

Mikko Vänskä

AUTOMATED TESTING FOR MICRO-
SERVICES

Faculty of Information Technology and Communication Sciences
Master of Science Thesis

May 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250165912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Mikko Vänskä: Automated testing for microservices
Tampere University
Master of Science Thesis, 50 pages, 2 Appendix pages
May 2019
Master’s Degree Programme in Information Technology
Major: Software Engineering
Examiners: Professor Hannu-Matti Järvinen, MSc. Jarkko Mikkola

This thesis discusses the topic of automated testing as it relates to microservice systems.
Microservice architecture is a highly scalable way of designing and implementing online applica-
tions. Since microservice applications are network-based applications by nature, testing them has
to also happen in a network environment. Automating tests for this kind of environment involves
generating artificial network traffic, often in the form of HTTP requests to a network API of some
kind, like a REST API. These topics are discussed from a test design and implementation point
of view, along with main features of the microservice architecture and automated testing in gen-
eral.

The main part of this thesis describes and documents the process of designing and imple-
menting a test automation framework for Intel Insight, an automatic image storage and photo-
grammetry processing platform that is implemented as a microservice system. The framework
design involves setting initial requirements for potential automation tools and finding and evalu-
ating candidates for the task. In the end, the framework core is formed by automation tools Post-
man, Selenium, and SikuliX. The use of this combination for test automation purposes is exam-
ined by looking at how to the tools can be used to automate a core use case of the Intel Insight
platform.

The resulting framework was found to be well-suited and versatile enough for its intended
purpose. The tools of the framework had a low barrier of entry to them and as such were easy to
begin working with and to integrate automated test cases implemented with them to Continuous
Integration systems Gitlab CI and Jenkins. All tools are reviewed in-depth, and positives and neg-
atives of each individual automation tool that were encountered during test implementation are
analyzed. The main negatives are brought up as possible ideas for future development of each
tool, enabled by the fact that they are all open-source projects.

Keywords: Test automation, Microservice, REST, Postman, Selenium, SikuliX

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Mikko Vänskä: Testiautomaatio mikropalvelujärjestelmälle
Tampereen Yliopisto
Diplomityö, 50 sivua, 2 liitesivua
Toukokuu 2019
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Ohjelmistotuotanto
Tarkastajat: Professori Hannu-Matti Järvinen, DI Jarkko Mikkola

Tämä Diplomityö tutkii automaattisen testauksen hyödyntämistä mikropalveluarkkitehtuurilla
toteutettujen sovellusten testaamisessa. Mikropalveluarkkitehtuuri on helposti skaalautuva tapa
suunnitella ja toteuttaa Internet-pohjaisia sovelluksia. Koska mikropalvelusovellukset käyttävät
tietoverkkoja sovelluksen komponenttien sisäiseen kommunikaatioon, niiden testaaminen
tapahtuu myös verkkoympäristössä. Automatisoitu testaaminen tällaisessa ympäristössä
tarkoittaa keinotekoisen verkkoliikenteen luomista, tyypillisesti HTTP-kutsujen muodossa
jonkinlaiseen verkkorajapintaan, kuten REST-rajapintaan. Näitä teoria-asioita esitellään työssä
testien suunnittelemisen ja toteuttamisen näkökulmasta, kuten myös automaattisen testaamisen
yleisiä piirteitä.

Pääosa työstä kuvaa testikehyksen suunnittelun ja toteuttamisen prosessia
mikropalveluarkkitehtuurilla toteutetun Intel Insightin, kuvien varastoinnin ja automaattisen
fotogrammetrisen prosessoinnin tarjoavan palvelun, testaamiseen. Testikehyksen suunnittelu
sisältää vaatimusten asettamisen potentiaalisille automaatiotyökaluille ja kandidaattien etsimisen
ja arvioinnin vaatimusten perusteella. Työkaluiksi valikoituivat Postman, Selenium ja SikuliX.
Tämän yhdistelmän käyttöä automaattiseen testaamiseen tutkitaan automatisoimalla yksi Intel
Insightin tärkeimmistä käyttötapauksista.

Työn tuloksena syntynyt testikehys todettiin käytössä tarkoitukseen sopivaksi ja tarpeeksi
mukautuvaksi suunniteltuun käyttöön. Käytetyt työkalut osoittautuivat aloittelijaystävällisiksi ja
niillä tehdyt automaattiset testitapaukset olivat helppoja integroida käytettyihin jatkuvan
integraation alustoihin Gitlab CI ja Jenkins. Yksittäisten työkalujen hyvät ja huonot puolet
analysoidaan yksityiskohtaisesti käyttökokemusten perusteella. Huonoja puolia tuodaan esille
mahdollisina jatkokehitysideoina työkaluille, jotka niiden avoimeen lähdekoodiin perustuen ovat
mahdollisia jalostaa paremmiksi.

Avainsanat: Testiautomaatio, mikropalvelu, REST, Postman, Selenium, SikuliX

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

This thesis is the final chapter on a journey through the Finnish education system that I

started in August 1997. My family has been a constant supportive presence for me during

the years and they have always been encouraging me to chase higher education. Now

it is time to move on to other challenges in personal and professional life.

I would like to thank the people at Intel Finland who made it possible for me to create

this thesis in a rapid fashion: Niko Rantalainen, who gave me the opportunity to work for

Intel Finland and allowed me to lavishly spend work hours for writing this thesis; Jarkko

Mikkola for support and mentorship during my tenure; and finally the group of interns in

our team, with whom I had the pleasure of working with, for peer support and camarade-

rie during the time we shared at the company.

I would like to thank the examiners of this thesis for feedback that helped me polish this

work into its final form: Professor Hannu-Matti Järvinen from Tampere University and

Jarkko Mikkola from Intel Finland.

Special thanks are in order to LK, who was a crucial mental crutch to lean on during the

writing process.

Tampere, 22.5.2019

Mikko Vänskä

iv

CONTENTS

1. INTRODUCTION .. 1

2. WEB ARCHITECTURE ... 3

2.1 Hypertext Transfer Protocol ... 3

2.1.1 Communication scheme .. 4
2.1.2 Request and Response structure .. 5
2.1.3 Request methods .. 6
2.1.4 Response codes ... 8

2.2 Representational State Transfer... 9

2.2.1 Architectural style .. 9
2.2.2 HATEOAS... 11

2.3 Open API Specification .. 12

2.4 Microservice architecture ... 13

2.4.1 Virtualization via containers .. 15
2.4.2 DevOps – Development Operations .. 16

3. TEST AUTOMATION .. 18

3.1 General properties of automated testing .. 18

3.2 Levels of test automation ... 19

3.2.1 Unit testing .. 20
3.2.2 Integration testing ... 22
3.2.3 System testing .. 22

4. DESIGNING A TEST FRAMEWORK .. 25

4.1 Environment ... 25

4.2 Tools & selection process .. 26

4.2.1 Postman ... 28
4.2.2 Selenium ... 33
4.2.3 SikuliX ... 34

5. IMPLEMENTATION .. 36

6. REVIEW AND LEARNINGS FROM USING THE FRAMEWORK 42

7. CONCLUSIONS .. 45

REFERENCES... 47

A. FILE UPLOAD BY USING SELENIUM WEBDRIVER 51

v

LIST OF FIGURES

Figure 1. General HTTP message structure [11] ... 6
Figure 2. A sample documentation of an endpoint in the Docker API,

rendered with ReDoc. Full documentation available online in [17]. 13
Figure 3. Test automation pyramid, as presented by Lisa Crispin [30] 20
Figure 4. UI view from a 3D model of an old water tower from Hiedanranta

industrial area in Tampere. A measurement of the height of the
tower is visible in the model, and presented numerically on the
right side panel. .. 26

Figure 5. Postman main window, with an example collection opened on the
left side of the screen ... 29

Figure 6. Postman script execution order. Adapted from [45] 30
Figure 7. Postman monitoring tool showing response times and payload size

[47] ... 32
Figure 8. Selenium IDE, main window [49]. ... 33
Figure 9. SikuliX IDE main view. Many often used actions are displayed on

the panels on the left side of the screen for easy usage [52]. 35
Figure 10. Project upload collection example, with a small dataset of 13

pictures .. 37
Figure 11. Collection authorization scheme .. 38
Figure 12. File upload request example .. 39
Figure 13. Minimal SikuliX script that uploads a dataset to Intel Insight, with

side-by-side comparison of the code with and without image
thumbnails. .. 40

vi

LIST OF ABBREVIATIONS AND SYMBOLS

API Application Programming Interface
CI Continuous Integration
DevOps Development Operations
DNS Domain Name System
FTP File Transfer Protocol
GUI Graphical User Interface
HATEOAS Hypermedia As The Engine Of Application State
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDE Integrated Development Environment
IP Internet Protocol
ISTQB International Software Testing Qualifications Board
JSON JavaScript Object Notation
MD5 MD5 Message-Digest Algorithm
OAS OpenAPI Specification
OSI Open Systems Interconnection
REST Representational State Transfer
RFC Request For Comments
SaaS Software as a Service
SUT System Under Test
TCP Transmission Control Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator

1

1. INTRODUCTION

Throughout the 2010s, the ongoing development and improvement of cloud computing

infrastructure have led to the software business moving increasingly to that domain. More

and more software is now being accessed through web browsers, following the Software

as a Service (SaaS) business model where the application is not delivered to customers

as a locally executable program, but as a subscription to a web-based platform accessed

with a browser. Business research company Gartner estimated in September 2018 the

global SaaS revenues to nearly double over the period of 2017 to 2021, increasing from

58,8 to 113,1 milliard U.S. Dollars with the whole cloud business revenue increasing from

145,3 to 278,3 milliard during that timeframe [1].

To facilitate this shift in the business domain, new software architectures and develop-

ment methodologies have emerged to answer the needs of perpetually online and dy-

namically according to demand scaling applications. Microservice architecture, a modern

interpretation of Service-oriented architecture, is becoming the de-facto way of designing

large scale online applications. Some examples that have been developed with micro-

service architecture are content streaming services Netflix, Spotify, and Twitch.tv and

they have user bases measured in tens or hundreds of millions, and millions of concur-

rent users. Microservice applications are often developed by utilizing DevOps practices,

which merge application development and operations teams together to shorten soft-

ware delivery cycles and maintain the live application.

Software testing methods also have to evolve to support these new development trends.

Delivery of Internet-based applications, such as microservice systems, to their end-users

differ fundamentally from traditional, locally executed applications. Communication within

the application takes place over a network through web interfaces instead of within local

memory. For this reason, the need to understand the fundamental Internet technologies,

such as HTTP, is a requirement for efficient test design. Shorter delivery cycles create a

need to automate testing as much as possible in order to keep up with the overall pace

of software development. In this context, test automation involves a lot of programmatic

web traffic generation and the use of user interfaces through a web browser.

2

The goal of this thesis is to explore solutions to automated testing at different levels of

abstraction for Intel Insight, an image data storage and automatic photogrammetry pro-

cessing platform that is implemented by using microservice architecture. The findings

from the research on the topic are then used in finding and selecting tools in order to

create a test framework. The use of the tools is examined by looking at automating a

real-life use case.

The primary research methodology used in this thesis is exploratory research. The end

goal is known at the start of the process, and the research is done to find means of

reaching that goal. The research is conducted with the end goal in mind, and findings

along the way are evaluated based on how they help to achieve the goal.

This thesis is organized in the following way: Chapter 2 presents general technologies

used in the Internet and related architectures. In Chapter 3 the topic of test automation

is examined in-depth. Chapter 4 documents the design process of a test automation

framework and introduces Intel Insight, the target microservice system it was designed

to test. Chapter 5 explores using the tools in real-life testing use via an example use case

automation. In Chapter 6 the framework is reviewed and learnings from using it are dis-

cussed from the test design and implementation point of view. Chapter 7 concludes the

thesis and ties together all the topics discussed and presents ideas for future improve-

ment for the framework.

3

2. WEB ARCHITECTURE

In order to have sufficient competence in designing tests for network-based applications,

a grasp of fundamental Internet technologies is required. This chapter presents theoret-

ical background of core Internet protocol Hypertext Transfer Protocol (HTTP), introduces

Representational State Transfer (REST), a related methodology of designing network

system interfaces, takes a look at an widely used way of documenting web interfaces in

the form of Open API specification, and in the end talks about main features of the mi-

croservice architecture.

2.1 Hypertext Transfer Protocol

The original idea behind HTTP is generally credited to Tim Berners-Lee, who wrote the

original proposal of the protocol in 1989 while working for CERN [2] and in 1991 the first

formal specification, later named HTTP/0.9 [3]. The original protocol is minimal and de-

fines just a simple request-response communication scheme between a client applica-

tion and a server in order to retrieve HTML files.

Limitations of this scheme quickly led to the early web browser and server program de-

velopers to implement new features, of which the most widely implemented ones were

gathered into an unofficial specification HTTP/1.0 in May 1996 [4], and later into an offi-

cial HTTP/1.1 specification in January 1997 [5]. The final version of the HTTP/1.1 was

released in June 2014 [6]. The next major HTTP version is HTTP/2, released as an offi-

cial specification in May 2015 [7]. HTTP/2 was created to address many performance

issues of the older HTTP versions by using underlying network protocols (mostly TCP

related things) more efficiently. This chapter mostly discusses topics presented in the

HTTP/1.1 specification, as it introduced the main parts of the request and response com-

munication scheme and other key components currently used in the protocol.

By the definition of the OSI model [8], HTTP is an application-level protocol used for data

transfer over the Internet. The protocol design is flexible and allows the creation of cus-

tom extensions. HTTP presumes that it is used over a reliable transport level protocol

[9]. The TCP protocol is used as the default protocol at the transport layer, although the

specification does not rule out the use of other transport protocols to transmit HTTP traf-

fic.

4

2.1.1 Communication scheme

Communication over HTTP can be simplified into the following sequence: first, an HTTP

client application sends an HTTP request to an HTTP server to perform some operation.

The server reads the request, performs the requested operation if the client is allowed to

request such an operation and finally sends an HTTP response containing information

about the results back to the client and closes the connection. All communication is sent

as a sequence of plain ASCII characters.

HTTP is a stateless protocol, meaning that any pair of requests on the same connection

are not linked together in any way, and an HTTP server is not required to keep any

information regarding connections made to the server. Any request should contain

enough context for a server to understand the request without using any previously

stored state on the server. However, the server may store session data to some external

storage (like a database), for example in order to implement an authentication scheme

to determine if the client sending the request has sufficient access right to perform such

an operation.

HTTP requests are targeted to a single resource on the server. Resources are stored on

a server as a piece of data representing the current state of the modeled resource. Ac-

cording to RFC 3986, “a resource can be anything that has an identity” [10], but gener-

ally, in the context of HTTP, a resource is some location on a server that data can be

retrieved from or delivered to.

Resources are identified using Uniform Resource Identifiers (URI) that define explicitly

the targeted resource in the namespace where the resource exists. In the HTTP context,

the URI is usually given as a Uniform Resource Locator (URL), which is a specific type

of a URI. A URL defines the protocol that is used (some common ones are HTTP,

HTTPS, and FTP), DNS name of the server that contains the targeted resource (referred

to as host, as DNS hostnames are generally used instead of raw IP addresses), option-

ally the network port the request is sent to (if omitted, default TCP port 80 will be used),

the path to the resource on the host, and optional request parameters as key-value pairs.

A detailed breakdown of an example URL is given in Table 1.

Table 1. Breakdown of a URL into components

Full URL https://poprock.tut.fi:443/group/pop/etusivu

Protocol https:

(Separator) // (no contextual use, required by the URI specification)

Domain name poprock.tut.fi

https://poprock.tut.fi/group/pop/etusivu

5

Connection port (optional) :443

(if omitted, default port associated with the protocol is

used, for example 80 for HTTP, and 443 for HTTPS)

Resource path /group/pop/etusivu

Parameters Additional data to send along with the request appended

to the resource path.

Example: ?key1=value1&key2=value2

2.1.2 Request and Response structure

By the definition of RFC 2616 [9], an HTTP request consists of four parts: a start line,

message headers, an empty line, and an optional message body. The start line has three

elements, first is the request method used, followed by the request target and finally the

HTTP version that is used. Message headers are a list of key-value pairs containing

more detailed information about the request and how the server should process the re-

quest. The list of headers is followed by an empty line (a single carriage return character),

indicating the end of the header list and the beginning of the optional message body that

contains the actual data sent to the server, if there is any. Many HTTP requests are

simple data retrieval from a server, and as such do not require anything other than the

request method and target to be completed successfully.

HTTP responses are nearly identical to HTTP requests by their structure but differ by the

first element which is called the status line. The status line has three elements: the HTTP

version used, the status code, and the reason phrase. The status code is a three-digit

code describing the result of the request, followed by a short human-readable reason

phrase associated with the response code. The status line is followed by response head-

ers, an empty line, and an optional response body, just like in HTTP requests. An exam-

ple of an HTTP request and response is shown in Figure 1 below.

6

Figure 1. General HTTP message structure [11]

2.1.3 Request methods

There are eight HTTP request methods that are officially specified in the HTTP/1.1. The

specification allows the implementation of new methods, but only the officially specified

ones, listed in Table 2 below, are required to be recognized while communicating.

Table 2. List of HTTP methods

Method Introduced in version General use

GET HTTP/0.9 Retrieve a resource from server

HEAD HTTP/1.0 GET without response body

POST HTTP/1.0 Send a resource to server

PUT HTTP/1.1 Send a resource to the server to be placed in

the suggested path

DELETE HTTP/1.1 Remove a resource from the server perma-

nently

OPTIONS HTTP/1.1 Query supported HTTP methods

TRACE HTTP/1.1 Echoes the received request back to the client

CONNECT HTTP/1.1 (2014 revi-

sion)

Instruct a proxy server to create a tunnel

GET method is simply a client (e.g., a web browser) asking the server to send back the

targeted resource (e.g., a web page). The request generally doesn’t include a body.

HEAD method is used like the GET method, the difference is that the server sends back

only the response headers and leaves out the response body.

POST method requests the server to store whatever entity the request contains in its

body into the targeted location. The server has full freedom on where the requested entity

is eventually stored, or may reject the request outright.

PUT method works just like the POST method, but here the client provides the server a

suggested path to store the requested entity. If the request succeeds, the targeted re-

source on the server is replaced with the resource specified in the request body. This

method can be used to update a resource, by targeting an existing resource and sending

an updated version to the server.

7

DELETE method is used to request the targeted resource to be removed from the server.

With this method, there is no guarantee to the client that the resource is actually deleted

by the server, but the server should reply with a successful status code only if the re-

source will be deleted.

OPTIONS method is sent to the server to discover what methods it supports for the tar-

geted resource.

TRACE method is a simple “Echo” –type request, to which the server replies with the

exact request it received. This method is generally used to debug how intermediary re-

lays alter the HTTP request on its way to the server and has little use outside of that.

CONNECT method is used to instruct a proxy server to connect to another location in

order to tunnel a remote connection.

Standard HTTP methods have been defined to have three common properties, and

methods can be categorized by how they relate to these properties [12].

Safe methods are “read-only” operations by their defined nature. In practice, this means

that the method should only result in the requested data being sent to the client and

should not have other side effects on the system state. A notable exception to this is

server-side logging, which is not considered an unsafe side effect. Safe methods are

defined to be GET, HEAD, OPTIONS, and TRACE.

Idempotent methods have the same effect on the system state as a whole regardless of

how many times an identical action is performed. By definition, all safe methods are

considered idempotent along with PUT and DELETE methods. This property becomes

important when communication failures occur and it is unclear whether the original re-

quest was delivered to the receiving end, in which case the request can be repeated with

predictable results. For example, PUT is an idempotent method because the target re-

source is replaced with the entity supplied in the request body if the request is successful,

and therefore has the same result each time. The same applies to the DELETE method,

as removing the same resource multiple times leads to the resource being deleted on

the first request and the next ones having no effect. The end result is that the target

resource does not exist anymore.

Cacheable methods have responses to them that can be stored and used later instead

of re-doing the original request. RFC 7231 [12] defines GET, HEAD and POST as cache-

able methods, although it is stated that “the overwhelming majority of cache implemen-

tations only support GET and HEAD."

8

2.1.4 Response codes

HTTP status codes are generally grouped into five categories signifying the results of

the processed request. All HTTP clients should recognize these categories, even if the

specific status code is not supported by the client. Custom status codes may be imple-

mented, but generally, only a small number of the status codes are used widely. Clients

are generally not required to present the response code to the user, but in many error

situations, it is generally done to show the user some human-readable information about

what happened [12]. A list of status code classes along with some examples are in Table

3 below.

Table 3. HTTP status codes

Status code class/examples Description

1xx Informational Request was received and understood

101 Switching Protocols The client requested to switch protocols, and the

server agreed to do so

2xx Success Request was received and successfully processed

200 Ok Standard/default response for a successful re-

quest

201 Created The requested resource was created on the server

204 No Content Request was successfully processed, no response

body is sent

3xx Redirection Client needs to do additional actions to perform the

request

301 Moved permanently The targeted resource has been moved to another

location, which is included in the response

4xx Client Errors The request had errors that were likely caused by

the client

401 Bad request The request contained invalid data, and was re-

jected

404 Not Found The request target does not exist

5xx Server Errors The server encountered an error on its end and

could not process the request

9

500 Internal Server Error A generic error response to unexpected error con-

ditions on the server

2.2 Representational State Transfer

Representational State Transfer, REST, was originally presented by Roy Fielding, one

of the authors of the HTTP/1.1 specification, in his doctoral dissertation at University of

California in the year 2000 [13]. REST is intended to be a framework for designing inter-

faces for Internet-scale distributed hypermedia systems. More specifically, REST relates

to how a server interacts with its clients to receive data and relay it back to them as

representations of the underlying data model of the application [13]. Many APIs claim to

be REST APIs (often called RESTful APIs), Fielding himself has a firm stance that an

API must fully implement the REST scheme in order to be called a true REST API.

In chapter five of the dissertation [13], the concept of REST is derived using by applying

a series of design constraints, resulting in the overall architectural style. One thing to

note about the concept of REST is that it describes an architectural style and does not

tie it to any specific technologies or protocols. In the dissertation, an entire chapter is

dedicated to how the style applies to the utilization of HTTP when interacting with a REST

API, but any technology utilizing URI resource referral schema can be considered REST-

ful as long as the REST design concepts are being followed [13].

2.2.1 Architectural style

The six guiding constraints of the REST are (in the order they are presented in the orig-

inal dissertation) are client-server architecture, statelessness, cacheability, uniform in-

terface, layered system, and code-on-demand (optional). Many of these constraints

share properties with HTTP. The list below references points made in Fielding’s disser-

tation [13].

 Client-Server architecture is a commonly used method of implementing distrib-
uted systems. The architecture separates client application from the server appli-
cation, allowing both to be developed independently from each other at their own
pace.

 Statelessness implies that all communication must be done in a way that the re-
quest contains all the required information and context for it to be successfully
processed by the server.

 Cacheability means that server responses can be marked as cacheable or non-
cacheable, giving or denying the client permission to store and use the response

10

data later without having to request it again from the server. This potentially re-
duces the need to communicate in some cases, improving communication effi-
ciency, or as Fielding notes in his dissertation: “An interesting observation is that
the most efficient network request is one that doesn’t use the network.” The down-
side of caching is that it introduces the possibility that cached data becomes in-
consistent with the data on the server.

 Uniform interface means that all parts used in the system share the same inter-
face, leading to standardized communication styles and formats within the sys-
tem. The drawback is that specialized communication methods are not allowed,
leading possibly to degraded performance as the used communication scheme
might not be optimal for all system components.

 Layered system asserts that the full structure of the system is not visible to any
component of the system, meaning all parties involved see only the ones they
are directly communicating with.

 Code-On-Demand is an optional constraint but is a key part in modern web ap-
plications. It means that a client may extend its functionality by retrieving and
executing code supplied directly by the server, such as JavaScript files. This al-
lows flexible and minimal clients that can obtain the required application code as
needed. An example of this is modern web browsers, which implement enough
logic to do HTTP requests and a platform to execute JavaScript code fetched
from a server on a case-by-case basis.

REST APIs are usually documented as a list of resources that are accessible (often re-

ferred to as endpoints of the API), the HTTP methods that are supported for each end-

point, expected data formats for each request to an endpoint and possibly example re-

quests and responses associated with each endpoint. REST APIs usually implement

some of the CRUD (Create, Read, Update, Delete) operations for all endpoints, with

POST method used to create resources on the server, GET method to read/retrieve re-

sources from the server, PUT method to update resources on the server and DELETE

method to delete resources from storage on the server. A simple example of this is in

Table 4 below.

Table 4. A simple REST API example

 http://example.com/api/custom-
ers

http://example.com/api/custom-
ers/{id}

GET Retrieve a list of all customers’
data

Retrieve data of a specific customer

POST Create a new customer from the
data in the request body, server
creates an ID for the new cus-
tomer and sends it in response
body if successful

Create a new sub-resource associ-
ated with the customer, server cre-
ates an ID for the new resource and
sends it in response body if success-
ful

PUT Replace the entire list of custom-
ers with the data in the response
body, or create a new resource it
the list doesn’t exist

Replace the data of the customer with
the one in the request body, or create
a new one if such a customer doesn’t
exist

DELETE Delete all customer information
from the server

Delete the information of the cus-
tomer from the server

11

2.2.2 HATEOAS

The concept of HATEOAS, Hypermedia As The Engine Of Application State, is an inte-

gral part of the REST architecture. Fielding talks about this concept in his blog in a post

titled “REST APIs must be hypertext-driven” [14]. One of the main points Fielding makes

in the text related to HATEOAS is that when a client starts to communicate with a REST

API it should not need to know anything other than the initial URI to connect to the API

and a set of standardized media types that are relevant to the users of the API in order

to handle and present the data properly to end users.

In practice, the utilization of HATEOAS means that the client relies on the server to pro-

vide the available options on how to continue using the service. Given a list of available

operations, the client then chooses how to continue interacting with the service, or stop

using it altogether. The client is always the entity storing the current application state and

is responsible for driving the operation forward.

A similar concept is how the Internet presents itself to human users: a browser is used

to retrieve a web page (in the form of an HTML document) from a server, and the re-

sponse rendered by the browser presents to the user the requested content and the

available options to proceed, often in the form of links to other pages. The user does not

have to know beforehand anything other than the URL of the main page to use the ser-

vice successfully, as the server supplies all the required information during the use of

the service. The user can also bypass the main entry point of the server completely by

using direct URLs to go directly to other available pages.

The main benefit of HATEOAS is that the requirements for a client to use the API are

minimal, as it discovers the API dynamically through interaction and previous knowledge

of the API and its structure (other than the main entry point) is unnecessary. The dynamic

nature of HATEOAS also allows the API to evolve over time and decouples the client

from the server, as the server supplies clients the currently available API paths as re-

quired by their interaction.

The REST architecture does not specify how HATEOAS should be implemented, and

therefore its use varies case-by-case. Specifically, the way the server provides its clients

information about API paths varies a lot, some implementations supply the links using

HTTP headers and others in response body as XML or JSON structure.

A lot of criticism has been presented towards the usefulness of HATEOAS. One common

argument is that the idea of client navigating dynamically through links provided by the

server is too complex to implement feasibly on the client side. The usefulness of the

dynamic traversal has more value to human users than programs. This is due to the fact

12

that humans are very capable of using and adapting to the information provided in the

dynamic context. Replicating that level of intelligence in the form of a program is a very

complicated task often requiring an unfeasible level of development effort.

Other criticism is that client applications are often written to use direct links to resources

necessary to perform the required operation rather than implementing logic to traverse

through the API each time, which has the effect of circumventing the whole idea of

HATEOAS. The dynamic traversal is also criticized to generate a lot of unnecessary re-

quests from the client to perform simple operations and therefore wasting network band-

width and server resources.

2.3 Open API Specification

Open API Specification (OAS) is an open source project providing a framework for de-

fining and creating RESTful APIs. It is governed by the Open API Initiative, formed in

2015 by companies such as Google, IBM, Microsoft, and PayPal, and the project is cur-

rently owned by the Linux Foundation. Open API was formerly known as Swagger spec-

ification, originally created by Wordnik in 2011 and hosted by SmartBear, which donated

the Swagger to Open API Initiative as a part of its formation. SmartBear continues to

develop various API development and visualization tools under the name Swagger, but

that name has officially been obsoleted as an API specification [15].

OAS aims to provide API documentation in a simple format that is easy to read and

understand for both human and machine readers. The format of the resulting API docu-

ment is either in JSON or YAML format, both of which follow a similar and simple hierar-

chical structure but with a different syntax. Many open-source visualization tools exist

that take an OAS document as input and present it in a more human-friendly format than

the raw JSON/YAML file. One example of such a tool is ReDoc [16], which is used by

Docker to publish their API to users. In its simplest usage, all that is needed is an HTML

file that loads the intended OAS document and a ReDoc script to read and render it

dynamically. An example of a well-documented public API using OAS is the Docker En-

gine API, a piece of which is shown in Figure 2 below.

13

Figure 2. A sample documentation of an endpoint in the Docker API, rendered with
ReDoc. Full documentation available online in [17].

The main advantage in using API documenting standard like OAS comes from the fact

that when done in sufficient detail, the document gives everything needed to implement,

test or use the API successfully. Many companies running online services, such as

Zalando, are believers in “API first”- engineering strategy [18], where the first stage of

system design includes only creating and locking down the APIs used, and no actual

implementation logic is written.

Having the API set early on in the process allows development and testing teams to start

their work independently of each other. A static and non-changing API design enables

creating test suites for any functionality of the end product even before they are fully

implemented, as tests can be written against the finalized API. This allows using fully

written tests to give early and continuous feedback on the functionality of the system

components while the overall development process is in progress.

2.4 Microservice architecture

The term “microservices” started to take hold in the early 2010s when software architec-

tures participating in various international workshops noted similar properties and char-

acteristics in systems they were implementing. The overall architectural style was noted

to be moving away from running a single large process on the server side (so-called

Monolith system) to smaller independently functioning processes working together to

produce same the results, thus coining the term microservices [19].

One definition for the concept of microservices and overall architecture style is presented

in the book “Microservice Architecture: Aligning Principles, Practices and Culture” [20]:

14

“A microservice is an independently deployable component of bounded scope that sup-

ports interoperability through message-based communication. Microservices Architec-

ture is a style of engineering highly automated, evolvable software systems made up of

capability-aligned microservices.”

The above definition is further refined into more specific traits. Individual microservices

tend to be:

 Small in size: they’re kept minimal by purpose to limit the complexity and respon-
sibility of a service. How small a service should be, depends on the application.

 Enabled by messaging: the system as a whole communicates by services mes-
saging each other.

 Context bounded: each service should have a single responsibility, and not share
that with other services.

 Independently developed: separation of concerns within the system enables ser-
vices to be developed as individual products.

 Autonomously deployed: each service is executed as its own process, often in a
completely isolated virtual machine.

 Decentralized: microservice systems generally do not include a service in charge
of controlling other services.

 Built and released with automatic processes: independence of each service
within a system enables them to be built, tested and released into the production
environment regardless of other services.

Microservice architecture is not a formally specified architecture, but a collection of com-

mon attributes used in modern web applications. According to Martin Fowler and James

Lewis [21], the following characteristics are typical for a microservice system and devel-

opment process as a whole:

 Componentization via Services: the overall system is formed by a number of in-
dependently managed and deployed services working together.

 Organized around Business Capabilities: instead of having separate teams han-
dling different parts of front- and backend work within the whole system, teams
are built to deliver complete services with.

 Products not Projects: development team owns all work related to their service
as long as it is used, instead of pre-determined criteria of completeness and de-
livery date. Service is released into the production environment early, and con-
tinuously improved and maintained as long as the service is in use.

 Smart endpoints and dumb pipes: communication between services is imple-
mented as simply as possible and the underlying network is used just as means
to get the message to the intended receiver.

 Decentralized Governance: the only design constraints for services are how they
connect to other services. All details, such as programming language used to
implement the service, is left for the team to decide.

15

 Decentralized Data Management: data storage is split into service-specific data-
bases based on context is favored over large system-wide databases used by all
services.

 Infrastructure Automation: code delivery from version control system into the pro-
duction environment is not done by people, but by highly automated delivery in-
frastructure instead. Everything from building the service, to testing it and releas-
ing into the live environment can be, and often is, automated to a high degree.

 Design for failure: services should be as fault tolerant as possible, and be pre-
pared to handle communication issues and unavailability of other services grace-
fully. Status of services is monitored all the time and failed services restarted
automatically, if possible.

 Evolutionary design: services should be able to be modified easily to adapt to
changes in the environment. Services should be replaceable in real-time in pro-
duction environment without affecting the functionality of the overall system.

The separation of system components into small individual pieces working together im-

plement large-scale systems is not a new or groundbreaking idea. In fact, the design

principles known as the Unix philosophy, written by Doug McIlroy in Bell System Tech-

nical Journal from 1978 [22], apply quite easily to microservice mindset, by using the

word “service” instead of “program” or “software”:

 Make each program do one thing, and do it well. To do a new job, build afresh
rather than complicate old programs by adding new “features”.

 Expect the output of every program to become the input to another, as yet un-
known, program.

 Design and build software, even operating systems, to be tried early, ideally
within weeks. Don’t hesitate to throw away the clumsy parts and rebuild them.

2.4.1 Virtualization via containers

The fundamental nature of microservices, combined with advancements in cloud infra-

structure technology, lends itself quite naturally to the deployment of microservice sys-

tems by using various virtualization methods. Some popular virtualization technologies

today are Docker, which provides a way to release software as single isolated containers

that are light to execute, and Kubernetes, which offers tools to large-scale deployment

for containerized applications.

Docker is a tool for executing and managing virtualized lightweight containers [23]. It

does virtualization at the operating system level, in which all containers share the same

kernel but are executed as separate user spaces in memory. This creates a level of

isolation to container execution, and containers can implement their own filesystems and

other key infrastructure within the container. Kernel sharing saves computational re-

sources, all containers share the same hardware and there is no need to emulate hard-

ware virtually.

16

Docker containers are generated from a list of instructions called a Dockerfile, which

specifies a Docker image. Dockerfile contains information about what operating system

kernel it uses and what commands are run on the image before the start of the execution,

for example [24].

The independent nature of individual microservices allows scaling the service horizon-

tally by increasing the number of service instances under heavy workload, rather than

duplicating the entire system as would be needed with a monolithic application in order

to respond to overall system load changes dynamically.

2.4.2 DevOps – Development Operations

The emergence of DevOps culture has been claimed to enable the overall development

of microservice systems. The term DevOps comes from the fact that it merges the appli-

cation development team (Dev) with the operations team (Ops) responsible for managing

the live application. In the DevOps way of thinking, a single team is responsible for the

entire lifetime their deliverable, throughout development, testing, deployment to produc-

tion, and maintenance. According to Amazon [25], the overall goal behind DevOps is to

automate and streamline software development and infrastructure management pro-

cesses. DevOps is said to be more of a cultural philosophy and practices that aim to

shorten software delivery times and make evolving the software into new versions easier

and quicker.

Amazon lists the following as the best practices to DevOps (using their own infrastructure

as an example):

 Continuous Integration: As developers push their code into the used version con-
trol system, builds are generated and existing automated tests are executed au-
tomatically on the build server

 Continuous Delivery: Automated builds that pass through all levels of testing suc-
cessfully are automatically deployed to a live production environment. The focus
is on keeping the product deployable at any given time into any environment re-
quired [26].

 Microservices: Application is deployed as small independently managed ser-
vices.

 Infrastructure as code: All necessary virtual infrastructure to run the application
is dynamically provisioned using automated tools provided by the used cloud
platform.

 Monitoring and logging: All services provide real-time metrics and logs about their
levels of activity, giving the DevOps team means to understand how updates and
configuration changes impact the application performance.

17

 Communication and Collaboration: The merging of development and operations
provides shortened paths of communication and a better understanding of the
workflows and responsibilities of the system as a whole.

Since DevOps culture demands that the product is deployable at all times, there is often

a need to have private and isolated “sandbox” environments. These environments re-

semble closely fully deployed production systems and are available for developers to try

out their new code in isolation from the environment end users are using before integrat-

ing their work into the larger code base.

For the same reasons, similarly isolated full-sized test environments are needed to inte-

grate works of multiple developers together. Running acceptance tests for larger sets of

code changes before releasing anything into the production environment is also done in

isolated environments. In Continuous Delivery practices, these needs are handled by

having multiple tiers of environments available at all times for different purposes [27].

 Production environment: the live deployment that the final customers are using.

 Staging environment: the level where final acceptance tests are done before de-
ploying anything into production. The staging environment should replicate pro-
duction conditions as closely as possible.

 Integration environment: used to merge a collection of changes together into dif-
ferent application release versions.

 Development environment: the lowest level of work takes place in this environ-
ment, developers may try anything they want without negatively affecting other
developers work. May also be the integration environment at the same time.

When done properly, this kind of staggered releasing process minimizes the amount of

time it takes to notice and correct possible defects in the system. As testing takes place

in multiple iterations before release into production, the chance of issues slipping through

the cracks should go down.

18

3. TEST AUTOMATION

Generally speaking, any test execution driven programmatically by a computer following

a pre-determined list of actions can be considered test automation. It can range from

writing a list of Linux commands into a file and giving it as an input to a command line

interpreter (like bash) to a large GUI-based application that interact with another separate

software. One definition is “the use of a separate software from the testable application

to control and execute test cases against defined specifications” [28].

3.1 General properties of automated testing

Test automation offers many attractive properties when compared to a fully manual, hu-

man-performed testing:

 Automated tests are executed faster than manual tests and require no human
supervision. Performance is limited by the response time of the system under test
(SUT), and how quickly the test program can react to the behavior of SUT in order
to continue testing.

 When developed properly, automated tests have a higher level and a more stable
quality of results. Human testers get eventually tired and may lose their concen-
tration when performing simple and repetitive test steps over and over again,
leading to errors and sloppier results overall. Fully automatic tests are executed
the same way every single time and therefore their results are expected to vary
minimally.

 Automated testing allows using time resources more effectively. Long lasting
tests can be left running overnight and other times when people are not at work
to produce new results that are available later when people have time to analyze
them.

 Automated tests yield information about how the system performs in long-lasting
scenarios easier than in fully manual testing and may expose flaws that would
otherwise be difficult to notice or induce. Some examples would be slowly occur-
ring memory leaks, and degraded system performance when the amount of
stored data reaches high levels.

 Automated tests, especially when targeted at lower levels of application (unit
tests), give developers quick feedback about the functionality of the code they
are working on. Test automation can be integrated into version control systems
to execute a set of tests whenever code changes are pushed into the repository.
This way the code change can be immediately tested to see if it broke function-
ality in the program. In case it did break something, the code can be compared
to a previous correctly working version and fixed quickly. Testing with this inten-
tion is called regression testing, and automated tests are extremely well suited
for that task.

19

 Automated testing scales in parallel in a very cost-efficient way. The only limit is
the number of test machines available, and hardware is in most cases signifi-
cantly cheaper than human resources. This scaling is very useful when testing
how SUT performs under heavy load.

 Automated testing can adapt to different configurations quickly by just simply giv-
ing the test program a different set of parameters to work with when utilizing some
form of parametrization.

 Test automation frameworks output in many cases nicely formatted, high quality
and comprehensive results about the test execution.

When using test automation extensively, some challenges and limitations need to be

accounted for beforehand:

 Automated tests are limited in how they react to error situations. It is impossible
to predict beforehand all the possible faulty conditions that may arise during test
execution, and have the logic handling these situations implemented in test
suites.

 Automated tests are not a “create once and expect them to work forever” type of
solution, and require constant maintenance to keep in a usable state, just like any
other software. Automatic GUI tests are notorious in this regard.

 Automated tests require reliable infrastructure to be used to their full potential.
For example, unexpected power outages or system crashes during nighttime
make tests run during that time often incomplete or have limited value.

 When automated tests fail because of hardware issues, finding the root cause
can be time-consuming and difficult to diagnose.

 Automated testing requires a stable set of requirements in order to minimize the
need for maintenance work to keep test automation functional and able to fulfill
its purpose.

3.2 Levels of test automation

Automated tests can be applied to the software at various levels, depending on what

kind of testing is desired. One way of illustrating different levels of test automation is the

Test Automation Pyramid, the introduction of which is often credited to Mike Cohn in

literature [29]. The pyramid sets three levels of testing, in the order from lowest to highest

level: unit testing, service testing, and UI testing. The naming of levels varies depending

on the presentation. One version presented in Lisa Crispin’s book “Agile testing: a prac-

tical guide for testers and agile teams” is shown in Figure 3 below.

20

Figure 3. Test automation pyramid, as presented by Lisa Crispin [30]

The Test automation pyramid is an abstraction on how much testing effort should be

spent at each level of the application. The scope of testing at each level increases from

unit tests to UI testing, as unit tests focus on the smallest size of components possible

and UI testing covers the entirety of the system. The complexity of automated tests in-

crease on upper levels of the pyramid, leading to increased effort needed to generate a

wide coverage of the SUT as a whole.

3.2.1 Unit testing

Unit testing takes place at the lowest level possible, and “is a process of testing the

individual subprograms, subroutines, classes or procedures in a program” [31]. As it fo-

cuses and concerns itself on the smallest pieces of the application, unit testing should

21

be the first indicator of issues in the code. Unit testing should cover the entire application

to provide as wide visibility as possible on how code changes affect the system as a

whole on the lowest level. The test automation pyramid reflects this as well by having

unit tests as the largest piece of the pyramid.

Since unit testing takes place at the code level, developer-level knowledge of the code

is required to do it effectively. Well written unit tests have the side effect of also docu-

menting the code better: unit tests can give another developer an idea on how to use the

targeted component by just looking at associated unit tests to see intended use and

behavior.

Unit testing is in nearly all cases handled by using a test framework best suited for the

specific use case. Because of the fact that unit testing takes place at the code level,

usually the used framework is using the same language as the code being tested. Frame-

works exist for pretty much every conceivable programming language, Wikipedia, for

example, lists frameworks for 80 different languages and the most popular languages

have tens of frameworks to choose from [32].

In unit testing, components are executed in isolation from other components. The com-

ponent is given some set of parameters to work with, and the test results are interpreted

from what the return value the component responded with. For example, a component

that multiplies a list of numbers into a single value could be given a parameter list of 2,

2 and 5, and the unit test passes when the returned result is 20, otherwise the test fails.

If the tested component requires other components to serve its function, these external

dependencies are handled by using purpose-specific mock or stub objects that mimic

the behavior of the original object but in a limited fashion. Designing and implementing

these mock objects are a crucial part of writing unit tests and take a significant piece of

the overall unit test development time.

Although unit testing is a crucial part of the testing process as a whole, the information it

produces has a very narrow scope. The use of mock objects during testing does not give

a real picture of how the interaction between the actual components work, and therefore

more complex testing is needed.

In the context of microservice systems, unit testing can also be considered to take place

at a higher level of abstraction than at the lowest level of code. Single microservices are

independent and isolated entities, and therefore have the same kind of qualities as single

functions and classes. In this sense, testing an entire microservice in isolation is very

similar to lower level unit testing and similar methods of mocking external dependencies

can be utilized.

22

3.2.2 Integration testing

A formal definition of integration testing by ISTQB (International Software Testing Qual-

ifications Board) says it is “testing performed to expose defects in the interfaces and in

the interactions between integrated components or systems” [33]. In a broad sense, in-

tegration testing can involve an arbitrary number of components.

Just like the test automation pyramid illustrates, integration testing is done on a higher

level of abstraction than unit testing, and it consists of taking a number of components

and seeing how they work together. Mocking is not used generally at this level, all tested

components are their real-life manifestations. Components are tested in as much isola-

tion as possible, just like in unit testing.

The idea to isolate the components under test leads to problems when trying to cover

the system as widely as possible, as the number of component permutations to test in-

creases rapidly the more components there are in the system. The test automation pyr-

amid takes this difficulty into account, showing it as a smaller part of the whole automa-

tion flow than unit testing.

Integration testing is done by using the targeted components directly through the API

each component provides. Test cases are designed to involve multiple components in a

well-known execution path to produce the desired results. Some form of logging is often

a prerequisite for complex integration tests in order to analyze afterwards how the com-

ponents in the execution path reacted to the given input and if there are any unwanted

side-effects that arise from the given test scenario.

When the tested system is network-based, integration testing is often done in integration

and staging environments. The deployment of these environments in order to run tests

can take some effort and should be taken into account when utilizing automated integra-

tion tests.

3.2.3 System testing

The top level in the test automation pyramid is system testing. At this level, all testing

activities are done by using exactly the same user interface as the end-users do. This

allows testing the SUT in the way it is designed to be used and as such provides valuable

information about system performance and functionality as a whole.

Like in other levels of testing, system complexity becomes an issue even in simple ap-

plications to have extensive coverage of the SUT. For example, barebones text editing

23

application Microsoft WordPad has been estimated at one point in time to have 325 pos-

sible GUI operations available for a user [34]. Creating a test set just to cover all these

operations individually requires considerable effort, and covering all possible permuta-

tions becomes unfeasible rather quickly. GUI testing often focuses on ensuring that some

set of primary use cases of the application work without problems.

The general way user interfaces are interacted with is via user events that operating

systems generate based on how a human uses physical input devices, like mouse and

keyboard. Tools for generating user events are available to allow automatic UI testing in

different domains. Approaches to user event generation range from simple “left click

mouse at coordinates (x,y)” – commands, to scanning a retrieved HTML document in

order to find the desired element to click, and to graphical pattern matching to find the

target element.

The biggest challenge in automated UI testing comes from the large maintenance re-

quirements. Automated UI tests often contain enough logic to complete the required task

in an optimistic fashion, and are limited in the way they can deal with unexpected condi-

tions that human users can adapt to easily.

For example, if an automatic test depends on clicking an element at specific coordinates,

any movement of that element will break the test completely. The movement may result

from many things, such as changes in the UI layout, another UI element being larger

than expected (if dynamic sizing is being used), or a different test environment where

elements are rendered in a different size. If graphical pattern matching is used to locate

the target element, changes in the element color, shape, size or possible text content,

may also lead to broken test cases. For a human user, it is easy to adapt to these kinds

of changes on the fly and still be able to complete the intended task.

Another problem is the varying response times of the SUT. For example, if a test case

involves clicking a button which then is expected to lead to another UI element appearing

before continuing, some timeout is usually used to prevent the test being caught in an

endless loop should the element never appear. This leads to false results if the SUT

does respond as it should, but after the timeout has been exceeded. Once again, this is

a scenario that human tester can adapt to rather easily.

There are ways to generate UI tests in a machine-assisted way to ease the burden on

the test case implementer. One such way is the record-and-replay method, where the

test framework allows the replaying of a previously recorded sequence of actions made

by a human user. One notable tool with this functionality is Selenium, which is a tool for

24

testing web-browser based applications [48]. The Selenium way of recording user ac-

tions is done by observing user actions directly from the elements of the web page in-

stead of reading the location of mouse clicks for example.

Recorded automation scripts are brittle, just like other automation methods. A change in

a critical part of the SUT that the recorded test relies on likely breaks the test case. In

such case the recording has to be done again in order to continue using it for automation

purposes.

25

4. DESIGNING A TEST FRAMEWORK

This chapter brings the theoretical topics discussed previously into action, by using the

knowledge in designing a test automation framework. The target platform that the test

framework is created for is introduced first. After that, the design process of the frame-

work is discussed, from initial requirements for the framework to the tools that were and

were not selected for the framework.

4.1 Environment

The main target environment for this test automation framework is the Intel Insight plat-

form, launched by Intel Drone Group in 2018. At its core, Insight is a cloud-based data

storage and management tool for aerial images targeted at enterprise customers working

in construction or utilities industries, for example [35].

The platform is implemented as a microservice application hosted in Amazon Web Ser-

vices cloud platform, with REST API based information and data flow between services

within the system. Detailed descriptions of the application architecture and implementa-

tion are for internal use only and as such cannot be presented in the scope of this thesis.

The main feature of the platform besides data storage is automatic photogrammetry anal-

ysis and model creation. Photogrammetry is a process that takes a set of photographs

as an input, and the output is typically a map, a drawing, a measurement or a 3D model

of some real-world object or scene [36]. The results are viewable directly from a web

browser and as such do not require any separate model visualization software.

Photogrammetry models can be annotated with various preset options, and accurate

measurements of length, area and volume can be made based on the model. Image

datasets in industrial use cases are generally quite large in size, and typically contain

thousands of images taking storage capacity in the magnitude of tens of gigabytes. Fig-

ure 4 below shows an example dataset of 743 images taken from an old water tower

located in Hiedaranta.

26

Figure 4. UI view from a 3D model of an old water tower from Hiedanranta indus-
trial area in Tampere. A measurement of the height of the tower is visible in the

model, and presented numerically on the right side panel.

The original version of the Insight platform is a standalone product that has no external

integrations. The only supported workflow is a manual one where a user selects and

uploads the desired set of images to the cloud using a web browser interface.

The main purpose of the framework is for testing Intel Insight. It was already a familiar

platform as it had been tested previously with manual UI testing. A small set of automated

UI tests had been previously developed for the platform, but maintaining them was

deemed too much effort to continue. This was largely due to the fact that the platform

was on early development stages and was continuously changing. These were brought

into use again and updated and extended as a part of this framework. As a whole, the

tools used in the framework are useful for automating tests for other kinds of systems

than exclusively web browser based cloud services.

4.2 Tools & selection process

The first step in designing a system is selecting used technologies and tools suitable for

the task. At this stage, some high-level requirements and desired properties were

thought of to guide the research, learning and selection process. The most important

criteria are listed below, with the thought process behind them explained. All of the crite-

ria do not apply to every purpose, as tests done through the UI have a fundamentally

different set of requirements than integration tests:

 The selected tools should preferably be free to use and if possible, open-source
projects. This creates a lot of flexibility on starting to use the tool, as there are no
budgetary or licensing issues to begin using the tool immediately as extensively
as needed. Another benefit is that without any capital investment all tools are
painlessly replaceable if they prove to be unsuitable for their role. Having the

27

source code available also allows possibly modifying and extending the tool for
internal use cases, if such a need arises in the future.

 The ability to easily configure the tool for usage in different environments was a
highly desired attribute. This should be possible with the use of simple configura-
tion files, to have flexibility when using the tool in all possible use cases and pur-
poses.

 Integrating the tool into various continuous integration systems, like Jenkins or
Gitlab, should be possible with minimal configuration work. CI integration enables
the automatic execution of integration tests and allows the launching of UI tests
using a control panel-type controls.

 Selected tools should not require complex setup, and be light to adopt from
scratch and to use overall. Tools should be beginner-friendly in order to make it
easy to adopt them into use, preferably via some kind of IDE to simplify early
stages of learning.

 To avoid hard-coded resource paths as much as possible, used tools should al-
low creating all test content dynamically during execution of test scenarios. This
enables automatic testing of newly deployed environments without creating any
pre-existing test content manually beforehand.

 Tools should preferably have the functionality needed to run as a headless
browser. A headless browser is an application that has all the functionality of a
standard web browser but has no GUI, making it easy to perform full functional
testing without needing a graphical environment to execute the tests.

 To assist in testing systems with continuously evolving APIs, selected tools
should be able to read an OpenAPI document and generate some kind of struc-
ture based on that to make it easier to deal with possible API changes.

The overall strategy for testing Intel Insight was chosen to focus on testing things as

closely to the end-user level as possible. The main motivation for the choice was to use

the available time and people resources as efficiently as possible while producing test

results with a wide coverage of the system. This led to the automation effort to focus first

on tests through the UI, and then on lower levels.

Ultimately the set of tools that were selected are Postman for integration and API testing,

and a combination of Selenium and SikuliX for end-to-end testing through the UI. The

biggest factor in selecting these tools was familiarity from previous projects and low entry

barrier associated with them. Unit testing was declared to be out of scope and therefore

those options were not actively looked upon.

During the tool selection, process a number of other individual tools for different purposes

were evaluated and analyzed. These vary in size from small command line tools to larger

GUI applications, with all of them having some good qualities to them, but ultimately

coming up short on desired functionality. The most relevant ones that got filtered out are

listed below, with the reasoning why they ultimately were not selected:

 Connexion [37] is a library/framework for API mocking, an open source project
developed by Zalando. The tool is given an OpenAPI document as a parameter,

28

which is then used to start a local test server mocking the functionality. This gives
a quick way to try out modifications to an API, making test server development
lighter task. While sounding promising, using Connexion effectively requires de-
velopment effort to support its use. The user has to implement handlers for all
endpoints manually as Python functions. The input API document has to be
tagged manually with annotations on each endpoint pointing to the appropriate
handler in order to start the test server automatically. Connexion also proved to
handle valid OpenAPI 3.0 documentation poorly.

 Meqa [38] is an open source project for automatic REST API test generation and
execution, created by developer Ying Xie. It is designed to read an OpenAPI doc-
ument, generate a test suite based on that and it also offers a simple command-
line tool to execute the test suite automatically against a mock server. While
sounding promising, the project is not actively developed anymore with the latest
changes to the repository being from October 2017. The creator of the tool also
states that it is just a proof-of-concept project and it does not have full OpenAPI
3.0 support. In actual use, Meqa was found to work successfully only with simple
example APIs.

 SoapUI [39] is a GUI-based API test framework developed by SmartBear, the
company behind Swagger API development tools and the OpenAPI specification
until version 3.0. It has a large set of options for API testing, including automatic
mock server template generation based on an OpenAPI document, record-and-
replay capabilities, load testing tools and more. SoapUI has a free and open
sourced Community edition available, but with a considerably limited set of func-
tionality. The community edition was declared to not have enough functionality
for large usage, especially because of a lack of continuous integration support.
The application as a whole also felt clumsy to use and the UI felt confusing and
unintuitive overall.

 Katalon studio [40] is another GUI based API test framework built on top of Sele-
nium. Its functionality is close to what Postman has, but as it was discovered later
Katalon never got a lot of consideration although it is a viable option for API test-
ing.

 Oatts [41] is a test scaffolding generation tool for NodeJS projects. It generates
generic test templates for all endpoints it finds on an OpenAPI document, but
they need to be manually filled to get results. Oatts also provides a way to execute
the test templates it generated directly from the command line. With these con-
straints, Oatts was determined to be too limited and require too much develop-
ment upkeep in order to be used for this purpose.

 Insomnia [42] is yet another GUI API test framework. It has many similarities to
Postman but lacks a way to run tests outside of the desktop application. This and
the fact Insomnia was discovered after Postman led to it not being chosen to be
the tool for API testing.

4.2.1 Postman

Postman [43] is a versatile GUI-based API test development and automation suite. The

project was first published as a Chrome extension in 2012 and it was later released as a

standalone desktop application on multiple operating systems. Postman has a tiered

29

subscription system, with free tier having all basic functionality available and paid sub-

scription tiers offer increasingly more cloud-based features for cross-site collaborative

workflows.

The main feature of Postman is beginner-friendly GUI based workflow for creating, send-

ing and receiving responses to, HTTP requests. Fundamentally speaking, Postman im-

plements the functionality of a headless browser. All requests and their responses, along

with the data contained in them, are stored for later analysis, and appropriate headers

for all requests are generated automatically or by user input.

Single requests can be saved and bundled together into hierarchical structures that are

called collections in Postman terminology. An example of a collection view is shown in

figure 5 below. Collections are the Postman way of managing larger operations per-

formed with the API, by saving all the needed HTTP requests in the appropriate order in

order to be used later. Dynamic data handling is implemented by using environment var-

iables that are used either globally or within separately encapsulated environments that

can be applied to collections [44].

Figure 5. Postman main window, with an example collection opened on the left side
of the screen

Collections can be generated automatically from an OpenAPI document, filled with sam-

ple requests for each available operation grouped into a folder structure named after the

associated endpoint of the API. All metadata written into the API document is also dis-

played in the UI, making it simultaneously a documentation rendering tool.

Postman offers a mechanism to execute scripts written in JavaScript before sending a

request and after receiving the corresponding response. The script is run in a sandboxed

30

environment with access to applicable environment variables and in case of post-re-

sponse script, full response data. In Postman workflow automatic test execution takes

place in post-response scripts, where the received response can be analyzed to deter-

mine whether it was sent with expected data.

Scripts can be optionally given for an entire collection and a single folder within a collec-

tion. These scripts are applied to all requests in the collection or a folder and executed

automatically alongside all other scripts. This allows performing some common opera-

tions automatically for each request in the collection. The order of script execution starts

from Collection level pre-request script, as is shown in Figure 6 below.

Figure 6. Postman script execution order. Adapted from [45]

The script editor in Postman has some generally used test assertion snippets that can

be pasted into the script with a single click to avoid having to type them manually every

time. These scripts are the main method for dynamic environment control, allowing in-

formation received in responses to be stored into variables for the use of later requests.

This is useful for example when working with a token-based authorization scheme re-

quiring a valid token being included in all requests. In this scenario, a new authorization

token can be retrieved in a separate request and stored into an environment variable to

enable successful sending of further requests.

Collections are the logical structure that automatic request sending can be applied to.

Request automation is done via a special collection runner tool in the Postman applica-

tion. The runner executes the requests of the collection sequentially from first to last in

the order they are shown in the UI. Collection runner automatically writes a test result

log from the results of all assertions executed in each post-response script.

A separate tool named Newman is available for executing Postman collections outside

the standalone Postman application. Newman is a NodeJS package that is installed with

 Collection
 pre-request script

 Folder
pre-request script

 Request
pre-request script

 Collection
 test script

 Folder
 test script

 Request
 test script

Response

 Request

31

NPM and it integrates into the target operating system as a command line tool [46]. To

use Newman, a collection and optionally the corresponding environment have to be ex-

ported from Postman application as JSON files separately and given to Newman as input

parameters. The use of Newman allows integrating Postman into various continuous in-

tegration systems seamlessly.

The standalone Postman application comes with a tool for API monitoring. This is done

with scheduled execution of collections. The results are visualized as a graph where

response times are shown in a line graph and response payload size as a bar chart.

Example of this kind of graph is in Figure 7 below.

32

Figure 7. Postman monitoring tool showing response times and payload size [47]

The paid subscription tiers of Postman gives access to their cloud-based services for

sharing collections online to other teams using Postman, server mocking and automatic

33

API monitoring on the cloud. These services were not considered important enough in

this usage to be purchased, the free tier proved sufficient for this use.

4.2.2 Selenium

Selenium is an open source collection of tools and libraries for testing web browsers [48].

Its original version was developed by Jason Huggins, while he was working at Thought-

works, as an internal test tool in 2004 for running tests in JavaScript. Selenium currently

has three main tools under its umbrella, Selenium IDE is a browser extension that allows

recording of user actions and replaying them later all directly from the browser, Web-

Driver is a library for running and interacting with a browser directly with one of the sup-

ported programming languages, and Selenium Grid is a management tool for running

parallel Selenium scripts on physically separate test devices.

Figure 8. Selenium IDE, main window [49].

Selenium test tools work by reading directly the HTML document rendered by the

browser and targeting user actions based on that. This makes test execution entirely

based on the web page structure, and no pattern recognition or coordinate-based deci-

sion making is required, making Selenium tests independent from the look of the UI and

34

allows functioning as a headless browser. Tests are written either in Selenese, a Sele-

nium scripting language, or by using the WebDriver library in Java, JavaScript, C#, Py-

thon, Ruby, PHP or Perl.

4.2.3 SikuliX

SikuliX is an open source GUI automation tool. Its predecessor Sikuli was originally cre-

ated in 2009 as a research project of the Usable programming group in Massachusetts

Institute of Technology [50]. After the development of Sikuli ceased in 2012 under the

original development group, its development was taken over and rebranded as SikuliX

by Raymond “RaiMan” Hocke [51]. SikuliX is written in Java and supports scripting with

Python, Ruby, and JavaScript through their Java implementations, such as Jython,

JRuby, and Java scripting engine.

Automation scripts with SikuliX are based on graphical pattern matching. It scans the

contents currently shown on display and tries to find patterns similar to previously created

reference images. SikuliX provides emulation of input devices, such as mouse and key-

board, and can direct user events to parts of the screen based on findings of the pattern

matching. Pattern matching is done by utilizing OpenCV image processing library and

optical character recognition is also supported with the use of Tess4J and Tesseract

libraries.

SikuliX provides an IDE with limited capabilities for script development. One crucial and

helpful tool integrated into the IDE is a screenshot capturing tool that works directly from

the IDE window. This streamlines script creation, and thumbnails of the captured screen-

shots are displayed directly in the script itself to help users keep track of the execution

with visual cues. IDE allows a wizard-based way of manipulating mouse events by al-

lowing users to select manually the desired offset by selecting the exact location from a

reference image. An empty main view of the IDE is shown in Figure 9 below.

35

Figure 9. SikuliX IDE main view. Many often used actions are displayed on the pan-
els on the left side of the screen for easy usage [52].

The main advantage of SikuliX is that it can be utilized in automating pretty much any-

thing. The only requirements are that a display is connected to the PC executing the

program and something is graphically rendered on that display for SikuliX to find and

react accordingly to. The size of the application does not matter, anything from full-sized

operating systems to small helper tools can interact with SikuliX in an automated fashion.

Lack of a graphical user interface is not a limitation either, working with pure command

line programs is also possible by utilizing optical character recognition. With very few

limitations in where it can be applied to, SikuliX is an extremely versatile automation tool.

36

5. IMPLEMENTATION

To illustrate how the selected tools can be utilized in automating tests for standard oper-

ations of the Insight platform, let us examine the uploading of images as an example use

case. In order to utilize services provided by Insight platform, image sets have to be

present on the server. From the end user point of view, this involves creating a new

project from the browser UI, selecting the set of images to be uploaded, choosing an

engine for automatic photogrammetry processing, and pressing a button to confirm and

trigger project creation and data upload to the server.

All the fine details of this process that do not require user interaction are being handled

on the browser side code of the application. These details include reading the metadata

of each image file, constructing larger project level metadata based on those, and the

final uploading of the dataset to the server in a parallelized manner.

Doing the same operation directly through the API involves a couple of extra steps. Be-

low is a high-level summary of the process, which can also be observer using developer

tools- tab found in all widely used web browsers:

1. Send a POST request to the authentication service with valid login credentials
included in the request body. If login credentials are valid, the service sends in its
response body an authentication token to be included in all requests of the cur-
rent user session. The token automatically expires after a couple of hours.

2. Send a POST request to the UI service with request body containing general
metadata about the project, photogrammetry processing settings and the number
of pictures to be uploaded to the server. The server sends a response back with
a large collection of metadata related to the project, including project, mission
and flight identifiers that will provide the necessary context for the subsequent
requests related to the newly created project.

3. Send a POST request to the project management service with a request body
containing a list of the files that are going to be uploaded and their metadata,
along with the project, mission and flight identifiers acquired in the previous step.
The server response lists the soon to be uploaded files and their metadata, and
adds among it the identifier to be used for each file when doing the actual upload
to the server.

4. For each file included in the upload, send a PUT request to the data storage
service’s endpoint by appending the image identifier received during the previous
step into the upload URL. The request body is the file that is uploaded and its
MD5 checksum needs to be set manually into the corresponding HTTP header,
along with “no-cache” value for cache control. The server response is simply an
indication of whether the request was completed successfully and if not, the rea-
son it did not go through (wrong MD5 checksum for example).

5. Once all images have been uploaded, send a POST request to the project man-
agement service’s endpoint related to the uploaded flight in order to complete the

37

upload process, using the corresponding flight identifier. The server response in-
dicates the success of the request.

6. Send a POST request to the project management service’s endpoint related to
the mission to start the photogrammetry processing of the uploaded dataset. The
server response indicates the success of the request.

Since the process is very mechanic and straightforward by nature, it can be recreated

and automated as a Postman collection. Figure 10 below shows the way Postman pre-

sents the sequence of requests in the collection view of the main window.

Figure 10. Project upload collection example, with a small dataset of 13 pic-
tures

To begin the upload process, a valid authentication token has to be retrieved first. Once

authentication succeeds, the token can be found in the response body, like in Figure 10

above. To use it later, the token is stored into an environment variable in the test script.

Postman has an option to set a general authentication scheme to an entire collection,

thus reducing the need to set it up manually in each request. Intel Insight authenticates

by using Bearer scheme, where the authentication token is included as “authentication”

request header, with the value of “Bearer <tokenstring>”. Example of this is shown in

Figure 11 below, where Postman’s environment variable syntax of {{variablename}} is

also visible.

38

Figure 11. Collection authorization scheme

After authentication, the upload process can begin by creating a new project. A POST

request is sent to the appropriate endpoint and the identifiers needed in later steps are

stored in environment variables.

The next step is to send a POST request including the list of images and their metadata

to the server. The response from the server contains the file identifiers to be used in the

upcoming upload. In order to use them in the individual uploads, the file identifiers have

to be extracted from the response and stored into environment variables, like in Program

1 below. Due to limitations of the Postman environment variable system, where the only

variable type is a string, the list of image identifiers needs to be stored as a JSON struc-

ture written as a string. When the identifier is needed, it can be retrieved from the envi-

ronment and set as another environment variable before using it in the upload request.

2

4

6

8

10

 var jsonData = pm.response.json();
 var imagepaths = [];

 for (let item of jsonData.photos){
 var temp = {file: item.seq,
 path: item._id};
 imagepaths.push(temp);
 }
 postman.setEnvironmentVariable("imagepaths", JSON.stringify(im-

agepaths));

Program 1. Unpacking and storing image identifiers by using a Postman test
script written in JavaScript

The way presented in Program 1 above is not the only solution to storing image identifi-

ers, it would have been perfectly working and valid way to be done by using a separate

variable for every file to be uploaded. This solution was found to be crude and resulting

in an unnecessarily bloated list of environment variables, especially as the number of

uploaded images increases. For this reason, using a single variable the value of which

is changed on a file-by-file basis was the preferred method.

39

With image identifiers available, uploading of the actual image files is a simple process.

The request body contains the image, its MD5 checksum is set as a header, and the

request is directed to the image endpoint by appending the identifier provided by the

server previously. In this case, we are using a static set of data and therefore we can

use hardcoded values for MD5 checksum of each file. Figure 12 below shows an exam-

ple of a single file upload.

Figure 12. File upload request example

After upload of all images is finished, the data upload process is finished by sending a

POST request to the project management service into the endpoint referring to the newly

created flight within its project. Automatic photogrammetry processing is similarly

launched by sending a POST request to the photogrammetry triggering endpoint asso-

ciated with the project.

Doing the file upload with Selenium was implemented by using the WebDriver library in

Python. WebDriver was supplemented with PyAutoGUI library [53] to generate user

events in cases where Selenium is unable to locate and interact with the necessary ele-

ments, like rendered JavaScript and a file dialog pop-up window from the operating sys-

tem. The upload implementation mimics the way a real user would do it, by finding and

clicking elements on the screen in the same order a human user would do. Project upload

implementation can be seen in Appendix B.

Doing the same file upload process automatically through the UI using SikuliX is a some-

what simple and straightforward process. The minimal amount of steps required to do

the task needs to be recorded first. This is done by giving SikuliX directions about where

to click by taking screenshots of all the UI elements that need to be pressed, and the

context of when to look for each element.

The simple way for this is to follow a pattern of first waiting for a specific graphical pattern

to appear on the screen, and then perform some UI action once the pattern is visible.

40

Adding some extra delays between steps is required in many cases, to make sure that

the execution platform has time to receive responses from the server and render them

properly in the browser window or elsewhere. If no delays are used, SikuliX will try to

perform the next action written in the script immediately and fails to find the graphical

context needed for the action, leading to a crash of the test script.

Figure 13. Minimal SikuliX script that uploads a dataset to Intel Insight, with
side-by-side comparison of the code with and without image thumbnails.

A SikuliX script that creates a new project and selects and uploads files is presented in

Figure 13. One thing to note about the script is the large number of screenshots present

in the script. Scripted workflows like the above example can be defined as functions and

used later in other code. This way larger automation programs can be crafted by utilizing

and combining various manually defined step-by-step workflows.

41

Automated tests were integrated to the GitLab server where Insight code repositories

are located. Postman tests were integrated directly to GitLab CI since they can be exe-

cuted directly from the command line. Selenium and SikuliX tests were integrated by

using Jenkins CI system with GitLab plugin and a few PCs that were used as Jenkins

job executors, in order to have a full GUI environment when executing tests.

GitLab CI jobs are not executed directly on the GitLab server, but on separate systems

that have a tool called GitLab Runner installed. GitLab Runners are registered separately

to each repository, and when a code change is pushed to the server, the CI system uses

Runners to execute a build script placed on the repository root. A minimal build script

that executes project upload with Newman is shown below. Console output and all test

logs of the build job are stored on the CI server and can be accessed through the GitLab

web UI.

2

4

6

8

stages:
 - test
test:
 stage: test
 script:
 - echo "Testing"
 - cd /builds/user/postman-tests
 - newman run -e ProjectUpload_environment.json ProjectU-

pload_collection.json

The GitLab Runner was configured to create a Docker container each time to run the

job. The Docker container image used was based on the official Newman image from

DockerHub. In order to be used with GitLab CI, the Newman image was extended by

installing Git on it since GitLab CI jobs start by fetching the full repository the runner has

been attached to.

Selenium and SikuliX tests were executed by connecting GitLab to a Jenkins server via

Jenkins GitLab plugin. The plugin connects the two by creating a so-called webhook, an

automated HTTP request that is triggered by an event. In this case, a change made in

the GitLab repository leads to the server sending a notification with HTTP to Jenkins,

which leads to Jenkins triggering a build job that executes SikuliX and Selenium tests on

remote job executor PCs. Console outputs and logs of the test executions are available

through the Jenkins web UI.

42

6. REVIEW AND LEARNINGS FROM USING THE
FRAMEWORK

The end result of the framework was satisfactory. The combination of Postman, Sele-

nium, and SikuliX proved in the end to be a practical and useful solution for the required

task. The main upside in all of the tools is the ease of prototyping with them and integrat-

ing the resulting prototypes into a larger automation framework and continuous integra-

tion environments is a straightforward process.

Postman proved to be a very beginner-friendly and easy test development tool overall.

The GUI is simple and intuitive to use for a beginner. The use of environment variables

allow flowing information from one test step to another in a simple way. The biggest issue

with environment variables is that they are fundamentally just strings. If something more

complex needs to be stored for later use, it has to be transformed first into JSON and

stored as a string. The process has to be reversed when actually working with the store

data. This leads into a series of similar or repeating blocks of code in multiple scripts and

just feels like an unnecessary obstruction. Postman documentation acknowledges this

by stating that API testing often requires using a lot of copy-and-pasted code, and to

make the work easier has often used code blocks available that can be added to scripts

with a single mouse click.

Using Postman for file uploads is not efficient. The fact that collections need to be exe-

cuted sequentially request-by-request creates a considerable overhead when having to

upload a large number of individual files. In the case of Insight, file upload is handled on

the client code run in the browser with four parallel uploads, but Postman does not have

that option. Insight server usually responds within one second from sending for most

types of requests but for single image upload, the response time is usually somewhere

between 15 to 20 seconds. It is easy to see how time requirements skyrocket as the

dataset size increases. For example, it takes minutes to upload a very small set of 20

images.

Running collections with Newman works well, but has some limitations. If it is used to

run a sequence of collections that use data stored on the server by other collections,

making the data available later requires dumping the final state of all environment varia-

bles explicitly into a new file. This means that collections become coupled together by

the environment they must share, and leads to unnecessary variables being present in

later tests that do not use them.

43

In order to use collections with Newman, they need to be exported from the Postman

application. If there are any file upload requests present in the exported collection, the

related file paths have to be manually inserted into the file since Postman leaves them

empty otherwise.

Selenium is a useful and easy tool to write tests with when the web service being tested

is mainly HTML. Modern web development is moving away from that approach by using

JavaScript more extensively, making Selenium less useful. Heavy use of JavaScript to

create UI elements makes Selenium unable to locate them and as such other tools are

required to support testing. The same applies to things operating system pop-ups, such

as file dialogs, which cannot be interacted with by just Selenium.

Using Selenium to test Insight (see Appendix A for example) proved to be challenging.

The HTML structure of the system is quite complex and the only reliable way of locating

elements was to use the XPath attribute, the hierarchical location of the element within

the HTML code. This makes tests very reliant on the base structure not changing at all,

or else all tests would stop working. Insight also uses JavaScript for many functionalities,

and testing those requires the use of external libraries to generate user actions, making

Selenium in many instances just a test control tool rather than a test execution tool.

SikuliX is easy to begin working with and basic usage is easy when everything works. Its

main downsides are the difficulty of debugging, portability, maintenance requirements

and confusing or lack of proper documentation. These issues make creating complex

applications with SikuliX a challenge.

Debugging difficulty comes from the fact that only error logging SikuliX natively offers is

Java exception traces. SikuliX IDE will execute code with faulty syntax without checking

it beforehand and offers a bare minimum of options for checking code correctness. In

many cases when execution stops abruptly because of syntax issues, error logging will

not point out where and how the issue manifested. To alleviate these issues, it is highly

recommended to use external code editors when working with SikuliX and use the pro-

vided IDE only when it is absolutely necessary.

Portability into other environments is challenging with SikuliX programs. Things work

easily only when development and execution platforms are the minimally different, oth-

erwise things start to quickly break down here and there. The main reason this happens

comes from display devices. For SikuliX to work the native resolution and DPI of displays

used have to match on all platforms. Different scaling creates problems for template

matching of the OpenCV library. This issue increases maintenance workload, along with

the fact that the UI has to stay unchanged for things to work continuously.

44

Documentation of SikuliX is at times lacking useful examples and as such trial-and-error

method is the only way of figuring out how things work.

45

7. CONCLUSIONS

The main objective of this thesis was to research and evaluate options on how to perform

automated testing for microservice applications in a cost-effective and time-effective

manner. Theoretical background about software architectures and technologies used in

the Internet and automated testing in general were discussed on the way. All the

knowledge gathered was in the end combined to create a test automation framework for

Intel Insight, a microservice system.

The design process of the automation framework was discussed from the perspective of

high-level requirements. These, in turn, were used to try out and evaluate a number of

different tools that provided useful features for test automation. The tools that were se-

lected for the framework were examined in-depth, and the rest were briefly discussed

from the functionality point of view and the reason they were not selected.

The use of the framework in action was examined by looking at how a core use case

was automated to facilitate testing the end-user workflow at multiple levels of the appli-

cation. Test results can be determined from what state the system is left in after the

automation has finished its execution for the end-to-end use cases and from server re-

sponses on the API level.

The resulting framework was evaluated from the perspective of developing automated

tests with the tools. The framework was regarded as suitable for its purpose, but with

some evident downsides to it. All the tools in the framework do their core jobs well, but

as use cases get more complicated, some functionalities have plenty of room for im-

provement.

Future work on improving the framework is possible, as all tools have their source code

publicly available. The most pressing improvements would be improving SikuliX by im-

plementing better error reporting and some kind of tool for static code analysis to catch

faulty syntax and poor logic in the code before executing scripts. Improving the SikuliX

IDE would also be high on the list of improvements. Postman improvements include

making the collection execution more functional, with more versatile ways than environ-

ment variables of injecting parameters for test runs. Selenium works well on the things it

is capable of and as such, no immediate improvement needs came up.

This thesis focused on using free test automation tools, and commercially distributed

automation tools were intentionally left out of scope. The free tier of Postman offers a

wide set of features for API testing, similar tools are available on the commercial side

46

with more functionality and license prices starting from approximately $500 per year.

Using them would make sense for an organization working primarily in the SaaS busi-

ness domain where they could be utilized to their full potential. In the business environ-

ment the work of this thesis was done in, it did not make sense to explore further those

options.

47

REFERENCES

[1] Gartner, Inc, Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.3
Percent in 2019. [Online]. Available (accessed 9.5.2019): https://www.gart-
ner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-
public-cloud-revenue-to-grow-17-percent-in-2019

[2] Mozilla, Evolution of HTTP, MDN web docs. [Online]. Available (accessed
9.5.2019): https://developer.mozilla.org/en-US/docs/Web/HTTP/Ba-
sics_of_HTTP/Evolution_of_HTTP

[3] Tim Berners-Lee, The Original HTTP as defined in 1991. [Online]. Available (ac-
cessed 9.5.2019): https://www.w3.org/Protocols/HTTP/AsImplemented.html

[4] T. Berners-Lee, R. Fielding, H. Frystyk, RFC 1945: Hypertext Transfer Protocol
-- HTTP/1.0, Internet Engineering Task Force, 1996. [Online]. Available (ac-
cessed 9.5.2019): https://tools.ietf.org/html/rfc1945

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee, RFC 2068: Hyper-
text Transfer Protocol -- HTTP/1.1, Internet Engineering Task Force, 1997.
[Online]. Available (accessed 9.5.2019): https://tools.ietf.org/html/rfc2068

[6] R. Fielding, J. Reschke, RFC 7230: Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing, Internet Engineering Task Force, 2014. [Online].
Available (accessed 9.5.2019): https://tools.ietf.org/html/rfc7230

[7] M. Belshe, R. Peon, M. Thomson, RFC 7540: Hypertext Transfer Protocol Ver-
sion 2 (HTTP/2), Internet Engineering Task Force, 2015. [Online]. Available (ac-
cessed 9.5.2019): https://tools.ietf.org/html/rfc7540

[8] International Organization for Standardization, ISO-7498: Basic Reference
Model: The Basic Model. Available (accessed 9.5.2019): https://stand-
ards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-
1_1994(E).zip

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-
Lee, RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1, Internet Engineering
Task Force, 1999. [Online]. Available (accessed 9.5.2019):
https://tools.ietf.org/html/rfc2616

[10] T. Berners-Lee, R. Fielding, L. Masinter, RFC 3986: Uniform Resource Identifier
(URI): Generic Syntax, Internet Engineering Task Force, 2005. [Online]. Availa-
ble (accessed 9.5.2019): https://tools.ietf.org/html/rfc3986

[11] Mozilla, HTTP messages, MDN web docs. [Online]. Available (accessed
9.5.2019): https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

[12] R. Fielding, J. Reschke, RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content, Internet Engineering Task Force, 2014. [Online]. Available
(accessed 9.5.2019): https://tools.ietf.org/html/rfc7231

[13] Roy Thomas Fielding, Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine,

https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7540
https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc3986
https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages
https://tools.ietf.org/html/rfc7231

48

2000. Available (accessed 9.5.2019): https://www.ics.uci.edu/~fielding/pubs/dis-
sertation/top.htm

[14] Roy Thomas Fielding, REST APIs must be Hypertext-driven, 2008. [Online].
Available (accessed 9.5.2019): http://roy.gbiv.com/untangled/2008/rest-apis-
must-be-hypertext-driven

[15] Open API Iniative, A Short History of the Open API Initiative and the OpenAPI
Specification. [Online]. Available (accessed 9.5.2019): https://www.opena-
pis.org/faq#OAIFAQ-History

[16] ReDoc documentation. [Online]. Available (accessed 9.5.2019):
https://github.com/Rebilly/ReDoc

[17] Docker Engine API documentation. [Online]. Available (accessed 9.5.2019):
https://docs.docker.com/engine/api/v1.39/#operation/ContainerTop

[18] Zalando, Zalando RESTful API and Event Scheme Guidelines. [Online]. Availa-
ble (accessed 9.5.2019): https://opensource.zalando.com/restful-api-guide-
lines/#api-first

[19] Nadareishvili I, Mitra R, McLarty M, Amundsen M. Microservice Architecture. 1st
ed.: O'Reilly Media, Inc; 2016. p 4.

[20] Nadareishvili I, Mitra R, McLarty M, Amundsen M. Microservice Architecture. 1st
ed.: O'Reilly Media, Inc; 2016. p 6.

[21] Martin Fowler, James Lewis, Microservices. [Online]. Available (accessed
9.5.2019): https://martinfowler.com/articles/microservices.html

[22] M. D. McIlroy, E. N. Pinson, B. A. Tague, Foreword, The Bell System Technical
Journal, Volume 57, Number 6, Part 2, 1978. [Online]. Available (accessed
9.5.2019): http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Tech-
nical_Journal.pdf

[23] M. J. Scheepers, Virtualization and Containerization of Application Infrastruc-
ture: A Comparison, Proceedings of the 21st Twente Student Conference on IT
June 23rd 2014, 2014. Available (accessed 9.5.2019): https://thijs.ai/pa-
pers/scheepers-virtualization-containerization.pdf

[24] Docker documentation, Dockerfile reference. [Online]. Available (accessed
9.5.2019): https://docs.docker.com/engine/reference/builder/

[25] Amazon, What is DevOps?. [Online]. Available (accessed 9.5.2019):
https://aws.amazon.com/devops/what-is-devops/

[26] Martin Fowler, Continuous Integration. [Online]. Available (accessed 9.5.2019):
https://martinfowler.com/bliki/ContinuousDelivery.html

[27] Peter Murray, Traditional Development/Integration/Staging/Production Practice
for Software Development. [Online]. Available (accessed 9.5.2019):
https://dltj.org/article/software-development-practice/

[28] Tuukka Virtanen, Literature Review of Test Automation Models in Agile Testing,
Master of Science Thesis Information and Knowledge Management, Tampere
University of Technology, May 2018, p. 14. Available (accessed 9.5.2019):

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.openapis.org/faq#OAIFAQ-History
https://www.openapis.org/faq#OAIFAQ-History
https://github.com/Rebilly/ReDoc
https://docs.docker.com/engine/api/v1.39/#operation/ContainerTop
https://opensource.zalando.com/restful-api-guidelines/#api-first
https://opensource.zalando.com/restful-api-guidelines/#api-first
https://martinfowler.com/articles/microservices.html
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
https://thijs.ai/papers/scheepers-virtualization-containerization.pdf
https://thijs.ai/papers/scheepers-virtualization-containerization.pdf
https://docs.docker.com/engine/reference/builder/
https://aws.amazon.com/devops/what-is-devops/
https://martinfowler.com/bliki/ContinuousDelivery.html
https://dltj.org/article/software-development-practice/

49

https://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/25869/Vir-
tanen.pdf?sequence=3&isAllowed=y

[29] Mike Cohn, The Forgotten Layer of the Test Automation Pyramid, Mountain
Goat Software. [Online]. Available (accessed 9.5.2019): https://www.moun-
taingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

[30] Crispin, L. & Gregory, J. 2009, Agile testing: a practical guide for testers and ag-
ile teams, Addison-Wesley, Upper Saddle River, NJ.

[31] Myers, G.J., Sandler, C., Badgett, T. & ebrary, I. 2012, The art of software test-
ing, 3rd edn, John Wiley & Sons, Hoboken, N.J.

[32] Wikipedia, List of unit testing frameworks. [Online]. Available (accessed
9.5.2019): https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

[33] International Software Testing Qualifications Board, Standard Glossary of
Terms used in Software Testing. [Online]. Available (accessed 9.5.2019):
https://www.istqb.org/downloads/send/20-istqb-glossary/186-glossary-all-
terms.html

[34] Atif M. Memon, Martha E. Pollack, Mary Lou Soffa, Using a goal-driven ap-
proach to generate test cases for GUIs, Proceedings of the 21st international
conference on Software engineering, Los Angeles, California, USA, May 16-22,
1999. pp 257-266. Available (accessed 9.5.2019): https://dl.acm.org/cita-
tion.cfm?id=302632

[35] Intel Corporation, Intel Insight platform – Drone Data Management. [Online].
Available (accessed 9.5.2019): https://www.intel.com/con-
tent/www/us/en/drones/solutions/intel-insight-platform.html

[36] Alan Walford, What is photogrammetry?. [Online]. Available (accessed
9.5.2019): http://www.photogrammetry.com/

[37] Connexion documentation. [Online]. Available (accessed 9.5.2019):
https://github.com/zalando/connexion

[38] Meqa documentation. [Online]. Available (accessed 9.5.2019):
https://github.com/meqaio/swagger_meqa

[39] SoapUI main page, SmartBear. [Online]. Available (accessed 9.5.2019):
https://www.soapui.org/

[40] Katalon studio main page, Katalon. [Online]. Available (accessed 9.5.2019):
https://www.katalon.com/

[41] Oatts documentation. [Online]. Available (accessed 9.5.2019):
https://github.com/google/oatts

[42] Floating Keyboard Software Inc, Insomnia main page. [Online]. Available (ac-
cessed 9.5.2019): https://insomnia.rest/

[43] Postman, Postman main page. [Online]. Available (accessed 9.5.2019):
https://www.getpostman.com/

https://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/25869/Virtanen.pdf?sequence=3&isAllowed=y
https://dspace.cc.tut.fi/dpub/bitstream/handle/123456789/25869/Virtanen.pdf?sequence=3&isAllowed=y
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://www.istqb.org/downloads/send/20-istqb-glossary/186-glossary-all-terms.html
https://www.istqb.org/downloads/send/20-istqb-glossary/186-glossary-all-terms.html
https://dl.acm.org/citation.cfm?id=302632
https://dl.acm.org/citation.cfm?id=302632
https://www.intel.com/content/www/us/en/drones/solutions/intel-insight-platform.html
https://www.intel.com/content/www/us/en/drones/solutions/intel-insight-platform.html
http://www.photogrammetry.com/
https://github.com/zalando/connexion
https://github.com/meqaio/swagger_meqa
https://www.soapui.org/
https://www.katalon.com/
https://github.com/google/oatts
https://insomnia.rest/
https://www.getpostman.com/

50

[44] Postman Learning Center, Environments and globals. [Online]. Available (ac-
cessed 9.5.2019): https://learning.getpostman.com/docs/postman/environ-
ments_and_globals/variables

[45] Postman Learning Center, Intro to scripts. [Online]. Available (accessed
9.5.2019): https://learning.getpostman.com/docs/postman/scripts/in-
tro_to_scripts

[46] Postman Learning Center, Command line integration with Newman. [Online].
Available (accessed 9.5.2019): https://learning.getpostman.com/docs/post-
man/collection_runs/command_line_integration_with_newman

[47] Postman Learning Center, Viewing monitor results. [Online]. Available (ac-
cessed 9.5.2019): https://learning.getpostman.com/docs/postman/moni-
tors/viewing_monitor_results

[48] Selenium HQ, Selenium history. [Online]. Available (accessed 9.5.2019):
https://www.seleniumhq.org/about/history.jsp

[49] Selenium HQ, Selenium IDE. [Online]. Available (accessed 12.5.2019):
https://docs.seleniumhq.org/selenium-ide/

[50] Tom Yeh, Tsung-Hsiang Chang, Robert C. Miller, Sikuli: Using GUI Screenshots
for Search and Automation, Proceedings of the 22nd annual ACM symposium
on User interface software and technology, Victoria, British Colombia, Canada
October 4-7, 2009. pp 183-192. Available (accessed 9.5.2019):
http://up.csail.mit.edu/projects/sikuli/sikuli-uist2009.pdf

[51] Raimond Hocke, SikuliX main page. [Online]. Available (accessed 9.5.2019):
http://sikulix.com/

[52] SW Test Academy, Quick Start to SikuliX (Sikuli Script). [Online]. Available (ac-
cessed 9.5.2019): https://www.swtestacademy.com/quick-start-to-sikulix/

[53] PyAutoGUI documentation. [Online]. Available (accessed 9.5.2019):
https://pyautogui.readthedocs.io/en/latest/

https://learning.getpostman.com/docs/postman/environments_and_globals/variables
https://learning.getpostman.com/docs/postman/environments_and_globals/variables
https://learning.getpostman.com/docs/postman/scripts/intro_to_scripts
https://learning.getpostman.com/docs/postman/scripts/intro_to_scripts
https://learning.getpostman.com/docs/postman/collection_runs/command_line_integration_with_newman
https://learning.getpostman.com/docs/postman/collection_runs/command_line_integration_with_newman
https://learning.getpostman.com/docs/postman/monitors/viewing_monitor_results
https://learning.getpostman.com/docs/postman/monitors/viewing_monitor_results
https://www.seleniumhq.org/about/history.jsp
https://docs.seleniumhq.org/selenium-ide/
http://up.csail.mit.edu/projects/sikuli/sikuli-uist2009.pdf
http://sikulix.com/
https://www.swtestacademy.com/quick-start-to-sikulix/
https://pyautogui.readthedocs.io/en/latest/

51

A. FILE UPLOAD BY USING SELENIUM
WEBDRIVER

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

import time
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import pyautogui

DATAPATH = "Path\to\image\data"
START_OPTIONS = webdriver.ChromeOptions()
START_OPTIONS.add_argument("--start-maximized")

Start the browser and go to Insight staging server
DRIVER = webdriver.Chrome("../chromedriver.exe",
 options=START_OPTIONS)
DRIVER.get("https://stagingserver.net")

Locate textboxes for login credentials and type to them
username = DRIVER.find_element_by_id("username")
password = DRIVER.find_element_by_id("password")
username.send_keys("test_username")
password.send_keys("test_password")
password.send_keys(Keys.ENTER)
Wait for the main view to appear, then find and click the upload

button
time.sleep(2)
DRIVER.find_element_by_xpath("/html/body/app-root/ng-compo-

nent/div/ng-component/div[1]/app-projects-panel/app-projects-panel-
header/div/div[2]").click()

Wait for the JavaScript element for uploading appear
Launch OS file dialog by clicking the 'Browse' button on screen
time.sleep(3)
pyautogui.click(x=966, y=575)
Once file dialog is visible, use keyboard to navigate to test data

location
time.sleep(2)
pyautogui.press('tab')
pyautogui.press('tab')
pyautogui.press('tab')
pyautogui.press('tab')
pyautogui.press('tab')
pyautogui.press('space')
pyautogui.typewrite(DATAPATH)
pyautogui.press('enter')
pyautogui.press('tab')
pyautogui.press('tab')
pyautogui.press('tab')
pyautogui.press('tab')
Select all files in the folder with CRTL+a and press enter to

close dialog
pyautogui.press('space')
pyautogui.hotkey('ctrl', 'a')
pyautogui.press('enter')
Wait for the frontend code to read image files
Then press 'Next' and 'Upload' buttons to finish the upload

52

54

56

58

60

62

64

time.sleep(2)
DRIVER.find_element_by_xpath("/html/body/app-root/ng-compo-

nent/div/app-upload-any/app-upload/app-creation/div[4]/div/but-
ton[2]/span").click()

time.sleep(2)
DRIVER.find_element_by_xpath("/html/body/app-root/ng-compo-

nent/div/app-upload-any/app-upload/app-creation/div[4]/div/but-
ton[2]/span").click()

time.sleep(2)
DRIVER.find_element_by_xpath("/html/body/app-root/ng-compo-

nent/div/app-upload-any/app-upload/app-creation/div[4]/div/but-
ton").click()

