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Abstract

In recent years, concurrent programming has become more and more important.

Multi-core processors and distributed programming allow the use of real-world par-

allelism for increased computing power. Graphical user interfaces in modern ap-

plications benefit from concurrency which allows them to stay responsive in all

situations. Concurrency support has been added to many programming languages,

libraries and frameworks.

While exceptions are widely used in sequential programming, many concurrent

programming languages and libraries provide little or no support for concurrent

exception handling. This is also true for the C++ programming language, which is

widely used in the industry for system programming, mobile and embedded ap-

plications, as well as high-performance computing, server and traditional desktop

applications. The 2003 version of the C++ standard provides no support for con-

currency, and the new C++11 standard only supports thread-based concurrency in a

shared address space.

Procedure and method calls across address space boundaries require support for

serialisation. Such C++ libraries exist for serialisation of parameters and return val-

ues, but serialisation of exceptions is more complicated. Types of passed exceptions

are not known at compile-time, and the exceptions may be thrown by third-party

code.

Concurrency also complicates exception handling itself. It makes it possible for

several exceptions to be thrown concurrently and end up in the same process. This

scenario is not supported in most current programming languages, especially C++.

This thesis analyses problems in concurrent exception handling and presents

mechanisms for solving them. The solution includes automatic serialisation of

C++ exceptions for RPC, and exception reduction, future groups and compound ex-
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ceptions for concurrent exception handling. The usability and performance of the

mechanisms are measured and discussed using a use case application.

Mechanisms for concurrent exception handling are provided using a library ap-

proach (i.e., without extending the language itself). Template metaprogramming is

used in the solutions to automate mechanisms as much as possible. Solutions to the

problems given in this thesis can be used in other programming languages as well.
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Chapter 1

Introduction

The subject of this thesis is mechanisms for concurrent exception handling and

implementation of those mechanisms using the C++ programming language.

The thesis studies how to combine concurrency and exception handling, us-

ing the C++ language as an implementation platform. This chapter briefly discusses

concurrency, exception handling and implementation of these in C++ so that the con-

tributions can be more easily understood. Chapter 2 discusses these topics in more

detail. This chapter also lists the main contributions of this thesis and presents its

structure.

1.1 Concurrency and asynchrony in programming

languages

In recent years, concurrent programming has become more and more important.

It is increasingly difficult to produce processors with higher clock frequencies, so

increases in computing power are gained by adding more processors or processor

cores operating in parallel. Distributed systems and cloud computing are based

on several concurrently operating computers. Modern end-user applications use

graphical user interfaces which have to stay responsive even if heavy calculations

are carried out at the same time. For these and many other reasons most mainstream

programming languages have concurrency support of some sort.
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The reasons behind the need for concurrency affect the way concurrency is usu-

ally introduced into a programming language. This can clearly be seen from liter-

ature on concurrent and parallel languages [Wilson and Lu, 1996]. If high perform-

ance parallel processing is the goal, then it is important to concentrate on efficient

method dispatching, optimised communication between processes and processors,

load balancing, etc. Since a lot of high-performance computing uses vector or matrix

calculations of some sort, emphasis is often on parallel execution of some operation

on a set of data elements. High-performance computations typically benefit from

quite low-level and fine-grained parallelism since computations consist of a series

of operations performed on a set of data in parallel.

However, if the need for concurrency comes from reactive systems, the situation

is quite different. Efficiency is usually not a prime concern, and all concurrently

running parts of the program may run on the same processor, making it unlikely

that actual performance of the program could be improved by concurrency. How-

ever, in these systems concurrency can greatly help in making the program more

responsive to outside events. The goal in this case is to design a language environ-

ment where the programmer can easily divide the program into several concurrently

running parts, and make these parts communicate with each other as naturally as

possible. This thesis concentrates mainly on these aspects of concurrency although

the performance of solutions is also measured and analysed.

If concurrency is achieved using processes communicating with each other and

with no shared memory, any transferred objects or data structures must be em-

bedded in the message and the objects or data must be re-created on the receiv-

ing end. This is called serialisation or marshalling/unmarshalling. Some languages

like Java provide serialisation as a language feature [Sun Microsystems, Inc., 2006,

java.io.Serializable], but user-defined classes and data structures still may need

their own custom written serialisation routines. Some of the object data can be

outside the objects, but that data is still part of the objects’ logical state and must

be included in serialisation. If a programming language does not offer any support

for serialisation, concurrency libraries must provide their own serialisation support

from scratch. And if exceptions are to be passed between processes with no shared

memory, they have to be serialised as well.

One way to achieve asynchrony is to execute method calls or ordinary function

calls in a different thread than the calling thread, and allow the calling thread to

continue its execution while the method or function is being executed. If the method
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or function has no return value, this scheme can be used transparently in place of an

ordinary method or function call. However, return values are usually available only

after the call has been completed. The caller has already continued its execution, so

the return value cannot be returned as the “value” of the call expression, as usual.

Futures are a mechanism for asynchronous return value passing. They are place-

holders for the return value in the caller. Futures were originally introduced in Mul-

tilisp [Halstead, 1985], but recently support for futures have been added to many

languages, including Java and C++11. When an asynchronous method or function is

called, it immediately returns a future object. When the actual return value is avail-

able at the end of the asynchronous call, it is transferred to this future. The caller

can poll the future to see if a return value is already available, or the caller can wait

for the value to become available. This enables the caller to proceed without waiting

for a call to complete, but still gives it access to the return value later when it be-

comes available. If exceptions are used in a concurrent environment where futures

are used, futures are affected since an exception replaces the normal return value.

1.2 Exception handling

Exception handling is a mechanism for handling program errors and abnormal or

exceptional situations in a structured way. The foundations of modern exception

handling were laid in the 1970s [Goodenough, 1975, Ryder and Soffa, 2003]. Excep-

tional and error situations vary from program to program and domain to domain, so

an exact definition of an “exceptional situation” is difficult. In [Buhr and Mok, 2000]

the authors state that “Substantial research has been done on exceptions but there is

hardly any agreement on what an exception is. Attempts have been made to define

exceptions in terms of errors but an error itself is also ill-defined.”

In modern programming languages, exceptions and exception handling have

largely replaced other methods of signalling about exceptional conditions. How-

ever, combining exception handling and concurrency is not trivial, and this thesis

analyses and tries to solve problems in concurrent exception handling.

When a program detects an exceptional situation, it raises (throws) an exception.

Program execution is then automatically transferred to an appropriate exception

handler, which should know how to handle the situation. The exception handler

is chosen depending on the type of the raised exception. Each exception handler

has its own scope where it is “active”—the handler is considered for receiving the
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exception only if program execution is inside the scope of the handler when an

exception is raised.

Exceptions help in separating the “normal” control flow from the “exceptional”

control flow. Exception handling code is isolated in exception handlers, and the rest

of the code contains the normal execution of the program. With exceptions, return

values can be reserved to return the results of successful execution, and exception

objects are used to return information about an unsuccessful execution.

In object-oriented programming languages exceptions are typically objects, mak-

ing it possible to embed data about the exceptional situation inside the exception

object. This way information can be passed from the raising code to the exception

handler. One of the first languages to use this scheme was ML [Milner et al., 1997].

In object-oriented languages inheritance is used to create hierarchies of classes.

These class hierarchies can be used in exception handling, which allows exception

handlers to accept a group of exceptions polymorphically using base classes in the

hierarchy. This combination of inheritance and exceptions was introduced in C++

[Stroustrup, 1993], and is now widely used in other object-oriented languages like

Java.

New exception types can be created by deriving new exception classes through

inheritance. This is important in this thesis, since it means that exceptions must

always be treated polymorphically and new exceptions classes can be introduced in

third party libraries etc, which are beyond the control of the programmer.

1.3 The C++ programming language

The C++ language is widely used in the industry. Its ability to produce efficient pro-

grams makes it suitable for system programming, mobile and embedded applica-

tions, as well as high-performance computing, server and traditional desktop ap-

plications. In many areas like embedded systems C++ is replacing the C language

because it supports object-oriented programming. On the other hand, at the same

time other object-oriented high-level languages like Java are replacing C++ in applica-

tions where computing power, memory, and performance issues are not a problem.

The current 2003 version of the C++ language [ISO/IEC, 2003] does not provide

any support for concurrency. Concurrency is not mentioned at all in the language

standard, meaning that possible concurrency support depends on the used compiler

and/or operating system services. The new C++11 standard [ISO/IEC, 2012] provides
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basic support for concurrency, but information on that was not available when the

work for this thesis was done. Chapters 7 and 8 contain discussion about C++11 in

more detail.

Exceptions were added to C++ before its standardisation in 1998, and their use in

programs has increased as compiler support for exceptions has improved. Exception

handling in C++ works as explained in Section 1.2. However, although exceptions in

C++ can form hierarchies through inheritance, this is not mandatory. An object of any

class (or even values of primitive types) can be raised (C++ uses the term "thrown")

as exceptions. This means that exceptions in C++ do not form a single inheritance

hierarchy with a single common ancestor.

The C++ language has recently gained popularity in generic and generative pro-

gramming and metaprogramming. The C++ template mechanism is a Turing-complete

metaprogramming platform which allows the creation of compile-time metapro-

grams which can (with restrictions) make decisions by inspecting existing types

and generate new code based on those decisions [Abrahams and Gurtovoy, 2004].

All this happens during compilation with no run-time penalties.

These metaprogramming abilities make C++ an interesting implementation plat-

form, since template libraries can be used to create code which on many other lan-

guages would require extending the language syntax. Many of the mechanisms in

this thesis use template metaprogramming.

1.4 Problem statement

While exceptions are widely used in sequential programming, many concurrent pro-

gramming languages and libraries provide little or no support for concurrent excep-

tion handling. This may be because combining concurrency and exception handling

is not trivial and has several problems. Most of these problems are caused by the

fact that both exception handling and concurrency affect the control flow of the

program, sometimes in ways that are hard to combine.

The C++ language has static typing. Return values (as well as parameters) are

passed by value instead of by reference. As mentioned before, C++ also has no sup-

port for serialisation, so inter-procedural return values have to use custom librar-

ies for marshalling and unmarshalling. In exceptional situations, C++ methods and
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functions may throw an exception of any type.1 This means that despite static typ-

ing, marshalling and unmarshalling exceptions require dynamic and polymorphic

creation of exception objects on the receiver. Several serialisation libraries exist

for C++ [OMG, 2003, Ramey, 2004, Free Software Foundation, Inc., 2004, s11n, 2005],

but their support for serialised exceptions is limited.

In addition to this, an exception thrown from a method or function may be ori-

ginally thrown deeper in the program, possibly by a third-party library. This means

that not only can the exception be of any type, it may also be of a type the program-

mer has no control over and whose code the programmer cannot modify. Passing

these exceptions to another process through serialisation should also be possible.

All this makes serialisation of exceptions more problematic than serialisation of

parameters or return values. Serialisation libraries use explicit library calls to per-

form serialisation, but this requires both knowledge on the type of the exception

(so that it can be passed to the library) and catching the exception so that it can

be passed to the serialisation code. Serialisation in turn requires type-specific mar-

shalling routines which have to be called polymorphically since the exact type of

the exception is not necessarily known.

Asynchrony adds additional problems to concurrent exception handling, and

current programming languages differ in their approach to concurrent exception

handling [Romanovsky and Kienzle, 2001]. Traditional sequential exception hand-

ling ties together the control flow and handling of exceptional conditions because

exceptions automatically transfer execution to an exception handler. Which excep-

tion handlers are enabled in each case depends on where the thread of control in the

program was when the exception was thrown. In a concurrent program, the caller

may already have left the scope of relevant exception handlers when an exception is

received from an asynchronous call. This makes it unclear which exception hand-

lers should be considered for exception handling.

Concurrency also introduces the possibility of several concurrent exceptions, if

the caller is already in the middle of exception handling when another exception is

received from an asynchronous call. Similarly several exceptions can be received

from several asynchronous calls concurrently. These situations do not normally

occur in sequential programs, or they are explicitly forbidden (for C++ this is further

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1In theory C++ has exception specifications which can be used to restrict allowed exceptions to certain types.

However, this is checked only during run-time, and it has problems with generic exception-neutral programming.
For these reasons, exception specifications are declared a deprecated feature in the new C++11. [ISO/IEC, 2012,
§D.4]
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discussed in Section 2.2.3). In distributed systems there has been research on this

topic [Xu et al., 2000].

One possibility for concurrent exception propagation is to tie return values and

exceptions together, i.e. an asynchronous call returns either a value or an exception.

If an exception is returned, it is activated when the returned “value” is accessed.

This approach still contains both the problems discussed earlier, but it adds some

new problems. If thrown exceptions are returned as values, they can also be copied

and passed around. This creates the possibility to duplicate exceptions or to activate

their handling in a different place and at a different time than would otherwise

happen.

The topic of this thesis is concurrent exception handling mechanisms, with em-

phasis on the C++ language. The aim of the thesis is to provide solutions to concur-

rent exception handling problems using a library approach (i.e., without extending

the language itself). The aim is also to provide solutions that can be used directly

with third-party libraries without having to make them concurrency aware. The

solutions should not depend on any specific concurrency library or model (like act-

ive objects) although reference implementation and case studies are implemented

in author’s KC++ system.

Solutions to the problems given in this thesis can be used in other programming

languages, but applicability of the solution mechanisms depends on the concur-

rency and object model of the language, as well as its metaprogramming support.

Applicability of each mechanism to other programming languages is discussed in

each relevant chapter.

Figure 1.1 on the following page gives a summary of concepts that are central to

the problems discussed in this thesis, and it also shows how the concepts relate

to each other. The starting points “concurrency” and “exception” are marked in

yellow, intermediate concepts in orange, and main problem concepts in red and

purple. Arrowheads show the direction in which connections are meant to be read.

1.5 Thesis approach

This thesis describes how exception handling and concurrency can be combined

in the C++ programming language. C++ was chosen because of it is used in high-

performance computing as well as low-power devices, which both benefit from con-
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FIGURE 1.1: Diagram showing thesis problem concepts and their connections

currency and parallelism. The metaprogramming facilities of C++ provide opportun-

ities for implementing many of the introduced mechanisms as a library instead of

writing a custom compiler and extending the language.

Before the C++11 standard the language did not contain any support for concur-

rency. The new standard did not exist when the main work for this thesis was done,

so this thesis uses the concurrent object oriented KC++ system as its implementation

platform to provide basic concurrency.

KC++ is a concurrent library and preprocessor for C++ written by the author. The C++

syntax is not modified, but some additions are made to the semantics to allow con-
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currency. KC++ was introduced in the author’s licentiate thesis [Rintala, 2000]. The

history of the KC++ system began in 1998 during the author’s stay in the King’s College

London under the supervision of Prof. Russel Winder, who had earlier been work-

ing on UC++, another C++-based concurrent programming system [Winder et al., 1996].

The goal was to continue on the path of UC++ but design a new system which would

better integrate into the C++ language. The concurrent exception handling described

in this thesis was developed while working on the KC++ project, so KC++ was chosen

as an implementation platform for the mechanisms.

However, the choice to use KC++ was made only because it allowed case studies

and code examples to be concrete so that they can be compiled, tested and evalu-

ated. The mechanisms presented in this thesis do not depend on the KC++ system, nor

its model of concurrency (active objects). Each main chapter contains discussion on

programming language features the mechanisms depend on and require.

The approach used in this thesis is constructive. The problem area of concur-

rent exception handling is approached by identifying problems and limitations in

sequential exception handling. Then solutions to those problems are designed and

discussed, and those solutions are implemented in the platform used in this thesis,

KC++. Finally real-world applicability and performance of those solutions are tested

by designing and writing a case study application. The case study includes discus-

sion on the suitability of the mechanisms presented in this thesis as well as tests

to measure the performance impact the mechanisms have on exception handling in

the case study.

KC++ embeds concurrency features into the C++ language as naturally as possible,

so that programmers can utilise them using conventional programming techniques

and idioms. The goal has also been to make sure that concurrency features do not

needlessly restrict the use of other language features.

Concurrency in KC++ is achieved through futures and active objects which are

described in Chapter 2. Active objects are one way to express concurrency in an

object-oriented environment [Lavender and Schmidt, 1995]. An active object is an

object with its own thread of execution. This is used to execute methods of the

object. Other threads calling a method on the object just request that method to be

executed in the thread of the active object. In some approaches, an active object may

create a new concurrent thread for each method call, allowing concurrency inside

the active object.
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The mechanisms described in this thesis have been implemented as a conven-

tional C++ library rather than as a language extension. This makes it easier to im-

plement the mechanisms in other concurrent C++ environments. It is also in line

with the design principles of C++, where library components are preferred instead

of core language extensions [Stroustrup, 2007, §8.1]. Template metaprogramming

and other C++ techniques are used to compensate for the lack of run-time reflection

capabilities in C++ and to make using KC++ as straightforward as possible.

Although KC++ is targeted towards areas where program speed is not the most im-

portant criteria, it is still important that the mechanisms described in this thesis can

be implemented efficiently enough, so that the higher-level concurrency constructs

do not add an unacceptable overhead to program execution. For this purpose a

working prototype of the KC++ system has been constructed and measurements have

been taken to estimate the overhead caused by concurrent exception handling.

It should be emphasised that high-level concurrency features are often slower

than low-level small-grain mechanisms. Parallel performance of a system also de-

pends much on how the system internally handles message passing, load-balancing

and other mechanisms which are hidden from the programmer using the system.

Therefore it was not regarded reasonable to experiment with performance tests

against other concurrent C++-based systems.

To get a perspective of concurrent exception handling in practise, this thesis in-

cludes a concurrent exception-aware implementation of the Observer design pattern

[Gamma et al., 1996, Ch. 5] as a case study. This implementation is used to discuss

problems relating to concurrent exception handling in applications.

Even though the mechanisms in this thesis are currently implemented on the

KC++ platform, they are not restricted to that platform. As the mechanisms are library

based, they could be implemented on many other concurrent C++ systems as well.

The ideas and mechanisms could also be used in other languages, but that depends

on the concurrency and object model and metaprogramming support provided by

the language.

Figure 1.2 on the next page shows a concept map expanded from Figure 1.1, de-

scribing concepts related to the contributions and their connections to the problem

concepts. Colours and connections are as in Figure 1.1.
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FIGURE 1.2: Concepts related to the thesis, with connections
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1.6 Contributions

The main contributions of the thesis are as follows:

• Automated serialisation of RPC exceptions. This thesis shows how exceptions

can be propagated among processes with no shared memory. This includes dy-

namic creation of exception objects on the receiving end using an exception

factory as well as mapping of non-RPC capable exceptions to their RPC cap-

able counterparts. This is automated using template metaprogramming and

can be done without modifying existing exception classes, making it usable

with third party libraries. The approach can be implemented as a library with

no language extensions. Parts of these contributions have been published in

[Rintala, 2007].

• Handling and reduction of multiple concurrent exceptions. Mechanisms are

provided for handling concurrently raised exceptions. These include com-

pound exceptions for grouping such exceptions together, future groups for

synchronising with such exceptions, and reduction functions for analysing

and reducing a group of exceptions. These mechanisms are originally pub-

lished in [Rintala, 2006]. In addition to this, this thesis also discusses meta-

programming based combinators which allow building reduction functions

from ready-made parts, and reduction by folding exceptions together based on

inheritance hierarchies.

• A case study and performance analysis. The concurrent exception handling

mechanisms are used to write a concurrent implementation of the Observer

design pattern, which in turn is used to implement a case study application.

This case study is used to discuss and evaluate concurrent exception handling

using mechanisms presented in this thesis. Performance of the mechanisms

is then measured and analysed using the application. Also the low-level per-

formance of the RPC exception passing mechanism is measured and discussed.
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1.7 Structure of the thesis

The structure of this thesis is the following:

• Chapter 2 contains necessary background information. It gives an overview on

concurrency, futures, C++ exception handling, and C++ template metaprogram-

ming.

• Chapter 3 covers asynchrony, futures, and active objects in the KC++ system that

was used as a platform for the main contributions of this thesis. This chapter

contains information needed to understand the platform on which the case

studies are built.

• Chapter 4 addresses problems related to propagating C++ exceptions among

processes running in separate address spaces. This chapter also introduces

the structure of RPC exception hierarchies and mapping of non-RPC excep-

tions to their RPC counterparts. This chapter is based on a published article

“Exceptions in remote procedure calls using C++ template metaprogramming”

[Rintala, 2007].

• Chapter 5 describes how concurrent exception handling can be implemented,

including the implications of multiple concurrent exceptions. The chapter

also describes mechanisms to help the programmer with concurrent exception

handling and exception reduction. This chapter is based on a paper “Handling

Multiple Concurrent Exceptions in C++ Using Futures” [Rintala, 2006].

• Chapter 6 contains a case study implemented using the KC++ system and its

evaluation. The chapter also provides measurements for determining how the

mechanisms of this thesis affect program performance.

• Chapter 7 presents relevant related work by others. It also discusses how new

features of the new C++11 standard affect the contributions of this thesis.

• Chapter 8 concludes this thesis by summing up the experiences learned from

KC++. It also discusses some future directions for further development of the

ideas described in this thesis.

A proof-of-concept implementation exists for mechanisms and the case study

presented in this thesis. Relevant parts of them are included in the thesis as code
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listings, but because of size constraints all source code is not included. A hyper-

linked browsable version of the source code is available on the net, and links to it

are provided in relevant chapters.
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Chapter 2

Background information

This chapter contains background information necessary to understand contribu-

tions of this thesis. Basic concepts of concurrency, asynchrony, active objects, ex-

ception handling, and template metaprogramming are presented (template metapro-

gramming is used in the mechanisms of this thesis).

The reader is expected to have basic knowledge on exception handling, and

some experience with the C++ language. Deeper knowledge of concurrency, excep-

tion handling, metaprogramming, or details of C++ implementation is not required,

necessary information on these topics is given in this chapter.

2.1 Concurrency

Concurrency has been an important topic in computer science for decades, but its

importance has grown even more in the past few years. Multicore CPUs are now

mainstream even in laptops and home workstations, and applications like photo

and video processing require and increasing amount of processing power.

It is common practise to use the word “parallelism” to refer to several processors

executing a program at the same time. The word “concurrency” in turn means

that several tasks are in execution at the same time, even if only one processor

is present and only one task proceeds at any time [Andrews, 1991]. Thus parallel-

ism always includes concurrency but concurrency is possible without parallelism.

Some sources however use words “parallelism” and “concurrency” interchangeably
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[Magee and Kramer, 1999] (sometimes terms “true parallelism” or “hardware paral-

lelism” is then used to refer to parallelism using several physical processors).

A concurrent program consists of several concurrently executing threads of ex-

ecution. In order to benefit from concurrency, these threads often execute most of

the time independently, in asynchronous fashion. A program may also contain syn-

chronisation points where two or more concurrently executing threads wait for each

other. One common purpose for synchronisation is to transfer information from one

thread of execution to another.

Concurrent threads of execution may share a common address space and use

common data structures, in which case they are usually referred to as threads. Al-

ternatively, they can each execute in their own address space, in which case they are

commonly called processes. In the first case information can be exchanged between

threads using shared data structures. In the second case processes have to use al-

ternative methods like message passing to communicate with each other.

If concurrent processes do not have shared memory, any objects and data passed

between the processes must be transmitted using message passing or some other

mechanism. The sender marshals the object into a series of bytes. Those bytes are

transmitted to another process, which then unmarshals those bytes, creating a copy

of the original object. Since this serialisation must include all data logically belong-

ing to the object, the serialisation of user-defined objects requires that programmer

somehow indicates which data must be included in serialisation.

In the simplest form this can be achieved with user-defined marshalling and

unmarshalling functions or methods. These perform the mapping from an object to

a data stream and back. From an object-oriented viewpoint, marshalling methods

belonging to the object to be serialised would be logical. However, if marshalling

has to be added to a third-party class, separate marshalling functions allows doing

this without modifying the class itself.

When concurrency is introduced into object-oriented programming, it is quite

natural to attempt to merge it with objects — after all, object-oriented program-

ming is about objects. This leads to the concept of active objects. Active objects

are objects whose methods are executed concurrently with the rest of the program.

The idea of active objects is common enough to be classified as a design pattern

[Lavender and Schmidt, 1995].

Object level is not suitable for very low-level concurrency. For example, it is

not reasonable to model individual machine code instructions etc. as “objects” and
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try to execute them in parallel. However, object level is quite usable in high-level

concurrency. Encapsulation isolated objects from the rest of the program, and this

encapsulation makes it possible to put the internals of an object in its own address

space — on another processor with its own memory or even a remote machine.

At the same time, encapsulation enforces the idea of strict interfaces as the only

way to use an object. These interfaces provide a natural way of communicating

between two concurrently running parts of a program. This kind of encapsulation

resembles Hoare’s monitors [Hoare, 1974]. It should be noted, however, that the

active object approach is not the only possibility, but concurrency can be introduced

as a mechanism completely independent of objects.

In a concurrent environment, especially with active objects, asynchrony is inher-

ent. When a method of an active object is called, the caller continues its execution,

while the active object begins executing the method. If later the caller needs to

know that the method has been completed, some sort of synchronisation mechan-

ism is needed. Several such mechanisms exist, ranging from low-level semaphores

[Dijkstra, 2002] and barriers [Jordan, 1978] to condition variables inside monitors

[Hoare, 1974], rendez-vous in Ada [Ada, 1995, §9.5.2(25)], and other higher level

constructs.

In addition to knowing that a method has been completed, there is often inform-

ation to be passed back from the method to the caller. This information can be a

traditional return value or a two-way “in-out” parameter (a reference parameter in

C++). Futures [Halstead, 1985] are one way for the caller to have placeholders for

values that will become available later when the method has been completed. Fu-

tures can be copied, assigned to each other and passed around without having to

wait for their eventual value. When the value becomes available, it is automatically

propagated everywhere the future was copied.

In this thesis, the KC++ language [Rintala, 2000] uses futures as value passing

mechanism. Futures can also be used as a synchronisation mechanism in methods

with no return value.

It should be noted that asynchrony can be achieved even without concurrency.

For example, in lazy evaluation expression are evaluated and functions are executed

only when and if their value is needed. This behaviour is similar to non-hardware

concurrency in that function execution does not happen immediately when it is

called, but is executed later (in fact, futures in the C++11 standard can be used both

for concurrent and lazy execution). Exception handling causes problems in lazy

evaluation also, but they are out of the scope of this thesis.
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2.2 Exception handling

Programmers have always had to prepare for exceptional situations like invalid in-

puts, timeouts, I/O errors, running out of memory or even error situations caused by

bugs in the program. In early programming languages the program logic for report-

ing and responding to these situations was written using special return values, error

codes, global error flags, etc. However, this was error prone and impaired readability

of programs. For these reasons programming languages started to provide structures

for handling exceptional situations.

Exception handling is a mechanism for handling control flow in exceptional situ-

ations and it has become widespread in modern programming languages. One of

the first papers to describe and analyse exception handling was written in 1975 by

John B. Goodenough [Goodenough, 1975]. Exception handling began in languages

like PL/I, Mesa, and CLU, and was later adopted to languages like Ada, Smalltalk,

Modula-3, C++, and Java.

2.2.1 Exception handling in C++

Exception handling in C++ resembles exception handling in Ada and Java (which got

its exception handling partly from C++). C++ exceptions are objects (or values) which

are thrown in code where the exceptional situation is detected. An exception in C++

can be of any type, i.e. an object, a primitive type, a pointer, etc. In practise, usually

only objects are thrown, and these objects belong to exception classes specifically

written to model exceptional situations that may happen in the program. The act of

throwing the exception may copy it, because the lifetime of the original object may

end before exception handling is complete. The compiler is also allowed to optimise

away copying. Listing 2.1 on the facing page shows an example of C++ exception

handling, where an object of user-defined class MyException is thrown on line 7.

After the exception has been thrown, an appropriate exception handler—a catch

block—is searched by matching the type of the thrown exception object to the para-

meters of the catch clauses active at the time. Each catch block in the program is

eligible only if program execution has entered and not yet left the try block asso-

ciated with the catch block. If several catch blocks match the thrown exception,

the one with most recently entered try block is chosen. Program execution is then

transferred to the exception handler in the catch block. Listing 2.1 contains a catch

block on lines 9–12 and its try block on lines 5–8.
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1 class MyException { /* . . . */ };
2

3 void f()
4 {
5 try
6 {

...
7 if (condition) { throw MyException(); }

...
8 }
9 catch(const MyException& exp)

10 {
11 // Exception handling
12 }
13 }

LISTING 2.1: Example of C++ exception handling

At the end of the handler, the exception is considered handled, the copy of the

exception object is destroyed, and program execution continues from the code after

the try-catch compound containing the exception handler. Alternatively, the excep-

tion handler may throw another exception or re-throw the current exception. In both

these cases exception handling is restarted. In the case of re-thrown exceptions, ex-

ception handling continues as if the exception object was originally thrown from

the exception handler re-throwing it. In Listing 2.1 the copy of the exception object

thrown on line 7 (and referred to by reference exp in the catch block) is destroyed

on line 12.

When a matching exception handler is searched for, inheritance hierarchies and

the polymorphic type of the thrown exception are taken into account. This means

that a catch block whose parameter is a base class of the thrown exception is a

match. According to Bjarne Stroustrup, C++ took the idea of exception hierarchies

from the ML language [Stroustrup, 1994, p. 387]. Exception hierarchies allow pro-

grammers to choose the level of abstraction appropriate for each exception handler.

2.2.2 Special features of C++ exception handling

C++ does not require exception classes to form a single inheritance hierarchy (al-

though the C++ standard library provides a small exception hierarchy it uses itself).

However, C++ defines a special “ellipsis” catch block catch(.. .), which matches any

thrown exception, and can be used to catch all thrown exceptions.
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If no handler matches a thrown exception, C++ library function terminate() is

called and program execution is aborted. A program can register its own termination

handler, but even then program execution must be aborted.

When an exception is thrown and program execution is transferred to the ap-

propriate catch block, lifetimes of stack-based local objects may end. This includes

local objects declared in the try block associated with the catch block, and any func-

tions and blocks entered from that try block. C++ guarantees that all these local ob-

jects are destroyed before the catch block is entered. This is called stack unwinding,

and it includes executing the destructors of objects that are destroyed.

In many programming languages normal program execution is interrupted when

an exception is thrown, and is resumed in the exception handler when the exception

is caught. No user code can be executed between these two points. C++ destructors

make an exception (sic) to this rule. When an exception is thrown, stack unwinding

is performed while the exception is “in transit”.1 This causes limitations on excep-

tion handling in destructors (these limitations are discussed in the next section).

C++ standard library provides a way to detect whether stack unwinding is in pro-

gress. Function uncaught exception() returns true, if an exception has been thrown

but not yet caught [ISO/IEC, 2003, §18.6.4]. In theory this could be used to detect

if it is safe to throw an exception from a destructor. However, in practise usefulness

of this function is questionable. The reasons for this are also discussed in the next

section.

Current C++ compilers are able to implement exception handling so that its im-

pact on program performance is zero when no exceptions occur. This means that no

run-time bookkeeping is needed to record the location of try and catch blocks. Only

when an exception is thrown, exception handling code analyses return addresses

stored on the stack. It uses compile-time lookup tables to find candidates for excep-

tion handlers and then tries to find a match for the type of the thrown exception. A

detailed explanation of these mechanisms can be found in [ISO/IEC WG21, 2006].

One result of the zero-overhead strategy is that when an exception is thrown, ex-

ception handling is a relatively costly operation in C++. This is empirically verified

in Chapter 6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1Java also allows executing user code between throwing an exception and entering the catch block. In Java

this happens by associating try blocks with “finally” blocks which are always executed even if the try block is
exited because of an exception.
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2.2.3 Limitations in C++ exception handling

Many of the special features presented in the previous section cause also limitations

in C++ exception handling. This section discusses limitations which have impact on

the mechanisms introduced in this thesis.

Lack of single exception hierarchy

The C++ language does not force exception classes to form a single inheritance hier-

archy. The C++ standard library does provide a class called exception and a small

hierarchy derived from it, but the language itself does not force programmers to use

it. Any object can be thrown regardless of whether it is a part of an inheritance hier-

archy or not. In fact, even primitive types like integers or pointers may be thrown

although that would normally be considered poor programming style.

The lack of a single exception hierarchy has one severe drawback. It means that

there is no general way to polymorphically refer to an arbitrary exception (which

would be possible by having a pointer to the top of a single hierarchy). C++ allows

the programmer to catch any exception using special syntax catch(.. .) (where

ellipsis . . . is part of the syntax), but such handler has no exception parameter, it

has no access to the thrown exception object itself.

The lack of a common base class for exceptions makes it also impossible to create

a general container for stored exceptions or to pass any exception as a parameter to

a function, etc. All these can be achieved if the program itself provides a single ex-

ception hierarchy, but exceptions originating from libraries and third party modules

are still a problem.

Copying exceptions

When an exception is thrown, the original exception is automatically copied so that

the language run-time can control the lifetime of the exception (copying can be

elided by optimisation). This copying is necessary, but it causes some drawbacks

and limitations as well.

One limitation is that the programmer has no control over the lifetime of the

copied exception object. It is created by the throw statement and destroyed when the

catch handler is exited. The catch handler may also re-throw the exception object

with syntax throw;, in which case the lifetime of the exception object continues and

the next suitable catch handler is searched for.
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If the exception object should be stored for later in the catch handler, the original

exception object cannot be used because of its limited lifetime. The only option is

to copy the exception object. If the type of the parameter in the handler is the same

as the real type of the exception object, copying poses no problems. However, if

the catch handler caught the exception using a base class reference, C++ provides

no way to copy the object based on its dynamic type. This means that if copying

is attempted, a sliced copy may result. (Slicing happens when an object is copied

using static typing, and the type of the copy is a base class of the original object.

The result of slicing is a copy of only base class part of the original object.)

Throwing a stored exception object would pose another problem. When an ex-

ception is thrown, automatic copying of the object is also based on static typing. If

and when stored exceptions are handled using base class pointers and references,

this would again cause slicing.

Exceptions and destructors

When an exception is thrown, stack unwinding leaves scopes and destroys objects

whose lifetime ends, executing their destructors. This means that user code may be

executed after throwing an exception but before entering a catch block. This ability

has some side effects that are discussed in this section.

When a destructor is called during stack unwinding, execution of user code cre-

ates a possibility to throw additional exceptions. The C++ standard specifies that

this is allowed as long as those exceptions are handled in the destructor, i.e. the

destructor exits normally and not via an exception. In essence, this means that nes-

ted exception handling is supported, but two exceptions are not allowed to exist

on the same level of exception handling.2 If this rule is violated, library function

terminate() is called, which in turn terminates program execution [ISO/IEC, 2003,

§15.5.1].

In practise this means that that destructors should not end their execution with

an exception, either by throwing or by not handling exceptions thrown by functions

called in the destructor. This behaviour is required by the C++ standard library and is

warned about in many C++ books and style guides [Meyers, 1996, Stroustrup, 2000,

Sutter, 2000].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2In comparison, Java specifies that if an exception is thrown in a “finally” block, it replaces the original

exception which is silently discarded. [Gosling et al., 2005, §14.20.2].
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In theory C++ provides a way to detect whether it is safe to throw an exception

from a destructor. C++ standard library function uncaught exception() returns true,

if an exception has been thrown, but an appropriate catch block has not yet been

entered. If it returns false, no exceptions are active.

The problem with uncaught exception() is that it may be safe to throw an ex-

ception from a destructor even if the function returns true. Even if stack unwinding

is in progress, it is possible that the destructor being executed has its own exception

handlers which are able to handle the thrown exception to completion, in which

case no exceptions escape the destructor. In other words, when checking whether

throwing is possible, uncaught exception() gives a false negative in some cases.

Herb Sutter discusses problems with uncaught exception() in More Exceptional

C++ [Sutter, 2001, Item 19]. If a destructor should throw, but cannot do so due

to an already thrown exception, it is difficult to find a suitable alternative action.

Even if such alternative action was found, it would mean that the program had to

handle two errors instead of one. For this reason style guides usually recommend

destructors which always return normally without throwing an exception. Use of

uncaught exception() is also discussed in [Henney, 2002].

If an exception has been thrown, and a destructor is executed during stack un-

winding, C++ provides no way to access the exception object in the destructor. This

means that the destructor has no information about the type of the exception, mak-

ing it even more difficult to decide what to do when throwing another exception is

no longer an option.

Exceptions and concurrency

C++ provides no support for serialisation of objects. If exception objects should be

copied from one process to another (or even one machine to another), serialisa-

tion code and infrastructure must be provided by the programmer. This is done in

Chapter 4 in this thesis.

Similarly since current C++ provides no support for concurrency, it provides no

support for concurrent exception handling either. All necessary mechanisms must

be written from scratch, and even then limitations in the C++ exception handling

make concurrent exception handling challenging. This is the topic of Chapter 5.
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2.3 C++ template metaprogramming

Templates have made C++ a popular language for generic programming. Templates

allow writing generic libraries which work with user-defined types. The C++ standard

library is heavily based on templates (especially containers and algorithms in the

STL library).

After templates had been introduced to the language, it became apparent that

their expressive power was beyond simple type replacement. Template specialisa-

tion makes it possible to use templates as a Turing-complete functional compile-

time programming language [Veldhuizen, 2003], allowing limited computation and

adaptation during compilation. These template metaprogramming techniques have

been under active study and development during the past few years [Järvi, 2000,

Alexandrescu, 2001, Abrahams and Gurtovoy, 2004].

2.3.1 Template instantiation and specialisation

C++ templates are a compile-time facility allowing creation of parametrised classes,

structs and functions. Template parameters are either types or compile-time con-

stants. For class and struct templates, the template is instantiated by providing the

template with appropriate parameters. The result of instantiation is a new type (a

class or struct). Function templates are instantiated by calling them, in which case

the compiler deduces template parameters from types of actual parameters used in

the call (they can also be given explicitly). The result is a function, which is sub-

sequently called.

Template code is not fully compiled until it is instantiated. Full syntactic cor-

rectness of a template is checked only during instantiation, since the values of type

parameters are not known beforehand. Even before instantiation, the compiler is

required to ensure that the template can be parsed properly, and that code not de-

pending on template parameters is syntactically correct.

Class templates use lazy instantiation. When a class or struct template is instan-

tiated, its member functions are not instantiated unless they are used. This helps

keeping the amount of produced machine code down. It also means that individual

members of a class template can have additional requirements on the template para-

meters, and these requirements are checked only if the member itself is used and

instantiated.
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Most C++ metaprogramming techniques are based on template specialisation. In

addition to its definition, each C++ class template may have an arbitrary number of

template specialisations, which are used instead of the main template definition for

certain values of template parameters. The template for which specialisations are

provided is called the primary template of those specialisations.

Explicit specialisations provide an alternative definition for the primary template

for specific values of template parameters, i.e. a specialisation is chosen instead

of the primary template if the provided template parameters match the paramet-

ers given in the specialisation. Listing 2.2 shows an example of explicit template

specialisation.

Partial specialisation matches a set of template parameters by defining type pat-

terns which the actual template parameters must match. These patterns are formed

by defining new template parameters and using these to specify matching parameter

values. Listing 2.3 on the following page shows two examples of partial template

specialisation.

Lines 1–6 contain the primary template which is used by default. Lines 7–11

provide a partial template which is used if the type parameters are same. This is

accomplished by introducing a new type parameter T and using pattern <T, T> to

define that both parameters of the template have to be the same.

Similarly lines 12–17 define a partial specialisation used when the first para-

meter is int and the second is a pointer. When the template is instantiated with

such parameters, template type deduction is used to find a suitable value for type

parameter T so that the pattern in the specialisation matches.

1 template <typename T> // Primary template
2 struct X
3 {
4 T a;
5 };
6

7 template <>

8 struct X<int> // Explicit specialisation for int
9 {

10 long int a;
11 };
12 X<double> x1; // Instantiates primary template
13 X<int> x2; // Uses explicit specialisation

LISTING 2.2: Example of explicit template specialisation
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1 template <typename T1, typename T2> // Primary template
2 struct X
3 {
4 T1 a;
5 T2 b;
6 };
7 template <typename T> // Partial specialisation: both parameters are the same
8 struct X<T, T>
9 {

10 T ab[2];
11 };
12 template <typename T> // Partial specialisation: first parameter is int and
13 struct X<int, T*> // second parameter is a pointer
14 {
15 long int a;
16 T const * b;
17 };

LISTING 2.3: Example of partial template specialisation

If template parameters in an instantiation match an explicit specialisation, that

specialisation is used instead of the primary template. Similarly, if template para-

meters in a partial specialisation can be chosen so that the partial specialisation

matches the given template parameters, that partial specialisation is chosen. If

more than one specialisation matches the given template parameters, the C++ stand-

ard provides partial ordering rules for specialisations [ISO/IEC, 2003, §14.5.4.2]. If

one specialisation is strictly a better match than others, it is chosen. Otherwise the

compiler reports the ambiguity with an error message.

2.3.2 Writing metafunctions using template specialisation

A metafunction is a program construct which operates on program code—types,

functions, etc. [Czarnecki and Eisenecker, 2000, Ch. 10]. C++ templates allow cre-

ation of compile-time metafunctions which take types or compile-time constants as

parameters and produce types or compile-time constants as results. This allows

automatic generation and selection of types based on other types in the program.

C++ templates can be used to write compile-time metafunctions by writing class

templates (or struct templates) whose contents are calculated from the template

parameters. Types are “returned” from a template metafunction by member typedefs

(a typedef called type is often used by convention). Similarly enums with specified

numeric values can be used to return compile-time constants. Since each result is
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a named type or enum inside the template, several results can be provided by the

same template metafunction.

Template specialisation provides a way to implement compile-time selection:

during template instantiation an appropriate specialisation (or the primary tem-

plate) is selected based on template parameters. Each specialisation can produce

its result differently, and the primary template acts as a “default” clause if no spe-

cialisation matches. Listing 2.4 shows a metafunction that can be used to convert

signed types to unsigned and vice versa.

This simple metafunction consists completely of template specialisations. The

primary template (lines 2–3) is just a declaration without definition. Then a spe-

cialisation is written for each possible value of the type parameter, and these spe-

cialisations provide the return values of the metafunction as typedefs. Lines 5–10

define results for int, lines 12–17 for unsigned short int etc. Finally line 22 shows

1 // Empty generic case (compiler error if used)
2 template<typename T>
3 struct SignConvert;
4 // Specialisation for int
5 template<>

6 struct SignConvert<int>
7 {
8 typedef int signed type;
9 typedef unsigned int unsigned type;

10 };
11 // Specialisation for unsigned int
12 template<>

13 struct SignConvert<unsigned short int>
14 {
15 typedef short int signed type;
16 typedef unsigned short int unsigned type;
17 };

...
18

19 // Example: Function always returns a signed type
20 // Metafunction is used to calculate return type
21 template<typename T>
22 typename SignConvert<T>::signed type minus(T a, T b)
23 {
24 return a-b;
25 }

LISTING 2.4: A template metafunction doing compile-time selection
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how the metafunction is called to calculate the return type of a function template.3

If the template metafunction is instantiated with a type for which no specialisation

exists, the primary template is selected and a compiler error is given for a missing

definition.

Partial template specialisation makes it possible to write a metafunction which

selects from two given types depending on a given condition. Listing 2.5 contains

a template MetaIf which returns its first type parameter if a compile-time condition

is true, otherwise it returns the second type parameter. It also contains an example

which shows how template metafunctions can be used in practise.

Partial specialisation uses the same type matching as function templates to de-

duce its template parameters. Thus it can be used to match only to a certain pattern

of types. Similarly, templates can instantiate themselves with different parameters,

allowing recursion. This makes templates powerful enough to perform arbitrary

compile-time computations.

Listing 2.6 on the next page shows a metafunction which strips any sequence of

pointer indirections from a type. In the example, the primary template (lines 2–6)

just returns its template parameter as a typedef. Partial specialisation on lines 9–13

is used for pointers. When this partial specialisation is chosen, pattern Pointee* is

matched to the pointer type used in instantiation. This causes Pointee to become

the type the pointer type points to. The specialisation then invokes RemovePointers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3The typename keyword in front of the template instantiation is required to tell the compiler that signed type

denotes a type. This info is needed to parse the code correctly before the template is instantiated.

1 // Generic case for true
2 template<bool condition, typename TrueType, typename FalseType>
3 struct MetaIf
4 {
5 typedef TrueType type;
6 };
7 // Partial specialisation for false
8 template<typename TrueType, typename FalseType>
9 struct MetaIf<false, TrueType, FalseType>

10 {
11 typedef FalseType type;
12 };
13

14 // Example: select int if it is at least 32 bits, otherwise long
15 typedef MetaIf<sizeof(int) >= 4, int, long>::type IntLeast32;

LISTING 2.5: A metafunction selecting from two types
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1 // Generic case, return the type parameter directly
2 template <typename T>
3 struct RemovePointers
4 {
5 typedef T type;
6 };
7

8 // Partial specialisation: recursive case if type is a pointer
9 template<typename Pointee>

10 struct RemovePointers<Pointee*>
11 {
12 typedef typename RemovePointers<Pointee>::type type;
13 };
14

15 // Partial specialisation: recursive case if type is a const pointer
16 template<typename Pointee>
17 struct RemovePointers<Pointee* const>
18 {
19 typedef typename RemovePointers<Pointee>::type type;
20 };
21

22 // Example:
23 RemovePointers<int * const * *>::type imIntVariable;

LISTING 2.6: A recursive metafunction returning pointee

recursively, stripping away further pointers, if any. On lines 16–20 another partial

specialisation is used to match const pointers.

Function templates participate in normal overload resolution together with nor-

mal functions. For a particular function call, a function template is only considered

if its template parameters can be deduced from the call and if this results in a syn-

tactically valid function signature. If either of these conditions fail, overload resolu-

tion proceeds without considering the template. This Substitution Failure Is Not An

Error (SFINAE) [Vandevoorde and Josuttis, 2003, p. 106] property of function tem-

plates is very useful, because an arbitrary compile-time computation can be placed

in the return type or parameter list of a function template, and that computation can

decide whether a function template can be instantiated for particular type paramet-

ers.

The SFINAE technique allows creation of C++ template metafunctions which

make selections based on the existence of other functions, types, or variables. For

example, a class template may use a different specialisation if its type parameter

does not provide a certain member function. It can also be used to detect whether a

class is derived from another class.



30 Chapter 2. Background information

2.3.3 Existing template metaprogramming support libraries

Since the power of C++ template metaprogramming became widely known, generic

programming and metaprogramming in C++ have become increasingly popular. Many

libraries based on template metaprogramming have appeared [Veldhuizen, 1998,

Veldhuizen, 2000, Alexandrescu, 2001, Landry, 2003, de Guzman and Kaiser, 2011],

as well as metaprogramming libraries aimed at making template metaprogramming

easier and syntactically clearer [Abrahams and Gurtovoy, 2004] (since C++ templates

were not actually meant for metaprogramming, template metaprograms are often

difficult to write, read and debug).

The C++ standard itself does not provide much support for metaprogramming,

since metaprogramming was fairly new at the time of standardisation. However, the

first library draft extension TR1 [ISO/IEC JTC1/SC22, 2006] already contains some

metaprogramming facilities. They are simple metafunctions to query properties of

types and to transform types in trivial ways. The new C++11 standard provides all

metafunctions of TR1 with some additions, like compile-time rational arithmetic.

Currently probably the largest and most well-known metaprogramming support

library is Boost Metaprogramming Library MPL [Gurtovoy and Abrahams, 2004]. It

provides library components for syntactically cleaner metaprogramming, for ex-

ample for type selection and compile-time arithmetic. It also contains compile-

time containers, iterators, and algorithms which operate on types instead of values.

Since MPL was written after the work on this thesis had already begun, metafunc-

tions used in this thesis do not use MPL facilities. However, use of MPL would have

helped if it had been available at the time.

2.3.4 Limitations of template metaprogramming

Despite its usefulness, C++ template metaprogramming has many limitations and

problems which limit its use or make template metaprogramming harder. Some

of these limitations affect the mechanisms presented in this thesis.

Since C++ templates were not originally meant for metaprogramming, template

syntax is not particularly suited for writing metafunctions. Metafunctions are writ-

ten as classes with specialisations, so the contents of the metafunction are spread

to several places in the code. Since the return values of metafunctions are typedefs

named by convention, code readability suffers easily. This situation can somewhat

be improved by using metaprogramming libraries like Boost MPL.



2.3. C++ template metaprogramming 31

One clear limitation of C++ template metaprogramming is that it is strictly a

compile-time mechanism, so it is of no direct use for run-time reflection or meta-

programming. Currently typeid is the only run-time reflection-related mechanism

in C++. However, it is possible to build some run-time mechanisms by combining the

use of templates and dynamic binding.

Another limitation in template metaprogramming is that it allows creation of

other types and querying properties of existing types (like the existence of a member

function with a given signature), but there is no way to iterate through members of a

class or struct (like in Java using its Reflection API). Similarly it is possible to check

if a class is derived from another class, but there is no mechanism to iterate over all

base classes of a given class. This limits usefulness of template metaprogramming

for reflection, since it is not possible to navigate inheritance trees, create proxy

classes with the same interface as another class, etc. Some of these limitations are

discussed later in this thesis and workarounds for the limitations are presented.

Some metaprogramming techniques require the ability to use arbitrary length

lists of types. However, the number of type parameters for current C++ templates is

fixed by the template definition.

There are several solutions to this arbitrary length type list problem. One is to

write a different template for each number of required type parameters (for example,

the Boost MPL library provides template list2 for type lists of two elements, list3

for three, etc.). Another solution is to write one template with a large number of

parameters and give each parameter a default value. Then any number of type para-

meters (up to the selected maximum) can be given and the rest of type parameters

get their default value which can be detected by the metafunction.

A third option (used in some techniques in this thesis) is to use function types

as containers for type lists of arbitrary length. A function type in C++ specifies a

return type and the types of all parameters of a function. The parameter list is

a list of types, so a function type can be used as a type list. For example, type

void(char, double, string) is the type of a function with no return type and para-

meter types char, double, and string. The syntax has always been valid in C++ but is

seldom used (C++ TR1 uses it for function object binders [ISO/IEC JTC1/SC22, 2006,

§3.7.2][Becker, 2007, Ch. 9]). Function types can be used to pass type lists around

as a single type, but decoding parameter types from the function type still requires

using partial specialisation for each number of parameters.
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In the C++11 standard the problem is solved by introducing variadic templates

[ISO/IEC, 2012, §14.6.3]. Variadic templates can contain an arbitrary number of

type parameters. Type parameters are represented by a single template parameter

pack, which can be forwarded to other templates, or expanded to a list of types.



33

Chapter 3

Futures and active objects in the

KC++ system

This chapter presents an overview of the KC++ system, a library and a precompiler for

C++ which provides concurrency services using active objects, proxies, and futures.

The KC++ system was the subject of the author’s licentiate thesis [Rintala, 2000] and is

used in this thesis as an implementation platform upon which concurrent exception

support is built and tested. More detailed information on the KC++ system can be

found in [Rintala, 2000].

This chapter is not considered a main contribution to this thesis, but is included

to provide necessary information for the proof-of-concept implementations of the

main contributions as well as for the case study. Especially it should be noted that

while KC++ uses active objects for its concurrency, the contributions presented this

thesis do not depend on them. Similarly, the KC++ precompiler described in this

chapter is not needed for the main contributions.

3.1 The KC++ system

The KC++ system consists of a KC++-to-C++ precompiler and a class library providing

run-time support for concurrent processes and their communication. KC++ programs

are syntactically valid C++ programs (and vice versa), so existing C++ style analysers,

statistical tools etc. can be used with KC++ programs without modifications. In this re-
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spect KC++ resembles C++// [Caromel et al., 1996], which also introduces concurrency

without extending the C++ syntax.

KC++ is based on the UC++ language [Winder et al., 1996] and many of its design

goals are similar to UC++. Its aim is to add concurrency support to C++ as “naturally”

as possible, allowing existing object oriented language features and C++ programming

idioms to be used, without forcing the programmer to use any particular coding and

design style.

Like in UC++, concurrency in KC++ is based on the active object concept. A con-

current KC++ program usually consists of several active objects communicating with

each other. The active object model is also behind many other concurrent C++ sys-

tems, for example C++// and ABC++.

The code produced by the KC++ precompiler is close to the original KC++ code. Most

modifications are only changes to type names. This means that the code produced

by the precompiler is expected to be debuggable with most normal C++ debuggers.

Keeping the changes minimal also makes the produced code understandable for

human readers.

3.1.1 The KC++ precompiler

The current KC++ precompiler is implemented as a back end to an EDG C++ compiler

front end from Edison Design Group [Edison Design Group, 2011]. The KC++ syntax

is exactly the same as normal C++ syntax, so the compiler front end has not been mod-

ified in any way. The interface between the EDG front end and the KC++ back end has

been kept as small as possible and it has been isolated into its own program module.

This means that coupling between the front end and the back end is relatively low,

making it easier to implement the KC++ precompiler using a different C++ front end, if

necessary. It also makes it possible to publish most of the KC++ precompiler program

code without violating non-disclosure agreements with Edison Design Group.

The compilation process is shown in Figure 3.1 on the facing page. During the

compilation, the precompiler front end first compiles the KC++ program into its own

intermediate code, which is represented as a graph-like data structure in the pre-

compiler. The C++ syntax checking is performed during this phase, so only those KC++

programs which are syntactically correct C++ enter the second phase.

During the second phase, the KC++ back end scans through the intermediate code

to find all the code related to active objects. It then uses the original source files
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FIGURE 3.1: The KC++ compilation process

to create new, modified C++ source files. These files are then compiled with a con-

ventional C++ compiler. The g++ compiler from the Gnu Compiler Collection (GCC)

[GNU, 2011] has been used for this purpose, but any C++ compiler should work. The

source generated by the back end is standard-conforming and uses the KC++ library

to achieve concurrency.

The modifications to the original source code are kept at minimum. Using mod-

ified original source code instead of generating the code from the intermediate code

makes the resulting code very close to the original. Because of this, the source code

generated by the KC++ precompiler is completely human-readable and mostly un-

derstandable to programmers who are not familiar with the internals of KC++. The
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precompiler generates necessary #line directives so that debugging tools are direc-

ted to the lines of the original source code.

In addition to minimal modifications, the KC++ precompiler creates new C++ code

based on the source code. Based on active classes in the source, the precompiler

creates declarations and definitions of necessary proxy classes and method invokers.

3.1.2 The KC++ library

The KC++ library is where most of the KC++ functionality resides. The KC++ precompiler

mostly produces calls to the library, where actual work is done. The library includes

run-time components needed to run concurrent KC++ programs as well as compile-

time metaprograms responsible for most of code generation.

The code produced by the KC++ precompiler has been designed to be as minimal

as possible, and most of the work is performed by template metaprograms in the KC++

library. This way it is quite possible to leave the KC++ precompiler out of the process

completely, if the programmer is ready to write the simple proxy and invoker classes

herself. This was considered important since the current KC++ precompiler uses the

EDG C++ front-end, which is not publicly available.

The KC++ library contains classes for futures, message passing, exception hand-

ling, and exception reduction. The template code provides metafunctions for type

mapping and serialisation needed in active object proxy classes and method in-

vokers, and template classes for active object pointers and references.

3.2 Active objects

In the KC++ active object model each active object consists of a thread of execution

and a data address space. The data address space contains all the data members of

the object, method parameters and any data or objects which have been dynamically

created inside the object. Because the address space of each active object may be

distinct, active objects may not refer to any global variables or static data members.

The programmer marks objects as active by deriving their class (directly or in-

directly) from a base class Active, which is defined in the KC++ library. All objects

created from these active classes are automatically active objects. This is similar to

the approach used in ABC++ and other “type based” active object systems, but differ-
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ent from UC++ where the way the object is created defines whether an object becomes

active or not.

Active objects communicate by calling each others’ methods and passing data

and futures to each other (KC++ futures are discussed later in Section 3.3). When an

active object is created, a proxy object is created in the address space of the creating

process. The KC++ precompiler creates a separate proxy class for each active object,

and the public interface of the proxy class contains the same methods as the active

class. Proxy classes also form an inheritance hierarchy following the hierarchy of

active classes.

Figure 3.2 shows an active object method call in KC++. When a method of the

proxy object is called, the method uses KC++ library metafunctions and classes to mar-

shal method parameters to a method message, and sends this message to the process

running the active object. There the message is parsed and a suitable method invoker

code (again generated using KC++ library metafunctions) is called. This method in-

voker calls the actual method of the active object and sends its return value back by

binding the return value future.

Active
object

object
Proxy

A

A.Method1();

invoker
Method

Method queue

Active object process

1.

2. 3.

...

...

"User process"

Method1

Method2

Method3

Method2

Method1

Method3

FIGURE 3.2: Calling a method of an active object in KC++
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3.2.1 Concurrency in active objects

Each active object in KC++ contains one thread of execution. This thread receives

method requests and serves them one at a time. Other method requests are col-

lected in a queue while one method is executing. The execution of a method is

non-interruptible, i.e. it follows RTC (run-to-completion) semantics, so if the execu-

tion of a method is paused by synchronisation, the whole active object is “blocked”

until the method can resume its execution. Usually, method requests are served in a

strict FIFO (First-In-First-Out) order, but KC++ also provides lock objects, which allow

a user to ask for an exclusive access to an active object.

Allowing several concurrent methods in an active object would have been more

flexible, but it would have involved difficult mutual exclusion and synchronisation

problems. If the number of concurrently running methods is restricted to one for

each active object, there are no internal mutual exclusion problems, as only one

method may access the internals of an active object at any time. These kinds of act-

ive objects resemble monitors, a programming construct to handle mutual exclusion

in concurrent programming, made widely known by Hoare [Hoare, 1974].

Even with just one method at a time, there is still one choice to be made: whether

to allow a method to give way to another method and continue afterwards. This

behaviour resembles the “signal” and “wait” operations in monitors, and is called

“ask politely” interruption by Herb Sutter in [Sutter, 2008].

This “voluntary interruption” is useful, but it requires active objects to remember

and store the state of the method execution, execute another method and then use

the stored state to continue the execution of the original method. This can be imple-

mented using multiple threads in each active object, but it increases the overhead

of a method call.

The current KC++ system uses a restricted form of voluntary interruption, where

an active object method can call a method yield in places where it is willing to let

another method to execute, if necessary. If there are other methods in the method

queue, one of them is executed and then execution returns from the yield method.

The yield method returns a boolean telling whether there were any methods to be

executed or not. An active object method can also suspend its execution until new

messages have been received by calling wait for messages.

With yielding, only one thread of execution is needed for voluntary interruption.

This simple implementation means that the original method can only continue after

the other method has been completed, so it has its limitations.
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As an alternative to yielding, KC++ active objects can also schedule their own

methods to be executed when a future (or a collection of futures) becomes ready.

If an active object method has to wait for futures before running to completion,

waiting blocks the whole active object. Instead the method can be split into two

methods, and the first method can schedule the second method to be executed when

the futures receive their value. This way the active object is freed to execute other

methods while the futures are still pending.

3.2.2 Creating active objects

Creation of active objects happens exactly in the same way as creating normal C++

objects. They can be created dynamically with new, as local variables inside a func-

tion (or any other code block), as data members of an object (or active object) or

even as value parameters to a function or a member function (although this is rarely

useful). This is different from most other concurrent C++ systems where active ob-

jects usually have to be created dynamically with new or in some language specific

way. Listing 3.1 on the following page shows how active objects can be created in

KC++.

The possibility to create active objects without new is useful for exception safety.

Objects created with new are not automatically destroyed, so it is the responsibil-

ity of the programmer to make sure that every object (including active objects) is

destroyed properly when exceptions occur. On the other hand, the C++ exception

mechanism takes care of the destruction of any object whose lifetime ends because

of an exception. This also holds for KC++ active objects, so all active objects which go

out of scope because of an exception are automatically destroyed.

3.2.3 Active object lifetimes

Asynchronous execution of active object methods makes lifetime management of

active objects more complicated than in a sequential environment. The C++ language

does not provide garbage collection, so normally the lifetime of an object is determ-

ined by its scope in the program, or handled manually if it was created with new.

When active objects are passed as method parameters to other active objects,

those methods execute asynchronously. If the caller never synchronises with the

completion of the method, it becomes unclear when the parameter active object can
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1 class MyAClass : public Active
2 {
3 public:
4 explicit MyAClass(int i);
5 MyAClass(const MyAClass& r);
6 ~MyAClass();
7 int foo1(int i);
8 MyAClass* foo2(MyAClass& a);
9 MyAClass& operator =(const MyAClass& r);

10

11 private:
12 // Private implementation details here
13 };
14

15 void func(MyAClass a) // A parameter active object
16 {
17 a.foo1(3);
18 }
19

20 int main()
21 {
22 MyAClass a1(1); // A local active object
23 int i1 = a1.foo1(3); // Synchronous
24 Future<int> i2 = a1.foo1(4); // Asynchronous
25 MyAClass* a2p = new MyAClass(2); // A dynamic active object
26 MyAClass* a3p = a1.foo2(*a2p);
27 func(a1);
28 }

LISTING 3.1: An active class and creating active objects

be destroyed, if both the caller and the method access the object. This applies both

to scope-based lifetime management and manual management.

To solve the problem, KC++ uses reference counting [Collins, 1960, Wilson, 1992]

as a simple garbage collection scheme to determine the lifetime of active objects.

The active object method invoker maintains a reference count of its proxy objects.

When a new proxy object is created (for example by passing the active object as

a parameter to another active object), it sends a message increasing the reference

count by one. Similarly, the destruction of a proxy decreases the count. When the

count reaches zero, the active object is destroyed.

Reference counting has known problems with reference cycles where two ref-

erence counted objects refer to each other (of course the cycle can also be longer)

[McBeth, 1963]. This is particularly problematic in object-oriented programming

where bidirectional associations between objects are enough to form cycles. This

problem is also known in normal C++ using dynamically created objects. The C++ ex-
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tension TR1 provides tools to partially solve the problem: strong and weak pointers

[ISO/IEC JTC1/SC22, 2006].

3.2.4 Strong and weak pointers

In C++, strong and weak pointers were originally introduced in the Boost library col-

lection [Adler et al., 2002], from where they were included in the TR1 library ex-

tension and later to the new C++11 standard. They solve the cyclic reference problem

by dividing pointers to two categories: strong pointers owning the object and weak

pointers with no ownership.

Strong pointers use normal reference counting, so an object is destroyed when

the last strong pointer to it is destroyed. In C++ TR1, strong pointers are available as a

template class shared ptr. The semantics of strong pointers is similar to that of KC++

active object pointers, so when TR1 was introduced, KC++ was modified to support

shared ptrs to active objects as well.

Weak pointers do not participate in updating the reference count, so an object

may be destroyed while there are weak pointers still pointing to it. When that hap-

pens, weak pointers pointing to the object become expired. In C++ TR1, weak point-

ers are provided as a template class weak ptr. Their interface has a method expired,

which can be used to check whether the object at the end of the weak pointers is

still alive or not.

Since the object at the end of a weak pointer may be expired, weak pointers

cannot be used to access the object directly. Instead, they provide member func-

tions to create a strong pointer pointing to the same object, and the object can be

access using that strong pointer. If the object has already been destroyed, these

member functions either return a null pointer or throw an exception (depending on

the member function).

The semantics of shared ptr and weak ptr in C++ TR1 are exactly what is needed

for handling KC++ active object lifetimes. Since TR1 shared pointers are implemented

as templates, KC++ can specialise them for cases where the pointee is a proxy class,

and those specialisations transfer reference counting to the KC++ library instead. The

specialisations also support marshalling so they can be passed from one active ob-

ject to another. This way the programmer can use shared pointer tools from TR1 to

handle active objects and their lifetimes.
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3.3 Futures and future sources

As explained in Chapter 2, futures are placeholders for eventual return values from

asynchronous calls. KC++ futures are implemented as a template class parametrised

with the actual return value type. When an asynchronous call is performed, the

caller immediately gets a pending future object representing the return value, while

the call itself continues executing concurrently. When the call completes, its return

value is automatically transferred to the future, where the caller can access it. If the

value of the future is requested before the call completes, the future suspends the

execution of the requesting thread until the value becomes available.

If return value futures were the only mechanism for synchronisation between

threads of execution, all synchronisation between active objects would be restricted

to the completion of method calls. A mechanism is needed to signal a process at an

arbitrary time. Since pending futures can be sent among processes as parameters

and return values, all that is needed is a way to create pending futures explicitly

and a method to bind those futures to a given value.

3.3.1 Future sources

Future sources are such a mechanism. They are objects which can be used to ex-

plicitly create pending futures. Later the future source object can be used to give a

value to all futures which have been copied from that particular future source — or

any future created from these futures. Future sources make it possible to return a

pending future from one call and later give it a value in another call.

Like futures, a future source is a class template with the underlying type as a type

parameter. When a future source object is created, it is initially “empty,” and does

not contain any value. All futures created from this kind of empty future source are

pending futures.

Later, a method bind can be used to give a future source its value. After this,

all futures which have been created from this future source are bound to this value.

Future forwarding mechanism is used to send the value to futures in other execution

threads, if necessary. The act of binding a future source to a given value is similar

to giving a return value future its value at the end of an asynchronous call.

Future sources can also be bound to exceptions, thus propagating that exception

as a “value” of generated futures. Pending futures can also be used to bind a future
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source. In this case, the future source is bound to the eventual value of the future

when it becomes available.

3.3.2 An example with futures

Listing 3.2 on page 45 shows a simple code example with asynchronous calls. Meth-

ods asyncCall1, asyncCall2, and setValue of active class Server are executed asyn-

chronously. Active objects of class Client1 and Client2 also execute their methods

in their own threads. Figure 3.3 on the following page shows a UML sequence dia-

gram of one possible execution sequence. Messages in the diagram are marked in

Listing 3.2 with numbered comments. Continuous arrows denote calls. A filled ar-

rowhead marks a synchronous call, a stick arrowhead an asynchronous call. Where

necessary, dashed arrows denote return values.

With message 3 in Figure 3.3, Client1 makes an asynchronous call, which con-

tinues its execution concurrently with the caller. When the call completes, it sends

the return value to the future f1 (message 4), from which the caller later retrieves it

(msgs 9–10).

Normally, a future gets its value automatically when an asynchronous call com-

pletes, but this is restrictive in some cases. In some programs it is practical to delay

the future even further, and leave the return value future empty when the call com-

pletes. The value for the future is provided later by another call (likely called by

a different thread), which binds the future to a value and thus releases the thread

waiting for the future. This possibility makes futures even more useful for explicit

synchronisation and signalling. Futures are well suited for such a use, because they

also allow data to be passed between threads.

In Figure 3.3 on the next page, messages 5–8 and 11-15 show an example of fu-

ture sources. Method asyncCall2 gets its return value future from the future source

fs. Initially, this future source contains no value and futures generated from it are

empty. Thus future f2 stays pending after the asynchronous call completes (msgs

6–8). Later a thread running caller2 calls a function which binds the future source

to a value. This value is automatically propagated to f2, and caller1 waiting for its

value is released (msgs 12–15).

The combination of future sources and futures is somewhat similar to barri-

ers [Andrews, 1991, Ch. 4]. However, synchronisation with futures sources can

be triggered at any time, whereas barriers usually require a predetermined number
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fs : FutureSrc

f1 : Future

f2 : Future

caller2caller1 server

caller 1
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FIGURE 3.3: Sequence diagram of Listing 3.2
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1 class Server : public Active
2 {
3 public:
4 Future<int> asyncCall1() { return 1; } // 4.
5 Future<int> asyncCall2() { return fs.getFuture(); } // 6.-8.
6 void setValue(int i) { fs.bind(i); } // 13.-14.
7

8 private:
9 FutureSrc<int> fs;

10 };
11

12 class Caller1 : public Active
13 {
14 public:
15 void method(std::tr1::shared ptr<Server> server)
16 {
17 Future<int> f1, f2; // 1.-2.
18 f1 = server->asyncCall1(); // 3.
19 f2 = server->asyncCall2(); // 5.
20 cout << f1.value(); // 9.-10.
21 cout << f2.value(); // 11. & 15.
22 } // 16.-17.
23 };
24

25 class Caller2 : public Active
26 {
27 public:
28 void method(std::tr1::shared ptr<Server> server)
29 {
30 server->setValue(2); // 12.
31 }
32 };

LISTING 3.2: Asynchronous calls using futures

of participants. In addition to this, future sources allow data to be passed from the

synchroniser to released threads.

3.3.3 Destroying futures and future sources

When a future is destroyed, its possible value (or exception) is destroyed with it.

A future can be destroyed before it receives its value, in which case the value is

still received by the KC++ library, but it is destroyed immediately (this makes sure

possible side effects of creating the value happen also in this case). If a future has

been copied to other futures before, and is destroyed before receiving its value, that

value is still propagated to copied futures by the KC++ library.
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Destruction of future sources needs also special attention. If a future source has

already been bound to a value (or exception), its destruction is trivial. However, des-

troying an unbound future source is dangerous, since futures may be waiting for its

value. Since it is not possible to prevent the destruction of a future source, a logical

solution in this case is to bind the future source to an exception (FutureSrcNotBound

in KC++) before its destruction, and send the exception to waiting futures. This pre-

vents deadlocks even if a future source is destroyed prematurely.

The semantics of destroying futures and future sources ensure that all futures

eventually receive a value (assuming all threads of execution eventually terminate),

and that destruction of a future or a future source does not cause deadlocks even if

they are destroyed before receiving a value.

3.3.4 Pure synchronisation — void-futures

Although futures are normally used as placeholders for return values of asynchron-

ous calls, they have another important property — they allow callers to synchronise

with the completion of a call. Synchronisation in general is an issue separate from

return value passing (although the act of receiving a return value always includes

synchronisation).

Despite being originally designed as placeholders for a return value, futures can

also be used for pure synchronisation. Futures with void as the underlying type are

a special case, implemented as a specialisation of the future template. They contain

the necessary mechanisms for synchronisation, but no underlying value or member

functions for accessing it.

A function returning a void-future can be called like a function returning noth-

ing. In this case, the call is asynchronous and the returned void-future is discarded.

If synchronisation is wanted, the caller can synchronise with the returned void-

future. Like with normal futures, the third possibility is to occasionally poll the

void-future with isready and perform some other actions while waiting.

In addition to synchronisation with calls with no return value, void-futures are

very useful when combined with future sources. They can be used as explicit syn-

chronisation tokens which can be stored in containers, passed between execution

threads etc. They also make the concurrency model simpler because futures can be

used as the only synchronisation mechanism in the whole system.
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3.4 Passing parameters to active objects

KC++ active objects do not have to exist in the same address space. This means that

normal C++ parameter passing mechanism cannot be used to pass method parameters

to active objects, because C++ parameters require a shared address space.

Active objects communicate with each other using the KC++ message passing sub-

system. All parameters have to be marshalled into a data stream which is passed as a

part of the method request. A method request message consists of the method iden-

tifier (identifying the requested method) and a data stream which contains all the

marshalled parameters. When an active object receives the method request, it first

identifies the method (using the identifier) and then unmarshals the data stream,

creating local copies of the parameters.

The KC++ marshalling/unmarshalling system resembles the C++// marshalling sys-

tem or the CORBA GIOP protocol [OMG, 1998, Ch. 13]. However, KC++ does not

store any type information (like C++// meta-classes) during marshalling, so a mar-

shalled parameter list contains just marshalled parameter values concatenated one

after another. Storing type information is not needed in a language like C++ because

the method signature already fixes the number and types of the parameters. If each

different version of an overloaded method is considered a different method with a

different method ID, the method ID already contains all necessary information about

parameter types.

The KC++ library contains functions to marshal and unmarshal all C++ built-in

types except for pointers and references. This makes passing parameters of built-in

types to active objects identical to passing them as parameters to normal objects.

If the programmer wants to pass her own data types (data structures, non-active

objects etc.), she must write appropriate marshalling and unmarshalling functions

for them. The KC++ library provides classes OMsg (output message) and IMsg (input

message), which represent data streams to and from which data is to be marshalled

to using operators << and >>. These can be overloaded for user-defined data types.

The only exceptions to this are pointers and references to normal objects. They

cannot be passed as parameters at all, because they require shared memory.

Unlike with normal pointers, there are no restrictions on using active object

pointers or references as parameters to active object methods. Active objects already

have a possibility to refer to each other through proxies. In a sense, all active objects

occupy the same “active object address space,” so passing active object pointers and
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references between active objects poses no problems. Both strong and weak pointers

can be passed as parameters, as well as normal C++ pointers and references to active

objects (which act as strong pointers for object lifetime management).

KC++ future types are also allowed as parameters to active object methods. The

only requirement is that the underlying type of the future type must also be valid as

a parameter. If a future passed to a method has already received its value, the value

contained in the future is marshalled and passed in the method message. Altern-

atively, if a pending future is passed, the id of the future is passed in the message.

Later, when the value of the future becomes known, the KC++ run-time system takes

care of forwarding the value to other active objects which contain copies of the fu-

ture.
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Chapter 4

RPC exceptions using C++ template

metaprogramming

Serialisation of data is needed when information is passed among program entities

that have no shared memory. For remote procedure calls, this includes serialisation

of exception objects in addition to more traditional parameters and return values.

In C++, serialisation of exceptions is more complicated than parameters and return

values, since internal copying and passing of exceptions is handled differently from

C++ parameters and return values. This chapter presents a light-weight template

metaprogramming based mechanism for passing C++ exceptions in remote procedure

calls (RPC), remote method invocations (RMI), and other situations where the caller

and the callee do not have a shared address space.

Basic ideas in this chapter were originally published in [Rintala, 2007], but have

been since extended and developed further. The mechanisms in this chapter do not

depend on any specific model or implementation of concurrency in C++. They can

be used in any context requiring serialisation of exceptions.

4.1 Introduction

In many programs, it is quite common to have one process (or some other entity)

acting as a server, serving requests from clients. If the server and client do not

have shared memory, serialisation of data is needed when the caller and the callee
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communicate with each other, often through some sort of message passing system.

This need may arise in a distributed environment using RPC (remote procedure call)

or RMI (remote method invocation), or in a parallel or concurrent system where the

server and the client are separate processes without shared memory. For the rest of

this chapter, the abbreviation “RPC” is used loosely to refer to all these situations.

Serialisation is included in many programming languages like Java, and is a part

of many language independent systems like CORBA, but the C++ language has no

built-in support for serialisation.

Exceptions are rapidly becoming the most common error handling mechanism,

which means serialisation mechanisms in RPC should also be able to pass excep-

tions in addition to parameters and return values. This functionality is still missing

from many RPC libraries, forcing programmers to revert to traditional return values

for error handling.

Standard C++ passes objects as parameters and return values differently from

many other object-oriented languages. In C++, objects are passed by copying them

based on the static type defined in the type signature of the function, rather than

cloning the object based on its dynamic type (Java RMI) or sharing objects without

copying them (normal Java). Explicit sharing is of course possible in C++ through

pointer and reference types.

Copying objects based on their static type allows C++ to optimise the perform-

ance of parameter and return value passing when objects are small. It also makes

serialisation easier in most cases. However, exception handling in C++ differs from

parameters and return values in this respect. C++ exception objects are copied based

on their real dynamic type, making serialisation of exceptions more complex, when

they are passed across address space boundaries (the interface has no compile-time

knowledge on the type of the exception object).

This chapter analyses how exception handling in C++ affects serialisation in re-

mote procedure calls. A light-weight template-based solution solving these prob-

lems is then presented, and its performance and ease of use is analysed.

4.2 Problem analysis

From the interface point of view, exceptions are in a certain sense an alternative to

return values. They also transfer information to the caller, i.e. the type of the excep-

tion and possibly data embedded in the exception object. Serialisation services are
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needed for parameter and return values passing. Similarly, serialisation is needed

for exception support. Exceptions must be handled for both synchronous and asyn-

chronous calls. When these calls occur across address space boundaries, imple-

menting exception propagation becomes significantly more complex. This chapter

addresses exception propagation across address space boundaries.

In addition to RPC, serialisation is routinely needed for persistence services.

However, persistence normally deals only with the state of objects. Therefore, ex-

ceptions (which are mainly control-flow signals) are not an issue with serialisation

libraries aimed for persistence.

The C++ language does not provide support for serialisation. Distributed systems

like CORBA solve this problem by providing their own serialisation libraries. How-

ever, custom code is needed for serialisation of user-defined classes and data types.

Complex frameworks like CORBA offer generality and let systems communicate

with each other over machine architecture and programming language boundaries.

However, for many light-weight applications, such frameworks are unnecessar-

ily heavyweight and complex, and they require extra programmer effort in the form

of IDL specifications, etc. For example, a program may just need a few simple dis-

tributed remote procedure calls, or it may consist of a few concurrent processes

communicating with each other on the same machine. Such applications tend to

use lighter weight serialisation libraries, usually without separate code generator

programs.

As mentioned, C++ copies objects when they are passed as parameters or return

values. This differs from many other object-oriented languages like Java, where all

objects are passed by reference. However, the copying approach is used in most

languages for passing basic types (integers, etc.) by value instead of by reference.

The copy semantics is also ideal for RPC and serialisation, since sharing an object

is difficult in calls across address spaces and computers (even Java RMI copies its

parameters). Similarly, copying makes object lifetime management easier on the

language level, since the destruction of each copy is determined by its location in

the program, which is essential in C++ where garbage-collection is not built into the

language.

When objects are copied in C++, the type of the copy is the static type used to

reference the original object, i.e. in this case the type of the parameter or return

value. With inheritance, this may end up slicing the object when the dynamic type

of the object differs from the type used in copying [Budd, 2002, Ch. 27], which
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causes problems with C++ exceptions. These problems are discussed later in this

section.

Pointer and reference parameters are usually used to pass objects whose dynamic

type may differ, circumventing the slicing problem. However, pointer and reference

passing is difficult to implement without shared memory. For these reasons pointer

and reference parameters are not usually allowed as parameters for RPC and are not

discussed further in this chapter.

Copying based on static typing in combination with templates (which also use

compile-time static typing) makes it quite straightforward to implement libraries for

marshalling parameters and return values into data messages, sending these mes-

sages to the receiver, and then creating and unmarshalling those parameters and

return values from the message. Template-based serialisation libraries already exist

for C++ [Bartosik, 2004]. However, when exception handling is added to the picture,

the situation is different.

When an exception is thrown, a copy is made of the exception object, based on

the static type used in the throw statement. This semantics means it is not possible

to properly throw an exception whose real dynamic type is not the same as the

static type used to throw it. As an example, if an exception is caught with a catch

clause catch (const E& e), it is not possible to reliably re-throw the exception with

throw e. If the type of the original exception is a subclass of E, the throw statement

throws a sliced copy. This is the main reason why re-throwing in C++ is allowed only

using special syntax throw;, which re-throws the original exception object without

copying it.

When a copy of an exception object is propagated out of a function call, its type is

not statically defined by the type signature of the function. Exception specifications

allow functions to declare base classes of allowed exceptions, but the dynamic type

of exception objects can be any derived class. This means that information about the

dynamic type of an exception object is needed when it is sent to a different address

space. Similarly, the receiver of an exception object (the caller) has to be able to

re-create the exception without static compile-time knowledge of its type. Finally,

the re-created exception object has to be thrown, again without knowing its type at

compile-time.

All this makes passing exception objects across address spaces more difficult in

C++ than passing parameters and return values. Especially it makes the use of static

template metaprogramming more challenging. The following sections analyse the
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problem further. A template-based solution using automatically generated dynamic

factories is then described.

4.3 Server side — catching and marshalling

As mentioned, propagating an exception back to the caller in a distributed envir-

onment requires copying the exception object between address spaces. This re-

quirement does not cause incompatibilities with normal C++ semantics, since the

language explicitly states that copying of exception objects may occur even in nor-

mal C++ [ISO/IEC, 2003, §15.1/3]. However, the exception propagation mechanism

is the only place in C++ where the dynamic type of a compiler-generated copy (a

thrown exception) may differ from the static type used to destroy the object (in the

exception handler).

Figure 4.1 shows a typical call sequence that ends in an exception. When a call

request is sent to a server, its invoker code is responsible for interpreting the data in

the request and then calling an appropriate C++ function that actually executes the

requested service. If an exception is thrown within the function, it is the respons-

ibility of the invoker to catch it and send it to the calling client. This requirement

means that the invoker has to be able to catch and handle different types of excep-

tions. In the figure, notes marked with an asterisk (*) denote places where knowing

the dynamic type of the exception object is required.

The normal way to catch all exceptions in C++ is to use the catch (. . .) syn-

tax. However, this mechanism is of no use here, because it does not give the error

handling code any way to access the thrown exception object. Even the type of the

thrown exception is not known to the exception handler.

The only other way for the function invoker code to catch exceptions is to re-

quire that all such exceptions are derived from a common base class (this is a usual

requirement in many other object-oriented programming languages). The solution

described in this chapter requires that exceptions thrown across address spaces have

to be derived from a base class RpcExcpBase, which allows the derivation of meth-

ods for serialisation, dynamic creation of exception objects, etc. Derivation from

this class happens through an intermediate base class for template metaprogram-

ming reasons and is explained later.

After the server has caught an exception using the common base class, it must

be able to marshal the exception into a data stream and send this stream back to
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function_proxy functioninvokercaller

catch (ExceptionBase& e)

Create exception 
based on type 
MyExp in 
unmarshalled data 
(*)

Throw exception 
using its dynamic 
type MyExp (*)

catch (MyExp& e)

Marshal 
exception 
based on its 
dynamic type 
MyExp (*)
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params

Marshal 
params
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MyExp

RPC2: 

<<exception>>

6: 

<<exception>>
4: 

call()3: 

Return RPC5: 

call()1: 

FIGURE 4.1: Calling an RPC function and throwing an exception

the caller as part of the return value message. Marshalling is implemented with a

pure virtual function marshal in the exception base class. The invoker calls this

member function and passes as a parameter the data stream, which is used to send

the message.

The structure of RPC exception classes is shown as a UML class diagram in

Figure 4.2 on the facing page. In addition to a common base class RpcExcpBase, an

intermediate exception base class template RpcException is provided. The program-

mer is expected to derive all RPC exceptions from this template, and give the actual

exception class as a template parameter to the base class template (as indicated with

the ≪ bind ≫ stereotype in the diagram), e.g.:

class MyException : public RpcException<MyException>

{ /* Normal exception class definition */ };
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This idiom is often called the Curiously Recurring Template Pattern or CRTP

[Coplien, 1995, Vandevoorde and Josuttis, 2003, §16.3]. Use of CRTP means that

each derived exception class has its own unique instance of the base class template,

and this base class instance statically knows the type of the derived class it belongs

to.1

The instance of the base class template statically knows the type of the derived

exception objects through the template parameter. Therefore it can implement the

necessary virtual functions of RpcExcpBase (like marshal), releasing the programmer

of MyException from that duty.

4.4 Client side — unmarshalling and re-throwing

C++ is a statically typed language with very limited run-time reflective capabilities.

This limitation means that when an object is created (including throwing an ex-

ception), the type of the object has to be known at compile time [ISO/IEC, 2003,

§15.1/3].

However, the creation of an RPC exception object on the client side has to be

performed based on the dynamic type stored in the received message, which is

inherently a run-time issue. Therefore, appropriate mechanisms for limited run-
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1CRTP is possible because although the definition of the derived class is incomplete at the time when the
base class template must be instantiated, the incomplete type is enough to instantiate only the definition of the
base class template [ISO/IEC, 2003, §14.7.1/1]. The implementations of the member functions are not usually
instantiated at this point [Vandevoorde and Josuttis, 2003, §10.2].

RpcException

−registrator

+clone()
+marshal()
+throwSelf()
−createFunc()

Derived

RpcException<MyException>

RpcExcpBase

−registry

+create()
#addToRegistry()
+clone()
+marshal()
+throwSelf()

MyException

+<<( o : OMsg )
+>>( i : IMsg )

<<bind>>
<MyException>

FIGURE 4.2: Structure of the RPC exception mechanism
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time reflection have to be built. The client-side mechanisms are more complex than

those on the server side, where the template mechanisms just make it easier to write

exception classes.

4.4.1 Unmarshalling exception objects

C++ has basic RTTI (Run-Time Type Information) constructs dynamic cast and typeid

[ISO/IEC, 2003, §5.2.7&8], but these cannot be used to create objects, only to ask

about the dynamic type of an object. Therefore, the client side mechanisms for

creating exception objects from received data must be written from scratch.

The solution in this chapter is based on the Abstract Factory design pattern

[Gamma et al., 1996, pp. 87–95], which is automated using the template-based in-

heritance described earlier. The exception base class RpcExcpBase keeps a static data

member registry, a data structure that maps the type id of each exception class to

an appropriate creation function, which in turn is able to create an object of the cor-

rect type. The mapping between exception classes and type ids is discussed later in

Section 4.7. That section also analyses concurrency issues concerning the registry.

The base class also has a static member function create, which is used by the rest

of the library to dynamically create and unmarshal exception objects when needed.

When the client side receives a message containing an exception, create chooses the

correct creation function from the registry based on the type id stored in the mes-

sage. The chosen creation function then creates an exception object of appropriate

type and unmarshals the object using the rest of the message data. If the message

contains an exception object that is not found in the registry, the system returns a

generic exception UnknownRpcException (this possibility is discussed in more detail

in the next section).

4.4.2 Automating the creation of polymorphic factory

Normally, the use of a polymorphic factory requires exception classes to provide

their own creation functions. [OMG, 2003, §1.17.10] However, the CRTP-based tem-

plate inheritance described earlier can also be used to automatically construct a cre-

ation function for each exception class. This approach makes it possible to embed

necessary mechanisms into an otherwise normal exception class, which can be seen

from Figure 4.2.
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Actual creation functions are located in the CRTP class template RpcException.

It has a private static function createFunc (Listing 4.1), which creates an exception

object whose type is that of the template parameter, i.e. the actual exception object.

Unmarshalling of data by the client is implemented using the default constructor

and unmarshalling operator >>. For simplicity, the function assumes that creating

and unmarshalling an exception object never fails (it would of course be possible to

return a different exception in such a case).

Using the RpcException template makes it possible to automate the whole excep-

tion object creation and unmarshalling process. There is one RpcException instance

for each actual exception class, this instance contains a creation function needed to

create such objects, and the creation function knows the static type of the object to

be created.

The system has to make sure that each RpcException instance registers its cre-

ation function to the base class RpcExcpBase. The simplest possibility would be to

list all creation functions in a compile-time list, which could be used to initialise the

polymorphic factory. However, this approach would not be practical, since it would

introduce a place in the program where knowledge on all RPC exceptions would

have to be gathered. Since exceptions are often defined on module or class basis,

having to update a separate list of RPC exceptions would be tedious and prone to

errors. An alternative solution would be to initialise the polymorphic factory during

program startup, and let each RPC exception class (or rather its creation function)

be registered separately. This approach still requires manual registration, leaving

the system vulnerable to missing registrations.

Fortunately, the registration of each RPC exception class can be automated us-

ing templates. The system has to make sure that each RpcException instance re-

gisters its creation function to the base class RpcExcpBase. The base class provides

a static protected function addToRegistry, which is used to add all creation func-

tions to registry. The registration is handled using an intermediate class template

1 template <typename E>
2 RpcExcpBase* RpcException<E>::createFunc(IMsg& s) {
3 E* e = new E; s >> *e; // Unmarshal message data into the object
4 return e;
5 }

LISTING 4.1: static RPC exception creation function
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Registrator nested inside the RpcException template. This class template is oth-

erwise empty, but has a default constructor to register the creation function of the

enclosing class.

Each RpcException template instance has a Registrator object as a static data

member. When this data member is created during program startup, its constructor

is executed and registers the RpcException instance. However, the C++ template in-

stantiation mechanism is partly based on lazy evaluation, and the consequences of

this are discussed in the next section.

By using registrators, the system automatically registers all exception classes de-

clared anywhere in the code. The only requirement is that the code of the client

has to contain declarations for all exception classes the server may throw (this is

of course the case if both the server and the client run the same executable). This

includes the declarations of thrown derived exceptions that the client catches by

a base class reference. If the requirement is violated and the server throws an ex-

ception which is not declared in the client, that exception is replaced by a generic

exception object UnknownRpcException.

4.4.3 Template instantiation issues

In C++, static members of a class template are only instantiated if they are referenced

in the program [ISO/IEC, 2003, §14.7.1]. This “laziness” is a useful feature, but in

this case, the static Registrator data member is not referred to by any part of the

program, since its sole purpose is to execute its constructor when the program starts.

This means that registrators would normally never be instantiated at all.

The problem can be solved by using the fact that the type of a static member is al-

ways instantiated even if the member itself is not. The RpcException class template

declares an additional empty template ForceInstance, which requires a pointer to

a Registrator as a template parameter. Pointer ForceInstance<&registrator>* is

then declared as a static data member of the RpcException template, as shown in

Listing 4.2 on the facing page.

The static data member notEverInstantiated is never referred to, so it is not

instantiated and does not consume any memory or produce any code. However,

instantiating its type in the class definition requires taking the address of the static

data member registrator, which causes registrator to be instantiated.
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1 template <typename MyException>
2 class RpcException
3 {
4 static Registrator registrator;
5 // Statically force instantiation of registrator
6 template <Registrator*> class ForceInstance;
7 static ForceInstance<&registrator>* notEverInstantiated;
8 };

LISTING 4.2: Forcing instantiation of registrator

This template metaprogramming mechanism makes the RpcException class tem-

plate act as a program generator [Czarnecki and Eisenecker, 2000], where just re-

ferring to it (instantiating it through inheritance) automatically generates necessary

factory functions and registers them to the object factory.

4.4.4 Throwing the created exception object

When an exception is re-created on the client side using the polymorphic factory in

RpcExcpBase, an exception object is created and an RpcExcpBase*base class pointer is

returned. Now this object has to be thrown. Just like creating an object, throwing an

exception in C++ requires static compile-time knowledge of its type [ISO/IEC, 2003,

§15.1/3].

RpcExcpBase declares a pure virtual function throwSelf. Its implementation in

the RpcException class template simply downcasts *this to the actual exception

class type (the real dynamic type of the object) and then throws the exception ob-

ject itself. Using these mechanisms, the client code can create a received exception

object using create in RpcExcpBase and throw the exception object by calling its

throwSelf. Throwing the object copies it automatically, so the original exception

object can be destroyed (preferably automatically during stack unwinding). Altern-

atively, the created exception object can be stored for throwing it later. This kind

of delayed throwing is necessary in an asynchronous environment using futures for

delayed return value passing (discussed in Chapter 5).

4.5 Exception hierarchies

In the exception propagation mechanisms described in this thesis, each concrete

exception class is derived from a separate instance of the RpcException template.
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Thus it is possible to generate all type-based exception handling code automatically

during compile time. However, it also causes an unfortunate side effect that RPC

exception classes derived from the RpcException class template should not be used

as base classes themselves.

This restriction comes from the fact that the RpcException instance has to get the

type of the derived exception class as its template parameter. If further derivation

were allowed, this would not be true for derived classes. For this reason each RPC

exception class has to be a leaf class in the inheritance hierarchy.

Exception hierarchies are extremely important in exception handling, so allow-

ing them is essential. The problem can be solved by using multiple inheritance.

The structure of the solution is shown in Figure 4.3 on the next page. The gray

oval shows a “local” exception hierarchy, which is not aware of RPC issues. Actual

RPC exception classes are then derived from both the local exception class and the

RpcException template instance. This is shown with classes E1Rpc and E2Rpc. Class

E3Rpc is an example of a class which is known to be a leaf class, so it can be added

directly to the local hierarchy and does not need an intermediate base class.

Using this kind of hierarchy is quite straightforward. All exception handlers

can catch exceptions from the “local” exception hierarchy, so existing code does not

necessarily have to be updated. Code whose exceptions cannot end up propagating

to other address spaces can also throw these exceptions. Throwing exception objects

derived from RpcExcpBase is only necessary in places where it is possible that an

exception is sent to another address space. These objects are instances of their base

classes, so they can also be caught by exception handlers unaware of RPC issues:

try {

int result = activeObject.remoteCall(); // May throw

} catch (const E1L& e) { /* Also catches E1Rpc */ }

Generation of RPC exception classes from normal exception classes can be auto-

mated using templates. Class E4L and template ConcExcp<E4L> show this in Fig-

ure 4.3. Template ConcExcp is otherwise empty, but it is derived both from its tem-

plate parameter and the RpcException template instance. The result is a mixin-like

class, which implements the original exception class and contains necessary mech-

anisms for cross-RPC propagation, shown in Listing 4.3 on the facing page.
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FIGURE 4.3: Using an exception hierarchy with RPC exceptions

1 template <typename LocalExcp>
2 class ConcExcp :
3 public LocalExcp,
4 public RpcException< ConcExcp<LocalExcp> >

5 {
6 /* Template pass-through constructors */
7 };

LISTING 4.3: Definition of ConcExcp
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The ConcExcp template provides template constructors that simply call appro-

priate constructors of the local exception class. This way ConcExcp<E> can act as

an RPC counterpart of an exception class E, and ConcExcp<E1L> could have been

used directly in place of E1Rpc. Of course the programmer still has to write ne-

cessary marshalling and unmarshalling operators for the local exception classes to

make serialisation possible. The ConcExcp template is enough to create the rest of

mechanisms for passing exceptions over RPC boundaries.

4.6 Automatic mapping of non-RPC exceptions

The ConcExcp template can also be used to catch original exceptions and re-throw

them in RPC form. The following works if the type of the catch clause parameter

is the same as the real dynamic type of the thrown exception object. Otherwise

copying the object ends up slicing it:

try { /* Code that throws an exception from “local” hierarchy */ }

catch (const E4L& obj) { throw ConcExcp<E4L>(obj); }

However, this kind of mapping from non-RPC exceptions to their RPC counter-

parts requires the programmer to provide such try-catch blocks to all places where

non-RPC exceptions might escape to other processes. This is error prone and re-

quires lots of extra code, especially since the mechanism requires a catch clause for

every possible exception class to be mapped.

For these reasons a more automated solution is presented. The C++ template

mechanisms combined with run-time type information make it possible to perform

limited mapping in the method invoker code without requiring extra application

code. The next section presents this mechanism, discusses its limitations, and ex-

plains how these limitations can be solved by requiring extra information from the

programmer.

4.6.1 Direct non-polymorphic mapping of thrown exceptions

The C++ language provides limited run-time type information through the typeid

operator. When this operator is applied to an object, it returns a type info object

representing the dynamic type of the operand. However, these type info objects



4.6. Automatic mapping of non-RPC exceptions 63

can only be compared with each other for equality. Two type info objects compare

equal if the objects from which they were generated have the same dynamic type.

This mechanism makes it possible to create a registry of non-RPC exception

classes for which there is an RPC counterpart. Creation of this registry can be done

in the RpcException template using the same mechanism which is responsible for

creating the RPC exception unmarshalling registry (Section 4.4.2).

When a non-RPC exception is thrown out from an RPC method, the method

invoker catches it. The invoker then uses the mapping registry to find out whether

the exception can be mapped to an RPC counterpart. If such a mapping is found,

the RPC version of the exception is propagated to the caller.

It is only required that non-RPC exceptions are derived from std::exception.

This requirement exists because the method invoker must be able to catch the ex-

ception, and this is impossible without a common base class of the thrown excep-

tions.

The only piece of information missing in the RpcException template is the type of

the original non-RPC exception. The RPC exception class derived from the original

non-RPC exception is passed to RpcException as a template parameter. However, C++

provides no reflection mechanisms for traversing the inheritance hierarchy to the

base class. This missing base class information must be provided by the programmer

in the form of a typedef, as shown in Listing 4.4 (the parenthesis at the end of typedef

on line 4 are explained later).

When RpcException is instantiated, its registration metafunction checks whether

MapBases typedef is present. If it is, a mapping from E1L to E1Rpc is registered. This

mapping of course requires that E1Rpc has a constructor accepting the original E1L

object. The mapping is implemented by storing the type info of E1L and a pointer

to a function which creates an E1Rpc object from an E1L object. This function is

1 class E1Rpc : public E1L, public RpcException<E1Rpc>
2 {
3 public:
4 typedef E1L MapBases(); // Provide mapping information
5 E1Rpc(const E1L& e);

...
6 };

LISTING 4.4: Providing exception mapping information
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automatically created by the registration metafunction. If no MapBases typedef is

present, no mapping is registered.

4.6.2 Automatic mapping information through ConcExcp

When the ConcExcp template is used to create RPC versions of non-RPC functions,

the template can automatically provide the MapBases typedef. This means that RPC

exceptions created with ConcExcp can automatically register the non-RPC-to-RPC

exception mapping without help from the programmer. Since ConcExcp provides

template constructors for all constructors of the original exception class, a normal

copy constructor is enough for mapping from E to ConcExcp<E>. This means that

to provide exception mapping for exception X, only marshalling operators and a

typedef for the ConcExcp counterpart is needed, as shown in Listing 4.5.

Since E1L does not have to be modified, this mapping can be used for exception

classes coming from a third party library, for C++ standard exceptions, etc.

However, lazy instantiation of C++ templates reveals another problem. Accord-

ing to the C++ standard, a class template is only instantiated when ". . . the class type

is used in a context that requires a completely-defined object type or if the com-

pleteness of the class type affects the semantics of the program." [ISO/IEC, 2003,

§14.7.1 4].

For RpcException, this is not a problem since it is used as a base class, which

has to be a "completely-defined object type". However, a typedef does not require

the source type to be completely defined. This means that if ConcExcp is only used

in a typedef like in the earlier example, the compiler does not instantiate it at all.

This in turn means that registration functions in its base RpcException do not get

instantiated either.

The problem can be solved by explicitly instantiating RpcException in the tem-

plate parameter list of ConcExcp. This can be achieved by adding an extra dummy

template parameter to ConcExcp, and giving it as a default value a type defined in-

1 class E1L { /* Definition */ };
2 OMsg& operator<<(OMsg& omsg, const E1L&) { /* Marshalling */ }
3 IMsg& operator>>(IMsg& imsg, E1L&) { /* Unmarshalling */ }
4

5 typedef ConcExcp<E1L> E1Rpc;

LISTING 4.5: Automatic RPC exception mapping using ConcExcp
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side RpcException (d void is used, which is simply a typedef for void). When this

default value is used, it forces the instantiation of RpcException and its registration

mechanism. The beginning of ConcExcp definition is given in Listing 4.6.

With this addition, a ConcExcp typedef and marshalling operators are all that is

needed to provide automatic mapping from non-RPC exceptions to their RPC coun-

terparts, and this mapping is automatically used if a non-RPC exception escapes an

active object method.

4.6.3 Limitations of the mapping mechanism

The mapping mechanism described above works well when exact types of possible

exceptions are known. However, in object-oriented exception handling it is common

to throw derived class exceptions and catch them using their base class. This is

crucial since it allows exception handlers to choose the family of exceptions they

are able to handle. In third party libraries it is common that only a part of the

exception hierarchy is revealed to the library user, i.e. the library throws internal

derived exception objects which have to be caught by using their base class.

The described exception mapping mechanism uses the C++ typeid operator and

type info objects to query the type of the exception and create a suitable RPC coun-

terpart exception. Unfortunately type info objects do not contain any information

on inheritance relationships. This means that if an RPC counterpart has been re-

gistered for a base class exception but not for derived classes, the mechanism cannot

map thrown derived class exceptions to their base class RPC counterparts, prevent-

ing those derived class exceptions to be propagated to a different process.

To solve this problem, information about the inheritance hierarchy must be

provided. Since C++ lacks reflection capabilities to provide such information, it

must be given by the programmer. The next section discusses this and shows how

1 template<typename E,
2 typename Dummy =
3 typename RpcException< ConcExcp<E, void>, E TYPE>::d void >

4 class ConcExcp : public E, public RpcException< ConcExcp<E, Dummy> >

...
LISTING 4.6: Forcing instantiation of RpcException in ConcExcp
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programmer-provided inheritance information can be used to allow automatic poly-

morphic exception mapping.

4.6.4 Polymorphic mapping of thrown exceptions

To be able to navigate through a part of the exception class hierarchy, the base class

of each exception class must be known to the method invoker. Since C++ has multiple

inheritance (and it is even potentially useful with exception classes, enabling an

exception to exist in several independent exception hierarchies), this means a list

of base classes. If it can be assumed that RPC counterparts are declared for each

non-RPC exception class from a certain inheritance level upwards, it is enough for

the programmer to list just immediate base classes. Base classes further up in the

inheritance hierarchy can then be found using their base classes.

To provide a list of base classes the programmer must be able to write a C++ ex-

pression containing an arbitrary number of types. In current C++ one way to do this

is to write a function type declaration, which may contain an arbitrary number of

parameters (see Section 2.3.4).2 The MapBases type definition is used to also provide

information about the base classes of the non-RPC exception class. The typedef is

actually a definition of a function type, where the return type is the non-RPC coun-

terpart of the RPC exception being defined, and the parameter list contains a list of

the base classes of the non-RPC exception. An example is shown in Listing 4.7.

When metafunctions inside RpcException register exception mappings, they also

create a tree of provided inheritance relations, starting from std::exception. Later,

when a non-RPC exception tries to escape from an active object, the method invoker
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2The new C++11 contains variadic templates which can take an arbitrary number of template parameters. This
new language feature will allow a more convenient syntax for base class lists.

1 class E1L : public B1L, public B2L { /* . . . */ };
2

3 class E1Rpc : public E1L, public RpcException<E1Rpc>
4 {
5 public:
6 typedef E1L MapBases(B1L, B2L); // List also bases of E1L
7 E1Rpc(const E1L& e);

...
8 };

LISTING 4.7: Providing polymorphic mapping information
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first tries to find an exact mapping using the typeid operator, as described earlier.

If no exact mapping is found, it starts scanning the inheritance tree. For each node

in the tree, the code checks whether the thrown exception can be cast to the type

contained in that node (dynamic cast is used for the test). If the test succeeds, the

code proceeds down the tree to test the subclasses of the node. This is continued

until a leaf node is found. This node then represents the most derived class in

the provided hierarchy which is a base class of the thrown exception. An RPC

counterpart of the found class is then created and propagated out from the active

object.

If derived class exceptions are mapped to their base class RPC counterparts, ex-

ception objects become sliced and lose their derived class identities (just as slicing

happens in C++ with base class value parameters and return values). This is unavoid-

able since RPC exception mapping requires the programmer to explicitly declare all

possible RPC exception classes, and if derived exceptions are unknown to the pro-

grammer, suitable RPC counterparts do not exist. However, since in those cases ex-

ceptions are caught using their base classes anyway, slicing does not affect choosing

the right exception handler. Of course, slicing can affect information stored inside

the exception object itself as well the behaviour of its virtual member functions.

The only way to avoid the slicing problem would be to synthesise the RPC

counterpart exception classes during runtime when new exception types are en-

countered. Creating new classes on the fly is not possible in C++ (nor in most other

compiled languages), so the compromise is inevitable.

4.6.5 Providing inheritance information through trait classes

When the ConcExcp template is used to declare RPC exceptions with polymorphic

mapping, things get more complicated. The MapBases definition has to be given to

ConcExcp somehow, because it can no longer provide it automatically (it does not

know the necessary base classes). One solution would be to pass inheritance in-

formation as an additional template parameter. However, adding a new template

parameter each time more information is needed becomes soon impractical. There-

fore trait classes are used to provide necessary information.

Traits are a mechanism that is used in many libraries, including the C++ standard

library. The C++ standard defines a trait as "a class that encapsulates a set of types

and functions necessary for class templates and function templates to manipulate
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objects of types for which they are instantiated." [ISO/IEC, 2003, §17.1.18] Traits

are useful for providing extra information and functionality for objects which are

either not class instances (primitive types, for example), or which come from a third

party and as such cannot be modified to include extra information. In the C++ library,

"character traits" are used by the basic string class template to obtain information

about the character type it operates on [ISO/IEC, 2003, §21.1].

This thesis introduces concurrency traits to provide information about concur-

rent exceptions to ConcExcp. A concurrency trait is a struct which defines the

MapBases typedef (concurrency traits are also used for exception folding information

described in Section 5.7). The ConcExcp template uses the trait to find out necessary

exception mapping information. The trait class provided by the programmer can be

a specialisation of class template ConcTraits, in which case ConcExcp uses it auto-

matically, or it can be a normal struct, in which case it has to be explicitly given to

ConcExcp as a template parameter(this is also how character traits are used in the C++

standard library). An example of concurrency traits is shown in Listing 4.8.

With concurrency traits it is possible to achieve mapping from third party non-

RPC exceptions hierarchies to their RPC counterparts without modifying original

exception classes. A definition of a concurrency trait and a ConcExcp typedef is

1 class E1L : public B1L, public B2L
2 {
3 /* . . . */
4 };
5

6 // Concurrency trait as a specialisation of ConcTraits
7 template<>

8 struct ConcTraits<E1L>
9 {

10 typedef E1L MapBases(B1L, B2L); // Mapping information
11 };
12

13 typedef ConcExcp<E1L> E1Rpc; // Uses ConcTraits<E1L>
14

15 // A concurrency trait as a separate struct
16 struct MyOwnB1LTrait
17 {
18 typedef B1L MapBases();
19 };
20

21 typedef ConcExcp<B1L, MyOwnB1LTrait> B1Rpc;

LISTING 4.8: Example of using concurrency traits
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enough for automatic mapping. If the third party library internally throws excep-

tions which are further down in the inheritance hierarchy than their API reveals,

those exceptions are mapped to the closest declared RPC counterpart.

If no concurrency trait is provided for an exception class (as a template special-

isation or an explicit struct), the primary definition of the ConcTraits template is

instantiated. It provides a typedef MapBases for exact exception mapping without

inheritance information needed for polymorphic mapping.

If the programmer has access to the original non-RPC exception definitions, an

external concurrency trait makes the program less readable. For this reason the

primary definition of the ConcTraits contains a metafunction which looks inside

the non-RPC exception class definition. If MapBases is found there, it is used to

provide polymorphic mapping.

4.7 Implementation issues in RPC exception passing

This section discusses implementation details concerning the exception class re-

gistry needed for the re-creation of exception objects on the client side. It addresses

the issues of mapping between types and type id strings, as well as concurrency. It

also discusses how exceptions are handled in the active object method invoker.

4.7.1 Providing unique IDs for RPC exception classes

The exception registry is used to re-create exception objects from marshalled data,

which requires each exception class to be associated with a unique type id that

identifies the type of the marshalled exception object. In this respect, the situation

is identical to other serialisation mechanisms. C++ and its RTTI provide a method for

creating a string representing the “name” of a type, namely typeid(Type).name().

Unfortunately, the C++ standard defines this string as “an implementation-defined

NTBS” (Null-Terminated Byte String) [ISO/IEC, 2003, §18.5.1]. The standard itself

does not guarantee that this string is unique or even that it stays the same if the code

is compiled again.

In practise, the situation is much better than what the standard requires. In most

current C++ compilers, the type id strings are unique. This is easy for the compiler

to implement, since it has to produce unique type ids for the linker anyway. In

some compilers, uniqueness is not guaranteed for nameless classes or local classes
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(classes with no external linkage), but such classes are hardly useful as exception

classes.

C++ ABIs (Application Binary Interface) are designed to promote compiler interop-

erability, and the format of the type id string is included in many ABIs. For example,

the Itanium C++ ABI [CodeSourcery, 2001] used by several compilers specifies that

type mangling used in object files is also used for type id strings. Among compilers

using the same ABI the type id strings stay constant between files compiled with

different compilers.

In some cases it would be best not to rely on compiler-generated type ids. This

is obviously the case if the compiler implementation does not guarantee unique

type id strings. In addition to this, if the exception mechanism in this chapter is

used together with a serialisation library using user-provided type ids, having user-

defined exception ids would be consistent.3 For these reasons the base template

RpcException accepts a user-defined type id string as an optional parameter. If given,

the registry uses the parameter to identify the exception class. If the parameter is

omitted, compiler-generated C++ type id string is used. It would be possible to use

compile-time selection to make the type id parameter optional only in compilers

that are known to provide unique type id strings.

An example of a user-defined type id is shown below (the value of MyExcp typeid

would be defined in the same place where the code of MyExcp is located):

extern const char MyExcp typeid[];

class MyExcp : public RpcException<MyExcp, MyExcp typeid> // . . .

4.7.2 Concurrency issues

In a concurrent environment, synchronisation and mutual exclusion issues must be

analysed. The registry is a static member of the exception base class, so it is gener-

ated automatically when the program starts. Similarly, all derived exception classes

register themselves to the registry before the main routine begins, using the regis-

trator mechanism described earlier in this chapter. After initialisation the registry

remains constant, so in a distributed environment registries remain in a consistent

state.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3Serialisation libraries aimed for persistence usually require user-provided type ids, because type ids should
remain the same between different versions of the program. The same can also be true in distributed systems
where subsystems run different versions of the software.
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If processes are started as separate programs, each program has its own registry.

If processes are created later using fork or similar mechanisms, all processes auto-

matically get a copy of the already initialised registry. Even a shared-memory envir-

onment would not have synchronisation problems though the mechanism described

here is not intended for such an environment. The contents of the registry remain

static during program execution, so sharing the data structures would not cause

problems (depending of course on the thread safety properties of the compiler and

its libraries).

Some C++ environments allow dynamic linking of libraries into an already run-

ning program. In such environments, the registry mechanism could be enhanced

to allow the client to dynamically link in new exception classes, when they are

first encountered. However, in a shared-memory environment this would require

additional mutual exclusion to atomically update the registry.

4.8 Applicability to other languages

The RPC exception passing mechanism presented in this chapter is needed be-

cause the C++ language standard provides no support for concurrency or inter-process

communication (and even the new C++11 standard is limited to threads with shared

memory). Many other modern programming languages do provide support for con-

currency and RPC (e.g., Java) and they also require exception classes to be serialis-

able. Those languages have no use for the RPC mechanisms of this chapter.

The mechanisms are also heavily based on C++ template metaprogramming, and

as metaprogramming facilities on other programming languages differ, applicability

to languages with no built-in RPC exception support is limited. In a language with

powerful enough run-time reflection, it could be used to map non-RPC exceptions

to their RPC counterparts (and possibly generate those counterparts on-the-fly, if the

reflection capabilities of the language are powerful enough).

However, applicability of the mechanism is also of interest to existing RPC imple-

mentations built on C++, some of which have limited support for exception propaga-

tion or no support at all. C++-based RPC implementations must include serialisation

support for parameter and return value passing. Since serialisation of primitive

types and arbitrary user-defined types (structs and classes) is important, serialisa-

tion typically does not require that parameter and return types are derived from a

common base class, but use external marshalling and unmarshalling functions.
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Adapting the exception serialisation support of this chapter to such RPC imple-

mentations should be fairly straightforward. Exceptions only affect the return from

an RPC call, so the code for calling an RPC function can be unchanged. However,

code calling the actual C++ function on the other end must be changed to catch excep-

tions. Exceptions derived from the RPC exception base class can be used as such,

and exception mapping techniques described in Section 4.6 can be used for other

exceptions derived from std::exception or other suitable common base class.

The return message of the RPC call must be changed to include a flag indicating

whether the call finished successfully or in an exception. In case of an exception,

the normal return value data is replaced by the serialised data of the exception,

including information on its type. This data can then be used on the caller side to

recreate the exception object and throw it, or embed it in a future.

Serialisation is useful in areas outside RPC as well, for example for saving parts

of the program state in a file or database. Theoretically, the mechanism presen-

ted in this chapter could be used in such contexts, too. However, it is question-

able whether such stored program state could contain exceptions. The polymorphic

factory based on templates and CRTP inheritance could be of use for generic serial-

isation in cases where polymorphic serialisation of third party objects is needed in

C++. Limitations to this arise from the fact that actual objects to be serialised must be

instances of the CRTP-inherited class template rather than the original classes.

In summary, the RPC exception passing mechanism in this chapter is suitable for

use in other C++-based RPC implementations, and in a more limited sense in other

situations which need polymorphic serialisation in C++.

4.9 Summary

In chapter it has been shown that exception propagation between processes without

shared memory, including serialisation and dynamic creation of exception objects,

can be implemented as a template-based library. A mechanism for mapping non-

RPC enabled exceptions to their RPC counterparts is also presented. The solution

requires minimal additional application code and allows the use of existing excep-

tion hierarchies.

The presented solution is light-weight and implemented completely using C++

and its template metaprogramming mechanisms. Necessary object factories and
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virtual functions are generated automatically. This means that no pre-processors,

code generators or separate IDL specifications are needed.

A proof-of-concept implementation of the mechanisms presented in this chapter

is implemented as a part of the KC++ library. The source code can be found in

http://www.cs.tut.fi/ohj/kcpp/kcpplib-html/.

http://www.cs.tut.fi/ohj/kcpp/kcpplib-html/
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Chapter 5

Handling concurrent exceptions

Exception handling is a well-established mechanism in sequential programming.

Concurrency and asynchronous calls introduce a possibility for multiple concurrent

exceptions. This complicates exception handling, especially in languages whose

support for exceptions has not originally been designed for concurrency. Futures

are a mechanism for handling return values in asynchronous calls. They are af-

fected by concurrent exception handling as well, since exceptions and return values

are mutually exclusive in functions. This chapter discusses these problems and

presents a concurrent exception handling mechanism for future-based asynchron-

ous C++ programs.

Some ideas in this chapter have been published in [Rintala, 2006], but have been

since extended and developed further. The mechanisms presented in this chapter

rely on futures as an asynchronous communication mechanism, but are otherwise

independent of concurrency mechanisms. Similarly, the mechanisms do not de-

pend on shared or separate address spaces (and so are independent of the serialisa-

tion mechanisms presented in Chapter 4).

5.1 Introduction

Exception handling has become common as a means of handling abnormal situ-

ations, and most commonly used programming languages now support exceptions.

However, basic ideas behind exception handling are far older [Goodenough, 1975].

Exceptions are now considered as a standard way of signalling about exceptional
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situations and they have widely replaced the use of specially coded return values,

additional boolean state flags, etc.

At the same time, concurrency has become increasingly important in program-

ming. Reasons for this trend include the need for more processing power, asyn-

chronous calls in distributed systems, as well as improving program structure in

reactive systems.

Basically, exception handling is about separating exception handling code from

“normal” code. This improves readability by structuring the code logically. Ex-

ception handling also introduces its own control flow to the program, so that code

does not have to explicitly check for every abnormal situation and divert program

execution to an appropriate handler.

Because exception handling is also about control flow, concurrency cannot be

added to a programming language without affecting exceptions. Concurrency intro-

duces several (usually independent) threads of execution, each of which has its own

control flow. This causes several problems to exception handling, some of which are

analysed in [Buhr and Mok, 2000]. Asynchronous calls and futures complicate the

problem even further. Combination of exception handling and concurrency have

also been discussed in [Romanovsky, 2000, Keen and Olsson, 2002, Xu et al., 2000].

There are several ways to combine exception handling and concurrency in an

object-oriented programming language, all of which have their benefits and draw-

backs [Romanovsky and Kienzle, 2001]. However, when adding concurrency to an

originally sequential programming language like C++, the exception handling mech-

anism has already been fixed, and added concurrency features should be designed

to be compatible with the existing mechanisms. This unavoidably means that some

compromises have to be made.

5.2 Issues caused by asynchrony and exceptions

Introducing asynchronous calls (and thus concurrency) also affects exception hand-

ling, and this has to be taken into account when designing exception handling mech-

anisms. This section describes issues caused by asynchrony.

If exceptions are propagated from an asynchronous call back to the caller, it is

not self-evident where those exceptions should be handled. The caller has already

continued after calling the function and may in fact have terminated its execution.

Exception handling mechanisms in most languages bind exception handlers to spe-
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cific parts of the code (try blocks etc.), and the caller may have left these by the time

the exception is raised.

5.2.1 General exception handling issues

Even without concurrency, most programming languages have to react to multiple

exceptions in certain situations. In the simplest case, another exception can be

thrown in an exception handler. Most languages allow this “stacking” of exceptions,

as long as exceptions thrown in the handler are handled to completion during the

execution of the same handler. If an exception thrown in a handler escapes the

handler, it causes the original exception to be discarded in most systems (C++, Java,

and Ada, for example). As a result, in these situations the two exceptions do not

compete with each other.

Some languages allow code to be executed after an exception has been thrown,

but before it has been caught in a handler. In C++ this is possible with destructors

of local objects, in Java with “finally” blocks. If this code throws an exception and

does not handle it locally, two competing exceptions exist. C++ reacts to the prob-

lem by terminating the execution of the program. Java in turn discards the original

exception. This situation is quite similar to a case where two concurrently thrown

exceptions occur.

Finally, many systems allow asynchronous signals which can be raised at any

time. These signals are usually associated with signal handlers, whose execution

interrupts the normal execution of the program. It is possible that another signal is

raised while a signal handler is being executed. In POSIX signals [Stevens, 1992,

Ch. 10], this is handled by associating each signal handler with a signal mask de-

scribing the signals that are allowed to interrupt the handler. The signal masks

provide a simple priority scheme for signals. However, even such a scheme does

not easily allow handling based on the occurrence of more than one signal.

5.2.2 Exceptions and asynchrony

Asynchronous calls allow the calling thread to continue its execution before the

return value of the call is available. Mechanisms like futures make it possible to

refer to an asynchronous return value “in advance”, but exceptions thrown from an

asynchronous call are more problematic.
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In C++, exception handlers (catch clauses) are only “active” while the thread of

execution is in the respective try block. Therefore, catch clauses can only catch

exceptions from asynchronous calls, if the calling thread waits for the call to com-

plete before leaving the try block. It should be noted that leaving a try block may be

caused by normal program execution or by another thrown exception.

Several asynchronously executing threads also introduce the possibility of sev-

eral exceptions being raised concurrently. If exceptions are sent to other threads

(using mechanisms described in Chapter 4 or similar), this can result in more than

one exception being propagated into a single thread.

The way return values from asynchronous calls are handled also affects excep-

tion handling. In a sense, an exception is an alternative to a return value. In syn-

chronous calls, return values and exceptions are mutually exclusive. If an exception

is thrown from a call, a return value is not created, and vice versa. However, mech-

anisms like futures act as a placeholder for the return value, and they are created

before the call completes. This means that the placeholder exists and can be ac-

cessed even if the call terminates with an exception.

Futures can usually be copied or even sent to other threads before the call com-

pletes. This possibility has to be taken into account, if an exception is thrown from

an asynchronous call. Exceptions should work consistently in this situation as well.

The situation becomes especially interesting if there is more than one thread wait-

ing for a future. Normal sequential exceptions are not usually thrown more than

once (unless they are explicitly re-thrown), but propagating an exception to several

threads would lead to throwing a copy of the same exception multiple times, once

in each thread.

5.2.3 Special issues in C++ exception handling

Exception handling features in the C++ language resemble exceptions in the Ada lan-

guage, after which parts of the C++ exception handling were modelled. Likewise,

Java took most of its exception handling features from C++. The roots of exception

handling are of course much deeper (an overview of its history can be found in

[Ryder and Soffa, 2003]). However, there are some unique features and limitations

in C++ exception handling that have to be taken into account when concurrency is in-

troduced to the language and which limit available options for concurrent exception

handling.
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In C++ standard, the lifetime of an exception is divided into three parts during its

handling [ISO/IEC, 2003, §15.1/7]: An exception is thrown when a throw statement

is executed. The actual thrown exception object is a copy of the object used in the

throw statement. An exception becomes handled when an appropriate catch clause

is found and entered. Finally, an exception is finished when the execution exits the

catch clause, causing the exception object to be destroyed. This chapter uses terms

thrown exception and handled exception as defined by the C++ standard.

One distinguishing feature in C++ is the fact that local objects must have their

destructors executed while searching for the appropriate exception handler. This

language feature is called stack unwinding. It complicates issues because user code

is executed while searching for the exception handler. However, the destruction

mechanism allows additional handling code to be executed after an exception is

thrown, but before it is handled, or before the execution of a program otherwise

leaves a try block.

Because C++ destructors make it possible to execute user code while searching

for an exception handler, destructors can throw additional exceptions (a similar

situation occurs if copying the exception object throws an exception). Therefore, the

C++ language has to consider several thrown exceptions even without concurrency.1

Standard C++ allows several thrown exceptions to exist simultaneously as long as

they are on different levels and do not compete for the same handlers. When stack

unwinding causes a destructor of a local object to be executed, the destructor may

throw additional exceptions. C++ requires that these exceptions must be handled in

the destructor and may not leak out of it [ISO/IEC, 2003, §15.2/3]. The C++ standard

dictates that violating this rule is considered a fatal error and such a program is

terminated [ISO/IEC, 2003, §15.5.1].

Thrown C++ exceptions can be nested or “stacked” on top of each other during

stack unwinding, but the latest exception must always be handled completely be-

fore earlier exception handling continues. When concurrency is introduced, mul-

tiple exceptions on the same level have to be handled in a special way because the

language itself makes it hard to throw them normally.

In many ways exceptions and return values can be regarded as similar methods

for returning from a function. However, one feature that C++ inherits from the C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1A similar thing can happen also in Java. When an exception is thrown in a try block, an associated finally-
block is always executed. If a new exception is thrown from the finally-block, the original exception is discarded
and the new exception replaces it [Gosling et al., 2005, §14.20.2]. This demonstrates how difficult it is to cope
with multiple concurrent exceptions.
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language is that the caller of a function may ignore and discard the return value.

In this respect, exceptions are different from return values since they cannot be

silently ignored. This distinction becomes important with asynchronous calls and

futures, because if a future is a placeholder for both the return value and the possible

exception, it also becomes possible to ignore exceptions.

In many languages all exception classes have to be derived from a common base

class representing all exceptions. C++ makes no such requirements although it sup-

ports inheritance hierarchies in exception handling. However, the lack of a common

base class makes it difficult to handle exceptions in a uniform way, since in C++, a

common base class is the only way to treat objects polymorphically at run-time. For

this reason the mechanism presented in this chapter requires that all concurrent ex-

ceptions are derived from a common exception base class as described in Chapter 4.

This base class also provides necessary code for serialisation. Unless stated other-

wise, all exception classes in this chapter are derived from the common base class

(sometimes these classes are called concurrent exception classes for emphasis). A

mechanism to map normal exceptions to suitable concurrent counterparts was de-

scribed in Section 4.5.

5.3 Asynchronous calls, futures, and exceptions

If an exception is thrown during the execution of an asynchronous call and is not

handled locally, it must be propagated to the caller. Since the call is asynchronous,

the only way for an exception to propagate further is through futures. A single

asynchronous call may trigger several futures through future reference parameters

and futures source. In a concurrent environment there may also be several waiting

threads, if futures have been copied to other threads.

When an exception is thrown from an asynchronous call, the library code re-

sponsible for handling the call catches the exception. It serialises the exception

object. Then it and embeds the data in the reply message of the call, which is sent

back to the caller using mechanisms described in Chapter 4.

In the caller, a copy of the exception object is created from the message data and

a pointer to this exception object is stored inside the future. This exception object,

which is not yet thrown, is called a pending exception in this chapter. If the future is

copied to another thread, the serialisation code also serialises the pending exception

object. If a future is still empty when it is copied, the library code keeps track of
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the future. Later, when the future receives its value or an exception, the result is

automatically propagated to all copied futures.

Whenever the value of a future is needed, the future checks whether it contains

an exception instead of a value. If this is the case, the future throws the pending

exception, which is then handled using normal C++ exception handling mechanisms.

If the value of the future is accessed another time, the future throws the same ex-

ception again. It should be noted that copying the future object itself, assigning

it to other futures or passing it as a parameter does not throw the exception. The

exception is thrown only when the value of the future is accessed.

Futures throw exceptions they contain only when their value is accessed. This

means that if a future is destroyed without accessing its value (or before the value

has been received), the only logical choice is to silently destroy the future, even

if contained (or will contain) an exception. This follows value semantics used by

futures, but is different from the semantics of normal C++ exceptions (which are

handled immediately and cannot be implicitly ignored). Future groups discussed

in Section 5.4.3 can be used to force synchronisation with a future before it is des-

troyed, in which case its exceptions can be handled or propagated further.

Exceptions thrown in asynchronous calls must be propagated to all affected fu-

tures, which implies copying the exception object. This is not in contradiction to

normal C++ since the language gives compilers the right to copy exception objects

when necessary [ISO/IEC, 2003, §15.1/3]. However, it means that a copy of the

same exception may be thrown in several places and may be handled several times

in multiple exception handlers when futures are copied and passed to other exe-

cution threads. Although this behaviour is logical and practically the only option,

programmers must consider its implications in the program logic.

Exceptions should also affect the semantics of future sources (Section 3.3). A

future source does not represent a return point from a call. However, if a valid value

cannot be bound to a future source, it must be possible to bind an exception in

place of the value. The bound exception object is then sent to all generated futures.

For this reason future sources provide a way to send pending exception objects to

generated futures (without first throwing the exception).

Future sources get their value using the bind method. In addition to this, fu-

ture sources contain a method called bindThrow, which takes an exception object

as its parameter. The method copies and stores the exception object inside the fu-

ture source and sends it to generated futures. The same applies also to all futures
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that are generated from the future source after bindThrow has been called. This

manual exception propagation is consistent with the manual value binding, making

it straightforward to use.

Since each future source can only contain one value or exception, an attempt

to bind the same future source twice results in an exception (only thrown to the

binder). Similarly it is an error to destroy a future source without binding it. If this

happens, a predefined exception FutureSrcNotBound is sent to all generated futures,

preventing deadlocks.

5.4 Handling multiple concurrent exceptions

Asynchronous calls make it possible to end up in a situation where several excep-

tions are raised concurrently. If the caller continues its execution while an asyn-

chronous call is active, both the client and server threads may end up throwing an

exception, and both of these exceptions should be propagated in the client thread.

The C++ language cannot handle more than one thrown exception on the same level,

and this exception cannot be changed before it is caught. This forces some com-

promises to be made.

5.4.1 Problems caused by multiple exceptions

The C++ exception handling model makes it impossible to resume the execution of

a try block after an exception is handled (reasons for not using an alternative re-

sumption model in C++ can be found in [Stroustrup, 1994]). When the C++ exception

handling mechanism searches for a correct exception handler, it permanently exits

from try blocks, destroying their local variables. This includes the try block which

contains the chosen handler. After the exception is finished, program execution con-

tinues from the point after the try-catch-compound containing the chosen exception

handler.

If several concurrent exceptions end up in one thread, only one of them can be

handled at a time. However, handling the first exception means leaving try blocks

(and their respective catch-handlers). This would make it impossible to search for

handlers for the rest of the exceptions, since all handlers are no longer available (the

program execution has already left try blocks). This kind of behaviour would be ne-

cessary in situations where there are several independent exceptions, and the caller
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wants to react accordingly to more than one of these before letting the exception

handling proceed further.

Another problem with handling concurrent exceptions one at a time would be

to choose the order in which the exceptions should be handled. Exceptions may

be thrown from several (mutually independent) locations, so deciding the correct

handling order would either require a global priority scheme for exceptions, or

mean that there would have to be a mechanism for informing the relative prior-

ity of a thrown exception (and maybe change it during exception handling when

the exception is propagated to other parts of the program). Unfortunately, this kind

of simple priority scheme is not enough for all programs. It would require that all

sources of exceptions are aware of all possible exceptions so that priority ordering

can be defined.

The third and maybe the most important aspect in concurrent exception hand-

ling is the fact that several concurrently thrown exceptions may in fact be caused

by the same abnormal situation. If thrown exception objects have the same cause

and contain the same data, they could be reduced to a single exception. However,

sometimes the nature of the actual abnormal situation may only be understood by

analysing all of the exceptions it causes, in which case it is important that the ex-

ception handling mechanism can cope with several pending exceptions. In certain

cases it would also be beneficial to be able to replace a set of exceptions (caused by

the same abnormal situation) with a new exception representing the whole excep-

tional situation. For example, several timeout exceptions from processes running on

a remote machine could be mapped to an exception representing connection failure

to the whole machine.

Writing exception handling becomes easier if these exception reductions can be

performed before an exception handler is chosen. An exception handler can then

catch a single exception whose type represents the whole situation. It is impossible

to give a global rule for reducing multiple exceptions to one, since reductions de-

pend on the context where exceptions occur. It is important that the program is

allowed to provide its own algorithms for reduction.

Figure 5.1 on the following page shows the structure of the concurrent excep-

tion handling mechanism. It is based on futures and future sources, as well as

future groups for collective synchronisation, compound exceptions for handling mul-

tiple exceptions, and reduction contexts and reduction functions for exception ana-

lysis and reduction. These mechanisms have been influenced by earlier works on
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exception reduction, resolution and concertation, for example [Romanovsky, 2000,

Xu et al., 2000, Issarny, 2001]. The behaviour of exception reduction is described in

the following sections.

5.4.2 Compound exceptions

The C++ language can only propagate one exception at a time. Another exception

may be raised during stack unwinding triggered by the first exception, but these ad-

ditional exceptions must be handled to conclusion before stack unwinding proceeds

further. In a concurrent program this limitation is problematic, because several ex-

ceptions may need to be propagated from asynchronous calls to a single try block.

A compound exception class represents a set of exceptions. It is a normal con-

current exception class, but its instances can contain an unlimited number of other
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FIGURE 5.1: Structure of concurrent exception handling
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exceptions. As compound exceptions are concurrent exceptions, they can be passed

among execution threads. Usually, compound exceptions are created by future

groups, which collect exceptions from several futures to a compound exception.

Compound exceptions are then used by reduction contexts and passed to reduction

functions for analysis and manipulation.

The interface of the compound exception class allows addition of new excep-

tions and removal of existing ones. In addition, all exceptions may be moved from

one compound exception to another, making it possible to combine compound ex-

ceptions in reduction functions or exception handlers. Compound exceptions also

provide iterators to iterate through all exceptions of a certain type.

During exception reduction, it is useful to replace a compound exception with

a selected top-priority exception. However, it is still be useful to also store the

original “secondary” exceptions, in case they are useful later. In this thesis, all

concurrent exception objects may contain an optional compound exception object

where secondary exceptions may be stored. This approach is somewhat similar to

chained exceptions in Java, where each exception may contain a reference to its

cause, which is another exception [Sun Microsystems, Inc., 2006, Throwable].

Internal C++ exception handling code is allowed to copy exception objects without

restriction. However, compound exception objects may be quite large since they

consist of several other exceptions. For this reason copies of compound exceptions

share their contents using reference counting and copy-on-write (COW) semantics.

The original compound exception and its copies share their exception objects until a

change is made to any of them, in which case a real copy of the contained exception

object is made.

Usually exceptions originate from futures, and their lifetime may be shorter or

longer than the lifetime of the compound exception their exceptions are added to.

Futures can be destroyed as a part of stack unwinding during exception handling,

or their existence can continue after exception handling has been completed. For

these reasons reference-counted sharing is used between futures and compound ex-

ceptions, too. They both share the same exception object and use reference counting

to find out when it is safe to destroy the object. Copy-on-write semantics is not used

here, since the intention is to really share the same exception object, not just avoid

duplication overhead. Sharing the exception means that even after exception hand-

ling has been completed using the compound exception, the futures (if they still

exist) throw the same exception object again, if their value is accessed.
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5.4.3 Future groups

Sometimes “delayed” exceptions caused by asynchronous calls and futures are what

the programmer wants, but in many cases a try block needs to contain multiple

asynchronous calls, and the programmer wants to know if any of them ends with

an exception before leaving the try block. Checking each future separately would be

awkward and not even straightforward in the case of multiple exceptions. For these

reasons future groups are provided to help with synchronised exception handling.

Future groups are objects to which futures may be registered. They have an

operation synchronise, which waits for all the futures in the group to receive a

value (or a pending exception). In this respect future groups are similar to barrier

synchronisation [Andrews, 1991, Ch. 4] and future sets in ES-Kit [Chatterjee, 1989].

If pending exceptions are found in the futures during synchronisation, the future

group collects these exceptions in a compound exception. The exceptions in the

compound exception are later reduced (Section 5.5), and an exception suitable for

the situation is thrown. If a reduction context is registered with the future group,

the synchronisation of the future group automatically triggers reduction.

When the program asks for a value of a future belonging to a future group, the

future first waits for its asynchronous call to complete. Then, if the call ended

with an exception, the future asks its future group to perform synchronisation. This

makes sure that all exceptions in the group are available before exception handling

is started. Finally, if possible, exception reduction is performed, and an appropriate

exception is thrown. If no reduction information is given, a compound exception

containing all the exceptions is thrown. The code in Listing 5.1 on the next page

demonstrates the use of a future group in a try block. The future group in the code

is not given reduction information, so it throws a compound exception if exceptions

are found.

If a future receives a normal return value instead of an exception, it directly

returns this value without synchronising the future group, since no exception re-

duction is needed yet. An alternative strategy would be to perform synchronisation

also in this case. However, always forcing synchronisation would seriously limit

the amount of asynchrony in the program. However, a future group can be asked to

perform explicit synchronisation at any point, if needed.

If a future group is destroyed before its synchronisation is called, its destructor

performs synchronisation automatically. This makes future groups very close to the

Resource Acquisition Is Initialisation (RAII) idiom [Stroustrup, 2000, §14.4], which
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1 Future<int> f1;
2 try
3 {
4 FutureGroup group;
5 f1 = call1(); // An asynchronous call
6 group.add(f1); // Register f1 to the group
7 group.add(call2()); // Register without storing the future
8 int i = f1.value(); // Synchronises with group first
9 } // Destruction of group synchronises with all futures

10 catch (CompoundException const& e1)

...
LISTING 5.1: Using future groups to synchronise several futures

is very common in C++ for exception-safe resource management. In RAII each re-

source is wrapped inside an object whose destructor releases the resource, prevent-

ing the possibility of resource leaks even in case of exceptions. Future groups repres-

ent the responsibility to synchronise with one or more futures (asynchronous calls),

and their destructor makes sure this responsibility is fulfilled.

5.5 Exception reduction

As mentioned previously, several futures in a try block may receive pending excep-

tions. In that case it would be beneficial if these exceptions were reduced to a single

exception object representing the complete situation. Even if the exceptions are not

the result of the same cause, finding “the most important” of the exceptions often

depends on program context.

Because there is no single all-purpose way to reduce a set of exceptions to a

single exception or a smaller set of exceptions, programs should not be forced to

any predefined behaviour. In the mechanism described in this thesis, reduction

contexts are objects which manage exception reduction strategies in different parts

of the program. Reduction contexts allow programs to bind reduction functions to

them. Reduction functions analyse the current set of pending exceptions, alter it,

and select an appropriate exception to be thrown.

5.5.1 Reduction contexts

Future groups are responsible for grouping exceptions received through futures be-

longing to the group. Reduction contexts are objects which are responsible for stor-
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ing the received exceptions and performing exception reduction on them. They also

contain information about functions needed for reduction.

Reduction contexts are introduced because of separation of concerns. Future

groups should only be responsible for synchronising with a group of futures and

collecting their exceptions. This allows future groups to be created as local variables

in a try-block, in which case they are destroyed automatically at the end of the block

and perform synchronisation before the try-block is exited.

A reduction context contains a compound exception, one or two reduction func-

tions, and an optional exception store (another compound exception). The interface

of the class contains methods to perform reduction and to check whether reduction

has already been completed.

Reduction contexts are designed to be used in the following way: First the com-

pound exception of the context is filled with appropriate exceptions (by future

groups). Then one of the reduction methods of the context is called (by a future

group or manually). This in turn calls a reduction function, which analyses the

exceptions and selects a suitable exception to represent the situation. The reduc-

tion functions may also insert, change, and remove the stored exceptions. Finally,

the reduction method of the context throws or returns the exception produced by

reduction.

The reduction context class provides three different methods for performing the

reduction, reduce(), reduceNoThrow(), and reduceThrown(). The first method re-

duces collected exceptions and throws the resulting exception. If throwing the ex-

ception is not necessary, reduceNoThrow() can be used to return the exception object

instead of throwing it. Finally, reduceThrown() can be used in situations where an

exception has already been thrown, and throwing another exception is not possible

(this situation is discussed in Section 5.5.4).

The method reduction complete() is provided for checking whether reduction

has been completed. It is allowed that the first reduction only reduces some of

the exceptions and leaves the rest for another reduction pass. For this reason,

reduction complete() returns true only if the compound exception of the context

becomes empty after reduction, or if the last reduction didn’t result in an exception

(reduction could not find anything to reduce). The reduction status can also be set

or reset again, if necessary (for example if new exceptions are added to the context).

There are several ways to connect a reduction context to a future group, depend-

ing on how the future group is constructed. In the simplest scenario, the future
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group is created using its default constructor. In this case, no reduction is per-

formed and no reduction contexts are created. If an exception occurs, the future

group synchronises with its futures and throws the resulting compound exception.

In the second scenario, the future group constructor is given a compound excep-

tion. In this case, the future group itself does not trigger reduction, it only collects

its exceptions to the compound exception (and throws a copy of it, if necessary). It

should be noted that the compound exception may belong to a reduction context (or

be added to a reduction context later), in which case reduction can be performed

afterwards.

If the future group itself should perform reduction, its constructor can be given

a reduction context object. In this case, the future group gathers its exceptions in

the reduction context and triggers reduction before throwing an exception.

If an external reduction context is not needed, future groups also have a con-

structor which accepts reduction functions as its parameters. In this case, the future

group creates its own internal reduction context, which uses provided reduction

functions to reduce collected exceptions.

The compound exception object inside a reduction context is either created auto-

matically when the reduction context is created or it can be an external object given

to the reduction context during construction. In the first case, the compound ex-

ception object is destroyed automatically when the reduction context is destroyed.

The second case allows the program to keep the compound exception (containing

remaining unreduced exceptions) even after the reduction context has been des-

troyed.

5.5.2 Reduction functions

Reduction functions are user-defined functions (or function objects) that can be ad-

ded to reduction contexts to perform exception reduction. When a reduction con-

text is asked to perform reduction, it calls its reduction function and passes the

compound exception of the context to it.

Normal reduction functions are used when exception reduction is needed and

exceptions have not already been thrown. They receive as parameters a pointer to

the compound exception object containing the exceptions, and an optional pointer

to an external exception store for storing the remaining exception objects.
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Reduction functions use these parameters to decide how to simplify or modify a

given set of exceptions. They may add and remove exceptions or transfer them from

one parameter to another. Every concurrent exception object can contain an addi-

tional compound exception object, so exceptions can also be added to and removed

from another concurrent exception object, if needed. For example, a reduction func-

tion can decide to embed all remaining exceptions from the compound exception

of the reduction context as “sub-exceptions” of the exception that is the result of

reduction.

After analysis, a reduction function may return an exception which it regards as

the “most important” of the exceptions. Alternatively, it may return a completely

new exception object representing the most appropriate exceptional situation as

well as alter, insert and remove exceptions in the compound exception.

In many programs, choosing one exception object or throwing a compound ex-

ception is enough, but sometimes it is useful to collect exceptions from (at least

some) future groups into an external exception store to be handled later. For ex-

ample, an already detected higher priority exception may make a lower level ex-

ception unnecessary, but they could still be stored for logging purposes. For this

purpose each reduction context can be given an additional compound exception

object, which is passed to reduction functions as an external exception store. Re-

duction functions may use this compound exception as a store for exceptions that

are not thrown or embedded in other exceptions.

The C++ language contains a limitation: when an exception has been thrown, it

cannot be replaced by another exception until it has been caught in a catch-clause.

This means that reduction cannot change the type of a thrown but not handled

exception, even if a more important exception is found, or if the thrown excep-

tion should be changed to a more appropriate exception. However, since future

groups automatically perform synchronisation and reduction, reduction is usually

performed before exceptions have been thrown.

Thrown-reduction functions are used when reduction is triggered in a situation

where a thrown exception has already caused exception handling to begin. Thrown-

reduction functions receive the thrown exception object as an extra parameter if the

thrown exception is an RPC-exception. If a normal non-RPC exception has been

thrown, a null pointer is passed instead (since there is no way to refer to an arbitrary

exception object). Since a new exception cannot be thrown if a thrown exception

already exists, thrown-reduction functions return nothing.
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Future groups call the thrown-reduction function instead of normal reduction if

they notice that an exception has already been thrown before reduction. C++ poses

some limitations to this reduction, but these are corner cases which do not affect

the majority of code. Section 5.8.2 discusses the potential problems.

It is possible that a reduction context is not given a thrown-reduction function,

or that the thrown-reduction function does not remove all exceptions from the com-

pound exception to be reduced. In those cases, the remaining exception are left in

the reduction context.

Not being able to perform normal reduction because of an already-thrown excep-

tion makes reduction more complex and limits the options available for reduction

functions. One solution to this problem is to catch the thrown exception normally

in a catch clause, insert it into the reduction context and trigger reduction manually

after that. Suitable macros can be written for such a purpose.

Since the same reduction strategy may be needed in several reduction contexts,

class template ReductionContextRF is provided. It takes a pointer to a reduction

function and an optional pointer to a thrown-reduction function as template para-

meters. The template is derived from ReductionContext and its constructors register

the reduction functions with the context. This way it is easy to write a typedef for a

reduction context with suitable reduction functions.

5.5.3 Example of reduction

Listing 5.2 on the following page shows a simple example using a future group and a

reduction function. In the example, Server (implementation not shown) is respons-

ible for concurrently acquiring and summing up integers. If all necessary numbers

cannot be acquired, the server throws a MissingNumber exception, which contains

a list of ids of missing numbers (the exception is a struct to make the example

shorter). Template inheritance used to derive new concurrent exception classes was

described in Chapter 4.

The example uses a reduction function reductionFunc to reduce exceptions. This

simple reduction does not need an external exception store, so it ignores its second

parameter. It only uses the first parameter, a compound exception to which excep-

tions from futures have been collected by the future group. The reduction func-

tion uses exception iterators to iterate through all exceptions of type MissingNumber.

It creates a new exception object (line 13) and copies all missing numbers into it
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1 struct MissingNumber : public RpcException<MissingNumber>
2 { // A simple exception class
3 vector<string> ids;
4 };
5

6 // Definitions of operators << and >> for MissingNumber removed

...
7 RpcExcpBase* reductionFunc(CompoundException* groupCE,
8 CompoundException* /* exception store not needed */)
9 {

10 RpcExcpIterator<MissingNumber> it = groupCE->begin();
11 if (it != groupCE->end())
12 { // MissingNumbers found in compound
13 MissingNumber* mn = new MissingNumber; // Final exception
14 while (it != groupCE->end())
15 { // Iterate, add numbers to mn
16 mn->ids.insert(mn->ids.end(), it->ids.begin(), it->ids.end());
17 it = groupCE->erase(it); // Remove exception, get next
18 }
19 // Insert the rest of exceptions into mn
20 mn->getCE()->insert(groupCE->begin(), groupCE->end());
21 return mn; // Return the list of all missing numbers
22 }
23 } else if (!groupCE->empty())
24 { // Otherwise the whole compound exception is thrown
25 return groupCE;
26 } else { return 0; } // No exceptions at all
27 }
28

29 int combine(Server& s1, Server& s2)
30 {
31 ReductionContext rc(&reductionFunc);
32 try
33 {
34 FutureGroup fg(rc); // Or directly fg(&reductionFunc)
35 Future<int> n1 = s1.sumNums(); fg.add(n1);
36 Future<int> n2 = s2.sumNums(); fg.add(n2);
37 return n1.value()+n2.value();
38 }
39 catch (const MissingNumber& mn)
40 {
41 cerr << "Missing numbers:";
42 for (unsigned int i=0; i<mn.ids.size(); ++i)
43 {
44 cerr << " " << mn.ids[i];
45 }
46 cerr << endl;
47 abort();
48 }
49 }

LISTING 5.2: Example of future groups and reduction functions
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(line 20). This exception object is then returned as the actual exception to throw.

If no MissingNumber exceptions are found, the original compound exception is re-

turned.

Function combine creates a future group, makes two asynchronous calls and adds

their futures to the future group (lines 34–36). If either of those calls ends with an

exception, the future group synchronises with both futures and calls the reduction

function. The reduction function reduces MissingNumber exceptions to a single ex-

ception, which is then thrown and caught by the catch clause (line 39). In this

example, all exceptions except MissingNumber are considered secondary, and are ig-

nored by the reduction function unless no missing numbers are found.

The code in Listing 5.3 shows a simplified way to handle multiple exceptions

in a loop, using a reduction function to decide on what exceptions to throw. The

loop continues to throw new exceptions until reduction has emptied the compound

exception or until exception handling forces the program to leave the loop.

5.5.4 Handling already thrown exceptions

When an exception has been thrown, it cannot be replaced by another exception un-

til it has been caught in a catch-clause. This means that reduction functions cannot

1 ReductionContext rc(&reductionFunc, &thrownReductionFunc);
2 while (!rc.reduction complete()) // While reduction is not complete
3 try
4 {
5 if (!rc.reduced())
6 { // not reduced -> first time
7 FutureGroup fg(rc); // Future group using reduction context
8 Future<int> n1 = s1.sumNums(); fg.add(n1);
9 Future<int> n2 = s2.sumNums(); fg.add(n2);

10 } // Automatic synchronisation of future group here
11 rc.reduce(); // Reduce and (possibly) throw
12 }
13 catch (const MissingNumber& e)
14 { // Exception handling

...
15 continue; // Deal with next exception, if any
16 // or: break; // Continue, abandon the rest of exceptions
17 // or: throw; // Abandon rest of exceptions, rethrow
18 }

LISTING 5.3: Using a compound exception and reduction in a loop



94 Chapter 5. Handling concurrent exceptions

change the type of a thrown but not handled exception. Future groups perform ne-

cessary reduction before pending exceptions are actually thrown, but it is of course

possible that an exception is thrown from another source than a future.

If an exception originates from outside future groups, the future groups can per-

form minimal reduction using thrown-reduction functions. They can embed the

exceptions of the group to the thrown exception or otherwise handle them. Since

the thrown exception cannot be replaced, this kind of reduction is inadequate. For

example, the thrown exception may represent a minor problem while the exceptions

from the future group are of a more critical type. However, C++ does not allow any

control of exception handling before a catch block is entered, therefore exception

reduction cannot interfere by adding exception reduction.

One solution to this problem is for the programmer to catch the thrown exception

and perform reduction in the catch clause. The caught exception can be added to the

reduction context and normal reduction performed. Listing 5.4 contains an example

which shows how this can be achieved.

1 ReductionContext rc(&reductionFunc); // No thrown reduction
2

3 try
4 {
5 FutureGroup fg(rc); // Future group using ce as compound
6

7 Future<int> n1 = s1.sumNums(); fg.add(n1);
8 Future<int> n2 = s2.sumNums(); fg.add(n2);
9

10 throw MissingNumber(); // Normal throw, reduction not done
11 }
12 catch (const RpcExcpBase& e)
13 {
14 if (!rc.reduced())
15 {
16 // Reduction not performed, a rogue exception
17 rc.addException(e); // Now all exceptions are together
18 rc.reduce(); // Reduce and throw
19 }
20 else
21 {
22 // Exception is the result of reduction, nothing to do
23 throw; // Propagate the exception further
24 }
25 }

LISTING 5.4: Catching and reducing rogue exceptions
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5.5.5 Reduction classes

It would be useful to provide a library of ready-made reduction components, from

which the programmer could choose and combine a suitable reduction algorithm

(possibly by adding reduction components of her own). Some basic tools for this can

be implemented using template metaprogramming. The principles of combining

reduction functions will be covered in Section 5.6.

Although using normal functions for exception reduction is a simple way to

connect reduction algorithms to reduction contexts, the solution has one limita-

tion. Since functions in C++ are identified by their address, reduction functions look

the same to the type system, which prevents most template metaprogramming. The

problem can be solved by embedding reduction functions into a class as static mem-

bers. Then the class itself can be used by template metaprograms to combine reduc-

tions. Such classes are called reduction classes.

A reduction class is a class (or a struct) with a static member function reduce

and/or a static member function thrownreduce. As the names suggest, the former

performs normal reduction while the second is used for thrown-reduction. A re-

duction class may define one or both of these functions. When reduction classes

are combined using template metaprograms, the combining metaprograms check

that each class implements the needed reductions. Usually, reduction classes only

contain these static members, so the classes are never used to create objects. In the-

ory, C++ namespaces would be much more suitable for this purpose than classes, but

namespaces are not types in C++, so they cannot be used for template metaprogram-

ming.

Reduction classes are also a convenient abstraction because they contain both

normal reduction and thrown-reduction. Reduction contexts and future groups have

appropriate templates to accept reduction classes in addition to pointers to reduc-

tion functions. A template ReductionContextRC is also provided. This template is

similar to ReductionContextRFbut it takes a reduction class as its parameter, making

it possible to write typedefs for reduction contexts using a specified reduction class.

Conversions between reduction classes and reduction functions are not difficult.

If RC is a reduction class, &RC::reduce and &RC::thrownreduce produce appropriate

reduction function pointers. For the other direction, template ReducFP<&rf,&trf>

can be provided. It produces a reduction class whose reduce calls rf() and whose

thrownreduce calls trf(). Similarly, ReducFP<&rf> and ThrownReducFP<&trf> can

be used to get reduction classes with only one of the reductions.
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5.6 Combining reduction functions using metaprogram-

ming

In the system described in this thesis, the provided library can take care of some

aspects of exception handling, like exception propagation among threads, as well as

synchronising exceptions and collecting them to groups. However, the actual imple-

mentation of reduction functions must be provided by the application programmer.

This is unavoidable, since the logic needed in exception reduction depends greatly

on the context where it is performed.

Even if the actual reduction logic varies from situation to situation, there are

many tasks which are common to many reduction cases. For example, in many cases

it is useful to choose the most important exception from a list where exception types

are ordered based on their importance. Similarly, the actual reduction logic could

contain a step where the remaining (possibly less critical) exceptions are stored into

an external exception store after performing the actual reduction step.

It would be useful if the application programmer could select and combine the

reduction logic from ready-made parts and only write those parts of reduction which

are less common. To allow this, a framework based on template metaprogramming

is described. It allows the creation of reduction classes by combining them from

ready-made and user-defined parts.

The mechanism described below is a prototype to show the principles of re-

duction combinators. It would require further analysis to know which combining

strategies and reduction logic steps are so common that they should be implemen-

ted as part of the library. However, nothing prevents the application programmer

from augmenting the library by writing her own combinator classes and reduction

steps.

Since C++ template metaprogramming operates on types, only reduction classes

can be combined using the mechanism. If necessary, ReducFP template can be used

to convert normal reduction functions into reduction classes.

The idea behind combining reductions is to define combinator classes which are

able to combine several reduction classes to one. Different combinator classes use

a different algorithm for doing this. The most important part in combining reduc-

tion classes is a template Reduc<Combinator(RClass1, RClass2, . . .)>. It takes as

parameters a combinator class Combinator and a list of reduction classes. It pro-

duces a reduction class which uses the combinator to select how individual reduc-
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tion classes are called and how their results are combined. For example, depending

on the combinator used, the resulting reduction class can call the given reduction

classes in sequence until one of them chooses and returns an exception.

5.6.1 Combinator classes

Combinator classes are classes which define how reduction classes should be used

together to create a combined reduction class. Currently, the following combinator

classes are implemented in the KC++ library:

• Choose calls the reduction classes in sequence until a reduction returns some-

thing. That result is the result of the whole reduction and the rest of reduction

classes are not called. Choose only makes sense for normal reduction, it does

not provide thrownreduce.

• ChooseAndThrown calls the reduction classes in sequence until a reduction re-

turns something. Then it calls thrown-reduction for the rest of the reduction

classes. Calling thrownreduce simply calls thrown-reduction of all the reduc-

tion classes in sequence.

• Chain also calls the reduction classes in sequence. However, it passes the

result of the first reduction class to the next reduction class as the thrown ex-

ception. This way the reduction classes can be used to manipulate the remain-

ing exceptions after the first reduction class chooses the resulting exception.

The first reduction class must implement reduce, but it can also implement

thrownreduce. The rest of reduction classes must implement thrownreduce.

• ThrownChain is just like Chain, except that it only provides thrownreduce, and

thrownreduce of the first reduction class is used.

• Priority is somewhat different from other combinators. It takes as its paramet-

ers a list of exception types instead of reduction classes. Priority produces a

reduction which selects an exception based on their priority. It checks whether

exceptions of a given types exist and returns the first exception of the first pos-

sible listed exception type. Only reduce is provided. Priority is provided as a

shortcut, the same behaviour can also be reached by combining Choose and a

list of Picks (described in the next section).
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5.6.2 Ready-made reduction classes

The following basic reduction classes are provided and can be used with combin-

ator classes and user-defined reduction classes. The classes are meant to work as

examples, building an inventory of often needed reduction steps would require ad-

ditional analysis and work.

• Pick<Exception>. This reduction class template produces a reduction class

that returns the first found exception of a given type. Only reduce is imple-

mented, since the operation makes no sense if an exception has already been

thrown.

• Remove<Exception>. This reduction class template produces a reduction class

that remove all exceptions of a given type. Both reduce and thrownreduce are

provided, and reduce returns no exceptions.

• CombineRC<Reduce,ThrownReduce>. Combines reduction functions of two re-

duction classes by using normal reduction from Reduce and thrown reduction

from ThrownReduce. A special CombineRC<Reduce> with a single parameter is

allowed. It produces a reduction class with normal reduction from Reduce but

no thrown reduction (i.e. Reduce::thrownreduce is discarded, if present).

• ThrowCompound simply returns the whole compound exception as the result

of reduction. This is the default reduction used by reduction contexts, if no

explicit reduction is set.

• ThrowOneOrCompound is otherwise similar to ThrowCompound, except that if there

is only one exception to be reduced, that single exception is returned instead

of the whole compound exception.

• ThrownCompoundToStore, ThrownExcpsToStore, ThrownCompoundToThrown,

ThrownExcpsToThrown. These reduction classes are for thrownreduce reduction

only. They store the exceptions to the exception store or embed them in the

already thrown or selected exception. They are meant to be used as later

stages with Chain or ThrownChain in order to store the remaining exceptions

to a suitable place. The ThrownCompound.. . reductions store the whole

compound exception object, whereas the ThrownExcps.. . versions store the

individual exceptions in the compound exception.
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• ThrownRemoveThrown. This thrownreduce reduction simple checks whether the

thrown exception also exists in the compound exception to be reduced. If this

is true, the thrown exception is removed from the compound exception. For

example,

Reduc< Chain(Pick<E>,ThrownRemoveThrown,ThrownExcpsToThrown) >

produces a reduction which checks if exceptions of type E exist, and chooses

and removes the first of them. The remaining exceptions are embedded in the

selected exception.

• ClearCompound clears all exceptions from the reduction context. This reduction

step can be used as the last step to make sure nothing remains in the reduction

context.

• ReplaceCompounds can be used to "strip" compound exceptions in the reduction

context. The reduction step replaces all compound exceptions in the reduction

context with their contents, but returns nothing. This step can be used in the

beginning of a reduction chain if it is expected that reduction context receives

compound exceptions from futures.

• UniqueIdentity removes duplicate exceptions from the reduction context.

This reduction step can be used if it is possible that the same exception is

propagated to the reduction context through several channels.

5.6.3 Example of reduction combining

Listing 5.5 on the next page shows an example of combining reduction classes. The

example is the same as in Listing 5.2, but now FutureSrcNotBound exceptions parti-

cipate in reduction and are considered more important than MissingNumbers.

The Choose combinator is used to choose the first reduction step that returns

something. Pick returns a FutureSrcNotBound exception, if such exceptions exist

in the reduction set. If not, the user-provided reduction function is used to re-

duce MissingNumber exceptions. Since reduction combinators work on reduction

classes and not functions, ReducFP template is used to create a reduction class which

calls the user’s reduction function. If neither of the reduction steps returned any-

thing, ThrowCompound selects the whole reduction set as a compound exception to be

thrown.
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1 // Definition of MissingNumber as before
2 //
3 // Choose primarily FutureSrcNotBound, secondarily the result of reductionFunc,
4 // throw the whole compound exception if neither matches.
5 // Name the resulting reduction class MyReduc
6 typedef Reduc<Choose(
7 Pick<FutureSrcNotBound>,
8 ReducFP<&reductionFunc>,
9 ThrowCompound

10 )> MyReduc;
11

12 int combine2(Server& s1, Server& s2)
13 {
14 ReductionContextRC<MyReduc> rc;
15 try
16 {
17 FutureGroup fg(rc);
18 Future<int> n1 = s1.sumNums(); fg.add(n1);
19 Future<int> n2 = s2.sumNums(); fg.add(n2);
20 return n1.value()+n2.value();
21 }
22 catch (const MissingNumber& mn)
23 {
24 cerr << "Missing numbers:";
25 for (unsigned int i=0; i<mn.ids.size(); ++i)
26 { cerr << " " << mn.ids[i]; }
27 cerr << endl;
28 abort();
29 }
30 catch (const FutureSrcNotBound& nb)
31 {
32 cerr << "Futures missing their values!" << endl;
33 abort();
34 }
35 }

LISTING 5.5: Combining reduction functions using combinator classes

5.6.4 Implementation of combinator classes

The parameter C(R1,R2,.. .)in the Reduc template uses a function type to provide

a list of arbitrary types as described in Section 2.3.4. Here the syntax is used to

define a small “domain specific language” (DSL) for combining reduction classes.

As variadic templates were added to the new C++11, they could be used instead.

Combinator classes are simply structs with two nested reduction class defini-

tions, one normal class and one template. These are used by the Reduc template in a

Lisp-like fashion to produce a list consisting of nested pairs. The goal is to achieve a

combination of an arbitrary number of reduction classes by defining how two reduc-
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tion classes are combined. The reduction classes defined by the combinator class

are the following:

• Nil is the “terminating” reduction class. It defines the reduction performed

when no parameters are present. Thus Reduc<C()> performs the same reduc-

tion as C::Nil.

• Cons<RC1, RC2> is a reduction class template taking two reduction classes as

its parameter. The first parameter is one of the reduction class parameters

of Reduc, and the second parameter is the result of combining the rest of the

parameters. The implementation of reduce and thrownreduce in Cons decides

how to call reduce and thrownreduce in the parameters of Cons in order to

achieve a suitable combination of reductions.

The Reduc template constructs the combined reduction class by recursively in-

stantiating the C::Cons template. During instantiation of Reduc<C(R1,R2,.. .,Rn)>,

C:Cons is instantiated by passing R1 and Reduc<C(R2,R3,.. .,Rn)> as parameters.

As mentioned before, Reduc<C()> produces C::Nil. This results in a recursive

chain of Cons instantiations where each Cons combines one reduction class para-

meter with the result of combining the rest of reduction class parameters, terminat-

ing with Nil.

Below is an example of a stepwise instantiation of Reduc<C(R1,R2)>:

1. Reduc<C(R1,R2)>⇒

2. C::Cons< R1, Reduc<C(R2)> > ⇒

3. C::Cons< R1, C::Cons< R2, Reduc<C()> > > ⇒

4. C::Cons< R1, C::Cons< R2, C::Nil > >

(The actual instantiation chain used in KC++ is somewhat different, since typedef

Reduc::Func is needed to name the calculated reduction class.)

With the Reduc framework provided, it is quite straightforward to write applic-

ation specific reduction combinators. All that has to be done is to write a struct

with an appropriate Nil reduction class and Cons reduction class template. As an

example of this, listing 5.6 on the following page shows the implementation of the

combinator Choose.

The actual implementation of the Reduc template is based purely on partial tem-

plate specialisations, and the primary Reduc template is empty. One specialisation
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1 // Combinator metafunction which calls reduction objects in sequence,
2 // returning the value of first one which doesn’t return 0
3 struct Choose
4 {
5 // With nothing to choose, does nothing
6 struct Nil
7 {
8 static RpcExcpBase*
9 reduce(CompoundException*, CompoundException*)

10 {
11 return 0;
12 }
13 };
14

15 // Calls the first param, returns if it didn’t return 0
16 // Otherwise calls the second one and returns it value
17 template<typename Head, typename Tail>
18 struct Cons
19 {
20 static RpcExcpBase*
21 reduce(CompoundException* groupCE, CompoundException* storeCE)
22 {
23 RpcExcpBase* headres = Head::reduce(groupCE, storeCE);
24 if (headres) { return headres; }
25 RpcExcpBase* tailres = Tail::reduce(groupCE, storeCE);
26 return tailres;
27 }
28 };
29 };

LISTING 5.6: Implementation of the combinator Choose

is written for each number of parameters (reduction classes). In current KC++ imple-

mentation up to eight reduction classes are supported, but it is trivial to increase

this limit to any number. Each partial specialisation gets the combinator class and

the reduction classes as its parameters, enabling it to pass them to C::Cons and a

specialisation of Reduc with one less parameters. Listing 5.7 on the next page shows

the specialisation of Reduc with three reduction class parameters.

5.7 Reduction based on inheritance hierarchies

One possible reduction strategy is to find the most derived common base class for

all the exceptions, and replace the set of exceptions with a single exception object

of that type. This kind of reduction can be convenient as it provides a general way
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1 template <typename Comb, typename T1, typename T2, typename T3>
2 struct Reduc<Comb(T1, T2, T3)>
3 {
4 typedef typename Comb::template Cons<T1,
5 typename Reduc<Comb(T2, T3)>::Func> Func;
6

7 static RpcExcpBase* reduce(CompoundException* groupCE, CompoundException* storeCE)
8 {
9 return Func::reduce(groupCE, storeCE);

10 }
11

12 static void thrownreduce(CompoundException* groupCE, CompoundException* storeCE,
13 RpcExcpBase* thrown)
14 {
15 Func::thrownreduce(groupCE, storeCE, thrown);
16 }
17 };

LISTING 5.7: Partial specialisation of Reduc for three reduction classes

of reducing an arbitrary set of exceptions. In this thesis, this is called folding of

exceptions.

For example, if an overflow exception and a division by zero exception have

occurred, and if they are both derived from arithmetic exception, they could be

reduced to a single arithmetic exception.

On the other hand, this kind of reduction loses information about the types of

individual exceptions. It does not allow certain exception types to have a higher

precedence than others. If a fatal exception and a minor exception are reduced, the

result is their common base class, which abstracts the types of individual exceptions

away. Catching this base class exception object does not reveal whether a fatal

exception has occurred.

5.7.1 Problems in implementing inheritance based reduction in C++

Even though inheritance hierarchy based reduction is not suitable for all reduction

situations, it was considered useful enough to be implemented. There are two prob-

lems to be solved. One is related to exception objects and data they contain. The

other is to (again) overcome technical limitations in the C++ language.

The first problem is that the reduction algorithm has to find out the most derived

common base class of a group of exceptions, and then decide the type for the result-
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ing folded exception object. Here again limited reflection support in the C++ language

causes problems.

At least a way to find the most derived common base class of two classes is

needed. This can then be applied several times to find the most derived com-

mon base class for an arbitrary number of classes. In C++, dynamic cast provides

run-time support for asking whether an object belongs to a certain class (either

directly or through inheritance). There is no built-in compile-time counterpart to

dynamic cast, but it has been found out that template metaprogramming capabilit-

ies of C++ are strong enough to build a compile-time comparison for the inheritance

relationship between two types. Such a comparison called is base of is provided

by the Boost Typetraits library [Abrahams et al., 2006] and the C++ TR1 library exten-

sion [ISO/IEC JTC1/SC22, 2006, §4.6]. It is also included in the new C++11 standard

[ISO/IEC, 2012, §20.6.5]

Unfortunately even is base of does not solve the folding problem. It allows

compile-time checking of inheritance relation between two classes, but those classes

have to be known beforehand. The author knows no mechanism in C++ to navigate

arbitrary inheritance hierarchies, either during compile-time or run-time. The same

limitation caused problems with exception mapping in Section 4.6.3.

The problem is quite similar to the exception hierarchy traversal needed in poly-

morphic exception mapping in Section 4.6.4. Extra information about inheritance

relationships is needed. At least each exception class needs to tell its base classes

so that the common most derived base class can be found.

The second problem is caused by the fact that exception objects are thrown, not

just their types. Even though exception resolution is based purely on the types of ex-

ceptions, exception handlers may need the information contained in the exception

objects. So it is not enough just to find a common base class for the exception types,

there also has to be a way to allow the resulting new exception object to collect

necessary data from the individual exception objects.

It is clear that types of individual exception objects cannot be taken into account

when their data is combined (exceptions to be folded belong to arbitrary derived ex-

ception classes). It is however known that each individual exception object belongs

to the chosen common base class. The base class itself knows what kind of common

information the exception objects contain on the base class level and can provide a

method for folding that information into a single base class exception object.
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5.7.2 Providing folding information

Since folding is performed when the resulting base class exception object is created,

one option is to do the folding in the constructor of the object. In this thesis, a fold-

ing constructor of an exception object is a constructor which takes as its parameters

a compound exception which contains all the exceptions to be folded.2 With fold-

ing constructors, the exception hierarchy provides enough information to fold an

arbitrary number of exceptions in the hierarchy into a single one. Another possib-

ility is to delegate folding to a static member function which returns a pointer to a

dynamically created exception object which is the result of folding.

Metaprogramming can be used to let the programmer to choose which one to

use. If a static member function create folded exists, it is used to perform folding.

Otherwise a folding constructor is used, if present. If neither of these exist, folding

to that class is not possible.

Folding inheritance information can be provided in the same manner as mapping

inheritance information in Section 4.6.4. In principle the same MapBases typedef

could be used, but in some exception hierarchies the whole hierarchy should not be

used for folding. For example, if the exception hierarchy contains base classes for

fatal errors and minor errors, it is probable that fatal errors and minor error should

not be folded together to their common base class, losing essential information.

For this reason a separate typedef FoldBases is used for inheritance information

needed in folding. Its format is similar to MapBases. If there is no need to terminate

folding to a certain level in the hierarchy, FoldBases and MapBases can be identical.

Otherwise FoldBases can omit some base classes if folding to those bases is not

wanted. Listing 5.8 on the following page shows an example of an exception class

with folding information. In the listing FoldBases does not mention the base class

B2L, so common base class search does not proceed to that base.

5.7.3 Using trait classes for folding information

Folding constructors and embedded FoldBases typedefs can be used in user-defined

classes, but they are problematic with third party exception hierarchies, where new

member functions cannot be added later. An external folding mechanism is needed

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2Folding constructors resemble the new initializer-list constructors in the C++11 standard. [ISO/IEC, 2012,

§8.5.4].
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1 class E1L : public B1L, public B2L { /* . . . */ };
2

3 class E1Rpc: public E1L, public RpcException<E1Rpc>
4 {
5 public:
6 // Mapping information
7 typedef E1L MapBases(B1L,B2L)
8 // Folding information (does not fold towards B2L)
9 typedef E1L FoldBases(B1L);

10 // Folding function
11 E1Rpc* create folded(CompoundException& ce) { /* . . . */ }
12 };

LISTING 5.8: Folding information in an RPC exception class

for those classes. Similarly, information about inheritance should be possible to put

outside the class.

Trait classes discussed in Section 4.6.5 can also be used for exception folding.

Information and functionality concerning an exception class can be put into its trait

class. The default implementation of the trait template can look inside the class so

that programmer’s own exception classes can use embedded member functions and

typedefs.

To create an exception object using folding, its trait class should provide a static

member function create folded, which takes as its parameter the compound excep-

tion containing exceptions to be folded (all of which are assumed to be derived from

the exception class in question). It returns a dynamically created exception object

which is the result of folding.

Folding information on inheritance can be provided in the trait class using a

FoldBases typedef as described earlier. Listing 5.9 on the next page shows an ex-

ample of a concurrency trait with folding information.

5.7.4 Folding to a single level in inheritance hierarchy

It is fairly straightforward to check whether a set of exceptions belong to a given base

class, since this check can be done with dynamic cast. Even though this simple fold-

ing does not navigate the inheritance hierarchy, it is enough for simple cases, where

the whole inheritance hierarchy is not of interest. Two reduction class templates

FoldAnySingle and FoldAllSingle are provided for this purpose. The templates take

as their parameter the RPC exception class to which folding should be performed, if

folding is possible. FoldAnySingle reduction folds any exceptions that belong to the
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1 class E1L : public B1L, public B2L { /* . . . */ };
2

3 template<>

4 struct ConcTraits<E1L>
5 {
6 // Mapping information
7 typedef E1L MapBases(B1L,B2L)
8 // Folding information (does not fold towards B2L)
9 typedef E1L FoldBases(B1L);

10 // Folding function
11 ConcExcp<E1L>* create folded(CompoundException& ce) { /* . . . */ }
12 };
13

14 typedef ConcExcp<E1L> E1Rpc;

LISTING 5.9: Folding information in a concurrency trait

given base class or are derived from it. It succeeds if there is at least one exception

of required type. FoldAllSingle in turn requires that all exceptions to be reduced

are suitable for folding.

The benefit of FoldAnySingle and FoldAllSingle is that they work for all RPC ex-

ception classes as long as the target class provides a folding constructor or a folding

function. However, they are not practical for folding complete inheritance hierarch-

ies, since that would need a FoldAllSingle for each base class, combined with the

Choose combinator, for example.

5.7.5 Implementation of full inheritance based folding

When the programmer provides information about the exception inheritance hier-

archy (using FoldBases), mechanisms for complete folding can be implemented. As

explained in Section 4.5, implementing RPC exception hierarchies requires a tradi-

tional exception hierarchy and separate RPC classes for each class in the hierarchy.

The RPC classes are derived both from their traditional counterpart and template

RpcException (with the RPC class itself as a template parameter).

Implementation of folding is shown in Listing 5.10 on page 109. The source code

is from the KC++ implementation. Folding reduction is implemented by a static mem-

ber function fold(CompoundException*) of base class template RpcException. First

RpcException<ERpc>::fold uses a check similar to FoldAllSingle<ERpc> to find

out whether all exceptions are derived from E (which is found using the return type

of the FoldBases typedef). If all exceptions of the correct type, an ERpc object is cre-
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ated using the create folded function or the folding constructor. Otherwise fold

delegates the task to BRpc::fold, which works one step up in the implementation

hierarchy (BRpc is again found using the FoldBases typedef). If all levels fail, 0 is

returned. If more than one base class is defined, each base class is tried in the order

which they are listed.

The remaining problem is at the beginning of folding reduction, when a cor-

rect instance of fold must be found to start the folding chain. Since the reduc-

tion mechanism has no static information on the types of the exceptions, dynamic

typing is needed. For this purpose, RpcExcpBase defines a pure virtual function

dynfold(CompoundException*). Each RpcException instance implements it and the

implementation just calls fold.

With this virtual function folding reduction can be performed by calling dynfold

on any of the exceptions to be folded. Then dynfold in turn calls fold and starts the

folding test chain from the level of the exception used. Since folding is searching

for a most derived common base class, it cannot be further down in the inheritance

hierarchy than any of the exceptions to be folded.

5.8 Implementation issues with multiple exceptions

This section presents some issues in the implementation of concurrent exceptions

as well as restrictions and limitations imposed by the standard C++ language. In

many cases, these limitations have forced some compromises compared with the

ideal way of handling multiple concurrent exceptions.

5.8.1 Keeping track of thrown exceptions

One of the problems is to implement reduction functions and compound exception

handling in standard C++ without language changes. When an exception is thrown,

C++ code has no control over the program execution until a suitable exception handler

is found and its code is executed.

Future groups work by registering themselves with futures. If a future contain-

ing an exception is accessed, it first synchronises with the future group, triggering

reduction. If the lifetime of a future group ends before any future has triggered syn-

chronisation, the destructor of the group performs synchronisation and if necessary,

reduction.
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1 class RpcExcpBase
2 {
3 public:
4 virtual shared ptr<RpcExcpBase> dynfold(CompoundException& ce) const = 0;
5 };
6

7 template<typename E, RpcExcpBase::TypeID E TYPE = NO E TYPE>
8 class RpcException : public RpcExcpBase
9 {

10 public:
11 virtual shared ptr<RpcExcpBase> dynfold(CompoundException& ce) const
12 {
13 return fold(ce);
14 }
15

16 static shared ptr<RpcExcpBase> fold(CompoundException& ce)
17 { // This implementation is simplified from the real version
18

19 bool folding possible = true;
20 if (ce.empty()) { folding possible = false; } // Nothing to fold
21 for (RpcExcpBaseIterator i = ce.begin(); i != ce.end(); ++i)
22 {
23 // FoldBasesAux<E> is a helper metafunction which provides
24 // access to the components of the FoldBases typedef
25 // Orig is the type of the original non-RPC exception class.
26 if (!std::tr1::dynamic pointer cast<typename
27 FoldBasesAux<FoldType>::Orig>(*i))
28 { folding possible = false; break; }
29 }
30

31 if (folding possible)
32 { // Folding is possible, create a folded exception
33 shared ptr<RpcExcpBase> result;
34 if (ce.size() == 1)
35 { // Only one exception, no need for folding
36 result = *ce.begin();
37 }
38 else
39 { // Do folding
40 result = shared ptr<RpcExcpBase>(E::create folded(ce));
41 }
42 ce.clear(); // Remove exceptions from reduction set
43 return result;
44 }
45 else
46 { // Folding was not possible on this level, try base class
47 // FoldBasesAux<E>::basefold is a helper (meta)function which
48 // uses FoldBases to call fold on the base exception classes.
49 return FoldBasesAux<E>::basefold(ce);
50 }
51 }
52 };

LISTING 5.10: Implementation of full exception folding
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However, it is possible that the destruction of a future group is triggered by an

exception thrown from outside the futures of the group. In this case, the destructor

of the future group has no standard way to gain access to the thrown exception ob-

ject itself. This information is needed by thrown-reduction functions, because they

need knowledge about the thrown exception in addition to pending exceptions re-

ceived through futures. An additional mechanism is needed to provide information

about the currently thrown exception.

Concurrent exception handling keeps track of the current exception status by

having its own “throw stack”. Each execution thread has its own internal stack of

currently thrown concurrent exception objects. Exception objects are added to the

stack when they are created and their destructors remove the objects when their

handling completes and the exception becomes finished.

Exception objects in C++ have no knowledge of when they are actually thrown.

Concurrent exception objects make a simplifying assumption that they are thrown

immediately after their creation, and the constructor of the exception base class

registers every new exception object to the throw stack. Similarly, the destructor of

the base class removes an exception object from the throw stack when the exception

becomes finished. This way the system can keep track of the most currently thrown

concurrent exception object.

When a future group is destroyed (or its synchronisation is explicitly requested),

the group first waits for all registered futures to get their values. Then it creates

a compound exception object, where all pending exception objects are collected

from the futures. If the throw stack is not empty, exception handling is already

in progress and thrown-reduction should be performed. The destructor calls the

C++ library function std::uncaught exception to find out whether there are any un-

handled thrown exceptions. Section 5.8.2 will present restrictions on the result of

std::uncaught exception. The future group then takes the topmost thrown concur-

rent exception object (if any) from the stack. It assumes that this is the latest thrown

but not yet handled exception and passes it to the thrown-reduction function. Sec-

tion 5.8.2 will also discuss situations where this assumption might be incorrect.

5.8.2 Restrictions in the concurrent exception model

Concurrent exception handling in this thesis is implemented using standard C++,

without modifying the C++ exception model (or compiler). This means that concur-
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rent exceptions have to cope with restrictions caused by the C++ exception model,

which has been designed without thinking about issues caused by concurrency.

This section discusses the most important issues and restrictions in the concur-

rent exception handling model presented in this thesis. It also describes the situ-

ations where these restrictions apply and suggests workarounds and ways to avoid

the restrictions, if possible.

Changing a thrown exception

The concurrent exception handling model allows programs to handle a situation

where several thrown exceptions from concurrent calls end up in a single execution

thread as pending exceptions. Reduction functions allow the program to interpret

the situation and reduce the number of exceptions. The fact that each concurrent

exception object can act as a compound exception means that several exceptions

can be grouped together for later analysis and reduction.

One problem with reduction functions and multiple exceptions is that C++ does

not allow replacing a thrown exception before it has been caught in a catch clause.

If an exception is thrown from outside a future group, the destructor of the group

can call a thrown-reduction function, which in turn can analyse and alter the set

of exceptions in the group. However, an already thrown exception object cannot be

replaced by another, more important exception. This limits the abilities of thrown-

reduction functions and restricts their use. A partial solution is to catch the thrown

exception and perform necessary reduction in the exception handler, as discussed

in Section 5.5.4.

Compound exceptions

If CompoundException class is used to represent a situation with multiple exceptions,

the program cannot catch exceptions based on their type. A compound exception

object is always of type CompoundException no matter what exception objects it con-

tains. For this reason CompoundException is mainly useful as a temporary container

of unreduced exceptions, and it should be replaced by another exception in a reduc-

tion function.
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Non-RPC exceptions

Exceptions are added to the throw stack in the concurrent exception base class con-

structor and removed in the destructor. Therefore non-RPC exceptions (i.e. excep-

tions not derived from the concurrent exception base class) are not added to the

throw stack. This means that future groups and reduction functions cannot get ac-

cess to thrown non-RPC exception objects. Since non-RPC exceptions do not have

to have a common base class, referring to those exceptions would be impossible in

C++, anyway.

Not having access to these objects mean that information about these exceptions

cannot be part of the exception reduction process. Future groups’ destructors can de-

tect the presence of a thrown non-RPC exception by using uncaught exception (with

certain limitations) and call thrown-reduction instead of normal reduction, but a

pointer to the already-thrown exception object cannot be provided to the thrown-

reduction function.

In practise, the use of non-RPC exceptions should be minimised in programs us-

ing concurrent exception reduction, especially in places where future groups and

reduction functions are used. The wrapper template ConcExcp presented in Sec-

tion 4.5 can be used to create concurrent versions of ordinary exceptions. Exception

mapping explained in Section 4.6 can be used to wrap and re-throw non-RPC ex-

ceptions in concurrent form.

Standard C++ and std::uncaught_exception

Some of the mechanisms presented in this chapter use the C++ library function

uncaught exception, which was mentioned in Section 2.2.3. The problem is that

although std::uncaught exception tells if an exception has been thrown, it does not

tell whether the code calling uncaught exception can safely throw another excep-

tion. C++ supports multiple simultaneous exceptions as long as they do not end up

at the same level during stack unwinding. The return value of uncaught exception

just tells whether exception handling on some level is in progress.

Future groups use std::uncaught exception in their destructor to find out if ex-

ception handling is currently active, in which case thrown-reduction is called in-

stead of normal reduction. The limitations of uncaught exception mean that if a

future group is destroyed in code which is called from the destructor of some class,

it is possible that thrown-reduction is called even though normal reduction would
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also be possible (the exception thrown by normal reduction could be caught in the

destructor of the class).

In practise the only way around these problems is to avoid using future groups

in code which is executed as the result of stack unwinding, i.e. destructors or code

called from destructors. This limitation should not make programming difficult,

since standard C++ practises already warn against destructors performing actions

which may fail and throw exceptions.

These problems are the direct result of the way C++ allows stacking of exceptions.

There is no static compile-time way of knowing whether it is safe to throw an ad-

ditional exception during stack unwinding, since there is no static way of knowing

whether that additional exception would be caught before it ends up on the same

level as the original exception.

5.9 Applicability to other languages

Multiple concurrent exceptions are a problem that remains unsolved in many pro-

gramming languages in addition to C++ (this is discussed later in Chapter 7). There-

fore other programming languages may benefit from multiple exception techniques

presented in this chapter.

The multiple exception mechanism is heavily based on futures for asynchron-

ous return value passing. Therefore its applicability to languages without futures is

questionable. Fortunately, futures are being added to many modern languages (e.g.,

C++11 and Java). If futures are provided, the ideas behind compound exceptions, fu-

ture groups, reduction contexts and reduction functions are not dependent on the

programming language.

Synchronising among futures using a future group is easily applicable to other

languages. Futures just need to keep track of future groups they belong to and trig-

ger the synchronisation of those groups. Forcing synchronisation before leaving

a try block is more challenging. Current mechanism achieves this by having the

destructor of the future group perform synchronisation. Since destructors and de-

terministic destruction is not very common in modern programming languages, al-

ternative mechanisms should be used (ProActive mentioned later in Section 7.3.2,

for example).

Exception reduction presented in this chapter should be applicable to other lan-

guages as well. It only requires that programmer can register reduction functions to
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future groups. This is possible through function pointers, inheritance, lambda func-

tions, etc, thus suitable mechanisms should exist in most modern programming lan-

guages. Exception reduction is possible even without futures, if other mechanisms

are used to collect together multiple concurrent exceptions before handling them.

The mechanism to combine reduction functions using metaprogramming can

be used in other languages depending on the metaprogramming facilities of the

language. The mechanism in this chapter relies heavily on compile-time template

metaprogramming, but similar results can be achieved through other means, such

as run-time reflection, for example. If a language supports functions as first-class

citizens, writing reduction combinators should not be difficult.

A special case of exception reduction was presented, where a group of exceptions

is folded to a single exception whose type is the most derived common base class of

the exceptions to be reduced. This folding reduction can be used in other languages

supporting exception hierarchies, if their reflection capabilities are strong enough

to traverse and analyse class hierarchies. Since C++ lacks run-time reflection, folding

is achieved by providing additional type information through trait classes. In lan-

guages with run-time reflection, folding could be achieved more easily by traversing

exception hierarchies using reflection. Folding several exceptions to one still needs

folding functions which combine information from several exceptions to one. These

functions would still have to be provided by the programmer.

In many cases the mechanisms presented in this chapter have been limited by

the C++ languages, especially its static compile-time reflection and rigidity of its ex-

ception handling. If the mechanisms are applied to other languages, these limita-

tions do not necessarily apply any more. One great limitation in C++ is that it does not

allow the program to replace a thrown exception without catching it and throwing

another exception. This makes it impossible to perform proper exception reduction

in the destructor of a future synchroniser, if an exception has already been thrown.

To the knowledge of the author, this limitation exists in most major programming

languages, even ones with run-time reflection. For example, Java language provides

no better support for accessing or replacing a thrown exception.

5.10 Summary

In this chapter it has been shown how support for multiple exceptions in asyn-

chronous concurrent calls can be added to C++. This capability is achieved with
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futures and future sources for asynchronous return value handling, future groups

for mutual synchronisation. Reduction contexts, compound exceptions, and reduc-

tion reduction functions are used for exception resolution and selection. All this

has been achieved using a library-based approach, without changing the C++ syntax

or the underlying compiler.

This chapter has also presented a template metaprogramming based approach for

combining reduction algorithms from ready-made components. A collection of such

components are given, as well as tools for reduction based on exception hierarchies.

The source code for an implementation of the mechanisms presented in this

chapter (as well as the source of the entire KC++ library) can be found in

http://www.cs.tut.fi/ohj/kcpp/kcpplib-html/.

http://www.cs.tut.fi/ohj/kcpp/kcpplib-html/




117

Chapter 6

A case study and evaluation

This chapter contains a case study and evaluation of the exception passing and

reduction mechanism described in this thesis. The purpose of the evaluation two-

fold: to use mechanisms in a real application to check their feasibility and gain

experience on their use, and to provide a platform for performance measurements

to verify that the mechanisms do not cause unacceptable overhead.

Before the actual case study, Section 6.1 discusses performance tests used to

measure the low-level performance of the RPC exception passing mechanism. Sec-

tion 6.2 presents a case study using the concurrent exception mechanisms: a con-

current implementation of the Observer pattern. Section 6.3 extends this case study

by presenting an application built on the concurrent Observer implementation. The

application is a simple concurrent graphical image manipulation program which

uses the Observer pattern to notify changes in the image chain. The motivation of

this case study was to use concurrent exception handling and exception reduction

in a realistic setting to test its expressiveness and find out problems and limitations.

The case study gives an opportunity to measure the performance impact of the

mechanisms presented in this thesis. Section 6.4 discusses the performance of the

case study. Tests were run on the case study application and these results are ana-

lysed and compared with the results given in Section 6.1.

6.1 Performance of RPC exception passing

In C++ throwing an exception is a heavy operation, and many C++ style guides and

textbooks emphasise that for this reason exceptions should only by used in really
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exceptional situations [Stroustrup, 2000, §14.5][Meyers, 1996, Item 15]. The over-

head of exceptions is usually compared with the overhead of a normal function call.

In a concurrent environment the situation is different, since RPC calls are much

slower than normal function calls, and on the other hand RPC exception passing

mechanism imposes additional overhead on top of normal exception handling. For

this reason it was regarded necessary to measure the impact of exception handling

using the RPC mechanism described in this thesis, and compare it with normal C++

exception handling overhead.

6.1.1 Test setup

Performance of exception passing was tested by repeatedly calling a simple function

that returned an integer or threw an exception depending on the test. Measurements

were made for three test cases. The first test was performed with no exception

handling code and with exception support disabled in the compiler. The second

test was performed with necessary exception handling code included but without

actually throwing any exceptions. In the third test an exception was thrown from

the function each time.

Since exception handling in normal C++ is typically several orders of magnitude

slower than normal return, exceptions are often not used in time-critical segments

of code. Therefore, it is not reasonable to compare exception handling performance

directly to cases where exceptions do not occur. However, measuring the normal

return gives an estimate for normal function call overhead.

Each of these three tests was run in three different setups. The first setup used

normal C++ function calls and exception handling. The second setup was a modi-

fied program that used serialisation for parameter and return value passing, and the

mechanism described in this thesis for exception propagation, but within the same

address space. The third setup was to use KC++ for a real RPC call between address

spaces. KC++ uses active objects executing concurrently in separate address spaces,

and futures as an asynchronous communication mechanism. However, only syn-

chronous calls were used in this test to make results easier to compare with each

other. The KC++ tests give a realistic estimate for RPC overhead in remote invocation

and having to pass serialised data to another address space.

All tests were run under 64-bit OpenSuse 11.0 Linux with kernel 2.6.25.18-0.2

and Intel Core 2 processor running at 2380 MHz. Only one processor core was
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enabled in the operating system (to make comparisons fair for both serial and par-

allel tests). CPU frequency scaling was turned off. GCC 4.3.2 compiler was used

with both -O2 and -O3 optimisations.1 The code calling the test function and the

test function itself were placed in separate compilation units in order to make sure

that the compiler could not use inlining to optimise the actual function call away.

Test results were interpreted using the K-best method [Bryant and O’Hallaron, 2003,

Ch. 9] — each test program was run N times and its running time was measured.

If the relative differences of the K best results were less than ǫ, the best result was

accepted as “representative” with little extraneous fluctuation. Parameter values

for the K-best criteria were N = 20, K = 3 and ǫ = 0.01 (these values are from

[Bryant and O’Hallaron, 2003]).

The results are shown in Table 6.1 on the next page. The first column in the table

tells how exceptions were handled in the test. Since returning from a function and

throwing an exception is a very fast operation, each test program contained a loop

which performed the operation repeatedly. The second column shows how many

times the test loop was run, and then third column shows the total time, both for

-O2 and -O3 optimisations. The number of tests for each run was chosen so that

each individual test run lasted approximately 10-60 seconds. This was necessary to

keep the total time of the whole test run within reasonable limits.

The last column is the most important and shows the time consumption of one

individual call, again for both optimisation flags. Results in the last column were

rounded to two significant digits, because K-best criteria for accepting the results

was ǫ = 0.01 (i.e., 1 % of fluctuation was allowed). These results are presented as a

logarithmic graph in Figure 6.1 on the following page.

6.1.2 Analysis of test results

Tests 1, 4, and 7 were performed with exception support turned off in the compiler.

They are meant to represent the base line on top of which exception handling over-

head is added. Tests 2, 5, and 8 were performed with exception support on, but

without throwing any exceptions. Finally tests 3, 6, and 9 show the case where the

function returned by throwing an exception instead of returning a value. Test 6b

is otherwise the same as test 6a, but the client first fetches the exception and then

throws it separately, instead of asking the library to throw the exception right after
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1Both optimisations are included since the tests indicate that -O2 can be more efficient than -O3 in certain
situations.
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Test # of calls Time -O2/-O3 (s) Time/call -O2/-O3 (µs)

1. No exception handling 1010 25.24/29.45 0.0025 / 0.0029

2. Excp handling, no throw 1010 29.45/29.45 0.0029 / 0.0029

3. Excp handling and throw 107 47.53/47.67 4.8 / 4.8

4. Serialisation, no excp handling 108 31.16/34.21 0.31 / 0.34

5. Serialisation, no throw 108 31.79/34.49 0.32 / 0.34

6a. Serialisation and throw 106 16.77/16.67 17 / 17

6b. Serialisation, separate throw 106 19.70/19.73 20 / 20

7. KC++, no exception handling 106 9.15/9.22 9.2 / 9.2

8. KC++, excp handling, no throw 106 9.39/9.55 9.4 / 9.6

9. KC++, excp handling and throw 106 32.77/32.79 33 / 33

TABLE 6.1: Results of performance tests

unmarshalling. This is closer to the normal KC++ behaviour where an exception is

first unmarshalled to a future and then thrown.

Results 1–2 and 4–5 show that as many compiler writers claim, exception hand-

ling (try-catch blocks with exceptions enabled in the compiler) does not affect per-

formance as long as exceptions are not actually thrown. For some reason the GCC

compiler produced a faster program with -O2 optimisation and exception handling

turned off, but with -O3 optimisation both versions performed similarly. The reason

for this compiler optimisation peculiarity was not investigated further.

FIGURE 6.1: Test results in graphical form
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Results 1–3 show that throwing and catching an exception in this test is three

orders of magnitude slower than passing a normal return value. This result is similar

to those mentioned elsewhere: “Throwing an exception may be as much as three

orders of magnitude slower” [Meyers, 1998, Item 15]. Exception handling in modern

C++ compilers does not cause performance penalties when exceptions are not thrown,

but this results in a heavy overhead when an exception is thrown: “All associated

run-time costs occur only when an exception is thrown. However, because of the

need to examine potentially large and/or complex state tables, the time it takes to

respond to an exception may be large, variable, and dependent on program size and

complexity.” [ISO/IEC WG21, 2006].

Result 6a shows that using the exception serialisation mechanism described in

this thesis causes exception handling to perform over 3 times slower than with nor-

mal exception handling. This increase is as expected, since serialisation inevitably

means that the exception must be thrown twice, once in the test function and an-

other time in the caller after unmarshalling. The remaining overhead is explained

by serialisation.

Result 6b shows that when the exception object in the caller is first created dy-

namically and thrown later (which is what happens with futures), exception hand-

ling is 4 times slower than in normal C++. This is not surprising since dynamic

memory allocation and shared pointers cause additional overhead. In addition to

this, in test 6a creating and throwing the exception in the same function allows

more optimisation possibilities for the compiler.

Comparing result 6b with results 4–5, which show the overhead of serialisation,

the performance cost of an exception is quite acceptable, since it is only 60 times

slower than normal serialised return, compared with the 1600 times slower with no

serialisation (result 3 compared with 1–2). This can also be seen from the logar-

ithmic graph in Figure 6.1, which shows that relative cost of exceptions decreases

when the cost of normal return increases.

Results 7–9 show performance tests implemented using the exception mechan-

ism in KC++. The test program consisted of two (active) objects, with one object

synchronously calling a method of the other object. The method either returned a

normal return value (7–8) or threw an exception (9).

KC++ uses POSIX message queues for communication between processes, includ-

ing method calls, their parameters, return values, and exceptions (the latter two

through futures). Since the caller and callee execute in separate processes, even
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synchronous calls include context switching in the operating system. This makes

the measurements fluctuate much more than in the single-threaded experiments.

Therefore the results 7–9 should not be interpreted as precise timing values. How-

ever, they show that adding exception support to the system causes no substantial

performance penalty when exceptions are not thrown (tests 7–8).

Propagating an exception in KC++ takes 3.5 times longer than returning a value.

Compared with the earlier 60 times difference this may seem to be low, but it is

explained by the much greater overhead caused by message queues and process

dispatch. The additional overhead of exception handling is 24 µs for KC++ and 20 µs

for the simple serialisation test, so they are close to each other. This means that the

mechanism described in this thesis adds little overhead to exception handling in an

RPC system, relative to the cost of communication.

6.2 Case study: concurrent observer

In order to evaluate exception handling mechanisms in this thesis, a realistic case

study is needed. The case study presented here demonstrates how the mechanisms

described in this thesis can be used and tests their applicability in the real world.

The aim was to get experience on the usability of the concurrent exception mech-

anisms and to test their expressive power and find out their limitations. One goal

was also to build a case study which could be run both concurrently with exception

reduction, as well as sequentially using traditional exceptions. This allows a reas-

onable performance comparison between the two approaches, which is presented

later in Section 6.4.

6.2.1 Structure of the case study

For the case study, a known design pattern was implemented and then an applica-

tion was written using the pattern framework. Implementation of a design pattern

provides a generic case study, and it also tests that the approach is able to handle

a program which consists of several encapsulated modules (i.e., the generic design

pattern code and the actual application code).

The selected design pattern was Observer [Gamma et al., 1996, Ch. 5]. The reas-

ons for selecting this design pattern were the following:
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• It is widely used (for example, to loose the coupling between the model and the

view in the Model-View-Controller (MVC) model [Reenskaug, 1979], which

in turn is used in graphical user interfaces, and became well-known by the

Smalltalk user interface framework [Krasner and Pope, 1988].

• There are obvious benefits from adding concurrency to Observer. In the Ob-

server pattern observers are notified when a subject changes its state, and these

notifications can be concurrent since they do not depend on each other.

• The pattern itself contains many possible sources of exceptions, and handling

of these exceptions is non-trivial and has several alternatives.

First the Observer pattern is discussed in terms of concurrency and exception

handling. Then the pattern is implemented as a small framework of base classes

from which applications derive concrete classes using the Observer pattern. After

that found concurrency and exception handling issues are discussed and analysed.

6.2.2 The Observer pattern

The Observer pattern provides the roles of “subject” and “observer”. Observers can

register themselves to one or more subjects. When the state of the subject changes

(an update), the subject notifies all its registered observers. The notified observers

can then ask the subject about its modified state and update their own state accord-

ingly.

Structure of the Observer pattern is shown in Figure 6.2 on the next page. The

base class Subject contains all necessary operations of subjects (registration and

notification). Real subjects are derived from the base class and they contain the

actual state and methods needed for changing and inspecting the state. Similarly,

the base class Observer contains the notification interface through which subjects

notify their observers. Real observer classes are derived from the base class and they

implement the notification method.

6.2.3 Concurrency in the Observer pattern

The Observer pattern described in [Gamma et al., 1996] does not discuss concur-

rency in relation to the Observer pattern. Since the pattern is quite simple, the only

obvious place where concurrency has some benefit is the notification. Concurrency
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FIGURE 6.2: Structure of the Observer design pattern (from [Gamma et al., 1996])

also presents some new problems and challenges to the implementation of the Ob-

server pattern. Edward Lee presents Observer as an example of thread concurrency

problems in [Lee, 2006].

Lee points out that when Notify() is called on a Subject, in a concurrent envir-

onment it can send notifications to Observers asynchronously. In addition to this,

the GetState() and SetState() methods in ConcurrentSubject can also be asyn-

chronous, as well as Attach() and Detach(). If the used concurrency model allows

several execution threads in one object, attaching and detaching observers while no-

tifications are being invoked can lead to problems. For this reason mutual exclusion

needs special attention. It is important that Attach(), Detach(), and Notify() in

a Subject cannot disturb each other. Similarly having several SetState() methods

running concurrently is potentially dangerous.

Another possible source of interference is calling SetState() while notifications

are in progress, causing a state change in the middle of notification. This may result

in some observers querying a different subject state than others. This issue arises

also in non-concurrent observers and is further discussed in the next section.

6.2.4 Sources of exceptions in the Observer pattern

The Design Patterns book discusses several possible error situations in the Observer

pattern. Further exceptional situations are discussed in [Szyperski et al., 2002] and

[Gruntz, 2002], for example. This section briefly discusses possible sources of ex-

ceptions in Observer.
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Dangling references to deleted subjects (and observers). Since part of the motiva-

tion behind the Observer pattern is to separate Subjects and Observers, the lifetime

of these objects is not necessarily mutually dependent. This situation is already

mentioned in [Gamma et al., 1996]. Since observers and subjects may be destroyed

independently, references from observers to subjects and vice versa must be able to

handle a situation where the other party has already been destroyed. A somewhat

similar (but much simpler) error situation is a case where a null pointer is registered

as an observer.

Adding or removing an observer during notification. Adding or removing observ-

ers while a notification is in progress has to be taken into account whether or not

the Observer implementation is concurrent. Updating data structures containing

observer references can be fatal if iterations over the same data structure are in pro-

gress at the same time. Even if data structure integrity is taken care of, the Observer

implementation must decide whether observers added in the middle of notification

receive the ongoing notification or not. These problems, together with thread safety

issues, are discussed in [Goetz, 2005].

Re-entrant state changes. When a notification occurs, it may be important that

each observer observes the same subject state. If a notified observer changes the

state of the subject during notification, this property is violated. Even more import-

antly this means that another notification should be started while the old notifica-

tion has not yet been completed. This problem of re-entrant state changes is dis-

cussed in [Szyperski et al., 2002] and [Gruntz, 2002]. In a concurrent environment

this problem is emphasised, since changing the state of a subject may be attempted

by any execution thread, not just the notified observer. Normal mutual exclusion

mechanisms can easily make sure that two concurrent subject changes are not pos-

sible, but if all observers must observe the same subject state, new subject state

changes cannot be allowed before possible notifications have been completed.

Cancelling a notification. In a sequential Observer implementation, the notifica-

tion process proceeds from observer to observer until it has been completed or until

an exception occurs in an observer. Only then the thread of execution returns to

the subject. If the subject and observer execute concurrently, the subject may want

to cancel a notification which has been started but whose observers have not yet
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completed their notification procedures. One reason for cancelling a notification is

a new state change which makes the notification redundant.

6.2.5 Concurrent Observer using KC++

This section describes the implementation of concurrent Observer pattern using

KC++ and the concurrent exception handling techniques described in this thesis. This

Observer implementation is then used to implement an interactive image processing

program. These implementations are discussed and measured as a case study of the

exception handling mechanisms.

The source code of the Observer implementation (as well as the source for the

application discussed later in this chapter) can be found in

http://www.cs.tut.fi/ohj/kcpp/observer-html/.

Structure of the solution

The KC++ concurrency model is based on active objects with one thread of control.

Methods are always run to completion unless voluntary yielding is used. These

properties affect how a concurrent Observer can and should be implemented. Dur-

ing notification, calls to update() methods in observers can be done asynchron-

ously, resulting in concurrent execution of updates. If exceptions are thrown from

update(), these exceptions must be analysed and reduced after all updates have

completed. The result of the reduction then determines the result of the notifica-

tion.

Figure 6.3 on the facing page shows the basic structure of the implementation.

It closely follows the original GoF structure (Figure 6.2), but has additional meth-

ods to handle re-entrant state changes, exceptions and cancellation of operations.

Most methods with no return value now return Future<void> to enable returning

exceptions from asynchronous method calls.

New observers can be added to a subject using add observer() and removed

with remove observer(). When the state of a subject changes, the subject calls

notify(). This method calls asynchronously update() on each registered observer

and stores the resulting futures. Finally notify() schedules notify ready() to be

executed when all notifications have completed. This method marks that the notific-

ation is complete and performs exception reduction on the update() results. Finally

notify() returns the eventual return value of notify ready() (using a future).

http://www.cs.tut.fi/ohj/kcpp/observer-html/
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-cancellable_ : bool
-cancelled_ : Future<void>

+Observer()
+update( subject : shared_ptr<Subject>, info : Info, cancellable : bool, cancelled : Future<void> ) : Future<void>
+check_cancel( msg : string ) : void
+cancellation_future() : Future<void>
+do_update( subject : shared_ptr<Subject>, info : Info ) : Future<void>
+is_cancellable() : bool{query}

...

Observer

+do_update( subject : shared_ptr<Subject>, info : Info ) : Future<void>
...

ConcreteObserver

...

+ChangeScope( sub : ChangeScopeBase"&" )
+ChangeScope( sub : shared_ptr<Subject> )
+ChangeScope( uh : ChangeScope"const &" )
+~ChangeScope()
+commit( info : Info=ChangeScopeBase :: Info () ) : Future<void>
-operator =( uh : ChangeScope"const $ &" ) : ChangeScope"&"

ChangeScope

...

+Subject( cancellable : bool=false )
+add_observer( obs : weak_ptr<Observer> ) : Future<void>
+remove_observer( obs : weak_ptr<Observer> ) : Future<void>
+yield_change() : bool
#notify_in_progress() : bool
#change_in_progress() : bool
#subject_in_progress() : bool
#subject_cancel() : Future<void>
#notify_status() : Future<void>
#begin_change() : void
#end_change( commit : bool, info : Info=Info () ) : Future<void>
#set_cancellable( cancellable : bool ) : void
#cancel_change() : Future<void>
#set_notify_reduction( rc : ReductionContext"*" ) : void
#notify( info : Info=Info () ) : Future<void>
#notify_ready( fg : FutureGroup ) : Future<void>

-cancellable_ : bool
-observers_ : ObserverCont
-notify_status_ : Future<void>
-cancel_notify_ : FutureSrc<void>
-default_rc_ : ReductionContextRC<Remove<ObserverExpired>>
-notify_rc_ : ReductionContext"*"

Subject

-change_count_ : unsigned int

+ChangeScopeBase()
+~ChangeScopeBase()
#changescope() : ChangeScope
#begin_change() : void
#end_change( commit : bool, info : Info=Info () ) : Future<void>
#changing() : bool
#change_count() : unsigned int
-notify( info : Info=Info () ) : Future<void>

ChangeScopeBase

+subject_cancel() : Future<void>
+state_change1() : Future<void>
+state_change2() : Future<void>

ConcreteSubject

+activelock() : void
+activeunlock() : void
#yielding() : unsigned long int
#wait_for_messages() : void
#yield() : bool

...

Active

1

1

FIGURE 6.3: Structure of the concurrent Observer implementation
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Handling observers in subjects

Earlier sections mention two possible problems related to observer handling: dan-

gling observers or subjects and addition or removal of observers during notification.

Both of these problems are very easy to solve using the KC++ active object model.

The dangling observer problem is solved by storing only weak pointers (see Sec-

tion 3.2.4) to observers in subjects. This way observers can be destroyed regardless

of whether they are registered to subjects (weak pointers are not enough to keep an

object alive). In notify() these weak pointers are converted to strong pointers in

order to call update(). If an object has expired, this pointer conversion throws an

exception, which is caught and stored as the “result” of that particular notification.

A dangling subject pointer problem arises if observers store pointers to subjects

and subjects expire before observers. This problem does not occur in the implement-

ation presented here, since observers receive the subject pointer as a parameter to

update(), so they do not have to store this pointer. The pointer passed to update() is

a strong pointer, so it keeps the subject alive for the duration of notification. Passing

the subject pointer as a parameter also makes it possible to register the same ob-

server to several subjects, and still be able to distinguish subjects in update().

Stacking state changes

The Design Patterns book [Gamma et al., 1996] mentions that there are two options

for triggering a notification. Either each state change operation automatically trig-

gers a notification, or the performer of the state changes is required to explicitly

call notify() after all state changes have been performed. The first option is more

automatic and secure, the second avoids intermediate notifications between state

changes.

Quite many of the potential problems with the Observer pattern concern the

handling of state changes and the resulting notification. Notification should only

be performed when the state change is complete, even if the state change con-

sists of several steps (smaller state changes). This problem is already mentioned

in Design Patterns. As a solution to the problem, [Szallies, 1997] introduces state

change scopes. The idea is to add two additional functions to the the subject inter-

face to mark the beginning and end of a state change. In this implementation, these

methods are called begin change() and end change().
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These methods keep a count of started state changes. When end change() is

called, notification is started only if there are no further state changes still in effect.

This keeps the amount of notifications at minimum, since only one notification is

initiated even if a state change is internally implemented by calling several com-

ponent state changes.

It is also mentioned in [Szallies, 1997] that C++ allows partial automation of mark-

ing the beginning and end of state changes. Instead of calling begin change() and

end change()manually, this responsibility is delegated to a class called ChangeScope.

Its constructor calls begin change() and the destructor calls end change(). State

changes can be written by putting the state changing code into its own C++ scope and

creating a local ChangeScope variable in the beginning of that scope. The construc-

tion and destruction of the variable then automatically signals the subject about the

beginning and end of state change.

This idiom follows the common C++ RAII (Resource Acquisition Is Initialisation)

principle. Figure 6.4 on the next page shows an example sequence diagram of a state

change consisting of two individual state changes.

State change scopes should be used in each state changing method in concrete

subjects. A method starts by creating a ChangeScope variable and then proceeds with

the actual state change. Even if the state change is implemented by calling other

state changing methods, counting in begin change() and end change() triggers the

notification only at the end of the outermost state change method.

State change scopes can also be used in the same manner in the users of concrete

subjects. If a user wants to make a state change consisting of several calls to a

concrete subject, a program scope with a local ChangeScope variable is written, and

calls are made inside that scope. Notification is started only after program execution

leaves the scope.

ChangeScope can also be used to make exception handling easier. For this, method

commit() is added to ChangeScope. This method is called at the end of a successful

state change, and it in turn calls end change with a parameter representing success.

If a state change fails with an exception, commit() is not called, and the ChangeScope

object is destroyed. In this case its destructor calls end change() with a parameter

representing failure. This way ChangeScope can be used to notify subject about un-

successful state changes.
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o1 : ConcreteObserver o2 : ConcreteObservers : ConcreteSubject

sc : ChangeScope

Client

Similar to
state_change1

Actual state 
change here

21: 

do_update()17: 

20: 

do_update()19: 

4: 

9: 

11: 

begin_change()7: 

end_change(true)8: 

notify()14: 

notify_ready()22: 

23: 

update()16: 

update()18: 

begin_change()3: 

5: 

end_change(true)13: 

1: 

state_change1()6: 

state_change2()10: 

commit()12: 

ChangeScope()2: 

15: 

FIGURE 6.4: Sequence diagram showing a state change
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6.2.6 Concurrency issues in the KC++ implementation

This section discusses concurrency issues in the Observer pattern and how they

were solved in this case study.

Mutual exclusion of state changes

In the Observer pattern subjects and observers go through distinct states. Subjects

are either “idle”, in the middle of a state change, or notifying their observers. Sim-

ilarly observers are either “idle” or updating their state. A new state change in the

subject can only be initiated when the subject is in its idle state.

If the implementation of Observer is sequential, the structure of the pattern

defines how these states mix. Observers are in the updating state only when their

subject is in its notifying state. Because the program only contains one thread of exe-

cution, overlapping state changes are possible only if observers try to initiate a state

change from their update methods. Otherwise program execution proceeds through

the state changing code to the notification code, performs updates in observers, and

then returns the subject to its idle state.

If Observer contains concurrency, several independent execution threads may

try to initiate state changes at the same time. In addition to this, if observers perform

their updates asynchronously, the execution of notification code in the subject is no

longer tied to observer updates. These facts must be taken into account so that the

expected functionality of the Observer pattern is not broken.

Only allowing one state change to be active at one time is a fairly normal mu-

tual exclusion requirement, so it is not a problem specifically with the Observer

pattern. How this mutual exclusion is achieved depends on the way concurrency is

controlled. In this case study, the KC++ active object model only allows one thread of

execution in each active object.

If a subject state change is performed by calling a single method of the subject,

mutual exclusion is never a problem in KC++ since other methods are not executed

while method execution is in progress. However, it is possible that a state change

consists of several method calls, using ChangeScope or begin change and end change

to mark the beginning and end of state change. This would allow other users of the

subject to start their state changes in the middle of an ongoing state change.

To prevent this, begin change locks the active object to execute only methods

from the caller of begin change. This ensures that during the state change method
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calls from other sources are not executed. After the state change is complete, the

outermost call to end change unlocks the subject again. This makes sure that calls

from other clients are not executed before the state change is complete.

An example of a state change sequence

Listing 6.1 shows an example of a state change consisting of several calls to a subject.

First a ChangeScope object is created. Its constructor calls begin change(), which in

turn checks that the subject is idle (and throws an exception if that is not the case)

and locks the subject for this caller.

A future group is then created for exception reduction. After this individual state

changes are performed and their return statuses are added to the future group. At

the end of the scope, the future group synchronises with all the futures. If excep-

tions have occurred, the future group performs exception reduction and throws the

resulting exception. In this case program execution leaves the whole function and

the ChangeScope object is destroyed. Its destructor calls end change and signals that

the state change was not completed. Notifications are not sent.

If the state change calls did not cause exceptions, the future group synchronises

with the futures and is destroyed. Then commit() of the ChangeScope object is called.

This calls end change and signals a successful state change. Notification is started

and its eventual result is returned in a future. The code in Listing 6.1 waits for this

result and the completion of notification. If the notification resulted in an exception,

it is thrown on line 10.

1 void multiple change(shared ptr<MySubject> s)
2 {
3 ChangeScope cs(s);
4 {
5 FutureGroup fg; // Possibly with a suitable reduction context
6 fg.add(s->change1("a"));
7 fg.add(s->change2("b"));

...
8 // At the end of scope, futures are synchronised, exception may result
9 }

10 cs.commit().wait(); // Commit to change, start notification
11 // At the end of scope, change is terminated
12 // If commit() was not called (exception), notification is not started
13 }

LISTING 6.1: Using ChangeScope and a future group for multiple state changes
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This example shows how ChangeScope objects and future groups can be used to

perform a state change consisting of several calls to a subject. If exceptions occur

during the state changes, the state change is abandoned without notification. The

subject is locked for this caller for the duration of the state change, and the end result

of notification is propagated from the observers (through exception reduction) to the

code which called the state change methods.

The example uses a future group and asynchronous calls to perform all indi-

vidual state changes before checking the results in the destructor of the future group.

Since KC++ only has one execution thread in the subject, all the individual state

changes are performed sequentially despite asynchronous calls. An alternative to

this is shown in Listing 6.2.

In this version, the code waits for the completion of each state change before con-

tinuing, resulting in synchronous operation. If a state change throws an exception,

that exception immediately causes termination of the whole state change and the

rest of the state change methods are not called. This is different from the first code

example where all state changes were always attempted and if exceptions occurred,

exception reduction determined the nature of the exception thrown. The Observer

pattern implementation presented in this thesis allows both of these approaches,

and the programmer may choose an appropriate one for each situation.

Yielding during state changes

Sometimes a single state change operation may require a long time to complete (if

the state change requires a lengthy computation). In this case, it is reasonable for

1 void multiple change2(shared ptr<MySubject> s)
2 {
3 ChangeScope cs(s);
4 s->change1("a").wait();
5 s->change2("b").wait();

...
6 cs.commit().wait(); // Commit to change, start notification
7 // At the end of scope, change is terminated
8 // If commit() was not called (exception), notification is not started
9 }

LISTING 6.2: Using ChangeScope for multiple state changes without a future group
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the state changing method to voluntarily use KC++ yielding mechanism. This allows

other clients of the active object to access the object.

In this case study, voluntary yielding can be done by calling yield change() in

the subject. This method first checks that a state change is in progress, unlocks the

object and then calls the KC++ function yield() to execute possibly pending method

calls. After yielding yield change() re-locks the active object.

Voluntary yielding complicates the situation because it explicitly allows other

clients of the active object to access the object in the middle of a state change. As

always, it is the responsibility of the yielder to make sure that the subject is in a

consistent state before yielding. In addition to this, initiating new state changes

cannot be allowed while yielding. If a state change is attempted during yielding,

begin change() notices that an earlier update has been yielded and throws an ex-

ception.

When observers have been notified but have not yet completed their updates, the

situation is similar to yielding. Observers should not be allowed to trigger additional

state changes in their update() methods, because that would cause either additional

notifications while old notifications have not completed, or at least observers whose

update() has not yet been called would see a different subject state than earlier

observers.

This problem is solved like the yielding problem. When notification is started,

the subject marks its state as “notifying”. This state is changed to “idle” only after

all notifications have completed. If a state change is attempted during notification,

begin change() notices that a notification is in progress and throws an exception.

Cancelling an ongoing notification

Calls to observer update()s during subject notification are asynchronous. However,

the subject cannot control how long the updates take. As described earlier, the

subject cannot start a new state change while notification is in progress, since all

the observers must observe the same subject state that caused the notification. For

these reasons it would be useful if subjects could cancel an ongoing notification,

freeing the subject for new state changes.

KC++ has currently no mechanism for explicitly cancelling the execution of a

method of an active object. In fact, forcefully terminating a method execution from

outside is problematic, since the active object may be in the middle of a state change
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when the method is terminated. Different possibilities for cancellation and their

pros and cons are discussed in [Sutter, 2008].

A co-operative solution using futures was chosen for the Observer implement-

ation. When a subject calls observer update(), it passes an unbound cancellation

future as a parameter. This future is created from a future source inside the subject.

The cancellation future acts as a flag for requesting cancellation. If an observer

update is a lengthy process, the update code in the concrete observer should check

the status of the cancellation future periodically by calling the method check cancel

implemented in Observer. If cancellation has been requested, this method throws an

UpdateCancelled exception. This is similar to “Ask Politely” policy in [Sutter, 2008].

The Subject class provides a method subject cancel() which binds the can-

cellation future source, signalling all updating observers. The subject cancel()

method returns a future which becomes ready when the notification has finished.

This way callers of subject cancel() know when the cancellation (or the normal

termination of notification) has happened.

If cancellation is never necessary for some concrete subjects, the constructor of

the Subject class has a boolean parameter for switching the mechanism off.

6.2.7 Exceptions in the concurrent Observer implementation

Section 6.2.4 presented sources of exceptions in the Observer pattern. This section

discusses those exceptions in relation to the case study Observer implementation.

It also presents some new exception sources which were noticed during the imple-

mentation of the case study.

There are two kinds of exceptions that an implementation of the Observer pat-

tern must take into account: exceptions originating from the pattern implementation

itself (i.e., errors and problems in using the pattern), and exceptions coming from

outside the pattern implementation, especially from concrete subject and concrete

observer classes.

Exceptions of the former kind are easier since they are known to the Observer

implementation. The latter kind exceptions, however, can be of any type and be the

result of a situation unknown to the Observer. Having to handle unknown excep-

tions is problematic especially for exception reduction.
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Exceptions thrown by the Observer implementation itself

Exceptional situations inside the Observer implementation can be divided into two

categories. Some are errors caused by precondition violations when using the im-

plementation (i.e., bugs), while some are problems which can also happen when

the implementation is used as specified. Errors of the first kind should not happen,

so a reaction to them could be either to throw an exception or to terminate the pro-

gram using an assertion or some other mechanism [Sutter and Alexandrescu, 2005].

Situations of the second kind can happen in a correctly functioning program, so

exceptions are clearly a correct response to them.

Since exception handling is an important part of this case study, it was decided

that precondition violation errors also throw exceptions. This way the number of

different exceptions in the case study is increased.

The Observer implementation used in this thesis reacts to the following precon-

dition violations by throwing an exception. This list omits some trivial cases like

null pointer checks.

• Observer registration errors. An observer can only be registered to a subject

once, and it is impossible to unregister an observer which has not been re-

gistered. In both situations an exception of type ObserverRegistrationError

is thrown. Since notifications start all updates atomically, addition or removal

of observers during notification is not an error.

• Cancellation errors. If a subject was created with no notification cancellation

capabilities, cancellation is not possible. If this is attempted, an exception of

type CannotCancel is thrown.

• Yielding without a state change. Method yield change() can only be called

when a state change is in progress. If the method is called when this is not the

case, an exception of type NotChanging is thrown.

The following sources of exceptions are not precondition violations, but exceptional

situations that can occur during normal program execution.

• Expired observers. Registered observers are stored in a subject using weak

pointers. This allows observers to be destroyed when they are still registered

to a subject. If an expired observer pointer is found during notification, the

subject adds an exception of type ObserverExpired to the set of exceptions
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resulting from notification, just as if ObserverExpired had been thrown from

an observer update.

• Cancellation of updates. If a notification was cancelled and the update of

a concrete observer called check cancel(), a NotifyCancelled exception is

thrown. (The observer may allow this exception to propagate from the update

method to the subject.)

• State change in progress. New state changes cannot be allowed while no-

tification is in progress or if an ongoing state change has been temporarily

yielded. If begin change() is called in such a situation, an exception of type

NotifyInProgress or ChangeInProgress is thrown.

• State change cancellation. If a lengthy state change operation yields allowing

other methods to be executed, it would be useful to ask for the cancellation

of the ongoing state change. The Subject class in this implementation has a

method cancel change() for this purpose. By default this method does noth-

ing, but concrete subjects may implement it appropriately to cancel an ongoing

state change.

Handling and reducing exceptions from outside the Observer pattern

Concrete observer updates are the only place in the Observer pattern where excep-

tions from outside the pattern code affect the behaviour of the pattern. Since the

update methods can throw arbitrary application dependent exceptions, Observer

pattern code cannot know in advance what exceptions to expect. On the other hand,

if observer updates throw exceptions, these exceptions should be forwarded to the

concrete subject which triggered the notification.

When notification is performed in the subject, observer updates are called asyn-

chronously, possibly resulting in multiple exceptions. Since these exceptions ori-

ginate from the concrete observer, notification code in the pattern implementation

cannot contain proper reduction functions for these exceptions. One option would

be to embed all exceptions in a compound exception and throw that out of the noti-

fication code. This would force the code responsible for the subject state change to

catch the compound exception and do necessary exception reduction. Using com-

pound exceptions would hide the types of the exceptions.
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For these reasons this case study implements the exception reduction already

in the notification code. Concrete subjects can use method set notify reduction

to register their own reduction context object, which is then used to reduce excep-

tions raised during notification. This mechanism allows the subject notification

code to reduce exceptions, but the concrete subject still controls how the reduction

is performed. If the concrete subject wants a compound exception containing the

exceptions, it can register an empty reduction context with no reduction functions.

By default the subject uses a reduction context which removes all exceptions

caused by expired observers but embeds others in a compound exception. This

default strategy was more or less arbitrary and was chosen purely as an example.

In reality exception reduction depends entirely on the set of possible exceptions

and their relationships, as well as the relationship between concrete subjects and

concrete observers. Therefore no single default reduction is enough for all cases.

Reduction contexts provided by concrete subjects solve the problem of how re-

duction is performed. A remaining problem is when and where to perform reduc-

tion. The most logical place for reduction would be at the end of the notify method

after the results of observer updates have been received. In KC++, an active object

can only be executing one method at a time. In this case it would mean that subject

is locked for the duration of notification, which would mean that it could not react

to queries from observers. The subject must be able to execute methods between

calling observer updates and doing reduction based on the results.

The result of notification depends on the results of reduction, which leaves two

options. The subject can continuously yield in the middle of notification, allowing

other methods to be executed until all observers have completed their updates. New

state changes cannot be initiated while the notification is in progress, so there is

no risk of "stacked" notifications. Another possibility is to perform reduction in

another method and schedule this method to be executed when results from all

observer updates are available. The KC++ method scheduling mechanism returns a

future containing the eventual return value of the method, so this future can be

returned as the return value of notification.

The latter option was chosen in the case study implementation. After calling

the updates of all observers, the notification method stores the resulting futures in

a future group and then schedules the method notify ready() to be executed when

all futures in the future group are ready. This method performs exception reduction

and binds the notification future to the resulting exception, if any.
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State changes and exceptions

Exceptions can occur in the middle of state changes. The ChangeScope idiom makes

sure that end change() is called even if a state change is interrupted by an excep-

tion. This kind of finalisation after an exception is common to most RAII based

mechanisms.

A more interesting question is what the subject base class should do if a state

change is interrupted by an exception. Clearly, an exception means that the state

change did not succeed as planned. If the concrete subject provides commit-or-

rollback semantics, the state is not changed if an exception occurs. Even if the

subject cannot revert to its original state, a notification should not be sent auto-

matically if state change ended in an exception. This gives the concrete subject a

chance to handle the exception and possibly set the subject to a valid state, after

which notification can be sent.

The problem can be solved by giving end change() a boolean parameter commit

which tells whether the state change was successful. The outermost end change()

only starts notification if the value of commit is true. Now state changes can can-

cel unsuccessful operations without starting notification. This makes state changes

somewhat similar to transactions, except that roll-back to the original state is not

automatic when a state change fails.

The value of the commit parameter is only important for the outermost state

change and is ignored for the others. This was considered appropriate for the fol-

lowing two reasons: First, if an inner state change fails and causes the whole state

change operation to fail, the outermost state change must be aware of this and also

signal failure. Second, it is possible that an upper level code reacts to the failure and

manages to resolve the problem, in which case the whole state change still succeeds

and notifications should be sent normally.

Observer updates and exceptions

If exceptions occur during state changes, it is quite clear that those exceptions

should be thrown to the client which started the state change. On the other hand, if

exceptions are thrown from observers’ update methods during notification, it is not

self-evident where they should be handled [Ploski and Hasselbring, 2005].

One goal of the Observer pattern is to separate observers from subjects. In this

respect observers are independent objects who only want to be informed when the
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state of the subject changes. If observing that state change causes an exception in an

observer, should that exception be thrown to the subject? If yes, it means that the

subject must be able to cope with exceptions resulting from observing the subject

state. The subject can also forward exceptions to the client who performed the state

change, but this means that clients in turn must be able to cope with all observers’

exceptions.

The implementation in this case study uses a straightforward approach and

propagates all exceptions from observer updates back to the subject which invoked

those updates. This approach was chosen for two reasons. First, it provides a good

place for exception reduction, since a change in a single subject may invoke sev-

eral observer updates asynchronously. Second, it still leaves the door open for

more complicated approaches. For example, if concrete observers contain their own

method for handling exceptions from updates, the update method of the concrete

observer can have a try-catch block which catches exceptions and delegates them to

the appropriate method.

In this Observer implementation observers’ update() returns a void-future which

contains the possible exception from update(). When the subject has received res-

ults from all updates (using a future group), it waits until all the futures in the future

group are ready (i.e., observers have finished their updates). If exceptions have oc-

curred, the subject reduces the exceptions and throws the result back to the object

which initiated the state change.

6.2.8 Discussion on concurrent exception handling

This case study confirms and reveals several things about concurrent exception

handling. First, it shows that concurrent exception handling mechanisms presented

in this thesis can be used in real code to handle exceptions arising from real world

scenarios.

The case study also shows how concurrency easily adds exceptions of its own.

Problems with adding or deleting observers during notification and preventing over-

lapping state changes are made more difficult by concurrency. Similarly asynchrony

creates the need to cancel notifications, something that is usually not an issue in a

sequential Observer implementation. This increase in sources of exceptions em-

phasizes the need for efficient concurrent exception handling mechanisms.
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The case study reveals how concurrency makes it difficult to decide where and

when to handle exceptions. This is something that is not caused by concurrency as

such, but a sequential programming language often forces those decisions. If only

one thread of execution exists, it is clear that that one thread must also handle all

exceptions. Similarly exception handling semantics of the programming language

makes it easiest to handle exceptions based on the current call-chain, since that is

how the language finds exception handlers. If an exception is thrown in a sequen-

tial program, execution starts immediately handling that exception, not noticing

other possible exception sources. Alternative approaches are possible in a sequen-

tial environment, too, but they require additional coding and reverting to mechan-

isms other than exceptions (coded return values, error flags, etc.). Concurrency and

asynchrony simply reveal these existing problems.

Even though the exception mechanisms of this thesis do not help in designing

appropriate exception handling strategies, the case study shows that they help in

implementing them. For example, a generic component like the concurrent Ob-

server needs to be able to react to exceptions unknown to it. Exception reduction

allows Observer to reduce and choose from these exceptions when handling them.

Reduction contexts make it possible for the actual application to pass reduction

functions to the generic code, so that the generic code may perform reduction based

on strategies chosen by the application.

Writing the case study proved that exception handling in generic code was diffi-

cult. Even in a simple component like the Observer several viable exception hand-

ling strategies can be found and different applications need different strategies.

Only providing one strategy would make the Observer implementation only usable

in applications where that one strategy was suitable. Passing application dependent

reduction functions to the generic code solves part of the problem, but problems

like “Where should exceptions be propagated to?” were still solved by choosing and

fixing one strategy from many. In those problems exception reduction mechanisms

did not provide any help.

6.3 Case study: An Application using Observer

To evaluate the implementation of the concurrent Observer pattern, a simple ap-

plication using the pattern implementation was written. The Observer pattern is

ideal in situations where several objects want to modify their state based on the
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state changes in other objects. The objective of the evaluation application is to test

the practicality of the Observer pattern implementation and exception reduction in

a realistic application.

The source code of the case study application can be found in

http://www.cs.tut.fi/ohj/kcpp/observer-html/.

6.3.1 Structure of the case study

Image manipulation is one area where observer pattern fits well. Especially in pho-

tography, non-destructive editing has become widespread. In non-destructive edit-

ing, several image manipulation steps are performed on a photograph. Settings for

each step can be tweaked even after new manipulations steps have been added. If

the parameters of one step are changed, the following manipulation steps are re-

applied to the image. This allows the user to create a chain of image manipulation

steps and then to adjust the parameters of the steps while all the time seeing the

final result. Adobe Photoshop Lightroom [Adobe Systems, Inc., 2008] and Nikon

Capture NX [Nikon Corporation, 2008] are examples of commercial photo editing

software based on non-destructive editing.

Actual image manipulation in this case study is done using the Magick++ lib-

rary [Friesenhahn, 2007], an open source C++ image manipulation library which in-

ternally uses the ImageMagick library [ImageMagick Studio LLC, 2008] (similarly

open source). For its graphical user interface, the application uses FLTKC++ library

[FLTK, 2008].

In this section, the structure of the case study application is described and its

concurrency issues are discussed. Then found exception issues and multiple excep-

tion handling are covered, especially in terms of exception reduction.

The application was written so that it could be compiled both as a normal se-

quential program without KC++ and as a concurrent application using KC++. Because

KC++ does not extend the C++ syntax, this required only minimal changes to the ap-

plication. Performance of the sequential and concurrent versions was compared to

get some indication on the overhead of the KC++ system compared with traditional

sequential C++. Those results are given in Section 6.4.

http://www.cs.tut.fi/ohj/kcpp/observer-html/
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6.3.2 Structure of the application

The structure of the case study application is simple. Each image editing step uses

two active objects. A “settings object” contains a graphical user interface to edit the

settings of a step. An “imager object” performs the actual image manipulation based

on the settings. All communication between objects is asynchronous. This means

that imager objects can perform their calculation concurrently, if they do not depend

on the results of each other. Additionally calculation in imager objects is separated

from settings objects, which means that the user interface stays responsive even

when calculation is in progress. Figure 6.5 on the following page shows the basic

structure of the application. Only two imager types are shown in the diagram. The

diagram also shows the main program whose user interface is used to create and

connect imagers by registering them as observers of each other.

An imager object acts as an observer of its settings object. This way image manip-

ulation can be reapplied each time its settings change. In addition to this, imager

objects can register themselves as observers of other imager objects. This allows

stacking manipulation steps on top of each other. When an image changes, imager

objects depending on it are notified, and they re-calculate their manipulation. Some

imagers have no source imagers, like a "load imager" which gets its image from a

file or a URL. Most imagers have one source imager, like a blur imager which cal-

culates a blurred version of its source image. Finally, a combine imager has two

source imagers and combines them to a single image using a specified algorithm

and parameters.

Figure 6.6 on page 145 shows a screenshot of GuiImager in action. Each active

object in the application has its own window. The windows of settings objects con-

tain settings user can change, and the windows of imager objects show the resulting

images. In addition to these, each window contains a message box for debugging.

Imager windows also contain two indicators to show whether an imager is in the

middle of a state change or waiting for the completion of notification (these indicat-

ors are updated by overriding virtual functions in the Subject class in the Observer

implementation).

6.3.3 Concurrency in the application

This section discusses some concurrency issues in the implementation of the GuiIm-

ager application.
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FIGURE 6.5: Structure of the GuiImager case study
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FIGURE 6.6: Screenshot of GuiImager in action

Active objects in GuiImager

The FLTK user interface library and the KC++ method parser both have an event loop

which waits for messages and reacts to them. The application has one process for

each active object, so combining these event loops was necessary. This was done by

registering the KC++ method parser to the FLTK library as a callback function. Nor-

mally each process in the application waits in the FLTK event loop. If an active

object message (a method call or a future value message) arrives, the FLTK event

loop calls the KC++ method parser to handle the message. If a user interface event

occurs, the FLTK event loop calls a callback function which in turn calls an appro-
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priate method of the active object. The call is a normal C++ member function call,

not an asynchronous KC++ method call. This solution allows the active object and

the FLTK user interface for that object to share the same process.

The decision of running active objects and their user interface in the same pro-

cess was arbitrary. It would have been just as simple to run the whole user interface

in one process and limit active objects to image processing. However, as a concur-

rency evaluation case study the used approach was considered more appropriate.

It makes active objects more concrete and allows easy measurement of the latency

caused by running active object methods. Additionally, this approach allows differ-

ent windows of the user interface to work concurrently. It also allows active objects

to easily control their own windows (display debugging messages, change update

and notification indicators etc.).

One result of sharing the same process is that the graphical user interface is

frozen while its active object executes its methods. This is not a problem in this

application, since all heavy computation is performed by imager objects which do

not have any user inputs (their windows only contain a picture of the processed

image and debugging indicators). When a user changes a setting in a setting window,

this only triggers notification in the settings object. Since notification calls observer

updates asynchronously, process execution returns to the user interface code almost

immediately.

An example sequence

As an example of how GuiImager works, Figure 6.7 on the facing page shows a se-

quence diagram of a notification chain. This example contains two load imagers

which load their image from a file. The resulting two images are combined using a

composite imager.

At the beginning of the sequence, user enters a new file name to the load settings

window of the first load imager. This triggers notification in the load settings object,

which signals its load imager. The load imager queries the new file name, loads

the image from the file and then enters its own notification phase. This signals the

composite imager, which in turn queries both its load imagers as well as its settings

object. All the queries are asynchronous and the results are stored in futures, so

imagers begin their calculation methods without waiting for the results.

When calculation is complete, the composite imager does its own notification.

When that is complete, the results are sent to the load imager. This completes the



6.3. Case study: An Application using Observer 147

CS1 : GuiCompositeSettingsCI1 : GuiCompositeImagerLS1 : GuiLoadSettings LI1 : GuiLoadImager LI2 : GuiLoadImager

GUI
event

16: 

imager_update(-, -)10: 

get_image()11: get_image()12: 

get_mode()13: 

get_xoff()14: 

get_yoff()15: 

calculate()17: 

notify(-)20: 

21: 

trigger_change()1: 

notify(-)2: 

update(-, -, -, -)3: 

7: 

notify_ready(-)24: 

error_dialog(-)25: 

imager_update(-, -)4: 

get_imagespec()5: 

calculate()6: 

notify(-)8: 

update(-, -, -, -)9: 

18: 

notify_ready(-)22: 

23: 

19: 

FIGURE 6.7: Sequence diagram of a notification chain
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load imager notification and the results are sent to the load settings object, complet-

ing its notification. If the notification contained an exception (thrown somewhere

on the way, and reduced), the load settings object shows an error dialog to the user.

Cancelling an ongoing update

The Observer implementation does not allow a subject to change its state while

notification (or another state change) is in progress. This must be taken into account

while designing imagers and their settings objects. The Observer implementation

throws an exception if state change is attempted during notification or state change.

The Observer implementation also provides methods for polling the status of the

subject.

The state change attempt in both imager and settings objects occurs from inside

the methods of the active object itself. The subject does not execute methods from

other callers until the method has been completed. This makes it safe to first poll

the subject to check that it is idle before starting the state change. If the subject is

waiting for notification to finish, subject cancel() is called to attempt cancellation

of the notification. subject cancel() returns a future which becomes ready when

notification has ended. This future can be used to attempt the state change again

later.

If state change was attempted from outside the subject, polling the subject status

and then calling a state changing method is not safe. It is possible that another caller

initiates a state change after polling but before state change is called. For this reason,

the best strategy would be to simply call a state changing method. If an exception

results, subject cancel() can be called and a reattempt can be scheduled after can-

cellation is ready. The GuiImager application does not contain state changes of this

kind, however.

6.3.4 Exception handling

Exceptions in the GuiImager application come from three sources: the Observer

pattern implementation, the Magick++ library and the GuiImager application itself.

Possible exceptions from the Observer pattern implementation have been covered

in Section 6.2.4.

The Magick++ library has its own exception hierarchy which it uses to signal

problems and errors in image manipulation. This hierarchy is a good example
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of a third party exception hierarchy not designed to be used concurrently. The

base of the Magick++ exception hierarchy is Magick::Exception which is derived

from std::exception. Derived from this are two further bases Magick::Warning and

Magick::Error. Warnings indicate non-fatal problems which may affect the quality

or completeness of the result. Errors in turn signal fatal problems which prevent a

meaningful result from an operation.

Magick++ exceptions are not derived from KC++ exception base classes, so they can-

not be passed directly between active objects. KC++ counterparts for these exceptions

were generated using the ConcExcp and ConcTraits templates (Section 4.5). This also

makes it possible to use these exceptions in exception reduction. Listing 6.3 shows

the definition of the KC++ counterpart for Magick++ exception Magick::Warning.

The KC++ exception mapping functionality automatically converts raw Magick++

exceptions to their KC++ counterparts, if a Magick++ exception escapes an active object

1 // Marshalling operators
2 OMsg& operator<<(OMsg& omsg, const Magick::Warning& excp);
3 IMsg& operator>>(IMsg& imsg, Magick::Warning& excp);
4

5 // Concurrency trait for RPC, exception mapping and folding
6 template<>

7 struct ConcTraits<Magick::Warning>
8 {
9 // Inheritance relationship for exception mapping

10 typedef Magick::Warning MapBases(Magick::Exception);
11

12 // Folding information, does not fold from this level up
13 typedef Magick::Warning FoldBases();
14

15 // Folding function concatenates error messages
16 static Magick::Warning* create folded(CompoundException& ce)
17 {
18 std::string msg;
19 RpcExcpIterator<Magick::Warning> b=ce.begin<Magick::Warning>();
20 RpcExcpIterator<Magick::Warning> e=ce.end<Magick::Warning>();
21 for (RpcExcpIterator<Magick::Warning> i=b; i!=e; ++i)
22 {
23 msg += (*i)->what();
24 msg += ’\n’;
25 }
26 return new Magick::Warning(msg);
27 }
28 };
29 // Actual declaration of exception, registers exception mapping
30 typedef ConcExcp<Magick::Warning> ConcMagickWarning;

LISTING 6.3: Declaration of Magick++ exception counterpart
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method. As described in Section 4.6, the mapping can slice the exception object if

a proper KC++ counterpart exception has not been declared. However, since KC++

counterparts are defined for all exceptions used by the GuiImager application itself,

possible slicing does not affect exception handling in the application.

Some additional exceptions were added to the application to make exception

reduction more interesting. These exceptions are all derived from ImagerException:

• BlownOutImager is thrown if an imager operation results in “blown highlights”,

i.e. some pixels get values which do not fit into the data type used by the

application.

• InvalidImagerSettings results if the user inputs settings which are invalid for

the operation. GuiImager uses string input fields for all settings in its user

interface to make it easier to create exceptions of this type.

• EmptyImager exception means that an operation cannot be carried out because

a source imager is empty. An imager can be empty if it has been just created

or if its previous image manipulation operation failed.

• CalculationCancelled is thrown if an imaging operation is cancelled. This

exception is derived from ObserverCancellation of the Observer pattern im-

plementation.

Some exceptions affect the application in ways that require notifying the user. In

GuiImager, the user interface callback function triggers a state change in the settings

objects, and thus initiates Observer notification. The eventual result of the notific-

ation is returned in a future. To notify the user if the future contains an exception,

a method is scheduled to be executed when the future becomes ready. This method

shows the user a dialog window if the future contains an exception.

Exception reduction

Exception reduction is needed in the GuiImager application in places where mul-

tiple asynchronous calls create a need to reduce multiple exceptions. The goal of

the reduction in GuiImager application is to choose, combine and reduce exceptions

so that a suitable error message can be shown to the user.

There are three places in the GuiImager application where multiple exceptions

may occur: when a settings object notifies several imager objects, when an imager
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object notifies several other imager objects, and when an imager updates its state and

queries its settings object and source imagers (queries are done asynchronously, so

multiple exceptions may result).

Exception reduction is needed to calculate the final exception in all of these

cases. In the first two cases reduction happens inside the Observer implementation,

as in Section 6.2.7. Settings and imager objects just have to provide a suitable re-

duction context to the Observer implementation. The last case requires exception

reduction in the actual GuiImager code.

Because the GuiImager application consists of several notification chains, all

concurrently occurring exceptions are not necessarily handled in a single reduction

step. Each notification and imager calculation performs reduction, but exceptions

reaching that point may already be results of earlier reductions. Since each imager

may potentially introduce its own exception classes, it is possible that the set of

exceptions to be reduced contains exceptions that are unknown to the reduction

context.

Designing reduction strategies proved challenging even for such a small applica-

tion. The goal of reduction in this case is to provide a meaningful error message for

the user. If several exceptions occur as the result of user’s actions, it proved difficult

(at least to the writer of this thesis) to even define what kind of error message would

be appropriate in each case.

This was especially the case if several different types of exceptions are thrown.

Traditional sequential programs automatically choose the first exception they en-

counter, and do not become aware of the possibly more fatal exceptions that would

have occurred later. Futures, asynchronous calls, and exception reduction make it

possible to react to several exceptions, but they do not help in defining what should

be done in such a case. If different exceptions have a mutual cause, they can be

reduced to a single exception. However, if there are several causes of exceptions,

it is difficult (or at least was difficult in GuiImager) to define the “best” strategy for

reducing the number of exceptions.

Implementation of reduction

In the end, reduction was based on the following rules. These rules are listed in the

order of importance (which in many cases is a matter of opinion):
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• Errors from Magick++ are kept intact. If several such errors exist, they are

folded into one.

• All application dependent GuiImager exceptions can be folded together.

• Warnings from Magick++ can be folded into a single exception. In folding, the

warning messages in exception objects are concatenated together.

• If calculation is cancelled by an interrupting operation, all such exceptions

can be folded together.

• If operations fail because source imagers are in the middle of their calcula-

tions, these exceptions are removed. These exceptions are not important, since

when the source imager completes its calculations, it triggers notification, up-

dating the observer.

The list above mentions exception folding (Section 5.7) in several places. In

this application folding was done using KC++ FoldAnyUpTo reduction class. This re-

duction selects all exceptions derived from the specified base, finds their most de-

rived common base, and replaces the exceptions with a single exception of that

base. The new exception is created using the folding constructor or function of

the class. For example, all Magick++ can be folded together using reduction class

FoldAnyUpto<Magick::Warning>.

Listing 6.4 on the facing page shows the reduction class used in this case study.

The topmost ModifyAndReduce combinator is used to modify the set of exceptions be-

fore actual reduction. In this case, ReplaceCompounds is used to “flatten” the excep-

tions by replacing compound exceptions with their contents. The actual reduction

is performed on the result.

The second part of the reduction is choosing and folding exceptions based on the

list shown earlier. That is done using ChooseAndThrown combinator. That reduction

combinator tries each reduction class in sequence. When it finds one that accepts

the set of exceptions (or a part of it), it uses that reduction class as primary reduc-

tion which provides the result of reduction. After the primary reduction, thrown

reduction of the rest of the reduction classes is still attempted in order to further

reduce the set of remaining exceptions.

Exception reduction only works on exceptions that are passed through futures

from other active objects. It cannot control normal C++ exceptions thrown locally (as

discussed in Section 5.5.4). This limitation shows clearly in GuiImager application.
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1 typedef CombineRC<
2 Reduc<
3 ModifyAndReduce(
4 ReplaceCompounds,
5 Reduc<ChooseAndThrown(
6 FoldAnyUpto<Magick::Error>,
7 FoldAnyUpto<ImagerException>,
8 FoldAnyUpto<Magick::Warning>,
9 FoldAnyUpto<CalculationCancelled>,

10 Remove<InProgress>,
11 ThrowOneOrCompound
12 )>
13 )>
14 >

15 CalculationReductionClass;

LISTING 6.4: Definition of the reduction class used in GuiImager

Image manipulation in each imager consists of querying imager settings and source

images using asynchronous calls, and performing the actual calculation. Exceptions

in the queries are RPC exceptions passed through futures, whereas the calculation

may result in an exception that is thrown normally from the Magick++ library per-

forming the calculation.

Ideally, exception reduction should be performed on all the exceptions men-

tioned above. If the program encounters an exception in a future, exception reduc-

tion can be performed by a future group, and the result of the reduction can be

thrown. However, if the first exception comes from the Magick++ library, then that

exception is already thrown and reduction can be performed only after that excep-

tion is caught and added to the set of exceptions to be reduced. Catching already

thrown normal exceptions requires extra code in the application, but no suitable

solution has been found to prevent this.

Listing 6.5 on the next page shows calculation code in one imager class. Actual

calculation is performed in a try block, using a reduction context and a future group

to manage multiple exceptions resulting from asynchronous calls. The try block is

followed by three catch blocks.

The first catch block catches all KC++ exceptions. This catch block is entered in

two situations. Either the future group triggered exception reduction, which results

in a KC++ exception, or a KC++ exception was thrown outside the control of the future

group. The code in the catch block checks the status of the reduction context to

distinguish the two cases. In the first case, exception reduction has already been
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1 Future<void> GuiLevelsImager::calculate()
2 {
3 ChangeScope sc(changescope());
4 ReductionContextRC<CalculationReductionClass> rc;
5 try
6 {
7 FutureGroup fg(rc);
8 fg.add(source );
9 fg.add(blackpoint );

10 fg.add(whitepoint );
11 fg.add(gamma );
12

13 // The performance tests return here
14 if (!usemagick()) { return sc.commit(); }
15

16 Magick::Image im = source ;
17 double bp = blackpoint /100.0*(QuantumRange);
18 double wp = whitepoint /100.0*(QuantumRange);
19 im.level(bp, wp, gamma );
20 image() = im;
21 // Check for possible blown out highlights
22 check blowout(0, 0, image().columns(), image().rows());
23 }
24 catch (const RpcExcpBase& e)
25 { // We are here either after reduction of because of out-of-fg exception
26 if (!rc.reduced())
27 { // No reduction -> out-of-fg exception
28 rc.addException(e);
29 rc.reduce();
30 }
31 else { throw; } // Pass through already reduced exception
32 }
33 catch (const std::exception& e)
34 { // Create a concurrent exception and add to the reduction context
35 if (RpcExcpBase::SharedEP me = RpcExcpBase::createMapped(e))
36 {
37 rc.addException(me);
38 rc.reduce(); // Reduce and throw
39 }
40 else
41 {
42 assert(!"std::exception which could not be mapped!");
43 }
44 }
45 catch (. . .)
46 {
47 assert(!"Unknown exception!");
48 }
49

50 return sc.commit();
51 }

LISTING 6.5: Calculation in levels imager
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performed, so the chosen exception can be propagated further by re-throwing it. In

the second case, reduction was not performed. In this case the code in the catch

block inserts the thrown exception to the reduction context and explicitly calls re-

duction.

The second catch block is for situations where a non-KC++ exception was thrown,

but the exception was still derived from std::exception. In this case reduction has

not been performed since it always results in KC++ exceptions. The code attempts

to map the thrown exception to a KC++ counterpart using exception mapping (Sec-

tion 4.6). This is possible if a suitable mapping has been declared using ConcTraits.

If the mapping succeeds, the resulting KC++ exception is inserted into the reduction

context and reduction is performed.

Otherwise the non-KC++ exception cannot be mapped to a KC++ exception, meaning

that it cannot be propagated out of the active object. In this case, the program is

terminated with an error message. This catch block shows how non-KC++ exceptions

can be generically mapped to KC++ counterparts for reduction. Without this catch

block the non-KC++ exception would propagate into the KC++ method parser, which

would also attempt mapping. However, in this case exception reduction would not

be performed.

Finally, the third catch is for catching exceptions which are not KC++ exceptions

nor derived from std::exception. These should not occur, so the catch block simply

terminates the program with a failed assertion.

6.3.5 Discussion on concurrent exception handling

The case study shows that concurrent exception handling mechanisms presented

in this thesis can be used in practise. It also revealed that designing concurrent

exception handling was harder than expected. It was difficult (at least to the author)

to choose the best strategy in the presence of multiple exceptions. In many cases

there were several possible alternatives and no clear reason to choose any one of

them. However, when an exception reduction strategy had been chosen, it was

straightforward to implement it using ready-made reduction functions, reduction

combinators, and exception folding.

Since the case study used a third-party library, Magick++, it was a good test case

for the usability of the RPC exception passing mechanism in the presence of third-
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party exceptions. The case study shows that the mechanism is usable and necessary

additional code (serialisation and exception mapping) is straightforward to write.

Application code can continue to use original third-party exceptions in most of its

code, except in exception reduction, where RPC-enabled exception classes must be

used.

Use of the Magick++ library also demonstrates why exception folding requires

additional mapping information and why folding based on inheritance hierarchies

requires limitations. The Magick++ exception hierarchy is divided into two top-level

branches, errors and warnings. Even if several Magick++ exceptions are reduced and

folded together based on the hierarchy, it is essential that information on these two

categories is not lost. If exception folding would simply reduce exceptions to their

most derived common base class, then reducing a Magick++ warning and error would

result in a top-level Magick++ exception object, without information on whether a

warning or a fatal error had happened. Concurrency traits presented in this thesis

make it possible to limit folding to these two categories so that errors can be folded

together as well as warnings, but mixing of these categories never occurs.

Use of a third-party library also clearly shows how limitations in the C++ excep-

tion handling make it difficult to group together RPC exceptions from futures and

normal exceptions thrown by the library. Handling of normal C++ exceptions is un-

aware of RPC exceptions and exception reduction, so extra code is needed to catch,

map and combine those C++ exceptions with RPC ones. This extra code degrades

readability of the code and makes writing concurrent exception handling unneces-

sarily complex. This is clearly a shortcoming in the mechanisms in this thesis, but

no solution has been found, due to inflexibility of the C++ language.

This case study revealed an interesting situation in concurrent exception hand-

ling. The components in the application form a graph of concurrent subjects and

observers, and there are several places where multiple exceptions arise. This means

that exceptions go through several reduction steps, where the results of earlier re-

duction participate in later reduction. In the case study this did not cause problems,

but more generally it can make writing exception reduction more difficult, since

reduction steps must work together nicely in order to produce acceptable results.

To lesser extent similar challenge already exists in sequential exception handling,

where it is possible that exception handlers rethrow exceptions or throw new ones.

This results in a chain of exception handlers, which must also work together nicely.
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For some cases exception reduction is a good solution based on the case study.

Exception folding can be used in places where it is acceptable to abstract away

specifics of exceptions in order to reduce them to a single more abstract exception.

For other cases, exceptions or exception categories can be prioritised and used for

reduction.

However, the GuiImager application clearly shows some problems with multiple

exceptions. An exception class hierarchy forms a hierarchy of exception categories,

but as such tells nothing about the importance of exceptions in relation to other

exceptions. There are situations where exception reduction is complicated or even

unclear. For example, the reduction currently used in the case study says that among

GuiImager exceptions, in-progress exceptions are the most important, followed by

cancellation exceptions and then the rest of imager exceptions.

However, even in this simple case study imager classes are allowed to derive

exceptions of their own, and those exceptions may be important to the user. There-

fore reduction should not choose an in-progress exception as the result of reduc-

tion if there are other unknown GuiImager exceptions in the set of exceptions to

be reduced. Nor should the reduction abstract away those important exceptions by

combining them with the rest of GuiImager exceptions.

It can be argued that the reduction should only reduce types of exceptions that

“are known” at the point of reduction. It is possible to write a reduction function

having that knowledge, but including a list of all known exception types in the

reduction is tedious regardless of whether such reduction was written by hand or by

using some sort of reduction combinator. Such reduction would also be difficult to

maintain because the list of known reductions should be updated if new exceptions

are added to the application.

The case study also clearly shows one limitation with future guards. Currently

they wait for all registered futures to become ready before performing exception

reduction. On one hand this is reasonable, because full exception analysis is only

possible after all exceptions have been received. On the other hand, it causes a delay

in exception handling. In some cases it would be useful to proceed with exception

reduction without waiting further, if a fatal enough exception has been received.

This would become possible if the programmer could provide a function, which

would decide whether to proceed with exception reduction or continue waiting.

However, this would complicate exception handling even more.
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6.4 Performance evaluation of Observer and GuiImager

The performance measurements given in Section 6.1 are one way to measure the

performance impact of concurrent exception handling. However, such minimal tests

do not include the inevitable overhead present in a real-world application. To get

an idea of how concurrent exception passing and reduction affects performance

in a real application, performance of the GuiImager application and its exception

handling was evaluated.

6.4.1 Test setup

The test setup was simple. The test creates a load imager to load an image from a file

and a modulation imager to change its brightness and saturation. Then the image is

repeatedly changed to another image. When exception handling is tested, the bright-

ness and saturation values are left empty. This causes two exceptions to be cre-

ated, reduced and propagated through the application. Figure 6.8 on the facing page

shows a sequence diagram of one test cycle resulting in exceptions. The figure also

shows the places where exception reduction takes place during the test.

The speed of the GuiImager application is affected by several factors. The cost

of exception handling and exception reduction is the factor this thesis is interested

in. However, performance of the application also depends heavily on the speed of

the user interface library and the time it takes to perform actual image processing

operations. Especially the image processing part is problematic since its effect can

be made arbitrarily small or large by increasing or decreasing the size of images to be

processed. Similarly the time used in the user interface depends on the performance

of the user interface library, the graphics subsystem of the operating system, the

speed of the graphics card, etc.

For these reasons, actual image processing was left out from performance tests.

A flag was added to the program, and Magick++ image processing functions were

not called if the flag was set. Another flag was added to cause the program to skip

calls to the FLTK user interface library. In the test setup, the imager active objects

were triggered from a loop in the main routine, so a graphical user interface was not

necessary to run the tests.

A “conventional” C++ version running GuiImager was needed to see the impact

of KC++ exception handling mechanism. To achieve this, a sequential GuiImager

application was compiled without using KC++. This was quite straightforward since
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MS1 : GuiModulateSettingsMI1 : GuiModulateImagerLS1 : GuiLoadSettings LI1 : GuiLoadImagermain()

Reduction

exception15: 

exception16: 

imager_update(-, -)11: 

get_image()12: 

get_brightness()13: 

get_saturation()14: 

exception18: 

trigger_change()2: 

notify()3: 

update(-, -, -, -)4: 

8: 

notify_ready()21: 

exception22: 

imager_update()5: 

get_imagespec()6: 

calculate()7: 

notify(-)9: 

update(-, -, -, -)10: 

17: 

notify_ready()19: 

exception20: 

set_imagespec_widget(-)1: 

FIGURE 6.8: Sequence diagram of a test cycle resulting in exceptions
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KC++ does not change C++ syntax. The non-KC++ version just required dummy versions

of KC++ futures and the base class Active. The dummy future classes were written

completely using inline functions so that the compiler could optimise away futures,

i.e. a Future<int> return value was optimised to a plain int.

The following test setups were used:

• A sequential non-KC++ version as a baseline, both with and without throwing

exceptions. This version used no graphical user interface or image processing.

• A KC++ version with no graphical user interface or image processing, both with

and without throwing exceptions.

• A KC++ version with no graphical user interface or image processing and excep-

tion reduction disabled to see the cost of reduction.

6.4.2 Test results and analysis

All tests were run in the same circumstances as the earlier tests (OpenSuse 11.0 64-

bit Linux with kernel 2.6.25.18-0.2 and Intel Core 2 processor running at 2380 MHz,

CPU frequency scaling off). Only one CPU was enabled in the tests to prevent hard-

ware parallelism from affecting the tests. Again GCC 4.3.2 compiler was tested with

both -O2 and -O3 optimisations, but both produced almost identical results. The

K-best method [Bryant and O’Hallaron, 2003, Ch. 9] was again used to verify that

results are representative (N = 20, K = 3 and ǫ = 0.01).

The results of tests are shown in Table 6.2 on the next page and in graphical form

in Figure 6.9 on the facing page. The first column in the table identifies the test. The

second column shows the number of user interface events generated for the test, and

the third column contains the time the test took to run. The fourth column contains

the actual result, the time to process one event. These figures were rounded to two

significant digits because of the selected K-best parameters. The last column in the

table shows how much the fastest test and slowest test results differ from each other.

This gives an idea how much fluctuation the test environment caused in the test.

Normal C++ exception handling

Exception handling in sequential tests 1. and 2. consists of an empty catch handler

in the main routine. When the first exception occurs (brightness in the modulate set-

tings object has not been set), program execution is transferred to the main routine.
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Test # of cycles Time (s) Time/cycle (µs) ∆max (µs)

1. Normal C++, no exceptions 107 81.33 8.1 0.40

2. Normal C++, exceptions 106 88.98 89 2.2

3. KC++, no exceptions 105 46.59 470 4.7

4. KC++, exceptions 105 68.02 680 6.6

5. KC++, no reduction, no exceptions 105 45.87 460 5.7

6. KC++, no reduction, exceptions 105 67.49 670 4.3

TABLE 6.2: Results of GuiImager performance tests

FIGURE 6.9: Test results in graphical form

No exception reduction or other exception handling mechanisms described in this

thesis are used.

The overhead of exception handling still dominates, causing the program to run

over 10 times slower when an exception occurs. Since there is no actual exception

handling code, the overhead is caused by find the appropriate catch block, and stack

unwinding. The exception passing overhead is 81 µs. In the simple function call

test in Table 6.1 on page 120, the exception passing overhead was only 4.8 µs. This

17 times difference shows that exception passing overhead in normal C++ can vary

greatly depending on the application. The difference can be explained by stack

unwinding. In the simple test, the exception was passed up one function call in the

call chain. In the GuiImager test, the exception is passed up 19 levels. This causes
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the stack unwinding to take much longer since each stack frame must be analysed

for possible destructors.

KC++ exception handling

The concurrent and parallel versions of GuiImager trigger two exceptions in the

modulate settings object, one for missing brightness value and one for missing sat-

uration. These exceptions are propagated to the modulate imager object, which re-

duces them. The reduced exception is propagated to the load imager object, reduced

again, propagated to the load settings object, reduced once more, and finally sent to

the main routine. Each of these objects is active, so exceptions are passed between

objects using the KC++RPC exception passing mechanism. A total of seven exception

objects are thrown in the active objects during exception passing and reduction.

Lines 3. and 4. in Table 6.2 show that exception handling takes 1.5 times the

time of normal program execution. This is reasonable compared with the earlier

3.5 times slower in the simple test (Table 6.1), since actual application logic is much

more complex.

In absolute time exception handling overhead in GuiImager test was 210 µs when

it was 24 µs in the simple test. This is caused by seven instead of two exceptions,

exception reduction and stack unwinding. The ratio of 9 is somewhat similar to the

ratio 17 in normal C++ case earlier.

When the KC++ version is compared with the normal C++ version, one interesting

result can be noticed. The KC++ version throws 7 individual exceptions during ex-

ception handling, where normal C++ version throws one. Nevertheless, the overhead

in the KC++ version is only 2.7 times larger. This can be explained again by stack

unwinding. Even though 7 individual exceptions are thrown in 5 separate execu-

tion threads, each exception has to travel through a much shallower call chain to be

caught. The combined depth of the call chains is not substantially larger than the

single call chain in the normal C++ case. The KC++ version receives two exceptions

from the modulate settings object instead of one, and active method invokers add to

the call chain, but otherwise the exception travels the same route as in the sequen-

tial case. Since C++ exception handling overhead is dominated by stack unwinding,

the number of exceptions thrown does not affect the performance much.

The previous result shows that exception handing between active objects does

not suffer much from having to throw the same exception again as it travels from

an active object to another. Exception handling performance is dominated by the
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length of the path the exception travels, regardless of how that path is split between

active objects.

Effect of exception reduction

Lines 5. and 6. in Table 6.2 show the results of tests when exception reduction code

was commented out. In these tests multiple exceptions were handled simply by

embedding them in a compound exception.

The results would seem to indicate that test cycles were 10 µs faster without

reduction regardless of whether exceptions occurred or not. This is somewhat sur-

prising since reduction code is executed only if exceptions occur. A possible ex-

planation for this anomaly is that commenting out reduction code reduced the size

of the executable enough to have a small impact on cache efficiency.

In any case the difference between tests with and without reduction is only 2 %,

and not far from the normal maximum fluctuation between tests (shown in the last

column). This indicates that the simple reduction functions used in this test applic-

ation do not have significant impact on exception handling. The situation would of

course change if the number of reduced exceptions and the complexity of reduction

functions were increased.
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Chapter 7

Related work

This chapter presents work related to themes in this thesis, especially exception

serialisation in RPC and handling of multiple concurrent exceptions. Relevant parts

of the new C++11 standard are also discussed here, since the work in this thesis has

been done based on the current 1998/2003 version of the C++ standard.

7.1 RPC exception passing in C++

C++ needs special mechanisms for RPC exception propagation because RPC and seri-

alisation are not part of the standard language and because the language does not

force exception classes to be derived from a single base class. In contrast, in Java all

exception classes must be derived from Exception, which in turn implements the

Serializable interface. This makes it possible to pass all Java exceptions via RPC.

Several serialisation implementations exist for C++ and other languages. Many of

these libraries are clearly written with object persistence in mind. This means that

they are designed for serialisation and restoration of values, which is common for

both persistence and RPC. However, this means that these libraries do not specific-

ally handle propagation of exceptions. For example, many serialisation libraries are

completely separate from method/function invocation mechanisms.

The idea in this thesis to provide a virtual throwSelf function to avoid limitations

in static typing in the throw statement is logical. So it is no surprise that it is used

in many places, e.g., it is part of the CORBAC++ Language Mapping Specification

[OMG, 2003, §11.9] and the Qt framework [Qt Development Frameworks, 2011]. It
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is also described by Herb Sutter and Jim Hyslop in their C/C++ User Journal column

[Sutter and Hyslop, 2005], and by Andrei Alexandrescu in [Alexandrescu, 2001].

The Qt framework also uses a virtual clone method to replicate exceptions.

The idea to automate throwSelf and clone using CRTP was the author’s own, but

it turned out that the idea is used elsewhere too, at least to automatically provide

dynamic cloning. The technique has been added to the Wikipedia article discussing

CRTP pattern in 2010. [Wikipedia, 2011]

The implementation of the exception factory described in this thesis resembles

Alexandrescu’s object factories in [Alexandrescu, 2001]. However, Alexandrescu’s

factories are still based on user-provided creation functions. The idea to use the con-

structor of a static data member for registration of factories is loosely based on James

Coplien’s exemplars [Coplien, 1992]. However, this thesis automates the factories

using inheritance and template metaprogramming.

While many object-oriented programming languages like C++ and Java support

exception hierarchies through inheritance, CORBA does not support hierarchical

exceptions in its IDL interface specifications. All exceptions are divided into user

exceptions and system exceptions, and CORBAC++ mapping defines that all user ex-

ceptions are directly inherited from a provided abstract base class, making the hier-

archy only one level deep. [OMG, 2004, §3.12] [OMG, 2003, §1.19]. Serialisation

used in CORBA relies on user-written factory functions for creating objects during

unmarshalling. For user-defined classes and types, it is the responsibility of the ap-

plication programmer to write such factory classes, instantiate a factory from each,

and then register those factories with CORBA run-time [OMG, 2003, §1.17.10].

Compared with KC++, the approach used in CORBA prevents use on third party

exception classes, since all CORBA exceptions have to be derived from a CORBA

exception base class. The writer of an exception class must also herself take care of

writing the throwSelf method (called raise in CORBA).

Separate serialisation libraries exist for C++, such as Boost Serialization library

[Ramey, 2004], which contains support for versioned serialisation and restoration.

The Boost Serialization library concentrates on serialisation of arbitrary values, so

exceptions are not specially addressed in that library. It relies on several explicit

mechanisms for dynamic factory creation, but does not require a common base class

for serialised objects.

Similar serialisation of values using explicit dynamic factories is provided by the

GNU Common C++ and its TypeManager class [Free Software Foundation, Inc., 2004].
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Yet another serialisation library is s11n [s11n, 2005]. It uses the same virtual func-

tion based marshalling mechanism as the mechanisms in this thesis, but relies on

explicit creation of dynamic factories.

Since these serialisation libraries are meant for general explicit serialisation and

not exception handling, they do not have to rely on a common base class for serial-

isable classes nor provide support for throwing unmarshalled objects.

Although C++11 provides support for concurrency, it is limited to threads with a

shared address space. RPC across address spaces is not supported, so serialisation

is not provided either.

7.2 Exceptions and futures in C++

Exception handling mechanisms in this thesis are heavily based on futures for asyn-

chronous communication and synchronisation. The current C++ language itself has

no support for futures or concurrency, so such support must be provided. This

thesis uses KC++ to give concurrency and futures. However, there are other C++ based

concurrency libraries and platforms which use futures. The C++11 standard also has

its own implementation of futures and concurrency.

Perhaps of the greatest importance is the concurrency support in C++11. C++11 con-

tains library support for concurrent threads and futures. However, support for RPC

calls across address spaces is not supported. In C++11, threads can be created as

objects which execute a given function asynchronously. Futures are used for asyn-

chronous return values. C++11 contains two kinds of futures, unique futures (future)

and shared futures (shared future). Their difference is that unique futures can-

not be duplicated and so the asynchronous value is always referred to by only one

unique future (unique futures can be moved, though, in which case the original fu-

ture is cleared during copying). Shared futures behave like KC++ futures and can be

copied and assigned freely, causing futures to share their value.

The interface of C++11 futures is quite limited. The value of a future can be asked,

blocking the caller if the value is not yet available. Similarly it is possible to per-

form just synchronisation without accessing the value of the future. However, it is

not possible to directly query the readyness of a future, but it is possible to give a

timeout to a wait method, which can be used to get the same effect.

C++11 futures contain either a value or an exception, and a contained exception is

automatically thrown if the value of the future is accessed. There are no queries to
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find out whether a ready future contains a value or an exception, and the exception

cannot be accessed without causing it to be thrown. These limitations make excep-

tion handling more difficult than with KC++ futures. One interesting feature of C++11

unique futures is that the value of the future can only be accessed once, and ac-

cessing the value moves the value out of the future, marking it invalid. This means

that an exception stored in a unique future can only be thrown once, solving the

problem of multiply thrown exceptions mentioned in Section 5.2.2.

The C++11 library also contains promises which are similar to KC++ future sources.

They can be used to create futures and later pass values to them. Promises can also

be used to pass exceptions to futures.

The Boost Thread library [Williams, 2008] contains support for concurrency and

futures for C++. The C++11 threads and futures are based on the Boost library, but

there are some differences between the two. Boost also contains both unique and

shared futures. The interface of futures is somewhat larger in Boost and contains

member functions for querying whether a future contains a normal value or an ex-

ception (like KC++ futures). This way it is possible to query about the existence of an

exception without causing it to be thrown. The Boost Thread library also provides

promises which are almost identical to C++11 promises.

The Qt framework [Qt Development Frameworks, 2011] provides concurrency

support in C++ using some mechanisms similar to those in this thesis. Qt provides

asynchronous return values using futures (called QFutures). It also requires concur-

rent exceptions to be derived from a common base class QtConcurrent::Exception.

The Qt concurrency only supports threads in the same address space, so exception

serialisation is not needed.

Concurrency can also be added to C++ by extending the language. The C++// lan-

guage [Caromel et al., 1996, Baude et al., 1996] is in many ways similar to KC++. C++//

also uses the existing C++ syntax and uses inheritance to mark classes as active. The

C++// compiler converts C++// code to normal C++ code, and uses wait-by-necessities

(a form of future) to synchronise with asynchronous method calls. The wait-by-

necessities are not parametrised in C++//, but rather they are created using inherit-

ance. This means that wait-by-necessities cannot be created for built-in types. The

C++// does not support exceptions.

µC++ [Buhr et al., 1992] is a concurrent extension of C++ which takes a different

approach with exceptions. µC++ also has futures, and exceptions can be stored in

these and propagated when the value of a future is requested. However, this only
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happens when a server explicitly stores an exception in a future. If an asynchronous

call raises an exception which it does not handle itself, that exception is automat-

ically propagated to the caller and raised there, causing exception handling in the

caller. The effect of µC++ exception handling model on concurrent exceptions is dis-

cussed in Section 7.3.

7.3 Multiple concurrent exceptions

This section discusses how the combination of exception handling and concurrency

has been implemented in several languages and systems, especially in case of mul-

tiple concurrent exceptions.

A general analysis of concurrent exception handling in object-oriented systems

can be found in [Romanovsky and Kienzle, 2001]. Ideas for handling multiple con-

current exceptions in a distributed system have been developed in [Xu et al., 2000].

This work also introduces the idea of exception resolution. The idea of adding ex-

ception resolution to Ada and Java has been analysed in [Romanovsky, 2000].

7.3.1 Keeping exceptions thread-local

The simplest way to get rid of problems with multiple exceptions is to keep excep-

tions local to a thread of execution. This way two concurrently raised exceptions

cannot simultaneously end up in one thread. If this strategy is chosen, it is still

necessary to define what happens if an exception is raised but not handled within

a thread. Two typical choices are either to terminate the thread, or ignore the un-

caught exception.

The strategy used in the Ada language [Ada, 1995] is quite common in other

languages, too. In Ada, new tasks (threads) can be created and the new tasks start

executing asynchronously with their creator. Problems with multiple concurrent

exceptions have been avoided by declaring that if an exception tries to leave the

task body (i.e. if the task does not handle the exception locally), the exception is not

propagated further and the task in question is terminated.

Ada-95 provides also asynchronous remote procedure calls. Since remote calls

are procedure calls, they cannot have return values. If an asynchronous remote

procedure call results in an exception after the caller has continued its execution,

the exception is simply ignored.
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The Java language [Arnold and Gosling, 1998] also has built-in concurrency. The

exception handling strategy in the language is very close to the Ada approach. All

exceptions are handled locally inside a thread, and they are lost if the thread does

not contain an appropriate exception handler.

Although the exception mechanism in Java is close to Ada, different concurrency

features affect exception handling in both languages. These differences (as well as

differences in other concurrency features) are analysed in [Brosgol, 1998].

Similarly to Ada, in C++11 class thread performs the given computation asynchron-

ously. The computation should not end in an exception, otherwise the program is

terminated.

There are also other concurrent object-oriented languages, which resolve con-

current exception problems by defining that exceptions must always be handled

locally inside each thread of execution [Stoutamire and Omohundro, 1996].

Limiting exceptions to one thread is an easy way to solve the problem of con-

current exceptions, but it introduces its own problems. Both terminating the thread

and ignoring an uncaught but important exception are unwanted and potentially

fatal actions, so they should never occur. This forces the programmers to rely on

older, more primitive exception signalling methods like special return values and

status flags to propagate information on exceptional situations from a thread.

7.3.2 Exceptions in futures

Futures are an intuitive and widespread mechanism for asynchronous return value

passing, and since exceptions can be regarded as an alternative to a return value,

embedding exceptions to futures is a logical choice.

All Java inter-thread communication happens either through shared objects or

synchronous method calls (like RMI, Remote Method Invocation). Java 5 also has

classes FutureTask and Future to perform asynchronous computation. The mech-

anism is similar to the future mechanism presented in this thesis, except for future

sources, future groups and exception reduction, which are not supported in Java 5.

Even though Java does not provide asynchronous method calls by default, there

are several extensions to the language for this purpose. One of these is Java ARMI

(Asynchronous Remote Method Invocation) [Raje et al., 1997], which is built on

normal synchronous Java RMI. ARMI uses futures to represent the results of asyn-

chronous calls. For exception handling, ARMI provides two alternative methods.
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The Delayed Delivery Mechanisms (DDM) embeds exceptions inside futures. The

exceptions are thrown from the future when the return value of the asynchronous

call is requested.

ProActive [Baduel et al., 2006] is a GRID Java library for parallel, distributed, and

concurrent programming. It provides active objects, asynchronous calls, and fu-

tures. Exceptions are handled synchronously, but [Caromel and Chazarain, 2005]

describes a mechanism for concurrent exception handling. In their approach, fu-

tures receive concurrent exceptions and throw then when the value of a future is

accessed. In addition to this, program execution waits at the end of a try block until

all futures created inside that block have received their value. Possible exceptions

are thrown at that point, making sure they can be handled in the try block surround-

ing the call that returned the future. In case of multiple exceptions, the approach

throws the first one and ignores the rest. This is mentioned as problematic in the art-

icle, but the writers argue that also in a sequential program only the first exception

would be thrown, because program execution would be transferred to the exception

handler after throwing the exception.

The Argus language implements asynchronous calls using call-streams and uses

a very future-like construct called a promise to handle return values from asyn-

chronous calls [Liskov et al., 1987, Liskov, 1988, Liskov and Shrira, 1988]. In Argus

promises are strongly typed and represent the result of the asynchronous computa-

tion including possible exceptions. The type of the promise identifies the type of the

return value and lists all possible exceptions which the promise may contain. Every

asynchronous call returns a promise, which the caller can either poll periodically or

start waiting for the call to complete (“claim” the promise). Waiting for the result of

a promise either returns the normal return value of the call, or raises the exception

the call has raised. If the same promise is claimed again, it re-returns the return

value or re-raises the exception.

Version 4.4 of Qt [Qt Development Frameworks, 2008] introduced a class similar

to KC++ FutureGroup called QFutureSynchronizer. Several futures can be registered

to a synchroniser, and the synchroniser has a method for waiting for all futures

to become ready. The destructor of the synchroniser also automatically synchron-

ises with all futures, just like in KC++. Unlike in KC++, if a Qt future belongs to a

QFutureSynchronizer, blocking and waiting for the value of the future does not syn-

chronise with other futures belonging to the future synchroniser. Compared with

KC++, Qt does not try to reduce exceptions coming from several futures.
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It seems that developers of Qt have been somewhat aware of problems with

concurrency and multiple exceptions. Normally, Qt futures throw arrived excep-

tions when methods requiring synchronisation are called. However, if exception

handling is in progress, Qt futures do not throw exceptions. Qt uses C++ function

uncaught exception() to check this (Section 2.2.3 discusses its limitations). This

behaviour of Qt futures is not documented. It is also dangerous, since Qt provides

no other way to access exceptions in futures or to check whether a future contains

exceptions. Current behaviour should be considered a bug, since it means that Qt

futures cannot be safely used in code called from destructors. [Rintala, 2011]

In [Botinčan et al., 2007], a mechanism similar to future groups called future

guards is proposed. It allows multiple future synchronisation using an arbitrary

boolean expression to express the required synchronisation condition. The paper

does not discuss exception handling.

Using an arbitrary boolean expression to represent the synchronisation condi-

tion makes future guards a more expressive synchronisation mechanism than future

groups presented in this thesis (which requires synchronisation with all futures in

a group). However, exception reduction could become more complicated if excep-

tions are received only from some of the futures.

C++11 also uses futures for concurrent calls. Function async performs a given com-

putation asynchronously. The return value of the computation is returned in a fu-

ture, which also receives the possible exception. In addition t concurrency, async

can be set to perform the computation in a lazy manner instead of concurrently. In

that case, the futures perform the computation when its value is requested. If an

exception occurs in lazy computation, it is thrown immediately. Future groups as

a synchronisation mechanism have also been proposed for C++11, but they were not

included in the language [Hinnant, 2006].

µC++ futures are similar to other futures described in this section. The only dif-

ference is that use of futures is explicit and exceptions end up in futures only if they

are explicitly stored there. By default µC++ exceptions use asynchronous propaga-

tion, which is discussed in Section 7.3.4. µC++ also provides a mechanism for select-

ively waiting for a group of futures. This mechanism is similar to future guards but

more flexible.

As mentioned earlier, embedding exceptions in futures is logical if exceptions

are regarded as a special return value. Since exceptions directly alter the control

flow of the program while return values do not, many systems using this approach
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mention potential problems (as discussed in Section 5.2). Even though potential

problems are mentioned, most systems do not try to solve the problems, but leave

that to the programmer. The reduction mechanism described in this thesis is an

attempt at providing tools for solving these problems.

If a program needs to react to multiple exceptions originating from futures with-

out support from the language or system, it is important that the program can ana-

lyse exceptions stored in futures. This is easier if the interface of futures allows the

program to query whether the future contains an exception, and access the excep-

tion without throwing it (this is logical if exceptions are regarded as alternate return

values). Some future-based systems provide this interface, but not all. For example,

in C++11 the only way to know if a future contains an exception is to ask for the con-

tent of the future, causing the exception to be thrown. This makes analysing and

combining several exceptions difficult.

7.3.3 Exception callback functions

One solution to concurrent exception propagation is to allow a program to register

callback functions or methods, which are automatically called when an exception

of suitable type is received from another thread of execution.

Java ARMI provides such a mechanism (Callback Mechanism, CM in ARMI). It

allows the programmer to attach special exception handlers to a future. Each excep-

tion handler is capable of handling a specific type of exception. If that exception

occurs, ARMI automatically calls the appropriate exception handler.

JR [Keen et al., 2001, Olsson and Keen, 2004] is another asynchronous extension

to Java. JR implements asynchronous calls via send and forward statements. Excep-

tions are handled by requiring that each send and forward statement also specifies a

handler object. Handler objects must implement the Handler interface and provide

a method for each possible exception type, with the exception object as a parameter.

When an exception occurs in an asynchronous call, an appropriate method in the

handler object is called. The handler methods cannot throw any additional excep-

tions and they have to be able to completely handle the exceptional situation. The

JR compiler statically checks that the handler object is able to handle all possible

exceptions the call may throw. [Keen and Olsson, 2002, Chan et al., 2005]

The callback mechanism is analysed in [Caromel and Chazarain, 2005]. It does

give the programmer freedom to implement custom behaviour on exceptions, but



174 Chapter 7. Related work

does not provide the ability to unwind the call stack on exceptions. Like try-catch

blocks, it also separates exception handling code from its context.

In case of multiple concurrent exceptions, the callback mechanism does not give

the programmer any control over how to combine or prioritise these exceptions.

Typically, callbacks are called in some fixed order, making it difficult to respond to

all of them in a sensible manner.

7.3.4 Asynchronous exception propagation

Asynchronous signalling has been present for a long time in system programming

languages, where it is needed for signalling about CPU interrupts, operating system

signals, etc. Since the source of such signals is concurrent from the program point

of view, it is natural that similar mechanisms are also used in concurrent exception

handling.

In many system programming languages like C and C++ asynchronous signalling

is supported by letting the program register signal handlers for different asynchron-

ous signals. This approach is similar to the callback approach discussed in Sec-

tion 7.3.3.

Ada-95 defines an asynchronous accept statement. This is not an asynchronous

call, but rather a way to execute a sequence of statements while waiting for an event

to occur, like a rendezvous call, time expiration, or external signal. When the event

happens, normal execution of statements is immediately aborted. This mechanism

does not suffer from the exception problems of asynchronous calls, but introduces

its own problems, for example because the abortion mentioned can occur in the

middle of exception handling.

The approach used in µC++ differs from other future-based systems described in

this chapter. As an alternative to embedding exceptions in futures, an exception

resulting from an asynchronous call can trigger exception handling in the client at

any time. Since there can clearly be parts of code where this is undesired, µC++

provides special syntax for selectively enabling and disabling the propagation ex-

ceptions based on their type. If a µC++ program is executing a part of code where

a disabled exception is raised, handling of that exception is delayed until the ex-

ception becomes enabled again. Since the client may be blocked in synchronisa-

tion when an exception is raised, µC++ has special mechanisms for unblocking the

client in these cases [Krischer and Buhr, 2008]. If multiple exceptions are raised
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concurrently and end up in the same thread, they “are delivered serially” in µC++

[Buhr, 2010, Ch. 5].

Java also used asynchronous exception propagation when a thread was externally

stopped by calling its stop() method. This caused an exception of type ThreadDeath

to be thrown in the thread, interrupting its normal execution. Use of this mechanism

is currently deprecated in Java, because of problems mentioned later in this section.

The Java virtual machine can still throw asynchronous exceptions under fatal error

conditions.

Asynchronous exception propagation suffers from the fact that it may trigger ex-

ception handling in the client regardless of where in the code the client is executing.

This can be seen from the fact that many systems provide signal or exception masks

to disable asynchronous propagation for a while, protecting a critical block of code

from being interrupted. However, this means that programmers have to actively be

aware of possible asynchronous exceptions and explicitly protect parts of code from

them.

Asynchronous propagation also suffers from problems with multiple exceptions.

If an asynchronous exception interrupts program execution, another asynchronous

exception may interrupt the handling of the first exception, unless exception mask-

ing is used to disable further exceptions. Even in that case disabled exceptions are

raised later when masking is removed. Delays caused by masking mean that mul-

tiple exceptions may be received in an undeterministic order, making it difficult to

handle exceptions collectively. In summary, asynchronous exception propagation

suffers from the same problems as other concurrent exception strategies, but has

some additional problems of its own.

7.3.5 Other approaches

Besides the mechanisms discussed earlier in this chapter, there are of course many

other ways to respond to concurrent exceptions.

In Ada, communication among tasks happens using the rendezvous mechanism,

where one task calls a service on another task, which explicitly accepts the call. If

an exception occurs during the rendezvous, the exception is propagated from the

accepting task to the calling task (as well as propagated within the called task).

However, this causes no problems in the calling task because normally rendezvous

is a synchronous operation, so the calling task is waiting for the call to complete.
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Forcing the exception propagation to be synchronous hides the problem of mul-

tiple exceptions, since the program must explicitly decide the order in which it

synchronises with other threads. If a local exception is raised before synchronisa-

tion, it is handled first before any synchronisation is attempted. However, if the

proper behaviour of the program requires knowledge of multiple exceptions origin-

ating from multiple sources, collecting this information is difficult if each exception

requires explicit synchronisation and that synchronisation automatically raises the

exception.

RMIX [Kurzyniec and Sunderam, 2004] is another Java RMI based communica-

tion framework providing asynchronous calls. In RMIX, if an asynchronous call by

a client raises an exception in the server, the server refuses to accept further calls

from the client until the client receives the exception through a synchronous call or

until the server is manually released.

Although multiple exceptions are not explicitly mentioned, the explicit mech-

anism used in RMIX gives a client freedom to choose which exceptions it wants

to receive and in which order. This again theoretically gives the program freedom

to receive and react to multiple exceptions, although such a program can be very

difficult to write.

In the programming language Arche [Benveniste and Issarny, 1992], asynchrony

and synchronisation have been implemented quite differently. Every object in the

language has its own thread of control and every method call is synchronous. How-

ever, concurrent objects can communicate and co-operate asynchronously using

multimethods (invocation of a method in a group of objects). Exception handling

problems are solved by attaching to each multimethod a coordinator, which controls

the overall action. The coordinator may have a resolution function which receives

exceptions from all participants and computes a concerted exception representing

the resulting “total” exception [Issarny, 2001]. The initial idea of the resolution trees

has been developed in [Campbell and Randell, 1986].

The multimethod approach clearly acknowledges the fact that concurrent ex-

ception handling is more complex than sequential exception handling. It allows

exception handling to collect exception information from multiple threads (like in

exception reduction discussed in this thesis), and the results of exception handling

affect all participating threads. On the other hand, multimethods are not part of

most object-oriented programming languages, so the Arche approach cannot easily

be used in other languages.
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7.3.6 Summary

Table 7.1 on the following page shows a summary of concurrency and exception

handling features of systems discussed in this section. A check mark means that

a feature is found, a cross means that it is not. A dash means that a feature is irrel-

evant (for example, if exceptions are not supported, features based on exceptions are

irrelevant). Some systems support several concurrency mechanisms, so seemingly

mutually exclusive features may be marked for a system if one of its concurrency

mechanisms support one feature and another mechanism support the other.

The table shows that of the systems mentioned in this chapter, there is no clear

pattern on how concurrent exceptions are handled, even though futures are com-

monly used to transfer them. This applies to both systems which support threads

(a shared address space) and distributed or process based systems with no shared

memory.
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C++ family Java family Others

Feature C++11 Qt µC++ C++// KC++ Java
Java

ARMI
JR

Pro-
Active

RMIX
Ada-
95

Argus Arche

Shared ad-
dress space

X X X × × X × × × × X X ×

Separate
address spaces

× × × X X X X X X X X X X

Futures X X X X X X X × X X × X ×

Multiple
future syn-
chronisation

× X X × X × × – × × × × –

Exceptions
from futures

X X X – X X X – X X × X –

Exception call-
backs

× × × – × × X X × X × × ×

Asynchronous
exception
propagation

× × X – × X × × × × X × ×

Multiple
exceptions
terminate

X × × – × × × × × × X × ×

Multiple
exceptions
ignored

× X × – × X × × X X X X ×

Multimethods × × × × × × × × × × × × X

Exception
reduction

× × × – X × × × × × × × X

X = Is supported

× = Is not supported
– = Does not apply (e.g., no futures or exception handling)

TABLE 7.1: Summary of concurrency and exception features
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Chapter 8

Conclusion

This thesis has provided mechanisms for concurrent exception handling in the C++

language. This includes automatic serialisation of exceptions for RPC as well as

handling multiple concurrent exceptions in concurrent programs. This chapter

gives a summary of the contributions of this thesis and discusses limitations of the

mechanisms. It also analyses the applicability of those mechanisms for languages

other than C++ and finally presents some ideas for future work.

8.1 Contributions revisited

This section revisits the main contributions presented in this thesis.

• Automated serialisation of RPC exceptions

In this thesis it is shown that exception propagation in RPC and similar calls

with no shared memory can be implemented as a template-based library, in-

cluding serialisation and dynamic creation of exception objects. The mechan-

ism is also suitable for throwing and catching exceptions using an exception

class hierarchy.

The solution requires minimal additional code from application programmers

and allows the use of existing exception hierarchies. The mechanism has been

implemented and tested in the KC++ system developed by the author.

The presented solution is light-weight and implemented completely using

C++ and its template metaprogramming mechanisms. Necessary object factor-
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ies and virtual functions are generated automatically, which means no pre-

processors, code generators or separate IDL specifications are needed.

The mechanism can be used with third-party exception classes, which can-

not be modified to include methods for serialisation, dynamic creation, and

dynamic throwing. A mechanism for automatic mapping of third-party excep-

tions to RPC-enabled counterparts is presented.

• Handling and reduction of multiple concurrent exceptions

This thesis shows how support for multiple exceptions in asynchronous con-

current calls can be added to C++. An analysis of problems related to concur-

rency and exceptions is presented, using the C++ language as an example. A

solution based on exception reduction, future groups and compound excep-

tions is presented.

Exception reduction is further developed by presenting a template metapro-

gramming based framework for exception reduction, where a reduction strate-

gy can be combined from ready-made components. Exception reduction based

on inheritance hierarchies is also discussed and an implementation is presen-

ted. Limitations of the mechanisms and the underlying C++ language are dis-

cussed.

The mechanisms presented in the thesis have also been implemented in the

KC++ system.

• Performance analysis and a case study

A performance test for the RPC exception passing mechanism was executed

and the results are discussed in this thesis. Performance tests show that the ef-

ficiency of the RPC exception passing mechanism in this thesis is good in situ-

ations where exceptions themselves are an acceptable mechanism. An RPC ex-

ception propagation takes about 40 times longer than normal RPC return. This

is considered acceptable, especially taking into account that without RPC, nor-

mal exception handling in C++ is 3–4 degrees of magnitude slower than normal

return from a function.

Usability of the exception reduction mechanism was evaluated with a case

study. A concurrent version of the Observer pattern was implemented in KC++

and special emphasis was put on exception handling. This thesis contains a

discussion about issues found during the implementation.
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The Observer pattern was then used to implement a simple concurrent image

processing application. Exception handling and reduction in this application

are discussed in the thesis, including problems found during the case study.

A simple performance test was also performed on the case study to get an idea

of the performance of exception reduction. For this purpose, several versions

of the image processing application were compiled and these versions were

compared with each other. Performance results are discussed in this thesis,

suggesting that exception reduction mechanisms presented in this thesis are

acceptable from the performance standpoint.

8.2 Future research and work

The work in this thesis is not complete. There are several obvious directions for

future research, some of which are independent of each other.

The largest and broadest research direction is concurrent exception resolution

in general. Existing software projects using concurrency could be analysed to see

what strategies have been chosen to solve problems with multiple exceptions (or

what problems are found because multiple exceptions have not been taken into ac-

count). Such research could provide information for writing a more complete library

of ready-made components for exception reduction. It could also reveal problems

where exception reduction is not an adequate solution for solving multiple excep-

tion problems.

Research in this thesis has shown that combining exception handling and con-

currency is not trivial. Traditional exception handling is based on providing an al-

ternative control flow when an exception occurs. This becomes problematic when

the program consists of several concurrent flows of control. These problems should

be futher analysed to see whether changes are needed in programming languages’

exception handling semantics in a concurrent environment. Similar problems oc-

cur with asynchrony caused by lazy evaluation. One research direction is to analyse

existing lazy programming languages and their mechanisms for exception and error

handling, and how those could be adapted for concurrent exception handling in

eager languages (like C++).

Future groups group together several futures and perform synchronisation and

exception reduction among them. In the current version future groups wait for all

futures to become ready to make sure all possible exception participate in reduction.
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Other options should be considered as well in future research. For example, it would

be useful to be able to wait for the first exception arising from a future group, or to

stop waiting after a timeout. In a more general case it would be useful to analyse

currently received exceptions and decide whether to wait for the rest or proceed

with exception reduction.

One direction for future work comes from development in the C++ language itself.

KC++ and mechanisms presented in this thesis have been written before the new

C++11 standard. The new language standard provides additional support for template

metaprogramming as well as tools for concurrency, and incorporating those into

KC++ and using them to improve concurrent exception handling are obvious areas for

future work.

Of most interest is concurrency support in C++11. Concurrency is based on threads

executing in the same address space, so RPC exception passing mechanisms like the

one in this thesis are still needed. Superficially, it seems that C++11 does not provide

any new tools for serialisation of exceptions, but this should be verified with further

research.

Since futures will now be part of the C++11 standard library, one future direction

is to change exception reduction mechanisms to work with C++11 futures, if possible.

Ideally, this could work without modifying or extending C++11 futures, but that is not

known without additional research.

C++11 provides some new tools which could make the implementation of mech-

anisms in this thesis easier. One such feature is variadic templates, which are tem-

plates with variable and unlimited number of template arguments. There are several

places in this thesis where the programmer should be able to provide an arbitrary

list of classes. Currently, lots of template metacode are needed to allow this, and

even then the maximum number is limited. Rewriting this code to use variadic

templates is an obvious place for future work.

Finally, C++11 extends the C++ language with lambda functions, making it easy to

write small utility functions, which can also have access to their environment. This

would be useful for writing reduction functions. Lambda functions combined with

variadic templates could also be used to improve reduction combinators. However,

there are limitations in combining lambdas and templates, so further research is

necessary.



8.3. Concluding remarks 183

8.3 Concluding remarks

This thesis has shown how concurrent exception support in C++ can be built as a

library, without changing the underlying language. Problems in handling multiple

concurrent exceptions are discussed and analysed, and a solution using exception

reduction is presented. Viability of the solutions are verified with performance ana-

lysis and a case study.

During the research included in this thesis it has become clear to the author

that concurrent exception handling is not trivial and that exception handling sup-

port of most current programming languages is not adequate to solve all emerging

problems. This observation is made more interesting by the fact that concurrent

programming is rapidly becoming more and more mainstream.

It has also become clear that designing a concurrent exception handling strat-

egies for applications is even more difficult than designing traditional sequential

exception handling. Existing practises, design patterns and guidelines for exception

handling do not necessarily work in a concurrent environment.
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