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Abstract

When an image is acquired by a digital imaging sensor, it is always degraded
by some noise. This leads to two basic questions: What are the main charac-
teristics of this noise? How to remove it? These questions in turn correspond
to two key problems in signal processing: noise estimation and noise removal
(so-called denoising). This thesis addresses both abovementioned problems and
provides a number of original and effective contributions for their solution. The
Þrst part of the thesis introduces a novel image denoising algorithm based on the
low-complexity Shape-Adaptive Discrete Cosine Transform (SA-DCT). By using
spatially adaptive supports for the transform, the quality of the Þltered image is
high, with clean edges and without disturbing artifacts. We further present exten-
sions of this approach to image deblurring, deringing and deblocking, as well as to
color image Þltering. For all these applications, the proposed SA-DCT approach
demonstrates a state-of-the-art Þltering performance, which is achieved at a very
competitive computational cost. The second part of the thesis addresses the prob-
lem of noise estimation. In particular, we consider noise estimation for raw-data,
i.e. the unprocessed digital output of the imaging sensor. We introduce a method
for nonparametric estimation of the standard-deviation curve which can be used
with non-uniform targets under non-uniform illumination. Thus, we overcome key
limitations of the existing approaches and standards, which typically assume the
use of specially calibrated uniform targets. Further, we propose a noise model for
the raw-data. The model is composed of a Poissonian part, for the photon sens-
ing, and a Gaussian part, for the remaining stationary disturbances in the output
data. The model explicitly takes into account the clipping of the data, faithfully
reproducing the nonlinear response of the sensor when parts of the image are over-
or under-exposed. This model allows for the parametric estimation of the noise
characteristics from a single image. For this purpose, a fully automatic algorithm
is presented. Numerous experiments with synthetic as well as with real data are
presented throughout the thesis, proving the efficiency of the proposed solutions.
Finally, illustrative examples, which show how the methods proposed in the Þrst
and in the second part can be integrated within a single procedure, conclude the
thesis.
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Introduction to the thesis

Outline of the thesis
The thesis is structured in two self-contained parts. The Þrst part deals with a
family of image Þltering algorithms collectively called �Pointwise Shape-Adaptive
DCT Þlters�. The key idea of these algorithms is to use a shape-adaptive trans-
form on a support that adapts to the images features. SpeciÞcally, we use the
low-complexity SA-DCT transform [154] in conjunction with the Anisotropic Lo-
cal Polynomial Approximation (LPA) - Intersection of ConÞdence Intervals (ICI)
technique [47],[91],[92], which deÞnes the shape of the transform�s support in a
pointwise adaptive manner. The thresholded or attenuated SA-DCT coefficients
are used to reconstruct a local estimate of the signal within the adaptive-shape
support. Since supports corresponding to different points are in general overlap-
ping, the local estimates are averaged together using adaptive weights that depend
on the region�s statistics.
Besides a �basic� grayscale image denoising Þlter for additive white Gaussian

noise (Chapter 1, Section 1.5, p. 11), we present extensions of the approach to:

- color image Þltering (Section 1.7, p. 24);

- deringing and deblocking of B-DCT compressed image (e.g., JPEG images)
(Section 1.6, p. 20);

- deconvolution (deblurring) (Chapter 2, p. 49);

- signal-dependent noise removal (Chapter 3, p. 65).

A separate chapter is dedicated to another class of transforms deÞned on arbitrarily
shaped supports, the so-called �shape-adapted� bases (Chapter 4, p. 77). In
particular, we evaluate their Þltering performance when they are used within the
above algorithms in place of the more efficient SA-DCT.
An appendix on the LPA-ICI technique is provided for the reader�s convenience

(Appendix A, p. 85). Several illustrations of the different basis elements used in
the considered shape-adaptive and �shape-adapted� transforms are given at the
end of this Þrst part (Appendix B, p. 89).

The second part of the thesis deals with noise estimation for the raw-data of
digital imaging sensors. This part comprises two chapters. First (Chapter 5, p.
123), we present a nonparametric method for estimation of the curve which de-
scribes the standard-deviation of the noise as a function of the expectation of the

xi



xii Introduction to the thesis

pixel raw-data output (so-called �standard-deviation function�). This method re-
lies on the analysis of several images captured under the same Þxed acquisition and
illumination conditions. However, we do not require the target or the illumination
to be uniform. Based on an automatic segmentation of the images, we separate
samples with different expected output and estimate their standard-deviations.
Thus, while other techniques require a uniform target (e.g., a test-chart), in our
approach we beneÞt from the target non-uniformity by simultaneously estimating
the standard-deviation function over a large range of output values.
The most signiÞcant contributions of this second part are given in the sub-

sequent chapter (Chapter 6, p. 135), where we propose a noise model for the
raw-data and an algorithm for the fully automatic estimation of these parame-
ters from a single noisy image. The model is composed of a Poissonian part, for
the photon sensing, and Gaussian part, for the remaining stationary disturbances
in the output data. The model explicitly takes into account the clipping of the
data, faithfully reproducing the nonlinear response of the sensor when parts of the
image are over- or underexposed. The parameter estimation algorithm utilizes a
special maximum-likelihood Þtting of the parametric model on a collection of local
wavelet-domain estimates of mean and standard-deviation. Experiments with syn-
thetic images and real raw-data from camera sensors demonstrate the effectiveness
and accuracy of the algorithm in estimating the model parameters and conÞrm
the validity of the proposed model.

Conclusive remarks and few illustrative examples, which show how the methods
proposed in the Þrst and in the second part can be integrated within a single
procedure, are given at the end of thesis (Conclusions, p. 173).

Publications and author�s contribution
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by the author:
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xiv Introduction to the thesis

Notation and conventions
We tried to use, as much as possible, well-known notation. However, since even
for the most basic concepts there exist in the literature various and equivocal no-
tations, we gradually explain in the text the meaning of the used notation. Never-
theless, as a useful reference, we declare here below, some of the most signiÞcant
conventions that we follow.

The symbols R, R+, Z, and N indicate, respectively, the real numbers, the
non-negative real numbers, the relative numbers (i.e., integers), and the natural
numbers. Given a discrete set X, the symbol |X| stands for the cardinality of X,
i.e. the number of elements in the set. The same notation is used also to indicate
the measure of a continuous set.

The symbol ~ denotes the convolution, (g ~ z) (x) =
R
g (x− v) z (v) dv ∀x.

The central dot · stands for a �mute variable� or �mute argument�. For ex-
ample, the above deÞnition of the convolution can be written also as g ~ z =R
g (·− v) z (v) dv (x being the mute variable). On discrete domains the integra-

tion is intended with respect to a discrete measure (typically the counting mea-
sure). We denote the )p norms as k·kp and the inner-product as h·, ·i. The Fourier
transform is denoted by F . We usually indicate the Fourier transform of a func-
tion with the corresponding capital letter: F (g) = G. We use a discrete Fourier
transform normalized in such a way that the convolution theorem and Parseval�s
equality hold in the forms F (f ~ g) = FG and kfk22 = 1

|X| kF (f)k22, where f is
a function deÞned on the domain X. This is the standard normalization used in
Matlab.

The conjugate transpose of a matrix or vector is denoted by the superscript T .

The hat decoration b denotes estimated values (e.g., �öy is the estimate of y�).
The b·c brackets indicate the rounding to the nearest smaller or equal integer,

e.g., b7− πc = 3.
For a function f : X → R, we deÞne its support, supp f ⊆ X, as the subset

on which the function is non-zero, supp f = {x ∈ X : f (x) 6= 0}. The other way
round, for a subset A ⊆ X, we deÞne its characteristic function, χA : X → {0, 1},
as the binary function that has A as its support: χA (x) = 1 ⇐⇒ x ∈ A,
suppχA = A.

N ¡
µ, σ2

¢
and P (λ) respectively denote the normal (i.e., Gaussian) distribu-

tion with mean µ and variance σ2 and the Poisson distribution with mean (and
variance) λ. The notation z ∼ P (λ) means that the random variable z is dis-
tributed according to a P (λ) distribution, which implies that the probability of z
being equal to k is P (z = k) = e−λ λ

k

k! , k ∈ N. Similarly, if z ∼ N
¡
µ, σ2

¢
, we have

that the probability density of z is ℘ (z) = 1
σ
√
2π
e−

(z−µ)
2σ2 , z ∈ R.

For the images used in the many Þgures and simulations, unless differently
noted, we assume that the data-range is [0, 255], where 0 and 255 correspond,
respectively, to black and white.
We use the following standard criteria functions to assess the objective quality

of an estimate öy of y, obtained from a noisy observation z (where all the signals
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are deÞned on a domain X of size |X|):

(signal-to-noise ratio) SNR = 20 log10

µ kyk2
ky − öyk2

¶
,

(improvement in SNR) ISNR = 20 log10

µky − zk2
ky − öyk2

¶
,

(peak SNR) PSNR = 20 log10

Ã
255 ·p|X|
ky − öyk2

!
,

(mean squared error) MSE =
ky − öyk22
|X| .

Additionally, to measure the noisiness of a blurred image, we use the blurred SNR
(BSNR), deÞned as

(blurred SNR) BSNR = 20 log10

µkyblur − mean(yblur)k2
kyblur − zk2

¶
,

where yblur is the noise-free blurred image and z is the noisy blurred image.

For convenience, in Table 1, we list the most frequent abbreviations used in
the thesis.

1-D, 2-D, 3-D One-, Two-, Three-Dimensional
AC Alternating Current (non-constant components)
AWGN Additive White Gaussian Noise
bpp bits per pixel
BSNR Blurred Signal-to-Noise Ratio
B-DCT Block Discrete Cosine Transform (e.g., 8×8 2-D DCT)
CCD Charge-Coupled Device
CDF Cumulative Distribution Function
CMOS Complementary(-symmetry) Metal-Oxide Semiconductor
CR Þrst column-wise and then row-wise
dB decibel
DC Direct Current (constant component)
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
FPN Fixed-Pattern Noise
GS Gram-Schmidt orthonormalization procedure

Table 1: List of frequently used abbreviations (continued on next page).
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JPEG Joint Photographic Experts Group
KLT Karhunen-Loève Transform
ICI Intersection of ConÞdence Intervals
IDCT Inverse Discrete Cosine Transform
i.i.d. independent and identically distributed
ISNR Improvement in Signal-to-Noise Ratio
LPA Local Polynomial Approximation
LS Least Squares
MAD Median Absolute Deviation
ML Maximum Likelihood
MPEG Moving Picture Experts Group
MSE Mean Squared Error
PCA Principal Component Analysis
PDF Probability Density Function
PSF Point-Spread Function
PSNR Peak Signal-to-Noise Ratio
RC Þrst row-wise and then column-wise
RGB Red, Green, Blue color components
RI Regularized Inverse
RWI Regularized Wiener Inverse
SA-DCT Shape-Adaptive Discrete Cosine Transform
�SA�-DCT �Shape-Adapted� Discrete Cosine Transform
SNR Signal-to-Noise Ratio
asvar average sample variance
std standard deviation
supp support of a function
svar sample variance
tsvar total sample variance
YUV luminance (Y) and chrominance (U,V) color components
var variance

Table 1 (continued from previous page): List of frequently used abbreviations.
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Chapter 1

Pointwise Shape-Adaptive
DCT denoising and
deblocking

1.1 Introduction

The two-dimensional separable block-DCT (B-DCT), computed on a square or
rectangular support, is a well established and very efficient transform in order to
achieve a sparse representation of image blocks. For natural images, its decorrelat-
ing performance is close to that of the optimum Karhunen-Loève transform [141].
Thus, the B-DCT has been successfully used as the key element in many com-
pression and denoising applications. However, in presence of singularities or edges
such near-optimality fails. Because of the lack of sparsity, edges cannot be coded
or restored effectively, and ringing artifacts arising from the Gibbs phenomenon
become visible. For this reason, other transforms with better edge adaptation ca-
pabilities (e.g., wavelets [112], curvelets [158], etc.) have been developed and used
in denoising, and post-processing (deringing, deblocking) Þlters are commonly used
in MPEG-video decoders [153].
In the last decade, signiÞcant research has been made towards the develop-

ment of region-oriented, or shape-adaptive, transforms.The main intention is to
construct a system (frame, basis, etc.) that can efficiently be used for the analysis
and synthesis of arbitrarily shaped image segments, where the data exhibit some
uniform behavior.
Initially, Gilge [70, 71] considered the orthonormalization of a (Þxed) set of

generators restricted to the arbitrarily shaped region of interest. These generators
could be a basis of polynomials or � for example � a B-DCT basis, thus yielding
a �shape-adapted� DCT transform. Orthonormalization can be performed by the
standard Gram-Schmidt procedure and the obtained orthonormal basis is sup-
ported on the region. Because the region-adapted basis needs to be recalculated
for each differently shaped region and because the basis elements are typically non-
separable, the overall method presents a rather high computational cost. While

3
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even today it is considered as one of the best solutions to the region-oriented trans-
forms problem, Gilge�s approach is clearly unsuitable for real-time applications,
and faster transforms were sought.
A more computationally attractive approach, namely the shape-adaptive DCT

(SA-DCT), has been proposed by Sikora et al. [154, 156]. The SA-DCT is com-
puted by cascaded application of one-dimensional varying-length DCT transforms
Þrst on the columns and then on the rows that constitute the considered region, as
shown in Figure 1.1. Thus, the SA-DCT does not require costly matrix inversions
or iterative orthogonalizations and can be interpreted as a direct generalization of
the classical 2-D B-DCT transform. In particular, the SA-DCT and the B-DCT
(which is separable) have the same computational complexity and in the special
case of a square the two transforms exactly coincide. Therefore, the SA-DCT has
received considerable interest from the MPEG community, eventually becoming
part of the MPEG-4 standard [102, 117]. The recent availability of low-power SA-
DCT hardware platforms (e.g., [18],[100],[101]) makes this transform an appealing
choice for many image- and video-processing tasks.
The SA-DCT has been shown [154, 155, 12, 96] to provide a compression effi-

ciency comparable to those of more computationally complex transforms, such as
the �shape-adapted� DCT [71]. The good decorrelation and energy compaction
properties on which this efficiency depends are also the primary characteristics
sought for any transform-domain denoising algorithm. In this sense, the SA-DCT
features a remarkable potential not only for video compression applications, but
also for image and video denoising.
However, this potential has been apparently ignored by the image denoising

and restoration community. While this indifference may seem rather surprising,
there are sound reasons that can justify it.
The use of a transform with a shape-adaptive support involves actually two

separate problems: not only the transform should adapt to the shape (i.e. a
shape-adaptive transform), but the shape itself must adapt to the image features
(i.e. an image-adaptive shape). The Þrst problem has found a very satisfactory
solution in the SA-DCT transform. How to deal with the second problem depends
on the considered application.
The shape-adaptive coding of noise-free video objects always assumes that the

boundary of these objects is known. This information can be obtained either from
a-priori knowledge (e.g., motion estimation, chroma keying, layered structure), or
it can be estimated from the data with one of the many automated segmentation
algorithms suitable for this purpose (e.g., [123]). On the contrary, obtaining an
accurate and robust segmentation of noisy data constitutes an extremely more
complex task than the region-oriented coding itself. Unlike in video coding, such
a segmentation cannot be reasonably assumed to be known a-priori. It must be
noted that conventional segmentation (or local-segmentation) techniques which
are employed for video processing are not suitable for degraded (noisy, blurred,
highly compressed, etc.) data. This very aspect may be identiÞed as the principal
reason why the SA-DCT had not been used for the restoration of noisy images.
In our approach, we use the SA-DCT in conjunction with the Anisotropic Local

Polynomial Approximation (LPA) - Intersection of ConÞdence Intervals (ICI) [91,
90, 72, 62], a technique purposely designed to work accurately with noisy data.
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By comparing varying-scale directional kernel estimates, this technique adaptively
selects, for each point in the image, a set of directional adaptive-scales. The
length of the support (i.e., the window size) of the corresponding adaptive-scale
kernels deÞne the shape of the transform�s support in a pointwise-adaptive manner.
Examples of such neighborhoods are shown in Figures 1.2, 1.5, 1.7, and 1.19.
For each one of these neighborhoods a SA-DCT is performed. The hard-

thresholded SA-DCT coefficients are used to reconstruct a local estimate of the
signal within the adaptive-shape support. By using the adaptive neighborhoods
as support for the SA-DCT, we ensure that data are represented sparsely in the
transform domain, allowing to effectively separate signal from noise using hard-
thresholding.
Since supports corresponding to different points are in general overlapping (and

thus generate an overcomplete representation of the signal), the local estimates
are averaged together using adaptive weights that depend on the local estimates�
statistics. In this way we obtain an adaptive estimate of the whole image.
Once this global estimate is produced, it can be used as reference estimate for

an empirical Wiener Þlter [69, 68] in SA-DCT domain. Following the same adaptive
averaging procedure as for hard-thresholding, we arrive to the Þnal Anisotropic
LPA-ICI-driven SA-DCT estimate. We term our approach �Pointwise SA-DCT
Þltering�.
We present this novel approach for the denoising of grayscale as well as of

color images. Extension to color images is based on a luminance-chrominance
color-transformation and exploits the structural information obtained from the
luminance channel to drive the shape-adaptation for the chrominance channels.
Such adaptation strategy enables accurate preservation and reconstruction of im-
age details and structures and yields estimates with a very good visual quality.
Additionally, we discuss and analyze its application to deblocking and deringing
of block-DCT compressed images. Particular emphasis is given to the deblocking
of highly-compressed color images.
Since the SA-DCT is implemented as standard in modern MPEG hardware,

the proposed techniques can be integrated within existing video platforms as a
pre- or post-processing Þlter.

The chapter is organized as follows. We begin with the considered observation
model and notation. In Section 1.3 we recall the main points of the Anisotropic
LPA-ICI technique. Various aspects and details of the shape-adaptive DCT trans-
form are given in Section 1.4. The proposed Pointwise SA-DCT denoising algo-
rithm is then introduced in Section 1.5, which constitutes the core of the chapter.
The application to deblocking and deringing is given in Section 1.6, where we relate
the quantization table with the value of the variance to be used for the Þltering.
In Section 1.7 we present the extension of the proposed methods to color image
Þltering, describing the employed color-space transformations and the structural
constraints which are imposed on the chrominances. The last section of the chap-
ter is devoted to results and discussions: we provide a comprehensive collection
of experiments and comparisons which demonstrate the advanced performance of
the proposed algorithms.



6 1. Pointwise Shape-Adaptive DCT denoising and deblocking

Figure 1.1: Illustration of the shape-adaptive DCT transform and its inverse. Trans-
formation is computed by cascaded application of one-dimensional varying-length DCT
transforms, along the columns and along the rows.

1.2 Observation model and notation

We consider noisy observations z of the form

z (x) = y (x) + η (x) , x ∈ X, (1.1)

where y : X → R is the original image, η is i.i.d. Gaussian white noise, η (·) ∼
N ¡

0, σ2
¢
, and x is a spatial variable belonging to the image domain X ⊂ Z2. At

the beginning we restrict ourself to grayscale images (and thus scalar functions),
while later (from Section 1.7) we consider also color images.
Given a function f : X → R, a subset U ⊂ X, and a function g : U → R,

we denote by f|U : U → R the restriction of f on U , f|U (x) = f (x) ∀x ∈ U ,
and by g|X : X → R the zero-extension of g to X,

¡
g|X

¢
|U = g and g|X (x) = 0

∀x ∈ X \U . The characteristic (indicator) function of U is deÞned as χU = 1|U|X .
We denote by |U | the cardinality (i.e. the number of its elements) of U . The
symbol �~� stands for the convolution operation.

1.3 Anisotropic LPA-ICI

The approach is based on the Intersection of ConÞdence Intervals (ICI) rule,
a method originally developed for pointwise adaptive estimation of 1-D signals
[72, 90]. The idea has been generalized for 2-D image processing, where adaptive-
size quadrant windows have been used [93]. SigniÞcant improvement of this ap-
proach has been achieved on the basis of anisotropic directional estimation [91, 55].
Multidirectional sectorial-neighborhood estimates are calculated for every point
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Figure 1.2: Anisotropic LPA-ICI. From left to right: sectorial structure of the anisotropic
neighborhood achieved by combining a number of adaptive-scale directional windows;
some of these windows selected by the ICI for the noisy Lena and Cameraman images.

and the ICI rule is exploited for the adaptive selection of the size of each sec-
tor. Thus, the estimator is anisotropic and the shape of its support adapts to the
structures present in the image. In Figure 1.2 we show some examples of these
anisotropic neighborhoods for the Lena and Cameraman images. The developed
anisotropic estimates are highly sensitive with respect to change-points, and allow
to reveal Þne elements of images from noisy observations.
Let us present the Anisotropic LPA-ICI method in more detail. For every

speciÞed direction θk, k = 1, . . . ,K, a varying-scale family of directional-LPA
convolution kernels {gh,θk}h∈H is used to obtain a corresponding set of directional
varying-scale estimates {öyh,θk}h∈H , öyh,θk = z ~ gh,θk , h ∈ H, where H ⊂ R+ is
the set of scales. These estimates are then compared according to the ICI rule,
and as a result an adaptive scale h+ (x, θk) ∈ H is deÞned for every x ∈ X and
for every direction θk. The corresponding adaptive-scale estimates öyh+(x,θk),θk (x)
are then �fused� together in an adaptive convex combination in order to yield the
Þnal anisotropic LPA-ICI estimate.
However, here we are not interested in this anisotropic estimate. Instead, we

consider only the adaptive neighborhood U+x , constructed as the union of the
supports of the directional adaptive-scale kernels gh+(x,θk),θk ,

U+x =
SK
k=1 supp gh+(x,θk),θk ,

which we use as the support for a shape-adaptive transform. Observe that, being
convolution kernels, the LPA kernels gh,θk are always �centered� at the origin,
therefore U+x is a neighborhood of the origin. The actual adaptive neighborhood
of x, which contains the observations that are used for estimation, is instead

÷U+x =
©
v ∈ X : (x− v) ∈ U+x

ª
.

The neighborhoods shown in Figure 1.2 are in fact examples of ÷U+x for a few points
x ∈ X.
Let us remark that there is a substantial difference between image segmen-

tation, in which the image is decomposed in a limited number (¿ |X|) of non-
overlapping subsets (image segments), and the Anisotropic LPA-ICI, which for
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every x ∈ X provides an adaptive neighborhood ÷U+x of x. In particular, because
of the nonparametric nature of the procedure, neighborhoods corresponding to
adjacent points do usually overlap.

1.4 Shape-Adaptive DCT transform

The SA-DCT [154, 156] is computed by cascaded application of one dimensional
varying-length DCT transforms Þrst on the columns and then on the rows that
constitute the considered region. Several improvements over its original deÞni-
tion have been proposed. We exploit the most signiÞcant [96], which concern the
normalization of the transform and the subtraction of the mean and which have
a fundamental impact on the use of the SA-DCT for image Þltering. Addition-
ally, an alternative scheme for the coefficients� alignment is also utilized and the
possibility of processing Þrst by rows and then by columns is considered.

1.4.1 Orthonormal Shape-Adaptive DCT

The normalization of the SA-DCT is obtained by normalization of the individual
one-dimensional transforms that are used for transforming the columns and rows.
In terms of their basis elements, they are deÞned as:

ψ1D -D C T
L,m (n) = cm cos

³
πm(2n+1)

2L

´
, m,n= 0, . . . , L−1, (1.2)

c0 =
p
1/L, cm =

p
2/L, m> 0. (1.3)

Here L stands for the length of the column or row to be transformed. The nor-
malization in (1.2) is indeed the most natural choice, since in this way all the
transforms used are orthonormal and the corresponding matrices belong to the
orthogonal group. Therefore, the SA-DCT � which can be obtained by composing
two orthogonal matrices � is itself an orthonormal transform. A different nor-
malization of the 1-D transforms would produce, on an arbitrary shape, a 2-D
transform that is non-orthogonal (for example as in [154, 156], where c0 =

√
2/L

and cm = 2/L for m > 0).
Let us denote by TU : U→ VU the orthonormal SA-DCT transform obtained

for a region U ⊂ X, where U = {f : U → R} and VU = {ϕ : VU → R} are func-
tion spaces and VU ⊂ Z2 indicates the domain of the transform coefficients. Let
T−1U : VU → U be the inverse transform of TU . We indicate the threshold-
ing (or quantization) operator as Υ. Thus, the SA-DCT-domain processing of
the observations z on a region U can be written as öyU = T−1U

¡
Υ
¡
TU
¡
z|U
¢¢¢

,
öyU : U → R. From the orthonormality of T and the model (1.1) follows that
TU
¡
z|U
¢
= TU

¡
y|U
¢
+ øη, where øη = TU (η|U) is again Gaussian white noise with

variance σ2 and zero mean.

1.4.2 Mean subtraction

There is, however, an adverse consequence of the normalization (1.2). Even if
the signal restricted to the shape z|U is constant, the reconstructed öyU is usually
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mean subtraction

−−−→

←−−−
mean addition

SA-DCT

−−−→

←−−−
inverse SA-DCT

|↓ hard-thresholding

Figure 1.3: Hard-thresholding in SA-DCT domain. The image data on an arbitrarily
shaped region is subtracted of its mean. The zero-mean data is then transformed and
thresholded. After inverse transformation, the mean is added back.

non-constant. In [95, 96] this behavior is termed as �mean weighting defect�, and
it is proposed there to attenuate its impact by applying the orthonormal SA-DCT
on the zero-mean data which is obtained by subtracting from the initial data z
its mean. After the inversion, the mean is added back to the reconstructed signal
öyU : U → R:

öyU = T
−1
U

¡
Υ
¡
TU
¡
z|U −mU (z)

¢¢¢
+mU (z) , (1.4)

where mU (z) =
1
|U |
P
x∈U z (x) is the mean of z on U .

Although this operation � which is termed �DC separation� � is not fully justi-
Þed from the approximation theory standpoint (because mU (z) is calculated from
the noisy data, and by subtracting it the noise in the coefficients is no longer white),
it produces visually superior results without affecting to the objective restoration
performance. The DC separation (together with a special compensation called
�∆DC correction�) are also considered in MPEG-4 [117].

1.4.3 Coefficient alignment

To further improve the efficiency of the SA-DCT, it has been proposed to align the
coefficients obtained after the Þrst 1-D transformation along the rows in such a
way as to maximize their vertical correlation before applying the second transform
along the columns. Different strategies, based on different models of the under-
lying signal y, have been suggested (e.g., [11], [2]). Although they can provide a
signiÞcant improvement when the data agrees with the assumed signal�s model, in
practice when dealing with real data only marginal improvement can be achieved
over the basic alignment used in [154, 156], where coefficients with the same index
m (i.e. all DC terms, all Þrst AC terms, etc.) are aligned in the same columns,
regardless of the length L of the current row.
In our implementation we use the following alignment formula, denoting by

m and m0 the old (i.e. the one coming from (1.2)) and new coefficient index,
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Figure 1.4: Comparison between the basic alignment m0 = m (top) and the alignment
m0 = bmLmax/Lc (bottom) in the forward SA-DCT transform (see Section 1.4.3).

respectively: m0 = bmLmax/Lc, where L is the length of the current row, m =
0, . . . , L − 1, Lmax is the length of the longest row in U , and the b·c brackets
indicate the rounding to the nearest integer smaller or equal to (·). Figure 1.4
provides a comparison between these two different ways to align the coefficients
after the Þrst 1-D transform.

An illustration of the SA-DCT-domain hard-thresholding, performed according
to (1.4) and to the above coefficient alignment formula is given in Figure 1.3.

1.4.4 Non-separability and column-row (CR) vs. row-column
(RC) processing

We note that even though the SA-DCT is implemented like a separable 2-D trans-
form, using cascaded 1-D transforms on columns and rows, in general it is not
separable, i.e. the corresponding 2-D basis elements1 cannot always be written as
the product of pairs of univariate functions (otherwise the support would necessar-
ily be rectangular). Thus, two possibly different sets of transform coefficients are
obtained when processing the considered region Þrst column-wise and then row-
wise (CR mode) or Þrst row-wise and then column-wise (RC mode). Similarly,
the basis elements and the transform coefficients for a region may differ from the
corresponding transposed basis elements and coefficients of the same region trans-
posed2. Experimental analysis has shown that the orientation of the shape does
have some impact on the efficiency of the SA-DCT and that, typically, slightly
sparser decompositions are achieved if the region is transformed processing along
its longest orientation Þrst. This fact had been already implicitly discussed in the
original paper by Sikora and Makai [156]. The orientation of the adaptive neigh-
borhood ÷U+x can be deduced easily from the adaptive scales {h+ (x, θk)}Kk=1 given
by the ICI; thus we use the scales to decide whether to apply the SA-DCT in RC
or CR mode. Clearly, the inverse SA-DCT has to be computed accordingly.

1A formal deÞnition of the SA-DCT basis elements is given by Eq. (1.12) in Section 1.5.3.
2 Illustrations of this phenomenon are presented in the Appendix A.2.
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Figure 1.5: From left to right: a detail of the noisy Cameraman showing an adaptive-
shape neighborhood �U+x determined by the Anisotropic LPA-ICI procedure, and the
image intensity corresponding to this region before and after hard-thresholding in SA-
DCT domain.

1.5 Pointwise SA-DCT denoising

We use the anisotropic adaptive neighborhoods ÷U+x deÞned by the LPA-ICI as
supports for the SA-DCT, as shown in Figure 1.5.
By demanding the local Þt of a polynomial model, we are able to avoid the pres-

ence of singularities or discontinuities within the transform support. In this way,
we ensure that data are represented sparsely in the transform domain, signiÞcantly
improving the effectiveness of thresholding.
Before we proceed further, it is worth mentioning that the proposed approach

can be interpreted as a special kind of local model selection which is adaptive with
respect both to the scale and to the order of the utilized model. Adaptivity with
respect to the scale is determined by the LPA-ICI, whereas the order-adaptivity is
achieved by hard-thresholding. �Shape-adapted� orthogonal polynomials are the
most obvious choice for the local transform, as they are more consistent with the
polynomial modeling used to determine its support. However, in practice, cosine
bases are known to be more adequate for the modeling of natural images. In
particular, when image processing applications are of concern, the use of compu-
tationally efficient transforms is paramount, and thus in this chapter we restrict
ourself to the low-complexity SA-DCT. �Shape-adapted� transforms (polynomial
as well as cosine) are the subject of Chapter 4. We refer the interested reader to
[54], where our approach is considered within the more general theoretical frame-
work of nonparametric regression.

1.5.1 Fast implementation of the anisotropic neighborhood

In practice, we do not need a variety of different shapes as broad as in the exam-
ples of Figures 1.2 and 1.5. A much simpliÞed neighborhood structure is used in
our implementation. Narrow one-dimensional �linewise� directional LPA kernels
{gh,θk}h∈H are used for K = 8 directions with scales H = {1, 2, 3, 5, 7, 9}. Fig-
ure 1.6 shows these kernels for θ1 = 0; the diagonal kernels {gh,θ2}h∈H , θ2 = π

4 ,
are made by slanting the corresponding horizontal kernels {gh,θ1}h∈H and the
kernels for all remaining six directions are obtained by repeated 90-degrees ro-
tations of these two sets. After the ICI-based selection of the adaptive-scales
{h+ (x, θk)}8k=1, the neighborhood U+x is the octagon constructed as the polygo-
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Figure 1.6: �Linewise�one-dimensional directional LPA kernels having scale and length
of support equal to h = 1, 2, 3, 5, 7, 9 pixels. The origin pixel is marked with a double
outline. Kernels for diagonal (e.g., 45 degrees) directions are obtained by slanting the
shown kernels; thus, with respect to the Euclidean metric, the diagonal kernels are

√
2

times longer than the corresponding non-diagonal ones.

nal hull of
©
supp gh+(x,θk),θk

ª8
k=1
. Such neighborhoods are shown in Figure 1.7.

The polygonal hull is realized very efficiently as a combination of precalculated tri-
angular binary stencils, each of which is associated to a pair of possible adaptive
scales, as illustrated in Figure 1.8. Although the supports obtained in this way
have relatively simple shapes when compared to the more general examples of Fig-
ure 1.2, we found that this is not a signiÞcant restriction. On the contrary, a more
regular boundary of the transform�s support is known to improve the efficiency of
the SA-DCT [12].
We note that in this particular implementation the value of the adaptive-scale

h+ (x, θk) coincides with the length (measured in pixels) of the directional window
in the direction θk (i.e. with the length of the support of the corresponding
directional kernel).
For the sake of notation clarity, we remind that the adaptive neighborhood

of x used as support for the SA-DCT is ÷U+x (with tilde), which is obtained from
the adaptive neighborhood U+x (without tilde) by translation and mirroring, as
deÞned in Section 1.3. In both symbols the subscript �x� denotes the point for
which the adaptive scales are obtained while the �+� is used to distinguish the
adaptive neighborhoods from the non-adaptive ones.

Orientation of the adaptive neighborhood and CR/RC processing

To determine the orientation of the adaptive neighborhood ÷U+x and hence decide
whether to apply the SA-DCT in RC or CR mode, we use the four adaptive scales
for the vertical and horizontal directions and test the following inequality:

h+ (x, θ1) + h
+ (x, θ5) > h

+ (x, θ3) + h
+ (x, θ7) . (1.5)

If this inequality is veriÞed, then the neighborhood is considered to be horizontally
oriented and the SA-DCT is applied in RC mode. If the inequality (1.5) is not
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Figure 1.7: Fast implementation of the LPA-ICI anisotropic neighborhoods.
�Linewise�one-dimensional directional LPA kernels are used for 8 directions. The
anisotropic neighborhood U+x is constructed as the polygonal hull of the adaptive-scale
kernels� supports (left). Thus, only the adaptive scales h+ are needed to construct the
neighborhood. Some examples of the anisotropic neighborhoods �U+x used for SA-DCT
Þltering of the noisy Cameraman image (right), σ=25. In our implementation we use
h ∈ H = {1, 2, 3, 5, 7, 9}.

Figure 1.8: The polygonal hull shown in Figure 1.7 is realized combining precal-
culated triangular stencils, each of which is associated to a pair of possible adap-
tive scales

!
h+(x, θk) , h

+
!
x, θk +

π
4

""
. Here, we show three sets (look-up tables) of

stencils corresponding to the pairs
!
h+(x, θ3) , h

+(x, θ4)
"
,
!
h+(x, θ2) , h

+(x, θ3)
"
, and!

h+(x, θ1) , h
+(x, θ2)

"
.

veriÞed, then the neighborhood is considered to be vertically oriented and the
transform is applied in CR mode.

1.5.2 Local estimates

For every point x ∈ X, we construct a local estimate öy �U+
x
: ÷U+x → R of the signal

y by thresholding in SA-DCT domain as in (1.4),

öy �U+
x
= T−1�U+

x

¡
Υx
¡
ϕz,x

¢¢
+m �U+

x
(z) , (1.6)
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where the transform-domain coefficients ϕz,x : V �U+
x
→ R are calculated as

ϕz,x = T �U+
x

³
z|�U+

x
−m �U+

x
(z)
´
, (1.7)

and Υx is a hard-thresholding operator with threshold

γthrσ

q
2 ln | ÷U+x |+ 1, (1.8)

γthr > 0 being a Þxed constant
3. This threshold is essentially Donoho�s �universal�

threshold [36, 112] and it increases with the size of the neighborhood. In hard-
thresholding, only the coefficients ϕz,x whose amplitude

¯̄
ϕz,x

¯̄
is larger than the

threshold (1.8) are kept, all other smaller coefficients are discarded and replaced
by zeros. The sparsity achieved thanks to the adaptive selection of the transform
support ensures that most of the energy of the original signal is carried by only
few noisy coefficients, which are kept after thresholding, and that the many dis-
carded coefficients contain mostly noise. In what follows, we approximate4 the
variance var

©
ϕz,x (·)

ª
of each transform coefficient as σ2. An estimate of the total

sample variance tsvar
©
öy �U+

x

ª
of öy �U+

x
is given as sum of variances of the transform

coefficients which are used for reconstruction. It has the form

tsvar
©
öy �U+

x

ª
= σ2

¡
1 +Nhar

x

¢
, (1.9)

where Nhar
x is the number of non-zero coefficients after thresholding (so-called

�number of harmonics�) and the unit addend accounts for the addition of the
mean after the inversion of the transform.

Since the anisotropic neighborhoods corresponding to nearby points are usually
overlapping, and since the SA-DCT is a complete system (basis) for an individual
support ÷U+x , the overall approach is obviously overcomplete.

1.5.3 Global estimate as aggregation of local estimates

In order to obtain a single global estimate öy : X → R deÞned on the whole image
domain, all the local estimates (1.6) are averaged together using adaptive weights
wx ∈ R in the following convex combination:

öy =

P
x∈X wxöy �U+

x

|XP
x∈X wxχ �U+

x

. (1.10)

It is a standard approach [37] to use weights wx that are inversely proportional
to the average sample variance5 of öy �U+

x
, asvar

©
öy �U+

x

ª
= tsvar

©
öy �U+

x

ª
/ | ÷U+x |. As

3The constant γthr is usually chosen to be smaller than 1; it is known that the resulting
threshold would be otherwise too large for practical applications (e.g., [112], [86]). In particular,
in all our denoising simulations we use γthr = 0.77.

4This is only an approximation because of the mean subtraction in (1.7), as discussed in
Section 1.4.2. Otherwise, without mean subtraction, the approximation would be an exact
equality (as observed in Section 1.4.1), since the noise in z|�U+x is i.i.d. and the SA-DCT T �U+x

is

orthonormal.
5Under much simplifying assumptions, such weights would correspond to a maximum-

likelihood solution. To see this, let us consider local estimates �y �U+x
, x ∈ Ωx0 =
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shown in [75] for the case of sliding 8×8 block DCT denoising, such a simple
weighting enables to attain the same performance achievable with much more
involved models of the blocks� statistics.
However, this simple approach is inadequate when instead of Þxed-size blocks

one is considering adaptive regions with arbitrary shape and size. In particular,
not only the size of the regions may vary, but also the number of overlapping
shapes may be different for different points. If the inverse of the average variances
are used as weights, it can be observed that when regions of signiÞcantly different
sizes overlap (this may happen along edges or transitions), then the local estimates
corresponding to larger regions will inevitably �submerge� the Þner details restored
by smaller regions.
Crucial compensation of these oversmoothing effects can be obtained by di-

viding the weights by the square of the size of the support, and we deÞne wx
as

wx =
tsvar

©
öy �U+

x

ª−1
| ÷U+x |

=
σ−2

(1 +Nhar
x ) | ÷U+x |

. (1.11)

Let us observe that in areas where the size of the adaptive neighborhood is nearly
constant (e.g., within smooth parts of the image) the weights (1.11) are inversely
proportional to the average and to the total sample variances of the corresponding
local estimates, wx ∝ tsvar

©
öy �U+

x

ª−1
. Thus, we can use the weights (1.11) for such

areas also.
The weights wx have this form because the total sample variance tsvar

©
öy �U+

x

ª
is obviously an upper bound for the pointwise residual-noise variance of the local
estimate öy �U+

x
(such pointwise variance is not necessarily uniform over ÷U+x ), while!

x ∈ X : x0 ∈ �U+x

"
, and assume that these estimates are unbiased and independent. Further,

we assume that the pointwise sample variance of �y �U+x
(x0) coincides with the average sample

variance of �y �U+x
over �U+x . Then, �y �U+x

(x0) ∼ N
#
y (x0) , asvar

$
�y �U+x

%&
and the log-likehood L is

L = ln
'

x∈Ωx0

#
2π asvar

$
�y �U+x

%&− 1
2
e

− 1

2 asvar

$
�y
�U
+
x

%!�y �U+x (x0)−y(x0)
"2
=

= −1
2

(
x∈Ωx0

1

asvar
$
�y �U+x

% #�y �U+x (x0)− y (x0)&2 + ln#2π asvar$�y �U+x %& .
By solving ∂L

∂y
= 0, we maximize L and obtain a maximum-likelihood estimate �yML (x0) of y (x0)

given the local estimates �y �U+x
, x ∈ Ωx0 :

0 =
(

x∈Ωx0

1

asvar
$
�y �U+x

% #�y �U+x (x0)− �yML (x0)
&
,

�yML (x0)
(

x∈Ωx0

1

asvar
$
�y �U+x

% = (
x∈Ωx0

1

asvar
$
�y �U+x

% �y �U+x (x0) ,

�yML (x0) =

)
x∈Ωx0

1

asvar
$
�y �U+x

% �y �U+x (x0))
x∈Ωx0

1

asvar
$
�y
�U
+
x

% .

The last expression is equivalent to (1.10), provided that the size | �U+x | is the same for all x ∈ Ωx0 .
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Figure 1.9: Aggregation in action. Details of a cross-section of length 31 pixels from the
Peppers image (σ=25): the dots show all the individual estimates which are aggregated
in order to obtained the Þnal estimates at each position. For each pixel there are about
200 individual estimates.

the extra factor | ÷U+x | addresses the correlation that exists between overlapping
neighborhoods (the number of overlapping neighborhoods is loosely proportional
to their size). Qualitatively speaking, these weights favour estimates which corre-
spond to sparser representations (fewer coefficients survived thresholding, and thus
lower variance) and at the same time avoid that estimates with a small support
(thus representing image details) are oversmoothed by other overlapping estimates
which have a large support (which usually are strongly correlated among them-
selves and outnumber estimates of a smaller support).

The stabilizing effect of the aggregation (1.10) is clearly depicted in Figure 1.9,
for a cross-section of the noisy Peppers image. One can observe that the individual
estimates are extremely volatile, and that the majority of them is not a particularly
good estimate of the true signal. Numerous outliers can be seen. Aggregation aims
at combining all these estimates in order to produce an �aggregated estimate�
which is not worse (in terms of estimation risk) than the best of them. However,
as it can be seen in the Þgure, the estimates öy �U+

x
are usually noisy and the averaging

effect involved in the aggregation yields a remarkable improvement of the accuracy.
In practice, one can observe that locally the aggregated estimate öy is signiÞcantly
better than any of the individual estimates öy �U+

x
that were aggregated.
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Interpretation as frames

Overall, we can interpret the collection of forward SA-DCT transforms on the
overlapping adaptive domains as a redundant frame, whose dual frame is realized
by the aggregation (1.10) (for a review of frame theory, see, e.g., [77], [43], [112]).
For simplicity, in the following explanation, we ignore the DC separation and only

consider the orthonormal SA-DCT transform applied on z|�U+
x
as T �U+

x

³
z|�U+

x

´
. More

precisely, for each x ∈ X, let us denote the SA-DCT basis functions deÞned on
÷U+x as ψ(i)�U+

x
: ÷U+x → R, where i ∈ V �U+

x
. These functions are deÞned implicitly by

the cascaded row-column structure of the SA-DCT and can be obtained explicitly
by inverse transformation of the standard basis {ei}ix∈V �U+x as

ψ
(i)
�U+
x
= T−1�U+

x

³
ei|V �U+x

´
, i ∈ V �U+

x
. (1.12)

Thus, for each x ∈ X we have a set Bx of functions supported on ÷U+x ,
Bx =

n
ψ
(i)
�U+
x

|X : X → R, i ∈ V �U+
x

o
.

The set Bx is a basis for
n
f ∈ L2 (X) : f (x) = 0 ∀x /∈ ÷U+x

o
. The collection B of

all these functions
B =

[
x∈X

Bx =
n
ψ(i)

o
i∈I

is a frame for the function space L2 (X). Here, all the functions of B are denoted by
ψ(i), i ∈ I. For any function f ∈ L2 (X), the standard analysis-synthesis equation
for frames is

f =
X

i

­
f, ψ(i)

®
ùψ
(i)
, (1.13)

where ùB =©ùψ(i)ª
i
is a dual frame of B. Because of redundancy (mainly due to the

overlapping of the supports ÷U+x , x ∈ X), the dual frame is not uniquely deÞned6
and there exist inÞnitely many choices for ùB such that (1.13) holds. In (1.10),
we exploit a particular choice of dual frame, deÞned by the data-adaptive weights
(1.11). The dual frame ùB can be easily expressed, by decomposing it in a number
of subcollections ùBx of functions supported on ÷U+x ,

ùB =
[
x∈X

÷Bx ÷Bx =
n
ùψ
(i)
�U+
x
: X → R, i ∈ V �U+

x

o
;

then, each dual function ùψ
(i)
�U+
x
is deÞned, from (1.10), as

ùψ
(i)
�U+
x
=

wxP
x∈X wxχ �U+

x

ψ
(i)
�U+
x

|X .

6The dual frame ùB is uniquely deÞned when B is a Riesz basis (i.e., a non-redundant frame
whose functions are all linearly independent).

In the general case, a dual frame {ùψ(i)}i can be obtained by ùψ = ψ
*
ψTψ

+�
, where ψ and ùψ

are the frame and dual-frame matrices, whose columns contain the frame functions ψ(i) and ùψ
(i)
,

respectively, and � denotes the pseudo-inverse. The matrix ψTψ =Ψ is the Gramian matrix,
formed by the inner products of the frame elements one against each other.
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We remark that, although ùB is a dual frame of B, in general, ÷Bx are not dual bases
of Bx (the dual basis of Bx is Bx itself, since it is orthonormal).

1.5.4 Wiener Þltering in SA-DCT domain

Using the same approach as for thresholding, we introduce an empirical Wiener
Þlter [69, 68] in the SA-DCT domain. It assumes that an estimate öy of y is known.
In practice, we can obtain this estimate using the above thresholding technique.
For every x ∈ X, let ϕ�y,x : V �U+

x
→ R be the SA-DCT (on ÷U+x ) coefficients of öy

where the mean m �U+
x
(z) of z is subtracted before applying the transform:

ϕ�y,x = T �U+
x

³
öy|�U+

x
−m �U+

x
(z)
´
. (1.14)

The local Wiener estimate öywi�U+
x
is deÞned as

öywi�U+
x
= T−1�U+

x

¡
ωxϕz,x

¢
+Nxm �U+

x
(z) , (1.15)

where the SA-DCT coefficients ϕz,x of z are calculated as in (1.7), and ωx ∈ V �U+
x

and Nx ∈ R are respectively the Wiener attenuation factors for ϕz,x and for the
subtracted mean value m �U+

x
(z),

ωx =
ϕ2�y,x

ϕ2�y,x + σ
2
, Nx =

m2
�U+
x
(öy)

m2
�U+
x
(öy) + σ2/ | ÷U+x |

. (1.16)

The global estimate öywi can be obtained analogously as in (1.10), using the convex
combination with the adaptive weights wwix :

öywi =

P
x∈X w

wi
x öy

wi
�U+
x

|XP
x∈X wwix χ �U+

x

, wwix =
σ−2

(N2
x+

P
V �U+x

ω2x)| ÷U+x |
. (1.17)

Similarly to (1.11), the term σ2
¡
N2
x +

P
V �U+x

ω2x
¢
in the adaptive weights corre-

sponds to an estimate of the total sample variance of öywi�U+
x
.

The Pointwise SA-DCT results which we present in this thesis correspond to
the öywi estimate (1.17), obtained using the thresholding estimate öy (1.10) as a
reference for the calculation of the Wiener attenuation factors ωx,Nx (1.16).
Some denoising examples are shown in Figures 1.10, 1.11, and 1.12. In partic-

ular, in Figure 1.12, we show the improvement of the empirical Wiener estimate
öywi (1.17) over the hard-thresholding estimate öy (1.10). In the same Þgure, we also
compare the empirical Wiener estimate öywi with an �oracle� Wiener estimate, ob-
tained in the ideal case where the original image y (which is unknown in practice)
is used in place of the estimate öy (1.10) in the deÞnition of the Wiener attenuation
factors ωx,Nx (1.14-1.16).
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Figure 1.10: A fragment of Lena. Clockwise, from top-left: original, noisy observation
(σ=25, PSNR=20.18dB), BLS-GSM estimate [138] (PSNR=31.69dB), and the proposed
Pointwise SA-DCT estimate (PSNR=31.66).
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Figure 1.11: A fragment of Cameraman. Clockwise, from top-left: original, noisy ob-
servation (σ=25, PSNR=20.14dB), BLS-GSM estimate [138] (PSNR=28.35dB), and the
proposed Pointwise SA-DCT estimate (PSNR=29.11dB).

1.6 Pointwise SA-DCT for deblocking and dering-
ing of block-DCT compressed images

The scope of the proposed Þltering method is not limited to denoising only, and
in this section we extend the above Pointwise SA-DCT denoising algorithm into a
high-quality image deringing and deblocking Þlter for B-DCT compressed images.

1.6.1 Motivation

The new wavelet-based JPEG-2000 [157] image compression standard solved many
of the drawbacks of its predecessor JPEG [171], which relies on the 8×8 B-DCT.
The use of a wavelet transform computed globally on the whole image, as opposed



1.6. Deblocking and deringing 21

↓ oracle Wiener . & empirical Wiener ↓

Figure 1.12: A fragment of Cameraman. Clockwise, from top-left: original y,
noisy observation z (σ=35, PSNR=17.22dB), hard-thresholding estimate �y (1.10)
(PSNR=27.20dB), empirical Wiener estimate �ywi (1.17) (PSNR=27.51dB), oracle Wiener
estimate (PSNR=30.18dB). The empirical Wiener estimate is obtained Þltering z using
�y, as from (1.14-1.16); the oracle Wiener estimate represents the ideal case where the
original image y (which is unknown in practice) is used in place of the estimate �y.

to the localized B-DCT, does not introduce any blocking artifacts and allows it
to achieve a very good image quality even at high compression rates. Unfortu-
nately, this new standard has received so far only very limited endorsement from
digital camera manufacturers and software developers. As a matter of fact, the
classic JPEG still dominates the consumer market and the near-totality of pictures
circulated on the internet is compressed using this old standard. Moreover, the
B-DCT is the workhorse on which even the latest MPEG video coding standards
rely upon. There are no convincing indicators suggesting that the current trend
is about to change any time soon. All these facts, together with the ever growing
consumer demand for high-quality imaging, makes the development of advanced
and efficient post-processing (deblocking, deringing, etc.) techniques still a very
actual and relevant application area.

1.6.2 Modeling

While more sophisticated models of B-DCT-domain quantization noise have been
proposed by many authors, we model this degradation as some additive noise.
Thus, we use the observation model z = y + η of Equation (1.1), where y is the
original (non-compressed) image, z its observation after quantization in B-DCT
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Figure 1.13: Agreement between the values of σ estimated by Equation (1.18) and the
best ones (found experimentally), which give the highest PSNR for the Þltered Lena,
Boats, and Peppers images.

domain, and η is noise with variance σ2. In order to apply the Pointwise SA-DCT
Þlter we need a suitable value for the variance σ2. We estimate it directly from
the quantization table Q= [qi,j ]i,j=1,...,8 using the following empirical formula:

σ2 = 0.69 · ¡.........q ¢1.3 , .........
q = 1

9

X3

i,j=1
qi,j . (1.18)

This formula uses only the mean value
.........
q of the nine table entries which corre-

spond to the lowest-frequency DCT harmonics (including the DC-term) and has
been experimentally veriÞed to be adequate for a wide range of different quanti-
zation tables and images. In Figure 1.13 we show how the values of σ calculated
by Equation (1.18) agree with the best values found experimentally for the Lena,
Boats, and Peppers images compressed with different quantization tables corre-
sponding to JPEG with quality Q=1,. . . ,100 (and thus

.........
q=1,. . . ,255). Note that

a higher compression (e.g., JPEG with small Q) corresponds to a larger value for
this variance (i.e. Q and

.........
q are inversely related). The standard-deviation σ is

not linear with respect to the qi,j �s, a fact which reßects the non-uniformity of the
distribution of the B-DCT coefficients.
Note that the σ2 which is calculated by (1.18) is not an estimate of the vari-

ance of compressed image, nor it is an estimate of the variance of the difference
between original and compressed images. Instead, it is simply the assumed value
for the variance of η in the observation model (1.1). Roughly speaking, it is the
variance of some hypothetical noise which, if added to the original image y, would
require � in order to be removed � the same level of adaptive smoothing which is
necessary to suppress the artifacts generated by the B-DCT quantization with the
table Q. Much larger or much smaller values of σ2 would respectively result in
oversmoothing or leave the compression artifacts unÞltered.
Figures 1.14 and 1.15 show fragments of the JPEG-compressed grayscale Cam-

eraman image obtained for two different compression levels (JPEG quality Q=6
and Q=15) and the corresponding Pointwise SA-DCT Þltered estimates. For these
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Figure 1.14: Details of the JPEG-compressed Cameraman (Q=6, bpp=0.19,
PSNR=25.03dB) and of the corresponding Pointwise SA-DCT estimate
(PSNR=26.11dB). The estimated standard deviation for this highly compressed
image is σ=17.6.

Figure 1.15: Details of the JPEG-compressed Cameraman (Q=15, bpp=0.37,
PSNR=27.71dB) and of the corresponding Pointwise SA-DCT estimate
(PSNR=28.58dB). The estimated standard deviation for this compressed image is
σ=9.7.

two cases the estimated standard-deviations are σ=17.6 and σ=9.7.
Let us observe that the procedure deÞned by (1.18) can be used in a straightfor-

ward manner, because the quantization tables are always (and necessarily) either
provided with the coded data, or Þxed in advance by the compression standard.
It allows to apply the Pointwise SA-DCT denoising algorithm of Section 1.5 as
an effective deblocking and deringing Þlter for B-DCT coded images and videos.
The proposed method is particularly relevant for video postprocessing, since it can
exploit the SA-DCT hardware of MPEG-4 decoders.
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1.7 Pointwise SA-DCT Þltering of color images
with structural constraint in luminance-chro-
minance space

The extension from grayscale to color images of our denoising and deblocking
approach is based on a very simple, yet powerful strategy. The key idea is the
following: the structures (e.g., objects, edges, details, etc.) which determine
the adaptive shapes are the same across all three color channels, thus the same
shapes should be used for the SA-DCT Þltering of the three channels. In order
to increase its effectiveness, the method is implemented after transformation in a
luminance-chrominance color-space. We call it structural constraint in luminance-
chrominance space and it fully exploits the shape-adaptive nature of our approach
without adding anything to its complexity.

1.7.1 Luminance-chrominance space

We generalize the observation model (1.1) to color data. Let y = [yR yG yB] be
the original color image in the RGB color space. We consider noisy observations
z = [zR zG zB] of the form

zC = yC + ηC , C = R,G,B, (1.19)

where the noise η = [ηR ηG ηB] is independent Gaussian, ηC (·) ∼ N ¡
0, σ2C

¢
,

C = R,G,B.
In order to deal with color images, we Þrst perform a color-space transforma-

tion, aiming at reducing the strong correlation between channels which is typical of
the RGB space. In particular, we consider the �opponent� and the YUV/YCbCr
color spaces [137]. Up to some normalization, the transformation to these color
spaces can be expressed by multiplication of a column vector with the R, G, and
B components against one of the matrices

Aopp =



1

3

1

3

1

3
1√
6

0
−1√
6

1

3
√
2

−√2
3

1

3
√
2

 , Ayuv =

 0.30 0.59 0.11

−0.17 −0.33 0.50

0.50 −0.42 −0.08

 .

Although purists may consider it an abuse of terminology, we call �luminance�
and �chrominances� not only the components the YUV space, but also those
of the opponent color space. We denote the luminance channel as Y , and the
chrominances as U and V .
In such luminance-chrominance decompositions, the original inter-channel cor-

relation of the RGB space is captured into the luminance channel, which thus
enjoys a better signal-to-noise ratio (SNR), whereas the chrominance channels
contain the differential information among the RGB channels.
We then come to the following observation model in luminance-chrominance

space,
zC = yC + ηC , C = Y,U, V, (1.20)
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RGB R G B

Opponent Y U V

YUV/YCbCr Y U V

Figure 1.16: Illustration of the structural correlation among the different color chan-
nels. R, G, and B channels of the original color Lena image, and the luminance and
chrominance channels of the same image for the opponent and YUV/YCbCr color trans-
formations. It can be clearly seen that discontinuities and sharp transitions appear in all
the nine channels at the same spatial locations.

where [zY zU zV ] = [zR zG zB]A
T , [yY yU yV ] = [yR yG yB]A

T , and ηC (·) ∼
N ¡0, σ2C¢, C = Y,U, V .
Ideally, the Y , U , and V channels are considered as independent. Therefore,

the common approach for color denoising in luminance-chrominance space is to
Þlter the three channels (i.e. zY , zU , and zV ) separately and independently one
from the other.

However, when considering natural images, the different color channels always
share some common features which are inherited from the structures and from the
objects depicted in the original image. In particular, it can be observed that along
the objects� boundaries all color channels usually exhibit some simultaneous dis-
continuities or sharp transitions. Figure 1.16 illustrates this fact for the Lena color
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image, showing nine different channels for the RGB, opponent, and YUV/YCbCr
color spaces.
We exploit this kind of structural correlation by imposing that the three trans-

form�s supports which are used for the Þltering of zY , zU , and zV at a particular
location have the same adaptive shape. In practice, we use for all three channels
the adaptive neighborhoods deÞned by the Anisotropic LPA-ICI for the luminance
channel.
Such a constraint has the effect that whenever some structure is detected (in

the luminance channel by the LPA-ICI), it is taken into account (and thus pre-
served) for the Þltering of all three channels. Restricted to the adaptive supports,
however, the channels are assumed as independent, and thus the transform-domain
hard-thresholding and Wiener Þltering are still performed for each channel inde-
pendently from the others.
After the Þltering of the three channels, inverse color-transformation returns

the estimate of the original image y in the RGB space.

1.7.2 Pointwise SA-DCT denoising in luminance-chrominan-
ce space

The noise variances for the Y , U , and V channels can be calculated as the elements
of the vector [σ2Y σ2U σ2V ] = [σ2R σ2G σ2B]A

T2, where σ2R, σ
2
G, and σ

2
B are the

noise variances for the R, G, and B channels and AT2 is the transposed color
transformation matrix with all elements squared. For denoising, the opponent
color transformation is preferable because of the orthogonality of the rows ofAopp .
The better SNR of the luminance and its higher �information content� are the

two main reasons why it is in this channel that we look for structures. There
are also other reasons. In natural images it often happens that uniformly colored
objects present luminance variations due to non-uniform illumination or shadow-
ing: such transitions cannot be detected from the chrominances. On the other
hand, it is quite rare that abrupt changes appear in the chrominances and not in
the luminance. Therefore, it is sufficient to perform the LPA-ICI adaptive-scale
selection on the luminance channel only.
An example of Pointwise SA-DCT denoising with structural constraint in the

opponent color space is shown in Figure 1.17.

1.7.3 Deblocking and deringing of B-DCT compressed color
images

The proposed strategy for color image Þltering is also particularly effective for
deblocking and deringing color images.
When compressing color images or video, the standard approach (e.g., in the

JPEG and MPEG), is to Þrst perform the YUV color transformation and then
compress the resulting three channels separately. According to the modeling in
the previous sections, we assume that the original (non-compressed) image y in
the RGB color space is represented, after B-DCT quantization in YUV space, as
the zC in the observation model (1.20), where yY , yU and yV are the luminance
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Figure 1.17: Fragments of the original F-16 image (top-left), of its noisy observation
(σ=30, PSNR=18.59dB) (top-right) and of two denoised estimates: our Pointwise SA-
DCT estimate (bottom-left), and the ProbShrink-MB [136] estimate (bottom-right). The
PSNR for the two estimates is 31.59dB and 30.50dB, respectively.

and chrominance channels of y, and zY , zU and zV are the corresponding channels
after quantization in B-DCT domain.
We estimate the variances σ2Y , σ

2
U , and σ

2
V of ηC , C = Y,U, V , from the corre-

sponding quantization tables for the luminance and chrominance channels, using
formula (1.18). However, if (as it is commonly done) the chrominance channels
are downsampled, then the estimated variances for the chrominances need to be
further multiplied by 2, in order to account for the coarser sampling.
Usually, the quantization tables Q U and Q V used for the two chrominances

coincide, Q U = Q V = Q UV . Following standard models of the human visual
system, a higher compression is typically performed on the chrominances than on
the luminance. Thus, it is typical that the estimated variances are such that 2σ2Y <
σ2U = σ

2
V . Even at relatively high bit-rates, the compression of the chrominance
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Figure 1.18: Fragments of the JPEG-compressed (Q=10, 0.25bpp, PSNR=26.87dB),
and restored F-16 color image (PSNR=28.30dB) using the proposed Pointwise SA-DCT
deblocking Þlter in luminance-chrominance space.

Y

U

V

−→

−→

−→

Figure 1.19: The adaptive anisotropic neighborhoods are selected by the LPA-ICI on the
luminance channel (left-top). Observe that the neighborhoods are not affected by the
blocking artifacts and yet are quite accurate with respect to the image features. These
neighborhoods are used for SA-DCT Þltering of the luminance as well as of the two
chrominances (left-middle and left-bottom). The result of such Þltering is shown in the
right column. The color estimate obtained after inverse YUV color-transformation is
shown in Figure 1.18.
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channels can be quite aggressive.
As for color image denoising, we approach color data in a channel-by-channel

manner imposing a unique structural constraint among the three channels. This
allows to Þlter the chrominance channels restoring the structural information which
was lost due to quantization and coarse sampling. The peculiarity of our approach
is easily explained and demonstrated through the next example.
Figures 1.18 and 1.19 present a very common scenario. It can be seen that

only very few AC-terms of the chrominance blocks survive to quantization, and the
resulting chrominance channels end up with the vast majority of blocks represented
by the DC-term only. It results in unpleasant color-bleeding artifacts along edges
between differently colored objects. At the same time, on smoother areas the
uneven hue due to quantization becomes particularly noticeable. In this example,
the values of σY and σU = σV calculated according to formula (1.18) are 12.6 and
27.1, respectively.
As shown in Figure 1.19(left), we use for all three channels the adaptive neigh-

borhoods deÞned by the Anisotropic LPA-ICI for the Y channel, because it is
in the luminance that the structural information is usually better preserved after
compression.
Figure 1.19(right) shows that the proposed method effectively attenuates ring-

ing and blocking artifacts, faithfully preserving the structures and the salient fea-
ture in the image. Moreover, it demonstrates its ability of reconstructing the
missing structural information in the chrominance channels, where the details of
the tail of the plane are clearly revealed, with precise boundaries. The obtained
color estimate, shown in Figure 1.18(right), is then quite sharp, with well-deÞned
edges, and the color-bleeding artifacts (clearly visible in the JPEG-compressed
image) are accurately corrected.

1.8 Experiments and results
We conclude the chapter with a number of experimental results and comparisons
which demonstrate the state-of-the-art performance of the developed algorithms.
These experiments have been produced and can be replicated using the Matlab
implementation of the Pointwise SA-DCT algorithms, publicly available online at
http://www.cs.tut.fi/~foi/SA-DCT/ . We refer the interested reader to this soft-
ware for additional details about the implementation and its speciÞc parameters.

1.8.1 Grayscale denoising

Let us start with Þltering of grayscale images corrupted by additive Gaussian
white noise. In Table 1.1 we compare our results against those reported for other
methods. In terms of PSNR, the results of the Pointwise SA-DCT estimates are
high, often outperforming all other methods by other authors7. Additional results
are given in Table 1.2 for more images and levels of noise. PSNR and MSE results
which are consistent with those in Table 1.1 are reported in the DenoiseLab package

7The Block-Matching 3-D (BM3D) Þltering [32] is a newer technique of which the author of
this thesis is a co-author. At the time of writing and to the best of the authors� knowledge, the
BM3D appears as the best performing image denoising algorithm in the open literature.
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Lena 512×512 Boats 512×512
Method σ 15 20 25 15 20 25

BM3D (Dabov et al.) [32] 34.27 33.05 32.08 32.14 30.88 29.91
Pointwise SA-DCT 33.86 32.62 31.66 31.79 30.49 29.47
BLS-GSM (Portilla et al.) [138] 33.90 32.66 31.69 31.70 30.38 29.37
K-SVD (Elad & Aharon) [38] 33.70 32.38 31.32 31.73 30.36 29.28
Patch-based (Kervrann & Boulanger) [98] 33.70 32.64 31.73 31.44 30.12 29.20
TLS (Hirakawa & Parks) [78] 33.97 32.69 31.69 31.59 30.25 29.21
MGGD (Cho & Bui) [20] 33.70 32.46 31.48 31.46 30.14 29.12
Local bi-shrink, CWT (Şendur&Selesnick)[151] 33.64 32.37 31.37 31.33 30.05 29.03
SI-adaptShr, SI Symm. (Chang et al.) [16] 33.37 32.09 31.07 � � �
Recursive Anis. LPA-ICI (Foi et al.) [55, 62] 32.72 31.44 30.43 30.87 29.58 28.58

Peppers 256×256 House 256×256
σ 15 20 25 15 20 25

BM3D (Dabov et al.) [32] 32.70 31.29 30.16 34.94 33.77 32.86
Pointwise SA-DCT 32.44 31.04 29.92 34.14 32.92 31.92
BLS-GSM (Portilla et al.) [138] 31.74 30.31 29.21 33.63 32.39 31.40
K-SVD (Elad & Aharon) [38] 32.22 30.82 29.73 34.32 33.20 32.15
Patch-based (Kervrann & Boulanger) [98] 32.13 30.59 29.73 34.08 32.90 32.22
TLS (Hirakawa & Parks) [78] 31.61 30.21 29.06 33.82 32.58 31.60
Recursive Anis. LPA-ICI (Foi et al.) [55, 62] 31.78 30.30 29.16 33.18 31.82 30.73

Table 1.1: PSNR (dB) comparison table for the denoising of the grayscale Lena, Boats,
Peppers, and House test images with different levels of Gaussian noise. Results for
Peppers and House were not reported in [20], [151], and [16]. The results for Boats were
not reported in [16].

Figure 1.20: Fragments of the Pointwise SA-DCT estimates of the Boats, Peppers, and
House images, σ=25.

[104], where the Pointwise SA-DCT is among the benchmark algorithms used for
evaluating other denoising algorithms over a standard image database.
We emphasize the outstanding preservation of sharp details which we demon-

strate in Figures 1.10, 1.11, 1.12, and 1.20, while almost no visible artifacts are
present. Other transform-based estimates, such as those from [138], often dis-
play noticeable overshooting on the edges and unpleasant spurious oscillations.
These artifacts, which are characteristic of all oscillatory transforms (including
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Lena Boats House Peppers C�man Barbara Hill Lake
σ 512x512 512x512 256x256 256x256 256x256 512x512 512x512 512x512

5 38.54 37.14 39.38 37.99 38.15 37.47 37.03 36.61
10 35.58 33.63 35.98 34.46 33.98 33.48 33.43 32.81
15 33.86 31.79 34.14 32.44 31.70 31.37 31.60 30.98
20 32.62 30.49 32.92 31.04 30.18 29.99 30.39 29.74
25 31.66 29.47 31.92 29.92 29.11 28.94 29.50 28.79
30 30.86 28.64 31.10 29.03 28.24 28.09 28.80 28.01
35 30.17 27.93 30.39 28.26 27.51 27.35 28.22 27.35
50 28.60 26.26 28.67 26.55 25.88 25.44 26.85 25.83
75 26.76 24.62 26.58 24.57 23.89 23.51 25.44 24.14
100 25.50 23.52 25.07 23.15 22.49 22.49 24.47 22.96

Table 1.2: Grayscale image denoising performance as PSNR (dB) for the proposed Point-
wise SA-DCT algorithm.

σ Lena Peppers Baboon House F-16 Lake

10 34.95 33.70 30.62 35.67 36.41 32.34
15 33.58 32.42 28.33 34.09 34.67 30.52
20 32.61 31.57 26.89 32.97 33.41 29.40
25 31.85 30.90 25.86 32.12 32.42 28.58
30 31.21 30.33 25.07 31.39 31.59 27.93
35 30.65 29.81 24.44 30.74 30.88 27.38
50 29.27 28.53 23.03 29.13 29.19 26.10
75 27.77 27.07 21.46 27.39 27.43 24.68

Table 1.3: Color image denoising performance as PSNR (dB) for the proposed Pointwise
SA-DCT algorithm.

the SA-DCT), do not appear in our estimates thanks to the adaptive selection
of the transform support. Further comments and results on grayscale denoising
are given in Section 1.8.4, where we concentrate on the perceptual quality of the
Pointwise SA-DCT estimates.

1.8.2 Color denoising

For the color denoising experiments, the variance of the additive Gaussian noise is
set to be the same for all RGB color channels, σ2R = σ

2
G = σ

2
B = σ

2. Filtering is
performed after transformation to the opponent color space. Table 1.3 gives the
PSNR results for the denoising of the Lena, Peppers, Baboon, House, F-16, and
Lake color test-images over a wide range of values of σ.
In Table 1.4 we compare our results against those by other state-of-the-art

methods, as reported in [136] and [33]. In particular, the vector-based minimum-
mean-squared-error estimator (VMMSE) [147], the multiband wavelet threshold-
ing (MBT) [146], the ProbShrink-multiband wavelet algorithm [136], and the Color
Block-Matching 3-D Þltering algorithm (C-BM3D) [33] (see footnote 7 on page 29)
are considered for comparison.
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Color Lena 512×512
Method σ 10 15 20 25

C-BM3D (Dabov et al.) [33] 35.22 33.94 33.02 32.27
Pointwise SA-DCT 34.95 33.58 32.61 31.85
ProbShrink-MB (Pizurica et al.) [136] 34.60 33.03 31.92 31.04
VMMSE (Scheunders and Driesen) [147] 34.02 31.89 30.24 28.88
MBT (Scheunders) [146] 33.84 32.29 31.14 30.15

Color Peppers 512×512
Method σ 10 15 20 25

C-BM3D (Dabov et al.) [33] 33.78 32.60 31.83 31.20
Pointwise SA-DCT 33.70 32.42 31.57 30.90
ProbShrink-MB (Pizurica et al.) [136] 33.44 32.05 31.12 30.35
VMMSE (Scheunders and Driesen) [147] 33.12 31.13 29.67 28.45
MBT (Scheunders) [146] 31.19 30.22 29.45 28.77

Color Baboon 512×512
Method σ 10 15 20 25

C-BM3D (Dabov et al.) [33] 30.64 28.39 26.97 25.95
Pointwise SA-DCT 30.62 28.33 26.89 25.86
ProbShrink-MB (Pizurica et al.) [136] 30.17 27.83 26.38 25.27
VMMSE (Scheunders and Driesen) [147] 30.68 28.24 26.63 25.36
MBT (Scheunders) [146] 28.50 26.78 25.53 24.56

Table 1.4: PSNR (dB) comparison table for the denoising of the Lena, Peppers, and
Baboon color test images with different levels of Gaussian noise.

Let us note that, with the exception of the C-BM3D, the reference meth-
ods which are included in the Table 1.4 are multiband or vector methods, which
are speciÞcally designed for the denoising of color or multispectral images. Such
algorithms simultaneously Þlter all channels, exploiting the possible inter-channel
correlation, and are thus inherently superior to the simpler strategy where a scalar
(grayscale) denoising Þlter is used independently for each separate channel. The C-
BM3D adopts a structural constraint in luminance-chrominance space, mimicking
the approach originally proposed for the Pointwise SA-DCT.

We remark that although in our approach the adaptive supports for the SA-
DCT at a particular location are the same for all three channels, the SA-DCT-
domain Þltering is performed for each channel independently. Nevertheless, our
results are very competitive and the comparison table shows that in fact the pro-
posed technique outperforms all other reference methods by other authors.

Similarly to the grayscale case, the denoised color estimates produced by our
adaptive algorithm are visually very good. A close inspection to Figures 1.17
and 1.21 may reveal the outstanding preservation of sharp details achieved by the
shape-adaptive transform. At the same time, almost no visible artifacts (such as
blurriness or overshooting) are present. The PSNR difference (0.1 � 0.4 dB) of the
C-BM3D algorithm over the Pointwise SA-DCT is consistent with the difference
between the grayscale versions of these two methods.
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Figure 1.21: Fragments from the noisy (σ=25, PSNR=20.18dB) and denoised color Pep-
pers image (PSNR=30.90dB), obtained using the proposed Pointwise SA-DCT algorithm.
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Q1 =



50 60 70 70 90 120 255 255
60 60 70 96 130 255 255 255
70 70 80 120 200 255 255 255
70 96 120 145 255 255 255 255
90 130 200 255 255 255 255 255
120 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255



Q2 =



86 59 54 86 129 216 255 255
64 64 75 102 140 255 255 255
75 70 86 129 216 255 255 255
75 91 118 156 255 255 255 255
97 118 199 255 255 255 255 255
129 189 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255



Q3 =



110 130 150 192 255 255 255 255
130 150 192 255 255 255 255 255
150 192 255 255 255 255 255 255
192 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255


Table 1.5: The three B-DCT quantization tables Q1, Q2, Q3 [109].

1.8.3 Deblocking and deringing

In order to assess the Þltering performance of the proposed deblocking and dering-
ing method, extensive simulation experiments were performed for different types
of quantization tables, several level of compression, and for grayscale as well as
for color images. We reproduce the same experimental settings used by other
authors and we present comparative numerical results collected in three separate
tables. The Þrst two tables contain results for grayscale images obtained using
three particular quantization tables found in the literature (Table 1.6) and using
the standard JPEG (Table 1.7). The third and last table is dedicated to experi-
ments with JPEG compression of color images.
Three quantization tables, usually denoted as Q1, Q2, and Q3, have been used

by many authors (e.g., [109] and references therein) in order to simulate various
types of B-DCT compression. These three quantization tables are shown Table
1.5. The values of the standard deviation σ corresponding to these three tables
� calculated using formula (1.18) � are 12.62, 13.21, and 22.73, respectively. In
terms of image degradation, they correspond to a medium to high compression
level, similar to what can be obtained by using JPEG with quality Q=11, Q=9,
and Q=5, respectively.
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Lena 512×512 Peppers 512×512 Barbara 512×512
Table image others P.SA-DCT image others P.SA-DCT image others P.SA-DCT

Q1 30.70 31.63 32.12 30.42 31.33 32.02 25.94 26.64 26.79
Q2 30.09 31.19 31.56 29.82 30.97 31.45 25.59 26.32 26.45
Q3 27.38 28.65 29.03 27.22 28.55 29.13 24.03 24.73 25.13

Table 1.6: PSNR (dB) comparison table for restoration from B-DCT quantization for
three different quantization matrices. The values under �others� correspond to the best
results of any of the methods [109, 79, 116, 127, 179, 177], as reported in [109].

Lena 512×512
Qual. JPEG (bpp) others P. SA-DCT

4 26.46 (0.11) 27.63 28.08
6 28.24 (0.15) 29.22 29.87
8 29.47 (0.18) 30.37 30.99
10 30.41 (0.22) 31.17 31.84
12 31.09 (0.25) 31.79 32.48

Barbara 512×512
Qual. JPEG (bpp) others P. SA-DCT

4 23.48 (0.14) 24.13 24.65
6 24.50 (0.18) 25.08 25.51
8 25.19 (0.23) 25.71 26.11
10 25.79 (0.28) 26.27 26.61
12 26.33 (0.32) 26.81 27.10

�Green Peppers�8 512×512
Qual. JPEG (bpp) others P. SA-DCT
4 25.61 (0.14) 26.72 27.41
6 27.32 (0.18) 28.22 28.97
8 28.40 (0.22) 29.28 29.90
10 29.16 (0.25) 29.94 30.51
12 29.78 (0.28) 30.47 31.00

Table 1.7: PSNR (dB) comparison table for restoration from JPEG compression of
grayscale images. The values under �others� correspond to the best result obtained
by any of the methods [6, 19, 144, 178, 114, 116], as reported in [6].

In Table 1.6 we present results for deblocking from B-DCT quantization per-
formed using these speciÞc quantization tables. We compare the results obtained
by our SA-DCT algorithm against the best results obtained by any of the methods
[109, 79, 116, 127, 179, 177], as reported in [109]. The results are in favor of our
proposed technique, which consistently outperforms all other methods.
Further positive results are shown in Table 1.7 for the case of deblocking from

JPEG-compression. In this second table we compare against the best result ob-
tained by any of the methods [6, 19, 144, 178, 114, 116], as reported in [6]. Also
in this comparison, the SA-DCT method is found to be superior to all other tech-

8 In order to replicate the experiments as in [6], the �Peppers� image used for Table 1.7 is
the green channel of the RGB color Peppers. Let us note, however, that far more often in the
literature the grayscale Peppers are found as the luminance channel Y of the RGB Peppers
image.
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Color Lena 512×512 Color Peppers 512×512
Qual. JPEG (bpp) P. SA-DCT ISNR JPEG (bpp) P. SA-DCT ISNR

4 23.34 (0.12) 24.79 1.45 22.32 (0.13) 23.77 1.46
6 25.52 (0.16) 27.09 1.57 23.99 (0.17) 25.54 1.54
8 26.64 (0.19) 28.16 1.52 24.99 (0.21) 26.40 1.41
10 27.53 (0.23) 29.06 1.53 25.77 (0.25) 27.11 1.34
15 28.97 (0.31) 30.33 1.35 26.88 (0.33) 27.99 1.11
20 29.83 (0.38) 31.00 1.17 27.57 (0.40) 28.53 0.96
25 30.44 (0.44) 31.46 1.02 28.04 (0.47) 28.90 0.86
30 30.91 (0.50) 31.79 0.88 28.40 (0.54) 29.14 0.74
40 31.54 (0.61) 32.26 0.72 28.83 (0.66) 29.45 0.62
50 32.02 (0.72) 32.63 0.61 29.25 (0.78) 29.81 0.56
75 33.21 (1.13) 33.56 0.35 30.29 (1.23) 30.67 0.52

Color Baboon 512×512 Color House 256×256
Qual. JPEG (bpp) P. SA-DCT ISNR JPEG (bpp) P. SA-DCT ISNR

4 19.28 (0.17) 20.00 0.72 22.63 (0.15) 23.76 1.13
6 20.38 (0.26) 21.05 0.67 24.41 (0.19) 25.66 1.24
8 21.12 (0.35) 21.71 0.59 25.16 (0.24) 26.41 1.25
10 21.63 (0.43) 22.13 0.50 26.25 (0.27) 27.54 1.29
15 22.49 (0.62) 22.88 0.38 27.52 (0.34) 28.66 1.14
20 23.07 (0.77) 23.37 0.31 27.87 (0.41) 28.75 0.88
25 23.50 (0.92) 23.75 0.25 28.55 (0.47) 29.44 0.89
30 23.85 (1.05) 24.06 0.21 28.96 (0.54) 29.76 0.80
40 24.40 (1.29) 24.56 0.16 29.51 (0.65) 30.20 0.69
50 24.85 (1.51) 24.97 0.12 29.80 (0.76) 30.40 0.60
75 26.21 (2.33) 26.25 0.04 31.44 (1.18) 32.00 0.56

Table 1.8: PSNR (dB) results for the Pointwise SA-DCT Þltering of JPEG-compressed
color images. Results are given also in terms of improvement-in-SNR (ISNR, dB).

niques, outperforming them of about 0.5 dB in all experiments.
In Table 1.8 we show results for the SA-DCT Þltering of JPEG-compressed

color images, from very high (Q=4) to very low (Q=75) compression levels. It can
be seen that the improvement is signiÞcant especially for very high and moderate
compression levels. For very low compression levels (for which the compression
artifacts are barely visible and thus there is typically no need for postprocessing)
the improvement is still substantial for those images which present some structures
or edges.
For the simulations in Table 1.7 and Table 1.8 as well as for all JPEG ex-

periments presented in this thesis, we use the baseline IJG JPEG implementation
[83]. Table 1.9 gives the standard JPEG quantization tables for the luminance and
chrominance channels for a JPEG-quality parameter Q=50. The corresponding es-
timated standard-deviations according to (1.18) are σY = 4.4 and σU = σV = 9.7.
We conclude with two examples which highlight the very special reconstruction

ability enabled by our structural constraint in luminance-chrominance space.
Figure 1.22(left) shows a fragment of the JPEG compressed Lena image (Q=20,

0.38 bpp, PSNR=29.83 dB). The corresponding U and V chrominance channels
are shown in Figure 1.23. One can barely recognize the salient features of the
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QY
Q=50 =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99



QUV
Q=50 =



17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99


Table 1.9: Standard JPEG quantization tables for the luminance and chrominance chan-
nels with JPEG-quality parameter Q=50.

image, such as the border of the hat or the contours of the eyes and nose. These
structures can be faithfully restored by the use of adaptive-shape supports which
are determined from the luminance channel, as shown in Figure 1.24. It is remark-
able that even small details such as the iris can be accurately reconstructed from
the coarse available information using adaptive transform�s supports. The restored
color image (PSNR=31.00 dB) is shown in Figure 1.22(right). The ringing and
the blocking artifacts disappeared, whereas no details have been oversmoothed,
demonstrating the superior adaptivity of the approach. Moreover, thanks to the
accurate reconstruction of the structures in the chrominance channels, our estimate
does not exhibit any signiÞcant chromatic distortion and has a natural appearance.
Although it is well-established that the human visual system is less sensitive

to distortions in the chrominances than to those in the luminance, the importance
of restoring the chrominances must not be overlooked. In fact, all modern image
and video compression standards are designed to exploit the characteristics of the
human visual system, and thus adjust the compression rate for the luminance and
chrominance channels in such a way to balance the perceptual impact of the distor-
tions among the three channels. Therefore, when visual quality is of concern, the
restoration of the different channels deserves equal attention. The downsampling
and the coarser quantization of the chrominances makes their accurate restoration
a much more difficult and challenging task.
Figure 1.25 provides a Þnal example of the accuracy of the proposed method.

First, one can see the sharp reconstruction of contours (e.g., in the legs, shoulders
and head). Color-bleeding and blocking artifacts are completely suppressed, not
only on smooth regions but even on rather thin details such as the snorkel. Second,
the Þgure shows that the method is still reliable even when no useful structural
information can be extracted from the luminance channel. In particular, it can
be seen that the swimsuit is composed of three differently colored patches, all
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Figure 1.22: Fragment of the JPEG-compressed Lena image (Q=20, 0.38bpp,
PSNR=29.83dB) and of its Pointwise SA-DCT Þltered estimate (PSNR=31.00dB).

Figure 1.23: The U and V chrominances of the JPEG-compressed Lena image shown in
Figure 1.22(left). Only very few DCT harmonics survived the aggressive quantization,
and the structural information is almost completely lost.

Figure 1.24: The chrominances shown in Figure 1.23 after reconstruction by Pointwise
SA-DCT Þltering. The blockiness is removed and the structures are faithfully restored.
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Figure 1.25: Fragments of the original, compressed, and restored Kodak image 12. Top
to bottom row: RGB color, luminance Y channel, chrominance V channel. From left to
right: original image, JPEG-compressed (Q=16, 0.25bpp, PSNR=30.45dB), restored by
proposed Pointwise SA-DCT method (PSNR=31.45dB).

of which have the same luminance. This makes impossible to reconstruct the
boundaries between these patches in a very sharp manner, as the only information
available lies in the chrominances. Nevertheless, because the SA-DCT is a basis
(complete system), the different colors of these patches are well preserved, while
the transform-domain thresholding effectively suppresses the blockiness.
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Lena 512×512
Method σ 15 20 25

Pointwise SA-DCT 33.86 0.891 32.62 0.872 31.66 0.855
BLS-GSM (Portilla et al.) [138] 33.90 0.888 32.66 0.869 31.69 0.851
TLS (Hirakawa & Parks) [78] 33.97 0.891 32.69 0.872 31.69 0.855

Cameraman 256×256
σ 15 20 25

Pointwise SA-DCT 31.70 0.902 30.18 0.875 29.11 0.852
BLS-GSM (Portilla et al.) [138] 30.91 0.872 29.43 0.838 28.35 0.809
TLS (Hirakawa & Parks) [78] 30.96 0.882 29.47 0.853 28.39 0.830

Barbara 512×512
σ 15 20 25

Pointwise SA-DCT 31.37 0.910 30.00 0.886 28.94 0.862
BLS-GSM (Portilla et al.) [138] 31.90 0.901 30.35 0.871 29.37 0.842
TLS (Hirakawa & Parks) [78] 32.55 0.912 31.06 0.889 29.89 0.866

Table 1.10: PSNR (dB, in regular type) and SSIM index [172] (in italic type) comparison
table for the denoising of the grayscale Lena, Cameraman, and Barbara test images with
different levels of Gaussian noise. Observe that there is no consistency between the PSNR
and SSIM for the Barbara image.

1.8.4 Subjective perceptual quality

Although the presented Þgures already show that the Pointwise SA-DCT estimates
are visually very good, we wish to mention that an independent research has
been conducted [166, 167], aiming at evaluating the perceptual quality of the
estimates of many state-of-the-art denoising methods. The research was based on
an extensive psychovisual experiment where several noisy images were denoised
by various algorithms and then subjectively judged by a large group of observers.
Aspects such as blurriness, noisiness, presence of artifacts, etc., were investigated.
Our Pointwise SA-DCT algorithm was among the considered denoising algorithms,
which included many state-of-the-art methods such as BLS-GSM [138], BiShrink
[150], ProbShrink [136], and a preliminary version of our BM3D [30]. The analysis
of the results of this experimental research attests that the Pointwise SA-DCT
estimates clearly outperformed in terms of overall subjective quality all estimates
produced by techniques of other authors. Only the BM3D [30] estimates were
judged better than the those obtained by the Pointwise SA-DCT algorithm.

In [167], it is shown that even in those cases where in terms of PSNR the
Pointwise SA-DCT estimate might be inferior to the BLS-GSM estimate [138],
thanks to the absence of artifacts and the better preservation of details the Point-
wise SA-DCT estimate still provides a signiÞcantly superior visual quality. Here,
we give some examples of this fact using the Structural Similarity (SSIM) index
[172] as a reference-based measure of perceptual quality. The SSIM, though sim-
ple, is rather popular and has been demonstrated to be well correlated with the
perceptual quality assessed by human observers over a large database of degraded
images [152]. The SSIM index is a number in the interval (0, 1], where a larger
number corresponds to a higher quality and the value 1 represents the ideal per-
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Figure 1.26: A fragment of Barbara : original image, BLS-GSM estimate (PSNR=30.35dB
SSIM=0.871), TLS estimate (PSNR=31.06dB SSIM=0.889), Pointwise SA-DCT esti-
mate (PSNR=30.00dB SSIM=0.886), and some of the anisotropic neighborhoods �U+x
used by the Pointwise SA-DCT. All estimates have been obtained from the same noisy
image with σ=20, shown beneath the adaptive neighborhoods.

fect quality9. In Table 1.10 we compare the PSNR and SSIM results obtained by
the Pointwise SA-DCT, BLS-GSM [138], and TLS [78] algorithms for denoising
the Lena, Cameraman, and Barbara test images with different levels of Gaussian
noise. As the table shows, for the Barbara image there is no consistency between
the PSNR and SSIM and the PSNR differences of 1dB or more between the Point-
wise SA-DCT and the TLS estimates does not correspond to a concrete difference
in quality, as both methods obtain for this image essentially the same SSIM index.
The BLS-GSM, which achieves higher PSNR than the SA-DCT on the Lena image
and, especially, on the Barbara image, has instead always a lower SSIM. Figure
1.26 shows a detail of the denoised Barbara for these three methods.
The Pointwise SA-DCT estimate of Barbara has a lower PSNR because this im-

age is dominated by a high-frequency regular texture of large amplitude (trousers
and scarf). Usually, high-frequency textures of small or moderate amplitude are
not detected as singularities by the LPA-ICI. However, in this case the large black-
white variations are so tall that the Anisotropic LPA-ICI detects them as edges,
and thus selects small scales (i.e. short kernel supports). As a result, the SA-DCT
is applied on narrow supports. This can be clearly seen in the rightmost subimage
in Figure 1.26, which shows some of the anisotropic neighborhoods ÷U+x . For such
textures, a non-adaptive support of relatively large size (say, a 16×16 block) would
be a much better choice when combined with a DCT transform. It means that,
because of the LPA-ICI, in this particular case we obtain a poor result in terms
of PSNR. This is the price we pay for adaptivity. Fortunately, this loss in PSNR
turns out to have little value in terms of perceptual quality, as demonstrated in
Table 1.10 and in Figure 1.26. In fact, it is well known that noise and errors are
less visible in regions of higher activity such as texture (see, e.g., [174], [44], and
references therein).
The results on perceptual quality recently reported in the DenoiseLab package

[104] (also based on the SSIM index [172]) fully agree with the above Þndings:

9SSIM is equal to 1 when two identical images are compared (tested for structural) similarity,
i.e. in the ideal case when the denoised image coincides with the original reference image.
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the Pointwise SA-DCT and the BM3D outperform all other denoising algorithms
tested (which include, among others, the Non-local means [15], BLS-GSM [138],
and K-SVD [38]). The DenoiseLab results give evidence of another interesting
fact: a PSNR vs. SSIM analysis (in a sense, aiming to answer the question �How
much is a dB really worth?�) shows that, among all tested algorithms, the Point-
wise SA-DCT denoising algorithm consistently gives the highest perceptual quality
(calculated as SSIM) for a given PSNR value of the denoised image. This suggests
that its denoising strategy is �perceptually optimized�, mainly because the noise
is attenuated most effectively in areas where its visibility would be higher, while
the errors (due to artifacts or noise) are mostly left in areas where they do not
degrade the perceptual quality.

1.8.5 Complexity

When considering the computational complexity of the proposed algorithm, the
Þrst thing to observe is that the LPA-ICI technique is fast, because it is based on
convolutions against one-dimensional kernels for a very limited number of direc-
tions. It constitutes a negligible computational overhead for the whole Pointwise
SA-DCT Þltering algorithm, whose complexity is instead essentially determined by
the calculation of the forward and inverse SA-DCT transforms for every processed
neighborhood.
The complexity of the algorithm is linear with respect to the size of the im-

age and depends on the shapes of the transform supports. Since such shapes are
pointwise-adaptive, the complexity depends on the particular image and noise.
On average, and without resorting to fast algorithms, the asymptotic computa-
tional complexity of processing a single neighborhood is O ¡N3

¢
, with N2 being

the size of the neighborhood. However, fast algorithms for calculation of the
shape-adaptive DCT transforms do exists (e.g., [159]), thus the complexity is
O ¡N2 logN

¢
. In our examples N can vary between 1 and 17, with the most

frequent values between 6 and 12. On a more practical level, it is important to
remark that highly-optimized hardware platforms (designed for real-time SA-DCT
coding of high-resolution video) are available.
Our proposed method is also fully scalable in terms of complexity/performance

trade-off. Scalability is achieved by decreasing the number of different scales and
especially by limiting the number of overlapping neighborhoods (and thus the
overcompleteness). In practice, we do not process a neighborhood ÷U+x if x belongs
to a sufficient number Moverlap of already-processed neighborhoods: by decreasing
Moverlap fewer forward and inverse SA-DCT transforms are computed. In order to
count the number of overlaps at each point, we use a buffer

P
x0∈Xp ro c

χ �U+

x0
, where

the sum is calculated, cumulatively, over the set Xproc of already-processed neigh-
borhood centers (it is worth comparing this buffer with the denominator of (1.10)).
Figure 1.27 shows how a signiÞcant acceleration of the algorithm can be achieved
in this manner with only a marginal loss in the Þnal estimate�s quality. Execution
times refer to our current Matlab implementation of the Pointwise SA-DCT Þl-
ter (including Anisotropic LPA-ICI and SA-DCT hard-thresholding and Wiener
Þltering) measured on a 1.5-GHz Pentium M CPU. This Matlab demonstration
software is not optimized in terms of computational efficiency (in particular we do
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Figure 1.27: Denoising performance (PSNR, dB) vs. execution time (seconds) plots
for the grayscale 512×512 Lena (left) and 256×256 Cameraman (right) images, σ=25.
Execution time refers to the current Matlab implementation measured on a 1.5-GHz
Pentium M CPU.

not implement the SA-DCT using fast algorithms), nevertheless its execution time
is comparable to other advanced transform-based denoising algorithms. As a com-
parison, on the same machine it takes about 90 seconds to denoise the grayscale
Lena image (σ=25) using the BLS-GSM algorithm [138] (PSNR=31.69 dB), about
8 seconds using the ProbShrink algorithm [136] (PSNR=31.21 dB), about 17 sec-
onds using the BM3D algorithm [32] (PSNR=32.08 dB), and about 103 minutes
using the TLS algorithm [78] (PSNR=31.69 dB).
When discussing about complexity/performance trade-off, it is important to

underline that in terms of PSNR the empirical Wiener Þltering estimate (1.17)
is usually about 0.3-0.5 dB better than the simpler hard-thresholding estimate
(1.10) that is used as reference signal for (1.17). Figure 1.12 gives an example of
this improvement. Since the empirical Wiener Þltering accounts roughly for half
of the overall complexity of the algorithm, the algorithm can be made faster by
simply skipping this second-stage Þltering. However, it can be seen from the plots
in Figure 1.27 that a much more efficient trade-off is achieved using the above
scalability strategy: execution time can be halved (from 25 to 12 seconds for Lena
and from 5.5 to 2.5 seconds for Cameraman) sacriÞcing as little as 0.15 dB in
PSNR.

It is worth also mentioning that the adaptive CR/RC processing (Section 1.5.1)
can improve the PSNR considerably at a negligible computational cost, which is
given by the evaluation of the inequality (1.5). Table 1.11 provides few experi-
mental results on these issues. In the table, one can see that the best results are
obtained using the adaptive CR/RC mode and that the non-adaptive CR mode
yields (at least on these common test images) mostly better results than the non-
adaptive RC mode. We argue that Sikora and Makai purposely decided to use the
CR mode in their original SA-DCT [156] because of a similar experimental Þnding.
It may be surprising that randomly selecting CR or RC modes (with equal proba-
bility) results in PSNR values competitive to those of the Adaptive CR/RC. This
fact is due essentially to the adaptive weights used in the aggregation, which auto-
matically favour the local estimates coming from sparser decompositions: typically
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Lena C�man Peppers Boats
512x512 256x256 256x256 512x512

Reference 31.66 29.11 29.92 29.47
Random CR/RC 31.62 29.05 29.85 29.39
CR mode only 31.66 29.03 29.77 29.46
RC mode only 31.47 28.93 29.78 29.16
basic alignment 31.65 29.08 29.91 29.45

Table 1.11: PSNR (dB) comparison table for denoising grayscale images (σ=25) with
different modes for the row-wise / column-wise processing of the SA-DCT or with the
basic coefficient alignment instead of the alignment from Section 1.4.3. The �Refer-
ence� method stands for our default implementation, which uses adaptive CR/RC mode
(inequality (1.5)) and special alignment (Section 1.4.3).

Figure 1.28: Denoising of Cameraman (σ=25, observation shown in Figure 1.11) using
B-DCT with Þxed block of size 8×8 (left) and 16×16 (right). The PSNRs of the two
estimates are 28.83dB and 28.63dB, respectively. Compare with the Pointwise SA-DCT
estimate shown in Figure 1.11 (PSNR=29.11dB).

these decompositions are obtained using the same CR or RC mode that would be
adaptively selected from the inequality (1.5).
Finally, we wish to note that the impact of the coefficient alignment described

in Section 1.4.3 is marginal in terms of PSNR (as can be seen from the last row in
Table 1.11) and negligible in terms of complexity (look-up-tables can be utilized),
hence its use shall depend exclusively on particular software/hardware design re-
quirements.

1.8.6 Discussion

It is natural to ask to what extent the use of a shape-adaptive transform contributes
to the objective and subjective quality achieved by the proposed method. In Figure
1.28 we show two estimates obtained by the denoising algorithm described in
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Figure 1.29: Comparison of three different denoising methods based on local (sliding)
discrete cosine transforms. From top to bottom: Original signals (unit steps, �cartesian�
and �diagonal�); noisy observations (σ = 0.2); estimates using B-DCT with Þxed block
of size 16×16, adaptive-size B-DCT estimates [52]; Pointwise SA-DCT estimates. The
data have size 64×64, of which we shown only the innermost 50×50 samples.
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Sections 1.5.2�1.5.4 (hard thresholding and Wiener Þltering in transform-domain)
using a square block of Þxed size (8×8 and 16×16) (like in [180, 75]) instead of
the adaptively shaped support ÷U+x . Although in terms of PSNR the results are
quite satisfactory, the visual quality of the estimates can be disappointing: several
artifacts are visible, including blurring and ringing around the edges. For these
two estimates, instead of relying on Equation (1.8), we used MSE-optimal values
of the hard-threshold. We note that the overall visual quality cannot be really
improved by increasing or decreasing this threshold, because that would either
accentuate the blur or introduce more artifacts. Thus, these may be considered as
the best estimates which can be obtained by this algorithm using square blocks of
these Þxed sizes. The Pointwise SA-DCT estimate shown in Figure 1.11 not only
has higher PSNR, but also exhibits signiÞcantly sharper edges and fewer artifacts.
Figure 1.29 presents a further denoising experiment where we compare the use of
the SA-DCT against the B-DCT with Þxed block of size 16×16 and against the
B-DCT with adaptive-block size (essentially the algorithm proposed in [52], which
improves over the similar older algorithms [124],[93]). In the Þgure, we can see
that the Pointwise SA-DCT Þlter again provides a much cleaner estimate, free of
ringing and with excellent noise attenuation, in smooth regions as well as in the
vicinity of the discontinuity.
While the DCT on blocks of Þxed size gives essentially only spatial and fre-

quency selectivity, the Pointwise SA-DCT provides an image representation that
combines spatial (adaptation is pointwise), frequency (using SA-DCT harmonics),
scale (size of transform basis elements is adaptive), and directional (support is
anisotropic) selectivity. The locally-adaptive supports can thus be rightly consid-
ered as the main reason of the success demonstrated by the Pointwise SA-DCT
Þlter here, in the aforementioned psychovisual experiment [166, 167], and in the
DenoiseLab results [104]. Further advantages of our method arise when we consider
color image processing, since the structural constraint in luminance-chrominance
space cannot be realized using blocks of Þxed size.
Figure 1.30 provides an illustration of the elements ψ(i)�U+

x
, i ∈ V �U+

x
, (1.12) of

an orthonormal SA-DCT basis and of their frequency-domain characteristics. In
the same Þgure we show also a normalized DC element χ �U+

x
| ÷U+x |−

1
2 , which can be

thought as the element used to perform the mean subtraction. The corresponding
Fourier-domain power spectrum is shown below each SA-DCT basis element and
next to the DC element. More illustrations of the SA-DCT bases are given in the
following chapters and especially in Appendix B.

1.9 Conclusions to the chapter

We presented a novel image Þltering approach based on the shape-adaptive DCT
transform (SA-DCT). Hard-thresholding and empirical Wiener Þltering are per-
formed in SA-DCT domain, with an arbitrarily-shaped transform�s support which
is adaptively deÞned for every point in the image. The approach is used for the
accurate denoising of grayscale as well as color images. Besides noise removal,
the proposed method is also effective in dealing with those artifacts which are
often encountered in block-DCT compressed images and videos. Blocking arti-
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DC element

Orthonormal
SA-DCT

Figure 1.30: A complete orthonormal set of 15 SA-DCT basis elements and a DC (con-
stant) element used for the mean subtraction (top). The respective Fourier-domain power
spectrum is shown below each SA-DCT basis element and to the right of the DC element.
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facts are suppressed while salient image features are preserved. The luminance-
driven shape-adaptive Þltering can faithfully reconstruct the missing structural
information of the chrominances, thus correcting color-bleeding artifacts. The vi-
sual quality of the estimates is high, with sharp detail preservation, clean edges,
and without unpleasant artifacts introduced by the Þtted transform. Moreover,
this is achieved at a very competitive computational cost. Overall, the Point-
wise SA-DCT Þltering algorithms demonstrate a remarkable performance, often
outperforming all previous methods known to the authors.



Chapter 2

Pointwise SA-DCT
regularized deconvolution

In this chapter we extend the Pointwise SA-DCT denoising approach to image
deblurring. First, let us generalize the observation model (1.1) given in Section
1.2, introducing an optical blurring into the observation process. This distortion
is commonly modeled by the convolution y~v of the true image y with the point-
spread function (PSF) v of the optical system. Thus, we wish to recover y from
the blurred and noisy observations

z (x) = (v ~ y) (x) + η (x) , x ∈ X. (2.1)

In the frequency domain the above equation becomes Z = Y V + ÷η, where capital
letters are used for the discrete Fourier transform of the corresponding variables
and ÷η = F (η), ÷η (·) ∼ N ¡

0, |X|σ2¢. It is assumed that the PSF v is known.
Note that the observation model (1.1) is a particular case of (2.1) where v is a

Dirac function.

The proposed deblurring algorithm is based on the anisotropic regularized in-
verse (RI) and regularized Wiener inverse (RWI) LPA-ICI deconvolution scheme
developed in [94, 91]. The same deconvolution technique had also been used for
inverse halftoning [56] and Poissonian deblurring [50].
The idea of the proposed SA-DCT domain deblurring is to combine the SA-

DCT transform with the regularized inversion operators, using the adaptive sup-
ports deÞned by the anisotropic LPA-ICI regularized deconvolution. The ßowchart
of the overall deblurring algorithm is shown in Figure 2.1.

2.1 Regularized inverse

The regularized inverse (RI) zRI is computed in the frequency domain as

zRI = F−1 (T RI Z) , T RI =
V

|V |2 + ε21
, (2.2)

49
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Figure 2.1: Flowchart of the SA-DCT regularized Wiener inverse algorithm. In the upper
part of the ßowchart a deblurred estimate �yRI is obtained by combining the regularized-
inversion (RI) operator with the SA-DCT-domain hard-thresholding. This estimate is
used as reference estimate for the regularized-Wiener stage of the lower part of the
ßowchart, where a regularized Wiener inverse (RWI) operator is combined with Wiener
Þltering in SA-DCT domain. The intermediate �yRI and the Þnal �yRWI estimates are
respectively obtained by averaging with adaptive weights (represented as �Σ�) the local
SA-DCT estimates �yRIx and �yRWI

x , whose supports are deÞned by the anisotropic LPA-ICI
technique on the regularized inverse zRI and regularized Wiener inverse zRWI . Examples
of the estimates obtained at the various stages of the algorithm are shown in Figure 2.2.

where T RI is a (Tikhonov) regularized-inversion operator, ε1 > 0 is a regularization
parameter1, and V is the complex conjugate of V . In what follows we make
explicit use of the impulse response tRI of the regularized-inversion operator, tRI =
F−1(T RI ).

2.2 Adaptive anisotropic transform support

The anisotropic neighborhood U+x is constructed from the adaptive scales
{h+(x, θk)}Kk=1 obtained from the following procedure. The LPA is performed in
the spatial domain as a convolution of the regularized inverse zRI against the LPA
kernel gh,θk , öy

RI
h,θk

= zRI ~ gh,θk , for each speciÞed direction θk, k = 1, . . . ,K,
and for every scale h ∈ H. All the varying-scale LPA estimates {öyRIh,θk}h∈H
obtained for each θ are fed (together with their standard deviations {σ�yRIh,θ =
σ ktRI ~ gh,θk2}h∈H) into the ICI algorithm, which selects the pointwise-adaptive
scale h+(x, θk). The adaptive scale selection is done independently for each direc-
tion θk.

1The regularized inverse estimate (2.2) corresponds to the least-squares problem with penalty
on the /2 norm of the estimate T RI Z = argminY kY V − Zk22 + ε21 kY k22. When ε1 → 0, the
regularized inverse converges to a pseudo-inverse, typically becoming unbounded.
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z zRI

zRWI �yRI

�yRWI

Figure 2.2: Examples of the estimates obtained at the various stages of the Pointwise
SA-DCT regularized deconvolution algorithm (see also the ßowchart of the algorithm in
Figure 2.1). The images correspond to the deblurring Experiment 3, described in Table
2.1. The ISNR of the �yRI and �yRWI estimates is 5.57 and 6.34 dB, respectively. Observe
the ampliÞcation of the noise after the inversion of the blur. Some granularity typical
of colored noise is also visible. The subimage at the bottom-right shows some of the
anisotropic neighborhoods used as support for the SA-DCT in the Pointwise SA-DCT
Wiener Þltering stage. Here H = {1, 2, 4}.

2.3 Pointwise SA-DCT deblurring
A non-linear adaptive deblurring operator is obtained by combining the regularized
inversion (2.2) with the shape-adaptive DCT domain shrinkage. While formally
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it is enough to replace z by zRI in (1.6), several further modiÞcations to the basic
denoising procedure of Section 1.5 are required in order to properly take into
account the initial regularized inversion.
The principal difference arises from the fact that, because of the blur inversion

(2.2), the noise in zRI is colored. Therefore it is not possible anymore to guarantee
that the noise variance in the SA-DCT domain is constant (as observed instead in
Section 1.4.1). Because the noise variance can possibly vary signiÞcantly from a
transform coefficient to the other, a constant threshold like (1.7) cannot be used
in order to determine which coefficients should be used for the reconstruction of
the deblurred estimate.

2.4 Thresholding with adaptive variance in trans-
form domain

We consider the individual variance of the transform coefficients

ϕzRI,x = T �U+
x
(zRI|�U+

x
−m �U+

x
(zRI ))

Let i ∈ V �U+
x
be coordinates in SA-DCT domain and ψ(i)�U+

x
: ÷U+x → R the SA-

DCT basis functions, as deÞned in (1.12). Neglecting the correlating effect of the
mean subtraction (�DC separation�), the variance σ2ϕzRI,x (i) of the i-th transform
coefficient ϕzRI,x (i) is

σ2ϕzRI,x(i) = σ2
°°tRI ~ ψ(i)�U+

x

|X °°2
2
=
σ2

|X|
°°T RIF(ψ(i)�U+

x

|X )
°°2
2
, (2.3)

The appropriate threshold level for each transform coefficient is obtained by re-
placing the coefficient-invariant σ in the threshold (1.8) with the varying standard
deviation σϕzRI,x : V �U+

x
→ R. In this way, we realize an adaptive hard-thresholding

rule for the joint deblurring and Þltering in SA-DCT domain.
Analogously to (1.6), a local deblurred estimate öyRI�U+

x
is obtained by inverse

transformation of the thresholded coefficients.

2.5 Adaptive weights and global estimate

Just as in Section 1.5.3, in order to obtain a global estimate öyRI : X → R all
the local estimates öyRI�U+

x
are averaged together using adaptive weights wRI

x ∈ R
in a convex combination analogous to (1.10). However, because of the different
variances of the coefficients used in the reconstruction, the adaptive weights are
deÞned by a different formula. Ignoring the correlation between the noise in the
transform domain, the corresponding expression of (1.11) for deblurring is

wRI
x =

1³
σ2mzRI,x

+
P
j∈S σ2ϕzRI,x (j)

´
| ÷U+x |
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where S ⊆ V �U+
x
indicates the coefficients which are non-zero after thresholding

and

σ2mzRI,x
= σ2

°°°°tRI ~ χ �U+
xq

| ÷U+x |

°°°°2
2

=
σ2

| ÷U+x | |X|
°°T RIF(χ �U+

x
)
°°2
2

(2.4)

is an extra term which accounts for the �DC separation�. In (2.3) we interpret

the DC as calculated by a normalized basis element of the form
χ �U

+
x√
|�U+
x |
, therefore

var {mzRI,x} = σ2mzRI,x
/ | ÷U+x |.

2.6 Regularized Wiener inverse

The regularized Wiener inverse (RWI) zRWI is computed as

zRWI = F−1(T RWI Z) , T RWI =
V |Y |2

|V Y |2+ ε22 |X|σ2
, (2.5)

where ε2 > 0 is a regularization parameter2. Since the spectrum |Y |2 of the true
image is unknown, the estimate öyRI from the RI stage is used quite naturally as a
�pilot� estimate in the Wiener Þltering. It means that |Y |2 in (2.5) is replaced by
|öY RI |2.
Analogously to Section 2.2, the adaptive neighborhoods ÷U+x are deÞned by the

anisotropic LPA-ICI technique applied to zRWI .
On these neighborhoods we perform empirical Wiener Þltering in SA-DCT

domain in a fashion similar to Section 1.5.4. More precisely, for every x ∈ X,
let ϕ�yRI,x : V �U+

x
→ R be the SA-DCT (on ÷U+x ) coefficients of öyRI where the mean

m �U+
x
(zRWI ) of zRWI is subtracted before applying the transform:

ϕ�yRI,x = T �U+
x

³
öyRI|�U+

x
−m �U+

x
(zRWI )

´
. (2.6)

The local Wiener estimate öywi�U+
x
is deÞned as

öywi�U+
x
= T−1�U+

x

¡
ωxϕzRWI,x

¢
+Nxm �U+

x
(zRWI ) , (2.7)

where the attenuation coefficients for this Þlter are

ωx =
ϕ2�yRI,x

ϕ2�yRI,x + σ
2
ϕzRWI,x

, Nx =
m2
�U+
x
(öyRI )

m2
�U+
x
(öyRI ) + σ2mzRWI,x

/ | ÷U+x |
.

2 If ε2 = 1, the inverse operator T RWI (2.5) corresponds to the solution of the minimum MSE

problem T RWI = argminT E
!
kTZ − Y k22

"
. An ε2 6= 1 produces inverse operators with a balance

between bias and variance different than the optimum one, obtained for ε2 = 1. In particular,
the smaller is ε2, the smaller is the bias and the larger is the variance (i.e. noise) in the inverse
estimate zRWI . Since we are able to further suppress the noise exploiting the Pointwise SA-DCT
Þlter, it is worth choosing ε2 ¿ 1. In this way we are able to achieve lower bias and in the end
(after Pointwise SA-DCT Þltering) also lower variance (thus, lower MSE) than by the optimum
Wiener inverse Þlter with ε2 = 1.
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The variances σ2ϕzRWI ,x
and σ2mzRWI ,x

are deÞned as in (2.3) and (2.4), but using the
regularized Wiener inverse operator T RWI or its impulse response tRWI =F−1(T RWI )
instead of T RI or tRI , respectively. These variances are also used to deÞne the
adaptive weights used for the aggregation of the local estimates (2.7):

wRWI
x =

1³
N2
xσ

2
mzRWI,x

+
P
V �U+x

ω2xσ
2
ϕzRWI,x

´
| ÷U+x |

.

2.7 Fast computation of coefficients� variance

The calculation of the variance of the transform coefficients as in (2.3) is a rather
computationally intense procedure. In order to reduce complexity to an acceptable
level, it is necessary to employ some approximations.
Our implementation of (2.3) is based on processing in an undersampled (coarse)

FFT domain of size 32×32. Denoting by eF the corresponding transform, by eX
a 32×32 domain, and by L a decimator with preÞltering, we have the following
approximation of the variance of the i-th transform coefficient ϕzRI,x (i):

σ2ϕzRI,x(i) '
σ2

| eX|°°L{|F(tRI )|2} | eF(ψ(i)�U+
x

| #X)|2°°
1
,

σ2mzRI,x
' σ2

| ÷U+x || eX|°°L{|F(tRI )|2} | eF(1|�U+
x

| #X)|2°°
1
.

(2.8)

An obvious modiÞcation to the above formula allows to compute approximations
of the variances σ2ϕzRWI,x

. Figures 2.3 and 2.4 show some SA-DCT basis functions

ψ
(i)
�U+
x
and their corresponding power spectrum | eF(ψ(i)�U+

x

| #X)|2, as used in (2.8). These
examples, together with those in Figure 1.30, clearly show that the SA-DCT basis
elements are well localized in the frequency plane. This property results in large
differences in the variances σ2ϕzRI,x(i) when |F(tRI )| is non-uniform (e.g., concen-
trated at particular frequencies).
The approximations (2.8) have a signiÞcant impact on the computational per-

formance of the algorithm. On a 1.5-GHz Pentium M CPU, the current Matlab
implementation can process a 256×256 image in about 9 seconds and a 512×512
image in about 38 seconds. This includes RI and RWI stages, comprehensive of
LPA-ICI and transform-domain Þltering. If (2.3) were used instead of the ap-
proximate (2.8), the processing time would be of several minutes, without any
noticeable improvement in the restoration quality.

2.8 Experiments

In order to evaluate the restoration ability of the proposed deblurring algorithm,
we consider the standard set of four blurred and noisy observations which has
been used by many other authors. Table 2.1 presents the description of the ob-
servations� parameters. The blur PSFs for these experiments are shown in Figure
2.5. Roughly speaking, these four experiments represent different combinations of
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Figure 2.3: Some SA-DCT basis elements ψ(i)
�U+x

and their power spectrum | #F(ψ(i)
�U+x

| #X)|2
used in the fast computation of the coefficients� variance (2.8).

Figure 2.4: Some SA-DCT basis elements ψ(i)
�U+x

and their power spectrum | #F(ψ(i)
�U+x

| #X)|2
used in the fast computation of the coefficients� variance (2.8).

blur and noise in a gradation from the strong blur with weak noise (comparable
to quantization noise) of Experiment 1, to the mildly blurred image with notice-
able noise of Experiment 4. The spectral characteristics of the blur PSFs used in
the experiments can be seen in Figure 2.6. In the same Þgure, we show also the
amplitudes |T RI | and |T RWI | of the Fourier-domain regularized inverse (2.2) and
regularized Wiener inverse operators (2.5). The regularization parameters ε1 and
ε2 have been chosen manually for each experiment3. For calculating the SA-DCT
coefficients� variance (2.8), we use the downsampled L{|T RI |2} and L{|T RWI |2},

3Adaptive procedures for the automatic selection of the regularization parameters can also be
utilized (e.g., [121], [178], [162]).
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Exp. Image, Point-Spread Function v, noise
1 Cameraman 256×256 BSNR= 40 dB

9×9 boxcar uniform v (σ2 ' 0.308)
2 Cameraman 256×256 σ2 = 2

v (x1, x2) = 1/
¡
1 + x21 + x

2
2

¢
, x1, x2 = −7, . . . , 7

3 Cameraman 256×256 σ2 = 8
v (x1, x2) = 1/

¡
1 + x21 + x

2
2

¢
, x1, x2 = −7, . . . , 7

4 Lena 512×512 σ2 = 49

v = [1, 4, 6, 4, 1]T [1, 4, 6, 4, 1] /256

Table 2.1: Description of the observation parameters for the four deblurring experiments.

Exp. 1 Exp. 2 & Exp. 3 Exp. 4

Figure 2.5: Point-spread functions v for the four deblurring experiments of Table 2.1.
The amplitude of the Fourier transform of these PSFs is illustrated in Figure 2.6.

shown in Figure 2.7. More precisely, we integrate the pointwise product of the
power spectrum | eF(ψ(i)�U+

x

| #X)|2 (shown in Figures 2.3 and 2.4) with the downsam-
pled power spectrum of the noise L{|F(tRI )|2} (whose root is shown in Figure 2.7)
or L{|F(tRWI )|2}. As already mentioned, the standard-deviation can vary signiÞ-
cant from a coefficient to the other. For example, at the RI stage of Experiment
4 and for the same anisotropic support of the basis functions shown in Figure 2.4,
the computed standard deviations of the SA-DCT coefficients and of the mean are

σϕzRI,x =

12.80 15.20 21.05 20.93 19.66 8.86 3.67
15.47 19.88 22.50 18.58 20.23 10.88
21.70 22.12 20.96 16.94 11.02 6.48
23.51 14.70 14.24 16.47 6.27
12.57

σmzRI,x
= 12.45.

The improvement-in-SNR (ISNR) results for these four experiments are given
in Table 2.2. Figure 2.8 show details of the observations and the corresponding
restored images. Similarly to denoising, both the objective and subjective quality
of our estimates are high. In the case of deblurring, the Pointwise SA-DCT is
particularly effective in coping with the ringing artifacts due to the regularization
of the inverse operator. To the best of our knowledge, on these standard experi-
ments, the proposed Pointwise SA-DCT regularized deconvolution outperforms all
other methods to date.
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E
X
P.

1

|V | |T RI | |T RWI |

E
X
P.

2

|V | |T RI | |T RWI |

E
X
P.

3

|V | |T RI | |T RWI |

E
X
P.

4

|V | |T RI | |T RWI |

Figure 2.6: Amplitude of the Fourier transform V of the PSF v and of the regularized
inverse and Wiener inverse operators T RI and T RWI for each of the four deconvolution
experiments (Section 2.8).
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Figure 2.7: Square root of the downsampled power spectrum of the noise for the regular-

ized inverse,
$
L{|F(tRI )|2}, and for the regularized Wiener inverse,

$
L{|F(tRWI )|2}, in

each of the four deconvolution experiments (Section 2.8). These power spectra are used
in (2.8). Compare with the corresponding undecimated functions in Figure 2.6.

Method Experiment 1 2 3 4
Pointwise SA-DCT regularized deconvolution 8.57 8.25 6.34 4.52
Anisotropic LPA-ICIRI-RWI [91, 62] 8.29 7.82 5.98 3.90
BOA (Figueiredo and Nowak) [46] 8.16 7.46 5.24 2.84
GEM (Dias) [34] 8.10 7.47 5.17 2.73
Segmentation-based regularization (Mignotte) [115] 8.04 7.23 � 1.34
EM (Figueiredo and Nowak) [45] 7.59 6.93 4.88 2.94
ForWaRD (Neelamani et al.) [121] 7.30 6.75 5.07 2.98

Table 2.2: ISNR (dB) of the proposed deblurring algorithm and of other state-of-the-art
methods for four standard experiments.

2.9 Some comments on the approach

Let us give some comments and discussion of the general nature on the deconvo-
lution approach used for the two stages of our algorithm.

Given a frame
n
ψ(i)

o
i
and its dual

©
ùψ
(i)ª

i
, we can represent the original signal

using the usual analysis-synthesis form

y =
X

i

­
y, ùψ

(i)®
ψ(i). (2.9)

Let us now be given not y but its blurred (noise-free) observation y ~ v.
There are essentially two strategies which can be followed starting from Equa-

tion (2.9).
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Figure 2.8: From top to bottom: fragments of the observations z and of the corresponding
Pointwise SA-DCT estimates �yRWI of four deblurring experiments. The ISNRs of these
estimates are 8.57, 8.25, 6.34 and 4.52 dB, respectively.
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2.9.1 Synthesis with
©
ψ(i)
ª
i

We would like to reconstruct y using the frame elements ψ(i) in the form

y =
X

i
ciψ

(i), (2.10)

where the coefficients ci are computed from y ~ v. Obviously, ci =
­
y, ùψ

(i)®
is

a solution of the equation (and is the unique solution if the frame is a basis).
For a generic y, the problem can be formally solved under the often unrealistic
hypothesis that the blur operator is invertible. In this case we have that­

y, ùψ
(i)®

=
1

|X|
D
F (y) ,F¡ùψ(i)¢E = 1

|X|
D
Y V, F(

ùψ
(i)
)

V

E
= (2.11)

=
D
y ~ v,F−1¡F(ùψ(i))

V

¢E
= (2.12)

=
D
y ~ v, ùψ(i) ~ F−1¡ 1

V

¢E
, (2.13)

where V is the complex conjugate of V . So the coefficients ci can be calculated as

the inner product between the blurred observations and ùψ
(i) ~ F−1

³
1
V

´
.

2.9.2 Analysis with
©
ùψ
(i)ª

i

An alternative approach to (2.10) is to seek a solution of the form

y =
X

i

­
y ~ v, ùψ(i)

®
ξ(i), (2.14)

where the true signal is analyzed with respect to the dual frame
©
ùψ
(i)ª

i
and

synthesized with an appropriate set of reconstructing functions
n
ξ(i)
o
i
. In order

to get an explicit form for
n
ξ(i)
o
i
we convolve the left and right-hand side of the

above equation against v, obtaining

y ~ v =
X

i

­
y ~ v, ùψ(i)

®¡
ξ(i) ~ v

¢
. (2.15)

This perfect reconstruction formula implies that
n
ξ(i) ~ v

o
i
is a dual frame of©

ùψ
(i)ª

i
. For example, ξ(i) ~ v = ψ(i), which gives (assuming invertibility of V )

ξ(i) = F−1
³F(ψ(i))

V

´
. (2.16)

2.9.3 Ill-posedness and regularization

Usually, blur operators are not invertible. In the case V has zeros, the simplest
(�naïve�) approach is to use a generalized inverse of V , i.e.

V −1 (·) =
½
0 if V (·) = 0
1/V (·) if V (·) 6= 0 .
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However, even when V does not have zeros, the problem can still remain ill-posed,
with the inverse operator V −1 being unbounded. Consequently, when approaching
noisy observations of the form (2.1), the typical strategy is to employ regularization
at some stage of the inversion procedure.
The simplest form of regularization is the following (Tikhonov) regularized

inverse [168],[40]

T RI =
V

|V |2 + ε2 , (2.17)

where ε > 0 is the regularization parameter. A larger regularization parameter
corresponds to a more stable (lower variance) but also more biased inverse esti-
mate. The regularization (2.17) has been used extensively for deblurring, in the
spatial domain (e.g., [10], [91], [94], [50], [168]), as well as in the transform domain
(e.g., [121], [53]). Similar forms of regularization combined with transform-domain
Þltering can be found also in [7] and [120]. In all these approaches, the combina-
tion of Fourier-domain regularization with other Þltering techniques (e.g., adaptive
smoothing, shrinkage, etc.) is shown to lead to an improved inverse estimate.

2.9.4 Intermediate cases; comments; vaguelettes

In addition to the two strategies from Sections 2.9.1 and 2.9.2, there are also
inÞnitely many intermediate cases. Exploiting in (2.9) the fact that formally­
y, ùψ

(i)®
= 1

|X|
D
Y V α,F¡ùψ(i)¢V −αE, it is easy to show that nψ(i) ~ F−1 (V α)o

i

and
n
ùψ
(i) ~ F−1

³
V
−α´o

i
are also a pair of frames in duality, for any α ∈ R.

By using this new pair of frames instead of
n
ψ(i)

o
i
and

©
ùψ
(i)ª

i
in (2.10) and by

varying α, one can obtain the Þrst (α = 0) and the second strategy (α = 1), all
intermediate cases (0 < α < 1), as well as other decompositions (α < 0, α > 1).
Although the two approaches might seem formally equivalent, they become in

practice very different as soon as they are considered with respect to a predeÞned
�meaningful� frame.

Equation (2.10) implicitly assumes that
n
ψ(i)

o
i
is a suitable frame to enable

a good approximation of y. Since the inverse operator is embedded in the analysis
frame, the approach works according to the paradigm �Þrst invert the blur, and
then approximate this inverse�.

On the contrary, Equation (2.14) assumes that
n
ψ(i)

o
i
is suitable to approxi-

mate y~v, with the inverse operator embedded in the reconstruction frame
n
ξ(i)
o
i
.

Thus, it essentially obeys to the paradigm �Þrst approximate the blurred signal,
and then invert this approximation�.
If not all coefficients are used for the reconstruction, the two approaches lead

to signiÞcantly different approximations of y.

In our work, we consider frames corresponding to redundant shape-adaptive
DCT transforms deÞned on pointwise adaptive starshaped domains. Redundancy
(overcompleteness) comes from the fact that multiple overlapping starshaped do-
mains are used and that for each such domain a complete SA-DCT transform is
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computed. Originally, this deconvolution approach was studied with
n
ψ(i)

o
i
and©

ùψ
(i)ª

i
being biorthogonal wavelet bases: the representations (2.10) and (2.14) are

respectively known within the wavelet community as wavelet-vaguelette [35, 107]
and vaguelette-wavelet [1] decompositions. �Vaguelette� stands for the combina-
tion of the inverse of the blur with the corresponding dual wavelet, such as ξ(i)

from (2.16). We refer the reader to [1] for a theoretically-oriented discussion and
comparison of the asymptotical risk of estimators based on the two approaches.

Let us note that the frame
n
ψ(i)

o
i
and its dual

©
ùψ
(i)ª

i
can be obviously

interchanged in all the above equations.

2.9.5 Practical aspects

Pragmatically, if to be used in estimation from noisy observations, each one the
two approaches has its own advantages and disadvantages. In particular, assuming
a properly normalized frame and independent noise with constant variance, shrink-
age of coefficients which are calculated directly from the blurred observations as
in (2.15) is simpliÞed. Note that (diagonal) shrinkage requires the knowledge of
the standard-deviation of each coefficient, which can be calculated according to
the simple formula

std {hf, gi} =
rD

var {f} , |g|2
E
,

provided the independency of the noise in f . If var {f} is also constant, say,
var {f} = σ2, then

std {hf, gi} = σ kgk2 . (2.18)

Thus, as far as coefficient shrinkage is concerned, the approach is very similar to
transform-based denoising from standard Gaussian noise. On the other hand, the

convolution against the (regularized) inverse of V can cause that
n
ξ(i)
o
i
does not

enjoy any of the good decorrelation properties of the original frame
n
ψ(i)

o
i
. Thus,

the approximation ability of the approach (2.14) can be seriously impaired.
In (2.10) the original frame is used for reconstruction, however, even in the

simplest case of noise with constant variance, the shrinkage of coefficients obtained
by (2.13) is rather involved because the combination of dual frame with the inverse
operator.
Nevertheless in practice, since the main motivation to use a transform-based

method is its ability of to represent the signal to be recovered with good approxi-
mation by using only few transform coefficients (i.e. sparsity), the approach from
Section 2.9.1 is more appropriate, despite the calculation of the standard-deviation
(required for the shrinkage) is usually more involved.

2.9.6 Decoupling of the transform and the inversion

As mentioned in Section 2.9.4, Equation (2.10) works according to the paradigm
�Þrst invert the blur, and then approximate this inverse�.
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If in the term
D
Y V, F(

ùψ
(i)
)

V

E
from (2.11) we replace the noise-free data Y V

with Z and the naive inverse 1
V with a regularized inverse (2.17), we obtain that

the coefficients ci are calculated as

1

|X|
D
Z,F¡ùψ(i)¢ V

|V |2+ε2
E

=
1

|X|
D
Z V
|V |2+ε2 ,F

¡
ùψ
(i)¢E

=

=
­
zRI , ùψ

(i)®
,

where zRI = F−1
³

ZV
|V |2+ε2

´
is the regularized-inverse estimate of y. Although,

in principle, different forms of regularization (e.g., different regularization para-
meters) could be used for different coefficients, for computational reasons it is
preferable to use a unique regularized inverse zRI for all i. In this way the calcula-
tion of the inner products is done exactly as for the analysis of zRI with the frame©
ùψ
(i)ª

i
. Thus, we come to the following approximation of y in terms of the framen

ψ(i)
o
i

y '
X

i

­
zRI , ùψ

(i)®
ψ(i).

The coefficients
­
zRI , ùψ

(i)®
are noisy and some shrinkage should be performed

in order to obtain a good estimate. The noise in zRI is not white, but colored
through inverse Þltering with T RI (2.17), thus the thresholds used in the shrinkage
are different for different coefficients. In order for this shrinkage to be effective it is

important that the frame
n
ψ(i)

o
i
represents well y. The redundant shape-adaptive

DCT transform on adaptive supports is thus an excellent choice for
n
ψ(i)

o
i
when

natural images are considered as the original signal to be reconstructed4.
Finally, the estimate has the generic formX

i
öϕ (i)ψ(i), (2.19)

where öϕ are the Þltered coefficients obtained by shrinkage (e.g., hard-thresholding)

of
­
zRI , ùψ

(i)®
.

2.9.7 Global Fourier-domain inverse, periodicity, and local-
ized processing

In our approach, we explicitly use the impulse response tRI of the regularized-
inversion operator, tRI =F−1(T RI ). The inversion (2.2) is naturally computed
globally, assuming periodicity of the processed signal and of the convolutions used
in the corresponding space-domain operations. Obviously, such modeling does not

4When comparing these equations with those from Section 1.5.3, one should observe that the

role of ùψ
(i)
and ψ(i) is reversed, as the emphasis is placed on two different parts of the analysis-

reconstruction paradigm. Here, we Þx the reconstruction frame, whereas there is the analysis
frame that is Þxed. Overall, the aim is to reconstruct the deblurred signal using the same frame
used for denoising.
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correspond to the reality, as the translation-invariant blur due to optics or rigid
motion does not make the signal periodic. The application of the inverse (2.2) on
a non-periodic z results in dramatic boundary artifacts, which often may cause
the whole estimate to be degenerate. However, there are a number of efficient
sectioning techniques (e.g., [3], [142]) which enable the proÞtable use of the in-
verse (2.2) on non-periodic signals. The key idea of these techniques is to force z
to be periodic, replacing its original �non-periodic boundaries� with synthesized
smoothed periodic boundaries (a procedure called apodization of the image). In a
similar way, this allows to process large images in a localized or windowed fash-
ion (which is necessary when severely limited memory or computational power is
available). Whenever tRI has a fast enough decay, such sectioning techniques can
be used without producing any visible distortions.
Clearly, the same considerations as above apply to the regularized Wiener

inverse (2.5) also.

2.10 Extensions
The proposed deblurring algorithm can be easily extended to observation models
more general than (2.1). In particular, we refer the reader to [31], where a straight-
forward modiÞcation of the algorithm�a modiÞcation that permits the noise η to
be colored instead of white, as in (2.1)�is exploited for inverse-halftoning of error-
diffused binary-halftone images.



Chapter 3

Signal-dependent noise
removal

This chapter presents a novel and efficient method for denoising of images cor-
rupted by signal-dependent noise based on shrinkage in the shape-adaptive DCT
(SA-DCT) domain. The use of an adaptive transform support enables both a
simpler modelling of the noise in the transform domain and a sparser decompo-
sition of the signal. Consequently, coefficient shrinkage is very effective and the
reconstructed estimate�s quality is high, in terms of both numerical error-criteria
and visual appearance, with sharp detail preservation and clean edges. Simulation
experiments demonstrate the superior performance of the proposed algorithm for a
wide class of noise models with a signal-dependent variance, including Poissonian
(photon-limited imaging), Þlm-grain, and speckle noise.

3.1 Introduction

In many applications the observed signal is corrupted by a signal-dependent noise.
The most widely encountered models are Poisson, Þlm-grain, multiplicative, and
speckle noise. Their common feature is that the variance of the noise is directly re-
lated to the true-signal�s intensity. In particular, because of the inherent �photon-
counting� process within digital imaging sensors, the noise found in digital images
is signal-dependent, with brighter parts of the image having a larger noise variance,
and typically following a Poissonian distribution. These aspects will be discussed
more in detail in the second part of the thesis.
Starting with classical Þlters, such as those by Lee, Kuan, and Frost ([105],

[106], [103], [66]), a number of adaptive approaches for signal-dependent noise
removal have been developed and proposed, in spatial (e.g., [87], [140], [51]) as
well as in transform domain (e.g., [164], [173], [111], [52]).
In this chapter, we extend the Pointwise SA-DCT denoising Þlter, introduced

in Chapter 1, to the Þltering of signal-dependent noise. Also in this case, denois-
ing is performed by coefficient shrinkage in the SA-DCT [154] domain, with the
Anisotropic Local Polynomial Approximation (LPA) - Intersection of ConÞdence

65
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Intervals (ICI) technique [91, 92] used to deÞne the shape of the transform�s sup-
port in a pointwise adaptive manner. On such adaptive supports the signal is
smooth and nearly constant, allowing for a simpler modelling of the noise within
each transform support and enabling a sparser decomposition of the signal in the
transform domain. Thus, coefficient shrinkage (e.g., hard-thresholding and Wiener
Þltering) can be employed directly, accurately, and very effectively. As a result,
the reconstructed estimate�s quality is high, in terms of both numerical error-
criteria and visual appearance. In particular, thanks to shape-adaptive transform
supports, the estimates exhibit sharp detail preservation and clean edges.
The key element of our approach to signal-dependent noise is the use of a locally

adaptive estimate of the noise variance, an estimate which is progressively reÞned
during the various stages of the algorithm. The presented method generalizes and
extends both the Pointwise SA-DCT Þlter for denoising of additive white Gaussian
noise (AWGN) [58], presented in Chapter 1, and the Adaptive-Size Block-DCT
(AS B-DCT) algorithm [52] for signal-dependent noise removal with adaptive-size
block transforms, recently proposed by the authors.
The rest of the chapter is organized as follows. In the next section we introduce

the general signal-dependent noise model and the notation used throughout the
chapter. The algorithm is then presented in detail: construction of the adaptive-
shape support, hard-thresholding in SA-DCT-domain, aggregation of overlapping
local estimates, and empirical Wiener Þltering in SA-DCT domain. The last sec-
tion of the chapter is devoted to experimental results for removal of Poissonian
(photon-limited imaging), Þlm-grain, and speckle noises.

3.2 Signal-dependent noise model
We consider observations z(x), x ∈ X ⊂ Z2, with the expectations E{z(x)} =
y(x) ≥ 0, where the errors (noise) η (x) = z (x) − y (x) are independent and the
variance of these observations is modeled as

σ2z (x) = var{z(x)} = var{η(x)} = ρ(y(x)), (3.1)

ρ : R+ → R+ being a given positive function of y called the variance function. For
example, ρ(y) = y, ρ(y) = y2, and ρ(y) = (Kyα)2 for the Poisson, gamma, and
Þlm-grain observation models, respectively.
The problem is to reconstruct the true image y from the noisy observations z.

3.3 Algorithm
Similar to the algorithm for AWGN presented in Section 1.5, the following al-
gorithm for signal-dependent noise comprises two stages: a Þrst stage (Sections
3.3.1-1.5.3) based on hard-thresholding, and a second stage (Sections 3.3.2-3.3.2)
based on empirical Wiener Þltering, where the hard-thresholding estimate obtained
in Section 1.5.3 is used as a reference estimate.
The Þrst step in each stage employs the Anisotropic LPA-ICI technique [47, 91,

92] in order to identify adaptive neighborhoods where the image can be assumed
to be locally smooth (polynomial Þt) and nearly constant.
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Figure 3.1: LPA-ICI anisotropic neighborhoods. Left: some examples of the anisotropic
neighborhoods �U+x used for SA-DCT Þltering of the Peppers image corrupted by Pois-
sonian noise (χ=0.1). Right: the corresponding cross-sections (column 87) of the true
image y, of the noisy observation z, and of the Pointwise SA-DCT estimate �ywi . The
signal-dependent nature of the noise is clearly visible.

3.3.1 Stage 1: Hard-thresholding in Pointwise SA-DCT do-
main

Adaptive-shape neighborhood

We initialize the algorithm with a simple, rough estimate öσ2z of the variance σ
2
z

obtained as the variance function evaluated on the noisy data, öσ2z = ρ (|z|).
For every speciÞed direction θk, k = 1, . . . ,K, a varying-scale family of 1-D

directional-LPA convolution kernels {gh,θk}h∈H is used to obtain a corresponding
set of directional varying-scale estimates {öyh,θk}h∈H , öyh,θk = z ~ gh,θk , h ∈ H,
where H ⊂ R+ is the set of scales. For these 1-D kernels, the length of the
support coincides with the value of the scale. The pointwise standard-deviations

of the estimates öyh,θk are estimated as öσ�yh,θk =
q
öσ2z ~ g2h,θk , h ∈ H. Thus, for

each point (pixel) x ∈ X we obtain a sequence of conÞdence intervalsnh
öyh,θk (x)− Γöσ�yh,θk (x), öyh,θk (x) + Γöσ�yh,θk (x)

io
h∈H

where Γ is a positive threshold parameter. These intervals are then compared
according to the ICI rule [72, 90], and as a result an adaptive scale h+ (x, θk) ∈ H is
deÞned for every x ∈ X. Precisely, the adaptive h+ (x, θk) is deÞned as the largest
scale h such that the intersection of all conÞdence intervals corresponding to scales
smaller than h is non-empty. The procedure is repeated for all speciÞed directions.
Thus, for a Þxed x ∈ X we have K directional adaptive scales h+ (x, θk) , k =
1, . . . ,K.
In our implementation, like in Section 1.5.1, we use K = 8 directions and

construct the adaptive neighborhood ÷U+x of x as ÷U+x = {v ∈ X : (x− v) ∈ U+x },
where U+x is the polygonal hull of the supports of the adaptive-scale kernels©
gh+(x,θk),θk

ª8
k=1
. Figure 3.1(left) shows some examples of these neighborhoods

for a noisy image corrupted by Poissonian noise. Observe how these neighborhoods
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adapt to edges and variations in the image intensity and that in each neighborhood
the underlying image is smooth and nearly constant.

Hard-thresholding in SA-DCT domain: local estimates

For every neighborhood ÷U+x , x ∈ X, we construct a local estimate öy �U+
x
: ÷U+x → R

of the signal y by hard-thresholding in SA-DCT domain.
The typically encountered variance functions ρ, such as those mentioned in

Section 3.2, are smooth functions of their argument y. As a consequence, on
neighborhoods where the signal is nearly constant, so is its variance. It means
that with a good approximation, the variance can be assumed to be constant
when the transform�s support is restricted to a region of signal uniformity such
as the adaptive neighborhood ÷U+x . Thus, locally, the hard-thresholding can be
performed as in the standard case [58] where the variance is everywhere constant,

provided that a locally adaptive estimate öσ2z
³
÷U+x

´
of the variance of the noise in

÷U+x is used.

Such a locally adaptive öσ2z
³
÷U+x

´
can be obtained from the mean m �U+

x
(z)

through the variance function as öσ2z
³
÷U+x

´
= ρ

³¯̄̄
m �U+

x
(z)
¯̄̄´
. For any given neigh-

borhood ÷U+x , this adaptive variance is a constant. Hence, similar to (1.6-1.7), the
local estimate öy �U+

x
is calculated as

öy �U+
x
= T−1�U+

x

³
Υx

³
T �U+

x

³
z|�U+

x
−m �U+

x
(z)
´´´

+m �U+
x
(z) , (3.2)

where Υx is a hard-thresholding operator with adaptive threshold

γthr

r
öσ2z

³
÷U+x
´³
2 ln | ÷U+x |+ 1

´
, γthr > 0, (3.3)

This threshold is again Donoho�s �universal� threshold (1.8), with the same Þxed
parameter γthr > 0. However, here, instead of an invariant σ

2, we use the locally

adaptive variance estimate öσ2z
³
÷U+x

´
.

Global estimate as aggregation of local estimates

The Anisotropic LPA-ICI provides an adaptive neighborhood ÷U+x for every x ∈ X.
Neighborhoods corresponding to adjacent points are usually overlapping, thus the

local estimates
n
öy �U+

x

o
x∈X

(3.2) constitute an overcomplete representation of the

image. In order to obtain a single global estimate öy : X → R deÞned on the whole
image domain, all the local estimates (3.2) are averaged together using adaptive
weights wx ∈ R in the following convex combination:

öy =

P
x∈X wxöy �U+

x

|XP
x∈X wxχ �U+

x

. (3.4)

Analogously to Section 3.3.1, the weights wx depend on the total sample variance
of öy �U+

x
�thus, on the number Nhar

x of non-zero coefficients after thresholding and
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on the local variance öσ2z
³
÷U+x

´
�and on the size of the neighborhood | ÷U+x |:

wx =
öσ−2z

³
÷U+x

´
(1 +Nhar

x ) | ÷U+x |
. (3.5)

3.3.2 Stage 2: Wiener Þltering in Pointwise SA-DCT do-
main

Improved adaptive-shape neighborhood

The estimate of the variance öσ2z used in Section 3.3.1 (calculated from z through the
variance function ρ) is indeed rough. A better estimate öσ2z can now be calculated
from the above öy as öσ2z = ρ (|öy|). The Anisotropic LPA-ICI approach is used once
more to deliver more accurate adaptive scales. We modify slightly the procedure
from Section 3.3.1, in that the LPA estimates {öyh,θk}h∈H are now calculated not
from z but from öy (3.4), as the convolution öyh,θk = öy~gh,θk , h ∈ H. The standard-
deviations needed for the construction of the conÞdence intervals are calculated
again as öσ�yh,θk =

q
öσ2z ~ g2h,θk , h ∈ H, with öσ2z = ρ (|öy|). As a result of the ICI

rule, we obtain, for each x ∈ X, the new directional adaptive scales h+ (x, θk) ,
k = 1, . . . ,K, and thus the corresponding adaptive-shape neighborhood ÷U+x .

Wiener Þltering in SA-DCT domain: local estimates

Using the estimate öy (3.4), the empirical Wiener Þlter in the SA-DCT domain
works as follows. For a Þxed x, let ϕz,x : V �U+

x
→ R and ϕ�y,x : V �U+

x
→ R be,

respectively, the SA-DCT (on ÷U+x ) coefficient of z and öy, calculated as

ϕz,x = T �U+
x

³
z|�U+

x
−m �U+

x
(z)
´
, (3.6)

ϕ�y,x = T �U+
x

³
öy|�U+

x
−m �U+

x
(z)
´
, (3.7)

where the mean m �U+
x
(z) of z is subtracted before applying the transform. The

local Wiener estimate öywi�U+
x
is deÞned as

öywi�U+
x
= T−1�U+

x

¡
ωxϕz,x

¢
+Nxm �U+

x
(z) , (3.8)

where ωx ∈ V �U+
x
and Nx ∈ R are respectively the Wiener attenuation factors for

ϕz,x and for the subtracted mean value m �U+
x
(z),

ωx =
ϕ2�y,x

ϕ2�y,x + σ
2
x

, Nx =
m2
�U+
x
(öy)

m2
�U+
x
(öy) + öσ2z

³
÷U+x
´
/ | ÷U+x |

, (3.9)

and öσ2z
³
÷U+x

´
is a local adaptive estimate of the variance of z in ÷U+x calculated as

ρ
³¯̄̄
m �U+

x
(öy)
¯̄̄´
.
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Final global estimate as aggregation of local estimates

The global estimate öywi can be obtained analogously as in (3.4), using the convex
combination with the adaptive weights wwix :

öywi =

P
x∈X w

wi
x öy

wi
�U+
x

|XP
x∈X wwix χ �U+

x

, wwix =
öσ−2z

³
÷U+x

´
(N2

x+
P
V �U+x

ω2x)| ÷U+x |
. (3.10)

Similarly to (3.5), the term öσ2z

³
÷U+x

´¡
N2
x +

P
V �U+x

ω2x
¢
in the adaptive weights

corresponds to an estimate of the total sample variance of öywi�U+
x
.

The Pointwise SA-DCT results which we present in this chapter correspond to
the öywi estimate (3.10).

3.3.3 Complexity

The presented method for signal-dependent noise removal inherits the same low
computational complexity of the standard Pointwise SA-DCT developed for AWGN
(Section 1.8.5). In fact, the extra operations in this generalized algorithm are es-
sentially only the convolutions needed to calculate öσ�yh,θk , and the Anisotropic
LPA-ICI in the second stage of the algorithm. Both are computationally negligi-
ble compared to the multiple forward and inverse SA-DCT transforms performed

in Sections 3.3.1 and 3.3.2. The locally adaptive variance estimates öσ2z
³
÷U+x

´
are

also calculated �almost for free�, since the local means m �U+
x
(z) and m �U+

x
(öy) are

anyway required by standard algorithm for AWGN (in order to accomplish the
DC separation).

3.4 Experimental results

We show experimental results for three common types of signal-dependent noise:
the �scaled� Poisson noise, χz ∼ P (χy) , χ ∈ R+, χ 6= 0, the generalized Þlm-
grain noise, z = y + (K0 +K1y

α) η, K0,K1, α ∈ R+ and η (·) ∼ N (0, 1), and
the �multiple-look� speckle noise, z = L−1

PL
i=1 y`i, `i ∼ E (β), β ∈ R+, β 6= 0.

The calligraphic letters P, N , and E denote, respectively, the Poisson, Gaussian,
and exponential distributions. For the above observation models, the variance
functions ρ (y) = σ2z are ρ (y) = y/χ, ρ (y) = (K0 +K1y

α)
2, and ρ (y) = y2β/L,

respectively. The true signal y is assumed to have range [0,255].
Firstly, in Table 3.1 we give a comparison for the simulations presented in [140]

for the above noise models with parameters χ=0.1, K0=0, K1=3.3, α=0.5, L=4,
and β=1. In the table our results are compared against the adaptive-neighborhood
Þlter [140], the noise-updating repeated Wiener Þlter [87] (as quoted in [140]), the
recursive anisotropic LPA-ICI technique [51, 62], and the AS B-DCT algorithm
[52].
Next, in Table 3.2 we compare our results for removal of Poissonian noise

(χ = 30
255 ,

60
255 ,

90
255 ,

120
255) against those obtained by two other transform-based

methods [164],[111] recently developed speciÞcally for this type of noise, by the
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noise type noisy [87] [140] [51, 62] [52] P. SA-DCT

Poisson (χ=0.1) 1243 160 145 120 104 95
Film-grain 1351 169 150 123 109 97
Speckle 4442 372 378 286 225 193

Poisson (χ=0.1) 758 252 179 183 149 141
Film-grain 829 267 188 185 154 142
Speckle 1698 387 318 330 257 242

Table 3.1: MSE results for different noise types and denoising algorithms.

χ noisy [164] [111] [51, 62] [52] P. SA-DCT

30 / 255 1054 168 143 73 61 55
60 / 255 525 117 96 50 42 38
90 / 255 349 93 75 40 34 31
120 / 255 262 81 63 34 30 27
30 / 255 1015 199 154 136 107 100
60 / 255 504 140 97 89 70 68
90 / 255 336 113 74 70 55 53
120 / 255 254 97 61 60 46 45

Table 3.2: MSE comparison against algorithms for Poissonian noise.

recursive anisotropic LPA-ICI technique [51, 62], and by the AS B-DCT algorithm
[52].
The results in the tables show that the proposed algorithm outperforms all

other methods, for all considered noise models and noise levels. In terms of MSE,
the improvement is signiÞcant especially for higher noise.
Figures 3.2 and 3.3 provide a demonstration of the visual quality of the pro-

posed Pointwise SA-DCT technique. Edges and small details are restored quite
sharply, with very few noticeable artifacts. Figure 3.3 presents also a comparison
between denoised estimates obtained by the AS B-DCT and by the Pointwise SA-
DCT algorithms. Although the numerical difference is marginal, the two estimates
are visually quite different. The AS B-DCT estimate has visible artifacts in the
vicinity of sharp edges, and especially along the diagonal ones; the Pointwise SA-
DCT estimate presents instead clean-cut edges that are comparable with those
of the original image (shown in Figure 3.3(top-left)), thanks to superior spatial
adaptivity.
Finally, we compare our Pointwise SA-DCT against the TLS algorithm [78],

which is developed to deal with observations of the form z = y + (K0 +K1y) η,
K0,K1 ∈ R+ (i.e., one of the above models, with Þxed α = 1). In Tables 3.3
and 3.4 we present PSNR and SSIM [172] results for K0 = 25, K1 = 0.1 and
for K0 = 25, K1 = 0.2, respectively. The Pointwise SA-DCT achieves the best
results on all images, with the notable exception of Barbara, to which apply the
same considerations made in Section 1.8.4. Figure 3.4 provides an illustration of
the visual quality of the estimates. In the Þgure one can see that the Pointwise
SA-DCT estimates are sharper and with fewer visible artifacts.
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Lena Boats Barbara House Peppers
512x512 512x512 512x512 256x256 256x256

Pointwise SA-DCT
30.04
0.823

27.66
0.731

26.79
0.798

29.99
0.816

28.08
0.824

TLS (Hirakawa & Parks) [78]
30.04
0.824

27.40
0.721

27.77
0.811

29.64
0.808

27.17
0.798

Table 3.3: PSNR (dB, in regular type) and SSIM index [172] (in italic type) comparison
table for the denoising of images with signal-dependent noise, where the observations
have the form z = y + (25 + 0.1y)η, η(·) ∼ N (0, 1).

Lena Boats Barbara House Peppers
512x512 512x512 512x512 256x256 256x256

Pointwise SA-DCT
28.89
0.801

26.36
0.684

25.61
0.750

28.50
0.793

26.72
0.794

TLS (Hirakawa & Parks) [78]
28.82
0.797

26.22
0.679

26.28
0.762

28.17
0.781

25.77
0.764

Table 3.4: PSNR (dB, in regular type) and SSIM index [172] (in italic type) comparison
table for the denoising of images with signal-dependent noise, where the observations
have the form z = y + (25 + 0.2y)η, η(·) ∼ N (0, 1).

Illustrative examples of denoising raw-data of digital imaging sensors are pre-
sented at the end of this thesis.
We remark that the proposed method based on locally adaptive variance esti-

mates is superior to the simpler approach where the noisy observations are pre-
processed by a non-linear variance-stabilizing transformation (see, e.g., [139]) and
then Þltered by an algorithm for AWGN. In particular, let us consider the Pois-
sonian noise case and the procedure where the Anscombe transformation [5] is
employed to stabilize the variance and denoising is then performed by the Point-
wise SA-DCT algorithm [58] for AWGN (presented in Section 1.5), followed by
inverse Anscombe transformation. For this simpler approach the MSE results
are as follows: χ = 0.1 Peppers MSE=103, Aerial MSE=153; χ = 30/255 Lena
MSE=59, Cameraman MSE=105. A comparison with the Tables 3.1 and 3.2
shows the improvement achieved by the use of locally adaptive variances.

3.5 Deblurring of images corrupted by
signal-dependent noise

As a Þnal remark, we note that the denoising algorithm presented in this chapter
can be combined with the deconvolution approach from Chapter 2, resulting in
a deblurring algorithm for images corrupted by signal-dependent noise. We refer
the reader to our publication [49], where we present a similar procedure based on
the block-DCT with adaptive block-size.
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Figure 3.2: Peppers image (left), from top to bottom: original image, noisy ob-
servation corrupted by speckle noise (MSE=4442, PSNR=11.6dB), and Pointwise
Shape-Adaptive DCT estimate �ywi (MSE=193, PSNR=25.3dB). Aerial image (right),
from top to bottom: original image, noisy observation corrupted by Þlm-grain
noise (MSE=829, PSNR=18.9dB), and Pointwise Shape-Adaptive DCT estimate �ywi

(MSE=142, PSNR=26.6dB).
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Figure 3.3: Cameraman image. Left column, from top to bottom: original image, noisy
observation corrupted by Poissonian noise (χ = 30/255, MSE=1015, PSNR=18.1dB),
and Pointwise Shape-Adaptive DCT estimate �ywi (MSE=100, PSNR=28.1dB). Right col-
umn, middle: noisy observation corrupted by Poissonian noise (χ = 60/255, MSE=504,
PSNR=18.1dB); top: AS B-DCT estimate [52] (MSE=70, PSNR=29.7dB); bottom:
Pointwise Shape-Adaptive DCT estimate �ywi (MSE=68, PSNR=29.8dB).
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Figure 3.4: Top: noisy Peppers image, z = y+(25+0.1y)η, and noisy Barbara (fragments
shown), z = y + (25 + 0.2y)η, η(·) ∼ N (0, 1). Center: TLS [78] estimates. Bottom:
Pointwise SA-DCT estimates. The corresponding PSNR and SSIM results are given in
Tables 3.3 and 3.4.
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Chapter 4

�Shape-adapted� bases by
orthonormalization

The shape-adaptive DCT proposed by Sikora et al. can be implemented very
efficiently with a negligible computational overhead with respect to the usual sep-
arable 2-D DCT on a rectangular support. However, for video-coding applications
Gilge�s �shape-adapted� DCT [70, 71] based on orthonormalization with respect to
shape is known to achieve superior results than the approach by Sikora et al. It is
considered [155] as a kind of upper bound on the decorrelation ability of the faster
method. Thus, if computational complexity is not of primary concern, Gilge�s
method may be utilized as an alternative method to achieve further improvement
in denoising.

4.1 Construction of a �shape-adapted� basis

We remark that the implementation of such �shape-adapted� bases is not trivial. If
general enough shapes are allowed1, precalculation of all possible �shape-adapted�
bases is not feasible because the resulting look-up-table would be huge. Hence,
the orthogonalization must be performed �on-line�. There are two more problems.
First, when restricting a basis to a region smaller than the initial domain of its
elements, linear independence is certainly lost. This makes orthonormalization
ill-posed. Second, the resulting �shape-adapted� orthonormal basis signiÞcantly
depends on the order in which the initial elements are orthonormalized. In par-
ticular, since an increasing number of orthogonal complements are successively
subtracted during the orthogonalization, the similarity (and thus the common
decorrelating features) between the resulting orthonormal elements and the ini-
tial ones diminishes as the procedure progresses. The combination of these two
problems can have a devastating impact, because the attempt to orthonormalize
any linearly-dependent element results in a systematic introduction of ampliÞed

1 In our implementation � for example � despite the rather simpliÞed neighborhood structure
(based on |H| = 6 scales and K = 8 directions, as described in Figure 1.7), a total of 68 = 1679616
different shapes are possible.
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rounding-errors in all subsequent elements, which are thus distorted. A rather
profound study of these problems, for the case of cosine and polynomial bases, is
given in [131], providing criteria for the pruning of the starting basis so to obtain
a set of elements which are linearly independent on the smaller region. Unfortu-
nately, such criteria do not fully apply to arbitrary-shaped regions and additional
numerical tests for independence must be employed.
We implement �shape-adapted� polynomial and cosine bases relying on the

Gram-Schmidt QR-decomposition to perform the orthonormalization. It means
that the starting rectangular basis is represented as a matrix A whose column
vectors are the individual elements (vectorized, e.g., by raster scan of the support)
and Q and R are, respectively, an orthogonal matrix and an upper-triangular ma-
trix, such that QR = A. Depending on the particular starting basis, there exist
faster (but equivalent) orthonormalization procedures than Gram-Schmidt (e.g.,
for polynomials see [132]). In order to overcome the difficulties discussed above, we
use the criteria from [131] to prune the starting rectangular basis, sorted according
to a �zig-zag� order, as shown in Figure 4.1. We note that our �zig-zag� order does
not coincide with the natural order used in [132],[70]. Additionally, for computa-
tional efficiency and to make sure that no distorted elements are eventually used
for the �shape-adapted� basis, we retain only the Þrst Nx ≤ | ÷U+x | columns of the
orthogonal Q matrix for which the magnitude of the corresponding diagonal entry
of the upper-triangular matrix R exceeds a predeÞned threshold. If Nx < | ÷U+x |,
then the resulting set of generators is not complete. However, from the practical
point of view, it is still rich-enough to represent most considered signals which
� thanks to the LPA-ICI-driven adaptive support � enjoy a particularly sparse
decomposition.
Let us remark that since the same �shape-adapted� basis is used for process-

ing all neighborhoods which share the same shape, the above orthonormalization
procedure needs to be performed only once for each unique shape. We process
neighborhoods with identical shape one after another, simply by following the lex-
icographic order induced by the directional adaptive scales h+ (x, θk) which deÞne
÷U+x . Therefore only a single �shape-adapted� basis needs to be kept in memory.
Since the number of distinct shapes found in a image is usually much less than
the total number of pixels, the computational drawback of Gilge�s against Sikora�s
method is mostly due to the fact that the former transform is performed as mul-
tiplication against a Nx×| ÷U+x | matrix, whereas the latter uses transformation by
rows and by columns, just like a separable transform.
Illustrations of bases obtained by the above orthogonalization on an arbitrarily

shaped domain are given in Appendix B, where these bases are also compared with
those corresponding to the shape-adaptive DCT.

4.2 ModiÞcations to the algorithms
The Þltering algorithm described in Sections 1.5.2-1.5.4 is valid also if Gilge�s
�shape-adapted� DCT or �shape-adapted� polynomials are used instead of the
SA-DCT. However, since these �shape-adapted� bases have indeed a DC term
which truly corresponds to a constant basis element, there is no mean-weighting
defect (as described in Section 1.4.2) and the subtraction of the mean is not nec-
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Figure 4.1: Illustration of the particular �zig-zag� ordering of the basis elements used for
the Gram-Schmidt orthonormalization procedure.

essary. It means that for Gilge�s �shape-adapted� DCT, formulas (1.4-1.17) can
take a simpler form, where the mean terms m �U+

x
(z) and m �U+

x
(öy) are replaced by

zeros. Analogous simple modiÞcations apply also to the deconvolution algorithm
of Chapter 2.

4.3 Experiments

4.3.1 Denoising experiments

In Table 4.1 we provide PSNR results obtained using the �shape-adapted� DCT
instead of the shape-adaptive DCT in the Pointwise SA-DCT denoising algorithm,
applied on grayscale images corrupted by additive Gaussian white noise. This table
can be directly compared with Table 1.2, which presents the PSNR results for the
shape-adaptive DCT. In Table 4.2 we give the gain in PSNR achieved by using
the �shape-adapted� DCT. The differences are small, typically about 0.1 dB in
favour of the �shape-adapted� DCT. In Figure 4.2 we show fragments of three
estimates from the Table 4.1. From a comparison with Figure 1.20, it can be seen
that the visual quality achieved by the two approaches is however practically the
same. A similar conclusion can be drawn from comparing the estimates of Lena
shown in Figures 4.3 and 1.10. Obviously, the increased complexity of the �shape-
adapted� approach cannot be justiÞed by such a marginal quality gain. Moreover,
for highly textured images, such as Barbara, the PSNR gain is even negative, i.e.
the SA-DCT outperforms the �shape-adapted� DCT.
Table 4.3 gives PSNR results for the denoising of a few standard images. We

consider the basic and recursive Anisotropic LPA-ICI [91, 55, 47, 92] and three real-
izations of the presented approach using three different transforms for arbitrarily-
shaped supports: �shape-adapted� orthonormal polynomials and cosines bases
(obtained by successive orthogonalization), and the low-complexity shape-adaptive
DCT (SA-DCT). The �shape-adapted� DCT provides the best results in all ex-
periments, thus demonstrating a slightly better approximation ability for natural
images than the �shape-adapted� orthonormal polynomials. The low-complexity
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Lena Boats House Peppers C�man Barbara Hill Lake
σ 512x512 512x512 256x256 256x256 256x256 512x512 512x512 512x512

5 38.62 37.17 39.45 38.14 38.26 37.57 37.04 36.62
10 35.71 33.69 36.09 34.64 34.12 33.50 33.44 32.86
15 34.0 31.85 34.26 32.62 31.84 31.30 31.60 31.06
20 32.75 30.54 33.01 31.19 30.32 29.84 30.40 29.82
25 31.76 29.52 32.01 30.07 29.22 28.75 29.51 28.87
30 30.95 28.68 31.15 29.16 28.33 27.87 28.81 28.10
35 30.25 27.98 30.42 28.41 27.59 27.10 28.24 27.44
50 28.69 26.36 28.78 26.75 25.94 24.94 26.93 25.94
75 26.78 24.70 26.64 24.71 23.92 23.30 25.50 24.26
100 25.44 23.58 25.08 23.30 22.53 22.38 24.49 23.06

Table 4.1: Grayscale image denoising performance as PSNR (dB) for the Pointwise SA-
DCT algorithm, using the �shape-adapted� DCT instead of the low-complexity shape-
adaptive DCT.

Lena Boats House Peppers C�man Barbara Hill Lake
σ 512x512 512x512 256x256 256x256 256x256 512x512 512x512 512x512

5 0.08 0.03 0.07 0.15 0.11 0.10 0.01 0.01
10 0.13 0.06 0.11 0.18 0.14 0.02 0.01 0.05
15 0.14 0.06 0.12 0.18 0.14 -0.07 0.00 0.08
20 0.13 0.05 0.09 0.15 0.14 -0.15 0.01 0.08
25 0.10 0.05 0.09 0.15 0.11 -0.19 0.01 0.08
30 0.09 0.04 0.05 0.13 0.09 -0.22 0.01 0.09
35 0.08 0.05 0.03 0.15 0.08 -0.25 0.02 0.09
50 0.09 0.10 0.11 0.20 0.06 -0.50 0.08 0.11
75 0.02 0.08 0.06 0.14 0.03 -0.21 0.06 0.12
100 -0.06 0.06 0.01 0.15 0.04 -0.11 0.02 0.10

Table 4.2: PSNR gain (dB, ±0.01) obtained using the �shape-adapted� DCT instead of
the low-complexity shape-adaptive DCT in the Pointwise SA-DCT algorithm.

Figure 4.2: Fragments of the estimates of the Boats, Peppers, and House images, σ=25,
obtained using the �shape-adapted� DCT instead of the low-complexity shape-adaptive
DCT (SA-DCT). Compare with Figure 1.20.
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Figure 4.3: A fragment of the estimates of Lena (from the noisy observation with
σ=25, shown in Figure 1.10) obtained using (left) the low-complexity SA-DCT
(PSNR=31.66dB) and (right) using the �shape-adapted� DCT (PSNR=31.76dB). There
are almost no visible differences between the two estimates.

SA-DCT achieves a performance which is very close to that of the more complex
transforms, but at a much lower computational cost.
Table 4.4 shows results obtained by implementing the proposed approach with

the second stage, with empirical Wiener Þltering. For this Wiener Þltering the
reference estimate is the one obtained from the Þrst stage (whose PSNR is given
in Table 4.3). The two-stage implementation signiÞcantly improves the denoising
performance for all three transforms. However, the differences between the esti-
mates obtained using different transform are still small. Thus, we conclude that,
in terms of quality of results, the differences between orthonormal polynomials,
�shape-adapted� DCT, and SA-DCT is not signiÞcant.

4.3.2 Deblurring experiments

We consider the same four blurred experiments of Table 2.1. The improvement-
in-SNR (ISNR) results achieved with Gilge�s �shape-adapted� DCT for these four
experiments are given in Table 4.5, where for convenience we also report the results
obtained with the SA-DCT (Table 2.2). From the table we can see that in terms
of ISNR the differences (which are in favour of the �shape-adapted� DCT) are
negligible.
The four estimates are shown in Figure 4.4. From a visual comparison be-

tween this Þgure and Figure 2.8 we can concluded that the are no relevant visual
differences between the �SA�-DCT estimates and the SA-DCT estimates. All
the estimates are visually very good, with accurate preservation of details and no
disturbing artifacts.
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Method (one-stage, hard-thresholding only) C�man Peppers Lena Boats

Anisotropic LPA-ICI (zero order) 28.16 28.34 29.67 27.92
Recursive Anis. LPA-ICI (zero-Þrst order mixture) 28.68 29.16 30.43 28.58
P.wise �shape-adapted� orthon. polynomials 28.89 29.61 31.34 29.08
P.wise �shape-adapted� DCT 28.99 29.69 31.43 29.20
P.wise shape-adaptive DCT (SA-DCT) 28.90 29.52 31.27 29.09

Table 4.3: PSNR (dB) results for denoising from additive Gaussian white noise (σ=25)
for a few test images with different algorithms for anisotropic nonparametric estimation.

Method (two-stage, with empirical Wiener Þ ltering) C�man Peppers Lena Boats

P.wise �shape-adapted� orthon. polynomials 29.13 30.03 31.68 29.43
P.wise �shape-adapted� DCT 29.19 30.05 31.76 29.51
P.wise shape-adaptive DCT (SA-DCT) 29.11 29.92 31.66 29.47

Table 4.4: PSNR (dB) results for denoising with transform-domain empirical Wiener
Þltering. The reference estimate used in Wiener Þltering is the one obtained by the
respective algorithm, as shown in Table 4.3. The estimates obtained by this two-stage
procedure are noticeably better than those obtained by just a single stage.

Method Experiment 1 2 3 4

Anis. LPA-ICI RI-RWI + Gilge�s �SA�-DCT 8.58 8.29 6.34 4.55
Anis. LPA-ICI RI-RWI + SA-DCT (i.e. P. SA-DCT) 8.57 8.25 6.34 4.52

Table 4.5: ISNR (dB) of the proposed Pointwise shape-adaptive DCT regularized de-
convolution algorithm using either Gilge�s �shape-adapted� DCT or the low-complexity
SA-DCT. The four deblurring experiments are described in Table 2.1, Section 2.8.

Figure 4.4: Fragments of the estimates �yRWI obtained using the �shape-adapted� DCT
for the four deblurring experiments from Table 2.1, Section 2.8. Top: experiments 1 and
2; bottom: experiments 3 and 4 (ISNR = 8.58, 8.29, 6.34, and 4.55 dB, respectively).
Compare with the corresponding SA-DCT estimates shown in Figure 2.8.
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Let us remark that because of the need to go through the explicit expression of
each one of the SA-DCT basis elements ψ(i)�U+

x
, i ∈ V �U+

x
, the computational advan-

tage of Sikora�s SA-DCT over Gilge�s �shape-adapted� DCT is substantially re-
duced. Moreover, when using smaller neighborhoods (for deblurring we use shorter
kernels with H = {1, 2, 4}), the differences between a low-complexity transform
and an arbitrary non-separable transform are anyway minor. In fact, our imple-
mentations of the proposed deblurring algorithm based on Gilge�s �shape-adapted�
DCT and on the lower-complexity SA-DCT perform in about the same time.
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Appendix A: LPA-ICI

For the readers less familiar with the LPA and ICI techniques utilized in the pre-
vious chapters, in this appendix we give more details on these techniques. For
the sake of simplicity, we restrict ourself to the 1-D case (thus dropping the
subscript θk from notation). This simpliÞcation is not essential, because as we
described in Section 1.5.1 in our implementation we use 1-D kernels supported
on line segments. We refer the interested reader to [47],[92], for a complete and
in-depth analysis of the LPA-ICI and related algorithms. Details of the vari-
ous parameters used in the implementation of the LPA-ICI within the Pointwise
Shape-Adaptive DCT algorithms can be seen in the publicly available codes at
http://www.cs.tut.fi/~foi/SA-DCT .

A.1 Local Polynomial Approximation (LPA)

The Local Polynomial Approximation (LPA) (e.g., [42]) is a technique which
is applied for nonparametric estimation using a polynomial data Þt in a slid-
ing window. The polynomial order m and the window function w character-
ize the LPA. The LPA estimates are calculated by convolution against a kernel
g = wφΦ−1 [1 0 · · · 0]T , where w= diagw is the diagonal matrix composed by
the weights w, φ is a vector of m + 1 polynomial functions (basis) φn =

vn

n! ,
n = 0, . . . ,m, and Φ= φTwφ is the Gramian matrix (formed by the inner prod-
ucts of the basis elements against each other).
Starting from a basic window function w, one can obtain LPA�s of different

bandwidths/scales using scaled windows wh = w (·/h), where h ∈ R+ \ {0} is
the scale parameter. The corresponding kernels are denoted as gh. It is common
practice to use compactly supported window functions. In this case, by using
a basic window w of unit length, we obtain that h coincides with the length
of the window wh. Hence, window length (size), scale, and bandwidth become
interchangeable concepts.
The choice of the scale parameter is crucial when dealing with noisy data, be-

cause it controls the amount of smoothing introduced by the local approximation.
A large h corresponds to a larger window and therefore to smoother estimates, with
lower variance and typically increased estimation bias. A small h corresponds to
noisier estimates, less biased, and with higher variance. Thus, the scale parameter
h controls the trade-off between bias and variance in the LPA estimates.
In practice, the use of a Þxed order m can be relaxed, and polynomial order
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Figure A.1: The Intersection of ConÞdence Intervals (ICI) rule.

mixtures [22],[47] are most often used, deÞning LPA kernels of the form gh =P
m αh,mg

[m]
h , where g[m]h is an LPA kernel of orderm and the coefficients αh,m ∈ R

are such that
P
m αh,m = 1. The LPA kernels adopted in the Pointwise SA-DCT

algorithms and shown in Figure 1.6 are mixtures of orders zero and one with
uniform windows wh = χ{0,1,...,h−1}.

A.2 Intersection of ConÞdence Intervals (ICI) rule
The Intersection of ConÞdence Intervals (ICI) rule [72, 90] is a criterion used for the
adaptive selection of the size (length/scale) of the LPA window. Let x be a Þxed
estimation point/pixel. The LPA estimates öyhj (x) =

¡
z ~ ghj

¢
(x) are calculated

for a set H = {hj}Jj=1 of increasing scales h1 < · · · < hJ . The goal of the ICI is to
select among these given estimates

©
öyhj (x)

ªJ
j=1

an adaptive estimate öyh+(x) (x),
h+ (x) ∈ H, such that öyh+(x) (x) is close to an �ideal� estimate öyh∗(x) (x) which
minimizes the MSE with respect to the variation of the scale h (note that h∗ (x)
does not necessarily belong to H). Roughly speaking, the estimate öyh+(x) (x) is
the �best� among the given ones.
The ICI rule is as follows:
Consider the intersection of conÞdence intervals Ij =

Tj
i=1Di, where

Di =
h
öyhi (x)− Γσ�yhi (x), öyhi (x) + Γσ�yhi(x)

i
,

σ�yhi (x) = std {öyhi(x)} is the standard deviation of öyhi (x), and Γ > 0 is a threshold
parameter. Let j+ be the largest of the indexes j for which Ij is non-empty,
Ij+ 6= ∅ and Ij++1 = ∅. The adaptive scale h+ (x) is deÞned as h+ (x) = hj+
and the adaptive estimate is thus öyh+(x) (x).
An illustration of the ICI is given in Figure A.1. The standard-deviations of

the LPA estimates can be easily calculated from the )2-norm of the correspond-
ing kernel as σ�yhj (x) = std

©
öyhj (x)

ª
= σ

°°ghj°°2. Since the scales are increasing,
the standard-deviations are decreasing and the conÞdence intervals shrink as j
increases. Therefore, in the intersections we are testing estimates with progres-
sively lower variance. The rationale behind the ICI is that the estimation bias is
not too large as long as the intersections are non-empty. In practice this means
that the ICI adaptively allows the maximum level of smoothing, stopping before
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oversmoothing begins. Asymptotically, the LPA-ICI adaptive estimator allows to
get a near-optimal quality of signal recovery [72].
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Appendix B: A gallery of
basis elements

In this appendix we show basis elements corresponding to few different bases de-
Þned on arbitrarily shaped supports. In particular, we compare the SA-DCT
basis elements with the basis elements of the �shape-adapted� DCT and �shape-
adapted� polynomials. The starting generators used in the Gram-Schmidt ortho-
normalization which produces the �shape-adapted� bases are also shown. Besides
giving a visual impression of the kind of bases used in our algorithms, these many
Þgures have the purpose of demonstrating that these bases, despite constructed by
very different procedures, enjoy a remarkable similarity. This similarity explains
why the Þltering results obtained using these different bases are practically the
same (see Tables 4.1, 4.2, 4.3 and 4.4).

B.1 Supports

The illustrations are given for six different supports, shown in Figure B.1, each of
which is a subset of the 9 × 9 square. The coordinates within the 9 × 9 square
support are denoted as (n1, n2), n1, n2 = 0, . . . , 8. Thus, the centre will have
coordinates (4, 4) .

Figure B.1: The six supports used for the comparison between the different shape-
adaptive and �shape-adapted� bases. All supports are subsets of a 9 × 9 square, on
which the starting polynomial and cosine bases are deÞned.
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B.2 Arrangement of the Þgures
For each shape, the Þgures of the basis elements are arranged as in a long horizontal
table (spanning four pages), where the rows are organized as follows:

indicators (in transform domain)

polynomial generators
cosine (DCT) generators

�shape-adapted� polynomials
�shape-adapted� DCT

shape-adaptive DCT (SA-DCT)

.

In each column, the SA-DCT basis element is obtained by applying the inverse
SA-DCT on the indicator. Whereas for the �shape-adapted� bases, the indicator
coincides with that of the last generator used in the linear combination that yields
the orthonormalized basis element. In accordance with the �zig-zag� scan (Figure
4.1 of Section 4.1), these generators are arranged column by column in the following
manner (for polynomials and DCT):

1

1

n1 − 4

cos
³
π(2n1+1)

18

´ n2 − 4

cos
³
π(2n2+1)

18

´

(n1 − 4)2

cos
³
2π(2n1+1)

18

´ (n2 − 4)2

cos
³
2π(2n2+1)

18

´

(n1 − 4) (n2 − 4)

cos
³
π(2n1+1)

18

´
cos
³
π(2n2+1)

18

´ (n1 − 4)3

cos
³
3π(2n1+1)

18

´

(n2 − 4)3

cos
³
3π(2n2+1)

18

´ (n1 − 4)2 (n2 − 4)

cos
³
2π(2n1+1)

18

´
cos
³
π(2n2+1)

18

´ · · ·

In the above formulas we neglected all scaling factors (which are irrelevant since
within the Gram-Schmidt procedure each generator is automatically scaled as
necessary).
For the Þgures in this appendix, we did not exploit any special alignment of

the coefficients of the SA-DCT and resorted instead to the basic alignment (see
Section 1.4.3). Further, the SA-DCT is applied in non-adaptive RC mode (see
Sections 1.4.4 and 1.5.1).
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All the images are drawn with the same scale (given by the unit indicators on
the top row). For this reason, some polynomial generators of high degree may
appear as identically zero in a neighborhood of the origin, or even globally (e.g.,
the restricted polynomial generators on p. 103).
For each shape of the support, we show the Þrst ten and the last two basis ele-

ments, according to the zig-zag ordering shown in Figure 4.1 (see also Section 4.1).
Roughly speaking, these are the ten elements with the lowest frequency/degree and
the two elements with the highest frequency/degree.
Only the last three rows present, in general, elements of orthonormal bases.

However, we note that in the special case of the 9× 9 square support (pp. 92-95),
for which the support-restriction is trivial, the restricted DCT is itself obviously
already orthonormal as it coincides with the DCT, the �shape-adapted� DCT, as
well as with the shape-adaptive DCT.

B.3 Interesting sights in the gallery
We list here some important aspects portrayed by the many Þgures on the following
pages.

� Even though the polynomial and cosine generators are often radically dif-
ferent, the resultant orthonormal bases (obtained after orthonormalization)
are always very similar, and sometimes almost identical, with a clear one-to-
one correspondence between the basis elements. This is possible thanks to
the zig-zag ordering followed in the Gram-Schmidt orthonormalization (see
Section 4.1, esp. Figure 4.1).

� Square support (pp. 92-95): (as anticipated above) restricted B-DCT, �SA�-
DCT, and SA-DCT coincide because restriction is trivial; orthonormalized
polynomials are nearly identical to DCT bases.

� Differences between CR and RC processing: the Þrst parallelogram coincides
with the second parallelogram transposed (as can be clearly seen in Figure
B.1), but the SA-DCT basis elements obtained for the Þrst parallelogram
(pp. 104-107) are different from those obtained for the second parallelogram
(pp. 108-111) as well as from their transposed copies.

� Mean weighting defect is clearly visible in the Þrst SA-DCT basis elements
(bottom left on pp. 100, 112, 96, 108) for all supports except the square (p.
92) and the Þrst parallelogram (p. 104). Observe also the different structure
of the domain of the transform coefficients (top row).
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B.4 The gallery
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Part II

Signal-dependent noise
measurement, modeling, and
Þtting for digital imaging

sensors
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Preface

Progress in hardware design and manufacturing has introduced digital imaging
sensors having a dramatically increased resolution. This is mainly achieved by an
increase of the pixel density. Although the electrical and thermal characteristics of
the sensors have noticeably improved in the last decade [175],[143], with the size of
each pixel becoming smaller and smaller the sensor output signal�s susceptibility
to photon noise has become greater and greater. As of now, this source of noise
appears as the most signiÞcant contributor of the overall noise in a digital imag-
ing sensor [14]. This makes the noise component of the raw-data output of the
sensor markedly signal-dependent, thus far from the conventional additive white
Gaussian noise (AWGN) modeling so widely used in image processing. Further,
with the intention of making full use of the rather limited dynamic range of dig-
ital sensors, pictures are usually taken with some areas purposely overexposed or
clipped, i.e. accumulating charge beyond the full-well capacity of the individual
pixels. These pixels obviously present highly nonlinear noise characteristics, which
are completely different than that of normally exposed pixels.
The raw-data which comes from a sensor always undergoes various process-

ing stages (e.g., denoising, demosaicking, deblurring, white-balancing, gamma-
correction, compression) before the Þnal �cooked� image reaches the user. In
order to process the data and/or to attenuate the noise in the most efficient and
effective way, it is vital that a proper modeling of the noise is considered during
the various stages of digital image processing. However, on the one hand, the
technical datasheets of the devices usually provide vague and inadequate Þgures
for the noise that are of a global nature (i.e., �average� values which are meant to
be valid for the whole sensor) [161]. One the other hand, the existing models for
the sensor noise (e.g., [13], [28], [65], [85], [163], [170]) are not directly applicable
to the raw-data, as they depend on multiple parameters which are unknown and
need to be estimated.
Consequently, raw-data Þltering algorithms either assume independent station-

ary noise models or, if a signal-dependent model is assumed, the correct parameters
for the noise are often not speciÞed. Such rough noise estimates are inadequate for
the high-quality image processing Þlters which are rapidly becoming an integral
part of the imaging chain.
The strong market demand for low-cost high-resolution sensors (�Higher resolu-

tions, initially featured in smartphones, will trickle down into lower-tier products,
emulating the trends witnessed in the digital still camera market� [21]), and the
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ever growing consumer attention towards high-quality imaging, makes the devel-
opment of efficient and noise-resilient digital image processing Þlters (for color
interpolation, color balance, contrast enhancement, sharpening, etc.) very impor-
tant. In many occasions denoising algorithms need to be inserted in the imaging
chain for the image quality to be acceptable. A need therefore exists for an accu-
rate and especially practical noise model for the raw-data which can be exploited
in the imaging chain.
In the next two chapters we present two different approaches to raw-data noise

estimation. First, in Chapter 5, we introduce a nonparametric method for estimat-
ing the standard-deviation function (i.e., the function which gives the standard-
deviation of the noise as a function of the expectation of the pixel raw-data output).
This method relies on the analysis of several images captured under the same Þxed
acquisition and illumination conditions. In contrast with other similar techniques
(including the established standards [133],[134]), our developed procedure does not
require an ideal uniform target. On the contrary, our method beneÞts from the
target non-uniformity, as this allows to estimate at once the standard-deviation
function over a large range of output values.
However, the most signiÞcant contributions in this second part of the thesis are

given in Chapter 6. There, we propose a simple parametric model for the raw-data
noise. The model includes a Poissonian and a Gaussian component and it explicitly
considers the nonlinearity of the sensor response due to under- and over-exposure.
An algorithm for the fully automatic estimation of the model parameters from
a single noisy image is also developed. Experiments with synthetic images and
real raw-data from camera sensors demonstrate the effectiveness and accuracy of
the algorithm in estimating the model parameters and conÞrm the validity of the
proposed model.

A remark on the availability and use of raw data

The algorithms presented in what follows are meant to be applied on the raw data,
i.e. the unprocessed digital output of the imaging sensor, and not on the processed
images (typically stored as TIFF or JPEG Þles) that are obtained at the end of
the digital image processing chain which takes place within the camera. Nearly all
professional or high-end consumer digital cameras do provide the user with direct
access to the raw data. Low-end cameras and cameraphones do not usually pro-
vide this feature and only processed images can be downloaded from the device.
The availability or unavailability of a �raw-data saving� feature in a device is dic-
tated mainly by market-positioning strategies, a not by hardware limitations. As
a matter of fact, raw data does always exists inside the device and can be accessed
using special software provided by the manufacturer. There exist also a number
of �hacked� Þrmwares (see, e.g., [17]) which can be installed on consumer cam-
eras enabling various hidden features, including raw-data saving. These unofficial
Þrmwares have been developed by enthusiasts through reverse engineering of the
official camera Þrmwares and are neither supported nor endorsed by the manu-
facturer. Even though the use of �hacked� Þrmwares voids the warranty of the
camera, they are rather popular because accurate processing of the raw-data allows
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the users to obtain high-quality images that would not otherwise be obtainable
by postprocessing the standard processed output TIFF or JPEG Þles. Plugins for
raw-data processing exist for the common consumer image processing softwares
like Adobe Photoshop or GIMP. Thus, even though the algorithms presented in
this chapter have been developed mainly for a scientiÞc or industrial usage, they
are directly relevant also for end-user applications.
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Chapter 5

Noise measurement for
raw-data by automatic
segmentation of non-uniform
targets

5.1 Introduction
Since the sensor noise is signal-dependent, when measuring the standard-deviation
from the recorded data it is necessary to either have uniform data, or take into
account for the data non-uniformity.
However, in practice, it is very difficult (sometimes even impossible) to guar-

antee uniform recordings. Even with perfectly uniform targets and illumination,
the lens of the camera introduce a systematic �vignetting� effect where the cen-
ter of the image is much brighter (and hence noisier) than the peripheral area.
As a result, the measurements taken under these assumptions are inherently bi-
ased. Unfortunately, the current international standards ISO 15739 and ISO 14524
[134],[133] and proposed approaches (e.g., [14],[13],[82]) for measuring the noise as-
sume known uniform targets and thus provide results that are of a global nature
(i.e., �average� values which are meant to be valid for the whole sensor).
In this chapter we present an approach for measuring the temporal noise in the

raw-data of digital imaging sensors. The method is specially designed to estimate
the curve which describes the standard-deviation of the noise as a function of the
expectation of the pixel raw-data output. Based on an automatic segmentation
of the recorded images, we separate samples with different expected output and
calculate their standard-deviations. Thus, while other techniques require or as-
sume a uniform target, in our approach we beneÞt from the target non-uniformity
by simultaneously estimating the variance function over a large range of output
values.
Because of the automatic segmentation embedded in the procedure, our ap-

proach has a number of advantages over current noise measurement standards:
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� Our approach does not require a speciÞc target (i.e., a test chart). In fact,
any Þxed target or scene can be used for performing the noise measurements.

� The target and illumination do not need to be known in advance, i.e., no
calibration is required before performing the measurements.

� The method is not inßuenced by the focusing or by the presence of the lens
of the camera.

� Illumination does not need to be uniform in space. It is sufficient that the
illumination is constant in time.

� The method is applicable without modiÞcations for gray as well as for color
sensors (Bayer pattern).

� Fixed-pattern noise does not inßuence the measured temporal noise.
� With a single experiment (consisting of multiple shots) we measure a whole
standard-deviation vs. expectation curve, whereas previous techniques aimed
at estimating only a single standard-deviation value for a given uniform in-
tensity.

Overall the method is simple, easy to implement, and allows for accurate mea-
surement with much simpliÞed laboratory equipment. It is thus a cost-effective
alternative to other noise measurement techniques.
We emphasize that our method is not intended to characterize the sensor�s

response (e.g., to derive a camera response function [74]), but rather the temporal
noise in the sensor output. In this sense, if the sensor output is interpreted as an
estimate of the scene radiance, we consider only the variance of this estimate, and
not its bias.

5.2 Observation model

We consider an observation model of the form

z (x) = y (x) + σ (y (x)) ξ (x) , x ∈ X, (5.1)

where X is the set of the sensor�s active pixel positions, z is the actual raw-data
output, y is the ideal output, ξ is zero-mean random noise with standard deviation
equal to 1, and σ is a function of y, deÞning the standard-deviation of the overall
noise component. The function σ is called standard-deviation function or standard-
deviation curve. The function σ2 is called variance function. Since E {ξ (x)} = 0
we have E {z (x)} = y (x) and std {z (x)} = σ (E {z (x)}). There are no additional
restrictions on the distribution of ξ (x), and different points may have different
distributions.
In practice, z (x) is the recorded value of the raw-data at the pixel x, and

y (x) is the ideal value to be recorded if no quantization or noise were present.
The (signal-dependent) signal-to-noise ratio (SNR) of the imaging sensor can be
expressed as SNR(y) = y

σ(y) .
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A good estimate of y (x) can be obtained as the pointwise average of a large
enough number N of observations zn (x), n = 1, . . . ,N , of the form (5.1):

1

N

XN

n=1
zn (x) , zn (x) = y (x) + σ (y (x)) ξn (x) . (5.2)

5.3 The method

The experimental realization of the approach described by (5.2) requires that the
deterministic terms of the equation are truly invariant with respect to the replica-
tion index n. That is, the underlying true signal y (x) must not change over time.
In practice this means that during the acquisition process the camera must not
move, the acquisition parameters (e.g., exposure, aperture, gain) must be Þxed
and the illumination is constant in time.

5.3.1 Acquisition and averaging

Under these conditions, we record a number N of images in raw-data format.
These shots are averaged, to obtain an approximation øz of the noise-free y,

øz (x) =
1

N

XN

n=1
zn (x) = y (x) +

σ (y (x))√
N

÷ξ (x) , x ∈ X. (5.3)

Here ÷ξ (x) is again some zero-mean noise with unitary variance. It is recommended
to take a large number of images, so that the factor 1/

√
N in (5.3) is small. In what

follows we assume that N is large enough and we consider øz (x) = E {z (x)} =
y (x), for all x.

5.3.2 Segmentation

The average image øz is segmented into a number of uniform regions {S}, or seg-
ments. Ideally, within these regions the value of øz (x) should be constant:

S (y) = {x : øz (x) = y} .

However, this may lead to uncertain results as there may be too few (or maybe
none) samples (i.e., pixels) that satisfy the equality øz (x) = y. Pragmatically, it is
convenient to consider a larger estimation set of the form

S∆ (y) = {x : øz (x) ∈ [y −∆/2, y +∆/2)} ,

where ∆ > 0.
Let y and ∆ be Þxed and denote by xm, m = 1, . . . ,M, the coordinates of

the M pixels that constitute the segment S∆ (y) , {xm}Mm=1 = S∆ (y). On this
segment we have that the observations (5.2) satisfy

zn (xm) = y (xm) + σ (y (xm)) ξn (xm) =

= y +∆dn,m + σ (y (xm)) ξn (xm) , (5.4)
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where dn,m ∈ [−1/2, 1/2). It is reasonable to assume that dn,m are uniformly
distributed. Hence, Equation (5.4) can be rewritten as

zn (xm) = y +

r
∆2

12
+ σ2 (y (xm))ξ

0
n (xm) , (5.5)

where ξ0n is again some zero-mean random noise with standard deviation equal to
1.

5.3.3 Measurement of the standard deviation

For any Þxed y we proceed as follows in order to compute the estimate öσ (y) of
σ (y).

Variance for a single image and output value

To contain memory requirements, the variances are Þrst computed independently
for each shot zn. The variance svarn(y) corresponding to expected output y and
shot n is calculated as the unbiased sample variance estimator on the segment,

svarn(y) =

PM
m=1 (zn (xm)− ÷zn (y))2

M − 1 , (5.6)

where
{xm}Mm=1 = S∆ (y) = {x : øz (x) ∈ [y −∆/2, y +∆/2)}

and ÷zn (y) is the average of zn over S∆ (y), ÷zn (y) = 1
M

PM
m=1 zn (xm).

By (5.5), and assuming that within the segment σ (y (xm)) can be well approx-
imated by σ (y), we obtain

E {svarn(y)} = ∆2

12
+ σ2 (y) . (5.7)

Averaging over the shots

The estimate öσ (y) of the standard deviation σ (y) is given according to (5.7) by
the average of the above N estimates:

öσ (y) =

r
1

N

XN

n=1
svarn(y)− ∆

2

12
. (5.8)

Here we assume that the expectation under the square-root is non-negative. In
practice, one can neglect the extra term due to ∆ in (5.7) and (5.8) by choosing
∆ signiÞcantly smaller than σ (y). In this case we simply have

öσ (y) =

r
1

N

XN

n=1
svarn(y).

We remark that while the recorded raw-data has a certain Þxed precision (e.g.,
10 bits), the values attained by øz are much denser because of the averaging. There-
fore ∆ can be taken much smaller than the quantization step of the raw-data. In
Section 5.4 we show results obtained for much different choices of ∆ which demon-
strate that the proposed technique is very stable with respect to this parameter.
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Figure 5.1: Experimental setup.

Standard-deviation curve

The procedure described by the previous two steps is repeated for different values
of y. In this way the standard-deviation curve is found. Typically, one would use
discrete values y ∈ {yi, i = 1, 2 . . . } = {∆j, j ∈ N} ∩ [min {øz} ,max {øz}], which
ensures that the segments are nonoverlapping and hence that the measurements
for different values of y are independent. The estimate of the variance function is
simply öσ2 (y), y ∈ [min {øz} ,max {øz}].

5.4 Experimental results

The standard-deviation curves σ (y), as from Equation (5.1), have been measured
from the raw-data of two different CMOS sensors used in Nokia cameraphones. We
denote them here as sensor/cameraphone �U� and �V�. They are, respectively,
an older 660×492 (VGA) 1/4" sensor (5.4µm pixel pitch) with global shutter, and
a newer 1296×1040 (1.3 Mpixel) 1/3.3" sensor (3.3µm pixel pitch) with rolling
shutter. Both sensors have a Bayer pattern color Þlter array (CFA) with red,
green, and blue Þlters (R, G1, G2, and B).

5.4.1 Setup

The sensors had not been separated from the phones, which were held clamped
in a vice. We used a non-uniform target composed by grayscale vertical ramps
going from white to black1. This simple setup is shown in Figures 5.1 and 5.2.

1The target was printed on normal paper using a common office printer and then enlarged
to A3-size using a copy machine. Graininess or texture, which may be present in such a target,
do not constitute a problem, since the estimation procedure does not rely on any sort of neigh-



128 5. Noise measurement for raw-data by automatic segmentation

Figure 5.2: Experimental setup.

To ensure constant-in-time (ßicker-free) illumination, measurements where taken
in a darkroom where the only source of light was an array of white LED lights
powered by stabilized DC power supplies.
The devices were conÞgured to take multiple shots automatically and without

user intervention (as this would introduce mechanical vibration). A total of 50
shots were taken for each experiment. In Figure 5.3 we show an example of the
shots which were taken. Enlarged details of this shot and of the average image
øz (5.3) are shown in Figure 5.4. The raw-data had 10-bit precision, which we
normalize on the range [0, 1] dividing by 210=1024. The exposure time, gain, and
illumination were Þxed in such a way that the recordings were not saturated (i.e.,
clipped) and thus our raw-data output is typically concentrated inside the range
[0, 0.5]. Furthermore, because of pedestal offset, the output is always larger than
a certain minimum value, which for the two considered devices is about 0.05.

5.4.2 Segmentation

In Figures 5.5 and 5.6 we show examples of a segment S∆ (y) obtained for∆ = 0.01
and∆ = 0.0001. These values are respectively about ten times and one tenth of the
quantization step 1/1024. Observe that the segment corresponding to the smaller
∆ is a subset of the other one. It is interesting to observe that despite the target
was composed by vertical ramps, because of the nonuniform illumination and the
vignetting, the segments do not have a particular horizontal/vertical �shape�.
Especially for small values of ∆ the segments are usually composed of separated
(i.e., disconnected) pixels.

borhood operation in the spatial domain (e.g., smoothing or local Þltering). In this respect, we
emphasize that the segments S∆ (y) are not connected sets.
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Figure 5.3: One of the acquired shots zn.

5.4.3 Standard-deviation curves

In Figure 5.7, we show the standard-deviation curves obtained for ∆ = 0.005,
0.001, 0.0005, 0.00005. It can be seen that, although the curve becomes noisier
for very small ∆, the three plots are essentially the same. This demonstrates the
accuracy of (5.7-5.8) and the stability of our procedure with respect to the choice
of ∆. We remark also that the noisiness of the plot obtained for ∆ = 0.00005 is
well compensated by its higher �sampling� density (there are about 10000 samples
in the plot) which allows for very accurate smoothing or parametric Þtting.

Due to the automatic segmentation, the standard-deviation vs. expectation
curve can been measured using the whole sensor at once as well as using each
color channel separately. The two approaches are in general equivalent. In Figure
5.8 we show the plots obtained separately for each one of the four color channels (R,
G1, G2, and B), whereas the plots shown in Figure 5.7 are due to measurements
using the whole sensor. The four color channels exhibit the same behavior shown
in Figure 5.7.

We note that the sharp vertical drops in the estimated standard-deviation öσ
visible in the plots (e.g., for the blue and for the red channels in Figure 5.8(left))
do not correspond to a real drop in the standard deviation of the noise. Instead,
they are only due to the segments S∆ (y) becoming singletons or empty sets when
y approaches or exceeds the bounds of the interval [min {øz} ,max {øz}]. For empty
or singleton segments S∆ (y), the Equation (5.6) loses its meaning. Such drops in
the estimated standard-deviation are therefore to be ignored when analyzing the
estimated curve öσ (y).
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Figure 5.4: Enlarged detail of the acquired shot zn shown in Figure 5.3 and the corre-
sponding fragment of the image z̄, which is obtained by averaging N such zns.

Figure 5.5: Two segments S∆(y) obtained for ∆=0.01 (left) and ∆=0.0001 (right). The
value of y is the same for both segments.

Figure 5.6: Enlarged details of the segments S∆(y) obtained for ∆=0.01 and ∆=0.0001,
shown in Figure 5.5. These details correspond to the same enlarged location shown in
Figure 5.4.
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Figure 5.7: Standard-deviation curves for the raw-data from CMOS sensor �V� mea-
sured for different values of the segmentation parameter ∆=0.005, 0.001, 0.0005, 0.00005.
The curves are calculated using Equation (5.8) and give an estimate �σ of the standard-
deviation of the temporal noise in the raw-data as function of the expected (i.e., noise-
free) output raw-data value y = E{z}.

Figure 5.8: Measured standard-deviation curves (and corresponding Þtted model) for
the raw-data from CMOS sensor �V� (left) and �U� (right). Plots for the different color
channels (R, G1, G2, B) are drawn in their corresponding colors. The model Þts equally
well all color channels. A comparison between the two curves shows that for the same
expected raw-data values the newer sensor is noisier than the older one.

5.4.4 A parametric model

The following parametric model based on the Poissonian (photon-limited) nature
of the sensor (see next chapter and [63]) achieves a near-perfect Þt to the experi-
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mentally measured data:

σ (y) = q
p
max (0, y − p), qU = 0.0060, pU = 0.050,

qV = 0.0092, pV = 0.021,
(5.9)

The plots of these functions are shown, superimposed, in Figure 5.8. We remark
again that the same curve σ (y) Þts equally well all four color channels. It can be
seen that the newer sensor �V� presents a lower SNR, a peculiarity that can be
justiÞed by the increased pixel density2.

Weighted least-squares Þtting

The above model has been obtained by a weighted least-squares Þtting of the
variance in the form σ2 (y) = öay +öb, whereh

öa öb
i
= argmin

a,b

¡
[a b]ΦT−�v¢W ¡

[a b]ΦT−�v¢T= (5.10)

= �vWΦ
¡
ΦTWΦ

¢−1
,

Φ =

 y1 1
y2 1
...

...

 , �v =
£
öσ2 (y1) öσ2 (y2) · · · ¤ , W =


w1 0 · · ·
0 w2

. . .
...

. . .
. . .

 ,
and where the weight wi = Mi, i.e. wi is equal to the number of pixels in the
segment S∆ (yi). Equation (5.10) is thus equivalent ton

öa,öb
o
= argmin

a,b

X
i

¡
ayi + b− öσ2 (yi)

¢2
wi,

and the parameters q and p are obtained from öa and öb as

q =
√
öa, p = − b

a
.

A much more sophisticated model Þtting procedure is presented in the next chap-
ter.

5.5 Conclusions to the chapter
We have presented a novel method for the accurate measurement of the standard-
deviation of the temporal noise in the raw-data of digital imaging sensors. The

2Note that this does not imply that a picture of the same scene taken with sensor �V� is
going to be noisier than that taken with sensor �U�.
Plots such as those in Figure 5.8 may serve for a direct, practical, and meaningful comparison

of the noisiness of two sensors only if they correspond to measurements taken with a pair of
�matching� analog gain parameters. We say that the analog gain parameters match if, when
acquiring two images (one with each of the sensors) of the same scene with same exposure time
and the same optical aperture, the two raw images cover the same range of normalized raw-data
values (or, equivalently, the two normalized histograms match).
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method is based on an automatic segmentation of the recorded images. It allows
to use non-uniform targets and illumination, thus can be implemented easily with-
out special calibrated test charts and lighting. While previous techniques estimate
only a single value for the standard deviation for a given uniform raw-data, the pro-
posed method can measure a complete standard-deviation vs. expectation curve
in a single experiment. The measured standard-deviation curve is nonparametric
(pointwise estimation for every value of y). However, as seen from the examples
in Figures 5.7 and 5.8, the curve allows for a simple and accurate parametric Þt.
In the next chapter, we present a parametric model for raw-data noise and an
algorithm which can estimate the model parameters from a single noisy image. In
this way we overcome the main drawback of the method proposed in the present
chapter, i.e., the the need of multiple shots.
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Chapter 6

Practical
Poissonian-Gaussian noise
modeling and Þtting for
single image raw-data

We present a simple noise model which can accurately be used for the raw-data.
Based on the above considerations, it is a signal-dependent noise model based
on a Poissonian part, modeling the photon sensing, and Gaussian part, for the
remaining stationary disturbances in the output data. We explicitly take into
account the problem of clipping (over- and underexposure), faithfully reproducing
the nonlinear response of the sensor. Only two parameters are sufficient to fully
describe the model. These parameters are explained in relation to the sensor�s
hardware characteristics (quantum efficiency, pedestal, gain). As a second and
most important contribution, we propose an algorithm for the fully automatic
estimation of the model parameters given a single noisy image.

The chapter is organized as follows. In Section 6.1 we present the model in its
basic form, which ignores the clipping. The parameter estimation algorithm is then
presented in Section 6.2. The general model with clipping requires more involved
mathematics, and it is given in Section 6.3, followed by the modiÞed estimation
algorithm in Sections 6.4 and 6.5. Throughout these sections, we demonstrate
the accuracy of the algorithm with synthetic test images, for which the exact
noise parameters are known. Experiments with real raw-data are presented in
Section 6.6; these experiments prove the practical applicability of the method and
conÞrm that the raw-data noise can indeed be accurately modeled as a clipped
Poissonian-Gaussian process. Further comments and details on the algorithm and
its implementation are given in Section 6.7.

135
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6.1 Poissonian-Gaussian modeling
Let us consider again the generic signal-dependent noise observation model of the
form

z (x) = y (x) + σ (y (x)) ξ (x) (6.1)

where x ∈ X is the pixel position in the domain X, z is the observed (recorded)
signal, y is the original (unknown) signal, ξ is zero-mean independent random
noise with standard deviation equal to 1, and σ : R → R+ is a function of y
that gives the standard deviation of the overall noise component. Throughout
the chapter, we denote the expected value (or mathematical expectation) of a
random variable as E {·}, its variance as var {·}, and its standard deviation as
std {·} = p

var {·}; when any of these operators is applied to a sequence (resp.
matrix) of random variables, its output is deÞned as the sequence (resp. matrix)
of the operator�s outputs for the individual random variables. The symbol σ is used
exclusively to denote this function of the model (6.1). From E {ξ (x)} = 0 follows
that E {z (x)} = y (x), i.e. the original signal can be deÞned as the expected value
of the noisy observations. Consequently, we have that std {z (x)} = σ (E {z (x)}),
i.e. the standard deviation of the noise is a function, namely σ, of the expectation
of the noisy signal.
In our modeling, we assume that the noise term is composed of two mutually

independent parts, a Poissonian signal-dependent component ηp and a Gaussian
signal-independent component ηg:

σ (y (x)) ξ (x) = ηp (y (x)) + ηg (x) . (6.2)

In terms of distributions, these two components are characterized as follows,

χ
¡
y (x) + ηp (y (x))

¢ ∼ P (χy (x)) , ηg (x) ∼ N (0, b) ,

where χ > 0 and b ≥ 0 are scalar parameters and P and N denote the Poisson
and normal (i.e., Gaussian) distributions. From the elementary properties of the
Poisson distribution, we obtain the following equation for the mean and variance

E
©
χ
¡
y (x) + ηp (y (x))

¢ª
= var

©
χ
¡
y (x) + ηp (y (x))

¢ª
= χy (x) .

Since
E
©
χ
¡
y (x) + ηp (y (x))

¢ª
= χy (x) + χE

©
ηp (y (x))

ª
and

χ2 var
©
ηp (y (x))

ª
= χy (x) ,

it follows that

E
©
ηp (y (x))

ª
= 0 and var

©
ηp (y (x))

ª
= y (x) /χ.

Thus, the Poissonian ηp has varying variance that depends on the value of y (x),
var

©
ηp (y (x))

ª
= ay (x), where a = χ−1. The Gaussian component ηg has instead

constant variance equal to b.
Consequently, the overall variance of z in (6.1) has the affine form

σ2 (y (x)) = ay (x) + b, (6.3)
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Figure 6.1: Some examples of the standard-deviation functions σ (solid lines) from the
model (6.1) for different combinations of the constants a and b of Equation (6.4): (top)
a = 0.022, 0.062, 0.102, b = 0.042 and (bottom) a = 0.42, b = 0.022, 0.062, 0.102. The
dashed lines show the corresponding functions �σ of the clipped observation model (6.30),
as functions of the clipped �y (see Section 6.3). The small black triangles indicate the
points (�y, �σ (�y)) which correspond to y = 0 and y = 1.

which gives the standard deviation σ as the square root

σ (y (x)) =
p
ay (x) + b, (6.4)

and, in particular, σ (0) =
√
b and σ (1) =

√
a+ b.

Some examples of standard-deviation functions σ for different combinations of
the constants a and b are shown, as an illustration, in Figure 6.1 (solid lines).
Figure 6.2 presents a simple piecewise smooth image which is degraded by

Poissonian and Gaussian noise with parameters χ = 100 (a = 0.01) and b =
0.042. As illustrated in Figure 6.1, these parameters imply that the noise standard-
deviation in the brightest parts of the image is more than twice as large as in the
darker ones.

6.1.1 Raw-data modeling

The Poissonian-Gaussian model (6.1-6.2) is naturally suited for the raw-data of dig-
ital imaging sensors. The Poissonian component ηp models the signal-dependent
part of the errors, which is essentially due to the photon-counting process, while
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Figure 6.2: A piecewise smooth test image of size 512× 512: original y and observation
z degraded by Poissonian and Gaussian noise with parameters χ = 100 (a = 0.01) and
b = 0.042.

the Gaussian ηg accounts for the signal-independent errors such as electric and
thermal noise. We brießy mention how the above model parameters relate to
elementary aspects of the digital sensor�s hardware.

Quantum efficiency

The parameter χ of ηp is related to the quantum efficiency of the sensor: the larger
the number of photons necessary to produce a response of the sensor (generation
of an electron), the smaller the χ.

Pedestal parameter

In digital imaging sensors, the collected charge is always added to some base
�pedestal� level p0 ∈ R+. This constitutes an offset-from-zero of the output data
and it can be rewritten as a shift in the argument of the signal-dependent part of
the noise:

z (x) = y (x) + σ (y (x)− p0) ξ (x) =
= y (x) + ηp (y (x)− p0) + ηg (x) .

Analog gain

We model the analog gain as an ampliÞcation of the collected charge. Let us
denote the variables before ampliÞcation by the circle superscriptû,

ûz (x) = ûy (x) +ûηp (ûy (x)− p0) +ûηg (x) .

We formalize the ampliÞcation Θ ofûz as the multiplication of the noise-free signal,
of the Poissonian noise, and of a part of the Gaussian noise, by a scaling constant
θ > 1,

z(x) =Θ (ûz(x)) = θ
¡
ûy(x) +ûηp(ûy(x)−p0) +ûη0g(x)

¢
+ûη00g (x).
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Figure 6.3: Some examples of the standard-deviation functions σ (solid lines) which are
often found for the raw data. In these three examples the parameters (a, b) from Equation
(6.4) are

!
1.5 · 10−3, 10−4", !6 · 10−4,−5 · 10−6", and !10−4,−8 · 10−6". The dashed lines

show the corresponding functions �σ of the clipped observation model (6.30), as functions
of the clipped �y (see Section 6.3). The small black triangles indicate the points (�y, �σ (�y))
which correspond to y = 0 and y = 1.

Here, the Gaussian noise term ûηg has been split in two components ûη
0
g and ûη

00
g ,

ûη0g +ûη
00
g = ηg, where ûη

00
g represents the portion of the noise that is introduced

after the ampliÞcation and thus not affected by the factor θ. The expectation and
variance for z are

E {z (x)} = y (x) = θûy (x) ,

var {z (x)} = θ2χ−1 (ûy (x)− p0) + θ2 var
©
ûη0g (x)

ª
+ var

©
ûη00g (x)

ª
.

Hence, we come again to a model of the form (6.3)-(6.4) with

a = χ−1θ, b = θ2 var
©
ûη0g (x)

ª
+ var

©
ûη00g (x)

ª− θ2χ−1p0.
Note that now this b can be negative, provided a large pedestal p0 and a small
variance of ûηg. This does not mean that there is a �negative� variance. Indeed,
because of the pedestal, y ≥ θp0 and therefore ay + b ≥ 0.
In digital cameras, the analog gain (i.e., θ) is usually controlled by the choice

of the ISO sensitivity setting. This can be done manually by the user, or auto-
matically by the camera (�auto mode�). Large ISO numbers (e.g., 800 or 1600)
correspond to large θ, and thus worse signal-to-noise ratio (SNR). Lower values
(e.g., ISO 50) yield a better SNR but at the same time produce darker images,
unless these are taken with a longer exposure time (which corresponds to having
larger values of ûy before the multiplication by θ).
Figure 6.3 shows few examples of the standard-deviation functions σ which can

typically be found for the raw data. Two of these examples have b < 0, which
corresponds to a pedestal p0 > 0.

6.1.2 Heteroskedastic normal approximation

Throughout the following sections, we need to derive a few results and relations
which depend not only on the mean and variance, but also on the particular
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Figure 6.4: Probability densities (top) and distributions (bottom) for Poisson P (λ) and
Gaussian N (λ, λ) random variables, λ = 2, 10, 20, 40. Since the Poisson distribution is
discrete, in the top chart are shown scaled Dirac-impulses (discrete weights) and not the
density itself (which is not deÞned as an ordinary function).

distribution of the processed samples. For the sake of simpliÞcation, we exploit
the usual normal approximation of the Poisson distribution, which gives

P (λ) ≈ N (λ, λ) . (6.5)

The accuracy of this approximation increases with the parameter λ and in practice,
for large enough1 λ, a Poissonian process can be treated as a special heteroskedastic
Gaussian one. We thus obtain the following normal approximations of the errors

σ (y (x)) ξ (x) =
p
ay (x) + bξ (x) ' ηh (y (x)) , (6.6)

where ηh (x) ∼ N (0, ay (x) + b).

Figure 6.4 illustrates the normal approximation (6.5) for a few values of the
parameter λ.

1How large λ is enough really depends on the considered application and desired accuracy.
The fact that the Poisson distribution is discrete is a secondary aspect, because quantization of
the digital data makes anyway discrete also the errors due to continuous distributions.
For the considered standard-deviation estimation problem, we found experimentally that al-

ready with λ = 10 (corresponding to χ = 20 for the middle intensity y = 0.5) there is virtually no
difference between the estimation accuracy of a truly Poissonian variable and that of its Gaussian
approximation.
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6.2 The algorithm

Our goal is to estimate the function σ : R → R+ of the observation model (6.1)
from a noisy image z. The proposed algorithm is divided in two main stages: local
estimation of multiple expectation/standard-deviation pairs and global parametric
model Þtting to these local estimates. An initial preprocessing stage, in which
the data is transformed to the wavelet domain and then segmented into non-
overlapping level sets where the data is smooth, precedes the estimation.

6.2.1 Wavelet domain analysis

Similar to [36], we facilitate the noise analysis by considering wavelet detail coef-
Þcients zwdet deÞned as the downsampled convolution

zwdet =↓2 (z ~ ψ) ,

where ψ is a 2-D wavelet function with zero mean and unity )2-norm,
P
ψ = 0,

kψk2 = 1, and ↓2 denotes the decimation operator that discards every second row
and every second column. Analogously, we deÞne the normalized approximation
coefficients as

zwapp =↓2 (z ~ ϕ) ,
where ϕ is the corresponding 2-D wavelet scaling function, which we specially
normalize so that

P
ϕ = 1.

For noisy images, the detail coefficients zwdet contain mostly noise and, due to
the normalizations of the convolution kernels, we have

std
©
zwdet

ª
= ↓2 (std {z ~ ψ}) =↓2

µq
var {z}~ ψ2

¶
' (6.7)

' ↓2 (std {z} kψk2) =↓2 (std {z}) =
= ↓2 (σ (y)) = σ (↓2 y) = σ (↓2 (y

P
ϕ)) '

' σ (↓2 (y ~ ϕ)) = σ (E {zwapp}) , (6.8)

with the approximate equalities ' becoming accurate at points in regions where
y (and hence std {z}) is uniform, as we can assume that the distribution of z does
not change over the small support of the wavelets. Thus, in particular, at a point
x in such uniform regions, we can assume that

zwdet (x) ∼ N (0, σ (E {zwapp (x)})) , (6.9)

and, because of decimation and orthogonality properties of wavelet functions, that
the noise degrading zwdet, as well as the noise degrading zwapp, are independent
ones.
Note that, always, kϕk2 6= 1. Therefore, when considering std {zwapp}, the

above equations can be repeated, replacing ψ with ϕ, only provided that the
factor kϕk2 is kept. Thus, we come to

std {zwapp} ' kϕk2 σ (zwapp) .
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Figure 6.5: Wavelet approximation and detail coefficients zwapp and zwdet , restricted on
the set of smoothness Xsmo . The scale of this Þgure is half that of Fig. 6.2.

In our implementation, we use separable kernels ψ = ψ1~ψT1 and ϕ = ϕ1~ϕT1
where ψ1 and ϕ1 are 1-D Daubechies wavelet and scaling functions

ψ1 = [0.035 0.085 − 0.135 − 0.460 0.807 − 0.333] , (6.10)

ϕ1 = [0.025 − 0.060 − 0.095 0.325 0.571 0.235] .

6.2.2 Segmentation

Like in our previous work [48], we segment the data into level sets, in each of
which the image can be reasonably assumed to be uniformly close to a certain
value. Having nothing but a noisy image at our disposal, we shall employ spatial
smoothing (as opposed to temporal smoothing, used in [48]) in order to attenuate
the noise and an edge-detector in order to stay clear from edges when analyzing
the data, thus enabling the conditions (6.7)-(6.8).
There exist a myriad of different methods which can be used for smoothing

or for edge detection. However, for our purposes, the following simple and non-
adaptive methods proved adequate for all considered experimental cases.

Smoothed approximation

From zwapp, we compute a smoothed (low-pass) image zsmo,

zsmo = zwapp ~N, (6.11)

where N is positive smoothing kernel, N ≥ 0 and kNk1 = 1. The smoothing
action of the kernel should be especially strong, so to effectively suppress most of
the noise. In our implementation, we use a uniform 7× 7 kernel for N.
In the corresponding regions where y itself is smooth, zsmo is approximately

equal to E {zwapp}, and thus to ↓2 y. This is a reasonable assumption provided
that the support of N does not intersect edges during the calculation of the con-
volution (6.11).
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Edges and set of smoothness

To detect edges, we use the conventional approach where some smoothed deriva-
tives of the image are thresholded against an estimate of the local standard devi-
ation. Exploiting the fact that the mean of the absolute deviations of N (0, 1) is
equal to

p
2/π [88], we can deÞne a rough estimate of the local standard-deviations

of zwdet as the map

s =

r
π

2

¯̄
zwdet

¯̄
~N.

We deÞne the set of smoothness Xsmo as

Xsmo = {x ∈↓2 X : |∇ (Λ (zwapp)) (x)|+ |Λ (zwapp) (x)| < τ · s (x)}, (6.12)

Λ (zwapp) = ∇2medÞlt (zwapp) ,
where ∇ and ∇2 are, respectively, gradient and Laplacian operators, medÞlt de-
notes a 3×3 median Þlter, ↓2 X is the decimated domain of the wavelet coefficients
zwapp , and τ > 0 is positive threshold constant. We realize both the Laplacian
operator ∇2 and the gradient operator ∇ as convolutions against 9 × 9 kernels.
Thresholding the sum of the moduli of the Laplacian and of its gradient is a
heuristic way to obtain �thickened� edges.
In Figure 6.5, we show the wavelet approximation and detail coefficients zwapp

and zwdet, restricted on the set of smoothness Xsmo (whose complement thus
appears as white in the Þgure), calculated for the test image z of Figure 6.2. Note
that some of the weakest edges have not been detected as such.

Level sets (segments)

In the set of smoothness Xsmo, we can assume that edges of the image did not
interfere with the smoothing (6.11), hence, that the conditions (6.7)-(6.8) hold and
that, for x ∈ Xsmo,

zsmo(x) = E {zwapp(x)} = E {(↓2 z)(x)} = (↓2 y)(x) ,
std
©
zwdet(x)

ª
= std {(↓2 z)(x)} = (↓2 (σ (y)))(x).

We identify in the smoothness set Xsmo a collection of non-overlapping level
sets (segments) Si ⊂ Xsmo, i = 1, . . . , N of the smoothed image zsmo. Each level
set, characterized by its centre value ui and allowed deviation ∆i > 0, is deÞned
as

Si = {x ∈ Xsmo : zsmo (x) ∈ [ui −∆i/2, ui +∆i/2)} . (6.13)

By non-overlapping we mean that Si ∩ Sj = ∅ if i 6= j. In practice, one can
take Þxed ∆i ≡ ∆ and equispaced ui ∈

©
∆j, j = 1, . . . , øN =

§
∆−1

¨ª
. Further, we

require that the level sets are non-trivial, in the sense that each set Si must contain
at least two samples2; thus, N ≤ øN and

SN
i=1 Si ⊆ Xsmo ⊆↓2 X. Figure 6.6 shows

two of the level sets computed for the example in Figure 6.2 for ∆ = 1/300.
Observe that these sets are meager and quite fragmented.

2The smoothness threshold τ (6.12) can be automatically increased in the rare event of N < 2,
i.e. when there are not enough non-trivial level sets for the estimation. Note that Xsmo is
monotonically enlarging to ↓2 X with τ , Xsmo %

τ→∞
↓2 X.



144 6. Poissonian-Gaussian noise modeling and Þtting

Figure 6.6: Two level-sets Si (6.13) computed for ∆i = ∆ = 1/300. The scale of this
Þgure is the same as that Fig. 6.5.

6.2.3 Local estimation of expectation/standard-deviation
pairs

For each level set Si, we deÞne the (unknown) variable

yi =
1

ni

niX
j=1

E {zwapp (xj)} , {xj}nij=1 = Si. (6.14)

Note that yi and ui might not coincide. The level set Si is used as a one domain
for the computation of a pair of estimates (öyi, öσi), where öyi is an estimate of yi and
öσi is an estimate of σ (yi). In what follows, although we shall refer explicitly to yi,
this variable is always used implicitly and, in the Þnal estimation of the function
y 7→ σ (y), the many yi, i, . . . , N , remain �hidden� variables which are modeled as
unknown. Similarly, the smoothed data zsmo and the values ui and ∆i used for
the construction of Si do not appear in the following estimation, where only zwdet,
zwapp and Si are used in order to compute the estimates öyi and öσi.

Estimation of yi
We estimate yi as the sample mean of the approximation coefficients zwapp on Si

öyi =
1

ni

niX
j=1

zwapp (xj) , {xj}nij=1 = Si. (6.15)

Estimation of σ (yi)

The estimate öσi is calculated as the unbiased sample standard-deviation of the
detail coefficients zwdet on Si

öσi =
1

κni

sPni
j=1

¡
zwdet (xj)− øzwdeti

¢2
ni − 1 , (6.16)

where øzwdeti = 1
ni

Pni
j=1 z

wdet (xj) and the factor κ−1ni is deÞned [88]

κn =

r
2

n− 1
Γ
¡
n
2

¢
Γ
¡
n−1
2

¢ = 1− 1

4n
− 7

32n2
+O

µ
1

n3

¶
. (6.17)
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This factor, which comes from the mean of the chi-distribution with n−1 degrees of
freedom, makes the estimate unbiased for normally and identically independently
distributed (i.i.d.) zwdet (xj).

Unbiasedness

Clearly from the deÞnition (6.14), öyi is an unbiased estimator of yi.
The unbiasedness of öσi as an estimator of σ (yi) is a more complex issue.

As observed above, öσi is an unbiased estimator of σ (yi) provided that zwdet is
normally i.i.d. on the level set Si. However, we cannot claim, in general, that zwdet

is identically distributed on Si. We remark that the assumed validity of (6.7)-(6.8)
concerns individual points. It does not mean that std

©
zwdet

ª
is constant over Si.

As a matter of fact, especially for large∆i, E {zwapp (x)} is not constant for x ∈ Si,
which implies that the standard deviations of the wavelet detail coefficients (6.8)
are not constant over Si. Lacking any particular hypothesis on the image y, it is
nevertheless reasonable to assume that {E {zwapp (x)}, x ∈ Si} has a symmetric
(discrete) distribution centred at yi (with diameter bounded by ∆i). Because
of (6.3) and (6.9), we have that {var©zwdet (x)ª, x ∈ Si} has also a symmetrical
distribution, which is centred at var {yi}. This makes κ2ni öσ2i an unbiased3 estimator
of var {yi} and, since κn →

n→∞ 1, öσi is an asymptotically unbiased estimator of

σ (yi). This asymptotic unbiasedness is relevant in the practice, since a large ∆i
corresponds to large ni.

We further note that, despite the segmentation and removal of edges, the pres-
ence of sharp image features, singularities, or even texture in the segment Si is
not completely ruled out. This can be effectively compensated by means of non-
linear robust estimators of the standard deviation, such as the well-known median
of absolute deviations (MAD) [119]. For the sake of expository simplicity, in the
current and in the next section we restrict ourself to the basic estimator (6.16) and
postpone considerations on robust estimation of the standard-deviation to Section
6.5.

Variance of the estimates

The variance of the estimates öyi and öσi depends directly on the variances of the
samples used for the estimation, which are degraded by independent noise. With
arguments similar to Section 6.2.3, the variances of the estimates can be expressed
as

var {öyi} = σ2 (yi) ci, var {öσi} = σ2 (yi) di, (6.18)

ci =
kϕk22
ni

, di =
1− κ2ni
κ2ni

=
1

2ni
+

5

8n2i
+O

µ
1

n3i

¶
, (6.19)

where these expressions coincide with those for the perfect case when var
©
zwdet

ª
and var {zwapp} are constant on Si [88].

3This can be proved easily since, for x ∈ Xsmo , we can treat E
$
zwdet (x)

%
as zero.
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Figure 6.7: Each dot of the scatter plot corresponds to a pair (�yi, �σi) of estimates of
yi and σ (yi). The solid line shows the maximum-likelihood estimate �σÞ t of the true
standard-deviation function σ. The plot of �σÞ t overlaps perfectly with that of the true
σ (shown in Figure 6.1). The estimated parameters are �a = 0.01008 (�χ = 99.20) and
�b = 0.001583 (

%
�b = 0.03979). The initialization parameters, found as the least-squares

solution (6.26), were �a0 = 0.00994 (�χ0 = 100.62) and �b0 = 0.001649 (
%
�b0 = 0.04061).

Distribution of the estimates

The estimates öyi and öσi are distributed, respectively, following a normal distrib-
ution and a scaled non-central chi-distribution, which can also be approximated,
very accurately for large ni, as a normal distribution [88]. Thus, in what fol-
lows, we treat both öyi and öσi as normally distributed random variables and, in
particular, as

öyi ∼ N
¡
yi, σ

2 (yi) ci
¢
, öσi ∼ N

¡
σ (yi) , σ

2 (yi) di
¢
, (6.20)

where ci and di are deÞned as in (6.19).

6.2.4 Maximum-likelihood Þtting of a global parametric
model

The maximum-likelihood (ML) approach is used to Þt a global parametric model
of the function σ on the estimates {öyi, öσi}Ni=1. Depending on the parameters a
and b, we have σ2 (y) = ay + b. For reasons of numerical consistency (note that
formally this σ2 (y) may be zero or negative), for the Þtting we deÞne a simple
regularized variance-function σ2reg as

σ2reg (y) = max
¡
ε2reg , σ

2 (y)
¢
= max

¡
ε2reg , ay + b

¢
, (6.21)

where εreg > 0 is a small regularization parameter. Hence, the regularized standard-

deviation σreg =
q
σ2reg (y) is always well deÞned, for any choice of a, b, and y.

As discussed in Section 6.2.3, we can assume normality and unbiasedness for
both öyi and öσi. Thus, the conditional probability densities of öyi and öσi given
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yi = y are, respectively,

℘ (öyi|yi = y) = 1√
2πσ2r e g (y)ci

e
− 1
2σ2r e g (y)ci

(�yi−y)2
,

℘ (öσi|yi = y) = 1√
2πσ2r e g (y)di

e
− 1
2σ2r e g (y)di

(�σi−σr e g (y))2
.

Further, we observe that, because of the orthogonality of the wavelets, öyi and öσi
are mutually independent4. Hence,

℘ ((öyi, öσi) |yi = y) = ℘ (öyi|yi = y)℘ (öσi|yi = y) = (6.22)

=
1

2π
√
cidi

1

σ2reg (y)
e
− 1
2σ2r e g (y)

!
(�yi−y)2

ci
+
(�σi−σr e g (y))2

di

"
.

Let us remark that (6.22) is a function of the parameters a and b, which de-
Þne the regularized variance function σ2reg (6.21). The posterior likelihood L is

obtained by considering all measurements {(öyi, öσi)}Ni=1 and by integrating the
densities ℘ ((öyi, öσi) |yi = y) with respect to a prior probability density ℘0 (y) of y,

L (a, b) =
NY
i=1

Z ∞

−∞
℘ ((öyi, öσi) |yi = y)℘0 (y) dy. (6.23)

The integration copes with the fact that yi and y are unknown. For images in
the range [0, 1], the simplest and most obvious choice is ℘0 to be uniform on
[0, 1], which implies that (6.23) becomes L (a, b) =

QN
i=1

R 1
0
℘ ((öyi, öσi) |yi = y) dy.

In our experiments with synthetic images we use this prior. However, we wish
to note that other prior statistics have been shown to be more representative of
the histograms of natural images [80]. Let us observe that (öyi, öσi) and (öyj , öσj) ,
i 6= j, are mutually independent because the corresponding level sets Si and Sj
are non-overlapping.
From (6.23), the sought parameter estimates öa and öb are deÞned as the solution

of ³
öa,öb
´

= argmax
a,b

L (a, b) = argmin
a,b

− lnL (a, b) = (6.24)

= argmin
a,b

−
NX
i=1

ln

Z
℘((öyi, öσi) |yi = y)℘0 (y) dy.

Hence, our Þnal estimate of the function σ is

öσÞt (y) =

r
max

³
0, öay +öb

´
. (6.25)

Figure 6.7 shows the result of the above optimization for the test example
shown in Figure 6.2. It can be seen that the procedure estimates the parameters
of the noise with great accuracy.

4This independence is a general property of the sample mean and sample standard-deviation,
which property holds also when the estimates are computed from the very same samples [88].
However, by sampling two independent sets of wavelet coefficients, we have that the two estimates
are necessarily independent, regardless of the particular mean and standard-deviation estimators
used, a fact that comes useful for the forthcoming sections.
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Iterative solution and initialization

In our implementation, we solve the problem (6.24) numerically, using the Nelder-
Mead iterative downhill simplex method [122],[125] and evaluating the integrals
as Þnite sums. As initial parameters öa0,öb0 for this iterative optimization we take
the least-squares solutionh

öa0 öb0

i
= argmin

a,b

¡
[a b]ΦT−�v¢ ¡[a b]ΦT−�v¢T= (6.26)

= �vΦ
¡
ΦTΦ

¢−1
, (6.27)

where

Φ =

 öy1 1
öy2 1
...

...

 , �v =
£
ÿκ2n1öσ

2
1 ÿκ2n2öσ

2
2 · · · ¤ , (6.28)

with the factors ÿκn deÞned as ÿκn = κn. The linear problem (6.26) allows a simple
direct solution by means of the normal equations (6.27). While in (6.24) we aim at
Þtting the standard-deviation curve σreg to the estimates {(öyi, öσi)}Ni=1, Equation
(6.26) minimizes the residuals with respect to the variances öσ2, treated as a linear
function of the parameters a and b. Here, the factor ÿκ2ni makes ÿκ

2
ni öσ

2
i an unbiased

estimate of the variance (contrary to öσi (6.16), which is an unbiased estimate of
the standard deviation).

6.3 Clipping (censoring)

6.3.1 Clipped observations model

In practice, the data range, or dynamic range, of acquisition, transmission, and
storage systems is always limited. Without loss of generality, we consider data
given on the normalized range [0, 1], where the extremes correspond to the max-
imum and minimum pixel values for the considered noisy image (e.g., raw data)
format. Even if the noise-free image y is within the [0, 1] range, the noise can cause
z to exceed these bounds. We shall assume that values exceeding these bounds are
replaced by the bounds themselves, as this corresponds to the behavior of digital
imaging sensors in the case of over- or underexposure. Thus, we deÞne the clipped
(or censored5) observations ÷z as

÷z (x) = max (0,min (z (x) , 1)) , x ∈ X, (6.29)

where z is given by the signal-dependent noise model (6.1). Let ÷y (x) = E {÷z (x)}.
The corresponding noise model for the clipped observations (6.29) is

÷z (x) = ÷y (x) + ÷σ (÷y (x)) ÷ξ (x) , (6.30)
5Strictly speaking, the form of the so-called censored samples [23] is really �z = z if 0 ≤ z ≤ 1

and no sample (i.e., censoring) if z < 0 or z > 1. Usually, the amount of censored samples below
and above the extrema are assumed as known (Type-1 censoring). Thus, clipped (6.29) and
censored observations can, in a sense, be considered as equivalent. However, the formulas and
estimators for censored variables which can be found in the literature cannot be used directly in
the case of the clipped observations (6.29).
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where again E
n
÷ξ (x)

o
= 0, var

n
÷ξ (x)

o
= 1, and the function ÷σ : [0, 1] → R+ is

deÞned as ÷σ (÷y (x)) = std {÷z (x)}.
In general, ÷y (x) = E {÷z (x)} 6= E {z (x)} = y (x), ÷σ (÷y (x)) = std {÷z (x)} 6=

std {z (x)} = σ (y (x)), and, even though var
n
÷ξ (x)

o
= var {ξ (x)} = 1, the distri-

butions of ξ and ÷ξ are different.
In Figure 6.1 one can compare the standard-deviation functions ÷σ (dashed line)

and σ (solid line) for different combinations of the constants a and b in (6.4).
In the next sections, we rely on the heteroskedastic normal approximation (6.6)

and hence treat z as a purely Gaussian variable. Consequently, we model ÷z as a
clipped (censored) normal variable. We note that this normal approximation is
especially relevant for values of y = E {z} close to 0 or 1, where the clipping
effects may be dominant. For y close to 1, we have that (6.5) holds with the
largest values of λ, hence is for this values of y that the Gaussianization of the
Poissonian component ηp (y (x)) is most accurate. For y close to 0, although λ
in (6.5) might not be large, the approximation holds because the variance ay (x)
of ηp (y (x)) becomes negligible compared to the variance b of the Gaussian part
ηg (x). This is true provided that b 6= 0. However, if b = 0 the noise has only the
Poissonian component ηp , which is always positive. It means that z ≥ 0 and, thus,
÷z = min (1, z). Therefore, if b = 0, for our purposes it is sufficient to consider only
the normal approximation for y close to 1, as no clipping happens at 0.

6.3.2 Expectations, standard deviations, and their transfor-
mations

To simplify the calculations, we shall assume that the two clippings, the one from
below (z < 0, ÷z = 0) and the one from above (z > 1, ÷z = 1), are not mixed by
the randomness of the noise, and can thus be computed independently6. In other
words, this means that, in practice, if y is close enough to 0 so that it is possible
that z < 0, then it is impossible that z > 1; similarly, if y is close enough to 1,
so that z can be larger than 1, then z cannot be smaller than 0; for intermediate
values of y, with 0¿ y ¿ 1, we have that 0 < z < 1, i.e. clipping is not happening.
In what follows, we therefore treat separately the two cases:

� clipping from below (left single censoring): y and z are near 0 and z < 1,
thus, ÷z = max (0, z);

� clipping from above (right single censoring): y and z are near 1 and z > 0,
thus, ÷z = min (z, 1).

6Formally, this corresponds to assuming that, for a given y (x), the product probability
P (z (x) > 1) · P (z (x) < 0) is negligibly small. This condition is satisÞed provided, e.g., the
stronger condition that P (z (x) < 0|y (x) > 1− ?) and P (z (x) > 1|y (x) < ?) are both negligibly
small for ? = 0.5. These conditions are all surely met in the practical cases, since there the
standard deviation σ (y (x)) of z (x) is always much smaller (in fact, several orders smaller) than
0.5 and its distribution does not have heavy tails (note that [y − γσ (y) , y + γσ (y)] with γ ≥ 4
can be a rather �safe� conÞdence interval for z, with higher than 99.99% conÞdence for Gaussian
distributions).
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Figure 6.8: The probability density function of �ν = max (0, ν), as deÞned by Equation
(6.31). In this illustration µ = 1. The height of the impulse at 0 is equal to the area
under the bell curve between −∞ and 0.

Further, we combine the results for the two cases, so to obtain formulas which
are valid for the case ÷z = max (0,min (z, 1)), where clipping can happen from
above or below (double censoring).

Clipping from below (left single censoring)

Since ÷z = max (0, z), we have that E {÷z} ≥ E {z} = y.
Let ν ∼ N (µ, 1) be a normally distributed random variable with mean E {ν} =

µ and unitary variance and ÷ν = max (0, ν).
The probability density f�ν of ÷ν is a generalized function deÞned as follows

f�ν (t) =

½
φ (t− µ) +Φ (−µ) δ0 (t) t ≥ 0,
0 t < 0,

(6.31)

where φ and Φ are the probability density and cumulative distribution functions
(p.d.f. and c.d.f.) of the standard normalN (0, 1) and δ0 is the Dirac delta impulse.
This function is illustrated in Figure 6.8.
Tedious but simple calculations (see, e.g., [88], or [73], Chapter 20) show that

the expectation E {÷ν} and the variance var {÷ν} of the clipped ÷ν are
E {÷ν} = Φ (µ)µ+ φ (µ) , (6.32)

var {÷ν} = Φ (µ) + φ (µ)µ− φ2 (µ) + (6.33)

+Φ (µ)µ (µ−Φ (µ)µ− 2φ (µ)) .
The plots of the expectation E {÷ν} and of the standard deviation std {÷ν} =p
var {÷ν} as functions Em and Sm of µ = E {ν} are shown in Figure 6.9. Ob-

serve that E {÷ν} is strictly positive even for negative values of µ; it is convex and
increasing, E {÷ν} → 0 as µ → −∞ and E {÷ν} is asymptotic to µ = E {ν} as
µ → +∞. The standard deviation std {÷ν} approaches 1 = std {ν} as µ → +∞
and goes to zero as µ decreases.
The normal approximation (6.6) gives that z ∼ N ¡

y, σ2 (y)
¢
. �Standard-

ization� of the noise is obtained dividing the variables by σ (y), which gives
z

σ(y) ∼ N
³

y
σ(y) , 1

´
. It means that, by taking µ = y

σ(y) , we can write z = σ (y) ν,

÷z = σ (y) ÷ν. It follows that ÷y (x) = E {÷z (x)} = σ (y)E {÷ν} and ÷σ (÷y) = std {÷z} =
σ (y) std {÷ν}. Exploiting this standardization, we can formulate the direct and
inverse transformations which link σ and y to ÷y and ÷σ.
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Figure 6.9: Expectation E {�ν} and standard deviation std {�ν} of the clipped �ν =
max (0, ν) as functions Em and Sm of µ, where µ = E {ν} and ν ∼ N (µ, 1).

Direct transformation (÷y and ÷σ from y and σ) From the above formulas
we obtain

÷y = σ (y) Em
µ

y

σ (y)

¶
, (6.34)

÷σ (÷y) = σ (y)Sm
µ

y

σ (y)

¶
, (6.35)

which give an explicit expression for the clipped observation model (6.30), provided
that σ (y) from the basic model (6.1) is known. In particular, (6.34) and (6.35)
deÞne the transformations that bring the standard deviation curve (y, σ (y)) to its
clipped counterpart (÷y, ÷σ (÷y)).
The two plots in Figure 6.9 can be uniÞed, plotting std {÷ν} as a function of

E {÷ν}. This is shown by the function Se in Figure 6.10. Naturally, between Sm
and Se there is only a change of the independent variables, µ ←→ E {÷ν}, hence,
from (6.35) follows that

÷σ (÷y) = σ (y)Se
µ

÷y

σ (y)

¶
, (6.36)

where ÷y can be obtained from (6.34).
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Figure 6.10: Standard deviation std {�ν} of the clipped �ν = max (0, ν) as function Se of
its expectation E {�ν}. The numbers in italic indicate the corresponding value of µ, where
µ = E {ν} and ν ∼ N (µ, 1).

Inverse transformation (σ and y from ÷σ and ÷y) As clearly seen in Figure
6.9, the plot of Se is strictly convex, which implies that the (incremental) ratio
ρ = E{�ν}

std{�ν} =
E{�ν}−0
std{�ν}−0 is in bijection with µ. This means that µ can be univocally

determined given ρ. Note that this ratio is scale-invariant and that, in particular,
ρ = E{�ν}

std{�ν} =
�yσ−1(y)

�σ(�y)σ−1(y) =
�y

�σ(�y) . Therefore, given both ÷y and ÷σ (÷y), we can obtain
µ and hence also E {÷ν} and std {÷ν}.
In Figure 6.11 we show the plots of Er and Sr which represent µ

E{�ν} =
E{ν}
E{�ν}

and std {÷ν} as functions of ρ, respectively.
From the deÞnition of Er follows that y = E {z} = σ (y)E {ν} = σ (y)µ =

σ (y)E {÷ν} Er (ρ). Substituting ÷y = E {÷z} = σ (y)E {÷ν} in the previous equation
(observe that, at this stage, σ (y) is considered as unknown) we obtain

y = ÷yEr (ρ) = ÷yEr
µ

÷y

÷σ (÷y)

¶
. (6.37)

Analogously for the standard deviation, σ (y) = std {z} = σ (y) std {ν} = σ (y) std{�ν}Sr(ρ) .
Substituting ÷σ (÷y) = std {÷z} = σ (y) std {÷ν} we have

σ (y) = std {z} = ÷σ (÷y)

Sr (ρ) =
÷σ (÷y)

Sr
³

�y
�σ(�y)

´ . (6.38)

The Equations (6.37) and (6.38) deÞne the transformation that brings the clipped
standard deviation curve (÷y, ÷σ (÷y)) to its non-clipped counterpart (y, σ (y)).

Clipping from above (right single censoring)

The case of clipping from above, ÷z = min (1, z), can be treated exactly as the
clipping from below, provided simple manipulations and the following obvious



6.3. Clipping (censoring) 153

Figure 6.11: Expectation E {�ν} and standard deviation std {�ν} of the clipped �ν =

max (0, ν) as functions Er and Sr of ρ = E{�ν}
std{�ν} . The numbers in italic indicate the

corresponding value of µ.

change of variables:

y ←→ 1− y, z ←→ 1− z,
÷y ←→ 1− ÷y, ÷z ←→ 1− ÷z.

Direct transformation (÷y and ÷σ from y and σ)

÷y = 1− σ (y) Em
µ
1− y
σ (y)

¶
, (6.39)

÷σ (÷y) = σ (y)Sm
µ
1− y
σ (y)

¶
, (6.40)

÷σ (÷y) = σ (y)Se
µ
1− ÷y
σ (y)

¶
. (6.41)
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Inverse transformation (σ and y from ÷σ and ÷y)

y = 1− (1− ÷y) Er
µ
1− ÷y
÷σ (÷y)

¶
, (6.42)

σ (y) = std {z} = ÷σ (÷y)

Sr
³
1−�y
�σ(�y)

´ , (6.43)

Combined clipping from above and below (double censoring)

The formulas for the two separate clippings, the one from below and the one from
above, can be combined into �universal� formulas which can be applied to data
which is clipped in any of the two ways. Here, we undertake the assumption,
discussed in Section 6.3.2, that the product probability of z being clipped both
from above and from below is negligibly small.

Direct transformation (÷y and ÷σ from y and σ) Since only one kind of
clipping can happen for a given y, it means that either (6.34) or (6.39) is equal to
y. Therefore, Equations (6.37) and (6.42) can be combined by summing the two
right-hand sides and subtracting y,

÷y = σ (y) Em
µ

y

σ (y)

¶
− y + 1− σ (y) Em

µ
1− y
σ (y)

¶
. (6.44)

Similarly, (6.35) and (6.40) cannot be simultaneously different than σ (y). So do
(6.36) and (6.41). It means that their combinations are simply the products of the
respective factors in the right-hand sides:

÷σ (÷y) = σ (y)Sm
µ

y

σ (y)

¶
Sm

µ
1− y
σ (y)

¶
, (6.45)

÷σ (÷y) = σ (y)Se
µ

÷y

σ (y)

¶
Se
µ
1− ÷y
σ (y)

¶
. (6.46)

Inverse transformation (σ and y from ÷σ and ÷y) Analogous considerations
hold also for combining of Equation (6.37) with (6.42) and Equation (6.38) with
(6.43). Consequently, we have

y = ÷yEr
µ

÷y

÷σ (÷y)

¶
− ÷y + 1− (1− ÷y) Er

µ
1− ÷y
÷σ (÷y)

¶
, (6.47)

σ (y) = std {z} = ÷σ (÷y)

Sr
³

�y
�σ(�y)

´
Sr
³
1−�y
�σ(�y)

´ . (6.48)

6.3.3 Expectation and standard deviation in the wavelet do-
main

All the above results are valid also in the more general case where the mean and
the standard deviation are not calculated for ÷ν, but rather from the corresponding
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detail or approximation wavelet coefficients, respectively. More precisely,

E {÷ν} = E {÷ν ~ ϕ} , std {÷ν} = std {÷ν ~ ψ} ,
since these equalities follow from the independence of ÷ν and on the normalizationsP
ϕ = 1 and kψk2 = 1. Therefore, in the next section, we consider the wavelet

coefficients calculated from the clipped observations:

÷zwdet =↓2 (÷z ~ ψ) , ÷zwapp =↓2 (÷z ~ ϕ) .

6.4 Algorithm: clipped case
Our goal is to estimate the functions ÷σ and σ which correspond to the clipped
observation model (6.30) from the clipped image ÷z.
Pragmatically, we approach the problem using the estimators öyi (6.15) and

öσi (6.16) of mean and standard-deviation, without any particular modiÞcation.
Because of clipping, these are no longer unbiased estimators of yi and σ (yi).
However, as discussed below, they can be treated as unbiased estimators of the
unknown variable ÷yi, deÞned analogously to (6.14) as

÷yi =
1

ni

niX
j=1

E {÷zwapp (xj)} , {xj}nij=1 = Si,

and of its associated standard deviation ÷σ (÷yi).
Exploiting the transformations deÞned in the previous section and by modeling

the statistics of the estimates computed from the wavelet coefficients of clipped
variables, we modify the likelihood function (6.22) and the least-squares normal
equations (Section 6.2.4). Thus, we come to the desired estimates öσÞt of σ andb÷σÞt of ÷σ.
6.4.1 Local estimation of expectation/standard-deviation

pairs

Estimate of ÷σ (÷yi)

The standard-deviation estimator (6.16) is an asymptotically (for large samples)
unbiased estimator of the standard deviation regardless of their particular distrib-
ution. However, for Þnite samples, we can guarantee unbiasedness only when the
samples are normally distributed.
On this respect, applying the estimator on the wavelet detail coefficients ÷zwdet

(rather than directly on ÷z) has the important beneÞcial effect of �Gaussianizing�
the analyzed data, essentially by the central-limit theorem. In practice, the larger
is the support of the Þlter ψ, the closer to a normal is the distribution of ÷zwdet.
To make the issue transparent, let us consider the example of a constant y (x) ≡
y, ∀x ∈ X, and restrict our attention to the clipping from below (single left
censoring). According to the models (6.1) and (6.30), var {z (x)} = σ2 (y) and
var {÷z (x)} = ÷σ2 (÷y) are also obviously constant. Then, provided that ψ has zero
mean and kψk2 = 1, we have that ÷zwdet has a distribution that approaches, for an
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Figure 6.12: Probability densities of the clipped (from below) �ν = �z/σ (y) (thin lines)
and of its wavelet detail coefficients �νwdet = �zwdet/σ (y) =↓2 (�z ~ ψ) /σ (y) (thick lines)
for different values of µ = y/σ (y), when ψ is the 2-D Daubechies wavelet. The �Dirac
peaks� at 0, characteristic of these densities, appear here as vertical asymptotes at 0 and
cannot thus be seen in the drawing.

enlarging support of ψ, the normal distribution N ¡
0, ÷σ2

¢
. Indeed, the probability

density f�zw d e t of ÷zwdet can be calculated as the generalized cascaded convolutions
of the densities fψ(j)�z, j = 1, . . . , nψ of nψ clipped normal distributions, where nψ
is the number of non-zero elements ψ (·) of the wavelet ψ. We remark that all these
densities are generalized functions with a scaled Dirac impulse at 0. From (6.31),
we have that the impulse in fψ(j)�z is Φ (−y/σ (y)) δ0 (note that the scale of the
impulse does not depend on ψ). Because of the independence of ÷z, the probability
P
¡
÷zwdet = 0

¢
is the product probability

Q
j P (ψ (j) ÷z = 0) = Φ (−y/σ (y))nψ , thus

the impulse in f�zw d e t is Φ (−y/σ (y))nψ δ0, showing that the discrete part of the
distribution vanishes at exponential rate with nψ. The convergence to a normal
distribution is rather fast, and even for small wavelet kernels such as ψ = ψ1~ψT1
with ψ1 deÞned as (6.10), for which nψ = 36, the distribution of ÷zwdet is very
similar to a normal for values µ = y

σ(y) as low as 0 (observe that the larger is µ,
the closer is the normal approximation), as shown in Figure 6.12. Note that for
µ = −0.5, 0, 0.5, 1 and nψ = 36, the amplitudes of the step discontinuity at 0 in
the distribution of ÷zwdet are Φ (µ)nψ ' 1.7 ·10−6, 1.5 ·10−11, 4.1 ·10−19, 1.6 ·10−29,
respectively, thus all these distributions are practically continuous and therefore
the plots in the Þgure are a faithful illustration of the generalized probability
densities f�zw d e t .
The described �Gaussianization� is important, because it ensures that the

bias due to Þnite samples is not signiÞcant, allowing to use the same constant
κn (6.17) as in the non-clipped case. As a rough quantitative Þgure of the er-
ror which may come from this simpliÞcation, in Table 6.1 we give the values of
the expectation7 E {öσi} /σ (yi) for different combinations of µ = y/σ (y) and ni.

7The Þnite-sample numbers in Tables 6.1 and 6.3 are obtained by Monte Carlo simulations.
The simulations were computed with enough replications to have a sample standard-deviation
of the averages lower than 0.0001. Thus, the numbers given in the tables can be considered as
precise for all shown digits. The taken samples zwdet were contiguous in the set Si, therefore
some dependence was present (exact independence is found only for samples farther than the
diameter of the support of ψ, because in this case the distribution of z is not normal), however,
as ni grows the dependence becomes negligible, since zwdet can be split in at most nψ/4 = 9
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E {�σi} /σ (yi) for n <∞, �σ (�y) /σ (y) = std {�z} /σ (y) = Sm (y/σ (y)) for n =∞
ni µ = −1 µ=−0.5 µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 2.5 µ = 3 µ = 5

2 0.226 0.389 0.572 0.741 0.868 0.946 0.982 0.995 0.999 1.000
10 0.247 0.404 0.580 0.743 0.867 0.944 0.981 0.995 0.999 1.000
20 0.253 0.408 0.581 0.743 0.867 0.943 0.980 0.994 0.999 1.000
50 0.258 0.411 0.583 0.744 0.867 0.943 0.980 0.994 0.999 1.000
100 0.260 0.412 0.583 0.744 0.867 0.943 0.980 0.994 0.999 1.000
200 0.261 0.412 0.584 0.744 0.867 0.943 0.980 0.994 0.999 1.000
500 0.261 0.413 0.584 0.744 0.867 0.943 0.980 0.994 0.999 1.000

∞ 0.262 0.413 0.584 0.744 0.867 0.943 0.980 0.994 0.999 1.000

Table 6.1: Expectation E {�σi} /σ (yi) for different combinations of µ = yi/σ (yi) and ni.
The cases �ni =∞� correspond to the true values of the standard deviation �σ (�y) /σ (y) =
std {�z} /σ (y) = std {�ν} = Sm (µ) = Sm (y/σ (y)) of the clipped data, calculated from
(6.33) and plotted in Figure 6.9.

The cases �ni = ∞� correspond to the true values of the standard deviation
÷σ (÷y) /σ (y) = std {÷z} /σ (y) = std {÷ν} = Sm (µ) = Sm (y/σ (y)) of the clipped
data, calculated from (6.33) and plotted in Figure 6.9. From the table one can
see that a handful of samples are sufficient for the Þnite-sample estimation bias
E {öσi}− std {÷ν} to be negligible.

Estimate of ÷yi

Let us now consider the estimates of the mean. Clearly, being a sample average,
öyi is an unbiased estimate of ÷yi, regardless of the number of samples ni or of the
distribution of ÷z. The central-limit theorem and similar arguments as above show
that ÷zwapp and öyi are both normally distributed with mean ÷yi.

Variance of the estimates

Ignoring the possible dependence of the noise in the wavelet coefficients (due to
non-Gaussianity of the clipped variables), simple estimates of the variances of öyi
and öσi can be obtained from the variances kϕk22 ÷σ2 (÷yi) and ÷σ2 (÷yi) of the wavelet
coefficients ÷zwapp and ÷zwdet , respectively, as in Section 6.2.3.

Distribution of the estimates

In conclusion, similar to Section 6.2.3, we model the distributions of the estimates
öyi and öσi as the normal

öyi ∼ N
¡
÷yi, ÷σ

2 (÷yi) ci
¢
, öσi ∼ N

¡
÷σ (÷yi) , ÷σ

2 (÷yi) di
¢
, (6.49)

where the factors ci and di are deÞned as in (6.19).

6.4.2 Maximum-likelihood Þtting of the clipped model

It is straightforward to exploit the above analysis for the estimation of the functions
÷σ (6.30) and σ (6.1) from the clipped data ÷z = max (0,min (z, 1)). In fact, for

subsets, each with a growing number of fully independent samples.
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the ML solution (6.24), it suffices to introduce the functions Em and Sm into the
deÞnition of the function to be Þtted to the measured data, which are pairs (öyi, öσi)
centered�according to (6.49)�at (÷yi, ÷σ (÷yi)). From (6.45) follows that we can deÞne
÷σreg (÷y) as

÷σreg (÷y) = σreg (y)Sm
µ

y

σreg (y)

¶
Sm

µ
1− y
σreg (y)

¶
, (6.50)

where the argument ÷y is, according to (6.44),

÷y = σreg (y) Em
³

y
σr e g (y)

´
− y + 1− σreg (y) Em

³
1−y

σr e g (y)

´
. (6.51)

The conditional probability density (6.22) is thus modiÞed into

℘ ((öyi, öσi) |÷yi = ÷y) = ℘ (öyi|÷yi = ÷y)℘ (öσi|÷yi = ÷y) = (6.52)

=
1

2π
√
cidi

1

÷σ2reg (÷y)
e
− 1
2�σ2r e g (�y)

!
(�yi−�y)2

ci
+
(�σi−�σr e g (�y))2

di

"
.

Analogously to (6.23), the posterior likelihood L is obtained by considering all
measurements {(öyi, öσi)}Ni=1 and by integrating the densities ℘ ((öyi, öσi) |÷yi = ÷y) with
respect to a prior ℘0 (y) as

÷L (a, b) =
NY
i=1

Z
℘ ((öyi, öσi) |÷yi = ÷y)℘0 (y) dy. (6.53)

The integration in (6.53) is still with respect to y and ℘ ((öyi, öσi) |÷yi = ÷y) is itself an
explicit function of y, as it is clear from Equations (6.50-6.52). Therefore, (6.53)
allows for direct calculation, and by solving (6.24) with the likelihood ÷L (a, b) in
place of L (a, b) (6.23) we obtain the parameters öa and öb, which deÞne both the
ML estimate öσÞt of σ, exactly as in (6.25), and the ML estimate ö÷σÞt of ÷σ, which
can be obtained from öσÞt by application of the transformations (6.44) and (6.45).
Note that for the clipped raw-data it is unnatural to assume that ℘0 is uniform
on [0, 1], because in the case of overexposure the true signal could be much larger
than 1. Therefore, for the clipped raw-data, we assume that all positive values of
y are equiprobable and we maximize8 ÷L (a, b) =

QN
i=1

R +∞
0

℘ ((öyi, öσi) |÷yi = ÷y) dy.

Least-squares initialization

Similarly to the non-clipped case, we use a simple least-squares solution as the
initial condition for the iterative maximization of the likelihood function. We
exploit the inverse transformations (6.47)-(6.48) from Section 6.3.2 to attain a Þt
of σ2 with respect to the non-clipped variables. Hence, the initial parameters are

8Equivalently, we maximize

�L (a, b) = lim
j→+∞

N,
i=1

- 1+j

0
℘ ((�yi, �σi) |�yi = �y)℘j (y) (1 + j) dy,

where ℘j is a uniform density on [0, 1 + j] and the normalization factor (1 + j) enables the
convergence of the sequence of integrals.



6.5. Robust estimates 159

Figure 6.13: Estimation with clipped observations �z (Fig. 6.2): Least-squares initializa-
tion. Each dot of the scatter plot corresponds to a pair (�yi, �σi) of estimates of �yi and
�σ (�yi). The circles indicate these pairs of estimates after inverse-transformation (see Eqs.
(6.55) and (6.56)). The solid line shows the square root of the least-squares estimate of
the variance function σ2 (see Section 6.4.2), �a0 = 0.00945 (�χ0 = 105.82), �b0 = 0.001822

(
%
�b0 = 0.04268). The dotted line is the true σ, while the dashed-line is the function

�σreg with parameters �a0,�b0 used as initial condition for the iterative maximization of the
likelihood (6.53).

given as
h
öa0 öb0

i
= �vΦ

¡
ΦTΦ

¢−1
, with the dependent and independent variables

transformed as

ρregi,0 =

sµ
öyi
öσi

¶2
+ ε2reg , ρregi,1 =

sµ
1− öyi
öσi

¶2
+ ε2reg , (6.54)

Φ=

 öy1Er
¡
ρreg1,0

¢− öy1 + 1− (1− öy1) Er¡ρreg1,1¢ 1
öy2Er

¡
ρreg2,0

¢− öy2 + 1− (1− öy2) Er¡ρreg2,1¢ 1
...

...

, (6.55)

�v=

·
ÿκ2n1 �σ

2
1

(Sr(ρr e g1,0)Sr(ρr e g1,1))
2

ÿκ2n2 �σ
2
2

(Sr(ρr e g2,0)Sr(ρr e g2,1))
2 · · ·

¸
. (6.56)

Figures 6.13 and 6.14 respectively show the initial ÷σreg , which corresponds
to the parameters öa0,öb0, and the ML estimates öσÞt and ö÷σÞt found using ÷σreg as
initialization in the iterative maximization of the likelihood. In Figure 6.13 we
can see that the inverse transformations (6.47)-(6.48) used in (6.55) and (6.56)
effectively move the clipped estimates pairs near to their respective �non-clipped�
positions. Note also the increased accuracy of the ML estimates compared to that
of the least-squares ones.

6.5 Robust estimates

Despite the removal of edges from Xsmo, small singularities or Þne textures and
edges of the image can still be present in zwdet, within Si. The accuracy of
the sample standard-deviation estimator (6.16) is consequently degraded, since
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Figure 6.14: Estimation with clipped observations �z (Fig. 6.2): ML solution. Each dot of
the scatter plot corresponds to a pair (�yi, �σi) of estimates of �yi and �σ (�yi). The solid line
and dashed line show the maximum-likelihood estimates �σÞ t and ��σÞ t of the standard-
deviation functions σ and �σ, respectively. �a = 0.00995 (�χ = 100.52), �b = 0.001552

(
%
�b = 0.03940). The plot of �σÞ t overlaps perfectly with that of the true σ.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

κm adn 0.798 0.732 0.712 0.702 0.696 0.693 0.690 0.688 0.686 0.685

Table 6.2: Bias factor κmadn for the MAD estimator (6.57) for small Þnite samples of n
independent normal variables; κmad2n = κmad2n−1.

zwdet would contain wild errors of large amplitude, which can cause the distribu-
tion of zwdet to become heavy-tailed. This typically leads to an over-estimate of
the standard-deviation. It is well-known that robust estimators based on order-
statistics can effectively deal with these situations.

6.5.1 Robust standard-deviation estimates

To reduce the inßuence of these wild errors, we replace the sample standard-
deviation estimator (6.16) with the robust estimator based on the median of the
absolute deviations (MAD) [119],[76]9

öσmadi =
1

κmadni

median
xj∈Si

©¯̄
zwdet (xj)

¯̄ª
, (6.57)

where κmadni is again a scaling factor to make the estimator unbiased. It is well
known that, for large normally i.i.d. samples, κmadn approaches Φ−1 (3/4) = 0.6745,
where Φ−1 is the inverse c.d.f. of the standard normal. For small Þnite samples, the
values of κmadn are larger and up to

p
2/π = 0.7979 (mean of absolute deviations

9 In its general form, this estimator is deÞned as

1

κni
median
xj∈Si

.....zwdet (xj)−medianxj∈Si

#
zwdet (xj)

&..... .
However, when used on wavelet detail coefficients, the subtraction of the median in the deviation
is often discarded, since its expected value for these coefficients is typically zero.
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of N (0, 1)); in Table 6.2 we give the values of κmadn for n = 1, . . . , 20. For larger n,
we can approximate κmadn as κmadn ' 1

5n+Φ
−1 (3/4). Note that κmad2n = κmad2n−1; this

is because in a set of 2n independent random variables, any individual variable has
probability 0.5 of belonging to the subset of n variables smaller (or larger) than
the median value. Tables similar to Table 6.2 can be found in [145] for a few other
estimators of the standard deviation.

Variance and distribution of the standard-deviation estimates

The variance of the robust estimates (6.57) can be approximated10 as

var
n
öσmadi

o
= σ2 (yi) d

mad
i , dmadi ' 1.35

ni + 1.5
. (6.58)

Thus, we pay the increased robustness with respect to outliers with a more than
twice as large variance of the estimates, in comparison to (6.19) (this larger vari-
ance can be seen clearly by visual comparison of Figures 6.14 and 6.16). However,
in practice, when working with many-megapixels images, the variance (6.58) is of-
ten quite low, due to the large number of samples ni. Hence, the use of the robust
estimator is ordinarily recommendable.
Like the sample standard-deviation estimates, also the MAD estimates (6.57)

have a distribution which can be approximated by a normal11 . In particular (and
analogous to (6.20)),

öσmadi ∼ N ¡
σ (yi) , σ

2 (yi) d
mad
i

¢
.

Estimates of the variance

An unbiased robust estimate of the variance (as used by the least-squares ini-

tialization (6.26)) can be obtained from the squared
³
öσmadi

´2
(6.57), provided

multiplication with a bias correction factor. Using the same symbols of Section

6.2.4, we denote this estimate of the variance as
³
ÿκmadni öσmadi

´2
, where the factor¡

ÿκmadn

¢2
can be approximated as

¡
ÿκmadn

¢2 ' 1 + 1
5n .

6.5.2 Maximum-likelihood Þtting (non-clipped)

The ML solution is found exactly as in Section 6.2.4, provided that the estimates
and factors öσi, di, ÿκni are replaced by their respective �

mad� counterparts öσmadi ,
dmadi , ÿκmadni in Equations (6.22-6.24) and (6.28).

10The approximation of dmadi in (6.58) can be obtained by Monte Carlo simulations. A table
with few of these values is found also in [145].
11The normal approximation can be easily veriÞed by numerical simulations. Despite all the

necessary ingredients for an analytical proof can be found in [88], it seems that that this result
is not explicitly reported in the literature.
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E
$
�σm adi

%
/σ (yi)

ni µ = −1 µ=−0.5 µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 2.5 µ = 3 µ = 5

2 0.215 0.380 0.566 0.739 0.869 0.946 0.983 0.995 0.999 1.000
10 0.168 0.341 0.543 0.733 0.872 0.952 0.985 0.997 0.999 1.000
20 0.162 0.335 0.540 0.732 0.873 0.952 0.986 0.997 0.999 1.000
50 0.158 0.332 0.538 0.731 0.873 0.953 0.986 0.997 0.999 1.000
100 0.156 0.330 0.537 0.731 0.873 0.953 0.986 0.997 0.999 1.000
200 0.155 0.329 0.536 0.731 0.873 0.953 0.986 0.997 0.999 1.000
500 0.155 0.329 0.536 0.731 0.873 0.953 0.986 0.997 0.999 1.000

500000 0.154 0.329 0.536 0.731 0.873 0.953 0.986 0.997 0.999 1.000

Table 6.3: Expectation E
&
�σmadi

'
/σ (yi) for different combinations of µ = yi/σ (yi) and

ni.

6.5.3 Clipped observations

Let us now apply the MAD estimator (6.57) to the wavelet coefficients ÷zwdet =↓2
(÷z ~ ψ) of the clipped observations ÷z,

öσmadi =
1

κmadni

median
xj∈Si

©¯̄
÷zwdet (xj)

¯̄ª
. (6.59)

Although robust with respect to outliers of large amplitude, the MAD estimator
is sensitive to the asymmetry in the distribution of the samples [145] and even the
limiting value Φ−1 (3/4) is, as one can expect from the presence of the inverse c.d.f.
of the normal distribution, essentially correct for normally distributed samples
only. Thus, contrary to the sample standard-deviation, the MAD estimator is not
asymptotically unbiased:

lim
ni→∞E

n
öσmadi

o
6= std©÷zwdetª = lim

ni→∞E {öσi} . (6.60)

Let us investigate this estimation bias for large as well as for small Þnite samples.
As in Section 6.4.1, we restrict ourselves to the case of clipping from below for a
constant y (x) ≡ y, ∀x ∈ X, and apply the estimator (6.57) to the correspond-
ing ÷zwdet. In Table 6.3, we give the expectations E

n
öσmadi

o
/σ (yi) for different

combinations of µ = yi/σ (yi) and ni. The same considerations which we made
commenting Table 6.1 can be repeated also for Table 6.3.
We use the expectations of large-sample estimates (values with ni = 500000 in

Table 6.3) as a numerical deÞnition of limni→∞E
n
öσmadi

o
. In this way, we deÞne

the function Smadm which gives limni→∞E
n
öσmadi

o
as a function of E {÷ν}. Hence,

are also deÞned Smade , Smadr , and Emadr and the corresponding analogs of the direct
and inverse transformation formulas (6.45)-(6.48). In particular, we deÞne ÷σmad

by

÷σmad (÷y) = σ (y)Smadm

³
y

σ(y)

´
Smadm

³
1−y
σ(y)

´
.

In Figure 6.15, we show the plot of Smade superimposed on the plot of Se (dashed
line). The vertical difference between the two plots in the Figure is the bias12 of

12Although it is not insigniÞcant, this asymptotic bias is as not large as it would be
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Figure 6.15: Large-sample asymptotic expectation limni→∞E
&
�σmadi

'
of the median of

the absolute deviations (6.57) as a function Smade of the expectation E {�ν} = �yi/σ (yi) of
the clipped variables. The dashed line corresponds to the function Se from Fig. (6.10).

(6.57) as an estimator of std {÷ν} = std©÷zwdetª /σ (y). These differences can also
be seen (as a function of µ) by comparing the last rows of the Tables 6.1 and 6.3,
for the cases ni =∞ and ni = 500000, respectively.
For the case of the MAD estimator, formula (6.49) needs therefore to be mod-

iÞed as follows:
öσmadi ∼ N

³
÷σmad (÷yi) ,

¡
÷σmad (÷yi)

¢2
dmadi

´
.

The speciÞc Smadm allows us to take into account of the difference ÷σmad (÷yi)− ÷σ (÷yi)
(6.60) here and in the following ML estimation of the functions σ and ÷σ.

Maximum-likelihood Þtting (clipped)

The ML solution is found exactly as in Section 6.4.2, provided that the functions
Smadm , Smadr , and Emadr deÞned above and estimates and factors öσmadi , dmadi , ÿκmadni
are used, in place of their respective �non-robust� counterparts, in the Equations
(6.50), (6.52), (6.53), (6.54), (6.55), and (6.56). The found parameters öa and öb
deÞne simultaneously three functions: from (6.25) we obtain öσÞt , a ML estimate
of σ; ö÷σÞt , a ML estimate of ÷σ; and ö÷σmadÞt , a ML estimate of ÷σmad,

÷σmad (÷y) = σ (y)Smadm

³
y

σ(y)

´
Smadm

³
1−y
σ(y)

´
,

around which are scattered the estimates
³
öyi, öσ

mad
i

´
.

In Figure 6.16 we show the ML estimates öσÞt and ö÷σmadÞt obtained for the clipped
÷z from Figure 6.2 using the MAD. We can see that, despite the larger variance
of the estimates öσmadi (as compared to öσi in Figure 6.14), the Þnal estimated
parameters and the corresponding öσÞt are essentially the same as those obtained

if applying the MAD (6.57) directly on �z instead of zwdet . In fact, it is easy to realize
that median {�ν} = 0 for µ ≤ 0. Since obviously median {|�ν|} = median {�ν}, we have that
median {|�ν|} = median {|�ν −median {�ν}|} = 0 for µ ≤ 0.
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Figure 6.16: Estimation with clipped observations �z and MAD estimator (6.59) (Fig. 6.2):
Maximum-likelihood solution. Each dot of the scatter plot corresponds to a pair (�yi, �σi)
of estimates of �yi and �σ (�yi). The solid line and dashed line show the maximum-likelihood
estimates �σÞ t and ��σmadÞ t of the standard-deviation functions σ and �σ, respectively. The
plot of �σÞ t overlaps perfectly with that of the true σ (shown in Figure 6.1). The estimated

parameters are �a = 0.01000 (�χ = 100.04) and �b = 0.001594 (
%
�b = 0.03992).

using the sample standard-deviation. In the Figure, note the slightly different
shape of the plot of ö÷σmadÞt compared to ö÷σÞt .

Figure 6.17: The piecewise smooth test image of Fig. 6.2 with thin text superimposed:
original y and observation z degraded by Poissonian and Gaussian noise with parameters
χ = 100 (a = 0.01) and b = 0.042.

6.5.4 Another example

To demonstrate a situation where the robust estimates are remarkably more accu-
rate than the non-robust ones, we introduce a number of thin and sharp discon-
tinuities in the test image, as shown in Figure 6.17. At many places, due to low
contrast (and also due to the simplicity of our edge-detector), these discontinuities
cannot be detected properly and are thus eventually incorporated in the smooth-
ness set Xsmo. In Figure 6.18, we show the estimates öσÞt and b÷σÞt obtained using
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Figure 6.18: Robust (bottom) vs. non-robust (top) estimation with clipped observations
�z (Fig. 6.17): ML solutions. Each dot of the scatter plot corresponds to a pair (�yi, �σi) of
estimates of �yi and �σ (�yi). The solid line and dashed line show the maximum-likelihood
estimates �σÞ t and ��σmadÞ t of the standard-deviation functions σ and �σ, respectively. The
dotted line is the true σ. The parameters estimated by the two methods are �a = 0.01415

(�χ = 70.68), �b = 0.000951 (
%
�b = 0.03084) and �a = 0.01108 (�χ = 90.29), �b = 0.001524

(
%
�b = 0.03904), respectively.

the robust and the non-robust estimator. As easily expected, the estimates öσi are
inaccurate and typically biased in favour of larger standard-deviation values. As
a result, the öσÞt curve does not match with the true σ. The result obtained from
the robust estimates öσmadi is essentially better, with only a mild overestimation of
the signal-dependent component of the noise.

6.6 Experiments with raw data

We performed extensive experiments with raw data13 of various digital imaging
sensors under different acquisition parameters. The devices included three CMOS

13We reorder the raw-data pixels from color Þlter array (e.g., Bayer pattern) sensors in such a
way to pack pixels of the same color channel together. Thus, the processed frame z is composed
by four (Bayer pattern) or three (FujiÞlm SuperCCD) subimages, which portray the different
chromatic components. The boundaries between the subimages are usually detected as edges, as
can be seen in Figure 6.20.
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Figure 6.19: Out-of-focus image with under- and overexposure (Canon EOS 350D, ISO
100).

Figure 6.20: Natural image (Canon EOS 350D, ISO 1600) and the wavelet detail co-
efficients zwdet (of its raw-data) restricted on the set of smoothness Xsmo . The four
subimages are arranged as [R,B;G1,G2].

sensors from Nokia cameraphones (300 Kpixel, 1.3 Mpixel, 5 Mpixel), a SuperCCD
HR [160] from a FujiÞlm FinePix S5600 camera (5.1 Mpixel), and two CMOS from
Canon EOS 350D and 400D SLR cameras (8 Mpixel, 10 Mpixel). In all experiments
we found near-perfect Þt of our proposed clipped Poissonian-Gaussian model to
the data. We also compared the parametric curves ö÷σÞt , estimated from a single
image by the proposed algorithm, with the nonparametric curves estimated by
the algorithm [48] using 50 images; we found the agreement to be very good,
with minor differences due to the fact that the present algorithm includes the
Þx-pattern noise (FPN) in the noise estimate, whereas [48], being a pixelwise
procedure, estimates only the temporal noise. Because of length limitation, we
present here only few most signiÞcant examples of the obtained results.
First, we show the estimated curves for the raw-data of Canon EOS 350D with

ISO 100 and 1600 (lowest and highest user-selectable analog-gain options). An out-
of-focus, hence smooth, target (shown in Figure 6.19 was used, with under- and
overexposed parts, thus providing a complete and reliable coverage of the dynamic
range and beyond. Besides the excellent match between the Þtted parametric
curve ö÷σmadÞt and the local estimates

³
öyi, öσ

mad
i

´
, one should observe that the curve

accurately follows the estimates as these approach (1, 0), in agreement with our
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Figure 6.21: Estimation of the standard-deviation function σ from the raw-data of the
out-of-focus image (Fig. 6.19,left).

clipped data modeling. Nearly identical curves are found when the smooth out-of-
focus target is replaced by one, shown in Figure 6.20(left), which presents various
complex structures that may potentially impair the estimation. The wavelet co-
efficients zwdet are shown in Figure 6.20(right). The estimated curves are shown
in Figure 6.22, where one can also observe the wider dispersion of the estimates³
öyi, öσ

mad
i

´
(due to the much smaller number ni of usable samples in the level sets

Si) and that the öyi are not distributed over the full data-range. In Figure 6.23 we
show a remarkable example of clipping from above and from below within the same
frame, as it can be found with the FujiÞlm FinePix S5600 using ISO 1600. Observe
that the Þt of the model to the data is again nearly perfect. A comparison with
the nonparametric estimate öσnp obtained by the method [48] is given in Figure
6.24 The curve öσnp was computed analyzing 50 shots of the same target, whereas
only one of these 50 images has been used to estimate the function öσÞt with the
proposed algorithm. The shots were acquired by a 1.3-Mpixel CMOS sensor of
a cameraphone, with an analog gain of 10 dB. We note that the nonparametric
method provides an estimate of σ (y) only for the range of values y covered by the
used images. Moreover, it produces erroneous results approaching the extrema of
this range (about 0.07 and 0.41), due to lack of samples. Within these extrema
(i.e., 0.07 < y < 0.41) the two plots are however very close, with minor differences
due to the lack of FPN contribution to the öσnp estimate.
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Figure 6.22: Estimation of the function σ from the raw-data of the natural image (Fig.
6.19,center). Compare with the corresponding plots in Fig. 6.21.

Figure 6.23: Estimation from raw-data which exhibits both clipping from above (overex-
posure) and from below (underexposure).

6.7 Comments

6.7.1 Different parametric models for the σ function

We remark that the proposed algorithm is not restricted to the particular model
(6.4). In fact, the parameters of any other parametric model can be estimated
in the same way. It is sufficient to modify the expression of the function σreg in
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Figure 6.24: Comparison between the parametric �σÞ t , estimated from a single image,
and the nonparametric curve �σnp [48] computed from 50 images.

Sm Se Er Sr
p10 � −5.7155077 · 10−3 � 2.3348876 · 10−7
p9 1.4308530 · 10−6 9.9630886 · 10−2 � −8.7619300 · 10−6
p8 3.2172868 · 10−7 −7.3358565 · 10−1 � 1.2534052 · 10−4
p7 −2.6295693 · 10−5 2.9464712 · 100 −5.5320701 · 10−3 −7.0907114 · 10−4
p6 −8.5123452 · 10−5 −6.9596693 · 100 −5.5542026 · 10−2 −1.4943642 · 10−3
p5 −1.7851033 · 10−5 9.7330082 · 100 −2.0363415 · 10−1 4.5981260 · 10−2
p4 2.0282884 · 10−3 −8.3760888 · 100 −3.4651219 · 10−1 −2.8638716 · 10−1
p3 2.4377832 · 10−2 3.9881199 · 100 −4.1222715 · 10−1 8.5412513 · 10−1
p2 3.7234715 · 10−2 −1.8598057 · 100 −9.1504182 · 10−1 −1.5725702 · 100
p1 7.0309281 · 10−1 −7.0210049 · 10−1 −4.3779025 · 100 −5.2653050 · 10−1
p0 1.6923658 · 10−1 −3.1389654 · 10−6 −1.5498697 · 100 −1.2319839 · 10−10

Table 6.4: Coefficients of the polynomial p (t) =
(

k pkt
k used for indirect interpolation

of the functions Sm, Se, Sr, Er as in (6.62).

the likelihood (6.23) according to the assumed parametric model. Therefore, our
algorithm has a broader scope of application than shown here and can be applied
for parameter estimation of other signal-dependent noise models, which can be
approximated as heteroskedastic normal. Heuristic models for σ, such as those
found using the principal component analysis in [110], can also be exploited in our
estimation framework.

6.7.2 Multiple images

If two or more independent realizations of the image z are available, they can be
easily exploited in a fashion similar to [48]. Let us denote the different realizations
as z1, . . . , zJ . From (6.1), we have

zj (x) = y (x) + σ (y (x)) ξj (x) ∀x ∈ X, j = 1, . . . , J ,

where ξ1, . . . , ξJ are mutually independent and, for a Þxed x, ξ1 (x) , . . . , ξJ (x) are
i.i.d. random variables, each with variance equal to one. Thus, by averaging we
obtain

zave (x) =
JX
j=1

zj (x)

J
= y (x) +

σ (y(x))√
J

ξ0(x) , ∀x ∈ X, (6.61)
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Sm adm Sm ade Em adr Sm adr

p10 � −2.0882655 · 101 � −6.8695634 · 10−1
p9 6.8722511 · 10−4 1.5778478 · 102 −2.4852997 · 101 1.0659232 · 101
p8 −3.3132811 · 10−3 −4.9232870 · 102 6.2356790 · 101 −7.1938586 · 101
p7 4.6401970 · 10−4 8.1719776 · 102 −3.4588152 · 101 2.7680210 · 102
p6 1.4193996 · 10−2 −7.7148949 · 102 −2.3467375 · 101 −6.6844401 · 102
p5 −3.3370736 · 10−3 4.0631819 · 102 2.2066307 · 101 1.0501179 · 103
p4 −4.0537889 · 10−2 −1.0564855 · 102 1.7531850 · 100 −1.0745079 · 103
p3 7.8410754 · 10−2 8.7374360 · 100 −5.0041080 · 100 6.9444029 · 102
p2 1.6003810 · 10−2 −1.6521034 · 100 1.3236318 · 10−1 −2.6249852 · 102
p1 8.3418294 · 10−1 5.2647043 · 10−2 −4.7818191 · 100 4.5940232 · 101
p0 7.0493620 · 10−2 −1.3640079 · 10−6 −1.4931770 · 100 −1.3097339 · 100

Table 6.5: Coefficients of the polynomial p (t) =
(

k pkt
k used for indirect interpolation

of the functions Smadm , Smade , Smadr , Emadr as in (6.62).

where ξ0 (x) is another random variable with variance equal to one. Applying
the proposed estimation procedure on zave permits to estimate the function J−

1
2σ

and hence σ. In principle, the advantage of the averaging (6.61) lies in the lower
variance of the observation zave, which allows for better edge-removal and results
in estimates (öyi, öσi) with lower variance. However, in practice, J cannot be taken
arbitrarily large because a very large J would render the noise-to-signal ratio of
zave too low for the noise J−

1
2σξ0 to be measured accurately. Hence, the averaging

(6.61) is valuable only provided that the true y is sufficiently smooth and that the
computational precision is high.

6.7.3 Denoising clipped signals

A generic denoising procedure can be modeled as an operator whose output is an
estimate of the expectation of the noisy input. It means that when we denoise ÷z,
as the output we do not get an estimate of y, but rather an estimate of ÷y. However,
by applying (6.47) on the output, we can transform it to an estimate of y. In the
same way, we can �take advantage of the noise� to obtain an image with a higher
dynamic range, since the range of ÷z and ÷y is always smaller than that of y. An
example of such a procedure is shown at the end of this thesis.

6.7.4 Interpolation of the functions Sm, Se, Sr, Er
In our algorithm, we use interpolated values for the functions Sm, Se, Sr, Er,
Smadm , Smade , Smadr , and Emadr as no closed-form expression is available. For practi-
cality, we resort to indirect (nonlinear) polynomial interpolation with exponential
or logarithmic functions. The particular expressions of the used interpolant are as
follows,

Sm (µ) ≈ 1+tanh(p(µ))
2 , Se (ξ) ≈ 1− ep(

√
ξ),

Er (ρ) ≈ 1− ep(log(ρ)), Sr (ρ) ≈ 1− ep(ρ),
(6.62)

where p (t) =
P

k pkt
k is a polynomial with coefficients pk as given in Table 6.4.

For the MAD estimates öσmadi (6.57) and related functions Smadm , Smade , Smadr ,
and Emadr , we use the same interpolant expressions as in (6.62) but with different
polynomial coefficients, which are given in Table 6.5.
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Standard approximations of Φ, or of the Gauss error function erf (being Φ (x) =
1
2

¡
1 + erf

¡
x/
√
2
¢¢
), which are found in nearly all numerical software, can be used

for the functions Em and Sm.
We note that, with (6.62) and the coefficients in Tables 6.4 and 6.5, the interpo-

lation achieved for Emadr and Sr is diverging at ρ ' 0.5 and ρ ' 11.5, respectively.
However, the interpolation is accurate for 0.65 ≤ ρ ≤ 11. Therefore, in our ex-
periments we constrain ρ within these bounds. Since ρ, Emadr , or Sr are used only
for the weighted least-squares problem (6.26) and not for the likelihood equation
(6.23), the restriction on ρ does not affect the Þnal estimation of the noise model
parameters.
The interpolants and tables presented in this thesis complement and extend

similar (although not equivalent) numerical data found in the literature [23] (and
references therein), [24], [25], [26], [27], [149], [130], [148], [99]. To the best of
the authors� knowledge, no other studies of indirect (e.g., in the wavelet domain)
and robust (e.g., median-based) estimators of clipped samples have appeared to
date and, although limited, the results in Table 6.5 are therefore valuable on their
own. Further, we wish to emphasize that the various estimators proposed in the
cited publications are developed for censored Gaussian processes with Þxed mean
and variance, and are thus not applicable to the more general estimation problem
considered by us.

6.7.5 Alternatives to the MAD estimator

Alternative robust estimators, such as the Sn or the Qn estimators [29, 145] can
also be used instead of (6.57). Finally, we suggest the possibility of robust Þtting of
the function σreg , replacing the quadratic residuals (öyi − y)2 or (öσi − σreg (y))2 in
(6.22) with, the corresponding, e.g., absolute or Winsorized difference. However, in
such cases, one should take care in ensuring that the mean and standard deviation
estimators are �unbiased� with respect to the corresponding metric; in the case of
the absolute difference of the residuals, this means that the estimates öyi and öσi
should be median-unbiased rather than (mean-)unbiased.

6.7.6 Alternatives to least-squares initialization

The orthogonal (error-in-variables) least-squares may also be used in place of the
standard least-squares. However, this results in only marginal differences in the

solution
h
öa0,öb0

i
, because the errors in the variance estimates ÿκ2ni öσ

2
i are usually

much larger than those in the expectation estimates öyi. Weighted least-squares
solutions are not practical in this case, since the variance of the estimates, on
which the weights should depend, is unknown.

6.8 Conclusions to the chapter

We presented and analyzed a Poissonian-Gaussian noise model for clipped (and
non clipped) raw-data. An algorithm for the estimation of the model parameters
from a single noisy image is proposed. The algorithm utilizes a special ML Þtting
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of the parametric model on a collection of local wavelet-domain estimates of mean
and standard-deviation. Experiments with synthetic images and real raw-data
from camera sensors demonstrate the effectiveness and accuracy of the algorithm
in estimating the model parameters and conÞrm the validity of the proposed model.



Conclusions to the thesis

C.1 Overview

In the Þrst part of the thesis we have presented a very efficient and ßexible image
Þltering approach based on shape-adaptive transforms. The key idea is to perform
transform-domain shrinkage (i.e., hard-thresholding and Wiener Þltering) with
an arbitrarily-shaped transform�s support which is adaptively deÞned for every
point in the image. This ensures that the image is represented sparsely in the
transform domain, allowing to effectively separate signal from noise. It results
in high-quality denoising, with sharp detail preservation and without unpleasant
artifacts introduced by the transform. Several extensions of this Þltering approach
have been shown, including color image Þltering, deringing and deblocking for
block-DCT compressed images, deconvolution (i.e. deblurring), as well as signal-
dependent noise removal. As demonstrated by the extensive experiments, the
proposed Pointwise Shape-Adaptive DCT Þlter achieves state-of-the-art results
in all these diverse application scenarios. It is remarkable that these results are
obtained using a low-complexity local transform, which makes the overall approach
particularly attractive.

The second part of the thesis concerned noise modeling and estimation for the
raw-data of digital imaging sensors. We presented a nonparametric method for
estimation of the standard-deviation function from a set of images captured un-
der the same Þxed acquisition and illumination conditions. The target and the
illumination are allowed to be non-uniform and the method does not require any
calibration. Based on an automatic segmentation of the images, we separate sam-
ples with different expected output and estimate their standard-deviations. In this
way, we exploit the non-uniformity by estimating the standard-deviation function
over a large range of output values. Further, we proposed a Poissonian-Gaussian
parametric model for raw-data noise and an algorithm which can estimate the
model parameters automatically from a single noisy image. The proposed noise
model explicitly considers the nonlinear response of the sensor in case of under-
and over- exposure of the pixels. Experiments with synthetic images and real
raw-data from camera sensors demonstrate the effectiveness and accuracy of the
algorithm in estimating the model parameters and conÞrm that the raw-data can
indeed be modeled as a clipped Poissonian-Gaussian process.

173
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Figure C.1: Fragments of raw-data from CCD sensor before and after Pointwise SA-DCT
denoising with noise parameters estimated automatically.

C.2 Future research

The Pointwise SA-DCT Þltering algorithms presented in the Þrst part of the thesis
represent the current state-of-the-art for what concerns the methods based on local
transform-domain estimation. Further extensions of the shape-adaptive approach
shall involve non-local estimation, as in the Non-local means algorithm by Buades
et al. [15], the Patch-based estimator by Kervrann and Boulanger [98], and our
Block-Matching 3D (BM3D) Þltering algorithm [32], which is based on simple
Þxed-size block-transforms.

In terms of applications, as shown by the diverse experiments shown in the
thesis, the proposed Þltering approach is rather versatile and it can be useful
in many other situations than those considered in our work. In particular, a
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Figure C.2: Fragments of raw-data from CCD sensor before and after Pointwise SA-DCT
denoising with noise parameters estimated automatically.

straightforward extension of our Pointwise SA-DCT algorithm to 3-D data14 has
been developed by Lie et al. and successfully applied for the Þltering of tensor-
valued magnetic resonance imaging (MRI) data [9], [108].
The proposed Poissonian-Gaussian noise model for clipped raw-data is partic-

ularly suitable for describing the sensor response in the image composition stage
of high dynamic range (HDR) imaging applications. In such scenario, multiple im-
ages acquired under different exposure conditions are combined (i.e., composed) in
order to produce a HDR image. A peculiarity of these images is that they include
vast underexposed and overexposed portions. It is known [135] that noise has a

14We note that the anisotropic LPA-ICI is applicable to multidimensional data and that 3-D
implementations have been already exploited for video-denoising [47],[41]. The 2-D SA-DCT
can also be naturally generalized to an arbitrary number of dimensions; in particular, the 3-D
SA-DCT has been used in the past [113] for the coding of multispectral images.
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Figure C.3: Fragments of raw-data from CCD sensor before and after Pointwise SA-DCT
denoising with noise parameters estimated automatically.

crucial impact on the composition process, as it affects the adaptive weights in the
convex combinations used for composing the images. We expect that the accurate
modeling of the noise and of the clipping will lead to an optimized design of the
HDR composition process and eventually to higher quality in HDR imaging.

C.3 Automatic noise analysis and removal for raw-
data

We conclude the thesis with illustrative examples, which show the methods pro-
posed in Part I and in Part II integrated within a single procedure where:

1. the raw-data is analyzed and its noise parameters öa and öb are estimated,
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Figure C.4: Fragments of raw-data from CMOS sensor before and after Pointwise SA-
DCT denoising with noise parameters estimated automatically.

yielding the standard deviation functions öσÞt and ö÷σÞt (algorithm from Sec-
tion 6.5);

2. the raw-data is denoised according to the signal-dependent noise model with
the variance function ρ = ö÷σ2Þt (algorithm from Section 3.3).

For these last examples, to avoid the complications due to color Þlter array inter-
polation (CFAI), we consider only a single color channel of the raw data15, thus

15 i.e., we work on a decimated subset of the sensor�s pixels. For example, in the case of the
traditional Bayer pattern [8] (where the pixel array has a periodic G1

B
R
G2

conÞguration), it
means that we take a fourth of the samples, decimating-by-two on the rows and on the columns.
With a Fuji�s Super CCD [160] the pixel conÞguration is octagonal and the whole green channel
is already given on a rectangular grid.
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Figure C.5: Fragments of raw-data from CMOS sensor before and after Pointwise SA-
DCT denoising with noise parameters estimated automatically.

restricting ourself essentially to grayscale applications16.
In Figures C.1, C.2, and C.3 we show fragments of raw-data from the 5.1-

Mpixel SuperCCD HR sensor of a FujiÞlm FinePix S5600 camera before and after
Pointwise SA-DCT denoising with noise parameters estimated automatically. Fig-
ures C.4 and C.5 provide analogous image pairs with raw-data from the 1.3-Mpixel
CMOS sensor of a Nokia cameraphone.
Finally, in Figure C.6, we give an illustration of the denoising of clipped

raw-data, as suggested in Section 6.7.3. More precisely, in the Þgure, we show
z, the Pointwise SA-DCT estimate öywi (3.10) of Section 3.3.2, and the inverse-

16We refer the interested reader to [128] and [129], where LPA-ICI techniques for CFAI of
noise-free as well as of noisy raw-data are presented. We note that CFAI algorithms that exploit
the SA-DCT can be developed based on these LPA-ICI CFAI techniques.
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Figure C.6: Top left: fragment of noisy image z with some details overexposed. Observe
the clipping of the noise visible in the brightest areas. Bottom: Pointwise SA-DCT
estimate before (�ywi) and after compensation (C.1) of the bias due to clipped noise.
Top right: cross-section of the three other subÞgures. The compensation stretches the
portions of the denoised signal which correspond to overexposed details.

transformed estimate

öywiEr
µ

öywi

ö÷σÞt (öywi)

¶
− öywi + 1− ¡1− öywi¢ Er µ 1− öywi

ö÷σÞt (öywi)

¶
, (C.1)

which is obtained applying (6.47) of Section 6.3.2 on the estimate öywi, with the
standard-deviation function ö÷σÞt from Section 6.5.3 in place of the true ÷σ. Note
that the dynamic range of the inverse-transformed estimate (C.1) is about 11%
wider than that of image öywi or z.
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