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Abstract 

Recent advancements in embedded systems, computing, networking, WS and SOA have 

opened the door for seamless integration of plant floor devices to higher enterprise level 

applications. Semantic web technologies, knowledge-based systems, context-sensitive 

computing and associated application development are widely explored in this regard. 

Ubiquitous and pervasive computing are the main domains of interest among many 

researchers so far. However, context-sensitive computing in manufacturing, particularly, 

relevant research and development in a production environment like FMS is relatively 

new and growing.  

Dynamic job (re)scheduling and dispatching are becoming an essential part of modern 

FMS controls. The foremost drive is to deal with the chaotic nature of the production 

environment while keeping plant performance indicators unaffected. Process plans in 

FMS need to consider several dynamic factors, like demand fluctuations, extreme 

product customizations and run time priority changes. To meet this plant level dynamism, 

complex control architectures are used to provide an automatic response to the 

unexpected events. These runtime responses deal with final moment change of the 

control parameters that eventually influences the key performance indicators (KPIs) like 

machine utilization rate and overall equipment effectiveness (OEE). In response, plant 

controls are moving towards more decentralized and adaptive architectures, promoting 

integration of different support applications. The applications aim to optimize the plant 

operations in terms of autonomous decision making, adaptation to sudden failure, system 

(re) configuration and response to unexpected events for global factory optimization.   

The research work documented in this thesis presents the advantages of bridging the 

mentioned two domains of context-sensitive computing and FMS optimization, mainly 
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to facilitate context management at factory floor for improved transparency and to better 

respond for real time optimization through context-based optimization support system.  

This manuscript presents a context-sensitive optimization approach for FMS, considering 

machine utilization rate and overall equipment effectiveness (OEE) as the KPIs. Runtime 

contextual entities are used to monitor KPIs continuously to update an ontology-based 

context model, and subsequently convert it into business relevant information via context 

management. The delivered high level knowledge is further utilized by an optimization 

support system (OSS) to infer: optimal job (re) scheduling and dispatching, keeping a 

higher machine utilization rate at runtime. The proposed solution is presented as add-on 

functionality for FMS control, where a modular development of the overall approach 

provides the solution generic and extendable across other domains. The key components 

are  functionally  implemented  to  a  practical  FMS use-case  within  SOA and WS-based  

control architecture, resulting improvement of the machine utilization rate and the 

enhancement of the OEE at runtime.  
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1 Introduction 

This chapter provides an introduction to the research work presented in this dissertation. It 

covers the background, hypothesis, objectives and the aimed contributions of this thesis. 

 

1.1 Background 

The ever challenging nature of the global economy and trade has resulted in high competition 

that has led manufacturers to face a vibrant operating environment. Such an environment has 

to deal with, for instance, volume uncertainty, rapid market changes, increased product variety, 

competitive prices, on time delivery and short product life cycles. The modern manufacturing 

paradigms, are therefore moving towards more flexible systems and operations, coupled with 

intelligent and adaptive control paradigms, so that these uncertainties can be handled 

effectively without compromising the performance indicators. 

The concept of ‘anytime and anywhere’ is being introduced by pervasive computing that is 

becoming increasingly present in our daily tasks through a wide variety of smart devices (e.g. 

mobile phones). The recent focus is to bring this emerging paradigm at the plant floor level to 

enable a comprehensive domain knowledge and utilization of this knowledge for users and for 

support applications via a standardized interface. Knowledge and knowledge management, 

context-sensitive computing is the part of this dynamic scenario. Generic and dynamically 

updated, managed context models are of interest in this regard since such a model is reusable 

and enables contextual knowledge sharing between systems.      

However, application of context awareness, especially for optimization research in a 

dynamically changing operating environment of FMS is still in an early phase.  

1.2 Problem Description 

Conventional manufacturing at factory level is known to have a number of limitations, as 

different manufacturing states are isolated and cannot provide the necessary transparency since 

there is a lack of infrastructure providing holistic and explicit domain knowledge. This lack of 

insight prevents optimal decision making in real-time.  

Manufacturing systems design in FMS faces many challenges due to the varying and evolving 

nature of the environment as demand change, customization of products, production priorities 



2 
 

instability, keeping the due delivery date. This often requires a final moment change in the 

control parameters which in turn poses significant challenges to the global factory optimization 

by affecting the KPIs.    

1.2.1 Problem Statement 

The problem statement can be framed as follows: 

“How can context-sensitive optimization be addressed in an SOA-based dynamic 

operating environment of FMS for run time KPI optimization?”  

The publications included in this manuscript answers the above problem statement as 

follows: 

 How to address optimization identifying the KPIs? This question is answered in 

Publication I, which provides a basis for optimization technique using the KPIs in a 

chaotic operating environment such as mixed-model assembly lines.  

 How manufacturing semantics can be utilized in FMS? Publication II answers this 

question by bridging ontology and lower plant level data as the foundation for 

building a context-based decision support system. 

 What are the advantages of SOA, as an architectural paradigm for emerging 

production technologies? Publication III answers this question with a focus on 

bridging of SOA with modern production technologies such as Self-learning 

production system. 

 How manufacturing context, captured from SOA platform can be utilized for runtime 

KPI optimization in FMS? Publication IV and V answer this question by providing a 

novel methodology for utilizing context-sensitive computing for runtime FMS 

optimization.          

1.3 Research Description 

1.3.1 Hypothesis 

The main hypothesis of this research work is that, continuous improvement of the factory can 

be enhanced significantly utilizing knowledge-based context models which provides intelligent 

interface for knowledge acquisition and elicitation. Further use of this model enables improved 

data analysis and diagnostics, feedback control dynamically and provide optimization support. 
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1.3.2 Objectives 

The main objective of this thesis is to apply a knowledge-based approach for context-sensitive 

optimization to achieve run time optimal job re-scheduling and dispatching in FMS, which in 

turn provides continuous improvement of the KPIs.  

1.3.3 Contributions 

This thesis presents the following original contributions: 

- A new approach for runtime optimization methodology at the KPI level in a dynamic 

operating environment of FMS based on context-sensitive computing. 

- The above methodology provides a novel architecture for process, resource and product 

level context extraction from an SOA-based platform and updates and manages those 

for higher level processing through an ontology-based context model.  

- The developed ontology-based context model for FMS also allows domain specific 

extensibility and a modular development of the overall approach makes the solution 

generic and extendable across other domains.  

- A new context-based optimization support system and the underlying algorithm, which 

consumes and adapts KPI relevant contents from periodically updated knowledge 

contexts and proposes an optimal job dispatching order in a GUI, enabling decision 

support for global factory optimization.  

1.3.4 Limitations of Scope 

This thesis demonstrates the applicability of the proposed context-sensitive approach in FMS 

environment. The focus is on optimization and context-sensitive computing used to solve 

optimization problems. Comparison of the proposed approach to other modelling and 

optimization techniques is considered out of scope of the work carried out in this research.     

1.4 Thesis Outline 

Chapter 1 introduces the topic and the main contributions of this work. In addition, it presents 

the problem definition, research hypothesis, objectives and limitations of scope. In Chapter 2, 

prior work in this field is reviewed presenting the current state of the art.  

Chapter 3 presents the concise results of all the publications included in this thesis and finally 
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it draws a conclusion from the publications.  

Chapter 4 summarizes the contributions, lessons learned and outlines future research directions 

within this area. Table 1 presents the thesis structure as follows:    

 
Table 1. Thesis structure. 
 

Chapter 1 
 Introduction 

Chapter 2 
 Literature and technology review 

  
Chapter 3 

 Context-sensitive optimization for FMS 

Chapter 4 
 

Conclusions and recommendation for 
future works 
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2 Literature and Technology Review 

This chapter presents a review and assessment of prior work carried out by others.  

To begin with, the review focuses on the notion of context and context-sensitive computing. 

Identifying different context modelling approaches and underlying core requirements for 

context modelling, ontology-based development of context-sensitive computing is analysed. 

Recent advancement of ontologies and semantic web, semantic specification language such as 

RDF and OWL is also highlighted (section 2.1) 

Secondly, current state of the art of context awareness in manufacturing is reviewed with a 

focus on bridging the domain FMS with it. In this regard, nature of the FMS context model, 

principles of ontology-based FMS context modelling, needed functionalities for context 

management are discussed. Associated challenges are also reported (section 2.2).  

Finally, this review presents the optimization requirements for modern FMS and the state of 

the art optimization techniques. The potentials of SOA-based control and the linking of 

emerging paradigms like context-sensitive computing with it, is also discussed (Section 2.3).      

A conclusion of this review section is drawn in section 2.4. The organization of the review is 

depicted in figure 1.   

 

Figure 1. Organization of the literature and technology review. 
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2.1 Context-sensitive Computing 

The term ‘context’ is defined as a mutual relationship between several conditions that exists in 

a  given  situation  in  which  some  actor  exists  or  an  event  occurs  [Schilit 1994]. The main 

constituents of a context are depicted in figure 2.  
 

 

Figure 2. Constituents of a Context. 

Contexts are primarily considered from two different views, user oriented and system oriented. 

In user orientation, context can be characterized through relationships that evolve around the 

user of a system which are of interest. At system orientation, context is any information that 

the system senses beyond any direct commands and which have an effect on the state of the 

system. Another group of researchers formulated the model of context as follows [Moore 

2007]: 

 A context describes a situation and the environment a device or a user is in. 

 A context is defined by a unique name. 

 For each context a set of features is relevant. 

 For each relevant feature a range of values is determined (implicit or explicit) by the 
context. 

The concept of context-sensitive computing is primarily propagated in the domain of ambient 

intelligence (AmI) and ubiquitous computing. The core concept defines the ability of 

computational entities to discover and to react to the environmental changes they are situated 

in. This is also understood as the capability of computational devices for identifying, 
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interpreting and responding to the environment from both user’s and device’s perspective. With 

the involvement of many researchers further, the definition has extended to several extents 

depending on the various application domains [Chen 2004].  

Computational entities in context-depended applications can be both sensitive and reactive, 

depending on the environment. Context integrates various knowledge sources and binds 

knowledge to the user to ensure consistent understanding and this is the parallel reason for wide 

investigation of context awareness within knowledge management research. Such exemplary 

research on context sensitive computing can be classified primarily into two categories: 

context-based proactive delivery of knowledge and capture-utilization of contextual 

knowledge via support applications.  

Context processing towards context-sensitive computing is typically categorized in three 

different  ways  [Gu 2005]. The first category deals with presentation of information and 

services to a user. The second category defines the automatic execution of a service in a more 

complex environment and the last one is tagging of context information for later retrieval 

(figure 3) [Moore 2007]. 

 

 

Figure 3. Context processing towards a context-aware system.  

The notion of context sensitive computing, especially to achieve manufacturing process 

optimization, refers to process preferences of products and process skills of devices, the 

physical capabilities of equipment and environment conditions. However, similar computing 

for  FMS  to  achieve  the  required  level  of  optimization  is  challenging  since  an  operating  

environment of modern FMS is highly dynamic and resides in distributed control.  

2.1.1 Context Modelling 

General methodology practiced in context-modelling are key-value models, Mark-up Scheme 
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Models, Graphical Models such as UML, Object oriented model (OOM), Logic-based Models 

and Ontology-based Models [Moore 2007]. Comparison of different context modelling 

techniques is reported by some researchers [Bettini 2010]. However, considering the level of 

formalism, distributed composition and applicability to existing environment and validation, 

the present research on context modelling is mostly focused on ontologies [Sattanathan 2006]. 

The recent advancement of ontologies in manufacturing offers the creation of a common 

language for sharing manufacturing knowledge among designers, design tools and software 

applications by providing a comprehensive semantic foundation of the facility [Uddin 2011] 

[Sandkuhl 2007].   

2.1.1.1 Requirements  

Some basic requirements [Bettini 2010] for context-sensitive systems are stated as follows.  

 Heterogeneous data sources: The sources for contextual information, usually varies to 

a large extent depending on their extraction platform, update rate and their semantic 

level. Some sensor level data from the plant lower level often provide raw data (signals) 

that need to be further processed to utilize as a meaningful context [Zuraini 2010]. Most 

importantly, the update rate of such lower level devices is sometimes as fast as a fraction 

of seconds. On the other hand, contextual information from upper level, for instance 

the update rate from manufacturing execution system (MES) is relatively slow [Ge 

2010]. Some contextual information might be more static like the resource information 

or planned production hours. This indicates that the sources of the contextual entities 

are heterogeneous; therefore a context model must be able to express those different 

types of contextual information per application’s need. 

 Dependency among contextual entities: A context model acts as the main data model 

for context-sensitive computing, which is utilized by various support applications. 

Therefore, the context model must extract the related entities to represent formally, 

ensuring an accurate behaviour of the domain. In doing so, the context model must also 

consider the dependent entities in a context model [Neovius 2006]. For example, if a 

particular instance of NC program changes in the context model, the dependent 

properties such as the NC program ticks also changes. 

 Context historian: to utilize the context-sensitive computing for different application 
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usage, it is often needed to access the past states of different contextual entities. The 

past states are meant to be the reference context for mapping onto the currently 

extracted context. This is required to identify any changes of the required parameters 

based  on  the  previous  instances.  Therefore,  a  context  historian  is  required  to  be  

managed and updated with the reference context. In managing the context historian, the 

update rate of the reference context is often critical. It depends on the time required for 

context extraction, management and update on one hand, and the update rate required 

by  the  applications  in  real  time  on  the  other  hand  [Moltchanov 2009]. To maintain 

timeliness in context-sensitive computing, at least to answer the near real time 

application’s need, the reference context should contain only the relevant entities in a 

refined context model stored in the historian. 

 Efficient Context modelling and reasoning support: plant level data sources and data 

quality vary to a large extent depending on the devices and device level communication 

protocols. Often, the extracted contextual information might be incomplete. Therefore, 

an appropriate context modelling approach, suitable to the domain of interest is 

important [Verstichel 2008]. Contextual information may suffer from inconsistency and 

ambiguity as well. The reasoning support to the context model allows consistency 

checking and also provides ways to infer new explicit knowledge.                  

2.1.2 Ontological Development 

Ontologies allow knowledge sharing, logic, inference and knowledge reuse and hence this is 

utilized for formal context representation and modelling across several domains. Ontology is 

“a formal explicit specification of a shared conceptualization” [Zuniga 2001]. Formal 

modelling through ontologies enables knowledge re-use and domain knowledge representation 

which are the basic needs for knowledge acquisition modules.   

A shared context is referred to as ontology because the domain ontology offers a common 

understanding of the modelled concepts and of the explicit relations between them. Essentially, 

context ontology can be envisioned as close as of any other knowledge-representation systems. 

Each context contains a set of concepts that defines the basic terms which are then utilized to 

represent knowledge in the ontology. Furthermore, the constraints present in each context, 

controls the way how the instances of the concepts might be created and linked to other 

instances. In addition to these core functions, however, the role of context ontologies sets a 

number of further requirements on the representation language. 
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Several semantic specification languages such as RDF [Klyne 2004]  and  OWL  [Schneider 

2004] provide potential solutions for ontology-based context modelling (especially for the 

future pervasive computing environment where contextual information should be provided and 

consumed anywhere and anytime). RDF is a simple model supporting large-scale information 

management and processing, while considering different contexts from diverse sources. The 

assertions from sources can be united, providing additional information than they contain 

separately. 

Significant research has been conducted to investigate the logical foundations of OWL and 

how this modelling language can be utilized to express a user’s situation in various contexts 

[Luther 2005].  CONON [Wang 2004] is an OWL-based context ontology that allows logic-

based reasoning in the modelled context. The RDF model for context reasoning in a pervasive 

computing environment, coupled with flexible context-based rules are presented in [Jari 2005] 

that recommends the available services with a priority order.  

2.1.2.1 Ontologies and Semantic Web 

The  Semantic  Web  [Berners-Lee 2001] is characterized by an ‘information web’ which 

essentially differs in understanding in contrast to the current web. The main reason behind is 

the more usability of the semantic web by the machines than the current Web. Information on 

the Semantic Web remains in a structured form and defines an agreed-upon meaning. A 

similarity exists between a Semantic Web and a large online database in terms of containing 

structured information and most importantly providing an interface for queries. The 

information in a regular database in contrast, can be heterogeneous, which is not conforming 

to one single schema.  

The primary standards within the semantic web are considered to be RDF (Resource 

Description Framework), SPARQL (SPARQL Protocol and RDF Query Language) and OWL 

(Web Ontology Language). RDF serves as the data modelling language, meaning the 

information  in  a  semantic  web  is  stored  and  represented  as  RDF.  SPARQL  provides  the  

interface  for  various  systems  to  query  RDF  data  and  OWL  is  the  schema  language  [Klyne 

2004].  

Semantic web depends on ontologies for formal representation of the structured data, which 

remains at the core for machine understanding and associated communication [Brickley 2004]. 

Shareable domain ontologies enable both user and machine to communicate with each other to 



11 
 

support interchange of semantics. Therefore, development of ontologies, capturing domain 

specific concepts and linking of those is characterized as the core needs for semantic web 

[Hayes 2004] [Schneider 2004]. 

2.1.2.2 Web Ontology Language, OWL 

In literature, Web Ontology Language (OWL) is defined as a language for knowledge 

representation  for  encoding  ontologies  in  order  to  support  the  semantic  web.  OWL  is  a  

recommendation from W3C which has the compatibility with XML and with other W3C 

standards [W3C 2004].  OWL,  which  is  an  extension  to  RDF  and  RDF  schema  through  

additional vocabulary, allows formal representation of a particular domain. Formal 

representation is achieved by defining, for instance, the concepts or classes, their properties, 

relations between classes, cardinality, equity and enumerated classes within the domain 

ontology model [Deborah 2004]. OWL ontology is considered both as a valid RDF document 

and XML document syntactically. This allows OWL ontology processing via available XML 

and RDF-based tools.  

At the implementation level, OWL has three sublanguages for defining the semantics, OWL-

Lite,  OWL-DL  and  OWL-Full.  The  former  two  semantics  are  built  on  Description  Logics  

[Horrocks 2004]. Description logics have the expressiveness and meaningful computational 

properties, at the same time maintaining a computational completeness. OWL-Full utilizes a 

novel  semantic  model  with  an  aim  to  provide  RDF  Schema  compatibility.  For  a  complete  

expressiveness, OWL-Full is adopted at user level, however, it has the associated 

computational complexity. Reasoning support for the full scope feature of OWL-Full is 

unlikely as expressed in [W3C 2004].  

OWL-Lite is best suited for the users where the ontological usability requires hierarchical 

classification of the domain of interest and assigning simple constraints within the concepts. 

OWL-Lite is not adopted largely due to the limitation on expressiveness for complex 

constraints.  

OWL-DL is intended for the maximum expressiveness for the ontology model and also ensures 

computational completeness. It provides the reasoning support for consistency checking 

utilizing the reasoning engines. Due to the correspondence of description logics, OWL-DL is 

named accordingly, which provides a formal OWL foundation. 
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Semantically, OWL-Full is different compare to OWL-Lite and OWL-DL. In OWL-Lite and 

OWL-DL,  a  resource  cannot  be  defined  as  a  class  without  formal  description  elsewhere  in  

ontology document. However, the restriction is flexible in OWL-Full. Classes can be 

characterized as instances and unlike OWL-DL, it does not require to define explicitly the type 

of each resource and hence bringing extended expressiveness. However, most ontologies do 

not require this extensive expressiveness and hence OWL-DL is widely adopted [Heflin 2003].  

The nature and the required outcome from the developed ontology generally indicate the 

sublanguage need for that particular model. The selection among OWL-Lite and OWL-DL 

varies to the extent of ontological expressiveness. The selection among OWL-DL and OWL-

Full varies to the extent of meta-modelling and extended expressiveness requirements. 

2.2 Context Awareness for FMS 

Context-aware system and development of context sensitive support applications are relatively 

new in manufacturing. However, adoption of ontologies, as the core building block for context-

sensitive computing reported in this work, is emerging in different areas of manufacturing and 

gaining a wide range of interest in recent years [Obitko 2008].  

Manufacturing’s Semantics Ontology, MASON [Lemaignan 2006] is a manufacturing 

ontology that describes a general purpose manufacturing semantics using OWL. It also 

highlights the usability of ontologies for formal representation and data sharing in 

manufacturing. An ontology addressing to mechatronic devices is developed by [Lopez 2006] 

that categorizes applicable hardware and software features in order to utilize the formalized 

knowledge in the automation domain [Vyatkin 2005].  

Ontologies for logistic planning and ontologies addressed to the shop floor and reconfigurable 

assembly are examples within an agent-based manufacturing systems [Rzevski 2007]. 

Manufacturing ontologies offering shared manufacturing semantics enable the machines to 

communicate and bring transparency to complex devices, and hence contributing towards 

excellent manufacturing. Relevant research in this domain is mostly aiming for a seamless 

system integration to address the need for required interoperability between diverse systems 

[NIST 2010] [McLean 2005] [Zhou 2004].  

In a distributed agent-based manufacturing environment, domain ontologies are utilized via 

knowledge sharing and re-use to gain process, product and system level information related to 
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status and control of the manufacturing process [Khedr 2004]. A formalized manufacturing 

model for FMS is reported by [Molina 1999], defining four level functionalities on the factory 

model, shop floor model, cell and station models. The developed model is aimed to provide a 

comprehensive semantics of the global manufacturing capability.  

Ontology modelling applied OWL and OWL-S is reported by [Lin 2007] where an engineering, 

product development model enables inter-enterprise level communication and collaboration 

within different design teams. An ontology development approach using six steps is described 

by  [Ahmed 2007], facilitating engineering design, together with research methods and 

assessment in each stage of the proposed approach. A formal representation of a product family 

using ontology in the semantic web paradigm is presented by [Nanda 2005]. The model allows 

hierarchical grouping of developed concepts for the relevant design objects, which eventually 

assists in product family design and reduces complexity, lead-time and development costs.  

An  ontology  termed  as  DFM  (design  for  manufacturing),  is  developed  by  [Chang 2010] to 

represent a manufacturing knowledge base for the facility. The aim is to share and re-use 

domain knowledge among the designers to assist in decision making for complex technical 

problems. DFM also supports in identifying data inconsistency and errors. A systematic 

ontological development is reported by [Lin 2011] addressed in a use case, electronic industry 

in order to provide support for engineering design [Uddin 2011]. 

  

 

Figure 4. Utilization of ontology-based knowledge representation in manufacturing. 
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The main benefits of the recent progress of ontology research toward the implementation in 
manufacturing (figure 4), can be listed as follows:  

 To create a common language to share knowledge about product, process and system 
among designers and support applications. 

 To enable context-aware computing addressed in a complex, adaptive operation 
environment for decision support applications.  

 To gain manufacturing knowledge to describe their structure and relations in a 
hierarchical manner. 

 To share and to reuse manufacturing semantics and to infer new knowledge utilizing 
relations and axioms encoded in ontologies. 

 To avoid extra overload of centralized software applications processing the raw data. 
 

2.2.1 FMS Context Model 

The purpose of the context model is to model the knowledge contexts relevant to product, 

process, device and resources in FMS. The aim is to further process KPI relevant entities from 

these extracted contexts. Typically the processed KPI relevant knowledge contexts are 

production orders, operation plans, device status and current job processing queue which has 

the influence on the global optimization. A typical production order taxonomy for FMS [Uddin 

2012] is illustrated in figure 5.  
 

 

Figure 5. A typical FMS production order taxonomy. 
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2.2.2 Modelling Principles 

Some basic principles of context modelling [Self-Learning 2012]  in  FMS  are  identified  as  

follows: 

 Support description of main context: In practice all context information is difficult to 

model and also not realistic. The context model, however, needs to consider the most 

relevant concepts and properties according to the requirement of support applications. 

 Model the context that is easily acquirable: The concepts considered need to be 

identified clearly and integrated into the model effectively, whether fed automatically 

or by manual input explicitly [Baldauf 2007]. 

 Trade-off between the investment of context modelling, extracting and effects of 

context sensitive adoption: Generally, context modelling will be more accurate if a very 

detailed level capturing is done. However, the downside is that more time and effort is 

needed for detail level context capturing and processing, which has an impact on 

computational recourses in handling the detail level contexts. This has also the potential 

to bring deficiency to the run time optimization process. 

2.2.3 Functionalities 

The functionalities that are needed for context capturing followed by context management, are 

mainly relevant to the raw data monitoring from different plant level sources, extraction of 

contextual entities and identification of context sensitive information. Context management 

requires context reasoning to deduce knowledge context and context provisioning which 

provides the query interface for support applications. The functionalities mentioned are defined 

as follows [Self-Learning 2012] [Khedr 2004]:  

2.2.3.1 Raw Data Monitoring and Context Extraction 

To populate the context model with the raw data and to process it to infer high level contexts, 

relevant data is required to be monitored (e.g. from sensors, RFID, PLCs) and updated to the 

ontology model. The raw monitored data are then used for further processing and for context 

identification.  

Contextual entities those are applicable to the support applications, need to be extracted during 

regular plant operation and to be further pushed for upper level processing. Figure 6 shows a 
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context extraction process at a conceptual level. The three main functionalities are context 

identification, context reasoning and context provisioning. From the raw monitoring data, 

context identification produces knowledge and relevant knowledge contexts. Context 

reasoning enables knowledge inference from low-level monitored context by means of 

reasoning engines [Chen 2008]. Reasoning on deduced context also provides consistency and 

reliability to the inferred knowledge contexts. Context provisioning allows contexts for 

optimization to realize intelligent and context-sensitive processing. The extracted context is to 

be stored in the context repository that serves the purpose of context historian. 

 

Figure 6. Conceptual context extraction process. 

2.2.3.2 Context Identification  

The conceptual context identification process is illustrated in figure 7. Context monitoring 

interfaces deliver as much context information as possible. Using the interfaces, a bunch of raw 

data can be extracted, for instance, from machines, from production orders for further context 

processing. The context identification process then maps the delivered data onto the ontology-

based context model by means of an identified context.  
 

 

Figure 7. Conceptual context identification process 
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2.2.3.3 Context Reasoning  

Identified context can be further processed using a contextual reasoning approach based on the 

formal description of contextual entities. Identified context can have some integral 

characteristics which may specify the contexts as incomplete, temporal and interconnected.  

Context reasoning can utilize the reasoning mechanisms to verify those characteristics, provide 

consistency and infer high level contexts from primarily extracted contextual information 

[Luther 2005]. Case studies related to ontological reasoning and the needs for solving such 

inconsistent context models through reasoning are reported by some researchers. The main 

focuses were proof checking, ontology validation and classification in the Protégé editor with 

RACER inference engine [Haarslev 2001].  

A flexible approach for ontological reasoning can be achieved by encoding context-based rules 

or domain specific rules. Rule-based reasoning can be implemented for building prioritized 

inferred contextual knowledge and also for using of this knowledge accordingly per upper level 

application’s need [Jari 2005].  

Another method for context reasoning is to use deductive reasoning, which is a basic approach 

in logics.  In this approach the knowledge inferences are implemented by using past known or 

identified facts. Deduction reasoning is a quite familiar methodology in general logics, and 

especially pertinent in logic programming. In addition, deductive reasoning allows consistency 

checking and improved reliability of the reasoned knowledge which could be fed in by 

incorrect monitoring. At ontology level, reasoning is possible depending on the semantics of 

the ontology language (e.g. OWL) and the definitions in the context ontology. Since, RDF and 

OWL are practiced to model context ontology, deductive reasoning is well supported in this 

regard [Qin 2007].   

Application level reasoning is foreseen that uses the same deductive principles, but with 

application-specific rules (e.g. table 2). Conceptual reasoning with context sensitive 

information is illustrated in figure 8. 
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Figure 8. Context reasoning example 

The approach for statistical reasoning does not rely on strict logical rules, instead it attempts to 

associate information into probable relations, as suggested by the empirical data. Statistical 

reasoning, however, allows the identification of the deduction rules, based on empirical context 

data. The techniques to perform such data-mining are relatively well-established [Srikant1997].  

2.2.3.4 Context Provisioning 

Context provisioning provides the domain specific reasoning and query interface for the 

support applications, e.g. OSS. Refined context to be provided proactively (proactive context 

provisioning) or depending on the request from support applications (on demand context 

provisioning). Since the semantic web ontology language OWL forms the foundation for 

context ontologies, SPARQL (an RDF query language and protocol) has potential to provide a 

good mechanism to support context provisioning [Hayes 2004].  

SPARQL is similar to SQL language for querying RDF data. Structured SPARQL queries are 

formulated from various data sources to classify intended results. The queried data can be 

stored as RDF inherently or can be seen as RDF thru middleware. SPARQL has the capability 

to process queries per application’s need and per optional graph patterns together with their 

conjunctions and disjunctions [Liu 2010]. Using the source RDF graph, SPARQL also allows 

extended value testing and putting constrained queries. The outcome of the SPARQL queries 

can be the result sets or RDF graphs. 

2.2.4 Challenges 

There are several associated challenges for dynamic context modelling, context capturing and 

context processing to fulfil the real time application’s needs [Bettini 2010]  [Zakwan 2010]. 

Plant floor sensor level data is variable and can vary frequently to a large extent as the quality 



19 
 

of the captured contexts can differ depending on the diverse range of sensor types. Therefore, 

context modelling approach must essentially support quality and the required richness level.  

Contextual information may suffer from incompleteness and ambiguity as well. Context 

modelling and processing must incorporate the capability to handle these issues by 

interpolation of incomplete data on an instance level [Huang 2004]. However, the description 

of contextual facts and interrelationships in a precise and traceable manner represents a 

significant challenge. It is important that the context model can be adapted to enable the use of 

the model in existing domains, systems and infrastructures. The context model should also be 

re-usable so that it can be utilized across other similar domains.  

2.3 Optimization for Modern FMS 

Optimization research has been a wider research topic across diverse manufacturing domains 

for many years. In FMS, optimization in manufacturing systems, operations, costs, scheduling 

are some of the active research fields. Research on FMS optimization, especially in addressing 

the run time optimization need, however, is comparatively new and gaining interest in recent 

times [Cao 2008].  

An FMS is generally known to be as an integrated and computer controlled system associated 

with automatic material handling stations and processing stations like machine tools and 

devices. The control system and the different stations are typically synchronized in a complex 

way to respond the simultaneous processing need of different volumes and product ranges 

[Stecke 1983].  The FMS brings the flexibility to integrate production line efficiency to the 

facility of a job shop in order to accommodate batch production aiming moderate product 

volume and variety. However, there are associated costs for gaining flexibility and the required 

capital investment is typically very high as well. Therefore, careful attention is needed for the 

proper planning of an FMS during the design and development stage. Before production, a 

through operational planning is important in order to identify the system’s efficiency over time. 

Hence, the detail planning compared to other conventional production paradigms is the key for 

a successful operational FMS.  

The job processing relevant decisions within FMS operations falls mainly in pre-release and 

post-release phases. Operational planning related to pre-arrangement of parts, jobs and tools, 

expected schedule, machine utilization, downtime, for instance, is associated with pre-release 

phase. Post-release phase mainly indicate the addressing of dynamic scheduling problems due 
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to run time change of priorities, sudden machine breakdown and relevant facts. Pre-release 

phase and required decisions in this phase, for instance, machine grouping, job selection, 

production throughput, resource distribution and loading problems are relevant to the setting 

up  an  FMS  as  well  [Kim 1998].  Machine  loading,  among  other  factors,  is  one  of  the  most  

critical production planning problems due to its direct impact on the performance of FMS. 

Specifically, loading problems within FMS refers to job allocation to different work stations 

considering different constraints, with an aim of fulfilling various performance objectives.  

Significant research has been conducted by researchers to obtain effective solutions to loading 

problems and also minimize the computation burden at the same time. Different mathematical 

models, heuristics and meta-heuristics-based approaches, using simulation models are some of 

the widely adopted methodologies in this regard [Stecke 1983].   

Post  release  decisions  are  critical  in  modern  FMS  plants.  FMS  plants  need  to  deal  with  

numerous challenges like parallel jobs processing, buffer allocation, highest machine 

utilization, minimizing production lead times, maintaining due delivery date, responding to 

unexpected events and minimizing tool flow. These factors influence the overall factory 

throughput. Job scheduling problems are of main interest as the production orders and job 

processing priority change dynamically to meet the production order lead time or to maintain 

the highest machine utilization rates. Several priority rules used in manufacturing plants are 

listed in table 2. 

 
Table 2. Typical priority production rules in FMS. 
 

Abbreviation Priority Rule 
FIFO First in First Out 
FOFO First Off First On 
SPT Shortest Processing Time 
LPT Longest Processing Time 
SRPT Shortest Remaining Processing Time 
LRPT Largest Remaining Processing Times 
EDD Earliest Due Date 

In a planned or pre-released scheduling, an optimal job dispatching queue is generated with the 

available jobs and usually simulation methods are utilized.  A planned model provides a good 

basis for resource planning and can be used to predict the optimum.  But, run time changes and 

unexpected events make the planned schedule ineffective. Therefore, optimal FMS operation 

considering reactive scheduling (post release decision) is of the main interests of the 
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manufacturers. Hence, the modern FMS utilizes complex and adaptive control systems, which 

promotes integration of various decision support applications.  

Context-sensitive decision support systems or optimization support systems deals with the 

context model of process, product and system to identify contextual changes. It also requires 

contextual mapping with formally represented manufacturing knowledge to enable knowledge 

inference by the support applications. One of the main research motivations to integrate context 

sensitive client applications to the FMS controls is to deal with the post release decision support 

in an adaptive operational environment to ensure optimality.  

2.3.1 State of the Art Techniques 

A wide range of approaches are adopted in industrial and research level to address optimization 

in manufacturing.  Optimum seeking algorithms (e.g. Branch and Bound search, dynamic 

programming), heuristics/meta heuristic algorithms (genetic algorithm, simulated annealing), 

simulation models and are mostly used [Kumar 2006] [Uddin 2010]. Different optimization 

techniques in manufacturing utilized at research and application level are depicted in figure 9.  

 

 

Figure 9. Different optimization techniques in manufacturing. 
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The theory of constraints, knowledge-based approaches and expert systems (e.g. agent-based) 

are emerging and have gained a lot of interests, especially in the development of high 

performance microprocessors utilized as intelligent entities embedded in the plant floor 

infrastructure.   

2.3.2 Potentials with SOA-based Control  

The possibility to incorporate intelligence, even in the smaller devices via high performance 

microprocessors has made possible knowledge-based, semantic web service- enabled 

manufacturing [Brenan 2004].  SOA deployed by Web Services (WS) has been recognized an 

answering the needs of a highly reconfigurable system: loose-coupling and dynamic discovery 

of new processes [Lastra 2006], fulfilling the need of dynamic optimal decision making.  

Traditional enterprise application technologies as Distributed Computing Environment (DCE), 

Common Object Request Broker Architecture (CORBA), Microsoft's Distributed Component 

Object Model (DCOM), Java 2 Enterprise Edition (J2EE) are lacking explicit platform-

independence due to their use of specific sets of communication standards and protocols.  The 

integration of critical applications is within reach due to the adoption of WS and SOA.  WS are 

currently supported by all major independent software vendors, including platform vendors 

such as IBM, Microsoft, SAP, PeopleSoft, Oracle, Sun, and BEA.  Tool support for WS and 

related technologies is growing [Shirley 1992] [OMG 1996] [DCOM] [Grosso 2001]. 

 

 

Figure 10. DPWS protocol stack. 
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Although  in  the  software  world  SOA  and  WS  are  already  widely  adopted,  SOA-compliant  

manufacturing is still an emerging paradigm.  The drawbacks for several device-level SOA 

integration technologies such as [Jini]  and  [UPnP]  are:  lack  of  platform  neutrality,  lack  of  

adaptation to resource restricted devices and specific protocols for device discovery/eventing.  

Device Profile for Web Services (DPWS) is an extension of the Web Services protocol suite 

that defines the minimal set of implementation constraints to enable secure WS description, 

messaging, and dynamic discovery, publish/subscribe eventing at device level (figure 10).  

DPWS is equipped with WS standards (e.g. WSDL, XML schema, SOAP, WS-Addressing, 

WS-Metadata Exchange, WS-Transfer, WS-Policy, WS-Security, WS-Discovery and WS-

Eventing) that facilitate ideal integration at application, process and device level, application 

interoperability and re-use of IT assets.  

At present, DPWS is considered to be the most widely practiced technology for implementation 

of SOA-compliant production systems.  Pilots of DPWS-enabled devices in the industrial 

domain [SOCRADES 2009], [SODA 2008], [SIRENA 2005] are considered to be the first step 

towards achieving both horizontal collaboration and vertical integration.  

A scalable SOA deployed by WS has potential to achieve flawless integration, interoperation 

and required flexibility. This allows detection and interpretation of data from existing database 

systems, device level, data servers, and file systems, which include plant specific process, 

equipment, enterprise information mostly XML files, NC programs (text files) and 

digital/analogue signals from sensors.  

2.4 Conclusions 

Existing state of the art technologies relevant to context modelling and further context 

processing in manufacturing domains differ in the expressive power of the context information 

models, the support they can provide for reasoning, computational performance of reasoning 

and the nature of the application domain.  

As a recent trend in modern manufacturing, industries tend to seek continually for higher 

productivity at an optimum efficiency and cost reductions by using real time data and 

integration of internet of things (IoT) to the industrial value chain. This trend also serves as the 

foundation for the next generation industries, i.e. Industry 4.0 [Kagermann 2013]. Among other 

design principles of Industry 4.0 [Herman 2016], information transparency and interoperability 
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remains at the core for the smart factories where the aim is to aggregate raw monitor data to 

higher level context information and to process contextual entities for the machines, devices 

and people to communicate with each other.  

In this literature review, current state of the art techniques are presented as the enabler of 

context sensitive computing in a dynamic environment and capitalization of ICT for optimizing 

the future FMS.    
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3 Context-sensitive Optimization for FMS 

This chapter presents five peer-reviewed publications related to this thesis from different 

perspectives. Publication I contributes to the optimization technique by focusing optimal line 

balancing and sequencing for a mixed-model assembly line (AL). Production execution in an 

AL requires many important factors to be considered for optimization. Different line 

orientations, production approaches, line characteristics, performance and workstation indexes 

define objective functions for optimal line balancing and product sequencing. This paper 

analyses important AL design characteristics and also provides an integrated approach for 

balancing of mixed-model assembly lines (MMALs) combined with optimal product 

sequencing.   

Publication II presents an ontology-based knowledge representation for FMS, providing a 

comprehensive semantic foundation of the facility. The domain ontology model that is 

addressed captures and formally represents the manufacturing semantics from heterogeneous 

data sources, allowing knowledge sharing, re-use and update.  

Publication III presents how service oriented architecture (SOA) and supporting technologies 

can be bridged together with the emerging production paradigms to meet the required level of 

flexibility, interoperability and communications.  

Publication IV presents a context-sensitive computing approach, integrated with an SOA-based 

FMS control platform. This approach addresses how to extract manufacturing contexts at 

source, how to process contextual entities by developing an ontology-based context model and 

how to utilize this approach for real time decision making to optimize the key performance 

indicators (KPIs).  

Finally, publication V presents an application of context-sensitive optimization for FMS, 

considering the dynamic machine utilization rate and overall equipment effectiveness (OEE) 

as the key performance indicators (KPIs). Runtime contextual entities are used to monitor KPIs 

continuously to update an ontology-based context model and subsequently convert it into 

business-relevant information via context management. The delivered high-level knowledge is 

further utilized by an optimization support system (OSS) to infer optimal job (re) scheduling 

and dispatching, resulting in a higher machine utilization rate at run-time.  
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3.1 Optimization for Assembly Line-based Manufacturing (Publication I)  

The present global market environment is competitive and rapidly growing. Major 

manufacturers are trying to cope up with this changing scenario by optimizing their 

manufacturing design process. Modern discrete assembly-based product industries are 

associated with assembly lines (ALs) for greater efficiency and flexibility. Application of ALs 

was adapted for high volume, low-variation mass production in its initial phase. However the 

changing business world where the demand is mostly customer driven, has motivated the 

manufacturers to implement assembly-based manufacturing for job shop and batch production 

to create greater product variability. Mixed-model assembly lines (MMALs) facilitates product 

variations and diversities on the same line in an intermixed scenario. Hence, optimal AL design, 

balancing and product sequencing of mixed-model assembly are the major challenges for 

manufacturers for creating high-variety and low-volume product within the layout process. 

Different demand scenario, performance objectives, product mix, AL orientations, 

manual/robotic or hybrid workstation indexes, design constraints and performance indexes all 

play a substantial role in AL-based industries.  

This paper identifies the most important AL design characteristics in its initial phase. Proper 

acknowledgement and association of these parameters with AL design, balancing, and mixed-

model scheduling facilitates optimal solutions for improving overall line efficiency. In later 

phase of the paper, an integrated approach for balancing and sequencing of MMALs of problem 

type 2 (Boysen et al., 2007) is developed to optimize shift time for mixed-models with a 

predefined number of workstations considering smoothed station assignment load (SSAL) for 

job shop production. The approach presented in this paper also determines a smooth production 

schedule through optimal product sequencing. 

3.2 How to Utilize Knowledge for FMS (Publication II) 

In FMS, the plant operations consider several objectives like keeping the due delivery date of 

production orders, minimizing the production order lead time and maximizing the machine 

utilization rates. These objectives are usually adjusted dynamically depending on the 

production profile, process state and shift models. At the same time, the need for parallel, 

distributed jobs processing in optimal condition poses significant challenges to modern FMS 

plant operations. In response, complex, decentralized and adaptive control architectures are 
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utilized to address the run-time events occurring at the lower factory level, which promote 

integration of various decision support applications. Knowledge-based optimization support 

systems for run-time critical decision-making are the recent derivative terms, which need to 

deal with machine readable manufacturing semantics to apply knowledge inference. Semantic 

technologies and knowledge-intensive manufacturing is a growing research areas and 

Knowledge Base (KB) and inference engines remain at the core of such research. At the same 

time ontologies are considered as the catalyst for formal Knowledge Representation (KR), 

sharing and mediation in distributed environments.  

The work addressed in this manuscript provides a comprehensive semantic foundation within 

an FMS domain, enabling knowledge representation and knowledge exchange through support 

applications. An ontology-based KR is addressed, providing an interpretation of the modelling 

elements in web ontology language (OWL). The aim is to enable precise real-world semantics 

of the FMS facility (production orders, products and resources) allowing knowledge sharing 

and re-use by disparate client applications. The semantic foundation also addresses the 

integration and the update of run-time process information to the OWL ontology model to 

support adaptive client applications. 

3.3 How to Encapsulate and Re-use Production Knowledge via SOA 
(Publication III) 

Technologies, leveraging artificial intelligence at the factory floor, knowledge-based system 

development and machine learning are being studied to make capabilities of self-X properties 

like self-adaptation, self-optimization and self-maintenance available to production systems.  

 

This manuscript addresses a Self-Learning production system, which is a new concept to 

apply cybernetic principles to derive intelligent production systems. The system self-adapts 

and learns in response to the dynamic updates in contextual entities extracted from all factory 

levels. The context awareness approach addresses the integration of control and maintenance 

processes for necessary adaptation, which improves the transparency of complex processes 

and the overall equipment effectiveness especially regarding system availability and 

productivity. A reliable and secure software service-based integration infrastructure using 

distributed networked embedded services in the device space is the key to achieve such 

system. 

Presenting the architecture of Self-Learning production system, this paper mainly analyses 
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how SOA as an architectural paradigm and supporting technologies can be bridged together 

to achieve a seamless enterprise wide connectivity using flexible, loosely coupled and 

reusable services. 

3.4 Ontology-based Context-sensitive Computing for FMS (Publication IV) 

The work carried out in this publication addresses an ontology-based approach to collect 

context-sensitive information from heterogeneous data sources to provide support for 

optimization in FMS. An ontology-based context model is developed to collectively generate 

and manage manufacturing knowledge and utilize it for real-time optimal decision making.  

Firstly, this paper presents a brief review of the relevant state-of-the-art technologies. Context 

modelling using ontologies, bridging of the ontologies to the semantic web paradigm, 

ontology modelling language and applications of ontology in manufacturing are addressed.  

Secondly, this work presents a context-sensitive computing approach to FMS addressing the 

needs for run-time optimization. Ontology-based context modelling and context processing 

through context identification, context interpretation, reasoning and context provisioning are 

discussed as the fundamental requirements of the presented approach.  

A framework for a context-sensitive optimization support system is proposed, integrated on 

top of the generic FMS control platform with an aim of context-based manufacturing 

knowledge delivered to the support applications.  

Finally, this paper considers a practical FMS use case, utilizing a service-oriented 

architecture (SOA)-based control paradigm, as an implementation platform. Defining the 

system architecture in brief, the implementations of the lower level functionalities of 

ontology-based context modelling, interfacing to SOA platform and context extraction from 

run-time raw monitored data are reported.  

3.5 Context-sensitive Optimization of the KPIs for FMS (Publication V) 

Dynamic job (re) scheduling and dispatching are becoming an essential part of modern FMS 

plant controls in addressing the chaotic nature of the production environment. Process plans 

in FMS need to consider several factors at run-time like demand fluctuations, extreme 

product customisations and run-time priority changes. To meet this plant-level dynamism, 

complex control architectures are utilized to provide an automatic response to such 

unexpected events. These run-time responses from the control systems deal with final 

moment change of the control parameters, which eventually influences the key performance 

indicators (KPIs) such as machine utilization rate and overall equipment effectiveness (OEE). 
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Execution of the plant level objectives (e.g. Keeping a higher machine utilization rate at run-

time) in a chaotic job processing order is hence becoming crucial.  

As mentioned in section 3.4, Publication IV reports the lower level implementation to the 

SOA-based FMS use case to provide the functional requirements of extracting standardized 

monitoring data from use-case web services (WS). The focus is to convert raw monitoring 

data to web ontology language (OWL) instances, populating and updating of dynamic entities 

to an ontology-based context model. In publication V, the work reports detail features and 

functionalities of higher level components in achieving the overall context-sensitive 

optimization for FMS, focusing on the run-time device-level KPI optimization. The reference 

architecture is elaborated by introducing higher level components for context management 

and their functionalities. An optimization support system (OSS) is addressed, where an 

optimization algorithm consumes contextual changes specified to the KPIs and suggests 

optimal job (re) scheduling and dispatching, maintaining a higher machine utilization rate at 

run-time.  
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3.6 Summary  

The main contribution presented in this thesis is illustrated in figure 11, resulting in a new 

approach for runtime optimization methodology at the KPI level in a dynamic operating 

environment of FMS based on context-sensitive computing.  

 
Figure 11. Main contribution area of the thesis. 
 
Below table 3 summarizes the main results from the listed five publications in this thesis that 

contribute to this novel application of context-sensitive computing to FMS optimization.  

    

Table 3. Main results as an outcome of this thesis. 
 

Publication  Research method Results 

Publication I 
Optimization for AL-based 
manufacturing 

Methodology for balancing mixed-
model assembly lines (MMALs) 
combined with sequencing 
heuristic for optimal line balancing 
and product sequencing.  

Optimization in the 
manufacturing process, 
identification of KPIs that 
directly influences the plant 
operations.   

Publication II 
How to utilize knowledge 
for FMS 

Ontology-based knowledge 
representation: domain ontology 
model development for FMS that 
captures and formally represents 
the manufacturing semantics from 
heterogeneous data sources 
allowing knowledge sharing, re-
use and update. 

A comprehensive semantic 
foundation enabling the plant 
operations to become 
knowledge intensive, 
distributed and collaborative in 
nature. This also facilitates 
knowledge management 
among various design tools and 
knowledge exchange in an 
adaptive operation 
environment through decision 
support applications. 
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Publication III 
How to encapsulate and re-
use production knowledge 
via SOA 

Bridging of adaptive production 
techniques and SOA as an 
architectural paradigm with an aim 
to achieve a seamless enterprise 
wide connectivity using flexible, 
loosely coupled and reusable 
services. 

Application of SOA-based 
technologies to the lower 
factory level in achieving 
knowledge intensive and 
adaptive production system. 
 

Publication IV 
Ontology-based context-
sensitive computing for 
FMS 

Integration of context-sensitive 
computing, on top of an existing 
SOA-based FMS control platform.  

An approach addressing how to 
extract manufacturing contexts 
at source, how to process 
contextual entities by utilizing 
an ontology-based context 
model and 
how to implement this 
approach for real time decision 
making 

Publication V 
Context-sensitive 
optimization of the KPIs 
for FMS 

Context-sensitive optimization for 
SOA-based FMS, considering the 
dynamic machine utilization rate 
and overall equipment 
effectiveness (OEE) as the key 
performance indicators (KPIs). 

A common interface for 
context acquisition and context 
management to deduce high 
level knowledge from raw 
monitored data. An 
optimization support system 
(OSS), where an optimization 
algorithm consumes contextual 
changes specified to the KPIs 
and suggests optimal job 
(re)scheduling and dispatching, 
maintaining a higher machine 
utilization rate at run-time. 
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4 Conclusions and Recommendation for Future Works 

The operating environment of FMS is highly domain specific which in turn puts significant 

challenges to set unified optimal conditions. End users of FMS utilize different run time KPIs 

such as higher machine utilization rate, optimal production order lead time, alignment of due 

delivery dates, minimize the tool flow or a combination of them.  

Moreover, these optimization objectives (KPIs) are dynamic. Their changes depends not only 

on the production profile, but also on the process state and shift model. For example, when 

most of the production load is addressed for direct customer orders it is necessary to keep the 

due dates as a priority. When most of the production is for Kanban manufacturing (stock 

batches) then the highest priority is machine utilization. This is the parallel rationale that the 

KPIs cannot be compared to any specified value, since those are mostly context dependent.     

In this thesis, the proposed context-sensitive optimization demonstrates its effective integration 

within  an  existing  FMS  control  platform,  aiding  the  shop  floor  managers/operators  in  their  

dynamic decision-making process.  

The result of this work shows, how interoperable contextual knowledge of the presented 

architecture can be used to address optimization of KPIs like machine utilization rate and OEE, 

while considering the chaotic job processing nature of FMS plants. 

Exploitation of the addressed context-sensitive optimization enables the users to understand 

that the system supports to decide the optimal production rule and subsequent job scheduling 

which ensures maximum machine utilization at that particular contextual situation.  

The reference architecture and associated modular development for the use-case 

implementation shows that formally modelled knowledge context and subsequent processing 

of those can be productively used in run time decision making through support applications.   

4.1 Concluding Remarks 

The objectives of this work have been achieved by enabling the solution of context-sensitive 

computing to the dynamic environment of FMS, in optimizing runtime KPIs for global factory 

optimization. This brings the bridging of two emerging domains of applied research which are 

context awareness and optimization research on FMS. The results obtained from practical 

SOA-based FMS use case validation also provides the targeted outcome from this research. 
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Therefore, this thesis contributes to the advance of the state of the art in the field of context 

aware manufacturing plant within the defined scope.   

 

4.2 Potential Enhancements and New Research Directions 

The functional implementation of the overall approach to the practical FMS use-case also 

provides a motivation for the further extension of this research. In the future, this research can 

be extended to incorporate a learning behaviour to the OSS, based on the operator’s actions to 

the suggested optimization proposals. Such learning behaviour requires the operator to give 

feedback to each suggested optimal condition. Otherwise the system does not get right data for 

learning and learning-based proactive decision making.  Data mining tools can be integrated to 

identify the contextual patterns of the operators’ decisions, which can eventually be the feed 

for further KPIs identification and research. These patterns can be used to provide prior 

knowledge to the OSS. 
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This article presents a context-sensitive optimisation approach for flexible manufacturing systems (FMSs), considering
dynamic machine utilisation rate and overall equipment effectiveness (OEE) as the key performance indicators (KPIs). Run-
time contextual entities are used to monitor KPIs continuously to update an ontology-based context model and subsequently
convert it into business-relevant information via context management. The delivered high-level knowledge is further utilised
by an optimisation support system (OSS) to infer optimal job (re)scheduling and dispatching, keeping a higher machine
utilisation rate at run-time. The reference architecture is presented as add-on functionality for FMS control, where a modular
development of the overall approach provides the solution generic and extendable across other domains. The key
components are functionally implemented to a practical FMS use-case within service-oriented architecture -based control
architecture. Test runs are performed in a simulated environment provided by the use-case control software, and the results
are analysed, which indicates an improvement of the dynamic machine utilisation rate and the enhancement of the OEE.

Keywords: context; flexible manufacturing systems (FMS); optimisation; key performance indicator (KPI); service-oriented
architecture (SOA); web service (WS); web ontology language (OWL)

1. Introduction

Dynamic job (re)scheduling and dispatching are becoming
an essential part of modern FMS plant controls in addres-
sing chaotic nature of the production environment. Process
plans in FMS need to consider several factors at run-time,
like demand fluctuations, extreme product customisations
and run-time priority changes. To meet this plant-level
dynamism, complex control architectures are utilised to
provide an automatic response to the unscheduled/unex-
pected events. These run-time responses from the control
systems deal with final moment change of the control para-
meters, which eventually influences the key performance
indicators (KPIs) such as machine utilisation rate and over-
all equipment effectiveness (OEE). Execution of the plant-
level objectives (e.g. keeping a higher machine utilisation
rate at run-time) in a chaotic job processing order is hence
becoming crucial. In response, modern FMS plant controls
are moving towards more decentralised and adaptive con-
trol architectures, promoting the integration of different
support applications for global factory optimisation
(Uddin, Dvoryanchikova, Lobov, et al. 2011).

An approach for context-sensitive computing for FMS
optimisation (Uddin et al. 2012) defines the state-of-the-art
technologies and associated core functionalities. The sys-
tem integration is addressed on top of the generic FMS
control platform as a decision-support application. A con-
text-sensitive computing defines how to extract manufac-
turing context at source, how to represent contextual
entities formally through an ontology-based context

model, how to provide a common interface for context
acquisition, how to reuse and update and how to address
context management to deduce high-level knowledge from
the raw monitored data. The optimisation is envisioned by
means of a support application that consumes critical
change in contexts, adapts content and suggests optimal
conditions. A partial implementation (development of
lower level components) is reported to a practical FMS
use-case within service-oriented architecture (SOA)-based
control architecture. The lower level implementation pro-
vides the functional requirements of extracting standar-
dised monitoring data from use-case web services (WSs),
converting those to web ontology language (OWL)
instances, populating and updating of dynamic entities to
an ontology-based context model.

In this manuscript, detail features and functionalities of
the overall approach of context-sensitive optimisation for
FMS are reported, focusing on the run-time device-level
KPI optimisation. The reference architecture is presented
introducing higher level components for context manage-
ment and their functionalities. An optimisation support
system (OSS) is addressed, where an optimisation algo-
rithm consumes contextual changes specified to the KPIs
and suggests optimal job (re)scheduling and dispatching,
maintaining a higher machine utilisation rate at run-time.
A graphical user interface (GUI) is developed where the
optimisation proposals are suggested for the operator’s
feedback. Several SWRL (semantic web rule language)
rules bridged with Jess rule engine (O’Connor et al.

*Corresponding author. Email: mohammad.uddin@tut.fi

International Journal of Computer Integrated Manufacturing, 2014
http://dx.doi.org/10.1080/0951192X.2014.941403

© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

62
.6

1.
67

.2
28

] 
at

 0
1:

20
 0

8 
Se

pt
em

be
r 

20
14

 



2005) provide the reasoned knowledge (updated periodi-
cally by GUI component) about process and devices to the
GUI for operator’s decision support. The GUI components
are also responsible to validate the operator’s action
(accept/reject). Context-sensitive optimisation of the
KPIs is functionally implemented to the mentioned FMS
use-case, and the higher level implementation details are
reported.

The contribution of this manuscript is threefold. First, a
brief literature review is presented, identifying the context-
sensitive computing in manufacturing and the needs for KPI
optimisation in a dynamic environment of FMS (Section 2).

Second, presenting the reference architecture, the overall
approach is discussed from the implementation point of view
of KPI optimisation, within four interoperable modules. The
higher level components and their functionalities for context
management and context-sensitive optimisation, including
optimisation algorithm, are introduced. User interface is
also presented as a platform for the operator to interact with
optimal conditions while decision-making (Section 3).

Finally, the control principles of the mentioned use-
case are presented in brief, and the overall implementation
of the proposed approach is reported (Section 4). Several
modular tests (JUnit tests) are performed to check the
component’s functionality and interoperability within the
modules. The integrated system is tested by formulating
five test scenarios in a simulated environment, which is
provided by the use-case control software. The results are
analysed focusing on dynamic machine utilisation rate in a
chaotic job processing order (Section 5). The conclusions
are drawn, and future works are outlined (Section 6).
Protégé 3.4.4 (Protégé 2009), Jena API and Java IDE
(Eclipse) tools are used for implementation.

2. Literature review

In manufacturing, the core functionalities of context-sensi-
tive computing is provided by a holistic context model that
considers the context of processes, equipment, products and
the utilisation of (a priori) knowledge for planning of activ-
ities. However, there are several associated challenges of
dynamic context modelling, context capturing and context
processing to fulfil real-time application’s needs (Bettini
et al. 2010). Plant floor-level data are variable (often con-
tinuously variable) as is the quality captured from varied
process and diverse range of sensor types; context modelling
approach must therefore inherently support quality and rich-
ness indication. Contextual information may suffer from
incompleteness and ambiguity as well. Context modelling
and processing must incorporate the capability to handle
these issues (Huang and Webster 2004).

Most common approaches for context modelling are
key-value models, mark-up scheme models, graphical
models such as UML, object-oriented model, logic-based
models and ontology-based models (Moore et al. 2007).

Comparison of different context modelling techniques is
reported by some researchers (Bettini et al. 2010).
However, considering the level of formalism, distributed
composition, applicability to existing environment and
validation, the present research on context modelling is
mostly focused on ontologies (Sattanathan, Narendra, and
Maamar 2006). The recent advancement of ontologies in
manufacturing (Lin et al. 2011) offers the creation of a
common language for sharing manufacturing knowledge
among designers, design tools and software applications.
Formally represented manufacturing knowledge allows
context-sensitive applications development for decision
support (Uddin, Dvoryanchikova, Lobov, et al. 2011;
Sandkuhl and Billig 2007).

FMS process planning is mainly associated with pre-
release and post-release decisions. Pre-release decisions
(e.g. machine grouping, part type selection) include opera-
tional planning problems with pre-arrangement of jobs and
tools before actual operations and addressed during FMS
configuration planning. Different optimisation methods
(Uddin, Soto, and Lastra 2010) based on mathematical
modelling; heuristics, meta-heuristics and simulation-
based approaches are in use to address pre-release problems
and to reduce the computational burden (Chen et al. 2011).
Post-release operations in modern FMS plants are mainly
responsive decisions to sudden changes (e.g. reactive job
scheduling due to priority rule change) and to unexpected
events (e.g. machine failure). At the same time, optimal
decision-making in response to those changes is important
as it affects the KPIs directly (Efthymiou et al. 2011). Run-
time optimisation of the KPIs (e.g. higher machine utilisa-
tion) is hence becoming more challenging, yet necessary,
because a high investment is associated to the processing
devices. Assessment of competiveness for the manufactur-
ing companies is also dependent on KPIs. Each level of a
manufacturing company, from the higher enterprise level to
the lower device level, has its own individual KPIs, and
correlating these different KPIs is a potential challenge
(Juarez and Landryova 2012).

In response, manufacturing controls and associated
research are demanding for adaptive and decentralised con-
trol architectures having dynamic decision-making capabil-
ity to the changing scenarios (Orozco and Martinez Lastra
2006). These complex controls also support the integration
of different application-specific expert systems or decision-
support systems (DSS) that participate and help the decision-
making process of the human in an optimal way. Several
intelligent DSS, such as group DSS, distributed DSS and
decision support, based on knowledge discovery or natural
language and their functionalities are reported in literature
(Faguo et al. 2008). However, they are mostly addressed to
the pervasive computing environment.

With the advancement of semantic web technologies,
knowledge-intensive and context-sensitive applications
supports are extensively researched within the ubiquitous
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and pervasive computing environment (Stokic, Scholze,
and Barata 2011). However, the research on context
awareness is growing in different areas of manufacturing
and relatively new to the production environment like
FMS (Chen, Liu, and Wang 2008). The potential advan-
tages of bridging context-sensitive computing to the chao-
tic operation environment of FMS are mainly to facilitate
manufacturing knowledge management among the design
tools and contextual knowledge exchange in a complex,
adaptive environment.

3. Context-sensitive optimisation for FMS

Context-sensitive optimisation for FMS refers to a generic
decision-support application, integrated on top of the
existing plant control platform. The aim is to optimise
device-level KPIs dynamically, taking run-time contextual
changes into account. KPIs considered for optimisation
are higher machine utilisation rate and the OEE. The
reference architecture is depicted in Figure 1, consisting
of four core modules: (1) Interface to plant control plat-
form and data access layers for context extraction and
update, (2) Context management for processing of the
extracted context to deduce high-level knowledge con-
texts, (3) context-sensitive optimisation as an OSS module
and (4) A GUI to integrate the user in the loop and to
implement the optimal decision.

User-oriented integration provides a mean for plant
managers/operators to improve the operations by better
understanding and assessing the impact of suggested opti-
mal conditions. The key features and functionalities
include:

(1) Interface to plant floor control and data access layer:
The existing data access layers are considered as the
sources for context extraction. Appropriate level of inter-
facing between model-based monitoring (OWL ontology)
and data access layers ensures the required level of con-
nectivity and interoperability. This allows the extraction of
contextual entities, conversion of those entities to OWL
instances and populating and updating of context model
for higher level processing. Information about control
parameters, process, product and resources is extracted
from the existing data servers, service database, plant
SCADA in terms of text files, measurement/sensor data,
NC configuration files, XML files and WS description
language (WSDL) files depending on specific plant-level
architecture.

(2) Context management: Context model, context inter-
pretation, context repository and context brokering are the
core components of the context management layer.

● Context model: An ontology-based (OWL) context
model functions as a primary data model for context
extraction and update. The associated contextual
entities are run-time process preferences of pro-
ducts, device skills and physical capabilities of the
equipment. A semantic model (ontology) provides
the formal representation flexible enough to support
common modelling of context in a structured way,
as well as domain-specific extension to the model.

● Context interpreter: Context interpretation utilises the
populated context model (with raw monitored data) to
process meaningful knowledge context. The process
utilises a model repository, context identification

Figure 1. Reference architecture of the proposed approach.
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module and rule-based reasoning to provide the
required functionalities. The model repository con-
tains ontology model for plant-specific resources, pro-
duction processes and products. It allows processing
of SPARQL queries (SPARQL Query Language for
RDF, http://www.w3.org/TR/rdf-sparql-query/) at
run-time. Context identification module maps the
monitored information with the model repository to
identify support application-specific instances (e.g.
KPI-relevant instances) and creating a refined context
model. Context reasoning is further applied to deduce
a high-level, implicit context from low-level, explicit
context and to check consistency and reliability.
Domain-specific rule-based reasoning (SWRL rules)
allows inferring implicit knowledge about the status of
running system that are transferred to the GUI for as a
mean for user’s decision support. The refined context
model is stored in repository as reference context and
updated periodically.

● Context repository: Context repository allows
update and storage of extracted/processed contex-
tual information for later retrieval. A context repo-
sitory is addressed by using relational database
(RDB) and Jena framework. Java-based tool Jena
(Dickinson 2009) exposes the data contained in
RDBs as virtual resource description framework
(RDF) graphs that can be navigated or queried as
a SPARQL endpoint. The tool provides a general-
purpose mechanism for mapping tables and col-
umns of RDBs to the classes and properties of an
ontology. Jena is designed to require minimal con-
figuration to quickly expose a RDB to RDF knowl-
edgebase utilising semantic database (SDB). SDB is
a Jena component for RDF storage and query spe-
cifically to support SPARQL, which is integrated on
top of an SQL database. An SDB store can be
accessed and managed with the provided com-
mand-line scripts and via the Jena API.

● Context broker: A context broker disseminates con-
textual knowledge to the support application rele-
vant to the KPIs. The broker utilises context
provisioning through SPARQL queries to carry per-
tinent data and delivers those to the support appli-
cations. Run-time contextual knowledge can be
provided proactively (proactive context provision-
ing, push) or based on the request from support
application (on demand context provisioning,
pull), specified to the application’s need.

(3) Context-sensitive optimisation: The functionalities of
this module are realised by an OSS, having the interoper-
ability with context management and GUI components.
An optimisation algorithm remains in the core of OSS.
The flow diagram of the algorithm is depicted in Figure 2.
Optimisation cycle initially starts from context broker in

context management layer. Broker periodically analyses
the refined context model from the repository via context
provisioning and push current context to the optimiser
(OSS). Context consumption and content adaptation com-
ponents read the context to map predefined instances of
KPI with the current context and extract the properties.

Context similarity measurement compares current con-
text with the reference context to identify how similar they
are, a real number between 0 and 1. A text-based similarity
measurement (Ahn et al. 2005) is widely adopted; however
there are associated limitations in the domain of search
engines, collaborative filtering and clustering. For instance,
two same terms can have different meaning and vice versa. A
hierarchical domain structure model (Ganesan, Garcia-
Molina, and Widom 2003) overcomes such limitations, and
this model is exploited in implementing the FMS use-case.
The following algorithm compares the similarity between
two sets of same KPI instances from refined reference con-
text model and current context model.

Input: Two sets of KPI instances to be compared
Set R [r1, r2, r3…rn] and set C [c1, c2, c3…cn]

Output: Similarity measure s
Start
s=0
If set R is not null
For each element ri in set R

Compute its similarity with each element in
set C
Select max value as the similarity measure Si

Add si to s
Return s=s/(the number of set R elements)
Else
Return s=1

End

e.g. Compute Sim (r, c) = [2 × depth{LCA(r,c)}]/[hierarchy
tree depth(r) + hierarchy tree depth(c)]

Similarity values can be asymmetric in using this model.
However, only maximum result (i.e. similarity value 1) is
considered in determining similar contextual situation.

When a contextual change is identified (context simi-
larity value between 0 and 1) at KPI instance level, the
machine utilisation rate is computed for that particular
context situation (currently selected production rules) and
for the alternative rules. Examples of production rules in
FMS for job scheduling and dispatching are FIFO (first in
first out), FOFO (first off first on), ORDER PRIORITY
(job processing as per the priority order) and LOAD TIME
(job processing as per lowest/highest load time).

Machine utilisation in manufacturing is usually com-
puted using the ratio of real machining time and planned
machining time. The algorithm considers the NC program
time (program execution time) as the real machining

4 M.K. Uddin et al.
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times. Planned machining time is either 24 hours or
planned time from the factory calendar, for instance
24 hours planned maintenance.

The rule, having the highest machine utilisation, is
suggested to a separate GUI for user’s feedback (accept/
reject proposed rule based on current context). In either of
the actions, reference context in the repository is updated
with the current context.

(4) User interface: A GUI enables the OSS component to
interact with a human operator for final decision-making.
The GUI presents optimisation proposals to the operator for
acceptance or rejection. In addition, the operator is able to
modify the proposals before accepting them. The proposal
is implemented to the system once the operator accepts, and
the reference context is updated as the current context. The
result of operator’s action is also stored under accepted
proposal field with associated context ID in repository.
The GUI just stores the result and associated context ID in
the rejected proposal field if the operator rejects the optimal
proposal. Optimal rule is implementable by the GUI com-
ponent to the system addressing a dynamic reschedule of
the jobs accordingly. Those components also compute the
OEE, multiplying the availability, performance and quality
of production. GUI takes the inputs for available times,
scheduled production and good and bad parts produced
within a specified shift time from the user. However, the
cycle time as defined by the use-case (produced units per

time unit) is updated to the GUI automatically from produc-
tion log for mentioned shift time while computing the
availability.

4. A FMS use-case implementation

The overall approach of context-sensitive optimisation of
the KPIs is implemented to a real FMS use-case. The use-
case produces different parts for industrial robots, hydrau-
lic components and aircraft parts for automotive industries
utilising automated pallet-based machining centres.
Automation system of the use-case is based on rail-guided
vehicles (stacker crane) or industrial robots and combina-
tion of them. Buffers in front of processing stages provide
smooth operation by compensating the characteristic
changes of job processing times, as there is no system
characteristic processing cycle (tact) in the system. This is
due to the parallel processing of production orders (chao-
tic processing order).

Prerequisite for FMS operation is that the set-ups of all
manufactured items are ready in the system. There is no need
for set-up changes in production machines or transportation
equipment between the processing of jobs with different
items. This is normally achieved by using a standard part
carrier (pallet, zero-point fixture) and combining items and
carriers with sets of zero-point information. The process
chain (Uddin et al. 2012) of the use-case addresses automatic

Figure 2. Flow diagram of the optimisation algorithm.
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transfer of pallets within the system, where pallets are uti-
lised as the job-carrying entity to loading stations and
machining cells. Stacker cranes are used for pallet
transportation.

In the following sub-sections, principles of the use-case
control application are briefly presented. Implementation
objectives specified to the use-case and overall implementa-
tion details are also reported.

4.1. Control application software

Use-case control system architecture is based on SOA
principles, where all the production-relevant entities
offer WSs to a Microsoft.Net-based control platform.
A control application software (Figure 3) runs the
FMS in real-time invoking data from available services
(WSDL files). The application contains a set of master
data for product manufacturing and enables the opera-
tions to run in a simulated environment creating the
process devices (one stacker crane for pallet handling,
two loading stations, two machining stations and pallet
storage). The application software is also utilised for
cross-platform communication enabling different client
applications support (e.g. proposed CSOSS) based on
WS interfaces. The service configuration file contains
the description of available interfaces and URLs to
access them. Different published WSs announce the
list of possible loading/unloading jobs, pallet queue,
device status and other associated process parameters
that can be invoked at run-time.

Once the services are initiated using the ‘Start
Service’ button, the service components run in the back-
ground. Application UI (Figure 3) generates basic man-
ufacturing data as the number of pallets to be added and
the number of orders and rounds per order to be man-
ufactured. The application stores all production and
pallet events while running in different persistence
mode. A configured SQL server saves the production
log and states persistence.

4.2. Implementation objectives

The controller utilises a reactive scheduler for run-time job
(clamped into the pallets) scheduling and dispatching. An
event condition action algorithm is used in this regard. An
event occurs when a loading station is free to take a pallet.
The condition follows the production rule set by the
operator. The action refers to creating a schedule/resche-
dule for pallet dispatching based on the selected rule.
Reactive scheduling refers mainly to the variation of pro-
duction rules (e.g. pallet sorting based on load time/order
priority) dynamically to address the changing scenarios at
plant floor level (e.g. addition of new jobs in the running
system, shift change, unscheduled events) or at enterprise
level (e.g. priority order change, due date change). Due to
this rule change and associated pallet rescheduling, the
machine utilisation rate is largely affected; unit production
per time unit decreases (cycle time) and therefore the
overall OEE is decreased.

Implementation of context-sensitive optimisation is
intended to improve the dynamic machine utilisation rate
by evaluating the job dispatching rules at each loading
station (Figure 4). Contexts are extracted from the WSs
and managed through the identification of a refined con-
text model with inferred knowledge about process and
device status. Any changes in context, relevant to the
KPI (instances of a refined context model), are identified
for the scenarios like the operator has changed the loading
station rule, new orders are created, new pallets are added
to the system, production priority value has changed,
status of the machining cells has changed and some job
has finished processing. The inferred knowledge from the
refined context model is delivered to the GUI and updated
based on context change for decision support.

The OSS computes the machine utilisation rate for the
extracted current context (e.g. current rule, pallet queue,
loading time, machining times, device status). Then, it
computes the utilisation rate for alternative rules taking
the same queuing pallets into account. If a higher utilisa-
tion rate is found, it (re)schedules the pallet dispatching

Figure 3. Use-case control application software UI.
Figure 4. The main UI of the control software: loading station
rule change to address reactive scheduling.
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order and suggests associated rule to the GUI. In this
manner, the integrated system periodically suggests the
user to select a production rule and reschedule the jobs
accordingly (if accepted), which have the higher machine
utilisation rate for that particular context situation.

4.3. Implementation details

The overall implementation is done as a Maven-managed
Java project. The project is split into two Maven modules:
cso-fms-core, which contains the core interfaces, and
classes that are envisaged to be generic for potential
FMS use-cases, and cso-fms-usecase1, which extends the
core module to account for the implemented use-case
control system. The implementation of the program logic
and the GUI for this specific use-case is interpreted as
usecase1.

4.3.1. Context extraction interface

The interface between the WS-based SOA control plat-
form (Uddin, Dvoryanchikova, Lastra, et al. 2011) and
context model (OWL ontology) is done by creating simple
Java applications that invoke the WSs from the service
database to monitor the status of the production system.
WSs invocation is implemented through dedicated client
applications applying client stub code from WSDL
description. A client application uses the stub code to
invoke the corresponding WS as well as to publish the
extracted information. Apache Axis2 (http://axis.apache.
org/axis2/java/core/) includes command-line application,
wsdl2java, for generating client stub code from WS,
WSDL description. As command-line parameters, the
application takes the WSDL file location, the name of
the WSDL port type for which to create client code and
the package name to use for the generated Java classes.

The code is copied into an IDE (Eclipse) within a Java
project. A Java program is written that uses client stub
code to retrieve data from the WSs and populates and
updates the context model with OWL instances.

4.3.2. Context extraction and modelling

A generic ontology-based context model, modelled with
Protégé, is created which includes the main concepts and
properties associated to FMS. Then, the model is extended
for the specific use-case. Extension is achieved by creating a
new OWL document which imports/reuses the generic con-
text model and defines domain-specific concepts and proper-
ties extending those in the generic one. It may be
unnecessary and computationally complex to extend the
generic model to cover all aspects of the use-case that are
visible through the external interfaces. Therefore, the exten-
sion is done in accordance to the production order taxonomy,
and the relevant services are invoked to extract contextual
entities. The invoked services are manufacturing cell service,
loading station service, machine pallet service, manufactur-
ing process service, manufacturing template repository ser-
vice and NC program library service. Figure 5 illustrates the
class diagram of the context model, including the mentioned
concepts and associated attributes.

4.3.3. Context model population and update

To extract the contextual entities from the running services and
to populate and to update the context model from the SOA
platform, the following Java classes are implemented: (1)
UseCaseAnalyser – invokes the running services and creates
objectmodel storing themonitoring data. It uses the client code
generated from WSDL files to invoke the WSs and stores the
retrieved data in a new LoadingStationTasksMonitoringData
object, (2) UseCaseMonitoringData – provides an object

Figure 5. A class diagram of the context model.
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model for extracted data on the control application software
and (3) UseCaseContextIdentifier – analyses the obtained
monitoring data and creates corresponding OWL individuals
to populate the context model. Figure 6 contains a sequence
diagram illustrating the process in which the context identifier
projects the monitoring data of loading station tasks to the
corresponding OWL individuals in the context model.

The sequence diagram is simplified and shows only
the main steps of creating the individuals corresponding to
the task collections and tasks as well as linking them
through property assertions. The other concepts, such as
production orders and operation plans, are projected to the
context model using the similar process. Junit (JUnit.org

Resources for Test Driven Development, http://www.junit.
org/) tests are performed in eclipse environment, which
provided the accurate behaviour of the UseCaseAnalyzer
and UseCaseContextIdentifier class.

4.3.4. Context management

Context management is implemented by the creation of a
refined context model which identifies the KPI instances
(Figure 7) for computing the optimal machine utilisation
rates. Rule-based reasoning is applied to infer high-level
knowledge contexts, and the refined model is stored in a
repository. The current implementation uses the working

Figure 6. A sequence diagram defining the context extraction and update for the use-case.

Figure 7. The class hierarchy of the refined context model with identified KPI instances for machine utilisation rate computation
(contains only a few classes).
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memory as the context repository. Few examples of
applied rules are: (1) Pallets with highest production
order priority, (2) Pallets with lowest production order
priority, (3) Total machining time for queuing pallets, (4)
Loading station’s status and (5) Machining station status.

Rule-based reasoning (inference of new knowledge by
SWRL rules and Jess rule engine) examples are presented
in Table 1. The GUI components also utilise this inferred
knowledge to provide explicit process and device status in
the OSS GUI for operator’s decision support.

The refined context model is further utilised (context
provisioning) by the optimiser through the context broker.
The broker processes SPARQL queries to extract the
knowledge from context repository and push it to the
optimiser (support application). Example of run-time
query to identify pallet priority queue is presented in
Table 2:

4.3.5. Context-sensitive optimisation: overall controller
cycle

The context-sensitive optimisation (OSS) analyses the
control system status periodically to provide optimal

proposals to the GUI. The proposals that the OSS makes
entail changing the loading station prioritisation rules to
either LoadTime or OrderPriority. The OSS functionalities
are tailored and simplified to meet the requirements of the
use-case, where the OSS consists of two main compo-
nents, which are manifested as the Java classes
OptimizerGui and ControllerLoop. The main control is
given to the ControllerLoop class, which periodically
analyses the use-case system status (from the refined con-
text model), informs the GUI of the current context model
and initiates the computation of a new optimisation pro-
posal. The cycle length is set to 15 seconds. However, if
the system determines that a new optimisation is in order,
the next scan cycle is not started until the operator has
either accepted or rejected the optimisation proposal.
Figure 8 shows a simplified flow chart of the main control
cycle, and Figure 9 shows a sequence diagram of the
corresponding Java code execution.

4.3.6. Graphical user interface

The GUI is developed using the Java Swing framework.
While the work has been mainly performed in the Eclipse

Table 1. Example of SWRL rules processed with Jess rule engine.

Sample rules SWRL syntax

Pallets with highest production order priority PalletPriority (?p)^hasPriorityValue(?p,?x) →Query:max(?
x)

Pallets with lowest production order priority PalletPriority (?p)^hasPriorityValue(?p,?x) →Query:min(?x)
Total machining time for the queuing pallets in LS (sum of NC programs) JobsInQueuingPallets(?p) ^ncProgramTick (?p,?x)→Query:

sum(?y)
Machining station status MachineStation(?p) ^hasPallet(?p,true) →Busy(?p)
Loading station status LoadingStation(?p) ^hasPallet(?p,false) →Free(?p)

Table 2. Example SPARQL query to identify the priorities of the queuing pallets.

SPARQL query Query syntax

Query to identify the run-time
priority of the queuing pallets waiting to be
processed

PREFIX uc1: <http://www.cso-fms.fi/ontologies/cso-fms/usecase1-refined-
context.owl#>

PREFIX gen: <http://www.cso-fms.fi/ontologies/cso-context.owl#>
SELECT ?palletName ?minPriority
WHERE {
?pallet uc1:hasName ?palletName .
?pallet uc1:hasTask ?task .
?task uc1:belongsToOrder ?order .
?order uc1:hasPriority ?minPriority .
FILTER (
NOT EXISTS {
?pallet2 uc1:hasTask ?task2 .
?task2 uc1:belongsToOrder ?order2 .
?order2 uc1:hasPriority ?priority .
FILTER (?priority > ?minPriority)
})
}
ORDER BY DESC (?priority)
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IDE, the project should be supported by alternative main-
stream development environments.

The implementation of the method in OptimizerGui
appends the optimisation proposal in the history table.
Once the operator has accepted or rejected the proposal,
potentially after modifying it, the GUI executes the pro-
posal in the system and returns the Boolean value true.
The method returns the value false only when the user
accepts the proposal, but executing the decision in the
system fails.

The GUI consists of the main window for providing
optimisation proposals comparing the machine utilisa-
tion rate for a particular contextual situation and an
auxiliary dialog for computing the OEE value. The
main GUI window (Figure 10) consists of two panels.
The left panel shows the current status of control system
(inferred knowledge from the refined context model)
and the right panel shows optimisation suggestions.
The right panel also allows modifying the optimisation
suggestions by selecting a different prioritisation rule.
Finally, the right panel allows the operator to accept or
reject the proposal.

Current Process Context View (Left GUI Panel): The
current process context view shows the current loading
station and manufacturing cell statuses in tabular form.
Devices that contain a pallet are indicated as busy. In
addition, loading station statuses also include the prioriti-
sation rule currently used in selecting loading jobs. For
example, as it shows in the left panel of Figure 10, loading
station 1 contains a pallet, the other devices do not contain
pallets and both loading stations use the LoadTime prior-
itisation rule. The centre part of the left panel shows the
current value of the parameter that the OSS aims to max-
imise, the machine utilisation rate. Finally, the bottom part
of the panel shows the current loading station pallet queue

Figure 9. When the OSS is activated, it repeats the control cycle at 15-second intervals.

Figure 8. Each OSS control loop cycle lasts 15 seconds, or
until the operator has accepted or rejected the potential optimisa-
tion proposal.
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sorted according to the current prioritisation rule. The
pallet queue is used in computing the machine utilisation
rate as indicated in Equation (1).

The machine utilisation depends on the machining
times of the pallets in the queue.

U ¼ M1 þM2 þM3 . . . . . .þMn

S
� 100 (1)

where U is the machine utilisation rate, Mn is the machin-
ing time of the nth pallet in the queue, and S is the shift
time, which is set to eight hours.

Optimisation Suggestions View (Right GUI Panel): The
right panel shows all optimisation suggestions in a table.
If the last suggestion is in the Pending state, it can be
modified by specifying a different prioritisation rule in the
fifth table column, which is initially empty. If the operator
does not specify any value, the system will use the pro-
posed prioritisation rule upon optimisation acceptance.
Finally, operator has the option to either accept or reject a
pending optimisation proposal. In Figure 10, the right panel
shows a state where the last optimisation proposal is pend-
ing for operator decision. To execute an optimisation deci-
sion in the control system, OptimizerGui invokes the
SetPrioritization mode operation of the correct loading
station. To invoke the operation, OptimizerGui uses the
WS client code generated with the Axis2 WS stack and
embedded into the UseCase module. The description of
currently selected optimisation can be viewed in the lower
part of the panel. In particular, the panel shows the result-
ing machine utilisation rates for the proposed prioritisation
rule and the rule selected by the operator.

Calculate OEE Dialog: The operator can utilise the dialog
for computing OEE by clicking on Calculate OEE button.
The dialog contains a text field where the operator may
enter the parameters required for computing the OEE. All

values must be represented using the same unit, but other-
wise the time unit is irrelevant. In addition, the dialog
contains the Update cycle time button for retrieving the
current cycle time automatically from the control system
and the combo box for selecting the time unit in which the
cycle time should be updated. Once the operator has
entered all OEE parameters, the OEE value can be calcu-
lated by clicking on the Calculate OEE button (Figure 11).

5. Results and discussions

The integration of existing plant floor control (SOA based)
and context management layer is a key characteristic to
monitor and capture contextual entities from data access
layer. Addressed Java-based WS invocation method pro-
vided the required level of details to monitor the status of
production system and also periodic context model popu-
lation and update considering the KPIs in scope (maximise
machine utilisation rate and OEE). Context management
functionality allows to maintain domain-specific ontology
during the process of context-sensitive optimisation,
including ontology refinement based on context identifica-
tion and reasoning. The OWL-based context model pro-
vides an integrated model of knowledge and its generating
and using context.

Context identification allows primary identification of
high-level knowledge context from the available low-level
monitoring data. Context reasoning provides precise and
meaningful context out of the identified context, through a
combination of ontological reasoning and rule-based reason-
ing. Context similarity measure utilises the hierarchical class
tree defined in context model to compare similarity between
reference context and current context. This hierarchical tree
model requires a well-defined taxonomy of the context
model; otherwise, there can be only two values computed
out from the similarity measure (i.e. 1 and 0). This might
occur when a primary context class has missing subclass.

Figure 10. The main GUI window consists of two parts, current process context and optimisation suggestions.
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Domain-specific rule-based context refinement provides
accurate results of similarity measurement.

Periodic contextual updates are parsed to the GUI,
aiding the operator to select the optimal solution based
on current device and process status. OSS analyses the
machine utilisation rate on current context situation and
reschedules the pallet dispatching queue accordingly. This
rescheduled dispatching indicates the candidate pallets
(i.e. jobs) that are possible to feed immediately and also
the planned pallets that can be pushed further to achieve
the calculated machine utilisation rate. Corresponding pro-
duction rule is suggested to the GUI for operator accep-
tance. User experience is also integrated in the decision
validation loop as each time operator provides a feedback
to the optimal rule, the reference context is updated.

OEE is a measure for the manufactures to identify
bottlenecks as far as machine utilisation rate is concern.
Higher machine utilisation rate ensured by the OSS also
indicates higher cycle time, meaning unit production per
unit time is optimal.

To analyse the run-time behaviour of the use-case with
the integrated context-sensitive optimisation, five test scenar-
ios are performed in accordance to the modularity of the
proposed approach. The use-case control application pro-
vides a simulated environment creating the process devices
(Figure 4), which allows running the FMS system as a desk-
top computer application replicating the actual system beha-
viour at run-time. During the implementation phase, several
JUnit tests are also performed, mainly to check the function-
ality and interoperability of the individual modules. Table 3
presents briefly the test scenarios and implementation results.

6. Conclusions and future works

In practice, the operating environment of FMS is highly
domain specific, which in turn puts significant challenges to

set unified optimal conditions. End-users of FMS utilise dif-
ferent run-time KPIs as maximum utilisation rate of produc-
tion machines, minimise lead time of production orders,
keeping the due delivery dates of production orders, minimise
the tool flow in production machines or combination of them.
Moreover, these optimisation objectives (KPIs) are dynamic.
They are changing not only depending on the production
profile but also on the process state and shift model. For
example, when most of the production load is addressed for
direct customer orders, it is necessary to keep the due dates as
priority. When most of the production is for Kanban manu-
facturing (stock batches), the priority it demands is highest
machine utilisation. This is the parallel rationale that the KPIs
cannot be compared to any specified value, since those are
mostly context dependent.

In this manuscript, the proposed context-sensitive opti-
misation of the KPIs demonstrates its effective integration
within an existing FMS control platform, aiding the shop
floor managers/operators in their dynamic decision-mak-
ing process. The result of this work shows how interoper-
able contextual knowledge in the presented architecture
can be used to address optimisation of KPIs like machine
utilisation rate and OEE while considering the chaotic job
processing nature of FMS plants.

Exploitation of the addressed context-sensitive optimi-
sation enables the users to understand that the system
supports to decide the optimal production rule and subse-
quent pallet dispatching which ensures maximum machine
utilisation at that particular contextual situation.

The reference architecture and associated modular devel-
opment for the use-case implementation shows that, formally
modelled knowledge in contextual representation run-time
context management can be productively used for run-time
decision-making through support applications.

The functional implementation of the overall approach to
the practical FMS use-case also provides a motivation for the

Figure 11. The OEE calculation dialog can be accessed from the main GUI window.
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further extension of this research. In the future, this research
can be extended to incorporate a learning behaviour to the
OSS, based on the operator’s actions to the suggested opti-
misation proposals. Prerequisite for such learning behaviour
requires the operator to be active and give feedback to each
suggested optimal conditions. Otherwise, the system does
not get the right data for learning and learning-based proac-
tive decision-making. Data mining tools can be integrated to
identify the contextual patterns of the operator’s decisions.
These patterns can be used to provide prior knowledge to the
OSS. The implementation of the context repository and the
online help system of the OSS GUI will be addressed with
the future extension of this work.
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