tools that help the initial identification of the BVP. Particularly,
metric and distance measurements constitute the systematic tools we use to
create a connection between model and observations. But for other than
providing the connection, geometry is irrelevant in the formulations of elec-
tromagnetic BVPs. Furthermore, because the same physics can be described
with different metrics, it follows that physics that is described with the consti-
tutive equations is in the relations itself, not in any particular decompositions
based on our choice of metrics.
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Chapter 5

Dimensional reduction of
electromagnetic boundary value
problems

In this chapter, we develop a symmetry-based theory of the dimensional
reduction of electromagnetic BVPs. The theory explains when a BVP can
be solved as a lower-dimensional BVP, and how the latter can be formulated.
The theory encompasses static and time-harmonic problems as well as 1D-
and 2D-problems.

Dimensional reduction is an area where classical vector analysis is not
a natural tool: vector analysis is built primarily on three dimensions, and
some of the structures have no natural counterparts in other dimensions.
This is in striking contrast to the tools of differential geometry, which are
inherently independent of dimension and virtually custom-made for the needs
of dimensional reduction.

The theory of the dimensional reduction of electromagnetic BVPs pre-
sented here uses the conceptual tools of differential geometry. The theory
builds exclusively on symmetry and is completely coordinate- and metric-free.
For example, the theory assumes only appropriate invariances and makes no
assumptions of some field components being zero in some special coordinate
system. The theory includes a dimensional reduction theorem, which provides
a sufficient condition as to when a BVP can be solved as a lower-dimensional
BVP. The observer structure discussed in chapter 4 is an essential tool in the
theory, and it is used to formulate lower-dimensional BVPs.

Dimensional reduction is based on symmetries that characterize partic-
ular invariances of objects of which a BVP consists: invariances of differ-
ential equations, fields governed by the equations, source fields, boundary
values, constitutive equations, and cohomology conditions under a differen-
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tiable group action of some Lie group G. The terms group invariant or
G-invariant are used for fields, boundary values, or whatever object whose
invariance is to be considered. The G-invariance of these objects requires the
existence of a suitable group action on the BVP domain, and it is the task
of the modeler to recognize and make use of this group action.

Symmetry transformations are diffeomorphic mappings from the domain
to itself. For example, the transformations can be translations or rotations of
the domain. Notice that the differential equations, including Maxwell’s equa-
tions, expressed with the exterior derivative are diffeomorphism-invariant and
thus automatically invariant under all the group actions we study. The sym-
metry transformations of the domain induce group actions for the fields by
the pullback and pushforward of the transformations. G-invariance of the
constitutive equations means that operators €, y, and ¢ commute with the
pullbacks of the domain’s symmetry transformations. Symmetry transfor-
mations need not be isometries, which reflects the fact that symmetry and
dimensional reduction are independent of the metric. Self-similar antennas
such as log-periodic antennas serve as an example of non-isometric symme-
tries.

Time-harmonic fields, an example of invariant fields, also show that invari-
ance is more flexible than strict constancy: fields at different time instants are
equal only up to some complex-valued mapping (in the time-harmonic case,
equality is up to the mapping €’*?). The real- or complex-valued mapping
is denoted by h, and we talk about (G, h)-invariant fields. The theory of di-
mensional reduction constructed here is based on general (G, h)-invariances.

A BVP is said to be (G, h)-invariant if the source fields, boundary values,
constitutive equations, and cohomology conditions of the fields are (G, h)-
invariant. A major result of the theory is that if a (G, h)-invariant BVP
has a unique solution, then the solution is also (G, h)-invariant. Thus an
invariance under a group action results in redundancies that can be used to
reduce the size of the domain of a (G, h)-invariant BVP: because the solution
fields are (G, h)-invariant, the fields can be reconstructed over the domain
manifold from knowledge of fields over a suitable subdomain. Furthermore,
the “larger” the group GG, the “smaller” the subdomain is needed to reconstruct
fields over the whole domain. The basic requirement of dimensional reduction
is that the group G be large enough to make the dimension of the subdomain
smaller than the domain of the original BVP. This requires that G be a one-
or higher-dimensional Lie group.

The theory will show that there is a canonical submanifold to serve as
the domain of the lower-dimensional BVP: symmetry transformations of the
domain manifold M divide M into equivalence classes called orbits. If an
invariant field is known at some point of an orbit, then by its invariance,
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the field is known at all other points of the orbit. On the other hand, the
domain of the lower-dimensional BVP must be a manifold. Hence a regular
submanifold of M that contains exactly one point from each orbit is a suitable
domain for the lower-dimensional BVP. The canonical choice for a suitable
submanifold is the orbit space or the set of all orbits with a manifold structure
diffeomorphic to all those regular submanifolds. Furthermore, there is no
canonical metric for the orbit space, which agrees with the fact that the
(G, h)-invariance of a BVP is independent of a metric.

The formulation of lower-dimensional BVPs is based on the observer
structure. We must choose a G-invariant pair (7',7) such that 7" is tan-
gent to the orbits, and 7 defines a regular submanifold containing one point
from each orbit. Then the observer decomposes the fields, and the geometric
components w, and i,w of form w are the fields to be solved in the lower-
dimensional BVP. Differential equations, boundary values, and constitutive
equations for the geometric components in the orbit space are then induced
from the higher-dimensional BVP. The lower-dimensional BVP depends on
the choice of observer though the possibility for dimensional reduction, of
course, does not depend on the choice of observer.

Finally, even though dimensional reduction is based on symmetry, the
structures and concepts needed to explain reductions under continuous sym-
metries are, in some parts, quite different from those under discrete symme-
tries [6] such as mirror symmetry. Particularly, major differences appears
between continuous and discrete symmetries in the case of differential and
constitutive equations. Thus as a whole, reductions under discrete symme-
tries cannot be generalized straightforwardly to reductions under continuous
symmetries, nor are all discrete symmetry results simply special cases result-
ing from continuous symmetries.

5.1 Group action on a BVP domain

The theory of dimensional reduction is based on a few basic axioms, which
restrict possible symmetry groups and their group actions on the BVP do-
main. This section lays down two such axioms and gives a few examples of
group actions. The BVP domain is a manifold-with-boundary M.

Axiom 5.1. The symmetry group G is a Lie group that is a product of
connected one-dimensional Lie groups.

For example, G could be R, S, R x S', or R® = R x R x R. This
axiom is not so restrictive as it may appear at the first glance, because the
unconnectedness of the Lie groups would probably not add any practical cases
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to the theory, and certainly would make the theory much more technical.
Furthermore, all connected two-dimensional Lie groups are products of one-
dimensional Lie groups (see section 3.6). Notice that it is not necessary
to assume a connectedness of GG, or that GG is a product of connected one-
dimensional groups for the next axiom to make sense.

Axiom 5.2. There exists an effective, differentiable group action
F:Gx M — M of a Lie group G on M such that for each ¢ € G the
mapping F, : M — M, defined as Fy(p) = F'(g,p), is a diffeomorphism.

Mappings Fj are symmetry transformations of M. Because the action is
effective (see Definition 2.5), the mapping g — F is a group isomorphism
from G to the group of symmetry transformations. The isomorphism allows
identification of the two groups, and the notation ¢ is used for the transfor-
mation Fj. Henceforth, the phrase “group G acts on manifold M” is used to
refer to a group action that satisfies axioms 5.1 and 5.2.

Because Axiom 5.2 is somewhat abstract, we now give some concrete
examples of group actions that satisfy the assumption.

Example 5.1.1. Domain, which is an infinitely long straight rectangular waveg-
uide (Figure 5.1), has translational symmetry, and its symmetry transfor-
mations are translations in the direction of the waveguide. Its orbits are
one-dimensional submanifolds, lines parallel to the waveguide. In this exam-
ple, the group G is (R, +), and the domain M can be regarded as a subset
of R? such that the waveguide is oriented along the z-direction. If we de-
note the points of M as triplets (z,y, z), the group action F' and symmetry
transformations [, are as follows:

F:(g,(2,9,2) = (z,9,2 +9)
Fg . (:C,y,Z) — ($7y72+g)

In this example, the action F' is free (Definition 2.5).

Figure 5.1: Waveguide with translational symmetry.

Before further examples, let us specifically comment on group actions on
manifolds. A BVP is not, of course, symmetric with respect to all possible
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group actions that can be defined on its domain: if the manifold is R3, as
it often is in electromagnetic modeling, clearly there is a multitude of group
actions then satisfy Axiom 5.2. However, the space is not empty but contains
materials and sources that must be symmetric for the BVP to be symmetric.
The symmetry of fields and constitutive equations is described in terms of
group actions on manifolds, as defined in the next two sections. Thus a
group action on a BVP domain is a mathematical tool used to describe the
symmetry of the BVP, and it is the task of the modeler to recognize a suitable
action under which the BVP is symmetric.

Ezample 5.1.2. A second example is rotational symmetry in a plane (Figure
5.2). The Lie group is now S', and the symmetry transformations are rota-
tions around point p. The action is now effective but not free because the
point p is the fixed point of the symmetry transformations: the rotations do
not “move” the point p but map it to itself. Thus all the orbits are circles
centered at p, excluding the orbit Gp, which contains only the point p. The
point p is referred to as a singular point, and the orbit Gp is referred to as a
singular orbit.
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Figure 5.2: Rotational symmetry in a plane. Symmetry transformations are
rotations of the points of the plane about point p. Point ¢ and all the other
points of the plane except p are rotated 90 degrees counterclockwise by a
symmetry transformation g. The circles represent orbits.

Definition 5.1. Let group G act on manifold M. A point p of M is singular
under the action if p is a fixed point for a symmetry transformation that is
not the identity mapping of M. An orbit of G is singular under the action
if there exist higher-dimensional orbits.
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Remark 5.1.1. We will later construct an additional axiom about singular
orbits but only when we are forced to do so.

The singular orbit in the second example derives from an effective but non-
free action of a compact Lie group S*. However, if the point p is removed
from M, the action is free and there are no singular orbits.

Example 5.1.3. A third example of group actions that satisfy Axiom 5.2
is cylindrical symmetry, which also exemplifies group action with singular
orbits. Now G = R x S' and the symmetry transformations of M = R?
are compositions of translations and rotations such that the translations are
parallel to the axis of rotation. The orbits are two-dimensional submanifolds,
which are cylindrical surfaces except for the axis of rotation, which is a one-
dimensional singular orbit. Notice that the points of the rotational axis are
not fixed points of translations, but that only the rotations fix the points.
Therefore, the definition of a singular point requires only that a symmetry
transformation exist that is not the identity mapping.

5.2 Group-invariant fields

This section defines (G, h)-invariant vector fields and differential forms to
express the symmetry of BVPs. The group action of G on M induces group
action for vector fields via the pushforward of the symmetry transformations
of M. For differential forms, the pullbacks of the transformations of M
induce a mapping for differential forms, which in general resembles group
action, and in the case of Abelian groups is a group action. In the following,
F refers to either R or C. The motivation for complex-valued mappings h
comes from time-harmonic fields, where time-harmonic invariance is simpler
and more convenient to define using complex-valued fields. Notice that if A
is complex-valued, the differential forms are also complex valued.

Definition 5.2. Let group G act on manifold M and let h: G — F be a Lie
group homomorphism. Then a vector field X on M is (G, h)-invariant if

9:X = h(g)X
holds for all ¢ € G. In pointwise terms: (¢..X)(p) = h(g)X(p) holds for

all p € M, g € G, or equivalently (by the definition of the pushforward),
9+(p)(X,) = h(g) X, holds for all p e M, g € G.
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Definition 5.3. Let group GG act on manifold M and let h : G — F be a Lie
group homomorphism. Then a differential form w € Q(M) is (G, h)-invariant
if

gw = higw

holds for all ¢ € G. In pointwise terms for a k-form: (¢g*w),(vy,..,vx) =
h(g)w,(v1, .., vx) holds for all p € M, vy, .., v, € T,(M), g € G, or equivalently
(by the definition of the pullback), wg,(g.v1, .., gxvx) = h(g)w,(v1, .., v)) holds
forallp e M, vy, ..,v, € T,(M), g € G.

A very important special case of (G, h)-invariance is (G, 1)-invariance,
where 1 : G — F is a mapping with a constant value 1, i.e., every ¢ € G
is mapped to the multiplicative identity of F. In this case, we use the term
G-invariance. Figure 5.3 gives an example of G- and (G, h)-invariant vector
fields under translational and rotational symmetry transformations.

Ezample 5.2.1. An important example of (G, h)-invariance are the familiar
time-harmonic fields: let M = N x R, where N is a 3-manifold, and the
symmetry transformations g are translations in time. A zero-form w is time-
harmonic if the point-wise relation w(p,t + g) = e/*w(p, t) holds for all p €
N, t,g € R, and for some fixed @ € R. In general, a k-form w is time-
harmonic if there exists o € R such that the relation ¢*w = e/*w holds for
all g € R.

Remark 5.2.1. It is possible to generalize the concept of (G, h)-invariance of
k-forms (and vector fields) to include more general mappings h than just F-
valued mappings. For example, all that is required of mappings h is that they
be Lie group homomorphisms from G to a Lie group consisting of mappings
from QF(M) to itself. Notice that these general mappings h would not be
scalars as are F-valued mappings. However, because the benefits to electro-
magnetic modeling of this generalization are not clear, it is not pursued here
in detail.

Open Question 3. What benefits can we achieve and what new cases can
we include in the theory of dimensional reduction, if we allow more general
Lie group homomorphisms A than just F-valued mappings?

The symmetry transformations of M induce group actions also for bound-
ary values: the boundary values a of a k-form w are restrictions of w to
the boundary M, i.e., tw = a holds. Because each transformation g is
a diffeomorphism, its restriction to the boundary 0M is a diffeomorphism
go : OM — OM (see Lemma 3.1). Thus the (G, h)-invariance of boundary
values is defined as follows:
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Figure 5.3: Examples of G- and (G, h)-invariant vector fields. Top: A G-
invariant vector field under translational and rotational symmetry transfor-
mations. The vector at point gp is the pushforward of the vector X at point
p under the symmetry transformation g. Bottom: A (G, h)-invariant vector
field under the same symmetry transformations.

Definition 5.4. Let group G act on manifold M, and let h : G — R be a Lie
group homomorphism. Then boundary values a € Q*(OM) for some k-form
on M are (G, h)-invariant if

holds for all g € G.
Boundary values of a (G, h)-invariant form are also (G, h)-invariant:

Proposition 5.1. Let w be a (G, h)-invariant differential form on M. Then
its restriction to the boundary dM is also (G, h)-invariant.

Proof: The claim follows from the commutation rule ¢ o g* = ¢, o ¢, which
was proven in Theorem 4.3. O
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The definition of (G, h)-invariance of fields is global, but to use it in dif-
ferential equations, we need to express it locally. Here Axiom 5.1 is required
because the (G, h)-invariance of the fields can be expressed locally in an
equivalent way with the Lie derivative if the group G is a connected one-
dimensional Lie group: the symmetry transformations of a connected one-
dimensional Lie group constitute a one-parameter group of transformations.
That is, the symmetry transformations can be parameterized with real num-
bers in a smooth manner such that the parameterization respects the group
structures: if F': G x M — M is a group action, then F,, = F, o Fj holds for
all a,b € R. Smooth parameterization with real numbers makes it possible
to define the Lie derivative of (G, h)-invariant forms and the derivatives of
the F-valued mapping h. Furthermore, the Axiom 5.1 that the Lie group G
is a product of connected one-dimensional Lie groups makes it possible to
study the group action as separate actions of connected one-dimensional Lie
groups, one at a time.

Let us next see how the group action F': G x M — M can be represented
as a one-parameter group of transformations. If G is not compact, it is
isomorphic to R, i.e., there is a Lie group isomorphism 3 : R — G such that
Bla+0b) = B(a) - 5(b) holds for all a,b € R. Let i,, be the identity mapping
of M, and let us denote by  x i), : R x M — G x M the mapping defined
by (a,p) — (B(a),iy(p)) for all a € R, p € M. With the mapping 3 x i,, we
can represent the action F' as a 1-parameter group of transformations g as
follows (the subindex [ indicates that the representation depends on [3):

gOg:FO(ﬁXZ'M).

If the mappings (pg): : M — M and F, : M — M are defined by (¢3):(p) =
@s(t,p) and Fy(p) = F(g,p), then it is easy to show that (¢g): = Fp
holds for all t € R. If the group G is compact, it is isomorphic to S* via
mapping s : S! — @. Furthermore, the exponential function gives a Lie
group homomorphism from R to S': @ € R — €@ € S'. The mapping
B(a) = s(e) is now a Lie group homomorphism from R to G, which can be
used to represent the action /' as a 1-parameter group of transformations ¢g.
The parameterization § of GG also represents the mapping h : G — F as a
mapping hg : R — F by composition of the mappings, i.e., hg = ho 3 holds.

Each 1-parameter group of transformations ¢z induces a smooth nonzero
vector field Xj that is everywhere tangent to the orbits of F: if we define
¢p : R — M by ¢,(t) = ¢gs(t, p), then ¢, is a smooth curve through the point
p of M. Thus the induced vector field X3 maps point p to the tangent vector
[¢p] (equivalence class of curves containing the curve ¢,). Furthermore, the
induced vector field X3 is G-invariant:
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Proposition 5.2. If @3 is a 1-parameter group of transformations of M
induced by the action F': G x M — M and the Lie group homomorphism
G : R — G, then the induced vector field is G-invariant.

Because the induced vector field X is everywhere tangent to the orbits, it
can be used to define the directional derivative in the direction of the orbits.
The Lie derivative (see Definition 3.57) of the field with respect to Xz gives
the directional derivative, and the invariance of the field fixes the value of
this derivative, as is shown in the next theorem:

Theorem 5.1. Let a one-dimensional connected Lie group G act on a man-
ifold M such that Axiom 5.2 is satisfied. Let 3 : R — G be a Lie group
homomorphism and Xz the induced vector field. Furthermore, let a field w
be (G, h)-invariant. Then Ly w = hj5(0)w holds.

Proof: To show the claim, substitute (¢g); = Fp) in the definition of the
Lie derivative and use the (G, h)-invariance condition:

(Lxw) = tim PN <Fﬂ<>°:>—w NCOTEE
_ oy ABE) =D R(B(D) = h(5(0))
t—0 t t—0 t
= 11_{% Mw = /B(O)w. O

Corollary 5.1. If a field w is G-invariant, then £Xﬂw = 0 holds.

Remark 5.2.2. In the case of G-invariance, the vector field X3 need not be
induced by any Lie group homomorphism 3, but £yw = 0 holds, in fact, for
all smooth nonzero vector fields X that are everywhere tangent to the orbits.

Example 5.2.2. The field w has a time-harmonic invariance if there exists
a € R such that g*w = ¢/“w holds for all ¢ € R. Because the Lie group
homomorphism 3 : R — R = G can be chosen to be a trivial mapping a — a,
it follows that hg(g) = ¢/*Y and hj(0) = jor hold. Thus if Xj is the induced
vector field (a smooth nonzero vector field everywhere in the direction of
time), then Ly w = jaw holds.

The equivalent Lie derivative expression for (G, h)-invariance is important
because it can be used directly to simplify the differential equations after
an observer structure has decomposed them. To simplify the notation, the
modeler is assumed implicitly to choose the Lie group homomorphism g :
R — G and denote hj(0)w simply by A'(0)w, where 0 is the identity element
of G. In addition, the induced vector field X3 is simply denoted by X.

Finally, two useful propositions about (G, h)-invariance.
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Proposition 5.3. If w is a (G, h)-invariant k-form, and X is a G-invariant
vector field, then iyw is a (G, h)-invariant (k — 1)-form.

Proof:

(g*(iXW))p<‘/Iv D) kal) - (in)gp(g*Vlv ) Q*kal) = wgp(Xa g*vla ~~79*V;€71)
== wgp(,g*X, g*‘/ly --»g*‘/k—1> = hwp(X; ‘/17 oy V;c—l) = h(lxw)p(‘/ly vy ‘/;c—l)-

Because this holds for all p € M, Vi,.,V, € T,(M) and for all g € G, the
claim follows. O

Proposition 5.4. If w is a (G, h)-invariant form, and « is a G-invariant
form, then their wedge product o A w is also a (G, h)-invariant form.

Proof: The claim follows from the fact that the pullback commutes with the
wedge product:

glahw)=gaNgw=aANhw=hlaANw). O

These propositions will be used to establish the (G, h)-invariance of the
geometric components of field w when w itself is (G, h)-invariant.

5.3 Group-invariant constitutive equations

It is intuitively clear that dimensional reduction requires that the material
properties be invariant in some sense. Thus we must define the group invari-
ance of the constitutive equations, which is the topic of this section. The
group invariance of the constitutive equations requires a proper invariance
for Hodge-like operators (see Definition 4.6), that describe the constitutive
equations.

The material properties are modeled with Hodge-like operators €, u, and
o. If D = €F holds and if both £ and D are to be G-invariant, we have a clear
requirement for the Hodge-like operator €: it should preserve this invariance.
In other words, Hodge-like operators should map a G-invariant E to a G-
invariant D: let v be a Hodge-like operator. Now if w is G-invariant, or if
g*w = w holds for all ¢ € G, then v g*w = vw holds. On the other hand,
if vw is G-invariant, then g*vw = vw holds. These equations imply that v
maps G-invariant fields to G-invariant fields if the following equation holds:

Juvw = vg'w Vged.

That is, v maps G-invariant fields to G-invariant fields if it commutes with
the pullbacks of the symmetry transformations.
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Definition 5.5. Let group G act on manifold M. A Hodge-like operator v
is G-invariant if it commutes with the pullbacks of the symmetry transfor-
mations or v o g* = ¢* o v holds for all g € G.

A Hodge-like operator v is (G, h)-invariant if it maps (G, h)-invariant
fields to (G, h)-invariant fields. This requires that the following additional
equation hold.

hv,w, = v,hw, Ype M. (5.1)

Because the Hodge-like operator v is linear, the above equation always holds.
Thus a G-invariant Hodge-like operator is automatically also (G, h)-invariant:

Proposition 5.5. If a Hodge-like operator is G-invariant, it is also (G, h)-
invariant.

Remark 5.3.1. (G, h)-invariance of Hodge-like operators include so-called
anisotropic materials. Thus anisotropy is not a problem for dimensional
reduction, but nonlinear materials are problematic (see the next remark and
the next section).

Remark 5.3.2. If mappings h are more general than F-valued Lie group homo-
morphisms, the requirement in (5.1) may not be trivially true but it would,
in fact, be an additional requirement for the (G, h)-invariance of Hodge-like
operators. If the Hodge-like operators are not linear (nonlinear materials), it
seems that only G-invariance is possible: the only Lie group homomorphisms
h that satisfy the requirement in (5.1) seems to be the mapping 1 : G — T,
which maps all the elements of G to the multiplicative identity of .

5.4 Unique solution of an invariant BVP is
invariant

It is usually assumed that if the sources, boundary values, and constitutive
equations are all symmetric “in the same way,” the solution fields are also
symmetric “in the same way.” This section provides a theorem that assures
the solution fields to be (G, h)-invariant if a BVP has a unique solution and
has (G, h)-invariant sources, boundary values, constitutive equations, and
cohomology conditions.

The proof of the (G, h)-invariance of the solution field is based on assumed
existence of a unique solution, which requires that we consider cohomology
conditions. In practice, the cohomology conditions are given by integrals of
solution fields over suitable submanifolds (de Rham’s theorem) [24]. Because
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for the field argument integration is linear, the cohomology condition is a
linear operator H for the fields. By the linearity of H we get a simple (G, h)-
invariance condition for the cohomology condition: H(g*w) = H(h(g)w) =
h(g)H(w). Hence the following definition:

Definition 5.6. The cohomology condition of a field w € Q(M) is (G, h)-
invariant if H(g*w) = h(g)H(w) holds.

In practice, the (G, h)-invariance of a cohomology condition H(w) means
that if the condition is given by integrating w over a submanifold ¢, then this
integral multiplied by h(g) is the same as integrating w over the submanifold
gc. This follows from the (G, h)-invariance of w and Theorem 3.4:

h(g)/cwz/cg*”:/gc“'

Definition 5.7. A BVP is (G, h)-invariant if its sources, boundary values,
constitutive equations, and cohomology conditions are (G, h)-invariant.

Theorem 5.2. If a (G, h)-invariant electromagnetic BVP has a unique so-
lution, then the solution is (G, h)-invariant.

Proof: Let us study the following generic BVP formulated on an n-dimensional
manifold-with-boundary M:

dC
dK =
t'c
?’K =

(5.2)

@@Q“Qh@

H(C) =
H(K) = f.

In the above BVP, C is a k-form and K is an (n — k)-form. Forms @) and
L describe the sources. The boundary 0M has two complementary parts,
and the restrictions of the fields to these parts are denoted by t!' and #2.
The constitutive equation is given by a Hodge-like operator v. H is a linear
operator that gives cohomology conditions for the fields C' and K, making
the solution unique. (In [29] it is shown how to discretize generic BVPs of
the above type and their abstract error analysis is also presented.)

In the case of the generic BVP, the existence of a unique solution is
equivalent to the following: let us choose R, = Cy — Cy and R, = K| — Ko,
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where C7 and (s are fields satisfying the same equations as C, and K; and
K are fields satisfying the same equations as K. Then R, and R satisfy
the following equations:

dR, = 0 (5.3)
dR, = 0
'R, = 0
t?Re = 0
R, = vR:
H(Re) = 0
H(R.) = O.

By the existence of a unique solution, these equations imply that Ry = 0
and R. = 0 hold. Thus ¢} = (5 and K; = K5 hold, which is exactly the
uniqueness of C' and K.

Now the procedure to show that the solution is (G, h)-invariant is the same
as in the above case of uniqueness. That is, we must show that the difference
fields ¢g*C' — h(g)C and ¢*K — h(g)K satisfy the same BVP as described in
(5.3) (Remember that C' is (G, h)-invariant if ¢*C' — h(g)C' = 0 holds for
all ¢ € G). Now the sources, boundary values, constitutive equations, and
cohomology conditions are assumed to be (G, h)-invariant or that equations

9°Q = h(g)Q
gL = hg)L
gse = hig)e
g5b = h(g)b
o= vy

H(g"C) = h(g)H(C)
H(g"K) = h(g)H(K)

hold for all ¢ € G. Then the difference field g*C'—h(g)C satisfies the following
differential equation:

d(g*C — h(g)C) = d(g*C) — d(h(g)C)
= ¢"(dC) — h(g)(dC) = g"Q — h(g)Q = 0.

Similar calculation shows that d(¢*K — h(g)K) = 0 holds. Moreover, the
difference field ¢*C' — h(g)C satisfies the following boundary values:

t'(g"C — h(g)C) = t'(g"C) — t'(h(g)C)
= g;(t'C) = h(g)(t'C) = gz — h(g)c = 0.
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In addition, t*(¢* K — h(g)K) = 0 holds. The difference fields satisfy also the
constitutive equation

9K = h(g) KK = g*vC — h(g)vC = v(g*C — h(g)C).
Finally, the cohomology conditions of the difference fields are zero:
H(g"K — h(g)K) = H(9"K) — H(h(g9)K) = H(g9"K) — h(g)H(K) =0

Thus because the difference fields satisfy the BVP in (5.3), the solution fields
C and K are (G, h)-invariant. O

Remark 5.4.1. The proof of the above theorem uses the linearity of v. Thus
the above theorem is shown to be valid only for BVPs with linear materi-
als. To include even a strict class of nonlinear operators v would make the
proof much more complicated. Furthermore, only G-invariance is defined for
nonlinear operators, see Remark 5.3.2.

Open Question 4. Practical engineering problems include G-invariant BVPs
with nonlinear materials. How to prove the above theorem for those cases?
Moreover, how to expand the theory of dimensional reduction to include
nonlinear materials?

5.5 Orbit space

Dimensional reduction means that a BVP on M can be solved as a lower-
dimensional BVP on a lower-dimensional manifold N. N is a submanifold
of M, and infinitely many valid submanifolds can be used as domains for
the lower-dimensional BVP. Fortunately, a canonical choice exists for a valid
submanifold: the orbit space or the set of all orbits of M with a suitable
manifold structure. Existence of the orbit space is included in the sufficient
conditions for dimensional reduction.

What are then the valid submanifolds of M under the action of a group
G?7 The group invariance of the fields implies that if the values of a field
are known at one point of each orbit, then the fields are completely known
on the whole M. That is, if the value of a field is known at point p, the
value at point ¢ of the same orbit can be constructed by the pullback of the
symmetry transformation that maps ¢ to p (see definitions 3.50 and 5.3).
Thus a valid submanifold is compatible with the orbits in the sense that
it is canonically bijective to the set of all orbits M/G. In other words, a
regular submanifold of M is compatible with the orbits if it contains exactly
one point from each orbit. On the other hand, invariance does not imply

107



that any regular compatible submanifold is the canonical one; therefore all
of them must be equally good choices. Hence all the regular compatible
submanifolds must be canonically diffeomorphic to each other: if N; and Ny
are valid submanifolds, the diffeomorphism maps each point p of N; to point
q of Ny, which is in the same orbit as p. This implies that all the compatible
regular submanifolds are canonically bijective to M/G; therefore, M /G can
be given a unique manifold structure, making it the canonical choice for valid
submanifolds.

5.5.1 Manifold structure

We begin constructing the orbit space by defining a topology for a set of all
orbits M/G. Let w : M — M/G be the canonical projection, i.e., 7 maps
every point of M to its orbit. With the help of the canonical projection, M /G
inherits a natural topological structure that is compatible with the orbits: a
subset U of M /G, which is a set of orbits, is open if and only if the points
in the orbits of U constitute an open set in M. This topology is the finest
topology that makes the mapping 7 continuous, i.e., the topology contains all
the possible subsets of M/G such that the continuity of 7 is not lost. With
this topology M /G is called the orbit space:

Definition 5.8. The set of orbits M /G with a topology is an orbit space if
the topology is the finest topology that makes the mapping 7 continuous.

The finest topology that makes the mapping 7 continuous is often called
the quotient topology. Notice that the orbit space, in the above topologi-
cal sense, always exists. However, it may not be a Hausdorff space, and a
manifold structure may thus not exist for [3]. We must assume here that the
orbit space is a Hausdorff space. Consequently, only those symmetries that
produce an orbit space that is a Hausdorff space are included in our theory
of dimensional reduction. The lack of the Hausdorff property is a problem
only for noncompact symmetry groups because for differentiable actions of
compact Lie groups, the orbit space is always a Hausdorff space [9].

The manifold structure for the orbit space comes from the compatible
regular submanifolds of M. The compatibility of regular submanifolds is
formally defined using cross-sections:

Definition 5.9. A cross-section is a continuous mapping x : M /G — M such
that 7o k = idyyq, i.e., m(k(p)) = p holds for all p € M/G.

By definition, a cross-section maps each orbit to one of its points, but in
a continuous manner. Each cross-section x is a homeomorphism to its range
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S = k(M /G) with the subspace topology because the cross-section is bijective
to S, continuous, and its inverse (the restricted projection 7|g) is continuous.
The homeomorphism property makes the image S topologically equivalent
to the orbit space. Furthermore, the images of all cross-sections are canoni-
cally homeomorphic: the canonical homeomorphism between k(M /G) and
Ko(M/G) is given by kg o Ky

The orbit space can be given a compatible manifold structure if a cross-
section exists whose range is a regular submanifold of M. Observe that the
orbit space can have a boundary (even if M does not); therefore, the range
of the cross-sections must be regular submanifolds-with-boundary (of course,
the boundary may be empty). A submanifold-with-boundary A of M is a
manifold-with-boundary A together with a suitable differentiable mapping
A — M (see Definition 3.36). To give the orbit space a compatible mani-
fold structure, we must assume here that such a cross-section exists. Next
we define compatible regular submanifolds-with-boundary and call them G-
reduced domains.

Definition 5.10. A regular submanifold-with-boundary A of M is a G-
reduced domain if a cross-section k exists such that x(M/G) = A.

Remark 5.5.1. If the action of G on M is free, then not only do the orbits
form a foliation of M, but also any G-reduced domain can be used to produce
a foliation: let A be a G-reduced domain. If the set {gp € M |p € A} is
denoted by A,, then {A },cq is a foliation of M. If the action is effective
but not free, then there are singular points that belong to more than one
G-reduced domain and no foliation is possible.

We can now induce a differentiable manifold structure for the orbit space
by requiring that a cross-section x defining a G-reduced domain A be a
diffeomorphism. That is, the manifold structure for the orbit space induced
from A is a pullback structure defined by k. Because invariance does not
give a canonical choice of a G-reduced domain, all of them must be equally
good choices. Formally, this means that all the G-reduced domains must
be canonically diffeomorphic: the canonical homeomorphisms &; o &, U are
diffeomorphisms. Then the pullback manifold structure for the orbit space
is independent of the choice of G-reduced domain:

Theorem 5.3. If a G-reduced domain exists and all the G-reduced domains
are canonically diffeomorphic, the orbit space can be given a unique pullback
manifold structure, i.e., the pullback structure is independent of the choice
of G-reduced domain.
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Proof: Let the orbit space M /G have a pullback structure induced by k7 that
defines a G-reduced domain A;: if Uy = {(U;, ¢;)} is an atlas of A;, then the
corresponding pullback atlas for M/G is xiUy = {(k7'(U;), ¢i o k1)}. Let
(As, ko) be another G-reduced domain. Because it is canonically diffeomor-
phic to Ay, it has the following atlas:

Uy = (k10 Ky VU = {((k2 0 k" )(Ui), dio (k10 k3 1))}

The corresponding pullback atlas for the orbit space is

ks = { (k3" (R 0 k7 ) (Ui)), (¢ © (K1 0 Ky 1)) 0 o)}
= {(k3  (k2(ky 1 (U5))), (¢ © (K1 0 k3" 0 k) }
= {(k"(Ui), ¢ 0 k1) } = KiUs.

Thus because the pullback atlases are the same for arbitrary G-reduced do-
mains A; and A,, the pullback manifold structure for the orbit space is
independent of the choice of G-reduced domain. O

The orbit space with its canonical pullback manifold structure is the
canonical choice for the domain of lower-dimensional BVPs: because the
elements of the orbit space are themselves orbits, it treats all points of each
orbit equally, which is in contrast to G-reduced domains, which single out one
point from each orbit. That is, compatibility with orbits is trivial for the orbit
space. Henceforth, orbit space means the set M /G with a canonical pullback
manifold structure. Observe that only those symmetries that produce an
orbit space with a canonical pullback manifold structure are included in our
theory of dimensional reduction. Thus the existence of a canonical pullback
manifold structure for the orbit space is included in the sufficient conditions
for dimensional reduction.

The following proposition states that the canonical projection 7 is a dif-
ferentiable mapping, in which case its pushforward is defined.

Proposition 5.6. The canonical projection 7 : M — M /G is a differentiable
mapping.

Proof: Let M be an n-dimensional manifold and M /G a k-dimensional man-
ifold. Select a G-reduced domain A and let p € A. There exists a cubic-
centered coordinate system (V, ¢) of M which contains p and a neighborhood
U C A of p such that the coordinates for the points of U under the chart
(V, ¢) are of form [x1, .., 2,0, .., 0] [62, page 28]. The corresponding pullback
coordinates for M /G are now [z, .., x;]. Then the canonical projection can be
represented in these coordinates as the mapping [z, .., Tk, .., T,| — [21, .., Tk,
which is clearly a differentiable mapping. O
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Lastly, notice that the orbit space, and thus the G-reduced domains, can
be manifolds-with-boundary even if M is not. For example, if M = R? and
the actions are rotations about the z-axis, then the positive zz-plane (z > 0)
is a G-reduced domain, and the z-axis is its boundary. The boundary consists
of orbits with a lower dimension than most of the orbits, making them thus
singular orbits. Singular orbits are significant in defining the boundary values
of lower-dimensional BVPs.

5.5.2 Metric structure

A metric structure can be induced for the orbit space M /G from M: select
any G-reduced domain and endow it with the subspace metric. Then require
the corresponding cross-section to be an isometry. Alternatively, the cross-
section can be used to pull back the metric tensor of M to M/G. However,
this metric for the orbit space depends on the choice of G-reduced domain.
For example, consider a translational symmetry (Figure 5.4). A cross-section
plane that is everywhere orthogonal to the orbits is a G-reduced domain as is
any cross-section plane that is askew with respect to the orbits. Then clearly
the distance between any two points on the orthogonal plane is different
as the distance between the corresponding points on the askew plane (the

AN

\ 4/‘\ M/G

Figure 5.4: Different metrics for the orbit space M/G. Vertical lines rep-
resent orbits. A; and As are G-reduced domains and x; and ko are the
corresponding cross-sections.
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corresponding points are those in the same orbits). Thus there is no canonical
choice of metric for the orbit space.

The symmetry of BVPs has been defined without metrics, i.e., the in-
variance of fields, boundary values, constitutive equations, and cohomology
conditions are defined without any reference to metrics. Of course in some
cases the symmetry transformations may be isometries for a suitable choice
of metric, but this does not play any role in the definitions of the invari-
ance. Thus symmetry of BVPs is independent of metrics and this is in line
with the fact that the orbit space does not have a canonical metric. For
lower-dimensional BVPs, this means that everything can be defined without
a reference to a metric. Even the constitutive equations, the only part of
BVPs with some connection to a metric, are directly induced from the origi-
nal constitutive equation without a metric. Therefore, dimensional reduction
can be explained without any metric in the orbit space.

5.6 Lower-dimensional BVPs for
one-dimensional symmetry groups

In this section, we derive in detail the lower-dimensional BVPs for a sym-
metry group G, which is a connected one-dimensional Lie group. That is,
we study cases where the dimension of a BVP is reduced by one. Such
cases comprise static and time-harmonic problems that are results of di-
mensional reduction under time invariance. In addition, classical static 2d-
problems with translational and rotational symmetry are instances of lower-
dimensional BVPs for one-dimensional symmetry groups.

A major difference from the usual application of dimensional reduction is
that we do not assume any components to be zero in some coordinate system,
but rather work directly in the domain manifold and assume only invariance
of the BVP. That is, this section starts from a generic BVP being (G, h)-
invariant under an action of GG such that the action satisfies Axiom 5.2. In
addition, we assume that the BVP has a unique solution, in which case The-
orem 5.2 guarantees that the solution is (G, h)-invariant. Furthermore, we
assume that the orbit space exists. Then we formulate the lower-dimensional,
or reduced BVP for short, on the canonical lower-dimensional domain, which
is the orbit space.

The domain of the generic BVP is a manifold-with-boundary M of di-
mension n. The generic BVP on M consists of two differential equations,
expressed with the exterior derivative d,,, one homogeneous and the other
inhomogeneous. The source field is a (k + 1)-form @, and the two unknown
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fields are a k-form C' and an (n — k)-form K. The constitutive equation be-
tween K and C'is given by a Hodge-like operator v, and the boundary values
for C' and K are given by a k-form ¢ and an (n — k)-form b, respectively. The
BVP is then:

dyC = @ (5.4)
dyK = 0
t,C = ¢
2K = b
K = v,C.

We begin with geometric decompositions of the fields and the exterior
derivative, which are based on a choice of a G-invariant observer structure
(T, 7). The observer must be compatible with the invariance in the following
sense: 7 corresponds to some G-reduced domain A such that 7(v) = 0 holds
for all v tangent to A, and T is everywhere tangent to the orbits. The
geometric components C,, K, i,C, and i K are the fields to be solved for
the reduced BVP. Notice that in the orbit space, the reduced BVP depends on
the choice of observer though the solution of the original higher-dimensional
BVP, of course, does not. Furthermore, notice that the geometric components
are horizontal fields and can thus be naturally pulled back to the (n — 1)-
dimensional orbit space N. When the geometric components are solved,
the geometric decomposition and the invariance of the fields show how to
construct the solution for the original BVP in (5.4): C'= C, 4+ 7 Ai,;C holds
in the points of the G-reduced domain A, where C and i,.C'" are the solutions
of the reduced BVP and where 7 is given. Then the (G, h)-invariance of C
expands the solution to the whole M.

Then we derive “reduced differential equations” for the reduced BVP in
the orbit space M /G which we denote here for simplicity by N. The deriva-
tion is based on (3 + 1)-decompositions of Maxwell’s equations shown in
chapter 4. The chosen observer (T, 7) induces ((n — 1) + 1)-decompositions
of the differential equations in (5.4). Then the invariance of the fields C
and K simplifies the equations, eliminating from them the derivatives in the
direction of T

“Reduced boundary values” are derived first for free actions, which have
no singular orbits. Then the case of effective but not free action is examined.
At the boundary of the orbit space we have points that are not part of the
boundary of M. These points are singular orbits, and we now propound an
additional axiom that such orbits always reside at the boundary of the orbit
space.
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The choice of a G-reduced domain (that defines the observer) is arbitrary;
in particular, no orthogonality is assumed for the orbits. This forces us to
consider a very general type of constitutive equations for the reduced BVPs:
we must assume that K. and i, /K are both dependent on C, and i,C, and
we show how this assumption decomposes the original operator v,, into four
“reduced operators,” which are not all Hodge-like operators. These derived
constitutive equations couple three of the reduced differential equations, but

in some cases the equations are simple enough to have two uncoupled reduced
BVPs.

5.6.1 Geometric decomposition of fields and the exte-
rior derivative

Geometric decomposition of fields is based on a similar observer structure
as that introduced in chapter 4. However, the pair (7', 7) that defines the
projections is constructed with help of G-invariance: if the BVP is (G, h)-
invariant, the vector field 7" is induced by the action and by some Lie group
homomorphism  : R — G chosen by the modeler (see section 5.2). The
induced vector field 7" is smooth, nonzero, G-invariant, and everywhere tan-
gent to the orbits. If the BVP is G-invariant, then T can be any nonzero,
smooth, G-invariant vector field that is everywhere tangent to the orbits. In
the case of free group action, T is everywhere nonzero, but if the action is
effective but not free, there are singular orbits that contain only one point.
At singular points, T is zero and at every other point of M nonzero. Because
these singular orbits are assumed to be at the boundary of the orbit space,
they do affect only the boundary values.

To define the one-form 7, we choose any G-reduced domain A. Then 7 is
a smooth G-invariant one-form on M such that 7(v) = 0 holds for all v in the
tangent bundle of A, and 7(7") = 1 holds everywhere except at the singular
points where 7 is left undefined. Notice that 7 is defined completely on A
(except at singular points), and G-invariance then extends the definition to
the whole M (excluding the singular points). In the case of free action, the
one-form 7 could also be defined as follows: select a G-reduced domain A, in
which case {A,}4eq is a foliation of M (see Remark 5.5.1). Then 7 is such
that it returns zero for every vector tangent to some leaves of the foliation,
and 7(7") = 1 holds everywhere. Furthermore, because 7 is G-invariant, its
Lie derivative with respect to T' is zero, or L7 = 0 holds.

In singular orbits, T" is zero, in which case i;w = 0 holds and we set
w, = w. Then the geometric decompositions, which always hold at the
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interior points of M, of the fields K, C', and @) are

K = K. +17NipK
C = C,+7Ni,C
Q = QT—’_T/\?:TQ'

The exterior derivative d,, has the following decomposition:
dy =d. + 7 Nipd,y,.

Let K : N = M/G — M be the cross-section that defines the G-reduced
domain A and let us denote its pullback by f or f = r*: Q(M) — Q(N). It
is then easy to show that the following equations hold:

fro=0 (5.5)
fo = fo
fod, = dyolf.

The (341)-decomposition of differential equations given in section 4.2.2
was based on the property d,,7 = 0. To use the results of section 4.2.2,
we must show that d,,7 = 0 holds also for the G-invariant 7 defined in this
section. For the proof, we need some preliminaries: let {X7,..., X,,_1,7} be a
smooth G-invariant basis field for the tangent spaces of M such that at each
point pe A C M, {X,...,X,,_1} is a basis of T,A, and T is a basis of T,Gp
(tangent space of the orbit). Then at each p € A, there is a decomposition of
the tangent space T,(M) = T,AE T,Gp. We call this basis field on M the
geometric basis. The dual basis {dx1, ..., dz,_1, 7} for one-forms is defined as
usual:

dz;(X;) = 9y, dz;(T) =0, T(X;) =0, T(T) = 1.

The corresponding basis for two-forms and higher-degree forms are then de-
fined as wedge products of the elements of the dual basis; e.g., in a three-
dimensional M for two-forms, we have {dx; A dxg,dxy A 7,dxy A T}. These
bases for differential forms are also called geometric bases. Now we prove the
proposition.

Proposition 5.7. If (7, 7) is a G-invariant pair such that 7" is in the direction
of the orbits, then d,,7 = 0 holds.

Proof: The G-invariance of 7 is equivalent to L;7 = 0, in which case we have
ETT — d]\/f(iTT> + /L.T(dij) — d]\/[]. “I— iT(dIMT> — 7;T<d1%7—) — 0. ThiS means that
in the geometric basis the two-form d,,7 has no terms containing 7. On the
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other hand, f7 = 0 holds by (5.5); therefore, fd,,7 = 0 holds also because
the pullback and the exterior derivative commute. Then on the points of A,
each term of d,,7 in the geometric basis must contain 7 or d,,7 = 0 holds.
Consequently, the two requirements (i (d,,7) = 0 and fd,, 7 = 0) can hold in
A at the same time only when d,,7 = 0 holds in A. To show that d,,7 = 0 in
M, it is enough to show that d,,7 is G-invariant: ¢*(d,,7) = d\(g*T) = dyT
holds for all g € G. Thus d,,7 is G-invariant, and d,,7 = 0 then holds in M.
O

Finally, it is clear that for numerical solution a chart (coordinate system)
is needed, and that not all charts are equally convenient for that. Presumably,
under a convenient chart the orbits are pure translations (or lines) parallel to
one of the coordinate axes, and G-reduced domain A is “orthogonal” to that
axis, in the sense that it is a level set of the coordinate defining the direction
of the orbits. For example, in a rotationally symmetric case, where the G-
reduced domain A is chosen to be a plane everywhere orthogonal to the orbits,
it is convenient to choose cylindrical (7, ¢, z)-coordinates, because under those
charts orbits are lines parallel to the ¢-direction (the angle coordinate) and
the G-reduced domain A is a level set of ¢-coordinate. Under this kind of
charts, the vector field T" can be chosen to be the coordinate basis vector
in the direction of the orbits, and the one-form 7 is the corresponding dual
basis one-form.

5.6.2 Differential equations for reduced BVPs

The differential equations that hold in M are the original equations for fields
K and C:

dyK = 0
d,C = Q.

These equations are decomposed by (7', 7) as follows (see section 4.2.2):

d‘r<iTK) = LK, (5-6)
d.c. = Q.

d.(izC) = irQ+ L.C,
d.K. = 0.

The (G, h)-invariance of K and C' fixes Lie derivatives for fields K, and
C,: if the generic BVP in (5.4) has a unique solution, the fields K and C' are
also (G, h)-invariant by Theorem 5.2. Then the next proposition shows that
the horizontal components are also (G, h)-invariant:
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Proposition 5.8. If w = w, + 7 Aizw is (G, h)-invariant, and if (7', 7) is
G-invariant, then the horizontal component w. is (G, h)-invariant.
Proof: Proposition 5.3 shows that i;w is (G, h)-invariant, and then Propo-

sition 5.4 shows that 7 A izw is (G, h)-invariant. Now because w is (G, h)-
invariant, it follows that w, must also be (G, h)-invariant. O

Now because K, and C, are (G, h)-invariant, by Theorem 5.1 they satisfy
the following Lie derivative equations:

LK, = KW(0)K,
L.C. = K(0)C..

Remember that A'(0) K, is shorthand for A’(3(0))3'(0) K., where f: R — G
is a user-defined Lie group homomorphism (see section 5.2). If we cannot
assume the existence of unique solution, we must directly assume (G, h)-
invariance of fields K and C to derive the above Lie derivative equations for
K, and C'..

With the Lie derivative equations, the decomposed equations in (5.6) are
simplified to the following:

d (i, K) = K(0)K.

d.C. = Q.
d.(izC) = izQ+ W (0)C,
d.K, = 0.

Notice that there are no more derivatives in the direction of the orbits. Thus
these equations can be pulled back to the orbit space N with f without loss
of information:

fld(izK)) = f(h(0)K,)
fd.C) = fQ.

f(d(izC)) = [f(i»Q) + f(K'(0)C,)
fd.K) = o

Because fd, = dyf holds, we get the reduced differential equations in the
orbit space:

du(f(irK)) = f(W(0)K,)
dN(fCT) = fQ,

dy(f(izC)) = f(ixQ) + f(R(0)C,)
dy(fK,) = 0.
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In the case of G-invariance, h'(0) = 0 holds, and we have the simpler equa-
tions

dy(f(irK)) = 0 (5.7)
dN(fC‘r) = fQ.

dn(f(ixC)) = [(izQ)
dy(fK.) = 0.

Notice that because the orbit space N is an (n— 1)-dimensional manifold,
and if C' or K is an (n — 1)-form, then the differential equation above for C,
or K, is trivial. In other words, the exterior derivative of an (n — 1)-form
on an (n — 1)-dimensional manifold is always zero; therefore, any field C, or
K. satisfies the equation (in the case of C', the equation is also homogeneous
because f@Q, is an n-form on an (n — 1)-manifold and thereby zero). Thus
these trivial equations do not bind the solution in any way. However, we will
see in the section 5.6.4 that these fields are bound to fields in the nontrivial
equations by the constitutive equations.

Example 5.6.1. In the case of magnetostatics, M is a 3-manifold and K
corresponds to two-form B (magnetic flux density), C' corresponds to one-
form H (magnetic field), and @) corresponds to two-form J (current density).
If the BVP is G-invariant, the reduced differential equations in the two-
dimensional orbit space N are

dy(f(irB)) 0
dN(fHT) = fJ.
dN(f(iTH)) = f(iT‘])
dy(fB.) = 0.

Notice that the last equation is trivial. Furthermore, the above equations
assume only G-invariance from current J but not that it has any special
direction. Usually only the other geometric component of J is assumed to
be nonzero, and this makes the other equation for H homogeneous and often
very easy to solve. For example, if we have a translational symmetry, and if
J lies in the direction of translations, i.e., J = J, holds, then we have the
following non-trivial equations to solve:

dy(f(irB)) = 0
dv(fH.) = fJ.
dy(f(izH)) = 0.
If the boundary values for f(i,H) are homogeneous, the last equation has a

trivial solution f(i,H) = 0, which, in fact, is often assumed for dimensional
reduction.
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5.6.3 Boundary values for reduced BVPs

The boundary values for reduced BVPs are derived for two separate cases.
First, the case of free action is covered and then the case of effective but not
free action. If the action is effective but not free, there are singular orbits
which require separate treatment.

Free action

When group action is free, all orbits are one-dimensional. Then the boundary
0A of the G-reduced domain A is a regular submanifold of M. Thus the

boundary ON of the orbit space is an embedded submanifold of dM (see
Figure 5.5).

N

K )
R
\A/ /\Q/\
N

N oM
M

ON

Figure 5.5: Embedding the boundary of the orbit space. M is a 3-manifold,
an infinitely long tube with a circular cross-section. A is a G-reduced domain,
and the image of the orbit space N under a cross-section k. 7 is the inclusion
map of AN to N. Then k o is the embedding of N to OM.

Our task now is to derive boundary values for fields K., i, K, C,, and
i+C' in the orbit space N from the original boundary values

t,C =
2K

In the above equation, ¢}, and #2, denote the pullbacks of the inclusion maps
of the complementary parts of the boundary M. Let i,y and i,,, be the
inclusion maps of the boundaries ON and OM to N and M, respectively,
and k be the cross-section that maps N to A. Then the mapping k,y is the
induced mapping that maps 0N to M such that the following commutation
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lon ©Kon = KOT,y holds (see Figure 5.5). Now the fields on M can be pulled
back to the boundary N by the pullback of k,y, which is denoted by f,y.
If the pullbacks of i,y, i5:, and k are denoted by ty, t,,, and f, respectively,
then the following commutation rule holds:

f@Notl\/f = tNof'

The vector field T is well-defined over M, and thus also over the sub-
set OM. Because T'(p) € T,(0M) holds by the canonical identification of
the tangent vectors of T,(0M) and T,(M) and because we do not want to
use unnecessary indices, the restriction of T' to the boundary M is not de-
noted separately but it is understood from the context. Thus the following
commutation holds:

tp Oty = Ty Oy

(T at the left-hand side of the above equation is now the restriction of T to
the boundary 0M.)

Now we can express the boundary values in the orbit space: we use the
notation tL, t%, f1 ., and f2, for the restrictions and pullbacks defined on the
complementary parts of the boundaries N and dM. To obtain boundary
values for fC, and fK,, let us first pull back the original boundary values
in (5.4) with f,y and then use the geometric decompositions and the above
commutation rules (notice also that f7 = 0 holds):

fé}Nt}VIC = tzlfor + t]l\,f(T A ZTC) = tzlv(fcf> = falNc
ot K =0 fK, + 15 f(r Nir K) = £,(fK,) = f2b.

To obtain boundary values for fi,C and fi; K, let us first contract the origi-
nal boundary values with respect to 1" and then pull back the equations with

fBN:

falNiTt}wC = fathzlwiTC = tlef(iTC) = falN(iTC)
ngiTtJQwK - f@th?wiTK - t?\ff(ZTK) - ng(in)'

In summary, the boundary values for the reduced BVPs are

2fK, = fib
thfC. = flc
2 f(ir K) fan(irh)
t}vf(iTC> = falN(iTc)'
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The boundary ON of the orbit space is (n — 2)-dimensional (M is n-
dimensional); therefore, all differential forms of degree (n—1) or n are always
zero at the boundary. Thus non-homogeneous boundary conditions on OM
may induce homogeneous conditions on d/N. This may sound contradictory,
but it is not: the non-homogeneous information of the fields is given by the
contracted forms, e.g., irb. These homogeneous equations are trivial in the
same sense as some of the above differential equations above. Furthermore,
the trivial boundary conditions correspond to fields, which also have trivial
differential equations. The way to solve these fields is by substitution for the
constitutive equations.

Effective but not free action

When action is effective but not free, there (may) exist singular orbits that
contain only one point. For example, in the case of rotational symmetry,
where the axis of rotation is part of the domain, the points at the rotational
axis are singular orbits whereas the other orbits are circles (see Figure 5.6).
To deal with singular orbits, we state the following additional axiom about
them:

M

Figure 5.6: Singular orbits. M is a three-dimensional domain that has a
rotational symmetry. The thick circle represents a conductor, and the broken
line shows the axis of rotation. The points of the axis form singular orbits,
which are part of the boundary of the two-dimensional orbit space N. k is a
cross-section that embeds N to M.

Axiom 5.3. Singular orbits always reside at the boundary of the orbit space.

Notice that singular points are not necessarily boundary points of M as
the rotational symmetry shows. The axiom restricts the effects of singular
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orbits to boundary values and is also justified by practical considerations: we
are not aware of any practical example where singular orbits are not at the
boundary of the orbit space, but we cannot prove that this is always the case
for group actions that satisfy Axiom 5.2. However, there is a proposition
that provides practical sufficient conditions for singular orbits to reside at
the boundary of the orbit space:

Proposition 5.9. Let G be a compact group acting effectively on a con-
nected n-dimensional manifold-with-boundary M. If there is an (n — 2)-
dimensional orbit and none of the dimension (n — 1), then G is a Lie group,
and the orbit space N of M is a 2-manifold-with-boundary. Furthermore,
every point of N corresponding to an orbit of dimension less than (n—2) lies
on the boundary curve of N. [10]

As a corollary, we obtain a result that is specific to our situation when
the Lie group is one-dimensional:

Corollary 5.2. Let G be a compact one-dimensional Lie group acting ef-
fectively on a connected 3-manifold-with-boundary M. If there is a one-
dimensional orbit, then the orbit space N is a 2-manifold-with-boundary.
Furthermore, every singular orbit lies on the boundary of N.

Open Question 5. Are there group actions that satisfy axioms 5.1 and
5.2 and produce orbit spaces that are manifolds-with-boundary, but where a
singular orbit is not at the boundary of the orbit space?

Because of Axiom 5.3, we may assume that the boundary 0N is a union
ON = ON,; UJNg, where 0Ny is the set of all singular orbits whose points
are not included in OM, and ON,, is the part of 0NN that can be embedded
in M. The boundary values for ON,, are given exactly as in the case of free
action; i.e., we need to consider them only at 0.

At singular points, we had set w, = w and i;w = 0 because the vector
field T is always the zero vector at singular points. Thus the contracted
components iC' and i, K are fixed to zero by the symmetry whereas the
horizontal components C, and K, are not fixed.

To see why symmetry should not fix the fields completely at singular
orbits, let us look at an example: the BVP domain is the one shown in
Figure 5.6, which has a static current in a circular conductor. We now have
a magnetostatic problem. Clearly, the fields H and B are not zero at the
points of the rotational axis but nonzero and aligned along the direction of
the axis.

Let us now formalize the above result. Let ¢y, denote the pullbacks of
Kong = K O lgng, Where iyy, 1 ONg — N is the inclusion map of ONg to N.
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Then the boundary values at 0Ny for the contracted components are trivial:

tng f(irC)
tagflirK) = 0.

This is enough to ensure a unique solution, because the uniqueness of the
horizontal components is ensured by the constitutive equations.

Finally, observe that singular sources that are in singular points, are not
included in the above theory, because in that case the equations ty iC =0
and ty i K = 0 may not hold. For example, if there is a charge density p
along the rotational axis of Figure 5.6, but no charges elsewhere, then ¢y i, D
cannot be zero.

Open Question 6. How to include singular sources in the theory of dimen-
sional reduction using differential forms?

5.6.4 Constitutive equations for reduced BVPs

There are four fields, the geometric components f(i,K), fK,, fC,, and
f(izC), and four differential equations for them. This suggests that there
should be two constitutive equations that link geometric components as is
the case in Maxwell’s equations. However, the constitutive equations can
be more complicated than standard ones: even in the case of G-invariance,
there may be couplings between three geometric components by a single
constitutive equation. This follows from the arbitrary choice of G-reduced
domain.
The original constitutive equation is

K = vy C,

where v,, : Q¥(M) — Q" *(M) is a Hodge-like operator. As pointed out
earlier, there is no canonical metric for the orbit space, nor is the invariance
dependent on the metric of M. This is why we do not consider metric aspects
with constitutive equations and treat v,, only as a linear operator.

The constitutive equation can be written in terms of geometric decompo-
sitions:

K. +17Ni: K = vy(C)) 4+ vy(1t ANirC). (5.8)

From this, we want to induce constitutive equations for fK, and f(i;K) in
the orbit space N. That is, we want an equation in which fK. is equal to
some expression that depends only on fC, and f(i-C) but not on f(i;K),
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and then similarly for f(izK). The equation for fK, follows easily if we
notice that fr = 0. Thus if we pull back the above expression to the orbit
space, we have the equation for fK :

K, = fou(C.)+ fou(r NipC). (5.9)

The equation for f(i;K) follows if we notice that i,/ = 0. Thus if we first
contract (5.8) with respect to 7" and then pullback the contracted expression
to the orbit space, we have the equation for f(i,K):

flirK) = firvy(CL) + fizvy (T AirC). (5.10)

Equations (5.9) and (5.10) are still in terms of the original n-space operator
Uy, and we want to rewrite them in terms of (n — 1)-space operators that
directly link fK. to fC, and f(irC) in the following way:

FE. = 0I(fC) + vj(f(ixC). (5.11)
Similarly for f(i,K)
flirK) = vl (fC.) +vp(f(ixC)). (5.12)

We must determine the four linear operators

vl s QF(N) = QR (V) (5.13)
vp o QFHN) = QPN

vl QF(N) — Q" F ()

vy = QYHN) — QNN

in terms of v,,. Notice that because N is (n — 1)-dimensional, only v7. and
v are Hodge-like operators in the sense that they map between spaces of
equal dimensions. Furthermore, because at each point, v,, maps k-forms
on an n-dimensional space M to (n — k)-forms on M, it is a mapping from
(Z)—dimensional space to (n’_‘k)—dimensional space. Thus it requires (Z) . (Z)
parameters to describe v,, at each point. On the other hand, the number of
parameters required to pointwise describe the reduced operators v7, vy, v7,
and vy are (") - (5), (21 - Goe)s (%) - G5y and o) - ()
respectively. With calculations, we can show that these add up to (Z) . (Z)
parameters. This suggests that v,, can be “decomposed” to reduced operators
to form “blocks” of v,,.
Let us first define v7 : QF(N) — Q"%(N) by the following equation:

vI(fC) = fuu(C;) (5.14)
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In the above equation, f on the left-hand side is the pullback of (n — k)-forms
from M to N whereas f on the right is the pullback of k-forms from M to N.
In the following, the pullback of (n — k)-forms is denoted by f,,_x; similarly,
the pullback of k-forms is denoted by fi. Now equation (5.14) can be written
as

(fnfk o UM>CT = (U: o fk)CT, (5.15)

where we want to emphasize that both sides of the equation have a compo-
sition of linear operators that operate on C.. Because we want the above
equation to hold for any field C'., we have

fr—koUn = U:Ofk- (5.16)

The rank of the pullback f, at each point equals to the dimension of N
and thus it has a right-inverse denoted by ry (right-inverse means that the
equation fi o1y = idy holds). Then we can express v7 in terms of v,, and
the pullbacks:

Ul = fp_pOUy 0T} (5.17)

T

The next case is v : Q¥ 1(N) — Q" *(N). By definition, it satisfies the
following equation:

U;(f<7/TC)) = fUM(T A iTC)- (5.18)

Our goal is again to write this to emphasize the linear operators operating
on iC. Using the extension operator I, equation (5.18) can be written as

(fo—kovy o l)iy,C = (vio fr_1)isC. (5.19)
Because we want equation (5.19) to hold for any field i,C', we have
fo—kovyol, = wvio fr. (5.20)

The pullback fr_; has a well-defined right-inverse denoted by r,_;. We can
now express vy, in terms of vy, I, and the pullbacks:

Up = Jfakovyolrorgy. (5.21)

The other two operators v7 : QF(N) — Q" #~1(N) and vZ : Q¥ }(N) —
Qn=k=1(N) are derived in a similar fashion:

fnfkfl Oy O Uy O T (5.22)

fn—k—l Olr 0Uy Ol 0Tp_y.

< c
IR
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Remark 5.6.1. The reduced constitutive equations could have been derived
by using the projections as in section 4.3.1. The projections P, and P,
decompose v,, into four reduced operators in Q(A). Then applications of
the pullbacks f,, _r, fn_r_1, Tk_1, and r; to these reduced operators yield the
operators v7, v, vl and v].

Let us next look at these equations in terms of matrices. Reduced con-
stitutive equations can be represented as a single equation in formal matrix
notation as follows:

V(%K)}_[vf v ] [ fC. ]

FE. 1T o || e |

On the other hand, assume that C' and K are one- and two-forms, respec-
tively, on a 3-manifold M. Let {X,Y, Z} be a geometric basis field such that
{X,Y} is the basis field of a chosen G-reduced domain A, and Z is in the
direction of orbits. Then the dual basis {dz, dy, dz} is the geometric basis for
one-forms, and C' = C,dz + Cydy + C.dz holds for some zero-forms C,, Cy,
and C,. Let {dy Adz,dz N dx,dx A dy} be the geometric basis for two-forms,
in which case K = K,dy A dz + K,dz A dx + K.dx A dy holds. Applying the
pullback f to the geometric bases, we get the corresponding bases for the
orbit space N (in these bases the components are the same in M and N).
The pair (Z,dz) defines now the projections, and the geometric components
in terms of the geometric bases are

4NN

C, = Cudz+ Cydy
izc — CZ
K, = K,dxANdy

T

1, K = Kydr — Kydy.
In the geometric bases, the operator v,, is given by the following matrix:

Uge Uzy Uzz
Uy = Uyz Uyy Uyz
VUzx Uzy Uzz

It is now easy to deduce the matrices of linear operators v, vy, v?

in the geometric bases:

z
, and v7

T

0T = [V vy |
~ [ ]

v = |:Umx Uzy :|

.
Uyz  Uyy

v

N S
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:{”}
v
Yz
z

Thus the matrices of linear operators v’, v}, v’

7, v7, and vZ are blocks of the
matrix v,,.

5.6.5 Summary

We have studied the following type of generic BVP that is posed on an n-
dimensional manifold-with-boundary M:

dyC = Q
dyK = 0
t,C = ¢
2K = b

K = v,C.

where @) is a (k + 1)-form describing the sources, C' is a k-form, K is an
(n — k)-form, and v is a Hodge-like operator.

The BVP is (G, h)-invariant under the effective action of a connected one-
dimensional Lie group G. The orbit space is a connected (n — 1)-dimensional
manifold-with-boundary N. The invariance induces a decomposition of the
fields when we choose some G-reduced domain A. Then there is a pair (7, 7),
where T is a nonzero smooth G-invariant vector field, which is everywhere
tangent to the orbits except at the singular points where T is zero, and 7 is
a smooth G-invariant one-form such that 7(v) = 0 holds for all v € T(A),
and 7(T) = 1 holds everywhere except at the singular points where 7 is
not defined. The pair (7, 7) defines two complementary projections, which
decompose the fields C, K, and @) as follows:

K = K, +7Ni K
C = C.+71ANi,C
Q = Q. +7NiQ.

These are the geometric decompositions of the fields induced by the symmetry
and the choice of the pair (7', 7). The components C. and i,C' are called the
geometric components of C', and they are the fields to be solved from the
reduced BVPs on the orbit space. To get the geometric components in the
orbit space, we use the pullback f of the cross-section that defines the G-
reduced domain A. The pullback f,y, which maps the boundary values of 0M
to ON, is used to define the boundary values for the geometric components
in the orbit space.
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The (G, h)-invariance of the BVP implies the following lower-dimensional
BVP on the orbit space:

( (ir K)) fR(0)K,)
dx(fC,) = fQ.

( (izC)) = f(izQ) + f(K'(0)C.)
dy(fK;) = 0
NfKT = f82Nb

tzlvfcr = falNC
t?vf(iT[Q = ng(in)
tyf(irC) = fiu(irc)
fK, = v (fC,)+vn(f(izC))
flirK) = vl (fC.) +vr(f(ixC)).
If there are singular orbits at the boundary of the orbit space, then ON =

ON,; UONg holds, and there are two additional boundary conditions imposed
at ONg:

thf(iTC) =
tng fir ) =

The linear operators

vl QF(N) = QVR(N)

v o QFHN) — QRN
o o QF(N) — QRN
vp + QFHN) - QYN

in the constitutive equations are expressed as follows:

3

v, Jn-koUyOTY

Up = fagovy ol oy

Uf = fn—k—l o iT O Uy OT

U7T~ = fo—k—10ir0vUy 0L 0Ty,

where 7 is the right-inverse of the pullback f; of the k-forms.
If the BVP is G-invariant and if operators v and v are zero, the lower-

128



dimensional BVP breaks up into two separate lower-dimensional BVPs:

dy(f(irK)) = 0
dN(fCT) = fQ.
tfC. = fie
t?vf(ZTK) - ng(in)
flinK) = vI(fC,)

dN(f(iTC>) - f(ZTQ>
dy(fK.) = 0
tzlvf(ZTC) = falN(iTc)
t?var = ngb
JK, = U;(f(ZTC»

Furthermore, the other BVP is often quite simple or even trivial (see Example
5.6.1). In fact, because the other problem is often so trivial, its result is just
assumed: with suitable coordinate system, the trivial problem effectively says
that some component of the solution field is zero.

Open Question 7. Because choice of a G-reduced domain is arbitrary, re-
duced constitutive equations, in general, connect three of geometric compo-
nents. Now, with a suitable choice of a G-reduced domain, is it always pos-
sible to separate the lower-dimensional BVP of a G-invariant BVP into two
separate lower-dimensional BVPs? If the separation with a suitable choice is
possible, then how to determine suitable choices?

5.7 Static and time-harmonic electromagnet-
ics

As basic examples of dimensional reduction, we derive here the static and
time-harmonic equations, which are consequences of static and time-harmonic
invariances. In other words, the static equations are the reduced differential
equations of full 4d Maxwell’s equations when the fields are invariant with
respect to time. Similarly, the time-harmonic equations are reduced differen-
tial equations in case of time-harmonic invariance. Furthermore, the reduced
constitutive equations are derived.
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5.7.1 Orbit space and geometric decompositions

Let M be a four-dimensional spacetime manifold, and let R act on M such
that all the orbits are one-dimensional and in the direction of time. Par-
ticularly, let us choose a holonomic observer (7', 7) such that 7" and 7 are
both R-invariant, 7 defines a foliation of M such that each leaf of the foli-
ation contains all the the “spatial points” at some given “time instant.” Let
an R-reduced domain A be one of the leaves of the foliations. With these
assumptions, the orbit space N is a 3-manifold.

Next we apply this observer to full 4d Maxwell’s equations given in section
4.2.1. Thus the fields are F, G, and J, or the electromagnetic field two-form,
the excitation two-form, and the source three-form, respectively, and they are
governed by Maxwell’s equations:

dyF = 0 (5.23)
dMg - j

Furthermore, F and G are connected by the constitutive equation:
G = xF, (5.24)

where x is a linear isomorphism from Q*(M) to Q(M) satisfying the axioms
of symmetry and closure, see section 4.3.1.

The geometric decomposition of the fields are exactly the same as those
insection 4.2.2: F=F, +7Ni.F,G=G, +7Ni,G,and T =T, +7ANiJ.
Then we rename the geometric components as follows:

- -F (5.25)
i F

g.

irG

= 7,

—irJ.

Lo T UMW
1

Consequently, the geometric decompositions are ¥ = —B + 717 A FE, G =
D+7ANH,and T =p—1ANJ.
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5.7.2 Static and time-harmonic differential equations

As shown in section 4.2.2, the observer (7', 7) decomposes the equations in
(5.23) as follows:

d.F. = 0 (5.26)
‘CTfT - d.,- ZTF - O
d.g. = J.

»CTQT_dTiTg = iTj

Notice that these equations contain spatial and time derivatives, but no in-
variance assumptions have yet been made about the fields. Static invariance
of the fields F, G, and J implies that their Lie derivatives with respect to
T are zero: L, F = L;G = 0 and L;J = 0. Then applying the geometric
decompositions to these equations yields (see section 5.6.2)

‘CTfT = ‘CTgT = ‘CTiTj = 0
LrirF = LG
LT, = 0.

Next we substitute these equations for those in (5.26) and obtain the reduced
equations for M:

d.F. = 0
dizF = 0
d.g. = J,
d,i;G = —izJ.

Using renaming gives us the usual static equations, but notice that the do-
main yet remains a 4-dimensional M:

d.B = 0
d.E = 0
d.D = p
d.H J.

To transfer these equations to the 3-dimensional orbit space N, we need to
pull them back using the cross-section that defines the R-reduced domain A.
Let us denote this pullback by f. Then because the pullback and spatial
exterior derivative commute, we have the following differential equations in
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dN(fB) =0
dy(fE) = 0
dy(fD) = fp
dy(fH) = fJ.

Notice that these equations are particular instances of the generic equations
shown in (5.7).

The time-harmonic case is similar to the static case, but now we have
(R, h)-invariance for fields F, G, and J, where h : R — C such that h(t) =
e/** holds for all ¢ € R, and where w is the frequency. Now //(0) = jw holds.
Substituting this and the renamings for the equations in (5.26), we get the
familiar time-harmonic Maxwell’s equations in N:

dy(fE) = —jw(fB)
dv(fD) = fp

dy(fH) = [J+jw(fD)
dy(fB) = 0.

5.7.3 Constitutive equations

In section 5.6.4 it was shown that the reduced constitutive equations in the
orbit space are

fG. = X(fF) + x5 (f(irF))
f(ZTg) = Xf(ffr)"i"X?(f(le))
The linear operators
X o Q(N) — QX(N)
Xy QYN) = Q%(N)
XL QX(N) ()
Xy QUN) — QY(N)

in the constitutive equations are expressed as follows:

X, = fn—k O XmOTk

X; = fn—kOXM O[T OTkp—1

XT = fa—k—10%r O XmOTE

X; = fn—k—l Ol 0 Xa 0 L7 0Tp_y,
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where 7, is the right-inverse of the pullback f; of the k-forms. In terms of
renamings, the reduced constitutive equations are

fD = —XI(fB)+x.(fE)
fH = —x:(fB)+x:(fE).

We recognized in section 4.3.1 that x7. equals to € (permittivity) and —x”
equals to v (inverse permeability). If a suitable holonomic observer exists
such that x7 and xI are zero, the reduced constitutive equations are the
following familiar equations:

fD = «(fE)
fH = v(fB).

5.8 Lower-dimensional BVPs for
multi-dimensional symmetry groups

In this section, we derive lower-dimensional BVPs for a symmetry group G,
which is the product Gy X ... X Gy of connected one-dimensional Lie groups.
Remember that all two-dimensional connected Lie groups are products of one-
dimensional connected Lie groups (see section 3.6). For simplicity, we study
only the cases where G is the product of two groups, or where G = G x Go
holds. These cases include, e.g., static one-dimensional problems such as
those with a cylindrical symmetry. In addition, all two-dimensional elec-
tromagnetic BVPs are results of dimensional reduction by two-dimensional
symmetry groups.

Because G is a product of one-dimensional Lie groups, we can use the
results in section 5.6: both groups GG; and G5 have their own group actions
on M, which makes it possible to construct observer structures for both of
the actions. We can then produce geometric decompositions of the fields
such that we first apply one observers and then the other to the geometric
components of the first observer.

Similarly, we derive the reduced differential equations: the action of Gy
on M produces its own orbit space M /G, observer structures, and geometric
decompositions, and thus its own reduced BVPs on M /G;. The group action
of Gy on M induces a group action of G5 on M/G;. This group action on
M /G4 produces the orbit space (M/G4)/Gs, which is canonically diffeomor-
phic to the orbit space M/G. Thus the action of Gy on M /G canonically
produces reduced BVPs on M/G. If the group G has more factors, we con-
tinue applying the group action of each factor to the recently reduced BVPs
until all factors have been applied.
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Boundary values and constitutive equations for the geometric components
on the orbit space M/G can be derived directly in a fashion similar to the
done with one-dimensional symmetry groups.

We study again the same generic BVP shown in (5.4); i.e., the domain
M is an n-dimensional manifold-with-boundary, and the following equations
hold in M:

d,C Q (5.27)
dyK = 0
t,C = ¢
2K = b
K = v,C,

where the source field is a (k + 1)-form @, and the other two fields are a
k-form C' and an (n — k)-form K. The constitutive equation between K and
C'is given by a Hodge-like operator v,,. Our task is to derive a reduced BVP
for the (n — 2)-dimensional orbit space N.

5.8.1 Group action and geometric decompositions

We assume that G = G; X G5 holds, and that G acts as described in Axiom
5.2. Furthermore, we assume that the orbit space N = M /G exists. Thus we
have a group action F': G; x Gy x M — M, which in this case means that
F(ajoby, az0be, p) = F(ay, ag, F'(by, by, p)) holds for all ay, by € G and ag, by €
G5. Both groups G; and (G5 also have their own separate group actions
Fi . Gz XM — Ma defined by Fl(gvp) = F<ga627p) and FQ(gvp) = F(elvgap)7
where e; and ey are the identity elements of Gy and G, respectively. Both
actions F] and F, must satisfy Axiom 5.2.

The group action F; produces the orbit space Ny = M/G;. Then the
group action F» on M induces a group action F} : Gy x Ny — N; of Gy on
N; such that F)} (g, Gip) = G1F(g,p) holds, where Gyp and G Fy(g,p) are
the orbits of p and Fy(g, p), respectively, under the action F;. We denote by
G5(G1p) the orbit of Gip € Ny under the action Fi. Then the orbits of F'
and F) are canonically identified (bijectively) by the mapping G5(G1p) —
Gp. With this mapping, the reduced BVP on N} = (M/G;)/Gs can be
canonically defined in the orbit space N.

Next, we define the observers related to actions Fy, Iy, and F}. First, we
choose a G-reduced domain A, which is an (n — 2)-dimensional submanifold-
with-boundary. Then actions F3; and F) induce G- and Gs-reduced domains
Ay and Ay, respectively, such that A; = F5(Ga, A) and Ay = F1 (G4, A) hold
(see Figure 5.7). Notice that A; and Ay are (n — 1)-dimensional manifolds.
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Figure 5.7: Action of a two-dimensional Lie group. The thick line denotes a
G-reduced domain A, the vertical lines are orbits of G5, and the horizontal
lines are orbits of Gy. A} = Fy(Go, A) is a Gy-reduced domain, and Ay =
Fi(G1, A) is a Go-reduced domain.

Let T and Z be smooth G-invariant vector fields on M everywhere along
the orbits of action F} and F3, respectively. Notice that T, € T'(Ay) and
Z, € T(A;) hold for p € Ay and ¢ € Ay; ie., T and Z are tangent to Ay and
Ay, respectively. Then we define smooth G-invariant one-forms 7 and ¢ on
M such that 7(T) =((Z) =1, 7(Z) = ¢(T) = 0, and 7(V) = (V') = 0 hold
forall V e T'A. Thus (7, 7) is an observer on M related to the action Fy, and
(Z,() is an observer on M related to the action Fy. Finally, corresponding
to the induced action F), we define an observer on the orbit space Ny: let
m : M — Nj be the canonical projection of F; and k; a cross-section such
that k1(N1) = Ay, Then (Z1, (1) = (71,2, k5¢) is an observer for the induced
action F.

Now with these observer structures we define the geometric decompo-
sitions of the fields. First, we apply (7,7) to C' to produce the following
decomposition:

C = C . +7Ni.C
Then we apply the pair (Z, {) to the geometric components yielded by (7', 7):

C = C.+17Ni.C
= (Ce+¢NiCo+7A((120) + ¢ A (i4i:C))
= (C)e+CNiC.+7NA(i:C) e+ T ANCA (i4i:C).

The geometric components of C' are (C,)., i,C., (i;C),, and i,i,C. These
and the geometric components of K are the fields to be solved in the orbit
space N. To simplify the notation, we use the following notation for the
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geometric components:

CTc = (Cr)<
c., = 1,C.
CT< = (iTC)c
Cry, = 1,1,C

Consequently, the geometric decompositions of the fields are

C - CTC+C/\C‘FZ+T/\CTC+T/\C/\CTZ
K = Kt (AK,+7ANKp+7ACAKy,
Q = QTC+C/\Q72+TAQT4+T/\CAQTZ-

Usually, some geometric components become trivial. For example, in a
three-dimensional manifold M, the geometric decompositions for zero-, one-,
two-, and three-forms, respectively, are

= ¢

E.+FE ,(+E T

= (AD, s +7TANDp+Dypy7ANC
TACA prz.

- O =<
1

5.8.2 Reduced differential equations

The reduced differential equations of the reduced BVPs in the orbit space
N are derived in two steps. First, (7, 7) induces a reduced BVP on Nj, and
then this reduced BVP is further reduced by (Z, (). We now have a reduced
BVP on N}, which can be canonically identified with N. Notice that this
recursive derivation enables exploitation of the results in section 5.6.2.

First reduction

(G, h)-invariance of the fields means that (g1,¢2)'w = g'w = h(glw =
h((g1, g2))w holds for all g; € Gy, go € Go. If we define hi(g) = h(g,e2) and
ha(g) = h(ey, g), then h((g1,92)) = hi(g1)ha(g2) holds. Moreover, (G, h)-
invariance of the fields implies that they are also (G, h;)- and (Ga, ho)-
invariant. (G4, hy)-invariance of fields is equivalent to the following Lie
derivative equations (see section 5.6.2):

£TCT = hi(O)CT
LK, = K(0)K..
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From section 5.6.2, we know that (7',7) and the invariance of the fields
(the above Lie derivative equations) yield the following equations in the orbit
space Ni:

dy, (f1(ir K)) = hi(0) fL K- (5.28)
dN1<f10T) = [Q.

le(fl (iTC)) = fl(ZTQ) + h/1 (O)flcT
dN1<f1Kr) = 0,

where f; is the pullback of the cross-section x; defining the Gj-reduced do-
main Aj.

Second reduction

The starting point of the second reduction is the reduced BVP in (5.28). To
simplify the notation, we use the following renamings:

= filirK) (5.29)
= hHK,

= fi(ixC)

HiCs

- fl(ZTQ)

= [Q..

b HME =
Il

Then the BVP in (5.28) reads as

= K (0)¥ (5.30)
)

A+ h(0)T

= 0.

S
e ™M=
I

The Fy-induced observer (Z,(;) on the orbit space N; decomposes the
fields A, ¥, ¥, I', A, and ©. (7, (1) also decomposes the equations in (5.30)
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as follows:

hi(0),

R1(0)is, U+ L, A,

O,

i,0+4+ L, T

A, +h (0T,

is, A+ h(0)i,, I+ L, 35
0

L,V .

Now the (G2, hy)-invariance of the horizontal components A, , W, , X,
and I'.| is equivalent to the following Lie derivative equations:

EzlAcl = h/Q(O)AC1
521241 = hlz(o)zcl
L9 = hy(0)¥,
L,T., = hy0)T,.

Let f, be the pullback of a cross-section from the orbit space NJ to some
Go-reduced domain R of N; corresponding to (; (by the definition, (;(v) =0
holds for all v € T'(R)). To obtain the final reduced differential equations on
NJ, we substitute the Lie derivative equations and use the pullback fy:

dyy fale,
dN21 faliz, A)
dN% f2FC1
dus fo(i,T)
dyy f22¢,
dys f2(i,%)
dyi fo¥e,
s (i )

h(0) oW,

1(0) faliz, ©) + h5(0) f2AA,,

f29¢,

fa(iz,©) + hy(0) oI,

fo, + R (0) oI,

faliz, A) + 171(0) fo(i5,T) + 25(0) foX,
0

hy(0) f2 0, -

Next, we express the above equations in terms of the original fields (cancel
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the renamings in (5.29)):

Ay fo(frirK)e, = hi(0) fa(fL ), (5.31)
dyy faiz, (frir ) = B1(0) faiz, (J1 1) 4 hy(0) fo( frir KO,

dyy fo([1C)e, = fo([1Q-)q,

dyy foiz, (1C) = foiz (1Q.) 4+ 15(0) fo( 1C1)e,

szlfQ(fliTC)Cl = [fo(frirQ),, + 71(0) f2(fu Ce
dN%fQiZ1(f1iTC) = fZZzl(fIZTQ) +h11( )fQZzl(fl r)

+h5(0) fo(f1irC),
dyy fo(i ), = 0
dyy faiz, (LK) = B5(0) fa( LI ), -

Finally, to express the above equations in terms of the original fields in
the orbit space N, we use the canonical identification Gp — Go(G1p) of
NJ and N. Let f : Q(M) — Q(N) be the pullback from M to the orbit
space N defined by the G-reduced domain A. On the other hand, because
fi QM) — Q(Ny) is the pullback from M to the orbit space N; defined
by the Gi-reduced domain A;, and because fo : Q(N;) — Q(N;) is the
pullback from N; to the orbit space Ni defined by A; and As, it follows
that foo fi : Q(M) — Q(N;) is the pullback from M to the orbit space N;
defined by A. Then the canonical identification of Ni and N can be used to
canonically identify fw and (fyo fj)w. Let us use an example to identify the
fields; the field fyi,, (f1K,) is identified with the field f(i,K,) = fK,,. To
see this, let us first apply the pullback f to the definition of i, K :

f(Z.ZKT) - f(lz(K —TA ZTK)> - f(lzK +7A iZiTK)) - f(ZZK)

Then we perform similar calculations with foi, (fi1/,). For this, notice that
71 = (m)«Z and f; = k7 hold, plus we also need Lemma 3.2:

foig (LK) = foiy (LK — fi(T NinK)) = foiy, fiIK
= fﬂ'(m)*zHTK = f2’ffi(m>*<m*zK = f2f1iz‘AlK
= fofiiz K = (fao f1)(i,K).
Thus using the canonical identification of f and (f; o f1), we see that fK_,

and fai,, (f1K,) have now been identified. With similar calculations we can
show the other identifications:

f2(f1iTK) 1 f(iTK)c - fKTc
f2izl(f1iTK) A— f(iZiTK> = fKTZ
fo(f1KK) f(KL)e = [K-..

7/)C1

—

—
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Applying the identifications to the equations in (5.31), we deduce the
reduced differential equations in V:

dy(fEre) = hy(0)fK (5.32)
dN(fKTZ) = hll (O)fKrZ + h‘IQ(O)fKTC

dn(fCx) fQx

dy(fC.z) = fQ.z+hy(0)fC,.

dN(fCTc) = fQTC + hl1<0)fc7'(

dy(fCrz) = fQrz +h1(0)fC. 2+ hy(0)fCre

dN(fKrc) =0

dN(fKTZ> - hIQ(O)fKT('

As the above shows, we have in general lots of complicated equations. How-
ever, often some of them are trivial in the sense that all possible fields satisfy
them (the exterior derivative of (n — 2)-form in a (n — 2)-manifold is zero).
Furthermore, in low dimensions some geometric components are not even
defined, whereupon the corresponding differential equations are not defined
either. If M is four-dimensional and C' and K are two-forms, then they have
all the geometric components, and () has three of the components because
Q.. is zero. In that case, all the above equations are defined, and assum-
ing (G, (h1, he))-invariance, only two of them are homogeneous and two are
trivial. Thus the full generality of the above equations cannot even be used
in electromagnetics. The following example shows how in common cases the
equations are considerably simplified:

Example 5.8.1. Let a magnetostatic BVP on a three-manifold correspond to
a situation where we have an infinitely long straight circular conductor with
a constant current. Then the problem has a (R x S')-invariance (cylindrical
symmetry). Assume that Z defines the translations, in which case the current
J is in the direction of Z. Then T defines the rotations. Now the fields H,
B, and J have only some of the geometric components:

H = H.+H. ,(+H (T
B = (ANB,;,+7ANBp+ B ;TN\ (C
J = 7N Jp.

The only equations of (5.32) defined and not trivial (i.e., not satisfied by
all fields) are the following three simple differential equations (not partial
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differential equations because the orbit space is one-dimensional):

dy(fBrz) = 0
dN(erz) - fJTg
dy(fHy) = 0.

Let us next introduce the cylindrical coordinates (r, p, z) such that the
conductor is in the z-direction. If 7, ¢, and z are the coordinate basis vectors,
and if dr, dy and dz constitute the corresponding dual basis, then (@, dy)
and (z,dz) are observers compatible with the coordinate system. Now the
geometric decompositions and the representations of the fields in the standard
coordinate bases are:

H = Hy, +H,,.dz+ H,_,.do
= H.dr+ H,dp+ H.dz
B = dzAB,,.+dpAB,,. + B.,dpN\dz
= B.dpANdz+ B,dz Ndr + B.dr Ndy
J = dpNJ.
J.dr A dp.

The differential equations in the orbit space are now:

dB
e — O
dr
dH,
P — J
dr :
dH
= = 0.
dr

5.8.3 Reduced boundary values

For the geometric components, boundary values are derived as in the case of
one-dimensional symmetry groups. In fact, the same equations

fon oty = tyof
ir Oty = Ty Olp

10ty = tyOiy

hold for symmetry groups of any dimension greater than or equal to one.
Thus let us apply them to the original boundary values. First, we apply the
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pullback f,y to obtain an equation for C..:
JontuC' = fonc
th(CTC+C/\CTZ+T/\CT(+T/\</\CTZ) — f@NC
InfCre = fonc

We get the equation for C,, when we first apply the contraction i, and then
the pullback f,y:

f@z\zithC faN(iZC>

faNtAIiZ(er + C NC.,+TA CT< + 7 A g A CTZ) = faN(izc)
th(CTZ — TN CTZ) = faN(iZC>

)

thC‘rZ = f@N(/éZC-

If we first apply i, and then f,y to the original boundary value equation, we
obtain the equation for Cr.:

faN/L.Ttl\lC f6
Jontarir(Coe + CNC, +TANCre +TACANCry) = fonli
tnf(Cre +CANCrz) = fo

thCTc = fa

Finally, to obtain the equation for C;,, we apply fynizir to the original
equation:

faNiziTtnlc = f@N(iZiTC)

Jontariziz(Coe + CANC; +TANCre + T ACNANCry) = fon(izirze)
tnfizs(Cre + CNACry) = fon(izizc)

tnfCrz = faN(iziTC)-

In similar steps, we can derive the equations for the geometric components
of K. In summary, the reduced boundary values are

tjlvfcrg‘ = f;NC
thfCrz = fonlizc)
tzlfoTg = fBN(ZT )
tjlfoTZ = faN<'LZZTC)
t?varg = faN
t12varZ - fBN(ZZb)
t?VfKTC = faN <ZT

3 fKr, = f2.(izigh).
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If there are singular orbits such that, e.g., Z is zero on those orbits, then
the right-hand terms in above equations containing contractions with respect
to Z are zero. Furthermore, since in low dimensions the fields do not have all
the geometric components, some of the above equations are not even defined.

5.8.4 Reduced constitutive equations

Reduced constitutive equations are derived like in the case of one-dimensional
symmetry groups: first the original constitutive equation K = v,,C' is rep-
resented in terms of geometric components. Then we solve the equations
for each geometric component of K, after which these equations work as
definitions for new operators to be directly defined in the orbit space N.

In terms of geometric components, the constitutive equation K = v,,C' is

KTC+C/\KTZ+T/\KTC+T/\</\KTZ
= U1W<C7'C) + U]W(C /\ CTZ) + U]\/[(T /\ CT() + U]\/[<7— /\ C /\ CTZ)'

Because fr = f( = 0, then simply applying the pullback f to the above
equation yields an equation for K .:

JK., = fUM(CT<) + fUM(C A CTZ)
+fou (T A Cre) + fou (T ACACry).

The desired equation for K, is derived by first contracting K = v,,C' with
respect to Z and then pulling back the result:

fKrz = fiZUIVI(CT() + fiZUM(C A sz>
+fizun (T ACre) + fizuy (T ACACry).

Similarly, we can derive equations for K,. and K,:

fKTg = fiTUM<CTc) + fiT,UJ\/I(C A C‘rZ)
+firvy (T A Cro) + fizvy (T ACACry)

fKTZ = fiZiTUA{(CTC) + f,[;ZZ.T’UJ\/I(g A sz)
+fizirun (T A Cre) + figizvy (T ACA Cry).

These equations are in terms of the original operator v, but we want to
write them in terms of “reduced operators” that are defined in N and that
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operate directly on fields fC.., fC.,, fCr., and fCy:

fKTC =

fKTZ =

S Ko

Ky

Ve (fC) + v (fC.2)
+U;§(fCT<) + U;Cz(fCTZ)

(O + 0L (fC)

+v;f(fCT<) + v, (fCrz)

v (fC) +u(fC2)
‘H)qTé(fCT() + 75 (fCrz)

(fCTc) +v 7 (fC.2)
‘H);gZ(fCTc) + U7, (fCrz).

Thus we have to define the following 16 reduced operators:

¢
¢
¢
TZ
S
¢
S

TZ

v

v

v

QF(N) — Q" F(N)
QFH(N) — Q"F(N)
QFH(N) — QVF(N)
QF2(N) — Q" F(N)
QF(N) — Q" F1(N)

Ok I(N) _>Qn—k—1<N)
0OF— 1(N) _>Qn—k—1(N)
Ok 2(N) _)ank71<

Q’“(N) Q”"“‘l(N)



Using similar arguments as in section 5.6.4, we can derive the following ex-
pressions for the reduced operators (r denotes the right-inverse of f, and the
subindexes in f and r denote the degree of forms they operate on):

¢

v = fn—k OUp OTy
,U:é = fn—k O Uy © IC OTr_1
U’;CC = fn—k o UM o -[T o Tk—l
U;CZ - fnkaUMOL.OICOTk72
UZQZ = fuko100z0Uy 0Ty
U:§ = fas10iz0Uy0 IC OTr_y
U;? = fn—kﬂ oiyovy ol or,
U;i fn—k:—l oiy0vy 0l 0 ]C O Ty o
vl = fakaOdrouyory
Uzé = fnfk—1 Oy O Uy O IC oOTy_4
U;E - fn—k—1 otpovy ol or,
U”fé = fox10ip0ovy 0l 0 Ioor,,
quz Jak20liz00p 0V Oy
’UfZZ = fn7k72oiZOZ'TO’UMOICOT'k71
U;CZ = foxasOlzoizovy ol or,
U;F; = fn—k—QOZ’ZOZ'TO’UMOITOICOTI%T

In formal matrix notation, we can write the reduced constitutive equations

into the following single equation:

K. (UGS VS DA S VA fC..
fK., | _ | viZ v vl g fC.,
fRre || vl vl v vpg fCr
Ky, R VA VA S VA fCrz

On the other hand, let C' and K be two-forms in a four-dimensional manifold.
Let X and Y be vector fields tangent to the leaves of foliation {4,},e¢ and
Z and T tangent to the orbits of Fy and Fi, respectively. Then (X,Y, Z,T)
is a basis field for the tangent spaces of M. Its dual basis (dx,dy,(,7) is a
geometric basis for one-forms. Let (dzAdy, (Adz,(ANdy, 7 ANdx, 7 ANdy, T AC)
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be the corresponding geometric basis for two-forms. In the geometric basis,
C and K have the following expressions:

¢ = C,dxNdy+C.,(ANdx+C, ¢ Ndy+ C,,7 Adx
+C, T Ndy+ C.T ANC
K = K, deNdy+ K..(Ndx+ K.,( Ndy+ K,,7 ANdx

+K,, 7t Ndy+ K,.T AC.

The geometric components of C' and K in terms of the geometric basis are

C.. = C,dxANdy
C., = C.,de+C.,dy
Cre = Cudx+C,dy
CTZ = Ctz

K. = K,dxNdy
K., = K.,dx+ K., dy
Ky, = K,dz+ K, dy
K,, = K,..

In the geometric bases, the constitutive equation K = v,,C can be written
as follows:

K, [oz v oz or vy o] [ G
K., Uy VL UL UL U U7 C..
Ko, | _ | viy v vy vl v v C.y
K.. v ve s v v o || C
K, v vr v o oo oo || G,
RO B AR AR R VAR B O

We see now from the above expressions that the matrices of the reduced
operators are blocks of the matrix of the original operator v,,:

TC Ty A Ty zy TC zy zy TC Ty
UT( - |: Uzy ] U‘I‘Z - |: Uza: Uzy ] UT( - |: Ut:c Uty j| UTZ - |: Utz ]
zx zxT zx zx zx zZx

TZ Ua:y UTZ _ |: Uzz Uzy :| ,UTZ _ |: Ut:c Uty UTZ Utz
¢ zy TZ zy zy TC T zy zy TZ zy

Uacy Uzm Uzy Ut.-;: Uty Utz

tx tx tx tx tx tx

,UTC — Uzy UTC — Uzz Uzy ,UTC — Utz Uty UTC — Utz
¢ ,Ugtcy TZ ,Uty ,Uty T¢ ,Uty ,Uty TZ ,Uty
Y zT zy tx ty tz

TZ __ tz TZ __ tz tz TZ __ tz tz TZ tz
UT( - |: Uzy ] UTZ - |: Uzz ,Uzy :| UT( I:Uta; Uty ] UTZ |:’Utz :|



Again, as the above equations show, we have in general lots of com-
plicated equations. However, often a G-reduced domain and a coordinate
system (bases) can be selected such that the original matrix of v,, contains
many zeros, in which case most of the reduced operators are zero. Further-
more, in low dimensions some geometric components are not even defined, in
which case the corresponding constitutive equations are not defined either.
The following examples show how in common cases the reduced constitutive
equations are considerably simplified:

Example 5.8.2. Assume a static problem with one-dimensional translational
symmetry and let the materials be isotropic. Then we actually have four 2d-
problems resulting from a 4d-problem: The time-invariance (static problem)
yields separate electrostatic and magnetostatic problems. Then the transla-
tional symmetry reduces these further to two separate 2d-problems as can be
seen in section 5.6.4. Thus only four nonzero reduced operators can exists,
and their matrices are diagonal.

Ezample 5.8.3. Let us study Example 5.8.1 again. Now because M a is
three-dimensional manifold, the geometric components H,, and B, are not
defined. Thus operators ul¢, uy,, i, piy,, iy, try, and p7 are not defined
either. Furthermore, the remaining nine operators are described with a single

parameter each.

5.9 Dimensional reduction theorem of elec-
tromagnetic BVPs

In conclusion of this chapter and the theory of dimensional reduction of elec-
tromagnetic BVPs, we state a dimenstonal reduction theorem that provides
sufficient conditions for dimensional reduction.

Dimensional reduction theorem. Let a linear electromagnetic BVP, that
has a unique solution, be formulated on an n-dimensional manifold-with-
boundary M, and let G be a k-dimensional Lie group (k < n) that is a
product of connected one-dimensional Lie groups, and let h : G — [F be a
Lie group homomorphism. If G acts effectively and differentiably on M such
that

(1) the symmetry transformations of M are diffeomorphisms, and

(2) the sources, boundary values, and cohomology conditions of the fields
are (G, h)-invariant, and the constitutive equations are G-invariant, and
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(3) there exists a G-reduced domain, and all the G-reduced domains are
canonically diffeomorphic, and

(4) all the singular orbits reside at the boundary of the orbit space, and

(5) there exists a G-invariant observer structure for each product factor of

G,

then the BVP can be solved as an (n — k)-dimensional BVP on the orbit
space. Furthermore, the solution of the (n — k)-dimensional BVP on the
orbit space is unique.

This theorem is proved in the subsections of this chapter: It follows from
assumptions (1) and (2) that the electromagnetic fields governed by the BVP
are also (G, h)-invariant (see Theorem 5.2). From assumption (3) it follows
that the orbit space exists and has a uniquely defined differentiable manifold
structure (see Theorem 5.3). Then with a G-invariant observer structure,
which exists by assumption (5), and with assumption (4) we can define con-
structively the reduced BVP on the orbit space from the original BVP (see
sections 5.6 and 5.8). If the unique solution of the original BVP is pulled
back to the orbit space, it gives a solution to the reduced BVP. On the
other hand, every solution of the reduced BVP induces also a solution to the
original BVP by (G, h)-invariance. However, because the original BVP has
a unique solution, the induced solutions must be the same and hence the
same also in the reduced BVP. Consequently, the reduced BVP has a unique
solution.
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Chapter 6

Applications

The tools of differential geometry can simply and effectively describe the
theory of electromagnetism. Besides, they are not only fancy formalism de-
scribing a physical theory but also offer insight into improving the numerical
modeling of practical engineering problems. In particular, they offer so-
lutions to mesh generation problems, speed up parametric modeling, and
describe simply how to solve open-boundary problems and exploit symme-
tries. Furthermore, blow-up problems related to axisymmetric problems can
be avoided, and fashionable invisibility cloaking can be described in simple
terms.

All the solutions presented here to the above problems and tasks are
based on using previously defined differential geometric tools. Particularly,
excluding dimensional reduction, the solution to various problems is always
the same: formulate an equivalent BVP on a diffeomorphic manifold to over-
come the obstacles. In other words, the equivalence of BVPs under diffeo-
morphisms provides a unified approach to these problems. However, though
this approach certainly makes things possible, using it effectively requires
thinking beyond traditions and sometimes beyond strong intuition.

6.1 Mesh generation problems

Often a numerical solution to electromagnetic BVPs requires a mesh for the
domain. To generate a mesh, the domain is covered with a chart to enable
use of arithmetics. However, computers do not use real numbers but rather
finite-precision floating point numbers [36]. This is not always a problem, but
floating points have a feature that can cause trouble: the distance between
consecutive floating points increases as the absolute value of the numbers
increases. Particularly problematic is the use of standard parameterizations,
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which involve small details far apart from each other. For example, consider
the power line shown in Figure 6.1. Because of the situational symmetry,
only one half of the line between the supports is modeled. The length of the
lines is in the order of hundreds of meters, and everywhere in the domain
the smallest dimensions are in the order of centimeters. In such cases, mesh
generation can easily fail or may even be impossible with some particular
mesh generators because of the poor accuracy of the floating points. The
problem is a serious one because these failures prevent us obtaining any
solution for BVPs.

Figure 6.1: Standard parameterization of a power line.

The unified approach to formulating equivalent BVPs can be used to
overcome these problems: one solution is to try to use another chart in
which detailed parts are closer to each other; i.e., an equivalent BVP is
formulated with some nonstandard parameterization as explained in chapter
4. For example, it is much easier to generate a mesh using the chart shown
in Figure 6.2 than the one in Figure 6.1.

Using nonstandard parameterizations may have the disadvantage of a
poor mesh, yet it does provide some sort of solution. The mesh may be of poor
quality because mesh generation software programs assume only standard
parameterizations (for more details on mesh quality criteria and nonstandard
parameterizations, see [52] [54]).

If the problems cannot be solved reasonably using a single nonstandard
parameterization, it is possible to use the full potential of manifolds and
to cover the domain with multiple charts to help maintain sufficient floating
point accuracy all over the domain (example in Figure 6.3). In the figure, the
domain is presented with a standard parameterization and consists of three
regions. The figure also shows how the domain can be covered with three

150



e

Figure 6.3: Multiple charts. Top, standard parameterization with three rect-
angular regions; bottom, three charts, each covering one rectangular region.

charts, each covering one of the regions, with the charts overlapping only
at the regions’ boundaries. Observe that the three charts can overlap only
at their boundaries because the manifold can be covered with a single chart
(standard parameterization). Moreover, to maintain sufficient floating point
accuracy, the origins are moved and the dimensions changed (the three charts
are not standard parameterizations). At the moment, most mesh generators
do not allow use of multiple charts to cover the domain (for details on mesh
generation with multiple charts, see [52] [54]).

(=
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6.2 Open-boundary problems

In many electromagnetic BVPs, the problem domain corresponds to the
whole or a half space, in which case we have no boundaries, or the do-
main is only partly bounded by a boundary. These problems are often called
open-boundary problems (the domain is still a manifold-with-boundary but
possibly with an empty boundary). The fields tend to zero as the distance
from the source increases. For a unique solution to these problems, we must
give a zero “boundary value” at infinity, the so-called asymptotic condition,
which is comparable to boundary values and enforces the fields to vanish as
the distance from the source increases without a limit.

Because the fields tend rapidly to zero as the distance from the source
increases, the most frequent method to solve these BVPs is to truncate the
domain far enough and force the fields to zero at this artificial boundary. In
many cases, this is adequate, but then the effects on solution accuracy are
hard to estimate. Furthermore, the solution time may be unnecessarily long
because a large number of element covers the uninteresting empty space.

Over the years, many other techniques have been proposed. For example,
in the so-called “ballooning method” [59] the true distance of the boundary
is pushed far away with a thin layer of special elements. Another method
couples FEM with analytical solutions, as shown in [60]. In the boundary
element method (BEM), only magnetizable regions need to be solved with
FEM, after which fields in the rest of the space are solved from boundary
integrals [67]. Infinite elements, which employ special decaying basis func-
tions, can also be used, as in [4]. Finally, the transformation method, a.k.a.,
the shell transformation method, presented in [28] and [33], places the “in-
finity boundary” at a finite distance with the help of a suitable change of
coordinates.

The last two methods proposed above, the infinite elements and the trans-
formation method, are, in fact, based on the same idea of formulating equiv-
alent problems: the user selects a chart where the “infinity boundary” is at a
finite distance and formulates the problem with this chart. That is, as shown
in Figure 6.4, the interesting part of the domain is bounded by an artifi-
cial surface, and the uninteresting empty space outside the surface is scaled
down to a finite size in the sense of the standard metric of R”. Consequently,
the domain is bounded, and there is a new boundary corresponding to the
“infinity boundary.” At the new boundary, the fields are set to zero, and
the problem is solved like a normal BVP. In the transformation method, the
effects of these changes are modeled in the material parameters, which are
changed outside the interesting area according to the change of chart: the
problem is first formulated in standard parameterization such as f in Figure
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Figure 6.4: Open-boundary problem. The domain is a half space, and the
interesting part of the domain contains a device above the ground. The
interesting part of the domain is the rectangle shown in the charts f and g by
the dotted gray line. The chart f is a standard parameterization; therefore,
the domain is not bounded in the sense of the standard metric of R™. On the
other hand, the chart g is such that the space outside the smaller rectangle
is between the rectangles and thus the domain is bounded.

6.4, and then an equivalent BVP is formulated on a chart such as g in Figure
6.4. In the case of infinite elements, the problem is solved using charts such
as g, but now the effects of the changes are modeled with special basis func-
tions defined outside the interesting part of the domain. The basis functions
are such that the result is the same as by using standard basis functions with
changed material parameters.

It is important to note that the new boundary corresponding to the “infin-
ity boundary” is not part of the manifold but is a result of a compactification,
where the original noncompact manifold M is embedded in a compact mani-
fold N, which differs from M only in those points that correspond to the new
boundary. In other words, we have added new points to M to make it com-
pact. This renders the material parameters singular at the new boundary:
let the interesting part of the domain be a rectangle R whose width of and
height are 2w and 2h, respectively. Then let us make the following change of

chart
1
[ T ] LI ——— [ T2 ]
— b 1 =
n - yl_i_#_h Y2
from a standard parameterization f to a non-standard parameterization g.
It maps the points of the upper left quadrant of R? outside a rectangle R
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Figure 6.5: Change of charts. Left, a standard parameterization f, in which
the codomain is the whole R?. Right, a nonstandard parameterization g,
where the codomain is the region inside the outer rectangle of side lengths 2a
and 2b. In both charts the interesting part of the domain corresponds to the
rectangle R of side lengths 2w and 2h. The region outside R in f is mapped
to the region between the rectangles in g.

centered at the origin to the points between R and a bigger rectangle of
side length 2a and 2b (see Figure 6.5). Let the material parameters in f be
described with a diagonal matrix e; = € I, where € is a real number and I the
identity matrix. Then the above change of charts implies that the material
parameters in g are given by the matrix

(‘Z—IQ); 0
€ = € : 782) (b—y2)* |-

(a—x2)?

Notice, that the codomain of the chart ¢ has points with coordinates
o = a and yo = b. These points are added points making up the new
boundary. Observe that at these points the matrix ¢, is singular. However,
this need not be a problem at all. For instance, in FEM, the integration
over the elements is usually done with the Gaussian quadrature [36], which
uses only a few inside points, where the matrix ¢, is never singular. Thus
it seems that in practice such compactification works well. However, for a
mathematically sound explanation, we need other arguments than those used
in the example.

Open Question 8. A compact and noncompact manifold cannot be dif-
feomorphic because they are not homeomorphic. However, with numerical
solution methods, equivalent BVPs can evidently be formulated on nonhome-
omorphic manifolds (see the above discussion). Now is it possible rigorously
to relax the homeomorphism requirement to define the equivalence of BVPs?
Specifically, is it possible to use some kind of compactification and yet main-
tain equivalence? In other words, is it possible by compactification to change
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asymptotic conditions on a noncompact manifold to boundary values on a
compact manifold?

6.3 Speeding up parametric models

Some BVPs involve object deformations. The shape of an object may change
because some force is applied to it, or when the shape is optimized for some
engineering goals. For example, magnetostriction changes the shape of ferro-
magnetic materials when subjected to a magnetic field. An example of shape
optimization is the shape of the adjusting shims of an MRI magnet to obtain
as homogeneous a field as possible. In addition, some engineering problems
involve objects that move with respect to other objects in the problem do-
main (see Figure 6.6). Often these problems can be parameterized with a
few parameters; i.e., a change in shape or movement can be described as
changes in the values of some geometric parameters of the domain. Thus
these problems can be solved by solving multiple BVPs, each corresponding
to some parameter value.

L L

Figure 6.6: Modeling movement. Two BVP domains modeling a movement
of a smaller material block with respect to a larger block. Notice that the
domains are composed of two material blocks in the air, and as long as the
blocks are not in contact, the domains are topologically the same.

Parameterizations have the advantage that multiple BVPs can be formu-
lated in one go and the process can be automated. This saves some time and
frees the modeler from formulating all problems separately. However, if one
works only with standard parameterizations, there is little to do to speed up
the process further.

In a large class of these parametric models, the unified approach to formu-
lating equivalent problems can be used to accelerate the process. We can do
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it when we realize that often the differences between problem domains corre-
sponding to different parameter values are purely metrical: For example, an
object is a little longer or the distance of a moving object from other objects
has changed. Thus the domains are topologically the same or homeomorphic
to each other (see Figure 6.6). Moreover, because they are diffeomorphic,
BVPs can be formulated in the same differentiable manifold, as explained in
chapter 4. Because the same manifold is the domain, we can use the same
chart for each BVP and the same mesh for numerical solutions of all BV Ps.

Metrical differences between BVPs means that they have different Rie-
mannian structures and thus different standard parameterizations. When
the same chart is used for all BVPs, metrical differences are taken into ac-
count in the constitutive equations. Thus descriptions of BVPs on the chart
differ only in material parameters, which can now be parameterized. That is,
material parameters are parameterized, and changes in them translate into
changes in geometry.

The possibility to use a single mesh can accelerate the solution process in
many ways: obviously, time is saved in bypassing multiple mesh generations.
Furthermore, only a part of the system matrix needs to be re-assembled
because the effects of changes in parameter values are usually limited. In
addition, in case of iterative solvers, the same preconditioner and initial guess
may be used effectively for multiple parameter values.

In addition to saving time, the possibility of using a single mesh lends
reliability to the solution process: for some parameter values, standard pa-
rameterization may be troublesome in generating a mesh. Such mesh gen-
eration problems can then stall an automated solution process, and in some
optimization cases the whole process must be started from the beginning.
Furthermore, because the same mesh is used for all parameter values (or
at least for multiple parameter values), results can be compared easily and
straightforwardly unlike in situations with different meshes for each parame-
ter value. For more details and examples on accelerating parametric models,
see [55].

6.4 Invisibility cloaking

The engineering problem with invisibility cloaking is to design and manu-
facture a material that makes anything inside the cloak invisible [50]. That
is, when we use an invisibility cloak, we can see through an object that
is cloaked, and it is impossible to observe the object with electromagnetic
waves coming from any direction. The cloaking material is designed based
on the unified approach of formulating equivalent BVPs: equivalent BVPs
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correspond to the same physical situation, and we are aiming at a physical sit-
uation in which the waves travel without reflections and other disturbances,
though the space is not empty but contains a macroscopic region, the cloaked
region. We seek to formulate an equivalent BVP on a diffeomorphic space
where we know the material parameters and that the waves travel without
disturbances. Such a space is empty space with one point removed (see Fig-
ure 6.7). We can then formulate the equivalent BVP, including equivalent
material parameters, on the space with the cloaked region. The equivalent
material parameters are then the material parameters of the desired cloaking
material.

€0 Mo €0 Ho

Cloaked object is here

Figure 6.7: Invisibility cloaking. Left, a space with a hole of radius r. The
hole is the cloaked region, and the gray region Cy represents the cloaking ma-
terial. Right, a space with one point (the black dot) removed. The cloaking
material region Cy corresponds to C'y, which is the gray circle of the radius
q except the center point.

The following is a more detailed description. The goal is a BVP whose
domain in standard parameterization has a macroscopic hole in it such that
the inside of the hole is the space cloaked. The material parameters of the
immediate surroundings of the hole (the cloaking material) are not known.
Thus a standard parameterization g of the BVP domain can be chosen to
be R*\ B(0,r). Furthermore, the cloaking material occupies the space C;, =
B(0,q)\ B(0,r), where g > r. Hence the cloaking material forms a layer with
a thickness of ¢ — r around the ball of radius r. The material parameters
for the region R?\ B(0, ¢) are empty space parameters, and at this point the
material parameters of the region C, are unknown (situation shown in Figure
6.7).

The equivalent BVP is formulated on a nonstandard parameterization
f, where the BVP domain corresponds to R? \ {0}, i.e., to a space with
the origin removed (see Figure 6.7). The regions R3 \ B(0,q) of g and f
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correspond to each other via the identity mapping. But the region C; of g
corresponds now to the region C'y = B(0, ¢) \ {0} of f via the diffeomorphism
G : Cy — O, defined by = +— (%(q — 1) + 1) (for details on this mapping
and cloaking analysis, see [23]). This mapping blows out the “point hole” to
a hole of radius r in a radial fashion. Furthermore, the mapping G' must be
continuously extendable to the exterior boundary of C'f, which is not included
in Oy, such that G is the identity mapping at the exterior boundary (observe
that the exterior boundaries of C'; and C, are the same subsets of R?).

The inverse F' = G~! is now the mapping from the codomain of g to the
codomain of f, where the BVP is fully defined. Then the pullback of F' can
be used to describe the equivalent material parameters in Cy: if the material
parameters in C'y are given by py = pox and €4 = €o*, the equivalent material
parameters in C,, are (see section 4.5)

Hg = F*Mf(F*)_l
e, = Frep(F*)7L

If Jg is the Jacobian matrix of mapping G, then the matrix containing the
equivalent material parameters is given by the following equation (see section
4.6):
Ho T
fg BA JoJg -

Notice that the cloaking theory is not primarily about waves but equiv-
alent BVPs. Particularly, cloaking does not depend on frequency because
frequency has no role in the diffeomorphism that defines the equivalence.
Thus cloaking is possible, in theory, with all frequencies, including the static
case where observing is not based on waves. Of course, in practice materials
cannot be manufactured that have the same properties for all frequencies.

Cloaking shows that it is impossible, in general, to uniquely find out the
interior of some object solely with boundary measurements. Because the
material parameters €, and j, are anisotropic, cloaking is an example of a
non-uniqueness result in the anisotropic version of the impedance tomography
problem [22].

The following discussion introduces the next open question. To keep
things simple, we often use only piecewise diffeomorphisms F': N — M to
define the equivalence of BVPs on N and M. In other words, F' is a home-
omorphism, but its differentiability breaks down on some lower-dimensional
subsets of N. For example, in the above, if the mapping G is extended
from Cy = B(0,¢) \ {0} to R*\ {0} such that it is the identity mapping in
R3\ B(0, q), then it is not differentiable at the points of the exterior boundary
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of O (although it is differentiable in the direction of the exterior boundary).
However, it is continuous everywhere and thus a homeomorphism. Observe
that in this example there exists suitable mappings that are differentiable
everywhere though their representations with elementary functions may be
quite complex.

Open Question 9. With numerical solution methods, based on finite ap-
proximations, piecewise diffeomorphisms seems to work well in formulating
equivalent BVPs. Now is it possible rigorously to relax the diffeomorphisms
requirement to define the equivalence of BVPs? And if so, what are the exact
conditions that still allow equivalence? (Some sort of boundary conditions
may possibly relax the diffeomorphisms requirement. )

6.5 Axisymmetric problems

Axisymmetric problems or rotational symmetric problems are naturally for-
mulated in a cylindrical coordinate system. The change of chart from stan-
dard parameterization, which is a Cartesian zyz-coordinate system, to cylin-
drical r¢z-coordinates yields the r~!-term that appears somewhere in the
solution process. This blows up the numerical solution near r = 0 [28] [43].
The unified approach to formulating equivalent problems solves this problem:
make another change of charts where 7 — r? and formulate the problem with
this new chart. Using this chart for solution is often called the rA-method
[43].

6.6 Dimensional reduction

Finally, we discuss the benefits of dimensional reduction in numerical mod-
eling and the benefits of using differential geometry to formulate lower-
dimensional BVPs. The benefits of dimensional reduction in numerical meth-
ods are well-known and significant. First of all, in terms of complexity analy-
sis, the complexity order of the problem can be reduced. In terms of solution
time, such reduction can be significant. A second benefit is the reliability
of obtaining a solution: it is much harder to generate a mesh for 3d than
2d domains. Furthermore, meshes can be generated much faster for lower-
dimensional domains.

These benefits make it worth applying dimensional reduction whenever
possible. However, classical vector analysis may be an obstruction in apply-
ing dimensional reduction. The main problem is how to formulate lower-
dimensional BVPs with vector analysis because vector analysis is inherently
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three-dimensional, and some of its features have no natural counterparts in
other dimensions. Moreover, dimensional reduction is independent of a met-
ric, which further complicates the use of metric-based vector analysis. The
inherent three-dimensionality and the omnipresence of the metric makes it
cumbersome to apply dimensional reduction; e.g., is it obvious in general
cases which are the proxy vectors for geometric components and what are
constitutive equations? In the worst case, use of vector analysis can block
the recognition of a possibility of dimensional reduction. Particularly, non-
isometric symmetries are hard to recognize in the first place, let alone their
applications with metric-based vector analysis. Indeed, cases that are hard to
perceive as suitable for dimensional reduction, such as helicoidal geometries,
are challenging to formulate by vector analysis. An example of this can be
seen in [53], where an error escaped the author of this thesis and the three
much more experienced co-authors.

In contrast to vector analysis, the tools of differential geometry are well-
suited for dimensional reduction. All the main tools of differential geometry
needed in dimensional reduction such as differential forms, exterior derivative,
contraction, and Lie derivative, are naturally defined for every dimension.
Furthermore, these tools are independent of coordinates and metric as is the
symmetry on which dimensional reduction is based. These features give clear
insight into the subject and turn the application of dimensional reduction into
a mechanical procedure.
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Chapter 7

Examples

7.1 Parametric models: shape optimization

Our first example is about shape optimization with a single mesh. The goal
is to use a C-magnet with adjusting shims to generate as homogeneous a field
as possible. Figure 7.1 shows the situation, and the task there is to optimize
the shape of the adjusting shims to maximize homogeneity.

We must solve multiple magnetostatic BVPs with only slight changes
in the geometry of the domains. In other words, if the BVPs are initially
formulated using some rigid-body metric, then the BVPs have slightly differ-
ent Riemannian structures and standard parameterizations. Because all the
domains are diffeomorphic, we can formulate BVPs equivalently to a single
differentiable manifold and use only one chart and mesh throughout the cal-
culations. Because the same chart and mesh is used for all BVPs, the only
difference between them is in the constitutive equations.

The shapes of the shims are described with a few geometric parameters in
the chart chosen for the optimization problem; therefore, the problem can be
parameterized with these geometric parameters. Because in the chosen chart
the BVPs differ only in their constitutive equations, the representation of the
operator p (B = pH) as a matrix in the chart is parameterized by geometric
parameters. The parameters are optimized with a genetic algorithm, which
generates shapes based on an objective function. This example was published
also in [55], but with fewer details.

For simplicity, the above problem is solved as a 2d-problem, but of course,
the idea can be applied similarly to other dimensions as well. The material
parameters, and thus the operators i, are known in the standard parameteri-
zations corresponding to the different shapes of the shims. Then we formulate
equivalent BVPs on the chart chosen for mesh generation and calculations.
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Figure 7.1: C-magnet. The gray area is occupied by a material with high
permeability, and the black boxes are the current coils that generate the
magnetic field. The small dark gray boxes represent the adjusting shims,
made of the same high permeability material. The goal is to optimize the
shape of the shims to make the field as homogeneous as possible in the middle
of the air gap.

Because changes in the shape of the shims affect only the shims and their
surroundings, we want to restrict the extent of the changes to the vicinity of
the shims: Figure 7.2 shows how the domain is divided into regions, where
the operator p changes and thereby takes into account the changes in the
shape of the shims. Because the outer boundaries of the triangles are fixed,
the outside part remains the same for all parameter values. This example
has three parameters to optimize the shape of the shims: their height and
the width of the inner and outer shims.

Figures 7.3 and 7.4 show interesting parts of the generic standard pa-
rameterization and the corresponding part of the chart used in all calcu-
lations. The parameters we seek to optimize are the height of the shims

= fo—b = h— gy, the width of the inner shims Iy = ¢y — a, and the width
of the outer shims Oy = e — dy. The corresponding parameters in the chart
used for calculations are H = f —b=h—g, ] =c—a,and O =e—d. In
addition, let L; = e — a be the width of the air gap, Ly = h — b the height of
the air gap, and Ly = b—1 the height of regions 10-14. Finally, we also define
the following parameters: T) = -4=¢ T, = 4=1_ T, — M. With

do—co’ go—fu
these geometric parameters, the change of charts mappings from the generic
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Figure 7.2: Division of the domain into regions. The four dark gray squares
represent the shims. The small regions (the triangles and quadrilaterals)
account for changes in the geometry.

@h) (cy,h) (d,.h) (eh)
7 8 9
@2 (€o,80) .80 €20
6 5 4
2 dO’ 0.
@h) (o) dy .J) €
1 2 3
@b) (cq.b) d,.b) @b
@h) (h) dh)  (eh)
(@g ! i 2 €9
& €2 dg) ’
6 5 4
S d,
@/) /) @) ef)
1 2 3
@b) (h @db)  (eb)

Figure 7.3: Coordinates of the corners of the regions. The dark gray areas
represent the shims. Top, a generic standard parameterization; bottom, the
chart used for calculations.
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Figure 7.4: Coordinates of the apices of the regions. The dark gray areas
represent the shims, and regions 10-14 are part of the C-magnet restricting
the effects of changes on their outer boundary. Top, a generic standard
parameterization; bottom, the chart used for calculations.

standard parameterization to the chart used for calculations in regions 1-14
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The regions in Figure 7.2 that are similar to regions 10-14 have mappings
similar to mappings G19—G14. If the solver software is based on proxy vectors
instead of forms, equation (4.25) gives the equivalent operators p for each
region. We only need the Jacobian matrices of the above change of chart
mappings. Let us be the permeability of the regions 10-14 in the standard
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parameterization, then the matrices of the equivalent operators u for the
proxy vectors in the regions 1-14 are

IHy
M1:M7:MS{I%H M]
IHy
i = Jis = pu [Tl% ) ]
2 — M8 = o -1 H
0o T4
OHy 0
uszugzus{ogf HOO]
HoO
-1 0
o
= 2 0o
i “O{ 0 TQ%O]

1_|_ I-1p\2 I-1Iy
M1 = fbs [ 1(_5{* ) Lf’
L3

1 + Op—0\2 0Op—0
H13 = s { (gofL ) Lf’
L3



We measure the homogeneity of the field in the following way: select
a region A of the domain where proxy vector B of the field B is to be
homogeneous and create a homogeneous vector field by of desired direction
such that f 4 bo - bodv = 1, where - is the standard inner product of the
chart. Our goal is a field B such that B = abg holds pointwise. For any
field B, consider the identity B = aby + (B — aby). Now to maximize
the homogeneity of B, the norm of the deviation [,(B — abg)*dv must be
minimized. This happens when o = [ 4 B - bodv, in which case the norm of
the deviation is [, [B[*dv — . A genetic algorithm [31] varies the shape of
the shims (the three parameters) to optimize this norm.

In our example, the width of the air gap in the C-magnet is 6 cm and its
thickness 3 cm. The region A is a square in the middle of the gap with sides
of length 1 cm. The region A and the calculated optimum result is shown in
Figure 7.5. The optimum shapes calculated by the genetic algorithm are 7.9
mm for the width of the right side shims, 5.6 mm for the left side, and 0.8
mm for the shim height. The BVPs were solved with GetDP [20] and Gmsh
[21], and the genetic algorithm ran in MATLAB.

NN\
/T

\\\\ ///
\)////// //// -

Figure 7.5: Standard parameterization of the C-magnet with optimized
shims. Thinner lines stands for flux lines. The square in the middle of
the air gap is the region A, where the field should be as homogeneous as
possible.
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7.2 Dimensional reduction: helicoidal geome-
tries
Our second example is a concrete one of nontrivial dimensional reduction. We

have a magnetostatic BVP, which depicts a magnetic field due to helicoidally
twisted current wires (Figure 7.6).

Figure 7.6: Twisted wires. Also shown is a G-reduced domain, which is a
plane orthogonal to the direction of translations.

The domain is the whole space, but for simplicity the domain used in
calculations is truncated far away from the wires, and fields are set to zero
at this artificial boundary. In this manifold-with-boundary M, the following
equations hold:

dyB = 0
B = uH.

The standard way to formulate this problem is to use a standard param-
eterization f with Cartesian xyz-coordinates, in which case the operator p
is known. The symmetry transformations of the helicoidal action on M are
such that the images of the orbits under f are helix curves; i.e., orbits result
from combined translations and rotations. Thus the symmetry group G is R,
and the action G x M — M is free. The boundary values, source J, operator
i, and cohomology conditions are all G-invariant under the helicoidal action.
Thus the BVP has also a G-invariant solution under the action. Figure 7.6
shows also a G-reduced domain, which is a cross-plane and can be used to
formulate a two-dimensional BVP in the orbit space.
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Let A be some G-reduced domain corresponding to smooth G-invariant
one-form 7 on M and 7" some smooth nonzero G-invariant vector field on M
everywhere along the orbits. Then the lower-dimensional BVP to be solved
in the orbit space N = M /G is as follows (see section 5.6.5):

dH, = J.
d(i;B) = 0
d(iH) = 0

dB. = 0

B = i (H,)+ uiicH)
B, = ji(H.)+ u(i-H).

Because currents are assumed to be in the direction of the orbits, J has only
one geometric component. Observe that the equation dB, = 0 is trivial, i.e.,
all two-forms satisfy it.

To solve the above BVP numerically requires that we cover the orbit
space with a chart. This is done most conveniently by covering M with
some chart, and then by selecting a G-reduced domain described in the chart
as a coordinate level set, in which case this level set induces a chart for
the orbit space. Figure 7.7 shows a chart f, where the translations are in
the z-direction, which is also the axis of rotation (f is called a Euclidean
chart because the geometry in f corresponds to rigid-body measurements).
Now any plane parallel to the zy-plane (which is a coordinate level set for
z-coordinate) is a G-reduced domain and could be used to formulate the
reduced problem. Therefore, let us select the zy-plane and denote it by A.
However, the standard basis of this chart is not a geometric basis in the sense
that Z (the standard basis vector in the z-direction) is not generally in the
direction of the orbits. To obtain a geometric basis, we use the chart g with
helicoidal coordinates to straighten out the twisting (see Figure 7.7). The
uvw-coordinates of g are then given with respect to the xyz-coordinates of
f as follows:

u = zcos(az) — ysin(az)

v = zsin(az) + ycos(az) (7.1)

w =z,
where « is the twist pitch describing the extent of twisting. Notice that
now W (the standard basis vector in the w-direction) is in the direction
of the orbits. Now A corresponds to the wwv-plane; i.e., A is a particular
submanifold of M, but in the two charts its image is the zy-plane and the
uwv-plane. Furthermore, under the chart g, the orbits (lines parallel to the
w-axis) are straight in the w-direction, and the symmetry transformations
are pure translations.
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Figure 7.7: Two different charts of the same manifold M. On the left is the
Euclidean chart.

Let W be the induced basis vector of the uvw-coordinates in the w-
direction and let dw be a one-form satisfying dw(W) = 1 and dw(U) =
dw(V) = 0; i.e. dw is the coordinate differential of the w-coordinate. Then
(W, dw) is an observer compatible with the uvw-coordinates and the problem
to be solved in the ww-plane, which is a chart for the orbit space, is the
following:

dH, = Ja,
d(iwB) = 0
d(inH) = 0

dB,, = 0

iwB = py,(Haw) + piy (iw H)
Bu = pio(Ho) + e (i H).
In the standard basis of the chart f, the matrix of y is simply pol, where

lo is the permeability of empty space, and I is the identity matrix. By
equation (4.25), the matrix of p in the chart g is

. 1+ a??  —a*uwwv  —aw
Hg = TJCWJCT =pu | —tuww 14+o*u* au |, (7.2)
PA —av au 1

where J. is the Jacobian matrix of the change of coordinates in (7.1) when

z = w = 0. The matrices of the operators p) , pi, pdv, and pgy in the
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standard basis of the uv-plane are the blocks of the matrix of ji, in (7.2) (see
section 5.6.4).

The equation dB,, = 0 is trivial, i.e., all two-forms satisfy it. On the
other hand, the equation d(i,, H) = 0 says that the partial derivatives of the
real function 4y, H with respect to u- and v-coordinates are everywhere zero.
Together with zero boundary conditions this means that ¢, H = 0. This now
simplifies the constitutive equations, and we have the following problem:

dH,, = Ju,
d(iwB) = 0
iwB =y, (Hu,)
B, = pou(Hy,).
Observe that the last equation is only for evaluation.

In the standard basis of the uv-plane, H,, and iy, B are represented with
the following component vectors:

H, _ B,
poe[t] oo []
Then the matrix of p1) is given as the upper left block of the matrix p, given
in (7.2):
W 1+a*?  —a*uv
Faw = Ho | 2,0, 1+ a2u?
The solution of the problem gives us components H,, and iy, B. Now B,,
can be found from the other constitutive equation simply by evaluation:
B,, = ,UfZ:H dw
where the component vector of B,, and the matrix of p?” are

Bdw:[Bw} ,ujz:,uo[—ow ozu].

Thus we have H = H,, and B = B,, + dw A iy B. Notice that H has
no component along the orbits, and that in vector notation the following
equations hold:

H, B,
H,= | H, B, = | B,
0 By,
To represent these in the chart f, we apply the pullbacks (see section 4.6):
1 0 O H, H, H,
Hy=J'H,=| 0 1 0 H, | = H, =| H,
—av au 1 0 —avH, + auH, H,
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1 0 av B, B, + avB, B,
By=|JJJ:'B,=| 01 —au || B, | =| Bo—ouB, | = | B
00 1 B, B, B,

Thus, as expected, the Euclidean chart f has three nonzero components.
These equations also show that By = uH; holds for the component vectors
By and Hy, where j1 is a scalar. The solution field B with three-phase current
excitation in the Euclidean chart f is shown in figures 7.8 and 7.9.
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Figure 7.8: Magnetic field B in the zy-plane represented as a proxy vector
field.
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Figure 7.9: Magnetic field B in the yz-plane represented as a proxy vector
field.
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Chapter 8

Conclusion

This study focused on mathematical structures of differential geometry and
investigated their exploitation in the formulation of electromagnetic BVPs.
Particularly the usefulness of the structures over the traditional approach
based on classical vector analysis was demonstrated with variety of applica-
tions.

Differential geometry allows coordinate-free formulation of electromag-
netic BVPs, an approach also independent of the choice of metric. Fur-
thermore, the structures are generic to all dimensions. Thus these structures
allow clear separation of coordinates, metric, and dimension from the aspects
of electromagnetic BVPs that do not depend on them. This is in contrast to
the structures offered by classical vector analysis: the metric is embedded
in most of them, and they are built initially in three-dimensional domains.
Thus they must also be adapted to other dimensions.

Mathematical structures of differential geometry provide a unified set-
ting to formulate general electromagnetic BVPs, including static and wave-
propagation problems (section 4.4). This implies that common aspects of
general BVPs can be analyzed in one setting without always having to ana-
lyze, as usual, different types of problems separately.

The structures enable formulation of an electromagnetic BVP that is in-
variant under diffeomorphisms. The formulation is thus generally covariant,
which makes it a generalization of covariance under general change of coor-
dinates. Particularly, diffeomorphism-invariance defines naturally an equiva-
lence of BVPs under diffeomorphisms (section 4.5). In numerical modeling,
this can be exploited in multiple ways: first, the change of coordinates pro-
cedure is simple and mechanical. Second, many traditional and apparently
diverse methods and approaches can be explained in a unified manner using
the equivalence of BVPs (chapter 6). These include, e.g., open boundary
problems and invisibility cloaking. Furthermore, the equivalence of BVPs
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proposes a new approach to solve parametric models that include shape op-
timizations and movement: if the domains corresponding to different param-
eter values are diffeomorphic, it is possible to formulate all problems with
the same chart and thus use the same mesh for all problems.

Because in vector analysis most structures are laid down over a metric,
every coordinate system must be treated separately, which makes, e.g., ap-
plication of general change of coordinates quite challenging. In addition,
traditional methods and approaches look apparently different. On the other
hand, as a major result of this investigation, we have shown that in formu-
lations of electromagnetic BVPs, a metric of the space is needed only in the
initial identification of BV Ps: together with distance measurements the met-
ric is a tool to establish a connection between model and observations (section
4.7). Furthermore, it does not matter what metric is used in initial identi-
fication. Particularly, we have shown that the constitutive relations do not
depend on the chosen metric; only their representations with Hodge-operators
do (section 4.7).

The observer structure for spacetime was introduced to decompose space-
time into space and time (section 4.1). The observer structure is coordinate-
and metric-free and can be characterized as a field of local observers. It
allows a (3 + 1)-decomposition of Mazwell’s equations and constitutive equa-
tions (sections 4.2 and 4.3). Furthermore, the observer structure was also
needed in the theory of dimensional reduction.

Because the tools of differential geometry are generic to all dimensions,
they are natural tools to formulate electromagnetic BVPs of any dimension:
2d modeling is commonplace in electromagnetics and the tools help bypass
some of the oddities of vector analysis. The key to solve problems in lower di-
mensions is symmetry, though it is seldom discussed in classical treatment of
the subject. That is why the concept of symmetry was given a special treat-
ment in this thesis. Particularly, we have shown that the symmetry of BVPs
is independent of coordinates, metric, and dimension (chapter 5). Another
major result of the thesis is the symmetry-based theory of dimensional reduc-
tion of electromagnetic BV Ps, also fully independent of coordinates, metric,
and dimension (chapter 5). The theory provides sufficient conditions for a
BVP to be solved as a lower-dimensional BVP, and the conditions are stated
in the form of a dimensional reduction theorem in section 5.9. Furthermore,
the theory shows how to formulate lower-dimensional BVPs (sections 5.6 and
5.8).

The generality of the proposed symmetry-based theory of dimensional
reduction (not restricted by coordinates, metrics, or dimension) enables us to
find out and apply new symmetries that are not widely known. As an example
of a symmetry that allows dimensional reduction but is not widely known, we
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gave helicoidal geometries: a complete numerical example of infinitely long
helicoidally twisted current wires as a 2d-problem (section 7.2).
Yet significant open questions remain. Especially:

Open Question 1. (page 61) To what extent can the modern mathemat-
ical approach of observer structures be exploited in practical electro-
magnetic design? In other words, are there any other practical appli-
cations of observer structures than spacetime splitting and dimensional
reduction?

Open Question 2. (page 83) How could a set of all BVPs and the equiv-
alence of BVPs be rigorously defined? The answer would specifically
help in designing software systems to solve BVPs from a very wide class
of problems.

Open Question 3. (page 99) What benefits can be achieved if the
definition of (G, h)-invariance is extended to more general mappings h
than just a real- or complex-valued h? This answer could admit totally
new kind of symmetries to be used in solutions of BVPs.

Open Question 4. (page 107) How could the theory of dimensional
reduction be constructed to include nonlinear constitutive equations?
Particularly, how to prove in nonlinear cases that solution fields are G-
invariant if the sources, boundary values, constitutive equations, and
cohomology conditions are G-invariant? The answer would allow di-
mensional reduction to be applied to many practical cases.

Open Question 5. (page 122) Are singular orbits always at the bound-
ary of the orbit space? This is now an axiom of the theory, but can it
be shown to be a theorem?

Open Question 6. (page 123) How could the theory of dimensional
reduction be extended to include singular sources? The answer would
add some classical examples to the theory.

Open Question 7. (page 129) In G-invariant cases, the lower-dimensional
BVP can decompose into two separate lower-dimensional BVPs. Is it
always possible to achieve separation with a suitable choice of observer
structure, and how can we determine choices that enable separation?
The answer would help simplify the solution process for some BVPs.

Open Question 8. (page 154) Is it possible rigorously to relax the home-
omorphism requirement to define the equivalence of BVPs? Particu-
larly, is it possible to change by compactification asymptotic conditions
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on a noncompact manifold to boundary values on a compact manifold?
The answer would help establish a rigorous procedure to deal with some
noncompact BVPs.

Open Question 9. (page 159) Is it possible rigorously to relax the diffeo-
morphism requirement to define the equivalence of BVPs? Specifically,
when exactly is it possible to use piecewise diffeomorphism to define
the equivalence? The answer would facilitate the application of the
equivalence of BVPs in numerical solution methods.

The thesis demonstrated in multiple ways that the mathematical machin-
ery introduced is a suitable and more flexible alternative to the traditional
approach. However, only brief mention was made of the technical details of
exploiting the machinery in the existing solver software systems. Particu-
larly, no reference was made to the software science aspects of constructing
a solver software system based on the introduced mathematical structures.
However, this would be an extensive topic itself meriting separate study.
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Appendix A

Bibliography classification

This appendix classifies some of the titles in the Bibliography to cate-
gories covering important subjects of the thesis.

Mathematics books of central subjects are:
e General topology: [9] [11] [19] [27] [30].
e Manifolds: [5] [12] [34] [62].
e Differential forms and analysis on manifolds: [2] [5] [14] [34] [62].
e General algebra and linear algebra: [19] [25] [32] [35] [40] [42].
o Real analysis: [1] [18] [61].
e Differential geometry: [5] [37].
e Lie groups: [5] [48] [62].
e Symmetry and group actions: [5] [12] [48].
Applied mathematics books and articles by subject are:
e Mathematical physics and differential geometry: [13] [17] [26] [46] [58].
e Observer structures: [15] [26] [39] [56].
e Symmetry and group actions: [6] [7] [13] [53].
Books and articles about electromagnetism are:
e Electromagnetic theory: [13] [26] [51].

e Computational electromagnetism: [6] [7] [24] [28] [29] [33] [38].
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Finally some recommendations. Very good introduction to manifolds and
differential geometry is Boothby’s book [5]. Burke’s book [13] is excellent
book about applied differential geometry in physics including electromag-
netism. Also Frankel’s book [17] is a good exposition of applications of dif-
ferential geometry in physics. Basic mathematical structures of mathematical
physics from category theoretical viewpoint with understandable and moti-
vating fashion are presented by Geroch in his book [19]. Olver’s book [48]
is an extensive introduction to symmetry methods in differential equations.
However, his approach to dimensional reduction is not based on differential
forms and the exterior derivative as in chapter 5 of this thesis.
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(G,h)-invariance
boundary values, 100
BVP, 105

cohomology conditions, 105

constitutive equations, 104
fields, 98

Affine space, 20
Asymptotic condition, 152
Atlas, 26

Basis
ordered, 20
orthonormal, 51
topology, 16
vector space, 19
Bilinear form, 49
Boundary of manifold, 33

Cartan’s formula, 46
Chart, 22

compatible, 25

orientation-preserving, 31
Coframe, 55
Cohomology class, 76
Continuous mapping, 16
Contraction, 43
Coordinate frame, 55
Cotangent bundle, 38
Cotangent space, 37
Covariance, 12
Covector, 37
Cross-section, 108

Diffeomorphism, 27

orientation-preserving, 31
Differentiable mapping, 27
Differentiable structure, 25
Differential, 30
Differential form, 39
Dimensional reduction theorem, 148

Embedding, 32
Euclidean space, 21
Extension, 44
Exterior derivative, 42

Foliation, 35
leaves of foliation, 35

G-invariance, see (G.h)-invariance
G-reduced domain, 109
Generalized covariance, 12
Generalized Stokes’s theorem, 48
Geometric components, 63
Geometric decomposition
differential forms, 63
exterior derivative, 65
Group, 6
Group action, 9
effective, 10
free, 10
transitive, 10
Group isomorphism, 6

Hausdorff space, 17
Hodge-like operator, 90
Hodge-operator, 53
Homeomorphism, 16
Homomorphism, 6
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Horizontal
component, 63
differential form, 63
exterior derivative, 65
submanifold, 63
vector, 63

Index
Symmetric bilinear form, 49
Inner product, 49
Integral curve, 45
Isometry, 18, 51
[somorphism, 6

Lie derivative, 46

Lie group, 34

Lie group homomorphism, 34
Lie group isomorphism, 34
Linear isomorphism, 19
Linear mapping, 19

Manifold
differentiable, 26
Lorentz, 50
oriented, 31
Riemannian, 50
semi-Riemannian, 50
topological, 22
with-boundary, 33

Metric space, 17

Metric tensor, 49

Metric topology, 18

Metrical isomorphism, 18

Neighborhood, 15

Observer structure, 61
holonomic, 61
nonholonomic, 61

One-form, 38

One-parameter group of transforma-

tions, 45

Orbit, 9
Orbit space, 108
Orientation, 20
Oriented
manifold, 31
vector space, 20

Proxy vector, 51
Pullback
atlas, 27
differential form, 40
metric tensor, 50
observer, 78
Pushforward, 30

Singular orbit, 98
Singular point, 98
Spatial, see Horizontal
Standard parameterization, 24
Structure-preserving mapping, 6
Submanifold, 32

embedded, 32

regular, 32
Subspace topology, 16

Tangent bundle, 36
Tangent space, 29
Tangent vector, 29
Time-harmonic invariance, 102
Topological space, 15
compact, 16
connected, 15
Trace, 40
Transition map, 25

Vector field, 30
smooth, 37

Vector space, 19

Volume form, 52

Wedge product, 41
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