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Abstract

Cell divisions in Escherichia coli are, in general, morphologically symmetric.
However, in a few cases, significant asymmetries between sister cells exist. These
asymmetries between sister cells result in functional differences between them.
For example, cells inheriting the older pole, over generations, accumulate more
unwanted protein aggregates than their sister and, consequently, have a reduced
growth rate. The reduced ability of these cells to reproduce shows that even
these unicellular organisms are susceptible to the effects of aging. To understand
senescence in these organisms, it is critical to investigate the sources as well as
the functional consequences of asymmetries in division.

In this thesis, we characterize mechanisms responsible for functional and morpho-
logical asymmetries in division in E. coli cells, using live, single-cell, single-molecule
imaging techniques and detailed stochastic models. First, to understand the func-
tional asymmetries due to the heterogeneous spatial distribution of large, inert
protein complexes, we study the kinetics of segregation and retention of such
complexes by observing these events, one event at a time. For that, we track indi-
vidual MS2-GFP tagged RNA complexes, as they move in the cell cytoplasm, and
characterize the mechanisms responsible for their long-term spatial distribution
and resulting partitioning. Next, to understand the morphological asymmetries,
we study the difference in cell sizes between sister cells at division under different
environmental conditions. Finally, we present the models and simulators developed
to characterize and mimic these processes, as well as to explore their functional
consequences.

Our results suggest that functional and morphological asymmetries in division, in
the growth conditions studied, appear to be mostly driven by the nucleoid. In
particular, we find that the fluorescent complexes are retained at the poles due to
nucleoid occlusion. Further, the positioning of the point of division is also regulated
by the degree of proximity between the two replicated nucleoids in the cell at the
moment preceding division. Finally, based on simulation results of the models in
extreme conditions, we suggest that asymmetries in these processes in division
can enhance the mean vitality of E. coli cell populations. Overall, the results
suggest that nucleoid occlusion contributes, in different ways, to heterogeneities in
E. coli cells that ultimately generate phenotypic differences between sister cells.
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1 Introduction

1.1 Background and Motivation

In all living beings, cell division is one of the most important biological events,
through which they reproduce. In cell division, a cell performs a sequence of
events in which it duplicates its contents and then ultimately divides into two
genetically identical daughter cells (Alberts et al. 2002). It is frequently assumed
that the cellular components, such as organelles, plasmids, ribosomes and proteins,
among others, are equally distributed into the daughter cells (Birky 1983; Birky
1984; Marshall 2007). However, there are several examples of cell divisions where
the daughter cells, after a division, differ in protein and DNA content, cell size,
inherited organelles, or developmental potential (Chia et al. 2008; Doe 2008;
Neumuller and Knoblich 2009; Knoblich 2008). For example, the division in
Saccharomyces cerevisiae (also known as budding yeast) is highly asymmetric as
the daughter cells differ in size and in amount of inherited cellular components
(Chant 1999; Erjavec et al. 2008). This asymmetric division, which results in
one visibly smaller daughter cell, has been linked to aging in these organisms
(Jazwinski 2002; Nyström 2007; Spokoini et al. 2012).

In unicellular organisms, such as Escherichia coli, whose division appears to be
morphologically symmetric, asymmetries exists between daughter cells (Stewart
et al. 2005; Lindner et al. 2008). Recent studies have focused on the sources of
such differences as well as on their functional consequences. One such source
of asymmetries is the stochasticity in partitioning of the cellular components
in cell division (Huh and Paulsson 2011b; Huh and Paulsson 2011a). This
randomness is affected by the cellular machinery responsible for segregation of
cellular components (Huh and Paulsson 2011b). For example, unwanted protein
aggregates segregate to and remain at the cell poles (Winkler et al. 2010). After
several generations, large amounts of these aggregates accumulate in the daughter
cells with older poles, when compared to the ones with newer poles (Lindner et al.
2008). This accumulation of unwanted constituents at the older pole has been
linked with a reduction in vitality of these organisms (Stewart et al. 2005).

Another source of asymmetries between daughter cells is the variability in the
positioning of the constriction plane that defines the point of division in E. coli
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2 Chapter 1. Introduction

(Lele et al. 2011; Sullivan and Maddock 2000). The constriction plane prior
to division is initiated by a septum almost precisely at the midpoint of the
longer cell axis in these rod-shaped organisms (Cullum and Vicente 1978; Koch
and Schaechter 1962; Sullivan and Maddock 2000). Consequently, in optimal
growth conditions, cell divisions are usually morphologically symmetric, with few
exceptions (Männik et al. 2012). If the cellular components are evenly distributed
on either side of the constriction plane, after a morphologically symmetric division
the daughter cells are expected to be phenotypically similar (Lin et al. 1971). As
such, any error in locating the constriction plane prior to cell division is bound to
create differences between daughter cells.

As the rejuvenation in E. coli cells is linked with the asymmetries in division
(Stewart et al. 2005; Lindner et al. 2008), a detailed molecular understanding
of these sources of asymmetries as well as the mechanisms regulating them is
important. Furthermore, mechanisms responsible for aging of E. coli cells may
inform us on the aging of mitochondria, since mitochondria in eukaryotic cells
have a bacterial origin (Alberts et al. 2002). Understanding of these mechanisms
is therefore of utmost importance to understand aging in all living beings, as no
life strategy is immune to them (Stewart et al. 2005).

With recent advances in fluorescent live cell imaging, improved image analysis
techniques, and advances in cell tracking and lineage analysis tools, it is now
possible to further investigate the sources of asymmetries in cell division at a
single-cell level. Aside from these, realistic models are required to properly assess
the effects and long-term consequences of these asymmetries. The models need to
mimic the biological processes that involve, in general, a small number of molecules
and many events that take place in each cell over generations. Because of the
nature of these processes, the models must rely on the stochastic formulation of
chemical kinetics. Furthermore, to simulate these models, stochastic simulators
are required to sample the trajectories of the components involved in the model.

1.2 Thesis Objectives

This thesis aims to quantify the intracellular asymmetries in division and their
functional consequences in E. coli cells. For that, we first measure the effects
of segregation and partitioning from in vivo measurements of live cells with
fluorescent MS2-GFP-RNA complexes, single-cell, single-molecule at a time, as
in (Golding and Cox 2004). From the analysis of time series images of cells, we
study the spatio-temporal distribution of these complexes within the cells. We
aim to study if cell divisions introduce asymmetries in their numbers in older and
newer cell poles, as in the case of unwanted protein aggregates (Lindner et al.
2008). We investigate and identify the mechanisms responsible for the observed
behavior of these complexes using measurements and models. We further aim to
assess the robustness of the cellular mechanisms responsible for these processes to
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sub-optimal temperature conditions.

Next, we study morphological differences between sister cells following a division
event in different environmental conditions. In optimal growth conditions, most
divisions are known to be symmetric and very few are asymmetric (Männik
et al. 2012). We aim to assess the robustness of the symmetry in division to
mild chemical stresses and sub-optimal temperatures. We further investigate the
functional consequences of any possible morphological asymmetry. Specifically,
we investigate if morphological asymmetries in division introduce differences
in the inherited components and consequently functional asymmetries between
sister cells. Lastly, we aim to find the changes in mechanisms responsible for
any observed differences in morphological asymmetries in division between these
environmental conditions.

Finally, based on the identified mechanisms, we develop computational models
of growing cell populations taking into account the cumulative effects of cell
growth (Koch and Schaechter 1962; Koch 1966), asymmetric cell division (Huh
and Paulsson 2011a; Männik et al. 2012), and partitioning of unwanted aggregates
(Golding and Cox 2004; Lindner and Demarez 2009; Lindner et al. 2008; Llopis
et al. 2010; Lloyd-Price et al. 2012b) over cell generations. These models, as much
as possible, are parameterized by aforementioned experimental measurements.
We use a stochastic model of E. coli that includes gene expression, non-functional
protein generation, aggregation and polar retention, and stochastic molecule
partitioning in division to explore the effects of various partitioning schemes in
silico. We use the division times of cell populations under different partitioning
schemes as a measure of the vitality of the populations. From this, we aim to
attain a better understanding of how cells employ asymmetric partitioning schemes
in division to cope with aging. The models are implemented in a simulator that
we specifically design to simulate these models.

1.3 Thesis Outline

This thesis is organized as follows: First, Chapter 2 briefly introduces the biological
background, emphasizing on the required topics to understand this thesis. In
particular, the general information about E. coli along with the description
of some sources of asymmetries in this organism namely, gene expression, cell
division, partitioning of cellular components and cellular aging in this organism
are presented in this chapter. Next, Chapter 3 introduces the fundamental
concepts of stochastic modeling of biochemical processes. For that, the basis of
building a stochastic simulator, such as the Chemical Master Equation (CME), the
Stochastic Simulation Algorithm (SSA), the Reaction-Diffusion Master Equation
(RDME), to construct various models used in this thesis work are described in this
chapter. Chapter 4 presents the methods and approaches required to perform data
acquisition, and analysis, namely the experimental systems for the measurements,
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image processing techniques, statistical tools, and methods for modeling of cellular
processes, among others. Chapter 5 presents a summary of the results from each
publication included in this thesis. Finally, a discussion and future directions of
this work are presented in Chapter 6.



2 Biological Background

This chapter is an overview of the biological concepts used in this thesis. It
includes biological description of E. coli along with its cellular processes such as
gene expression, cell division, partitioning of cellular components in division, and
aging.

2.1 Biology of E. coli
E. coli, a gram-negative rod-shaped bacterium which is usually 2.0 µm long and
0.25-1.0 µm in diameter (Kubitschek 1990), is the most widely studied prokaryote
in the field of molecular biology (Alberts et al. 2002). It can live on a wide variety
of substrates and is facultative anaerobic. The optimal growth of E. coli occurs at
37°C, but there are some laboratory strains that grow in sub-optimal temperature
conditions. Although commonly found in the lower intestine of warm blooded
organisms, it has the ability to survive outside the body. This bacterium is known
to grow easily and inexpensively in a laboratory setting, and has been intensively
studied for more than half a decade (Alberts et al. 2002; Goeddel et al. 1979).

Since these model organisms can grow easily and their genetics is relatively easy
to manipulate, there has been plenty of studies where genes are introduced using
plasmids to allow high level of protein expression (Taniguchi et al. 2010; Goeddel
et al. 1979; Gottesman and Maurizi 1992; Kuhlman and Cox 2012; Muthukrishnan
et al. 2012; Tao et al. 1999). One of the significant application of E. coli cells
was to produce human insulin (Goeddel et al. 1979), in which these cells were
manipulated using recombinant DNA technology. Furthermore, these cells were
used to understand the bacteriophage genetics (Beckett et al. 1991; Arkin et al.
1998; Svenningsen et al. 2005; St-pierre and Endy 2008; Zeng et al. 2010).

More recently, genetically modified E. coli cells, such as DH5α-PRO strain
(Golding and Cox 2004; Lutz and Bujard 1997), have been used to study the
physical properties of the cytoplasm (Golding and Cox 2004; Golding et al. 2005;
Golding and Cox 2006), the localization of cellular components such as plasmids
and ribosomes (Peabody 1993; Bakshi et al. 2012; Gordon et al. 2004; Kandhavelu
et al. 2012a; Parry et al. 2013; Reyes-Lamothe et al. 2013). These organisms have
also been used to investigate the aggregation of protein molecules (Lindner et al.
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6 Chapter 2. Biological Background

2008; Tyedmers et al. 2010; Winkler et al. 2010; Coelho et al. 2014; Coquel et al.
2013; Maisonneuve et al. 2008), the segregation of unwanted aggregates (Häkkinen
et al. 2013; Lloyd-Price et al. 2012a; Lloyd-Price et al. 2012b), and the plane of
cell divisions (Woldringh et al. 1994; Woldringh et al. 1991; Donachie and Begg
1996; Meinhardt and Boer 2001; Wang et al. 2005), among others. Because of
these, E. coli serves as an ideal organism to further investigate the intracellular
and partitioning asymmetries, and consequently the cellular senescence.

2.2 Gene Expression

Gene expression is the process by which information encoded in a chromosomal
Deoxyribonucleic acid (DNA) sequence is read to synthesize, first, a Ribonucleic
acid (RNA) molecule and eventually a protein molecule using the same RNA
(Crick 1970; Alberts et al. 2002). This sequence of events is known as the central
dogma of molecular biology and is illustrated in Figure 2.1. Stochastic events
in gene expression are known to produce fluctuating time patterns of RNA and
protein numbers in individual cells (Arkin et al. 1998). These fluctuations are a
source of diversity of protein concentrations between cells at any given time, and
thus of phenotypic diversity in a population.

Bacteria have been used as model organism to study stochasticity in gene expres-
sion. In these organisms, most RNA molecules exist in very small numbers as they
vary from only one to a few molecules at any given moment in a cell (Taniguchi
et al. 2010). The phenotype of these cells is thus affected by the number of RNA
molecules produced by each gene (Choi et al. 2008) as well as the timing at which
they are produced. This is because protein numbers follow the RNA numbers
(Bernstein et al. 2002; Kæ rn et al. 2005).

Figure 2.1: An overview of the central dogma of molecular biology. RNA
is transcribed from a DNA which then translates to a protein. The arrows
show the direction of flow of genetic information as stated in (Crick 1970)

Transcription is the process by which genetic information stored in a DNA strand
is copied into a complementary strand of RNA, with the aid of RNA polymerases.
One transcription event results in an RNA copy of a gene, which generally codes
for a functional protein. Protein coding RNAs are called messenger RNA (mRNA).
Transcription begins as the RNA polymerase binds to the promoter region of the
gene and then unwinds a small section of the DNA. This is followed by elongation
where one strand, known as the coding strand, is used as a template to synthesize
an exact RNA copy (Kennell and Riezman 1977).
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In prokaryotes, transcription is coupled with translation, which is a process of
protein synthesis from a specific sequence of amino acids. This is accomplished
by a protein/RNA hybrid known as ribosome. Ribosomes bind to the translation
initiation sequence on the mRNA, and elongate the protein in a similar manner to
transcription, creating a new protein. In E. coli, the events in transcription and in
translation are probabilistic in nature (Roussel and Zhu 2006; Kæ rn et al. 2005;
Pedraza and Paulsson 2008; Rajala et al. 2010), and their kinetics is sequence
dependent (Sorensen et al. 1989; Yarchuk et al. 1992; Herbert et al. 2006; Mcclure
1985). The stochastic events that cause fluctuations in the mRNA count (Golding
et al. 2005; Fusco et al. 2003; Paulsson 2005; Yu et al. 2006) mainly occur during:

(a) Transcription Initiation: It is a process in which the RNA polymerase
binds at a sequence of double stranded DNA called the promoter (as illus-
trated in Figure 2.2). The level of initiation largely controls the dynamics of
gene expression and thereby is one of the key determinants of the phenotypic
diversity in monoclonal cell population (Peccoud 1995; Bernstein et al. 2002;
Kæ rn et al. 2005). Several studies on the kinetics of transcription initia-
tion have measured the mean durations of steps involved in the initiation
process using in vitro measurements (Lutz and Bujard 1997; Lutz et al.
2001; Mcclure 1985; Buc and McClure 1985). The results suggest that the
two most rate-limiting steps in initiation are: the closed complex formation
and the open complex formation (Mcclure 1985; Kandhavelu et al. 2012b).
The durations of these steps vary widely between promoters (Herbert et al.
2006), as well as with temperature (Browning et al. 2004; Kandhavelu et al.
2012b) and the concentration of possible activator and repressor molecules
(Mcclure 1985).

Figure 2.2: Schematic representation of transcription initiation. Reprinted
from the work released into the public domain via Wikimedia Commons.

(b) Elongation: It is a process in which the RNA polymerase traverses the tem-
plate strand to create an RNA copy (as illustrated in Figure 2.3). This phase
of transcription refers to the process through which nucleotides are added
to the growing RNA chain. In bacteria, since transcription and translation
are coupled, translation can begin before the completion of transcription,
and as a result several translation events can occur in parallel from one
transcript. However, since translation cannot complete to produce functional
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proteins before the completion of transcription, events during transcription
elongation fluctuates the protein levels. Studies have shown how the events
during transcription elongation can affect translation elongation and thereby
produce fluctuations in protein levels (Mäkelä et al. 2011).

Figure 2.3: Schematic representation of transcription elongation. Reprinted
from the work released into the public domain via Wikimedia Commons.

(c) mRNA degradation: It is an essential process required to control steady-
state concentration of mRNA in all living beings. In bacteria, the half-life
of an mRNA typically ranges from 3 to 8 minutes (Bernstein et al. 2002).
This process is usually modelled as a first order reaction as the cell-to-cell
diversity introduced by such decay process has been studied (Pedraza and
Paulsson 2008).

2.3 Cytoplasmic Movement

Cytoplasm is a gel-like substance that fills the cell and is composed mostly of water
(Alberts et al. 2002). Cytoplasm, usually clear and colorless, is referred as cytosol,
which means substance of the cell. The cytoplasm is also referred to as a molecular
soup. In a bacterial cell, all the contents of the cell are contained within the
cytoplasm. Due to the absence of cytoskeleton-dependent process of cytoplasmic
streaming, in bacteria, diffusion is the most likely means of intracellular movement
(Elowitz et al. 1999). The intracellular movement is also affected by the presence
of heterogeneous macromolecules in the crowded cytoplasm. Several other studies
have investigated the nature of bacterial cytoplasm (Errington 2003; Hippel and
Berg 1989; Shimamoto 1999) as well as the movement of macromolecules within
it (Golding and Cox 2006; Gordon et al. 2004; Coquel et al. 2013).

Recent studies have focused on the segregation of molecules such as plasmids,
ribosomes and protein aggregates in E. coli cells (Bakshi et al. 2012; Coquel et al.
2013; Lindner et al. 2008; Gordon et al. 2004; Reyes-Lamothe et al. 2013). One
of these studies reported that, high-copy number plasmids such as ColE1 -type
molecules move freely in the cytoplasm (Reyes-Lamothe et al. 2013). Furthermore,
these molecules tend to localize at the cell poles due to exclusion from the nucleoid
and diffuse occasionally between poles along the major axis of the cell. Similar
diffusion-based movement of the low-copy number plasmids to the quarter-cell
regions is reported by (Gordon et al. 2004). One interesting study suggests that
the segregation of unit-copy or low-copy bacterial plasmids is not only governed
by the free diffusion in cytoplasm but is also regulated, spatially and temporally,
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by their partitioning systems (Ghosh et al. 2006). For example, the plasmids P1
and R1 in E. coli have different segregation behavior (as shown in Figure 2.4).
In particular, plasmid P1 is known to diffuse freely in the cell and localizes at
mid-cell for replication while plasmid R1 is found in the cell poles. R1 also
localizes at mid-cell for replication but, afterwards, is pushed back to the poles
after replication.

Figure 2.4: Segregation of P1 and R1 plasmids in E. coli. (a) The focus of
P1 plasmid, which is free to diffuse in a newborn cell, localizes to the mid-cell
position just before replication. The foci of duplicated plasmid molecules
are extruded in opposite directions. (b) The R1 plasmid (green) has a
pole-proximal location in the newborn cell. The plasmid translocates to the
cell center for replication. ParM (blue)-ATP polymerization into filaments at
the ParR-bound parC loci (gold) transports the replicated plasmid molecules
toward opposite cell poles. The filament depolymerizes, starting at the
tail end, to generate ParM-ADP. Reprinted from (Ghosh et al. 2006) with
permission from the Annual Review of Biochemistry.

Similar studies have been carried out to study the spatial distribution of ribosomes
and RNA polymerases (Bakshi et al. 2012; Mondal et al. 2011). It has been
suggested that, while there is strong nucleoid-ribosome segregation due to excluded-
volume effects, RNA polymerases mostly localize to the nucleoid lobes. It is
hypothesized that ribosomes have been found to occupy all the nucleoid free
space because of its high-copy numbers, and this localization has been found
to change with cell growth (Bakshi et al. 2012). On the other hand, larger
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non-functional molecules like fluorescently tagged complexes are found to be
sub-diffusive (Golding and Cox 2004) and are driven by macromolecular crowding,
aggregation and volume exclusion (Coquel et al. 2013). The sub-diffusive motion
of macromolecules in the bacterial cytoplasm is suggested to be independent of
the main cytoskeletal elements, and is more likely explained by the heterogeneous
environment, volume exclusion, as well as the nature and abundance of the
molecules.

2.4 Cell Division

E. coli cells, being rod-shaped, grow by elongation under stable growth conditions
and has little variation in its width from one generation to the next (Marr et
al. 1966; Trueba and Woldringh 1980). At a certain stage of elongation, the
constriction plane that defines the point of division (Marr et al. 1966; Errington
et al. 1965) is initiated by a septum, almost precisely at the midpoint of the
longer cell axis (Cullum and Vicente 1978; Koch and Schaechter 1962; Sullivan
and Maddock 2000). This moment of division, that results in two morphologically
identical cells each with a copy of chromosome, appears to be strongly correlated
with the attainment of a specific cell length during elongation (Donachie et al.
1976; Donachie and Begg 1996; Osella et al. 2014). Cell division in these organisms
is considered to be largely deterministic as there is a very small variance in the
point of division as well as the moment of division (Marr et al. 1966; Koch 1966).

Cell division in E. coli is regulated by the action of at least ten proteins (Joseleau-
petit et al. 1999). Recent studies have led to a substantial progress in under-
standing the assembly of these proteins at the cell septum (Wang et al. 1997;
Weiss et al. 1999; Ma et al. 1996). In particular, it has been suggested that the
expression of proteins encoded by the filamentous temperature-sensitive genes
(fts), such as ftsA, ftsI, ftsK, ftsL, ftsN, ftsQ, ftsW, ftsZ, and zipA, among others,
localize to the division plane during septation (Wang et al. 1997; Weiss et al.
1999; Ma et al. 1996; Chen et al. 1999; Ma and Margolin 1999). Among the
encoded proteins, FtsZ is the one that acts from the start of septation by forming
FtsZ -ring (Ma et al. 1996). As this FtsZ protein is required until the final step
of division, it is one of the best characterized and most thoroughly-studied cell
division proteins (Joseleau-petit et al. 1999; Yu and Margolin 1999; Ma et al.
1996; Ma and Margolin 1999).

Another important set of proteins used by E. coli during division are MinC, MinD
and MinE, and are also known as Min system (Yu and Margolin 1999; Kerr et al.
2006; Huang et al. 2003; Hu et al. 2003). These proteins generate a dynamic
oscillation of ftsZ protein inhibition for the proper localization of the septum prior
to division. In particular, the Min system produces a dynamic distribution of Min
proteins whose minimum, at mid-cell, is used as a signal to select the division site
(Kerr et al. 2006). On the other hand, it is also suggested that the variability of
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Figure 2.5: Schematic representation model for the positioning of the FtsZ
ring by the nucleoid occlusion and Min systems in E. coli. (A) Temporal
and spatial regulation of cell division by nucleoid occlusion. (B) Inhibition
of polar cell-division events by the Min system. (C) Cooperation of the
nucleoid occlusion and Min systems. Reprinted from (Thanbichler 2009)
with permission from the Cold Spring Harbor Perspectives in Biology.

the location of the minimum in MinD concentration is too high to account for the
accuracy of the symmetry in division (Kerr et al. 2006). It is therefore reported
that, while the Min system is responsible for placing the division point far from
the cell poles (Yu and Margolin 1999; Kerr et al. 2006), it is volume exclusion
due to the nucleoid that confers the observable degree of precision, i.e. symmetry,
to the division process in E. coli (Mulder and Woldringh 1989; Woldringh et al.
1990; Woldringh et al. 1991). This co-operation of the Min system and the volume
exclusion due to nucleoid to ensure the proper positioning of FtsZ -ring, precisely
in the mid-cell region, is illustrated in Figure 2.5 as in (Thanbichler 2009).

Similar conclusions are drawn from other observations. It has been shown that
irregular nucleoid movements affect the angle and position of the constriction plane
and, consequently, the division site (Valkenburg and Woldringh 1984; Woldringh
et al. 1994). Furthermore, there is a striking co-localization between the nucleoid-
free region at mid-cell and the division point, observed in both normal and
aberrant-shaped cells (Männik et al. 2012).
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2.5 Partitioning of Cellular Components

An important aspect in cell division is the partitioning of cellular components,
such as nucleoids, organelles, and proteins, among others, between the sister cells.
In bacteria, the replication of the nucleoid, which envelopes the chromosomal
content, ends long before the start of septum formation for cell division (Wang
et al. 2005). The replicated nucleoids are then segregated to different centers at
the first and the third quarter of the cell (Wang et al. 2005; Mulder and Woldringh
1989). After segregation, the nucleoids in conjunction with the Min system (as
shown in Figure 2.5), ensure the proper spatial and temporal regulation of cell
division (Yu and Margolin 1999; Mulder and Woldringh 1989; Woldringh et al.
1991; Thanbichler 2009).

Figure 2.6: Aggregate distribution and associated fluorescence levels along
the cell axis. Shown is IbpA-YFP foci localization along the cells’ normalized
longitude internal coordinate, oriented from the new pole (0) to the old
pole (1) of each cell. Binned histograms show foci’s localization at first
appearance (A), at the last movie frame before first division (B), at the
first movie frame after first division (C), at the first movie frame after
two consecutive divisions (D), and cumulative over all movies’ frames (E).
(F) Foci’s maximal fluorescence intensity (arbitrary gray-level units) as a
function of their localization. Figure from (Lindner et al. 2008), Copyright
(2008) National Academy of Sciences, U.S.A.

Equally relevant is the partitioning of other cellular components in division. Since
there are low copy numbers of organelles as well as macromolecules in bacteria,
stochastic partitioning in division contributes to the non-genetic heterogeneity in
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a monoclonal population (Huh and Paulsson 2011a; Huh and Paulsson 2011b).
For instance, if molecule species are segregated independently and randomly into
either daughter cell, upon division this will lead to a distribution similar to that
obtained from a Binomial partitioning. Due to this and based on the normalized
variance of the number of molecules in the population, the cell-to-cell diversity
will double after division. On the other hand, molecules that form dimers before
being partitioned to the daughter cells will lead to a distribution with less variance
than the Binomial. As a result, this partitioning, also referred to as “ordered”
in (Huh and Paulsson 2011a), will introduce less diversity into the population
after division. In contrast, the molecules that form clusters, which are then
segregated independently, will lead to a distribution with greater variance than
independent Binomial. This “disordered” partitioning then leads to considerably
greater diversity in the population. It has been suggested that such errors in
partitioning are hard to correct (Huh and Paulsson 2011a).

The partitioning of a specific molecule in division is also most likely related to its
behavior in the cytoplasm and is reflected on its long-term spatial distribution.
For example, if all non-functional proteins are to be enclosed into a single inclusion
body, only one of the daughter cells would inherit them in division. Also in case of
aggregation or localized accumulation of molecules, these will be asymmetrically
partitioned in division among the daughter cells, for example, IbpA aggregates
tend to accumulate at the cell poles and, after few cell divisions, are partitioned
asymmetrically with daughter cells inheriting the older pole getting more (as
shown in Figure 2.6)(Lindner et al. 2008; Winkler et al. 2010). On the other hand,
if the molecules do not aggregate or are in high-copy numbers (like ribosomes
(Bakshi et al. 2012)), one could expect them to be less retained at the poles and
thus, to be randomly partitioned in division. Further, it is also possible that
the partitioning scheme will depend on the location of the functional form of
the proteins, provided that the loss of function does not affect the long-term
spatio-temporal distribution. The process of partitioning in division of all such
intracellular molecules is thus likely to be under regulation, either by direct or
indirect mechanisms, and to differ between each other.

2.6 Cell Aging

E. coli cells divide symmetrically and, in suitable environments, appear to be
functionally immortal as each cell perpetuates itself by dividing into cells with the
same genotype as the mother cell (Marr et al. 1966; Männik et al. 2012). These
cells, however, are not immune to the accumulation of unwanted substances and
degradation of internal components. These organisms need mechanisms to cope
with such deleterious accretion. Evidence suggests that the rejuvenation process
is achieved by a deliberate asymmetry in the partitioning of intracellular material
in division. This was first observed in unicellular organisms that exhibit highly
asymmetric divisions (for example, Saccharomyces cerevisiae and Caulobacter
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crescentus) which are tightly related to the juvenile stage and aging in these
organisms (Ackermann et al. 2003; Avraham et al. 2013; Jazwinski 2002). How-
ever organisms such as E. coli and Schizosaccharomyces pombe have seemingly
morphologically symmetric division, and thus the knowledge of an aging process
is less clear (Barker and Walmsley 1999; Johnson and Mangel 2006; Woldringh
2005).

Figure 2.7: Schematic diagram of the life cycle of E. coli as shown in
(Stewart et al. 2005). During cell division, two new poles are formed, one
in each of the daughter cells (shown in blue). The old poles of those cells
were formed during a previous division (shown in red). (A) The number of
divisions since each pole was formed is indicated by the number inside the
pole. Using this number, it is possible to assign an age in divisions to that
cell, as indicated. (B) Time-lapse images of growing cells corresponding to
the stages in (A). False color has been added to identify the poles. Figure
used from (Stewart et al. 2005) which permits the usage under Creative
Commons Attribution License.

Stewart and colleagues showed that two apparently identical sister cells of E. coli
exhibit functional asymmetries (Stewart et al. 2005) (shown in Figure 2.7 from
(Stewart et al. 2005)). This asymmetry appears to be achieved in division, with
one of daughter cell inheriting most unwanted substances (Lindner et al. 2008).
It was suggested that this accumulation causes those daughter cells to have a
slower rate of division (Stewart et al. 2005). Namely, during their lifetime cells
accumulate the substances at the poles. In division, each daughter inherits one
pole from the mother cell, and creates a new one. As this continues, older poles
accumulate large amounts of ‘trash’. Aging in E. coli can thus be observed as
an accumulation of cell constituents with limited diffusion and long half-lives at
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the old pole of the mother cell, resulting in larger old poles and cumulatively
slower growth of the daughter cells receiving these substances (Stewart et al. 2005;
Lindner et al. 2008; Lindner and Demarez 2009).

Recent studies have further investigated different aging-related protein aggregates
as well as the mechanisms that trigger aging in these organisms (Ackermann et al.
2007; Coquel et al. 2013; Erjavec et al. 2008; Häkkinen et al. 2013; Maisonneuve
et al. 2008; Coelho et al. 2014). The mechanisms have been found to be associated
to the asymmetries in segregation of aging-related proteins in E. coli which are
stochastic (Winkler et al. 2010; Bakshi et al. 2012; Lloyd-Price et al. 2012a;
Lloyd-Price et al. 2012b) and operate on a generational time-frame (Stewart et al.
2005; Lindner et al. 2008; Lindner and Demarez 2009).

To better understand the asymmetries that most likely result in aging, in this
thesis, the mechanisms of segregation and partitioning of large, inert fluorescent
complexes are studied in live E. coli cells, from single cell measurements with
single-molecule sensitivity. Furthermore, software tools, statistical and analytical
tools are developed to study these events. The effect of different environmental
factors, such as temperature shifts and chemical stresses, to these intracellular
asymmetries are also studied as these are known to enhance aging (Ballesteros
et al. 2001; Hsu et al. 2003; Soti and Csermely 2003; Winkler et al. 2010).





3 Theoretical Background

This chapter is an overview of the theoretical concepts of simulation and modeling
approaches used in this thesis. It includes the basics about modeling biological
systems, description of stochastic simulation methods and concepts to incorporate
biological processes such as cell division and partitioning to the models.

3.1 Biological Models

Modeling the kinetics of a process in biophysical system is aimed to improve the
understanding of that system. Biological systems differ from physical and chemical
systems as biological processes are mostly stochastic in nature and involve low
copy numbers of interacting species (Fusco et al. 2003; Gordon et al. 2004; Glick
1995). One such example is the transcriptional regulation of gene expression.
Noise due to the fluctuations in number of biomolecules play an important role in
the dynamics of such systems (Gillespie 1976; Gillespie 1977; Gillespie 2007; Choi
et al. 2008). Because of this, a deterministic approach alone is not sufficient in
modeling cellular systems.

Models of the biophysical processes in bacterial cells must therefore account for the
stochastic nature of the events occurring in the system. The stochastic formulation
of chemical kinetics has been successfully applied to these models (McQuarrie
1967). This formulation describes the time-evolution of a well-stirred set of
chemically interacting molecules in thermal equilibrium in a fixed reaction volume.
Furthermore, numerous studies have demonstrated that these systems must
capture the effect of noise in gene networks as well as the inherent stochasticity
in the chemical reactions (Mcadams and Arkin 1997; Arkin et al. 1998; Ozbudak
et al. 2002; Lahav et al. 2004; Kæ rn et al. 2005).

3.2 Chemical Master Equation

In the stochastic formulation, the state of a system with N homogeneously spread
chemical species at time t is represented by an N-dimensional vector x containing
the molecules of each species in the volume (McQuarrie 1967). The occurrence of
one of M chemical reactions that can take place between the molecules results

17
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in the change in the population of a species. Consequently, the time-evolution
of x takes the form of a random walk through the N-dimensional space of the
populations of the reacting species. This is based on the probabilities of occurrence
per unit time of each of these reactions, Rµ, which in turn is based on the current
state vector that is defined by the propensity function, aµ. The aµ is defined as:

aµ(x)dt = the probability that a particular combination of the molecules
that are presently in the system will react via reaction Rµ in
the next infinitesimal time interval [t, t+ dt).

(3.1)

Using the laws of probability, this definition of propensity function can be used to
derive the master equation for a chemical system. It is therefore considered to
be the fundamental premise for the stochastic formulation of chemical kinetics.
The form that the propensity function, aµ, takes depends on the type of the
reaction that it represents. It is thus necessary to inspect the physical rationale
for unimolecular and bimolecular reactions.

In case of the unimolecular reactions which are known to occur internally within
each molecule of a given species Si, the underlying physics dictates that there is
some constant cµ such that, cµdt gives the probability that some molecule of Si
will spontaneously react via reaction Rµ in the next infinitesimal time dt (Gillespie
2007). It follows from the laws of probability that if, at any given instance, there
are Xi molecules of Si in the system, the probability that one of them will react
via Rµ in the next time interval is Xicµdt. Thus, the propensity function for
unimolecular reactions is given as:

aµ(x) = Xicµ.

On the other hand, bimolecular reactions occur when two molecules of different
species, say Si and Sj , meet and react. Using the homogeneity assumption, it can
be shown that there exists a constant cµ such that, cµdt gives the probability that
a given pair of molecules of species Si and Sj will meet and react via a reaction Rµ
(Gillespie 1977). This constant, cµ, can be derived from micro-physical properties
(Gillespie 1992). If there are Xi molecules of Si and Xj molecules of Sj currently
in the system, then there are XiXj pairs of these molecules. The probability that
one of these pairs will meet and react via Rµ in the next infinitesimal time dt
is therefore XiXjcµdt. The propensity function for bimolecular reactions with
different chemical species is then given as:

aµ(x) = XiXjcµ.

However, the derivation of this function is not completely correct. For bimolecular
reactions between two molecules of the same species Si, the number of pairs does
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not grow as X2
i , since a molecule cannot react with itself and the pairs Xi −Xj

and Xj −Xi must be counted only once. In such scenarios, the number of pairs
grow as Xi(Xi − 1)/2, making the propensity function for such a reaction to be:

aµ(x) = Xi(Xi − 1)cµ/2.

In the stochastic formulation, the joint probability distribution P (x, t|x0, t0) of
having a given state vector x at time t after the initial conditions x = x0 at t = t0
is described. Also if it is assumed that vi represents the absolute number of each
reactant that change when reaction Ri occurs, the rate of change of the probability
of being in a given state x can be expressed as the sum of the probabilities of all
reactions that can change the system’s state into x in the next infinitesimal time
interval, subtracting the sum of the probabilities of all reactions that can cause
the system to leave that state. The result is a partial differential equation for P,
the Chemical Master Equation (CME) (Gillespie 2007):

∂P (x, t|x0, t0)
∂t

=
M∑
µ=1

[aµ(x− vµ)P (x− vµ, t|x0, t0)− aµ(x)P (x, t|x0, t0)] (3.2)

This equation determines the probability that each species will have a specified
molecular population at a given time in future. The function that satisfies the CME
simultaneously describes the probability of all possible trajectories through the N-
dimensional state space of reactant populations. Because of the explicit handling
of every possible state that the system can be in, the CME can take an accurate
account of the effects of both fluctuations. This has been a major justification
for using the stochastic approach over the mathematically simpler deterministic
approach. However, solving the CME analytically is usually cumbersome and,
at times, impossible. This is because the number of molecular species involved
scales the dimension of the system exponentially. A commonly used alternative is
simulating the trajectories of x versus t to sample the distribution of x.

3.3 Stochastic Simulation Algorithm
The approach of simulating the trajectories results in the probability density
function of x instead of random sample of x, as given by the CME. Because of
this, P (x, t|x0, t0) is substituted by a new probability function p(τ, µ|x, t). This
function gives us the probability that the next reaction, Rµ, in the system will
occur in the infinitesimal time interval [t+ τ, t+ dτ).

Specifically, if the system is currently in state x, this function (p(τ, µ|x, t)) is the
joint probability density function of the two random variables: the time until the
next reaction occurs (τ) and the index of this reaction (µ). By applying the laws
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of probability, an exact formula for p(τ, µ|x, t) is derived from the fundamental
premise equation (shown in 3.1)(Gillespie 1977). It is given as:

p(τ, µ|x, t) = aµ(x)exp(−a0(x))τ (3.3)

where,

a0(x) =
M∑
µ=1

aµ(x) (3.4)

These equations( 3.3 and 3.4) are the mathematical basis for the stochastic simu-
lation approach. One implementation of this approach is Stochastic Simulation
Algorithm (SSA), a Monte Carlo procedure for numerically generating time tra-
jectories of the molecular populations in exact accordance with the CME. The
procedure that SSA follows, as proposed by Gillespie (Gillespie 1976), are listed
in Algorithm 1.

Algorithm 1 : Procedure of Stochastic Simulation Algorithm
1: Set time t = 0. Set up the initial state vector x = x0.
2: With the system in state x at time t, evaluate all the aµ(x) and their sum
a0(x).

3: Using a suitable sampling procedure, generate a random pair (τ, µ) according
to the joint probability distribution defined above by p(τ, µ|x, t).

4: Output the system state for each of the sampling points in the time interval
[t, t+ τ).

5: If t+ τ ≥ tstop, terminate.
6: Set t = t+ τ , and x = x + vµ.
7: Recalculate ai for all i such that any Xµ that was changed in step 4 appears

as an updated reactant in Ri.
8: Go to step 3.

For Step 3, there are several exact procedures to generate the samples of τ and
µ based on the joint probability distribution p(τ, µ|x, t). The two original, and
statistically equivalent, sampling procedures of the SSA are the Direct Method
(DM) and the First Reaction Method (FRM) (Gillespie 1976). Based on these,
there are other sampling approaches such as the Next Reaction Method (NRM),
the Logarithmic Direct Method (LDM),and the Partial-propensity Direct Method
(PDM), among others.

3.3.1 Direct Method

The Direct Method (DM) applies the standard inversion generating method of
Monte Carlo theory (Gillespie 1976). In this sampling approach two random
numbers, namely r1 and r2, are drawn from the uniform distribution in the unit
interval, and the random pair (τ, µ) is computed as:
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τ = (1/a0(x))ln(1/r1) (3.5)

µ = the smallest integer satisfying
µ∑

µ′=1
aµ′(x) > r2a0(x) (3.6)

The formulae for this method is derived using the fact that, a two-variable probabil-
ity density function can be written as the product of two one-variable probability
density functions. Specifically, if P1(τ)dτ is assumed to be the probability that the
next reaction will occur between t+ τ and t+ τ + dτ irrespective of the reaction;
and P2(µ|τ) is assumed to be the probability that the next reaction will be an Rµ,
given the next reaction occurs in [t+ τ, t+ τ + dτ), the joint probability density
function can be written as:

P (τ |µ) = P1(τ) · P2(µ|τ) (3.7)

This can be written as:
P2(µ|τ) = P (τ |µ)∑M

v=1 P (τ |v)
(3.8)

also because,

P1(τ) =
∑M
v=1 P (τ |v)

From these equations and using the laws of probability, as in (Gillespie 1976), it
has been shown to yield:

P1(τ) = aµexp(−a0τ) (3.9)

P2(µ|τ) = aµ/a0 (3.10)

The main idea of the DM is to first generate τ according to P1(τ) and then
generate µ using the P2(µ|τ). The resulting random pair (τ, µ) will be distributed
according to P (τ |µ). The DM, given a fast, reliable uniform random number
generator, and is easily programmable. This method is therefore referred to as a
simple, rigorous procedure for implementing Step 3 of the SSA (Gillespie 1976).

3.3.2 First Reaction Method

The First Reaction Method (FRM) is another sampling approach described in the
original formulation of the SSA (Gillespie 1976). As this method is not as efficient
as the DM, it is mostly used to provide the insights to the stochastic simulation
approach. The core idea of this method is based on the generation of “tentative
reaction times”, τv using a random number (r1) from a uniform distribution in
the unit interval, according to the probability density function in equation 3.3.
The generation of reaction times is repeated for all the M reactions and is given
as:
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τv = (1/aµ(x))ln(1/r1) (3.11)

From the resulting M tentative reaction times, the pair (τ, µ) is then chosen such
that τ is the smallest τv and µ is the corresponding value of v for that particular
τv . It is proven that the probability density function for this random pair (τ, µ)
is statistically equivalent to the P (τ |µ) prescribed by the CME (Gillespie 1976).
Although the FRM is as rigorous and exact as the DM, in its original form it is
generally slower to compute since it requires M separate random numbers from
the uniform random number generator for each of the M reactions. However, since
its original publication (Gillespie 1976), this method has been further optimized
for computational efficiency without affecting the statistics.

3.3.3 Next Reaction Method

The Next Reaction Method (NRM) (Gibson and Bruck 2000) is one of the
approaches that reduce the computational costs of the FRM significantly. The
FRM needs to perform O(M) operations per iteration of the SSA, since it takes
a time proportional to M to both update ais, as well as to generate and find
the smallest tentative reaction time (τv). The NRM instead uses a special data
structure, an Indexed Priority Queue, to store the tentative reaction times (τv)
generated in previous iterations and to extract them whenever required. This
results in a significant improvement in the runtime performance when compared
to the FRM.

The NRM uses a directed graph G(V,E) to represent the set of all reactions {Rv}
and their relationship on how they affect the molecules which their propensity
functions depend on (Gibson and Bruck 2000). In this “dependency graph”, the
Vertex set V = {Rv} and there is a directed edge from vi to vj when reaction
Ri changes the number of a molecule, which affects aj . In other words, the
dependency graph is a data structure that informs on the ais that need to be
changed after a reaction occurs. The use of the dependency graph limits the
number calculations of ais to a minimum. Also for each time step, as the number
of edges from a given vertex is typically small, only a few propensities are to
be updated. The nodes to be updated in the dependency graph are changed in
the place where they are stored, which results in the bubbling up or down the
tree structure. This bubbling continues until the property of priority queue is
satisfied again. This approach takes O(logr) time, where r is number of reactions
in priority queue. But, if there are a small number of reactions, r′, that have rate
constants faster than the others, then most updates will occur in those reactions
and take approximately O(logr′) time. This algorithm does not need to continue
further once it reaches a node that is already in the desired location.

This procedure requires a data structure that can quickly find the smallest τi and
can efficiently update the sub-set of the changed τi’s. To serve this purpose, the
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NRM uses an indexed priority queue. It can be implemented efficiently with a
tree of ordered pairs of the form (i, τi), where i is the number of a reaction and
τi is the putative time when reaction i occurs; and an index structure whose ith
element is a pointer to the position in the tree that contains (i, τi). Also, the
hierarchy of this tree maintains the heap property, in that the parents always
have a lower value of τi than either of their children. Consequently, identifying
the reaction with smallest τµ can then be done by examining only the root node,
which makes the selection of a reaction achievable in constant time. The steps of
NRM, as described in (Gibson and Bruck 2000), are shown in Algorithm 2.

Algorithm 2 : Next Reaction Method
1: Initialize:

(a) Set initial numbers of molecules, set t = 0, generate a dependency graph
G;

(b) Calculate the propensity function, ai, for all i;

(c) For each i, generate a putative time, τi, according to an exponential
distribution with parameter ai;

(d) Store the τi values in an indexed priority queue P.

2: Let µ be the reaction whose putative time, τµ, stored in P, is minimum.
3: Let τ be τµ.
4: Change the number of molecules to reflect the execution of reaction µ. Also,

set t← τ .
5: For each edge (µ, α) in the dependency graph G,

(a) Update aα;

(b) If α 6= µ, τa ← (aα,old/aα,new)(τa − t) + t;

(c) If α = µ, generate a random number, ρ, according to an exponential
distribution with parameter aµ, and set τa ← ρ+ t;

(d) Replace the old τa value in P with the new value.

6: Go to Step 2.

This algorithm is exact as well as efficient. The run time of this algorithm is
O(log(M)) which is, in case of large reaction networks and loosely coupled reaction
channels, significantly faster than both the FRM and the DM. Furthermore, as it
generates one random number per iteration, the total number of random numbers
generated is the sum of the number of reactions with the number of simulation
events. This is half the number required by the DM. Also, the NRM requires
O(log(M)) time to find the index µ of the next reaction when compared to O(M)
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required by the DM. However, for small systems, this advantage may not be
significant as the computational cost of maintaining the data structures in the
NRM dominates the simulation time. There are several other efforts to improve
and optimize the DM for large systems, as well as to decrease the computational
as well as data structure complexity of NRM (Slepoy et al. 2008; Cao et al. 2004;
McCollum et al. 2006).

3.4 Delayed SSA
The SSA also needs to take into account the complex processes which take
non-negligible amount of time to complete once started. One example of these
processes can be multi-stepped processes composed of many simple reactions, such
as stepwise elongation. For example, the elongation of an RNA molecule by an
RNA polymerase can take as long as a few minutes in E. coli, which is in order
of magnitude comparable to that of the cell’s lifetime. A variant of the SSA was
proposed in (Gibson and Bruck 2000) to simulate such processes by representing
them as single-step delayed reactions. In these reactions, some of the products are
released some time later than the depletion of the substrates, and not necessarily
all at the same time. However, as the system’s evolution in time is no longer a
purely Markov process, it cannot be simulated with any of the methods described
above.

Nevertheless, these events need to be considered as they affect many cellular
processes, such as the dynamics of the gene regulatory network (Ribeiro 2010).
The construction of explicit model for these events may not be feasible as the
exact nature of these processes may not be known. On the other hand, allowing
reactions that produce their products at an arbitrary time later in the simulation
has two main advantages. First, delays of arbitrary distributions can be inserted,
even if the underlying process is not completely known. Next, it potentially
removes many reactions from the system without affecting its dynamics, and
hence speeding up the simulations considerably (Gibson and Bruck 2000).

Algorithm 3 : Delayed SSA
1: if τ < tmin, where tmin is the earliest entry in the wait list then

Perform the normal SSA Execution step
else
Set t = tmin, and Xi = Xi + n.
Remove the earliest entry from the wait list.

end if

The reactions that can have delayed products with different delays are implemented
using “wait list”. The products of these reactions are placed on the wait list as
a tuple (tr, i, n) where tr is the time at which the n molecules of the product Si
needs to be released. In the NRM, the wait list can be implemented by adding
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the products on the list as nodes of the indexed priority queue. This results in
a logarithmic time per addition and removal of the products. Alternatively, a
heap-based priority queue with the same runtime bounds can be implemented
to run alongside the DM implementation. The steps in this variant of the SSA
execution, as in (Roussel and Zhu 2006), are shown in Algorithm 3.

3.5 Spatial Inhomogeneity

The simulation approaches, discussed in previous sections, derives the time-
evolution of a spatially homogeneous mixture of chemicals in a single reaction
volume. Specifically, these approaches consider the reactions in the biological cells
as primarily non-spatial and treat each cell as a well-mixed volume. However,
there are complex spatial environments within a cell, which contains different
organelles, irregular membrane structures, macromolecules, and many other
geometrically complex structures. These are systems that have dynamically-
relevant inhomogeneity. A stochastic formulation that takes account of these
spatial effects is required to build a realistic model of a cell.

3.5.1 Dynamic Compartments

A simple approach, commonly used, is to divide the space into discrete regions
called compartments. Each of these compartments is assumed to be spatially
homogeneous. To model biological processes, the cell can be visualized as a
hierarchy of compartments, each of which enclosed by a membrane. Each of such
compartments may contain elementary molecules as well as other compartments.
Mitochondria, the Golgi complex, and other organelles are examples of such
structures within a cell. In case of tissues or organs, the cells that they are
made up of can be considered as example of such structures. In this approach,
all the processes within a compartment such as a chemical reaction within a
compartment, transport of molecules outside of or into a compartment, and
creation and dissolution of compartments are viewed as sequences of discrete
events.

The P system formalism is another approach to simulate biochemical processes
by making use of dynamically changing; nested compartments (Paun 2001).
The presence of the nested compartments in P systems, however, violates the
assumption of homogeneous distribution of molecules of the SSA (Spicher et
al. 2008). It can be easily modified by maintaining the assumption of spatial
homogeneity within the compartments. After this, any variant of the SSA can
be used to simulate the dynamics in each compartment (Spicher et al. 2008).
Events such as transport of molecules (from one compartment to other), creation
and deletion of compartments can be then treated as reactions of the specific
compartment. Furthermore, the multiple concurrent SSA simulations can then be
integrated by using an NRM-like algorithm to determine the compartment where
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the next reaction takes place, effectively turning it into a “Next Compartment
Method”.

3.5.2 Reaction Diffusion Master Equation

While studies have modeled the effects of these well-mixed structures on the
dynamics of chemical reactions within biological cells (Lloyd-Price et al. 2014;
Spicher et al. 2008; Mäkelä et al. 2011), several others have investigated the
effect of the spatially distributed nature of the cell on biochemical signaling
using reaction-diffusion models (Kerr et al. 2006; Isaacson 2009; Zon and Wolde
2005). Although there have been deterministic reaction-diffusion models for the
biochemical systems with high concentrations of reactant species, there are not
many standard models for systems with noise in the chemical reactions.

Recently, some studies have suggested mathematical models to represent the
stochastic reaction-diffusion systems (Zon and Wolde 2005; Andrews and Bray
2004). In these studies, molecules are modeled as points undergoing spatially
continuous Brownian motion. The bimolecular reactions occur between the
molecules as they cross a specified reaction radius. Although both (Zon and Wolde
2005) and (Andrews and Bray 2004) differ in their simulation algorithm, the idea
of discretization of time while the approximations being spatially continuous is
the same.

There are other studies that discretized space and approximated the diffusion of
the molecules as a continuous-time random walk on the lattice (Elf and Ehrenberg
2004; Isaacson and Peskin 2006). In these studies, the reactions occur with a
fixed probability per unit time for molecules within the same lattice site. This is
based on the idea of Reaction-Diffusion Master Equation (RDME) in (Gardiner
et al. 1976), where the space is divided into a collection of equally-sized mesh
cells. An RDME is then derived to give the probability of the system being in a
given state. Exact realizations of the RDME can be created using the Gillespie
method (Gillespie 1977).

3.6 Modeling Partitioning in Division
Cellular processes such as gene expression, gene regulation, protein aggregation,
and motion of macromolecules, among others, can be modeled by creating chemical
reactions using the ideas discussed above. These stochastic chemical reactions are
known to create fluctuations during the cell cycle and are sources of cell-to-cell
diversity (Kæ rn et al. 2005; Choi et al. 2008; Mäkelä et al. 2013). Along with these,
stochastic partitioning of components in cell division creates further fluctuations,
consequently, enhancing the cell-to-cell variability (Lloyd-Price et al. 2012b; Lloyd-
Price et al. 2014; Huh and Paulsson 2011a). The errors in partitioning contribute
equally to the overall heterogeneity of cells as these are suggested to be the origin
of much of the noise attributed to, for example gene expression (Huh and Paulsson
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2011a). This is illustrated in Figure 3.1 from (Huh and Paulsson 2011a), wherein
a distinct drop in copy number of segregating units is visible at each division
event. To model these effects of partitioning errors, it is important to theoretically
understand the mechanisms of partitioning of cellular components in division.

Figure 3.1: (a) Cartoon of an individual cell line and segregating units
(dots) followed through rounds of growth and division. (b) Sample-time
trace of copy number per cell (gray) and their average (black). Random
changes are due to births and deaths during the cell cycle and segregation
at cell division (time T). Reprinted from (Huh and Paulsson 2011a) with
permission from Nature Publishing Group.

The mathematical understanding of the basic guiding principles of partitioning and
their effect on cell heterogeneity was recently studied in (Huh and Paulsson 2011b).
This study investigates heterogeneities introduced by three different segregation
mechanisms which results in differing variance in the molecule numbers introduced
in cell division. More specifically, a simple independent segregation mechanism
where each segregating component has a constant and independent probability of
being inherited by either daughter cell is compared, to disordered segregation where
variation in the partitioning machinery further randomizes levels of segregating
components between daughters, or to ordered segregation where components
directly or indirectly interact with each other to create a more even distribution
of inherited components between daughters.

The partitioning error in division of parent cells with x components and each
daughter inheriting L and R copies, respectively, after division has been defined,
in (Huh and Paulsson 2011b), to be:

Q2
x = 〈(L−R)2〉

〈x2〉
= CV 2

L − CV 2
x (3.12)

where the brackets 〈..〉 denote averages over all dividing cells in the population
while CV 2

x and CV 2
L are the squared coefficients of variation (CV 2, defined as the
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variance over the squared mean) of the number of molecules in parent cells, and
in daughter cells immediately after division, respectively. This equation captures
the statistical differences between the daughter cells as well as the contributions
to population heterogeneity introduced by cell division.

In the simplest case, if molecules are partitioned independently and randomly, i.e.
each molecule is inherited by either daughter with equal probability, the resulting
distribution of number of molecules inherited by a daughter will be binomial. The
Equation 3.12, regardless of the fluctuations in x across cells, decreases with the
number of molecules (Huh and Paulsson 2011b), and thus is written as:

Q2
x = 1/〈x〉 (3.13)

The independent segregation, however, does not seem to be the likely mechanism
for most of the cellular components as it has been hypothesized that various
mechanisms, such as active transport mechanisms (Rokney et al. 2009), macro-
molecular crowding in bacterial cells (Golding and Cox 2006; Coquel et al. 2013),
regulate the segregation of cellular components.

A more realistic disordered segregation has been suggested to increase partitioning
errors (Huh and Paulsson 2011b). For example, if there is a difference in cytoplas-
mic volume available for the daughters because of the error in locating the division
plane or due to occupancy by large macromolecules, the individual molecules
to be partitioned become statistically dependent. Therefore, even-though these
molecules do not interact, the partitioning error is increased and, as in (Huh and
Paulsson 2011b), is given as:

Q2
x = 1−Q2

vol

〈x〉
+Q2

vol(CV 2
x + 1) (3.14)

where Qvol is the partitioning error of relative available cytoplasmic volume. This
shows that the variation in available volume has an impact on the partitioning
error. This should be common for cells that divide into daughter cells of different
sizes (Trueba and Woldringh 1980; Shehata and Marr 1975; Trueba et al. 1982;
Schaechter and Kjeldgaard 1958).

On the other hand, in case of the ordered segregation such as “pair formation”,
the partitioning error has been shown to decrease (Huh and Paulsson 2011b).
For example, the partitioning error is reduced if it is assumed that a fraction k
of x segregating molecules forms pair and are partitioned to different daughters
with a probability p, to same daughter with probability (1-p), and the unpaired
molecules (1-k) are partitioned independently. The partitioning error for all such
mechanisms, in (Huh and Paulsson 2011b), is shown to follow:

Q2
x = 1− (2p− 1)k

〈x〉
(3.15)
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Similar partitioning errors have been computed for other examples of disordered
as well as ordered segregation mechanisms (Huh and Paulsson 2011b). Although
such errors for some examples can be computed directly from assumptions, it
might not be the case for more complex partitioning mechanisms. For those,
Markov processes (which are merely mock processes) to capture the segregation
statistics of each partitioning mechanisms has also been designed (Huh and
Paulsson 2011b). Thus, the probabilistic rules of other partitioning examples
explained are applicable to model partitioning of different cellular components in
cell division (Huh and Paulsson 2011b).

In this thesis, aside from the measurements, we need realistic models to properly
assess the effects of segregation and partitioning at the molecular level. We,
therefore, develop computational models of cell populations that account for cell
growth, asymmetric divisions, and partitioning of unwanted aggregates over cell
generations. To simulate these models, we design a stochastic simulator based on
the the stochastic formulation of chemical kinetics. Using the results from this
specifically tailored simulator, we numerically assess long-term consequences of
these cellular processes that involve a number of events which take place in each
cell over generations.





4 Methods and Approach

This chapter is an overview of the methods employed in this thesis. These
methods include the description of the experimental system, image processing
techniques, and data extraction approaches, among others used for the studies in
Publication II and Publication III. In addition to that, the simulation and
modeling approaches used for Publication I, Publication IV and Publication
V are presented in this chapter.

4.1 The Experimental System

The experiments, required for Publication II and Publication III, are con-
ducted in DH5α-PRO strain of E. coli, generously provided by I. Golding (Baylor
College of Medicine, U.S.A.). This strain contains two constructs: (i) PROTET-
K133 carrying PLtetO−1−MS2d−GFP , and (ii) a pIG-BAC (Plac/ara−1−mRFP1−
MS2− 96bs) vector, carrying a 96 MS2 binding site array under the control of
Plac/ara−1 (Golding and Cox 2004).

This DH5α-PRO strain has been chosen because of its relatively slow division rate
when compared to a wild-type strain of E. coli (Jung et al. 2010). This slower
growth rate facilitates the automated tracking of individual fluorescent complex
and of the precise moment of cell divisions from time-lapse microscopy images.
Moreover, as multiple MS2-GFPs are known to bind a specific RNA target to
form MS2-GFP-RNA complexes (Golding and Cox 2006; Golding and Cox 2004),
these complexes can be easily detected, quantified and tracked as they move in
the cytoplasm (Häkkinen et al. 2014). Also, once the RNA target is bound to
MS2-GFP, it is immortalized (Golding and Cox 2004), possibly due to reduced or
complete prevention of degradation. Because of these, it is possible to track the
long-term spatial distributions and partitioning in division of these complexes,
across several generations. Finally, it is also relevant that, since the cells are
flooded with MS2-GFPs, the extraction of exact shape and size of the cells from
confocal microscopy images becomes easier.

Bacterial cell cultures are grown in Lysogeny Broth (LB) media for all experiments.
For Publication II, cells are grown at optimal (37°C) and sub-optimal (24°C)
temperatures. On the other hand, for Publication III, cells are grown under two
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mild stresses, namely acidic shift and oxidative stress, as well as at five different
temperatures (42°C, 37°C, 33°C, 30°C, and 24°C).

4.1.1 MS2–GFP Fusion Protein

The dimeric MS2 fused to GFP (MS2-GFP fusion protein) used as a detection tag
(Golding and Cox 2004) is expressed from a medium-copy vector under the control
of the PLtetO−1 promoter (Lutz and Bujard 1997), regulated by the tetracycline
repressor. The RNA target for MS2-GFP is located on a single-copy F-based
plasmid, and is controlled by the Plac/ara−1 promoter (Lutz and Bujard 1997),
regulated by Isopropyl β-D-1-thiogalactopyranoside (IPTG) and Arabinose.

A B C

Figure 4.1: (A) Example bright-field image of E. coli cells expressing MS2-
GFP and target RNA, from a time-series at t = 1 min. (B) Fluorescence
channel of the image shown in (A). (C) Fluorescence image from the same
time-series at t = 85 min, showing the outcome of a few cell divisions and
partitioning of complexes. Scale bars are 1 µm. Contrast is enhanced for
easier visualization. Image from Publication III.

The induction of the target RNA production is completed by adding 1 mM IPTG
and cells are incubated for 5 minutes prior to preparation of the microscope
slide. This induction procedure is found to be necessary for the accumulation
of sufficient numbers of MS2-GFP to detect the target RNA and for the full
induction of the target gene (Golding et al. 2005; Mäkelä et al. 2013). Usually, 2
to 4 tagged RNAs are produced each hour by a fully induced cell (Kandhavelu et al.
2011). Furthermore, the MS2-GFP molecules distribute themselves homogeneously
throughout the cytoplasm, and fluorescent spots appear only in the presence
of target RNAs (Golding and Cox 2004; Lloyd-Price et al. 2012a). For all
experimental conditions, cells are visualized using time-lapsed images captured
every minute for 2 hours using fluorescence microscopy (as illustrated in Figure 4.1
B and C). The green fluorescence was measured using a 488 nm laser and a 515/30
nm detection filter.

4.1.2 Nucleoid Staining

In Publication II, to understand the role of nucleoid in spatial distribution of
the MS2-GFP-RNA complexes, the nucleoids are stained using 4’,6-diamidino-
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2-phenylindole (DAPI) to obtain their sizes. DAPI is known to stain nucleoids
specifically, with very little or no cytoplasmic labeling (Kapuscinski 1995). For
live cell nucleoid staining, DAPI (2 µg/ml) is added to the cells suspended in
Phosphate Buffered Saline (PBS) and incubated for 20 minutes in the dark. Cells
are then washed twice with PBS, and placed on a 1% agarose gel pad prepared with
LB media. The cells are simultaneously observed by epifluorescence microscopy,
using a mercury lamp with a DAPI filter, and by phase contrast microscopy.
DAPI is excited at 359 nm and emits at 461 nm. The representative images are
shown in Figure 4.2.

A B

Figure 4.2: (A) Example phase contrast images of E. coli cells and (B)
corresponding background-subtracted epifluorescence with the nucleoids
stained by DAPI, and the detected cell contours superimposed. Scale bar
is 1 µm. In both (A) and (B), contrast is enhanced for easier visualization.
Image from Publication II.

However, the concentration of DAPI, required for live cell staining, is generally very
high and therefore can be toxic for growing cells (Zink et al. 2003). Furthermore, as
DAPI is an intercalating dye (Kapuscinski 1995), the observed nucleoids sizes are
usually slightly larger than expected. Due to these reasons, a different approach
is used for Publication III.

The new approach is based on several Nucleoid Associated Proteins (NAP) which
participate in structural organization of E. coli. The major NAP found in this
organism are H-NS, HU, Fis, IHF and StpA (Dillon and Dorman 2010). The
HU protein, a dimeric histone-like protein, is the most abundant one and has
been thoroughly studied (Azam et al. 1999; Claret and Rouviere-Yaniv 1997). For
these reasons, this protein has been modified by tagging mCherry to study the
spatial distribution of nucleoids (Fisher et al. 2013). This modified protein serves
the purpose for this study.

The plasmid pAB332 carrying hupA-mCherry was generously provided by N.
Kleckner (Harvard University, U.S.A.). This plasmid is inserted into DH5α-PRO
strain of E. coli cells for the measurements concerning this study. The nucleoids
in individual cells are observed using Highly Inclined and Laminated Optical sheet
(HILO) microscopy (Tokunaga et al. 2008). Nucleoids tagged by hupA-mCherry
are observed using a 543 nm HeNe laser and a band-pass 608-683 nm emission
filter. The cells borders for the analysis are detected from images taken by phase
contrast microscopy.
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4.2 Image Processing and Computation

For the studies of Publication II and Publication III, multiple sets of time-
lapse, microscopy images were collected for different temperature as well as stress
conditions. Based on the requirement of the study, different image processing and
data analysis methods as well as statistical tools were developed and then used.

4.2.1 Cell Segmentation

From the confocal microscopy images used in both studies, cells are detected using
a semi-automatic method as in (Kandhavelu et al. 2012b). For that, the images
are first temporally aligned using cross-correlation. This alignment removes any
possible drift occurred during the image acquisition process. Such drifts can occur
due to several reasons such as temperature change, unexpected slight movement
of objective or stand. Because of such drifts same cells are at slightly different
position in the adjacent frames which complicates the tracking of cells over time.

This effect is eliminated by cross correlating the consecutive frames to find the
number of shifted pixels along the both axes. The number of shifted pixels is an
integer value, and thus round-off errors can accumulate. The round-off error is
corrected by comparing each frame with several preceding frames and computing
the average shift. Once this process is complete for all frames in the time-series,
the maximum area that is common to all the frames is computed. This area gives
the amount of drift that occurred from the start of the time-series. All the frames
are thus cropped to this maximum common area. This ensures the least possible
drift of cells between frames, and thus makes cell tracking over time easy and
effective.

4.2.1.1 Cell Features Extraction

The cells are segmented by manually drawing a mask over the region that each
cell occupies during the time-series. The masking of cells is done using a simple
computer graphics program, which in this study was GIMP (the GNU Image
Manipulation Program). To track a division event, two new masks are drawn over
the new cells in the frame where the division is first observed. Once masking of
all the time-series images is complete, the automated analysis is run at each time
point and for each mask. During this, Principal Component Analysis (PCA) of
the fluorescence distribution under the mask is used to obtain the features of the
cell, such as position, axis lengths, and orientation, among others. While using
the PCA, there is a strong possibility of biasing the centroid of the cell towards
the location of the bright spots and getting erroneous measures of the cell. To
remove this problem, the fluorescence distribution within each mask is thresholded
to enforce a uniform fluorescence within the cell. This is achieved by reducing
the intensity of the 30 brightest pixels to the intensity of the 30th brightest pixel
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prior to subjecting the cells to PCA. By inspection, for the measurements in this
study, it is found to have removed all such biases.

4.2.1.2 Cell Lineage Construction

To construct cell lineages, each cell at each time moment is assigned a ‘parent’.
The assignment is done such that for a cell in a given frame, ‘parent’ is the cell in
the previous frame with the nearest centroid to its centroid. This assignment is
done after transforming the previous frame’s cell centroids into the cell’s space
(i.e. poles at (-1,0) and (1,0), and sides at (0,-1) and (0,1)) to avoid incorrectly
assigning adjacent cells as the cell’s parent. A division is assumed to have occurred
when two cells are assigned the same parent (verified also by inspection). The
results of cell segmentation are illustrated in Figure 4.3 B.

For Publication III which has temporal images obtained by bright-field mi-
croscopy (as illustrated in Figure 4.1 A), cells are automatically segmented using
CellAging (Häkkinen et al. 2013). Manual correction is used to remove any errors
resulting from the automated segmentation. After manual correction, CellAging
tracks the cells across time and finds cell divisions. It further extracts cell features
such as area over time, division time, and parent, among others. The asymmetry
in cell size between sister cells, for this study, for each division event is then
calculated as:

∆S = (Sc − Ss)/(Sc + Ss) (4.1)

where, Sc and Ss are the areas of the daughter cell of interest and of its sister cell,
respectively, immediately after division. This measure, where -1 and +1 denote
maximum asymmetries and 0 denotes symmetry, is a factor of two different from
the ‘percent difference’ used by, for example (Männik et al. 2012).

From the set of temporal images obtained by phase contrast microscopy (to
extract the nucleoid measurements for Publication II and Publication III),
cells were automatically segmented using multi-resolution analysis and maximum
likelihood estimation (MAMLE) tool (Chowdhury et al. 2013). MAMLE is a
multi-step automated segmentation tool that has been effective in segmenting the
images from phase contrast microscopy. After automated segmentation, manual
corrections by inspection are done to remove any errors. Subsequent analysis
for lineage construction and feature extraction is performed, as above, using
CellAging (Häkkinen et al. 2013).

4.2.2 Spot Segmentation

Both Publication II and Publication III requires segmentation of fluorescent
MS2-GFP-RNA complexes. These complexes are detected in each cell, at each
frame of the time-series, using the same method as in (Kandhavelu et al. 2012b).
The fluorescent complexes inside each mask are automatically segmented using a
Kernel Density Estimation (KDE) method for spot detection as in (Ruusuvuori
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A B C

Figure 4.3: (A) Example image of E. coli cells with fluorescent MS2-GFP-
RNA complexes within. (B) Segmentation and principal component analysis
results of the image in (A) with cells (gray) and complexes (white). (C)
One example of the extracted displacement vectors of a complex from its
consecutive positions in the cell. Three images of the cell are shown below,
taken at 40, 80, and 120 min (displacement vectors are from the upper cell).
Scale bars are 1 µm. The contrast of these images was enhanced for easier
visualization. Image from Publication II.

et al. 2010). Gaussian kernel, as in (Kandhavelu et al. 2012b), is used for KDE.
This method measures the local smoothness of the image and then determines spot
locations by designating areas with low smoothness as spots. Once a spot area is
picked, more features of the spot, such as position, total fluorescence intensity, and
area, among others, are extracted. Cell-background-corrected complex intensities
are then calculated by subtracting the mean cell background intensity multiplied
by the area of the complex from the total fluorescence intensity of each complex.
The results of spot segmentation are illustrated in Figure 4.3 B.

In both publications, the issues with quantizing the number of complexes in
each cell (Häkkinen et al. 2014) is avoided by measuring directly the fluorescence
intensities of the complexes. In particular, the long-term spatial distribution of
complexes in Publication II is obtained using the fluorescence intensities while
the difference in complex intensities between daughter cells in Publication III
at a division event is calculated as:

∆I = (Ic − Is)/(Ic + Is) (4.2)

where, Ic and Is are the total background-corrected complex intensities of the
daughter cell of interest and of its sister cell, respectively, immediately after
division.

In Publication II, to study the kinetics of segregation of individual complex, cells
that contained at most one complex throughout their lifetime (either inherited
or produced) are selected. This is done to ensure that the complexes could be
reliably tracked. From these cells, once the complexes are detected at each time
point, displacement vectors from their positions in consecutive frames is obtained.
An example of the extracted displacement vectors of a complex from its positions
at consecutive frames is illustrated in Figure 4.3 C.
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4.2.3 Nucleoid Detection

For Publication II, to compare the spatial distribution of MS2-GFP-RNA
complexes with the position of nucleoid, the sizes of nucleoids are estimated based
on the fluorescence intensities resulting form DAPI staining. An example image
of DAPI stained nucleoid obtained from epifluorescence microscopy is shown in
Figure 4.2. The background of such images is removed by subtracting a cubic
polynomial surface, fitted to the image by L1-norm minimization. More specifically,
this is achieved by minimizing the absolute difference between the surface and the
image; see for example (Portnoy and Koenker 1997). The fluorescence intensities
in each cell were then extracted and the borders of the nucleoid are determined
by fitting the intensity distribution to a piecewise-constant probability density
function with two pieces by maximum likelihood.
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Figure 4.4: (A) Example image of a cell expressing hupA-mCherry, in
the frame before division is detected, taken with phase contrast microscopy
to visualize the cell borders. (B) Corresponding image from confocal mi-
croscopy to visualize the fluorescence intensity of hupA-mCherry (cell outline
obtained from (A) is shown in white). (C) KDE of the fluorescence intensity
distribution (solid) along the major axis of the cell shown in (B), with the
Gaussian mixture model fit (dashed). Scale bars are 1 µm. Image from
Publication III.

In Publication III, to compute the distance between the replicated nucleoids and
relate it to cell size asymmetry in division, the nucleoid positions are estimated
in cells the moment prior to their division. The centers and widths of the
two replicated nucleoids are estimated by fitting a Gaussian mixture density
distribution with two Gaussian with equal weight to the fluorescence intensity
distribution along the major axis of the cells, normalized by half the cell length. For
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that, a least-squares fit is done to the KDE of fluorescence intensity distribution,
using a Gaussian kernel and a bandwidth of 0.05. The centers of the resulting
two Gaussian are interpreted to be the centers of the replicated nucleoids. This
approach is illustrated in Figure 4.4 and has been verified by inspection as well as
by estimating Signal-to-Noise Ratio (SNR) in the measurements.

4.3 Simulator and Models
The design of simulator, built in Publication I and used in Publication V, is
based on the NRM and the delayed SSA. The simulator also uses the concepts
of dynamic compartments as described in (Spicher et al. 2008). The efficiency
of the NRM is exploited to simulate discrete events which also includes delayed
events. Also, the flexibility of the NRM to incorporate other simulation algorithms,
termed sub-simulations, is also utilized. For example, the reaction system within
each compartment is represented by its own NRM priority queue whereas the
overall NRM has its own priority queue. The priority queue of each compartment
publishes a “next firing time” to the overall NRM and the indexed priority queue
in the overall NRM provides the flexibility needed to add and remove entire
sub-simulations (in this case, compartments) at runtime.

The main simulation loop consists of the following steps:

1. Selection: The event and the time of its occurrence is determined. This
step runs in constant time since the next compartment in which an event
occurs is stored at the front of the indexed priority queue, and the next
event to occur in that compartment is stored at the front of its indexed
priority queue.

2. Execution: The event is performed, moving time forward and modifying
the state of the simulation according to the type of the event that occurred.
Reaction propensities that depend on the changed state are flagged as dirty.

3. Update: The dirty propensities and putative reaction times are recalculated
and the changes are propagated back up the data structures. This step takes
O(logS ·U(S)), where S is the number of sub-simulations in the system and
U(S) is the mean time required to update the dirty sub-simulations.

Thus, the runtime complexity of the simulation depends solely on the Execution
and Update steps which in turn depend on the nature of the sub-simulations that
occur.

4.3.1 Compartments

Compartments contain a subset of the reactants in a simulation, which interact
differently with the rest of the system. In each compartment, the molecules only
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react with other molecules in the same compartment. For example, a reactant α
in compartment P will react with other molecules in P, but not with reactants
(including the α molecules) in a different compartment, say Q. Each compartment
has its own state vector as it contains a set of molecules. Furthermore, as a
compartment is created, there are reactions created for it. This is accomplished
by introducing the notion of compartment type whereby every compartment is of
a type and contains set of molecules and reactions associated to it. A reactant α
in compartment P is thus denoted as α@P. Reactions in the model are defined
as occurring within or between compartment types. A separate instance of each
reaction occurring in type P will be created in each compartment of type P.

Compartments, in this simulator design, are hierarchy organized. It means that
higher-level compartments always contain lower-level compartments. Compart-
ment types are similarly organized, creating a hierarchy of compartment type.
Based on this hierarchy, the reactions that occur in the system are classified into
two types, namely:

(a) Intra-compartment reactions: The reactions that occur within a com-
partment are intra-compartment reactions. Each of the compartments has
their own NRM priority queue that contains all the information about reac-
tions that occur in that specific compartment. These priority queues publish
“next firing time” to the overall NRM. The simulation proceeds through the
main steps of simulation loop, namely, Selection, Execution and Update.
In Publication V which models a population of growing E. coli cells,
cellular processes such as gene expression, non-functional protein produc-
tion, aggregation, and cell growth, among others are modeled using intra-
compartment reactions. As all of such reactions occur due to the interactions
between components within a cell, intra-compartment reactions perfectly
capture them.

(b) Inter-compartment reactions: The reactions that span between the
compartments are inter-compartment reactions. Because of its complexity
in implementation, inter-compartment reactions are only allowed to occur
between compartments and their containing compartments. It means that
reactions may only span vertically across the compartment hierarchy (i.e.
between parents and children), but not horizontally (i.e. between siblings).
Due to this restriction, a child compartment can only affect its sibling
indirectly by first changing the parent compartment.
To simulate a system with such reactions, the propensities of all these
reactions needs to be computed. For simplicity, the vertical reaction is
always assumed to occur in the lowest level compartment. For example, if
a compartment Q is within compartment P, any vertical reaction between
these compartments is assumed to occur in compartment Q. The propensities
of vertical reactions are then calculated from the possible combinations of
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reactants in the compartment the reaction occurs in, and its containing
compartments. The propensity aµ that a molecule ‘a’ in P will react with a
molecule ‘b’ in Q, based on concepts of bimolecular reaction, is given as:

aµ = Xa@PXb@Qcµ

The vertical reaction occurring between the parent and the child compart-
ments are considered as a separate sub-simulation of the parent compart-
ment’s NRM. This sub-simulation has its own time that passes as Xsuperdt,
where Xsuper is the population of the molecule in the parent compartment.
For a given reaction time in the simulation, the reaction with the earliest
tentative firing time remains at the front of the priority queue of the sub-
simulation and can be retrieved in a constant time. Any change in the
population of the molecule in the parent compartment (Xsuper) then only
requires the next firing time of the sub-simulation to be updated.
In Publication V, these reactions are used to model the interaction between
the cell environment and the cell. One basic example is cell division which
occurs when an E. coli cell attains a specific length and results in a new cell
in the environment. This reaction including the ones required in modeling
bacteriophage’s infection of a cell population for the supplementary of
Publication I is modeled using inter-compartment reactions.

4.3.2 Delayed Reactions

Following the delayed SSA, the delayed products of a reaction are inserted into a
wait-list. These are retrieved and reinserted into the simulation when the actual
simulation time crosses the delayed time. A separate wait list is created for each
compartment, and is inserted as a sub-simulation of the global NRM. The wait
list itself is priority queue of delayed species. The wait list for each compartment
is also beneficial during the compartment destruction. When modeling a dynamic
population of cells, the construction and destruction of the compartments can be
a regular event. Since the wait list exists are distributed to the compartments,
the compartments can be destructed without any global dependencies of delayed
molecules within it.

The most common example of a delayed product is the delay in the release of
the protein during translation. The translation reaction with delayed release
of proteins has been used in Publication V as well as in the examples of
Publication I.

4.3.3 Division and Partitioning

The division of cells, used in Publication V, is modeled by the construction of
compartments in the runtime of simulation. This is handled by inter-compartment
between the original compartment and the system. Specifically, when a division
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occurs, the original compartment (the parent) remains in the simulation as one of
the daughter compartments, while a new compartment is created in the system
(environment) for the other daughter. This is handled efficiently using the NRM
to add and remove the compartment’s reactions from the system.

Another important aspect of cell division is the partitioning of molecules from
parent cells to the newly created cells. The physical mechanisms behind the
partitioning are known to differ between molecule species. Thus, upon division, a
“mock partitioning process” for each divided species describing the partitioning
statistics is executed. Several partitioning schemes and their mock processes have
been described and their statistical properties have also been examined in (Huh
and Paulsson 2011b). The three groups that these processes are divided into, as
classified in (Huh and Paulsson 2011b), are implemented in the simulator.

(i) (ii) (iii)

(iv) (v) (vi)

Figure 4.5: Schematic representation of different partitioning schemes.
(i) Perfect Partitioning in which the molecules are equally partitioned into
daughter cells (ii) Pair formation in which the molecules form pairs and
each molecule in a pair is partitioned to different daughter cell. The ones
that do not form pair are independently partitioned.(iii) Random size in
which the daughter cells are of different size and inherit molecules based on
their size.(iv) Preferential in which the molecules are preferentially inherited
by one of the daughters. (v) Clustered in which the molecules aggregate
to form clusters and then partitioned. (vi) All or Nothing in which all the
molecules are inherited by one of the daughters.

(a) Independent Partitioning. This is a simple partitioning distribution
where each partitioned molecule has an independent probability of ending up
in either of the daughter cells. This type of independence can be realized by
having a well-mixed cytoplasm, by having immobile molecules independently
appear in either cell half, or by randomly picking the molecules and moving
those to either cell half. This results in a partitioning scheme that is unbiased
and the molecules after partitioning are distributed binomially.
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(b) Ordered Partitioning. In ordered partitioning, mechanisms in the cell
interact directly or indirectly with each other to create a more even dis-
tribution of the molecules between daughter cells during division. These
mechanisms may be used by a cell as internal control mechanisms to make
the partitioning more evenly distributed, or to compensate for disordered
mechanisms. An ideal example is perfect partitioning in which each daughter
cell gets exactly half of the molecules in the parent cell. It can be imple-
mented by dividing the molecules into exactly half and then putting them
to the daughter compartments, as illustrated in Figure 4.5(i).

Another example is molecules that form pairs prior to division and upon
division are segregated to different daughter cells. This strategy lowers the
variance in partitioning when compared to independent partitioning. This
is implemented by probabilistically forming pairs of molecules when the
division occurs. The pairs are then split with a certain probability, with
one molecule of each successfully split pair going to one of the daughter
compartment. The molecules that failed to make pairs and the pairs that
fail to split are then partitioned independently to the daughter cells. It is
illustrated in Figure 4.5(ii).

(c) Disordered Partitioning. In disordered partitioning, the variation in the
partitioning system or the intracellular environment randomizes population
levels between daughter cells more than independent partitioning. There
are several examples of disordered partitioning schemes. If daughter cells do
not have the same volume following a division, the larger daughter is likely
to inherit more molecules than the smaller one. The size asymmetry here is
modeled using a Beta distribution. The molecules to be partitioned are then
segregated binomially depending upon the ratio of the daughter cell sizes.
This partitioning results in significant differences in the daughter cells, and
is referred to as random size partitioning. It is illustrated in Figure 4.5(iii).

For molecules, such as protein aggregates, that preferentially segregate to one
of the cell poles (Winkler et al. 2010), the partitioning is expected to result
in a scheme where most of the molecules will end up in one of the daughter
cells. This can be implemented by a biased binomial partitioning of the
molecules such that the parent compartment likely retains more molecules
than the newly formed compartment, as illustrated in Figure 4.5(iv). After
few generations, this preferential partitioning scheme will result in older
cells with very large number of molecules.

For the cellular components or molecules that form or exist in clusters, the
partitioning, given that these are partitioned independently, is expected have
a even greater variance from division. To model their partitioning during
division, we first group the molecules into N clusters and then independently
segregate the clusters into the daughter cells. This partitioning scheme is
referred to as clustered partitioning and is illustrated in Figure 4.5(v).
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The extreme of the disordered partitioning is the partitioning scheme in
which all the molecules are always partitioned into one of the daughter cells.
This would introduce the most variance possible during division. This is
implemented by randomly selecting one of the daughter cell and putting
all the molecules to it. This scheme is referred to as all or nothing and is
illustrated Figure 4.5(vi).

Using non-functional proteins as probes that is assumed to affect cell health, the
effect of all these partitioning schemes on vitality of E. coli population is studied
in Publication V.

4.3.4 Retention of Complexes

For Publication IV, the cell is modeled as a compartmentalized one-dimensional
space divided into N homogeneous sub-volumes, which is indexed from [1,N].
For all the models, N is set to 100, and the diffusion coefficient (D) is set to
1.43 ∗ 10−2µm2/min based on previous measurements (Golding and Cox 2006)
and on measurements from Publication II. The movement of the complexes
along the major axis of the cell is modeled with unimolecular reactions based on
the RDME (Gardiner et al. 1976).

To model the motion of complex from position x to position x + 1, propensity
of the forward reaction represented as −→α (x) is used. Similarly, the propensity
of backward reaction, ←−α (x), models the motion of a complex from position x to
x − 1. These propensity functions account for the combined effects of the rod
shape of the cell and the nucleoid on the motions of the complexes. Based on
these, stochastic models are developed and simulated. The results are used to
distinguish between the possible mechanisms responsible to retain the complexes
at the cell poles.





5 Summary of Results

The effects of intracellular and partitioning asymmetries in E. coli using measure-
ments and models is studied in this thesis. This chapter summarizes the results
of individual study that led to each of the publications.

In Publication I, a simulator (SGNS2) that can simulate models of systems
with multi-delayed events, dynamic compartments and partitioning of molecules
is developed. The design of SGNS2 is based on a combination of the efficient im-
plementations of the SSA and incorporates the concept of dynamic compartments.
It can simulate an array of biological processes. The usage is exemplified in a
simulation of gene expression at the nucleotide and codon levels (Mäkelä et al.
2011). Furthermore, SGNS2 is also suited to study partitioning in cell division,
which is known to have effect on aging, among other processes. In such studies
where data from populations over multiple generations is required, SGNS2 is more
relevant as performing experimental measurements might be complex as well as
tedious.

Some example models are built to demonstrate the utility of SGNS2. Of particular
interest is the model of biased partitioning of protein aggregates in E. coli. These
aggregates are known to accumulate at the cell poles and reduce cell vitality
(Lindner et al. 2008; Stewart et al. 2005). The result of simulation using SGNS2
shows the growth rate of cells for few generations is strikingly similar to the one
measured in (Stewart et al. 2005). Another model is used to study the effects
of cell-cycle synchrony on the population-level statistics of RNA numbers as in
(Lloyd-Price et al. 2012b). A final model is built to study bacteriophage infection
of a dynamic bacterial population.

In Publication II, the kinetics and long-term spatial distribution of biologically
inert complexes, composed of RNA molecules tagged with multiple MS2-GFP
proteins, in the cytoplasm of E. coli cells is studied in optimal and sub-optimal
temperature conditions. The previously reported tendency of these complexes
to travel toward the poles is found to be a symmetric process in all the tested
conditions. It is found that, cell divisions introduce asymmetries in their numbers
between the old and the new poles of cells of subsequent generations, and after
few generations, between sister cells. Similar observations for protein aggregates
were made in (Lindner et al. 2008). The kinetics of movement of these complexes
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is further studied to investigate the mechanisms responsible for their long-term
spatial distribution.

A strong anisotropy in the displacement distribution, due to obstruction of
the motion of complexes, is found at approximately half way between the cell
extremes and the center. The hypothesis that the excluded volume effect at
mid-cell determines the positioning of these complexes is found to be supported
by the overall two-dimensional distributions of positions occupied by complexes
throughout their lifetimes. The complexes are found to avoid the nucleoid, both
axially and radially. Further support is found because of the agreement between
the location of the nucleoid and the location where movement of complexes is
obstructed. In addition, in the longest cells, where the nucleoid(s) occupy a
relatively wider region due to nucleoid replication, the complexes are found to
occupy a relatively smaller region at the poles. From all these evidences, it is
concluded that the macromolecular crowding due to the nucleoid at mid-cell
region is responsible for the retention of complexes at the cell poles. Additional
support for this conclusion is provided by modeling. From the models, in absence
of the effects due to nucleoid, namely, in absence of the anisotropy in the velocity
distribution of complexes, the retention at the poles is severely hampered as the
spatial distribution of complexes is uniform throughout the cell. On the other
hand, introduction of the anisotropy in the region between poles and mid-cell
regenerates an accurate long-term spatial distribution of the complexes.

In Publication III, the robustness of division symmetry and functional conse-
quences due to breaking of this symmetry in E. coli is studied. For that, previous
assessment of the degree of morphological symmetry in division in these organisms,
that most divisions are symmetric with some exceptions, is verified in optimal
conditions. The morphological asymmetries that exist in division is found to be
a source of functional asymmetries between sister cells as the differences in cell
sizes correlates with the differences in the numbers of fluorescent MS2-GFP-RNA
complexes inherited by these cells from the mother cell.

The asymmetry in sizes in division is then studied for non-optimal environmental
conditions. In mild chemical stresses (acidic shift and oxidative stress), the
distributions of asymmetry in sizes between sister cells is found to be statistically
indistinguishable from those at optimal growth conditions. However, this is not
the case under sub-optimal temperature conditions. The frequency of asymmetric
divisions is found to increase as temperature changed from optimal to sub-optimal.
From these, it is concluded that the mechanism responsible for the symmetry
observed in division is robust to the mild chemical stresses but not to temperature
changes. The mechanisms that have been identified to affect the selection of point
of division are the ‘Min system’ (Yu and Margolin 1999; Kerr et al. 2006) and
the positioning of the nucleoids prior to division (Wang et al. 2005; Mulder and
Woldringh 1989; Woldringh et al. 1991). To investigate the observed variance in
the point of division, the replicated nucleoids at time moment prior to division
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is studied at sub-optimal temperatures. Even though the relative sizes of the
nucleoids are unchanged, there is an increase in the mean relative distance between
nucleoids. Given that the positioning of the division point is near random in
between nucleoids (Mulder and Woldringh 1989), the increase in the mean relative
distance necessarily increases the variance in the division point. Furthermore,
since no mini-cells is observed in any of the tested conditions, to indicate the
disruption of Min system, it is concluded that the role of nucleoid is, to some
extent, affected at sub-optimal temperatures.

In Publication IV, stochastic modeling of polar retention of complexes is used to
distinguish between the functional consequences of possible retention mechanisms.
Namely, in Publication II, it is hypothesized the nucleoid occlusion is the
responsible mechanism, as a strong anisotropy in displacement distribution is
observed at the border of nucleoid. However, the observed spatial distribution of
complexes could also, theoretically, arise from other sources such as heterogeneities
in the speed of the complexes along the major axis of the cell. In order to
distinguish between these mechanisms, it is necessary to study the functional
consequences of the models based on these. These models, with parameters tuned
to match the measurements reported in Publication II, is found to generate
good fits to the long-term spatial distribution. However, the model with varying
speed along the major cell axis, at the time scale of the measurements, is unable
to reproduce the observed anisotropic displacement distribution at the border
between the mid-cell and poles. Based on this, it is concluded that the polar
retention most likely relies on these anisotropies in the displacement distribution
rather than differences in speeds. This is consistent with the hypothesis that the
observed long-term behavior is the result of macromolecular crowding, likely due
to the nucleoid.

In Publication V, possible selective advantages of different partitioning schemes
of non-functional proteins in E. coli are investigated using a stochastic model.
For that, a model of growing E. coli cells is developed and is parameterized by
previous measurements. The model is verified to mimic the cellular processes such
as gene expression, non-functional protein production, cell growth, cell division
and partitioning of components, among others, within a cell of DH5α-PRO strain.
Given the assumption that the accumulation of non-functional proteins reduces
cell vitality, it is found that increase in the degree of asymmetry in partitioning of
non-functional proteins increases the division rates of cell population. The degree
of asymmetry is found to be further enhanced by properties such as preferential
movement and clustering of the non-functional proteins. Furthermore, it is found
that retention of the inherited proteins at the old pole can, on its own without any
asymmetry, increase the mean division rate of the cell population. This retention
is a non-energy consuming mechanism as it is driven by volume exclusion of
nucleoid. It is therefore advantageous for the cells. The results suggest that the
mechanisms of intracellular organization of non-functional proteins, including
clustering and polar retention, affect the vitality of E. coli populations.





6 Discussion

The results reveal nucleoid as one of the regulating mechanism of the sources of
asymmetries in E. coli, which ultimately generate phenotypic differences between
sister cells. In particular, it is found that the nucleoid plays a vital role in
segregation of large inert macromolecules and, consequently, on their the spatial
distribution within the cytoplasm of E. coli cells. Furthermore, the positioning
of nucleoid is found to regulate the location of septum that defines the division
point in these organisms. Also it is shown that, both of the processes, namely
segregation mechanism and cell division, are sources of asymmetries in these
organisms and have detrimental consequences on cellular functionality.

It is interesting that both of these processes are regulated either by the presence
or by the positioning of the nucleoid. It is indicative that aside from the central
role of carrying the genetic information, nucleoid plays a vital role in variety of
other cellular functions. In optimal growth condition, the nucleoid ensures the
retention of inert macromolecules at the least functional region of cell i.e. at the
cell poles. It further ensures that the sister cells in division have least possible
morphological differences between them. Although the mechanism of retention is
unaffected in sub-optimal temperatures, the symmetry in division starts to fail
due to the increased distance between replicated nucleoids. Since the mechanism
is not so robust, it is of interest to study the features of nucleoid in extreme
environmental conditions. Further studies are required to investigate the changes
in such conditions and, more importantly, their impact on both retention and
symmetry in division.

It is important to mention that all the experimental and model results in this
thesis are based on the measurements from E. coli strain DH5α-PRO. The slower
growth rate of this strain (Jung et al. 2010) facilitates the automated tracking of
cell divisions and partitioning of complexes from time-lapse microscopy images.
Even with this difference in strain, the observations made here can be considered
representative of a wild-type strain due to the behavioral similarity of these strains.
For example, the segregation and the accumulation of molecules at the cell poles
observed in DH5α-PRO has also been reported in wild-type strains(Lindner et al.
2008; Bakshi et al. 2012; Zhang et al. 2007; Yu et al. 2006). In addition, the
morphological symmetry in division for both the strains are found to be strikingly
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similar (Männik et al. 2012). Furthermore, the results of models for wild-type
strain should be qualitatively similar to those reported from models in this study.
The models are flexible enough that the parameters of models can be easily tuned
to match the measurements of a wild-type strain. Nonetheless in future, it would
definitely be interesting to study the strain-to-strain variability in this organism.

Finally, a simulator (SGNS2) has been developed to simulate diverse biological
processes such as gene expression, molecule interactions, delayed reactions, cell di-
vision, and stochastic partitioning, among others. It provides novel functionalities
to model such stochastic cellular processes, and thus it is useful in studying in
silico the phenotypic diversity of cell populations. This is exemplified in a model
that accounts for the effect of various partitioning schemes on the division times
of growing E. coli population. The model reveals the importance of asymmetries
in partitioning of harmful proteins in overall vitality of the population. This
general model is tunable for a different parameter-set, for example, parameters
for a different E. coli strain or for a completely different species. Furthermore,
although the model is already complete, it can be easily extended to accommodate
the detailed features and effects of the nucleoid. For that, measurements of the
nucleoid that informs on the parameters such as size, location, and replication
time, among others are required. It would be interesting to add these features to
the model and explore the processes such as retention at cell poles in detail.

Overall, it can be concluded that the functionality of E. coli cells is not immune
to asymmetries at birth, which may explain why these organisms have evolved a
robust process of symmetric division under optimal conditions. We expect our
results to be valid for organisms or cells with similar division process. It can be
hypothesized rejuvenation of such organisms has led to evolutionary processes
that result in asymmetries in division, as one of the daughter is favored. Since
complete understanding of the underlying complex and multifaceted mechanisms
that characterize aging is one of the great challenges in biology, in future, it would
be of interest to investigate sources of such asymmetries in eukaryotes. These
organisms have a more complex internal structure and mechanisms that may
allow more ingenious means to cope with the effects of aging, which is probably a
fundamental property of all living beings.
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ABSTRACT

Motivation: Cell growth and division affect the kinetics of internal cel-

lular processes and the phenotype diversity of cell populations. Since

the effects are complex, e.g. different cellular components are parti-

tioned differently in cell division, to account for them in silico, one

needs to simulate these processes in great detail.

Results: We present SGNS2, a simulator of chemical reaction systems

according to the Stochastic Simulation Algorithm with multi-delayed

reactions within hierarchical, interlinked compartments which can be

created, destroyed and divided at runtime. In division, molecules are

randomly segregated into the daughter cells following a specified dis-

tribution corresponding to one of several partitioning schemes, applic-

able on a per-molecule-type basis. We exemplify its use with six models

including a stochastic model of the disposal mechanism of unwanted

protein aggregates in Escherichia coli, a model of phenotypic diversity

in populations with different levels of synchrony, a model of a bacterio-

phage’s infection of a cell population and a model of prokaryotic gene

expression at the nucleotide and codon levels.

Availability: SGNS2, instructions and examples available at www.cs.

tut.fi/�lloydpri/sgns2/ (open source under New BSD license).

Contact: jason.lloyd-price@tut.fi

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Recent evidence suggests that even in cellular organisms whose

division is morphologically symmetric, there are a number of asym-

metries between daughter cells. These arise, among other things,

from the stochasticity in the partitioning of components in division

(Huh and Paulsson, 2011) and from biased partitioning schemes for

some components. For example, in Escherichia coli, unwanted pro-

tein aggregates follow biased partitioning schemes dependent on

the age of the daughter cells’ poles (Lindner et al., 2008).

These and other recent findings suggest that the phenotypic di-

versity of cell populations, among other factors, depends on errors

and biases in the partitioning of RNA, proteins and other mol-

ecules. This is of relevance since most RNAs exist in small numbers

(Bernstein et al., 2002) and small fluctuations in these numbers can

alter the behavior of genetic circuits (Ribeiro and Kauffman, 2007)

and trigger visible phenotype changes (Choi et al., 2008).

These sources of phenotypic heterogeneity are difficult to dis-

tinguish from, e.g. noise in gene expression (Huh and Paulsson,

2011). Although some effects can be assessed analytically (Huh

and Paulsson, 2011), others are too complex and must be assessed

numerically. A simulator is thus needed that accounts for noise

and delays (Kandhavelu et al., 2012) in gene expression and for

compartmentalization of processes and components.

Presently, simulators of the dynamics of noisy biochemical sys-

tems rely on the Stochastic Simulation Algorithm (SSA) (Gillespie,

1977), e.g. (Blakes et al., 2011; Hattne et al., 2005; Hoops et al.,

2006; Lok and Brent, 2005). Some support compartmentalization,

simulating reaction-diffusion systems in either static (Hattne et al.,

2005) or dynamically sized compartments (Blakes et al., 2011;

Versari and Busi, 2008). Others support rule-based creation of

reactions at runtime (Lok and Brent, 2005; Spicher et al., 2008),

and thus can simulate a dynamic cell population. Very few support

delays on the release into the system of one or more products of a

reaction (Roussel and Zhu, 2006). These delays are essential to

accurately model the kinetics of some processes, e.g. transcription,

as RNA production is mostly regulated by the duration of events

in transcription initiation (Muthukrishnan et al., 2012).

Here, we present SGNS2, an extension of SGN Sim (Ribeiro

and Lloyd-Price, 2007) that incorporates dynamic compartments

and multiple partitioning distributions at cell division, applicable

on a per-molecule-type basis.

2 METHODS

SGNS2 is an extension of SGNS, the stochastic simulator of SGNSim

(Ribeiro and Lloyd-Price, 2007). It contains all the features of SGNS,

such as reactions with multi-delayed events. The two key additions in

SGNS2 are (i) it supports dynamic, interlinked, hierarchical compartments

and (ii) it supports multiple molecule and compartment partitioning

schemes, applicable on a per-molecule-type basis. The novel features con-

siderably extend the class of models that can be simulated.

SGNS2 uses a modified version of the Next Reaction Method (NRM)

(Gibson and Bruck, 2000). Namely, the NRM was adapted to stochastic

P-systems (Spicher et al., 2008) by using a hierarchy of indexed priority

queues (IPQ, an ordered list of elements that keep track of their position in

the list) and further modified to allow multiple delays in reactions. The IPQ

data structure, implemented with a binary heap, is described in Gibson and

Bruck (2000). We use a separate IPQ for each compartment, which publish

a ‘tentative next event time’ to an overall IPQ which determines the next

event time in the entire simulation. We optimize the update step when

molecule populations in a parent compartment change by using a hierarch-

ical refinement of the IPQs with appropriate scaling of tentative firing times

(see Supplementary Material). Delayed events were implemented by creat-

ing wait lists, implemented by binary heap-based priority queues, whose

earliest event is published to each compartment’s indexed priority

queue. The simulation’s elementary SSA steps scale logarithmically with*To whom correspondence should be addressed.
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the number of reactions, compartments and delayed events, allowing com-

plex models to be simulated in reasonable time.

To simulate cell division, we introduced a special reaction event, whose

timing follows the SSA rules. When executed, instead of subtracting sub-

strates from the system, a random number is generated based on one of the

several partitioning distributions available, including some of those listed in

Huh and Paulsson (2011). Each of these mimics a specific molecule parti-

tioning process during cell division. SGNS2 allows both biased and unbiased

partitioning of molecules and sub-compartments. The results of these events

can be instantaneous or be placed on the wait list. Compartment division

and molecule partitioning are represented in the following form:

splitðpÞ : Protein@Cell!
c�

@Cellþ : Protein@Cell

When this reaction occurs, a new cell compartment is created (@Cell in the

product list). Proteins in the original cell are partitioned according to a

biased binomial partitioning scheme. In this, each protein is independently

partitioned into the new cell with probability p. Other common partitioning

distributions include the independent partitioning of molecules into daugh-

ter cells with random (beta-distributed) sizes and the binding of molecules

to spindle binding sites which are segregated evenly between daughter cells

such as during mitosis. Available distributions are listed in the manual.

SGNS2 is a command line utility, designed to fit into a toolchain, sup-

porting various input and output formats. Input can be specified in two

formats: SBML (Hucka et al., 2003) and SGNSim’s native format (Ribeiro

and Lloyd-Price, 2007). A subset of SBML Core level 3 version 1 is sup-

ported, allowing simulation of most SBML models. Output can be in csv,

tsv or in binary format.A text editormaybeused towritemodels in SGNSim

format. SBML-based graphical interfaces such as CellDesigner (Funahashi

et al., 2008) orCytoscape (Smoot et al., 2011)may be used tomanage SBML

models. The results of simulations are interpretable by programs like

MATLAB, R or Excel. An example of running a model in SGNSim

format of a growing cell population is shown in Supplementary Figure S1.

3 DISCUSSION

SGNS2 is the first stochastic simulator that includes multi-delayed

events, dynamic compartments and molecule partitioning schemes

in division. To test its correctness, we simulated models from the

Discrete Stochastic Model Test Suite (Evans et al., 2008). All

showed the expected behavior (Supplementary Figs S2 and S3).

SGNS2, though making use of existing and slightly modified

versions of existing algorithms, can simulate an array of biological

processes not previously possible. For example, it is ideal for simu-

lating gene expression at the nucleotide and codon levels (see

‘Availability’ section) and study features such as how events in

transcription elongation affect protein production kinetics

(Mäkelä et al., 2011).

SGNS2 is also suited to study partitioning in cell division, which

affects aging, among other processes, and is of particular relevance

whenmodelingpopulationsovermultiplegenerations.Toexemplify

this, we modeled the biased partitioning of protein aggregates in E.

coli, known to accumulate in cells with older poles, reducing vitality

(Lindner et al., 2008). The results in Supplementary Figure S4 agree

with measurements (Stewart et al., 2005). We further studied how

cell-cycle synchrony affects the population-level statistics of RNA

numbers [Supplementary Fig. S5, in agreement with measurements

in Lloyd-Price et al. (2012)]. As a side note, we expect the partition-

ing of RNA and proteins to affect the dynamics of genetic circuits,

particularly the stability of their noisy attractors (Ribeiro and

Kauffman, 2007). To further demonstrate the simulator’s utility,

we modeled the viral infection of a dynamic bacterial population.

In conclusion, SGNS2 provides novel functionalities to model

and simulate cellular processes not previously possible, as seen

from the examples. In general, SGNS2 enables the modeling of

stochastic processes in live cells that require compartmentaliza-

tion, multi-delayed complex processes and complex stochastic par-

titioning schemes at a per-molecule type in cell division. These

features are necessary to study in silico, among other phenomena,

phenotypic diversity in cell populations.

Funding: Work supported by Academy of Finland (126803).

Conflict of Interest: none declared.
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Supplement to “SGNS2: A Compartmentalized Stochastic 

Chemical Kinetics Simulator for Dynamic Cell Populations” 
Jason Lloyd-Price, Abhishekh Gupta, and Andre S. Ribeiro 

 

Implementation Details 
SGNS2 uses the Next Reaction Method[1] (NRM) to simulate the dynamics according to the 

Stochastic Simulation Algorithm[2] (SSA). This method is an efficient implementation of the SSA, which 

begins by randomizing a ‘next firing time’ for each possible reaction in the system and storing these 

tentative reaction times in an indexed priority queue (IPQ). The reaction with the soonest tentative 

firing time is then taken from the queue, performed, and its next firing time is re-randomized. Any 

reaction whose propensity depends on the set of molecule species affected by this reaction then have 

their tentative firing times transformed to follow the new distribution of firing times prescribed by the 

Chemical Master Equation. Then, their positions in the priority queue are updated. These reactions are 

determined by pre-generating the graph depicting which reactions potentially affect the propensities of 

other reactions (the reaction dependency graph). We implement the NRM’s IPQs using array-based 

binary heaps, which provide logarithmic scaling of the runtime with the number of reactions for the SSA 

steps in a sparsely-coupled model (i.e. a model whose reaction dependency graph is sparse). 

To allow compartments to be quickly created and destroyed, a separate IPQ is created for each 

compartment. These IPQs are inserted into a higher-level IPQ which acts as a “Next Compartment 

Method”, allowing us to determine which compartment the next reaction will occur in, in logarithmic 

time with the number of compartments. Creating/destroying compartments is then done by 

constructing/destructing these IPQs and inserting/removing them from the overall IPQ. In this 

arrangement, compartment creation takes O(logC + RlogR) time, while compartment destruction takes 

O(log C) time, where R is the number of reactions in the new compartment and C is the current number 

of compartments in the simulation. 

Communication between compartments is accomplished by reactions that affect molecules in 

both a ‘parent’ and a ‘child’ compartment. Since the propensity of each instance of such a reaction 

depends on the population of the reactant in the parent compartment, O(C) propensities must be 

recalculated when this quantity changes, an O(ClogR) operation. Since each reactant of a reaction 

factors independently into the propensity of the reaction, the reactant in the parent compartment can 

be factored out from all of the instances of the reactions in the sub-compartments. This calculation is 

similar to the partial propensity methods [3]. To accomplish this without requiring an O(C) operation, we 

create a separate IPQ for the sub-compartment’s reaction instances in which the local simulation time, 

tsub, is advanced such that dtsub = Xdt, where X is the current population size of the reactant in the parent 

compartment and t is the global simulation's time variable. This sub-simulation then publishes a next 

firing time to the parent compartment's IPQ, adjusted according to the NRM’s propensity update 

formula. When the parent compartment reactant's population changes, only the adjusted next firing 

time must be recalculated and only one element of an IPQ may change position, reducing the cost of 

this operation to O(logR). SGNS2 assumes that there are no direct interactions between compartments 

at the same level of the hierarchy. 



To include multi-delayed reactions as well, which are simulated according to the Delayed SSA[4], 

we implement a wait list using a binary heap-based priority queue. The transient nature of 

compartments makes it necessary for each to contain its own wait list. The earliest event in a 

compartment’s wait list is then inserted into the compartment’s IPQ. All operations on the wait lists are 

therefore O(logW + logR + logC), where W is the number of delayed events on that wait list. When a 

compartment is destroyed, all delayed events in that compartment are forgotten, assuring that no 

delayed molecules of that compartment are released following this event. 
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Supplementary Figures 
 

 
Fig S1: Example of SGNS2 in use. A model is created in a text editor, here Notepad (upper left), and is 

simulated with SGNS2 (upper right). The csv files output (lower right) are loaded and analyzed in Excel 

(lower left). 



 
Fig S2: Means of molecule populations over time for the models in the Discrete Stochastic Model Test 

Suite which do not use Rules or Events. Solid blue lines are the means of the results from 500 runs of 

SGNS2, while dashed red lines show the analytical solutions. The overlap of these lines results in a 

purple-like line. 
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Fig S3: Standard deviations of molecule populations over time for the models in the Discrete Stochastic 

Model Test Suite which do not use Rules or Events. Solid blue lines are the standard deviations of the 

results from 500 runs of SGNS2, while dashed red lines show the analytical solutions. The overlap of 

these lines results in a purple-like line. 
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Fig S4: Cell lineage with biased partitioning of vitality-reducing protein aggregates. Cells with older poles 

are placed on the right. The length of each cell's line is proportional to its lifetime. 



 
Fig S5: Normalized variance of RNA numbers over time in perfectly synchronous (red) and asynchronous 

(blue) cell populations. 500 cells were simulated in each population. 
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In Vivo Kinetics of Segregation and Polar Retention of MS2-GFP-RNA
Complexes in Escherichia coli

Abhishekh Gupta, Jason Lloyd-Price, Ramakanth Neeli-Venkata, Samuel M. D. Oliveira, and Andre S. Ribeiro*
Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland

ABSTRACT The cytoplasm of Escherichia coli is a crowded, heterogeneous environment. From single cell live imaging, we
investigated the spatial kinetics and heterogeneities of synthetic RNA-protein complexes. First, although their known tendency
to accumulate at the cell poles does not appear to introduce asymmetries between older and newer cell poles within a cell life-
time, these emerge with cell divisions. This suggests strong polar retention of the complexes, which we verified in their history of
positions and mean escape time from the poles. Next, we show that the polar retention relies on anisotropies in the displacement
distribution in the region betweenmidcell and poles, whereas the speed is homogeneous along themajor cell axis. Afterward, we
establish that these regions are at the border of the nucleoid and shift outward with cell growth, due to the nucleoid’s replication.
Overall, the spatiotemporal kinetics of the complexes, which is robust to suboptimal temperatures, suggests that nucleoid
occlusion is a source of dynamic heterogeneities of macromolecules in E. coli that ultimately generate phenotypic differences
between sister cells.

INTRODUCTION

Even single-celled organisms, such as Escherichia coli,
possess a far from random internal organization. Proteins
involved in chemotaxis are preferentially located at the
cellular poles (1–4), whereas proteins (e.g., RNA polymer-
ases) and transcription factors involved in gene expression
mostly locate within a structure known as the nucleoid
that, before its replication, is generally located in the central
region of the cell (5–9).

At least some of the heterogeneities in the cytoplasm of
E. coli cells influence their functioning. One example is
that cells inheriting the older pole of the mother cell exhibit
diminished growth rate (10), which suggests that some con-
tents in the older pole are harmful, and exist in smaller
amounts in the newer pole. Subsequent studies hypothesized
that one possibly harmful component inherited with the
older pole is protein aggregates (10–14).

It is well known that E. coli cells, apart from the nucleoid,
lack internal organelles (15). They also lack transport mech-
anisms for proteins (12,15). Thus, the generation and main-
tenance of most heterogeneity are likely based on the
physical properties of the cells, namely, the presence of
the nucleoid at midcell (16) and the shape of the cell (17),
and on the physical properties of the components (18).

Recently, to study the nature of the cytoplasm of E. coli,
Golding and Cox (15,19) used live cell microscopy and a
synthetic RNA coding for multiple binding sites for a syn-
thetic protein MS2-GFP, based on the MS2 capsid protein
(20). By tracking the MS2-GFP tagged RNA molecules,
they observed that, at short timescales, their motion was
subdiffusive with an exponent that is robust to physiological

changes, such as the disruption of cytoskeletal elements
(15). In addition, they showed that, at long timescales, these
complexes tend to localize at the cell poles. It was hypoth-
esized that this was due to hydrodynamic coupling between
the complexes and the cell walls of the poles (19).

Here, using the same approach as in (15), we further
investigate the behavior of these large, inert complexes
within the cytoplasm of E. coli. We choose to use this com-
plex because of its long lifetime (19) (longer than 2 h) and
its robustness to photobleaching (21). Furthermore, the indi-
vidual MS2-GFP proteins are known to distribute uniformly
within the cell (22), whereas the motion of the complexes
appears to be dominated by physical interactions (15).
This provides strong evidence that there are no significant
biological interactions between the MS2-GFP proteins or
between the MS2-GFP-tagged RNA and other components
of the cytoplasm.

From the analysis of time series images of cells expressing
MS2-GFP and the targetRNA,we address the following ques-
tions. Is the accumulation of these complexes at the cell poles
a symmetric process?Docell divisions introduce asymmetries
in their numbers in older and newer cell poles, as in the case of
unwanted protein aggregates (11)? Are they retained at the
poles, and if so, for how long? What heterogeneities and an-
isotropies in their motion exist along the major cell axis?
Does their spatial distribution change in the course of a cell’s
lifetime? Finally, we investigate towhat extent the nucleoid is
involved in the observed behavior of these complexes.

MATERIALS AND METHODS

Chemicals

Bacterial cell cultures were grown in lysogeny broth (LB) media. The chem-

ical components of LB (Tryptone, Yeast extract, and NaCl) were purchased
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from LabM (Topley House, Bury, Lancashire, UK) and the antibiotics from

Sigma-Aldrich (St. Louis, MO). Isopropyl b-D-1-thiogalactopyranoside

(IPTG) and anhydrotetracycline (aTc) used for induction of the target genes

are from Sigma-Aldrich. Agarose (Sigma-Aldrich) was used for microscope

slide gel preparation for cell imaging. 40,6-diamidino-2-phenylindole

(DAPI) from Sigma-Aldrich was used to stain cell nucleoids.

Cells and plasmids

Experiments were conducted in E. coli strain DH5a-PRO, generously pro-

vided by I. Golding (Baylor College of Medicine, Houston, TX), which

contains two constructs: i), PROTET-K133 carrying PLtetO-1-MS2d-GFP

(19), and ii), a pIG-BAC (Plac/ara-1-mRFP1-MS2-96bs) vector, carrying a

96 MS2 binding site array under the control of Plac/ara-1 (19).

Induction of production of fluorescent complexes

The dimeric MS2 fused to green fluorescent protein (GFP) (MS2-GFP

fusion protein) used as a detection tag (19) is expressed from a medium-

copy vector under the control of the PLtetO-1 promoter (23), which is regu-

lated by the tetracycline repressor. The RNA target for MS2-GFP is located

on a single-copy F-based vector, and is controlled by the Plac/ara-1 promoter

(23). For our measurements, precultures were diluted from the overnight

culture to an OD600 of 0.1, in fresh LB media supplemented with the appro-

priate antibiotics and kept at 24�C or 37�C at 250 RPM in a shaker for ~2 h

at 24�C or ~1.5 h at 37�C until they reached an OD600 z 0.5. At this point,

cells were induced with 50 ng/ml of aTc and 0.1% L-arabinose for 45 min,

at which point the OD600 was ~0.8. Induction of the target RNA production

was then completed by adding 1 mM IPTG and cells were incubated for

5 min before preparation of the microscope slide. We note that this induc-

tion procedure is necessary for cells to have sufficient numbers of MS2-

GFP to detect the target RNA and to achieve full induction of the target

gene during the microscopy measurements (24,25).

Imaging

After induction of the target gene, a few microliters of culture were placed

on a microscope slide between a coverslip and a 0.8% agarose gel pad set

with the LB media, followed by the assembly of a thermal imaging chamber

(Bioptechs, FCS2) set at the appropriate temperature. Cells were visualized

by fluorescence microscopy using a Nikon Eclipse (TE2000-U, Nikon,

Tokyo, Japan) inverted microscope with a C1 confocal laser scanning sys-

tem using a 100� Apo TIRF (1.49 NA, oil) objective. GFP fluorescence

was measured using a 488 nm laser (Melles-Griot) and a 515/30 nm detec-

tion filter. Images of cells were taken from each slide by the Nikon software

EZ-C1, starting ~10 min after induction of the target gene, 1/min, for 2 h.

The pixel dwell was 1.33 ms, resulting in a line scanning time of ~1.4 ms;

this is significantly faster than the diffusion speed of the MS2-GFP-RNA

particles (see (15)), and should therefore not introduce any time-averaging

artifacts.

Imaging of nucleoids

DAPI stains nucleoids specifically, with little or no cytoplasmic labeling

(26). Precultures were grown for ~3 h with the same previous protocol

(but without inducing the target or reporter genes). After reaching an

OD600 z 0.8, cells were centrifuged and suspended in phosphate buffered

saline (PBS). For live cell nucleoid staining, DAPI (2 mg/ml) was added to

the cells suspended in PBS and incubated for 20 min in the dark. Cells were

then washed twice with PBS, and placed on a 1% agarose gel pad prepared

with LB. The cells were simultaneously observed by epifluorescence micro-

scopy, using a mercury lamp with a DAPI filter, and by phase contrast mi-

croscopy. DAPI is excited at 359 nm and emits at 461 nm. Images were

acquired with Nikon software NIS-Elements. Cells in phase contrast images

were segmented using the software MAMLE (27). The background of the

images obtained by epifluorescence microscopy was removed by subtract-

ing a cubic polynomial surface, fitted to the image by L1-norm minimiza-

tion (i.e., minimizing the absolute difference between the surface and the

image; see, e.g. (28)). The fluorescence intensities in each cell were then

extracted. See Fig. 6, which shows the fluorescence intensities were pro-

jected along the major axis of the cell.

Detection of cells and individual complexes
within from the images

Cells were detected from the images by a semiautomatic method as in (22).

First, the time series images from confocal microscopy were aligned, so that

the cells stayed in the same position throughout the time series. Next, a

mask was manually drawn over the region that each cell occupied during

the time series. When a cell divided, separate masks were drawn in the

framewhere the division was first observed, to represent daughter cells after

division. After thresholding the fluorescence distribution within each mask

to enforce a uniform fluorescence within the cell, principal component anal-

ysis was used to obtain, at each frame, the position, dimension, and orien-

tation of the cell inside each mask.

To construct cell lineages, we automatically assigned a parent to each cell

in each frame, as the cell in the previous frame with the nearest centroid.

This was done after transforming the previous frame’s cell centroids by

the inverse of the transform that maps a unit circle to the cell’s ellipse, to

avoid incorrectly assigning adjacent cells as parents. When two cells are as-

signed the same parent, a division is assumed to have occurred. We verified

the efficiency of this method by inspection, and found the rate of error to be

negligible.

Next, we detected fluorescent MS2-GFP-RNA complexes in each cell, at

each frame, as in (22). We segmented the fluorescent complexes automati-

cally inside each mask with the kernel density estimation (KDE) method for

spot detection (29). This method measures the local smoothness of the im-

age, and determines spot locations by designating areas with low smooth-

ness as spots. We used a Gaussian kernel as in (22). Cell background

corrected complex intensities were then calculated by subtracting the

mean cell background intensity multiplied by the area of the complex

from the total fluorescence intensity of the complex.

For cells containing only one complex, once the complexes were

detected at each time point, we obtained displacement vectors from their

positions in consecutive frames. In Fig. 1, we show an example image of

cells (Fig. 1 A), along with the segmented cells and detected complexes

within (Fig. 1 B), and an example of the extracted displacement vectors

of a complex from its positions at consecutive frames (Fig. 1 C).

By inspection,we observed that the spot detection is reliable.Althoughwe

are unable to determine the precision with exactness, as it depends on many

variables including noise in the image, we can estimate a conservative upper

bound for the error. Assuming that the method of detection is perfect, the

discrete nature of the pixels implies that the error in the estimate of the spot’s

position is up to 2-1/2 pixels. If the spot detection, e.g., misidentifies pixels at

the borders of spots, in theworst case scenario, it wouldmisidentify all pixels

only on one side of the spot. This could introduce a further 2-1/2 error into the

estimation of the spot’s position. Given this, the error in the estimate of the

spot position should have an upper bound of O2 pixels, or ~0.17 mm. As

several rare events are required to produce this error, the real expected error

is considerably lower. Nevertheless, even this upper bound is much smaller

than the cell length (2–4 mm), rendering this error negligible.

Models of long-term spatial distributions of large
molecules in the cytoplasm of E. coli

A cell is modeled as a one-dimensional space, which is divided into N

homogeneous subvolumes. The motion of the complexes is modeled by
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unimolecular reactions following the reaction-diffusion master equation

(30). The propensities in the reaction-diffusion master equation are func-

tions of the position of the subvolume, and are presented in the Supporting

Material. Three models were implemented: one without internal heteroge-

neities or anisotropies, one with heterogeneities, and one with anisotropies.

Also in the Supporting Material, we present the methods used to analyze the

results of the models.

RESULTS

Spatial distribution of the complexes

To study the spatial distribution of the complexes, we
imaged cells for 2 h following the induction of the target
RNA and tagging MS2-GFP proteins (see Methods). Images
were taken once per minute, in optimal and suboptimal
growth conditions (LBmedia, 37�C and 24�C, respectively).
An example image is shown in Fig. 1 A. During this period,
cells grew, divided, and produced MS2-GFP-RNA com-
plexes, which moved within the cytoplasm of the cells and
were partitioned in cell divisions.

In general, these complexes are first observed at midcell
(where the F-plasmid carrying the target gene is located
(31)) and then travel toward the cell extremes, where they
tend to remain (19). To study whether the side to which
they travel is a symmetric (i.e., unbiased) process with
respect to the age of the cell halves, we observed this pro-
cess in cells that initially contained no complexes and that
were born during the measurement period (107 cells at
37�C and 156 cells at 24�C), so that the older half of
each cell could be identified. In these cells, at each time
moment, we identified the locations of fluorescent com-
plexes along the major axis of the cell (positions are
normalized by half the length of the major axis), and deter-
mined the background-corrected fluorescence intensity of
each. Colocalized complexes will, approximately, exhibit
a fluorescence intensity that is the sum of the intensity of
its component complexes (25). For each condition, we
summed the intensities of the complexes at each location
along the major axis of the cell, over all time points and
cells, thus obtaining the spatiotemporal distribution of the
complexes. We used KDE (32) with a Gaussian kernel
to perform this sum, resulting in a smooth distribution
(Fig. 2 A). We note that we did not separate cells of different
sizes when obtaining this distribution. Given the time length
of the measurements and the fact that most cells divided

during this period, the resulting distribution and all conclu-
sions drawn from it should be considered to be the average
behavior over the cell cycle.

From the distribution for each condition, we computed
the fraction of complexes in the older half. We found this
fraction to be 0.46 at 37�C and 0.47 at 24�C, which are
both statistically indistinguishable from the expected
fraction assuming an unbiased partitioning of complexes
(p-values of the binomial test with N equal to the number
of observed cells were larger than 0.2, and it is usually
accepted that, for p-values smaller than 0.01, the null hy-
pothesis is rejected). We therefore find no evidence that
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FIGURE 2 KDE of spatial distributions of the fluorescence intensity (in

arbitrary units) of complexes along the major axis of the cells (bandwidths

0.05). All cells were born during the measurement period. (A) Data from all

cells that inherited no complexes but produced one or more. The old pole is

atþ1 and the new pole is at�1. Data are from 107 cells at 37�C (solid line)

and 156 cells at 24�C (dashed line). The dashed vertical line represents the

cell center. (B and C) Data from all cells (black line). Complex positions

were normalized by half the cell length and mirrored about the cell center.

Also shown is the fit of a piecewise constant probability density function by

maximum likelihood (gray line). The vertical dashed line represents the

detected separation points between the midcell and poles. Measurements

are from (B) 531 cells at 37�C, with separation point at 0.64 and (C) 372

cells at 24�C, with separation point at 0.61.

A B C FIGURE 1 (A) Example image of cells with

fluorescent MS2-GFP-RNA complexes within.

(B) Segmentation and principal component anal-

ysis results of the image in (A) with cells (gray)

and complexes (white). (C) One example of the ex-

tracted displacement vectors of a complex from its

consecutive positions in the cell. Three images of

the cell are shown below, taken at 40, 80, and

120 min (displacement vectors are from the upper

cell). Scale bars are 1 mm. The contrast of these im-

ages was enhanced for easier visualization.
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the complexes are asymmetrically distributed between the
older and newer halves of the cell before division events.

Also from Fig. 2 A, in both conditions, the complexes
were preferentially located close to the cell extremes (i.e.,
at the polar regions) for most of the measurement period,
as reported in (25). To quantify the degree of polarization
of the complexes, one needs to formally define such polar
regions, along the major axis of the cells. We did this
from a functional perspective, i.e., based on the heterogene-
ities of the spatial distributions of the complexes visible in
Fig. 2 A. Given the symmetry in these distributions between
the old and new halves of the cells, from here onward, we
folded the spatial distribution around 0, and summed the in-
tensities from both halves. As such, it is possible to include
all cells born during the measurements in this analysis. The
resulting distributions of each condition are shown in Fig. 2,
B and C.

To distinguish the functional regions in each condition,
we fitted a piecewise constant probability density function
with three pieces to each intensity distribution by maximum
likelihood (gray line in Fig. 2, B and C). The separation
points between the regions from the fit were found to be
at 0.64 for 37�C and at 0.61 for 24�C.

Based on this separation between poles and midcell re-
gions, we calculated the concentration of complexes at the
poles and at midcell, in each condition, to assess the degree
of polarization of the complexes. In this case, concentra-
tions >1 indicate that the complexes are located in this
region beyond what would be expected from a uniform dis-
tribution. This concentration was found to be 1.72 at 37�C
and 1.45 at 24�C.

From this separation, we also determined whether cell di-
visions introduced biases in the numbers of complexes at the
old and new poles in subsequent generations. In the mea-
surements conducted at 37�C, sufficient divisions occurred
in the 2 h measurement period of to assess this. From these,
we selected cells that inherited one complex but produced
none during their lifetime (111 cells), to ensure that the
complexes analyzed are only inherited ones. During the life-
time of these cells, the old pole contained 65% of the com-
plexes located in a pole. The p-value that this fraction arises
from an unbiased binomial distribution with the number
of trials equal to the number of cells is 0.004, from which
we conclude there is a significant bias that favors the old
pole.

As a control, similar experiments were performed in min-
imal media (M63) at 37�C (for details, see the Supporting
Material). The results (Fig. S1 and Fig. S2) are qualitatively
the same as in LB media. Specifically, the complexes accu-
mulated at the poles, in well-defined regions. Furthermore,
cell divisions introduced asymmetries between the numbers
of complexes at the old and new poles of the daughter cells.
These asymmetries following divisions are possible if, to
some extent, the complexes are retained at the pole where
they are inherited (otherwise, the bias would be rapidly lost).

Retention of complexes at the poles

To study the retention of the complexes at the poles, for each
condition, we selected cells that contained at most one com-
plex throughout their lifetime (either inherited or produced),
so that they could be reliably tracked. We recorded the po-
sition along the major axis where the complex was first
observed within a polar region, as previously defined, and
the complex’s final position, i.e., either before division or
at the end of the measurement period. This information is
presented in Fig. 3. In general, a complex’s final position
is within the polar region to which it first traveled to, as
expected from a strong polar retention. However, in a few
cases, the opposite occurs, which shows that complexes
can move across the entire major cell axis (as reported in
(19)). This indicates that there is a degree of leakiness, or
noise, in the retention at the poles.

To quantify the strength of polar retention, we measured
the escape times of the complexes from the poles, in each
condition (mean values in Table 1). Note that, on some
(rare) occasions, the complexes appeared to leave the pole
for only one time moment, and then promptly returned.
We did not count these cases as escapes. Furthermore,
when complexes did not leave the pole until the end of the
measurement period or until a division event, we consider
that they remained at the pole only until the next time
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FIGURE 3 Relationship between the position along the major axis where

each complex was last observed and the absolute position where it was first

observed at a pole. Here, an end position of þ1 indicates that the complex

remained at the same pole as it was first observed, whereas �1 indicates

that it traveled to the other pole. The horizontal and vertical dashed lines

represent the detected separation between the midcell and poles from

Fig. 2, B and C. All cells were born during the measurement period and con-

tained only one complex during their lifetime. Measurements are from (A)

160 cells at 37�C and (B) 198 cells at 24�C.
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moment. Thus, the measured mean escape times are under-
estimates of the real escape times.

From Table 1, within the range tested, we find no evi-
dence that temperature affects the mean escape time from
the poles. Furthermore, in both temperature conditions,
the standard deviations of escape times were similar to the
means, a characteristic of exponential distributions, which
is the expected solution of, e.g., a barrier crossing problem
or of a particle trying to escape from a region through small
passages (33).

Spatial dynamics of complexes

To better understand how the complexes are retained at the
poles, from cells containing at most one complex during
their lifetime, we obtained their displacement vectors
along the major cell axis between frames. These inform
on the directionality of a complex between consecutive im-
ages (assessed by the sign of the displacement vector). In
addition, they inform on the speed at which the complexes
are able to move along the major cell axis during the inter-
vals between consecutive images (assessed by the magni-
tude of the displacement vector). Cell growth between
consecutive frames was accounted for by projecting the
origin of each displacement vector into the cell space in
the following frame, before calculating the magnitude
and direction.

First, for each condition, we extracted the speeds from the
displacement vectors going toward a pole and going toward
the midcell, as a function of their point of origin. For this,
we defined a sliding window with a width of 0.1 cell
lengths and determined which displacement vectors origi-
nated within that window and their direction.

At midcell, the mean speed of complexes going toward
a pole (0.13 mm/min at 37�C and 0.14 mm/min at 24�C)
was statistically indistinguishable from the mean speed of
those going toward midcell (0.12 mm/min at 37�C and
0.14 mm/min at 24�C) (p-values of the t-tests >0.4). At
the poles, in both temperature conditions, the mean speed
of complexes going toward a pole (~0.07 mm/min) and to-
ward midcell (~0.11 mm/min) was distinguishable, in a sta-
tistical sense (p-values of the t-tests <0.01). This difference
is visible in Fig. 4, for both conditions. The decrease in
mean speed as the complexes approach the cell extremes
is expected, given the proximity to the cell wall.

Relevantly, the mean speed of the vectors going toward
the cell center of complexes at the poles and at midcell
is indistinguishable in a statistical sense, in both tempera-
ture conditions (p-values of the t-tests >0.01). Given that
the mean speeds at midcell of complexes traveling toward
poles and toward midcell are also indistinguishable
(see above), we conclude that the speed of complexes is
fairly homogenous throughout the major cell axis, except
for the complexes traveling toward a pole that are already
near the cell extreme (which, therefore exhibit lower
mean speed).

We next analyzed the directionality of the displacement
vectors. Using the same sliding window as before, we
counted the number of displacement vectors originated in
the window, which were directed toward the midcell and to-
ward the poles. In Fig. 5, we show the difference between
these two numbers along the major cell axis. In both condi-
tions, a characteristic spatial heterogeneity is observable. At
midcell, the complexes have equal probability of moving in
either direction, whereas at the poles, there are local biases
in the directionality of the displacement vectors. In partic-
ular, if close to the cell extremes, the complexes tend to
move inward, toward the midcell. Meanwhile, if they are
close to the border between midcell and the pole (as defined
from the spatial distributions of complexes shown in Fig. 2,
B and C), the opposite occurs. As a result, once reaching a
pole, the complexes tend to remain there.

TABLE 1 Mean and standard deviations of escape times of

complexes from the poles, in each condition

T (�C) No. cells

Mean division

time (min) Escape times (min) p-value of t-test

37 160 63 14.8 5 19.3 0.062

24 198 91 18.0 5 18.4

Also shown is the number of cells observed, their mean division time, and

the p-value of the t-test with the hypothesis that the mean escape times are
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FIGURE 4 Mean speed (mm/min) of the displacement vectors directed

toward the poles and toward midcell along the major cell axis. The mean

speeds were calculated from the displacement vectors originating within

a window extending 0.05 normalized cell lengths around that point. The

dashed vertical lines represent the functional separation between midcell

and poles (obtained from Fig. 2, B and C). All cells were born during the

measurement period and contained one complex in their lifetime. Measure-

ments are from (A) 49 cells at 37�C and (B) 101 cells at 24�C.
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It is noted that although the anisotropic displacement dis-
tribution at the extremes of the cell is expected from the
geometry of the cell wall at the poles, the source of the
opposite anisotropy in the transition between midcell and
poles is less clear. Its existence suggests that the motion
of the complexes going from poles to midcell is, to a degree,
obstructed. This effect is possible if the complexes are
encountering a more dense structure that hampers their
entrance into that region.

Relevantly, the location of the anisotropy, namely, 0.64 at
37�C and 0.61 at 24�C, is in agreement with previous mea-
surements of the nucleoid size in E. coli cells grown in LB
media at 37�C (e.g., its length relative to the major axis
length is 0.53 5 0.05 in wild-type DJ2599 cells (34)). We
thus hypothesized that the nucleoid is involved in this phe-
nomenon, and measured its length in the cells of the strain
used here, in the same conditions as above.

Spatial distribution of nucleoids

To test whether the regions of anisotropies of the displace-
ment distributions along the major cell axis are consistent
with the borders of the nucleoid, we measured the nucleoid
size (see Methods) from 220 cells at 37�C and 143 cells at
24�C (see example, Fig. 6, A and B). The intensity of the
DAPI signal, summed along the minor axis for each position

along the major axis of the cells, and summed over all cells,
is shown in Fig. 6, C and D.

To determine the edge of the nucleoid, we fitted a piece-
wise constant probability density function with two pieces
to the intensity distribution by maximum likelihood. We
found the separation point to be at 0.69 in both conditions.
This is close to the measured separation points between
the midcell region, which the complexes avoid, and the
poles, where they accumulate (0.61 and 0.64 at 24�C and
37�C, respectively, see Fig. 2, B and C). The slightly larger
size of the nucleoid may be due to DAPI being an intercalat-
ing dye (26). Note that the nucleoid size was not altered by
the differences in temperature. This is in agreement with the
lack of differences in the width of the polar regions where
the complexes tend to accumulate in the two temperature
conditions.

If the heterogeneities in the spatial distribution of the com-
plexes depend on the positioning of the nucleoid(s), as these
results suggest, the replication of the nucleoid before cell di-
vision should then affect this distribution. To determine this,
we first selected the 10% longest cells detected in the DAPI
measurements and searched for differences in their spatial
distribution of fluorescence intensities, when compared to
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for easier visualization in both A and B). Scale bar is 1 mm. The two bottom
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line) and the fit of a piecewise constant probability density function by
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and (D) 143 cells at 24�C.

Biophysical Journal 106(9) 1928–1937

Polar Retention in E. coli 1933



the total population. Results in Fig. 6, C and D, confirm the
existence of differences, as the region occupied by the nucle-
oids along themajor cell axis is relativelywider in these cells.
Note also a decrease in fluorescence intensity, precisely at
midcell, as expected if several of these cells contain two
nucleoids.

Next, we studied the spatial distribution of the complexes
in the 10% longest cells as extracted from the time series
measurements of the complexes’ positions and kinetics
(from the same data used in Fig. 2, B and C). If the nucle-
oid(s) affect the spatial distribution of complexes, in these
cells one can expect the complexes to accumulate relatively
closer to the poles. Fig. 7 shows that this is the case both
at 37�C and 24�C, thus providing supporting evidence
that the nucleoid(s) influence(s) the complexes’ preferential
positioning.

As a side note, we did not find evidence for cells with
more than two nucleoids at any stage of their lifetime
(see, e.g., that Fig. 6, C and D do not show evidence for
more than two lobes). This could be due to the strain used
(DH5a-PRO divides slower than wild-type E. coli (35))
along with the measurement conditions. In addition, we
found no significant accumulation of complexes at the cen-
ter in the longer cells (i.e., in between the two nucleoids).
This is likely due to the very small number of complexes
(~1 to 3 per cell before division). Furthermore, many are
created before nucleoid partitioning and thus simply remain
at the poles as the nucleoid divides.

Finally, because we observed several complexes traveling
from one pole to the other, it is of interest to ask whether
they do so by traveling through the nucleoid or around it.
To address this, we obtained the KDE of the two-dimen-
sional distributions of complexes from all time points in
both temperature conditions (Fig. S3, A and B). From the
figures, it is visible that the complexes tend to avoid the
nucleoid region both axially and radially, concentrating at
midcell close to the cell walls (despite the greater width in
the center of the bacteria, at Y ¼ 0). From this, we conclude
that the complexes tend to go around the nucleoid, when
traveling through the midcell region. Relevantly, this result
is in agreement with both the homogeneity in the distribu-
tions of speeds along the major axis of the cells as well as
with the localized anisotropies between midcell and poles.

Models of the spatial kinetics of complexes

To test whether the localized anisotropies in directionality,
given the homogeneity of the speeds, can generate the
observed heterogeneity in the long-term spatial distributions
of the complexes, we constructed two one-dimensional
models to simulate the diffusion of the complexes within
the cell. Both models contain spherical cell caps and their
effects. Meanwhile, in one model, we also introduced a
localized anisotropy (see Fig. 8, A and B; for a complete
description of the models see the Supporting Material).

Given that the mean speeds of the complexes (see Fig. 4)
are sufficiently large to allow them to travel from one pole to
the other within the cell’s lifetime (more than once), we as-
sume that the initial positions of the complexes do not have
a significant effect on their long-term spatial distribution,
and thus this information is not included in the models.
Additionally, for both models, we set N, the number of sub-
volumes in the cell, to 100, and D, the diffusion coefficient,
to 1.43 � 10�2 mm2/min (measured from the displacement
distribution depicted in Fig. 4 B), which we normalized by
half the mean cell length (~1 mm), in agreement with previ-
ous measurements (15).

Next, for each model, we varied all parameters and, for
each set of values, obtained the distribution of complex
positions that would be observed at infinite time. We then
selected the set of parameters whose resulting distribution
best fit the measured distribution of complex positions at
each time point (Fig. 2, B and C). This fitting was done to
the distribution obtained from the measurements at 24�C
(from which we extracted more data points), using the
earth-mover’s measure of distance between distributions
(36,37), which measures the amount of work required to
make two distributions identical (see methods in the Sup-
porting Material). Similar parameter values were obtained
when fitting to the measurements at 37�C.

The results from the two models, each using the best-fit
parameter values, are shown in Fig. 8. The propensities of
the two models are shown in Fig. 8, A and B. From Fig. 8,
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FIGURE 7 KDE of the spatial distribution of the fluorescence intensity

(in arbitrary units) of complexes along the major axis of the cells, extracted

from all time points when the cells were among the 10% longest cells (black
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C andD, the model without the anisotropy fails to reproduce
the displacement distribution (Fig. 8 C), and the consequent
heterogeneity in the spatial distribution of complexes that
favors their presence at the poles (Fig. 8 D). Meanwhile,
the other model captures both of these properties of the
dynamics of the complexes with significant accuracy.

DISCUSSION

We studied the kinetics and spatial distribution of biologi-
cally inert complexes, composed of RNA molecules tagged
with multiple MS2-GFP proteins, in the cytoplasm of E. coli
cells. The advantages of using these complexes are that their
numbers can be controlled by regulating the activity of the
target gene, both the target gene and the tagging MS2-
GFP molecules are functional in a wide range of environ-
mental conditions including stresses, and the complexes
formed have a long lifetime (38,39). This last advantage
ensures that we can observe how they are partitioned in
division and thus, how they become distributed across cell
lineages.

We found that their previously reported tendency to travel
toward the poles (19) is a symmetric process in the condi-
tions tested, in that equal numbers of newly produced com-
plexes travel toward the old and the new pole of the cells.
Once reaching the poles, they are robustly retained there.
Because of this, cell divisions introduce asymmetries in
their numbers between the old and new poles of cells of
subsequent generations, and after two generations, between
sister cells.

There are two possible mechanisms by which the
complexes could accumulate at the cell poles, without a
transport mechanism. Either their speed distribution is het-
erogeneous along the major cell axis (i.e., slower at the
poles, see Fig. S4), or there is an excluded volume effect
at midcell. We found that the retention is solely based on
the latter. First, we showed that the speed distribution
is homogenous, which rejects the first mechanism. Next,

we showed that there is a strong anisotropy in the displace-
ment distribution at approximately half way between the
cell extremes and the center, where the motion of the com-
plexes toward midcell is, to a great extent, obstructed. This
is consistent with volume exclusion effects due to the pres-
ence of the nucleoid.

The existence of the anisotropy and the absence of hetero-
geneity in the speeds suggest that to go from one pole to the
other, the complexes go around the nucleoid. The overall
two-dimensional distributions of positions occupied by
complexes throughout their lifetimes supported this hypoth-
esis, as they showed that the complexes avoid the nucleoid,
both axially and radially. Meanwhile, the escape times of
these complexes from the poles were found to be approxi-
mately equal to a third of the cell’s lifetime and to follow
exponential distributions. This implies that the escape
from the pole is a Poisson process, which is consistent
with the behavior of a particle trying to escape from a region
through a small passage (33).

To further support the hypothesis that the polar retention
is primarily driven by the nucleoid positioning, we tested
whether there is an agreement between the location of the
nucleoid and where the movement of complexes is ob-
structed. We found that the region where the complexes
are retained agrees with the region where the nucleoid
ends. In addition, we observed that in the longest cells,
where the nucleoid(s) occupy a relatively wider region
(due to nucleoid replication), the complexes occupy a rela-
tively smaller region at the poles. Additional support was
provided by modeling. From the models, in the absence
the nucleoid’s effects, namely, in the absence of the anisot-
ropy in the region between poles and midcell, the retention
at the poles was severely hampered. Introducing anisotropy
in the velocity distribution resulted in an accurate long-term
spatial distribution.

The size of the region occupied by the nucleoid(s) during
the cell lifetime was found to be robust for optimal and sub-
optimal temperatures. This explains the robustness of the
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FIGURE 8 (A) Propensities a!ðxÞ ¼ a ðxÞ (gray
line) of the best-fitting model without a nucleoid

(B ¼ 1). (B) Propensities a!ðxÞ (black line) and

a ðxÞ (gray line) of the best-fitting model with a

nucleoid (B ¼ 0.46, m ¼ 0.65, s ¼ 0.07, and h ¼
0.05). (C) Measured fraction of displacement vec-

tors originating within a window extending 0.05

normalized cell lengths around that point which

are directed toward the pole (black line), model

prediction without (dashed line), and with (gray

line) a nucleoid. Note that the dashed line is super-

imposed by the gray line in the left side of the

graph. (D) Measured spatial distribution of fluores-

cence intensities of complexes (black line) model

prediction without (dashed line) and with (gray

line) a nucleoid.

Biophysical Journal 106(9) 1928–1937

Polar Retention in E. coli 1935



width of the region where the complexes accumulated, in
the range of temperatures tested here. In the future, mea-
surements in wider temperature ranges may help to establish
if the retention at the poles is affected, as the number of
genes transcribed changes, altering the nucleoid size (40).

It is known that, when in exponential growth phase, some
cells can contain more than two nucleoids. Although we did
not observe this here (perhaps due to the strain used), if
these nucleoids become widely spread across the major
cell axis long enough, the regions in between the nucleoids
may become regions of accumulation of complexes, until
multiple cell division events separate the nucleoids. Future
research may determine whether this occurs and to what
extent.

Finally, by using the methodology employed here on
other E. coli strains, it should be possible to determine
whether our observations are representative of the behavior
of wild-type E. coli. Given the physical nature of the under-
lying processes suggested by our results, we expect this to
be the case. In this regard, it is worth noting that the long-
term spatial distribution of the complexes observed here is
strikingly similar to other protein complexes in E. coli. In
particular, their accumulation at the poles of the cells is
similar to aggregate processing chaperones (11) and ribo-
somes (9). Furthermore, clusters of Tsr proteins, involved
in chemotaxis, are known to accumulate at the poles
(4,41), although the mechanisms by which these heteroge-
neities are achieved remain unknown. Future research may
establish if all these processes in E. coli are regulated by
the same means.
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21. Kandhavelu,M., A. Häkkinen,., A. S. Ribeiro. 2012. Single-molecule
dynamics of transcription of the lar promoter. Phys. Biol. 9:026004.

22. Kandhavelu, M., J. Lloyd-Price,., A. S. Ribeiro. 2012. Regulation of
mean and noise of the in vivo kinetics of transcription under the control
of the lac/ara-1 promoter. FEBS Lett. 586:3870–3875.

23. Lutz, R., and H. Bujard. 1997. Independent and tight regulation of tran-
scriptional units in Escherichia coli via the LacR/O, the TetR/O and
AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25:1203–1210.
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Measurements in M63 Media 

We imaged cells grown in M63 media at 37°C for 2 hours, following induction of the target 

RNA and of the tagging MS2-GFP proteins (one hour before), using the same experimental and 

analysis protocols as in the experiments in LB described in the main text. The spatial distribution 

of newly-produced complexes, corresponding to Fig. 2 A in the main text for LB, is presented in 

Fig. S1.  

 
FIGURE S1 KDE of the spatial distribution of the fluorescence intensity (in arbitrary 

units) of complexes along the major axis of the cells, extracted from all cells and 

time points (black line, bandwidth 0.05). Data is extracted from cells that inherited 

no complexes but produced one or more. The old pole is at +1 and the new pole is at 

-1. All cells were born during the measurement period. The dashed vertical line 

represents the cell center. Measurements are from 63 cells grown in M63 media at 

37°C. The fraction of complexes observed in the older half of the cells was 0.45 

which is statistically indistinguishable from an unbiased partitioning of complexes 

(p-value of the binomial test with N equal to the number of observed cells is 0.45). 

 

The folded, spatial distribution of all complexes, corresponding to Figs. 2, B and C  in the 

main text for LB, is presented in Fig. S2. Also shown are the results from the ‘region detection’ 

method. 
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FIGURE S2 KDE of the spatial distribution of the fluorescence intensity (in arbitrary 

units) of complexes along the major axis of the cells, extracted from all cells and 

time points (black line, bandwidth 0.05). Complex positions were normalized by half 

the cell length. Also shown is the fit to a piecewise-constant probability density 

function by maximum likelihood (gray line). All cells were born during the 

measurement period. The vertical dashed lines represent the detected separation 

points between the midcell and poles. Measurements are from 221 cells grown in 

M63 media at 37°C, with separation point detected at 0.69. 

2D Spatial distribution of complexes  

We obtained the KDE of the 2D distributions of complexes from all time points in both 

temperature conditions. Results are shown in Figs. S3, A and B, for cells at 37°C and 24°C in 

LB, respectively. 
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FIGURE S3 KDE of the 2D spatial distributions of complexes from all time points. 

All cells were born during the measurement period. Measurements are from (A) 531 

cells at 37°C and (B) 372 cells at 24°C, both grown in LB media. Separation points 

(obtained from Figs. 2, B and C) are also shown. 

 

Models of long-term spatial distributions of large molecules in the cytoplasm of E. coli 

A cell is modeled as a 1-dimensional space, which is divided into N homogeneous sub-volumes, 

indexed from ],1[ N . The motion of the complexes is modeled along the major cell axis by 

unimolecular reactions following the Reaction-Diffusion Master Equation (1). Collisions 

between complexes are not modelled. We define )(xa


 as the propensity of the forward reaction 

(modeling the motion of a complex from position x to position x+1) and )(xa


 as the propensity 

of the reverse reaction (from x to x-1).  

These two propensities account for the combined effects of the cell geometry (rod shape 

and pole caps) and of the nucleoid on the displacements of the complexes. Let )(tP  be the N-by-

1 vector describing the probability of observing a complex in each sub-volume at time t. )(tP  

therefore evolves according to the following master equation, in matrix-vector form: 
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Since a complex can travel from any sub-volume in the cell to any other sub-volume, 

given enough time, the system is ergodic. Therefore, as t , )(tP  will converge to a unique 

solution, P . This solution can be found by solving the linear system of equations  AP0 , 

with the constraint that the total probability must sum to 1. As this is the long-term spatial 

distribution of the complexes predicted by the model, this was the distribution we fit to the 

measurements.  

In a model not accounting for the caps of the cells, the propensities of the forward and 

reverse diffusion reactions would be proportional to the diffusion constant of the complexes, D: 

2
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To account for the rod shape, i.e. a cylinder capped with two half-spheres, the length of 

the cell was parameterized by ]1,0[B , the normalized distance from midcell at which the cap 

begins. The forward propensities were attenuated by )(x , the ratio between the areas of the 

cross sections of the cell (denoted )(xS ) at adjacent positions. As such, )(xa


 remains the same 

and )(xa


 becomes: 
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Here, )(xc  translates the index of a sub-volume into the normalized distance from the 

midcell to the center of the sub-volume. In this case, B = 1 recovers the cylindrical cell from 

above, and B = 0 produces a spherical cell. 

The effects of a nucleoid are introduced in the above model by adding a Gaussian 

function to )(xa


 while subtracting it from )(xa


. This anisotropy was parameterized with center 

]1,0[ , standard deviation σ, and height h. Specifically: 
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To fit the models to the measurements, we use the Earth-Mover’s metric (2), otherwise 

known as the first Wasserstein metric (3), defined as: 





 dxxGxFGFW )()(),(   

where F and G are the cumulative distribution functions of the model and the measurements. 

To obtain the fraction of complexes moving towards the pole from sub-volume x, we first 

initialized the model with all probability in sub-volume x, denoted )0(x
P , and numerically 

integrated the system over one minute using the Matlab function ode23s to obtain the 

probability distribution at t = 1, )1(x
P . This fraction was then calculated as: 
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Spatial distribution without anisotropy 

We constructed a 1-dimensional model with the forward and backwards propensities of diffusion 

events set to be equal, and inversely proportional to the observed spatial distribution (results in 

Fig. S4). When both propensities are equal, the probability that a complex will travel in one 

direction is 0.5, and thus there is no velocity anisotropy. When the propensities are inversely 

proportional to the observed distribution, in the long term, the complexes tend to linger in the 

areas where they were observed with high probability. Thus, the long-term spatial distribution is 

exactly as observed (the lines are indistinguishable in Fig. S4 B), while producing a negligible 

anisotropy in the predicted displacement distribution (Fig. S4 A). 



 
FIGURE S4 (A) Predicted fraction of complexes travelling towards the pole from 

each position along the major axis. (B) Long-term spatial distribution of complexes. 

Results are from a model with a localized anisotropy as in Fig. 8 (gray lines), a 

model with heterogeneous speeds (dashed lines), and the measurements at 24°C 

(black lines). Note that the dashed line in (B) is superimposed by the black line.  
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Abstract
The morphological symmetry of the division process of Escherichia coli is well-known. Recent
studies verified that, in optimal growth conditions, most divisions are symmetric, although there
are exceptions. We investigate whether such morphological asymmetries in division introduce
functional asymmetries between sister cells, and assess the robustness of the symmetry in
division to mild chemical stresses and sub-optimal temperatures. First, we show that the
difference in size between daughter cells at birth is positively correlated to the difference
between the numbers of fluorescent protein complexes inherited from the parent cell. Next, we
show that the degree of symmetry in division observed in optimal conditions is robust to mild
acidic shift and to mild oxidative stress, but not to sub-optimal temperatures, in that the variance
of the difference between the sizes of sister cells at birth is minimized at 37 °C. This increased
variance affects the functionality of the cells in that, at sub-optimal temperatures, larger/smaller
cells arising from asymmetric divisions exhibit faster/slower division times than the mean
population division time, respectively. On the other hand, cells dividing faster do not do so at the
cost of morphological symmetry in division. Finally we show that at suboptimal temperatures the
mean distance between the nucleoids increases, explaining the increased variance in division.
We conclude that the functionality of E. coli cells is not immune to morphological asymmetries
at birth, and that the effectiveness of the mechanism responsible for ensuring the symmetry in
division weakens at sub-optimal temperatures.

S Online supplementary data available from stacks.iop.org/PB/11/066005/mmedia

Keywords: cell division, morphological asymmetry, molecule partitioning, cell division times,
nucleoid occlusion

Introduction

Cell division in Escherichia coli is known for its morpholo-
gical symmetry, and sister cells appear to be phenotypically
similar under optimal conditions [1–3]. This phenotypic
similarity relies on an even distribution of many of the cel-
lular components among all progeny cells [4].

E. coli cells are rod-shaped and grow by elongation under
stable growth conditions, with little variation in the width of
the minor axis from one generation to the next [1, 5]. Under

normal conditions, the constriction plane that defines the
point of division [1, 6] is initiated by a septum almost pre-
cisely at the midpoint of the longer cell axis [7–9]. The
moment of division appears to be strongly correlated with
reaching a specific cell length [10–12]. The small variance in
both the point and the moment of division led to the division
process being considered as largely deterministic [13].

The ‘Min system’ (Min proteins and FtsZ ring localiza-
tion) and the positioning of the nucleoids prior to division
have been identified as factors affecting the selection of the
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point of division [3, 14–18]. In particular, the Min system
produces a dynamic distribution of Min proteins whose
minimum, at midcell, is believed to be used as a signal to
select the site of division [18]. However, measurements
suggest that the variability of the location of the minimum in
MinD concentration is too high to account for the accuracy of
the symmetry in division [18]. As such, there ought to exist
other contributing factors. Currently, it is believed that while
the Min system places the division point far from the cell
poles, i.e. at the midcell region [19], it is nucleoid occlusion
that confers the observable degree of precision, i.e. symmetry,
to the division process of E. coli [14–17]. This is supported by
several observations. First, the selection of the point of divi-
sion in between the two nucleoids appears to be close to
random [14]. Also, irregular nucleoid movements affect the
angle and position of the constriction plane and thus of the
division site [20, 21]. Finally, in both normal and aberrant-
shaped cells, there is striking co-localization between the
nucleoid-free region at midcell and the division point [22].

However, this system is not perfect. Even in monoclonal
cell populations, there is some variance in the division point
that results in a small set of morphologically asymmetric
divisions (for example see [12], or figure 2(C) of [22]). It is
unknown whether these asymmetries in division generate
functional asymmetries between sister cells, but there is a
strong possibility that this is the case, since E. coli is not
known to possess mechanisms that could counteract the
asymmetries in the partitioning of cellular components that
would arise from morphological asymmetries [23, 24].

Even morphologically symmetric division events are
expected to not be immune to functional asymmetries arising,
e.g. from random errors in the partitioning of RNA and
protein molecules [23, 25]. The lowest expected variance, in
the absence of a transport mechanism, is obtained by inde-
pendent partitioning of the molecules resulting in a binomial
distribution of the number of inherited molecules, which, for a
small number of molecules, can result in large partitioning
errors [25]. Provided spatial constraints, the errors and, thus,
the functional asymmetries, should accumulate over the
generations [26]. For example, unwanted protein aggregates,
which accumulate at the cell poles, quickly become non-
evenly distributed among the cells [27, 28]. Evidence sug-
gests that the cells inheriting more aggregates have reduced
vitality [27–29]. Morphological asymmetries in cell divisions
should further enhance these functional asymmetries.

It is known that the morphology of E. coli cells is
environment-dependent. For example, temperature affects the
average cell length [30, 31]. However, so far, little is known
about the extent to which the morphological symmetry in the
division of E. coli cells is robust to non-optimal environ-
mental conditions.

Here, from time-lapse microscopy measurements and
using semi-automated image analysis methods, we first verify
previous assessments of the degree of morphological sym-
metry in division in E. coli cells under optimal growth con-
ditions. Next, we search for functional asymmetries resulting
from morphological asymmetries in division. In particular, we
search for asymmetries in the partitioning of protein

complexes in cell division. Afterwards, we explore the effects
of mild chemical stresses and sub-optimal temperatures on the
degree of morphological symmetry in division. Subsequently,
we investigate whether morphological asymmetries in divi-
sion lead to functional asymmetries between sister cells, in
particular, asymmetries in their reproduction rate. Finally, we
search for mechanisms capable of explaining our
observations.

For these studies, we use E. coli strain DH5α-PRO [32],
since the division rate of these cells is relatively slow [33]
which facilitates the automated tracking of cell divisions from
time-lapse microscopy images. Also, since the cells are
flooded with MS2-GFP proteins, it is possible to extract their
shape and size from images taken by confocal microscopy
[26]. Further, multiple MS2-GFP proteins bind a specific
RNA target, forming MS2-GFP-RNA complexes that can be
easily detected, quantified and tracked as they move in the
cytoplasm [24, 32, 34]. Finally, these complexes are very
long-lived [32], and thus it is possible to track their long-term
spatial distributions and partitioning in division, across sev-
eral generations [26].

Methods

Chemicals

Bacterial cell cultures were grown in Lysogeny Broth (LB)
media. The chemical components of LB (Tryptone, Yeast
extract and NaCl) were purchased from LabM (Topley
House, 52 Wash Lane, Bury, Lancashire, UK) and the anti-
biotics from Sigma-Aldrich (3050 Spruce Street, St. Louis,
MO, USA). Isopropyl β-D-1-thiogalactopyranoside (IPTG), L-
arabinose, and anhydrotetracycline (aTc) used for induction
of the target genes are from Sigma-Aldrich. Agarose (Sigma-
Aldrich) was used for microscope slide gel preparation for
cell imaging. 30% Hydrogen peroxide (H2O2) and 4-mor-
pholine-methanesulfonic acid (MES) used to induce stress are
also from Sigma-Aldrich.

Cells and plasmids

Experiments were conducted on E. coli strain DH5α-PRO,
generously provided by I. Golding (Baylor College of Med-
icine, USA), which contains two constructs: (i) PROTET-
K133 carrying PLtetO-1-MS2d-GFP, and (ii) a pIG-BAC (Plac/
ara-1-mRFP1-MS2-96bs) vector, carrying a 96 MS2 binding
site array under the control of Plac/ara-1 [32].

Induction of production of fluorescent complexes

The dimeric MS2 fused to GFP (MS2-GFP fusion protein)
used as a detection tag [32] is expressed from a medium-copy
vector under the control of the PLtetO-1 promoter [35], regu-
lated by the tetracycline repressor. The RNA target for MS2-
GFP is located on a single-copy F-based vector, and is con-
trolled by the Plac/ara-1 promoter [35], regulated by IPTG and
Arabinose.
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For our measurements, pre-cultures were diluted from the
overnight culture to an OD600 of 0.1, in fresh LB media
supplemented with the appropriate antibiotics and kept at an
appropriate temperature at 250 RPM in a shaker until they
reached an OD600≈ 0.5. Cells were then induced with
50 ng ml−1 of aTc and 0.1% L-arabinose for 45 min, at which
point the OD600 was ∼0.8. Induction of the target RNA
production was completed by adding 1 mM IPTG, and cells
were incubated for 5 min prior to preparation of the micro-
scope slide. This induction procedure is necessary for cells to
accumulate sufficient numbers of MS2-GFP to detect the
target RNA and to achieve full induction of the target gene
[36, 37]. Usually, in one hour, two to four tagged RNAs are
produced by a fully induced cell [38]. Finally, note that the
MS2-GFP molecules alone distribute themselves homo-
geneously throughout the cytoplasm, and only in the presence
of target RNAs do fluorescent spots appear [32, 39].

In vivo nucleoid staining

There are several nucleoid associated proteins (NAP) that
participate in its structural organization. In E. coli, major
NAPs include H-NS, HU, Fis, IHF and StpA [40]. The
dimeric histone-like protein HU is one of the most abundant
[41, 42]. Because of this, we use a version of this protein that
has been tagged with mCherry to study the spatial distribution
of nucleoids [43]. We are grateful to Nancy Kleckner (Har-
vard University) for providing us with the plasmid pAB332
carrying hupA-mCherry. For our measurements, we inserted
this plasmid into DH5α-PRO cells. This allows the detection
of nucleoids in individual cells during the course of live cell
microscopy sessions (see figure 3).

Stress conditions

To determine which concentrations of stressors (H2O2 [44] or
MES [45]) would provide significant, while not lethal, stress
responses, we measured growth rates in liquid culture con-
taining various concentrations of H2O2 or MES from the
OD600, measured every 30 min up to 4.5 h. Once appropriate

(sub-lethal but affecting growth rate) concentrations were
found (0.6 mM for H2O2 and 150 mM for MES), they were
applied in the time lapse microscopy measurements, where
division times were assessed from tracking individual cells, so
as to confirm the effectiveness of the stressors (see Results
section ‘Effects of chemical stress on the morphological
symmetry of the division process’).

For fluorescence images of cells under stress, prior to
microscopy we used the same culturing protocols as described
above (section ‘Induction of production of fluorescent com-
plexes’). Stress conditions (oxidative stress and acidic shift)
were applied at the start and then maintained during the
microscopy measurements by a peristaltic pump that provided
a continuous flow of fresh LB media containing either H2O2

or MES at the appropriate concentrations, at the rate of
1 ml min−1, through the thermal imaging chamber (Bioptechs,
FCS2). In this setting, fresh media and stressors continously
diffuse through the agarose. The sub-lethal stress conditions
allow long live-cell imaging sessions. The addition of the
stress agents to the warmed media began ∼2–5 min. prior to
the start of the imaging procedure since, upon addition of
these agents, the media conditions shift to the desired levels in
a matter of seconds.

Imaging fluorescent complexes and morphological
asymmetries in division

We placed 4 μl of culture on a 0.8% agarose gel pad of LB
media set between a microscope slide and a cover slip. Next,
we assembled the thermal imaging chamber (Bioptechs,
FCS2) [46]. Time-lapsed florescence images were taken every
minute for two hours. We also imaged cells without inducing
the reporter gene (coding for MS2-GFP). For that, following
the procedure described above, except for the induction of the
reporter plasmid, we acquired bright-field images of cells,
every minute for two hours, in optimal growth conditions (LB
media, 37 °C).

Cells were visualized (figures 1(B) and (C)) using a
Nikon Eclipse (TE2000-U, Nikon, Japan) inverted micro-
scope with a 100x Apo TIRF (1.49 NA, oil) objective.

Figure 1. (A) Example bright-field image of cells expressing MS2-GFP and target RNA, from a time-series at t = 1 min. (B) Fluorescence
channel of the image shown in (A). (C) Fluorescence image from the same time-series at t= 85 min, showing the outcome of a few cell
divisions and partitioning of complexes. Scale bars are 1 μm. Contrast enhanced for easier visualization.
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Fluorescence images were taken by a C1 confocal laser-
scanning system with pixel dwell of 1.33 μs, resulting in a
line-scanning time of ∼1.4 ms. GFP fluorescence was mea-
sured using a 488 nm laser (Melles–Griot) and a band-pass
500–530 nm emission filter (HQ515/30 m, Nikon). The pin-
hole size was set to 1.2 AU, giving an optical sectioning depth
of ~0.83 μm (estimated as in [47]), which suffices to cover the
depth of the cells (see, e.g. figure 1 and scale bars within).
Image acquisition was performed by Nikon EZ-C1 software.
Bright-field images, as seen in figure 1(A), were taken by a
CCD camera (DS-Fi2, Nikon, Japan).

When performing time-lapse measurements of mCherry-
tagged-nucleoid(s), we used Highly Inclined and Laminated
Optical sheet (HILO) microscopy [48]. The imaging was
performed using a Nikon Eclipse (Ti-E, Nikon) inverted
microscope equipped with an EMCCD camera (iXon3 897,
Andor Technology) and a 100x Apo TIRF objective (1.49
NA, oil). Nucleoids tagged by hupA-mCherry were observed
using a 543 nm HeNe laser (Melles–Griot) and a band-pass
608–683 nm emission filter (Texas Red® filter block, Nikon).
Cell borders were detected from Phase-Contrast images
(example shown in figure 3(A)), which were captured using a
CCD camera (DS-Fi2, Nikon, Japan).

Segmentation of cells and lineage construction from the
images

Cells were detected from the time-lapse, confocal microscopy
images by a semi-automatic method as in [49]. First, the
images were temporally aligned using cross-correlation, to
ensure that cells ‘move’ as little as possible over time. Next,
cells were segmented by manually drawing a mask in GIMP
(the GNU Image Manipulation Program [50]) over the region
that each cell occupied during the time-series. If a division
occurred, two new masks were drawn over the new cells in
the frame where the division was first observed. Afterwards,
at each time point and for each mask, Principal Component
Analysis (PCA) of the fluorescence distribution under the
mask was used to obtain the position and orientation of the
cell. To avoid biasing the centroid of the cell towards the

poles with bright spots, we reduced the intensity of the 30
brightest pixels to the intensity of the 30th brightest pixel
prior to PCA (we observed by inspection that this removed all
such biases). Cell lineages were then constructed as in [26],
i.e. each cell at each time moment was assigned, as parent, the
cell in the previous frame with the nearest centroid. To avoid
incorrectly assigning adjacent cells as the cell’s parent, this
assignment was done after transforming the previous frame’s
cell centroids into the cell’s space (i.e. poles at (−1, 0) and (1,
0), and sides at (0, −1) and (0, 1)). A division is assumed to
have occurred when two cells are assigned the same parent
(verified also by inspection).

From the set of temporal images obtained by bright-field
microscopy, cells were automatically segmented using Cel-
lAging [51]. After the automated segmentation, manual cor-
rection was performed to correct any errors. After manual
correction, CellAging tracks the cells across time and finds
cell divisions. Cell features such as area over time, division
time, and parent, among others, are then extracted. The
asymmetry in size for each division event is then calculated
as: ΔS= (Sc− Ss)/(Sc + Ss), where Sc and Ss are the areas of the
daughter cell of interest and of its sister cell, respectively,
immediately after division. This measure, where −1 and +1
denote maximum asymmetries and 0 denotes symmetry, is
different by a factor of two from the ‘percent difference’ used
by [22], for example. Example images of a cell expressing
MS2-GFP and target RNA that divided asymmetrically are
shown in figure 2. This particular division occurred with
Δ =S 0.11.

From the set of temporal images obtained by phase
contrast, cells were automatically segmented using MAMLE
[52]. Subsequent analysis (and manual correction of the
segmentation and of the lineage construction) was performed
using CellAging [51], as above.

Detection of individual fluorescent complexes from the images

We detected fluorescent MS2-GFP-RNA complexes in each
cell, at each frame, as in [26, 49]. We segment fluorescent
complexes automatically inside each mask with a kernel

Figure 2. Example images of a cell expressing MS2-GFP and the target RNA, ten minutes before the division was detected (A), and in the
frame where the division was detected (B). (C) Image segmentation results for the frame (B), with detected cell ellipses from PCA (gray), and
detected MS2-GFP-RNA complexes (white). Scale bar is 1 μm.
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density estimation (KDE) method for spot detection [53],
using a Gaussian kernel. This method measures the local
smoothness of the image and determines spot locations by
designating areas with low smoothness as spots. The results
for the image in figure 2(B) are shown in figure 2(C).

Cell-background-corrected complex intensities were then
calculated by subtracting the mean cell background intensity
multiplied by the area of the complex from the total fluores-
cence intensity of each complex. To avoid issues with
quantizing the number of complexes in each pole [34], we
directly compared the fluorescence intensities of the com-
plexes. The difference in complex intensities between
daughter cells at a division event is calculated as: ΔI = (Ic− Is)/
(Ic + Is), where Ic and Is are the total background-corrected
complex intensities of the daughter cell of interest and of its
sister cell, respectively, immediately after division.

Detection of hupA-mCherry-tagged nucleoids from the images

Nucleoid positions were estimated in cells the moment prior
to their morphological separation into sister cells. As such,
each cell contains two nucleoids. The centers and widths of
the nucleoids were estimated by fitting a Gaussian mixture
density distribution with two Gaussians with equal weight to
the fluorescence intensity distribution along the major axis of
the cells, normalized by half the cell length. The fit was done
in a least-squares sense to a KDE of the fluorescence intensity
distribution (see example in figure 3), using a Gaussian kernel
and a bandwidth of 0.05. The centers of the Gaussians are
interpreted to be the centers of the nucleoids. We determined
the error resulting from the fit for differing levels of noise in
the input data by simulating intensity traces with zero-mean
Gaussian noise (see supplementary figure S1). We estimated
the signal-to-noise ratio in the measurements to be ∼68,
resulting in an error in the nucleoid separation measurement
of ∼0.022.

Results

Symmetry of the division process

We first searched for morphological asymmetries between
sister cells by following each division event in cells under
optimal growth conditions. We imaged cells for two hours in
LB media at 37 °C, using both confocal and bright-field
microscopy. In one case, we induced the expression of MS2-
GFP and the RNA target for MS2-GFP, while in the other
case these were not induced (see Methods). Example images
of cells are shown in figures 1(A), (B) and (C) and in sup-
plementary figures S2–S4.

From the images of cells expressing MS2-GFP and the
RNA target obtained by confocal microscopy, we extracted
the distribution of normalized differences in size (ΔS)
between sister cells from the 170 division events observed
during the measurement period. The standard deviation of this
distribution (see supplementary figure S5(A)) was found to be
0.10, which shows that most divisions are morphologically

symmetric, with the bulk of the distribution lying near the
origin. Note that this distribution is perfectly symmetric, since
each division contributes with a positive and a negative value
of ΔS.

Next, to determine if the size asymmetries can be reliably
measured from the fluorescence images, we obtained the same
distribution of morphological asymmetries between sister
cells from bright-field images of cells in the same conditions
(figure S5(B)). In these, 97 divisions were detected. The
standard deviation of this distribution is 0.13, which is similar
to the standard deviation obtained from the fluorescence
images. Finally, to determine if the production of MS2-GFP
alters the distribution of size asymmetries, we obtained this
distribution from bright-field images of cells, without indu-
cing MS2-GFP (figure S5(C)). In these measurements, 130
divisions were detected.

We compared the three distributions (figure S5). In doing
so, we considered only the positive side of each distribution
since the Kolmogorov–Smirnov (K–S) test assumes that all
samples are independent and, in our case, the right and left
sides of the distribution are necessarily identical. The K–S

Figure 3. Example image of a cell expressing hupA-mCherry, in the
frame before division is detected, taken with (top left) phase contrast
microscopy to visualize the cell borders, and (top right) confocal
microscopy to visualize the fluorescence intensity of hupA-mCherry
(cell outline obtained from (top left) is shown in white). (Bottom)
KDE of the fluorescence intensity distribution (solid line) along the
major axis of the cell shown in (top right), with the Gaussian mixture
model fit (dashed line). Scale bars are 1 μm.
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tests resulted in p-values of 0.74 and 0.84 between figures S5
(A) and (B), and between figures S5(B) and (C), respectively.
We conclude that they cannot be distinguished in a statistical
sense (usually, for p-values smaller than 0.05, it is accepted
that two distributions differ significantly).

These measurements confirm previous reports that the
division of E. coli cells is, in general, morphologically sym-
metric under optimal conditions [1, 2], though some highly
asymmetric divisions can occur (2.3% of divisions exhibited
Δ >S 1/3). It is also noted that the distributions in figure S5
are strikingly similar to the one reported in [22]. Finally, we
find that the expression of MS2-GFP and/or RNA target does
not affect the symmetry in the division of E. coli cells.

Functional effects of morphological asymmetries: partitioning
of complexes in cell division under optimal growth conditions

In figure S5, we observed that a few divisions were mor-
phologically asymmetric. It is unknown whether pronounced
morphological asymmetries in division introduce functional
asymmetries between sister cells. It is reasonable to expect
some, particularly from large morphological asymmetries,
due to the expected differences in the numbers of components
inherited by the two daughter cells from the mother cell.

We first searched for functional asymmetries between
sister cells by analyzing the partitioning in division of MS2-
GFP-RNA complexes as these are easy to detect and quantify
[34]. Further, these complexes are highly stable [32] in that
they are ‘immortal’ for periods much longer than the cells’
division times [54]. Consequently, when cells divide, the
complexes are partitioned between the daughter cells [26].
Finally, it has been established that these complexes first
appear close to midcell, but are quickly segregated to the
poles, where they tend to be retained [55]. The choice of pole
is known to be unbiased, under both optimal and sub-optimal
temperatures [26].

From the 170 division events observed, we extracted ΔS,
the normalized difference in size at birth, as well as ΔI, the
difference in intensity of the complexes inherited by sister
cells the moment following the division of their mother cell.
The relationship between these quantities is shown in figure 4.
Since the distribution of ΔI is far from normal, we computed
the Kendall’s tau correlation [56] between ΔI and ΔS in each

division event (see Methods). We found a positive correlation
of 0.19 (the p-value of the null hypothesis that there is no
relationship between ΔS and ΔI was 0.0004). From this, we
conclude that larger cells tend to inherit more complexes,
even though most of these are retained at the poles. As such,
we also conclude that, as expected, asymmetries in division
have tangible functional consequences.

Note also from figure 4 the stochasticity in the localiza-
tion of the complexes: although overall there is a positive
correlation between cell size and the intensity of its inherited
complexes, one can also observe that, in a few cases, the
smaller cell inherited all complexes. As noted, such events are
possible because of the low number of complexes (see [49])
and the somewhat stochastic nature of their positioning in the
cell [26].

Effects of chemical stress on the morphological symmetry of
the division process

To assess the effects of acidic shift and oxidative stress, we
selected concentrations of MES and H2O2, respectively, that
produced mild stress conditions (see Methods) [57]. To
quantify the degree of stress during the measurements, we
measured the division time of cells born during the mea-
surement period. Example images are shown in supple-
mentary figures S6 and S7. For comparison, we obtained the
same data from cells under optimal growth conditions
(control).

The mean cell division time was found to be 66.7 min
under optimal conditions, 87.2 min under acidic shift, and
91.0 min under oxidative stress, indicating that the cells are
mildly stressed in the two latter conditions. To confirm this,
we performed K–S tests to determine whether the distribu-
tions of division times in both stress conditions could be
statistically distinguished from the distribution obtained from
control cells. In both comparisons, the p-value was much
smaller than 0.05, from which we conclude that the division
times differed from the control.

Next, we studied the effects of the two mild chemical
stresses on the degree of morphological asymmetries in
division. In both, we extracted the distribution of the nor-
malized difference in the sizes of sister cells at birth. The
resulting distributions, along with the result from optimal
conditions, are shown in figure 5. The standard deviations of
the distributions were 0.095 and 0.099 for oxidative and
acidic shift stresses, respectively. Meanwhile, in cells under
optimal conditions the standard deviation was 0.10. In
agreement with the apparent similarity, we could not distin-
guish between any of these distributions using the K–S test
(p-values > 0.05). Thus, we conclude that the distributions of
cells under these two mild chemical stresses do not differ, in a
statistical sense, from the distribution of cells under optimal
conditions. Consequently, we conclude that the degree of
symmetry of division is not significantly affected by either of
these mild chemical stresses.

Figure 4. Asymmetry in inherited complexes (ΔI) versus asymmetry
in size (ΔS) between sister cells the moment following division. Data
extracted from 170 divisions in optimal growth conditions (LB
media, 37 °C).
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Effects of suboptimal temperatures on the morphological
symmetry of the division process

We imaged cells for two hours in LB media at 42 °C, 37 °C
(optimal), 33 °C, 30 °C, and 24 °C. From the images, we
extracted the distributions of normalized difference in size
between the daughter cells from all divisions observed in each
condition (figure 6(A)).

The standard deviation of the distribution appears to
increase for temperatures further from optimal (figure 6(B)).
We performed K–S tests to determine if these changes are
statistically significant. We found that distributions for tem-
peratures of 30 °C and below are statistically distinguishable
from the distribution for 37 °C. Also, the distribution at 42 °C
differs significantly from the distributions at 37 °C and below
(all p-values < 0.05). We conclude that changing the tem-
perature from optimal to sub-optimal decreases the degree of
morphological symmetry in cell division.

Effects of morphological asymmetries on cell division times

If there are significant functional asymmetries between sister
cells due to morphological asymmetries at birth, their division
times should differ, since cells that are healthier or that pos-
sess more resources tend to divide faster (see e.g. [27]). To
test this, from the data used in the previous section, for each
temperature condition, we extracted the asymmetry in size at
birth (ΔS) and subsequent division time (τdiv) of each cell that
was born and then divided during the measurements. Then,
given the definition of ΔS (see Methods), we tested whether
relatively larger cells tend to divide faster on average. That is,
we searched for statistically significant negative correlations
between ΔS and τdiv. Note that all cells considered necessarily
participate in two division events, first as a daughter and then
as a parent.

The correlation between asymmetries in size at birth and
subsequent division times is shown in table 1 (Kendall’s tau
between ΔS and τdiv), for each temperature condition, along
with the number of cells analyzed. As temperature decreases,
the correlation (negative) becomes statistically significant (p-
value < 0.05 for 30 °C and lower temperatures) and gradually

increases, implying that relatively larger daughter cells divide
faster than the average division time of the population. The
most significant increase is between 30 °C and 24 °C. Further,
at 42 °C, the correlation also becomes significant. Overall, we
conclude that for temperatures beyond the optimal tempera-
ture, the two quantities become significantly anticorrelated.
The degree of anticorrelation increases as the temperature gets
further from optimal.

Additionally, we examined whether the division time of
each daughter cell is related to the degree of morphological
asymmetry in the next division, i.e. we assessed whether
faster dividing cells tend to exhibit larger morphological
asymmetries in division. For this, we extracted the division
times of each cell (τdiv) and the magnitude of the asymmetry
in its division (referred to as |ΔS′|). The results in table 1 (last
column) show no significant correlation for any temperature
condition. Overall, these results suggest that the faster
dividing cells do not do so at the cost of morphological
symmetry in division.

Finally, we searched for a relationship between ΔS and
differences between the τdiv’s of sister cells. That is, we
assessed if asymmetries in division are correlated with sub-
sequent asymmetries in division times. However, we did not
find such a relationship in the available data.

Mechanisms underlying the morphological asymmetries under
sub-optimal temperatures

When the Min system is disrupted, it is common to observe
the appearance of ‘minicells’ [3]. Since we did not observe
minicells in any temperature condition, we hypothesized that
the increased variances in the division point at sub-optimal
temperatures were either due to higher variability in the cell
sizes or due to increased relative distance between nucleoids.

To test the former possibility, we extracted the distribu-
tion of non-normalized asymmetry in sizes between sister
cells at 24 °C, 37 °C and 42 °C (supplementary figure S9).
The K–S tests to distinguish between these distributions
resulted in p-values < 0.05, which implies that they differ
between conditions. Since we obtained the same conclusion
using the normalized values (figure 6(A)), we next investigate
the differences in relative distance between nucleoids.

To test this, we made use of hupA-mCherry to visualize
the nucleoids in vivo [43] and measured the positions and
sizes of the two nucleoids in each cell in the moment prior to
division, at 24 °C, 37 °C and 42 °C (see Methods). First, we
saw no significant change in relative nucleoid size with
temperature (data not shown). Next, we tested for changes in
the mean relative distance between nucleoids. For simplicity,
as their size was unaffected, we measured the distance
between nucleoid centers in individual cells in each condition.

In figure 7, for each cell in each condition, we show the
position of the center of each of the nucleoids along the major
cell axis, the moment prior to division (normalized by half the
cell length). In addition, in table 2 we show the mean distance
between the centers of the nucleoids in each cell, along with
the standard deviation, and the p-value of the t-test to dis-
tinguish between the means of pairs of conditions.

Figure 5. Distributions of asymmetry in size of sister cells at birth
(ΔS), obtained from cells under acidic shift, oxidative stress, and
optimal conditions. Data is from 269 divisions under oxidative stress
(dotted line), 85 divisions under acidic shift (dashed line), and 170
divisions of cells under optimal conditions (solid line).
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From figure 7 and table 2, the mean distance between the
centers of the nucleoids in each cell is visibly minimized at
37 °C, and is consistent with the lesser variance in the divi-
sion point. Also the smaller standard deviation of the dis-
tances between the nucleoids in each cell is in agreement with
such lesser variance. In addition, the t-tests in table 2 show
that the distributions of positions are statistically distinct,
except between 24 °C and 42 °C, as expected from the
equality of the means in these two conditions. Finally, note
that there is no overlap between the confidence intervals of
the means (column 2 in table 2) from different conditions
(these intervals include the variability in the centers’ position
arising from biological sources or from any uncertainty in the
method of determination of these positions from the images).

It also interesting to note that, assuming that the border of
a nucleoid is one standard deviation away from the center
(based on the Gaussian fit), it is possible to determine that the
measured increase of 5% in the mean normalized distance
between the nucleoid centers (at sub-optimal temperatures)
corresponds to an ∼8% increase in the mean normalized
distance between the borders of the two nucleoids. This
increase should suffice to explain the observed increase in the

errors in positioning of the division plane at sub-optimal
temperatures (figure 6).

Overall, these results are in agreement with the hypoth-
esis that the source of increased asymmetry in the division
process of E. coli cells at sub-optimal temperatures is the
increased relative distances between nucleoids (see schematic
figure 8).

To further assess whether the distance between nucleoids
at the moment of division influences the degree of random-
ness (and thus asymmetry) in the selection of the point of
division, for each temperature condition we compared the
mean normalized distances between nucleoid centers the
moment before division between the 25% cells exhibiting
higher asymmetry in division (ΔS) and the remaining 75% of
the cells. We found that, in all conditions, the cells with larger
mean distances between nucleoid centers at the moment of
division also exhibit higher mean degrees of morphological
asymmetry in division, in agreement with our hypothesis. In
particular, in each condition, the mean normalized distances
between nucleoid centers of cells with larger and smaller
morphological asymmetries in division equaled, respectively,
1.02 and 0.99 at 42 °C, 0.97 and 0.94 at 37 °C, and, finally,
1.01 and 0.99 at 24 °C.

As a side note, the results in figure 7 and table 2 depend
on the accuracy of the determination of the centers of the
nucleoids. Unfortunately, such accuracy is too complex to
calculate as it depends on numerous variables (e.g. noise in
fluorescence of hupA-mCherry, noise in mCherry localiza-
tion, noise from the fluorescence detector device, accuracy of
the image processing, goodness of the model fit, among
other). Instead, as the centers are obtained from the models
that are fitted to the fluorescence intensity curves (figure 3),
we estimated how well these models fit the data by obtaining
the median of the coefficient of determination obtained from
each cell, for each condition (last column in table 2). From
these results, we find that the model fits the data well, in that it
explains at least 70% of the observed variance in the fluor-
escence intensities along the major axis of the cells as
obtained from the hupA-mCherry staining.

Figure 6. (A) Distributions of asymmetries in the size of sister cells at birth, obtained from cells at 42 °C, 37 °C and 24 °C. (B) Standard
deviations of the distributions of asymmetries in size against temperature. Data from 231 divisions at 42 °C, 170 divisions at 37 °C (optimal)
545 divisions at 33 °C, 197 divisions at 30 °C, and 280 divisions at 24 °C.

Table 1. For each condition, the table shows the temperature, the
number of cells observed that divided at least twice, the correlation
between the asymmetry in size at birth (ΔS) and the subsequent
division time (τdiv), and between the division time (τdiv) and the
magnitude of the subsequent asymmetry in size in division (|ΔS′|).
The p-value of the null hypothesis that there is no relationship (i.e.
that Kendall’s tau is 0) is shown in parentheses. Scatterplots of the
relationships between these variables are shown in supplementary
figure S8.

Temperature
No. of
cells

Kendall’s tau
between ΔS
and τdiv

Kendall’s tau
between τdiv and

|ΔS’|

42 °C 133 −0.13(0.04) 0.06(0.28)
37 °C 75 −0.12(0.13) 0.03(0.72)
33 °C 182 −0.12(0.02) −0.09(0.07)
30 °C 86 −0.18(0.02) −0.06(0.39)
24 °C 17 −0.41(0.03) −0.35(0.09)
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Discussion

Previous studies showed that, in optimal conditions, the
division process of E. coli cells is highly symmetric, with
only a few divisions exhibiting morphological asymmetry.
This symmetry is made possible by at least two mechanisms,
the Min system and nucleoid occlusion. The existence of
regulatory mechanisms responsible for achieving a near-
symmetric division suggests that such morphological

symmetry in division is advantageous to E. coli, at least in
optimal growth conditions. However, little is known of how
the symmetry of this process is affected by physiological
stress. Such effects, which we observed here to be tangible,
may influence the survival of these organisms under such
conditions and, thus, their pathogenicity or antibiotic-
resistance.

Here, we first investigated whether morphological
asymmetries in division are a source of functional asymme-
tries between sister cells under optimal conditions. Our
measurements showed that morphological asymmetries
between sister cells are strongly, positively correlated to the
differences in the numbers of MS2-GFP-RNA complexes that
these cells inherit from the mother cell. As such, we expect
morphological asymmetries in division to also create asym-
metries in the partitioning of cellular components, which
should create asymmetries in the division times [12].

Next, we studied the extent to which the morphological
symmetry in the division of E. coli cells is robust to non-
optimal environmental conditions. First, we studied whether
mild chemical stresses (acidic shift and oxidative stress)
affected the degree of morphological symmetry. Even though
the growth rate of the cells was significantly hampered due to
stress, the distributions of asymmetry in sizes between sister
cells were statistically not different from those at optimal
growth conditions. A previous study made similar conclu-
sions concerning cells subject to physical stress [22]. One
plausible explanation is that the mild chemical stresses
applied here did not affect the mechanisms associated with
the degree of symmetry in division (nucleoid occlusion and
the Min system). Afterwards, we studied how sub-optimal
temperatures affected the morphological symmetry in divi-
sion. The frequency of asymmetric divisions was found to

Figure 7. Position of the two nucleoids along the major cell axis in individual cells, the moment prior to division. Positions were normalized
by half the length of the major axis of each cell. Results are shown for cells at (A) 42 °C, (B) 37 °C and (C) 24 °C.

Table 2. For each condition, the temperature and the mean and standard deviation of the distance (normalized by half the cell length) between
the centers of the nucleoids are shown. Finally, the p-value of the t-test between pairs of conditions is shown (conditions compared shown in
parentheses).

Temperature (°C)
Mean normalized

distance
Standard deviation of nor-

malized distances
p-value of t-test between the mean

distances
Median R-
squared

42 1.00 ± 0.008 0.098 0.0076 (42 °C vs 37 °C) 0.75
37 0.95 ± 0.012 0.067 0.0099 (37 °C vs 24 °C) 0.88
24 1.00 ± 0.009 0.077 0.5551 (24 °C vs 42 °C) 0.72

Figure 8. Schematic representation of the role of the nucleoids in the
definition of the point of cell division. Two situations are
represented: optimal and sub-optimal. Under the optimal tempera-
ture, the relative distance between nucleoids is minimal, which
minimizes the uncertainty of the point of division. Meanwhile, under
sub-optimal temperatures, the larger relative distance will result in
distributions of normalized asymmetry in the size of sister cells at
birth with greater variance, while the mean division point remains
unaffected. Also represented (grey gradient in background) is an
illustration of the regions (darker polar regions) where the formation
of the point of division is inhibited by the Min system.
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increase as temperature changed from optimal to sub-optimal.
From this, we conclude that the mechanism responsible for
the symmetry observed in division is not robust to tempera-
ture changes.

Relevantly, we also found a statistically significant cor-
relation between asymmetries in size at birth and subsequent
division times. This is in agreement with [12], where it was
reported that the size of an E. coli cell affects when it divides.
We hypothesize that this correlation might explain how the
precision in division at optimal temperatures evolved.
Namely, if there is no need for cells to adopt a bet-hedging
strategy under optimal conditions, then symmetry in division
is advantageous. At sub-optimal temperatures, the decrease in
precision of the point of division may also be beneficial, in
that it allows a cell to hedge its bets towards one of the
daughter cells, which would explain why the mechanisms
determining the division point have not evolved robust tem-
perature resistance. However, it is also possible that such
temperature-resistance is not possible, due to the nature of the
mechanisms responsible for the symmetry.

It is worth mentioning that we found no correlation
between the division time of a cell and the degree of asym-
metry in size in its next division (τdiv and |ΔS′| above). This
suggests that the mechanisms responsible for symmetry in
division are not significantly affected by a cell delaying or
accelerating its moment of division. This might not be sur-
prising, given the properties of the Min system (oscillation
period of 40 s [58]) and of the time it may take the nucleoid(s)
to change position with changing temperature [43].

Finally, we investigated the physical mechanism
responsible for the observed increase in variance in the point
of division. Our results suggest a simple explanation. Namely,
at suboptimal temperatures, while the relative sizes of the
nucleoids are unchanged, the mean relative distance between
the two nucleoids increases. Provided that the positioning of
the division point is near random in between nucleoids [14],
this increase in the mean relative distance necessarily
increases the variance in the division point. Future studies on
why temperature changes affected the nucleoid’s positioning
should provide valuable information on the mechanisms
responsible for this positioning. It is likely that such a study
will require analyzing the potential relationship between
growth dynamics, nucleoid positioning, and variability of the
point of division, as a function of temperature.

Finally, it is worth noting that we do not expect the
observed morphological asymmetries in division to generate
significant asymmetries in numbers of inherited molecules
between sister cells when, for example, these molecules exist
in large numbers in the cells, or when they are evenly located
at the cell poles. However, significant asymmetries in num-
bers of inherited molecules due to the morphological asym-
metries in divisions (of a degree reported here) ought to occur
when, first, the molecule exists in small numbers and, second,
either it distributes itself homogenously throughout the
cytoplasm, or it preferentially locates at midcell. Relevantly,
several RNA molecules appear to fit both conditions. Namely,
usually they exist in numbers ranging from 1 to a few [59, 60]

and are located either at midcell, or randomly throughout the
cytoplasm [61–63].

We conclude that the functionality of E. coli cells is not
immune to asymmetries at birth, which may explain why
E. coli has evolved a robust process of symmetric division
under optimal conditions. We further conclude that, even
though it is based on at least two mechanisms, this process
lacks robustness at sub-optimal temperatures, leading to lar-
ger asymmetries, and consequently, increased population
diversity in cell functionality, including vitality.
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Figure S1: Precision (inverse of variance) of the estimate of the nucleoid separation as a function of the 

Signal-to-Noise Ratio (SNR), assuming zero-mean Gaussian noise. Data is from 100 simulated intensity 

distributions with a nucleoid separation of 0.95 and widths (standard deviations of the Gaussians) of 0.3. 

The dashed line represents the precision for the estimate of the real SNR, calculated from the measured 

intensity distributions at 37°C and the Gaussian mixture model fits to them.  

 

Figure S2: Example time-series images from confocal microscopy grown in LB media, at 37°C, (A) 

image at 5 minutes (B) image at 120 minutes.  
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Figure S3: Example time-series images from confocal microscopy grown in LB media, at 24°C, (A) 

image at 5 minutes (B) image at 120 minutes.  

 

Figure S4: Example time-series images from confocal microscopy grown in LB media, at 42°C, 

(A) image at 5 minutes (B) image at 120 minutes. 
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Figure S5: Distributions of normalized asymmetry in size of sister cells at birth (ΔS) in optimal growth 

conditions (LB media, 37°C), (A) expressing MS2-GFP and target RNA using confocal microscopy 

(170 divisions), (B) expressing MS2-GFP and target RNA using bright-field microscopy (97 divisions), 

and (C) not expressing MS2-GFP or target RNA using bright-field microscopy (130 divisions).  

 

Figure S6: Example time-series images from confocal microscopy grown in LB media at 37°C and 

subjected to mild oxidative stress, (A) image at 5 minutes (B) image at 120 minutes.  
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Figure S7: Example time-series images from confocal microscopy grown in LB media at 37°C and 

subjected to mild acidic shift stress, (A) image at 5 minutes (B) image at 120 minutes. Note the lack of 

cell divisions in this period of time, due to the stress conditions. 

 

 

Figure S8: (A) Scatter plot between asymmetry in size at birth of a cell (ΔS)  and its division time (τdiv) 

(B) Scatter plot between  the asymmetry in size in division of a cell (ΔS’) and τdiv of its mother cell. Data 

from 86 cells that were born and divided during measurements in LB media at 30°C. 
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Figure S9: Distributions of non-normalized asymmetries in size of sister cells at birth, obtained from 

cells at 42°C, 37°C and 24°C. Data from 231 divisions at 42°C, 170 divisions at 37°C (optimal), and 280 

divisions at 24°C. 
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Abstract. The cytoplasm of Escherichia coli is a crowded, heteroge-
neous environment. The spatial kinetics and heterogeneities of synthetic
RNA-protein complexes have been recently studied using single-cell live
imaging. A strong polar retention of these complexes due to the presence
of the nucleoid has been suggested based on their history of positions and
long-term spatial distribution. Here, using stochastic modelling, we ex-
amine likely sources, which can reproduce the reported long-term spatial
distribution of the complexes. Based on the anisotropic displacement
distribution observed at the border between the mid-cell and poles, we
conclude that the original hypothesis that the observed long-term be-
havior is the result of macromolecular crowding holds.

Introduction. Even single-celled organisms, such as Escherichia coli, possess
a far from random internal organization, as the cytoplasm is a crowded, het-
erogeneous environment. Some proteins preferentially locate at the cell poles
(e.g. those involved in chemo-taxis), while others, e.g. those involved in gene
expression, locate at mid-cell, within a structure known as the nucleoid.

Recent single-cell live microscopy measurements have studied the spatio-
temporal distributions of a large complex, composed of a synthetic RNA tagged
with multiple MS2-GFP proteins [1][2]. In one of these studies it was observed
that, at short time scales, the motion of the complexes is sub-diffusive with an
exponent that is robust to physiological changes and, at long time scales, the
complexes tend to localize at the cell poles [1]. Further, it has been shown that
these complexes are retained at the poles, as shown in Figure 1A, most likely
due to the presence of the nucleoid at mid-cell [2]. This hypothesis arises from
the observation of a strong anisotropy in the displacement distribution where
the border of the nucleoid is expected to be (Figure 1B). However, the observed
long-term spatial distribution of complexes could also, theoretically, arise from
other sources, e.g. heterogeneities in the speed of the complexes along the ma-
jor axis of the cell. Here, we use stochastic modelling to distinguish, from the
observations, between the possible retention mechanisms taking place.

Methods. We model the cell as a compartmentalized 1-dimensional space which
is divided into N homogeneous sub-volumes, indexed from [1,N]. The motion of

P. Mendes et al. (Eds.): CMSB 2014, LNBI 8859, pp. 239–243, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. (A) Relationship between the
position along the major axis where
each complex was last observed and
the absolute position where it was
first observed at a pole. Here, an
end position of +1 indicates that the
complex remained at the same pole
as it was first observed in, while -
1 indicates that it traveled to the
other pole. (B) Difference between
the numbers of displacement vectors
that are directed towards the poles
and towards the mid-cell along the
major cell axis. The differences in
numbers were calculated from the dis-
placement vectors originating within
windows extending 0.05 normalized cell
lengths around that point. All 160 cells
were born during the measurement pe-
riod and contained one complex in their
lifetime. In both figures, the horizontal
and vertical dashed lines represent the
detected separation between the mid-
cell and poles.

the complexes along the major cell axis is modeled with unimolecular reactions
following the Reaction-Diffusion Master Equation [3]. We define −→α (x) as the
propensity of the forward reaction (modeling the motion of a complex from
position x to position x+1) and ←−α (x) as the propensity of the backward reaction
(from x to x − 1). These propensity functions account for the combined effects
of the rod shape of the cell and the nucleoid on the motions of the complexes.

Let P (t) be the N ×1 vector describing the probability of observing a complex
in each sub-volume at time t, and A be the N × N transition rate matrix of
propensities. P (t) therefore evolves according to the following master equation,
in matrix-vector form:

dP (t)

dt
= AP (t). (1)

Since a complex can travel from any sub-volume in the cell to any other sub-
volume, given enough time, the system is ergodic and as t → ∞, P (t) will
converge to a unique solution, P∞ . Solving the linear system of equations 0 =
AP∞, with the constraint that the total probability must sum to 1, we obtain
the long-term spatial distribution of the complexes predicted by the model.
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The propensities of the both diffusion reactions without accounting effects
due to the rod shape and nucleoid are proportional to the diffusion constant of
the complexes, D, given by:

−→α (x) = ←−α (x) =
N2D

2
. (2)

To account for the rod shape, i.e. a cylinder capped with two half-spheres, the
length of the cell was parameterized by B ∈ [0, 1], the normalized distance from
midcell at which the cap begins.The forward propensities were attenuated by
φ(x), the ratio between the areas of the cross sections of the cell (denoted S(x))
at adjacent positions. As such, ←−α (x) remains the same and −→α (x) becomes:

−→α (x) =
N2D

2
φ(x). (3)

where,

φ(x) =
S(x + 1)

S(x)
,

S(x) =

⎧
⎨
⎩

π if c(x) < B

π

[
1 −

(
c(x)−B
1−B

)2
]

if c(x) ≥ B

Here, c(x) translates the index of a sub-volume into the normalized distance
from the midcell to the center of the sub-volume. In this case, B = 1 recovers
the cylindrical cell from above, and B = 0 produces a spherical cell.

The effects of a nucleoid are introduced in the above model by adding a
Gaussian function to −→α (x) while subtracting it from ←−α (x). This anisotropy
was parameterized with center μ ∈ [0, 1], standard deviation σ, and height h.
Specifically:

−→α (x) =
N2D

2

[
φ(x) + h ∗ exp

{−(c(x) − μ)2

2σ2

}]
, (4)

and

−→α (x) =
N2D

2

[
1 − h ∗ exp

{−(c(x) − μ)2

2σ2

}]
. (5)

To fit the models to the measurements, we use the Earth-Mover’s metric [4][5]:

W (F, G) =

∫ ∞

−∞
|F (x) − G(x)|dx (6)

where F and G are the cumulative distribution functions of the model and the
measurements. This metric is a measure of the amount of work required to make
two distributions identical.
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Results. We constructed three 1-dimensional models to simulate the diffusion
of the complexes within the cell. For all the models, we set N to 100, and D, the
diffusion coefficient, to 1.43 ∗ 10−2μm2/min based on previous measurements
[1][2]. Two of the models contain spherical cell caps and their effects. We in-
troduced a localized anisotropy in one of these models to test whether it, as
observed in [2], can generate the observed long-term spatial distributions of the
complexes (see Methods). In the last model, we set the forward and backwards
propensities of diffusion events to be equal, and inversely proportional to the
observed spatial distribution. Due to this, in the long term, the complexes tend
to linger in the areas where they were observed with high probability.

Next, for each model, we varied all parameters and, for each set of values,
obtained the distribution of complex positions that would be observed at infinite
time. We then selected the set of parameters whose resulting distribution best
fit the measured distribution of complex positions reported in [2].

The results from all three models, each using the best-fit parameter values,
are shown in Figure 2. The model without the anisotropy fails to reproduce
the displacement distribution (Figure 2A), and the consequent heterogeneity
in the spatial distribution of complexes that favors their presence at the poles
(Figure 2B). Meanwhile, the second model captures both of these properties
of the dynamics of the complexes with significant accuracy. Interestingly, even
though the third model reproduces the long-term spatial distribution exactly as
observed (the lines are indistinguishable in Figure 2B), it produces a negligible
anisotropy in the predicted displacement distribution (Figure 2A).
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Fig. 2. (A)Measured fraction of displacement vectors originating within a window ex-
tending 0.05 normalized cell lengths around that point which are directed towards the
pole (black line), model prediction with homogenous speed (without nucleoid (dashed
line) and with nucleoid (gray line)), and with differing speed without nucleoid (dotted
line). Note that the dashed line is superimposed by the gray line in the left side of
the graph. (B) Measured spatial distribution of fluorescence intensities of complexes
(black line) model prediction with homogenous speed (without nucleoid (dashed line)
and with nucleoid (gray line)), and with differing speed without nucleoid (dotted line).
Note that the dotted line is superimposed on the black line of the graph.

Using these models, with parameters tuned to match the measurements re-
ported in [2], we show that both an anisotropy in the displacement vectors and a
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reduced speed at the poles produce good fits with the measurements. However,
the model with varying speed along the major cell axis, at the time scale of the
measurements, was unable to reproduce the observed anisotropic displacement
distribution at the border between the mid-cell and poles. We conclude that polar
retention most likely relies on these anisotropies in the displacement distribu-
tion rather than differences in speeds, consistent with the hypothesis that the
observed long-term behavior is the result of macromolecular crowding, likely due
to the nucleoid. Overall, the spatiotemporal kinetics of the complexes suggests
that nucleoid occlusion is a source of dynamic heterogeneities of macromolecules
in E. coli that ultimately generate phenotypic differences between sister cells.
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Abstract. Recent evidence suggests that cells employ functionally asymmetric partitioning schemes in division to cope with
aging. We explore various schemes in silico, with a stochastic model of Escherichia coli that includes gene expression, non-
functional proteins generation, aggregation and polar retention, and molecule partitioning in division. The model is implemented
in SGNS2, which allows stochastic, multi-delayed reactions within hierarchical, transient, interlinked compartments. After setting
parameter values of non-functional proteins’ generation and effects that reproduce realistic intracellular and population dynamics,
we investigate how the spatial organization of non-functional proteins affects mean division times of cell populations in lineages
and, thus, mean cell numbers over time. We find that division times decrease for increasingly asymmetric partitioning. Also,
increasing the clustering of non-functional proteins decreases division times. Increasing the bias in polar segregation further
decreases division times, particularly if the bias favors the older pole and aggregates’ polar retention is robust. Finally, we show
that the non-energy consuming retention of inherited non-functional proteins at the older pole via nucleoid occlusion is a source
of functional asymmetries and, thus, is advantageous. Our results suggest that the mechanisms of intracellular organization of
non-functional proteins, including clustering and polar retention, affect the vitality of E. coli populations.

Keywords: Non-functional proteins, partitioning schemes, functional asymmetries, division times, In silico models

1. Introduction

The mechanisms employed by Escherichia coli in
protein production and maintenance [60] are not free

∗Corresponding author: Andre S. Ribeiro, Department of Signal
Processing, Tampere University of Technology, P.O. Box 553, 33101
Tampere, Finland. Tel.: +358 408490736; Fax: +358 331154989;
E-mail: andre.ribeiro@tut.fi.

from a number of errors, e.g., during folding and activa-
tion, particularly when cells are stressed, or following
mutations or overexpression [40]. Consequently, there
are several non-functional proteins present in a cell at
any given moment. How many is unknown but these
numbers should depend on the environment and dif-
fer between proteins. The excessive accumulation of
non-functional proteins has been linked to decreasing
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This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License.
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growth rates, not only in E. coli [14, 18, 36, 44] but in
other organisms as well [15, 25, 50].

Not surprisingly, E. coli has evolved a complex
machinery to enhance proteins’ functionality. For
example, chaperones both catalyze the proper folding
of proteins, which prevents aggregation as it assists
in reaching stable structures, as well as participate in
the rescue of misfolded proteins [6, 60]. Under opti-
mal growth conditions, at least 10% to 20% of newly
formed polypeptides appear to be associated to chap-
erones, such as GroEL and DnaK [10, 16, 53].

When these rescue mechanisms fail, some misfolded
proteins can still be targeted for destruction by the
protease cell machinery [21, 59]. Evidence suggests
that approximately 20% of newly synthesized polypep-
tides are degraded [20, 38]. It is reasonable to assume
that this number roughly corresponds to the percent-
age of polypeptides that are non-functional following
their production. However, this is likely to be an over-
estimation as a certain fraction of proteins is likely
to be degraded at all times, even in the absence of
non-functional proteins, to ensure the existence of raw
material for the production of novel proteins [20]. Evi-
dence suggests that as much as 10% of the proteins can
be degraded per hour in non-growing bacteria [19, 37,
45, 61].

When the above strategies fail, bacteria still have
additional strategies to cope with non-functional pro-
teins [54]. For example, misfolded polypeptides of
some proteins form aggregates [22, 32, 58, 62]. Rel-
evantly, the process of formation of these aggregates
exhibits some similarities to events in eukaryotic cells
that have been linked to the emergence of diseases such
as Huntington’s, Alzheimer’s, and Parkinson’s [5, 11,
24, 41, 56].

Once formed, some of these aggregates can be gath-
ered into one or two inclusion bodies, which tend to
locate at the cell poles, particularly in cells are under
heat or oxidative stress [22, 32]. While these inclusion
bodies are stable structures, there is evidence that the
process of inclusion of damaged proteins is not nec-
essarily irreversible [6]. Interestingly, the process of
aggregate formation appears to be protein-specific [51]
and under regulation (e.g., in E. coli grpE280 mutant
aggregates are small-sized [32]).

The partitioning in division of a specific non-
functional polypeptide is likely related to its long-term
spatial distribution. For example, if all non-functional
polypeptides of a given protein are gathered into a sin-
gle inclusion body, only one of the daughter cells will

inherit them. On the other hand, if the non-functional
polypeptides do not aggregate, one could expect them
to be less retained at the poles and thus, to be more
randomly distributed. As such, it would be more likely
that such polypeptides are partitioned by the daughter
cells in an unbiased fashion. It is also possible that the
partitioning scheme will depend on the location of the
functional form of the proteins, provided that the loss of
function does not affect the long-term spatio-temporal
distribution. The process of partitioning in division of
non-functioning polypeptides is thus likely to be under
regulation, either by direct or indirect mechanisms, and
to differ between proteins. This is supported by recent
evidence that some protein aggregates, due to polar
retention and cell division, accumulate primarily at the
older pole of the cells [23, 34].

Here, we explore this issue in silico. For that, we
developed a stochastic model that includes cell divi-
sion and the partitioning of intracellular molecules,
along with a delayed stochastic model of gene expres-
sion that includes the generation of both functional
and non-functional proteins. First, we show that, using
parameter values extracted from measurements, the
model is capable of emulating the reduced divi-
sion times as a function of the increasing number
of non-functional proteins in the cells, over several
generations [52]. Next, we investigate how different
partitioning schemes of non-functional proteins in divi-
sion affect cell division times.

2. Results & discussion

2.1. Tuning the effects of non-functional proteins
on the growth rate of model cell populations

After setting the parameter values (Table 1) of the
model (see Methods), we first studied how the growth
rate of the population is affected by β, the number of
non-functional proteins necessary for the cell growth
rate to be halved, and by n, the exponent of f(Q), the
function regulating the degree to which the growth rate
is reduced by the presence of non-functional proteins
(Equation (8)). Here, n determines how fast the cell
growth rate transitions from high to low with increasing
numbers of non-functional proteins in the cells. For
simplicity, we assume that the environment poses no
growth constraints (neither on the rate of growth nor
on the total number of cells). At moment zero, each
population contains one cell.
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By inspection, we verified that decreasing β

increases the mean division time, as expected. To
exemplify this, in Fig. 1 (left) we show the number of
cells over time for three values of β. Fig. 1 (right) shows
the corresponding distributions of division times. In
these simulations, n was arbitrarily set to 1.

Though the mother cell of each lineage is initiated
without non-functional proteins, these will accumu-
late over time as they are produced. Meanwhile, cell
division should act as a decay rate (by ‘dilution’)
on the number of non-functional proteins in individ-
ual cells. Thus, we expect the mean division time to
differ with the cell generation, until reaching quasi-
equilibrium.

The dependence of the division time on the pres-
ence of non-functional proteins should differ with β.
Higher β should increase the number of generations
required for the effects of aging on division times
to become visible (and to reach quasi-equilibrium).

Table 1
Parameters used in the model, unless stated otherwise

Parameter Description Value Source

tdiv Value set to the mean division
time of E. coli DH5�-PRO

3600 s [29]

kcc Closed complex formation 1/574 s−1 [29]
koc Open complex formation 1/391 s−1 [29]
ktr Translation rate 1/3 s−1 [43]
τp Mean of time delay for

protein production
420 s [43]

σp Std. dev. of time delay for
protein production

300 s [43]

kdrbs Degradation rate of RNA 0.011 s−1 [43]
kdp Degradation rate of proteins 3.9 × 10−5 s−1 [43]
kD Rate at which functional

proteins become
non-functional

1.9 × 10−5 s−1 [9]

This can be seen in example Fig. 2, where we
plot the division time of individual cells of each
generation, for each value of β, up to 6 genera-
tions. Note that, for β = 10, the effects of aging are
visible already in the first generation (much longer
division time than for the other values of β) and are
maximized approximately from the fourth generation
onwards. Meanwhile, for β equal to 35 and 50, the
effects of aging (i.e. the increase of the division time
with the generation) appear more gradually, and are
(approximately) maximized only in generations 5 and
6, respectively.

From here onwards, we arbitrarily set β to 35 as this
value (and similar ones) allows the accumulation of
non-functional proteins to affect cell division times in
a manner that is consistent with observations (see e.g.
[34]), whereas much lower values disrupt too strongly
cellular well-functioning and much higher values do
not affect cell growth significantly.

Next, we study the effects of n on the cell growth rate.
Different non-functional polypeptides are expected to
have different effects on the cell growth rate, to dif-
fer in their degree of aggregation, etc. Also, previous
observations [34, 52, 62] suggest that, starting from a
single healthy cell, only after a few generations do the
effects of the accumulation of non-functional proteins
on division times become visible. This can be cap-
tured by the model by tuning n. From Fig. 3, as n
increases, cell division rate increases. This is due to
the fact that, for high values of β, as n increases, more
non-functional proteins need to accumulate in a cell
to tangibly affect its division time. Nevertheless, it is
worth noting that no qualitative changes are observed
as n is increased. As such, for simplicity, from here
onwards we set n to 1.

Fig. 1. (Left) Mean number of cells over time for different values of β. As β is lowered, the number of cells drastically decreases. Also shown
(Right) are the corresponding distributions of division times.
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Fig. 2. Mean division time of cells as a function of their generation
and of β, the number of non-functional proteins necessary for the
cell growth rate to be reduced to half the maximum rate.

Fig. 3. Effect of changing parameter n that models the effect of
non-functional proteins on the growth rate.

Using these values of β and n, the model is able to
emulate (see example Fig. 4) empirical distributions of
division times in near-optimal growth conditions (see
e.g. [52]). Next, we use the model to study the effects of
different partitioning schemes of non-functional pro-
teins on the population dynamics.

2.2. Effects of different partitioning schemes

We investigate the effects of different partitioning
schemes of non-functional proteins in division. In
particular, we consider six schemes [26] (schematic
representations in Fig. 5, Top): (i) perfect partitioning,
where individual non-functional proteins are equally
partitioned between the daughter cells, (ii) pair forma-
tion, where non-functional proteins form pairs, which
are split evenly into the two daughter cells, while the
remaining individuals are independently partitioned,
(iii) random size partitioning, where the non-functional

Fig. 4. Example lineage showing individual division times across
lineages for β = 35 and n = 1. The length of the line that connects a
cell to its progeny is proportional to the average growth rate of that
cell (longer lines represent higher growth rates). At each division, the
cell inheriting the old pole is placed on the right side of the division
pair, while new poles are placed on the left side of each pair. The
mean doubling time of the cells equals 135 min.

proteins are assumed to be uniformly distributed in the
mother cell, and the daughter cells differ significantly
in size (iv) preferential partitioning, where individual
non-functional proteins are partitioned according to
a biased binomial distribution, (v) cluster formation,
where non-functional proteins form clusters of variable
size which are then independently partitioned, and (vi)
all or nothing partitioning, where all non-functional
proteins are inherited by only one of the daughter
cells.

Using the parameter values in Table 1, for each
partitioning scheme, we simulated 1 cell lineage for
6 × tdiv s (i.e. 6 times the expected division time).
This allows, on average, 6 cell generations to be
observed. Aside from these parameters, we have
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Fig. 5. (Top) Different partitioning schemes. (i) Perfect (ii) Pair formation (iii) Random size (iv) Preferential (v) Clustered (vi) All or Nothing.
Also shown (Bottom) are the non-functional protein distributions resulting from each of the partitioning schemes.

used the following additional set of parameter val-
ues (necessary to implement some of the partitioning
schemes). For pair formation, we set the fraction of
non-functional proteins which form pairs to 0.25. In
random size partitioning, the position of the division

point of the daughter cells was drawn from a Beta
distribution with � = β = 2. In preferential partitioning,
the bias was set to 0.25 (i.e. the cell inheriting the older
pole retains, on average, 75% of the non-functional
proteins produced by its mother cell). Finally, in the
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cluster formation scheme, we set the degree of cluster-
ing, kcl , to 0.03.

As stated in the methods section, inherited non-
functional proteins are not subject to these schemes,
only novel ones are. This assumes perfect retention
of inherited non-functional proteins at the older pole
of the cell, which, while not being exact, is a close
approximation to observations [23].

For each partitioning scheme, we obtained the num-
ber of non-functional proteins in each cell at the end
of the simulation time. Distributions are shown in
Fig. 5 (Bottom). Table 2 shows the means and stan-
dard deviations of these distributions. As expected,
the standard deviation increases from a perfectly sym-
metric to a perfectly asymmetric partitioning scheme.
Meanwhile, as protein production rates (functional
and non-functional) are identical in all models, mean
numbers of non-functional protein are necessarily also
identical.

To investigate if the differences in the standard
deviation generate different mean cell division times
in cells with different partitioning schemes, we per-
formed 1000 simulations of the model for each
partitioning scheme. Each simulation was performed
from one initial cell, for 15 times the expected division
time (i.e., 15 × tdiv s). For each scheme, we obtained
the mean increase in the number of cells in the last
30 minutes of the simulation, to eliminate the effects
of the transient observed in Fig. 2. Also, we obtained
the division times of all cells that divided during the
simulation time, from which we extracted mean and
standard deviation. Results are shown in Table 3.

From Table 3, increasing the degree of asymmetry
in the partitioning of novel non-functional proteins in
division decreases the mean division time, while not
significantly affecting the variance (except in the all-or-
nothing case, where a significant decrease is observed).

Table 2
Mean and standard deviation of the distributions of the number
of non-functional proteins in individual cells (one lineage, after
360 min, or approximately 6 generations), for different partitioning

schemes

Partitioning Mean no. of Standard deviation
Scheme non-functional of the no. of

proteins non-functional proteins

Perfect 15.4 7.1
Pair 15.4 7.8
Random Size 15.4 10.4
Preferential 15.3 10.9
Clustered 15.4 12.1
All or Nothing 15.4 20.4

2.3. Effects of the degree of clustering and of
preferential partitioning

We next investigate two partitioning schemes in
more detail, Clustered and Preferential, since these are
employed by E. coli. For example, proteins such as
Tsr form clusters at the poles [64]. Further, in some,
the proteins preferentially locate at the older cell pole
(e.g. IbpA [62]).

First, to study how the clustering rate of non-
functional proteins affects division times, we ran
simulations setting the clustering parameter, kcl , to
values between 0.01 and 0.09. Note that higher kcl
produces a weaker ‘degree of clustering’. E.g., for
kcl = 0.01, there are very few clusters, with each nec-
essarily including many non-functional proteins, while
for kcl = 0.09 the number of clusters is higher, each with
fewer non-functional proteins.

From 1000 independent lineages simulated for
15 × tdiv s (each starting from a single cell), we
extracted the mean increase in the number of cells in the
last 30 minutes of the simulations and the cells’ divi-
sion times. Results are shown in Table 4. Visibly, both
the mean and the standard deviation of the division time

Table 3
Number of cells at the end of the simulation time and mean and
standard deviation of the division time of individual cells in the

various partitioning schemes

Partitioning Mean increase in Mean Standard deviation
Scheme no. of cells at the division of division

last 30 mins of time (m) time (m)
simulation time

Perfect 104.7 114.2 42.6
Pair 107.0 113.7 42.6
Random Size 147.7 105.7 41.9
Preferential 163.5 103.8 41.1
Clustered 189.9 100.6 41.5
All or Nothing 402.9 85.8 36.6

Table 4
Number of cells at the end of the simulation time and mean and
standard deviation of the division time of individual cells in lineages
subject to the clustering partitioning scheme, for different degrees

of clustering (kcl )

kcl Mean increase in no. of cells Mean Std of
at the last 30 mins division division
of simulation time time (m) time (m)

0.01 337.3 89.2 38.7
0.03 189.9 100.6 41.5
0.05 155.6 105.1 42.0
0.07 140.1 107.4 42.1
0.09 131.7 108.8 42.2
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increase with increasing kcl , (i.e. decreasing degree of
clustering). These results confirm that increasing the
degree of asymmetry in partitioning of non-functional
proteins (in this case via clustering) decreases mean
division times. Interestingly, these results agree with
reports that the fusion of protein aggregates supports
population survival in yeast [7].

Next, we tested the effects of preferential polar seg-
regation and partitioning in division of non-functional
proteins produced by the cell (again, inherited proteins
are not affected, remaining at the old pole). For this,
we introduced an additional parameter in the model, so
as to regulate the degree of bias in partitioning, named
‘Bias’, and ran the model for values of Bias from 0 to 1.
For Bias equal to 0.5, new non-functional proteins will
be partitioned unbiasedly and independently between
daughter cells. Also, according to this scheme, e.g.,
for a bias of 0.1, each non-functional protein has a
90% chance to be inherited by the daughter cell inher-
iting the older pole of the mother cell. Finally, note
that since inherited proteins will remain at the old pole
throughout a cell’s life time, divisions will unavoid-
ably introduce asymmetries. Because of this, a Bias of
∼0.7 (and not 0.5) is expected to result in an unbiased
partitioning in division of all non-functional proteins
of the mother cell.

We obtained the mean increase in the number of
cells in the last 30 minutes of the simulations, as well
as the mean and standard deviation of the division
time of the cells from 1000 independent lineages, for
15 × tdiv s. The results are shown in Table 5. First,
the mean number of cells at the end of the simulation
is smallest for a Bias of 0.7, since this leads to more
symmetry in partitioning in division than setting Bias
to 0.5.

Table 5
Number of cells at the end of the simulation time and mean and
standard deviation of the division time of individual cells in lineages
subject to the preferential partitioning scheme, for different degrees

of Bias

Bias Mean increase in no. of Mean Standard deviation
cells at the last 30 mins Division of division

of simulation time time (m) time (m)

0.00 888.2 75.0 31.4
0.10 572.3 80.7 33.9
0.30 238.8 95.4 39.3
0.50 109.1 113.8 42.3
0.70 95.9 118.0 41.6
0.90 217.3 99.2 38.6
1.00 384.9 88.0 35.8

Another interesting observation is the difference
in mean division time between biases towards older
and newer cell poles. In particular, one observes that
cells that bias the partitioning of novel non-functional
proteins towards the older pole, where the inherited
non-functional proteins are located, have faster divi-
sion times. This is because this asymmetry in pole
choice maximizes the asymmetry in the numbers of
non-functional proteins (inherited plus produced) at
the poles.

To validate this further, we loosened the condition
of polar retention of inherited non-functional pro-
teins. For this, we replace the constant ‘Retention’
by a parameter, named ‘R’, which can range from 0
to 1. For R = 1, all inherited non-functional proteins
remain retained at the old pole. Decreasing R increases
the number of inherited proteins that escape the old
pole during a cell’s lifetime. If escaping, they ‘merge’
with the population of newly formed non-functional
proteins at midcell, and then partitioned in division
accordingly. For R = 0, all inherited non-functional
proteins are partitioned following the same scheme
as produced ones, which controlled by the parameter
Bias.

We extracted, as a measure of cell growth rate, the
mean increase in number of cells during the last 30 min
of each simulation for different values of Bias and R.
The results, averaged from 1000 simulations per con-
dition (each 15 × tdiv s long), are shown in Fig. 6. The
mean increase in number of cells is maximized for a
Bias of 0 (which favors the old pole), regardless of the
value of R.

From the above, we conclude that the most advan-
tageous solution for cells is to place all non-functional
proteins, produced and inherited, into the older pole.
Note that, combining a Bias of 1 (all new non-
functional proteins move to the new pole) with an R
of 0 (no inherited protein is retained at the poles), one
attains similar growth rates as for a Bias of 0 (since
all proteins, inherited and produced, will be placed at
the new pole, creating a full bias). However, we do
not expect this latter scheme to be found in nature (at
least, not commonly) since it would likely require an
energy-consuming mechanism to be implemented to
ensure that inherited proteins moved to the newer pole,
while the other option is less energy consuming.

Meanwhile, visible in the inset of Fig. 6, in the
absence of any bias in pole choice by newly produced
proteins, retention of the inherited proteins at the old
pole can, on its own, increase the mean rate of cell
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Fig. 6. Mean number of cells produced during the last 30 minutes
for different biases in preferential partitioning with varying levels
of retention (R). Each simulation started with a single cell and the
results for each parameter set are averaged over 1000 runs. Dotted
line corresponds to a model with R set to 0.0, while dashed line is for
R set to 0.5, and solid line is for R set to 1.0. Inset shows the results
in detail for Bias between 0.35 and 0.65.

division of the population, leading to higher cell num-
bers. In particular, in the present case, we observe an
increase of 10.2% in the number of cells that appear in
the last 30 min when increasing R from 0 to 0.5, and
an increase of 34.1% when increasing R from 0 to 1.

Also visible in the inset are the points at which the
various lines cross. From these, one can observe that
the Bias at which the crossing occurs depends on the
values of R. Visibly, the higher the difference in values
of R of the two models, the higher is the value of Bias
at which these models exhibit equal cell division rates.

3. Conclusion

We explored, in silico, using a stochastic model
and parameter values extracted from measurements
(Table 1), possible selective advantages of different
partitioning schemes of non-functional proteins in E.
coli. Assuming that the accumulation of non-functional
proteins is harmful by decreasing cell division rate,
we observed that increasing the degree of asymmetry
in their partitioning in division increases the overall
division rates of cell lineages.

Relevantly, a source for such asymmetries in E. coli
has been identified. Namely, the nucleoid at midcell
is denser than the cytoplasm [55]. Evidence suggests
that its presence appears to force protein aggregates to
travel to and then remain at the poles, by generating

anisotropies in the borders between nucleoid and cyto-
plasm that favor the motion towards the poles [23].
Cell divisions subsequently introduce asymmetries
between the number of such non-functional proteins
at the old and new poles of the daughter cells, favor-
ing the older pole. The latter was observed to occur to
aggregates of non-functional proteins as well [8, 23,
34, 62].

These observations also inform on the means used
by cells to differentiate between functional and non-
functional proteins. Namely, as the segregation is
based on occlusion, one natural means of differenti-
ation is to aggregate the unwanted, non-functioning
proteins (and only these), into large clusters, thus
ensuring segregation from midcell. Such aggregation
has been observed in live cells, and is likely enhanced
by chaperones such as IbpA [34]. Here, we further
observed that increasing the efficiency of the process
of clustering enhances the generation of asymme-
tries between the numbers of non-functional proteins
at the two poles of a cell. As such, we expect the
cellular mechanisms of detection and aggregation of
non-functional proteins to be under selective pressure
for efficiency.

To further verify that the generation of asymmetries
in non-functional protein numbers across the cell pop-
ulations enhances the mean division rate within cell
lineages, we tested combining retention of inherited
proteins at the old pole with a mechanism able to force
newly formed non-functional proteins to move into the
old pole as well, prior to cell division. In agreement
with the hypothesis, division rates further increased.
However, there is no known mechanism of selective
transport of unwanted protein aggregates to a specific
cell pole (old or new) in E. coli. Also, there is no
evidence for asymmetries in the choice of pole (see
e.g. [23]). It may be that the division rate of E. coli
renders such selective, energy-consuming, transport
mechanism not selectively advantageous.

Finally, we tested the effects of removing the polar
retention mechanism. Overall, the test showed that
this mechanism alone is selectively advantageous, as
expected, given that it is a non-energy consuming
source of functional asymmetries. Interestingly, its
effects could be combined with partitioning schemes
capable of enhancing asymmetries in the number of
non-functional proteins at the old and new pole of the
cells to further enhance the mean rate of cell divisions.

It is worth noting that our model assumes that
the accumulation of damage in cells (in this case,
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non-functional proteins) leads to a gradual increase in
division times, as suggested by previous studies [33,
34, 36, 44, 52]. However, one recent study suggests that
the accumulation of damage leads only to death, rather
than affecting growth rates gradually [57]. In this study,
death occurs when a lethal “factor” in a cell crosses a
threshold. This factor was hypothesized to correspond
to non-functional protein aggregates [57]. We expect
that, using such a model, rather than a change in mean
division times and number of cells at the end of the
simulation time as a function of, e.g., the partitioning
scheme, one would observe only the changes in the
number of cells. These changes should be qualitatively
similar to those reported here for high n, in the number
of cells at the end of the simulation time as a function
of the partitioning scheme, the bias in partitioning and,
the degree of clustering.

There are several means by which non-functional
proteins can interfere with the normal cellular function-
ality. For example, reduced ribosomal fidelity due to
damage accumulation in the protein assembly machin-
ery [3] would not produce functional proteins but
would still waste resources, reducing growth rates [49].
As such, it is not surprising that cells evolved mecha-
nisms to handle non-functional proteins, such as polar
retention [62]. This retention, among other things, pre-
vents these proteins from reaching binding sites in the
DNA, which, in the case of non-functional transcrip-
tion factors, could lead to harmful interference with
normal gene expression dynamics [9].

While E. coli has a morphologically symmetric divi-
sion process, and thus we expect our results to be valid
for other such organisms [1, 2, 4, 15], we also expect
the results to be applicable to species with morpholog-
ically asymmetric division processes, such as budding
yeast [27, 28, 30]. In the case of morphologically asym-
metric divisions, if the daughter cell is smaller (e.g.
in Saccharomyces cerevisiae), non-functional proteins
and other harmful substances should be easily retained
in the mother cell. However, if the daughter cell was to
be larger, transport mechanisms may be required. We
hypothesize that this is one of many factors that has
led to evolutionary processes resulting in the produc-
tion of daughter cells that are smaller than the mother
cells.

In the future, it would be of interest to investigate
sources of asymmetries in eukaryotic cells as their
more complex internal structure and mechanisms may
allow more ingenious means to cope with the effects
of aging, among other.

4. Methods

4.1. Simulator

Simulations were performed by SGNS2 [35], a sim-
ulator of chemical reaction systems whose dynamics
are driven according to the delayed Stochastic Simu-
lation Algorithm [48]. While based on the Stochastic
Simulation Algorithm (SSA) [17], the delayed SSA
differs in that it allows for multi-delayed reaction
events. The main advantage of SGNS2, which was
developed from SGN Sim [46], is that it allows
multi-delayed reactions to be implemented within hier-
archical, interlinked compartments that can be created,
destroyed and divided during the simulation. In cell
divisions, molecules are randomly segregated into the
daughter cells following a specified distribution cor-
responding to one of several partitioning schemes,
applicable on a per-molecule-type basis. As such,
SGNS2 allows easy implementation and simulation of
different models of partitioning of proteins (functional
and/or non-functional) in division.

4.2. Modeling gene expression, cell growth and
division, and long-term spatial distributions
of non-functional proteins

Our model of a ‘cell’ has four main components:
(i) a gene expression mechanism; (ii) a mechanism
of generating non-functional proteins; (iii) a mecha-
nism of cell growth and division, including partitioning
schemes of molecules and effects of non-functional
proteins on the growth rate; and, (iv) a mechanism of
polar retention of non-functional proteins.

The first component, the model gene expression
mechanism, was proposed in [47] and validated in
[65], using measurements of protein production in E.
coli cells with single molecule sensitivity [63]. More
recently, this model, in particular, reactions (1) and
(2), were shown to also capture with accuracy the
in vivo kinetics of RNA production, when measured
with single-molecule sensitivity by MS2-GFP tagging
[29, 42]. This component includes reactions (1)–(5):

ProC
kcc−→ Pro·RNAPC (1)

Pro·RNAPC
koc−→ ProC + RBSC (2)

RBSC
ktr−→ RBSC + PC(normal : τp, σp) (3)
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RBSC
kdrbs−→ ∅ (4)

PC

kdp−→ ∅ (5)

Here, C denotes the index of the cell in which the
reaction is taking place. Reaction (1) models the find-
ing by an RNA polymerase (RNAP) of the transcription
start site (‘Pro’, located in the promoter region) and
the formation of the closed complex (‘Pro·RNAP’).
Reaction (2) models the formation of the open com-
plex, from the closed complex, along with the promoter
escape by the RNAP and the formation of the ribo-
some binding site region of the RNA (‘RBS’). The
time lengths of the closed complex formation and of
the open complex formation are accounted for by the
values set for kcc and koc , respectively [29]. Also,
for simplicity, the RNAP is not explicitly modeled
in the left side of reaction (1), since it is assumed
that the concentration of free RNAP in the cell does
not change significantly during a cell’s lifetime. As
such, its release is not represented in the right side of
reaction (2).

Reaction (3) models the translation of a protein P
along with its folding and activation [65]. These lat-
ter events are accounted for by the delay τP in the
release of the protein. Note that the ribosome is not
explicitly modeled, for the same reason that the RNAP
is not explicitly modeled. Note also that this reac-
tion can initiate as soon as a RBS is formed [39]. As
such, and since our model does not include either tran-
scription or translation elongation at the nucleotide
level, it is not necessary to represent complete RNA
molecules explicitly. Finally, reactions (4) and (5)
model the degradation of RNA (by degradation of its
RBS region) and proteins, respectively, as first-order
events [65].

The second component of the model is responsi-
ble for generating non-functional proteins, ‘Q’, from
functional proteins:

PC
kD−→ QC (6)

According to this model, the fraction of non-
functional proteins in a cell is controlled by the
rate kD [9]. As noted in the introduction, the per-
centage of non-functional proteins in a cell at any
given time is unknown. Since approximately 20% of
formed polypeptides are non-functional and given the
existence of several error-correction mechanisms, we
chose to set kD, the rate at which functional pro-

teins become non-functional, to 1.9 × 10−5 s−1 (see
Table 1), since we observed by inspection that, with this
value, usually 1% to 5% of the proteins will become
non-functional during the lifetime of a cell. Finally,
note that these non-functional proteins, unlike func-
tional ones, do not degrade (as we assume that they
‘survived’ the error correction and subsequent degra-
dation mechanisms).

The third component of the model consists of
cell growth, division and partitioning schemes of
proteins and RNA molecules in division. As such,
this component needs to account for the effects of
non-functional proteins on a cell’s division rate. Divi-
sion and partitioning of cellular components are not
represented in the form of chemical reactions (see
below).

In optimal conditions, the moment of division of
an E. coli cell appears to be strongly correlated with
reaching a specific cell length [12, 13], and there is a
very small variance in cells’ lifetime. The division pro-
cess is therefore considered to be largely deterministic
[31]. As such, we model division as an instantaneous
event that occurs once the cell reaches a specific length.
When a division occurs, the DNA (i.e. the promoter
region, ProC ) is replicated and one copy is placed in
each daughter cell. If the RNAP has formed the closed
complex (i.e. Pro·RNAPC ) at the point of division it
is inherited by the cell with the older pole while the
cell inheriting the newer pole inherits a free promoter.
This arbitrary choice does not affect our conclusions
as it only affects (very mildly) the protein numbers in
each cell.

Meanwhile, RBS and P molecules are partitioned
between the daughter cells according to an unbiased,
independent partitioning scheme (unless stated other-
wise), resulting in a binomial distribution of molecules
inherited by a given daughter cell.

We use reaction (7) to simulate cell growth and
the effect of non-functional proteins on this growth
rate. This reaction controls the quantity ‘cell length’
(denoted lC , where C is the cell ID).

∅
lC×

(
ln(2)
tdiv

)
×f (Q)

−−−−−−−−−→ lC (7)

In reaction (7), the rate constant lC ×
(

In(2)
tdiv

)
(where

tdiv is the division time in the absence of non-
functional proteins) is multiplied by a hill function,
f(Q). This function ranges from 0 to 1 and regulates
the degree to which the optimal growth rate is reduced
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in the presence of non-functional proteins (Equation
(8)):

f (Q) = βn

Qn + βn
(8)

In this equation, β is the number of non-functional
proteins required for f(Q) to equal 0.5 and n is the
exponent of the hill function and will determine the
how quickly f(Q) transitions from high to low as the
number of non-functional proteins increases. Here, we
assume that the length, lC , initially equals 100 (an arbi-
trary value). Division, modeled as an instantaneous
process, is triggered automatically when lC reaches
the value 200. Note that this reaction is such that, in
the absence of non-functional proteins, the cell length
grows exponentially in time [49].

We set the division time of the cells (tdiv ) to match
the empirical mean division times of DH5�-PRO cells
in LB media (∼60 minutes) [29] when f(Q) equals 1
(i.e. no non-functional proteins present). These times
are longer than for other strains (e.g. K12). They were
chosen since most of the other rate constants used were
obtained from measurements in DH5�-PRO. Also, this
rate does not qualitatively affect the results. Namely,
only the time-scale of events is affected.

Finally, to implement the ‘cluster formation’ parti-
tioning scheme (see ‘Effects of different partitioning
schemes’ in the Results section), the model requires
one additional reaction. Clusters form during a cell’s
lifetime according to the following reaction, where the
index C is the cell ID:

∅
lC×

(
ln(2)
tdiv

)
×kcl

−−−−−−−−−→ ClusterC (9)

At division, clusters are partitioned following an
unbiased binomial distribution. The non-functional
proteins are partitioned by assigning each non-
functional protein to one of the partitioned clusters
[26]. All cells begin with Cluster set to 1, which then
increases depending on the rate of kcl . Larger values
for kcl will produce a larger number of clusters in the
cell, and thus a weaker ‘degree of clustering’.

The fourth and final component of the model is a
retention mechanism of non-functional proteins at the
cell poles. Based on previous observations [23, 34],
we assume that non-functional proteins inherited by a
cell will remain retained at the old pole of that cell
during its lifetime, and will be partitioned accord-
ingly in division. Meanwhile, new non-functional
proteins produced during a cell’s lifetime will be

partitioned between the two daughter cells following
the same mechanism used to partition the functional
proteins, namely, the unbiased, independent partition-
ing scheme.

All parameter values, aside from β, along with the
references from which they were extracted, are shown
in Table 1.
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