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Abstract 

 

The power distribution network will be changed towards the future Smart Grid due to increased 

number of installed renewable power generation units to fulfill the tightened environmental 

regulation. The control of the future Smart Grid will be challenging due to increased number of 

renewable power generation units, which are variable in nature, and at the same time, the cus-

tomers are highly dependent on uninterruptable, high quality power supply. The Smart Grid 

control is intensively studied. It can be concluded that the control might be simpler and the grid 

operation more reliable if the AC grid would be replaced by DC grid. However, the detailed 

energy efficiency analysis of the DC grid is not thoroughly studied. The efficiency and total 

lifetime costs are the key parameters when the network owners consider the future grid structure. 

This thesis addresses the factors, which affect the energy efficiency of the low voltage DC 

(LVDC) distribution network from power electronics perspective. The power loss models for 

the converters and their AC filters are developed and verified by measurements. The impact on 

the converter topology, used power semiconductor switches, AC filter design and inductor core 

material, DC network configuration, customer behavior, the need of DC voltage balancing in 

the bipolar DC network as well as the grounding issues to fulfill the electrical safety standards 

are treated. For facilitating the design of cost effective LVDC distribution networks, the total 

power losses of the network with different configurations are evaluated and compared.  

It is revealed that the used filter inductor core material has a significant impact on the power 

losses of the LVDC distribution network. The inductor core material having low high-frequency 

power loss characteristics, such as amorphous alloy, is recommended. The LVDC distribution 

network should be grounded to minimize the power losses whenever it is possible according to 

the local safety standardization and grounding conditions. The three-level NPC converters con-

nected to 1500 VDC should be used to minimize the power losses. The grid-frequency isolation 

transformer is the main power loss source if the galvanic isolation is needed to isolate the un-

grounded LVDC distribution network and the grounded customer electrical installations. In this 

case, the highest energy efficiency is achieved by using two- or three-level converters connected 

to 750 VDC if the DC cable length is less than 600 m. Otherwise, slightly higher energy effi-

ciency is achieved by using three-level converters connected to 1500 VDC. Therefore, voltage 

transformation ratio of the isolation transformer must be 800V/400V instead of 400V/400V. 

Moreover, the efficiency of the power converters is increased by using SiC MOSFETs instead 

of conventional IGBTs as power semiconductor switches.  
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Nomenclature 

Abbreviations 

 

AC alternating current 

ANPC active neutral point clamped  

DC direct current 

EV electric vehicle 

HVDC high voltage direct current 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

IGBT insulated gate bipolar transistor 

LCC line commutated converter 

LVAC low voltage alternating current 

LVDC low voltage direct current 

MMC modular multilevel converter 

MLT mean length per turn  

MOSFET metal-oxide-semiconductor field-effect transistor 

MPPT  maximum power point tracking  

MV medium voltage 

NPC neutral-point clamped  

PCC point of common coupling 

PF power factor 

PFC  power factor correction 

PI proportional-integral (controller) 

PLL phase locked loop 

PV photovoltaic  

PWM pulse width modulation 

SHE single harmonic elimination (modulation method) 

SiC silicon carbide 

SVM space vector modulation 

THD total harmonic distortion 

UPS uninterruptable power supply 

VSC voltage source converter 

VSI voltage source inverter 

 

Greek characters 

 

α coefficient, Steinmetz parameters and temperature coefficient 

β coefficient, Steinmetz parameters 

δ skin depth 

η energy efficiency, porosity factor 

μ permeability 

μr relative permeability 

μ0 vacuum permeability 

ρ resistivity 
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σ  electrical conductivity  

φ phase angle  

φs angle of the positive sequence grid voltage 

ω angular frequency 

Latin characters 

Ac core effective cross-sectional area  

B magnetic flux density  

Bsat saturation magnetic flux density 

C, C capacitance, capacitor 

C1, C2 upper and lower DC bus capacitors 

Ccust capacitor of customer converter AC-filter 

Cgrid capacitor of grid converter AC-filter 

D diode 

d duty cycle, round wire diameter 

E electrical energy  

Eon sum of energy dissipation during turn-on time  

Eoff sum of energy dissipation during turn-off time 

Err reverse recovery energy of diode  

f frequency 

fsw  switching frequency 

FR relationship RDC/RAC 

hwire height of the square wire compared to round wire 

I, i current, instantaneous current 

î peak value of current 

Ic nominal collector current 

Iref reference current value of the switching loss measurement 

L, L inductance, inductor 

lag air gap length in the inductor 

lw width of the copper wire layer 

Lbal balancing inductor 

Lconv converter side inductor of grid converter 

Lcust inductor of customer converter AC-filter 

Lgrid AC-grid side inductor of grid converter 

m  mass of the inductor core 

M number of winding layers in the inductor 

ma modulation index 

N number of copper wire turns in the inductor 

P active power  

Pcond conduction power losses 

Psw switching power losses 

R, R resistor, resistance 

Rce  IGBT on-state resistance 

Rf  diode on-state resistance 

Rdamp damping resistor of grid converter AC-filter 

S power semiconductor switch, apparent power 

t time  

T cycle time, temperature  

U, u voltage, instantaneous voltage 
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Uref reference voltage value of the switching loss measurement 

Vf   diode forward voltage   
Vt  IGBT collector-emitter threshold voltage   

Z impedance 

 

Superscripts 

 

ref reference value 

 

Subscripts 

 

1 fundamental frequency component 

b base value 

d variable related to d-component 

LL line-to-line 

n nominal 

max maximum value 

q variable related to q-component 

ref reference value 

err error value 

rms root mean square 
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1 Introduction 

This chapter provides the background for the research topics of this thesis and discusses on the 

motivation of the research. A short introduction to the need to renew the present electricity distri-

bution network towards the future Smart Grid is presented. Especially, the possibility of using DC 

grid instead of conventional AC grid is discussed and short literature review on the DC grid re-

search topics is presented. Finally, the main scientific contributions of the thesis are summarized 

and the author’s contribution to the published scientific papers, related to this thesis, is specified.   

1.1 Need to renew electricity distribution network towards the future 

Smart Grid 

The traditional electric power generation is based on large centralized units, where electricity 

generation is based on fossil fuels, nuclear or hydro power. Nowadays approximately 87 % of the 

total energy in the world is produced by fossil fuels and only 13 % by renewable energy sources 

(Bose 2013). Unfortunately, the global fossil fuel reserves are limited and their use is one of the 

main reasons for global warming and climate change (Bose, 2013).  

New power generation forms to replace the use of fossil fuels are extensively researched during 

the past decades and international protocols, such as UN Kyoto Protocol and Europe 20-20-20, 

are implemented to increase the use of renewable energy. The renewables are largest new in-

stalled power generation source in the world (Karabiber et al, 2013; IEA, 2015). The installed 

capacity of the renewable energy accounts 80 % of new established generation capacity in OECD 

countries (IEA, 2015).  International Energy Agency IEA estimates that the coal will be replaced 

by renewables as a largest electric energy production method after 20 years (IEA, 2015).   
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The renewable power generators are small and distributed within the electricity distribution net-

work and the power generation varies on a large scale depending on the weather conditions. The 

network inertia will be inherently limited when conventional generation based on synchronously 

rotating electrical machines will be replaced by inertia-less power electronics interfaced sources. 

Lack of inertia might lead to frequency stability problems in the electricity distribution network 

(Justo et al., 2013; Guarnieri, 2013; Patterson, 2012). The challenges related to the reliability, 

sustainability and overall energy efficiency of the electricity distribution network including re-

newable power generation, energy storage and controllable loads need to be managed in a future 

Smart Grid. The proper control methods need to be developed by using information and commu-

nication technology. The target is to provide uninterrupted and high quality electric power supply 

to the end customers. 

1.2 LVDC distribution network structure 

AC power network has been a standard choice since the late 19
th
 century. The first reason to the 

AC distribution is the use of centralized, synchronously rotating electrical machines to power 

generation and secondly, the transformer has been a cost-efficient and reliable appliance to trans-

form AC voltage into different voltage levels (Justo et al., 2013; Guarnieri, 2013; Patterson, 2012; 

Dragicevic et al. 2014). Electric power has been transferred long distances at high voltage level to 

minimize the power losses and the voltage is decreased to the appropriate voltage level near the 

electric energy consumption (Justo et al. 2013, Guarnieri 2013, Patterson, 2012).  

DC distribution has been used in many applications during these years in spite of the AC distribu-

tion dominance. High voltage DC (HVDC) power transmission systems are used for the long-

distance electrical power transmission and to connecting unsynchronized AC distribution systems 

together (Justo et al., 2013; Guarnieri, 2013). HVDC is used, especially, in long undersea cables, 

where AC is not possible to be used due to cable length-dependent reactive power (Guarnieri, 

2013). The capabilities of DC distribution are analyzed also at the medium voltage (MV) level, 

especially, in large photovoltaic (PV) installation and off-shore windfarms to decrease transmis-

sion losses and the complexity of the control systems. Lack of synchronization and reactive power 

control are the main benefits of the DC distribution (Wang et al., 2014; Wang et al., 2011; Enslin 

and Heskes, 2004; Kakigano et al., 2010a; Roggia et al., 2011; Gu et al., 2014; Byeon et al., 2013).  

The DC distribution is used also for example in vehicles and shipboard systems, aircraft, traction 

systems and automotive industry (Bose et al., 2012; Justo, 2013; Guarnieri, 2013). The use of DC 

increases the reliability, survivability and power quality of the shipboard power system (Bose et 
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al., 2012). An increasing number of AC drives in industrial applications are connected to a com-

mon DC bus leading to cost reduction, reduced space requirements, and improved reliability. 

48 VDC is used conventionally in the telecommunication systems and data centers (Justo, 2013; 

Guarnieri, 2013). The efficiency of a DC powered data center is higher compared to AC powered 

data center due to reduction of required conversion stages, as depicted in Fig. 1.1 (AlLee and 

Tschudi, 2012; Schneider, 2008). The overall efficiency can be increased by 28 % compared to 

typical AC equipment found in data centers (Schneider, 2008).   

a)  

b)  

Fig. 1.1. a) AC data center and b) DC data center 

The possibility to replace part of the present low voltage AC network (LVAC) by using DC dis-

tribution is analyzed in this study. The point-to-point type LVDC distribution network, shown in 

Fig. 1.2, would be the simplest LVDC distribution network configuration. Target is to increase the 

power quality and network reliability without any changes to the customer power supply.  

 

Fig. 1.2. Point-to-point LVDC distribution network 

The power quality would be possible to be controlled more effectively by power electronic con-

verters compared to voltage step-up transformer (Hakala et al., 2015a). The DC network forms its 
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own protection area hence it might simplify the network protection and increase reliability (Haka-

la et al., 2015a).   

Approximately 70 % of all generated power passes through a power electronic converter today in 

US (Reed, 2012; Bose, 2013). It is predicted that nearly 80 % of all power generated would pass 

through a power electronic converter within the next 15 years and most of this occur at low volt-

age level (Reed, 2012; Bose, 2013). Multiple AC/DC/AC conversion stages are needed in the 

future Smart Grid including renewable power generation and energy storages as shown in Fig. 1.3. 

The amount of DC power generation due to PV power and battery-based DC energy storages will 

be increased in the future distribution network. Moreover, many of the customer electric appli-

ances, e.g. home electronics and lightning, operate by DC as well (Kakigano et al., 2009; 

Techakittiroj and Wongpaibool, 2009; Gu et al., 2014, Byeon et al., 2013). The fast charging of 

electric vehicles is also realized by using DC (Rivera et al. 2015, Byeon et al., 2013).  

 

Fig. 1.3. AC microgrid 

The multi-terminal DC microgrid, shown in Fig. 1.4, would be an interesting option to realize the 

future Smart Grid. The amount of AC/DC/AC conversion stages will be reduced compared to 

LVAC grid, shown in Fig. 1.3. (Kim et al., 2013; Kakigano et al, 2010a; Justo, 2013; Guarnieri, 

2013; Brenna et al., 2009; Techakittiroj and Wongpaibool, 2009; Gu et al., 2014; Roggia et al., 

2011, Byeon et al., 2013; Dragicevic et al. 2014). The DC voltage level transformation has be-

come easier and more cost-efficient during the last years due to development of power semicon-

ductor switches and inductor core materials used in the power electronic converters (Justo, 2013; 
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Guarnieri, 2013; Brenna et al., 2009). Measuring instruments, protection devices as well as com-

munication devices needed in the future Smart Grid control can be integrated into the power con-

verters as well (Justo, 2013; Mohsenian-Rad and Davoudi, 2014).  

 

Fig. 1.4. DC microgrid 

The reliability and power quality of electricity supply experienced by the customer would be in-

creased if every customer or customer group have their own converters, which controls the volt-

age amplitude and power quality (Brenna et al., 2009; Lago and Heldwein, 2011; Kakigano et al., 

2010a). The DC network might operate in island mode during the fault in the AC grid if energy 

generation or energy storage is connected to the DC network (Kakigano et al., 2010a; Gu et al., 

2014).  

The DC distribution network might be a cost-efficient and sustainable network configuration to be 

installed to the rural areas having no access to the present public distribution network. PV genera-

tion is already widely installed in the rural areas of South Asia and Africa, and therefore, the DC 

grid can be implemented based on locally generated electricity (Madduri et al, 2013; Bose, 2013; 

Sarker et al. 2012). The applicability of a DC grid is also studied for a remote area mine site, 

where the regenerative brake energy from hoists, draglines and shovels could be reused (Yuan et 

al., 2014).  

1.2.1 Control methods of LVDC distribution network 

The stable operation of the future Smart Grid is more challenging compared to present network 

due to the presence of distributed energy generation, energy storage and loads with their power 

electronic interfaces. A large number of grid connected inverters may cause harmonic instability 

in an AC power-electronics-based power system, because the harmonic interactions exist between 

the energy sources, passive filter circuits and cable impedances (Wang et al., 2014; Enslin and 

Heskes, 2004; Wang et al., 2011; Lago and Heldwein, 201). The converter-based constant power 

loads have also an impact on the stability, transient behavior and power quality of the network 
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(Karabiber et al., 2013; Justo, 2013; Chen et al., 2013; Lago et al., 2011; Guerrero et al., 2011; 

Guerrero et al., 2013; Xu and Chen 2011; Radwan et al., 2012; Brenna et al., 2009; Kakigano et 

al., 2010; Ahmadi et al., 2014).  

One of the main interests of the DC grid research is to analyze the DC grid control. The proposed 

control methods are designed for the multi-terminal DC grid, consisting of a grid converter, power 

generation, energy storage and loads as shown in Fig. 1.4 (Karabiber et al., 2013; Justo, 2013; 

Chen et al., 2013; Lago et al., 2011; Guerrero et al., 2011; Guerrero et al., 2013; Xu and Chen 

2011; Radwan et al., 2012; Brenna et al., 2009; Kakigano et al., 2010; Ahmadi et al., 2014, Byeon 

et al., 2013). The converters connected to the DC grid have two control strategies: regulate the 

power flow of the local terminal (non-controllable loads or the converters, which operate accord-

ing to maximum power point tracking (MPPT) algorithm) or to maintain the voltage stability of 

the DC grid (Gu et al., 2014). The focus of the research is to find the control methods to keep the 

DC voltage balance of the distribution network and to use the renewable energy generators as 

efficiently as possible. 

The DC grid control seems to be simpler compared to AC grid control due to lack of synchroniza-

tion requirements, frequency stabilization, and reactive power compensation (Kakigano et al., 

2010a; Roggia et al., 2011; Gu et al., 2014; Lago and Heldwein, 2011; Byeon et al., 2013; Dragi-

cevic et al. 2014). The only controlled parameter is the DC voltage amplitude compared to AC 

grid, where both voltage amplitude and frequency need to be controlled (Kakigano et al., 2010a; 

Roggia et al., 2011; Gu et al., 2014). The DC network forms its own protection area hence it 

would be easier to use as an island mode during the fault in the AC network compared to the sin-

gle AC network branches operating in an island mode. 

1.3 Motivation of the thesis  

The distribution network will be changed towards the future Smart Grid due to tightened envi-

ronmental regulation. The electric power will be generated locally, changing dramatically the 

network control principles. At the same time, the customers are dependent on uninterruptable, 

high quality power supply. The control methods of the future Smart Grid are widely studied and it 

is proposed that the control might be simpler if the AC would be replaced by DC (Kakigano et al., 

2010a; Roggia et al., 2011; Gu et al., 2014; Lago and Heldwein, 2011). However, the detailed 

energy efficiency analysis of the DC network is not thoroughly studied. The energy efficiency and 

total lifetime costs are the key parameters when the network owners consider the future grid struc-

ture.  
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The LVDC distribution network energy efficiency is investigated only at general level so far, 

excluding verified converter and AC filter power loss analyses (Wang et al., 2008; Justo, 2013; 

Lago et al., 2011; Roggia et al., 2011, Hakala et al., 2015; Hakala et al., 2013; Shenai et al., 2011; 

Kakigano et al. 2012; Brenna et al., 2009; Roggia et al., 2011; Gu et al., 2014; Anand et al., 2010). 

The efficiency of the whole DC network is shown to be proportional to the efficiency of the pow-

er converters (Kakigano et al., 2012; Lana et al., 2014; Shenai et al., 2011). The energy efficiency 

of the power converters should be almost as high as the transformers, > 95 %, also at partial load 

conditions, to increase the energy efficiency of the DC network compared to present AC network 

(Engelen et al., 2006, Kakigano 2012). However, only the energy efficiency of the converters at 

nominal power, specified by the manufacturer, is used so far in the power loss calculations of the 

DC grid. The customer variable load is not taken into account. Moreover, grounding and protec-

tion methods of the DC network are not defined.  

The transmission losses of the DC cable are lower compared to AC cable due to lack of reactive 

power and skin effect (Guarnieri, 2013). According to Wang et al. (2008), the transmission losses 

in the DC cable are 15-50 % lower compared to AC transmission losses at the same voltage level 

and cable size. Low Voltage Directive 2006/95 enables the use of 1000 VAC and 1500 VDC at 

maximum in low power transmission. Lower resistive power losses would be achieved due to the 

use of higher voltage level (Justo, 2013; Lago et al., 2011; Roggia et al., 2011, Anand et al., 2010). 

Therefore, during the last years, 48 VDC is replaced by 380 VDC in data center to increase the 

energy efficiency (AlLee and Tschudi, 2012). The network capacity can be increased by replacing 

LVAC with LVDC network without the need to renew the cables by using the increased voltage 

level (Hakala et al., 2013; Lago et al., 2011).  

The proposed energy efficiency analysis done so far, are concentrated to the use of DC grids in 

office and residential buildings, where the transmission distance is short and the used DC voltage 

level is low, 400 VDC at maximum. The overall energy efficiency and power quality of the resi-

dential house can be increased by using multi-terminal DC microgrid shown in Fig. 1.4 (Justo, 

2013; Kakigano et al. 2010a; Brenna et al., 2009; Roggia et al., 2011; Gu et al., 2014). The num-

ber of AC/DC conversion stages will be reduced. However, multiple DC/DC converters are still 

needed because of various required voltage levels of customer electrical appliances but the energy 

efficiency of DC/DC converters is higher compared to AC/DC/AC converters (Justo, 2013; Ka-

kigano et al. 2010a; Brenna et al., 2009; Roggia et al., 2011; Gu et al., 2014).  

This thesis addresses the factors, which affect the energy efficiency of a 1500 VDC distribution 

network from power electronics perspective. The analytical calculation and simulation models for 

the converter power losses and their AC filters are developed and verified by measurements. For 

facilitating the design of cost effective LVDC distribution networks, the total losses of the net-

work with different configurations are evaluated and the main power loss sources of the LVDC 
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distribution network are revealed. The use of single-phase loads and the possibility to connect 

loads asymmetrically to the bipolar DC network are considered. Moreover, the customer loading 

behavior as well as the grounding issues to fulfil the safety standardization is considered. It would 

be possible to find the most efficient converter topologies, AC filter design method, inductor core 

material, and network configuration by using the provided power loss models.  

1.4 Scientific contribution 

The main scientific contributions of this thesis can be summarized as follows: 

 The power loss simulation and calculation models for power electronics in an LVDC dis-

tribution are developed and verified by measurements. The previous energy efficiency 

analyses are mainly concentrated to the power losses in the DC cable.  

 It is shown that the used filter inductor core material has a significant impact on the over-

all power losses of the LVDC distribution network. The power losses caused by high fre-

quency current in the inductor core should be minimized by using appropriate core mate-

rial. 

 It is revealed that the LVDC distribution network should be grounded to minimize the 

overall power losses whenever it is possible according to local safety standardization and 

grounding conditions. Moreover, the three-level NPC converters with SiC MOSFETs and 

amorphous core AC filter inductors should be used and connect them to 1500 VDC in the 

grounded LVDC distribution network to minimize the power losses. 

 It can be concluded that the isolation transformer operating at 50 Hz frequency is the 

main power loss source if the galvanic isolation is needed to isolate the ungrounded 

LVDC distribution network and the grounded customer electrical installations. The high-

est energy efficiency is achieved by using two- or three-level converters with SiC 

MOSFETs and amorphous core AC filter inductors and by connecting the converters to 

750 VDC if the length of the DC cable is less than 600 m. Otherwise, slightly higher en-

ergy efficiency is achieved by using three-level NPC converters with SiC MOSFETs and 

amorphous core AC filter inductors and by connecting the converters to 1500 VDC. 

Therefore, the voltage transformation ratio of the isolation transformer must be 

800V/400V instead of 400V/400V. 
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verters were created in co-operation with MSc Juha Jokipii and the power loss calculation models 
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1.6 Outline of the thesis 

The rest of the thesis is organized as follows. Chapter 2 presents the power converter topologies, 

their control and modulation methods used in this study. Moreover, the AC filter design methods 

and used AC filter inductor core materials are presented. Next, the LVDC distribution network 

configurations and network grounding methods are discussed. The need of DC network voltage 

balancing depending on the network configuration is discussed and the different balancing meth-

ods are proposed.  

Chapter 3 presents the power loss analytical calculation and simulation models for the power con-

verters and AC filters. Also the power loss simulation models of the balancing circuit, DC cable 

and isolation transformer are presented. The accuracy of the models is verified by measurements.  

Chapter 4 focuses on the impact of power converter to the energy efficiency of the LVDC distri-

bution network. The influence of converter topology, AC filter design method, inductor core ma-

terial, used power switching devices, converter modulation frequency, power quality limitations 

and influence of customer load power factor are analyzed.  

Chapter 5 focuses on the effect of DC network configuration to the energy efficiency. The influ-

ence of grounding methods, DC voltage level, DC cable length and balancing circuit to the overall 

power losses is studied. In addition, the effect of customer single-phase loads to the energy effi-

ciency and impact on the used converter topology depending on the used power semiconductor 

switching devises are revealed. Finally, the influence of the customer loading behavior to the en-

ergy efficiency is treated by calculating the total power losses of the DC network during one year 

by using the loading behavior of a typical Finnish customer. 

Chapter 6 concludes the thesis and proposes future research topics. 
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2 Analyzed converter topologies and LVDC distribution net-

work configurations 

2.1 Introduction 

The power electronic converters are needed to implement the DC distribution network. The 

AC/DC grid converter connects AC and DC networks together and, depending on the customer 

needs, the DC/DC or DC/AC customer converters are needed to transform DC voltage to be ap-

propriate for the customer needs. It is supposed that the customer present electrical installations 

are not changed in this study, hence three-phase 400 Vrms or single-phase 230 Vrms 50 Hz AC 

voltage must be delivered to the customer. Therefore, the discussions in this thesis are limited to 

AC/DC and DC/AC converters.  

Section 2.2 gives an overview on the used grid converter topologies in the LVDC distribution 

network. Also, the control and modulation method of the four-wire, three-level neutral-point-

clamped boost rectifier is shortly presented. Section 2.3 provides an overview on the used cus-

tomer converter topologies. The fundamentals of AC filter sizing and used AC filter inductor core 

materials are introduced in Section 2.4. Section 2.5 provides an overview on LVDC distribution 

network configurations including the problems associated to grounding and DC voltage balancing. 

The required AC filter parameters depending on the used converter topology are compared in 

Section 2.6. Section 2.7 draws the conclusions.     

2.2 Grid converters 

The grid converter controls the power flow between AC and DC networks and regulates the DC 

voltage in the AC grid connected operating mode. It can also control the power factor of the point 
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of common coupling (PCC). The grid converter can be conventional line commutated converter 

(LCC) or voltage-source converter (VSC).  

2.2.1 Line commutated converters 

The line commutated converters are 6- and 12-pulse diode bridges, thyristor bridges or half-

controlled thyristor bridges. Diode rectifier is the simplest and cheapest, robust and high efficient 

rectifier topology but the output DC voltage is uncontrolled and directly proportional to AC volt-

age amplitude. Only unidirectional power flow from the AC network to the DC network is possi-

ble. The diode rectifier produces high amount of odd low frequency harmonics to the AC network, 

as shown in Fig. 2.1b-c. The low frequency harmonics, especially 5
th
 and 7

th
 harmonics, cause 

additional power losses in the AC transformers and cables. The diode rectifier causes high inrush 

current which can broke DC capacitors, and therefore, additional inrush-current-limiting circuit is 

needed.  

The thyristor rectifier is conventionally used in HVDC applications. It is almost as simple, relia-

ble, energy efficient and cheap as the diode rectifier. The DC voltage can be fully controlled. The 

additional inrush-current-limiting circuit is not needed, because the high inrush currents can be 

limited by delay angle control of thyristors. However, the delay angle control causes additional 

harmonics to the AC currents decreasing the power factor of the system. Therefore, the thyristor 

rectifier is used as the diode rectifier in steady state. Reactive power compensation is needed es-

pecially at high power and weak networks (Flourenzou et al., 2009). Only unidirectional power 

flow is possible. The diode and thyristor rectifiers produce 6
th
 harmonic (300Hz) to the DC volt-

ages. The power factor correction (PFC) circuit or large DC capacitors can be used to mitigate the 

DC voltage fluctuation. 

The low frequency AC harmonics produced by 6-pulse rectifiers are possible to be decreased by 

using 12-pulse rectifier, which consists of two series connected 6-pulse rectifiers as illustrated in 

Fig. 2.1a. The low frequency harmonics, especially 5
th
 and 7

th
 harmonics are eliminated in the 

steady state, as shown in Fig. 2.1d-e, due to 30° phase-shift in the transformer (Rekola and Tuusa, 

2011). The half-controlled thyristor rectifier is adequate to limit the inrush currents of the DC 

network (Rekola and Tuusa, 2011).  
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a)    

b)      c)  

d)        e)  

Fig. 2.1. a) 12-pulse half controlled thyristor bridge, b) AC current of 6-pulse thyristor bridge, c) 

AC current spectrum of 6-pulse thyristor bridge, d) AC current of 12-pulse thyristor bridge, e) AC 

current spectrum of 12-pulse thyristor bridge 
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12-pulse rectifiers are conventionally used in HVDC transmission due to decreased harmonics 

and lower required voltage capability of the thyristors. The maximum voltage rating of the thyris-

tors or diodes is half of that required in the 6-pulse rectifier, i.e., udc/2. 

2.2.2 Voltage source converters  

Fully controlled power semiconductor switches are used in VSCs instead of diodes or thyristors. 

The DC voltage can be fully controlled by a VSC, and therefore, the voltage dips of the AC net-

work do not affect the operation of the LVDC network. Large AC filters, which increase the costs 

and volume of the converter, are not needed with a VSC, because the AC current does not include 

low frequency harmonics (Xu et al., 2008; Friedrich, 2010; Flourenzou et al., 2009). The active as 

well as reactive power can be fully controlled by a VSC, and therefore, the power factor of PCC 

can be controlled (Mahmoodi et al., 2006; Xu et al., 2008; Friedrich, 2010; Flourenzou et al., 

2009). VSC enables bidirectional power flow between AC and DC networks. Therefore, large 

amount of distributed power generation can be connected to the LVDC network and the surplus 

power can be supplied to the AC network. 

The two-level VSC, shown in Fig. 2.2, is the most used VSC topology so far due to its relatively 

simple structure and control. The other option is to use multilevel converters. The most common 

multilevel topologies are the neutral-point-clamped converter (NPC), (i.e., diode-clamped), fly-

ing-capacitor converter, (i.e., capacitor clamped) and cascaded multicell H-bridge converter with 

separate DC sources (Franquelo et al., 2008; Rodriguez et al., 2010). Principle of operation and 

structure of NPC converter is presented at first time in 1981 by Nabae et al. The NPC topology, 

shown in Fig. 2.3, is the most commercialized multi-level topology in the market (Franquelo et al., 

2008; Rodriguez et al., 2010). The flying-capacitor-multilevel converters are not widely used due 

to difficulties in the voltage balancing of the cascaded capacitors (Franquelo et al., 2008).  

 

Fig. 2.2. Two- level VSC 
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Fig. 2.3. Three-wire, three-level NPC 

The cascaded multicell converter topologies are used in high power levels in STATCOM and 

HVDC applications, but these have complex structure and control (Franquelo et al., 2008). The 

NPC converter (cf. Fig. 2.3) can produce three output voltage levels: +udc/2 by the switches S1, S2, 

0 by the switches S2, S3 and the clamping-diodes D5 and D6 and -udc/2 by the switches S3, S4. Al-

ways two consecutive switches in each phase leg are conducting.    

The drawbacks of the VSCs are more complex structure and control compared to LCCs, which 

increase the costs and might decrease the reliability. The three-level, so called Vienna rectifier, 

allows the use of reduced number of power semiconductor switches but still achieves most of the 

benefits of NPC (Kolar and Zach, 1994). The Vienna rectifier consists of three IGBTs and 18 

diodes as illustrated in Fig. 2.4. The output terminal of the Vienna rectifier can be connected to 

three voltage potentials just as the NPC converter. The phase A of the output terminal is connect-

ed to the voltage potential + udc when the switch S1 is switched off, the diode D1 conducts and the 

phase current is positive. The output terminal is connected to the voltage potential 0, i.e. to the 

midpoint of the DC intermediate circuit, when the switch S1 is switched on. Finally, the output 

terminal is connected to the voltage potential -udc when the switch S1 is switched off, the diode D6 

conducts and the phase current is negative. Low frequency harmonics are not produced into the 

AC currents and the power factor of the PCC can be controlled. However, only unidirectional 

power flow is possible.  
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Fig. 2.4. Vienna rectifier 

Control and modulation methods of voltage-source converters  

The grid VSC is controlled to produce the desired DC voltage and the grid currents. A control 

block diagram of the four-wire thee-level NPC grid converter is presented in Fig. 2.5. The control 

principles are exactly the same for three-wire NPC, Vienna rectifier and two-level VSC but the 

zero current component isz does not need to be controlled in three-wire topologies. The vector 

control scheme is implemented in the grid-voltage-oriented dq-reference frame. The angle φs of 

the positive-sequence grid voltage is solved by the phase-locked loop (PLL) and used in abc-dqz 

and dqz-αβ0 transformations. The phase voltages are supposed to be symmetrical when the basic 

PLL is used (Kim et al., 2013). The fundamental frequency currents and voltages are transformed 

into DC quantities in the grid-voltage-oriented vector control, and therefore, the steady-state error 

can be eliminated by using PI-controllers.  

The control method is based on cascaded PI-control. The outer control loop regulates the DC 

voltage and provides the reference isd
ref

 for the d-axis current. The active power can be controlled 

by grid current d-component and the reactive power by grid current q-component according to 

(2.1) and (2.2) when usq is zero and usd is constant (Virtanen and Tuusa, 2012).  

 
3 3 3

Re * ( )
2 2 2

s s sd sd sq sq sd sdp u i u i u i u i       (2.1) 

 
3 3 3

Im * ( )
2 2 2

s s sq sq sd sq sd sqq u i u i u i u i        (2.2) 

The inner loop controls the grid current and provides the reference ur
ref

 to the space vector modu-

lator (SVM). The reference value of the current q-component is zero, because the target is to max-

imize the power factor. The reference value of the zero current component isz
ref

 is set also to zero. 

The cross couplings resulting from abc-dqz transformation is compensated with the term 
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jωr(Lgrid+Lconv) when the synchronization is supposed to be ideal, i.e. ωs=ωr. The cross couplings 

do not occur in the control of the zero current component isz. The current feedback is the convert-

er-side current ir as shown in Fig. 2.5 because it enables overcurrent protection. The grid and con-

verter currents are supposed to be the same but the effect of the LC-filter on the power factor can 

be compensated by adding an offset value to the current reference isq
ref

.  

 

Fig. 2.5. Block diagram of the four-wire three-level NPC grid converter control system 

The most used modulation methods with the multilevel converters are multilevel sinusoidal pulse 

width modulation (PWM), multilevel selective harmonic elimination (SHE) and space vector 

modulation (SVM) (Franquelo et al., 2008; Rodriguez et al., 2010). SHE method is used with low 

switching frequency to reduce the semiconductor power losses (Rodriguez et al., 2010). Target is 

to eliminate certain harmonics, e.g. 5
th
 and 7

th
 from the output voltage. However, high switching 

frequency is used in this study hence SHE method is not suitable.  

Multicarrier PWM is based on traditional PWM technique but multiple carriers are used to control 

each power switch of the converter. Two carriers are used with three-level converters as illustrat-

ed in Fig. 2.6. The amplitude of the carrier signals is udc/2. The carriers are phase-shifted or level-

shifted. The level shifted PWM methods can be divided into three different groups: phase disposi-

tion PWM (all carriers in phase), opposition disposition PWM (carriers above the reference zero 

point are out of phase with those below zero by 180°) and alternate opposition disposition PWM 

(carriers in adjacent bands are phase shifted by 180°) (Franquelo et al., 2008). The output current 

harmonics are minimized when the carrier signals are co-phasal as in Fig. 2.6 (Brückner et al., 

2005). 
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Fig. 2.6. Multicarrier PWM 

The space-vector quantities are used to calculate the switching instants for a PWM converter in 

SVM. The principle of the SVM method is the same with the multilevel converters as for the two-

level converters. However, 27 feasible switching-state vectors consisting of 24 active states and 3 

null states form the switching sequence instead of 8 state vectors of the conventional two-level 

converter (Franquelo et al., 2008). The modulation of three-level converter is more complex but 

the redundancy of the switching states (i.e., the same output voltage can be created by using mul-

tiple states) can be used to balance the DC voltages, to reduce switching losses, to optimize 

switching waveforms, and to reduce common mode voltage (Rodriguez et al., 2010). The maxi-

mum output voltage can be increased by approximately 15 % in the linear modulation region by 

the injection of 3
rd

 harmonic to the carriers in the PWM modulation or by using SVM. The output 

voltage and current THD as well as switching losses are equal in PWM with 3
rd

 harmonic injec-

tion and in SVM (Ide et al., 1997). However, the 3
rd

 harmonic injection method is not possible to 

be used in the four-wire system because the 3
rd

 harmonic current would flow through the neutral 

wire.  

2.3 Customer converters 

The customer DC/AC power converter can be single-phase or three-phase converter depending on 

the customer needs. The most simple customer converter would be two-level half-bridge. Howev-

er, the fundamental frequency current of the half-bridge circulates though the DC capacitors 

hence the capacitor voltages fluctuate by 50 Hz fundamental frequency. Therefore, the DC ca-
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pacitors need to be large to balance the voltage fluctuation or an additional balancing method is 

needed. Moreover, the half-wave rectifying loads are not possible to be supplied by half bridges, 

because the voltage balance of the DC capacitors cannot be maintained without an additional bal-

ancing circuit. The half bridges are also problematic from the electrical protection point of view. 

The short circuit current flows through the DC capacitors, and therefore, it is difficult to be lim-

ited actively. (Rekola and Tuusa, 2011; Rekola and Tuusa, 2011a)  

The problems associated to the DC voltage balance do not exist if the full-bridges are used instead 

of half-bridges. Half-wave rectifying loads are possible to supply by full bridges. The maximum 

output voltage amplitude is doubled compared to half bridges. The first current harmonics occur 

at twice the switching frequency if the unipolar modulation method is used (Rekola and Tuusa, 

2011; Rekola and Tuusa, 2011a). 

Instead of single-phase converters, three-phase two-level voltage-source inverter (VSI) or three-

level NPC, shown in Fig. 2.7, can be used as a customer converter. The single-phase converters 

generate harmonics into the DC voltage at twice the fundamental frequency of the grid voltage 

(100 Hz) due to fluctuating power flow. The two-level three-phase VSI do not produce low fre-

quency harmonics into the DC voltage but the three-phase three-level NPC converters produce 3
rd

 

harmonic into the DC voltage due to converter connection to the DC-link midpoint. Large DC 

capacitors can be used to mitigate the harmonics.  

a)     b)   

Fig. 2.7. Three-phase a) two-level and b) three-level NPC customer converter 

The customer converter output voltage is not controlled in this study. Instead, the constant output 

voltage reference value is given to the modulator of the customer converter. The customer con-

verter control methods are investigated by Peltoniemi et al. (2012, 2012a, 2013). The converter 

control has to fulfill the standard EN 50160, which defines that the customer AC voltage ampli-

tude should be kept at constant value 230 Vrms (single-phase). 95 % of time the maximum ampli-

tude error is ± 10 % and 100 % of time +10 %/ -15 %. In addition, the AC voltage frequency 
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should be kept constant at 50 Hz. The allowed maximum frequency error is 50 Hz ± 1 % for 99.5 % 

of time and +4 %/ -6 % for 100 % of time. 

2.4 Required AC-filters 

The power electronic converters produce high frequency harmonics at their switching frequency 

and its multiples. The harmonic currents generated by the switching action can be mitigated by 

using a low-pass filter. Otherwise, the current harmonics causes additional power losses, decrease 

power capacity, might lead to neutral line overloading and may cause damage or malfunction in 

other devices connected to the network. Voltage and current harmonics caused by power convert-

ers depend on converter topology, modulation method, switching frequency, and the used filters. 

The harmonics are limited in the standards according to total harmonic distortion (THD), which is 

defined as (2.3) (EN 50160). 

40
2

( )

2

2

(1)

[%] 100
G h

h

G

U

THD
U

 


     (2.3) 

where UG(1)  is the rms-value of the fundamental frequency voltage and UG(h) is the rms-value of 

the h
th
 frequency voltage component. The standards limit the maximum voltage THD up to 40

th
 

harmonic component to be at maximum 8 % (EN 50160) or 5 % (EN 60555, IEC 6100-3-2 (class 

A), IEC 61727, IEEE 519-1992, IEEE Std 929-2000). The standards limit only the harmonics up 

to 40
th
 harmonic component (i.e., up to 2 kHz), and the EMC standards cover the harmonics 

above 150 kHz. However, the harmonics caused by the power electronic converters are located 

between these two frequency values.  

The goal of the LVDC distribution network is to ensure better power quality to the customer 

compared to present AC network. Therefore, the customer voltage THD is limited to be ≤ 2 % at 

nominal load in this study. In addition, the grid current THD is limited to be ≤ 2 % at nominal 

load calculated up to three times of the converter modulation frequency.  

2.4.1 AC-filter sizing 

There are various AC filter design methods and multiple issues need to be taken into account in 

the filter design. These are e.g.  
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 the maximum allowed current or voltage harmonics in the filter output  

 the allowed maximum filter inductor current harmonics 

 the filter reactive power consumption  

 the filter volume and mass 

 the filter power losses  

 the filter acquisition costs  

The simplest low-pass filter is the inductor (L). The size of the inductor would be very large to 

sufficiently attenuate the harmonics, as shown in Table 2.1. Required L and LC filters for 10 kVA 

two-level three-phase customer converter to achieve the target THD uload ≤ 2% with the modula-

tion frequency of 10 kHz are calculated and shown in Table 2.1. The system dynamics would be 

poor because of the voltage drop across the inductor (Liserre et al., 2005). Therefore, the L-filters 

are conventionally replaced by LC or LCL filters reducing the filter volume and assuring more 

effective attenuation compared to L filter. The required inductance value of the LC-filter is 1/6
th
 

of the inductance value of the L filter as depicted in Table 2.1. 

Table 2.1. Required L and LC filters for 10 kVA two-level three-phase customer converter  

Udc Filter type Lcust  

[mH (p.u.)] 

Ccust  

[μF (p.u.)] 

fres  

[kHz] 

îripple,Lcust 

[%] 

THD iLcust 

[%] 

750V 
L 6 (12 %)   3.5 2 

LC 1.3 (3 %) 4.5 (2 %) 2.1 17 9 

1500V 
L 8 (16 %)   3.5 2 

LC 1.7 (3 %) 2.8 (1%) 2.3 17 10 

The inductor current harmonics should be limited to reduce the inductor power losses and temper-

ature rise. The harmonics can be limited based on current THD, usually 10 % < THD iL < 30 % 

(Wang et al., 2003; Wei et al., 2010). Another option is to limit the harmonics based on the induc-

tor maximum ripple current Δiripple_max ≤ (10 % ~30 %)înom1 (Wang et al., 2003; Wei et al., 2010). 

The inductor maximum ripple current can be limited to the required value by choosing the con-

verter side inductor value according to (2.4) for two-level converter and according to (2.5) for 

three-level converter (Mohan et al., 2003). The magnitude of the voltage pulse, which affect over 

the inductor is udc/2 in the case of two-level converter and half of that, udc/4, in the case of three-

level converter. 

1,

1 4

22 2

2 2

dc dc

rms

conv

sw Lconv sw Lconv sw Lconv

u u

U
L

f i f i f i

 

  

 

  
  

   (2.4) 
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where ΔiLconv is the current maximum ripple, fsw is the switching frequency of the converter, and 

U1,rms is the rms-value of the fundamental frequency voltage.  

1,

1 4

42 2

2 2 2
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u u
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f i f i f i
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  

 

  
  

   (2.5) 

The capacitance value of the LCL-filter should be limited, because too large capacitive current 

reduces the power factor and increases capacitive-current induced power losses of the system 

(Teodorescu et al., 2011; Liserre et al., 2005). The capacitance value C is limited to be ≤ 5 % of 

the capacitance relative value Cb according to (2.6), where f1 is the fundamental frequency, ULL is 

the rms-value of the line-to-line voltage and Sn is the nominal power (Liserre et al., 2005).  

2

1 1

1 1
0.05 0.05 0.05

(2 )( / )
b

b LL n

C C
Z f U S 

        (2.6) 

The second inductor of the LCL-filter is chosen typically as a ratio of the converter side filter 

inductor, e.g. the inductance value is 1/5 of the converter side inductance value. The total induct-

ance value should be ≤ 10 % of the inductance relative value Lb, to limit the voltage drop across 

the inductor (Liserre et al., 2005; Teodorescu et al., 2011). The used base values are shown in 

Table D.1 in Appendix D.  

The resonant frequency of the LC filter and LCL filter are defined according to (2.7) and (2.8). 

The resonant frequency should be at least ten times higher than the fundamental frequency to 

avoid resonance phenomena (Liserre et al., 2005). In addition, the resonant frequency should be 

lower than half of the switching frequency to sufficiently attenuate the switching harmonics 

(Liserre et al., 2005).  

,

1

2
res LC

cust cust

f
L C

      (2.7) 

,

1

2

conv grid

res LCL

conv grid

L L
f

L L C


      (2.8) 

The filter capacitor design method might be also based on the resonant frequency of the filter, 

which is usually 10 % to 20 % of the modulation frequency, i.e. fres,LC  ≤ (10 % ~ 20 %)fsw. The 

passive or active damping of the LCL-filter is needed to avoid the resonance phenomena. The 

passive resistance can be added in series with a capacitor C or in parallel with the grid-side induc-
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tor Lgrid. The passive damping is widely used due to its simplicity and reliability. The size of the 

passive damping resistor is conventionally one third of the filter capacitor impedance at resonant 

frequency if the resistor is connected in series with the capacitor (Wei et al., 2010).    

1 1 1
( )

3 3 2
damp C res

res

R X f
f C

       (2.9) 

The required AC filter inductance and capacitance values depending on the used design method 

are shown in Appendix E.  

2.4.2 AC-filter inductor design 

Two filter inductor core materials are treated in this study: EI-shaped laminated iron core (M400-

50) and amorphous alloy C-core 2605SA1 by Metglas. Laminated iron core inductors are conven-

tionally used in the AC filters of the power electronic converters. The lamination thickness of the 

non-oriented magnetic steel inductor core is 500 μm and the amorphous alloy core ribbon thick-

ness is 23 μm. The proper core size is chosen according to the maximum energy (LIrms
2
). The 

three-phase inductor consists of three single-phase inductors as shown in Fig. 2.8. 

a) b)    

Fig. 2.8.  a) iron core inductors and b) LCL-filter with the amorphous alloy core inductors 

The required number of winding turns to achieve the required inductance value can be calculated 

according to (2.10) 

max max

4 4

max 10 0.75 10c sat c

Lî Lî
N

B A B A 
 

 
    (2.10) 

where Ac is the effective cross sectional area of the inductor core and Bmax is the maximum al-

lowed magnetic flux density. Bmax is supposed to be 75 % of the saturation magnetic flux density 

Bsat of the inductor core. Saturation flux density (Bsat) is for silicon steel 1.5 T and for amorphous 
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alloy 1.56 T. The permeability of the core is so high that the whole reluctance is supposed to be 

created in the air gap. Moreover, the permeability of the air gap is supposed to be the same as the 

permeability of air.  

The frequency-dependent impedances of the iron and amorphous core inductors are measured by 

using Venable Instruments’ frequency response analyzer Model 3120. The results have been pre-

viously reported in (Rekola et al., 2014). The target is to analyze the inductance value of the iron 

and amorphous core inductors at the modulation frequency of the converters. The inductors are 

approximated with a series connection of a resistor and an inductor (i.e., Foster first-order equiva-

lent circuit), whose values are extracted from the measured impedances (de Leon and Semlyen, 

1993). The inductance values of the iron core inductor are lower compared to the inductance val-

ue defined by the manufacturer at the fundamental frequency (1.6 mH, 1.7 mH and 2 mH instead 

of the supposed 2.2 mH inductance value) as shown in Fig. 2.9a. Circulating currents exist 

through three inductors, which are welded together, in spite of their own cores (cf. Fig. 2.8), and 

therefore, the inductance values differ from each other. The inductance value of the iron core de-

creases as the frequency increases as depicted in Fig. 2.9a. The inductance values are decreased to 

1.2 mH and 1.4 mH at 10 kHz, which is the modulation frequency of the converter. At 20 kHz, 

the inductance values are decreased to 1.0 mH and 1.2 mH, respectively.   

The inductance values of the amorphous cores are the same as the manufacturer defines at the 

fundamental frequency (0.6 mH). The inductance value stays constant in spite of increased fre-

quency as shown in Fig. 2.9b. The iron core inductor resistance increases exponentially as the 

frequency increases over 100 Hz. Instead, the amorphous core inductor resistance begins to in-

crease exponentially only > 10 kHz. 

a) b)  

Fig. 2.9.  The resistance and inductance values of a) the iron core inductor 2.2 mH and b) the 

amorphous alloy core inductor 0.6 mH 
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2.5 LVDC network configurations 

The target of the LVDC distribution network, analyzed in this study, is to use as high voltage as 

possible to maximize the transmission distance and minimize the transmission cable resistive 

losses. Low Voltage Directive 2006/95/EC enables the use of 1000 VAC and 1500 VDC at max-

imum in low-voltage power transmission.  

The simplest DC network configuration is a monopolar DC link consisting of one high voltage 

conductor and a ground- or sea-return. A monopolar link is obviously the most cost-effective so-

lution, and therefore, used in the HVDC links but the ground currents might cause corrosion. It is 

not possible to be used in the LVDC distribution network because of the safety requirements. The 

unipolar network consists of two conductors and one voltage level as shown in Fig. 2.10a is the 

simplest network topology, which is suitable for LVDC application. The grid and customer con-

verters are connected to 1500 VDC in the unipolar network. The bipolar LVDC distribution net-

work consist of three conductors, voltage levels ±750 VDC and the neutral, as illustrated in Figs. 

2.10 b-c.  

a)  

b)  

c)  

Fig. 2.10. a) unipolar LVDC distribution network and bipolar LVDC distribution network sup-

plied by b) two grid converters and c) one grid converter 
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Bipolar transmission line have higher reliability, because it can operate in unipolar mode if there 

is a fault in the other pole (Lago et al., 2011; Justo, 2013; Byeon et al., 2013). The converters can 

be connected between the positive or the negative pole and the neutral, between the positive and 

negative poles or between the positive and negative poles with the neutral connection in the bipo-

lar DC network. The neutral current equals to zero in the balanced bipolar network.  

The maximum transmission distances of AC or DC distribution networks are shown in Fig. 2.11 

(Lassila et al., 2009). The cable diameter is limited by maximum temperature of the cable, i.e., the 

maximum current and the maximum transmission distance is limited by the maximum allowed 

voltage drop (Lassila et al., 2009; Hakala et al., 2015). The economical sizing of the cables is 

achieved if the maximum voltage drop is 5-15 % (Lassila et al., 2009). The transmission capacity 

of ±750 VDC network is four times higher compared to 400 VAC network and the power transfer 

distance is seven times longer than that of 400 VAC network as depicted in Fig. 2.11. The LVAC 

cables can be used in DC distribution if the voltage between the conductors and earth is 900 VDC 

at maximum (IEC 60502-1, IEC 60449).  

In addition to the replace of present LVAC distribution network by LVDC, also the length and 

complexity of the MVAC network can be reduced because of high power transmission capacity 

and lower construction and cable costs of the DC network (Hakala et al., 2015). The MVAC 

branch lines having length up to 8 km can be replaced by LVDC distribution network based on 

the power transfer capacity calculations by Hakala et al. (2015). This would increase the overall 

reliability of the electricity supply (Hakala et al, 2015). 

 

Fig. 2.11. Maximum transmission power and transmission distance using 3x35+70 mm
2
 LV cable 

in AC and DC distribution systems. Maximum voltage drop 6 %. (Lassila et al., 2009) 

The 20 kV medium voltage has to be scaled down by a transformer to low AC voltage (max. 

1000 VAC) before rectifying to DC voltage (Low Voltage Directive 2006/95/EC). The voltage 
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transformation ratio of the front end transformer depends on the DC network topology, grid con-

verter topology as well as the modulation method of the grid converter. The bipolar network can 

be fed by a two-winding transformer and one grid converter as shown in Fig. 2.10c. The voltage 

ratio of the two-winding transformer needs to be 1000 V/920 V if the PWM modulation with the 

3
rd

 harmonic component injection or SVM is used in the grid converter and 1000 V/800 V in the 

case of conventional PWM. The bipolar network can be also fed by a three-winding transformer 

and two grid converters, which are connected between the positive or negative pole and the neu-

tral as shown in Fig. 2.10b. The voltage ratio of transformer needs to be 1000 V/460 V/460 V or 

1000 V/400 V/400 V, respectively. With the used turn ratios, the MV voltage can increase by 10 % 

as it is allowed according to the standard EN-50160, and the DC voltage level can still be kept 

constant including the controlling tolerance of ± 5%.   

The high DC voltage can tolerate a high voltage drop in the DC network due to temporarily fault 

without any effect on the customer voltage level (Hakala et al., 2013). The voltage can drop by 

62 % for the three-phase or by 78 % for the single-phase system from 1500 V DC without any 

effect to the customer voltage in the unipolar network. In the bipolar network, the DC voltage can 

drop 24 % or 57 %, respectively.  

2.5.1 Grounding of LVDC distribution network 

The whole LVDC network would be grounded through the neutral conductor, i.e. functionally 

earthed TN-system, if only one grid converter is used and the neutral conductor is grounded as in 

Fig. 2.12. The single-phase loads can be connected between the phase and the neutral conductor. 

The customer electrical installations do not need to be changed. The grounded central conductor 

of the bipolar DC network requires that the DC network is insulated from an AC system (Kim et 

al., 2013; Lago et al., 2011; AlLeen, 2012; Kakigano et al., 2010a). The conventional 50 Hz isola-

tion transformer is used in this study. However, the design and control methodology of the bidi-

rectional full-bridge CLLC high frequency resonant converter for the galvanic isolation of the DC 

grid from the AC grid is proposed by Kim et al. (2013).  

 

Fig. 2.12. Grounded LVDC distribution network 
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The central conductor is grounded e.g. in the bipolar ±170 VDC network inside the residential 

house due to Japanese standards and in the bipolar ±190 VDC network in data centres (Kakigano 

et al., 2012; AlLeen, 2012; Dong et al., 2013).  

Dangerous contact voltages could result when the earth resistance is high as in Finland if the 

whole DC network is grounded (Nuutinen et al., 2013). Therefore, in difficult earth conditions, 

the customer’s network might be grounded and the DC network ungrounded, i.e., a terrain-

isolated functionally unearthed IT-system, as shown in Fig. 2.10. The galvanic isolation needs to 

be added between the DC network and the customer, otherwise the ground faults of the DC net-

work and the grounded TN system would produce dangerous double fault through the ground 

(Nuutinen et al., 2013). The customer electrical installations do not need to be changed. The isola-

tion transformer provides a neutral connection for single-phase loads. The galvanic isolation is not 

needed if the customer’s network would be also ungrounded IT-system. However, special protec-

tions systems would be needed to react for double fault situations and earth fault protection is 

required.  

The LVDC distribution network has to fulfil the local standards concerning electrical safety and it 

needs to be compatible with the existing protection devices. The main challenges of the DC net-

work protection are related to the customer network faults including converter switch faults and 

double fault situations between LVDC and customer networks (Nuutinen et al., 2013). The earth 

faults are short circuits in the grounded network, and therefore, protection against these can be 

realized by short circuit protection devices (Nuutinen et al., 2013). The power electronics are not 

allowed to be used as a short-circuit protection according to the existing standards, because a pro-

tection device has to include a contact gap (Nuutinen et al., 2013). The fuses and circuit breakers 

need high, long time overcurrent to react, e.g. 50 A fuse requires at least 250 Arms short-circuit 

current to operate in five seconds (IEC 60364-4-41; Justo, 2013). The power converter is able to 

supply only 120 % of its nominal current. Therefore, the converter needs to be sized larger than 

the power supply capacity would require. The standards for the electrical safety should be updated 

to permit the protection based on the converter protection algorithms (Dong et al., 2013; Justo et 

al., 2013). The standardization committees such as Electric Power Research Institute (EPRI), In-

ternational Electrotechnical Committee (IEC) and Emerge Alliance have started to work with the 

DC standardization (Dong et al., 2013). 

2.5.2 DC network voltage balancing 

The power generation units, loads and energy storage can be connected asymmetrically to both 

sides of the bipolar LVDC distribution network as shown in Figs. 2.10b-c. This does not lead to 

DC voltage unbalance problem if both sides of the bipolar LVDC distribution network are sup-
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plied by their own grid converters as in Fig. 2.10b. Instead, if the bipolar LVDC distribution net-

work is supplied by one grid converter as shown in Fig. 2.10c, the network halves are not loaded 

symmetrically. The DC capacitor voltages do not stay balanced and the DC capacitors can be-

come damaged due to large voltage asymmetry.  

The unbalanced loaded LVDC network is problematic if a 12-pulse rectifier is used. The AC grid 

currents are equal to the AC grid currents of the 6-pulse rectifier if only the other half of the DC 

network is loaded. The grid current THD varies from 10 % to 50 % depending on the loading 

conditions as shown in Fig. 2.1 (Rekola and Tuusa, 2011a).  

The DC voltage unbalance increase the voltage stress of the VSC grid converter switches as well 

as the switching losses and thermal loading of the power semiconductor switches (Teichmann et 

al., 2005; Rodriguez et al., 2002; Franquelo et al., 2008; Von Jouanne et al., 2001; Zhang et al., 

2015). The DC voltage unbalance increase also AC grid current and voltage distortion (Teich-

mann et al., 2005; Rodriguez et al., 2002; Franquelo et al., 2008; Von Jouanne et al., 2001; Zhang 

et al., 2015).  

The simplest way to control the DC voltage balance is to add an offset value (ibias,ref) to the grid 

current references (iref) as depicted in Fig. 2.13. An offset value (ibias,ref) is proportional to the DC 

voltage difference (Rekola and Tuusa, 2011a; Brenna et al., 2009; Agustoni et al., 2005). The 

voltage of upper capacitor C1 will increase when the current reference is positive. The voltage of 

lower capacitor C2 will increase, when the added current component is negative, as in Fig. 2.13, 

respectively. 

  

Fig. 2.13. Added balancing current component to the current references 

Simulation results are presented in Fig. 2.14, where the three-level four-wire NPC grid converter, 

shown in Fig. 2.4, is used and the unbalanced load (5 kW load is connected to the other half of the 

network and the other half is unloaded) is controlled with the added DC current component 

(Rekola and Tuusa, 2011). The DC network is grounded as illustrated in Fig. 2.12. The grid cur-

rents are sinusoidal but there are more high frequency harmonics compared to the balanced load 

due to increased harmonics of the neutral conductor current (i2) (Rekola and Tuusa, 2011a). The 
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neutral conductor current increases in the unbalanced loading conditions, because iN = ia + ib+ ic 

= idc+ + idc- . The added current offset value multiplied by three appears in the neutral conductor 

(Brenna et al., 2008). Therefore, this method is not possible to be used if the DC network is 

grounded (Kakigano et al., 2010a; Brenna et al., 2009).  

The DC current is harmful in distribution networks because it can saturate the distribution trans-

formers, which can lead to overheating or tripping (Teodorescu et al., 2011). The lifetime of the 

transformers would reduce because of increased hysteresis and eddy current losses due to unidi-

rectional saturation and larger excitation current. The DC component might also affect the opera-

tion of the other loads connected to the grid, causing torque ripple and increased power losses in 

the motors (Teodorescu et al., 2011). Therefore, the maximum grid current DC component is lim-

ited in the standards to be under 1.0 % (IEC 61727) or 0.5 % (IEEE 1547-2003) of the rated rms 

AC current.  

a)   b)  

c)   d)  

Fig. 2.14. a) AC grid currents, b) partial DC voltages, c) converter side neutral conductor current 

i1, d) grid side neutral conductor current i2 

The other method to realize the DC voltage balancing is to use the redundancy of the switching 

vectors when space vector modulation is used with multilevel converters (Rodriguez et al., 2010). 

Additional hardware is not needed but the balancing algorithm cannot fully compensate the neu-

tral-point voltage variation. The balancing schemes consider that the system is used as a unipolar 

DC network hence these are not suitable to the bipolar DC network voltage balancing, whose 

unbalance is inherent to the system (Rivera et al., 2015). 
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The third balancing method is to add the balancing circuit to the bipolar network (Kakigano et al., 

2010a). The balancing circuit consists of an additional two- or three-level converter leg, depend-

ing on the grid converter structure, and the balancing inductor Lbal as shown in Fig. 2.10c (von 

Jouanne et al., 2001; Kakigano et al., 2010a; Zhang et al., 2015; Rivera et al., 2015). The target of 

the balancing circuit is to control the voltage unbalance uLbal of the DC capacitor voltages to zero 

(Rekola et al., 2014a; Rekola and Tuusa, 2011). The control scheme of the four-wire three-level 

NPC grid converter with the balancing circuit control is shown in Fig. 2.15. The inductor Lbal 

current is controlled by changing the voltage across the inductor, uLbal. The proportional unbal-

ance ubal is controlled by a PI-controller, whose output is the current reference (iLbal
ref

). The error 

between the measured current (iLbal) and the reference value (iLbal,
ref

) is controlled by a second PI-

controller, whose output is the voltage reference (uLbal
ref

) of the modulator. The control system is 

not allowed to react to the 3
rd

 harmonic component, which occurs in the DC voltages due to three-

level converter topology. The modulation method of the balancing circuit differs from the modu-

lation method of the converters, because the balancing circuit is always connected to the positive 

or negative pole of the DC link but not to the midpoint. The duty cycle of the balancing circuit 

can be defined according to (2.11)  

2
1 2(1 )

ref

Lbal C
Lbal C C

dc

u U
u dU d U d

U


         (2.11) 

The duty cycle defines, how long time of during one period the inductor (Lbal) is connected to the 

positive pole of the DC link.  

 

Fig. 2.15. Control scheme of grounded LVDC network with balancing circuit 

The simulated current of the balancing inductor, DC voltages, DC currents, grid current and 

customer load currents are shown in Fig. 2.16 when three-level NPC customer converter with 
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10 kW load is connected between the negative pole and the neutral and the other half of the DC 

network is unloaded. The DC voltages are balanced despite of the asymmetrical load as shown in 

Fig. 2.16b. The unloaded DC positive pole current is zero as shown in Fig. 2.16c. THD of the AC 

grid currents is exactly the same with balanced or unbalanced load (Rekola et al., 2014a; Rekola 

and Tuusa, 2011a; von Jouanne et al., 2011; Zhang et al., 2015). Therefore, this DC voltage bal-

ancing method is suitable to LVDC distribution network (Kakigano et al., 2010a; Brenna et al., 

2009).  

 
a)              b)     c)                    d) 

Fig. 2.16. Simulated a) current of the balancing inductor iLbal, b) partial DC voltages, c) DC cur-

rents (blue positive pole, red midpoint and green negative pole current), d) input current of the 

grid converter and load current with 10 kW load in the other half of the network 

The balancing inductor should be as large as possible to minimize the current ripple. However, 

the modulation frequency and dead time of the power semiconductor switches limits the induct-

ance value according to (2.12)  

,max

( / 2 )

2

d dc
bal

Lbal

T T U
L

i





     (2.12) 

where T is the cycle time (1/fsw), Td is the dead time of the power semiconductor switches, and 

ΔiLbal is the maximum current ripple of the balancing inductor (Zhang et al., 2015). The drawback 

of the balancing circuit is the need to install extra converter leg and an inductor to the grid con-

verter, the need of additional control hardware and the possibility of oscillations.  

2.6 Required AC-filter parameters depending on the converter topolo-

gy 

The required AC filter inductor and capacitor values depending on the converter topology are 

shown in Fig. 2.17. It is assumed that the nominal power of three-phase converter is 10 kVA, the 

nominal power of the single-phase converters 3.3 kVA and the modulation frequency is 10 kHz. 
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The DC network is assumed to be ungrounded and the converters are connected to 750 VDC or 

1500 VDC. The same AC filters can be used with three-level NPC and with Vienna rectifier. The 

AC filter design targets are that THD igrid ≤ 2 % and THD uload ≤ 2 % calculated up to 25 kHz. 

The inductor current harmonics are limited to ΔiLconv_ripple ≤ 10 % înom1.  

a)  

b)  

c)   

Fig. 2.17. Required LCL filters with a) grid converters and LC filters with b) customer converters 

connected to 750 V DC and c) customer converters connected to 1500 V DC 

0 1 2 3 4 5 6

2L 750V DC

3L 750V DC

2L 1500V DC

3L 1500V DC

2L 750V DC 3L 750V DC 2L 1500V DC 3L 1500V DC

Lconv[mH] 2.2 1.1 4.5 2.1

Lgrid [mH] 0.3 0.3 0.6 0.5

Lconv [pu %] 2.3 1.1 2.3 1.1

Lgrid[pu %] 0.3 0.3 0.3 0.3

Cgrid [μF] 5 5 2.5 2.5

Cgrid [pu %] 5 5 5 5

fres [kHz] 4.4 4.6 4.4 5

0 0.5 1 1.5 2 2.5 3

2L half bridge

3L half bridge

2L full bridge

3L full bridge

2L 3-phase inv

3L 3-phase inv

2L half

bridge

3L half

bridge

2L full

bridge

3L full

bridge

2L 3-

phase inv

3L 3-

phase inv

Lcust[mH] 2.5 1.5 1.25 0.55 1.5 1.1

Lcust[pu %] 5 3 2.5 1 3 2

Ccust [μF] 5 6 3 3 4 3

Ccust [pu %] 2.5 3 1.5 1.5 2 1.5

fres [kHz] 1.4 1.7 2.6 3.9 2.1 2.8

0 1 2 3 4 5 6

2L half bridge

3L half bridge

2L full bridge

3L full bridge

2L 3-phase inv

3L 3-phase inv

2L half

bridge

3L half

bridge

2L full

bridge

3L full

bridge

2L 3-

phase inv

3L 3-

phase inv

Lcust[mH] 6 2.5 1.8 1.5 1.7 1.5

Lcust[pu %] 12 5 4 3 3 3

Ccust [μF] 6 6 2 3 3 4

Ccust [pu %] 3 3 1 1.5 1.5 2

fres [kHz] 0.8 1.3 2.7 2.4 2.2 2.1
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The inductor harmonics can be limited based on current THD or based on the inductor maximum 

ripple current as discussed in Section 2.4.1. The required inductance and capacitance values by 

using the different limitations are shown in Appendix E. The LCL-filter is connected in front of 

the grid converters to achieve lowest total inductance value. The LC-filter is adequate after the 

customer converter, because according to the used filter design method, the customer side induct-

ance value would be negligible. The required LC-filter values for all the analyzed customer con-

verter topologies depending on the output voltage power quality are shown in (Rekola and Tuusa, 

2011; Rekola and Tuusa, 2011a).  

According to Fig. 2.17a, the filter inductance value required with three-level NPC grid converter 

is half of that with the comparable two-level converter because of multiple output voltage levels. 

The required inductance value is doubled if the voltage level is doubled from 750 VDC to 

1500 VDC. The smaller filter inductance is sufficient also with three-level customer converter 

connected to 750 VDC compared to two-level converter as depicted in Fig. 2.17b. However, sig-

nificant difference does not occur in the required filter inductance when customer converters are 

connected to 1500 VDC, because the modulation index of the converters is lower than 0.5. The 

modulation index ma is defined in (2.13).  

1

/ 2
a

dc

û
m

U
       (2.13) 

All the potential three-level converter output voltage levels are not used. The required inductance 

value is increased if the customer converters are connected to 1500 V DC instead of 750 V DC.  

The first current and voltage high frequency harmonics occur at twice the switching frequency if 

the unipolar modulation method is used with the single-phase full-bridge converter. Therefore, the 

filter inductors required with full-bridges are smaller compared to filters with half-bridges. The 

output voltage of two-level full-bridge includes three voltage levels (±udc/2 and 0) whereas the 

output voltage of three-level full-bridge includes five voltage levels (±udc/2, ±udc/4 and 0). There-

fore, smaller filter inductors are required with three-level full-bridges.  

The maximum voltage stresses of power semiconductor switches in three-level converter and in 

Vienna rectifier are half of those with the comparable two-level converters, udc/2, which is an 

important advantage especially at higher voltage levels because of limited voltage capability of 

IGBTs (Teichmann et al., 2005; Brückner et al., 2005).  
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2.7 Conclusions 

The applicability of the different converter topologies to the 1500 VDC LVDC distribution net-

work is analyzed by taking into account the controllability of AC current and DC voltage, size of 

the required AC filter and capability to operate with bidirectional power flow. Two- and three-

level VSCs offer multiple advantages compared to LCCs (6- and 12-pulse diode-, thyristor- and 

half-controlled thyristor bridges) in spite of higher acquisition costs, more complex structure and 

control. The DC voltage is possible to be fully controlled, the bidirectional power flow is possible 

and the power factor of PCC can be controlled. Unity power factor and lack of low frequency 

harmonics ensures high utilization factor of the transformers and AC cables. The Vienna rectifier 

enable DC voltage and power factor control and lack of low frequency harmonics but only unidi-

rectional power flow is possible.  

It can be concluded that the customer converters should be connected to 750 VDC instead of 

1500 VDC if 230 VAC rms phase voltage is produced to the customer, to maximize the modula-

tion index, and minimize the required AC filter inductance value. The required AC filter induct-

ance value with three-level converter is half of that with two-level converter when the modulation 

index is > 0.5. Moreover, the required maximum voltage rating of the used power semiconductor 

switches is half of that with the two-level converters. The full-bridge is the most suitable customer 

converter topology if the single-phase supply is adequate because smaller required passive com-

ponents, both at the DC and AC side, compared to half-bridges. 

The maximum transmission power capability and transmission distance increase when the 400 V 

LVAC distribution network would be replaced by 1500 V LVDC distribution network. The whole 

LVDC distribution network and the customer electrical installations can be grounded in good 

grounding conditions. Otherwise the LVDC distribution network needs to be ungrounded, and the 

galvanic isolation is needed between the ungrounded network and the customer grounded electri-

cal installations.   

The need of DC voltage balancing in the asymmetrically loaded bipolar LVDC distribution net-

work is taken into account. Three DC voltage balancing methods are compared. It can be con-

cluded that the balancing circuit should be added to the DC network if the asymmetrically loaded 

bipolar LVDC distribution network is supplied by one grid converter. 
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3 Power loss simulation models 

3.1 Introduction 

The advantages of LVDC distribution over conventional AC distribution have been analyzed us-

ing theoretical means over the past few years but experimental results, which prove the high ener-

gy efficiency and power quality, or otherwise, have not yet been presented (Nilsson et al., 2004; 

Engelen et al., 2006; Anand et al., 2010; Sannino et al., 2003; Kakigano et al., 2010; Kakigano et 

al., 2012; Shenai et al., 2011). Section 3.2 describes the two-level VSC and three-level NPC as 

well as Vienna rectifier analytical power loss calculation and simulation methods. The AC filter 

power loss calculation methods are discussed in Section 3.3. The simulation and calculation 

methods for the other power loss sources in the LVDC distribution network are presented in Sec-

tion 3.4. Finally, the developed power loss models are verified by measurements and the accuracy 

of the models is discussed in Section 3.5. The measured power loss results have been previously 

reported in (Rekola et al., 2014; Rekola and Tuusa, 2014b). The conclusions are drawn in Section 

3.6.  

3.2 Converter power losses 

The power losses of the power electronic converter include switching and conduction losses of 

power semiconductor switches as well as conduction and reverse recovery losses of diodes.    

IGBTs are used as a power semiconductor switches in this study. The average conduction losses 

of the IGBTs and diodes are calculated according to the equations (3.1) and (3.2) 



 

48 

 

 ,

0

1
T

cond IGBT IGBT ce t IGBTP i R V i dt
T

      (3.1) 

 ,

0

1
T

cond D D f f DP i R V i dt
T

      (3.2) 

where Rce and Rf are the on-state resistances, Vt and Vf  are the zero-current voltage drops for the 

IGBTs and diodes, i.e. the collector-emitter threshold voltage and the diode forward voltage  

(Dieckerhoff et al., 2005; Rekola et al., 2014; Virtanen et al., 2013). The parameters can be ob-

tained from the datasheets of IGBTs and diodes. The converter switching losses consist of the 

turn-on and turn-off losses of the IGBTs and the reverse recovery losses of the diodes. The aver-

age switching losses are calculated according to (3.3), (3.4) and (3.5) 

, _

1
( )dc

sw on IGBT on igbt

ref

U
P E i

T U
      (3.3) 
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sw rr D rr D
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P E i

T U
      (3.5) 

where Udc is the DC voltage and Uref is the IGBTs and diodes loss energy determination voltage. 

Eon(iIGBT), Eoff(iIGBT) are the IGBTs turn-on and turn-off energies and Err(iD) is the reverse recovery 

energy of the diodes as a function of current (Rekola et al., 2014; Virtanen et al., 2013). The pa-

rameters are found in the manufacturer’s datasheets. Temperature coefficients are not taken into 

account in the converter power loss calculation models but the worst case values are used, i.e., the 

values measured at 125°C. The total losses of the converter can be calculated according to (3.6) 

_ , , , _ , _ , _( )loss total cond IGBT cond D sw on IGBT sw off IGBT sw rr D addP n P P P P P P       (3.6) 

where n is the number of switching devices in the converter. The additional cooling and control 

losses are denoted by Padd.  

3.2.1 Analytical power loss calculation method 

The average power losses of the converter can be calculated analytically. The average conduction 

losses for one active switching device and for one antiparallel diode in two-level converter can be 

calculated according to (3.7.) and (3.8.). SVM or PWM modulation method with 3
rd

 harmonic 

injection is supposed to be used. The currents are supposed to be sinusoidal and the calculated 

power losses are an average over the 50 Hz fundamental period. 
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where îconv is the sinusoidal converter current peak-value, iave is the current average value, irms is 

the current rms value, cosφ is the power factor and ma is the modulation index, defined in (2.13) 

(Dieckerhoff et al., 2005; Moia et al., 2012).  

The current stresses of the power semiconductors in three-phase and single-phase half-bridge are 

the same when the load per phase is the same. However, the current stresses of the semiconduc-

tors of the single-phase full-bridge are half of that (Rekola and Tuusa, 2011a). The converter av-

erage switching losses are calculated as follows 

,

1
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     (3.9) 

,

1
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P f E î

U
      (3.10) 

where fsw is the converter modulation frequency (Dieckerhoff et al., 2005). Finally, the total power 

losses for the two-level converter including six IGBTs and diodes can be calculated according to 

(3.6.). The average conduction losses of three-level NPC converter can be calculated analytically 

according to eq. (3.11) - (3.14) 
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where φ is the phase angle (Staudt et al., 2011; Bendre et al., 2009; Wang et al., 2007; Diecker-

hoff et al., 2005; Moia et al., 2012). The IGBTs and diodes are marked in Fig. 2.3. The average 

switching losses of three-level NPC converter are calculated as follows 
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  (3.19) 

where Iref is the current used in determining the loss energies Eon, Eoff and Err (Semikron Applica-

tion Note, 2015). The three-level NPC converter is supposed to be symmetrically loaded. Antipar-

allel diodes D2 and D3 conducts the whole positive or negative half cycle in the rectifier operation 

mode, hence the switching frequency is 50 Hz and the switching losses are supposed to be negli-

gible. Antiparallel diodes D2 and D3 do not conduct in the inverter operation mode hence the 

switching losses are negligible in this case.  Finally, the total power losses for the three-level con-

verter can be calculated according to (3.6.). 

The current average and rms values of Vienna rectifier are calculated according to (3.20)–(3.27). 

The IGBT and diodes are marked in Fig. 2.4. The current stresses of the IGBTs and diodes are 

unbalanced in the Vienna rectifier. The average currents of IGBT S1 is doubled compared to the 

average current of diodes D4 and D5. The average currents stresses of diodes D2 and D3 are the 

highest, because either of them is always conducting. Diode D2 conducts during the whole posi-

tive half cycle and diode D3 conducts during the negative half cycle (Rekola and Tuusa, 2011). 
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where ma is the modulation index (Kolar et al., 1996). The calculated current average and rms 

values are used to calculate the average conduction losses of the IGBTs (3.28) and diodes 

(3.29).The average switching losses of IGBTs and diodes are calculated according to (3.9) and 

(3.10). 

2

,cond igbt t avg ce rmsP V I R I       (3.28) 

2

,cond diode f avg f rmsP V I R I       (3.29) 

Finally the total power losses for the Vienna rectifier can be calculated according to (3.6.). 
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3.2.2 Power loss simulation models 

In addition to the previous average power loss calculation, the converter power loss analysis is 

made also by computer simulations using Matlab Simulink software. The target is to create more 

detailed converter power loss models compared to the average power loss calculation but at the 

same time, the models are general hence the parameters from the manufacturer’s datasheets can 

be used. In addition, the target is to keep the model as simple as possible in order to keep the sim-

ulation time short. The simulation model calculates the conduction and switching losses as a func-

tion of the instantaneous IGBT and diode currents and voltages by taking into account every 

switching occasion from the modulator by using (3.1) - (3.6) . Therefore, the non-linear behavior 

of the switching losses depending on the current, shown in Fig. 3.1, is taken into account in the 

simulation models (Semikron, 2015b; Semikron, 2015e). The total power losses are summed and 

averaged over the fundamental cycle. 

 

Fig. 3.1. The switching energy loss curve of SKM75GB123D (Eon and Eoff) and SKKD 40F10 (Err) 

3.3 AC-filter power losses 

The AC filter power losses consist of the filter inductor losses, capacitor losses and losses of 

damping resistor. The filter inductor power losses are caused by hysteresis and eddy currents in 

the inductor core and the resistance and eddy currents in the copper windings (Erickson and 

Maksimovic, 2001). 

3.3.1 Inductor core power losses 

Hysteresis loss is due to the energy consumed to redirecting of the magnetic domains of the mate-

rial during every flux direction reversal. The fundamental frequency core losses are mainly caused 

by the hysteresis phenomenon in the core. Eddy current is the circulating current induced in the 
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material by changing magnetic flux as a consequence of the electromagnetic induction. High fre-

quency core losses are mainly caused by the high frequency eddy currents induced into the core 

material. (Erickson and Maksimovic, 2001) 

The inductor current harmonics need to be calculated to analyzing the inductor core power losses. 

Majority of the harmonics occur at the modulation frequency (10 kHz) and its multiples, mostly at 

20 kHz. The harmonics located around 10 kHz are squared, summed and the square root of the 

sum is calculated hence the harmonics located around 10 kHz are all supposed to be located at 

10 kHz frequency. The same method is used around 20 kHz. The amplitude of the current har-

monics at 10 kHz is 10 % to 20 % of the fundamental frequency current value depending on the 

filter design and the amplitude of the 2
nd

 multiples is about 2 % of that with half bridges and 

three-phase converters. Most of the harmonics are located at 20 kHz in the case of single-phase 

full-bridges when the unipolar PWM modulation is used.    

The peak magnetic flux densities in the core at 50 Hz fundamental frequency, around 10 kHz 

modulation frequency and around 20 kHz are calculated according to (3.30) or by using (2.10) in 

order to analyze the losses caused by these frequencies in the filter inductor core  

0ˆ r

ag

Nî
B

l

 
       (3.30) 

where µ0 is the vacuum permeability, µr is the relative permeability of the air gap, N is the number 

of winding turns, î is the current peak value at the calculated frequency and lag is the inductor air 

gap length (Erickson and Maksimovic, 2001; Rekola et al., 2014; Virtanen et al., 2013).  

The most used equation that characterizes core losses as a function of frequency is the Steinmetz 

equation  

ˆ
coreP mkB f       (3.31) 

where m is the mass of the inductor core and B̂  is the peak value of magnetic flux density in the 

core in the analyzed frequency f (Steinmetz, 1984). Three coefficients k, α and β are determined 

by fitting the model for the measured data. The manufacturer of the electrical steel for laminated 

iron cores gives the core losses per core mass only at the frequencies from 50 Hz to 2 kHz. There-

fore, the coefficients for higher frequencies are found by using the measured power losses. The 

parameters are valid only for a limited frequency and flux density range hence different parame-

ters are used with different inductor cores. The manufacturer gives the coefficients needed for the 

Steinmetz equation for the amorphous alloy core up to 100 kHz  
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1.74 1.51

,
ˆ6.5loss coreP m B f      (3.32) 

where f is in kHz (Hitachi, 2015). Fig. 3.2 presents the loss curve for M400-50 electrical steel and 

for amorphous alloy with the respective frequencies 50 Hz, 10 kHz and 20 kHz as a function of 

the magnetic flux density.  

a) b)  

Fig. 3.2. Loss curves of a) iron core (1.1 mH) M400-50 electrical steel and b) amorphous alloy 

core 2605SA1 

The losses in the iron core are huge at high frequencies as shown in Fig. 3.2., but still iron core 

inductors are widely used in the industrial converters. The BH-loop behavior and frequency de-

pendence of the eddy current losses has an impact on the inductor core power losses (Hasegawa, 

2004). The edges of the BH-loop are rounded for the amorphous alloy, i.e. flux reversal is faster 

than for the silicon steel (Hasegawa, 2004). Eddy current loss is generally proportional to f
2
 with 

the soft magnetic materials but for the amorphous alloy f
1.5

, which leads to lower high-frequency 

harmonic losses than in conventional electrical steels (Hasegawa, 2004). Moreover, eddy current 

loss is small in amorphous alloy, because the foil thickness (23 μm) is approximately 1/20 com-

pared with the used silicon steel (500 μm) (Hitachi, 2015; Wang et al., 2010; Hasegawa and 

Azuma, 2008). There is no rule of atomic arrangement in the amorphous metal and the coercive 

force is low compared to silicon steel thus the hysteresis loss is small (Hasegawa and Azuma, 

2008; Wang et al., 2010). The power losses caused by hysteresis and eddy currents in the inductor 

core made of electrical steel can be represented as shown in (3.33) 
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   (3.33) 

The material parameter Vcore is defined by the material’s microstructure and texture. The electrical 

conductivity σ and the lamination thickness d are the parameters, which the steel producer can 

change for reducing the eddy current. The parameters G and Vo are related to metallurgical prop-

erties of the material and S is the cross-section of the iron sheet (Bertotti, 1988). The thickness of 
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the laminated steel sheet has an effect to the power losses of the iron core inductor as shown in 

Fig. 3.3. The power loss curves of the silicon steels at 50 Hz and at 2500 Hz frequencies are 

shown in Fig. 3.3 (Perso, 2015).  

a) b)  

Fig. 3.3. The power losses of laminated silicon steel a) at 50 Hz and b) at 2500 Hz frequencies 

The power loss curves are given to the silicon steels only up to 2500 Hz. Therefore, the accurate 

comparison of the power losses caused by current harmonics at 10 kHz and 20 kHz are not possi-

ble to do without measurements in the laboratory. However, it can be concluded that the power 

losses of the iron core inductors would be somewhat lower if the thickness of the silicon steel 

would be reduced from 500 μm (M400-50) used in this study.  

In addition to amorphous alloy, there are other new magnetic materials, which have low no-load 

losses at high frequencies. Ferrite cores are widely used in low power applications. However, 

multiple ferrite cores should be connected in parallel in LVDC distribution network application 

due to low saturation flux density. The saturation magnetic flux density of the ferrite is 0.4 T 

whereas the saturation flux density of amorphous core is 1.56 T and iron 1.5 T (Wang et al., 2010).  

3.3.2 Inductor copper winding power losses 

The inductor copper losses consist of resistive losses caused by fundamental frequency current as 

well as eddy current losses caused by skin and proximity effect. The copper losses are calculated 

as the core losses at the fundamental frequency, the modulation frequency and twice of the modu-

lation frequency. The resistive losses at the fundamental frequency are calculated according to 

(3.34), where ρCu is copper resistivity and Aw is wire cross-sectional area. Winding wire length lwire 

can be calculated by multiplying mean length per turn (MLT) and number of wire turns (N) 

(Rekola et al., 2014; Virtanen et al., 2013). 
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The copper resistivity is dependent on temperature according to  

,0 0(1 ( ))Cu Cu T T          (3.35) 

where ρCu,0 is 1.724*10
-8

 Ω/m at 20°C temperature and the temperature coefficient α is 

0.003862°C. The losses at high frequencies, caused by the combined influence of skin and prox-

imity effects, are calculated by using the Dowell equation (3.36) defining the relationship FR of 

the high frequency resistance compared to fundamental frequency resistance (Dowell, 1966). The 

skin effect increases the current density in a wire exponentially as a function of frequency leading 

to reduction of the wire effective cross-sectional area, and hence increased wire resistance. The 

proximity effect increases the eddy currents, and hence the winding power losses within closely 

wound inductor wires.  
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where M is number of winding layers. Moreover, the factor φ is defined in (3.37) 
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where δ is skin depth of the wire, µ0µr is the permeability of the air gap and f is the analyzed fre-

quency . The porosity factor needs to be considered, and therefore, the factor φ’ is defined as    
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where hwire is defined as height of the square wire compared to round wire diameter d and lw is the 

width of the copper wire layers in the inductor. The functions G1(φ) and G2(φ) are defined as 
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Finally, the total copper wire power losses can be calculated according to (3.41) (Erickson and 

Maksimovic, 2001; Rekola et al., 2014; Virtanen et al., 2013). 

2 2 2
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2
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P n R I F R I F R I

F R I

  


  (3.41)   

where n is the number of single-phase inductors in the filter.  

3.3.3 Capacitor power losses and power losses in damping resistors 

The power losses of capacitors in an LCL-filter are defined as  

2

, ,loss C ESR C CrmsP nR I      (3.42) 

where n is the number of the capacitors, RESR,C is the equivalent series resistance of the capacitor 

and ICrms is the rms value of the capacitor current (Mohan et al., 2003). Moreover, the temperature 

and frequency dependency of the equivalent series resistance should be taken into account in the 

very detailed power loss models.  

The passive damping method is used to guarantee the stability of the LCL-filter-based grid con-

verter. The passive damping resistors are connected in parallel with the grid side inductor in this 

study. The fundamental frequency losses in the damping resistors were calculated according to 

(3.43), where Is is the rms-value of the phase current (Rekola et al., 2014).  
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  (3.43) 

The power losses of damping resistor and capacitors are lower than 2 W. Therefore, the power 

losses of the filter capacitors and damping resistors are not taken into account in the power loss 

calculation models, because these are considered insignificant compared to the inductor losses. 

Thus, in the simulation model, the AC filter power losses are supposed to be inductor power loss-

es. 
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3.4 Other power loss sources in the LVDC distribution network 

3.4.1 Balancing circuit power losses 

The power losses of the balancing circuit are calculated by using the converter power loss simula-

tion model shown in Section 3.2.2. The three-level balancing circuit is always connected to the 

positive or negative pole of the DC link, not to the midpoint. Therefore, the analytical power loss 

calculation models are not possible to be used in the case of the balancing circuit. The power loss-

es of the balancing circuit are higher compared to conventional three-level converter leg due to 

lack of the midpoint connection. The inductor power loss calculation model is used to calculate 

the power losses of the balancing inductor.  

3.4.2 DC capacitor power losses 

The DC capacitors are connected after the grid converter and in front of the customer converters 

to balance the DC voltage. The required DC capacitor value is dependent on the chosen voltage 

level, converter topology and the control method of the converters. The well designed control of 

the DC network decreases the required DC capacitance value (Mahmoodi et al., 2006; Lana et al., 

2011a). The power losses of DC capacitor are defined as  

2

, , ,loss C ESR C C rmsP nR I      (3.44) 

where n is the number of the capacitors, RESR,C is the equivalent series resistance of the capacitor, 

which is the sum of the frequency-sensitive resistance of the oxide dielectric, the temperature-

sensitive resistance of the electrolyte and the resistance of the foil, the tabs and the terminals and 

IC,rms is the rms value of the capacitor current (Kolar and Round, 2006).  

3.4.3 DC cable power losses 

The DC cable is modeled by using the standard short-line π-equivalent model of the cable shown 

in Fig. 3.4. The typical low voltage underground cable is used in the analysis.  

 

Fig. 3.4. The standard short-line π-equivalent model of the cable 

The resistance of the used 4*16mm
2
 AXMK-cable is 1.91 Ω/km at 20°C with DC current, the 

inductance is 0.29 mH/km and the capacitance is 0.30 μF/km (Pysmian, 2015).  
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3.4.4 Isolation transformer power losses 

The isolation transformer is needed between the DC network and the customer electrical installa-

tions if the DC network is ungrounded and the customer electrical installation are not changed as 

mentioned in Section 2.5.1. Transformer power losses include iron core losses and copper wind-

ing losses just as with the iron core inductors (Erickson and Maksimovic, 2001). However, the 

current harmonics in the transformer current are negligible because of the AC filter design that 

limits THD uload ≤ 2 %. Therefore, the power losses caused by high frequency current harmonics 

do not need to be taken into account. The resistive power losses in the transformer copper wires 

are calculated according to (3.34). The iron core losses consist of no-load losses defined by the 

manufacturer and the power losses which depend on the current fundamental component (Eaton, 

2015; Lana et al., 2014).  

3.5 Accuracy of the created simulation models 

The accuracy of the presented calculation and simulation models is verified by laboratory meas-

urements (Rekola et al., 2014; Rekola and Tuusa, 2014b). The structure of the bipolar LVDC 

distribution network, assessed in this work is shown in Fig. 2.12. The DC voltage level is half of 

the maximum allowed by the standard, ± 375 VDC and the supply AC voltage is 400 V due to 

limited laboratory facilities. The laboratory prototype is presented in Appendix A. The 10 kVA 

three-level NPC converters are designed for 1500 VDC voltage level even if these are used 

750 VDC voltage level hence the voltage capability of these IGBT modules is 1200 V. The con-

verters use space vector modulation with the modulation frequency of 10 kHz. Power losses of an 

LCL-filter of the grid converter and an LC-filter of customer converter are measured by the air-

cooled open type balance calorimeter, which operation principle is presented in Appendix B. The 

used filter inductance and capacitance values as well as resonant frequencies of the AC filters 

used in the power loss measurements are shown in Table 3.1. The current capability of all the 

inductor cores is the same, 16 Arms/25 Apeak. 

LC-filters numbered 1 to 4 include iron core inductors. LC-filters 5 and 6 include amorphous core 

inductors. LCL-filter 7 includes iron core inductors and LCL-filter 8 amorphous core inductors. 

Multiple iron core inductors are tested due to nonlinear behavior of the core to achieve as reliable 

results as possible. The parameters for the Steinmetz power loss equation for the iron core induc-

tors are found by fitting the measured results to (3.31) as mentioned in the previous Section 3.3.1.  
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Table 3.1. Properties of studied AC-filters 

Number of 

filter 

LCL-filter LC-filter fres [kHz] 

Lgrid 

[mH (p.u.)] 

Cgrid 

[μF (p.u.)] 

Lconv 

[mH (p.u.)] 

L 

[mH (p.u.)] 

C 

[μF (p.u.)] 
 

1 iron    
2.2 

(4 %) 
2.5 (1%) 2.15 

2 iron    
2.2 

(4 %) 
5 (3%) 1.52 

3 iron    1.1 (2 %) 5 (3%) 2.15 

4 iron    3.0 (6 %) 5 (3 %) 1.30 

5 amor    0.6 (1 %) 5 (3 %) 2.91 

6 amor    1.5 (3 %) 5 (3 %) 1.84 

7 iron 0.6 (0.6 %) 10 (10 %) 5 (5 %)   2.17 

8 amor 0.3 (0.3 %) 10 (10 %) 2.5 (2.5 %)   3.08 

The THD of the measured and simulated inductor current and load voltage with resistive loads are 

calculated up to 25 kHz and presented in Appendix C. The LC-filters 1-3 and 5 fulfill the re-

quirement THD of uload ≤ 2 % in the laboratory prototype network when the DC network is un-

grounded. Instead, in the grounded LVDC network the filters 2, 4 and 6 need to be used to fulfill 

the requirement.  

The inductance value given by the manufacturer at 50 Hz frequency, is used in the simulations to 

obtain the same amorphous core inductor current THD as in the measurements. The inductance 

value of the iron core inductor is decreased to 70 % at 10 kHz and to 60 % at 20 kHz of the in-

ductance value at 50 Hz frequency according to measurements shown in Section 2.4.2. Therefore, 

the filter current THD value is almost the same in the measurement and in the simulations and it is 

possible to analyze the losses in the inductor caused by the same current as presented in Appendix 

C. However, the simulated voltage THD is slightly smaller in comparison with the measured volt-

age THD, because low frequency harmonics occur in the measurements as shown in Appendix C. 

The measured, analytically calculated and simulated power losses of the four-wire three-level 

NPC grid converter are shown in Fig. 3.5. The customer’s electricity consumption varies exten-

sively and therefore, the converter efficiencies have been analyzed at partial loading conditions. 

The purely resistive loads are used to simplify the measurements. 
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Fig. 3.5. The total losses of the four-wire three-level NPC grid converter are measured (M), 

simulated (S) and calculated analytically (A) with purely resistive 2.5 kW, 5 kW and 7.5 kW 

loads and with iron core (I) or amorphous core (A) LCL-filter inductors   

The maximum grid converter power loss error between measured and simulated results is 10 %. 

The maximum relative error is achieved with the lowest power losses (2.5 kW load and amor-

phous core). It should be noted that the absolute error is only 10 W. The inductor current THD is 

at its maximum value (20 %) in this case, which might cause inaccuracy to the electrical power 

measurements. Otherwise the inductor current THD is ≤ 10 % and the maximum error is 7 %.  

The maximum grid converter power loss error between measured and analytically calculated re-

sults is 15 %. The maximum relative error is achieved also with the lowest power losses (2.5 kW 

load and amorphous core), and the absolute error is 13 W. The accuracy of the analytically calcu-

lated power losses is slightly lower compared to simulated results in all loading conditions as 

depicted in Fig. 3.5.  

The majority of the filter power losses are caused by the converter side inductor Lconv. The losses 

of the grid side inductor Lgrid are small because the harmonic content of the inductor current is 

small and a small inductor can be used. The filter causes approximately half of the overall power 

losses if the iron core inductors are used and 1/3 of the power losses when the amorphous induc-

tor core is used.  

The analytically calculated, simulated and measured customer converter power losses are shown 

in Figs. 3.6 – 3.8. The power losses of the customer converters are measured by using grounded 
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(marked as N in Figs. 3.6- 3.8) as well as ungrounded network. The maximum customer converter 

power loss error between measured and analytically calculated results is 20 % in Fig. 3.6. The 

accuracy achieved with the simulations is slightly higher. The maximum relative error is achieved 

with the lowest load (2.5 kW) just as with the grid converters. The maximum overall power loss 

error between the measured and simulated power losses is < 10 % except the filters 1N and 2N. 

The error occurs in the converter electric measurements with filters 1N and 2N due to high current 

harmonics shown in Appendix C. The current harmonics are almost constant despite the loading 

condition hence the proportional share of the current harmonics is at its maximum with low load.  

The maximum customer converter power loss error between measured and analytically calculated 

results is decreased to 15 % when the load is increased to be half of the nominal load as illustrated 

in Fig. 3.7. The maximum error achieved with the simulation model is 10 %. The error occurs in 

the converter electric measurements with filter 3 due to high current harmonics. The smallest in-

ductor (3) saturates and temperature rise is high due to large amount of current harmonics causing 

inaccuracy to the measured losses. The most accurate results are achieved with the largest load as 

depicted in Fig. 3.8. The highest current fundamental component increases the accuracy of the 

electrical power loss measurements. The maximum converter power loss error is 5 % except the 

use of the filter 1N. The accuracy of the power loss simulations and average power loss equations 

is almost the same. The error between the measured, simulated and analytically calculated power 

losses is < 10 % except the saturated inductor 3. The error occurs in the filter power loss meas-

urements with the filter 3 and 1N but otherwise the error between the calculated and measured 

filter losses is 10 W at maximum.  

The AC filter inductor core material has a significant impact on the overall customer converter 

power losses. The AC filter power losses with amorphous core inductors are at least half of those 

with the iron core filter inductors. The AC filter losses are 20 % to 30 % of the total losses if 

amorphous filter inductor core is used. The majority of the iron core inductor power losses are 

core losses caused by high frequency current harmonics. The proportional part of the filter losses 

from the total losses is in its maximum value with lowest load because most of the filter losses are 

caused by current harmonics. The power losses are significantly higher if the converter is 

grounded with iron core inductors whereas the power losses of the grounded and ungrounded 

converter are almost the same with the amorphous core inductors. 
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Fig. 3.6. Analytically calculated (A), simulated (S) and measured (M) three-level NPC customer 

converter power losses in ungrounded and grounded (N) network with resistive 2.5 kW load  

  

Fig. 3.7. Analytically calculated (A), simulated (S) and measured (M) three-level NPC customer 

converter power losses in ungrounded and grounded (N) network with resistive 5kW load  

 

0

50

100

150

200

250

300

350

A S M A S M A S M A S M A S M A S M A S M A S M A S M A S M

1 1N 2 2N 3 3N 4N 5 5N 6N

P
o

w
er

 l
o

ss
 [

W
] filter tot

Lcopper

Lcore

conv tot

cond

sw

0

50

100

150

200

250

300

350

A S M A S M A S M A S M A S M A S M A S M A S M A S M A S M

1 1N 2 2N 3 3N 4N 5 5N 6N

P
o

w
er

 l
o

ss
 [

W
] filter tot

Lcopper

Lcore

conv tot

cond

sw



 

64 

 

 

Fig. 3.8. Analytically calculated (A), simulated (S) and measured (M) three-level NPC customer 

converter power losses in ungrounded and grounded (N) network with resistive 7.5kW load  

The overall measured and calculated power losses and energy efficiency of three-level grid and 

customer converters are shown in Fig. 3.9. The 200-metre long 4*16mm
2
 AXMK underground 

cable is connected between the grid and the customer converters in the laboratory as shown in 

Appendix A. The DC network is grounded. The largest total power loss error between the 

measured and simulated power losses, 20 %, is achieved with the lowest load and with the 

amorphous alloy inductor cores. Otherwise the power loss error is 10 % at maximum.  

It was depicted in Figs. 3.6- 3.8 that the power losses of the grounded converter are higher com-

pared to ungrounded one when the power losses of the isolation transformer were not considered.  

However, the energy efficiency of the ungrounded DC network including isolation transformer is 

lower compared to grounded network especially at low load as shown in Fig. 3.9. The power loss-

es of the customer converter and its AC filter are higher in the grounded network but the isolation 

transformer with large no-load losses is not needed.  

It should be noted that the voltage rating of the IGBTs used in this study is 1200 V, i.e., they are 

rated for 1500 VDC. However, the used DC voltage is 750 VDC hence the IGBTs and diodes 

with lower voltage rating could be used. The converter losses would be approximately 30 % lower 

at nominal load with the IGBTs, whose voltage range is 600 V (Rekola and Tuusa, 2014b). Both 

the switching as well as conduction losses would be lower with the lower-voltage-rated IGBTs. 
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Fig. 3.9. The measured (M) and simulated (S) power losses of the DC network by using amor-

phous core inductors (A, number 5 and 8) or iron core (I, number 2 and 7) AC-filters  

The measurements indicate that the low frequency harmonics exist in the DC current because both 

of the converters do not operate at exactly 50 Hz frequency (co-operation in Fig. 3.9). The con-

verters should be synchronized with each other to reduce the DC current harmonics. The harmon-

ics caused by interferences between the two converters increase the total losses compared to the 

measurements with the single converter causing inaccuracy to the DC cable power loss measure-

ments. The 3
rd

 current harmonics occur in the DC currents and the value of the 3
rd

 harmonic com-

ponent varies with 0.25 Hz as shown in Fig. 3.10a. The frequency difference of 0.08 Hz 

(1/3*0.25 Hz) between the grid and customer converters occur because of inaccuracy in the syn-

chronization of the laboratory prototype converters. The same phenomena can be seen in DC 

voltages presented in Fig. 3.10c.  

a) b) c)  

Fig. 3.10. Measured a) DC currents and b) current in the neutral conductor (blue) and the currents 

of Lcust and c) DC voltages with 5 kW load, with the iron core LC-filter (2.2 mH and 5μF) 
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The largest current harmonics exist in the neutral conductor, because the harmonics of the posi-

tive and negative conductor are added to the neutral conductor as shown in Fig. 3.10b. Power 

losses caused by current harmonics are almost constant in spite of the loading condition but resis-

tive losses of the DC cable are proportional to the transferred power.  

The switching losses of the IGBTs and diodes are not possible to model accurately in the simula-

tion model with a very low load, because the switching energy curves begins from 20 A in the 

datasheets. In addition, the high frequency current harmonics cause inaccuracy to the electrical 

measurements. The measured converter power loss results would be more accurate if the convert-

er losses were measured by using the calorimeter instead of the power analyzers. The switching 

loss curves would be possible to fit to the measured power loss results if the measured results 

would be more accurate.  

An inaccuracy exists between the measured and calculated filter inductor power losses, because 

accurate power losses caused by high frequency current harmonics are difficult to estimate. The 

current harmonics are supposed to be located at two frequencies, 10 kHz and 20 kHz. The current 

spectrum is spread to wider frequency area in reality. The filter loss simulation model would be 

more accurate but also more complex if all frequencies were taken into account. The Steinmetz 

equation assumes purely sinusoidal flux densities (Li et al., 2001; Krings et al., 2010; Mühlethaler 

et al., 2012; Akiror et al., 2012). The more sophisticated inductor core loss calculation methods, 

modified Steinmetz equation (MSE) or improved generalized Steinmetz equation (iGSE) or hyste-

resis loss model, guarantee higher accuracy also with non-sinusoidal current waveform (Li et al., 

2001; Krings et al., 2010; Mühlethaler et al., 2012; Akiror et al., 2012). However, these equations 

are more complex. The parameters determined by fitting the model for the measured data are still 

used hence the equations are also valid only in a limited flux density and frequency range.  

3.6 Conclusions 

The power loss calculation methods for the converters, AC filters, balancing circuit, DC capaci-

tors, DC cable and isolation transformer in the LVDC distribution are presented. The maximum 

error between the measured and simulated or analytically calculated  power losses is 10 % when 

the inductor design is realistic i.e. the current harmonics are in a realistic level and the inductor do 

not saturate. The accuracy of the simulated power loss models is slightly higher especially at par-

tial load conditions compared to the analytical average power loss equations. It is possible to carry 

out a rough estimation of power losses accurately enough for the converter and network topology 

comparison with the created simulation and calculation models but for the very detailed efficiency 

analyze, more complex models would be needed. 



 

 

67 

 

4 Influence of power electronic converter to the energy effi-

ciency of the LVDC distribution network 

4.1 Introduction 

This chapter studies the effect of the power converter topology and AC-filter design to the energy 

efficiency of the LVDC distribution network. The analyses are based on the power loss models 

presented in Chapter 3. The outline of the chapter is following: in Section 4.2, the effect of the 

converter topology on the energy efficiency is analyzed. The influence of AC filter inductor de-

sign and core material to the power losses of the converter are studied in Sections 4.3 and 4.4. The 

influence of the converter switching components to the energy efficiency is discussed in Section 

4.5. The impact of converter modulation frequency to the power losses is analyzed in Section 4.6. 

The influence of power quality limitations to the power losses is analyzed in Section 4.7. Finally, 

the effect of the customer load power factor to the power losses of the converters is discussed in 

Section 4.8 followed by conclusions in Section 4.9. 

4.2 Converter topology 

The power losses of the grid and customer converters by using different converter topologies with 

iron core AC-filter inductors are shown in (Rekola et al., 2012). However, it was concluded in the 

previous chapter that the power losses are significantly lower when the amorphous inductor cores 

are used. Therefore, the power losses of the grid converters and their amorphous core AC-filters 

are calculated and shown in Fig. 4.1. The used IGBTs and diodes are shown in Table 4.1 

(Semikron, 2015a-e). The DC distribution network is supposed to be ungrounded. The used LCL-
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filter values are shown in Fig. 2.17a. The required voltage rating of IGBTs used in three-level 

converter is half of that compared to two-level converter.  

Table 4.1. The used power switching devices  

Converter  udc [V] Iref [A] IGBT  Clamping 

diodes 

IGBT max 

voltage [V] 

NPC, Vienna 750 100 SKM75GB063D SKKD40F 600 

NPC, Vienna 1500 50 SKM75GB123D SKKD40F 1200 

2-level 750 50 SKM75GB123D  1200 

2-level 1500 50 SKM75GB176D  1700 

12-pulse half-

controlled  

1500 50 SKKH27   1200 

The nominal power of the grid converters producing 750 VDC is 10 kVA and purely resistive 

load is used. The nominal power of the grid converters producing 1500 VDC is 20 kVA and pure-

ly resistive load is used. The required inductance value is reduced by half and the capacitance 

value is doubled in the LCL-filter when the nominal power is doubled to achieve the same current 

harmonics compared to AC-filter inductor parameters in Fig.  2.17a. The modulation frequency is 

10 kHz.  

 
 

Fig. 4.1.  Power losses and efficiency of the grid converters and their LCL-filter 

The power losses of the 12-pulse half-controlled thyristor rectifier are lower compared to VSCs as 

shown in Fig. 4.1 but the filter inductor power losses (1 mH) are huge because of low frequency 

current harmonics. The converter power losses of two- and three-level converter connected to 
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750 VDC are almost the same. The IGBT switching losses of three-level converter are approxi-

mately 40 % of the switching losses of comparable two-level converter. Instead, the conduction 

losses of the IGBTs are higher in three-level converter, because there are two switching devices in 

the current path. Moreover, the diode switching and conduction losses are higher in three-level 

converters because of the clamping-diodes. However, the overall power losses of three-level con-

verter are 47 % of the power losses of two-level converter because of using smaller AC filter in-

ductors. The power losses of Vienna rectifier are slightly lower due to the lower number of power 

semiconductor switches. 

The difference in IGBT switching losses of two- and three-level converters is significant when 

these are connected to 1500 VDC. The switching losses of three-level converter are approximate-

ly 25 % of the switching losses of two-level converter in spite of the increased number of power 

semiconductor switches. The overall efficiency is highest with Vienna-rectifier producing 

1500 VDC and the efficiency of three-level converter is almost as high as that.  

The power losses of the customer converters and their amorphous core AC-filter inductors are 

calculated and shown in Fig. 4.2 when the converters are connected to 750 VDC and in Fig. 4.3 

when the converters are connected to 1500 VDC.  

 

Fig. 4.2. The customer converters and their LC-filter power losses with 3.3 kW/phase resistive 

loads and efficiency for converter connected to 750 VDC  
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Fig. 4.3. The customer converters and their LC-filter power losses with 3.3 kW/phase resistive 

loads and efficiency for converter connected to 1500 VDC 

The nominal power of the single-phase converters is supposed to be 3.3 kVA and nominal power 

of three-phase converters is 10 kVA. The same power semiconductor switches are used as with 

the grid converters, shown in Table 4.1. The used LC-filter values are shown in Fig. 2.17b-c. The 

modulation frequency of the converters is 10 kHz as with the grid converters. The energy effi-

ciency of the three-level full-bridges is lower compared to half-bridges because of two converter-

legs in spite of the lower filter inductor power losses as depicted in Figs. 4.2-4.3. The inductor 

copper losses are very large with the two-level half-bridge connected to 1500 VDC because of 

large required filter inductor.   

The energy efficiency of the converters connected to 750 V DC is higher compared to the con-

verters connected to 1500 VDC because of IGBTs with lower voltage capability. In addition, the 

modulation index of the converters connected to 750 VDC is higher compared to the converters 

connected to 1500 VDC if constant 230 Vrms phase voltage is produced to the customer. There-

fore, smaller AC-filters are required when all the converter output voltage levels are used.  

The power losses of the three-level converters are lower compared to the two-level converters 

similarly as with the grid converters in Fig. 4.1. The power losses of three-level converter are 76 % 

of the power losses of two-level converter connected to 750 VDC and 53 % of the power losses of 

two-level converter connected to 1500 VDC. It can be concluded that the energy efficiency is 

improved by using three-level converter instead of conventional two-level converter at 1500 VDC 

voltage level instead of 750 VDC in spite of the low modulation index. 
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4.3 AC-filter inductor design method 

The AC-filter inductor can be designed according to multiple design methods as was discussed in 

Section 2.4.1. The inductor current harmonics needs to be limited to reduce the temperature rise 

and power losses of the inductor. The required inductance and capacitance values of LC-filter 

according to different design methods are calculated for three-level full-bridge customer converter 

(Fig. E.1 in Appendix E) and for three-level three-phase customer converter (Fig. E.2 in Appendix 

E). The amorphous inductor core power losses are calculated by using the LC-filter parameters 

shown in Fig. E.1-2. and presented in Fig. 4.4.  

a)  

b)  

Fig. 4.4. The power losses of the LC-filter/phase with amorphous inductor cores connected after 

the three-level a) single-phase full-bridge and b) three-phase converter 
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cy is 10 kHz and the converters are connected to 750 V DC. The DC network is ungrounded. Ac-

cording to Fig. 4.4, the lowest power losses are achieved if the largest inductance value is chosen, 

i.e., ΔiL,conv,ripple ≤ 10 % înom1. The high frequency core losses are minimized when the large induct-

ance value is used. It can be concluded that the inductor core losses are directly proportional to 

the inductor current harmonics. Instead, most of the copper losses are caused by fundamental 

frequency current, and therefore, the copper losses would increase when the load increases.  

The required inductance and capacitance values of LCL-filter according to different design meth-

ods are calculated for three-level NPC grid converter and shown in Fig. E.3 in Appendix E. Same 

filter can be used also with the Vienna rectifier. THD of igrid ≤ 2% calculated up to 25 kHz. The 

nominal power of the converter is supposed to be 10 kVA, modulation frequency is 10 kHz and 

the converter produces 750 V DC. The amorphous inductor core power losses are calculated by 

using the inductance and capacitance values shown Fig. E.3 in Appendix E and presented in Fig. 

4.5. According to Fig. 4.5, the lowest power losses of the LCL-filter are achieved by using the 

design methods THD iLconv ≤ 20 %, ΔiLconv,ripple ≤ 10 % or ΔiLconv,ripple ≤ 30 %. The differences in the 

power losses depending on the AC-filter design method are smaller with the grid converter com-

pared to customer converters. 

  

Fig. 4.5. The power losses of the LCL filter/phase with amorphous inductor core connected in 

front of the three-level grid converter or Vienna rectifier 

The capacitance value of the LCL-filter in front of the grid converter would be increased from 

0.05*Cb to 0.1*Cb without too large capacitive-current power losses. The required LCL-filter 

inductance values for the grid converters, which nominal power is 10 kVA are shown in Fig. E.4 

in Appendix E. The achieved LCL-filter power losses are shown in Fig. 4.6.  
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Fig. 4.6. The power losses of LCL-filter with the capacitance value of C = 5%*Cb or C = 10%*Cb 

and by using two-level converter, three-level NPC converter and Vienna rectifier  

The LCL-filter power losses of three-level NPC converter and Vienna-rectifier are the same with 

both of the filter capacitance values. Instead, the LCL-filter power losses of two-level converter 

would be significantly lower if the capacitance value is increased. The inductor core losses at 

50 Hz are negligible. The converter-side inductor Lconv high frequency copper losses are almost 

zero with the three-level converters and couple of watts with the two-level converters. The grid-

side inductor Lgrid high frequency copper losses are also negligible.  Majority of the copper losses 

are caused by resistive losses at 50 Hz fundamental frequency. More than 70 % of the overall 

LCL-filter power losses are caused by fundamental frequency copper losses at the converter-side 

inductor when the capacitance is C = 5%*Cb. The proportional part of the fundamental frequency 

copper losses decrease to 40 % of the overall power losses with three-level converters and to 65 % 

of the losses with two-level converter, respectively, when the capacitance is C = 10%*Cb. Rest of 

the power losses are high frequency core losses of the converter side inductor Lconv. 

4.4 AC-filter inductor core material 

The customer loading varies on a large scale and most of the time the customer load is very low 

compared to the maximum load. Therefore, the energy efficiency of the converters is calculated 

not only at nominal load but also at partial load conditions. The efficiency of the grid converters 

and their iron core LCL-filters as well as the efficiency of the customer converters and their iron 
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core LC-filters as a function of resistive load are shown in Fig. 4.7 (Rekola et al., 2012). The 

nominal power of the grid converters producing 1500 VDC is supposed to be 20 kVA and the 

nominal power of grid converters producing 750 VDC is supposed to be 10 kVA. The nominal 

power of three-phase customer converters is 10 kVA and nominal power of single-phase customer 

converters is 3.3 kVA. The modulation frequency of the converters is 10 kHz. The DC network is 

supposed to be ungrounded. Single-phase half-bridges connected to 750 VDC are not taken into 

account due to lack of DC voltage balance.  

a)  

b)  

Fig. 4.7. Total efficiency of the a) grid converters and iron core LCL-filters, b) customer convert-

ers and iron core LC-filters  

The efficiency of two-level grid converters is significantly lower compared to the efficiency of 

three-level grid converters as shown in Fig. 4.7a. The efficiency of the two-level converters de-

creases at partial loading conditions more severely than the efficiency of three-level converters 

because of the larger required filter inductors. Majority of the power losses are caused by high 

frequency current harmonics in the inductor core at partial load conditions. The most efficient 

grid converters are Vienna rectifier and the three-level NPC grid converter connected to 750 VDC. 

The efficiency of the grid converters connected to 1500 VDC is slightly lower. The highest cus-
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tomer converter efficiency with the iron core filter inductors is achieved with three-level three-

phase converter connected to 750 VDC. The main reason for the highest efficiency is the need of 

the smallest AC-filter inductance compared to other converters. It can be concluded that the con-

verter efficiency is directly proportional to the required AC-filter inductance value when the iron 

core filter inductors are used.  

The efficiency of the grid converters and their amorphous core LCL-filters and the efficiency of 

the customer converters and their amorphous core LC-filters as a function of resistive load are 

shown in Fig. 4.8. The two-level half-bridge connected to 1500 VDC is not taken into account 

because of very low energy efficiency compared to other converter topologies as was illustrated in 

Fig. 4.3. 

a)  

b)  

Fig. 4.8. Energy efficiency of a) the grid converters and amorphous inductor core LCL-filters, b) 

the customer converters and amorphous inductor core LC-filters 
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The no-load losses of amorphous alloy core are low and most of the inductor losses are caused by 

power losses in the copper windings, which are dependent on the fundamental power. The energy 

efficiency of the converters with amorphous inductor cores does not decrease in low loading con-

ditions and the efficiency is significantly higher compared to the efficiency with the iron core 

inductors in the Fig. 4.7. The efficiency of the grid converters connected to 1500 VDC is higher 

compared to grid converters connected to 750 VDC due to smaller required AC-filter inductors as 

depicted in Fig. 4.8a. The three-level grid converter producing 1500 VDC have significantly low-

er power losses compared to power losses of two-level converters because of IGBTs with lower 

voltage rating. However, the power losses of two- and three-level grid converter producing 

750 VDC are almost the same at partial load conditions.  

The highest customer converter efficiencies are obtained by using the same topologies as with the 

iron core filter inductors. The highest efficiencies are achieved with the customer converters con-

nected to 750 VDC because of higher modulation index compared to converters connected to 

1500 VDC. The power losses of the single-phase full-bridges are significantly lower with amor-

phous alloy inductor cores compared to the power losses with iron core inductors. The current 

harmonics at twice the switching frequency do not cause high power losses in the amorphous 

inductor core contrary to the iron core. However, the energy efficiency of single-phase converters 

is lower compared to three-level converters. 

4.5 Converter power semiconductor switches 

Approximately 70 % of the three-level NPC converter power losses are caused by the converter 

and 30 % of the filter as shown in Fig. 4.2. Therefore, the effect of different power semiconductor 

switches (cf. Table 4.2) to the power losses of the converters are compared (Semikron, 2015a; 

Semikron, 2015f; Infineon, 2015; Vincotech, 2015).  

Table 4.2. The parameters of the used IGBTs 

Component VCES 

[V] 

IC 

[A] 

Vt 

[V]  

Vf 

[V] 

Rce 

[mΩ] 

Rf 

[mΩ] 

Eon 

[mJ] 

Eoff 

[mJ] 

Err 

[mJ] 

SKM75GB063D  600 100 1.0 0.9 18.7 10 3 2.5 0.01 

SKM100MLI066T  

3-level module  

600 105 0.7 0.9 9.5 6.3 2.5 4.2 1.9 

FS3L50R07W2H3F_B11  

3-level module  

650 100 1.6 1.6 16.3 22.5 1.2 1.6 0.01 

10-F106NIA 100SA-M135F 

3-level module  

600 100 1.7 1.7 25 5.7 2.4 3.8 2.2 
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Power losses of three-level NPC customer converter with 10 kW load connected to 750 V DC by 

using the IGBTs shown in Table 4.2 are illustrated in Fig. 4.9. The differences in the power losses 

achieved with IGBTs by different manufacturers are negligible. The efficiency achieved with all 

components is approximately the same, 98 %, except the last one, which power losses are slightly 

higher. 

Since significant differences in the converter power losses are not achieved by using different 

IGBTs, the power losses by using wide bandgap, silicon carbide (SiC) MOSFETs are calculated. 

The switching losses of SiC MOSFETS are significantly lower compared to conventional silicon 

IGBTs due to absence of tail current and fast recovery characteristics of the body diode (Hazra et 

al, 2015; Wang et al., 2013). In addition, the on-state resistance is lower compared to convention-

al silicon MOSFETs and the external freewheeling diode is not needed due to fast and robust in-

trinsic body diode (Hazra et al, 2015; Wang et al., 2013). The conduction losses of the MOSFET 

are calculated as follow hence there is not the zero-voltage drop as with the IGBTs  

2

, ,

0

1
T

cond MOSFET ds on MOSFETP R i dt
T

      (4.1) 

where Rds,on is the drain-source on-state resistance and iMOSFET is the current flowing through the 

MOSFET. 

 

Fig. 4.9. Power losses of three-level NPC customer converter at nominal load with IGBTs  
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The power losses of the same three-level NPC customer converter with 10 kW load are calculated 

by using SiC MOSFETs shown in Table 4.3 (Microsemi, 2015; Microsemi, 2015a; Cree, 2015; 

Cree, 2015a; Cree, 2015b; Cree, 2015c). The current capability of all the analyzed SiC MOSFETs 

is not 100 A hence multiple components are connected in parallel to achieve the same current 

capability as with the IGBTs, marked as “number of comp” in Table 4.3. The current is supposed 

to be divided evenly between the parallel connected components.   

Table 4.3. The parameters of the used SiC MOSFETs 

Component Number 

of 

comp. 

VCES 

[V] 

IC 

[A] 

Vf 

[V] 

Rds,on 

[mΩ] 

Rf 

[mΩ] 

Eon 

[mJ] 

Eoff 

[mJ] 

Err 

[mJ] 

APTMC60TL11CT3AG 

3-level module  

5 600 21 2.0 150 0 0.45 0.25 0 

APTMC120AM20CT1AG  1 1200 108 2.2 17 0 2.2 1.2 0 

CCS050M12CM2  2 1200 50 2.0 43 0 1.1 0.6 0 

CCS020M12CM2  5 1200 20 1.8 145 0 0.41 0.07 0 

CAS120M12BM2  1 1200 120 1.9 23 0 1.7 0.4 0 

CAS100H12AM1  1 1200 105 2.5 20 0 3.9 1.8 0.5 

The power losses of the converter by using SiC MOSFETs are shown in Fig. 4.10.  

 

Fig. 4.10. Power losses of three-level NPC customer converter at nominal load with SiC 

MOSFETs 
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According to Fig. 4.10, the highest energy efficiency achieved with the conventional IGBTs is 

98.1 % whereas with the SiC MOSFETs the highest efficiency is 99.3 %. The energy efficiency 

of the most suitable grid and customer converter topologies, evaluated in the previous Section 4.4, 

is calculated by using SiC MOSFETs instead of conventional IGBTs and shown in Fig. 4.11. The 

same SiC MOSFETs with 1200 V voltage capability are used both with the two- and three-level 

converters (CAS120M12BM2). The efficiency of two- and three-level converters increases ap-

proximately 1 % when conventional IGBTs are replaced by SiC MOSFETs according to Fig. 4.8 

and Fig. 4.11.  

a)  

b)  

Fig. 4.11. Energy efficiency of a) the grid converters and amorphous inductor core LCL-filters, b) 

the customer converters and amorphous inductor core LC-filters with SiC MOSFETs  

The efficiency of Vienna-rectifier does not increase, because it includes only three IGBTs or SiC 

MOSFETs. Therefore, majority of the power losses are conduction losses of diodes instead of 

switching and conduction losses of IGBTs or SiC MOSFETs. The efficiency of three-level NPC 
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grid converter is higher compared to Vienna rectifier when IGBTs are replaced by SiC MOSFETs 

because of low switching losses. It can be concluded that the efficiency increase achieved by re-

placing three-level NPC converter by Vienna rectifier is not relevant when SiC MOSFETs are 

used instead of IGBTs. Moreover, the energy efficiency of two-level converter connected to 

750 VDC is higher compared to three-level NPC converter at low loading conditions because of 

lower number of switching devices when the voltage capability of the switching devices is the 

same in two- and three-level converters.  

4.6 Converter modulation frequency 

The modulation frequency of the power switching devices has an effect to the converter power 

losses as well as power losses and size of the AC filter. The power losses and efficiencies of the 

ungrounded three-level NPC grid and customer converters and their AC filters connected to 

750 VDC with three different modulation frequencies at nominal resistive load and with one 

fourth of the nominal resistive load are presented in Fig. 4.12. The amorphous core inductors are 

used. The THD40kHz of grid current and customer load voltage are ≤ 2 % with nominal load. Both 

the conventional IGBTs as well as SiC MOSFETs are used.  

 
 

Fig. 4.12. Simulated losses of the three-level NPC customer converter with the modulation 

frequencies of 5 kHz, 10 kHz and 15 kHz wih the nominal load and with 0.25*Pnom load by using 

IGBTs (SKM100MLI066T) and SiC MOSFETs (CAS120M12BM2) 

The converter switching losses rise almost linearly as the switching frequency increases hence the 

switching losses are proportional to the modulation frequency. The conduction losses increase 
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along the increasing load (Ploss_cond ~ i
2
). The smaller AC-filter inductance value can be used if the 

modulation frequency is increased but it does not lead to lower total losses as shown in Fig. 4.12 

because of increased converter switching losses as well as increased inductor core and copper 

high frequency power losses (Rekola and Tuusa, 2014b). 

The power losses are the same in spite of the modulation frequency of 5 kHz or 10 kHz at nomi-

nal load when IGBTs are used. Instead, the energy efficiency increases when the modulation fre-

quency increase from 5 kHz to 10 kHz at nominal load when SiC MOSFETs are used. The con-

verter efficiency is substantially higher if IGBTs are replaced by SiC MOSFETs. The differences 

in the total efficiency are low at nominal load depending on the modulation frequency but the 

effect is significant at partial load conditions. The power losses would be lower if the modulation 

frequency is 5 kHz instead of 10 kHz at partial load conditions. Unfortunately, the switching fre-

quencies below 10 kHz cause audible noise, and therefore, these are not possible to be used espe-

cially in the customer converter. 

The highest efficiency at nominal load with IGBTs as well as with SiC MOSFETs is achieved by 

using 10 kHz switching frequency. The converter modulation frequency would be increased by 

using SiC MOSFETs without the significant increase of switching losses of the converter. How-

ever, the high frequency power losses of the AC filter inductor limits the increase of modulation 

frequency. The inductor core materials, which are designed to higher switching frequencies, such 

as ferrite, should be used if the modulation frequency will be increased. Unfortunately, the satura-

tion flux density of the ferrite is approximately 1/3
rd

 of that compared to amorphous alloy, and 

therefore, multiple ferrite core inductors should be connected in parallel to achieve the required 

power capability.   

4.7 Power quality limitations 

The standards about the power quality in the LVDC distribution are not yet totally established. 

The standards IEC 61727, IEC 61000-3-2, EN 60555 and IEEE Std 929-2000 limits the maximum 

grid current THD to 5 % whereas the standard EN 50160 limits the customer voltage THD ≤ 8 % 

up to 2 kHz frequency. The power losses of the ungrounded three-level NPC grid and customer 

converter with different THD limits are presented in Fig. 4.13. The converters are connected to 

750 VDC. The amorphous core filter inductors are used. The customer voltage THD limit is set 

from 2 %, 4% or 8 % and the grid current THD limit is set from 2 % to 5 % calculated up to 

25 kHz. The modulation frequency is 10 kHz and the nominal resistive load, 10 kW, is used. 
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Fig. 4.13. Simulated three-level NPC converter power losses with the different THD limits of grid 

current and customer voltage  

The converter power losses are almost constant in spite of the THD limit as depicted in Fig. 4.13. 

Instead, the THD limit has an effect to the size and power losses of the required AC filter. The 

required inductance value decreases hence the inductor copper losses decrease as the THD limit 

increases but at the same time, the inductor high frequency core losses increase. The efficiency of 

the grid converter decreases if the grid current allowed THD value is increased. The power losses 

of the customer filter decrease by half when the customer voltage THD limit is increased from 2 % 

to 4 % due to smaller required AC-filter inductance. However, the power losses are increased if 

the customer voltage THD limit is further increased to 8 %. It should be noted that the increased 

current harmonics increase also the power losses of the isolation transformer if it is required. It 

can be concluded that the power quality limitations has a significant effect to the power losses of 

the customer filter but the effect to the overall energy efficiency is not significant (Rekola and 

Tuusa, 2014b). 

4.8 Customer power factor  

The customer load is supposed to be purely resistive in the previous analysis. For instance heating 

and sauna stove are purely resistive loads but washing machine, lighting, dish washer and vacuum 

cleaner are inductive loads. The power losses of three-level three-phase converter with 10 kVA 

load and with variable power factor are shown in Fig. 4.14. The modulation frequency is assumed 

to be 10 kHz and the converter is connected to 750 VDC. Power semiconductor devices are de-

fined in Figs. 2.3 and 2.7b. 
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Fig. 4.14. The power losses of three-level three-phase converter with 10 kVA load and with vari-

able power factor by using IGBT SKM100MLI066T 

The difference in total converter power losses is not significant depending on the power factor as 

depicted in Fig. 4.14. However, the stresses of different switching components vary on a large 

scale. The analytical equations for the current rms and average values for the power semiconduc-

tors of three-level converter were given in (3.11) - (3.14) (Dieckerhoff et al., 2005; Moia et al., 

2012). The current of outer IGBTs, S1 and S4 is zero in the rectifier mode and the current of anti-

parallel diodes D1-D4 is zero in the inverter mode when the load is purely resistive (Rekola and 

Tuusa, 2011a). The maximum power losses of outer IGBTs are achieved at unity power factor in 

inverter mode and the maximum power losses of inner IGBTs are achieved at unity power factor 

in rectifier mode, respectively, as illustrated in Fig. 4.14 (Rekola and Tuusa, 2011a). IGBTs S2 

and S3 are conducting during the whole positive or negative half cycle and the average current 

stresses of these IGBTs are constant in spite of the modulation index. It can be concluded that the 

average current stresses of IGBTs and diodes are not equal in three-level converter as in two-level 

converter. The uneven power loss distribution might lead to a decreased power capacity due to 

unsymmetrical temperature distribution of the semiconductor junction (Franquelo et al., 2008; 

Rodriguez et al., 2010). The unequal loss distribution limits the switching frequency of the three-

level converter, because the semiconductor losses are linearly dependent on their temperature 

(Jing et al., 2013).  

The active NPC-converter (ANPC) is created because of the problems caused by uneven power 

loss distribution in the conventional three-level NPC. The clamping diodes are replaced by similar 
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IGBTs as the other power semiconductor switches as shown in Fig. 4.15. The topology was intro-

duced by Brückner and Bernet (2001). Four zero voltage states can be realized instead of two, and 

the distribution of conduction losses can be controlled during these zero states by selection of the 

upper or lower clamping IGBT and diode path (Brückner and Bernet, 2011). The conduction loss-

es of the ANPC are lower compared to NPC because of lower on-state resistance Rds,on of the   

IGBTs compared to passive clamping diodes (Schöner et al., 2014). The switching losses of the 

ANPC might be lower compared to NPC with the properly designed, loss-balancing control 

scheme (Schöner et al., 2014). The efficiency of the ANPC is better compared to NPC with low 

load but the efficiency of NPC is higher with high power (Rodriguez et al., 2010; Schöner et al., 

2014).  

 

Fig. 4.15. Active NPC 

4.9 Conclusions 

The influence of converter topology, AC filter design method and filter inductor core material, 

used power switching devices, modulation frequency, power quality limitations and customer 

power factor to the energy efficiency of the converters in the LVDC distribution network is ana-

lyzed. 

The size of the required AC-filter inductance is minimized if LCL-filter is connected in front of 

the grid converter but the LC-filter is adequate with the customer converter. The inductor current 

ripple should be ≤ 10 % of the current fundamental component amplitude to minimize the filter 

power losses. It can be concluded that the filter inductor core material has a significant effect to 

the power losses. The filter inductor core with low no-load losses, e.g. amorphous core, should be 

definitely used, because the customer load is most of the time very low compared to the momen-
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tary maximum load. The energy efficiency of the converters is almost constant in spite of the 

loading conditions when amorphous core AC-filter inductors are used. Instead, the energy effi-

ciency is low and decrease deeply as the load decreases if the conventional M400-50 laminated 

iron core filter inductors are used.  

The highest grid converter energy efficiency is achieved with Vienna rectifier connected to 

1500 VDC if conventional IGBTs and amorphous inductor cores are used. The current stresses 

are lower compared to the grid converter connected to 750 VDC and the voltage capability of the 

power semiconductors is half of that required with two-level converter. The energy efficiency of 

three-level NPC grid converter connected to 1500 VDC is almost as high as the efficiency of the 

Vienna rectifier. The highest energy efficiency is achieved if two- or three-level customer con-

verters are connected to 750 VDC because the modulation index is maximized. The energy effi-

ciency of three-level converter is higher at nominal load when conventional IGBTs are used. It 

can be concluded that the power loss difference between the IGBTs with voltage rating of 600 V 

or 1200 V is not so large that significant efficiency increase would be achieved by using three-

level converter. Instead, the notable power loss increase is shown as the voltage capability of   

IGBTs increase from 1200 V. Therefore, the use of three-level converters is worthwhile especial-

ly at higher voltage levels.  

The converter power losses do not change significantly depending on the use of IGBTs by differ-

ent manufacturers. However, the energy efficiency of the converters is increased approximately 

by 1 % if the conventional silicon IGBTs are replaced by wide bandgap SiC MOSFETs. The 

highest energy efficiency is achieved with two-level grid converter connected to 750 VDC and 

with three-level NPC grid converter connected to 1500 VDC when conventional IGBTs are re-

placed by SiC MOSFETs. The efficiency of Vienna rectifier is lower compared to three-level 

NPC converters when IGBTS are replaced by SiC MOSFETs. 

The decision of the use of two- and three-level customer converters connected to 750 VDC should 

be done according to the acquisition and maintenance costs. The three-level converter includes 

larger number of power semiconductor switches but voltage capability is half of that with the 

comparable two-level converter. In addition, the AC-filter inductors are half smaller. The draw-

back of three-level converters is unbalanced current stresses of the power semiconductor switches. 

The conventional three-level converter would be replaced by and ANPC topology enabling more 

equal power loss and lower power losses especially at partial load conditions. 

The power losses of the converters and filters would be lower at low load if the modulation fre-

quency of the converters would be lower than the used 10 kHz. Unfortunately, the modulation 

frequency decrease would lead to increased audible noise. The modulation frequency should not 
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increase from 10 kHz if conventional IGBTs are used due to increased switching losses, which are 

linearly proportional to modulation frequency. Instead, the switching frequency can be increased 

if SiC MOSFETs are used due to low switching losses. However, the increased high frequency 

power losses of the amorphous alloy inductor core limit the modulation frequency increase.  

It can be concluded that the power quality limitations has an effect to the power losses and size of 

the customer filter but the effect to the overall energy efficiency is insignificant as long as the 

current and voltage THD is limited to be lower than 10 % calculated up to three times of the 

modulation frequency.  
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5 Effect of network configuration on energy efficiency of 

LVDC distribution network 

5.1 Introduction 

For facilitating the design of cost effective LVDC distribution networks, the total losses of the 

LVDC distribution network with different network configurations are evaluated and compared. 

The theoretical power loss analysis are based on assumption that the power losses of the LV net-

work decreases with the use of DC, because resistive losses in cables are lower due to higher volt-

age level, lack of reactive power and skin effect (Nilsson et al., 2004; Engelen et al., 2006; Anand 

et al., 2010; Sannino et al., 2003; Kakigano et al., 2010; Kakigano et al., 2012; Shenai et al., 2011; 

Ali et al., 2012; Gwon et al., 2014). However, the amount of DC current harmonics depend on the 

used network configuration, converter topologies, customer behavior, exist of balancing circuit, 

control methods, control parameters and modulation methods of the converters. The target is to 

find the LVDC distribution network configuration with the lowest losses depending on the DC 

network length and identify the main power loss sources.  

Section 5.2 describes influence of LVDC network grounding method to the power losses. The 

influence of DC network configuration including the used DC voltage level, DC cable length and 

the need of DC voltage balancing to the power losses are discussed in Section 5.3. The influence 

of converter topology depending on the used power semiconductor switches is discussed in Sec-

tion 5.4. The influence of customer single-phase loads to the power losses are presented in Sec-

tion 5.5. Finally, the influence of real Finnish customer loading behavior to the energy efficiency 

of LVDC distribution network is calculated and discussed in Section 5.6. The conclusions are 

drawn in Section 5.7.  



 

88 

 

 

5.2 Grounding method 

The LVDC distribution network might be grounded or ungrounded as discussed in Section 2.5.1. 

The three-phase customer converter operates as three parallel-connected single-phase converters, 

when the whole LVDC distribution network is grounded thus increasing the current harmonics. 

The required filter parameters for three-level NPC grid and customer converters in the bipolar DC 

network, presented in Figs. 2.10a and 2.12, are shown in Table 5.1. Amorphous core filter induc-

tors are used. The grid converter nominal load is 20 kVA producing 1500 VDC and the nominal 

load of the customer converter connected to 1500 VDC is 10 kVA. The modulation frequency of 

the converters is 10 kHz.  

Table 5.1. Required AC-filter parameters in grounded and ungrounded DC network 

 Grid converter Customer converter 

 Lgrid [mH] 

(pu)  

Cgrid [μF] 

(pu) 

Lconv [mH] 

(pu) 

Lcust [mH]  

(pu) 

Ccust [μF] 

(pu) 

Ungrounded 0.3 (0.3 %) 5 (5 %) 1.1 (1 %) 1.5 (3 %) 4 (2 %) 

Grounded 0.4 (0.4 %) 5 (5 %) 1.6 (1.6 %) 1.5 (3 %) 6 (3 %) 

      

The simulated power losses of the grounded and ungrounded LVDC distribution network are 

shown in Fig. 5.1. The load is supposed to be purely resistive and it varies from 2.5 kW to 10 kW. 

Length of the DC cable is 1 km. The typical underground cable in LV distribution networks, 

AXMK 4*16mm
2
, is used. The power losses of the supplying transformer, which decrease the AC 

voltage to at maximum 1kV AC, are not taken into account in the presented loss analysis. 

The simplest way to realize the galvanic isolation in the ungrounded LVDC network is to install 

10 kVA 50 Hz 400 V/400 V isolation transformer between the customer converter and the cus-

tomer electrical installations, as shown in Fig. 2.10a. Unfortunately, the transformer is bulky and 

expensive. The isolation transformer causes 32 % of the total losses with the low load as shown in 

Fig. 5.1. The proportional part of the isolation transformer power losses decreases as the load 

increase. The transformer causes still 26 % of the overall power losses with nominal load. The 

customer converter power losses are large compared to grid converter power losses because of the 

low modulation index.  
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Fig. 5.1. Simulated power losses of ungrounded and grounded (marked as N) 1 km long LVDC 

distribution network with three-level three-phase grid and customer converters 

The power losses of the grid converter are almost the same in the grounded and ungrounded net-

works. The grid filter losses are higher in the ungrounded network but the converter losses are 

slightly lower. The power losses of the customer filter are also higher in the grounded LVDC 

network because larger filters are needed to fulfill the power quality limitations. In addition, the 

power losses of the DC cable are approximately 10 % higher in the grounded network because of 

the additional grounding wire. In spite of these, the efficiency of the grounded DC network is 

approximately 3 % higher at partial load and 1 % higher at nominal load compared to the un-

grounded network, because the isolation transformer is not needed.  

5.3 LVDC distribution network configuration 

The DC network might be unipolar consisting of one voltage level and the neutral or bipolar con-

sisting of two voltage level and the neutral as shown in Section 2.5. Both halves of the bipolar DC 

distribution network can be loaded asymmetrically when the DC network is supplied by two grid 

converters without additional DC voltage balancing. Instead, the DC voltage balancing circuit is 

needed if the whole DC network is supplied by one grid converter. 

The customer converter efficiency is better if the converter is connected to 750 VDC instead of 

1500 VDC, because the modulation index of the converters is > 0.5 when 230 VAC phase voltage 

82

84

86

88

90

92

94

0

200

400

600

800

1000

1200

N N N N

2.5kW 5kW 7.5kW 10kW

P
o

w
er

 l
o

ss
 [

W
]

Isolation transformer

Customer filter

Customer converter

DC cable

Grid converter

Grid filter

Eff. ungrounded [%]

Eff. grounded [%]



 

90 

 

is produced to the customer as shown in Section 4.2. The modulation index of the customer con-

verter can be maintained high by using the isolation transformer with the voltage transformation 

ratio of 800 V/400 V instead of 400 V/400 V as shown in Fig. 5.2. Larger switching and conduc-

tion losses of the IGBTs rated at higher voltage increase the losses but on the contrary, the re-

quired current rating is reduced by half compared to converters connected to 750 VDC due to 

higher voltage level.  

 

Fig. 5.2. A unipolar LVDC distribution network 

The simulated DC voltages, DC currents, input current of the grid converter, and customer con-

verter currents, are shown in Fig. 5.3. The converter load is 10 kW. The 3
rd

 harmonic component 

occurs in the DC voltages but not in the DC currents because unipolar network without the neutral 

conductor is used. 

a) b) c)  

Fig. 5.3. Simulated a) DC voltages, b) DC currents, c) input current of the grid converter and cus-

tomer converter currents when the load converter is connected to 1500 V DC  

The total power losses and efficiencies of the LVDC distribution network supplied by one or two 

grid converters are illustrated in Fig. 5.4. Three-level NPC converters with 10 kHz modulation 

frequency and amorphous core filters are used. The power losses of the network configuration 

with 10 kW load connected between the negative pole and neutral, as in Fig. 2.10c, are marked as 

“400V/400V”. The losses of the configuration presented in Fig. 2.10c, where 5 kW loads are con-

nected to both halves of the DC link is marked as “400V/400V sym”. The losses of the configura-

tion presented in Fig. 5.2 with 10 kW load are marked as “800V/400V” in Fig. 5.3. The power 

losses are calculated by using two different lengths of the DC-cable: 200 m and 1 km.  
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a)  

b)  

Fig. 5.4. Simulated total losses of the LVDC distribution network when the load converter is con-

nected to 750 V DC or 1500 V DC with a) 200 m DC cable and b) 1 km DC cable 

The power losses of two grid converters connected to 750 VDC are lower compared to one grid 

converter producing 1500 VDC. Instead, the power losses of the LCL-filter are lower due to low-

er current value when only one grid converter connected to 1500 VDC is used. The balancing 

circuit is needed when the DC network is supplied by one grid converter, causing additional pow-

er losses as shown in Fig. 5.4. The balancing circuit causes approximately 15 % of the total losses 

of the LVDC distribution network. The balancing inductor losses are insignificant, approximately 

20 W, but the losses of IGBTs and diodes in the balancing leg are higher compared to power loss-

es of the one converter leg due to lack of connection to the DC link midpoint. The power losses of 

the balancing circuit depend on balancing circuit configuration, used IGBTs and diodes and their 

modulation frequency as well as inductor core material and inductance value. The same semicon-

ductors as in the grid converter are used with 10 kHz modulation frequency in the balancing cir-

cuit.  
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The power losses of the DC cable are lower if both the grid and customer converters are connect-

ed to 1500 VDC compared to 750 VDC. 3
rd

 harmonic component do not exist in the DC current as 

shown in Fig. 5.3. However, the DC grid is more reliable if the grid is supplied by two grid con-

verters instead of one. The other part of the bipolar DC grid might be used in spite of the fault in 

the other part (Lago et al., 2011).  

The highest energy efficiency of the ungrounded LVDC distribution network is achieved, when 

both the grid converter and customer converter are connected to 750 VDC if the length of the 

bipolar DC network is 600 m at maximum. The total power losses are minimized especially due 

to low losses of the customer converters. The isolation transformer causes approximately 20 % of 

the total losses. The increased DC cable losses decrease the efficiency when the bipolar LVDC 

network is longer than that. Slightly higher energy efficiency is achieved by using the unipolar 

network configuration, i.e. the network is supplied by one grid converter and the customer con-

verter is connected to 1500 VDC and by using the isolation transformer having a voltage trans-

formation ratio of 800V/400V as shown in Fig. 5.4b if the DC cable is longer than 600 m. The 

total losses are minimized in spite of the increased customer converter power losses due to de-

creased DC cable power losses. 

5.4 Converter topology depending on the used power semiconductor 

switches 

The customer converter bridge power losses of two- and three-level converters with amorphous 

core AC filter inductors are almost the same when these are connected to 750 VDC as shown in 

Fig. 4.8. Therefore, the overall power losses of the ungrounded bipolar LVDC distribution net-

work shown in Fig. 2.10b by using two- and three-level grid and customer converters are calcu-

lated and presented in Fig. 5.5. The IGBTs with lowest power losses (SKM100MLI066T) are 

used (Semikron, 2015f). The DC cable length is supposed to be 1 km. The typical underground 

cable in LV distribution networks, AXMK 4*16mm
2
, is used.  

The energy efficiency with 2.5 kW and 5 kW loads is same with two- and three-level converters. 

Instead, as the load increases to be higher than half of the nominal load, the efficiency of the 

LVDC network is higher when three-level converters are used. The power losses of two- and 

three-level converter power semiconductor switches, the power losses of the DC cable and the 

power losses of the isolation transformer are almost the same. However, the power losses of the 

AC filters are lower when three-level converters are because of smaller required filter inductors. 

The efficiency increase is approximately 1 % with 7.5 kW load and 2 % with the nominal load 

compared to the efficiency of the LVDC distribution network with two-level converters.  
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Fig. 5.5. Simulated total power losses of 1km long ungrounded LVDC distribution network with 

two- and three-level grid and customer converters with conventional IGBTs  

The power losses of the ungrounded LVDC distribution network, which length is 1km, with two- 

and three-level converters are shown in Fig. 5.6 when the IGBTs are replaced by SiC MOSFETs. 

The SiC MOSFET with lowest power losses are used (CAS120M12BM2) (Cree, 2015b).  

 

Fig. 5.6. Simulated total power losses of 1km long ungrounded LVDC distribution network with 

two- and three-level grid and customer converters with SiC MOSFETs 
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The energy efficiency of two-level grid converter with the LCL-filter, which capacitance value is 

0.1*Cb instead of 0.05*Cb is shown to have the same efficiency as the three-level grid converter at 

nominal load in Fig. 4.6. Therefore the power losses of two-level converter are calculated by us-

ing the LCL-filter with the capacitance value of 0.05*Cb as well as 0.1*Cb and illustrated in Fig. 

5.6. The capacitance value of the LCL-filter has a significant effect to the power losses at nominal 

load but the effect to the power losses at partial load conditions is negligible as depicted in Fig. 

5.6. The power loss difference between two- and three-level converters connected to 750 VDC is 

negligible, when the conventional IGBTs are replaced by SiC MOSFETs. The voltage capability 

of the SiC MOSFETs used with both of the converters is the same. The overall energy efficiency 

with three-level NPC converters is approximately 2 % higher if the conventional IGBTs would be 

replaced by SiC MOSFETs and the energy efficiency of two-level converters is 4 % higher.  

5.5 Single-phase loads 

The single-phase customer loads cause 2
nd

 harmonic to the DC current and voltage increasing DC 

cable power losses (Lago et al., 2011). The control of the phase-angle between the sinusoidal 

control signals of the PWM-modulators of the single-phase converters might have an effect on the 

DC cable power losses. The ungrounded bipolar LVDC distribution network, supplied by two 

grid converters, is presented in Fig. 5.7. Both of the grid converters are controlled to produce con-

stant 750 VDC. In Fig. 5.7, three three-level single-phase full-bridge converters are connected to 

the bipolar LVDC distribution network between the positive pole and the neutral. The load of the 

single-phase converters is symmetrical 3.3 kW each or asymmetrical, when the first converter 

load is 5 kW, second 4 kW and the third converter load is 1 kW.  

 

Fig. 5.7. A bipolar LVDC distribution network with single phase customer converter 

The other option is that the same total power is supplied by one three-phase converter instead of 

three-single-phase converters as in Fig. 2.10b. The load is phase-symmetric 10 kW load (3.3 

kW/phase) or phase-asymmetric, when the load in phase A is 5 kW, in phase B 4 kW and in phase 
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C 1 kW. The phase angle between the sinusoidal control signals of the PWM-modulators in three 

single-phase converters are selected as 0° or 120° since it might be possible to decrease the low 

frequency harmonics, which occur in the DC current and DC voltage by optimizing the phase 

angels of the sinusoidal control signals. The single-phase converters, having load of 3.3 kW each, 

with the phase-angle of 0° cause 2
nd

 harmonic component to DC currents and DC voltages as 

shown in Figs. 5.8a-b. Instead, three single-phase converters with the phase-angle of 120° be-

haves as one three-phase converter, and therefore, these do not cause the 100 Hz component to the 

DC currents as shown in Figs. 5.8c and d. However, both three single-phase converters with the 

phase-angle of 120° and one three-phase converter produce 3
rd

 harmonic component to the DC 

voltages due to three-level topology as shown in Figs. 5.8d and f. (Rekola et al., 2014a)  

 
                     a)             b)                             c)                   d) 

 
                     e)                                    f)      g)                   h) 

Fig. 5.8. Simulated DC currents and DC voltages with a-b) single-phase converters with 0° phase 

shift, c-d) single-phase converters with 120° phase shift, e-f) three-phase converter, g-h) asym-

metrically loaded single-phase converters with 120° phase-shift  

The optimized phase angle is shown to be 120° to minimize the DC current harmonics caused by 

the single-phase converters when the load of all three converters is the same. However, when the 

three single-phase converters are loaded asymmetrically, the 120° phase-angle do not minimize 

the DC current and DC voltage fluctuation as shown in Figs. 5.8g-h. The phase angle of single-

phase converters as well as the phase angle between the phases in three-level converters needs to 

be changed if the load is asymmetrical to minimize the DC current and DC voltage fluctuation. 

The method to decrease the 2
nd

 harmonic component in the DC currents is proposed by Lana et al. 

(2011). The DC voltage harmonics would be decreased also by increasing the DC capacitance 

value but it increases the acquisition costs of the converters as discussed in (Lana et al., 2011a). 

According to the standard, the maximum DC voltage fluctuation is allowed to be 10 %, i.e. 75 V, 
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but from the energy efficiency point of view, the DC voltage fluctuation should be limited to low-

er level (IEC Standard 60364). 

The total power losses and efficiencies of the LVDC network with symmetrically and asymmetri-

cally loaded (marked as “asym” in Fig. 5.9) single-phase and three-phase customer converters 

with 1 km long DC cable are presented in Fig. 5.9. The network is supposed to be ungrounded 

except the case “asym 3-phase 4-wire”, in which the whole LVDC network is grounded hence the 

isolation transformer is not needed. According to the results illustrated in Fig. 5.9, the overall 

power losses of the LVDC network with the single-phase converters, which PWM-modulation 

reference signals phase shift is 0° or 120° are almost the same. The converter bridge power losses 

decrease approximately 20 W and the LC-filter power losses 70 W when the phase shift is 120° 

instead of 0°. It can be concluded that the achieved energy efficiency increase by optimizing the 

reference signal phase shift is not significant.  

The power losses of the LCL-filter, grid converter, and DC cable are almost the same in spite of 

the use of three single-phase customer converters or one three-phase customer converter. Howev-

er, the losses of the customer converter, LC-filter and isolation transformer are certainly lower 

when the load is supplied by only one converter instead of three converters. It can be concluded 

that the higher efficiency of the LVDC distribution network is achieved when one three-phase 

customer converter is used instead of multiple single-phase converters. Most of the current har-

monics occur at 10 kHz, i.e., at the modulation frequency when the three-phase converter is used, 

whereas most of the current harmonics occur at twice of the modulation frequency, 20 kHz, when 

the single-phase full-bridge converters with the unipolar modulation scheme are used. The current 

harmonics at higher frequency cause increased losses in the LC-filter as shown in Section 3.3.  

The grid converter and filter cause 20 % of the overall power losses as illustrated in Fig. 5.9. The 

DC cable power losses are almost the same in spite of the used customer converters and loading 

asymmetry. The DC cable power losses are 35% to 50 % of the overall power losses. The sym-

metrically loaded three-phase customer converter and filter causes 15 % of the power losses and 

the asymmetrically loaded converter causes 20 % of the overall power losses. Otherwise the cus-

tomer converter and LC-filter cause approximately one third of the overall power losses. The iso-

lation transformer power losses are approximately 20 % of the total power losses.  
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Fig. 5.9. Simulated total losses of the bipolar LVDC distribution network with three single-phase 

or one three-phase load converters with 1 km DC cable 

The low frequency harmonics occur in the AC grid currents when the load is phase-asymmetric in 

the ungrounded LVDC distribution network increasing the power losses of grid converter and 

LCL-filter as shown in Fig. 5.9. Moreover, the 50 Hz isolation transformer has difficulties to sup-

ply distorted or unbalanced loads. Highly distorted load current can lead to transformer overload-

ing or cause hotspots in the windings and result in a reduction of the expected lifetime of the 

transformer. The AC grid currents are sinusoidal in spite of the phase-asymmetrical load if the 

LVDC network is grounded as shown in Fig. 5.10. The power losses of the converters and AC-

filters are higher when the DC network is grounded. However, the isolation transformer is not 

needed hence the energy efficiency is higher compared to ungrounded network.  

 

a)               b)            c)                        d) 

Fig. 5.10. Measured a) customer load currents, b) grid converter input currents, c) current in the 

grounding wire in the customer converter and e) current in the grounding wire in the grid convert-

er when the load in phase A is 4 kW (blue), in phase B 2 kW (green) and in phase C 0 kW (red) 
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5.6 Customer behavior  

The total power loss of the LVDC distribution network during one year is analyzed with the aid of 

typical load characteristic of Finnish customer. The customer has electric storage heating, which 

causes a high electric load at winter nights but most of the time the load is under 10 % of the max-

imum load as shown in Fig. 5.11. The total consumed energy is 10.2 MWh/year. The customer 

load is assumed to be resistive operating at unity power factor.  

  

Fig. 5.11. Duration curve of customer with electric storage heating 

The bipolar, ungrounded, ± 750 VDC distribution network (Fig. 2.10b) as well as unipolar un-

grounded network with 800V/400V isolation transformer (Fig. 5.2) and unipolar grounded net-

work (Fig. 2.12) are used. The length of the DC cable is supposed to be 2.5 km. Three-level three-

phase grid and customer converters with the modulation frequency of 10 kHz are used. The nomi-

nal power or the converters producing 750 VDC is 10 kVA and the nominal power of the con-

verters, which produce 1500 VDC, is 20 kVA, respectively. Both conventional silicon IGBTs and 

SiC MOSFETs are used as power semiconductor switches in the converter bridges and both iron 

and amorphous core AC filter inductors are used (Semikron, 2015f; Cree, 2015b). The power 

losses and energy efficiency of the whole LVDC distribution network during one year is shown in 

Fig. 5.12.  

The high frequency inductor core losses cause 40 % of the overall power losses if the iron core 

filter inductors are used. Instead, the high frequency inductor core losses are only 3 % of the 

overall power losses when the iron core inductors are replaced by the amorphous core filter induc-

tors. The majority of the filter losses are high frequency core losses also with the amorphous core 

when the load is lower than one quarter of the nominal load. The fundamental frequency core 

losses are insignificant in both iron and amorphous core inductor. More than half of the overall 

power losses are caused by isolation transformer because of high no-load losses. The energy effi-

ciency of the grounded network is substantially higher compared to the ungrounded network due 

to lack of isolation transformer in spite of increased converter power losses. The energy efficiency 

of the grounded LVDC distribution network can be further increased from 82.2 % to 88.2 % by 

replacing conventional silicon IGBTs with SiC MOSFETs. 
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Fig. 5.12. Total power losses of a customer with electrical heating during one year 

The previous energy efficiency analysis of the LVDC distribution network is concentrated mainly 

to the power losses of the DC cable. For example, the energy efficiency of the rural Finnish 

LVAC network, which length is 17km, would increase from 94 % to 96.5 % by using LVDC if 

only the cable conduction losses are taken into account (Lana et al., 2015). However, it should be 

noted that only one quarter of the overall power losses is caused by the DC cable in the unground-

ed bipolar DC network, 5 % of the overall power losses in the ungrounded unipolar DC network 

and 35 % in the grounded unipolar DC network as illustrated in Fig. 5.12. Therefore, the optimi-

zation of the energy efficiency of the power converter in the LVDC distribution network is crucial 

to optimize the energy efficiency of the whole network.    

5.7 Use of isolated DC/DC converter instead of isolating line-frequency 

transformer 

The major part of the overall power losses of the ungrounded LVDC distribution network occur in 

the isolating line-frequency (50 Hz) transformer as presented in the previous chapter. The trans-

former could be replaced by isolated, high power density, bidirectional DC/DC converter, includ-

ing a high-frequency isolation transformer with amorphous core. Isolated DC/DC converter to-

pologies which are suitable to PV, electric vehicle (EV), energy storage, traction auxiliary power 

and data center applications are widely studied during the last years (Pavlovsky et al., 2009; 

Wang et. al. 2011a; Du et al., 2011; Kim et al., 2013).  
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Two-level full-bridge DC/DC converter topologies are preferred in high-power applications in-

stead of half-bridge topologies, because of lower voltage and current stresses and lower current 

harmonics (Tan et al., 2011; Mattsson et al., 2014). The energy efficiency of the DC/DC convert-

ers is further increased by using soft-switching methods, such as zero-voltage switching and zero-

current switching, instead of hard switching (LaBella et al., 2014; Tan et al., 2011; Pavlovsky et 

al., 2009; Wang et al., 2012; Mattsson et al., 2014). High switching frequency, at least 20 kHz, is 

used to minimize the converter volume (Wang et al., 2011a; Pavlovsky et al., 2009; Simanjorang, 

2010).  

The four-wire customer converter topology needs to be used if the line-frequency isolation trans-

former is replaced by isolated, bidirectional DC/DC converter as shown in Fig. 5.13. Therefore, 

the power losses of the customer converter and the customer LC-filter increase. 

 

Fig. 5.13. Four-wire customer converter with isolated DC/DC converter 

The minimum required energy efficiency of the isolated DC/DC converter is calculated to achieve 

as high efficiency of the LVDC distribution network as in the calculations presented in Fig. 5.12. 

The energy efficiency of the isolated DC/DC converter should be at least 88 % at the whole oper-

ating area if the bipolar LVDC distribution network structure is used. However, the energy effi-

ciency of the DC/DC converter should be at least 97 % to achieve as high overall energy efficien-

cy with the bipolar LVDC distribution network as with the unipolar LVDC distribution network. 

The energy efficiency of the 750 V/400 V two-level bidirectional, isolated DC/DC converter with 

1200V Si IGBTs or MOSFETs with soft switching method is approximately 97 % in broad load 

range (Pavlovsky, 2009; Inoue  and Akagi, 2007; Tan et al., 2011; Du et al., 2011; Kim et al., 

2013).  

The energy efficiency of the DC/DC converter decreases if the power devices with the voltage 

capability of higher than 1200 V are needed. Therefore multilevel DC/DC converter topologies 

need to be used. The voltage stress of the primary-side switches would be Uin/n and current 

stresses of the secondary-side inductors and diodes would reduce to be Iout/n by using n-level con-

verter (Wang et al., 2011a). In the unipolar network, shown in Fig. 5.13, the energy efficiency of 

the isolated DC/DC converter needs to be at least 94 % to achieve as high energy efficiency as 

with the line-frequency transformer. Furthermore, the energy efficiency of the DC/DC converter 
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needs to be at least 96 % at the whole operating area to achieve as high energy efficiency as with 

the grounded unipolar LVDC distribution network. 

The measured energy efficiency of 1500V/48V, 2kW multilevel DC/DC-converter including four 

switch pairs was shown to be 93 % when the output power is at least half of the nominal (Wang et 

al., 2012). However, the energy efficiency decreases to be as low as 79 % with the very low load 

(Wang et al., 2012). Instead of multilevel DC/DC converter, also the modular converter structure 

can be used, meaning that multiple low-power converters are connected in series and parallel (Fan 

and Li, 2011). The efficiency of hundred Si IGBT DC/DC converters with the nominal power of 

10 kW, meaning the total power of 1 MW, is 97 % with the switching frequency of 20 kHz (Biela 

et al., 2008). 65 converter modules based on GaN-FET devices of 300 W 48 V-48 V are connect-

ed in series and parallel achieving 19.2 kW total nominal power in the studies by Hayashi (2013). 

The maximum efficiency was 97 % with the switching frequency of 2 MHz and 95 % with the 

switching frequency of 20 kHz (Hayashi, 2013).   

It can be concluded that the energy efficiency will not be improved or it is only insignificant by 

using isolated DC/DC converter instead of line-frequency isolated transformer, because the cus-

tomer load is most of the time very low compared to the nominal power of the converters.  

5.8 Conclusions 

According to theoretical analysis presented so far, the high efficiency of the LVDC network is 

mainly attributed to the low losses in the DC cable (Nilsson et al., 2004; Engelen et al., 2006; 

Anand et al., 2010; Sannino et al., 2003; Kakigano et al., 2010; Kakigano et al., 2012; Shenai et 

al., 2011). The theoretical loss analysis does not take into account that the converters produce low 

frequency harmonics to the DC currents and voltages causing additional losses in the DC cable, in 

the converters and their AC-filters.  

The LVDC distribution network configuration with the lowest losses is determined depending on 

the length of the network and the main power loss sources are identified. According to the results, 

the highest efficiency is achieved when LVDC distribution network is grounded and three-level 

NPC converters are connected to 1500 VDC. If the network needs to be ungrounded, two- or 

three-level converters should be connected to 750 VDC when the length of the bipolar network is 

600 m at maximum. The total losses are minimized especially due to low losses in the customer 

converters. When the bipolar LVDC network is longer than that, the increased DC cable losses 

decrease the efficiency. Therefore, the maximum energy efficiency is achieved when the unipolar 
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network configuration is used by connecting the three-level grid and customer converters to 

1500 VDC and by using the voltage transformation ratio of 800 V/400 V instead of 400 V/400 V 

in the isolation transformer. The DC cable power losses are minimized due to reduced number of 

DC current harmonics and no need of the balancing circuit.  

The energy efficiency of two- and three-level converters, connected to 750 VDC, are the same 

when the filter inductor cores with low no-load losses, e.g. amorphous alloy core and SiC 

MOSFETs are used. However, when the converters are connected to 1500 VDC, the power losses 

of three-level NPC converter are significantly lower compared to two-level converter. 

Many of the home electronic devices use single-phase supply. It can be concluded that the highest 

efficiency of the LVDC distribution network is achieved when three-phase customer converter is 

loaded phase-asymmetrically instead of the use of multiple single-phase converters. In the un-

grounded LVDC distribution network, low frequency harmonics occur in the AC grid currents 

increasing the power losses when the load is phase-asymmetric. Instead, the asymmetrical load 

does not cause additional harmonics to the AC currents in the grounded network. Therefore, the 

energy efficiency of the grounded network is higher compared to ungrounded network also with 

phase asymmetrical load. 

The total power loss of the LVDC distribution network during one year is analyzed with the aid of 

typical load characteristic of Finnish customer. It can be concluded that more than half of the 

overall power losses are caused by isolation transformer because of high no-load losses in the 

ungrounded LVDC distribution network. The line-frequency isolation transformer would be re-

placed by isolated DC/DC converter. However, significant energy efficiency increase is not 

achieved by using isolated DC/DC converter because the customer load is most of the time very 

low compared to the nominal power of the converters. 

The energy efficiency of the grounded network is substantially higher due to lack of isolation 

transformer in spite of increased converter power losses. The energy efficiency can be optimized 

by using amorphous core AC filter inductors instead of iron core inductors and by using SiC 

MOSFETs instead of conventional IGBTs. It should be noted that only 35 % of the overall power 

losses is caused by DC cable losses in the grounded bipolar DC network. Therefore, the optimiza-

tion of the energy efficiency of the power converter in the LVDC distribution network is crucial 

to optimize the energy efficiency of the whole network.    
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6 Conclusions 

The conventional LVAC distribution network will be changed towards the future Smart Grid due 

to tightened environmental regulation. Therefore, increased number of renewable power genera-

tion units will be installed to the network. Both the energy production and consumption will vary 

on a large scale but, at the same time, the customers are highly dependent on high quality and 

uninterruptable power supply. One option to realize the future Smart Grid would be to replace the 

present LVAC distribution network by LVDC. The control methods and stability of both the AC 

and DC microgrids are intensively studied during the last years. It can be concluded based on the 

studies that the control might be simpler and the grid operation more reliable if the conventional 

AC grid would be replaced by DC grid. However, the detailed energy efficiency analysis of the 

DC grid is not thoroughly studied. The energy efficiency and total lifetime costs are the key pa-

rameters when the network owners consider the future grid structure. Therefore, the energy effi-

ciency of the LVDC distribution network is analyzed in this study, especially, from the power 

electronics perspective. 

6.1 Final conclusions 

In this study, simulation and calculation models are developed to assessing LVDC distribution 

network power losses. According to theoretical analysis presented so far, the high efficiency of 

the LVDC network is mainly attributed to the low losses in the DC cable (Nilsson et al., 2004; 

Engelen et al., 2006; Anand et al., 2010; Sannino et al., 2003; Kakigano et al., 2010; Kakigano et 

al., 2012; Shenai et al., 2011; Ali et al., 2012; Gwon et al., 2014). The theoretical loss analysis 

does not consider the power losses of the converters, AC filter and transformers. The target of the 
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created power loss simulation models is to be fast and general hence these are based on the 

datasheets of the power semiconductor switches and the inductor core materials. 

The power loss results furnished by the developed models are compared against measurements 

obtained by electric and calorimetric tests. The maximum error between the measured and 

simulated power losses is 10 % when the inductor design is realistic, i.e., the current harmonics 

are limited to realistic level. The accuracy of the simulated power loss models is slightly higher, 

especially, at partial load conditions compared to the accuracy of the analytical average power 

loss models. Based on the results given by the models, it is possible to compare different compo-

nents and network parameters on the energy efficiency point of view. However, for the more de-

tailed efficiency analysis, more complex models would be needed.  

The converter topologies are compared by taking into account the controllability of AC current 

and DC voltage and size of the required AC filter. The voltage source grid converters should be 

used instead of LCCs, because the DC voltage and the power factor of PCC can be controlled, and 

furthermore, the bidirectional power flow is possible. 

The AC filter design methods and filter inductor core materials are compared. The required filter 

inductance value is minimized if LCL-filter is connected in front of the grid converter and the LC-

filter after the customer converter. The inductor current ripple should be limited to be ≤ 10 % of 

the current fundamental component amplitude to minimize the filter power losses. The modula-

tion frequency of the customer converter should be at least 10 kHz to limit the audible noise, and 

therefore, the use of large inductance minimizes the high frequency inductor core losses. Moreo-

ver, the filter inductor core material with low losses caused by high-frequency current should be 

used. The energy efficiency of the converters is almost constant in spite of the loading conditions 

when amorphous core inductors are used. Instead, the energy efficiency is low and decrease con-

siderably as the load decreases if the conventional M400-50 laminated iron core filter inductors 

are used. This is important, because the customer load varies on a large scale.  

The converter power losses are not changed significantly depending on the use of IGBTs by dif-

ferent manufacturers. However, the energy efficiency of the converters increases if the conven-

tional IGBTs are replaced by SiC MOSFETs. The modulation frequency is not possible to in-

crease higher than 10 kHz if conventional IGBTs are used due to increased switching losses. In-

stead, the modulation frequency would be increased without the increase of switching losses if 

SiC MOSFETs are used. However, the increased high frequency power losses of the amorphous 

alloy inductor core limit the modulation frequency increase. 

The energy efficiency of two- and three-level converters connected to 750 VDC is almost the 

same when the filter inductor cores with low no-load losses, e.g. amorphous alloy core and SiC 

MOSFETs are used. However, when the converters are connected to 1500 VDC, the power losses 
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of three-level NPC converter are significantly lower compared to two-level converter. It can be 

concluded that the notable power loss increase is shown as the voltage capability of the power 

semiconductor switching devices increase from 1200 V. Therefore, the use of three-level NPC 

converters is worthwhile especially at higher voltage levels. The drawback of three-level convert-

ers is unbalanced current stresses of the power semiconductor switches. The conventional NPC 

three-level converter would be replaced by ANPC topology enabling more equal power loss dis-

tribution. 

The LVDC distribution network configuration with the lowest losses is determined depending on 

the length of the network and the main power loss sources are identified. The LVDC distribution 

network should be grounded to minimize the overall power losses if it is possible according to 

local safety standardization and grounding conditions. The energy efficiency of the grounded 

network is substantially higher due to lack of isolation transformer in spite of increased converter 

power losses. The three-level NPC converters with SiC MOSFETs and amorphous core AC filter 

inductors should be used and connect to 1500 VDC to minimize the power losses of the LVDC 

distribution network. 

The 50 Hz isolation transformer is the main power loss source if the galvanic isolation is needed 

to isolate the ungrounded LVDC distribution network and the grounded customer electrical instal-

lations. The highest energy efficiency is achieved by using two- or three-level converters with SiC 

MOSFETs and amorphous core AC filter inductors and by connecting the converters to 750 VDC 

if the length of the DC cable is less than 600 m. Otherwise, slightly higher energy efficiency is 

achieved by using three-level converters with SiC MOSFETs and amorphous core AC filter in-

ductors and by connecting the converters to 1500 VDC. Moreover, the voltage transformation 

ratio of 800 V/400 V must be used instead of 400 V/400 V in the isolation transformer. 

The power losses are minimized, if the three-phase customer converter is loaded phase-

asymmetrically instead of the use of multiple single-phase converters. In the ungrounded LVDC 

distribution network, low frequency harmonics occur in the AC grid currents increasing the power 

losses when the load is phase-asymmetric. Instead, asymmetrical load does not caused additional 

harmonics to the AC currents and the isolation transformer is not needed in the grounded network 

and therefore, the energy efficiency is higher. 
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6.2 Suggested future research topics 

The research carried out as a part of this thesis elucidated various questions that could be the po-

tential future research topics. Some of the most interesting problems and research questions are 

highlighted below: 

It was concluded that the 50 Hz isolation transformer is the main power loss source if the galvanic 

isolation is needed between the LVDC distribution network and the customer electrical installa-

tions. The line-frequency isolation transformer would be replaced by isolated DC/DC converter 

but the achieved energy efficiency increase is not significant. However, an isolated DC/DC con-

verter would enable the fed of large variable loads like electrical heating, saunas and EV charging 

station directly from DC. Moreover, the modulation index of the customer DC/AC converter 

would be optimized by setting the DC voltage level to the desired value by DC/DC converter.  

The centralized customer converter operates most of the time at very low load compared to the 

maximum power of the converter. If large customer loads would be fed directly by DC, the nomi-

nal power of the customer AC/DC converter might be lower and it can operate most of the time 

near its nominal power. Moreover, the modular converter structure might be useful, meaning, that 

the customer converter consists of multiple smaller converters. The converters can be designed to 

low power level increasing the scalability and reliability. Ferrite would be used as a filter inductor 

core material in the modular converter designed to lower nominal power achieving lower power 

losses also at higher modulation frequencies.  

The efficiency of the DC distribution network is not higher compared to present AC distribution 

network according to the results presented in this thesis. However, the energy efficiency compari-

son should be done in the future by taking into account the decreased number of DC/AC and 

AC/DC conversion stages of renewable energy generation and energy storages.  
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APPENDIX A: Laboratory setup 

The laboratory LVDC distribution network prototype consists of two tree-level, three-phase, 

four-wire converters and 200 m long AXMK 4*16mm² underground cable connected between 

these as shown in Fig. A.1. SKM 75GB123D IGBT-modules and SKKD 40F10 diode modules 

as clamping diodes are used. The nominal power of the converters is 10 kVA. The converters 

use space vector modulation with the modulation frequency of 10 kHz. The LCL-filter is con-

nected in front of the grid converter and LC-filter after the customer converter. Size of the elec-

trolytic DC-capacitors in both converters and in both halves of the DC link is 1100 μF. The 

balancing circuit is added to the grid converter and the balancing inductance value is 5 mH. 

The control of the converters is implemented on Freescale’s 32-bit MPC563MZP66 microcon-

trollers. The microcontroller board contains current and voltage measurements, overcurrent and 

overvoltage protection and logic circuits to create the modulation signals. LEM LA55-P current 

transformers are used in the current measurements. The control of the IGBTs is realized by 

Concept SCALE control circuits. The microcontroller is controlled through RS-232 series cable 

from the computer.  

The DC voltages, converter side inductor currents and grid voltages are measured to control the 

grid converter. The startup of the grid converter is realized by using charging resistors and the 

converter operates as a diode bridge to charge the DC capacitors without high current spikes. 

The final value of the DC voltage is peak-to-peak value of the grid phase voltage (650 VDC) if 

the neutral-wire is connected hence the converter operates as a four-wire converter. If the neu-

tral conductor is not connected, the final DC voltage value is the peak value of the main grid 

voltage (565 VDC).   

The current measurement equipment includes Tektronix AM503B current amplifiers with 

A6312 current probes, and all voltages are measured with Tektronix P5200 high voltage differ-

ential probes. The measured current and voltage waveforms are sampled and stored with a 

LeCroy LC334AM 500 MHz digital oscilloscope. The measured data is filtered using a seventh-

order Butterworth digital filter with a cut-off frequency of 25 kHz. 
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Fig. A.1. Laboratory prototype DC network 

 

Fig. A.2. The circuit schematic of the DC network prototype 
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a) b)  

c) d)  

Fig. A.3. a) Lconv currents in front of the grid converter, b) Lcust currents after the customer con-

verter, c) neutral wire current at customer converter and d) neutral wire current at grid converter 

with 10 kW resistive load in the grounded DC grid 
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APPENDIX B: Power loss measurement setup 

The power losses of the AC filters are measured by using the air-cooled open type balance calo-

rimeter. Calorimetric method is based on direct loss measurement calculated from the generated 

heat and it is independent of electrical quantities of the device under test. Therefore, calorimet-

ric methods are considered the most accurate power loss measurement techniques because the 

current or voltage harmonics generated by the device under test do not affect to the results un-

like in the electrical measurements (Xiao et al., 2007). Accurate controls of the airflow, the 

temperature and the humidity are required during the whole test (Xiao et al., 2007). The draw-

back of the calorimetric measurements is that these are very time consuming.  

The air-cooled open type balance calorimeter is presented in Fig. B.1a and the operational prin-

ciple is illustrated in Fig. B.1b. A calorimeter is thermally insulated container used to measure 

power losses of electrical devices. The open-type calorimeter exchanges heat directly with the 

surrounding air. The calorimeter consists of a 200 mm thick aluminium coated polyurethane 

measurement chamber, two temperature transducers for measuring the inside and outside tem-

peratures, a DC fan in the outlet and an air mass flew sensor in the inlet. The heat producing 

element is located in a thermally insulated container.  

During the calorimeter use and calibration, a constant air flow was forced through the case by a 

fan, hence the output air mass flow mair,o is equal with the input air mass flow mair,i, measured 

with the air mass flew sensor. The system is in operation until the temperature difference Tout-Tin 

becomes steady. The temperature rise indicates the total power losses of the device if the heat is 

completely absorbed by air. The total power loss Ploss can be calculated as follows 

caseairinoutiairloss PcTTmP  )(,     (B.1) 

where cair is the thermal capacity of the air (cair = 1.005 kJ/kgK) and Pcase is the conductive heat 

power leak through the case, which is determined with the calibration measurements (Xiao et al., 

2007). 

Power losses are determined in two steps namely, a main test and a calibration test. Prior to the 

actual measurements, the calorimeter is calibrated with known electrical power supplied to a 

heat resistor. The calorimeter degree of filling and the distribution of air flow and temperature 

have an effect on the calorimeter performance. Thus, two different calibration measurements are 

needed because the size of the LCL- and LC-filter boxes differs from each other. The resulting 

calibration curves for filters are presented in Fig. B.2. The equations for the calibration curves 

are B.2 and B.3. 
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, 13.96 ( ) 7.267( )loss LC filter out inP T T W        (B.2) 

, 11.44 ( ) 20.65( )loss LCL filter out inP T T W        (B.3) 

          

Tout

Tin

AC-filter

mair,i

mair,o

Pcase

air mass
flew sensor

DC fan

isolated case

Ploss

 
a)                       b) 

Fig. B.1. a) Open-type balance calorimeter and b) operation principle of the calorimeter 

 

Fig. B.2. The calibration curves of a) LC-filter and b) LCL-filter 

The electrical measurements are used in the converter power loss analysis. The losses of the 

converters were measured using two power analyzers: Yokogawa WT1030 digital power meter 

which can measure frequencies up to 500 kHz and LEM Norma D6100 wideband power ana-

lyzer which can measure frequencies up to 1 MHz. The power losses of the converters are de-

fined as  

, ,loss conv s l loss filtP P P P        (B.4)  

where Ps is the supplied power, Pl is the power fed to the load, Ploss,filt are the AC filter power 

losses and Ploss,conv are the power loss of the converter. 
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APPENDIX C: Simulated and measured voltage and 

current harmonics  

The THD of the measured and simulated customer converter LC-filter inductor current and cus-

tomer load voltage with resistive loads 2.5 kW, 5 kW, 7.5 kW and 10 kW are calculated up to 

25 kHz and presented in Tables C.1-4. The measured and simulated current of the grid converter 

LCL-filter inductor Lconv and grid current are shown in Table C.5. The measured current and 

voltage waveforms are sampled and stored with a digital oscilloscope and filtered using a sev-

enth order Butterworth digital filter with a cutoff frequency of 25 kHz. The measurements are 

done by using the laboratory prototype presented in Appendix A. The used AC-filter inductors 

are presented in Table 3.1.  

Table C.1. Customer converter with 2.5 kW resistive load  

AC-

filter 

Measured 

THD of iL [%] 

Simulated THD of 

iL [%] 

Measured  THD 

of uload [%] 

Simulated THD of  

uload [%] 

1 18.0 18.0 3.9 1.6 

1N 40.1 42.7 4.2 4.0 

2 16.9 17.4 1.6 0.9 

2N 38.9 41.0 2.7 2.0 

3 23.2 23.4 1.9 1.1 

3N 51.5 53.7 3.1 2.6 

4N 27.1 29.6 2.5 1.5 

5 39.6 40.0 2.2 1.7 

5N 92.5 100.5 4.1 4.9 

6N 41.6 39.0 2.4 1.9 
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Table C.2. Customer converter with 5 kW resistive load 

AC-filter Measured 

THD of iL 

[%] 

Simulated THD 

of iL [%] 

Measured  THD 

of uload [%] 

Simulated THD of 

uload [%] 

1 9.1 9.0 2.7 1.5 

1N 25.3 21.0 4.6 3.9 

2 8.8 8.8 1.8 0.9 

2N 19.6 20.3 3.3 2.0 

3 12.0 11.8 2.2 1.1 

3N 26.3 26.8 3.7 2.6 

4N 14.5 14.8 3.2 1.5 

5 20.4 19.9 2.4 1.8 

5N 48.7 51.4 4.3 4.8 

6N 19.5 19.3 2.8 1.9 

Table C.3. Customer converter with 7.5 kW resistive load 

AC-filter Measured 

THD of iL [%] 

Simulated THD 

of iL [%] 

Measured  THD 

of uload [%] 

Simulated THD of  

uload [%] 

1 5.9 6.0 2.4 1.5 

1N 13.1 14.0 4.8 3.9 

2 5.7 5.9 1.8 0.9 

2N 12.5 13.6 3.4 2.0 

3 7.9 7.9 2.2 1.1 

3N 16.4 17.8 3.9 2.6 

4N 9.4 9.9 2.9 1.6 

5 12.6 13.3 2.4 1.7 

5N 31.7 34.3 4.8 4.8 

6N 12.9 12.9 3.0 1.9 
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Table C.4. Customer converter with 10 kW resistive load 

AC-filter Simulated THD of  iL [%] Simulated THD of uload [%] 

1 4.5 1.5 

1N 10.5 3.8 

2 4.4 0.9 

2N 10.2 2.1 

3 5.9 1.1 

3N 13.4 2.6 

4N 7.4 1.6 

5 10.9 1.9 

5N 27.9 5.3 

6N 9.7 2.0 

Table C.5. Grid converter 

Load LCL-

filter 

Measured THD 

of iLconv [%] 

Simulated THD 

of iLconv [%] 

Measured THD 

of igrid [%] 

Simulated THD 

of igrid [%] 

2.5 kW 

 

7 13.4 15.9 4.5 2.5 

8 19.9 22.1 7.0 3.8 

5 kW 

 

7 7.9 8.0 4.6 1.3 

8 10.5 11.2 3.9 2.2 

7.5 kW 

 

7 6.4 5.4 4.2 1.1 

8 8.5 7.6 3.7 1.8 

10 kW 

 

7 5.4 4.0 3.9 0.8 

8  5.8  1.8 
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APPENDIX D: Base values  

The base values of the converters are shown in Table D.1. The fundamental frequency is 50 Hz. 

Table D.1. The base values of the converters 

 Grid 

converter  

Grid  

converter  

Grid  

converter  

12-pulse 

thyristor 

bridge 

Customer 

converter  

Customer 

converter  

Voltage Udc 

[V] 

750 1500 1500 1500 750 1500 

Voltage ULL 

[V] 

400 800 800 562 400 400 

Power 

SN= 3UNIB 

[kVA] 

10 10 20 10 10 10 

Impedance 

ZB= ULL²/SN 

[Ω] 

32 64  32  63  16  

 

16  

Capacitance 

CB=1/ZBωB 

[µF] 

100 50  100  50 200  

 

200  

Inductance 

LB=ZB /ωB 

[mH] 

102  204  102  201  

 

51  

 

51  
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APPENDIX E: Required AC filter parameters depend-

ing on the design method 

The required inductance and capacitance values of LC-filter according to multiple different 

design methods are calculated for three-level single-phase full-bridge customer converter with 

unipolar modulation (Fig. E.1) and for three-level three-phase customer converter (Fig. E.2). 

THD of uload ≤ 2% calculated up to 25 kHz. The nominal power of converters is supposed to be 

3.3 kVA/phase. The modulation frequency is 10 kHz. The converters are connected to 750 VDC 

and these produces 230 VAC rms phase voltage to the customer. The DC network is unground-

ed. 

The required inductance and capacitance values of LCL-filter according to multiple different 

design methods are calculated for three-level NPC grid converter and shown in Fig. E.3. The 

same filter can be used also with the Vienna rectifier. THD of igrid ≤ 2% calculated up to 25 kHz. 

The nominal power of the converter is supposed to be 10 kVA. The modulation frequency is 

10 kHz and the converter produces 750 V DC. The current THD of the converter side inductor 

Lconv is not possible to increase from 14 % in the LCL-filter design of the grid converter. Other-

wise the grid current THD is not possible to keep ≤ 2 % when the capacitance value is limited to 

5 % of Cb.  

The capacitance value of the LCL-filter in front of the grid converter would be increased from 

0.05*Cb to 0.1*Cb without too large capacitive current power losses. The required LCL-filter 

inductance values for the grid converters, which nominal power is 10 kVA are shown in Fig. 

E.4. The same filter inductor can be used with three-level NPC grid converter and with Vienna 

rectifier.  
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Fig. E.1. Required AC-filter parameters for three-level single-phase full bridge 

 

Fig. E.2. Required AC-filter parameters for three-level three-phase customer converter 

0 0.2 0.4 0.6 0.8 1

THD iL ≤ 10 %

THD iL ≤ 20 % and iLripple ≤ 20 %înom

THD iL ≤ 30 % and iLripple ≤ 30 %înom

iLripple ≤ 10 %înom

THD iL ≤ 10 %
THD iL ≤ 20 % and 

iLripple ≤ 20 %înom

THD iL ≤ 30 % and 

iLripple ≤ 30 %înom
iLripple ≤ 10 %înom

L [mH] 0.75 0.35 0.25 0.55

L [pu %] 1.5 0.7 0.5 1

C [μF] 3 5 7 3

C[pu %] 1.5 2.5 3.5 1.5

fres [kHz] 3.3 3.8 3.8 3.9

îripple [%] 7.4 16 27 10

THD iL [%] 10 20 29 13

0 0.2 0.4 0.6 0.8 1 1.2 1.4

THD iL ≤ 10 %

THD iL ≤ 20 %

THD iL ≤ 30 %

iLripple ≤ 10 %înom

iLripple ≤ 20 %înom

iLripple ≤ 30 %înom

THD iL ≤ 10 

%

THD iL ≤ 20 

%

THD iL ≤ 30 

%

iLripple ≤ 10 

%înom

iLripple ≤ 20 

%înom

iLripple ≤ 30 

%înom

L [mH] 0.6 0.3 0.25 1.1 0.6 0.3

L [pu %] 1 0.6 0.5 2 1 0.6

C [μF] 4 9 10 3 4 7

C[pu %] 2 5 5 1.5 2 3.5

fres [kHz] 3.2 3.1 3.2 2.8 3.2 4.9

îripple [%] 20 38 48 10 20 30

THD iL [%] 10 20 24 5 10 15
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Fig. E.3 Required LCL-filter parameters for three-level NPC grid converter and Vienna rectifier 

 

Fig. E.4. Required LCL-filter parameters when C = 5%*Cb and C = 10%*Cb for two- and 

three-level grid converters  
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Lgrid [mH] 0.2 0.3 0.1

Lconv [mH] 0.6 0.4 1.2

Lconv [pu %] 0.6 0.4 1.2

Lgrid [pu %] 0.2 0.3 0.1

C [μF] 10 10 10

C[pu %] 10 10 10

fres [kHz] 4.1 3.8 5.2

îripple [%] 18 27 9

THD iL [%] 10 14 5

0 0.5 1 1.5 2 2.5 3

2L 750V DC

3L 750V DC

2L 750V DC

3L 750V DC

C
=

0
.0

5
*

C
b

C
=

0
.1

*

C
b

C=0.05*Cb C=0.1* Cb
2L 750V DC 3L 750V DC 2L 750V DC 3L 750V DC

Lconv[mH] 2.2 1.1 1.1 0.5

Lgrid [mH] 0.3 0.3 0.2 0.2

Lconv [pu %] 2.3 1.1 1 0.5

Lgrid[pu %] 0.3 0.3 0.2 0.2

Cgrid [μF] 5 5 10 10

Cgrid [pu %] 5 5 10 10

fres [kHz] 4.3 4.9 4.4 4.8




